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ENUMERATION OF LATTICE PATHS AND GENERATING FUNCTIONS FOR
SKEW PLANE PARTITIONS

Christian

Krattenthaler

n-dimensional lattice pathse not touching the hyperplanes
xy-X341=-1, =1,2,...,n, are counted by four different statistics,
one of which is MacMahon’s major index. By a reflection-like
proof, heavily relying on Zeilberger’s (Discrete Math. 44(1983),
325-326) solution of the n—candidate ballot problem,
determinantal expressions are obtained. As corollaries the
generating functions for skew plane partitions, column-strict
skew plane partitions, reverse skew plane plane partitions and
column-strict reverse skew plane partitions, respectively, are
evaluated, thus establishing partly new results, partly new
proofs for known theorems in the theory of plane partitions.

1. INTRODUCTION. Consider n-dimensional lattice paths, consisting of
positive unit steps, from 0 to A=(A;,Az,...,A,) such that all the pointis

(x1,X35.0,X,) of those paths satisfy x;ax,2---»x,. The problem of
counting the number of all those lattice paths is equivalent to the
n-candidate ballot problem and has attained several solutions (see [12]
for references). In this paper, more generally, we encounter the
problem of counting all lattice pathe from p=(p,,p,,...;i,) to A, each
point (x;,X3,...,x,}) of which s=satisfying x,»---ax,, by four different
statistics, maj, maj’, Mmaj, nﬁj", defined in section 2. What is obtained
are determinantal expressions (Theorems 1 to 4 in section 6). The
method of proof we give is combinatorial and is inspired by
Zeilberger's [13] reflection proof for the <case ¢g=1 &and a
pseudo-reflection proof for the case n=2 by Fiirlinger and Hofbauer [3,
Lemma on p.255].

There is & bijection between lattice paths from 0 to A and

permutations of the multiset {1’“,2’"“,...,11"" (this symbol denotes the
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multiset with objects {1,2,...,n} and multiplicities (A;,Az2,...,A;)). Namely,
each k in a multiset permutation is interpreted as step in the
x,~direction. MacMahon calls the permutations corresponding to those
paths, whose points satlisfy x,»:--»x,, "lattice permutations”". He is lead
to consider Isitice permutations when evaluating the generating
function for plane partiitions of a given shape A [8, sec.IX, ch.III;
sec.X]. What has to be done is to count lattice permutations by the
major-statistics; i.e., to evaluate the weighted sum IqMaJ %, where the
sum is over all lattice permutations » of the multiset {1"‘,2)",...,11""}.
Later, MacMahon’s method was formalized and generalized by
Stanley [10, Corollaries 5.3 and 7.2]. Thus, wanting to find a certain
partition generating function, one has to count a specific collection of
permutations by the major index.

In section 3 we shall see that in this sense evaluation of the
generating functions for plane partitions, column-strict plane
partitions, reverse plane partitions and column-strict reverse plane
partitions of a given shape A is done by solving the problem of
counting lattice permutations by maj, maj’, Ha3’ and ihaj, in that order,
respectively. Thus, as corollariee of our lattice path enumeration
results, we obtain determinantal expressions even for the generating
functions for skew plane partitions, etc., of a given shape A/p. The
expressions for column-strict and column-strict reverse skew plane
partitions (Corollary 9) are well-known and may be found in [10, p.82
for m~w). The expressions for ordinary and reverse skew plane
partitions (Corollaries 7 and 8) seem to be new. The special case p=0 of
ordinary plane partitions was solved by MacMahon [8] by inductive
arguments which are not very rigorous. In the remaining three cases
for p=0 the determinantal expressions can be simplified, which leads to
the well-known hook-formulae for the generating functions of
column-strict, reverse and column-strict reverse plane partitions of a
given shape A [11, Theorem 15.3 for m=®, Propositions 18.3 and 18.4].
For these results there are proofs by Schur functions {[11], a
combinatorial proof explaining the determinanial expressions [5] and
various bijective proofs explaining the occurence of the hook-lengths
[2,4,6,9].

Our method of proof offers a new combinatorial explanation for the
determinantal expressions for all of the above stated four kinds of

generaling functions, even in the case of the various kinds of shkew
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plane partitions, MacMahon’s determinant is generalized and given a
combinatorial view.

In section 2 we give all relevant definitions. The connection beiween
lattice path enumeration and generating funciions for skew plane
partitions is explained in section 3. Section 4 contains a recapitulation
of Zeilberger’s [13] reflection proof. In section 5 we give the bijections
which replace the reflection in Zeilberger’s proof. These bijections, in
section 8, are used to obimin the promised determinanisl expressions.
Finally, in section 7, these resulits are transferred {oc obiasin the
correaponding generating functions for the various kinds of skew

plane partitions.

2. DEFINITIONS. We use the usual muliidimensional notation. If
A=(Agh250090n ), #=(33 )12 500058 ) then [RNES VD VL LREE 7 VN Atp =

Ial
=(As+i1, Az tBa, < ooy Agthy,)  and [ " }=’A”/l‘1!l‘zg"'#n!~ If ayepy for
=1,2,...,n we write Aap,

Let g be an indeterminate. The g-notations we need are [al=({1-g9),
Lodt=Col (w4141, [01t=1 and [N ]=Einide/iu,dtbusdre - tugdt.

Let S, denote the symmetric group of order n. Given ot S, we write
Ag for (Ag(1)irg(z)s-+1As(n))s D, stands for the set of &ll n-tupels of
integers A with A,»A,»---25,, For the set of all permutations of the
multiset with objects {1,2,...,11] and multiplicities g={n;,p2,...,u,) we write
S(u). Given a multiset permutation L FE PRI P9Y :,E{‘I,Z,...,n}, we

introduce difference functions dy {x,d) for F=1,2,cc.,n-1:
dy(n,3) = |{rrei and n,=j}] ~ {{rréi and =,=51)|.

d_'(n,i) is the difference between the number of fs and the number of
(#1)’8 in =,...n;. Obviously dJ(u,O)=O.

In this paper, a lattice path =(p(0),p(1)},.c.,p{p)) will be =a finite
sequence of points in the integer lattice Z" with positive unit steps,
i.e. for 0, p(j+1)—p(.f)=EJ, for some j, 1€jén. E; stands for the vector
with the j-th coordinate being equal 1o 1, all other being equal to 0.
[p(D]y will denote the k-th coordinate of the i-th point on the path p.
A lattice path p from g to A can be symbolized by a pair {p,n), where
#w=p(0) and =xeS(A-p). = is obtained by proceeding along the path,

slarling at its first point g, and successively wriling a8 k for each step
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in the x -direction. To be precise, »s=x;%;...n,, where p=ix-pl and =;=k
if and only if p(i)-p(i-1)=E,. Given a path p in the form (p,), the

points of p are determined by
(2.1 p(i) = u +k§ B |{r1ersp and w,=4}| .
=1

To give an example, take n=3 and p,=((1,2,1),(1,2,2),(1,2,3),(2,2,3),
(2,3,3),(3,3,3)). Then p, is symbolized by the pair ((1,2,1), 33121).

The set of =all lattice paths from p to A is denoted by M(p—xr). We
write M(p—A)* for the set of all lattice paths from p to A whose points
all lie in D,. For pAtD, the sot M{(p—A)* is equal to the set of all
lattice paths from u to A not touching any one of the hyperplanes

(2.2) Xy = Xi41 = -1, j=1,2,-..,ﬂ‘1.

Let H; denote the hyperplane x;-x;4,=1 and R; the reflection at H;.
M{p—2)~ stands for the set of all lattice paths from u to A which touch
at least one of the hyperplanes in (2.2). Obviously M(0—A)t, or better
{n:p=(0,-n)£M(0—DA)+], is the set of all lattice permutations.

Next, for a given multiset permutation =x=x;wz...np, we define the
"down-set" D{x) by

D(w) = {I‘:I,.Sl,..g-“ 1‘1“p—1] .
and the four statistics maj, maj’, fmaj, @maj’,
. PLY .
maj x = E Lx(npdwien)
. pol
maj % = ‘le'x(ﬂi“lcﬂ) ’
my = £ (i) xtamen))
matx = | (i) x(ni-en)

(x(A)=1 if A is true, and x(A)=0 otherwise.) maj is the familiar

major-statistics, counting the sum of descents, meaning

(2.3) maj n =

!Eg(u)j :

maj’ counts the sum of ascents. m&j can be interpreted as maj "from
the back”, &)’ can be viewed as maj’ "from the back".
Having in mind the representation of a lattice path p by a pair (i,x),

we extend these statistics to lattice paths by defining maj p = maj =,
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ete., if p=(p,n).

Finally we introduce the generating funclions
Ap—x; 9) =§ Fade
Feonsg) = 1 @ai'e
Flu—n; ) =§ el e,
Fienig) = L F'p
where the sums are over all ptM(p—A). Analogously,

Apon 9t = ) i P, etc.,

where the sum is over all peM(p—A)t, and

e~ =L oo p o, ete.,

where the sum is over all ptM{p—a)".

3. GENERATING FUNCTIONS FOR PLANE PARTITIONS AND ENUMERATION
OF LATTICE PATHS. A plane partition of shape A, where AtD, and Aa0,

is an array of positive integers

(3.1) 8y 812 escccvcescs sssosssne al,Al

- » -
- . o
° . -

dny o eee an,An.

with entries decreasing in rows and columns. A skew plane partition of

shape A/u, where A,utD, and Asp, is an array of positive integers of

the form
(3.2) a‘d‘;'“ a”l‘x+2 cessessacccaen a,,;‘l
82’“24., A 82’u1+‘ Hz"‘l-f; sensenase az’;‘z
a“’pn-}-l seosesarenseensa sosensass a“’A

with entries decreasing in rows and columns. A column-strict {(skew)
plane partition is a (skew) plane partilion with stricily decreasing

entries in each column. A reverse (skew) plane partition is an array of
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positive integers of the form (3.1) {or (3.2), respectively) with entries
increasing in rows and columns, a column-strict reverse (skew) plane
partition is a reverse (skew) plane partition with strictly increasing
entries in each column.

The weight w(ll) of a (skew) plane partition is the sum of all its
entries, The generating function for plane partitions of a given shape
A is Eq"(n), where the sum is over all plane partitions I of shape A.
Generating functions for column-strict (skew) plane partitions, etc., of
a given shape A (or A/m, respectively) are defined analogously.

In [10] Stanley considers partitions on a partial ordered set P
endowed with a labeling «, called (P,w)-partitions. His important
theorem [10, Corollaries (5.3) and (7.2)] says that the generating

function U(P,w;q) of (P,w)-partitions can be written in the form

oy = M P w; q)
3.3) AP D = TG -g) - ()

with
M Pw;q) =§ dl!a‘] c,

where the sum is over all permutations ¢ of the w-separator [10, p.17]
of P. Here, p denotes the cardinality of P.

To obtain the case of plane partitions in this general theorem, for P
we have to take the set

) = {(.i,j)eN"’:ﬁ.ién and 16;}")\1}
for a given AtD,, A»0 and |Ai=p. P(A) becomes a poset by
(3.4) (11, 4) & (12,J2) if and only if I,€1; and j/1€), .
Take the labeling
3 i—i -
wli, N =L M+ J,
=1

then there is a bijection between the set of (P(A),0)-partitions and the
set of plane partitions of shape A, namely, by adding 1 to each of the
parts of a (P(A),e)-partition. Thus, by (3.3), the generating function for
plane partitions of shape A is equal to

PN ,w; q)
(3-5) () ()
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with

WP, wg) = § §8J @,

where the sum i8 over all permutations ¢ of the w-separator of P(A).
Given o=0,03...0; being an element of the w-separator of P(r), we
define a multiset permutation n=n(o)=n 1%zwmg by

(3.6) =y = k if and only if :i:xt fo, & ti;"t :

By definition x¢S(A). It is not difficult to see that since o is en element
of the w-separator of P(A), maj » = maj ¢ and = is a Isitice
permutation, or in terms of paths (0,n)eM(0—A)*. For illustration we
give an example. Let r=3, A=(3,2,1). Consider the following linear

extension of the partial order (3.4) on P(A):
(1,1) < (2,1) < (1,2) < (1,3) « (3,1) « (2,2) .

The corresponding ¢ is {1,1)e(2,1)0(1,2)0{1,3)(3,1)x{2,2) = 142365. By
(3.6) we get w=121132. Obviously we have maj » = maj ¢ = 7, and = is
a lattice permutation.

Summarizing, these considerations furnish an allernalive expression
for W{P(\),w;q):

HAR) 03 g) = 3 gaj p,

where the sum is over all paths ptM(0—a)*,
More generally, to obtain skew plane partitions of given shape A/p,
ApeD,, Axp and IA-pi=p, we define

(3.7 PO/K) = {(4, )eN: 14460 and wi<pny)
with order relation defined in (3.4), and with labeling
. 1=
w4, /) = tgl('\r#e) + (Fuy) .

The (P(A/n),0,)-partitions are skew plane partitions. {The case of
ordinary plane partitions comes out for p=0.) Then, analogously, the
generating function for skew plane partitions of shape A/p can be

written

MP(A/F)""o; q)
(=) (1-¢*) - (1-gP)

(3.8) q°
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with

(3.9) WPA/K) w03 @) = T el e,

where the sum is over all peM{p—a)t.

For the labeling

oclh) = § O + (Fro)

the (P{A/u),0c)-partitions are column-strict skew plane partitions.
Similarly, one obtains the generating function for column-strict plane

partitions of shape A/p to be

WPAA/p) 00 @)
(3.10) P

(=@ (1-g?) - -+ (1-gP)
with
(3.11) WA ,069) = 1 gaj’e |

where the sum is over all ptM{(p—A)t.
Let P(A/p) denote the the poset with same basic set as A(A/p), i.e.,
the right-hand side of (3.7), but with reversed partial order, meaning

(iy,41) € (i2,J2) if and only if 1,27, and jidJ; .
For the labeling
n
o{i, D= F  (A—re) + (A=)
=i+

we get that the generating function for reverse skew plane partitions

of shape A/p is equal to

WPO/W) 0.5 @)
(3.12) qP
(1-9)(1-¢*) -+ - (1-gP)
with
(3.13) WAA/K),0rs @) = § ai’p .

For the labeling
. '—l »
wer{i,J) = t_21(’\1:‘“) + (A1)

we obtain that the generating function for column-strict reverse skew
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plane partitions of shape A/p is8

AN ) 0crs 9)

(3.14) g°

(@ (1-g*) - - (1-gP)
where
(3.15) WPO/B) 0ers @) = I &) P,

In both cases the sum is over all ptM{p—A)*t,

4. ZEILBERGER’S REFLECTION PROOF. Let A,utD, and Aap. In thie
section, in order to make the following more {ransparent, we
recapitulate Zeilberger’s [{13] method of counting the number of
elements of M(0—a)*. A little bit more generally, we extend his method
to evaluate the number of elements of M{p—A)*, which, recalling the
definition of F(p—;q)*, is seen to be equal to F{p—a;1)t.

For the number of all lattice paths from u to A, F(p—A;1), holds

4.1) e = (370

Following Zeilberger we define
e = (1—o(1),0v.yFo(i)y...,;-o(m)) .
The crucial point in the proof is to consiruct a bijection between
o HvenMFa"’ev—')A)" and . HddMFa"'eu_)A)_ ’

which proves

(4.2) L onFlrste™a )" = I Augte—r;1)” .

C even

This is done by application of the reflection principle. Consider s
latiice path of M(pstes—A)~. Let H [ be the last hyperplane of (2.2) the
path meets. Since reflection with respect to HJ has the effect

(4'3) Rj(Xl,.-.,Xj,Xj-;»l,...,Xn) = (J{l;'0'9XJ+1_13XJ+11-*-’Xn) ?

we have

(4.4) Ri(rotes) = wo(y,j+1) + @(y,4+1) -
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((j,j+1) is the transposition which exchanges j and Jj+1.) Therefore,
replacing the portion of the path until the last meeting with Hy by its
reflection with respect to Hy, turns this path into a path from
Po(y,4+1) + G(g,5+1) =

= (ho(1)+1-0( 1), oo e 1o (g41)+F0( 1) ho( )+ H1=0( D), - - - s Bo(n)+r-o(n))
to A, touching Hy. This defines the desired bijection, hence (4.2) holds.
Since, because of ptD,, for o#id we have (pgtes)fD,, we get

(4.5) MpgtesA)” = Muotes~), if o2id.
Therefore, by consecutive use of (4.2), (4.5), and (4.1),

(4.6) O 1)t = H0oA;1) — A0-;1)”

= FO-21) + F (-1 ¢ Rpgre—ai1)”

Zs (-1)880 ¢ Rpsten;1)

ot
I A-pl
= —1)8gn o
o‘§5n( ) [AQFG—%

Ia—pl! det(1/(Ag—s—pet+E)!) .

REMARK. Zeilberger was wrong when taking the first hyperplane a
lattice path touches and reflecting the part of the path until that
meeting, because this defines no bijection. We give a &8imple
counter-example. Let r=3, =0 and »=(1,1,1). For o=(2,3) we have
€,=(0,-1,1). The lattice path ((0,-1,1), 221) first meets the hyperplane
X3-X3=1 (namely after its first step), the reflection with respect to
x2-x3=—1 of the portion of the path until the meeting point (0,0,1) gives
the path (0, 321). Similarly, this procedure turns (e(.,,)=((-1,1,0), 311)
into (0, 321), the same path. Hence, this cannot be a bijection. The
reason is that the property "meeting H; as first of all hyperplanes of
{2.2)" is not preserved under reflection until the first meeting point.
(In our example ((-1,1,0), 311) first meets H,, but its image under
reflection, (0, 321), first meets H,). This mistake is corrected (as done
above) by taking the last meeting, for "meeting H; as last of all
hyperplanes of (2.2)" is preserved under reflection until the last
meeting point. Therefore this mapping is an involution and, hence, a
bijection.

The same mistake was made by Watanabe and Mohanty [12], who

refine Zeilberger's reflection proof. But everything remains true after
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replacing lines 21-23 on page 282 of {42] by "for the Ilasi time, only
any one of the hyperplanes {[g(k)]:keS} outl of ([g(k)}:k:{1,2,...,n~1]].
{Such a path may meet [g(k)], kfS, but only before meeting at least
one [g(k}], keS)."

In our context the above reflection procedure must be modified
because, when reflecting a part of & lattice path, nothing can be ssaid
about the major of itse image. Therefore, in order to generalize the
reflection proof to g*1, in the next section we give maps which send
the initial point of a lattice path to the same point as the reflection
procedure would do, but, what is more, are (almost) maj-(maj’-, @&}-,
waj'-)preserving. The remaining steps in the above proof can be

transferred almost verbatim. This will be done in section 6.

5. THE BIJECTIONS. As mentioned above, in Zeilberger’s proof given

in the preceding section, we do not really need the reflection. What we

need is a bijection which sends a lattice path p from p to A to a lattice
path § from Rj(p) to A, where H; is the last hyperplane of (2.2) the
lattice path meets. Regarding (4.3), if ujduy+1, we see that, changing
{rj—Kj+1+1) of the steps in the xj41-direction in the path p into steps
in the xj-direction, we obtain a lattice path from R; {(p) to A
Analogously, if pj<p44:, changing (pJ+l—pj—1) of the steps in the
xy-direction into steps in the x;41-direction, turns p into a path from
Ry(p) to A

Next, for a fixed j, we introduce two auxiliary maps, Ly {("lower") and
Ry {"raise"). Ly has the effect of changing & asingle step in the
x4 -direction inlo a step in xJ—direction, RJ has the reverse effect.
(pj—uj+,+1)-time application of Ly or (pj+,-|.lj—1)—time application of Ry,
respectively, depending on whether Hydpg4y or not, leade to the
desired bijection.

DEFINITION 4. Let j be a fixed integer, 1% jén-1, and let TRy be a
multiset permutation where the function i—-)dj (x,i) does not reach its
minimal value at 0 or i=p. Let k be the smallest integer 14kép-1,
where the function #—d j(wsi) reaches its minimal value, in other words

i<k implies dj(x,1) > dj(:,]r) .
ixk  implies dj(u,.i) S d_,(u,k) .

Then wny,=#1. This given, we define the "lower" function Ly by
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(A) If x» satisfies
(5.1) MekMo 1> AR En N AR I PP > Dugsngy,

where Oset1< R 12 p, and
either (a) Ri<dug
or (b) Jl=P122 and wibngy,
or (c) k=g and LI PR
then
LJ('I) L PRGN % JFPUUIN TN I TROAR Pl PIININE TN T SMgNgtye-oMp o
where r is minimal with
Mn, and et1éréf ,
if there is nope, r=f1.
(B) If w satisfies

(5.2) LR PRRY JOUN LIWNTN 4 E2 TWRY JORY 1 P PITY JN Eng gt

where 1€et1<fegep, and
either (a) eti<ksf
or (b) Jet1 and w wgta
or (c) k=f and we—ydwg4, ,
then
L (R) = Moo oMaMgay oo oMy g Rphg o e e MgNghgosoRpmy J Npus MgRgtr.-oMp
where r is minimal with
JEn,. and Rlérig ,
if there is none, r=g+1.

(By convention, if i>j, the symbol =;.. .my means the empty word.)

REMARKS. (1) Given j and a multiset permutation = satisfying the

condition required in Definition 1, there are exactly five cases:

(5.3) wpordS ATy, 26k<p
(5.4) yr &P Vmpr, ,  16kep
(5.5) g1 >y, , 2£€k<p
(5.6) w1 € FrPw g, , 2€k<p
(5.7) Jtu, and =1 .

(jt1=ny4, is impossible, because then dj (-n,k+1)=dj (n,k)-1, in
contradiction to the minimality of d;(,k).)

Case (5.3) belongs to case (A)(a) in Definition 1, (5.4) to (B)(a). If
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-1 %%p43, (5.5) belongs to case (A)(c), otherwise it belongs to (B){b).
Similarly, if wy,_;€n,4,, (5.6) belongs to (A)(b), otherwise il belongs to
(B)(c). Finally, (5.7) belongs to {B){(c). Therefore Definition 1 covers all
possible cases; moreover, given a multiset permutation, this multiset
permutation uniquely belongs to only one of the cases (A} or (B). Thus
Ly is well-defined.

(2) To be precise, the inequality chains (5.1) and (5.2) should be
understood as short-hand writings in the following cases:

k=f+1 in (6.1) means the inequality chain
1,‘:,.,.,>...>a;£j+1>uk+,>~...>-ugiug+,. k=g in (5.1), and k=et1 or k=f in
{5.2) should be understood analogously.

e0 in (5.1) means LR e B DL T PEL P
analogous meanings have &0 in (5.2) and g=p in (5.1) or {5.2).

=0 in (5.1) means l,s...sak_,>j+1>uk+,=...>:gﬁg+,. In this case Ly {=)
should be understood as

Lj(a) = i LI REE ISEL IS TWPRL TS JRPIL S

f=p in (5.2), meaning R Rots Luerbnyy € 1<mp 4y £ubny, is impossible,
because then dj(n,k)r-dj (x,p), which contradicte non-minimality of
d‘,(t,p).

(3) The following properties of d J hold:

(5.8) dj(Lj(:),j) = dy(x,1) , for O0&ismin(r,k)
{(5.9) dJ(L_‘(u),.i) = dj(u,.i) + 1, for min(r, k)€ismax(r,k)
{(5.10) dj(Lj(:),.i) = d_,(u,.i) + 2, for max(r,k)éiép .

Since :,t[j,jﬂ] for min(r,k+1)éizmax(r,k), we have
(5.11) dy(Ly(x), 1) = dy(x,0) + 1 .

Together with (5.8)-(5.10) and the definition of k this leads to

ier  implies  dj(Lj(w),d) > dy(Ey(x),r1) ,
Ar1 implies  dy(Zj(x),5) > dy(Ly(x),r1) .

In other words, (r-1) is the largest integer where the function
i——)d_,(l.j(w),i) reaches its minimal value. Moreover, dJ(LJ {(»),p} is at least
2 larger than the minimal value of i—’dJ(LJ(u),i). This bases on (5.10)
and (5.11), and the property dj (u,p)idj(-,k)+1, required in
Definition 1.

Ag corollary of (5.11) we get
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(5.12) m%n dj(Lj(n),.i) = m%n dj(u,i) + 1.
(4) L; has the important property
(5.13) maj(Ly(n)) =maj =« — 1.

{(This is the reason why we called Ly "lower" function.) For case (B)
in Definition 1 this is clear from the definition of L_,(n), since
D(w)={...e,f,g,...] and D(Lj(x))=[...e,f~1,g,...]. This means, to obtain
D(Lj(a)), in D(wx) the element f has to be replaced by f-1, which, by
(2.3), proves (5.13). In case (A) we claim that =,._,*j. Indeed, supposing
%.—=J, because of :,t[j,jﬂ} for réi€k-1, we would have
d J(n,r—2)=d J(n,k). in contradiction to the condition that k is the
smallest integer where f—*dj(u,i) reaches its minimal value. A8 r is
minimal with pn,. and =n,..,3>x,., we conclude =,._,>j. Consequenily,
D(r)={.cret Voot T, 141,42, 00, 0) and D(L;(x))=
=[...,e+1,...,f—1,f,f+2,...,g,...}. This means, to obtain D(Lj(x)), in D(x) the
element f+1 has to be replaced by f, which again implies (5.13).

The next definition introduces the "raise"” function Rj, which will
turn out to be the inverse of Ly,

DEFINITION 2. Let j be a fixed integer, 16éjén-1, and let L TR be a
multiset permutation where d; (n,p) exceeds the minimal value of the
function i—)dJ(u,i) by at least 2. Let (r-1) be the largest initeger,
O¢r-14p-1, where i—d J(n,i) reaches its minimal value, meaning

i€r-1  implies dj(x,1) > dj(x,r1) ,

nr-1 implies dj(u,i) A dj(u,H) .
Then x.=j. This given, we define the "raise” function Ry by:
(A) If w satisfies

(56.14) TebMgt1d o S S AR S LSSy S S ngEugyy

where Oéet1<fegep, and
either (a) etleref
or (b)Y r=et1 and wm fmgiz
or (c) r=f and w¢—16ng4, ,
then
Rj(‘l) = Ry MgWgdg oo oMoy Npdgoe e sMgRphg oo R~y JHT WpoongRgtroconp
where k is miniwal with

Jrirxy, and Mlckig ,
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if there is none, k=g+1.
(B) If »« satisfies

{5.15) L I T T O i R TRV L IR L PL PO

where 1éet1<R1<gip, and
erther (a) Rlcr<g
or (b) r=f1 and nidwisa2
or (c) r=g and Tg-13Rgh1
then
Rj(x) i R P AL 'R 7L TSRO BT PSRN PL TSR PR
where k Is winiwal with
F14w, and erikksf
if there is none, FR1.

REMARKS. (1) As above, il can be seen that Definition 2 covers all
possible cases. In particular, the case r=1 belongs to case (A) in
Definition 2. If jhu,, then it is the case =0 in (A)(b), if jéx,, then il is
the case f=1 in (A)(c). In the latter case RJ(:) should be understood as

Rj(n) = Wa.o.Ry—y JH1 Npoo Mgfghy sy .
Jr,..; is impossible, because then dy (x,r—2)=dj(:,r—1)—1, in contradiction
to dy {x,r~1)} being minimal.

{2) The inequality chains (5.14) and (5.15) should be understood as
short-hand writings in a similar manner like (5.1) and (5.2). The case
f=p in {(5.14), meaning :a‘ne+,>...>u,._,>1\u,.+,k...hnp, is impossible,
because then dJ(a,p)=dJ(:,r—1)+1, in contradiction to the condition that
dj(=,p) exceeds the minimal value of r‘—-»dj(n,x') by at least 2.

(3) In a similar manner as above, it can be seen that k is the
smallest integer where the function HdJ(RJ {w},i} reaches ite minimel
value. Besides, —d;(R;(x),i} does not reach its minimal value &t =0 or
&=p,

{4) B; has the property

(5.16) maj(®y(x)) = maj w + 1,

which is proved quite similarly as (5.13) above. {{5.16) is the reason

for calling Ry "raise” function".)

Regarding the remarks (3) after Definilions 1 and 2, respectively, we

see
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(5.17) Ry °Lj=1L °R=id,

which means that R; and L; are inverses of each other. In this sense
we may write RJ=LJ“.

Now we are in the posilion to construct the desired bijection ¢#
between

U _ Mpote—2)” and U Mpgte—A)" .

o even

DEFINITION 3. Let A,putD,, A»p, and let p=(p,m) be a lattice palh of
M(p—2)~. Let H; be the last hyperplane of (2.2) p meets. Then ¢ is
defined by

(5.18) () = (Ry(w), PTHH )

REMARKS. (1) If the exponent (FJ—HJ+‘+1) in (5.18) is negative, by

lelj—l‘j+l+1 we mean RJ—(MJ'PJ+1+1).

(2) To prove that # is well-defined, we must show that L; is
applicable on = for (pj—pj+,+1) times.

First we consider the case pjdHy44. Let k be the smallest integer
where de(a,i) reaches its minimal value. Consider a path point p(m),
1€m<p, where p meets Hy, the hyperplane xj—xj+l=—-1. Since p starts in

p, remembering (2.1), we clearly have dj(ﬂ,m)=pj+|—pj—1, and therefore
(5.19) m}n d_‘(n,.i) £ pJ+,—uJ—1 .

If Ly is applicable on =« for t times we get by (5.12)

(5.20) min dj(Lt(x),9) & pyrahgttt

Since AeD,, which in particular says AjdA;4,, we get

It

dj('!p) (AJ—FJ) - (AJ+1—|.IJ+1)

= pya-hy + (Ag=Ag4r)
A py+1THy

and after t-times application of L,, if this is possible, using (5.10)
di(Lyt(n),p) » pyy—pyt2t .

Comparison with (5.20) gives

(5.21) dy(L*(x),p) > min dy(Ly*(x), )
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for all 10 where LJ*’-(-u) is defined. Besides, dJ(LJt(a),O)=-0 for all 0.
Together with (5.20) this leads to

(5.22) dy(Ly*(=),0) > min dy(Ly*(x), 1) ,

valid for all t with O€tép—pj4,. If th(n) is well~defined, (5.21) and
(5.22), together, simply say that the minimum value of r’—-*dj(th(x),i) is
not reached at 0 or i=p. Hence, Lj is applicable on th(-) (if th(u)
is well-defined and 0&tép;-p;4,). Because of L“t(I) being well-defined
for =0, inductively we deduce that L; is applicable on = for
(pj-pj+,+1) times. This shows that ¢ is well-defined for pj2pj4;. Similar
arguments settle that ¢ is well-defined also in the case Ri‘By41s

(3) We claim that the final point of #(p) is A. Since p is a path from
g to A, = is a multiset permutation being an element of S(A-p). Each
application of Ly turns a single j+1 into a j, and each application of
RJ=LJ"’ turns a single j into a j#1. Therefore the number of fs in

Lj"-’_"3+’+1(u) is equal to (Aj—yj)+(pj—pj+,+1)=xj-—p3+,+1, the number

of (A1)’s in lelj"l‘j+l+1(“) is equal to (AJ+1“I-‘_;+1)"(I1_5"FJ+1*1) =
=hj+1-k5-1. By (4.3) the jth coordinate of R; (u) is pj+,-1, the (j+1)-th
coordinate of R,('u) iz pj+1. Let v be the final point of #(p). Then v, is
equal to the i-th coordinate of Rj(u) added to the number of & in

LJ“-'_"J+‘+1(1). Together with the considerations sbove, this estab-
lishes w=A.

(4) Let Hy be the last hyperplane of (2.2) the path p=(p,n) meets. Lei
p(m), 1€m<p, be the last point where p meets Hj. Then =,4:=Jj. Besides,
dj(u,m)=yj+,—pj-1 and dj(:,r')kp_,+,—uj—1 for all i>m. Therefore for an
integer k, where dj (x,k) is a minimum for the function i—-id’ {w,i), must
hold k€m. If ByZhjp—1 we have

dj(‘so) =0 « "J+l—|‘j—'1 = dj('o‘) »

therefore in this case even k<m. In view of this and looking at

Definitions 1 and 2, it is not difficult to see that for Pm
[Ij(l)]‘ = w; and [Rj(ﬂ)]‘ =n; .

From this fact we deduce, remembering Definition 3 and Remark (3}

after it, that application of ¢ leaves the path-pari beiween p(m) and
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p(p) unchanged. In particular, p(m) also is a point of ¢(p). Therefore
the properiy "meeting H; as last of =ll hyperplanes of (2.2)" is
preserved under application of #. Consequently,

(5.23) (# © #)(p) = (+ © #)((p,n))

,+1(*))

= ((Rj o RJ)([I),(LJ[RJ(F)]J-[RJ(“)]J+‘+1 o LJ"J_FJ+‘+1)(‘)),

= f(Rj(p),Lj“J_“.H'

But Ry O Ry = id, and, by (4.3), [RJ(p)]j = g1 and
[R§(n)) 41 = py+1. This turns (5.23) into

(5.24) (#°%)(p) =p .

In other words, ¢ is an involution.

(56) To see that ¢ is a bijection between

MpoteA)" and U MpgteA)" ,

U
¢ even

take a path p=(psteq,x), being an element of M(ps+e,—*A)". Let H; be
the last hyperplane of those hyperplanes in (2.2) the path meets. Then,
by (4.4), #(p) im a path from ng(j,j+1)t60(y5,541) to A touching Hj,
hence #{(p) is an element of M(u,(hj“’i-e,(b”.)-))«)‘. Since ¢ is an
involution, ¢ must be a bijection.

{6) Using (5.13) and (5.16), respectively, we obtain the following
weight property of ¢:

(5.25) maj #(p) = maj p = pytuge—1,

where p is the initial point of p.

Finally, to illustrate action of L_,, Ry and ¢, we give an example. Let
p=((1,-1,-1), =,=31232223212131), which is a path from g,={1,-1,-1) to
2,=(5,5,3). The function i—2d,(w;,i) reaches its minimal value at #9 and
=11, therefore by Definition 1(A)(a) (e=6, £7, k=9, g=10, r=8),
L;(x,)=31232221312131, and by Definition 2(A){c) (e=10, r~=12, =12, g=14,
k=14), R,(%,)=31232223212321. The function i—d,(=,,i)) reaches its
minimal value at #=1 and ¥4, therefore by Definition 1(B)(c) (e=0, k=1,
=1, g=4, r<=3), L.(x,)=12232223212131, and by Definition 2(B)(b) (e=1,
=4, r=5, g=8, k=5), R,(%,)=31233223212131. We have maj w; = 46,
maj L;(w,) = maj L;{x;) = 45 in accordance with {5.13), and

maj Ri{x,) = maj Ry{x,) = 47 in accordance with (5.16). H, is the last
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hyperplane of {H,,H;} p: touches, p,-u,+1=3, therefore we obtain
¢(py) = (R {1,-1,-1), L% (%y)) = {(-2,2,-1), 31232111312131) .

Indeed this is a path from {-2,2,-1) to A,;=(5,5,3} with maj #(p,) = 43 =

= maj p; — 3 in accordance with (5.25).

# serves to evaluate FAp—a; g)t and F’(p—»; @)%, but we need another
bijection ¥ with the help of which Mp—x; @)% and F*(p—1r;g)t can be
evaluated. We shall only give the analogous definitions in order to
construct ;, but without comment, and leave the details to the reader.

DEFINITION 4. Wiith the assumplions of Definition 1 we define &n
alternative "lower"” function —Z_; by
(A) If = satisfies

| PR VST DUN L IEL 3 o bY TN DL L TS PIREN

where 1€et1<fp, and
either (a) et1<jzfl
or (b) ket and wetug+s
or (c) J=f and w¢—1<%44, ,
then

fj(l) T WieeoMeMohne o s Mg—1Wgt1e oWy J RpoooRgRpdpoeotg
where r Is minimal with
An,. and et14ref ,
If there is none, r=f1.
(B) If w satisfies

RedNg41 € o fnp— s S M mp 4. . Lmpdugyy

where 1éet1<fEp, and
either (a) eti<ksf
or (b) Jeet1 and wodng4y
or (c) k=f and we_;2wpq, ,
then
Tj(u) Ik PRSP 8 SUPIY S ju,....uk_,ﬂk.;.l...ﬁ;ﬂf.“...ip »
where r is minimal with
Jn, and et1€rif

if there is none, r=f1.
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DEFINITION 6. With the assumptions of Definition 2 we define an
alternative "raise"” function R, by

(A) If w satisfies
NalMgtr®. o odnpey> Py g R, Buglupy, ,

where 1€e+1<fXp, and
either (a) et1¢ref
or (b) r=et1 and mngmg+s
or (¢) r=f and w;—y<meyy ,
then
72;(:) = Wy MgNgtres o Mp—1 JET Mpos e My Wby oo oMWy o s Mg
where k is minimal with
J1amy, and etiékif
if there is none, IFA1.

(B) If % satisfies
WP Ng1Ze e efMp— 3L FENp 414, 0 o fMgdUgyy ,

where 1€et1<fip, and
either (a) etler<f
or (b) r=et1 and mngdwgia
or (c) r=f and w;_,»u;4, ,
then
E(u) = Wy MgNeht s -Rp—aWptyonaWp—y JH1 W mgngpyooomp
where k is minimal with
Jti<uy, and et1éksf ,
if there is none, k=f1.

DEFINITION 6. HWith the assumptions of Definition 3, ¥ is defined by
- — i +1
(5.26) t(p) = (R(w), 5 Y7 )y ,

where, if wy—pj41+1<0, I, wymRyntt o ns 7 —(ry~ryat1)

What we need in the sequel is, that ¥isa bijection between

Mustes—r)" and U Mpgtes—A)" ,

U
o even (-4

and the validity of the weight property

(5.27) way #(p) = Waj p -

148



KRATTENTHALER

6. LATTICE PATH ENUMERATION.
THEOREM 1. Let p.AtD, and A»u. Then

pt+8* — (¥4
(6.1) Fp—;@)* = [Ia-pl]! det( q( Rt )/[As—s—ug‘ﬂ!) )

PROOF. We introduce a weight function w;, acting on elements of

ags Mpgte2)". Let p=(pstez,n) be an element of Mpgte,~A)~ for
n
some otS,. Then w, is defined by

E [[Fd+q:]t] .
(6.2) wm(p) = ¢! 2 g P

Let H; be the last hyperplane of {2.2) p meets., By (5.18) and (5.25)
(6.3) wm (b)) = g P P Ihotedtivoted it

where

K=§ [[RJ(Fo;%)]t] .

=1

Since, regarding (4.4), [Rj(noteq)ly = uo(j41)ti-o(jt1) and
[R;(rotes)] j41 = Mo(y)+it1~o(j), we obtain

[[R](I‘q;ecx)ljj + [[RJ(Fa;%)]J+I] =

- [uq(_,+x)+j;1—a(.f+1)] ~ (po(g+1)*tFo( A1) +

+ ["U(J);j_°(J)] + (ng(y)tse(N)

= [“‘c*z“o]w] + [["a;evlj] - Ingterd jattlngresl,

Therefore (6.3) becomes
2 ({pgtey]
i i t .
m(#(p)) = q*='[ z ]-q"’” 4
= WI(P) ®

which says that # is weighti-preserving with respect to w,. Therefore,
having in mind Remark (5) after Definition 3, the equation which

replaces (4.2) reads
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E [(Fc+ec‘]t
6.4 _I.,97 2 Flpgtes—r; g~ =
§ (ool
=3 2 —
= I, Flugres ;) .

The identity which replaces (4.1) is MacMahon’s well-known result [1,
Theorem 3.7, p.42], which in our notation is

Al
A—p

(6.5) e = [

Successive use of (6.4). (4.5), and (6.5) gives

i (k)
&= ! Ao gt =
n n
By I Y
=g~ Fpon - ¢ Apong”
Bty  (frepel)
=% Reaje + f(-1sER e gt Flug+ e )~

E [[llc"'ec]t]
sgn ¢ A=1 2 .
o'§s (-1)s8n o gt FpgtesA; q)
g ([potesl
§ (froreole
3 (-nsem @ AU ][

ot

I A—nl
A homey

Hets—
[ia-pui]! det( q( 2 t)/u,~s~ut+ﬂ!) R

()
which after division of J 2 turns into (6.1). DO

THEOREM 2. Let p,A¢tD,, and rap. Then
—AgtS-€)_(Ag
( 2 t] ( 2 ] / [A,

(6.6) F'(p—or; @)t = [Ia-pi]! det( ¢ —sptElY) .

SEETCH OF PROOF. Define a bijection ¥ on Zr by

(KriseeesXyseeerXy) . (Xps ooy Hn—ft15402,"X) -

Extending ¥ to lattice paths p by

t(p) = (¥(p(1)),...,¥(p(P)))

it is not difficult to verify

mE)’ p = maj ¥(p)
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(6.7) F(Mp—on)t) = My
This furnishes
F'(pn @t = Ay (M=) 97 .

Then short evaluation turns formula (6.1), for g replaced by ¥(A) and A
replaced by ¥(u), into (6.5). o

THEOREM 3. Let p,AtD, and Axp. Then
(6.8) Ru—a; @ = [x-pi 1t det( 1/irg-sperelt) .

SKETCH OF PROOF. The proof runs through quite analogously like
that of Theorem 1 by utilizing %. Since by (5.27) % is weight-preser—
ving with respect to Maj, we do not have to inircduce an auxiliary
weight (which in the proof of Theorem 1 was w,). All other steps may

be transferred almost verbatim. ©O
THEOREM 4. Lei p,AtD, and Axp. Then
(6.9)  F(eoxig)* = [Ia-pl]t det( 1/la,-spertlt) .

SKETCH OF PROOF. The map ¢ introduced in the proof of Theorem 2
satisfies (6.7) and

maj’p = may ¥(p)
for all lattice paths p. This implies
(e @t = Ry(A)—i(p); 9t ,

which after short evaluation may be turned into (6.9}, ©

REMARK. Of course there is no difficullty to give reflection-like
proofs for Theorems 2 and 4 in the sense of Theorems 1 and 3 by
introducing two further imvolutions, %’ and ¢’, with suitable weight-
properiies for maj’ and maj’, respeciively. We have avoided this
because there do not arise new aspects, but application of the map %
makes the proofs of Theorems 2 and 4 shorter. The reader might try to

find such involutions ¥’ and &’.

In the special case p=0 the delerminanis in Theorems 2-4 may be
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simplified. To this end we use the following lemma, which generalizes

Vandermonde’s determinant.

LEMMA 5. Let X ,X3,e00)X0 582,008, be indeterminates. Then
(6.10) det((xgta,) (Xg+8,—1 )~ (Xgtap4,)) = l‘It(x,—xt) ’
e

if, by convention, for t=n the entries in the nxn determinant are set
equal to 1.

PROOF. The determinantal expression on the left-hand side of (6.10)
is a polynomial in x;,x:,...,%, with degree (J). If for s,,s; with
1€s,45,€n we have X5, =Xg,» the s,—-th and s;—th row in the determinant

are identical. Therefore the determinant may be factorized
(6.11) det((xg+ay) (Xet8n—1) " (Xetap+1)) = gt(xs—&) C (X dy)
8

where p(x,,..,X,) is some polynomial in x,,...,x,. But the degree of

I‘I (xs—x.) is (9), therefore p(x,,...,x,) is identical to a constant.
84t

Considering the product of the main-diagonal, it develops that the
coefficient of the monomial x,"~'x,""2-.-x,_,'x,° on the left~-hand side

of (6.11) must be equal to 1, hence p{x,,...,x,)®1. 0O

COROLLARY 6. Let AtD,, A0 and IAl=p. Then

T . +=__[&]_!.___
(6.12) F(0—; q) (41 - (d,] °
and
PO S oo
(6.13) O @)t = F(022; q) q l[d;][dp] ’

where K= E (i-1)ny , and dl,...,dp denote the hook-length of A (see
1=1

[11, Definition 15.11).
PROOF. Setting p=0 in (6.6) gives

“Agts—y_(—Ag
F(0; 9 = [IAI]! det( q( 903 ]/[A.—-s-ft]!)

; L )
= [Ial) (I [A,—i+n]!) ' det( ¢ 2 2 [}\g"s*’ﬂ]"'[k.—s‘i’t*'l])
1=1

= [Ial]! (‘ﬁl[x,—iﬂﬂ!)-' qK' .

At

- det((g et

Irg-8)+1Bl) - (g [x,-s)+[£+11)) ,
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where K, =§ (A (n-1)+1*-pi) . Application of Lemma 5§ with x, =
1=1

=q_)‘“+s[)\s—s] and a;=[ 1] yields
Fr0—n; @)t = [IAI]! (|ﬁ A —#n]t)* .
=3
SR CR i VP T R W)
IS VR DD I il F W ey
i=1 st
where

K=} OnGieinh + L ovnen=o.

The proof of (6.12) is completed by the observation
n
(O [uzoamm) \ {0src ) 19scten) = {a,...,4) ,

when being regarded as a multiset identity. (See for example [7, p.9,
identity (4) in Example 1].)

In order to prove (6.13) set p=0 in (6.8) and (6.9), respectively,
getting

RO-n; @) = P09 =
= [IAl]! (‘in,—j»rn]s)“ det([Ag-s+n]- -+ [Ag~stE+1])
= [IAI]Y (‘ﬁ [a-i+nl) ™ & .
=3
- det(([Ag—s)+gnlml)---([ag—sl+gt [ &+11)) ,
where

K = ‘zl[("y) - (M) = %Y - (HF = 2% .

Application of Lemma § with x,=[A.-s] and a,;=q¢~1{i] leads to

FO-n; )t = F/(0-n;9)F =

=0l Cl -0l @ Dmsagte]
1=1 8lt

where

g o= 2070 + i-i-,("‘“j)(j'1) - 'zl(z‘—ﬂx, . o

It is an old open problem to simplify the determinant in (6.1} for u=0.
Unfortunately, Lemma 5, used above to establish Corollary 6, seemingly
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does not apply to this case.

7. GENERATING FUNCTIONS FOR SKEW PLANE PARTITIONS OF A GIVEN

SHAPE. As corollaries of Theorems 1 to 4 we obtain expressions for the

generating functions of the various kinds of skew plane partitions.
COROLLARY 7. The generating function for skew plane partitions of
the given shape A/p is

pt+S‘ (P
(7.1) g > det| q[ 796 ]/[As~s—pt+t]!] X

PROOF. We only have to combine (3.8), (3.9), and (6.1). O

COROLLARY 8. The generating function for reverse skew plane
partitions of shape A/p i8

(7.2) @ " det ( ¢ —spettlt) .

(—A8+s-t)_ —)‘s]
2 ( 2 / A
The generating function for reverse plane partitions of shape A is

(7.3) #/ 11141,

where IAi=p.
PROOF. For (7.2) combine (3.12), (3.13), and (6.6). (7.3) arises when
combining (3.12), (3.13) for p=0, and (6.12). O

Considering (3.10), (3.11), (6.9); and (3.14), (3.15), (6.8); and (6.13);
respectively, we obtain

COROLLARY 9. The generating function for column-strict skhew plane
partitions or column-strict reverse skew plane partitions, respectively,
of shape A/pn is

(7.4) ¢ det( 1/Dr-sueraln) .

The generating function for column-strict plane partitions or

column-strict reverse plane partitions, respectively, of shape A is
gt/ ta1- 14, ,

where \\l=p and L=i§ ir. 0
=1
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