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Ial Ibl [ a I I b I is Abstract. We give a combinatorial proof that k l - k - 1 l + t 
q q q q 

a polynomial in q with nonnegative coefficients for nonnegative integers a, b, k, lwith 
a>~b and l~>k. In particular, for a = b = n  and l=k ,  this implies the 

q-log-concavity of the Gaussian binomial coefficients k , which was conjectured 
q 

by BUTLER (Proc. Amer. Math. Soc. 101 (1987), 771--775). 

1. Introduction 

A sequence (Pk(q))k~ of  polynomials Pk(q) in q is called 
q-log-concave if pk(q)Z--pk_l(q)pk+l(q) is a polynomial with 
nonnegative coefficients. In a recent paper BUTLER [2] conjectured 
that the rank numbers of  the lattice of  subgroups of a finite abelian 
q-group are q-log-concave. Even in the special case of  the q-group 
being of  type 2 = (1 ") this conjecture was not  settled. ((1 ") is the 
partit ion consisting of  n parts equal to 1 .) Here we have to prove that  
the Gaussian binomial coefficients 

k (q; q)k (q; q),-k'  q 

where (a; q), = (1 - a)(1 - a q ) . . .  (1 - a q"-l), are q-log-concave. 
That  means we have to show that 

q q 

is a polynomial in q with nonnegative coefficients. 
The first p roof  of  q-log-concavity of  Gaussian binomial 

coefficients was found by BUTLER herself [3]. When being confronted 
23* 
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with Butler's (combinatorial) proof, SAGAN [5] supplied an inductive 
proof by extending his work begun in [4]. Being unaware of both, we 
devised an alternative combinatorial proof, which we present in this 
paper. Moreover, we prove the following stronger theorem: 

Theorem 1. Let  a, b, k, l be nonnegative integers with a >1 b and 
l >~ k. Then 

[~]q[bl]q-[k~--1]q[l b + 1]q 

is a polynomial in q with nonnegative coefficients. 

(1.1) 

Once having proved Theorem 1 (which is done in section 2), the 
special case a = b = n, l = k furnishes q-log-concavity of Gaussian 
binomial coefficients. Besides, writing 

a b a b [k]q[l]q- [k- r]q[l+ r]q -~ 
a ][ 

= ~  k - i  l + i  k - i - 1  l 
i = 0  q q q 

we obtain from Theorem 1: 

hi) + i + 1  
q 

Corollary 2. Let a, b, k, l, r be nonnegative integers with a >1 b and 
l >1 k. Then 

a a b 

is a polynomial in q with nonnegative coefficients. 

As is well-known (cf. e.g. [1, p. 48]) the Gaussian binomial 

En] is a symmetric, unimodal polynomial with degree coefficient k 
q 

k (n - k). The product of symmetric, unimodal polynomials again 
is symmetric and unimodal [1, Theorem 3.9], hence both expres- 
sions in (1.2) are symmetric and unimodal, and the degree of the 
first expression exceeds the degree of the second by 
2 r (l - k + r) + r (a - b). Therefore we may generalize Corollary 2 to 
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Corollary 3. Let a, b, k, l, r, s be nonnegative integers with a >~ b, 
l>~ k and s <<. 2 r ( l -  k + r) + r(a - b). Then 

a b a + rl  q (1.3) I k l q l  llq - q ' I k  - r lq[l  b 

is a polynomial in q with nonnegative coefficients. 

Both, BUTI~ER'S [3] and SAGAN'S [5] papers, contain the case a = b 
of Corollary 3, and besides, the discussion of  related problems. 

2. Proof of Theorem 1 

Since the cases k = 0 and l >~ b are trivial we may concentrate on 
O < k ~ l < b .  

Let Pk (n) denote the set of k-element subsets of { 1, 2 , . . . ,  n}. For 
SePk(n)  we write II S[I for the sum of all the elements of S. Then it 
is well-known (this is seen e.g. equating coefficients in [1, (3.3.6)]) that 

y' q~lStt= qt 2 ~ n 
s~e~(n) k q" (2.1) 

For  pairs of integer subsets (C,D) let II (C,D)[I = i[ CII + II D II. 
We are going to construct an injection ~0 from Pk- 1 (a) x P1+ 1 (b) 

into Pk (a) x Pt (b) with weight property 

II q0((A,B))ll = I I ( / ,B)EI -  ( l -  k + 1) (2.2) 

for (A,B)ePk_ 1 (a)x Pl+l (b). Let us write F ( ~ 0  for the generating 
function ~qll(e,z~)ll where the sum is over all (C,D)eJdL Suppose q) 
given, then (2.1) would imply 

q(~) + (~2) a b a b 

= ql-k+l F(Pk(a ) x Pt(b)) - F(Pk_1 (a) x Pt+1(b)) = 

= ql-k+l F(Pk(a ) x P~(b) \ im~ Pk_i (a) x Pl+l (b)) + (2.3) 

+ ql-k+l F( im,  Pk-1 (a) x Pt+l (b)) - r(Pk_ ~ (a) x Pt+l (b)), 

where im~ Pk_l (a) x Pl+l (b) is the image of Pk-~ (a) x Pt+l (b) under 
application of % But, by (2.2) the expressions in the last line of (2.3) 
cancel, hence 
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a b ([a lqI lq- 
.= q,-k+lF(Pk(a)x pl(b)\ im~Pk_l(a)  x p/+l(b)) ' (2.4) 

which proves that (1.1) is a polynomial with nonnegative coefficients. 
Leaves to construct the injection q~. First, for a given pair (C, D) of 

integer subsets, we introduce an integer-valued function k(c.~3 acting 
on positive integers by 

m m 

k(c,D)(m) = ~ z( iEC) - ~ z( i~D),  (2.5) 
i ~ l  i = 1  

where Z (~r = 1 if d is true, Z (~?) = 0 otherwise. 
Suppose (A, B)~Pk_I (a)x Pz+l (b). The simplest way, one can 

imagine, in obtaining an injection satisfying (2.2) is removing an 
element from B, subtracting (l - k + 1) from it and putting it into the 
set A. Of  course, there are some difficulties. First of all, we have to 
take an element, say e, of B which is larger than (l - k + 1). Secondly, 
e - (l - k + 1) must not  occur in A. And last, but really not least, this 
has to become an injection. But nevertheless, we succeed in finding 
such a procedure, which we introduce in three steps. 

Step 1. Add (l - k + 1) to each element of  A, thus obtaining the 
pair (A1, B1), where B1 = B. 

Step 2. Let L (A, B) be the largest integer greater than (l - k) where 
k(A,.B,~ reaches its largest value. To be precise, for an integer n, 
n > l - k, we have 

n > L (A, B) implies k(A,,~, ) (n) < k(A,.BI ) (L (A, B)), 

n ~< L (A, B) implies k(A1, s,) (n) <~ k(A,, 81) (L (A, B)). 

Obviously, by definition of  L (A, B), we have (L (A, B) + 1)~ B1 \ Av 
Removing ( L ( A , B ) +  1) from B~ and putting it into A1, we get 
the pair (A2,B2) where A z = A I u { L ( A , B ) - - k l }  and B2= 
= B~\  {L(A,B)  + 11. 

Step 3. Subtract ( l -  k + 1) from each element of  A 2. 

To give an example take a = l l ,  b =  10, l = 6 ,  k = 5  and 
(A, B) = ({2, 4, 6,11}, {1,2,4,5,7,8,10}).  Performing Step 1 we 
obtain (A~, Ba) = ({4, 6, 8, 13}, {1, 2, 4, 5, 7, 8, 10}). Here the largest 
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integer greater than l -  k = 1 where k(A,,B0 reaches its largest value 
is L ( A , B ) =  6 (since k(A,,s,l(i)= - 2  for i =  2 ,3 ,4 ,6 ,  k(Al.~,)(i ) = 
= - -3  for i =  5 ,7 ,8 ,9 ,13  and k(A,,B,~(/) = - -4  for i =  10,11,12). 
Therefore (A2,B2) = ({4,6,7,8,  13}, {1,2,4,5,8,  10}). Finally, by 
Step 3, we obtain q~ ({2, 4, 6, 11 }, { 1, 2, 4, 5, 7, 8, 10}) = ({2, 4, 5, 6, 11 }, 
{1,2,4,5,8,10}).  

Because of 

k(A,,B, ) ( l - k +  l ) ~ > - ( l - k + l ) > k - l - 2 =  

= k(A,,BO (a + l - k + 1), 

the largest value o f  k(Az, B,) is attained for integers being smaller than 
(a + l -  k + 1) only. This shows the existence of L(A ,  B) for all 
(A, B) E P~_ 1 (a) x PI+ A (b). Therefore Step 2 always can be performed. 

Obviously % by definition, satisfies (2.2). 
In order to show that ~0 is injective, we claim that the image of q~ 

is given by the set of all pairs (C, D) e Pk (a) x Pt (b) which satisfy the 
following condition: 

(C) There exists an integer j, l -  k + 1 < j ~< b with 

l - k + 1  

k(c~,D,)(j) > -- ~ z(iED1),  
i=A 

where (CA, DO comes out of  (C, D) by adding ( l -  k + 1) to each 
element of  C, and D A -- D. 

In our preceding example, a = 11, b = 10, l = 6, k = 5, (C, D) = 
= ({2,4,5,6,  11}, {1,2,4,5,8,  10}) we have (CA, D1) = ({4,6,7,8,  13}, 
{1,2,4,5,8,  10}). Indeed k(c,.o0 (7) = - 1 > - 2 = Eiz=lz(iED,).  

Our claim may be settled by establishing the inverse map ~ of % 
Again, this is done in three steps. Consider (C, D)~ Pk (a) x Pl(b) 
which satisfies condition (C). 

Step 1. Add (l - k + 1) to each element of C, thus obtaining the 
pair (CA, D0, where D 1 -- D. 

Step 2. Let S ( C , D )  be the smallest integer with l - k <  
< S(C,  D) <~ b where k(c,.Do reaches its largest value. To be precise, 
for all integers n, with l - k < n ~ b, we have 
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n < S(C, D) implies k(c~,D, ) (n) < k(c,,o, ) (S(C, D)), 

n >t S(C, D) implies k(c,,~,)(n) <~ k(c,,D~)(S(C, D)). 

Removing S(C, D) from C1 and putting it into D1, we get (C3, D3) 
where C3 = C1\  {S(C,D)} and D 3 = D1 u {S(C, D)}. 

Step 3. Subtract (l - k + 1) from each element of C3. 

In our example, a = l l ,  b =  10, l = 6 ,  k = 5 ,  ( C , D ) =  
= ({2,4,5,6,11}, {1,2,4,5,8,10}),  we get (C~,DO = ({4,6,7,8,13}, 
(1,2,4,5,8,10}), S ( C , D ) =  7 (since k(c,,o,)(i ) = - 1 for i =  7,8,9,  
k(c,,D,) (/) = - 2 for i = 2, 3, 4, 6, I0 and k(c,,D,)(5) = -- 3) and there- 
fore, by Step 2 and 3, 

q5({2,4, 5, 6, I l L  {1,2,4,5,8,  10}) = ({2,4,6, 11}, {1,2 ,4 ,5 ,7 ,8 ,  10}). 

Step 2, for pairs (C, D) satisfying condition (C), always can be 
performed, since (C) and the definition of  S(C,D) guarantee 
S ( C , D ) ~ C I \ D 1 .  Hence (J((C,D))~Pk_l(a)• for (C,D)~ 

Pk (a) • Pt (b) and satisfying (C). 
Given (A, B)e  Pk-1 (a)• Pt+l (b) we have to prove that q~((A, B)) 

satisfies (C). Because of 
l - k + l  

k(A,,~,) (l -- k + 1) = - ~ z(i~B~), 
i=1  

we must have 
k(A2.B~)(L(A,B ) + 1) = k(A,,,,)(L(A,B ) + 1) + 2 = 

l - k + 1  

= k(A,,,,)(L(A,B)) + I > - ~ z( i~BO, 
i=1  

the inequality being true because of  maximality of k(A,,B,)(L (A, B)). 
But, since L (A, B) + 1 > 1 - k + I this implies that 9~ ((A, B)) satisfies 
condition (C). 

q~o ~ = id is shown by observing S(q~((A, B))) = L(A,  B) + 1. The 
details are left to the reader. 

Summarizing, we have ~ which maps elements of Pk- 1 (a) x P/+ 1 (b) 
into elements of Pk (a) x P: (b) which satisfy condition (C). We have c T 
mapping elements of Pk(a)x pl(b) satisfying (C) into elements of 
Pk_~(a)xPl+l(b), and ~ o ~ = i d .  Hence, ~ is a bijection between 
Pk- ~ (a) x Pt+ 1 (b) and imv Pk- 1 (a) x Pt+l (b), and therefore, in 
particular, injective, which completes the proof  of  the Theorem. 
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