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Abstract

Abstract:

We give a formula in terms of families of non-intersecting lattice
paths for iterated actions of the birational rowmotion map on a
product of two chains. Birational rowmotion is an action on the
space of assignments of rational functions to the elements of a
poset. It is lifted from the well-studied rowmotion (aka “Panyushev
Complementation”) map on order ideals (equivariantly on
antichains) of a partially ordered set P, which when iterated on
special posets has unexpectedly nice properties in terms of
periodicity, cyclic sieving, and homomesy (constant averages for
each orbit). Darij Grinberg has contributed an implementation of
this map to SageMath, which the authors found invaluable for
numerical experiments and making conjectures.
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Outline & Setting

1 Classical (combinatorial) rowmotion;
2 Birational rowmotion;
3 Lattice Path Formula for birational rowmotion on rectangular

posets;
4 Consequences: periodicity, reciprocity, and homomesy.
5 Key Lemma: Colorful bijections on pairs of families of NILPs

Motivations and Connections

Classical rowmotion is closely related to the Auslander-Reiten
translation in quivers arising in certain special posets (e.g.,
rectangles) [2].

Birational rowmotion can be related to Y -systems of type
Am × An described in Zamolodchikov periodicity [Rob16, §4.4].
The orbits of these actions all have natural homomesic
statistics [1, EiPr13, EiPr14], though that is not our focus here.

Periodicity of these systems is generally nontrivial to prove.



Classical rowmotion

Classical rowmotion is the rowmotion studied by Striker-Williams
(arXiv:1108.1172). It has appeared many times before, under
different guises:

Brouwer-Schrijver (1974) (as a permutation of the antichains),

Fon-der-Flaass (1993) (as a permutation of the antichains),

Cameron-Fon-der-Flaass (1995) (as a permutation of the
monotone Boolean functions),

Panyushev (2008), Armstrong-Stump-Thomas (2011) (as a
permutation of the antichains or “nonnesting partitions”, with
relations to Lie theory).



Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map
r : J(P) −→ J(P)

sending every order ideal S to a new order ideal r(S) generated by
the minimal elements of P \ S .

Example: Let S be the following order ideal

Let S be the following order ideal (indicated by the  ’s):

# #

 # #

  



Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map
r : J(P) −→ J(P)

sending every order ideal S to a new order ideal r(S) generated by
the minimal elements of P \ S .

Example: Let S be the following order ideal

Mark M (the minimal elements of the complement) in blue.

# #

   

  



Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map
r : J(P) −→ J(P)

sending every order ideal S to a new order ideal r(S) generated by
the minimal elements of P \ S .

Example: Let S be the following order ideal

Remove the old order ideal:

# #

#   

# #



Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map
r : J(P) −→ J(P)

sending every order ideal S to a new order ideal r(S) generated by
the minimal elements of P \ S .

Example: Let S be the following order ideal

r(S) is the order ideal generated by M (“everything below M”):

# #

#   

  



Earlier Examples Revisited

We can think of these orbits also as a dynamic on order ideals.

◦
◦ ◦

→ ◦
• •

→ •
• •

→ ◦
◦ ◦

◦
• ◦

→ ◦
◦ •

→ ◦
• ◦



Rowmotion orbits

◦
• •

•

→ •
• •

•

→ ◦

◦ ◦

◦

→ ◦
◦ ◦

•

→ ◦
• •

•

◦

• ◦

•

→ ◦
◦ •

•

→ ◦

• ◦

•



Classical rowmotion: properties

Classical rowmotion is a permutation of J(P), hence has finite order.
This order can be fairly large.

However, for some types of P, the order can be explicitly
computed or bounded from above.

See Striker-Williams for an exposition of known results.

If P is a p × q-rectangle:

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

(shown here for p = 2 and q = 3), then ord (r) = p + q.



Classical rowmotion: properties

Classical rowmotion is a permutation of J(P), hence has finite order.
This order can be fairly large.

However, for some types of P, the order can be explicitly
computed or bounded from above.

See Striker-Williams for an exposition of known results.

If P is a p × q-rectangle:

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

(shown here for p = 2 and q = 3), then ord (r) = p + q.



Classical rowmotion: properties

Example:
Let S be the order ideal of the 2× 3-rectangle [0, 1]× [0, 2] given by:

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: properties

Example:
r(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: properties

Example:
r2(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: properties

Example:
r3(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: properties

Example:
r4(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: properties

Example:
r5(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

which is precisely the S we started with.

ord(r) = p + q = 2 + 3 = 5.



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into
many small operations, each an involution.

Define tv (S) as:
S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains
an order ideal, i.e., within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P, then the v-toggle is
the map tv : J(P) → J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are
in S already;
S \ {v}, if v is in S but none of the elements of P covering v is
in S ;
S otherwise.

Note that t2v = id.
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many small operations, each an involution.
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S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains
an order ideal, i.e., within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P, then the v-toggle is
the map tv : J(P) → J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are
in S already;
S \ {v}, if v is in S but none of the elements of P covering v is
in S ;
S otherwise.

Note that t2v = id.



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into
many small operations, each an involution.

Define tv (S) as:
S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains
an order ideal, i.e., within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P, then the v-toggle is
the map tv : J(P) → J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are
in S already;
S \ {v}, if v is in S but none of the elements of P covering v is
in S ;
S otherwise.

Note that t2v = id.



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:

Start with this order ideal S :

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:

First apply t(1,1), which changes nothing:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:

Then apply t(1,0), which removes (1, 0) from the order ideal:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:

Then apply t(0,1), which adds (0, 1) to the order ideal:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:

Finally apply t(0,0), which changes nothing:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:

So this is S −→ r(S):

(1, 1)

(1, 0) (0, 1)

(0, 0)

−→ (1, 1)

(1, 0) (0, 1)

(0, 0)



Generalizing to the piece-wise linear setting

The decomposition of classical rowmotion into toggles allows us to
define a piecewise-linear (PL) version of rowmotion acting on
functions on a poset.

Let P be a poset, with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
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Generalizing to the piecewise-linear setting

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Note that the interval [minz ·>x f (z),maxw<· x f (w)] is precisely the
set of values that f ′(x) could have so as to satisfy the
order-preserving condition.

if f ′(y) = f (y) for all y ̸= x , the map that sends

f (x) to min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

is just the affine involution that swaps the endpoints.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z ·>x

f (z) + max
w<· x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply
flip-maps from top to bottom, to get piecewise-linear rowmotion:

.8 .6 .6

.4 .3

σN

→ .4 .3

σW

→ .3 .3

.1 .1 .1

.6 .6
σE

→ .3 .4

σS

→ .3 .4

.1 .2

(We successively flip at N = (1, 1), W = (1, 0), E = (0, 1), and
S = (0, 0) in order.)



How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Start with this order ideal S :

(1, 1)

(1, 0) (0, 1)

(0, 0)



How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Translated to the PL setting:

1

0 1

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

First apply t(1,1), which changes nothing:

1

0 1

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Then apply t(1,0), which removes (1, 0) from the order ideal:

1

1 1

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Then apply t(0,1), which adds (0, 1) to the order ideal:

1

1 0

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Finally apply t(0,0), which changes nothing:

1

1 0

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

So this is S −→ r(S):

(1, 1)

(1, 0) (0, 1)

(0, 0)

−→ (1, 1)

(1, 0) (0, 1)

(0, 0)



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary
ring operations (+, ·) with the tropical operations (max,+). In the
piecewise-linear (PL) category of the order polytope studied above,
our flipping-map at x replaced the value of a function f : P → [0, 1]
at a point x ∈ P with f ′, where

f ′(x) := min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

We can“detropicalize” this flip map and apply it to an assignment

f : P → R(x) of rational functions to the nodes of the poset, using
that

min(zi ) = −max(−zi ), to get

f ′(x) =

∑
w<· x f (w)

f (x)
∑

z ·>x
1

f (z)



Generalizing to the birational setting

The rowmotion map r is a map of 0-1 labelings of P. It has a
natural generalization to labelings of P by real numbers in
[0, 1], i.e., the order polytope of P. Toggles get replaced by
piecewise-linear toggling operations that involve max, min, and
+.

Detropicalizing these toggles leads to the definition below of
birational toggling. Results at the birational level imply those
at the order polytope and combinatorial level.

This is originally due to Einstein and Propp [EiPr13, EiPr14].
Another exposition of these ideas can be found in [Rob16],
from the IMA volume Recent Trends in Combinatorics.



Birational rowmotion

Let P be a finite poset. We define P̂ to be the poset obtained
by adjoining two new elements 0 and 1 to P and forcing

0̂ to be less than every other element, and
1̂ to be greater than every other element.

Let K be a field.

A K-labelling of P will mean a function P̂ → K.

The values of such a function will be called the labels of the
labelling.

We will represent labellings by drawing the labels on the
vertices of the Hasse diagram of P̂.



Birational rowmotion

For any v ∈ P, define the birational v-toggle as the rational

map Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =



f (w) , if w ̸= v ;

1

f (v)
·

∑
u∈P̂;
u⋖v

f (u)

∑
u∈P̂;
u⋗v

1

f (u)

, if w = v

for all w ∈ P̂.

That is,

invert the label at v ,
multiply by the sum of the labels at vertices covered by v ,
multiply by the parallel sum of the labels at vertices covering
v .



Birational rowmotion

For any v ∈ P, define the birational v-toggle as the rational

map Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =



f (w) , if w ̸= v ;

1

f (v)
·

∑
u∈P̂;
u⋖v

f (u)

∑
u∈P̂;
u⋗v

1

f (u)

, if w = v

for all w ∈ P̂.

Notice that this is a local change to the label at v ; all other
labels stay the same.

We have T 2
v = id (on the range of Tv ), and Tv is a birational

map.



Birational rowmotion: definition

We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P.

This is indeed independent of the linear extension, because:

Tv and Tw commute whenever v and w are incomparable (even
whenever they are not adjacent in the Hasse diagram of P);
we can get from any linear extension to any other by switching
incomparable adjacent elements.



Birational rowmotion: definition

We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P.

This is indeed independent of the linear extension, because:

Tv and Tw commute whenever v and w are incomparable (even
whenever they are not adjacent in the Hasse diagram of P);
we can get from any linear extension to any other by switching
incomparable adjacent elements.



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension
((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension
((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)f

1

z

x y

w

1

1

1(x+y)
z

x y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).
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Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,0)T(0,1)T(1,0)T(1,1)f = ρB f

1

z

x y

w

1

1

1(x+y)
z

1w(x+y)
xz

1w(x+y)
yz

1
z

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion orbit on a product of chains

Example: Iterating this procedure we get:

(x+y)
z

ρB f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

ρ2B f = 1
y

1
x

z
x+y ,

1
w

ρ3B f = yz
(x+y)w

xz
(x+y)w

xy
(x+y)w ,

z

ρ4B f = x y

w .

Notice that ρ4B f = f , which generalizes to ρr+s+2
B f = f for

P = [0, r ]× [0, s] [Grinberg-R 2015]. Notice also “antipodal
reciprocity”.



Birational Rowmotion on the Rectangular Poset

We now give a rational function formula for the values of iterated
birational rowmotion ρk+1

B (i , j) for (i , j) ∈ [0, r ]× [0, s] and
k ∈ [0, r + s + 1].

1) Let
∨

(m,n) := {(u, v) : (u, v) ≥ (m, n)} be the principal order

filter at (m, n), 7k
(m,n)be the rank-selected subposet, of elements in∨

(m,n) whose rank (within
∨

(m,n)) is at least k − 1 and whose
corank is at most k − 1.

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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(m,n) := {(u, v) : (u, v) ≥ (m, n)} be the principal order

filter at (m, n), 7k
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Birational Rowmotion on the Rectangular Poset

2) Let s1, s2, . . . , sk be the k minimal elements and let t1, t2, . . . , tk
be the k maximal elements of 7k

(m,n).

Let Aij :=
∑

z⋖(i,j) xz

x(i,j)
=

xi,j−1+xi−1,j

xij
. We set xi ,j = 0 for (i , j) ̸∈ P

and A00 =
1
x00

(working in P̂).

Given a triple (k ,m, n) ∈ N3, we define a polynomial φk(m,n) in
terms of the Aij ’s as follows.
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x(i,j)
=

xi,j−1+xi−1,j

xij
. We set xi ,j = 0 for (i , j) ̸∈ P
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1
x00

(working in P̂).

Given a triple (k ,m, n) ∈ N3, we define a polynomial φk(m,n) in
terms of the Aij ’s as follows.



Birational Rowmotion on the Rectangular Poset

We define a lattice path of length k within P = [0, r ]× [0, s] to
be a sequence v1, v2, . . . , vk of elements of P such that each
difference of successive elements vi − vi−1 is either (1, 0) or (0, 1)
for each i ∈ [k]. We call a collection of lattice paths
non-intersecting if no two of them share a common vertex.

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)



Birational Rowmotion on the Rectangular Poset

3) Let Sk(m, n) be the set of non-intersecting lattice paths in
7k
(m,n), from {s1, s2, . . . , sk} to {t1, t2, . . . , tk}. Let

L = (L1, L2, . . . Lk) ∈ Sk
k (m, n) denote a k-tuple of such lattice

paths.

4) Define φk(m, n) :=∑
L∈Sk

k (m,n)

∏
(i,j)∈7k

(m,n))

(i ,j )̸∈L1∪L2∪···∪Lk

Aij .

≈Thm:

ρk+1
B (i , j) =

φk(i − k , j − k)

φk+1(i − k, j − k)

EG: ρ2B(1, 1) =
φ1(0, 0)

φ2(0, 0)
.

=
sum of 6 quartic terms in Aij

A20 + A11 + A02

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)



Main Theorem (Musiker-R 2017+)

Fix k ∈ [0, r + s + 1], and let ρk+1
B (i , j) denote the rational function

associated to the poset element (i , j) after (k + 1) applications of
the birational rowmotion map to the generic initial labeling of
P = [0, r ]× [0, s]. Set [α]+ := max{α, 0} and
M = [k − i ]+ + [k − j ]+.

We get the following formulae:

(a1) When M = 0, i.e., (i − k , j − k) still lies in the poset
[0, r ]× [0, s]:

ρk+1
B (i , j) =

φk(i − k , j − k)

φk+1(i − k , j − k)

where φt(v ,w) is defined in 4) above.

(a2) When 0 < M ≤ k :

ρk+1
B (i , j) = µ([k−j]+,[k−i ]+)

(
φk−M(i − k +M, j − k +M)

φk−M+1(i − k +M, j − k +M)

)
where µ(a,b) is the operator that takes a rational function in
{A(u,v)} and simply shifts each index in each factor of each term:
A(u,v) 7→ A(u−a,v−b).
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Main Theorem (Musiker-R 2017+)

Fix k ∈ [0, r + s + 1] and set M = [k − i ]+ + [k − j ]+. After (k + 1)
applications of the birational rowmotion map to the generic initial labeling
of P = [0, r ]× [0, s] we get:

(a) When 0 ≤ M ≤ k :

ρk+1
B (i , j) = µ([k−j]+,[k−i ]+)

(
φk−M(i − k +M, j − k +M)

φk−M+1(i − k +M, j − k +M)

)
where φt(v ,w) and µ(a,b) are as defined in 4) and 5) above.

(b) When M ≥ k : ρk+1
B (i , j) = 1/ρk−i−j

B (r − i , s − j), which is
well-defined by part (a).

Remark: We prove that our formulae in (a) and (b) agree when
M = k , allowing us to give a new proof of periodicity:
ρr+s+2+d
B = ρdB ; thus we get a formula for all iterations of the

birational rowmotion map.



Main Theorem (Musiker-R 2017+)

Fix k ∈ [0, r + s + 1] and set M = [k − i ]+ + [k − j ]+. After (k + 1)
applications of the birational rowmotion map to the generic initial labeling
of P = [0, r ]× [0, s] we get:

(a) When 0 ≤ M ≤ k :

ρk+1
B (i , j) = µ([k−j]+,[k−i ]+)

(
φk−M(i − k +M, j − k +M)

φk−M+1(i − k +M, j − k +M)

)
where φt(v ,w) and µ(a,b) are as defined in 4) and 5) above.

(b) When M ≥ k : ρk+1
B (i , j) = 1/ρk−i−j

B (r − i , s − j), which is
well-defined by part (a).

Remark: We prove that our formulae in (a) and (b) agree when
M = k , allowing us to give a new proof of periodicity:
ρr+s+2+d
B = ρdB ; thus we get a formula for all iterations of the

birational rowmotion map.



Corollaries of the Main Theorem

Corollary

For k ≤ min{i , j}, ρk+1
B (i , j) = φk (i−k,j−k)

φk+1(i−k,j−k) .

Corollary ([GrRo15, Thm. 30])

The birational rowmotion map ρB on the product of two chains
P = [0, r ]× [0, s] is periodic, with period r + s + 2.

Corollary ([GrRo15, Thm. 32])

The birational rowmotion map ρB on the product of two chains
P = [0, r ]× [0, s] satisfies the following reciprocity:
ρi+j+1
B = 1/ρ0B(r − i , s − j) = 1

xr−i,s−j
.



Example in Further Depth



Example in Further Depth

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = φk (i−k,j−k)

φk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2,
and j = 1 throughout. 32
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Example in Further Depth

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = φk (i−k,j−k)

φk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2,
and j = 1 throughout.

When k = 0, M = 0 and we get

ρ1B(2, 1) =
φ0(2, 1)

φ1(2, 1)
=

A21A22A31A32

A22 + A31
.
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P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2,
and j = 1 throughout.

When k = 1, we still have M = 0, and ρ2B(2, 1) =
φ1(1,0)
φ2(1,0)

=
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.
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Example in Further Depth

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = φk (i−k,j−k)

φk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2,
and j = 1 throughout.

When k = 2, we get M = [2− 2]+ + [2− 1]+ = 1 ≤ 2 = k . So by
part (a) of the main theorem we have

ρ3B(2, 1) = µ(1,0)

[
φ1(1, 0)

φ2(1, 0)

]
= (just shifting indices in the k = 1 formula)

A01A02A11A12 + A01A02A12A20 + A01A02A20A21 + A02A10A12A20 + A02A10A20A21 + A10A11A20A21

A02 + A11 + A20
.



Example in Further Depth

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = φk (i−k,j−k)

φk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2,
and j = 1 throughout.

When k = 3, we get M = [3− 2]+ + [3− 1]+ = 3 = k . Therefore,

ρ4B(2, 1) = µ(2,1)

[
φ0(2, 1)

φ1(2, 1)

]
= µ(2,1)

[
A21A22A31A32

A22 + A31

]
=

A00A01A10A11

A01 + A10
.

In this situation, we can also use part (b) of the main theorem to get

ρ4B(2, 1) = 1/ρ3−2−1
B (3− 2, 2− 1) = 1/ρ0B(1, 1) =

1

x11
.

The equality between these two expressions is easily checked.



Example in Further Depth

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = φk (i−k,j−k)

φk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2,
and j = 1 throughout.

When k = 4, we get M = [4− 2]+ + [4− 1]+ = 5 > k . Therefore,
by part (b) of the main theorem, then part (a),

ρ5B(2, 1) = 1/ρ4−2−1
B (3−2, 2−1) = 1/ρ1B(1, 1) =

φ1(1,1)
φ0(1,1)

= A12A22+A12A31+A21A31
A11A12A21A22A31A32

.

Each term in the numerator is associated with one of the three
lattice paths from (1, 1) to (3, 2) in P , while the denominator is just
the product of all A-variables in the principal order filter

∨
(1, 1).



Example in Further Depth

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = φk (i−k,j−k)

φk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2,
and j = 1 throughout.

When k = 5, we get M = [5− 2]+ + [5− 1]+ = 7 > k . Therefore,
by part (b) of the main theorem, then part (a),

ρ6B(2, 1) = 1/ρ5−2−1
B (3− 2, 2− 1) = 1/ρ2B(1, 1) =

φ2(0,0)
φ1(0,0)

= A02A12+A02A21+A11A21+A30A02+A30A11+A30A20
A sum of 10 degree-6 monomials in Aij

.

The numerator here represents the empty product, since the unique
(unordered) pair of lattice paths from s1 = (2, 1) and s2 = (1, 2) to
t1 = (3, 1) and t2 = (2, 2) covers all elements of 72

(1,1). The
denominator here is the same as the numerator of the previous case.



Example in Further Depth

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = φk (i−k,j−k)

φk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2,
and j = 1 throughout.

When k = 6, we get M = [6− 2]+ + [6− 1]+ = 9 > k . Therefore,
by part (b) of the main theorem, then part (a),

ρ7B(2, 1) = 1/ρ6−2−1
B (3−2, 2−1) = 1/ρ3B(1, 1) = µ(1,1)

[
φ1(1, 1)

φ0(1, 1)

]
=

µ(1,1)

[
A12A22 + A12A31 + A21A31

A11A11A21A22A31A32

]
=

A01A11 + A01A20 + A10A20

A00A01A10A11A20A21
= x21



Example in Further Depth

When k = 6, we get M = [6− 2]+ + [6− 1]+ = 9 > k . Therefore,
by part (b) of the main theorem, then part (a),

ρ7B(2, 1) = 1/ρ6−2−1
B (3−2, 2−1) = 1/ρ3B(1, 1) = µ(1,1)

[
φ1(1, 1)

φ0(1, 1)

]
=

µ(1,1)

[
A12A22 + A12A31 + A21A31

A11A11A21A22A31A32

]
=

A01A11 + A01A20 + A10A20

A00A01A10A11A20A21
= x21

The lattice paths involved here are the same as for the k = 4
computation.

We can deduce this by A00 = 1/x00,A10 = x00/x10,A01 = x00/x01,

A11 = (x10 + x01)/x11,A20 = x10/x20, and A21 = (x20 + x11)/x21.

Periodicity also kicks in: ρ7B(2, 1) = ρ0B(2, 1) = x21 using
(r + s + 2) = 7.



Sketch of Proof

The proof is a complicated triple induction on (i , j , k). Start with
k = 0 and work top down through the poset, repeat with k = 1, etc.

The key to making it work is the following lemma, and a variation
on it which includes the shifting µ(i ,j)’s.

Lemma

For 1 ≤ k ≤ min{i , j} we have the Plücker-like relation

φk(i − k , j − k)φk−1(i − k + 1, j − k + 1)

= φk(i − k + 1, j − k)φk−1(i − k, j − k + 1)

+φk(i − k , j − k + 1)φk−1(i − k + 1, j − k).

The proof of this involves a colorful bijection between families of
NILPs.



Sketch of Proof: Colorful Bjection

φk(i − k, j − k)φk−1(i − k + 1, j − k + 1) =

φk(i−k, j−k+1)φk−1(i−k+1, j−k)+φk(i−k+1, j−k)φk−1(i−k, j−k+1).

Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦



Sketch of Proof: Colorful Bjection

φk(i − k, j − k)φk−1(i − k + 1, j − k + 1) =

φk(i−k, j−k+1)φk−1(i−k+1, j−k)+φk(i−k+1, j−k)φk−1(i−k, j−k+1).
Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦



Sketch of Proof

We build bounce paths and twigs (paths of length one from ◦ to
×) starting from the bottom row of ◦’s.

Example (k=5):

× × × ×

◦EE
��

◦DD ◦ ◦ ◦

•EE • • • •
��
ZZ •
��
YY

•EE • • •
��
ZZ •

��

•DD
��

• YY
• YY • •

��
ZZ •
��

• ZZ •
��
ZZ •
��

•EE
• YY •

��
• • • • •EE

• YY × ×DD ×DD ×DD •EE
◦ ◦ ◦ ◦ ◦



Sketch of Proof

We then reverse the colors along the (k − 2) twigs and the one
bounce path from ◦ to × (rather than ◦ to ◦).

Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦



Sketch of Proof

Swap in the new colors and shift the ◦’s and ×’s in the bottom two
rows.

Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

◦ ◦ ◦ ◦ ◦ •

• × × × ×



Sketch of Proof

φk(i − k , j − k)φk−1(i − k + 1, j − k + 1) =
φk(i − k, j − k + 1)φk−1(i − k + 1, j − k)

+φk(i − k + 1, j − k)φk−1(i − k , j − k + 1).

Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

◦ ◦ ◦ ◦ ◦ •

• × × × ×



The final slide of this talk (before the references)

We’re happy to discuss this further with anyone who’s interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

Thanks very much for coming to this talk!

http://www.math.uconn.edu/~troby/research.html
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