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Permutations and generators

Let Sn be the set of permutations of {1, . . . , n}.
Sn has many standard sets of generators : elementary
transpositions (i, i+ 1), star transpositions (1, i), the set of
transpositions C2 = {(i, j), 1 ≤ i < j ≤ n}, the 2-element set
{(1, 2), (1, . . . , n)},. . .
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Permutations and generators

Let Sn be the set of permutations of {1, . . . , n}.

More generally, for k ≥ 2 we can consider the set Ck of
k-cycles in Sn. These are closed under conjugation.

Remark If k is even, Ck generates Sn while if k is odd, Ck

generates the alternating group An.

In this talk we will be interested in An with the set C3 of
3-cycles as generators.

Sn has many standard sets of generators : elementary
transpositions (i, i+ 1), star transpositions (1, i), the set of
transpositions C2 = {(i, j), 1 ≤ i < j ≤ n}, the 2-element set
{(1, 2), (1, . . . , n)},. . .

We recall that x ∈ An iff x has an even number of even cycles
in its cycle decomposition.



Generated Group

Let G be a group with a given set of generators T . The pair
(G, T ) forms a generated group.

Length: given g ∈ G, define `T (g) to be the smallest k such
that g = t1 · · · tk for certain ti ∈ T .

Order: given g, h ∈ G, write g ≤T h if

`T (g) + `T (g
−1h) = `T (h).



Generated Group

Let G be a group with a given set of generators T . The pair
(G, T ) forms a generated group.

Length: given g ∈ G, define `T (g) to be the smallest k such
that g = t1 · · · tk for certain ti ∈ T .

Order: given g, h ∈ G, write g ≤T h if

`T (g) + `T (g
−1h) = `T (h).

→ These notions have a natural interpretation inside the
(right) Cayley graph of (G, T ): the length of x is its distance
to the identity e, while x is smaller than y if it lies one a
geodesic from e to y.

For each generated group we get a graded poset (G,≤T ).



In this talk

We will study the combinatorics of the poset (An,≤C3
) :

• Rank function
• Covering relations
• Interval structure
• Enumeration of chains
• ....

We will compare our results with the well-known corresponding
ones for (Sn, C2), which is where noncrossing partitions occur
naturally.

We use the subscripts 2,3 instead of C2, C3, so that our
object of study is (An,≤3).



Rank function

Given x ∈ Sn, one has `2(x) = n− cyc(x) where cyc(x)
denotes the number of cycles of x (including fixed points).

To prove this well-known result, notice that multiplying by a
transposition either cuts a cycle or joins two cycles.



Rank function

Given x ∈ Sn, one has `2(x) = n− cyc(x) where cyc(x)
denotes the number of cycles of x (including fixed points).

To prove this well-known result, notice that multiplying by a
transposition either cuts a cycle or joins two cycles.

Theorem[Herzog-Reid ’76][Mühle-N] For any x ∈ An,

`3(x) =
n− oddcyc(x)

2
.

The proof follows the same line as for `2. The key is to figure
out the effect on oddcyc of the multiplication by a 3-cycle
(remark that (ijk) = (ij)(jk).)



Cover relations

We write xl y if x < y and there is no z such that x < z < y
(⇔ `(y) = `(x) + 1 in a graded poset).

One has xl2 y in Sn if and only if x is obtained by cutting a
cycle of y in two.



Cover relations

Proposition[Mühle-N] xl3 y in An if and only if x is
obtained by one of the following operations on y:
1. Cut an odd cycle of y into three odd cycles.
2. Cut an even cycle of y into two odd cycles and one even

cycle.
3. Cut an even cycle of y into two odd cycles, and join one of

these with another even cycle of y.

We write xl y if x < y and there is no z such that x < z < y
(⇔ `(y) = `(x) + 1 in a graded poset).

One has xl2 y in Sn if and only if x is obtained by cutting a
cycle of y in two.

The case of ≤3 is more involved:



Decomposition of intervals

It is easily shown that when T is closed under conjugation,
[x, y]T is isomorphic to [e, x−1y]T , so we can focus on
intervals of this form.

If σ has cycles (ζi)i, then one has a simple decomposition

[e, σ]2 '
∏
i

[e, ζi]2



Decomposition of intervals

It is easily shown that when T is closed under conjugation,
[x, y]T is isomorphic to [e, x−1y]T , so we can focus on
intervals of this form.

If σ has cycles (ζi)i, then one has a simple decomposition

[e, σ]2 '
∏
i

[e, ζi]2

Proposition[Mühle-N] Let x ∈ AN . Let (ζi)i be the odd
cycles of x and let ξ be the product of its even cycles.Then

[e, x]3 '
∏
i

[e, ζi]3 × [e, ξ]3



Odd cycles and Noncrossing Partitions

Assume y only has odd cycles. Then the cover relations imply
that any permutation x ≤3 y only has odd cycles also.

It follows that each such interval [x, y]3 is isomorphic to∏
i ENC2ki+1 where 2ki + 1 are the cycle sizes of x−1y and

ENC2k+1 := [e, (1, . . . , 2k + 1)]3.
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Odd cycles and Noncrossing Partitions

Assume y only has odd cycles. Then the cover relations imply
that any permutation x ≤3 y only has odd cycles also.

It follows that each such interval [x, y]3 is isomorphic to∏
i ENC2ki+1 where 2ki + 1 are the cycle sizes of x−1y and

ENC2k+1 := [e, (1, . . . , 2k + 1)]3.

Now let NCn = [e, (1 · · ·n)]2: by a result of [Biane ’97] this is
naturally isomorphic to the noncrossing partition lattice.

Theorem[Mühle-N] x ∈ ENC2n+1 if and only if x ∈ NC2n+1

and each cycle (a1 < · · · < a2p+1) of x satisfies that ai+1 − ai
is odd for all i < 2p+ 1.
This realizes ENC2n+1 as an (induced) subposet of NC2n+1.



The poset ENC7 = [e, (1234567)]3

(1)

(1 6 7) (2 3 6) (4 5 6) (1 4 7) (2 3 4) (2 5 6) (1 2 7) (3 4 7) (5 6 7) (1 2 5) (3 4 5) (3 6 7) (1 2 3) (1 4 5)

(1 6 7)(3 4 5) (1 2 3 6 7) (1 2 3)(4 5 6) (1 4 5 6 7) (1 6 7)(2 3 4) (2 3 4 5 6) (1 2 7)(4 5 6) (1 2 3 4 7) (2 3 4)(5 6 7) (1 2 5 6 7) (1 2 7)(3 4 5) (3 4 5 6 7) (1 2 3)(5 6 7) (1 2 3 4 5)

(1 2 3 4 5 6 7)

It is not a lattice, contrary to NCn.



Enumeration

The zeta polynomial Z(P, q) of a finite poset P is the
poynomial in q such that Z(P,m) is the number of chains of
P with m− 1 elements x1 ≤ x2 ≤ · · · ≤ xm−1.



Enumeration

Theorem[Mühle-N] For n ≥ 1,

Z
(
ENC2n+1, q

)
=

q

(2n+ 1)q − n

(
(2n+ 1)q − n

n

)
.

The zeta polynomial Z(P, q) of a finite poset P is the
poynomial in q such that Z(P,m) is the number of chains of
P with m− 1 elements x1 ≤ x2 ≤ · · · ≤ xm−1.

The zeta polynomial for NCn is 1
n

(
nq
n−1
)

[Kreweras].



Enumeration

Theorem[Mühle-N] For n ≥ 1,

Z
(
ENC2n+1, q

)
=

q

(2n+ 1)q − n

(
(2n+ 1)q − n

n

)
.

The zeta polynomial Z(P, q) of a finite poset P is the
poynomial in q such that Z(P,m) is the number of chains of
P with m− 1 elements x1 ≤ x2 ≤ · · · ≤ xm−1.

Corollary ENC2n+1 has cardinality 1
n+1

(
3n+1

n

)
, Möbius number

(−1)n 1
4n+1

(
4n+1

n

)
and number of maximal chains equal to

(2n+ 1)n−1.

Remark Bijective proofs exist for some of these results.

The zeta polynomial for NCn is 1
n

(
nq
n−1
)

[Kreweras].



Hurwitz action

Consider a generated group (G, T ) and g ∈ G.
The expressions t1 . . . tk = g with k = `T (g) form the set
RedT (g) of reduced expressions of g (⇔ the set of maximal
chains in [e, g]T ).
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Hurwitz action

Consider a generated group (G, T ) and g ∈ G.
The expressions t1 . . . tk = g with k = `T (g) form the set
RedT (g) of reduced expressions of g (⇔ the set of maximal
chains in [e, g]T ).

Assume now T conjugation-invariant. Then for i < k one can
define a bijection σi of RedT (g) by

σi • t1 · · · titi+1 · · · tk = t1 · · · ti+1(t
−1
i+1titi+1) · · · tk

The σi actually define an action of the braid group Bk on
RedT (g), the Hurwitz action.

Remark In the case of the factorization of permutations, the
orbits of this action correspond to flexible equivalence classes
of the corresponding coverings of the Riemann sphere, cf.
[Lando-Zvonkin ’04].



Hurwitz action

Theorem Let x ∈ AN have 2k even cycles.The Hurwitz action
on Red3(x) has (2k)k = (k + 1)(k + 2) · · · (2k) orbits.

The important cases are k = 0 or 1, which actually correspond
to the case of transitive factorizations (= connected coverings).



Hurwitz action

Theorem Let x ∈ AN have 2k even cycles.The Hurwitz action
on Red3(x) has (2k)k = (k + 1)(k + 2) · · · (2k) orbits.

The important cases are k = 0 or 1, which actually correspond
to the case of transitive factorizations (= connected coverings).

Example (12345) has 5 factorizations forming a single orbit

{(1 2 3)(3 4 5), (3 4 5)(1 2 5), (1 2 5)(2 3 4), (2 3 4)(1 4 5), (1 4 5)(1 2 3)}

{(1 2 3)(2 3 4),(2 3 4)(2 1 4),(2 1 4)(1 4 3), (1 4 3)(1 2 3)},
{(1 2 4)(2 4 3),(2 4 3)(2 1 3),(2 1 3)(1 3 4), (1 3 4)(1 2 4)}.

while (12)(34) has 8 factorizations falling into 2 Hurwitz orbits



Generalizations

• Generation by k-cycles.

• Extension to other Coxeter groups.

• Extension to nonnesting partitions, m-divisible noncrossing
partitions.


