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A NEW q-LAGRANGE FORMULA AND SOME APPLICATIONS 

CHRISTIAN KRATTENTHALER 

ABSTRACT. A new q-extension of the Lagrange-Burmann expansion and related 
formulas are proved. Finally we give a method to find q-generalizations of Riordan's 
inverse relations. 

1. Introduction. The Lagrange-Burmann formula solves the problem of computing 
the coefficients Ck in the expansion g(z) = 2 ckzk/fk(z), wheref(z) and g(z) are 
given formal power series (fps) with f(O) =# 0. In this paper we shall use a method 
introduced by Egorychev [2]. Consider a(z) a Laurent series (Ls), then coefz( a(z)dz) 
denotes the coefficient of z-1 in a(z). The two (equivalent) versions of the Lagrange 
formula can be rewritten as 

z ~~~~~f(z) z'~ 
(1.1 

,c 
coef(g(z)fn(z)( -z df(z)/d ) dzn+ 

or 

(1.2) cn = I 
coef (dz g(Z)f n(Z) nd) for n :> 1. 1 (dz dzn 

Jackson [7] and Carlitz [1] found q-analogues in special cases connected with Abel- 
and Laguerre polynomials, respectively. Garsia and Joni [3,4] gave a very nice 
q-extension of (1.1), but it did not contain Jackson's special case. A q-extension 
containing both Jackson's and Carlitz's results is due to Hofbauer [6]. His results are 
special cases of Theorem 1 in this paper. 

2. Definitions. Let q be a fixed real number with q :# 0, 1. Then we define, as 
usual, [a] (qa - l)/(q - 1), [n]!= [n] * [n - 1] *. [1], [0]!= 1 and [ n ] = 
[a][a -1] * [a - n + I ]/[n]!. We introduce the q-difference operator Dq by 

(2.1) Dqf(z) (f(qz) -f(z))/ (q - l)z. 

Since Dqz n =[n]Zn- Dq is a linear operator on the set of Ls. If a(z) is an Ls, the 
following property holds: 

(2.2) coef (Dqa(z) dz) = 0. 
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The q-exponential function eq(z) = z k/[k]! satisfies the differential equation 
Dqeq(z) = eq(z), which is equivalent to 

(2.3) eq(qz)= (1 + (q - 1)z)eq(z). 

Finally, we define 

eq(qaz/ (1 - q)) 

Use of (2. 1) and (2.3) gives Dq p,(l, z) = -[ a] p (ll, qz) and by iteration D kp (l, z) 
= q(Pa-k(l, qkz )[a][a - 1] ... [a - k + 1]. Therefore, we have 

pa(~ ~ 1, a I k k = (_ l)kq 2)[ 
a 

k. 

3. The Lagrange formula. Hofbauer's idea is based on the observation that 

d f n(Z) .(Z)_ f n(Z)_ 

dz f(Z) 

This leads to 
DEFINITION 1. The fps (z), a E R (- real numbers), are called q-powers, if 

there is a fixed fps T(z) such that Ta(0) =# 0 for all a and 

(3.1) Dq(p.(z) = [a](p(z)(pz). 

EXAMPLE 1. Let us suppose a, b E R, and m is a positive integer, then 
eq.((a[a] + b)zm)/eqn(bzm) are q-powers corresponding to 

I + (q - l)bzr 

To see this we only have to use (2.1) and (2.3), which leads to 

D eq.((a[Ia] + b)zm) a[a][m]zm-l eqm((a[a] + b)zm) 
D= q eqn(bzm) (1 + (qm - l)bzm) eqm(bzm) 

LEMMA 1. Let wpa(z) and pa(z) be q-powers corresponding to w(z) and 4 (z), 
respectively. Take A, ,t E R, then 

(3.2) coef (A,[+X( 
Z 

)1/P-k-( 
Z ) 

(1 - zw(Pz) - Zp(Z) + Z2cp(z)04z)(l -dZ) d = 8n k 

zn-k?+ Z 

where 6nk is the Kronecker delta. 

PROOF. Observe that (3.1) is equivalent to 

(3.3) (p,(qz) = (1 + (qa - O)ZT(Z))(T(Z) 
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and 4a the same. By using (2.1) and (3.3) we get 

D q)st+ A( Z)/O)- n-,( Z) 99(n + A( Z)/(P-1st ( qz)1 
Dq' 

9k+X(Z)/1Pk-,J(z) 
* z n-k J 

9k+(qZ)/1-k-A(Z) (q_ 1 )z nl-k+ qnt-k 

[(I +(q n+- q l)z+p(z))(q +(q -k 1z(z)ZO(Z)) 

-qnn-kk(] + (q- n-- I)zO(z))(I + (q k+X z (Z))] 

- 
- k] 9n+X(Z)/+-n-rJqZ) 

q ti-k (99k+X( qZ )I/-k-, (Z ) q~~~~~~~ 

(1 zTg(z) - zO(z) + Z2T:(Z)>(z)(l _ qA) 
n-k+ I 

If n 7# k we have proved (3.2) by remembering (2.2). The case n = k can be 
evaluated directly. O 

We now obtain the q-extensions of (1.1) and (1.2) as easy consequences of this 
lemma. 

THEOREM 1. With the assumptions of Lemma 1 and g(z) an fps we have: 
(A) If 

g(z) I Ck ~ 
h--O (Pk+AX qZ )1-k ( Z ) 

then 

= coef ( g(z ),, 59t (z) (1 ZcP(Z) - z)(z) + z2T(z)@(z)(l - dz 

cn-qz pofi(z +1 

(B) If 
x zk 

g(z) = g(O) + Ck kg(z/_k 

then 

1 w~~~~~~(nZ) dz 
Ct ( qf) Dq(gz)) z /z 

PROOF. (A) is obvious. Concerning (B), evaluate 

zk zk ) 
D( q 

Tk(Z)/'P-k(Z) 99k(qZ)/1-k(z) (q- 1)z 

(q k(l + (q k - l)zk(z)) - (1 + (qk - l)z)(z))) 

- [k] w (qz)/? Z(1 - zc(z) - zk(z)). 
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Therefore, 

coef (D (g(z) jn(Z) dz) 

=coef( z [k]ck ( ( ) 
-k+l dz) [n]cn 

by Lemma 1, setting A = 0 = O. D 

4. Examples. 
EXAMPLE 2 (JACKSON'S SPECIAL CASE). By setting b = 0 and m = 1 in Example 1, 

we see that eq(a[a]z) are q-powers corresponding to a. Use of Theorem 1 gives: If 

x zk 

g(z) E k 
k0 eq(aq[k + ;k]z) 

then 

Cn coef (g(z)eq(a[n + A]z)(1 - az) dz 

and if 
o zk 

g(z) g(0) + k Ck 

k=1 eq(a[k]z) 

then 

Cn coef (Dq(g(z))eq(a[n]z) ). 

EXAMPLE 3 (CARLITZ'S SPECIAL CASE). Take a -1, b = 1/(1 -q) and m - 1. 
Because of (2.4) we get: p (1, z) are q-powers corresponding to -1 /(1 -z). Finally, 
simple calculations show that by Theorem 1 we have: If 

oo zk 

9(Z) = ECk 
k=O Pk+X(l , qz) 

then 

/ ~~~~dz 
Cn = coef (g( Z)Pn+X- I ( 1 I qZ ) zn +I) 

and if 
o zk 

g(z) = g(0) + E Ck pk(l, z) 

then 
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EXAMPLE 4. In Theorem 1, take T(z) =p,,(1, z) and f 0. Again we 
avoid the calculations, which lead to: If 

oo z~~k 

k=O P2k+X+1(1,qz) 

then 

Cn coef (g(Z)P21+- 1?(l, q-+ lz)(l - qXz2) d+ z ~~~~~~~~~~~z I 

and if 

zk 
g(z) = g(0) + C k -k) 

k=1 P2k(l, q 

then 

ct,= [1] coef (Dq(g(z))p2n-I(l, q Z z)(l - zn) 

In [5] I. Gessel and D. Stanton obtain these three examples as special cases of a 
theorem about q-Lagrange inversion. It seems that with the exception of a few 
examples this theorem cannot be derived by our theory. It would be very interesting 
to find the connections between these results. 

5. A theorem about inverse relations. In [2] Egorychev gave a method to prove all 
the inverse relations of Riordan [8]. To find q-inverse relations we use a more general 
result based upon the same idea. 

THEOREM 2. Let ( gn(Z ))n=0, (Gk( Z))0, (h,1(z)) 0 and (Hk(z))?o be sequences 
of fps with 

f(gn(z) dz cof(hn(Z) dz _ 

(5.1) coef Gk(z) = J Hk(z) znk?l ) nk 

If (an)'l and (A3,) ) are sequences of real numbers different from zero andf(z) is an 
fps with f(O) 7# 0, then an = Ek=oCnkbk holds with 

C = 
k 

coef g(z) 
gn(z) dz 

nk 
= 

ca e z z Hk(Z) Zn-k?lJ 

if and only if bn = En=Od kak with 

dnk = coef(f( 
Zn) -(kj , fl?) 

PROOF. It is sufficient to prove only one implication; the other follows by 
symmetry. We show " =": 

(5.2) a a,1 =coef( 
c 

kakG () gn (z) dz) 
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by (5.1). On the other hand, we have 

n n 
Pk f(Z) ln g(z) dz \ 

(5.3) anan= an 2 Cnkbk kaf nbk coef (z) 
k=O k=0= oi z Hk(Z) Zn-k+1 

( 00 z k gn(z) 
= co k 

k H(Z) Zn 

Since (5.2) and (5.3) hold for every nonnegative integer n, the following equation is 
true: 

00 k 00 zk 

k(0 Hk(z) k=O 
k 

Gk(Z) 

Use of (5.1) and (5.4) gives 

=nbn coef ( kO bk H(z) Zn+1 dz) 

=coef Az) E akak dn+ dz) 

k kz( Gk(Z) Zfl+) n f (zt()- h,,(z) dz ) 

Note that the last step essentially needs the condition f(O) #f 0. Division by f3n 
completes the proof. LI 

Obviously, Lemma 1 gives many examples for the pairs gn(z), Gk(z) and hn(z), 
Hk(z) by using Example 1. Indeed, it is possible to find explicit q-analogues of 
Riordan's inverse relations to Chebyshev-, Legendre- or Abel-type. Some simple 
examples are listed below. 

n - n - k p bkn n n -k ]p k 
an = (-0 )n k [fbn]k bn= q( n - k ak 

k=O k (nk[f+Pa 

n/2] - n/2] + [nl+p] 

an 2 (-0)k[f ]bfl2p bk = bbn = q( 2 a+p]k+P k n - k ~ ~ ~ -in4- k ][n p 

k=0 k=O [ p+k 
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