Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

Michael Borinsky¹

Humboldt-University Berlin Departments of Physics and Mathematics

Workshop on Enumerative Combinatorics, ESI, October 2017

Renormalized asymptotic enumeration of Feynman diagrams, Annals of Physics, October 2017 *arXiv:1703.00840*

¹borinsky@physik.hu-berlin.de

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration

1 Motivation

- 2 Asymptotics of multigraph enumeration
- 3 Ring of factorially divergent power series
- 4 Counting subgraph-restricted graphs

5 Conclusions

 Perturbation expansions in quantum field theory may be organized as sums of integrals.

- Perturbation expansions in quantum field theory may be organized as sums of integrals.
- Each integral maybe represented as a graph.

- Perturbation expansions in quantum field theory may be organized as sums of integrals.
- Each integral maybe represented as a graph.
- Usually these expansions have vanishing radius of convergence. The coefficients behave as $f_n \approx CA^n \Gamma(n + \beta)$ for large *n*.

- Perturbation expansions in quantum field theory may be organized as sums of integrals.
- Each integral maybe represented as a graph.
- Usually these expansions have vanishing radius of convergence. The coefficients behave as $f_n \approx CA^n \Gamma(n + \beta)$ for large n.
- Divergence is believed to be caused by proliferation of graphs.

In zero dimensions the integration becomes trivial.

- In zero dimensions the integration becomes trivial.
- Observables are generating functions of certain classes of graphs [Hurst, 1952, Cvitanović et al., 1978, Argyres et al., 2001, Molinari and Manini, 2006].

- In zero dimensions the integration becomes trivial.
- Observables are generating functions of certain classes of graphs [Hurst, 1952, Cvitanović et al., 1978, Argyres et al., 2001, Molinari and Manini, 2006].
- For instance, the partition function in φ^3 theory is formally,

$$Z^{\varphi^{3}}(\hbar) = \int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^{2}}{2} + \frac{x^{3}}{3!}\right)}$$

- In zero dimensions the integration becomes trivial.
- Observables are generating functions of certain classes of graphs [Hurst, 1952, Cvitanović et al., 1978, Argyres et al., 2001, Molinari and Manini, 2006].
- For instance, the partition function in φ^3 theory is formally,

$$Z^{\varphi^3}(\hbar) = \int_{\mathbb{R}} \frac{dx}{\sqrt{2\pi\hbar}} e^{\frac{1}{\hbar}\left(-\frac{x^2}{2} + \frac{x^3}{3!}\right)}$$

 'Formal' ⇒ expand under the integral sign and integrate over Gaussian term by term,

$$Z^{\varphi^{3}}(\hbar) := \sum_{n=0}^{\infty} \hbar^{n} (2n-1)!! [x^{2n}] e^{\frac{x^{3}}{3!\hbar}}$$

Z^{φ³} is the exponential generating function of 3-valent multigraphs,

Z^{φ³} is the exponential generating function of 3-valent multigraphs,

$$Z^{\varphi^3}(\hbar) = \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{x^3}{3!\hbar}} = \sum_{\text{cubic graphs } \Gamma} \frac{\hbar^{|\mathcal{E}(\Gamma)| - |\mathcal{V}(\Gamma)|}}{|\operatorname{Aut} \Gamma|}$$

 Z^{φ³} is the exponential generating function of 3-valent multigraphs,

$$Z^{\varphi^3}(\hbar) = \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{x^3}{3!\hbar}} = \sum_{\text{cubic graphs } \Gamma} \frac{\hbar^{|\mathcal{E}(\Gamma)| - |\mathcal{V}(\Gamma)|}}{|\operatorname{Aut} \Gamma|}$$

• The parameter \hbar counts the excess of the graph.

 Z^{φ³} is the exponential generating function of 3-valent multigraphs,

$$Z^{\varphi^3}(\hbar) = \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{x^3}{3!\hbar}} = \sum_{\text{cubic graphs } \Gamma} \frac{\hbar^{|\mathcal{E}(\Gamma)| - |\mathcal{V}(\Gamma)|}}{|\operatorname{Aut} \Gamma|}$$

• The parameter \hbar counts the excess of the graph.

$$Z^{\varphi^{3}}(\hbar) = \phi \left(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigcirc + \frac{1}{128} \bigcirc -\bigcirc + \frac{1}{288} \bigcirc + \frac{1}{96} \bigcirc -\bigcirc + \frac{1}{48} \bigcirc -\bigcirc + \frac{1}{16} \bigcirc -\bigcirc + \frac{1}{16} \bigcirc \bigcirc + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{24} \bigcirc + \dots \right)$$
$$= 1 + \left(\frac{1}{8} + \frac{1}{12}\right) \hbar + \frac{385}{1152} \hbar^{2} + \dots$$

where $\phi(\Gamma) = \hbar^{|\mathcal{E}(\Gamma)| - |\mathcal{V}(\Gamma)|}$ maps a graph with excess *n* to \hbar^n .

More general with arbitrary degree distribution,

$$Z(\hbar) = \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{\sum_{k\geq 3} \frac{\lambda_k}{k!} x^k}{\hbar}}$$

More general with arbitrary degree distribution,

$$Z(\hbar) = \sum_{n=0}^{\infty} \hbar^{n} (2n-1)!! [x^{2n}] e^{\frac{\sum_{k \ge 3} \frac{\lambda_{k}}{k!} x^{k}}{\hbar}}$$
$$= \sum_{\text{graphs } \Gamma} \hbar^{|E(\Gamma)| - |V(\Gamma)|} \frac{\prod_{\nu \in V(\Gamma)} \lambda_{|\nu|}}{|\operatorname{Aut} \Gamma|}$$

where the sum is over all multigraphs Γ and |v| is the degree of vertex v.

More general with arbitrary degree distribution,

$$Z(\hbar) = \sum_{n=0}^{\infty} \hbar^{n} (2n-1)!! [x^{2n}] e^{\frac{\sum_{k \ge 3} \frac{\lambda_{k} \times^{k}}{\hbar}}{\hbar}}$$
$$= \sum_{\text{graphs } \Gamma} \hbar^{|E(\Gamma)| - |V(\Gamma)|} \frac{\prod_{\nu \in V(\Gamma)} \lambda_{|\nu|}}{|\operatorname{Aut} \Gamma|}$$

where the sum is over all multigraphs Γ and |v| is the degree of vertex v.

 This corresponds to the pairing model of multigraphs [Bender and Canfield, 1978].

$$\sum_{n=0}^{\infty} \hbar^{n} (2n-1)!! [x^{2n}] e^{\frac{\sum_{k \ge 3} \frac{\lambda_{k}}{k!} x^{k}}{\hbar}} = \phi \left(1 + \frac{1}{8} \odot \odot + \frac{1}{12} \odot + \frac{1}{8} \odot \odot + \frac{1}{128} \odot \odot + \frac{1}{288} \odot + \frac{1}{96} \odot \odot + \frac{1}{48} \odot \odot + \frac{1}{16} \odot \odot + \frac{1}{16} \odot \odot + \frac{1}{16} \odot \odot + \frac{1}{8} \odot \odot - + \frac{1}{24} \odot + \cdots \right)$$

where $\phi(\Gamma) = \hbar^{|E(\Gamma)| - |V(\Gamma)|} \prod_{v \in V(\Gamma)} \lambda_{|v|}$

$$\sum_{n=0}^{\infty} \hbar^{n} (2n-1)!! [x^{2n}] e^{\frac{\sum_{k \ge 3} \frac{\lambda_{k}}{k!} x^{k}}{\hbar}} = \phi \left(1 + \frac{1}{8} \bigcirc \bigcirc + \frac{1}{12} \bigcirc + \frac{1}{8} \circlearrowright \right)$$
$$+ \frac{1}{128} \bigcirc \bigcirc \bigcirc + \frac{1}{288} \bigcirc \bigcirc + \frac{1}{96} \bigcirc \bigcirc \bigcirc + \frac{1}{48} \bigcirc \bigcirc \\+ \frac{1}{16} \bigcirc \multimap \bigcirc + \frac{1}{16} \bigcirc \bigcirc + \frac{1}{8} \bigcirc \multimap \bigcirc + \frac{1}{24} \bigcirc + \cdots \right)$$

where $\phi(\Gamma) = \hbar^{|E(\Gamma)| - |V(\Gamma)|} \prod_{\nu \in V(\Gamma)} \lambda_{|\nu|}$

$$= 1 + \left(\left(\frac{1}{8} + \frac{1}{12} \right) \lambda_3^2 + \frac{1}{8} \lambda_4 \right) \hbar \\ + \left(\frac{385}{1152} \lambda_3^4 + \frac{35}{64} \lambda_3^2 \lambda_4 + \frac{35}{384} \lambda_4^2 + \frac{7}{48} \lambda_3 \lambda_5 + \frac{1}{48} \lambda_6 \right) \hbar^2 + \cdots$$

$$\sum_{n=0}^{\infty} \hbar^{n} (2n-1)!! [x^{2n}] e^{\frac{\sum_{k \ge 3} \frac{\lambda_{k} \times k}{k!}}{\hbar}} = \phi \left(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigcirc + \frac{1}{8} \circlearrowright \right)$$
$$+ \frac{1}{128} \bigcirc -\bigcirc + \frac{1}{288} \bigcirc + \frac{1}{96} \bigcirc -\bigcirc + \frac{1}{48} \bigcirc -\bigcirc + \frac{1}{16} \bigcirc -\bigcirc + \frac{1}{16} \bigcirc -\bigcirc + \frac{1}{16} \bigcirc -\bigcirc + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{24} \bigcirc + \cdots \right)$$

where $\phi(\Gamma) = \hbar^{|E(\Gamma)| - |V(\Gamma)|} \prod_{\nu \in V(\Gamma)} \lambda_{|\nu|}$

$$= 1 + \left(\left(\frac{1}{8} + \frac{1}{12} \right) \lambda_3^2 + \frac{1}{8} \lambda_4 \right) \hbar \\ + \left(\frac{385}{1152} \lambda_3^4 + \frac{35}{64} \lambda_3^2 \lambda_4 + \frac{35}{384} \lambda_4^2 + \frac{7}{48} \lambda_3 \lambda_5 + \frac{1}{48} \lambda_6 \right) \hbar^2 + \cdots \\ = \sum_{n=0}^{\infty} P_n(\lambda_3, \lambda_4, \dots) \hbar^n$$

Take the degree distribution $\lambda_k = -1$ for all $k \ge 3$.

Take the degree distribution $\lambda_k = -1$ for all $k \ge 3$.

$$Z^{\text{stir}}(\hbar) := \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{\sum_{k\geq 3} \frac{-1}{k!}x^k}{\hbar}}$$
$$= \phi \Big(1 + \frac{1}{8} \bigcirc \bigcirc + \frac{1}{12} \bigcirc + \frac{1}{8} \circlearrowright \bigcirc + \dots \Big)$$

Take the degree distribution $\lambda_k = -1$ for all $k \ge 3$.

$$Z^{\mathsf{stir}}(\hbar) := \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{\sum_{k\geq 3} \frac{-1}{k!} x^k}{\hbar}}$$
$$= \phi \Big(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigcirc + \frac{1}{8} \circlearrowright + \dotsb \Big)$$

$$h=1+\left(rac{1}{8}(-1)^2+rac{1}{12}(-1)^2+rac{1}{8}(-1)^1
ight)\hbar+\ldots$$

Take the degree distribution $\lambda_k = -1$ for all $k \ge 3$.

$$Z^{\mathsf{stir}}(\hbar) := \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{\sum_{k\geq 3} \frac{-1}{k!} x^k}{\hbar}}$$
$$= \phi \Big(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigcirc + \frac{1}{8} \circlearrowright + \dotsb \Big)$$

$$= 1 + \left(\frac{1}{8}(-1)^2 + \frac{1}{12}(-1)^2 + \frac{1}{8}(-1)^1\right)\hbar + \dots$$
$$= 1 + \frac{1}{12}\hbar + \frac{1}{288}\hbar^2 - \frac{139}{51840}\hbar^3 + \dots$$

Take the degree distribution $\lambda_k = -1$ for all $k \ge 3$.

$$Z^{\mathsf{stir}}(\hbar) := \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{\sum_{k\geq 3} \frac{-1}{k!} x^k}{\hbar}}$$
$$= \phi \Big(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigcirc + \frac{1}{8} \bigcirc + \dots \Big)$$

$$= 1 + \left(\frac{1}{8}(-1)^2 + \frac{1}{12}(-1)^2 + \frac{1}{8}(-1)^1\right)\hbar + \dots$$
$$= 1 + \frac{1}{12}\hbar + \frac{1}{288}\hbar^2 - \frac{139}{51840}\hbar^3 + \dots = e^{\sum_{n=1}^{\infty}\frac{B_{n+1}}{n(n+1)}\hbar^n}$$

Take the degree distribution $\lambda_k = -1$ for all $k \ge 3$.

$$Z^{\mathsf{stir}}(\hbar) := \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{\sum_{k\geq 3} \frac{-1}{k!} x^k}{\hbar}}$$
$$= \phi \Big(1 + \frac{1}{8} \bigcirc -\bigcirc + \frac{1}{12} \bigcirc + \frac{1}{8} \bigcirc + \dots \Big)$$

where $\phi(\Gamma) = (-1)^{|V(\Gamma)|} \hbar^{|E(\Gamma)| - |V(\Gamma)|}$

$$= 1 + \left(\frac{1}{8}(-1)^2 + \frac{1}{12}(-1)^2 + \frac{1}{8}(-1)^1\right)\hbar + \dots$$
$$= 1 + \frac{1}{12}\hbar + \frac{1}{288}\hbar^2 - \frac{139}{51840}\hbar^3 + \dots = e^{\sum_{n=1}^{\infty}\frac{B_{n+1}}{n(n+1)}\hbar^n}$$

 \Rightarrow Stirling series as a signed sum over multigraphs.

• Define a functional $\mathcal{F} : \mathbb{R}[[x]] \to \mathbb{R}[[\hbar]]$

$$\mathcal{F}: \mathcal{S}(x) \mapsto \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{x^2}{2} + \mathcal{S}(x)}$$

where
$$\mathcal{S}(x) = -\frac{x^2}{2} + \sum_{k \ge 3} \frac{\lambda_k}{k!} x^k$$
.

• Define a functional $\mathcal{F} : \mathbb{R}[[x]] \to \mathbb{R}[[\hbar]]$

$$\mathcal{F}: \mathcal{S}(x) \mapsto \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{x^2}{2} + \mathcal{S}(x)}$$

where
$$\mathcal{S}(x) = -rac{x^2}{2} + \sum_{k\geq 3} rac{\lambda_k}{k!} x^k$$
 .

F maps a degree sequence to the corresponding generating function of multigraphs. Expressions as

$$\mathcal{F}[\mathcal{S}(x)] = \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{x^2}{2} + \mathcal{S}(x)}$$

are inconvenient to expand, because of the \hbar and the $\frac{1}{\hbar}$ in the exponent \Rightarrow we have to sum over a diagonal.

Expressions as

$$\mathcal{F}[\mathcal{S}(x)] = \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{x^2}{2} + \mathcal{S}(x)}$$

are inconvenient to expand, because of the \hbar and the $\frac{1}{\hbar}$ in the exponent \Rightarrow we have to sum over a diagonal.

Theorem

This can be expressed without a diagonal summation [MB, 2017]:

$$\mathcal{F}[\mathcal{S}(x)] = \sum_{n=0}^{\infty} \hbar^n (2n+1)!! [y^{2n+1}] x(y),$$

Expressions as

$$\mathcal{F}[\mathcal{S}(x)] = \sum_{n=0}^{\infty} \hbar^n (2n-1)!! [x^{2n}] e^{\frac{x^2}{2} + \mathcal{S}(x)}$$

are inconvenient to expand, because of the \hbar and the $\frac{1}{\hbar}$ in the exponent \Rightarrow we have to sum over a diagonal.

Theorem

This can be expressed without a diagonal summation [MB, 2017]:

$$\mathcal{F}[\mathcal{S}(x)] = \sum_{n=0}^{\infty} \hbar^n (2n+1)!! [y^{2n+1}] x(y),$$

where x(y) is the (power series) solution of

$$\frac{y^2}{2} = -\mathcal{S}(x(y)).$$

Asymptotics

Asymptotics

Calculate asymptotics of $\mathcal{F}[\mathcal{S}(x)]$ by singularity analysis of x(y):

Calculate asymptotics of $\mathcal{F}[\mathcal{S}(x)]$ by singularity analysis of x(y):

⇒ Locate the dominant singularity of x(y) by analysis of the (generalized) hyperelliptic curve,

$$\frac{y^2}{2} = -\mathcal{S}(x).$$

Calculate asymptotics of $\mathcal{F}[\mathcal{S}(x)]$ by singularity analysis of x(y):

⇒ Locate the dominant singularity of x(y) by analysis of the (generalized) hyperelliptic curve,

$$\frac{y^2}{2} = -\mathcal{S}(x).$$

Analytic Combinatorics

The dominant singularity of x(y) coincides with a branch-cut of the local parametrization of the curve.

Figure: Example: The curve $\frac{y^2}{2} = \frac{x^2}{2} - \frac{x^3}{3!}$ associated to Z^{φ^3} .

Figure: Example: The curve $\frac{y^2}{2} = \frac{x^2}{2} - \frac{x^3}{3!}$ associated to Z^{φ^3} .

 $\Rightarrow x(y)$ has a (dominant) branch-cut singularity at $y = \rho = \frac{2}{\sqrt{3}}$, where $x(\rho) = \tau = 2$.

 \Rightarrow Near the dominant singularity:

$$x(y) - \tau = -d_1\sqrt{1-\frac{y}{\rho}} + \sum_{j=2}^{\infty} d_j\left(1-\frac{y}{\rho}\right)^{\frac{j}{2}}$$

 \Rightarrow Near the dominant singularity:

$$\begin{aligned} x(y) - \tau &= -d_1 \sqrt{1 - \frac{y}{\rho}} + \sum_{j=2}^{\infty} d_j \left(1 - \frac{y}{\rho}\right)^{\frac{j}{2}} \\ [y^n] x(y) &\sim C \rho^{-n} n^{-\frac{3}{2}} \left(1 + \sum_{k=1}^{\infty} \frac{e_k}{n^k}\right) \end{aligned}$$

 \Rightarrow Near the dominant singularity:

$$\begin{aligned} x(y) - \tau &= -d_1 \sqrt{1 - \frac{y}{\rho}} + \sum_{j=2}^{\infty} d_j \left(1 - \frac{y}{\rho}\right)^{\frac{j}{2}} \\ [y^n] x(y) &\sim C \rho^{-n} n^{-\frac{3}{2}} \left(1 + \sum_{k=1}^{\infty} \frac{e_k}{n^k}\right) \end{aligned}$$

■ Therefore,

$$[\hbar^n]\mathcal{F}[\mathcal{S}(x)] = (2n+1)!![y^{2n+1}]x(y)$$

 \Rightarrow Near the dominant singularity:

$$\begin{aligned} x(y) - \tau &= -d_1 \sqrt{1 - \frac{y}{\rho}} + \sum_{j=2}^{\infty} d_j \left(1 - \frac{y}{\rho}\right)^{\frac{j}{2}} \\ [y^n] x(y) &\sim C \rho^{-n} n^{-\frac{3}{2}} \left(1 + \sum_{k=1}^{\infty} \frac{e_k}{n^k}\right) \end{aligned}$$

Therefore,

$$\begin{split} [\hbar^n] \mathcal{F}[\mathcal{S}(x)] &= (2n+1)!! [y^{2n+1}] x(y) \\ &= \frac{2^n \Gamma(n+\frac{3}{2})}{\sqrt{\pi}} [y^{2n+1}] x(y) \end{split}$$

 \Rightarrow Near the dominant singularity:

$$\begin{aligned} x(y) - \tau &= -d_1 \sqrt{1 - \frac{y}{\rho}} + \sum_{j=2}^{\infty} d_j \left(1 - \frac{y}{\rho}\right)^{\frac{j}{2}} \\ [y^n] x(y) &\sim C \rho^{-n} n^{-\frac{3}{2}} \left(1 + \sum_{k=1}^{\infty} \frac{e_k}{n^k}\right) \end{aligned}$$

Therefore,

$$\begin{split} [\hbar^n] \mathcal{F}[\mathcal{S}(x)] &= (2n+1)!! [y^{2n+1}] x(y) \\ &= \frac{2^n \Gamma(n+\frac{3}{2})}{\sqrt{\pi}} [y^{2n+1}] x(y) \\ &\sim C' 2^n \rho^{-2n} \Gamma(n) \left(1 + \sum_{k=1}^\infty \frac{e'_k}{n^k} \right) \end{split}$$

 \Rightarrow Near the dominant singularity:

$$\begin{aligned} x(y) - \tau &= -d_1 \sqrt{1 - \frac{y}{\rho}} + \sum_{j=2}^{\infty} d_j \left(1 - \frac{y}{\rho}\right)^{\frac{j}{2}} \\ [y^n] x(y) &\sim C \rho^{-n} n^{-\frac{3}{2}} \left(1 + \sum_{k=1}^{\infty} \frac{e_k}{n^k}\right) \end{aligned}$$

Therefore,

$$\begin{split} [\hbar^n] \mathcal{F}[\mathcal{S}(x)] &= (2n+1)!! [y^{2n+1}] x(y) \\ &= \frac{2^n \Gamma(n+\frac{3}{2})}{\sqrt{\pi}} [y^{2n+1}] x(y) \\ &\sim C' 2^n \rho^{-2n} \Gamma(n) \left(1 + \sum_{k=1}^\infty \frac{e'_k}{n^k} \right) \end{split}$$

Theorem ([MB, 2017])

Let $(x, y) = (\tau, \rho)$ be the location of the dominant branch-cut singularity of $\frac{y^2}{2} = -S(x)$. Then

$$[\hbar^n]\mathcal{F}[\mathcal{S}(x)](\hbar) = \sum_{k=0}^{R-1} c_k A^{-(n-k)} \Gamma(n-k) + \mathcal{O}\left(A^{-n} \Gamma(n-R)\right),$$

Theorem ([MB, 2017])

Let $(x, y) = (\tau, \rho)$ be the location of the dominant branch-cut singularity of $\frac{y^2}{2} = -S(x)$. Then

$$[\hbar^n]\mathcal{F}[\mathcal{S}(x)](\hbar) = \sum_{k=0}^{R-1} c_k A^{-(n-k)} \Gamma(n-k) + \mathcal{O}\left(A^{-n} \Gamma(n-R)\right),$$

where ${\sf A}=-{\cal S}(au)$ and

$$c_k = rac{1}{2\pi} [\hbar^k] \mathcal{F}[\mathcal{S}(au) - \mathcal{S}(x+ au)](-\hbar).$$

Theorem ([MB, 2017])

Let $(x, y) = (\tau, \rho)$ be the location of the dominant branch-cut singularity of $\frac{y^2}{2} = -S(x)$. Then

$$[\hbar^n]\mathcal{F}[\mathcal{S}(x)](\hbar) = \sum_{k=0}^{R-1} c_k A^{-(n-k)} \Gamma(n-k) + \mathcal{O}\left(A^{-n} \Gamma(n-R)\right),$$

where ${\sf A}=-{\cal S}(au)$ and

$$m{c}_k = rac{1}{2\pi} [\hbar^k] \mathcal{F}[\mathcal{S}(au) - \mathcal{S}(x+ au)](-\hbar).$$

⇒ The asymptotic expansion can be expressed as a generating function of graphs.

• For cubic graphs or equivalently φ^3 theory, we are interested in $S(x) = -\frac{x^2}{2} + \frac{x^3}{3!}$,

• For cubic graphs or equivalently φ^3 theory, we are interested in $S(x) = -\frac{x^2}{2} + \frac{x^3}{3!}$, $\mathcal{F}[S(x)](\hbar) = \phi \left(1 + \frac{1}{8} \ominus - \ominus + \frac{1}{12} \ominus + \frac{1}{128} \ominus - \ominus + \dots\right)$ $1 + \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 + \frac{85085}{82044} \hbar^3 + \dots$

• For cubic graphs or equivalently φ^3 theory, we are interested in $S(x) = -\frac{x^2}{2} + \frac{x^3}{3!}$,

$$\mathcal{F}[\mathcal{S}(x)](\hbar) = \phi \left(1 + \frac{1}{8} \odot \odot + \frac{1}{12} \odot + \frac{1}{128} \odot \odot + \dots\right)$$
$$1 + \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 + \frac{85085}{82944} \hbar^3 + \dots$$

• We find $\tau = 2$, $A = \frac{2}{3}$ and the coefficients of the asymptotic expansion

$$\sum_{k=0}^{\infty} c_k \hbar^k = \frac{1}{2\pi} \mathcal{F}[\mathcal{S}(\tau) - \mathcal{S}(\tau + x)](-\hbar) = \frac{1}{2\pi} \mathcal{F}[-\frac{x^2}{2} + \frac{x^3}{3!}](-\hbar)$$
$$= \frac{1}{2\pi} \Big(1 - \frac{5}{24}\hbar + \frac{385}{1152}\hbar^2 - \frac{85085}{82944}\hbar^3 + \dots \Big)$$

 \Rightarrow

For cubic graphs or equivalently φ^3 theory, we are interested in $S(x) = -\frac{x^2}{2} + \frac{x^3}{3!}$,

$$\mathcal{F}[\mathcal{S}(x)](\hbar) = \phi \left(1 + \frac{1}{8} \odot \odot + \frac{1}{12} \odot + \frac{1}{128} \odot \odot + \dots\right)$$
$$1 + \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 + \frac{85085}{82944} \hbar^3 + \dots$$

• We find $\tau = 2$, $A = \frac{2}{3}$ and the coefficients of the asymptotic expansion

$$\sum_{k=0}^{\infty} c_k \hbar^k = \frac{1}{2\pi} \mathcal{F}[\mathcal{S}(\tau) - \mathcal{S}(\tau + x)](-\hbar) = \frac{1}{2\pi} \mathcal{F}[-\frac{x^2}{2} + \frac{x^3}{3!}](-\hbar)$$
$$= \frac{1}{2\pi} \left(1 - \frac{5}{24} \hbar + \frac{385}{1152} \hbar^2 - \frac{85085}{82944} \hbar^3 + \dots \right)$$
The asymptotic expansion is $[\hbar^n] \mathcal{F}[\mathcal{S}(x)](\hbar) =$
$$\sum_{k=0}^{R-1} c_k A^{-n+k} \Gamma(n-k) + \mathcal{O}(A^{-n+R} \Gamma(n-R)).$$

Ring of factorially divergent power series

Power series which have Poincaré asymptotic expansion of the form

Ring of factorially divergent power series

 Power series which have Poincaré asymptotic expansion of the form

$$f_n = \sum_{k=0}^{R-1} c_k A^{-n+k} \Gamma(n-k) + \mathcal{O}(A^{-n} \Gamma(n-R)) \quad \forall R \ge 0,$$

form a subring of $\mathbb{R}[[x]]$ which is closed under composition and inversion of power series [MB, 2016].

Ring of factorially divergent power series

 Power series which have Poincaré asymptotic expansion of the form

$$f_n = \sum_{k=0}^{R-1} c_k A^{-n+k} \Gamma(n-k) + \mathcal{O}(A^{-n} \Gamma(n-R)) \quad \forall R \ge 0,$$

form a subring of $\mathbb{R}[[x]]$ which is closed under composition and inversion of power series [MB, 2016].

 For instance, this allows us to calculate the complete asymptotic expansion of constructions such as

$$\log \mathcal{F}\left[\mathcal{S}(x)
ight](\hbar)$$

in closed form.

Renormalization

 \blacksquare Renormalization \rightarrow Restriction on the allowed *bridgeless* subgraphs.

- \blacksquare Renormalization \rightarrow Restriction on the allowed *bridgeless* subgraphs.
- *P* is a set of forbidden subgraphs.

- Renormalization \rightarrow Restriction on the allowed *bridgeless* subgraphs.
- *P* is a set of forbidden subgraphs.
- We wish to have a map

$$\phi_P(\Gamma) = \begin{cases} \hbar^{|E(\Gamma)| - |V(\Gamma)|} & \text{if } \Gamma \text{ has no subgraph in } P \\ 0 & \text{else} \end{cases}$$

- Renormalization \rightarrow Restriction on the allowed *bridgeless* subgraphs.
- *P* is a set of forbidden subgraphs.
- We wish to have a map

$$\phi_P(\Gamma) = \begin{cases} \hbar^{|E(\Gamma)| - |V(\Gamma)|} & \text{if } \Gamma \text{ has no subgraph in } P \\ 0 & \text{else} \end{cases}$$

 which is compatible with our generating function and asymptotic techniques. • \mathcal{G} is the \mathbb{Q} -algebra generated by multigraphs.

- \mathcal{G} is the \mathbb{Q} -algebra generated by multigraphs.
- Split $\mathcal{G} = \mathcal{G}^- \oplus \mathcal{G}^+$ such that

- \mathcal{G} is the \mathbb{Q} -algebra generated by multigraphs.
- Split $\mathcal{G} = \mathcal{G}^- \oplus \mathcal{G}^+$ such that
- \mathcal{G}^+ is the set of graphs without subgraphs in *P*.

- \mathcal{G} is the \mathbb{Q} -algebra generated by multigraphs.
- Split $\mathcal{G} = \mathcal{G}^- \oplus \mathcal{G}^+$ such that
- \mathcal{G}^+ is the set of graphs without subgraphs in *P*.
- \mathcal{G}^- is the set of graphs with subgraphs in P.

- \mathcal{G} is the \mathbb{Q} -algebra generated by multigraphs.
- Split $\mathcal{G} = \mathcal{G}^- \oplus \mathcal{G}^+$ such that
- \mathcal{G}^+ is the set of graphs without subgraphs in *P*.
- \mathcal{G}^- is the set of graphs with subgraphs in P.
- We know a map $\phi : \mathcal{G} \to \mathbb{R}[[\hbar]].$

- \mathcal{G} is the \mathbb{Q} -algebra generated by multigraphs.
- Split $\mathcal{G} = \mathcal{G}^- \oplus \mathcal{G}^+$ such that
- \mathcal{G}^+ is the set of graphs without subgraphs in *P*.
- \mathcal{G}^- is the set of graphs with subgraphs in P.
- We know a map $\phi : \mathcal{G} \to \mathbb{R}[[\hbar]].$
- Construct ϕ_P such that $\phi_P|_{\mathcal{G}^+} = \phi$ and $\phi_P|_{\mathcal{G}^-} = 0$.

- \mathcal{G} is the \mathbb{Q} -algebra generated by multigraphs.
- Split $\mathcal{G} = \mathcal{G}^- \oplus \mathcal{G}^+$ such that
- \mathcal{G}^+ is the set of graphs without subgraphs in *P*.
- \mathcal{G}^- is the set of graphs with subgraphs in P.
- We know a map $\phi : \mathcal{G} \to \mathbb{R}[[\hbar]].$
- Construct ϕ_P such that $\phi_P|_{\mathcal{G}^+} = \phi$ and $\phi_P|_{\mathcal{G}^-} = 0$.
- This is a Riemann-Hilbert problem.

Hopf algebra of graphs

Pick a set of bridgeless graphs *P*, such that

$$\begin{array}{ll} \text{if } \gamma_1 \subset \gamma_2 \text{ then } \gamma_1, \gamma_2 \in P \text{ iff } \gamma_1, \gamma_2/\gamma_1 \in P \\ \text{if } \gamma_1, \gamma_2 \in P \text{ then } \gamma_1 \cup \gamma_2 \in P \\ \emptyset \in P \end{array}$$
 (2)
$$\begin{array}{ll} \end{array}$$
 (3)

Hopf algebra of graphs

Pick a set of bridgeless graphs P, such that
if $\gamma_1 \subset \gamma_2$ then $\gamma_1, \gamma_2 \in P$ iff $\gamma_1, \gamma_2/\gamma_1 \in P$ (1)
if $\gamma_1, \gamma_2 \in P$ then $\gamma_1 \cup \gamma_2 \in P$ (2) $\emptyset \in P$ (3)

• \mathcal{H} is the \mathbb{Q} -algebra of graphs in P.
Pick a set of bridgeless graphs *P*, such that

$$\begin{array}{ll} \text{if } \gamma_1 \subset \gamma_2 \text{ then } \gamma_1, \gamma_2 \in P \text{ iff } \gamma_1, \gamma_2/\gamma_1 \in P \\ \text{if } \gamma_1, \gamma_2 \in P \text{ then } \gamma_1 \cup \gamma_2 \in P \\ \emptyset \in P \end{array}$$
 (2)
$$\begin{array}{ll} \end{array}$$
 (3)

$$\begin{array}{cccc} \Delta : & \mathcal{G} & \to & \mathcal{H} \otimes \mathcal{G} \\ & \Gamma & \mapsto & \sum_{\substack{\gamma \subset \Gamma \\ \mathsf{s.t.} \gamma \in \mathcal{P}}} \gamma \otimes \Gamma / \gamma \end{array}$$

Pick a set of bridgeless graphs *P*, such that

$$\begin{array}{ll} \text{if } \gamma_1 \subset \gamma_2 \text{ then } \gamma_1, \gamma_2 \in P \text{ iff } \gamma_1, \gamma_2/\gamma_1 \in P \\ \text{if } \gamma_1, \gamma_2 \in P \text{ then } \gamma_1 \cup \gamma_2 \in P \\ \emptyset \in P \end{array}$$
 (1)
$$\begin{array}{ll} \text{(1)} \end{array}$$

$$\begin{array}{cccc} \Delta : & \mathcal{G} & \to & \mathcal{H} \otimes \mathcal{G} \\ & \Gamma & \mapsto & \sum_{\substack{\gamma \subset \Gamma \\ \text{s.t.} \gamma \in \mathcal{P}}} \gamma \otimes \Gamma / \gamma \end{array}$$

• \mathcal{H} is a left-comodule over \mathcal{G} .

Pick a set of bridgeless graphs *P*, such that

$$\begin{array}{ll} \text{if } \gamma_1 \subset \gamma_2 \text{ then } \gamma_1, \gamma_2 \in P \text{ iff } \gamma_1, \gamma_2/\gamma_1 \in P \\ \text{if } \gamma_1, \gamma_2 \in P \text{ then } \gamma_1 \cup \gamma_2 \in P \\ \emptyset \in P \end{array}$$
 (2)
$$\begin{array}{ll} \end{array}$$
 (3)

H is the Q-algebra of graphs in *P*.
Define a coaction on *G*:

$$\begin{array}{cccc} \Delta : & \mathcal{G} & \to & \mathcal{H} \otimes \mathcal{G} \\ & \Gamma & \mapsto & \sum_{\substack{\gamma \subset \Gamma \\ \text{s.t.} \gamma \in \mathcal{P}}} \gamma \otimes \Gamma / \gamma \end{array}$$

Pick a set of bridgeless graphs P, such that

$$\begin{array}{ll} \text{if } \gamma_1 \subset \gamma_2 \text{ then } \gamma_1, \gamma_2 \in P \text{ iff } \gamma_1, \gamma_2/\gamma_1 \in P \\ \text{if } \gamma_1, \gamma_2 \in P \text{ then } \gamma_1 \cup \gamma_2 \in P \\ \emptyset \in P \end{array}$$
 (2)
$$\begin{array}{ll} \end{array}$$
 (3)

H is the Q-algebra of graphs in *P*.
Define a coaction on *G*:

$$\begin{array}{cccc} \Delta : & \mathcal{G} & \to & \mathcal{H} \otimes \mathcal{G} \\ & \Gamma & \mapsto & \sum_{\substack{\gamma \subset \Gamma \\ \text{s.t.} \gamma \in \mathcal{P}}} \gamma \otimes \Gamma / \gamma \end{array}$$

- \mathcal{H} is a left-comodule over \mathcal{G} .
- Δ can be set up on \mathcal{H} . $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$.
- \mathcal{H} is a Hopf algebra Connes and Kreimer [2001].

Pick a set of bridgeless graphs P, such that

$$\begin{array}{ll} \text{if } \gamma_1 \subset \gamma_2 \text{ then } \gamma_1, \gamma_2 \in P \text{ iff } \gamma_1, \gamma_2/\gamma_1 \in P \\ \text{if } \gamma_1, \gamma_2 \in P \text{ then } \gamma_1 \cup \gamma_2 \in P \\ \emptyset \in P \end{array}$$
 (2)
$$\begin{array}{ll} \end{array}$$
 (3)

$$\begin{array}{cccc} \Delta : & \mathcal{G} & \to & \mathcal{H} \otimes \mathcal{G} \\ & \Gamma & \mapsto & \sum_{\substack{\gamma \subset \Gamma \\ \text{s.t.} \gamma \in \mathcal{P}}} \gamma \otimes \Gamma / \gamma \end{array}$$

- \mathcal{H} is a left-comodule over \mathcal{G} .
- Δ can be set up on \mathcal{H} . $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$.
- \mathcal{H} is a Hopf algebra Connes and Kreimer [2001].
- (1) implies Δ is coassociative $(id \otimes \Delta) \circ \Delta = (\Delta \otimes id) \circ \Delta$.

The coaction shall keep information about the number of edges it was connected in the original graph.

- The coaction shall keep information about the number of edges it was connected in the original graph.
- \Rightarrow The graphs in *P* have 'legs' or 'hairs'.

- The coaction shall keep information about the number of edges it was connected in the original graph.
- \Rightarrow The graphs in *P* have 'legs' or 'hairs'.
 - Example: Suppose $\emptyset, \bigcirc -, \bigcirc \in P$, then

$$\Delta \ \bigoplus = \sum_{\substack{\gamma \subset \bigoplus \\ \mathsf{s.t.}} \gamma \in \mathcal{P}} \gamma \otimes \bigoplus / \gamma = 1 \otimes \bigoplus + 3 \longrightarrow \otimes \bigoplus + \bigoplus \otimes \bullet$$

where we had to consider the subgraphs

the complete and the empty subgraph.

Gives us an action on algebra morphisms $\mathcal{G} \to \mathbb{R}[[\hbar]]$. For $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ and $\phi : \mathcal{G} \to \mathbb{R}[[\hbar]]$,

 $\psi \star \phi : \mathcal{G} \to \mathbb{R}[[\hbar]] \qquad \psi \star \phi = \mathbf{m} \circ (\psi \otimes \phi) \circ \Delta$

Gives us an action on algebra morphisms $\mathcal{G} \to \mathbb{R}[[\hbar]]$. For $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ and $\phi : \mathcal{G} \to \mathbb{R}[[\hbar]]$,

 $\psi \star \phi : \mathcal{G} \to \mathbb{R}[[\hbar]] \qquad \psi \star \phi = \mathbf{m} \circ (\psi \otimes \phi) \circ \Delta$

• and a product of algebra morphisms $\mathcal{H} \to \mathbb{R}[[\hbar]]$. For $\xi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ and $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$,

 $\xi \star \psi : \mathcal{H} \to \mathbb{R}[[\hbar]] \qquad \xi \star \psi = m \circ (\xi \otimes \psi) \circ \Delta$

Gives us an action on algebra morphisms $\mathcal{G} \to \mathbb{R}[[\hbar]]$. For $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ and $\phi : \mathcal{G} \to \mathbb{R}[[\hbar]]$,

 $\psi \star \phi : \mathcal{G} \to \mathbb{R}[[\hbar]] \qquad \psi \star \phi = \mathbf{m} \circ (\psi \otimes \phi) \circ \Delta$

• and a product of algebra morphisms $\mathcal{H} \to \mathbb{R}[[\hbar]]$. For $\xi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ and $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$,

 $\xi \star \psi : \mathcal{H} \to \mathbb{R}[[\hbar]] \qquad \xi \star \psi = m \circ (\xi \otimes \psi) \circ \Delta$

Coassociativity of Δ implies associativity of *:

$$(\xi \star \psi) \star \phi = \xi \star (\psi \star \phi)$$

 The set of all algebra morphisms H → ℝ[[ħ]] with the *-product forms a group.

- The set of all algebra morphisms $\mathcal{H} \to \mathbb{R}[[\hbar]]$ with the *-product forms a group.
- The identity $\epsilon : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maps the empty graph to 1 and all other graphs to 0.

- The set of all algebra morphisms H → ℝ[[ħ]] with the *-product forms a group.
- The identity $\epsilon : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maps the empty graph to 1 and all other graphs to 0.
- The inverse of $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maybe calculated recursively:

$$\psi^{\star-1}(\Gamma) = -\psi(\Gamma) - \sum_{\substack{\gamma \subseteq \Gamma\\ \text{s.t.}\gamma \in P}} \psi^{\star-1}(\gamma)\psi(\Gamma/\gamma)$$

- The set of all algebra morphisms H → ℝ[[ħ]] with the *-product forms a group.
- The identity $\epsilon : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maps the empty graph to 1 and all other graphs to 0.
- The inverse of $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maybe calculated recursively:

$$\psi^{\star-1}(\Gamma) = -\psi(\Gamma) - \sum_{\substack{\gamma \subseteq \Gamma\\ \mathsf{s.t.}\gamma \in P}} \psi^{\star-1}(\gamma)\psi(\Gamma/\gamma)$$

• Corresponds to Moebius-Inversion on the subgraph poset.

- The set of all algebra morphisms H → ℝ[[ħ]] with the *-product forms a group.
- The identity $\epsilon : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maps the empty graph to 1 and all other graphs to 0.
- The inverse of $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maybe calculated recursively:

$$\psi^{\star-1}(\Gamma) = -\psi(\Gamma) - \sum_{\substack{\gamma \subsetneq \Gamma \\ \mathsf{s.t.}\gamma \in P}} \psi^{\star-1}(\gamma)\psi(\Gamma/\gamma)$$

- Corresponds to Moebius-Inversion on the subgraph poset.
- Simplifies on many (physical) cases to a (functional) inversion problem on power series.

- The set of all algebra morphisms H → ℝ[[ħ]] with the *-product forms a group.
- The identity $\epsilon : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maps the empty graph to 1 and all other graphs to 0.
- The inverse of $\psi : \mathcal{H} \to \mathbb{R}[[\hbar]]$ maybe calculated recursively:

$$\psi^{\star-1}(\Gamma) = -\psi(\Gamma) - \sum_{\substack{\gamma \subsetneq \Gamma \\ \mathsf{s.t.}\gamma \in P}} \psi^{\star-1}(\gamma)\psi(\Gamma/\gamma)$$

- Corresponds to Moebius-Inversion on the subgraph poset.
- Simplifies on many (physical) cases to a (functional) inversion problem on power series.
- Solves the Riemann-Hilbert problem: Invert $\phi : \Gamma \mapsto \hbar^{|E(\Gamma)| - |V(\Gamma)|}$ restricted to \mathcal{H} . Then

$$(\phi|_{\mathcal{H}}^{\star-1}\star\phi)(\Gamma) = \begin{cases} & \hbar^{|E(\Gamma)|-|V(\Gamma)|} \text{ if } \Gamma \in \mathcal{G}^+ \\ & 0 \text{ else} \end{cases}$$

The identity van Suijlekom [2007], Yeats [2008],

$$\Delta X = \sum_{\text{graphs } \Gamma} \left(\prod_{v \in V(\Gamma)} X_P^{(|v|)} \right) \otimes \frac{\Gamma}{|\operatorname{Aut } \Gamma|},$$

where $X = \sum_{\text{graphs } \Gamma} \frac{\Gamma}{|\operatorname{Aut } \Gamma|}$ and
 $X_P^{(k)} = \sum_{\substack{\Gamma \\ \text{S.t.} \Gamma \in P \\ \Gamma \text{ has } k \text{ legs}}} \frac{\Gamma}{|\operatorname{Aut } \Gamma|}.$

The identity van Suijlekom [2007], Yeats [2008],

$$\Delta X = \sum_{\text{graphs } \Gamma} \left(\prod_{\nu \in V(\Gamma)} X_P^{(|\nu|)} \right) \otimes \frac{\Gamma}{|\operatorname{Aut } \Gamma|},$$

where $X = \sum_{\text{graphs } \Gamma} \frac{\Gamma}{|\operatorname{Aut } \Gamma|}$ and
 $X_P^{(k)} = \sum_{\substack{\Gamma \\ \text{s.t.} \Gamma \in P \\ \Gamma \text{ has } k \text{ legs}}} \frac{\Gamma}{|\operatorname{Aut } \Gamma|}.$

can be used to make this accessible for asymptotic analysis:

$$\phi|_{\mathcal{H}}^{\star-1} \star \phi(X) = m \circ \left(\phi|_{\mathcal{H}}^{\star-1} \otimes \phi\right) \circ \Delta X$$
$$= \sum_{\text{graphs } \Gamma} \left(\prod_{v \in V(\Gamma)} \phi|_{\mathcal{H}}^{\star-1} \left(X_{P}^{(|v|)}\right)\right) \frac{\phi(\Gamma)}{|\operatorname{Aut } \Gamma|}$$

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi\left(X\right) = \sum_{\text{graphs }\Gamma} \left(\prod_{\nu\in V(\Gamma)} \phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(|\nu|)}\right)\right) \frac{\phi(\Gamma)}{|\operatorname{Aut}\Gamma|}$$

$$\phi|_{\mathcal{H}}^{\star-1} \star \phi\left(X\right) = \sum_{\text{graphs } \Gamma} \left(\prod_{\nu \in V(\Gamma)} \phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(|\nu|)}\right)\right) \frac{\phi(\Gamma)}{|\operatorname{Aut} \Gamma|}$$

 The generating function of all graphs with arbitrary weight for each vertex degree is

$$\sum_{n=0}^{\infty} \hbar^{n} (2n-1)!! [x^{2n}] e^{\frac{\sum_{k \ge 0} \frac{\lambda_{k}}{k!} x^{k}}{\hbar}}$$
$$= \sum_{\text{graphs } \Gamma} \left(\prod_{\nu \in V(\Gamma)} \lambda_{|\nu|} \right) \frac{\hbar^{|\mathcal{E}(\Gamma)| - |\mathcal{V}(\Gamma)|}}{|\operatorname{Aut } \Gamma|}$$

$$\phi|_{\mathcal{H}}^{\star-1} \star \phi\left(X\right) = \sum_{\text{graphs } \Gamma} \left(\prod_{\nu \in V(\Gamma)} \phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(|\nu|)}\right)\right) \frac{\phi(\Gamma)}{|\operatorname{Aut} \Gamma|}$$

 The generating function of all graphs with arbitrary weight for each vertex degree is

$$\sum_{n=0}^{\infty} \hbar^{n} (2n-1)!! [x^{2n}] e^{\frac{\sum_{k \ge 0} \frac{\lambda_{k}}{k!} x^{k}}{\hbar}}$$
$$= \sum_{\text{graphs } \Gamma} \left(\prod_{v \in V(\Gamma)} \lambda_{|v|} \right) \frac{\hbar^{|E(\Gamma)| - |V(\Gamma)|}}{|\operatorname{Aut} \Gamma|}$$

Therefore,

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi(X)=\sum_{n=0}^{\infty}\hbar^{n}(2n-1)!![x^{2n}]e^{\frac{\sum_{k\geq0}\frac{x^{k}}{k!}\phi|_{\mathcal{H}}^{\star-1}\left(x_{P}^{(k)}\right)}{\hbar}}$$

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi(X)=\sum_{n=0}^{\infty}\hbar^{n}(2n-1)!![x^{2n}]e^{\frac{\sum_{k\geq0}\frac{x^{k}}{k!}\phi|_{\mathcal{H}}^{\star-1}\left(x_{P}^{(k)}\right)}{\hbar}}$$

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi(X)=\sum_{n=0}^{\infty}\hbar^{n}(2n-1)!![x^{2n}]e^{\frac{\sum_{k\geq0}\frac{x^{k}}{k!}\phi|_{\mathcal{H}}^{\star-1}\left(x_{P}^{(k)}\right)}{\hbar}}$$

 In quantum field theories we want the set P to be all graphs with a bounded number of legs.

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi(X)=\sum_{n=0}^{\infty}\hbar^{n}(2n-1)!![x^{2n}]e^{\frac{\sum_{k\geq0}\frac{x^{k}}{k!}\phi|_{\mathcal{H}}^{\star-1}\left(x_{P}^{(k)}\right)}{\hbar}}$$

- In quantum field theories we want the set P to be all graphs with a bounded number of legs.
- This corresponds to restrictions on the edge-connectivity of the graphs.

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi(X)=\sum_{n=0}^{\infty}\hbar^{n}(2n-1)!![x^{2n}]e^{\frac{\sum_{k\geq0}\frac{x^{k}}{k!}\phi|_{\mathcal{H}}^{\star-1}\left(x_{P}^{(k)}\right)}{\hbar}}$$

- In quantum field theories we want the set P to be all graphs with a bounded number of legs.
- This corresponds to restrictions on the edge-connectivity of the graphs.
- In renormalizable quantum field theories the expressions $\phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(k)}\right)$ are relatively easy to expand.

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi(X)=\sum_{n=0}^{\infty}\hbar^{n}(2n-1)!![x^{2n}]e^{\frac{\sum_{k\geq0}\frac{x^{k}}{k!}\phi|_{\mathcal{H}}^{\star-1}\left(x_{P}^{(k)}\right)}{\hbar}}$$

- In quantum field theories we want the set P to be all graphs with a bounded number of legs.
- This corresponds to restrictions on the edge-connectivity of the graphs.
- In renormalizable quantum field theories the expressions $\phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(k)}\right)$ are relatively easy to expand.
- The generating functions $\phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(k)}\right)$ are called *counterterms* in this context.

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi(X)=\sum_{n=0}^{\infty}\hbar^{n}(2n-1)!![x^{2n}]e^{\frac{\sum_{k\geq0}\frac{x^{k}}{k!}\phi|_{\mathcal{H}}^{\star-1}\left(x_{P}^{(k)}\right)}{\hbar}}$$

- In quantum field theories we want the set P to be all graphs with a bounded number of legs.
- This corresponds to restrictions on the edge-connectivity of the graphs.
- In *renormalizable* quantum field theories the expressions $\phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(k)}\right)$ are relatively easy to expand.
- The generating functions $\phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(k)}\right)$ are called *counterterms* in this context.
- They are (almost) the generating functions of the number of primitive elements of H:

 $\Gamma \text{ is primitive iff } \Delta \Gamma = \Gamma \otimes 1 + 1 \otimes \Gamma.$

$$\phi|_{\mathcal{H}}^{\star-1}\star\phi(X)=\sum_{n=0}^{\infty}\hbar^{n}(2n-1)!![x^{2n}]e^{\frac{\sum_{k\geq0}\frac{x^{k}}{k!}\phi|_{\mathcal{H}}^{\star-1}\left(x_{P}^{(k)}\right)}{\hbar}}$$

- In quantum field theories we want the set P to be all graphs with a bounded number of legs.
- This corresponds to restrictions on the edge-connectivity of the graphs.
- In *renormalizable* quantum field theories the expressions $\phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(k)}\right)$ are relatively easy to expand.
- The generating functions $\phi|_{\mathcal{H}}^{\star-1}\left(X_{P}^{(k)}\right)$ are called *counterterms* in this context.
- They are (almost) the generating functions of the number of primitive elements of H:

 $\Gamma \text{ is primitive iff } \Delta \Gamma = \Gamma \otimes 1 + 1 \otimes \Gamma.$

• We can obtain the full asymptotic expansions in these cases.

• Expressed as densities over all multigraphs:

Expressed as densities over all multigraphs:
 In φ³-theory (i.e. three-valent multigraphs):

- Expressed as densities over all multigraphs:
- In φ^3 -theory (i.e. three-valent multigraphs):
- $P(\Gamma \text{ is 2-edge-connected}) = e^{-1} (1 \frac{23}{21} \frac{1}{n} + \ldots).$

- Expressed as densities over all multigraphs:
- In φ^3 -theory (i.e. three-valent multigraphs):
- $P(\Gamma \text{ is 2-edge-connected}) = e^{-1} (1 \frac{23}{21} \frac{1}{n} + \ldots).$
- $P(\Gamma \text{ is cyclically 4-edge-connected}) = e^{-\frac{10}{3}} \left(1 \frac{133}{3} \frac{1}{n} + \cdots\right)$

- Expressed as densities over all multigraphs:
- In φ^3 -theory (i.e. three-valent multigraphs):
- $P(\Gamma \text{ is 2-edge-connected}) = e^{-1} (1 \frac{23}{21} \frac{1}{n} + ...).$
- $P(\Gamma \text{ is cyclically 4-edge-connected}) = e^{-\frac{10}{3}} \left(1 \frac{133}{3} \frac{1}{n} + \cdots\right)$
- In φ^4 -theory (i.e. four-valent multigraphs): $P(\Gamma \text{ is cyclically 6-edge-connected}) = e^{-\frac{15}{4}} (1 - 126\frac{1}{n} + \cdots).$

- Expressed as densities over all multigraphs:
- In φ^3 -theory (i.e. three-valent multigraphs):
- $P(\Gamma \text{ is 2-edge-connected}) = e^{-1} (1 \frac{23}{21} \frac{1}{n} + \ldots).$
- $P(\Gamma \text{ is cyclically 4-edge-connected}) = e^{-\frac{10}{3}} \left(1 \frac{133}{3} \frac{1}{n} + \cdots\right)$
- In φ^4 -theory (i.e. four-valent multigraphs): $P(\Gamma \text{ is cyclically 6-edge-connected}) = e^{-\frac{15}{4}} (1 - 126\frac{1}{n} + \cdots).$
- Arbitrary high order terms can be obtained by iteratively solving implicit equations.
Conclusions

 The 'zero-dimensional path integral' is a convenient tool to enumerate multigraphs by excess.

- The 'zero-dimensional path integral' is a convenient tool to enumerate multigraphs by excess.
- Asymptotics are easily accessible: The asymptotic expansion also enumerates graphs.

- The 'zero-dimensional path integral' is a convenient tool to enumerate multigraphs by excess.
- Asymptotics are easily accessible: The asymptotic expansion also enumerates graphs.
- With Hopf algebra techniques restrictions on the set of enumerated graphs can be imposed.

- EN Argyres, AFW van Hameren, RHP Kleiss, and CG Papadopoulos. Zero-dimensional field theory. *The European Physical Journal C-Particles and Fields*, 19(3):567–582, 2001.
- Edward A Bender and E Rodney Canfield. The asymptotic number of labeled graphs with given degree sequences. *Journal of Combinatorial Theory, Series A*, 24(3):296–307, 1978.
- A Connes and D Kreimer. Renormalization in quantum field theory and the Riemann–Hilbert Problem ii: The β -function, diffeomorphisms and the renormalization group. *Communications in Mathematical Physics*, 216(1):215–241, 2001.
- P Cvitanović, B Lautrup, and RB Pearson. Number and weights of Feynman diagrams. *Physical Review D*, 18(6):1939, 1978.
- CA Hurst. The enumeration of graphs in the Feynman-Dyson technique. In *Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*, volume 214, pages 44–61. The Royal Society, 1952.
- MB. Generating asymptotics for factorially divergent sequences. *arXiv preprint arXiv:1603.01236*, 2016.

- MB. Renormalized asymptotic enumeration of feynman diagrams. *arXiv preprint arXiv:1703.00840*, 2017.
- LG Molinari and N Manini. Enumeration of many-body skeleton diagrams. The European Physical Journal B-Condensed Matter and Complex Systems, 51(3):331–336, 2006.
- Walter D van Suijlekom. Renormalization of gauge fields: A hopf algebra approach. *Communications in Mathematical Physics*, 276(3):773–798, 2007.
- Karen Yeats. Growth estimates for dyson-schwinger equations. *arXiv preprint arXiv:0810.2249*, 2008.