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The Enumeration of Lattice Paths With Respect

to Their Number of Turns

C. Krattenthaler
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Abstract. We survey old and new results on the enumeration of lattice paths
in the plane with a given number of turns, including the recent developments on
the enumeration of nonintersecting lattice paths with a given number of turns.
Motivations to consider such enumeration problems come from various fields,
e.g. probability, statistics, combinatorics, and commutative algebra. We show
that the appropriate tool for treating turn enumeration of lattice paths is the
encoding of lattice paths in terms of two-rowed arrays.
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3.1 Introduction

In this article we consider lattice paths in the plane consisting of unit horizontal
and vertical steps in the positive direction. We will be concerned with enumer-
ating such lattice paths which have a given number of turns. By a turn, we
mean a vertex of a path where the direction of the path changes. For example,
the turns of the path P0 in Figure 3.1 are (1, 1), (2, 1), (2, 3), (5, 3), (5, 4), and
(6, 4). Distinguishing between the two possible types of turns, we call a vertex
of a path a North-East turn (NE-turn, for short) if it is the end point of a
vertical step and at the same time the starting point of a horizontal step, and
we call a vertex of a path an East-North turn (EN-turn, for short) if it is a
point in a path P which is the end point of a horizontal step and at the same
time the starting point of a vertical step. The NE-turns of the path in Figure
3.1 are (1, 1), (2, 3), and (5, 4), and the EN-turns of the path in Figure 3.1 are
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(2, 1), (5, 3), and (6, 4).
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Figure 3.1

There are various motivations to be interested in the turn enumeration of
lattice paths. We describe three such motivations, from probability, statis-
tics, and commutative algebra, respectively, in more detail, in Section 13.3.
The examples from probability and statistics (correlated random walk, run and
Kolmogorov-Smirnov statistics) in Section 13.3 lead to the enumeration of path-
s, with given starting and end points, with a given number of turns, which are
bounded by lines. This is classical today. The example from commutative al-
gebra (Hilbert series of determinantal and pfaffian rings) however leads to the
enumeration of families of nonintersecting lattice paths, with given starting and
end points, with a given number of turns, and subject to certain restrictions.
Interest in this subject arose only recently, mainly due to the path-breaking
work of Abhyankar (1987, 1988). A number of remarkable formulas were dis-
covered to solve most of these problems. But there are still some important
open questions.

The problem of turn enumeration of lattice paths was attacked in many
different ways. However, there is a uniform approach which is able to handle
all these problems, which is by encoding paths in terms of two-rowed arrays.
Actually, this is the way in which Narayana (1959, 1979, Section II.2), who
probably was the first to count paths with respect to their turns, used to see
turn enumeration problems. However, he did not use the combinatorics of two-
rowed arrays. His proofs are manipulatory and usually work by induction. The
purpose of this survey article is to show that two-rowed arrays allow to handle
turn enumeration in a purely combinatorial way. The combinatorics of two-
rowed arrays is able to explain all the existing formulas in a conceptual way.
What is very appealing is that all the standard techniques from ordinary path
counting, such as reflection principle, iterated reflection principle, interchanging
procedure for nonintersecting lattice paths, have their analogues in the “world
of two-rowed arrays.”
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Another purpose of this survey is to show the wide diversity of connections
and applications in other fields like combinatorics, representation theory, and
q-series. Moreover, it is not unreasonable to expect that the recent subject of
turn enumeration of nonintersecting lattice paths will also have its applications
in probability, statistics, or physics. Evidence for this feeling comes from the
fact that turn enumeration of (single) lattice paths is of importance in these
fields, and (plain) enumeration of nonintersecting lattice paths is too [see, for
example, Essam and Guttmann (1995), Fisher (1984), Karlin (1988) and Karlin
and McGregor (1959a,b)].

This exposition brings together ideas from several papers of this author and
Mohanty [see, for example, Krattenthaler (1989, 1993, 1995a, 1995b, 1996a)
and Krattenthaler and Mohanty (1993)] . The proof of Theorem 13.4.2 is new.

The paper is organized in the following way. In the next section, we intro-
duce some basic notations which we use throughout the paper. Section 13.3
contains the announced motivating examples. In Section 13.4, we address the
turn enumeration of (single) lattice paths. The results of Section 13.4 are then
applied in Section 13.5 to solve some of the problems in the mentioned exam-
ples. Finally, Section 13.6 is devoted to turn enumeration of nonintersecting
lattice paths. The results of this section answer most of the problems of the
third example in Section 13.3. Open problems are listed at the end of Section
13.6.

3.2 Notation

Given two lattice points A and E, we denote the set of all lattice paths from A
to E by L(A → E). If P is a path from A to E, we will symbolize this sometimes
by P : A → E. If R is some property of paths, we use the “probability-like”
notation L(A → E | R) for the set of all paths from A to E satisfying property
R.

3.3 Motivating Examples

Example 3.3.1 A two coin tossing game; correlated random walk.
Mohanty (1966) considered the following game. Take two coins 1 and 2 with
probabilities p1 and p2 of obtaining heads, respectively. The rules for the game
are:

1. start with coin i, i = 1, 2;
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2. if the last trial was a tail, then make the next trial with coin 1, otherwise
with coin 2;

3. stop making further trials when for the first time the total number of
heads exceeds µ times the total number of tails by exactly a, with a fixed
a > 0.

The question is: Provided the game was started by tossing coin i, i = 1 or 2,
what is the distribution of the duration of the game?

This game has also an equivalent formulation in terms of a “correlated”
random walk; see, for example, Mohanty (1979, Section 5.2). In sampling plan
terminology [DeGroot (1959)], these games describe sequential sampling plans
for binomial populations with y = µx + a as the boundary line.

It is an easy observation that any game can be represented in terms of a
lattice path, by starting in (0, 0) and proceeding by a horizontal step if tail
(T ) was tossed and by a vertical step if head (H) was tossed. Thus, the game
THHHTHTHHHH (which is a game for µ = 2 and a = 2) would be repre-
sented by the lattice path P2 in Figure 3.2. The condition (3) is reflected by the
fact that any such lattice path, except for the final vertical step, stays below
the line y = µx + a − 1 (being allowed to touch it).
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Figure 3.2

The probability of a game of length (µ + 1)n + a (n tails and µn + a heads)
is given as follows. If the first toss was with coin 1, then the probability of a
game, corresponding to a path P as described above, is

p
NE(P )+1
1 (1 − p1)

n−NE(P )p
µn+a−NE(P )−1
2 (1 − p2)

NE(P ), (3.1)

where NE(P ) denotes the number of NE-turns of P . On the other hand, if the
first toss was with coin 2, then the probability of a game, corresponding to path
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P , is

p
NE(P )+1
1 (1 − p1)

n−NE(P )−1p
µn+a−NE(P )−1
2 (1 − p2)

NE(P )+1, (3.2)

if the first toss resulted in tail, and

p
NE(P )
1 (1 − p1)

n−NE(P )p
µn+a−NE(P )
2 (1 − p2)

NE(P ), (3.3)

if the first toss resulted in head, respectively.
Therefore, to determine the probability of games of length (µ + 1)n + a, we

need to enumerate lattice paths from (0, 0) to (n, µn + a− 1) staying below the
line y = µx + a − 1, being allowed to touch it, which have a given number of
NE-turns.

Example 3.3.2 Runs and Kolmogorov-Smirnov statistics. Two com-
mon rank order statistics for nonparametric testing problems in the two-sample
case are the run statistics and the (one- and two-sided) Kolmogorov-Smirnov
statistics. We consider just the case of equal sample size. Recall [see, for
example, Mohanty (1979, Section 4.3)] that there are two sets of indepen-
dent and identically distributed random variables X = {X1, X2, . . . , Xn} and
Y = {Y1, Y2, . . . , Yn} of size n. These are then put together and ordered into
Z = (Z1, Z2, . . . , Z2n) according to size. The run statistics counts the number of
maximal consecutive subsequences in Z the members of which belong to just one
of the sets X or Y. Thus, if n = 5, and if Z = (X1, Y1, Y2, Y3, X2, X3, Y4, X4, X5,
Y5), then the number of runs in Z is 6. The one-sided Kolmogorov-Smirnov s-
tatistic D+

n,n is defined by

D+
n,n =

1

n
max

i
{ai − bi},

where ai is the number of occurrences of Xj ’s in the initial segment Z1, Z2, . . . , Zi

of Z, while bi is the number of occurrences of Yj ’s in this initial segment. The
two-sided Kolmogorov-Smirnov statistic Dn,n is defined by

Dn,n =
1

n
max

i

{

|ai − bi|
}

.

Thus, we have for our combined sample Z that D+
5,5 = 1/5 and D5,5 = 2/5.

Each such sequence Z can be represented by a lattice path in the obvious
way. Namely, start at (0, 0), then read through the sequence from left to right
and proceed by a vertical step if some Xj is encountered and by a horizontal
step if some Yj is encountered. Thus, the above set Z corresponds to the lattice
path P3 in Figure 3.3. The run statistics obviously translates into the number
of maximal horizontal and vertical pieces in the corresponding path. The one-
sided Kolmogorov-Smirnov statistic is basically the maximal deviation from the
main diagonal in direction (1,−1). The two-sided Kolmogorov-Smirnov statistic
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is basically the maximal deviation from the main diagonal, in either direction.
So in Figure 3.4, paths which stay in the region between the indicated lines
y = x+2 and y = x−2 correspond to sequences Z with two-sided Kolmogorov-
Smirnov statistic Dn,n ≤ 2/5.
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Figure 3.3

Since the number of runs of a lattice path equals 1 plus the number of
turns of the path, we see that to determine the distribution of the run statistics
we need to count lattice paths from (0, 0) to (n, n) with a given number of
turns (both, NE- and EN-turns). If, in addition, we want to know the joint
distribution of runs and the Kolmogorov-Smirnov statistic, then we have to
count paths from (0, 0) to (n, n) with a given number of turns which in addition
stay below a line y = x + t for the one-sided Kolmogorov-Smirnov statistic and
between lines y = x + t and y = x − t for the two-sided Kolmogorov-Smirnov
statistic.

Example 3.3.3 Determinantal rings. Determinantal rings are frequent-
ly studied objects in commutative algebra and algebraic geometry. We start
with the classical case. Let X = (Xi,j)0≤i≤b, 0≤j≤a be a (b + 1) × (a + 1)
matrix of indeterminates. Let K[X] denote the ring of all polynomials over
some field K in the Xi,j ’s, 0 ≤ i ≤ b, 0 ≤ j ≤ a, and let In+1(X) be the
ideal in K[X] that is generated by all (n + 1) × (n + 1) minors of X. The
ideal In+1(X) is called a determinantal ideal. The associated determinantal
ring is Rn+1(X) := K[X]/In+1(X). This is a graded ring. The obvious ques-
tion to ask is what the dimensions of the homogeneous components Rn+1(X)ℓ

of dimension ℓ, ℓ = 0, 1, . . ., of Rn+1(X) are. This information is recorded in
terms of the Hilbert series of Rn+1(X), which is simply the generating function
∑∞

ℓ=0 dimK

(

Rn+1(X)ℓ

)

zℓ. It was shown in several ways [Abhyankar (1988),
Abhyankar and Kulkarni (1989), Conca and Herzog (1994), Kulkarni (1996),
Modak (1992) and also Ghorpade (1996)] that this problem relates to count-
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ing lattice paths with respect to turns, more precisely, to counting families of
nonintersecting lattice paths with respect to turns. A family (P1, P2, . . . , Pn) of
paths Pi, i = 1, 2, . . . , n, is called nonintersecting if no two paths in the family
have a point in common, otherwise it is called intersecting.

Theorem 3.3.1 Let Ai = (0, n − i) and Ei = (a − n + i, b), i = 1, 2, . . . , n.
Then, the Hilbert series of the determinantal ring Rn+1(X) = K[X]/In+1(X)
equals

∞
∑

ℓ=0

dimK

(

Rn+1(X)ℓ

)

zℓ =

∑

P
zNE(P)

(1 − z)(a+b+1)n−2(n

2)
, (3.4)

where the sum on the right-hand side is over all families P = (P1, P2, . . . , Pn)
of nonintersecting lattice paths, with Pi running from Ai to Ei, i = 1, 2, . . . , n.
Here, the number NE(P) is defined to be the total number

∑n
i=1 NE(Pi) of NE-

turns of the family P.

Figure 3.4 contains an example of such a family of nonintersecting lattice
paths for a = 13, b = 15, and n = 4. The NE-turns are marked by bold dots.
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Figure 3.4

Several generalizations of this concept have also been considered. These
pose even more difficult turn enumeration problems. We describe just one
such generalization in detail. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , b2)
be two vectors of nonnegative integers which are in strictly increasing order.

Let Ia,b
n+1(X) denote the ideal in K[X] that is generated by all t × t minors

of the restriction of X to rows 0, 1, . . . , at − 1 and columns 0, 1, . . . , bt − 1,
t = 1, 2, . . . , n, and by all (n + 1) × (n + 1) minors of X. What we considered
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before is the special case a = (0, 1, . . . , n − 1) and b = (0, 1, . . . , n − 1). Again,

the associated determinantal ring is Ra,b
n+1(X) := K[X]/Ia,b

n+1(X). For more
information on these rings, see Herzog and Trung (1992) and the references
therein. In the papers by Abhyankar (1988), Abhyankar and Kulkarni (1989),
Conca and Herzog (1994), and Kulkarni (1996), it is shown that this relates
to counting lattice paths with respect to turns in much the same way. The
difference is that the starting and end points of the lattice paths now depend
on the vectors a and b, respectively.

Theorem 3.3.2 Let Ai = (0, an−i+1) and Ei = (a − bn−i+1, b), i = 1, 2, . . . , n.

Then, the Hilbert series of the determinantal ring Ra,b
n+1(X) = K[X]/Ia,b

n+1(X)
equals

∞
∑

ℓ=0

dimK

(

Ra,b
n+1(X)ℓ

)

zℓ =

∑

P
zNE(P)

(1 − z)(a+b+1)n−
∑

n

i=1
(ai+bi)

, (3.5)

where the sum on the right-hand side is over all families P = (P1, P2, . . . , Pn)
of nonintersecting lattice paths, with Pi running from Ai to Ei, i = 1, 2, . . . , n.

Finally, we remark that similar constructions are studied with minors of
“ladder-shaped” matrices, of symmetric matrices, and with minors of pfaffians.
It was shown by Abhyankar (1988) and Abhyankar and Kulkarni (1989) for the
ladder case, by Conca (1994) for minors of a symmetric matrix, and by Ghor-
pade and Krattenthaler (1996) for minors of pfaffians, that the computation
of Hilbert series for the resulting rings again requires enumeration of families
of nonintersecting lattice paths, restricted to certain regions, with respect to
their number of turns. In particular, the pfaffian case leads to the enumeration
of families of nonintersecting lattice paths with given starting and end points
which stay below a diagonal line.

3.4 Turn Enumeration of (Single) Lattice Paths

Examples 13.3.1 and 13.3.2 of the previous section, and the n = 1 case of
Example 13.3.3, lead to the problem of turn enumeration of lattice paths, in
some way, as explained above. In the next section, we show that if one knows the
answer for the enumeration of lattice paths with a given number of NE-turns,
then this implies solutions for all the aforementioned enumeration problems.
Therefore, it is sufficient to concentrate on the enumeration of lattice paths
with given starting and end points, satisfying certain restrictions, and with a
given number of NE-turns. This is exactly what we do in this section.
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The first question, namely ‘what is the number of paths from A = (a1, a2)
to E = (e1, e2) with exactly ℓ NE-turns’, is immediately answered by

∣

∣

∣
L((a1, a2) → (e1, e2) | NE(.) = ℓ)

∣

∣

∣
=

(

e1 − a1

ℓ

)(

e2 − a2

ℓ

)

. (3.6)

This comes from the observation that any path from (a1, a2) to (e1, e2) is u-
niquely determined by its NE-turns. There are e1 − a1 integers from which we
can choose the x-coordinates of the NE-turns, and there are e2 − a2 integers
from which we can choose the y-coordinates. And, we have to choose ℓ for each
of those. Thus (13.6) is explained.

The fact that paths with given starting and end points are uniquely deter-
mined by their NE-turns suggests that we should actually encode paths by their
NE-turns themselves, more precisely, by the coordinates of their NE-turns. Let
(p1, q1), (p2, q2), . . . , (pℓ, qℓ) be the NE-turns of a path P . Then the NE-turn
representation of P is defined by the two-rowed array

p1 p2 . . . pℓ

q1 q2 . . . qℓ,
(3.7)

which consists of two strictly increasing sequences. Sometimes, we will also
use a one-line notation, (p1, . . . , pℓ | q1, . . . , qℓ), or even shorter (p | q) where
p = (p1, . . . , pℓ) and q = (q1, . . . , qℓ).

Clearly, if P runs from (a1, a2) to (e1, e2), then a1 ≤ p1 < p2 < . . . < pℓ ≤
e1 − 1 and a2 + 1 ≤ q1 < q2 < . . . < qℓ ≤ e2. If we wish to make this fact
transparent, we write

a1 ≤ p1 p2 . . . pℓ ≤ e1 − 1
a2 + 1 ≤ q1 q2 . . . qℓ ≤ e2.

(3.8)

For a given starting point and a given end point, by definition the empty array
is the representation for the only path that has no NE-turn. For example, the
two-rowed array representation of the path in Figure 3.1 would be

1 2 5
1 3 4,

or with bounds included,

1 ≤ 1 2 5 ≤ 5
0 ≤ 1 3 4 ≤ 6.

Apparently, in order to find the distribution for the game of Example
13.3.1 with µ = 1, and to find the joint distribution for runs and one-sided
Kolmogorov-Smirnov statistic, we need to count lattice paths, with given start-
ing and end point, and with a given number of NE-turns, which stay below a
given diagonal line. This is addressed in the following theorem.
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Theorem 3.4.1 Let a1 ≥ a2 and e1 ≥ e2. The number of all lattice paths from
(a1, a2) to (e1, e2) staying below the diagonal line x = y (being allowed to touch
it) with exactly ℓ NE-turns is given by

∣

∣

∣
L((a1, a2) → (e1, e2) | x ≥ y, NE(.) = ℓ)

∣

∣

∣

=

(

e1 − a1

ℓ

)(

e2 − a2

ℓ

)

−

(

e1 − a2 − 1

ℓ − 1

)(

e2 − a1 + 1

ℓ + 1

)

. (3.9)

Remark 3.4.1 Before we sketch a proof of this theorem, a remark is in order.
Recall that plain enumeration of lattice paths from (a1, a2) to (e1, e2) staying
below x = y (without fixing the number of NE-turns) is usually done by means
of the reflection principle [see, for example, Comtet (1974, p. 22)]. We promised
to treat all the turn enumeration problems by using two-rowed arrays. In fact,
the proof below can be considered as the reflection principle for two-rowed
arrays.

Proof. The paths from (a1, a2) to (e1, e2) staying below x = y with exactly ℓ
NE-turns by the NE-turn representation can be represented by

a1 ≤ p1 p2 . . . pℓ ≤ e1 − 1
a2 + 1 ≤ q1 q2 . . . qℓ ≤ e2,

(3.10)

where

pi ≥ qi, i = 1, 2, . . . , ℓ. (3.11)

The number of these two-rowed arrays is the number of all two-rowed arrays of
the type (13.10) minus those two-rowed arrays of the type (13.10) which violate
(13.11), i.e. where pi < qi for some i between 1 and ℓ. We know the first number
from (13.6).

Concerning the second number, we claim that two-rowed arrays of the type
(13.10) which violate (13.11) are in one-to-one correspondence with two-rowed
arrays of the type

a2 + 1 ≤ r2 . . . rℓ ≤ e1 − 1
a1 ≤ s0 s1 s2 . . . sℓ ≤ e2.

(3.12)

The number of all these two-rowed arrays is
(

e1−a2−1
ℓ−1

)(

e2−a1+1
ℓ+1

)

, as desired. So
it only remains to construct the one-to-one correspondence.

Take a two-rowed array (p | q) of the type (13.10) such that pi < qi for
some i. Let I be the largest integer such that pI < qI . Then map (p | q) to

q1 . . . . . . qI−1 pI+1 . . . pℓ

p1 p2 . . . . . . pI qI qI+1 . . . qℓ.
(3.13)
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Observe that both rows are strictly increasing because of qI−1 < qI < qI+1 ≤
pI+1 (since I is largest with pI < qI) and pI < qI . By a case by case analysis,
it can be seen that (13.13) is of type (13.12).

The inverse of this map is defined in the same way. Let (r | s) be a two-
rowed array of the type (13.12). Let J be the largest integer such that rJ < sJ .
If there is no such J , take J = 1. Then map (r | s) to

s0 . . . . . . sJ−1 rJ+1 . . . rℓ

r2 . . . rJ sJ . . . . . . . . . sℓ.
(3.14)

It is not difficult to check that the mappings (13.13) and (13.14) are inverses of
each other. This completes the proof of (13.9).

In order to solve the generalized problem in Example 13.3.1 (where the
game is stopped when the number of heads exceeds µ times the total number
of tails by exactly a), we need to count lattice paths, with given starting and
end points, and with a given number of NE-turns, which stay below a line
of the form y = µx. As in the situation encountered for plain counting (i.e.,
disregarding the number of turns), there is no nice formula for arbitrary starting
and end points. But, there is if the end point lies on the boundary line. Luckily,
this is exactly our situation in Example 13.3.1.

We formulate the result in an equivalent form. Namely, we consider paths
bounded by a line of the form x = µy (instead of y = µx) where the starting
point lies on the boundary. That this is indeed equivalent is obvious from
reversal of paths. Of course, we use two-rowed arrays in the proof. In contrast
to the proof of Theorem 13.4.1, this proof is not purely bijective, as is pointed
out in more detail after the proof. However, from the proof it can be seen very
clearly where the limitations are, and in particular, why it does not generalize
to an arbitrary location of the starting point.

Theorem 3.4.2 Let µ be a positive integer and let e1 ≥ µe2. The number of all
lattice paths from (0, 0) to (e1, e2) staying below the line x = µy (being allowed
to touch it) with exactly ℓ NE-turns is given by

∣

∣

∣
L((0, 0) → (e1, e2) | x ≥ µy, NE(.) = ℓ)

∣

∣

∣

=

(

e1

ℓ

)(

e2

ℓ

)

− µ

(

e1 − 1

ℓ − 1

)(

e2 + 1

ℓ + 1

)

. (3.15)

Proof. Again we represent our paths from (0, 0) to (e1, e2) staying below
x = µy with exactly ℓ NE-turns, by their NE-turn representation. It is

0 ≤ p1 p2 . . . pℓ ≤ e1 − 1
1 ≤ q1 q2 . . . qℓ ≤ e2,

(3.16)

where

pi ≥ µqi, i = 1, 2, . . . , ℓ. (3.17)
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Once again, the number of these two-rowed arrays is the number of all two-
rowed arrays of the type (13.16) minus those two-rowed arrays of the type
(13.16) which violate (13.17), i.e. where pi < µqi for some i between 1 and ℓ.
We know the first number from (13.6).

This time, we claim that there are as many two-rowed arrays of the type
(13.16) which violate (13.17) as µ times the number of two-rowed arrays of the
type

1 ≤ r2 . . . rℓ ≤ e1 − 1
0 ≤ s0 s1 s2 . . . sℓ ≤ e2.

(3.18)

The number of all these two-rowed arrays is
(

e1−1
ℓ−1

)(

e2+1
ℓ+1

)

, as desired. What
remains to be done is to find a (µ : 1) correspondence between the two-rowed
arrays of type (13.16), violating (13.17), and those of type (13.18).

Take a two-rowed array (p | q) of the type (13.16) such that pi < µqi for
some i. Let I be the largest integer such that pI < µqI . The two-rowed array
(p | q) then looks like

0 ≤ p1 . . . . . . . . . pI . . . pℓ ≤ e1 − 1
1 ≤ q1 . . . qI−1 qI . . . qℓ ≤ e2

. (3.19)

Now we fix the right portion, i.e., the entries pI+1, . . . , pℓ and qI , . . . , qℓ. With
this fixed right portion, there are

(

µqI

I

)(

qI − 1

I − 1

)

(3.20)

possible left portions.
On the other hand, let (r | s) be a two-rowed array of the type (13.18). Let

J be maximal with rJ < µsJ (if there is no such J , take J = 1), so that (r | s)
looks like

1 ≤ r2 . . . . . . . . . rJ . . . rℓ ≤ e1 − 1
0 ≤ s0 s1 s2 . . . sJ−1 sJ . . . sℓ ≤ e2

. (3.21)

Again, fix the right portion, i.e., the entries rJ+1, . . . , rℓ and sJ , . . . , sℓ. Fur-
thermore, assume that the right portion in (13.21) is equal to the right portion
in (13.19), i.e., assume that J = I, ri = pi, i = I + 1, . . . , ℓ, and si = qi,
i = I, . . . , ℓ. With this fixed right portion in (13.21) there are

(

µqI − 1

I − 1

)(

qI

I

)

=
1

µ

(

µqI

I

)(

qI − 1

I − 1

)

(3.22)

possible left portions. By comparing with (13.20), we see that, for a fixed right
portion, there are µ times as many two-rowed arrays of the type (13.19), with
pI < µqI , as there are two-rowed arrays of the type (13.21), with rI < µsI =
µqI . This proves our claim and hence completes the proof of the theorem.
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Remark 3.4.2 The above proof could be made purely bijective if one could
find a bijection for the binomial identity (13.22), i.e., for

µ

(

µqI − 1

I − 1

)(

qI

I

)

=

(

µqI

I

)(

qI − 1

I − 1

)

. (3.23)

I have not been able to find any.

On the other hand, it is exactly identity (13.23) which constitutes the limi-
tations towards a formula for an arbitrary starting point. One may check that
there is no such binomial identity in this latter situation. The appearance of a
factor µ on the left-hand side of (13.23) is rather special.

There is a companion of Theorem 13.4.2 for the enumeration with respect
to EN-turns. By a rotation by 180◦, it can easily be transformed into a result
for counting paths which stay above the line x = µy with respect to NE-turns.
We state the result without proof. It can be established in much the same way
as Theorem 13.4.2.

Theorem 3.4.3 Let µ be a positive integer and let e1 ≥ µe2. The number of all
lattice paths from (0, 0) to (e1, e2) staying below the line x = µy (being allowed
to touch it) with exactly ℓ EN-turns is given by

∣

∣

∣
L((0, 0) → (e1, e2) | x ≥ µy, EN(.) = ℓ)

∣

∣

∣

=

(

e1 + 1

ℓ

)(

e2 − 1

ℓ − 1

)

− µ

(

e1

ℓ − 1

)(

e2

ℓ

)

. (3.24)

Now, in order to find the joint distribution of two-sided Kolmogorov-Smirnov
and run statistics, we need to count lattice paths, with given starting and end
points, and with a given number of NE-turns, which stay between two given
diagonal lines. The result which solves this problem is as follows.

Theorem 3.4.4 Let a1 + t ≥ a2 ≥ a1 +s and e1 + t ≥ e2 ≥ e1 +s. The number
of all paths from (a1, a2) to (e1, e2) staying below the line y = x + t and above
the line y = x+s (being allowed to touch them) with exactly ℓ NE-turns is given
by

∣

∣

∣
L((a1, a2) → (e1, e2) | x + t ≥ y ≥ x + s, NE(.) = ℓ)

∣

∣

∣

=
∞
∑

k=−∞

{

(

e1 − a1 − k(t − s)

ℓ + k

)(

e2 − a2 + k(t − s)

ℓ − k

)

−

(

e1 − a2 − k(t − s) + s − 1

ℓ + k

)(

e2 − a1 + k(t − s) − s + 1

ℓ − k

)

}

.

(3.25)
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Remark 3.4.3 Again, a remark is in order before we begin the proof. Recall
that plain enumeration of lattice paths from (a1, a2) to (e1, e2) staying between
two diagonal lines is usually done by means of iterated reflection principle [see,
for example, Mohanty (1979, proof of Theorem 2 on p. 6)]. The proof below
can be considered as the analogue of iterated reflection principle for two-rowed
arrays.

Proof. By the NE-turn representation, the paths under consideration are in
one-to-one correspondence with two-rowed arrays of the type

a1 ≤ p1 . . . pℓ ≤ e1 − 1
a2 + 1 ≤ q1 . . . qℓ ≤ e2,

(3.26)

where

pi + t ≥ qi ≥ pi+1 + s. (3.27)

The proof of this theorem is by a “cancelling” bijection on certain two-rowed
arrays, which we introduce now. In fact, there are two types of arrays. Let us
call two-rowed arrays of the type

a1 + k(t − s) ≤ p1−k . . . p1+k . . . pℓ ≤ e1 − 1
a2 + 1 − k(t − s) ≤ q1+k . . . qℓ ≤ e2

for k ≥ 0

and

a1 + k(t − s) ≤ p1−k . . . pℓ ≤ e1 − 1
a2 + 1 − k(t − s) ≤ q1+k . . . q1−k . . . qℓ ≤ e2

for k < 0

type I arrays. Similarly, we call two-rowed arrays of the type

a2 + 1 − s + k(t − s) ≤ p1−k . . . p1+k . . . pℓ ≤ e1 − 1
a1 + s − k(t − s) ≤ q1+k . . . qℓ ≤ e2

for k ≥ 0

and

a2 + 1 − s + k(t − s) ≤ p1−k . . . pℓ ≤ e1 − 1
a1 + s − k(t − s) ≤ q1+k . . . q1−k . . . qℓ ≤ e2

for k < 0

type II arrays. We shall set up a bijection between type I arrays not being of
the type (13.26) – (13.27) [which means that (13.27) must be violated if both
rows have equal length] and type II arrays. Given such a bijection, we could
deduce

|{type I arrays}| − |{type II arrays}| = |{arrays of type (13.26) – (13.27)}|.

(3.28)
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The arrays of type (13.26) – (13.27) exactly correspond to the paths we are
intending to enumerate. By definition of type I and type II arrays, the left-
hand side in (13.28) equals the right-hand side in (13.25). Thus (13.25) would
be established.

The definition of the bijection and its inverse can be given in a unified form.
Let (p | q) be a type I array not of the type (13.26) – (13.27) or a type II array,

p1−k . . . . . . . . . . . . . pℓ

q1+k . . . qℓ.

(This representation has to be understood symbolically. k could be also neg-
ative, whence the upper row would be shorter.) Let I be the largest integer,
1 ≤ I ≤ ℓ, such that either

qI > pI + t or I = −k, (3.29)

or

qI < pI+1 + s or I = k. (3.30)

If (13.29) is satisfied, then map (p | q) to

(q1+k − t) . . . . . . . . . . . (qI−1 − t) pI+1 . . . pℓ

(p1−k + t) . . . . . . . . . . . . . . . . . . (pI + t) qI . . . . . . . . . qℓ.

Note that both rows are strictly increasing because of qI−1 < qI+1 ≤ pI+1 + t
and pI + t < qI . If (13.29) is not satisfied, and hence (13.30) is, map (p | q) to

(q1+k − s) . . . (qI − s) pI+1 . . . pℓ

(p1−k + s) . . . . . . . . . . . . . . . . . . (pI + s) qI+1 . . . qℓ.

Again note that both rows are strictly increasing, this time because of qI − s <
pI+1 and pI + s < pI+2 + s ≤ qI+1.

It is not difficult to verify that this mapping maps type I arrays not being
of type (13.26) – (13.27) to type II arrays not being of type (13.26) – (13.27),
and vice versa. Besides, by applying this map to some array twice, one would
obtain that array back. Therefore, this mapping is the desired bijection.

Theorem 13.4.4 and its proof are basically from Krattenthaler and Mohan-
ty (1995). Actually, Theorem 1 of Krattenthaler and Mohanty (1995) provides
a q-analogue. A closely related paper is by Burge (1993). There, “restricted
partition pairs” are considered, which are nothing but two-rowed arrays with
restrictions very similar to (13.27). Burge proves a generating function result
for these restricted partitions. It turns out that the above proof generalizes to
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prove Burge’s main theorem, also. (Burge gives a different, slightly involved
proof.) Remarkably, (among other results) Burge derives a number of identities
expressing a Gaussian binomial coefficient as difference of two terminating basic
hypergeometric sums. These identities combine two well-known but previously
unrelated identities into a single one. In particular, he finds an identity which
contains Rogers’ proof as well as Schur’s proof of the Rogers–Ramanujan iden-
tities, which were previously considered to be unrelated. Eventually, the notion
of partition pairs was generalized to r-tuples of partitions and were investigated
by Gessel and Krattenthaler (1996) under the name of “cylindric partitions”.
Again, these objects could be used to derive identities in a simple way. The
resulting identities are identities for multiple basic hypergeometric series, some
of them known, but many of them new.

Counting paths subject to general boundaries with respect to NE-turns is
what is needed to compute the Hilbert series of ladder determinantal rings gen-
erated by 2 × 2 minors. “Nice” formulas cannot be expected here in general.
Solutions for “one-sided” ladders were proposed by Kulkarni (1993) and Krat-
tenthaler and Prohaska (1996). A solution for two-sided ladders is proposed
by Ghorpade (private communication). Niederhausen’s (1996) approach using
umbral calculus methods is also worth mentioning here, though it is formulated
only for EN-turns.

3.5 Applications

In this section, we apply the results from the previous section to solve (some
of) the problems mentioned in Section 13.3.

ad Example 13.3.1. We saw that any game of length (µ+1)n+a corresponds
to a path from (0, 0) to (n, µn + a − 1) staying below the line y = µx + a − 1.
Equivalently, by reversal of paths, it corresponds to a path from (0, 0) to (µn+
a − 1, n) staying below the line x = µy. Also, in (13.1)–(13.3), we expressed
the probability of a game of length (µ + 1)n + a in terms of the NE-turns of
the corresponding path. In particular, the probability that a game with first
toss by coin 1 has length (µ + 1)n + a, is immediately obtained from Theorem
13.4.2 with e1 = µn + a − 1 and e2 = n:

A game starting with a toss of coin 1 has length (µ+1)n+a with probability

n
∑

ℓ=0

{(

µn + a − 1

ℓ

)(

n

ℓ

)

− µ

(

µn + a − 2

ℓ − 1

)(

n + 1

ℓ + 1

)}

× pℓ+1
1 (1 − p1)

n−ℓpµn+a−ℓ−1
2 (1 − p2)

ℓ. (3.31)

Of course, also games starting with a toss of coin 2 can be represented by
a path from (0, 0) to (µn + a − 1, n) staying below the line x = µy. However,
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we have a split expression, namely (13.2) and (13.3), for the corresponding
probabilities of the length of the game. The situation can be made uniform if
we attach a horizontal step at the end of each path, so that we now consider
paths P̄ from (0, 0) to (µn + a, n) ending with a horizontal step and staying
below the line x = µy. Then it is easy to see that (13.2) and (13.3), in terms
of P̄ , become

p
NE(P̄ )
1 (1 − p1)

n−NE(P̄ )p
µn+a−NE(P̄ )
2 (1 − p2)

NE(P̄ ). (3.32)

Since the number of paths in question which have ℓ NE-turns is just the differ-
ence of the number of paths from (0, 0) to (µn+a, n) staying below x = µy and
having ℓ NE-turns, minus the number of paths from (0, 0) to (µn + a, n − 1)
staying below x = µy and having ℓ NE-turns, we obtain from Theorem 13.4.2
by simplifying the difference:

A game starting with a toss of coin 2 has length (µ+1)n+a with probability

n
∑

ℓ=0

{(

µn + a

ℓ

)(

n − 1

ℓ − 1

)

− µ

(

µn + a − 1

ℓ − 1

)(

n

ℓ

)}

× pℓ
1(1 − p1)

n−ℓpµn+a−ℓ
2 (1 − p2)

ℓ. (3.33)

ad Example 13.3.2. We have to convert our enumeration results for NE-
turns into ones for runs. Recall that the number of runs of a path is exactly
one more than the number of turns (both, NE-turns and EN-turns). To avoid
case by case formulation, depending on whether the number of runs is even or
odd, we prefer to consider generating functions. Suppose we know the number
of all paths from A to E satisfying some property R and containing a given
number of NE-turns. Then we also know the generating function

∑

P xNE(P ),
where the sum is over all paths P from A to E satisfying R. Let us denote
it by F (A → E | R; x). We define four refinements of F (A → E | R; x). Let
Fhv(A → E | R; x) be the generating function

∑

P xNE(P ) where the sum is
over all paths in L(A → E | R) that start with a horizontal step and end with
a vertical step. Similarly define Fhh(A → E | R; x), Fvh(A → E | R; x), and
Fvv(A → E | R; x). The relation between enumeration by runs and enumeration
by NE-turns is given by

∑

P∈L(A→E|R)

xruns(P ) = xFhh(A → E | R; x2) + x2Fhv(A → E | R; x2)

+ Fvh(A → E | R; x2) + xFvv(A → E | R; x2).

(3.34)

All the four refinements of the NE-turn generating function can be expressed
in terms of NE-turn generating functions. This is seen by setting up a few linear
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equations and solving them. Evidently,

F (A → E | R; x) = Fhh(A → E | R; x) + Fhv(A → E | R; x)

+ Fvh(A → E | R; x) + Fvv(A → E | R; x).

Besides, if E1 = (1, 0) and E2 = (0, 1) denote the standard unit vectors, we
have

Fhh(A → E | R; x) + Fhv(A → E | R; x) = F (A + E1 → E | R; x),

Fhv(A → E | R; x) + Fvv(A → E | R; x) = F (A → E − E2 | R; x),

Fhv(A → E | R; x) = F (A + E1 → E − E2 | R; x).

Solving for Fhh, Fhv, Fvh and Fvv, we get

Fhh(A → E | R; x) = F (A + E1 → E | R; x) − F (A + E1 → E − E2 | R; x),

(3.35)

Fhv(A → E | R; x) = F (A + E1 → E − E2 | R; x), (3.36)

Fvh(A → E | R; x) = F (A → E | R; x) + (A + E1 → E − E2 | R; x)

− F (A + E1 → E | R; x) − F (A → E − E2 | R; x),

(3.37)

Fvv(A → E | R; x) = F (A → E − E2 | R; x) − F (A + E1 → E − E2 | R; x).

(3.38)

Now, turning to the joint distribution of runs and two-sided Kolmogorov-
Smirnov statistics, we noted earlier that we have to count paths from (0, 0) to
(n, n) staying between the lines y = x+t and y = x−t and which contain r runs.
We do this by using (13.34) with A = (0, 0), E = (n, n), R meaning the property
to ‘stay between y = x + t and y = x − t’, then using Eqs. (13.35)–(13.38)
for Fhh, Fhv, Fvh, Fvv, respectively, in (13.34), and finally applying Theorem
13.4.4 to obtain explicit expansions for various generating functions F (. . .). A
comparison of coefficients of powers of z then gives, after some manipulation of
binomials:

For the joint distribution of runs, denoted by Rn,n, and the two-sided
Kolmogorov–Smirnov statistics Dn,n, we have

(

2n

n

)

Pr[Dn,n ≤ t/n, Rn,n = 2r + 1]

=
∞
∑

k=−∞

{

(

n − 2kt − 1

r + k

)(

n + 2kt − 1

r − k − 1

)

+

(

n − 2kt − 1

r + k − 1

)(

n + 2kt − 1

r − k

)

−2

(

n − 2kt + t − 1

r + k − 1

)(

n + 2kt − t − 1

r − k

)

}

,
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and
(

2n

n

)

Pr[Dn,n ≤ t/n, Rn,n = 2r]

=
∞
∑

k=−∞

{

2

(

n − 2kt − 1

r + k − 1

)(

n + 2kt − 1

r − k − 1

)

−

(

n − 2kt + t − 1

r + k − 2

)(

n + 2kt − 1

r − k

)

−

(

n − 2kt + t − 1

r + k − 1

)(

n + 2kt − t − 1

r − k − 1

)

}

.

Thus, we recover the results of Vellore (1972, Theorems 8 and 9). She derived
these results by very different means. (The expressions therefore look different-
ly. But it is not difficult to show that they are really equivalent.) The path
of derivation we have chosen here is from Krattenthaler and Mohanty (1993)
where it was also used to obtain extensions and q-analogues of the above result.

ad Example 13.3.3. By Theorems 13.3.1 and 13.3.2, the case of n = 1 in
Example 13.3.3, i.e., the case of rings generated by (at most) 2 × 2 minors in
the way described above, leads to the problem of enumerating paths with given
starting and end points which have a given number of NE-turns. Clearly, this
is done by (13.6).

Besides, we indicated that the case of pfaffian rings generated by 4 × 4
pfaffians leads to the enumeration of paths with given starting and end points
which have a given number of NE-turns and stay below a diagonal line. Clearly,
this is done by Theorem 13.4.1.

3.6 Nonintersecting Lattice Paths and Turns

Here, we complete the solutions to our Examples of Section 13.3. More precise-
ly, we address the problem of enumerating nonintersecting lattice paths with a
given number of NE-turns, which is the problem to be solved in order to com-
pute Hilbert series of determinantal and pfaffian rings, as we described earlier in
Example 13.3.3. If one forgets about the number of turns, i.e., if one is interest-
ed in the plain enumeration of nonintersecting lattice paths with given starting
and end points, then the solution is a certain determinant. This is a classical
result now [cf. Gessel and Viennot (1985 and 1989, Corollary 2); Stembridge
(1990, Theorem 1.2)]. In fact, it has been realized over the past ten years that
nonintersecting lattice paths have innumerable applications in combinatorics,
probability, statistics, physics, etc. [see the references in Krattenthaler (1996b)
for combinatorial applications, and the references in the Introduction for appli-
cations in physics and probability; in fact, most of the determinantal formulas in
probability and statistics, like “Steck’s determinants” [Mohanty (1971), Pitman
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(1972) and Steck (1969, 1974)] follow easily from nonintersecting lattice paths;
see also Sulanke (1990)]. However, the method that is used for the plain enu-
meration [the “Gessel–Viennot involution”, which actually can be traced back
to Lindström (1973) and Karlin and McGregor (1959a)], is not appropriate to
keep track of turns. Still, the answers to “turn enumeration” are determinants.
But, alternative methods are needed now. It is the combinatorics of two-rowed
arrays which explains these determinants. In fact, it is the context of noninter-
secting lattice paths in which the usefulness of working with two-rowed arrays
becomes most striking. Interestingly, the techniques developed here arose in
the study of plane partition and tableaux generating functions [Krattenthaler
(1995a)] and of identities for Schur functions [Krattenthaler (1993)].

From Theorems 13.3.1 and 13.3.2, we know for the computation of the

Hilbert series for the determinantal rings Rn+1(X) and Ra,b
n+1(X) that we need

to enumerate families P = (P1, P2, . . . , Pn) of nonintersecting lattice paths,
where Pi runs from (0, an−i+1) to (a−bn−i+1, b), i = 1, 2, . . . , n, where the total
number of NE-turns in P is some fixed number. Here, the starting points are
lined up vertically and the end points are lined up horizontally. In fact, we are
able to answer the problem even if the starting and end points are (basically) in
general position. Let A = (A1, A2, . . . , An) and E = (E1, E2, . . . , En) be points
in the two-dimensional integer lattice Z2. The restriction on the location of
the points which we have to impose is the one which is always necessary with
nonintersecting lattice paths [see Gessel and Viennot (1989) and Stembridge
(1990)]. Namely, we assume that the starting points are lined up north-west
to south-east, strictly from north to south, and that the end points are also
lined up north-west to south-east, but strictly from west to east. We have the
following theorem.

Theorem 3.6.1 Let Ai = (a
(i)
1 , a

(i)
2 ) and Ei = (e

(i)
1 , e

(i)
2 ), i = 1, 2, . . . , n, be

lattice points satisfying

a
(1)
1 ≤ a

(2)
1 ≤ · · · ≤ a

(n)
1 , a

(1)
2 > a

(2)
2 > · · · > a

(n)
2 ,

and
e
(1)
1 < e

(2)
1 < · · · < e

(n)
1 , e

(1)
2 ≥ e

(2)
2 ≥ · · · ≥ e

(n)
2 .

The generating function
∑

P
zNE(P ), where the sum is over all families P =

(P1, P2, . . . , Pn) of nonintersecting lattice paths Pi : Ai → Ei, equals

det
1≤i,j≤n

{

∑

k≥0

(

e
(i)
1 − a

(j)
1 + j − i

k + j − i

)(

e
(i)
2 − a

(j)
2 − j + i

k

)

zk

}

. (3.39)

Remark 3.6.1 This theorem was independently proved by Kulkarni (1993),
who derived it from a theorem on determinantal rings due to Abhyankar, by
Modak (1992), who found a manipulatory proof, and for the first time by com-
binatorial means by Krattenthaler (1995b, 1996a), using two-rowed arrays. See
also Ghorpade (1996).
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Sketch of proof. If we want to prove this theorem by means of two-rowed
arrays, we have to first work out how the condition of two paths to be nonin-
tersecting translates into the corresponding two-rowed arrays.

Let P1, P2 be two paths, P1 : A → E, P2 : B → F , where A = (a1, a2),
B = (b1, b2), E = (e1, e2), F = (f1, f2), A located in the north-west of B
(strictly in direction north and weakly in direction west), and E located in the
north-west of F (weakly in direction north and strictly in direction west), i.e.,
with

a1 ≤ b1, a2 > b2, e1 < f1, e2 ≥ f2.

Let the array representations of P1 and P2 be

P1 :
a1 ≤ p1 . . . pk ≤ e1 − 1

a2 + 1 ≤ q1 . . . qk ≤ e2
(3.40)

and

P2 :
b1 ≤ r1 . . . rl ≤ f1 − 1

b2 + 1 ≤ s1 . . . sl ≤ f2,
(3.41)

respectively.
Suppose that P1 and P2 intersect, i.e. have a point in common. Let M

be a meeting point of P1 and P2. For technical reasons, set pk+1 := e1 and
q0 := a2. (Note that the thereby augmented sequences a and b remain strictly
increasing.)

• •

•

M

(rJ , sJ)

(pI , qI−1)

P1

P2

Figure 3.5

Considering the east-north turn (pI , qI−1) in P1 immediately preceding M
(and being allowed to be equal to M) and the north-east turn (rJ , sJ) in P2

immediately preceding M (and being allowed to be equal to M), we get the
inequalities (cf. Figure 3.5)

rJ ≤ pI , (3.42)

qI−1 ≤ sJ , (3.43)

where

1 ≤ I ≤ k + 1, 1 ≤ J ≤ l. (3.44)
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Of course, k, l, pI , qI , rJ , sJ , etc., refer to the array representations of P1

and P2. It now becomes apparent that the above assignments for pk+1 and
q0 are needed for the inequalities (13.42) and (13.43) to make sense for I = 1
or I = k + 1. Note that M = (pI , sJ). Vice versa, if (13.42) – (13.44) are
satisfied, then there must be a meeting point between P1 and P2 (because of
the particular location of the starting and end points A, B, E, F ).

Summarizing, the existence of I, J satisfying (13.42) – (13.44) characterize
the array representations of intersecting pairs of paths. Therefore, we call two-
rowed arrays P1 and P2 of the form (13.40) and (13.41), respectively, intersecting
if (13.42) – (13.44) are satisfied, for some I and J , otherwise nonintersecting.
The point M = (pI , sJ) is called their intersection point.

We also need to consider skew two-rowed arrays. For convenience, we in-
troduce some terminology. Let j > 0. We say that the two-rowed array P is of
the type j if P has the form

p−j+1 p−j+2 . . . p−1 p0 p1 . . . pk

q1 . . . qk

for some k ≥ 0. We say that P is of the type −j if P has the form

p1 . . . pk

q−j+1 q−j+2 . . . q−1 q0 q1 . . . qk

for some k ≥ 0. Note that the placement of indices is chosen such that non-
positive indices can occur only in one row of P , while the positive indices
occur in both rows of P . The meaning of non-skew two-rowed arrays being
intersecting, and nonintersecting, and of intersection points, is extended to skew
two-rowed arrays in the obvious way. In abuse of its actual literal meaning, we
define the “number of NE-turns” of a two-rowed array P to be one half of the
number of entries of P . (Recall that, under the correspondence between paths
and two-rowed arrays, the number of NE-turns of the path equals one half of
the number of entries of the corresponding two-rowed array.) We use the same
short notation NE(P ) for this number.

Now, we are in the position to actually begin with the proof of (13.39).
First, we give the combinatorial interpretation of the determinant (13.39) in
terms of two-rowed arrays. Expanding the determinant in (13.39), we obtain

∑

σ∈Sn

sgn σ
n
∏

i=1

(

e
(i)
1 − a

(σ(i))
1 + σ(i) − i

ki + σ(i) − i

)(

e
(i)
2 − a

(σ(i))
2 − σ(i) + i

ki

)

zki

=
∑

(σ,P)

sgn σ zNE(P), (3.45)

where Sn denotes the symmetric group of order n, and the sum on the right-
hand side is over all pairs (P, σ) of permutations σ in Sn, and families P =
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(P1, P2, . . . , Pn) of two-rowed arrays, Pi being of type σ(i) − i, and the bounds
for the entries of Pi being as follows:

a
(σ(i))
1 + i − σ(i) ≤ . . . p

(i)
ℓi

≤ e
(i)
1 − 1

a
(σ(i))
2 − i + σ(i) + 1 ≤ . . . q

(i)
ℓi

≤ e
(i)
2 ,

(3.46)

i = 1, 2, . . . , n.
The outline of the proof is as follows. We show that in the sum on the

right-hand side of (13.45) all contributions corresponding to pairs (P, σ) where
P is an intersecting family of two-rowed arrays cancel. (We call a pair (P, σ)
intersecting if P = (P1, P2, . . . , Pn) contains two two-rowed arrays Pi and Pi+1

with consecutive indices that have an intersection point. Otherwise it is called
nonintersecting . In the sequel, two-rowed arrays with consecutive indices will
be called neighbouring two-rowed arrays.) This is done by constructing a sign-
reversing (with respect to sgnσ) involution on these pairs, which keeps the
total number of entries in the two-rowed arrays fixed. (Recall that, under the
correspondence between paths and two-rowed arrays, the number of NE-turns
of the path equals one half of the number of entries of the corresponding two-
rowed array.) Finally, it is shown that, in a pair (P, σ) with σ 6= id, the family
P must be intersecting. This establishes that only pairs (P, id) where P is a
nonintersecting family of two-rowed arrays contribute to the sum on the right-
hand side of (13.45). But these pairs correspond exactly to the families of
nonintersecting paths under consideration, and hence Theorem 13.6.1 would be
proved.

Let (P, σ) be a pair under consideration for the sum on the right-hand side
of (13.45). Besides, we assume that P contains two neighbouring two-rowed
arrays Pi and Pi+1 that have an intersection point. Consider all intersection
points of neighbouring arrays. Among these points, choose those with maximal
x-coordinate, and among all those choose the intersection point with maximal
y-coordinate. Denote this intersection point by M. Let i be minimal such that
M is an intersection point of Pi and Pi+1. Let Pi = (a | b) = (. . . pℓi

| . . . qℓi
)

and Pi+1 = (c | d) = (. . . rℓi+1
| . . . sℓi+1

). Recall that Pi is of type σ(i) − i and
Pi+1 is of type σ(i + 1) − i − 1 and that the bounds of the entries in Pi and
Pi+1 are determined by (13.46). By (13.42) – (13.44), M being an intersection
point of Pi and Pi+1 means that there exist I and J such that Pi looks like

a
(σ(i))
1 + i − σ(i) ≤ . . . pI−1 pI . . . pℓi

≤ e
(i)
1 − 1

a
(σ(i))
2 − i + σ(i) + 1 ≤ . . . qI−1 qI . . . qℓi

≤ e
(i)
2 ,

(3.47)

Pi+1 looks like

a
(σ(i+1))
1 + i + 1 − σ(i + 1) ≤ . . . . . . . . . rJ rJ+1 . . . rℓi+1

≤ e
(i+1)
1 − 1

a
(σ(i+1))
2 − i + σ(i + 1) ≤ . . . sJ−1 sJ . . . . . . . . . sℓi+1

≤ e
(i+1)
2 ,

(3.48)
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M = (pI , sJ),

rJ ≤ pI (3.49)

qI−1 ≤ sJ (3.50)

and

1 ≤ I ≤ ℓi + 1, 0 ≤ J ≤ ℓi+1. (3.51)

Because of the construction of M, the indices I and J are maximal with respect
to (13.49) – (13.51).

We map (P, σ) to the pair (P̄, σ◦(i, i+1)) [(i, i+1) denotes the transposition
interchanging i and i+1], where P̄ = (P1, . . . , Pi−1, P̄i, P̄i+1, Pi+2, . . . , Pn) with
P̄i being given by

. . . rJ − 1 pI . . . pℓi

. . . sJ−1 + 1 qI . . . qℓi
,

(3.52)

P̄i+1 being given by

. . . . . . pI−1 + 1 rJ+1 . . . rℓi+1

. . . qI−1 − 1 sJ . . . . . . sℓi+1
.

(3.53)

First of all, this operation is well-defined, i.e., all the rows in (13.52) and (13.53)
are strictly increasing. To see this, we have to check rJ −1 < pI , sJ−1 +1 < qI ,
pI−1 + 1 < rJ+1, and qI−1 − 1 < sJ . This is obvious for the first and last
inequalities, because of (13.49) and (13.50). As for the second inequality, let
us suppose sJ−1 + 1 ≥ qI . Then, by (13.49), we have rJ ≤ pI < pI+1 and
qI ≤ sJ−1 + 1 ≤ sJ . This means that (pI+1, sJ) is an intersection point of Pi

and Pi+1, with an x-coordinate larger than that of M = (pI , sJ), contradicting
the “maximality” of M. Similarly, if we assume pI−1 + 1 ≥ rJ+1, we have
rJ+1 ≤ pI−1 + 1 ≤ pI and, by (13.50), qI−1 ≤ sJ < sJ+1. This means that
(pI , sJ+1) is an intersection point of Pi and Pi+1, with a y-coordinate larger
than that of M = (pI , sJ), again contradicting the “maximality” of M.

We claim that (P̄, σ(i, i + 1)) is again a pair under consideration for the
generating function (13.45). That is, we claim that P̄i is of type (σ ◦ (i, i +
1))(i)−i = σ(i+1)−i, that P̄i+1 is of type (σ◦(i, i+1))(i+1)−i−1 = σ(i)−i−1,
and that the bounds for the entries of P̄i are given by

a
(σ(i+1))
1 + i − σ(i + 1) ≤ . . . rJ − 1 pI . . . pℓi

≤ e
(i)
1 − 1

a
(σ(i+1))
2 − i + σ(i + 1) + 1 ≤ . . . sJ−1 + 1 qI . . . qℓi

≤ e
(i)
2 ,

(3.54)

and that those for P̄i+1 are given by

a
(σ(i))
1 + i + 1 − σ(i) ≤ . . . . . . pI−1 + 1 rJ+1 . . . rℓi+1

≤ e
(i+1)
1 − 1

a
(σ(i))
2 − i + σ(i) ≤ . . . qI−1 − 1 sJ . . . . . . sℓi+1

≤ e
(i+1)
2 .

(3.55)
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The claims concerning the types of P̄i and P̄i+1 are trivial. The claim concerning
the bounds requires some case-by-case analysis, which we leave to the reader.
One may also refer to Krattenthaler (1995b, 1996a). Obviously, the map (13.52)
– (13.53) reverses the sign of the associated permutation. Besides, it can be
checked that it is an involution. The proof that, given a pair (P, σ), P =
(P1, P2, . . . , Pn), σ 6= id, there exist neighbouring two-rowed arrays Pi and
Pi+1 having an intersection point, is slightly technical. We refer the reader to
Krattenthaler (1995b, 1996a) for the details.

Remark 3.6.2 The map from (13.47) and (13.48) to (13.52) and (13.53) can
be considered as the analogue in the “world of two-rowed arrays” for the inter-
changing of paths which is usually done with nonintersecting lattice paths [see,
for example, Gessel and Viennot (1985), Stembridge (1990), and Krattenthaler
(1995a, Section 2.2)].

Another problem that is posed by Example 13.3.3 is the enumeration of
families of nonintersecting lattice paths which are bounded by a diagonal line
with respect to their number of turns. Recall that this is necessary for the
computation of the Hilbert series of pfaffian rings and of ladder determinantal
rings where the ladder restriction is a diagonal boundary. Also here, we have
a result where the location of the starting and end points is more general than
needed.

Theorem 3.6.2 Let Ai = (a
(i)
1 , a

(i)
2 ) and Ei = (e

(i)
1 , e

(i)
2 ), i = 1, 2, . . . , n, be

lattice points satisfying

a
(1)
1 ≤ a

(2)
1 ≤ · · · ≤ a

(n)
1 , a

(1)
2 > a

(2)
2 > · · · > a

(n)
2 ,

e
(1)
1 < e

(2)
1 < · · · < e

(n)
1 , e

(1)
2 ≥ e

(2)
2 ≥ · · · ≥ e

(n)
2 ,

and a
(i)
1 ≥ a

(i)
2 , e

(i)
1 ≥ e

(i)
2 , i = 1, 2, . . . , n. The generating function

∑

P
zNE(P ), where the sum is over all families P = (P1, P2, . . . , Pn) of non-

intersecting lattice paths Pi : Ai → Ei, which stay below the line x = y (being
allowed to touch it), equals

det
1≤i,j≤n

({

∑

k≥0

(

e
(i)
1 − a

(j)
1 + j − i

k + j − i

)(

e
(i)
2 − a

(j)
2 − j + i

k

)

−

(

e
(i)
1 − a

(j)
2 − j − i + 1

k − i

)(

e
(i)
2 − a

(j)
1 + j + i − 1

k + j

)

}

zk

)

.

(3.56)

Sketch of proof. Again, we work with families of two-rowed arrays. This
time we consider triples (P, σ, η), where σ is a permutation in Sn, η ∈ {−1, 1}r,
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and P = (P1, P2, . . . , Pn) is a family of two-rowed arrays, with Pi being of type
ηiσ(i) − i and the bounds of Pi being given by

a
(σ(i))
1 + i − σ(i) ≤ . . . ≤ e

(i)
1 − 1

a
(σ(i))
2 − i + σ(i) + 1 ≤ . . . ≤ e

(i)
2

, for η = 1, (3.57)

and

a
(σ(i))
2 + i + σ(i) − 1 ≤ . . . ≤ e

(i)
1 − 1

a
(σ(i))
1 − i − σ(i) + 2 ≤ . . . ≤ e

(i)
2

, for η = −1. (3.58)

Define sgn η :=
∏n

i=1 ηi. It is easy to see that (13.56) is the generating function

∑

(P,σ,η)

sgn η sgnσ zNE(P), (3.59)

where the sum is over all triples which have been described above.
Now, the basic idea is as follows. We show that in the sum (13.59) all

contributions cancel which correspond to triples (P, σ, η), where P is an inter-
secting family of two-rowed arrays, or where the two-rowed array P1 “crosses”
y = x, by which we mean that there is an entry in the upper row of P1 which
is smaller than its neighbour in the bottom row of P1. Again, this is done by
constructing a sign-reversing involution (with respect to sgn η sgnσ) on those
triples. Roughly described, this involution combines the “reflection principle
for two-rowed arrays” with the “interchanging procedure for two-rowed arrays”.
Namely, this involution is defined to be the map (13.47) and (13.48) to (13.52)
and (13.53) if P contains neighbouring two-rowed arrays which are intersecting,
and if not, but the first two-rowed array P1 “crosses” y = x, then it is defined
to be basically the map (13.13), applied to P1. It can be shown that in a triple
(P, σ, η) with σ 6= id or η 6= (1, 1, . . . , 1), the family P must be intersecting
or P1 “crosses y = x”. This establishes that only triples (P, id, (1, 1, . . . , 1)),
where P is a nonintersecting family of two-rowed arrays which do not cross
y = x, contribute to the sum (13.59). But these triples exactly correspond to
the families of nonintersecting paths under consideration, and hence Theorem
13.6.2 would be proved. We refer the reader to Krattenthaler (1995b, 1996a)
for the details.

As mentioned before, Theorem 13.6.2 can be applied to the computation
of the Hilbert series of certain ladder determinantal rings (one sided, with a
diagonal upper bound) and also of pfaffian rings. The computation of Hilbert
series of rings generated by minors of a symmetric matrix as considered by
Conca (1994) can also be solved by using the method of two-rowed arrays;
see Krattenthaler (1996a). For arbitrary one-sided ladders, there is a solution
when the starting points, and end points, are located “successively” (such as in
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Figure 3.4) by Krattenthaler and Prohaska (1996) proving a remarkable formula
conjectured by Conca and Herzog (1994). For “generally” located starting and
end points, there is a solution in terms of a determinant with entries counting
certain two-rowed arrays by Krattenthaler (1996a). The case of two-sided ladder
determinantal rings appears to be out of reach by the method of two-rowed
arrays. Perhaps, the extension of the dummy path idea in Krattenthaler and
Mohanty (1995) will be useful in this context. Finally, we want to point the
reader to a refined turn counting for pairs of paths [Krattenthaler and Sulanke
(1996)] which relates this subject also to polyomino counting.
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