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Motivation

Perturbation expansions in quantum field theory may be
organized as sums of integrals.

Each integral maybe represented as a graph.

Usually these expansions have vanishing radius of convergence.
The coefficients behave as fn ≈ CAnΓ(n + β) for large n.

Divergence is believed to be caused by proliferation of graphs.
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In zero dimensions the integration becomes trivial.

Observables are generating functions of certain classes of
graphs [Hurst, 1952, Cvitanović et al., 1978, Argyres et al.,
2001, Molinari and Manini, 2006].

For instance, the partition function in ϕ3 theory is formally,

Zϕ
3
(~) =

∫
R

dx√
2π~

e
1
~

(
− x2

2
+ x3

3!

)
.

‘Formal’ ⇒ expand under the integral sign and integrate over
Gaussian term by term,

Zϕ
3
(~) :=

∞∑
n=0

~n(2n − 1)!![x2n]e
x3

3!~
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Zϕ
3

is the exponential generating function of 3-valent
multigraphs,

Zϕ
3
(~) =

∞∑
n=0

~n(2n − 1)!![x2n]e
x3

3!~ =
∑

cubic graphs Γ

~|E(Γ)|−|V (Γ)|

|Aut Γ|

The parameter ~ counts the excess of the graph.

Zϕ
3
(~) = φ

(
1 +

1

8
+

1

12
+

1

128
+

1

288
+

1

96

+
1

48
+

1

16
+

1

16
+

1

8
+

1

24
+ . . .

)
= 1 +

(
1

8
+

1

12

)
~ +

385

1152
~2 + . . .

where φ(Γ) = ~|E(Γ)|−|V (Γ)| maps a graph with excess n to ~n.
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Arbitrary degree distribution

More general with arbitrary degree distribution,

Z (~) =
∞∑
n=0

~n(2n − 1)!![x2n]e

∑
k≥3

λk
k!

xk

~

=
∑

graphs Γ

~|E(Γ)|−|V (Γ)|
∏

v∈V (Γ) λ|v |

|Aut Γ|

where the sum is over all multigraphs Γ and |v | is the degree
of vertex v .

This corresponds to the pairing model of multigraphs [Bender
and Canfield, 1978].
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We obtain a series of polynomials

∞∑
n=0

~n(2n − 1)!![x2n]e

∑
k≥3

λk
k!

xk

~ = φ
(

1 +
1

8
+

1

12
+

1

8

+
1

128
+

1

288
+

1

96
+

1

48

+
1

16
+

1

16
+

1

8
+

1

24
+ · · ·

)
where φ(Γ) = ~|E(Γ)|−|V (Γ)|∏

v∈V (Γ) λ|v |

= 1 +

((
1

8
+

1

12

)
λ2

3 +
1

8
λ4

)
~

+

(
385

1152
λ4

3 +
35

64
λ2

3λ4 +
35

384
λ2

4 +
7

48
λ3λ5 +

1

48
λ6

)
~2 + · · ·

=
∞∑
n=0

Pn(λ3, λ4, . . .)~n
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Example

Take the degree distribution λk = −1 for all k ≥ 3.

Z stir(~) :=
∞∑
n=0

~n(2n − 1)!![x2n]e

∑
k≥3

−1
k!

xk

~

= φ
(

1 +
1

8
+

1

12
+

1

8
+ . . .

)
where φ(Γ) = (−1)|V (Γ)|~|E(Γ)|−|V (Γ)|

= 1 +

(
1

8
(−1)2 +

1

12
(−1)2 +

1

8
(−1)1

)
~ + . . .

= 1 +
1

12
~ +

1

288
~2 − 139

51840
~3 + . . . = e

∑∞
n=1

Bn+1
n(n+1)

~n

⇒ Stirling series as a signed sum over multigraphs.
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Define a functional F : R[[x ]]→ R[[~]]

F : S(x) 7→
∞∑
n=0

~n(2n − 1)!![x2n]e
x2

2 +S(x)

~

where S(x) = − x2

2 +
∑

k≥3
λk
k! x

k .

F maps a degree sequence to the corresponding generating
function of multigraphs.
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Expressions as

F [S(x)] =
∞∑
n=0

~n(2n − 1)!![x2n]e
x2

2 +S(x)

~

are inconvenient to expand, because of the ~ and the 1
~ in the

exponent ⇒ we have to sum over a diagonal.

Theorem

This can be expressed without a diagonal summation [MB, 2017]:

F [S(x)] =
∞∑
n=0

~n(2n + 1)!![y2n+1]x(y),

where x(y) is the (power series) solution of

y2

2
= −S(x(y)).
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Asymptotics

Calculate asymptotics of F [S(x)] by singu-
larity analysis of x(y):

⇒ Locate the dominant singularity of x(y) by
analysis of the (generalized) hyperelliptic
curve,

y2

2
= −S(x).

The dominant singularity of x(y) coincides
with a branch-cut of the local parametriza-
tion of the curve.
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⇒ Near the dominant singularity:

x(y)− τ = −d1

√
1− y

ρ
+
∞∑
j=2

dj

(
1− y

ρ

) j
2

[yn]x(y) ∼ Cρ−nn−
3
2

(
1 +

∞∑
k=1

ek
nk

)

Therefore,

[~n]F [S(x)] = (2n + 1)!![y2n+1]x(y)

=
2nΓ(n + 3

2 )
√
π

[y2n+1]x(y)

∼ C ′2nρ−2nΓ(n)

(
1 +

∞∑
k=1

e ′k
nk

)

What is the value of C ′ and the e ′k?
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Theorem ([MB, 2017])

Let (x , y) = (τ, ρ) be the location of the dominant branch-cut

singularity of y2

2 = −S(x). Then

[~n]F [S(x)](~) =
R−1∑
k=0

ckA
−(n−k)Γ(n − k) +O

(
A−nΓ(n − R)

)
,

where A = −S(τ) and

ck =
1

2π
[~k ]F [S(τ)− S(x + τ)](−~).

⇒ The asymptotic expansion can be expressed as a generating
function of graphs.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 14



Theorem ([MB, 2017])

Let (x , y) = (τ, ρ) be the location of the dominant branch-cut

singularity of y2

2 = −S(x). Then

[~n]F [S(x)](~) =
R−1∑
k=0

ckA
−(n−k)Γ(n − k) +O

(
A−nΓ(n − R)

)
,

where A = −S(τ) and

ck =
1

2π
[~k ]F [S(τ)− S(x + τ)](−~).

⇒ The asymptotic expansion can be expressed as a generating
function of graphs.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 14



Theorem ([MB, 2017])

Let (x , y) = (τ, ρ) be the location of the dominant branch-cut

singularity of y2

2 = −S(x). Then

[~n]F [S(x)](~) =
R−1∑
k=0

ckA
−(n−k)Γ(n − k) +O

(
A−nΓ(n − R)

)
,

where A = −S(τ) and

ck =
1

2π
[~k ]F [S(τ)− S(x + τ)](−~).

⇒ The asymptotic expansion can be expressed as a generating
function of graphs.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 14



Example

For cubic graphs or equivalently ϕ3 theory, we are interested
in S(x) = − x2

2 + x3

3! ,

F [S(x)] (~) = φ
(
1 +

1

8
+

1

12
+

1

128
+ . . .

)
1 +

5

24
~ +

385

1152
~2 +

85085

82944
~3 + · · ·

We find τ = 2, A = 2
3 and the coefficients of the asymptotic

expansion

∞∑
k=0

ck~k =
1

2π
F [S(τ)− S(τ + x)](−~) =

1

2π
F [−x2

2
+

x3

3!
](−~)

=
1

2π

(
1− 5

24
~ +

385

1152
~2 − 85085

82944
~3 + . . .

)
⇒ The asymptotic expansion is [~n]F [S(x)] (~) =∑R−1

k=0 ckA
−n+kΓ(n − k) +O(A−n+RΓ(n − R)).
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Ring of factorially divergent power series

Power series which have Poincaré asymptotic expansion of the
form

fn =
R−1∑
k=0

ckA
−n+kΓ(n − k) +O(A−nΓ(n − R)) ∀R ≥ 0,

form a subring of R[[x ]] which is closed under composition
and inversion of power series [MB, 2016].

For instance, this allows us to calculate the complete
asymptotic expansion of constructions such as

logF [S(x)] (~)

in closed form.
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form

fn =
R−1∑
k=0

ckA
−n+kΓ(n − k) +O(A−nΓ(n − R)) ∀R ≥ 0,

form a subring of R[[x ]] which is closed under composition
and inversion of power series [MB, 2016].

For instance, this allows us to calculate the complete
asymptotic expansion of constructions such as

logF [S(x)] (~)

in closed form.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 16



Ring of factorially divergent power series

Power series which have Poincaré asymptotic expansion of the
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Renormalization

Renormalization → Restriction on the allowed bridgeless
subgraphs.

P is a set of forbidden subgraphs.

We wish to have a map

φP(Γ) =

{
~|E(Γ)|−|V (Γ)| if Γ has no subgraph in P

0 else

which is compatible with our generating function and
asymptotic techniques.
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G is the Q-algebra generated by multigraphs.

Split G = G− ⊕ G+ such that

G+ is the set of graphs without subgraphs in P.

G− is the set of graphs with subgraphs in P.

We know a map φ : G → R[[~]].

Construct φP such that φP |G+ = φ and φP |G− = 0.

This is a Riemann-Hilbert problem.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 18



G is the Q-algebra generated by multigraphs.

Split G = G− ⊕ G+ such that

G+ is the set of graphs without subgraphs in P.

G− is the set of graphs with subgraphs in P.

We know a map φ : G → R[[~]].

Construct φP such that φP |G+ = φ and φP |G− = 0.

This is a Riemann-Hilbert problem.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 18



G is the Q-algebra generated by multigraphs.

Split G = G− ⊕ G+ such that

G+ is the set of graphs without subgraphs in P.

G− is the set of graphs with subgraphs in P.

We know a map φ : G → R[[~]].

Construct φP such that φP |G+ = φ and φP |G− = 0.

This is a Riemann-Hilbert problem.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 18



G is the Q-algebra generated by multigraphs.

Split G = G− ⊕ G+ such that

G+ is the set of graphs without subgraphs in P.

G− is the set of graphs with subgraphs in P.

We know a map φ : G → R[[~]].

Construct φP such that φP |G+ = φ and φP |G− = 0.

This is a Riemann-Hilbert problem.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 18



G is the Q-algebra generated by multigraphs.

Split G = G− ⊕ G+ such that

G+ is the set of graphs without subgraphs in P.

G− is the set of graphs with subgraphs in P.

We know a map φ : G → R[[~]].

Construct φP such that φP |G+ = φ and φP |G− = 0.

This is a Riemann-Hilbert problem.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 18



G is the Q-algebra generated by multigraphs.

Split G = G− ⊕ G+ such that

G+ is the set of graphs without subgraphs in P.

G− is the set of graphs with subgraphs in P.

We know a map φ : G → R[[~]].

Construct φP such that φP |G+ = φ and φP |G− = 0.

This is a Riemann-Hilbert problem.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 18



G is the Q-algebra generated by multigraphs.

Split G = G− ⊕ G+ such that

G+ is the set of graphs without subgraphs in P.

G− is the set of graphs with subgraphs in P.

We know a map φ : G → R[[~]].

Construct φP such that φP |G+ = φ and φP |G− = 0.

This is a Riemann-Hilbert problem.

M. Borinsky (HU Berlin) Algebraic tools for graphical enumeration 18



Hopf algebra of graphs

Pick a set of bridgeless graphs P, such that

if γ1 ⊂ γ2 then γ1, γ2 ∈ P iff γ1, γ2/γ1 ∈ P (1)

if γ1, γ2 ∈ P then γ1 ∪ γ2 ∈ P (2)

∅ ∈ P (3)

H is the Q-algebra of graphs in P.

Define a coaction on G:

∆ : G → H⊗ G

Γ 7→
∑
γ⊂Γ

s.t.γ∈P

γ ⊗ Γ/γ

H is a left-comodule over G.

∆ can be set up on H. ∆ : H → H⊗H.

H is a Hopf algebra Connes and Kreimer [2001].

(1) implies ∆ is coassociative (id⊗∆) ◦∆ = (∆⊗ id) ◦∆.
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The coaction shall keep information about the number of
edges it was connected in the original graph.

⇒ The graphs in P have ‘legs’ or ‘hairs’.

Example: Suppose ∅, , ∈ P, then

∆ =
∑
γ⊂
s.t.γ∈P

γ ⊗ /γ = 1⊗ + 3 ⊗ + ⊗

where we had to consider the subgraphs

, , ,

the complete and the empty subgraph.
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Gives us an action on algebra morphisms G → R[[~]]. For
ψ : H → R[[~]] and φ : G → R[[~]],

ψ ? φ : G → R[[~]] ψ ? φ = m ◦ (ψ ⊗ φ) ◦∆

and a product of algebra morphisms H → R[[~]]. For
ξ : H → R[[~]] and ψ : H → R[[~]],

ξ ? ψ : H → R[[~]] ξ ? ψ = m ◦ (ξ ⊗ ψ) ◦∆

Coassociativity of ∆ implies associativity of ?:

(ξ ? ψ) ? φ = ξ ? (ψ ? φ)
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The set of all algebra morphisms H → R[[~]] with the
?-product forms a group.

The identity ε : H → R[[~]] maps the empty graph to 1 and
all other graphs to 0.

The inverse of ψ : H → R[[~]] maybe calculated recursively:

ψ?−1(Γ) = −ψ(Γ)−
∑
γ(Γ

s.t.γ∈P

ψ?−1(γ)ψ(Γ/γ)

Corresponds to Moebius-Inversion on the subgraph poset.

Simplifies on many (physical) cases to a (functional) inversion
problem on power series.

Solves the Riemann-Hilbert problem:
Invert φ : Γ 7→ ~|E(Γ)|−|V (Γ)| restricted to H. Then

(φ|?−1
H ? φ)(Γ) =

{
~|E(Γ)|−|V (Γ)| if Γ ∈ G+

0 else
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The identity van Suijlekom [2007], Yeats [2008],

∆X =
∑

graphs Γ

 ∏
v∈V (Γ)

X
(|v |)
P

⊗ Γ

|Aut Γ|
,

where X =
∑

graphs Γ
Γ

|Aut Γ| and

X
(k)
P =

∑
Γ

s.t.Γ∈P and
Γ has k legs

Γ

|Aut Γ|
.

can be used to make this accessible for asymptotic analysis:

φ|?−1
H ? φ (X ) = m ◦

(
φ|?−1
H ⊗ φ

)
◦∆X

=
∑

graphs Γ

 ∏
v∈V (Γ)

φ|?−1
H

(
X

(|v |)
P

) φ(Γ)

|Aut Γ|
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φ|?−1
H ? φ (X ) =

∑
graphs Γ

 ∏
v∈V (Γ)

φ|?−1
H

(
X

(|v |)
P

) φ(Γ)

|Aut Γ|

The generating function of all graphs with arbitrary weight for
each vertex degree is

∞∑
n=0

~n(2n − 1)!![x2n]e

∑
k≥0

λk
k!

xk

~

=
∑

graphs Γ

 ∏
v∈V (Γ)

λ|v |

 ~|E(Γ)|−|V (Γ)|

|Aut Γ|

Therefore,

φ|?−1
H ? φ (X ) =

∞∑
n=0

~n(2n − 1)!![x2n]e

∑
k≥0

xk

k!
φ|?−1
H

(
X

(k)
P

)
~
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n=0

~n(2n − 1)!![x2n]e

∑
k≥0

xk

k!
φ|?−1
H

(
X

(k)
P

)
~

In quantum field theories we want the set P to be all graphs
with a bounded number of legs.

This corresponds to restrictions on the edge-connectivity of
the graphs.

In renormalizable quantum field theories the expressions

φ|?−1
H

(
X

(k)
P

)
are relatively easy to expand.

The generating functions φ|?−1
H

(
X

(k)
P

)
are called

counterterms in this context.

They are (almost) the generating functions of the number of
primitive elements of H:

Γ is primitive iff ∆Γ = Γ⊗ 1 + 1⊗ Γ.

We can obtain the full asymptotic expansions in these cases.
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Examples

Expressed as densities over all multigraphs:

In ϕ3-theory (i.e. three-valent multigraphs):

P(Γ is 2-edge-connected) = e−1
(
1− 23

21
1
n + . . .

)
.

P(Γ is cyclically 4-edge-connected) = e−
10
3

(
1− 133

3
1
n + · · ·

)
In ϕ4-theory (i.e. four-valent multigraphs):

P(Γ is cyclically 6-edge-connected) = e−
15
4

(
1− 126 1

n + · · ·
)
.

Arbitrary high order terms can be obtained by iteratively
solving implicit equations.
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Conclusions

The ‘zero-dimensional path integral’ is a convenient tool to
enumerate multigraphs by excess.

Asymptotics are easily accessible: The asymptotic expansion
also enumerates graphs.

With Hopf algebra techniques restrictions on the set of
enumerated graphs can be imposed.
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