The Alternating Group and Noncrossing Partitions

PHILIPPE NADEAU (CNRS & Université Lyon 1) Joint work with HENRI MÜHLE (TU Dresden)

ESI, 17.10.2017

Permutations and generators

Let \mathfrak{S}_n be the set of permutations of $\{1, \ldots, n\}$.

 \mathfrak{S}_n has many standard sets of generators : elementary transpositions (i,i+1), star transpositions (1,i), the set of transpositions $C_2 = \{(i,j), 1 \leq i < j \leq n\}$, the 2-element set $\{(1,2),(1,\ldots,n)\},\ldots$

Permutations and generators

Let \mathfrak{S}_n be the set of permutations of $\{1, \ldots, n\}$.

 \mathfrak{S}_n has many standard sets of generators : elementary transpositions (i, i + 1), star transpositions (1, i), the set of transpositions $C_2 = \{(i, j), 1 \leq i < j \leq n\}$, the 2-element set $\{(1, 2), (1, \ldots, n)\},\ldots$

More generally, for $k \ge 2$ we can consider the set C_k of *k*-cycles in \mathfrak{S}_n . These are closed under conjugation.

Remark If k is even, C_k generates \mathfrak{S}_n while if k is odd, C_k generates the alternating group \mathfrak{A}_n .

Permutations and generators

Let \mathfrak{S}_n be the set of permutations of $\{1, \ldots, n\}$.

 \mathfrak{S}_n has many standard sets of generators : elementary transpositions (i, i + 1), star transpositions (1, i), the set of transpositions $C_2 = \{(i, j), 1 \leq i < j \leq n\}$, the 2-element set $\{(1, 2), (1, \ldots, n)\},\ldots$

More generally, for $k \ge 2$ we can consider the set C_k of *k*-cycles in \mathfrak{S}_n . These are closed under conjugation.

Remark If k is even, C_k generates \mathfrak{S}_n while if k is odd, C_k generates the alternating group \mathfrak{A}_n .

In this talk we will be interested in \mathfrak{A}_n with the set C_3 of 3-cycles as generators.

We recall that $x \in \mathfrak{A}_n$ iff x has an even number of even cycles in its cycle decomposition.

Generated Group

Let G be a group with a given set of generators \mathcal{T} . The pair (G, \mathcal{T}) forms a generated group.

Length: given $g \in G$, define $\ell_{\mathcal{T}}(g)$ to be the smallest k such that $g = t_1 \cdots t_k$ for certain $t_i \in \mathcal{T}$.

Order: given $g, h \in G$, write $g \leq_{\mathcal{T}} h$ if

$$\ell_{\mathcal{T}}(g) + \ell_{\mathcal{T}}(g^{-1}h) = \ell_{\mathcal{T}}(h).$$

Generated Group

Let G be a group with a given set of generators \mathcal{T} . The pair (G, \mathcal{T}) forms a generated group.

Length: given $g \in G$, define $\ell_{\mathcal{T}}(g)$ to be the smallest k such that $g = t_1 \cdots t_k$ for certain $t_i \in \mathcal{T}$.

Order: given $g, h \in G$, write $g \leq_{\mathcal{T}} h$ if

$$\ell_{\mathcal{T}}(g) + \ell_{\mathcal{T}}(g^{-1}h) = \ell_{\mathcal{T}}(h).$$

 \rightarrow These notions have a natural interpretation inside the (right) Cayley graph of (G, \mathcal{T}) : the length of x is its distance to the identity e, while x is smaller than y if it lies one a geodesic from e to y.

For each generated group we get a graded poset $(G, \leq_{\mathcal{T}})$.

In this talk

We will study the combinatorics of the poset $(\mathfrak{A}_n, \leq_{C_3})$:

- Rank function
- Covering relations
- Interval structure
- Enumeration of chains

•

We will compare our results with the well-known corresponding ones for (\mathfrak{S}_n, C_2) , which is where noncrossing partitions occur naturally.

We use the subscripts $\mathbf{2}, \mathbf{3}$ instead of C_2, C_3 , so that our object of study is $(\mathfrak{A}_n, \leq_{\mathbf{3}})$.

Rank function

Given $x \in \mathfrak{S}_n$, one has $\ell_2(x) = n - \operatorname{cyc}(x)$ where $\operatorname{cyc}(x)$ denotes the number of cycles of x (including fixed points). To prove this well-known result, notice that multiplying by a transposition either cuts a cycle or joins two cycles.

Rank function

Given $x \in \mathfrak{S}_n$, one has $\ell_2(x) = n - \operatorname{cyc}(x)$ where $\operatorname{cyc}(x)$ denotes the number of cycles of x (including fixed points). To prove this well-known result, notice that multiplying by a transposition either cuts a cycle or joins two cycles.

Theorem[Herzog-Reid '76][Mühle-N] For any $x \in \mathfrak{A}_n$,

$$\ell_{\mathbf{3}}(x) = \frac{n - \text{oddcyc}(x)}{2}$$

The proof follows the same line as for ℓ_2 . The key is to figure out the effect on oddcyc of the multiplication by a 3-cycle (remark that (ijk) = (ij)(jk).)

Cover relations

We write $x \leq y$ if x < y and there is no z such that x < z < y($\Leftrightarrow \ell(y) = \ell(x) + 1$ in a graded poset).

One has $x \lessdot_2 y$ in \mathfrak{S}_n if and only if x is obtained by cutting a cycle of y in two.

Cover relations

We write $x \lt y$ if $x \lt y$ and there is no z such that $x \lt z \lt y$ ($\Leftrightarrow \ell(y) = \ell(x) + 1$ in a graded poset).

One has $x \lessdot_2 y$ in \mathfrak{S}_n if and only if x is obtained by cutting a cycle of y in two.

The case of \leq_3 is more involved:

Proposition[Mühle-N] $x \leq y$ in \mathfrak{A}_n if and only if x is obtained by one of the following operations on y:

- 1. Cut an odd cycle of y into three odd cycles.
- 2. Cut an even cycle of y into two odd cycles and one even cycle.
- 3. Cut an even cycle of y into two odd cycles, and join one of these with another even cycle of y.

Decomposition of intervals

It is easily shown that when \mathcal{T} is closed under conjugation, $[x, y]_{\mathcal{T}}$ is isomorphic to $[e, x^{-1}y]_{\mathcal{T}}$, so we can focus on intervals of this form.

If σ has cycles $(\zeta_i)_i$, then one has a simple decomposition

$$[e,\sigma]_{\mathbf{2}} \simeq \prod_{i} [e,\zeta_i]_{\mathbf{2}}$$

Decomposition of intervals

It is easily shown that when \mathcal{T} is closed under conjugation, $[x, y]_{\mathcal{T}}$ is isomorphic to $[e, x^{-1}y]_{\mathcal{T}}$, so we can focus on intervals of this form.

If σ has cycles $(\zeta_i)_i$, then one has a simple decomposition

$$[e,\sigma]_{\mathbf{2}} \simeq \prod_{i} [e,\zeta_i]_{\mathbf{2}}$$

Proposition[Mühle-N] Let $x \in \mathfrak{A}_N$. Let $(\zeta_i)_i$ be the odd cycles of x and let ξ be the product of its even cycles. Then

$$[e, x]_{\mathbf{3}} \simeq \prod_{i} [e, \zeta_i]_{\mathbf{3}} \times [e, \xi]_{\mathbf{3}}$$

Odd cycles and Noncrossing Partitions

Assume y only has odd cycles. Then the cover relations imply that any permutation $x \leq_3 y$ only has odd cycles also.

It follows that each such interval $[x, y]_3$ is isomorphic to $\prod_i \mathcal{ENC}_{2k_i+1}$ where $2k_i + 1$ are the cycle sizes of $x^{-1}y$ and

 $\mathcal{ENC}_{2k+1} := [e, (1, \dots, 2k+1)]_{\mathbf{3}}.$

Odd cycles and Noncrossing Partitions

Assume y only has odd cycles. Then the cover relations imply that any permutation $x \leq_3 y$ only has odd cycles also.

It follows that each such interval $[x, y]_3$ is isomorphic to $\prod_i \mathcal{ENC}_{2k_i+1}$ where $2k_i + 1$ are the cycle sizes of $x^{-1}y$ and

$$\mathcal{ENC}_{2k+1} := [e, (1, \dots, 2k+1)]_{\mathbf{3}}.$$

Now let $\mathcal{NC}_n = [e, (1 \cdots n)]_2$: by a result of [Biane '97] this is naturally isomorphic to the noncrossing partition lattice.

Odd cycles and Noncrossing Partitions

Assume y only has odd cycles. Then the cover relations imply that any permutation $x \leq_3 y$ only has odd cycles also.

It follows that each such interval $[x, y]_3$ is isomorphic to $\prod_i \mathcal{ENC}_{2k_i+1}$ where $2k_i + 1$ are the cycle sizes of $x^{-1}y$ and

$$\mathcal{ENC}_{2k+1} := [e, (1, \dots, 2k+1)]_{\mathbf{3}}.$$

Now let $\mathcal{NC}_n = [e, (1 \cdots n)]_2$: by a result of [Biane '97] this is naturally isomorphic to the noncrossing partition lattice.

Theorem[Mühle-N] $x \in \mathcal{ENC}_{2n+1}$ if and only if $x \in \mathcal{NC}_{2n+1}$ and each cycle $(a_1 < \cdots < a_{2p+1})$ of x satisfies that $a_{i+1} - a_i$ is odd for all i < 2p + 1. This realizes \mathcal{ENC}_{2n+1} as an (induced) subposet of \mathcal{NC}_{2n+1} .

The poset $\mathcal{ENC7} = [e, (1234567)]_{3}$

It is not a lattice, contrary to \mathcal{NC}_n .

Enumeration

The zeta polynomial $Z(\mathcal{P}, q)$ of a finite poset \mathcal{P} is the poynomial in q such that $Z(\mathcal{P}, m)$ is the number of chains of \mathcal{P} with m-1 elements $x_1 \leq x_2 \leq \cdots \leq x_{m-1}$.

Enumeration

The zeta polynomial $Z(\mathcal{P}, q)$ of a finite poset \mathcal{P} is the poynomial in q such that $Z(\mathcal{P}, m)$ is the number of chains of \mathcal{P} with m-1 elements $x_1 \leq x_2 \leq \cdots \leq x_{m-1}$.

Theorem[Mühle-N] For
$$n \ge 1$$
,

$$Z(\mathcal{ENC}_{2n+1}, q) = \frac{q}{(2n+1)q - n} \binom{(2n+1)q - n}{n}.$$

The zeta polynomial for \mathcal{NC}_n is $\frac{1}{n} \binom{nq}{n-1}$ [Kreweras].

Enumeration

The zeta polynomial $Z(\mathcal{P}, q)$ of a finite poset \mathcal{P} is the poynomial in q such that $Z(\mathcal{P}, m)$ is the number of chains of \mathcal{P} with m-1 elements $x_1 \leq x_2 \leq \cdots \leq x_{m-1}$.

Theorem[Mühle-N] For
$$n \ge 1$$
,

$$Z(\mathcal{ENC}_{2n+1}, q) = \frac{q}{(2n+1)q - n} \binom{(2n+1)q - n}{n}.$$

The zeta polynomial for \mathcal{NC}_n is $\frac{1}{n} \binom{nq}{n-1}$ [Kreweras].

Corollary \mathcal{ENC}_{2n+1} has cardinality $\frac{1}{n+1}\binom{3n+1}{n}$, Möbius number $(-1)^n \frac{1}{4n+1}\binom{4n+1}{n}$ and number of maximal chains equal to $(2n+1)^{n-1}$.

Remark Bijective proofs exist for some of these results.

Consider a generated group (G, \mathcal{T}) and $g \in G$. The expressions $t_1 \dots t_k = g$ with $k = \ell_{\mathcal{T}}(g)$ form the set $\operatorname{Red}_{\mathcal{T}}(g)$ of reduced expressions of g (\Leftrightarrow the set of maximal chains in $[e, g]_{\mathcal{T}}$).

Consider a generated group (G, \mathcal{T}) and $g \in G$. The expressions $t_1 \dots t_k = g$ with $k = \ell_{\mathcal{T}}(g)$ form the set $\operatorname{Red}_{\mathcal{T}}(g)$ of reduced expressions of g (\Leftrightarrow the set of maximal chains in $[e, g]_{\mathcal{T}}$).

Assume now \mathcal{T} conjugation-invariant. Then for i < k one can define a bijection σ_i of $\operatorname{Red}_{\mathcal{T}}(g)$ by

$$\sigma_i \bullet t_1 \cdots t_i t_{i+1} \cdots t_k = t_1 \cdots t_{i+1} (t_{i+1}^{-1} t_i t_{i+1}) \cdots t_k$$

The σ_i actually define an action of the braid group B_k on $\operatorname{Red}_{\mathcal{T}}(g)$, the Hurwitz action.

Consider a generated group (G, \mathcal{T}) and $g \in G$. The expressions $t_1 \dots t_k = g$ with $k = \ell_{\mathcal{T}}(g)$ form the set $\operatorname{Red}_{\mathcal{T}}(g)$ of reduced expressions of g (\Leftrightarrow the set of maximal chains in $[e, g]_{\mathcal{T}}$).

Assume now \mathcal{T} conjugation-invariant. Then for i < k one can define a bijection σ_i of $\operatorname{Red}_{\mathcal{T}}(g)$ by

$$\sigma_i \bullet t_1 \cdots t_i t_{i+1} \cdots t_k = t_1 \cdots t_{i+1} (t_{i+1}^{-1} t_i t_{i+1}) \cdots t_k$$

The σ_i actually define an action of the braid group B_k on $\operatorname{Red}_{\mathcal{T}}(g)$, the Hurwitz action.

Remark In the case of the factorization of permutations, the orbits of this action correspond to flexible equivalence classes of the corresponding coverings of the Riemann sphere, cf. [Lando-Zvonkin '04].

Theorem Let $x \in \mathfrak{A}_N$ have 2k even cycles. The Hurwitz action on $\operatorname{Red}_{\mathbf{3}}(x)$ has $(2k)_k = (k+1)(k+2)\cdots(2k)$ orbits.

The important cases are k = 0 or 1, which actually correspond to the case of transitive factorizations (= connected coverings).

Theorem Let $x \in \mathfrak{A}_N$ have 2k even cycles. The Hurwitz action on $\operatorname{Red}_{\mathbf{3}}(x)$ has $(2k)_k = (k+1)(k+2)\cdots(2k)$ orbits.

The important cases are k = 0 or 1, which actually correspond to the case of transitive factorizations (= connected coverings).

Example (12345) has 5 factorizations forming a single orbit $\{(1\ 2\ 3)(3\ 4\ 5), (3\ 4\ 5)(1\ 2\ 5), (1\ 2\ 5)(2\ 3\ 4), (2\ 3\ 4)(1\ 4\ 5), (1\ 4\ 5)(1\ 2\ 3)\}$ while (12)(34) has 8 factorizations falling into 2 Hurwitz orbits $\{(1\ 2\ 3)(2\ 3\ 4), (2\ 3\ 4)(2\ 1\ 4), (2\ 1\ 4)(1\ 4\ 3), (1\ 4\ 3)(1\ 2\ 3)\}, (1\ 2\ 4)(2\ 4\ 3), (2\ 4\ 3)(2\ 1\ 3), (2\ 1\ 3)(1\ 3\ 4), (1\ 3\ 4)(1\ 2\ 4)\}.$

Generalizations

- Extension to nonnesting partitions, *m*-divisible noncrossing partitions.
- Generation by *k*-cycles.
- Extension to other Coxeter groups.