A unifying combinatorial approach to refined little Göllnitz and Capparelli's companion identities

Shishuo Fu

Chongqing University *fsshuo@cqu.edu.cn* joint with Jiang Zeng, Université Claude Bernard Lyon 1

Oct 17, 2017 ESI workshop on Enumerative Combinatorics, Wien

Plan of the talk

Background and Motivation

k-strict partition

k = 3: Capparelli's new companion

k = 2: New little Göllnitz

Final remarks

Background and Motivation

- Partition Identities
- Little Göllnitz family
- Capparelli family
- Boulet's four-variable generating function

Original: Partitions of n with parts satisfying condition A are equinumerous with partitions of n with parts satisfying condition B. Euler's Distinct–Odd, Rogers-Ramanujan, etc. The prototype for condition A is "Gap condition", and for B "Modular condition".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Original: Partitions of n with parts satisfying condition A are equinumerous with partitions of n with parts satisfying condition B. Euler's Distinct–Odd, Rogers-Ramanujan, etc. The prototype for condition A is "Gap condition", and for B "Modular condition".

Refine: G: partitions of n into distinct parts with alternating sum m; M: partitions of n into m odd parts.

- Original: Partitions of n with parts satisfying condition A are equinumerous with partitions of n with parts satisfying condition B. Euler's Distinct–Odd, Rogers-Ramanujan, etc. The prototype for condition A is "Gap condition", and for B "Modular condition".
 - Refine: G: partitions of n into distinct parts with alternating sum m; M: partitions of n into m odd parts.
- Bounded: G: partitions of *n* into distinct parts with the largest part $\leq m$; M: partitions of *n* into odd parts such that # of parts $+ \frac{\text{largest part}-1}{2} \leq m$.

- Original: Partitions of n with parts satisfying condition A are equinumerous with partitions of n with parts satisfying condition B. Euler's Distinct–Odd, Rogers-Ramanujan, etc. The prototype for condition A is "Gap condition", and for B "Modular condition".
 - Refine: G: partitions of n into distinct parts with alternating sum m; M: partitions of n into m odd parts.
- Bounded: G: partitions of *n* into distinct parts with the largest part $\leq m$; M: partitions of *n* into odd parts such that # of parts $+ \frac{\text{largest part}-1}{2} \leq m$.

Companion: With the same or similar Modular condition, but with different Gap condition.

Little Göllnitz family

- ► Göllnitz (1967)
 - G1: parts differing by at least 2 and no consecutive odd parts;
 - M1: parts congruent to $1, 5, 6 \pmod{8}$.
 - G2: parts \geq 2 differing by at least 2 and no consecutive odd parts;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

M2: parts congruent to $2, 3, 7 \pmod{8}$.

Little Göllnitz family

- ▶ Göllnitz (1967)
 - G1: parts differing by at least 2 and no consecutive odd parts;
 - M1: parts congruent to $1, 5, 6 \pmod{8}$.
 - G2: parts ≥ 2 differing by at least 2 and no consecutive odd parts;

- M2: parts congruent to $2, 3, 7 \pmod{8}$.
- Savage-Sills (2011)
 - G1: distinct parts in which even-indexed parts are even;
 - M1: parts congruent to $1, 5, 6 \pmod{8}$.
 - G2: distinct parts in which odd-indexed parts are even;
 - M2: parts congruent to $2, 3, 7 \pmod{8}$.

Little Göllnitz family

- ▶ Göllnitz (1967)
 - G1: parts differing by at least 2 and no consecutive odd parts;
 - M1: parts congruent to $1, 5, 6 \pmod{8}$.
 - G2: parts ≥ 2 differing by at least 2 and no consecutive odd parts;
 - M2: parts congruent to $2, 3, 7 \pmod{8}$.
- Savage-Sills (2011)
 - G1: distinct parts in which even-indexed parts are even;
 - M1: parts congruent to $1, 5, 6 \pmod{8}$.
 - G2: distinct parts in which odd-indexed parts are even;
 - M2: parts congruent to $2, 3, 7 \pmod{8}$.
- Berkovich-Uncu (2016)

G: distinct parts with i odd-indexed odd parts and j even-indexed odd parts;

M: distinct parts with i parts congruent to 1 (mod 4) and j parts congruent to 3 (mod 4).

Capparelli family

▶ Capparelli (1988), related to representations of twisted affine Lie algebras.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

G1: parts
$$\neq 1$$
 with $\lambda_i - \lambda_{i+1} \begin{cases} \geq 2 & \text{if } 3 \mid \lambda_i + \lambda_{i+1}, \\ \geq 4 & \text{otherwise.} \end{cases}$
M1: distinct parts congruent to 0, 2, 3, 4 (mod 6).
G2: parts $\neq 2$ with $\lambda_i - \lambda_{i+1} \begin{cases} \geq 2 & \text{if } 3 \mid \lambda_i + \lambda_{i+1}, \\ \geq 4 & \text{otherwise.} \end{cases}$
M2: distinct parts congruent to 0, 1, 3, 5 (mod 6).

Capparelli family

▶ Capparelli (1988), related to representations of twisted affine Lie algebras.

G1: parts
$$\neq 1$$
 with $\lambda_i - \lambda_{i+1} \begin{cases} \geq 2 & \text{if } 3 \mid \lambda_i + \lambda_{i+1}, \\ \geq 4 & \text{otherwise.} \end{cases}$
M1: distinct parts congruent to 0,2,3,4 (mod 6).
G2: parts $\neq 2$ with $\lambda_i - \lambda_{i+1} \begin{cases} \geq 2 & \text{if } 3 \mid \lambda_i + \lambda_{i+1}, \\ \geq 4 & \text{otherwise.} \end{cases}$

M2: distinct parts congruent to $0, 1, 3, 5 \pmod{6}$.

Alladi-Andrews-Gordon (1995)

G: as previous G1 or G2 with exactly i parts congruent to 1 (mod 3) and j parts congruent to 2 (mod 3);

M: as previous M1 or M2 with exactly i parts congruent to 1 (mod 3) and j parts congruent to 2 (mod 3).

Capparelli family

▶ Capparelli (1988), related to representations of twisted affine Lie algebras.

G1: parts
$$\neq 1$$
 with $\lambda_i - \lambda_{i+1} \begin{cases} \geq 2 & \text{if } 3 \mid \lambda_i + \lambda_{i+1}, \\ \geq 4 & \text{otherwise.} \end{cases}$
M1: distinct parts congruent to 0,2,3,4 (mod 6).
G2: parts $\neq 2$ with $\lambda_i - \lambda_{i+1} \begin{cases} \geq 2 & \text{if } 3 \mid \lambda_i + \lambda_{i+1}, \\ \geq 4 & \text{otherwise.} \end{cases}$

M2: distinct parts congruent to $0, 1, 3, 5 \pmod{6}$.

Alladi-Andrews-Gordon (1995)

G: as previous G1 or G2 with exactly i parts congruent to 1 (mod 3) and j parts congruent to 2 (mod 3);

M: as previous M1 or M2 with exactly i parts congruent to 1 (mod 3) and j parts congruent to 2 (mod 3).

Berkovich-Uncu (2015)

G1: distinct parts with odd-indexed parts $\not\equiv 1 \pmod{3}$, even-indexed parts $\not\equiv 2 \pmod{3}$, and no (3l + 2, 3l + 1) as consecutive parts; M1: the same as previous M1.

G2: distinct parts with odd-indexed parts $\not\equiv 2 \pmod{3}$, even-indexed parts $\not\equiv 1 \pmod{3}$, and no (3l + 2, 3l + 1) as consecutive parts; M2: the same as previous M2.

Boulet's four-variable generating function

а	b	а	b	а	b	а	b	а	b
с	d	с	d	С	d	с	d	с	d
а	Ь	а	b	а	Ь	а			
с	d	с	d	с					
а	b								

а	Ь	с	а	b	с	а	b	с	а
d	е	f	d	е	f	d	е	f	d
а	Ь	с	а	b	с	а			
d	е	f	d	е					
а	b								

$$\omega_\pi^2(a,b,c,d) = a^{10}b^9c^8d^7$$

 $\omega_{\pi}^{3}(a, b, c, d, e, f) = a^{8}b^{6}c^{5}d^{6}e^{5}f^{4}$

Boulet's four-variable generating function

а	b	а	b	а	Ь	а	b	а	b
с	d	с	d	С	d	с	d	с	d
а	Ь	а	b	а	Ь	а			
с	d	с	d	с					
а	b								

а	b	с	а	b	с	а	b	с	а
d	е	f	d	е	f	d	е	f	d
а	b	с	а	b	с	а			
d	е	f	d	е					
а	b								

 $\omega_\pi^2(a,b,c,d) = a^{10}b^9c^8d^7$

 $\omega_{\pi}^{3}(a, b, c, d, e, f) = a^{8}b^{6}c^{5}d^{6}e^{5}f^{4}$

Boulet (2006):

$$\Phi(a,b,c,d) := \sum_{\pi \in \mathcal{P}} \omega_{\pi}^2(a,b,c,d) = \frac{(-a,-abc;Q)_{\infty}}{(Q,ab,ac;Q)_{\infty}}, \quad Q := abcd, \quad (1)$$

$$\Psi(a,b,c,d) := \sum_{\pi \in \mathcal{D}} \omega_{\pi}^2(a,b,c,d) = \frac{(-a,-abc;Q)_{\infty}}{(ab;Q)_{\infty}}, \quad Q := abcd.$$
(2)

Where $\,\mathcal{P}\,$ (resp. $\,\mathcal{D}\,)$ denotes the set of ordinary (resp. strict) partitions.

$$egin{aligned} (a;q)_0 &:= 1, \quad (a;q)_k := \prod_{i=1}^k (1-aq^{i-1}), \quad k\in\mathbb{N}^*\cup\{\infty\}\ (a_1,a_2,\ldots,a_m;q)_s &:= (a_1;q)_s(a_2;q)_s\ldots(a_m;q)_s. \end{aligned}$$

Boulet's four-variable generating function

а	b	а	b	а	b	а	b	а	b
с	d	с	d	С	d	с	d	с	d
а	Ь	а	b	а	Ь	а			
с	d	с	d	с					
а	b								

2	4	~	2	1.	~	2	4	~	2
d	D	Ľ	a	D	C	a	D	L	a
d	е	f	d	е	f	d	е	f	d
а	b	с	а	b	с	а			
d	е	f	d	е					
а	b								

$$\omega_\pi^2(a,b,c,d) = a^{10}b^9c^8d^7$$

 $\omega_{\pi}^{3}(a, b, c, d, e, f) = a^{8}b^{6}c^{5}d^{6}e^{5}f^{4}$

Boulet (2006):

$$\Phi(a,b,c,d) := \sum_{\pi \in \mathcal{P}} \omega_{\pi}^2(a,b,c,d) = \frac{(-a,-abc;Q)_{\infty}}{(Q,ab,ac;Q)_{\infty}}, \quad Q := abcd, \quad (1)$$

$$\Psi(a,b,c,d) := \sum_{\pi \in \mathcal{D}} \omega_{\pi}^2(a,b,c,d) = \frac{(-a,-abc;Q)_{\infty}}{(ab;Q)_{\infty}}, \quad Q := abcd.$$
(2)

$$\begin{split} \Psi(q,q,q,q) &= (-q;q)_{\infty}, \\ \Psi(xt,x/t,yz,y/z) &= \frac{(-xt,-x^2yz;x^2y^2)_{\infty}}{(x^2;x^2y^2)_{\infty}}, \\ \text{Savage-Sills: } x &= y = q, t = 0 \text{ or } z = 0, \\ \text{Berkovich-Uncu: } x &= y = q. \end{split}$$

k-strict partition

- definition
- ω^k -weight and a key decomposition

weighted generating function

For $k\geq 1$, we call a partition π " k -strict" if for any integers $\mathit{r}_1,\mathit{r}_2$, with $1\leq \mathit{r}_1\leq \mathit{r}_2\leq k-1$,

 $mk + r_1$ and $mk + r_2$ do not appear together as parts in π . (*) Denote the set of all k-strict partitions as S^k .

For $k \ge 1$, we call a partition π "*k*-strict" if for any integers r_1, r_2 , with $1 \le r_1 \le r_2 \le k-1$,

 $mk + r_1$ and $mk + r_2$ do not appear together as parts in π . (*)

Denote the set of all k-strict partitions as S^k .

- 1-strict: ordinary partition.
- 2-strict: partitions with odd parts distinct

$$\sum_{n=0}^{\infty} \operatorname{pod}(n)q^n = \frac{(-q;q^2)_{\infty}}{(q^2;q^2)_{\infty}} = \left(\sum_{n=-\infty}^{\infty} (-1)^n q^{2n^2+n}\right)^{-1}.$$

For $k \ge 1$, we call a partition π "*k*-strict" if for any integers r_1, r_2 , with $1 \le r_1 \le r_2 \le k-1$,

 $mk + r_1$ and $mk + r_2$ do not appear together as parts in π . (*)

Denote the set of all k-strict partitions as S^k .

- 1-strict: ordinary partition.
- 2-strict: partitions with odd parts distinct

$$\sum_{n=0}^{\infty} \operatorname{pod}(n)q^n = \frac{(-q;q^2)_{\infty}}{(q^2;q^2)_{\infty}} = \left(\sum_{n=-\infty}^{\infty} (-1)^n q^{2n^2+n}\right)^{-1}.$$

For example, there are nine 3-strict partitions of 10:

(10), (9, 1), (8, 2), (7, 3), (6, 4), (6, 3, 1), (5, 3, 2), (4, 3, 3), (3, 3, 3, 1).

For $k \ge 1$, we call a partition π "*k*-strict" if for any integers r_1, r_2 , with $1 \le r_1 \le r_2 \le k-1$,

 $mk + r_1$ and $mk + r_2$ do not appear together as parts in π . (*)

Denote the set of all k-strict partitions as S^k .

- 1-strict: ordinary partition.
- 2-strict: partitions with odd parts distinct

$$\sum_{n=0}^{\infty} \operatorname{pod}(n)q^n = \frac{(-q;q^2)_{\infty}}{(q^2;q^2)_{\infty}} = \left(\sum_{n=-\infty}^{\infty} (-1)^n q^{2n^2+n}\right)^{-1}.$$

For example, there are nine 3-strict partitions of 10:

(10), (9, 1), (8, 2), (7, 3), (6, 4), (6, 3, 1), (5, 3, 2), (4, 3, 3), (3, 3, 3, 1).

Note that $\mathcal{D} \cap S^1 = \mathcal{D} \cap S^2 = \mathcal{D}$, but $\mathcal{D} \cap S^k \neq \mathcal{D}$ for $k \geq 3$. Denote $\mathcal{D}S^k = \mathcal{D} \cap S^k$ and \mathcal{E}^k as the set of partitions into parts as mk each appearing an even number of times.

Definition (ω^k -weight)

Given a partition π and $k \ge 1$, we label the cells in the odd-indexed (resp. even-indexed) rows of π 's diagram cyclically from left to right with a_1, a_2, \ldots, a_k (resp. b_1, b_2, \ldots, b_k) and define the product of all the labels on the diagram as its ω^k -weight, denoted by $\omega_{\pi}^k((a_i), (b_i))$.

Definition (ω^k -weight)

Given a partition π and $k \ge 1$, we label the cells in the odd-indexed (resp. even-indexed) rows of π 's diagram cyclically from left to right with a_1, a_2, \ldots, a_k (resp. b_1, b_2, \ldots, b_k) and define the product of all the labels on the diagram as its ω^k -weight, denoted by $\omega_{\pi}^k((a_i), (b_i))$.

Previous figures are two examples when $k = 2, \omega^2(a, b, c, d)$ and $k = 3, \omega^3(a, b, c, d, e, f)$.

Theorem

For any $k \ge 1$, the map $\psi_k : \pi \mapsto (\pi^1, \pi^2)$ is a weight-preserving bijection from S^k to $\mathcal{DS}^k \times \mathcal{E}^k$ such that $\ell(\pi) = \ell(\pi^1) + \ell(\pi^2)$ and

$$\omega_{\pi}^{k}((\mathbf{a}_{i}),(\mathbf{b}_{i})) = \omega_{\pi^{1}}^{k}((\mathbf{a}_{i}),(\mathbf{b}_{i})) \, \omega_{\pi^{2}}^{k}((\mathbf{a}_{i}),(\mathbf{b}_{i})), \tag{3}$$

where $\ell(\pi)$ stands for the number of parts of π .

Fig.: Decomposition of $\pi = (8, 6, 6, 5, 3, 3, 3, 1)$ into (π^1, π^2) with ω^3 -labels

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Weighted generating functions

Theorem

For any integer $k\geq 1$, let $\{a_1,a_2,\ldots,a_k,b_1,b_2,\ldots,b_k\}$ be 2k commutable variables, and let

$$z_k = a_1 \dots a_k, \quad w_k = a_1 b_1 \dots a_k b_k,$$

 $x_k = a_1 + a_1 a_2 + \dots + a_1 \dots a_{k-1},$
 $y_k = z_k (b_1 + b_1 b_2 + \dots + b_1 \dots b_{k-1}).$

Then we have

$$\sum_{\pi \in \mathcal{E}^k} \omega_{\pi}^k((a_i), (b_i)) = \frac{1}{(w_k; w_k)_{\infty}}, \tag{4}$$

$$\sum_{\pi \in \mathcal{S}^k} \omega_{\pi}^k \big((a_i), (b_i) \big) = \frac{(-x_k, -y_k; w_k)_{\infty}}{(z_k, w_k; w_k)_{\infty}}, \tag{5}$$

$$\sum_{\pi\in\mathcal{DS}^k}\omega_{\pi}^k((a_i),(b_i))=\frac{(-x_k,-y_k;w_k)_{\infty}}{(z_k;w_k)_{\infty}}.$$
(6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Four types of blocks when read by columns

Fig.: Four possible types of vertical blocks where $1 \le \ell \le k - 1$.

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

odd-indexed/even-indexed

We use $o_l(\pi)$ (resp. $e_l(\pi)$) to denote the number of odd-indexed (resp. even-indexed) parts that are $\equiv l \pmod{k}$. Denote by π_o (resp. π_e) the partition consisting of the odd-indexed (resp. even-indexed) parts of π .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

odd-indexed/even-indexed

We use $o_l(\pi)$ (resp. $e_l(\pi)$) to denote the number of odd-indexed (resp. even-indexed) parts that are $\equiv l \pmod{k}$. Denote by π_o (resp. π_e) the partition consisting of the odd-indexed (resp. even-indexed) parts of π .

Theorem

For any integer $k \geq 1$, we have

$$\sum_{\pi \in \mathcal{DS}^{k}} x^{|\pi_{o}|} y^{|\pi_{e}|} \prod_{l=1}^{k-1} u_{l}^{o_{l}(\pi)} v_{l}^{e_{l}(\pi)} = \frac{\left(-\sum_{l=1}^{k-1} u_{l} x^{l}, -x^{k} \sum_{l=1}^{k-1} v_{l} y^{l}; x^{k} y^{k}\right)_{\infty}}{(x^{k}; x^{k} y^{k})_{\infty}}.$$
 (7)

Proof.

In (6), simply take $a_l = u_l x / u_{l-1}$, $b_l = v_l y / v_{l-1}$, for l = 1, ..., k, where $u_0 = u_k = v_0 = v_k = 1$.

A new companion

$$\sum_{\pi \in \mathcal{DS}^3} x^{|\pi_o|} y^{|\pi_e|} s^{o_1(\pi)} t^{o_2(\pi)} u^{e_1(\pi)} v^{e_2(\pi)} = \frac{(-sx - tx^2, -ux^3y - vx^3y^2; x^3y^3)_{\infty}}{(x^3; x^3y^3)_{\infty}}$$

A new companion

$$\sum_{\pi \in \mathcal{DS}^3} x^{|\pi_o|} y^{|\pi_e|} s^{o_1(\pi)} t^{o_2(\pi)} u^{e_1(\pi)} v^{e_2(\pi)} = \frac{(-sx - tx^2, -ux^3y - vx^3y^2; x^3y^3)_{\infty}}{(x^3; x^3y^3)_{\infty}}$$

 $(-tx^2, -ux^3y)$ and $(-sx , -vx^3y^2)$

Theorem (Berkovich-Uncu, refined)

For integers $n, i, j \ge 0, m \in \{1, 2\}$, the number of partitions enumerated by $A_m(n)$ that have exactly i parts $\equiv 2 \pmod{3}$ and j parts $\equiv 1 \pmod{3}$ equals the number of partitions enumerated by $C_m(n)$ that have exactly i parts $\equiv 3m - 1 \pmod{6}$ and j parts $\equiv 3m + 1 \pmod{6}$.

A new companion

$$\sum_{\pi \in \mathcal{DS}^3} x^{|\pi_o|} y^{|\pi_e|} s^{o_1(\pi)} t^{o_2(\pi)} u^{e_1(\pi)} v^{e_2(\pi)} = \frac{(-sx - tx^2, -ux^3y - vx^3y^2; x^3y^3)_{\infty}}{(x^3; x^3y^3)_{\infty}}$$

 $(-tx^2, -ux^3y)$ and $(-sx , -vx^3y^2)$

Theorem (Berkovich-Uncu, refined)

For integers $n, i, j \ge 0, m \in \{1, 2\}$, the number of partitions enumerated by $A_m(n)$ that have exactly i parts $\equiv 2 \pmod{3}$ and j parts $\equiv 1 \pmod{3}$ equals the number of partitions enumerated by $C_m(n)$ that have exactly i parts $\equiv 3m - 1 \pmod{6}$ and j parts $\equiv 3m + 1 \pmod{6}$. $(-sx , -ux^3y)$ and $(-tx^2, -vx^3y^2)$

Theorem (F.-Zeng)

For integers $n, i, j \ge 0, m \in \{1, 2\}$, let $D_m^l(i, j, n)$ be the number of partitions of n into distinct parts $\not\equiv -m \pmod{3}$ that have exactly i odd-indexed parts $\equiv m \pmod{3}$ and j even-indexed parts $\equiv m \pmod{3}$, and $D_m^{ll}(i, j, n)$ the number of partitions of n into distinct parts $\not\equiv -m \pmod{3}$ that have exactly i parts $\equiv m \pmod{6}$ and j parts $\equiv m + 3 \pmod{6}$. Then

$$D_m^{\prime\prime}(i,j,n)=D_m^{\prime\prime\prime}(i,j,n).$$

Bounded case

$$\sum_{\pi \in \mathcal{E}_{N,\infty}^{3}} \omega_{\pi}^{3} = \frac{1}{(R;R)_{\lfloor N/3 \rfloor}}, R = abcdef,$$

$$S_{3N+\mu}^{3} := S_{3N+\mu}^{3}(a, b, c, d, e, f) := \sum_{\pi \in \mathcal{S}_{3N+\mu,\infty}^{3}} \omega_{\pi}^{3},$$

$$DS_{3N+\mu}^{3} := DS_{3N+\mu}^{3}(a, b, c, d, e, f) := \sum_{\pi \in \mathcal{D}S_{3N+\mu,\infty}^{3}} \omega_{\pi}^{3},$$

$$S_{3N}^{3} = \sum_{T} R^{\binom{t_{1}}{2} + \binom{t_{2}}{2}} F(T),$$

$$S_{3N+1}^{3} = S_{3N}^{3}(a, b, c, d, e, f) + a(abc)^{N}S_{3N}^{3}(d, e, f, a, b, c),$$

$$S_{3N+2}^{3} = (1 + a + ab) \sum_{T} R^{\binom{t_{1}+1}{2} + \binom{t_{2}}{2}} F(T),$$

$$DS_{3N+\mu}^{3} = (R; R)_{N}S_{3N+\mu}^{3} \text{ for } \mu \in \{0, 1, 2\},$$
The summation \sum_{T} is over all quadruples $T := (t_{1}, t_{2}, t_{3}, t_{4}) \in \mathbb{N}^{4}$ such that the summation $\sum_{T} (t_{1}, t_{2}, t_{3}, t_{4}) \in \mathbb{N}^{4}$

where the summation $\sum_{\mathcal{T}}$ is over all quadruples $\mathcal{T}:=(t_1,t_2,t_3,t_4)\in\mathbb{N}^4$ such that

$$\sum_{j=1}^{4} t_j = N, \text{ and } F(T) := \frac{(a+ab)^{t_1}(abcd+abcde)^{t_2}(abc)^{t_3}}{(R;R)_{t_1}(R;R)_{t_2}(R;R)_{t_3}(R;R)_{t_4}}.$$

Idea of the proof

The largest part $\leq 3N$, when viewed vertically, means the total number of blocks with four types is bounded by N. Alternatively, we can think of this number is exactly N by filling in empty blocks (of type IV) if necessary. Hence the constraint on the summation $t_1 + t_2 + t_3 + t_4 = N$.

Idea of the proof

The largest part $\leq 3N$, when viewed vertically, means the total number of blocks with four types is bounded by N. Alternatively, we can think of this number is exactly N by filling in empty blocks (of type IV) if necessary. Hence the constraint on the summation $t_1 + t_2 + t_3 + t_4 = N$.

Next we invoke the following identity due to Euler, for dealing with type I and II blocks.

$$\sum_{t_1=0}^{\infty} \frac{(a+ab)^{t_1} R^{\binom{t_1}{2}}}{(R;R)_{t_1}} = (-a-ab;R)_{\infty}.$$

 $a = sx, \ b = tx/s, \ c = x/t, \ d = uy, \ e = vy/u, \ f = y/v, \ x = y = q.$

$$P_{3N+\mu}(s,t,u,v;q) := \sum_{\pi \in \mathcal{DS}_{3N+\mu}^3} s^{o_1(\pi)} t^{o_2(\pi)} u^{e_1(\pi)} v^{e_2(\pi)} q^{|\pi|},$$

For $N \geq 0$, $\mu \in \{0,2\}$ we have:

$$P_{3N+\mu}(0, t, u, 0; q) = \left(1 + \frac{\mu}{2}tq^{2}\right) \sum \begin{bmatrix}N\\i, j, k, I\end{bmatrix}_{q^{6}} t^{i}u^{j}q^{3i^{2}+(3\mu-1)i+3j^{2}+j+3k},$$
(8)

$$P_{3N+\mu}(s, 0, 0, v; q) = \left(1 + \frac{\mu}{2}sq\right) \sum \begin{bmatrix}N\\i, j, k, I\end{bmatrix}_{q^{6}} s^{i}v^{j}q^{3i^{2}+(3\mu-2)i+3j^{2}+2j+3k},$$
(9)

$$P_{3N+\mu}(s, 0, u, 0; q) = \left(1 + \frac{\mu}{2}sq\right) \sum \begin{bmatrix}N\\i, j, k, I\end{bmatrix}_{q^{6}} s^{i}u^{j}q^{3i^{2}+(3\mu-2)i+3j^{2}+j+3k},$$
(10)

$$P_{3N+\mu}(0, t, 0, v; q) = \left(1 + \frac{\mu}{2}tq^{2}\right) \sum \begin{bmatrix}N\\i, j, k, I\end{bmatrix}_{q^{6}} t^{i}v^{j}q^{3i^{2}+(3\mu-1)i+3j^{2}+2j+3k},$$
(11)

and for $\ \mu=1$,

$$P_{3N+1}(0,t,u,0;q) = \sum \begin{bmatrix} N\\i,j,k,l \end{bmatrix}_{q^6} t^i u^j q^{3i^2 - i + 3j^2 + j + 3k},$$
(12)

$$P_{3N+1}(s,0,0,v;q) = \sum \begin{bmatrix} N\\i,j,k,l \end{bmatrix}_{q^6} q^{3i^2 - 2i + 3j^2 + 2j + 3k} \left(s^i v^j + s^{j+1} v^i q^{i-j+3N+1} \right),$$
(13)

$$P_{3N+1}(s,0,u,0;q) = \sum \begin{bmatrix} N\\i,j,k,l \end{bmatrix}_{q^6} q^{3i^2 - 2i + 3j^2 + j + 3k} \left(s^i u^j + s^{j+1} u^i q^{3N+1} \right),$$
(14)

$$P_{3N+1}(0,t,0,v;q) = \sum \begin{bmatrix} N\\i,j,k,l \end{bmatrix}_{q^6} t^i v^j q^{3i^2 - i + 3j^2 + 2j + 3k}.$$
 (15)

<□ > < @ > < E > < E > E のQ @

For integers $N, n, i, j \ge 0, m \in \{1, 2\}$, let $D_{m,3N}^{I}(i, j, n)$ be the number of partitions of n into distinct parts such that

- i. each part $\not\equiv -m \pmod{3}$;
- ii. each part $\leq 3N$;
- iii. there are exactly i odd-indexed parts $\equiv m \pmod{3}$;

iv. there are exactly j even-indexed parts $\equiv m \pmod{3}$.

Let $D_{m,3N}^{\prime\prime}(i,j,n)$ be the number of partitions of n into distinct parts such that

- i. each part $\not\equiv -m \pmod{3}$;
- ii. there are exactly i parts $\equiv m \pmod{6}$ and these parts are all $\leq 6N + m 6$;
- iii. there are exactly j parts $\equiv m+3 \pmod{6}$ and these parts are all $\leq 6(N-i) + m 3$;
- iv. all parts $\equiv 0 \pmod{3}$ are $\leq 3(N-i-j)$.

Theorem

For integers $N, n, i, j \geq 0, m \in \{1, 2\}$,

$$D_{m,3N}^{I}(i,j,n) = D_{m,3N}^{II}(i,j,n).$$

Proposition

For N and M being any positive integers or ∞ , the operation of conjugation, denoted as τ , is a bijection from $\mathcal{P}_{N,M}$ to $\mathcal{P}_{M,N}$, such that for any $\pi \in \mathcal{P}_{N,M}$, we have

$$\omega_{\pi}^2(a,b,c,d) = \omega_{\tau(\pi)}^2(a,c,b,d).$$

In terms of generating function, we have

$$\Phi_{N,M}(a,b,c,d) = \Phi_{M,N}(a,c,b,d).$$
(16)

Two expressions for bounded case of k = 2

$$\Psi_{2N+\nu,\infty}(a,b,c,d) = \sum_{i=0}^{N} \begin{bmatrix} N \\ i \end{bmatrix}_{Q} (-a;Q)_{N-i+\nu}(-c;Q)_{i}(ab)^{i},$$
(17)

$$\Phi_{2N+\nu,\infty}(a,b,c,d) = \frac{1}{(ac;Q)_{N+\nu}} \sum_{i=0}^{N} \frac{(-a;Q)_{N-i+\nu}(-c;Q)_i(ab)^i}{(Q;Q)_{N-i}(Q;Q)_i}, \quad (18)$$

$$\Psi_{2N+\nu,\infty}(a,b,c,d) = \sum_{i=0}^{N} \begin{bmatrix} N\\ i \end{bmatrix}_{Q} (-a;Q)_{i+\nu}(-abc;Q)_{i} \frac{(ac;Q)_{N+\nu}}{(ac;Q)_{i+\nu}} (ab)^{N-i},$$
(19)

$$\Phi_{2N+\nu,\infty}(a,b,c,d) = \sum_{i=0}^{N} \frac{(-a;Q)_{i+\nu}(-abc;Q)_{i}(ab)^{N-i}}{(Q;Q)_{i}(ac;Q)_{i+\nu}(Q;Q)_{N-i}}.$$
(20)

Doubly-bounded case

Theorem

For N, M being non-negative integers, $\nu, \mu = 0$ or 1 such that $N + \nu \ge 1$, we have the following expansions:

$$\Phi_{2N+\nu,2M+\mu}(a, b, c, d)$$

$$= \delta_{0\mu}(ac)^{M} \begin{bmatrix} N+M+\nu-1\\ M \end{bmatrix}_{Q} + \sum_{k=0}^{M+\mu-1} (ac)^{k} \begin{bmatrix} N+k+\nu-1\\ k \end{bmatrix}_{Q}$$

$$\times \sum_{\substack{m_{1},m_{2},m_{3},m_{4}\geq 0\\m_{1}+m_{2}+m_{3}+m_{4}=N}}^{N} \begin{bmatrix} M-k+m_{4}\\ m_{4} \end{bmatrix}_{Q} \begin{bmatrix} M-k+\mu-\nu\\ m_{1} \end{bmatrix}_{Q} (1+a\nu)a^{m_{1}}Q^{\binom{m_{1}+\nu}{2}}$$

$$\times \begin{bmatrix} M-k+\mu-1+m_{2}\\ m_{2} \end{bmatrix}_{Q} (ab)^{m_{2}} \begin{bmatrix} M-k\\ m_{3} \end{bmatrix}_{Q} (abc)^{m_{3}}Q^{\binom{m_{3}}{2}},$$

$$\Psi_{N,M}(a, b, c, d)$$

$$= \sum_{m=0}^{\lfloor M/2 \rfloor} (-1)^{m} \sum_{k=0}^{m} \begin{bmatrix} \lfloor N/2 \rfloor\\ k \end{bmatrix}_{Q} \begin{bmatrix} \lceil N/2 \rceil\\ m-k \end{bmatrix}_{Q} (ac)^{m-k} Q^{k(k+1-m)+\binom{m}{2}} \Phi_{N,M-2m}(a, b, c, d)$$
(21)
(21)

Recap and final remarks

- ▶ New little Göllnitz and new companion of Capparelli fit nicely into the framework of *k*-strict partitions.
- Further companions present themselves naturally.
- > This combinatorial approach is amenable to bounded cases as well.
- Shed some lights on the connection between two different expansions for the same weighted generating functions.

Recap and final remarks

- New little Göllnitz and new companion of Capparelli fit nicely into the framework of k-strict partitions.
- Further companions present themselves naturally.
- This combinatorial approach is amenable to bounded cases as well.
- Shed some lights on the connection between two different expansions for the same weighted generating functions.
- Do the new companion identities possess Lie theoretical implications as the original Capparelli's identities?
- Study k-strict partitions (k≥3) for their own sake. For instance, it appears the sequence enumerating 3-strict partitions, (1, 1, 1, 1, 2, 3, 4, 5, ...) is not registered on OEIS.

References

- A. Berkovich and A. K. Uncu, A new companion to Capparelli's identities, Advances in Applied Mathematics 71 (2015): 125–137.
- A. Berkovich and A. K. Uncu, On partitions with fixed number of even-indexed and odd-indexed odd parts, J. Number Theory 167 (2016), 7–30.
- C. E. Boulet, A four-parameter partition identity, The Ramanujan Journal, 12 no. 3 (2006): 315–320.
- S. Capparelli, Vertex operator relations for affine algebras and combinatorial identities, PhD thesis, Rutgers University, 1988.
- M. Ishikawa and J. Zeng, The Andrews-Stanley partition function and Al-Salam-Chihara polynomials, Discrete Mathematics, 309 no.1 (2009): 151–175.
- C. D. Savage and A. V. Sills, On an identity of Gessel and Stanton and the new little Göllnitz identities, Advances in Applied Mathematics 46 no.1 (2011): 563–575.

Thank You! Any comments/questions?