
COUNTING TRIANGULATIONS OF SOME CLASSES1

OF SUBDIVIDED CONVEX POLYGONS2
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Abstract. We compute the number of triangulations of a convex k-gon each of whose

sides is subdivided by r−1 points. We find explicit formulas and generating functions,

and we determine the asymptotic behaviour of these numbers as k and/or r tend

to infinity. We connect these results with the question of finding the planar set of

points in general position that has the minimum possible number of triangulations —

a well-known open problem from computational geometry.

1. Introduction4

Let k and r be two natural numbers, k ≥ 3, r ≥ 1. Let SC(k, r) denote a convex k-gon5

in the plane each of whose sides is subdivided by r − 1 points. (Thus, the whole con-6

figuration consists of kr points.) In what follows, the exact measures are not essential:7

without loss of generality, we may consider a regular k-gon with sides subdivided by8

evenly spaced points. The k vertices of the original (“basic”) k-gon will be called cor-9

ners, and they will be denoted (say, clockwise) by P0,0, P1,0, . . . , Pk−1,0 (with arithmetic10

modulo k in the first index, so that Pk,0 = P0,0). The r − 1 points that subdivide the11

segment Pi,0Pi+1,0 (oriented from Pi,0 to Pi+1,0) will be denoted by Pi,1, Pi,2, . . . , Pi,r−112

(we shall also occasionally write Pi,r for Pi+1,0). The subdivided segments Pi,0Pi+1,0 —13

that is, the point sequences of the form Pi,0, Pi,1, Pi,2, . . . , Pi,r−1, Pi+1,0 — will be referred14

to as strings. Thus, the boundary of SC(k, r) consists of k strings, and each corner be-15

longs to two strings. The reader is referred to Figure 1 for an illustration. For brevity,16

a convex polygon with subdivided edges (not all of them necessarily subdivided by the17

same number of points) will be referred to as a subdivided convex polygon. A subdivided18

convex polygon is balanced if (as described above) all its sides are subdivided by the19

same number of points.20

A triangulation of a finite planar point set S is a dissection of its convex hull by21

non-crossing diagonals1 into triangles. We emphasize that maximal triangulations are22

meant; in particular, no triangle can have another point of the set in the interior of one23

of its sides. The set of triangulations of a point set S will be denoted by TR(S).24
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∗Research supported by the Austrian Science Foundation FWF, grant S50-N15, in the framework

of the Special Research Program “Algorithmic and Enumerative Combinatorics”.
�Research partially supported by the Austrian Science Foundation FWF, grant S50-N15, in the

framework of the Special Research Program “Algorithmic and Enumerative Combinatorics”.
1By a “diagonal” we mean a straight-line segment connecting two points of the set S.
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Figure 1. The subdivided convex polygon SC(6,4) and one of its triangulations.

Triangulations of (structures equivalent or related to) subdivided convex polygons25

have appeared in earlier work. Hurtado and Noy [11] considered triangulations of26

almost convex polygons, which turn out to be equivalent to subdivided convex polygons27

according to our terminology. They dealt with the non-balanced case — that is, k-gons28

whose sides are subdivided, but not necessarily into the same number of points. In29

particular, Hurtado and Noy derived an inclusion-exclusion formula for the number of30

triangulations of a subdivided convex k-gon whose sides are subdivided by a1, a2, . . . , ak31

points, and they showed that this number is independent of the specific distribution of32

the subdivisions among the sides of the basic k-gon. On the other hand, Bacher and33

Mouton [6, 7] considered triangulations of more general nearly convex polygons defined34

as infinitesimal perturbations of subdivided convex polygons. They derived a formula35

for the number of triangulations of such polygons in terms of certain polynomials that36

depend on the shape of chains.37

The main purpose of our paper is to present enumeration formulas and precise as-38

ymptotic results for the number of triangulations of a subdivided convex polygon in39

the balanced case, that is, where each side of the polygon is subdivided into the same40

number of points. Our enumeration formulas are more compact than those of Hurtado41

and Noy or of Bacher and Mouton when specialised to the balanced case. We shall as42

well provide formulas for some non-balanced cases.43

Let us denote the number of triangulations of SC(k, r) by tr(k, r). For r = 1 our44

configuration is just a convex k-gon, and, thus, tr(k,1) = Ck−2, where Cn = 1
n+1

(
2n
n
)45

is the nth Catalan number. It is easy to find tr(k, r) for small values of k and r by46
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Figure 2. All triangulations of SC(3,2), SC(3,3) and SC(4,2).

inspection. For example, we have tr(3,2) = 4, tr(3,3) = 29 and tr(4,2) = 30; see Figure 247

(there, symmetries must also be taken into account; for each triangulation it is shown48

how many different triangulations can be obtained from it under symmetries). Values49

of tr(k, r) for 1 ≤ k ≤ 7, 1 ≤ r ≤ 6 are shown in Table 1; the meaning of these values50

for k = 2 — the central binomial coefficients — will be explained in Section 2 (see the51

remark after the proof of Theorem 4). The sequence (tr(k,2))k≥3 is OEIS/A086452,52

while the sequence (tr(3, r))r≥1 is OEIS/A087809 [14].53

In the next section, we derive our formulas for the numbers tr(k, r). They are given in54

the form of double sums, see Theorem 4, thus answering an open question posed in [11].55

These formulas come from a representation of tr(k, r) in terms of a complex contour56

integral (see Proposition 3), when interpreted as a coefficient extraction formula. We use57

this integral representation to prove in Section 3 that the “vertical” generating functions58

∑k≥2 tr(k, r)x
k as well as the “horizontal” generating functions ∑r≥1 tr(k, r)x

r are all59

algebraic. More precisely, we find explicit expressions for these generating functions in60

terms of roots of certain (explicit) polynomials. We devote a separate section, Section 4,61

to the special case k = 3, since in that case several alternative formulas that are more62

attractive than the formulas in Theorem 4 are available. Moreover, in Section 5 we also63

consider the non-balanced case of k = 3: we count triangulations of a triangle whose64

sides are subdivided by a, b, and c points, respectively. The resulting compact formulas65

are presented in Propositions 8 and 9. Then, in Section 6, we determine the asymptotic66

behaviour of tr(k, r) as r and/or k tend to infinity, see Theorems 11 and 12. This is67

achieved by transforming the contour integral into a complex integral along a line in68

the complex plane parallel to the imaginary axis that passes through the saddle point69

of the integrand. In the final Section 7, we connect our results with a well-known open70

problem from computational geometry: the problem of determining a planar set of n71

points in general position with the minimum number of triangulations. We show that72
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r = 1 2 3 4 5 6

k = 2 1 1 2 6 20 70

3 1 4 29 229 1847 14974

4 2 30 604 12168 238848 4569624

5 5 250 13740 699310 33138675 1484701075

6 14 2236 332842 42660740 4872907670 510909185422

7 42 20979 8419334 2711857491 745727424435 182814912101920

Table 1. Values of tr(k, r) for 2 ≤ k ≤ 7, 1 ≤ r ≤ 6. (The meaning of the

values for k = 2 is explained after the proof of Theorem 4.)

Figure 3. Injection ϕk,r from TR(SC(k, r)) to TR(C(k ⋅ r))

our results support a conjecture of Aichholzer, Hurtado and Noy [3] that this minimum73

is attained by the so-called double circle.74

2. A formula for tr(k, r)75

In this section we derive two — very similar — double sum formulas for tr(k, r),76

given in (2.7) and (2.8). Starting point for finding these double sum expressions is the77

inclusion-exclusion formula (2.2), which is equivalent to that found in [11] and in [6, 7].78

We include its derivation for the sake of completeness.79

We start by “inflating” SC(k, r). That is, we replace its strings by slightly curved80

circular arcs so that a set of kr points in convex position is obtained. We keep the81

labels for these points. Denote this point set by C(k ⋅ r). It is easy to see that each82

triangulation of SC(k, r) is transformed into a triangulation of C(k ⋅ r), see Figure 3.83

More formally, this “inflation” defines a natural injection ϕ = ϕk,r from TR(SC(k, r))84

to TR(C(k ⋅ r)): for each D ∈ TR(SC(k, r)), triangulation ϕ(D) ∈ TR(C(k ⋅ r)) uses the85

diagonals with the same labels as D. Thus tr(k, r) is the size of the image of ϕ. We86

say that a triangulation of C(k ⋅ r) is legal if it belongs to the image of ϕ — that is,87

corresponds to a (unique) triangulation of SC(k, r). It is easy to see the following.88

Observation 1. Let T be a triangulation of C(k ⋅ r). T is legal if and only if it uses89

no diagonal whose endpoints belong to the same string (that is, to the set {Pi,0, Pi,1, . . . ,90

Pi,r−1, Pi+1,0} for some i).91
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(a) (b)

Figure 4. Forbidden (a) and essentially forbidden (b) diagonals of C(4 ⋅ 4).

We call the diagonals mentioned in Observation 1 forbidden, and we need to exclude92

triangulations that contain them from the set of all the triangulations of C(k ⋅ r).93

Notice, however, that, if a triangulation of C(k ⋅ r) uses some forbidden diagonal, then94

it necessarily (also) uses a forbidden diagonal that connects two points at distance 295

along the boundary of C(k ⋅ r). Therefore, the characterization of legal triangulations96

from Observation 1 can be simplified as follows.97

Observation 2. Let T be a triangulation of C(k ⋅ r). T is legal if and only if it uses98

no diagonal of the form Pi,jPi,j+2 with 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ r − 2.99

We call the diagonals mentioned in Observation 2 essentially forbidden. Figure 4100

shows (a) forbidden and (b) essentially forbidden diagonals of C(4 ⋅ 4).101

Thus, we need to exclude triangulations of C(k ⋅ r) that use essentially forbidden102

diagonals. The total number of essentially forbidden diagonals is k(r − 1), but the103

neighbouring essentially forbidden diagonals (that is, Pi,jPi,j+2 and Pi,j+1Pi,j+3 for some104

i and j with 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ r − 3) cannot coexist in the same triangulation of105

C(k ⋅ r). Thus, the number of possible choices of ` essentially forbidden diagonals from106

the same string, where 0 ≤ ` ≤ ⌊r/2⌋, equals the number of `-subsets of {1,2, . . . , r −107

1} that do not contain adjacent numbers. This is a simple exercise in elementary108

combinatorics, and the answer is (
r−`
`
). Therefore, the number of ways to choose m109

pairwise non-crossing essentially forbidden diagonals in C(k ⋅ r) is110

ak,r,m ∶= [xm]
⎛

⎝

⌊r/2⌋

∑
`=0

(
r − `

`
)x`

⎞

⎠

k

,111

where [xm]f(x) denotes the coefficient of xm in the polynomial or formal power series112

f(x).113

Once m essentially forbidden diagonals of C(k ⋅ r) are chosen, we are left with a114

convex (kr−m)-gon to be triangulated. Therefore, the number of illegal triangulations115

that use at least m essentially forbidden diagonals is ak,r,mCkr−m−2. At this point we116

can apply the inclusion-exclusion principle and obtain117

tr(k, r) =
⌊r/2⌋k

∑
m=0

(−1)m ak,r,mCkr−m−2. (2.1)118
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Next, we observe that119

⌊r/2⌋

∑
`=0

(
r − `

`
)(−x)` = xr/2Ur (

1

2
√
x
) ,120

where Ur(x) is the rth Chebyshev polynomial of the second kind. Thus,121

(−1)m ak,r,m = [xm] (xr/2Ur (
1

2
√
x
))

k

,122

and (2.1) can be rewritten as123

tr(k, r) = [xrk−2]
⎛

⎝
(xr/2Ur (

1

2
√
x
))

k

C(x)
⎞

⎠
, (2.2)124

where125

C(x) =
1 −

√
1 − 4x

2x
126

is the generating function for Catalan numbers. Since an explicit form of Ur(x) is127

Ur(x) =
(x +

√
x2 − 1)

r+1
− (x −

√
x2 − 1)

r+1

2
√
x2 − 1

,128

it follows that129

tr(k, r) = [xrk−2] (
1

2(r+1)k(1 − 4x)k/2

⋅((1 +
√

1 − 4x)
r+1

− (1 −
√

1 − 4x)
r+1

)
k 1 −

√
1 − 4x

2x
) .

Using Cauchy’s integral formula, we may write this expression in terms of a complex130

contour integral, namely as131

tr(k, r) =
1

2πi ∫C

dx

2(r+1)k+1xrk(1 − 4x)k/2

⋅ ((1 +
√

1 − 4x)
r+1

− (1 −
√

1 − 4x)
r+1

)
k

(1 −
√

1 − 4x) , (2.3)

where C is a small contour encircling the origin once in positive direction. Next we132

perform the substitution x = t(1− t), in which case dx = (1−2t)dt. This leads us to the133

following integral representation of our numbers tr(k, r).134

Proposition 3. For all positive integers k and r with rk ≥ 3, we have135

tr(k, r) = −
1

4πi ∫C

dt

trk(1 − t)rk(1 − 2t)k−2
((1 − t)

r+1
− tr+1)

k
, (2.4)136

where C is a contour close to 0 which encircles 0 once in positive direction.137
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Proof. Carrying out the above described substitution in (2.3), we arrive at138

tr(k, r) =
1

2πi ∫C′
(1 − 2t)dt

trk−1(1 − t)rk(1 − 2t)k
((1 − t)

r+1
− tr+1)

k
, (2.5)139

where C′ is a(nother) contour close to the origin encircling the origin once in positive140

direction. In order to obtain the more symmetric form (with respect to the substitution141

t → 1 − t) in (2.4), we blow up the contour C′ so that it is sent to infinity. While doing142

this, we must pass over the pole t = 1 of the integrand. (The point t = 1/2 is a removable143

singularity of the integrand.) This must be compensated by taking the residue at t = 1144

into account. The integrand is of the order O(t−rk+2) as ∣t∣→∞, and even of the order145

O(t−rk+1) if r is odd. Together, this means that the integrand is of the order O(t−2) as146

∣t∣ →∞ for rk ≥ 3. Hence, the integral along the contour near infinity vanishes. Thus,147

we obtain148

tr(k, r) = −Rest=1
1

trk−1(1 − t)rk(1 − 2t)k−1
((1 − t)

r+1
− tr+1)

k

= −
1

2πi ∫C

dt

(1 + t)rk−1(−t)rk(−1 − 2t)k−1
((−t)

r+1
− (1 + t)r+1)

k
, (2.6)

where C is a contour close to 0, which encircles 0 once in positive direction. We have149

thus obtained two (slightly) different expressions for tr(k, r), namely (2.5) and (2.6).150

Thus, tr(k, r) is also equal to their arithmetic mean. If this is worked out, after having151

substituted −t for t in (2.6), one arrives at (2.4). �152

We are now in the position to derive explicit formulas for tr(k, r) in terms of binomial153

double sums.154

Theorem 4. For all positive integers k and r with rk ≥ 3, we have155

tr(k, r) =
k

∑
j=0

rk−(r+1)j−2

∑
`=0

(−1)j 2` (
k

j
)(
k − 2 + `

`
)(

(r − 1)k − ` − 3

rk − (r + 1)j − ` − 2
) (2.7)

=
k

∑
j=0

rk−(r+1)j−1

∑
`=0

(−1)j+1 2`−1 (
k

j
)(
k − 3 + `

`
)(

(r − 1)k − ` − 2

rk − (r + 1)j − ` − 1
). (2.8)

Proof. By Cauchy’s integral formula, Equation (2.5) can also be read as156

tr(k, r) = [trk−2]
1

(1 − t)rk(1 − 2t)k−1
((1 − t)

r+1
− tr+1)

k
.157

If we now expand ((1 − t)
r+1

− tr+1)
k

using the binomial theorem, and subsequently do158

the same for powers of 1 − t and of 1 − 2t, then we are led to (2.7).159

If the same is done starting from (2.4), then the formula in (2.8) is obtained. �160

Remark. If we choose k = 2 in (2.8), then the only term which does not vanish is the161

one with j = 1 and ` = 0. This term is (
2r−4
r−2

), a central binomial coefficient. If we162

interpret tr(2, r) (consistently with the case k ≥ 3) as the number of triangulations of163
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C(2 ⋅ r) that do not use (essentially) forbidden diagonals, then it is easy to see that this164

number is indeed (
2r−4
r−2

). Indeed, there exists a well-known2 bijective encoding of such165

triangulations in terms of balanced sequences over {0,1}, see Figure 5 which illustrates166

this encoding for r = 4. We shall use the same idea in the proof of Theorem 8(1) below.167

a a

b b

aabb abab abba baab baba bbaa

Figure 5. Illustration of the fact tr(2, r) = (
2r−4
r−2

).

168

3. Generating functions169

Starting from the integral representation (2.4), we now show that “horizontal” and170

“vertical” generating functions for the numbers tr(k, r) are algebraic.171

Theorem 5. For fixed r ≥ 2, we have172

∑
k≥1

tr(k, r)xk = −
1

2

r

∑
i=1

ti(x)r(1 − ti(x))r(1 − 2ti(x))2

( ddtPr)(x; ti(x))
, (3.1)173

where the ti(x), i = 1,2, . . . , r, are the “small” zeroes of the polynomial3174

Pr(x; t) = tr(1 − t)r − x ((1 − t)
r+1

− tr+1) (1 − 2t)−1,175

that is, those zeroes t(x) of Pr(x; t) for which limx→0 t(x) = 0.176

Proof. It should be noted that the right-hand side of (2.4) vanishes for k = 0. Hence,177

multiplication of both sides of (2.4) by xk and subsequent summation of both sides over178

k = 0,1, . . . by means of the summation formula for geometric series yield179

∑
k≥1

tr(k, r)xk = −
1

4πi ∫C

(1 − 2t)2 dt

1 − x ((1 − t)
r+1

− tr+1) t−r(1 − t)−r(1 − 2t)−1

= −
1

4πi ∫C

tr(1 − t)r(1 − 2t)2

tr(1 − t)r − x ((1 − t)
r+1

− tr+1) (1 − 2t)−1
dt, (3.2)

provided180

∣x∣ < ∣
tr(1 − t)r(1 − 2t)

(1 − t)
r+1

− tr+1
∣181

for all t along the contour C. By the residue theorem, this integral equals the sum of182

the residues at poles of the integrand inside C. The poles are the “small” zeroes of183

2For example, an encoding of this type was used by Hurtado, Noy, and Urrutia [12] for proving a

lower bound on the flip distance between triangulations of polygons.
3Pr(x; t) is indeed a polynomial in t since 1 − 2t is a polynomial divisor of (1 − t)r+1 − tr+1.
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the denominator polynomial Pr(x; t). By general theory of algebraic curves, the zeroes184

ti(x) of Pr(x; t), i = 1,2, . . . ,2r, can be written in terms of Puiseux series in x. In order185

to identify the “small” zeroes, we write the equation Pr(x; t) = 0 in the form186

tr(1 − t)r(1 − 2t)

(1 − t)
r+1

− tr+1
= x.187

Taking the rth root, we obtain188

t(1 − t)(1 − 2t)1/r

((1 − t)
r+1

− tr+1)
1/r

= ωirx
1/r, i = 1,2, . . . , r,189

where ωr = e2iπ/r is a primitive rth root of unity. It is easy to see that there exists a190

unique power series solution t(X) to the equation191

t(1 − t)(1 − 2t)1/r

((1 − t)
r+1

− tr+1)
1/r

=X.192

We thus obtain the “small” zeroes of Pr(x; t) as ti(x) = t(ωirx
1/r), i = 1,2, . . . , r. Because193

of the relation Pr(x; 1 − t) = Pr(x; t), the other zeroes of Pr(x; t) are 1 − ti(x), i =194

1,2, . . . , r, which are not “small”. The ti(x) for i = 1,2, . . . , r are hence all “small”195

zeroes.196

In view of the above considerations, from (3.2) we get197

∑
k≥1

tr(k, r)xk = −
1

4πi ∫C

tr(1 − t)r(1 − 2t)2

Pr(x; t)
dt

= −
1

2

r

∑
i=1

Rest=ti(x)
tr(1 − t)r(1 − 2t)2

Pr(x; t)

= −
1

2

r

∑
i=1

ti(x)r(1 − ti(x))r(1 − 2ti(x))2

( ddtPr)(x; ti(x))
,

as desired. �198

We illustrate this theorem by considering the case where r = 2. In this case, the199

polynomial Pr(x; t) becomes200

P2(x; t) = t2(1 − t)2 − x(t2 − t + 1).201

The zeroes of this polynomial are202

ti(x) =
1

2
(1 ±

√

1 + 2x ± 2
√
x + 4

√
x) , i = 1,2,3,4.203

The small zeroes are204

t1(x) =
1

2
(1 −

√

1 + 2x − 2
√
x + 4

√
x) and t2(x) =

1

2
(1 −

√

1 + 2x + 2
√
x + 4

√
x) .205

If all this is used in (3.1), then we obtain206
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∑
k≥1

tr(k,2)xk =
1

8

√
x

x + 4
(

√

1 + 2x + 2
√
x(x + 4) (

√
x +

√
x + 4)

2

−

√

1 + 2x − 2
√
x(x + 4) (

√
x −

√
x + 4)

2
)

after some simplification.207

Theorem 6. For fixed k ≥ 2, we have208

∑
r≥1

tr(k, r)xr =
1

2

k

∑
j=0

(−1)j(
k

j
)

k−j

∑
i=1

tj+1
i,j (x)(1 − ti,j(x))k−j+1

(1 − 2ti,j(x))k−2 (k − j − kti,j(x))
, (3.3)209

where the ti,j(x), i = 1,2, . . . , k − j, are the “small” zeroes of the polynomial210

Qj,k(x; t) = tk−j(1 − t)j − x,211

j = 1,2, . . . , k, that is, those zeroes t(x) for which limx→0 t(x) = 0.212

Proof. We multiply both sides of (2.4) by xr and then sum both sides over r = 0,1, . . . .213

Subsequently, we use the binomial theorem to expand ((1 − t)r+1 − tr+1)
k

and evaluate214

the resulting sums over r by means of the summation formula for geometric series.215

Taking into account that the right-hand side of (2.4) vanishes also for r = 0, this leads216

us to217

∞

∑
r=1

tr(k, r)xr = −
1

4πi ∫C

dt

(1 − 2t)k−2

k

∑
j=0

(−1)j(
k

j
)tj(1 − t)k−j

1

1 − xt−(k−j)(1 − t)−j

= −
1

4πi ∫C

tk(1 − t)k dt

(1 − 2t)k−2

k

∑
j=0

(−1)j(
k

j
)

1

tk−j(1 − t)j − x
. (3.4)

The remaining arguments are completely analogous to those of the proof of Theorem 5218

and are therefore left to the reader. �219

4. The case k = 3220

The case of triangulations of a subdivided triangle, that is, the case where k = 3, is221

particularly interesting from the point of view of exact enumeration formulas. In this222

section we found several such formulas; see Table 4 for the summary.223

By (2.8), we know that224

tr(3, r) = −
3r−1

∑
`=0

2`−1 (
3r − ` − 5

3r − ` − 1
) + 3

2r−2

∑
`=0

2`−1 (
3r − ` − 5

2r − ` − 2
) − 3

r−3

∑
`=0

2`−1 (
3r − ` − 5

r − ` − 3
). (4.1)225

A simpler formula can be obtained if one reads coefficients from the right-hand side of226

(2.4) in a way that differs from the one done in the proof of Theorem 4. Namely, we227

write228

tr(k, r) = −
1

4πi ∫C

dt

(1 − 2t)
(t−3r(1 − t)3 − 3t−2r+1(1 − t)−r+2 + 3t−r+2(1 − t)−2r+1)
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(4.3) tr(3, r) = 23r−4 − 3
r−3

∑
j=0

(
3r − 4

j
).

(4.4) tr(3, r) = ∑
i,j,k≥0

(
r − 1

i + j
)(
r − 1

j + k
)(
r − 1

i + k
).

(4.5) tr(3, r + 2) = 3(
3r + 2

r
) +

r

∑
j=0

5j + 1

2j + 1
(
3j

j
)8r−j.

(4.8) tr(3, r + 1) = [xr]
1 − 7g(x) + 17g2(x) − 10g3(x)

(1 − 3g(x))(1 − 8x)
,

where g(x)(1 − g(x))2 = x.

Table 2. Summary of Section 4: formulas for the number of triangula-

tions of a subdivided triangle.

= −
1

4πi ∫C

dt

(1 − 2t)
t−3r(1 − t)3 +

3

4πi ∫C

dt

(1 − 2t)
(t−2r+1(1 − t)−r+2 − t−r+2(1 − t)−2r+1)

= −
1

4πi ∫C

dt

(1 − 2t)
t−3r(1 − t)3 +

3

4πi ∫C

r

∑
j=0

t−2r+1+j(1 − t)−r+1−j dt.

The second integral can again be interpreted as a coefficient extraction formula. In the229

first integral, we blow up C so that it tends to the circle at infinity. While doing this,230

we pass over the pole at t = 1/2. Hence, the residue at this point must be taken into231

account. The integral along the circle at infinity vanishes since the integrand is of the232

order O(t−2) as ∣t∣ → ∞. If this is taken into account, then we obtain the alternative233

formula234

tr(3, r) = −23r−5 +
3

2

r

∑
j=0

(
3r − 4

2r − 2 − j
) = −23r−5 +

3

2

r

∑
j=0

(
3r − 4

r − 2 + j
). (4.2)235

Making use of the symmetry of binomial coefficients and of the binomial theorem, it is236

a simple matter to verify that the above is equivalent to237

tr(3, r) = 23r−4 − 3
r−3

∑
j=0

(
3r − 4

j
). (4.3)238

We entered the sequence (tr(3, r))r≥1 into the On-line Encyclopedia of Integer Se-239

quences [14]. This produced the hit OEIS/A087809, which in particular said that240

(according to [14] a conjecture of Benoit Cloitre) another (elegant) formula must be241

tr(3, r) = ∑
i,j,k≥0

(
r − 1

i + j
)(
r − 1

j + k
)(
r − 1

i + k
). (4.4)242

We prove this conjecture, in a more general context, in the next section; see Theorem 9.243
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There is yet another (substantially) different formula for tr(3, r). By computer ex-244

periments, utilizing the guessing features of Maple, we were led to conjecture that245

tr(3, r + 2) = 3(
3r + 2

r
) +

r

∑
j=0

5j + 1

2j + 1
(
3j

j
)8r−j. (4.5)246

This formula can be established in the following way. The (already established) formula247

(4.3) for tr(3, r) satisfies the recurrence248

tr(3, r + 1) − 8tr(3, r) =
3 (5r2 − 19r + 6) (3r − 4)!

(r − 2)! (2r)!
. (4.6)249

This is easy to see by applying the relation250

(
3r − 1

j
) = (

3r − 4

j
) + 3(

3r − 4

j − 1
) + 3(

3r − 4

j − 2
) + (

3r − 4

j − 3
)251

to the binomial coefficient appearing in the definition of tr(3, r + 1) (or by entering the252

sum in (4.3) into the Gosper–Zeilberger algorithm; cf. [15]). On the other hand, it is253

routine to verify that the expression in (4.5) (with r replaced by r−2) satisfies the same254

recurrence. Comparison of an initial value then completes the proof of (4.5).255

Finally, our results also enable us to establish another conjecture reported in Entry256

OEIS/A087809 of [14], namely an expression for the generating function of the numbers257

tr(3, r) that is more compact than the expression produced by Theorem 6 for k = 3.258

According to [14], this expression was found by Mark van Hoeij (presumably) by using259

his computer algebra tools. It reads260

∑
r≥1

tr(3, r + 1)xr =
10g3(x) − 17g2(x) + 7g(x) − 1

(1 − 3g(x))(2g(x) − 1)(4g2(x) − 6g(x) + 1)
, (4.7)261

where g(x)(1 − g(x))2 = x. Indeed, to see this, we first observe that262

(2g(x) − 1)(4g2(x) − 6g(x) + 1) = 8g(x)(1 − g(x))2 − 1 = 8x − 1.263

If we use this in (4.7), then we see that van Hoeij’s claim is264

tr(3, r + 1) = [xr]
1 − 7g(x) + 17g2(x) − 10g3(x)

(1 − 3g(x))(1 − 8x)

=
∞

∑
j=0

[xr−j]8j
1 − 7g(x) + 17g2(x) − 10g3(x)

(1 − 3g(x))
. (4.8)

The coefficient of xr−j on the right-hand side is conveniently computed using the second265

form of Lagrange inversion (see [13, Eq. (1.2)]). We obtain266

[xn]
1 − 7g(x) + 17g2(x) − 10g3(x)

(1 − 3g(x))

= [x−1]
1 − 7x + 17x2 − 10x3

(1 − 3x)
(x(1 − x)2)

−n−1 d

dx
(x(1 − x)2)

= [xn](1 − 7x + 17x2 − 10x3) (1 − x)−2n−1



COUNTING TRIANGULATIONS OF SUBDIVIDED CONVEX POLYGONS 13

This is now substituted on the right-hand side of (4.8). It yields267

∞

∑
j=0

8j(
3(r − j)

r − j
) − 7

∞

∑
j=0

8j(
3(r − j) − 1

r − j − 1
) + 17

∞

∑
j=0

8j(
3(r − j) − 2

r − j − 2
) − 10

∞

∑
j=0

8j(
3(r − j) − 3

r − j − 3
)

=
r

∑
j=0

8r−j(
3j

j
) − 7

r

∑
j=0

8r−j(
3j − 1

j − 1
) + 17

r

∑
j=0

8r−j(
3j − 2

j − 2
) − 10

r

∑
j=0

8r−j(
3j − 3

j − 3
).

In the first sum, we shift the index by replacing j by j − 1. Thus, we obtain268

(
3r

r
) +

r

∑
j=0

8r−j (8(
3j − 3

j − 1
) − 7(

3j − 1

j − 1
) + 17(

3j − 2

j − 2
) − 10(

3j − 3

j − 3
))

= (
3r

r
) +

r

∑
j=1

8r−j
5j − 4

2j − 1
(
3j − 3

j − 1
)

= (
3r

r
) +

r−1

∑
j=0

8r−1−j 5j + 1

2j + 1
(
3j

j
).

By (4.5), this expression equals tr(3, r + 1), which establishes van Hoeij’s guess.269

5. The case k = 3, non-balanced version270

In this section, we generalize two formulas for tr(3, r) that we obtained in Section 4271

to the non-balanced case. The proofs use quite elementary tools and shed more light on272

the structure of subdivided triangles. More precisely, we prove a generalization of (4.4)273

by considering a trivariate generating function and subsequently performing coefficient274

extraction, and a generalization of (4.3) by partitioning a triangulation of a subdivided275

triangle into structural blocks.276

First we introduce some notation. Let ∆(a, b, c) be the triangle ABC whose sides are277

subdivided as follows: the side BC is subdivided by a points, the side CA by b points,278

and the side AB by c points.279

Let T be a triangulation of ∆(a, b, c). An ear is a triangle of T that contains a280

corner of ABC. For example, the triangulation in Figure 6(a) has ears in all three281

corners (marked in grey colour), while the triangulation in Figure 6(b) has ears in the282

corners A and B (again marked in grey colour), but none in C. An ear diagonal is283

the side of an ear that lies in the interior of ABC. A central triangle is a triangle284

of T whose vertices are interior points of different sides of ABC. For example, the285

triangulation in Figure 6(a) contains a central triangle (namely the green triangle),286

while the triangulation in Figure 6(b) is one without central triangle. A regular triangle287

is a triangle of T which is neither an ear nor a central triangle. A corner-side diagonal288

is a diagonal of T one of whose endpoints is a corner of ABC and the other an interior289

point of the opposite side. Examples of corner-side diagonals are the red diagonals in290

the triangulation in Figure 6(b). On the other hand, the triangulation in Figure 6(a)291

does not contain any corner-side diagonal.292
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B

C

A B

C

A

(a) (b)

Figure 6. Two triangulations of ∆(3,4,6): (a) a T-triangulation; (b) a

DC-triangulation.

It is easy to observe the following facts.293

Observation 7. Triangulations of ∆(a, b, c) have the following properties:294

(1) Each regular triangle shares exactly one edge with a side of ABC.295

(2) Any triangulation of ∆(a, b, c) has corner-side diagonals emanating from at most296

one corner.297

(3) Any triangulation of ∆(a, b, c) has at most one central triangle.298

More precisely: assume (a, b, c) ≠ (0,0,0), and let T be a triangulation of ∆(a, b, c).299

Then either T has one central triangle, three ears, and no corner-side diagonal, or T300

has no central triangle, two ears, and at least one corner-side diagonal emanating from301

the remaining corner. Triangulations of the former kind will be called T-triangulations302

(see Figure 6(a) for an example), and triangulations of the latter kind will be called303

D-triangulations (see Figure 6(b) for an example). Moreover, a DA-triangulation is a304

(D-)triangulation that contains a corner-side diagonal one of whose endpoints is A, and305

DB- and DC-triangulations are similarly defined. The triangulation in Figure 6(b) is a306

DC-triangulation.307

We denote the numbers of T-, D-, DA-, DB-, and DC-triangulations of ∆(a, b, c)308

by tr(∆(a, b, c)) with appropriate specification: trT(∆(a, b, c)), trD(∆(a, b, c)), etc.309

The theorem below summarizes our counting formulas for the various classes of tri-310

angulations that we just defined. In particular, it provides the promised generalization311

of (4.3) in (5.3).312

Theorem 8. For any non-negative integers a, b, c not all equal to zero,313

(1) the number of D-triangulations of ∆(a, b, c) is314

trD(∆(a, b, c)) = (
a + b + c − 1

a − 1
) + (

a + b + c − 1

b − 1
) + (

a + b + c − 1

c − 1
); (5.1)315
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C

A

B

011010011101

0

1

1

0 0 0 0

1

1

1

1

1

Figure 7. Illustration for the proof of Theorem 8.1.

(2) the number of T-triangulations of ∆(a, b, c) is316

trT(∆(a, b, c)) = 2a+b+c−1−
a−1

∑
`=0

(
a + b + c − 1

`
)−

b−1

∑
`=0

(
a + b + c − 1

`
)−

c−1

∑
`=0

(
a + b + c − 1

`
); (5.2)317

(3) the total number of triangulations of (∆(a, b, c) is318

tr(∆(a, b, c)) = 2a+b+c−1 −
a−2

∑
`=0

(
a + b + c − 1

`
) −

b−2

∑
`=0

(
a + b + c − 1

`
) −

c−2

∑
`=0

(
a + b + c − 1

`
). (5.3)319

Proof. (1) We first show that320

trDA
(∆(a, b, c)) = (

a + b + c − 1

a − 1
). (5.4)321

In order to see that, consider T , a DA-triangulation of ∆(a, b, c). The triangles of322

T can be linearly ordered as follows. Consider the directed segment CB, and shift it323

slightly (“infinitesimally”) into the interior of ABC. The segment obtained in this way324

intersects all the triangles of T and, thus, induces a linear order on them.325

By Observation 7(1), each regular triangle of T shares exactly one edge with one of326

the sides of ABC. We encode the regular triangles that share an edge with CB by 0,327

and those that share an edge with CA or with AB by 1. Using the linear order that328

was described above, we obtain a {0,1}-sequence of length a+b+c−1, in which 0 occurs329

a−1 times and 1 occurs b+c times. See Figure 7 for an illustration. It is easy to see that330

this correspondence between DA-triangulations of ∆(a, b, c) and {0,1}-sequences with331

a − 1 occurrences of 0 and b + c occurrences of 1 is bijective. (In particular, since b and332

c are fixed, it is determined uniquely whether a triangle encoded by 1 shares an edge333

with CA or with AB.) Since the number of such sequences is (
a+b+c−1
a−1

), we obtain (5.4).334

Finally, due to symmetry, we get (5.1).335

Remark. A special case of (5.4), the formula tr(∆(a, b,0)) = (
a+b
a
), was already men-336

tioned in [11].337

(2) Now we derive the formula (5.2) for the number of T-triangulations of ∆(a, b, c).338

By definition and by Observation 7(3), any T-triangulation T of ∆(a, b, c) has a unique339
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central triangle. If we remove the central triangle from T , then T decomposes into340

three triangulations: a triangulation of ∆(a2, b1,0), a triangulation of ∆(b2, c1,0), and341

a triangulation of ∆(c2, a1,0), where a1 + a2 = a − 1, b1 + b2 = b − 1, c1 + c2 = c − 1.342

Conversely, each (appropriately combined) triple of such triangulations generates a T-343

triangulation of ∆(a, b, c). Since, as mentioned above, we have ∆(a, b,0) = (
a+b
a
), and344

since 1
1−x−y is the bivariate generating function for the array ((

a+b
a
))
a,b≥0

, we conclude345

that xyz
(1−x−y)(1−y−z)(1−z−x) is the trivariate generating function for (trT(∆(a, b, c)))a,b,c≥0.346

To be precise, for each fixed triple (a, b, c), we have347

trT(∆(a, b, c)) = [xaybzc]
xyz

(1 − x − y)(1 − y − z)(1 − z − x)
. (5.5)348

In order to extract the coefficients, we ignore the factor xyz in the numerator for a349

while. We have350

[xaybzc]
1

(1 − x − y)(1 − y − z)(1 − z − x)
=

a

∑
i=0

b

∑
j=0

((
i + j

i
) ⋅

c

∑
k=0

(
b − j + k

b − j
)(
a − i + c − k

a − i
))

=
a

∑
i=0

b

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

a + b + 1 − i − j
)

=
a

∑
i=0

b

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
). (5.6)

For the second equality we used the standard combinatorial identity351

`

∑
i=0

(
m + i

m
)(
n + ` − i

n
) = (

m + n + ` + 1

m + n + 1
),352

which is a special instance of Chu–Vandermonde summation. We may use it again in353

order to evaluate the inner sum of the remaining double sum, for 0 ≤ j ≤ a + b + 1 − i354

rather than 0 ≤ j ≤ b:355

a+b+1−i

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
) = (

a + b + c + 2

c + 1 + i
). (5.7)356

Now we continue simplifying (5.6). We use (5.7) and subtract the extra terms which357

also have this form (up to an interchange of the summations over i and j). Writing358

s = a + b + c + 2, we have359

a

∑
i=0

b

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
)

=
a

∑
i=0

a+b+1−i

∑
j=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
) −

a+b+1

∑
j=b+1

a+b+1−j

∑
i=0

(
i + j

i
)(
a + b + c + 1 − i − j

c
)

=
a

∑
i=0

(
s

c + 1 + i
) −

a+b+1

∑
j=b+1

(
s

c + 1 + j
) =

a+c+1

∑
`=c+1

(
s

`
) −

a+b+c+2

∑
`=b+c+2

(
s

`
) =

a+c+1

∑
`=c+1

(
s

`
) −

a

∑
`=0

(
s

`
)
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P2,1P2,2P2,s2 . . . . . .

. . .

P0,1

P0,s0 P1,1

P1,2

P1,s1

P1 = P1,0 = P0,s0+1

P2 = P2,0 = P1,s1+1P0 = P0,0 = P2,s2+1

. . .
. . .

. . .
P0,2

Figure 8. Illustration for the proof of Theorem 9: notation and defini-

tion of FT . The diagonals shown in blue and red belong to T ; the diagonal

shown by crosses does not belong to T . Hence, the blue diagonal belongs

to FT .

=
s

∑
`=0

(
s

`
) −

a

∑
`=0

(
s

`
) −

c

∑
`=0

(
s

`
) −

s

∑
`=a+c+2

(
s

`
) = 2s −

a

∑
`=0

(
s

`
) −

b

∑
`=0

(
s

`
) −

c

∑
`=0

(
s

`
).

Taking into account the factor xyz in (5.5), we obtain (5.2).360

(3) Finally, we obtain (5.3) by adding (5.1) and (5.2). �361

Remarks. (1) For certain specific choices of parameters, formulas that can be further362

simplified can be obtained. For example, we have trT(∆(a, b,1)) = (
a+b
a
) − 1. Recall363

that tr(∆(a, b,0)) = (
a+b
a
). We leave it as an exercise for the reader to find a (simple)364

“almost bijection” between the set of T-triangulations of ∆(a, b,1) and the set of all365

triangulations ∆(a, b,0).366

(2) Item (1) of Theorem 8 can also be proven in a way similar to our proof of Item (2)367

— by considering a trivariate generating function and extracting coefficients. Doing this,368

we obtain trDA
(∆(a, b, c)) = [xaybzc] xyz

(1−x)(1−x−y)(1−x−z) , and similarly for trDB
(∆(a, b, c))369

and trDC
(∆(a, b, c)).370

Next we prove the announced generalization of Formula (4.4) to the non-balanced371

case.372

Theorem 9. For any non-negative integers a, b, c, we have373

tr(∆(a, b, c)) = ∑
α,β,γ≥0

(
a

α + β
)(

b

β + γ
)(

c

γ + α
). (5.8)374

Proof. We use a uniform notation similarly to the notation that we used for the balanced375

case (see Figure 8). We denote the corners of the triangle by P0 = P0,0, P1 = P1,0,376

P2 = P2,0 (say, clockwise), with arithmetic mod 3 in the first index. For each i ∈ {0,1,2},377

the side PiPi+1 is subdivided by si points Pi,1, Pi,2, . . . , Pi,si (in the direction from Pi to378



18 A. ASINOWSKI, C. KRATTENTHALER AND T. MANSOUR

Pi+1). Moreover, we set Pi,si+1 = Pi+1. In this notation, Formula (5.8) reads379

tr(∆(s0, s1, s2)) = ∑
α1,α2,α3≥0

(
s0

α0 + α1

)(
s1

α1 + α2

)(
s2

α2 + α3

). (5.9)380

Let F be some (possibly empty) set of diagonals of ∆(s0, s1, s2) which connect in-381

terior points of two sides of the basic triangle (that is, F does not contain corner-side382

diagonals), and which are pairwise disjoint (that is, they are not only non-crossing but383

also do not share endpoints). Such sets will be called fundamental sets (of diagonals384

of ∆(s0, s1, s2)). Each diagonal in a fundamental set F can be uniquely represented385

as Pi−1,`Pi,m for some i ∈ {0,1,2}, 1 ≤ ` ≤ si−1, 1 ≤ m ≤ si. We say that this diagonal386

separates the corner Pi.387

We say that a fundamental set F has type (α0, α1, α2) if, for i ∈ {0,1,2}, the number388

of elements of F that separate the corner Pi is exactly αi. Notice that F is uniquely389

determined by the set of the endpoints of its elements. Indeed, if, for i ∈ {0,1,2}, exactly390

βi endpoints of the elements of F lie on PiPi+1, then the type of F is (α0, α1, α2), where391

αi = (βi−1 +βi −βi+1)/2. Once we know the set of endpoints of the elements of F and its392

type, the elements of F themselves can be identified at once. It follows that the number393

of fundamental sets of type (α0, α1, α2) is (
s0

α0+α1
)(

s1
α1+α2

)(
s2

α2+α3
), and the total number394

of fundamental sets is precisely the right-hand side of (5.9). Thus, in order to prove395

the claim, it suffices to find a bijection between the set of triangulations of ∆(s0, s1, s2)396

and the set of its fundamental sets.397

Let T be a triangulation of ∆(s0, s1, s2). We define398

FT ∶= {
Pi−1,`Pi,m∶ i ∈ {0,1,2}, 1 ≤ ` ≤ si−1, 1 ≤m ≤ si;

Pi−1,`Pi,m ∈ T, Pi−1,`Pi,m+1 ∈ T, Pi−1,`Pi,m+2 /∈ T
} .399

(Notice that, if m = si, then Pi−1,`Pi,m+1 is a corner-side diagonal, and the last condition,400

Pi−1,`Pi,m+2 /∈ T , is satisfied automatically.) Figure 8 illustrates this definition: the401

diagonal coloured blue satisfies the just described condition and, therefore, is an element402

of TF .403

It is easy to verify that FT is a fundamental set. Moreover, next we show that,404

given a fundamental set F , there is a unique triangulation T such that FT = F . This405

triangulation T can be reconstructed from F by applying the following procedure.406

Given F , we define another set of diagonals (a modified fundamental set), by407

F ′ = {Pi−1,`Pi,m+1∶ Pi−1,`Pi,m ∈ F}.408

In addition, for each corner Pi such that F ′ contains no corner-side diagonal one of409

whose endpoints is Pi, we add the ear diagonal Pi−1,si−1Pi,1 to F ′. See Figure 9(a): a410

“generic” element of F is coloured blue, the corresponding element of F ′ is coloured411

red; another diagonal is coloured red because it is an ear diagonal.412

The elements of F ′ are not necessarily disjoint — they can share endpoints, — but413

still they are non-crossing. Therefore they partition ∆(s0, s1, s2) into several parts that414

we call blocks. The boundary of each block contains at most three elements of F ′ (in415

fact, we have two or three ears whose boundaries contain exactly one element of F ′,416
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(a) (b) (c)

Figure 9. Rules for reconstructing T from F = FT . Blue diagonals are

the elements of F . Red diagonals are the elements of F ′. (a) Definition

of F ′. (b) Triangulation of a block bounded by two elements of F ′. (c)

Triangulation of a block bounded by three elements of F ′.

at most one block whose boundary contains three elements of F ′, and all other blocks417

whose boundaries contain exactly two elements of F ′).418

Then we complete F ′ to a triangulation of ∆(s0, s1, s2) by triangulating the blocks419

according to the following rules:420

● Suppose B is a block whose boundary contains exactly two elements of F ′:421

Pi−1,`′Pi,m and Pi−1,`Pi,m′ , where i ∈ {0,1,2}, 0 ≤ ` ≤ `′ ≤ si−1, 1 ≤m ≤m′ ≤ si + 1.422

Then we add the diagonal Pi−1,`Pi,m (unless it belongs to F ′, which would happen423

if we have ` = `′ or m =m′). At this point there is only one way to complete the424

triangulation of B. See Figure 9(b).425

● Suppose B is a block whose boundary contains three elements of F ′: Pi−1,`′Pi,m,426

Pi,m′Pi+1,p, and Pi+1,p′Pi+1,`, where i ∈ {0,1,2}, 1 ≤ ` ≤ `′ ≤ si−1, 1 ≤ m ≤ m′ ≤ si,427

1 ≤ p ≤ p′ ≤ si+1. Then we add three diagonals (or, more precisely: those of them428

that do not belong to F ′) that form the triangle Pi−1,`Pi,mPi+1,p. At this point429

there is only one way to complete the triangulation of B. See Figure 9(c).430

Once this is done for all blocks, we have a triangulation T of ∆(s0, s1, s2). It is routine431

to verify that T contains all the elements of F , and that T is the unique triangulation432

of ∆(s0, s1, s2) such that FT = F . See Figure 10 for some examples.433

We established a bijection between the set of triangulations of ∆(s0, s1, s2) and the434

set of its fundamental sets. As explained above, this completes the proof of the claim.435

To summarize: while fundamental sets are clearly enumerated by the right-hand436

side of (5.8), it is modified fundamental sets that describe a very natural structural437

decomposition of triangulations into blocks. �438

6. Asymptotics439

Here, we determine the asymptotic behaviour of tr(k, r). Our starting point is another440

integral representation of tr(k, r). It is motivated by the fact that the integrand in (2.4),441

Ir,k(t) say, has one saddle point at t = 1/2 for large k and/or r, which is easily verified442
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0

2 2

0

0 3

1

1 2

0

1 3

1

1 1

0

0 0

Figure 10. Reconstructing T from F = FT . Blue points are the end-

points of the elements of F . Red diagonals are the elements of F ′. The

numbers at the corners are α0, α1 and α2.

by solving the saddle point equation d
dtIr,k(t) = 0 for large k and/or r.4 (The subsequent443

arguments can however be followed without that observation.)444

Proposition 10. For all positive integers k and r with rk ≥ 3, we have445

tr(k, r) = −
2(r−2)k

π ∫

∞

−∞

du

(1 + 4u2)rk(iu)k−2
((1 + 2iu)

r+1

− (1 − 2iu)
r+1

)

k

. (6.1)446

4Strictly speaking, the point t = 1/2 is not a saddle point of the function t→ ∣Ir,k(t)∣, since its value

at t = 1/2 vanishes, that is, Ir,k(1/2) = 0. However, this is “just” caused by the factor (1 − 2t)2 in the

numerator (the factor (1− 2t)k in the denominator cancels with ((1− t)r+1 − tr+1)
k

in the numerator).

If we would ignore the factor (1 − 2t)2, that is, if we would instead consider Ir,k(t)/(1 − 2t)2, then

t = 1/2 is a true saddle point. So, “morally,” the point t = 1/2 is a saddle point of t → ∣Ir,k(t)∣, in the

sense that the main contribution to the integral comes from a small environment around t = 1/2. The

“only” effect of the factor (1− 2t)2 is to lower the polynomial factor in the asymptotic approximation,

while the exponential growth is not affected.
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Proof. We start with the integral representation (2.4). We deform the contour C so that447

it passes through the point t = 1/2. More precisely, we consider the family of contours448

{t ∶R(t) = 1
2 and ∣I(t)∣ ≤ ρ} ∪ {t ∶ ∣t − 1

2 ∣ = ρ and R(t) ≤ 1
2
} , (6.2)449

parametrized by positive real numbers ρ ≥ 1, which are supposed to be oriented in450

positive direction. In other words, these contours consist of a vertical straight line451

segment of length 2ρ whose midpoint is 1/2, and the left half-circle whose diameter is452

this very segment. The integral over these contours still equals tr(k, r) since t = 1/2 is453

a removable singularity of the integrand.454

Now we let ρ → ∞. As we already observed in the proof of Proposition 3, the455

integrand is of the order O(t−2) as ∣t∣ → ∞ under our assumptions. Consequently, the456

integral over the circle segment of the contour (6.2) will tend to zero as ρ →∞. Thus,457

the number tr(k, r) equals the integral over the straight line {t ∶ R(t) = 1/2}. If we set458

t = 1
2 + iu in (2.4), then we obtain (6.1) after little rearrangement. �459

The integral representation in Proposition 10 now allows for a convenient asymptotic460

analysis of tr(k, r). We distinguish between two scenarios: (1) the number k of corners461

is fixed, while the number of subdivisions r tends to infinity; (2) k tends to infinity,462

leaving it open whether r remains fixed or not.463

Theorem 11. For fixed k ≥ 3, we have464

tr(k, r) =
2(r−1)krk−3

π
(∫

∞

−∞

du

uk−2
sink(2u)) (1 + o(1)), as r →∞. (6.3)465

Proof. We start with the integral representation (6.1), in which we make the substitution466

u→ u/r. This leads to467

tr(k, r) = −
2(r−2)k rk−3

π ∫

∞

−∞

du

(1 + 4u2

r2
)
rk

(iu)k−2
((1 + 2iu

r )
r+1

− (1 − 2iu
r )

r+1

)

k

.

Making use of dominated convergence, we may now compute the limit of the above468

integral as r →∞,469

lim
r→∞
∫

∞

−∞

du

(1 + 4u2

r2
)
rk

(iu)k−2
((1 + 2iu

r )
r+1

− (1 − 2iu
r )

r+1

)

k

= ∫

∞

−∞

du

(iu)k−2
(e2iu − e−2iu)

k

= −2k ∫
∞

−∞

du

uk−2
sink(2u).

The assertion of the theorem follows immediately. �470

Remark. It is well-known that the integral in (6.3) can be evaluated for any spe-471

cific k, and it equals some rational multiple of π. More precisely (cf. [10, 333.17]472

or [9, 3.821.12]), the relations473
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∫

∞

0

sinλ(x)

xk
dx =

λ

k − 1 ∫
∞

0

sinλ−1(x) cos(x)

xk−1
dx, for λ > k − 1 > 0, (6.4)

=
λ(λ − 1)

(k − 1)(k − 2) ∫
∞

0

sinλ−2(x)

xk−2
dx −

λ2

(k − 1)(k − 2) ∫
∞

0

sinλ(x)

xk−2
dx,

for λ > k − 1 > 1, (6.5)

together with the “initial conditions” (cf. [10, 333.14, 333.15] or [9, 3.821.7, 3.832.15])474

∫

∞

−∞

sin2k−1(x)

x
dx =

√
πΓ(k − 1

2)

Γ(k)
. (6.6)475

and476

∫

∞

−∞

sin2k−1(x) cos(x)

x
dx =

√
πΓ(k − 1

2)

2 Γ(k + 1)
, (6.7)477

allow for the recursive computation of the integral in (6.3) for any specific k. (Maple478

and Mathematica know about this.)479

Theorem 12. We have480

tr(k, r) =
(2r(r + 1))

k

16
√
π(r(r + 5)/6)3/2k3/2

(1 + o(1)), as k →∞, (6.8)481

where r may or may not stay fixed.482

Proof. We start again with the integral representation (6.1). Here we do the substitution483

u→ u/
√
kR, where R is short for r(r + 5)/6. Thereby we obtain484

tr(k, r) =
22rk−(r+1)k

(kR)3/2

1

π ∫
∞

−∞

u2 du

(1 + 4u2

kR )rk(2iu/(kR)1/2)k

⋅ ((1 + 2iu
(kR)1/2)

r+1

− (1 − 2iu
(kR)1/2)

r+1

)

k

. (6.9)

Once again, by dominated convergence, we may approximate the above integral as485

k →∞,486

∫

∞

−∞

u2 du

(1 + 4u2

kR )rk(2iu/(kR)1/2)k
((1 + 2iu

(kR)1/2)
r+1

− (1 − 2iu
(kR)1/2)

r+1

)

k

= 2k (r + 1)k (∫
∞

−∞

u2 du

exp(4u2r/R)
exp(

r(r − 1)

6

(2iu)2

R
))(1 + o(1))

= 2k (r + 1)k (∫
∞

−∞
u2 e−4u2 du)(1 + o(1))

= 2k (r + 1)k
√
π

16
(1 + o(1)),

as k →∞. If this is substituted back in (6.9), one obtains (6.8). �487



COUNTING TRIANGULATIONS OF SUBDIVIDED CONVEX POLYGONS 23

7. Generalizations of the double circle and their triangulations488

The present research was initially motivated by the following open problem from489

computational geometry: what is the minimum number of triangulations that a planar490

set of n points in general position5 can have, and for which set(s) is this minimum491

attained?492

This is one instance of the research direction concerning the minimum and the max-493

imum number of plane geometric non-crossing graphs of various kinds, with respect494

to the number of points. One typically fixes some naturally defined class C of such495

geometric graphs (for example, triangulations, spanning trees, perfect matchings, etc.),496

and asks for the minimum or the maximum number of graphs from C that a planar497

set of n points in general position (playing the role of the vertex set) can have, and498

for a characterization of point set(s) on which these extremal values are attained. To499

our knowledge, in all such cases no exact results concerning maximum were found500

(except for trivialities), but rather lower and upper bounds, usually with substantial501

gaps (see [17] for a summary of some results of this type). In contrast, for many nat-502

ural families of plane graphs, the minimum is attained for sets in convex position:503

Aichholzer et al. [2] proved that this is the case for any class of acyclic graphs (thus,504

for spanning trees, forests, perfect matchings, etc.6), as well as for the family of all505

plane graphs, and that of all connected plane graphs. However, this is not the case for506

triangulations: in [3], Aichholzer, Hurtado and Noy presented a configuration, which507

they called double circle, and which has less triangulations than sets of the same size508

(that is, with the same number of points) in convex position. Indeed, as was shown509

by Santos and Seidel in [16], the double circle of size n has Θ∗(
√

12
n
) triangulations7.510

It was proven by exhaustive computations [4, 1] that, for n ≤ 15, (only) the double511

circle of size n has the minimal number of triangulations over all point sets of size n512

in general position. Therefore it was conjectured in [3] that (only) the double circle513

minimizes the number of triangulations for any n. As for the lower bound, Aichholzer514

et al. [1] recently proved that, for all point sets of size n in general position, the number515

of triangulations is Ω(2.63n) (the first result of this kind, Ω(2.33n), was proven in [3]).516

Next we recall the definition of the double circle of size n, which we denote by517

DCn. For the sake of simplicity, we restrict ourselves to even n. In this case, DCn518

consists of n/2 points, denoted by P1, P2, . . . , Pn/2, in convex position; and n/2 points,519

Q1,Q2, . . . ,Qn/2, such that for each i, 1 ≤ i ≤ n/2, Qi lies in the interior of the con-520

vex hull of {P1, P2, . . . , Pn/2}, very (“infinitesimally”) close to the midpoint of PiPi+1
8.521

Figure 11(a) shows DC12 and one of its triangulations.522

5General position means that no three points lie on the same line.
6For some of these families it was proven earlier by other authors, but Aichholzer et al. gave a

unified proof.
7The notation Θ∗(. . . ) corresponds to the usual Θ(. . . ) notation, but with polynomial and sub-

polynomial factors omitted.
8By convention, Pn/2+1 = P1.
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(a) (b)

Figure 11. (a) Double Circle of size 12 and one of its triangulations.

(b) A generalized configuration. Unavoidable edges are shown in blue

colour.

Notice that each triangulation of DCn necessarily uses the edges QiPi and QiPi+1 for523

each i, 1 ≤ i ≤ n/2, and, of course, all the edges that form the boundary of its convex524

hull. Therefore we refer to them as unavoidable edges. (In Figure 11, unavoidable525

edges are shown in blue colour.) This observation leads to a simple bijection between526

TR(DCn) and TR(SC(n/2,2)): given a triangulation of DCn, move all the points Qi527

“outwards”, until they lie on the segments PiPi+1. Thus, from this point of view,528

triangulations of DCn are equivalent to triangulations of SC(n/2,2), and the above cited529

bound tr(DCn) = Θ∗(
√

12
n
) is a special case of our Theorem 12 for r = 2, k = n/2→∞.530

Our goal was to investigate whether the number of triangulations can decrease if531

one inserts more points between the corners. A similar idea, applied to the so-called532

double chain, led to an improvement of the lower bound on the maximum number of533

triangulations [8] and of perfect matchings [5].534

Let us define our construction precisely. For fixed k and r, we take SC(k, r) and535

slightly pull the inner points of the strings into the convex hull so that, after this536

transformation, they lie on circular arcs of sufficiently big radius. This radius is chosen537

so that the orientation of triples of points which do not belong to the same string538

is not changed. See Figure 11(b) for an illustration. We denote this construction539

by ISC(k, r). Notice that for r = 2 we have the double circle: ISC(k,2) = DC(2k).540

Observe that the segments that connect consecutive points of a string of ISC(k, r) are541

unavoidable for triangulations. Together with the segments that form the boundary of542

the convex hull, they split the convex hull into k + 1 regions: k convex regions, each543

being spanned by r + 1 points in convex position, and one non-convex region whose544

triangulations are in an obvious bijection with triangulations of SC(k, r). Due to this545

fact, the analysis of the number of triangulations of ISC(k, r) is now easy: we have546

tr(ISC(k, r)) = tr(SC(k, r)) ⋅Ck
r−1. By our asymptotic result in Theorem 12, we see that547

the exponential growth factor of the number of triangulations of SC(k, r) as k →∞ —548
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and thus the total number n = kr of points tends to infinity — is 2(r + 1)1/r.9 Hence549

the growth factor for the number of triangulations of ISC(k, r) equals 2(r + 1)1/rC
1/r
r−1.550

This expression is minimal for r = 2, that is, for the double circle. If, on the other hand,551

we keep k fixed and let r tend to infinity — so that again the total number n = kr552

of points tends to infinity — then similar reasoning using our asymptotic result in553

Theorem 11 leads to the conclusion that the exponential growth factor of the number of554

triangulations of ISC(k, r) is 8. Thus, somewhat disappointingly, the asymptotic count555

of Θ∗(
√

12
n
) attained by DC(n) cannot be improved by using balanced generalizations556

of the double circle, in whatever way n→∞.557

Let us return to the case of fixed r and k → ∞. As stated above, the exponential558

growth factor in this case is gr ∶= 2(r + 1)1/rC
1/r
r−1. As r → ∞, we have (r + 1)1/r ↘ 1559

and C
1/r
r−1 ↗ 4, in both cases monotonically for r ≥ 1. Thus, the fact g2 < g1 can be560

interpreted intuitively as follows: when we pass from r = 1 to r = 2, the former ex-561

pression decreases, while the k regions in convex position are just triangles with the562

unique (trivial) triangulation, and so there is no extra factor. On the other hand, for563

r = 3 these k regions are convex quadrilaterals with two triangulations, and, as calcu-564

lations above show, their “positive” contribution to the total number of triangulations565

already dominates over the “negative” contribution of the central region. For r ≥ 3,566

this tendency holds monotonically, and, thus, gr has its minimum at r = 2.567

However, if one extends the expression gr for real values of r by using the Gamma568

function in the definition of Catalan numbers (namely, Cn =
Γ(2n+1)

Γ(n+1)Γ(n+2)), one can569

observe that gr has its minimum not at r = 2 but rather at r ≈ 1.4957. This may lead570

to the idea that, perhaps, we may get less triangulations if we “mix” sides subdivided571

by one point (corresponding to r = 2) and non-subdivided sides (corresponding to572

r = 1). More precisely, let n ≥ 2s, and let us consider a subdivided convex (n − s)-gon573

in which s sides are subdivided by one point, and all other sides are not subdivided.574

(Thus, the total number of points is n.) We denote this partially subdivided polygon575

by MC(n − s, s), and its number of triangulations by tr∗(n − s, s). Recall from the576

introduction that, by [11], this number does not depend on the specific distribution of577

the subdivisions among the sides of the polygon. Therefore we can assume that the578

subdivided sides of MC(n − s, s) appear consecutively.579

This conclusion can be also confirmed by calculations similar to those from Section 2.580

Proceeding in analogy with the inclusion-exclusion argument there, we observe that the581

number of ways to choose m pairwise non-crossing essentially forbidden diagonals in582

MC(n− s, s) is (
s
m
). Once m essentially forbidden diagonals of MC(n− s, s) are chosen,583

we are left with a convex (n −m)-gon to be triangulated. Therefore, the number of584

illegal triangulations that use at least m essentially forbidden diagonals is an,s,mCn−m−2.585

9This result is also stated in [8]; however, the argument given there is non-rigorous since it relies

on [11, Theorem 3] which holds for fixed k rather than for k →∞.
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We apply the inclusion-exclusion principle to get586

tr∗(n − s, s) =
s

∑
m=0

(−1)m an,s,mCn−m−2 =
s

∑
m=0

(−1)m (
s

m
)Cn−m−2.587

Thus, the analogue of (2.3) in the current context reads588

tr∗(n − s, s) =
1

2πi ∫C

dx

2xn
(1 − x)s (1 −

√
1 − 4x) , (7.1)589

where C is a small contour encircling the origin once in positive direction. The substi-590

tution x = t(1 − t), followed by the arguments used in the proof of Proposition 3, turns591

this into592

tr∗(n − s, s) = −
1

4πi ∫C

(1 − 2t)2 dt

tn(1 − t)n
(1 − t + t2)

s
. (7.2)593

Deformation of the contour as described in the proof of Proposition 10 then leads us594

to the following integral representation of tr∗(n, s).595

Proposition 13. For all positive integers n and s with n ≥ 3 and n ≥ 2s, we have596

tr∗(n − s, s) =
4n−s 3s

π ∫

∞

−∞

u2 du

(1 + 4u2)n
(1 − 4

3u
2)
s
. (7.3)597

Finally, following the proof of Theorem 12, we obtain the following asymptotic es-598

timate for tr∗(n − s, s), where both n and s tend to infinity under the condition of599

approaching a fixed ratio.600

Theorem 14. Let α be a real number with 0 ≤ α ≤ 1/2. Then we have601

tr∗(n − s, s) =
(41−α3α)

n

16
√
π(1 + α

3 )
3/2n3/2

(1 + o(1)), as n, s→∞ subject to s/n→ α. (7.4)602

As is obvious from this asymptotic formula, the minimal exponential growth is at-603

tained for the maximal possible α, that is, for α = 1/2, as expected. As explained above,604

the equivalent (from the point of view of triangulations) point set in general position is605

again the double circle.606

In summary, our results provide further support for the conjecture of Aichholzer,607

Hurtado and Noy that, asymptotically, the double circle yields the minimal number of608

triangulations of n points in general position.609
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