Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0

Tamari-like intervals and planar maps

Wenjie Fang TU Graz

Workshop on Enumerative Combinatorics, 19 October 2017 Erwin Schrödinger Institute

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
00000	000	00000000	00000	0
Dyck paths a	and Tamari I	attice,		

Dyck path: *n* north(*N*) and *n* east(*E*) steps, always above the diagonal Counted by the *n*-th Catalan numbers $Cat(n) = \frac{1}{2n+1} \binom{2n+1}{n}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
00000	000	00000000	00000	0
Dyck paths	and Tamari	lattice,		

Covering relation: take a valley point $\bullet,$ find the next point \Box with the same distance to the diagonal ...

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
00000	000	00000000	00000	0
Dyck paths	and Tamari	lattice,		

... and push the segment to the left. This gives the **Tamari lattice** (Huang-Tamari 1972).

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●□■ のへで

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
00000	000	00000000	00000	0
, <i>m</i> -Tamari I	attice,			

m-ballot paths: *n* north steps, *mn* east steps, above the "*m*-diagonal". Counted by Fuss-Catalan numbers $\operatorname{Cat}_m(n) = \frac{1}{mn+1} \binom{mn+1}{n}$. A similar covering relation gives the *m*-Tamari lattice (Bergeron 2010).

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
00000	000	000000000	00000	0
and beyond				

But we can use an arbitrary path v as "diagonal"!

Horizontal distance = # steps one can go without crossing v

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Generalized Tamari lattice (Préville-Ratelle and Viennot 2014): TAM(v) over arbitrary v (called the **canopy**) with N, E steps.

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	000000000	00000	0
and beyond				

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
Type of a Dycl	< path			

North step: followed by an east step $\rightarrow N$, by a north step $\rightarrow E$. Mind the change!

The two paths have the same type, therefore synchronized.

Tamari restricted to type $v \simeq TAM(v)$ How exactly?

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
00000●	000	000000000	00000	O
The next level:	intervals			

Interval in a lattice: [a, b] with comparable $a \leq b$

Motivation: conjecturally related to the dimension of diagonal coinvariant spaces

For generalized Tamari intervals:

Interval in TAM(v) with v of length $n - 1 \Leftrightarrow$ synchronized interval of length 2n, *i.e.*, Tamari interval [D, E] with D and E of the same type.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For Tamari and m-Tamari intervals:

- Counting: Bousquet-Mélou, Chapoton, Chapuy, Fusy, Préville-Ratelle, Viennot, ...
- Interval poset: Chapoton, Châtel, Pons, ...
- λ -terms: N. Zeilberger, ...
- Planar maps

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
What is a	planar map?			

Planar map: embedding of a connected multigraph on the plane (loops and multiple edges allowed), defined up to homeomorphism, cutting the plane into faces

Planar maps are **rooted** at an edge on the infinite outer face.

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
Intervals that	at count like	planar maps		

Chapoton 2006: # intervals in Tamari lattice of size n =

$$\frac{2}{n(n+1)}\binom{4n+1}{n-1}$$

= # 3-connected planar triangulations with n + 3 vertices (Tutte 1963)

= # bridgeless planar maps with n edges (Walsh and Lehman 1975)

Bousquet-Mélou, Fusy and Préville-Ratelle 2011: # intervals in m-Tamari lattice of size n =

$$\frac{m+1}{n(mn+1)} \binom{n(m+1)^2 + m}{n-1},$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

and it also looks like an enumeration of planar maps!

For Tamari intervals and 3-connected planar triangulations: bijective proof using orientations (Bernardi and Bonichon 2009)

For *m*-Tamari intervals, the formal method used to solve for its generating function (the "differential-catalytic" method) can also be used on planar *m*-constellations.

Any other links? Especially for generalized Tamari intervals...

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
Non-separable	e planar map	os		

A **cut vertex** cuts the map into two sets of edges. A **non-separable planar map** is a planar map without cut vertex.

000000	000	00000000	00000	0
Another ty	pe of intervals	s that counts I	ike map	

Theorem (W.F. and Louis-François Préville-Ratelle 2016)

There is a natural bijection between intervals in TAM(v) for all possible v of length n and non-separable planar maps with n + 2 edges.

Intermediate object: decorated trees

Corollary

v

The total number of intervals in TAM(v) for all possible v of length n is

$$\sum_{\in (N,E)^n} \operatorname{Int}(\operatorname{TAM}(v)) = \frac{2}{(n+1)(n+2)} \binom{3n+3}{n}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This formula was first obtained in (Tutte 1963).

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
What are d	ecorated tree	s?	00000 0	

Property

If the exploration of an edge e adjacent to a vertex u reaches an already visited vertex w, then w is an ancestor of u.

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
Characterizing decorated trees				

A **decorated tree** is a rooted plane tree with labels ≥ -1 on leaves such that (depth of the root is 0):

- **(Exploration)** For a leaf ℓ of a node of depth p, the label of ℓ is < p;
- (Non-separability) For a non-root node t of depth p, there is at least one descendant leaf with label ≤ p − 2 (the first such leaf is the certificate of t);
- (Planarity) For t a node of depth p and T' a direct subtree of t, if a leaf ℓ in T' is labeled p, every leaf in T' before ℓ has a label ≥ p.

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
From maps to trees				

Just glue leaves with label d to their ancestor of depth d.

Only one way to glue back to a planar map.

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	000000000	00000	0
From trees to intervals				

From a decorated tree T to a synchronized interval [P(T), Q(T)]

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	000000000	00000	0
From trees to intervals				

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Path Q: a traversal

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	000000000	00000	0
From trees to	intervals			

Function $c\!\!:$ for a leaf $\ell\text{, }c(\ell)=\#\text{nodes}$ with ℓ as certificate

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	000000000	00000	0
From trees to intervals				

Path P: an altered traversal where descents are $c(\ell)+1$

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	000000000	00000	0
The other	direction			

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	000000000	00000	0
The whole bijection				

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ Ξ → ○ Q @

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
Structural r	esult			

Our bijections are canonical w.r.t. appropriate recursive decompositions of related objects.

Theorem (W.F. 2017)

Under our bijections, the involution from intervals in TAM(v) to those in TAM(v) is equivalent to map duality.

Also connection with β -(1,0) trees (Cori, Schaeffer, Jacquard, Kitaev, de Mier, Steingrímsson, ...), leading to a bijective proof of a result in Kitaev–de Mier(2013).

Also equi-distribution results on various statistics

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
Restriction to t	he original Ta	mari intervals		

Tamari lattice = $TAM((NE)^n)$

Restriction to type $(NE)^n$: decorated trees where each leaf is the first child of each internal node.

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
Sticky tree				

Decorated trees restricted in $TAM((NE)^n) \rightsquigarrow$ sticky trees

A sticky tree is a plane tree with a label $\ell(u) \ge 0$ on each node u such that:

Essentially adapted from the condition of decorated trees! Now every non-root node has a certificate, which is a node (and can be itself).

(日)

(日)
(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	00000000	00000	0
Bijections to	o classical ob	jects		

Theorem (W.F. 2017+)

Sticky trees with n edges are in natural bijection with

- **1** Tamari intervals with n up steps;
- In the second second
- **3**-connected triangulations with n + 3 vertices.

A new bijective proof of (1) = (3), different from (Bernardi–Bonichon 2009).

Also a new bijective (and direct!) proof of (2) = (3), different from the recursive ones in (Wormald 1980) and (Fusy 2010).

000000	OOO	000000000	OOO●O	O		
Pilostion with bridgeless planar mans						

An exploration on edges

There is also a bijection between sticky trees and 3-connected planar triangulations (with a different exploration process)

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Also with closed flows of plane forests (Chapoton–Châtel–Pons 2014), recovering a result therein.

Tamari-like lattices	Planar Maps	Bijections	Extensions	Discussion
000000	000	000000000	00000	•
Discussion				

- Other related lattices (Stanley, Kreweras, ...) and planar maps (bipartite, constellations)?
- Other structures (e.g. 2-stack-sortable permutations)?
- Asymptotic aspects of these objects (statistics, limit shape, ...)?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Restricted bijections on *m*-Tamari lattice?
- Number of intervals in $TAM(w^n)$ for a fixed word w? Rotation of NE^m : OK. For w = NNEE: 1, 20, 755, 37541, 2177653,... For w = NEEN: 6, 164, 7019, 373358, 22587911,... Are they all algebraic?

Partitionning the Tamari lattice by type

・ロト・品・・ヨト・ヨト ショー シャー

Partitionning the Tamari lattice by type

Partitionning the Tamari lattice by type

Partitioning the Tamari lattice by type

Delest and Viennot (1984): There is a bijection between Dyck path of length 2n and an element in TAM(v) for some v of length n - 1.

Theorem (Préville-Ratelle and Viennot (2014))

The Tamari lattice of order n is partitioned by path types into 2^{n-1} sublattices, each isomorphic to the generalized Tamari lattice TAM(v) with v the type (a word in N, E of length n - 1).

Theorem (Préville-Ratelle and Viennot (2014))

The lattice TAM(v) is isomorphic to the order dual of $TAM(\overleftarrow{v})$, where \overleftarrow{v} is the word v read from right to left, with the substitution $N \leftrightarrow E$.

		к.	

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Number of intervals in $TAM(w^n)$ with w a word in $\{N, E\}$?

Observation

For $w = N^a E N^b$, the number of intervals in $TAM(w^n)$ is of the form

$$\frac{k_{a,b}+1}{n(\ell_{a,b}n+1)}\binom{(a+b+1)^2n+k_{a,b}}{n-1},$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where $k_{a,b}$ and $\ell_{a,b}$ are integers. What are these constants?

For w = NNEE: 1, 20, 755, 37541, 2177653, ... For w = NEEN: 6, 164, 7019, 373358, 22587911, ...

What are these sequences?