A Galoisian Approach to Counting Walks

Michael F. Singer

Department of Mathematics North Carolina State University Raleigh, NC 27695-8205 singer@math.ncsu.edu

Workshop on "Enumerative Combinatorics" Erwin Schrödinger International Institute for Mathematics and Physics

October 16 - 20, 2017

- Talk 1: An Introduction to the Galois theory of difference equations
- > Talk 2: Walks, Difference Equations and Elliptic Curves

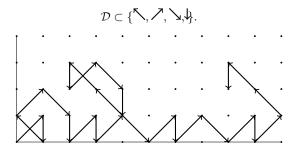
> Talk 2: Walks, Difference Equations and Elliptic Curves

Galois theory give us *computable* conditions to determine when generating functions satisfy or do not satisfy differential equations.

Consider the walks in the quarter plane starting from (0,0) with steps in a fixed set

$$\mathcal{D} \subset \{\leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow, \swarrow\}.$$

Example with possible directions



256 possible choices for \mathcal{D} . Triviality, Symmetries \Rightarrow 79 interesting ones.

 $q_{\mathcal{D},i,j,k}$ = the number of walks in \mathbb{N}^2 starting from (0,0) ending at (*i*, *j*) using *k* steps from \mathcal{D} .

Generating series: $Q_{\mathcal{D}}(x, y, t) := \sum_{i,j,k} q_{\mathcal{D},i,j,k} x^i y^j t^k$.

Classification problem: when is $Q_D(x, y, t)$

- Algebraic over $\mathbb{C}(x, y, t)$?
- Holonomic over $\mathbb{C}(x, y, t)$?(x-, y-, and t-holonomic)
- ▶ Differentially Algebraic over $\mathbb{C}(x, y, t)$? (*x*-,*y*-, and *t*-diff. algebraic)

 $q_{\mathcal{D},i,j,k}$ = the number of walks in \mathbb{N}^2 starting from (0,0) ending at (*i*, *j*) using *k* steps from \mathcal{D} .

Generating series: $Q_{\mathcal{D}}(x, y, t) := \sum_{i,j,k} q_{\mathcal{D},i,j,k} x^i y^j t^k$.

Classification problem: when is $Q_D(x, y, t)$

- Algebraic over $\mathbb{C}(x, y, t)$?
- Holonomic over $\mathbb{C}(x, y, t)$?(x-, y-, and t-holonomic)
- ▶ Differentially Algebraic over $\mathbb{C}(x, y, t)$? (*x*-,*y*-, and *t*-diff. algebraic)

f(x, y, t) is <u>x-holonomic</u> if for some *n* and $a_i \in \mathbb{C}(x, y, t)$,

$$a_n(x, y, t) \frac{\partial^n f}{\partial x^n} + \ldots + a_1(x, y, t) \frac{\partial f}{\partial x} + a_0(x, y, z) f = 0$$

 $q_{\mathcal{D},i,j,k}$ = the number of walks in \mathbb{N}^2 starting from (0,0) ending at (*i*, *j*) using *k* steps from \mathcal{D} .

Generating series: $Q_D(x, y, t) := \sum_{i,j,k} q_{D,i,j,k} x^i y^j t^k$.

Classification problem: when is $Q_D(x, y, t)$

- Algebraic over $\mathbb{C}(x, y, t)$?
- Holonomic over $\mathbb{C}(x, y, t)$? (x-, y-, and t-holonomic)
- ▶ Differentially Algebraic over $\mathbb{C}(x, y, t)$? (*x*-,*y*-, and *t*-diff. algebraic)

f(x, y, t) is x-differentially algebraic if for some *n* and polynomial $P \neq 0$,

$$P(x, y, t, f, \frac{\partial f}{\partial x}, \dots, \frac{\partial^n f}{\partial x^n}) = 0$$

Fayolle, lasnorodski, Malyshev (1999), Bousquet-Mélou, Mishna (2010) - associate to a set of steps \mathcal{D} ,

- an algebraic curve $E_{\mathcal{D}}$ of genus 0 or 1, and
- a group $G_{\mathcal{D}}$, finite or infinite.

Fayolle, lasnorodski, Malyshev (1999), Bousquet-Mélou, Mishna (2010) - associate to a set of steps \mathcal{D} ,

- an algebraic curve $E_{\mathcal{D}}$ of genus 0 or 1, and
- a group $G_{\mathcal{D}}$, finite or infinite.

Results: For the 79 walks

- ▶ $|G_D| < \infty$ for **23** walks $\Rightarrow Q_D(x, y, t)$ algebraic or holonomic. \rightarrow A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers, M. Mishna, ...
- $|G_{\mathcal{D}}| = \infty$ for 56 walks $\Rightarrow Q_{\mathcal{D}}(x, y, t)$ not holonomic.
 - ▶ 5 walks with genus(E_D) = 0 → S. Melzcer, M. Mishna, A. Rechnitzer, ...
 - ▶ 51 walks with genus(E_D) = 1 → A. Bostan, I. Kurkova, K. Raschel, B. Salvy, ...
- Differentially Algebraic???

Theorem (D-H-R-S, 2017a): For $t \in \mathbb{C} \setminus \overline{\mathbb{Q}}$

1. In 42 cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is not x-DA, $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y-DA.

2. In 9 cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is x-DA, $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is y-DA but neither is holon.

Theorem (D-H-R-S, 2017a): For $t \in \mathbb{C} \setminus \overline{\mathbb{Q}}$

1. In 42 cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is not x-DA, $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y-DA.

2. In 9 cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is x-DA, $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is y-DA but neither is holon.

• 1. implies $Q_{\mathcal{D}}(x, y, t)$ is not DA (and so not holon.) in these cases.

Theorem (D-H-R-S, 2017a): For $t \in \mathbb{C} \setminus \overline{\mathbb{Q}}$

1. In 42 cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is not x-DA, $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y-DA.

2. In 9 cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is x-DA, $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is y-DA but neither is holon.

• 1. implies $Q_{\mathcal{D}}(x, y, t)$ is not DA (and so not holon.) in these cases.

• 2+. first shown by O. Bernardi, M. Bousquet-Mélou, K. Raschel

Theorem (D-H-R-S, 2017a): For $t \in \mathbb{C} \setminus \overline{\mathbb{Q}}$

1. In 42 cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is not x-DA, $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y-DA.

2. In 9 cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is x-DA, $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is y-DA but neither is holon.

- 1. implies $Q_D(x, y, t)$ is not DA (and so not holon.) in these cases.
- 2+. first shown by O. Bernardi, M. Bousquet-Mélou, K. Raschel
- 1. true for weighted cases as well. See recent paper of Dreyfus/Raschel.

Theorem (D-H-R-S, 2017b): For $t \in \mathbb{R} \setminus \overline{\mathbb{Q}}$

In all cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$, is not x-DA and $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y-DA.

<u>Theorem (D-H-R-S, 2017b)</u>: For $t \in \mathbb{R} \setminus \overline{\mathbb{Q}}$ In all cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$, is not *x*-DA and $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not *y*-DA.

• This implies $Q_{\mathcal{D}}(x, y, t)$ is not DA (and so not holon.) in these cases.

<u>Theorem (D-H-R-S, 2017b)</u>: For $t \in \mathbb{R} \setminus \overline{\mathbb{Q}}$ In all cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$, is not *x*-DA and $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not *y*-DA.

- This implies $Q_{\mathcal{D}}(x, y, t)$ is not DA (and so not holon.) in these cases.
- True for weighted cases as well.

- Generalities about Walks
- ▶ Differential Transcendence of the 42 walks, $|G_D| = \infty$, genus(E_D) = 1.
- ▶ Differential Algebraicity of the 9 walks, $|G_D| = \infty$, genus $(E_D) = 1$.
- ▶ Differential Transcendence of the 5 walks, $|G_D| = \infty$, genus(E_D) = 0.

Generalities about Walks

Functional Equation of the Walk

 $q_{\mathcal{D},i,j,k}$ = the number of walks in \mathbb{N}^2 starting from (0,0) ending at (*i*, *j*) using *k* steps from \mathcal{D} .

Generating series: $Q_{\mathcal{D}}(x, y, t) := \sum_{i,j,k} q_{\mathcal{D},i,j,k} x^i y^j t^k$.

Step Inventory: $S_{\mathcal{D}}(x, y) = \sum_{(i,j)\in\mathcal{D}} x^i y^j$ Kernel of the Walk: $K_{\mathcal{D}}(x, y, t) = xy(1 - tS_{\mathcal{D}}(x, y))$ Functional Equation:

$$\begin{split} \mathcal{K}_{\mathcal{D}}(x,y,t) \mathcal{Q}_{\mathcal{D}}(x,y,t) &= \\ xy - \mathcal{K}_{\mathcal{D}}(x,0,t) \mathcal{Q}_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t) \mathcal{Q}_{\mathcal{D}}(0,y,t) \\ &+ \mathcal{K}_{\mathcal{D}}(0,0,t) \mathcal{Q}_{\mathcal{D}}(0,0,t). \end{split}$$

Step Inventory: $S_{\mathcal{D}}(x, y) = \sum_{(i,j) \in \mathcal{D}} x^i y^j$ Kernel of the Walk: $K_{\mathcal{D}}(x, y, t) = xy(1 - tS_{\mathcal{D}}(x, y))$ Functional Equation:

$$\begin{split} \mathcal{K}_{\mathcal{D}}(x,y,t) \mathcal{Q}_{\mathcal{D}}(x,y,t) &= \\ xy - \mathcal{K}_{\mathcal{D}}(x,0,t) \mathcal{Q}_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t) \mathcal{Q}_{\mathcal{D}}(0,y,t) \\ &+ \mathcal{K}_{\mathcal{D}}(0,0,t) \mathcal{Q}_{\mathcal{D}}(0,0,t). \end{split}$$

Step Inventory: $S_{\mathcal{D}}(x, y) = \sum_{(i,j) \in \mathcal{D}} x^i y^j$ Kernel of the Walk: $K_{\mathcal{D}}(x, y, t) = xy(1 - tS_{\mathcal{D}}(x, y))$ Functional Equation:

$$\begin{split} \mathcal{K}_{\mathcal{D}}(x,y,t) \mathcal{Q}_{\mathcal{D}}(x,y,t) &= \\ xy - \mathcal{K}_{\mathcal{D}}(x,0,t) \mathcal{Q}_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t) \mathcal{Q}_{\mathcal{D}}(0,y,t) \\ &+ \mathcal{K}_{\mathcal{D}}(0,0,t) \mathcal{Q}_{\mathcal{D}}(0,0,t). \end{split}$$

The Curve of the Walk is the curve

$$\boldsymbol{E}_{\mathcal{D}} = \overline{\{(x,y) \mid K_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$$

Step Inventory: $S_{\mathcal{D}}(x, y) = \sum_{(i,j) \in \mathcal{D}} x^i y^j$ Kernel of the Walk: $K_{\mathcal{D}}(x, y, t) = xy(1 - tS_{\mathcal{D}}(x, y))$ Functional Equation:

$$\begin{split} \mathcal{K}_{\mathcal{D}}(x,y,t) \mathcal{Q}_{\mathcal{D}}(x,y,t) &= \\ xy - \mathcal{K}_{\mathcal{D}}(x,0,t) \mathcal{Q}_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t) \mathcal{Q}_{\mathcal{D}}(0,y,t) \\ &+ \mathcal{K}_{\mathcal{D}}(0,0,t) \mathcal{Q}_{\mathcal{D}}(0,0,t). \end{split}$$

The Curve of the Walk is the curve

$$\boldsymbol{E}_{\mathcal{D}} = \overline{\{(x,y) \mid K_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$$

<u>Fact</u>: $E_{\mathcal{D}}$ is biquadratic and has genus 0 or 1.

Step Inventory: $S_{\mathcal{D}}(x, y) = \sum_{(i,j) \in \mathcal{D}} x^i y^j$ Kernel of the Walk: $K_{\mathcal{D}}(x, y, t) = xy(1 - tS_{\mathcal{D}}(x, y))$ Functional Equation:

$$\begin{split} \mathcal{K}_{\mathcal{D}}(x,y,t) \mathcal{Q}_{\mathcal{D}}(x,y,t) &= \\ xy - \mathcal{K}_{\mathcal{D}}(x,0,t) \mathcal{Q}_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t) \mathcal{Q}_{\mathcal{D}}(0,y,t) \\ &+ \mathcal{K}_{\mathcal{D}}(0,0,t) \mathcal{Q}_{\mathcal{D}}(0,0,t). \end{split}$$

The Curve of the Walk is the curve

$$\boldsymbol{E}_{\mathcal{D}} = \overline{\{(x,y) \mid K_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$$

<u>Fact</u>: $E_{\mathcal{D}}$ is biquadratic and has genus 0 or 1.

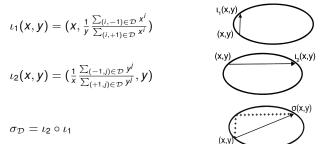
$$\underline{\mathsf{Ex:}} \ 1) \ \mathcal{D} = \underbrace{\mathsf{V}}_{\mathcal{D}} : xy - t(y^2 + x^2y^2 + x^2 + x) = 0 \ \Rightarrow g(E_{\mathcal{D}}) = 1$$

$$2) \ \mathcal{D} = \underbrace{\mathsf{V}}_{\mathcal{D}} : xy - t(y^2 + xy^2 + x^2) = 0 \ \Rightarrow g(E_{\mathcal{D}}) = 0$$
for $t \in \mathbb{C} \setminus \overline{\mathbb{Q}}$

$$\boldsymbol{E}_{\mathcal{D}} = \overline{\{(x,y) \mid K_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$$

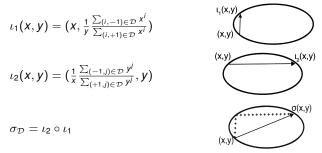
$$\boldsymbol{E}_{\mathcal{D}} = \overline{\{(x,y) \mid K_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$$

We define two involutions of E_{D} and an automorphism:



$$\boldsymbol{E}_{\mathcal{D}} = \overline{\{(x,y) \mid K_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$$

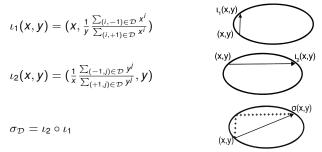
We define two involutions of E_{D} and an automorphism:



The Group of the Walk G_D is the group generated by ι_1, ι_2 .

$$\boldsymbol{E}_{\mathcal{D}} = \overline{\{(x,y) \mid K_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$$

We define two involutions of E_{D} and an automorphism:



The Group of the Walk G_D is the group generated by ι_1, ι_2 .

<u>Facts:</u> 1) $G_{\mathcal{D}}$ is infinite iff $\sigma_{\mathcal{D}}$ is infinite.

- 2) $g(E_{\mathcal{D}}) = 1 \Rightarrow \exists P \in E_{\mathcal{D}}$, s.t. $\sigma_{\mathcal{D}}(Q) = Q \oplus P$. $\sigma_{\mathcal{D}}$ is infinite iff *P* nontorsion.
- 3) Of the **79** interesting walks, $|G_D| = \infty$ for **56** walks, 5 with g = 0 and 51 with g = 1 when $t \in \mathbb{C} \setminus \overline{\mathbb{Q}}$ (Bousquet-Mélou/Mishna).

Differential Transcendence of the 42 walks, $|G_D| = \infty$, genus $(E_D) = 1$.

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Analysis: $\Gamma(x)$ extends merom. to the plane and $\Gamma(x + 1) = x\Gamma(x)$ so $f(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ satisfies

$$f(x+1)-f(x)=\frac{1}{x}.$$

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Analysis: $\Gamma(x)$ extends merom. to the plane and $\Gamma(x + 1) = x\Gamma(x)$ so $f(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ satisfies

$$f(x+1)-f(x)=\frac{1}{x}$$

Galois Theory: If f(x) is DA then for some n and complex numbers a_i

$$\frac{d^n}{dx^n}(\frac{1}{x}) + a_{n-1}\frac{d^{n-1}}{dx^{n-1}}(\frac{1}{x}) + \ldots + a_0(\frac{1}{x}) = h(x+1) - h(x)$$

for some rational function h(x)

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Analysis: $\Gamma(x)$ extends merom. to the plane and $\Gamma(x + 1) = x\Gamma(x)$ so $f(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ satisfies

$$f(x+1)-f(x)=\frac{1}{x}$$

Galois Theory: If f(x) is DA then for some n and complex numbers a_i

$$\frac{d^n}{dx^n}(\frac{1}{x}) + a_{n-1}\frac{d^{n-1}}{dx^{n-1}}(\frac{1}{x}) + \ldots + a_0(\frac{1}{x}) = h(x+1) - h(x)$$

for some rational function h(x)

Computation: LHS has only one pole and RHS has at least two poles ⇒ CONTRADICTION.

Proving Differential Transcendence of Function F(x)

Proving Differential Transcendence of Function F(x)

Analysis is used to find that a related function f(x) s.t.

- $F(x) \mathsf{DA} \Rightarrow f(x) \mathsf{DA}, \text{ and }$
- f(x) satisfies a functional equation

 $f(\sigma(x)) - f(x) = g(x).$

 $\sigma(x) = x + 1$ or qx or ... and g(x) a rational function.

Proving Differential Transcendence of Function F(x)

Analysis is used to find that a related function f(x) s.t.

- $F(x) DA \Rightarrow f(x) DA$, and
- f(x) satisfies a functional equation

$$f(\sigma(x)) - f(x) = g(x).$$

 $\sigma(x) = x + 1$ or qx or ... and g(x) a rational function.

Galois Theory implies that if f is DA then for some n and complex numbers a_i

$$\frac{d^ng}{dx^n}+a_{n-1}\frac{d^{n-1}g}{dx^{n-1}}+\ldots+a_0g=h(\sigma(x))-h(x)$$

for some rational function h(x)

Proving Differential Transcendence of Function F(x)

Analysis is used to find that a related function f(x) s.t.

- F(x) DA $\Rightarrow f(x)$ DA, and
- f(x) satisfies a functional equation

$$f(\sigma(x)) - f(x) = g(x).$$

 $\sigma(x) = x + 1$ or qx or ... and g(x) a rational function.

Galois Theory implies that if f is DA then for some n and complex numbers a_i

$$\frac{d^ng}{dx^n}+a_{n-1}\frac{d^{n-1}g}{dx^{n-1}}+\ldots+a_0g=h(\sigma(x))-h(x)$$

for some rational function h(x)

Computation of poles shows that this Telescoper Equation cannot happen.

Generating Series: $Q_{\mathcal{D}}(x, y, t) := \sum_{i,j,k} q_{\mathcal{D},i,j,k} x^i y^j t^k$ satisfies

 $\begin{aligned} &\mathcal{K}_{\mathcal{D}}(x,y,t)Q_{\mathcal{D}}(x,y,t) = xy - \mathcal{K}_{\mathcal{D}}(x,0,t)Q_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t)Q_{\mathcal{D}}(0,y,t) + \mathcal{K}_{\mathcal{D}}(0,0,t)Q_{\mathcal{D}}(0,0,t) \\ &\text{Curve: } E_{\mathcal{D}} := \overline{\{(x,y) \mid \mathcal{K}_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \\ &\text{Group: } G_{\mathcal{D}} := \langle \iota_{1}, \iota_{2} \rangle, \sigma_{\mathcal{D}} = \iota_{2} \circ \iota_{1} \quad \sigma_{\mathcal{D}}(Q) = Q \oplus P. \end{aligned}$

Analysis is used to find a related function f(x) satisfying a functional equation $f(\sigma(x)) - f(x) = g(x)$.

Generating Series:
$$Q_{\mathcal{D}}(x, y, t) := \sum_{i,j,k} q_{\mathcal{D},i,j,k} x^i y^j t^k$$
 satisfies

$$\begin{split} & \mathcal{K}_{\mathcal{D}}(x,y,t) \mathcal{Q}_{\mathcal{D}}(x,y,t) = xy - \mathcal{K}_{\mathcal{D}}(x,0,t) \mathcal{Q}_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t) \mathcal{Q}_{\mathcal{D}}(0,y,t) + \mathcal{K}_{\mathcal{D}}(0,0,t) \mathcal{Q}_{\mathcal{D}}(0,0,t) \\ & \text{Curve: } \mathcal{E}_{\mathcal{D}} := \overline{\{(x,y) \mid \mathcal{K}_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \\ & \text{Group: } \mathcal{G}_{\mathcal{D}} := \langle \iota_{1}, \iota_{2} \rangle, \sigma_{\mathcal{D}} = \iota_{2} \circ \iota_{1} \ \sigma_{\mathcal{D}}(\mathcal{Q}) = \mathcal{Q} \oplus \mathcal{P}. \end{split}$$

Analysis is used to find a related function f(x) satisfying a functional equation $f(\sigma(x)) - f(x) = g(x)$.

Kurkova/Raschel: 1) $Q_D(x, y, t)$ converges for |x|, |y| < 1.

Generating Series: $Q_{\mathcal{D}}(x, y, t) := \sum_{i,j,k} q_{\mathcal{D},i,j,k} x^i y^j t^k$ satisfies

 $\begin{aligned} &\mathcal{K}_{\mathcal{D}}(x,y,t)Q_{\mathcal{D}}(x,y,t) = xy - \mathcal{K}_{\mathcal{D}}(x,0,t)Q_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t)Q_{\mathcal{D}}(0,y,t) + \mathcal{K}_{\mathcal{D}}(0,0,t)Q_{\mathcal{D}}(0,0,t) \\ &\text{Curve: } E_{\mathcal{D}} := \overline{\{(x,y) \mid \mathcal{K}_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \\ &\text{Group: } G_{\mathcal{D}} := \langle \iota_{1}, \iota_{2} \rangle, \sigma_{\mathcal{D}} = \iota_{2} \circ \iota_{1} \quad \sigma_{\mathcal{D}}(Q) = Q \oplus P. \end{aligned}$

Analysis is used to find a related function f(x) satisfying a functional equation $f(\sigma(x)) - f(x) = g(x)$.

Kurkova/Raschel: 1) $Q_D(x, y, t)$ converges for |x|, |y| < 1.

2) $K(x,0,t)Q_{\mathcal{D}}(x,0,t)$ and $K(0,y,t)Q_{\mathcal{D}}(0,y,t)$ - analytically continued to multivalued fnc. $F_{\mathcal{D}}^{1}(X)$ and $F_{\mathcal{D}}^{2}(X)$ on $E_{\mathcal{D}}$.

Generating Series: $Q_{\mathcal{D}}(x, y, t) := \sum_{i,j,k} q_{\mathcal{D},i,j,k} x^i y^j t^k$ satisfies

$$\begin{split} & \mathcal{K}_{\mathcal{D}}(x,y,t) \mathcal{Q}_{\mathcal{D}}(x,y,t) = xy - \mathcal{K}_{\mathcal{D}}(x,0,t) \mathcal{Q}_{\mathcal{D}}(x,0,t) - \mathcal{K}_{\mathcal{D}}(0,y,t) \mathcal{Q}_{\mathcal{D}}(0,y,t) + \mathcal{K}_{\mathcal{D}}(0,0,t) \mathcal{Q}_{\mathcal{D}}(0,0,t) \\ & \text{Curve: } E_{\mathcal{D}} := \overline{\{(x,y) \mid \mathcal{K}_{\mathcal{D}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \\ & \text{Group: } G_{\mathcal{D}} := \langle \iota_{1}, \iota_{2} \rangle, \sigma_{\mathcal{D}} = \iota_{2} \circ \iota_{1} \ \sigma_{\mathcal{D}}(Q) = Q \oplus P. \end{split}$$

Analysis is used to find a related function f(x) satisfying a functional equation $f(\sigma(x)) - f(x) = g(x)$.

Kurkova/Raschel: 1) $Q_{\mathcal{D}}(x, y, t)$ converges for |x|, |y| < 1.

2) $K(x,0,t)Q_{\mathcal{D}}(x,0,t)$ and $K(0,y,t)Q_{\mathcal{D}}(0,y,t)$ - analytically continued to multivalued fnc. $F_{\mathcal{D}}^1(X)$ and $F_{\mathcal{D}}^2(X)$ on $E_{\mathcal{D}}$.

3) Each $F_{\mathcal{D}}^i(X)$ satisfies

$$F^i_{\mathcal{D}}(\sigma_{\mathcal{D}}(X)) - F^i_{\mathcal{D}}(X) = g^i_{\mathcal{D}}(X)$$

on $E_{\mathcal{D}}$ for some $g^i_{\mathcal{D}}(X) \in \mathbb{C}(E_{\mathcal{D}}) = \mathbb{C}(x, y).$

$$\underline{Ex.} \quad \mathcal{D} = \underbrace{\mathcal{D}}_{\mathcal{D}} : xy - t(y^2 + x^2y^2 + x^2 + x) = 0 \quad \Rightarrow g(E_{\mathcal{D}}) = 1$$

$$F_{\mathcal{D}}^2(X) \text{ satisfies } F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g_{\mathcal{D}}^2(X) := x(\frac{x^2 + x}{y(x^2 + 1)} - y)$$

$$\underline{\mathsf{Ex.}} \quad \mathcal{D} = \underbrace{\mathsf{V}}_{\mathcal{D}} : xy - t(y^2 + x^2y^2 + x^2 + x) = 0 \quad \Rightarrow g(\mathcal{E}_{\mathcal{D}}) = 1$$
$$F_{\mathcal{D}}^2(X) \text{ satisfies } F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g_{\mathcal{D}}^2(X) := x(\frac{x^2 + x}{y(x^2 + 1)} - y)$$

• $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}(E_{\mathcal{D}})$

$$\underline{\mathsf{Ex.}} \quad \mathcal{D} = \underbrace{\mathsf{V}}_{\mathcal{D}} : xy - t(y^2 + x^2y^2 + x^2 + x) = 0 \quad \Rightarrow g(\mathcal{E}_{\mathcal{D}}) = 1$$
$$F_{\mathcal{D}}^2(X) \text{ satisfies } F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g_{\mathcal{D}}^2(X) := x(\frac{x^2 + x}{y(x^2 + 1)} - y)$$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}(E_{\mathcal{D}})$
- There is a derivation $\delta_{\mathcal{D}}$ on $\mathbb{C}(E_{\mathcal{D}})$ such that $\delta_{\mathcal{D}} \circ \sigma_{\mathcal{D}} = \sigma_{\mathcal{D}} \circ \delta_{\mathcal{D}}$.

$$\underline{\mathsf{Ex.}} \quad \mathcal{D} = \underbrace{\mathsf{V}}_{\mathcal{D}} : xy - t(y^2 + x^2y^2 + x^2 + x) = 0 \quad \Rightarrow g(\mathcal{E}_{\mathcal{D}}) = 1$$
$$F_{\mathcal{D}}^2(X) \text{ satisfies } F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g_{\mathcal{D}}^2(X) := x(\frac{x^2 + x}{y(x^2 + 1)} - y)$$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}(E_{\mathcal{D}})$
- There is a derivation $\delta_{\mathcal{D}}$ on $\mathbb{C}(E_{\mathcal{D}})$ such that $\delta_{\mathcal{D}} \circ \sigma_{\mathcal{D}} = \sigma_{\mathcal{D}} \circ \delta_{\mathcal{D}}$.
- ▶ $F_{\mathcal{D}}^2$ is DA wrt $\delta_{\mathcal{D}}$ iff $Q_{\mathcal{D}}(0, y, t)$ is *y*-DA over $\mathbb{C}(x, y, t)$.

$$\underline{\mathsf{Ex.}} \quad \mathcal{D} = \underbrace{\mathsf{V}}_{\mathcal{D}} : xy - t(y^2 + x^2y^2 + x^2 + x) = 0 \quad \Rightarrow g(\mathcal{E}_{\mathcal{D}}) = 1$$
$$F_{\mathcal{D}}^2(X) \text{ satisfies } F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g_{\mathcal{D}}^2(X) := x(\frac{x^2 + x}{y(x^2 + 1)} - y)$$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}(E_{\mathcal{D}})$
- There is a derivation $\delta_{\mathcal{D}}$ on $\mathbb{C}(E_{\mathcal{D}})$ such that $\delta_{\mathcal{D}} \circ \sigma_{\mathcal{D}} = \sigma_{\mathcal{D}} \circ \delta_{\mathcal{D}}$.
- ▶ $F_{\mathcal{D}}^2$ is DA wrt $\delta_{\mathcal{D}}$ iff $Q_{\mathcal{D}}(0, y, t)$ is *y*-DA over $\mathbb{C}(x, y, t)$.

Galois Theory implies that if F_{D}^2 is DA then for some nand complex numbers a_i $\delta^n(g_D) + a_{n-1}\delta^{n-1}(g_D) + \ldots + a_0g_D = h_D(\sigma(x)) - h_D(x)$ for some $h_D \in \mathbb{C}(E_D)$.

How does one decide if such a telescoper equation exists?

$$\underline{\mathsf{Ex.}} \quad \mathcal{D} = \underbrace{\mathsf{V}}_{\mathcal{D}} : xy - t(y^2 + x^2y^2 + x^2 + x) = 0 \quad \Rightarrow g(\mathcal{E}_{\mathcal{D}}) = 1$$
$$F_{\mathcal{D}}^2(X) \text{ satisfies } F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g_{\mathcal{D}}^2(X) := x(\frac{x^2 + x}{y(x^2 + 1)} - y)$$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}(E_{\mathcal{D}})$
- There is a derivation $\delta_{\mathcal{D}}$ on $\mathbb{C}(E_{\mathcal{D}})$ such that $\delta_{\mathcal{D}} \circ \sigma_{\mathcal{D}} = \sigma_{\mathcal{D}} \circ \delta_{\mathcal{D}}$.
- ▶ $F_{\mathcal{D}}^2$ is DA wrt $\delta_{\mathcal{D}}$ iff $Q_{\mathcal{D}}(0, y, t)$ is *y*-DA over $\mathbb{C}(x, y, t)$.

Galois Theory implies that if F_D^2 is DA then for some nand complex numbers a_i $\delta^n(g_D) + a_{n-1}\delta^{n-1}(g_D) + \ldots + a_0g_D = h_D(\sigma(x)) - h_D(x)$ for some $h_D \in \mathbb{C}(E_D)$.

How does one decide if such a telescoper equation exists?

Computation of poles shows when this happens.

$$k = \mathbb{C}(x), \sigma(x) = x + 1, \delta = rac{d}{dx}$$
 $y(x + 1) - y(x) = g(x)$ $g(x) \in k$

When does g satisfy a telescoper equation $\frac{d^ng}{dx^n} + a_{n-1}\frac{d^{n-1}g}{dx^{n-1}} + \ldots + a_0g = h(x+1) - h(x)?$

$$k = \mathbb{C}(x), \sigma(x) = x + 1, \delta = \frac{d}{dx}$$
 $y(x + 1) - y(x) = g(x)$ $g(x) \in k$

When does *g* satisfy a telescoper equation

$$\frac{d^ng}{dx^n} + a_{n-1}\frac{d^{n-1}g}{dx^{n-1}} + \ldots + a_0g = h(x+1) - h(x)?$$

Definition Let $g \in \mathbb{C}(x)$, $\alpha \in \mathbb{C}$ and c_{α}^{i} be the coefficient of $(x - \alpha)^{-i}$ in the partial fraction expansion of g. The **ith orbit residue** of g at α is

$$\operatorname{ores}_{lpha}^{i}(g) = \sum_{n \in \mathbb{Z}} c_{lpha+n}^{i}$$

$$k = \mathbb{C}(x), \sigma(x) = x + 1, \delta = \frac{d}{dx}$$
 $y(x + 1) - y(x) = g(x)$ $g(x) \in k$

When does g satisfy a telescoper equation

$$\frac{d^ng}{dx^n} + a_{n-1}\frac{d^{n-1}g}{dx^{n-1}} + \ldots + a_0g = h(x+1) - h(x)?$$

Definition Let $g \in \mathbb{C}(x)$, $\alpha \in \mathbb{C}$ and c_{α}^{i} be the coefficient of $(x - \alpha)^{-i}$ in the partial fraction expansion of g. The **ith orbit residue** of g at α is

$$\operatorname{ores}^i_lpha(g) = \sum_{n \in \mathbb{Z}} c^i_{lpha+n}$$

Existence of Telescopers. $k = \mathbb{C}(x)$, $\sigma(x) = x + 1$, $\delta = \frac{d}{dx}$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}$, $\alpha \in \mathbb{C}$, $\operatorname{ores}_{\alpha}^{i}(g) = 0$.

$$k = \mathbb{C}(x), \sigma(x) = x + 1, \delta = \frac{d}{dx}$$
 $y(x + 1) - y(x) = g(x)$ $g(x) \in k$

When does g satisfy a telescoper equation

$$\frac{d^ng}{dx^n} + a_{n-1}\frac{d^{n-1}g}{dx^{n-1}} + \ldots + a_0g = h(x+1) - h(x)?$$

Definition Let $g \in \mathbb{C}(x)$, $\alpha \in \mathbb{C}$ and c_{α}^{i} be the coefficient of $(x - \alpha)^{-i}$ in the partial fraction expansion of g. The **i**th **orbit residue** of g at α is

$$\operatorname{ores}^i_lpha(g) = \sum_{n \in \mathbb{Z}} c^i_{lpha+n}$$

Existence of Telescopers. $k = \mathbb{C}(x)$, $\sigma(x) = x + 1$, $\delta = \frac{d}{dx}$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}$, $\alpha \in \mathbb{C}$, $\operatorname{ores}_{\alpha}^{i}(g) = 0$.
- g = h(x+1) h(x) for some $h \in k$.

$$k = \mathbb{C}(x), \sigma(x) = x + 1, \delta = \frac{d}{dx}$$
 $y(x + 1) - y(x) = g(x)$ $g(x) \in k$

When does g satisfy a telescoper equation

$$\frac{d^ng}{dx^n} + a_{n-1}\frac{d^{n-1}g}{dx^{n-1}} + \ldots + a_0g = h(x+1) - h(x)?$$

Definition Let $g \in \mathbb{C}(x)$, $\alpha \in \mathbb{C}$ and c_{α}^{i} be the coefficient of $(x - \alpha)^{-i}$ in the partial fraction expansion of g. The **ith orbit residue** of g at α is

$$\operatorname{ores}^i_lpha(g) = \sum_{n \in \mathbb{Z}} c^i_{lpha+n}$$

Existence of Telescopers. $k = \mathbb{C}(x)$, $\sigma(x) = x + 1$, $\delta = \frac{d}{dx}$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}$, $\alpha \in \mathbb{C}$, $\operatorname{ores}_{\alpha}^{i}(g) = 0$.
- g = h(x + 1) h(x) for some $h \in k$.

Corollary. If for some $\alpha \in \mathbb{C}$, g has a unique pole in $\{\alpha + n\}_{n \in \mathbb{Z}}$, then g satisfies no telescoper eqn.

E elliptic curve, *P* nontorsion point, $k = \mathbb{C}(E)$, $\sigma(f(Y)) = f(Y \oplus P)$, δ deriv $\delta \sigma = \sigma \delta$

When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g) = \sigma h - h$?

E elliptic curve, *P* nontorsion point, $k = \mathbb{C}(E)$, $\sigma(f(Y)) = f(Y \oplus P)$, δ deriv $\delta \sigma = \sigma \delta$

When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g) = \sigma h - h$?

Def. 1) $\{u_Q \mid Q \in E\}$ local param. are **coherent** if $u_{Q \ominus P} = \sigma(u_Q)$. 2) $f \in \mathbb{C}(E)$, $Q \in E$, and $c_Q^i = \text{coeff. of } \frac{1}{u_Q^i}$ in *u*-adic expansion of *g*. The **i**th **orbit residue** of *g* at *Q* is

$$\operatorname{ores}_Q^i(g) = \sum_{n \in \mathbb{Z}} c_{Q \oplus nP}^i.$$

E elliptic curve, *P* nontorsion point, $k = \mathbb{C}(E)$, $\sigma(f(Y)) = f(Y \oplus P)$, δ deriv $\delta \sigma = \sigma \delta$

When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g) = \sigma h - h$?

Def. 1) $\{u_Q \mid Q \in E\}$ local param. are **coherent** if $u_{Q \ominus P} = \sigma(u_Q)$. 2) $f \in \mathbb{C}(E)$, $Q \in E$, and $c_Q^i = \text{coeff. of } \frac{1}{u_Q^i}$ in *u*-adic expansion of *g*. The **i**th **orbit residue** of *g* at *Q* is

$$\mathsf{pres}_Q^i(g) = \sum_{n \in \mathbb{Z}} c_{Q \oplus nP}^i.$$

Existence of Telescopers. $k = \mathbb{C}(E)$, $\sigma(Y) = Y \oplus P$, $\delta\sigma = \sigma\delta$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}$, $Q \in E$, $\operatorname{ores}_{O}^{i}(g) = 0$.

E elliptic curve, *P* nontorsion point, $k = \mathbb{C}(E)$, $\sigma(f(Y)) = f(Y \oplus P)$, δ deriv $\delta \sigma = \sigma \delta$

When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g) = \sigma h - h$?

Def. 1) $\{u_Q \mid Q \in E\}$ local param. are **coherent** if $u_{Q \ominus P} = \sigma(u_Q)$. 2) $f \in \mathbb{C}(E)$, $Q \in E$, and $c_Q^i = \text{coeff. of } \frac{1}{u_Q^i}$ in *u*-adic expansion of *g*. The **i**th **orbit residue** of *g* at *Q* is

$$\mathsf{pres}_Q^i(g) = \sum_{n \in \mathbb{Z}} c_{Q \oplus nP}^i.$$

Existence of Telescopers. $k = \mathbb{C}(E)$, $\sigma(Y) = Y \oplus P$, $\delta\sigma = \sigma\delta$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}$, $Q \in E$, $\operatorname{ores}_{O}^{i}(g) = 0$.
- ▶ There exists $Q \in E$, $h \in k$ and $e \in \mathcal{L}(Q + (Q \oplus P))$ s.t. $g = \sigma h h + e$.

E elliptic curve, *P* nontorsion point, $k = \mathbb{C}(E)$, $\sigma(f(Y)) = f(Y \oplus P)$, δ deriv $\delta \sigma = \sigma \delta$

When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g) = \sigma h - h$?

Def. 1) $\{u_Q \mid Q \in E\}$ local param. are **coherent** if $u_{Q \ominus P} = \sigma(u_Q)$. 2) $f \in \mathbb{C}(E)$, $Q \in E$, and $c_Q^i = \text{coeff. of } \frac{1}{u_Q^i}$ in *u*-adic expansion of *g*. The **i**th **orbit residue** of *g* at *Q* is

$$\mathsf{pres}_Q^i(g) = \sum_{n \in \mathbb{Z}} c_{Q \oplus nP}^i.$$

Existence of Telescopers. $k = \mathbb{C}(E)$, $\sigma(Y) = Y \oplus P$, $\delta\sigma = \sigma\delta$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}$, $Q \in E$, $\operatorname{ores}_{O}^{i}(g) = 0$.
- There exists $Q \in E$, $h \in k$ and $e \in \mathcal{L}(Q + (Q \oplus P))$ s.t. $g = \sigma h h + e$.

Corollary. If for some $Q \in E$, g has a unique pole in $\{Q \oplus nP\}_{n \in \mathbb{Z}}$, then no telescoper for g.

$$\mathcal{D} = \underbrace{\mathcal{D}}_{\mathcal{D}} \subset \mathbb{P}^1 \times \mathbb{P}^1 : xy - t(y^2 + x^2y^2 + x^2 + x) = 0$$

$$\mathcal{D} = \underbrace{\mathcal{F}}_{\mathcal{D}} \subset \mathbb{P}^1 \times \mathbb{P}^1 : xy - t(y^2 + x^2y^2 + x^2 + x) = 0$$

 $\mathcal{K}_{\mathcal{D}}(0, y, t) \mathcal{Q}_{\mathcal{D}}(0, y, t) ext{ is } y ext{-}\mathsf{D}\mathsf{A} \Rightarrow \mathcal{F}^2_{\mathcal{D}}(x) ext{ is } \mathsf{D}\mathsf{A} \Rightarrow$

$$g_{\mathcal{D}} = x(\frac{x^2+x}{y(x^2+1)}-y)$$

would satisfy a telescoper equation. This cannot happen because g has a pole unique in its orbit.

$$\mathcal{D} = \underbrace{\mathcal{D}}_{\mathcal{D}} \subset \mathbb{P}^1 \times \mathbb{P}^1 : xy - t(y^2 + x^2y^2 + x^2 + x) = 0$$

 $\mathcal{K}_{\mathcal{D}}(0, y, t) \mathcal{Q}_{\mathcal{D}}(0, y, t) ext{ is } y ext{-}\mathsf{DA} \Rightarrow \mathcal{F}^2_{\mathcal{D}}(x) ext{ is } \mathsf{DA} \Rightarrow$

$$g_{\mathcal{D}} = x(\frac{x^2 + x}{y(x^2 + 1)} - y)$$

would satisfy a telescoper equation. This cannot happen because g has a pole unique in its orbit.

<u>Poles:</u> $\mathcal{P} = \{(\infty, \pm i), (\pm i, \infty), (\pm i, \pm it + t)\}$

<u>Fact</u>: The autom. $\tau : i \mapsto -i$ of $\mathbb{Q}(i)$ commutes with $\sigma_{\mathcal{D}} : (\infty, i) \mapsto (\infty, i) \oplus P$.

$$\mathcal{D} = \underbrace{\mathcal{F}}_{\mathcal{D}} \subset \mathbb{P}^1 \times \mathbb{P}^1 : xy - t(y^2 + x^2y^2 + x^2 + x) = 0$$

 $\mathcal{K}_{\mathcal{D}}(0, y, t) \mathcal{Q}_{\mathcal{D}}(0, y, t)$ is y-DA $\Rightarrow \mathcal{F}^2_{\mathcal{D}}(x)$ is DA \Rightarrow

$$g_{\mathcal{D}} = x(\frac{x^2 + x}{y(x^2 + 1)} - y)$$

would satisfy a telescoper equation. This cannot happen because g has a pole unique in its orbit.

Poles:
$$\mathcal{P} = \{(\infty, \pm i), (\pm i, \infty), (\pm i, \pm it + t)\}$$

<u>Fact</u>: The autom. $\tau : i \mapsto -i$ of $\mathbb{Q}(i)$ commutes with $\sigma_{\mathcal{D}} : (\infty, i) \mapsto (\infty, i) \oplus P$.

Claim: $\{\sigma_{\mathcal{D}}^n(\infty, i) | n \in \mathbb{Z}\} \cap \mathcal{P} = (\infty, i)$ where $\sigma_{\mathcal{D}}(Q) = Q \oplus P$.

$$\mathcal{D} = \underbrace{\mathcal{F}}_{\mathcal{D}} \subset \mathbb{P}^1 \times \mathbb{P}^1 : xy - t(y^2 + x^2y^2 + x^2 + x) = 0$$

 $\mathcal{K}_{\mathcal{D}}(0, y, t) \mathcal{Q}_{\mathcal{D}}(0, y, t) ext{ is } y ext{-}\mathsf{D}\mathsf{A} \Rightarrow \mathcal{F}^2_{\mathcal{D}}(x) ext{ is } \mathsf{D}\mathsf{A} \Rightarrow$

$$g_{\mathcal{D}}=x(\frac{x^2+x}{y(x^2+1)}-y)$$

would satisfy a telescoper equation. This cannot happen because g has a pole unique in its orbit.

Poles:
$$\mathcal{P} = \{(\infty, \pm i), (\pm i, \infty), (\pm i, \pm it + t)\}$$

<u>Fact</u>: The autom. $\tau : i \mapsto -i$ of $\mathbb{Q}(i)$ commutes with $\sigma_{\mathcal{D}} : (\infty, i) \mapsto (\infty, i) \oplus P$.

Claim: $\{\sigma_{\mathcal{D}}^{n}(\infty, i) | n \in \mathbb{Z}\} \cap \mathcal{P} = (\infty, i)$ where $\sigma_{\mathcal{D}}(Q) = Q \oplus P$. Proof: If $(\infty, -i) = \sigma_{\mathcal{D}}^{n}(\infty, i)$, then

$$(\infty, \mathbf{i}) = \tau(\infty, -\mathbf{i}) = \tau(\sigma_{\mathcal{D}}^{n}(\infty, \mathbf{i})) = \sigma_{\mathcal{D}}^{n}(\tau(\infty, \mathbf{i})) = \sigma_{\mathcal{D}}^{n}(\infty, -\mathbf{i}) = \sigma_{\mathcal{D}}^{2n}(\infty, \mathbf{i})$$

So $(\infty, i) = (\infty, i) \oplus 2nP \Rightarrow 0 = 2nP$, contradicting the fact that *P* is nontorsion. $\sigma^n(\infty, i) \neq$ other poles similarly.

Differential Algebraicity of the 9 walks, $|G_D| = \infty$, genus $(E_D) = 1$.

► F_{D}^{2} = continuation of $K_{D}(0, y, t)Q_{D}(0, y, t)$ satisfies $F_{D}^{2}(\sigma_{D}(X)) - F_{D}^{2}(X) = g(X)$

on $E_{\mathcal{D}}$.

► $F_{\mathcal{D}}^2$ = continuation of $K_{\mathcal{D}}(0, y, t)Q_{\mathcal{D}}(0, y, t)$ satisfies $F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g(X)$

on $E_{\mathcal{D}}$.

• $Q_D(0, y, t) \text{ DA} \Rightarrow g(X)$ satisfies telescoper equation $L(g(X)) = h(\sigma(X)) - h(X)$

on $E_{\mathcal{D}}$

► $F_{\mathcal{D}}^2$ = continuation of $K_{\mathcal{D}}(0, y, t)Q_{\mathcal{D}}(0, y, t)$ satisfies $F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g(X)$

on $E_{\mathcal{D}}$.

• $Q_{\mathcal{D}}(0, y, t) \text{ DA} \Rightarrow g(X)$ satisfies telescoper equation

$$L(g(X)) = h(\sigma(X)) - h(X)$$

on $E_{\mathcal{D}}$

• Conditions on the poles of $g(X) \Leftrightarrow g(X)$ satisfies telescoper equation.

F²_D = continuation of $K_D(0, y, t)Q_D(0, y, t)$ satisfies $F_D^2(\sigma_D(X)) - F_D^2(X) = g(X)$

on $E_{\mathcal{D}}$.

• $Q_{\mathcal{D}}(0, y, t) \text{ DA} \Rightarrow g(X)$ satisfies telescoper equation

$$L(g(X)) = h(\sigma(X)) - h(X)$$

on $E_{\mathcal{D}}$

- Conditions on the poles of $g(X) \Leftrightarrow g(X)$ satisfies telescoper equation.
- ▶ for 42 cases g(X) does not satisfy conditions $\Rightarrow Q_D(0, y, t)$ not DA.

► $F_{\mathcal{D}}^2$ = continuation of $K_{\mathcal{D}}(0, y, t)Q_{\mathcal{D}}(0, y, t)$ satisfies $F_{\mathcal{D}}^2(\sigma_{\mathcal{D}}(X)) - F_{\mathcal{D}}^2(X) = g(X)$

on $E_{\mathcal{D}}$.

• $Q_{\mathcal{D}}(0, y, t) \text{ DA} \Rightarrow g(X)$ satisfies telescoper equation

$$L(g(X)) = h(\sigma(X)) - h(X)$$

on $E_{\mathcal{D}}$

- Conditions on the poles of $g(X) \Leftrightarrow g(X)$ satisfies telescoper equation.
- ▶ for 42 cases g(X) does not satisfy conditions $\Rightarrow \mathbf{Q}_{\mathcal{D}}(\mathbf{0}, \mathbf{y}, \mathbf{t})$ not DA.

For 9 cases g(x) does satisfy these conditions.

For these walks, g(x) satisfies a telescoper equation on $E_{\mathcal{D}}$

$$L(g(x)) = h(\sigma(x)) - h(x) = h(x \oplus P) - h(x)$$

For these walks, g(x) satisfies a telescoper equation on E_{D}

$$L(g(x)) = h(\sigma(x)) - h(x) = h(x \oplus P) - h(x)$$

▶ Recall $F_{\mathcal{D}}^2(x)$ = continuation of $K_{\mathcal{D}}(0, y(x), t)Q_{\mathcal{D}}(0, y(x), t)$ satisfies $F_{\mathcal{D}}^2(x \oplus P) - F_{\mathcal{D}}^2(x) = g(x)$

For these walks, g(x) satisfies a telescoper equation on E_{D}

$$L(g(x)) = h(\sigma(x)) - h(x) = h(x \oplus P) - h(x)$$

▶ Recall $F_{\mathcal{D}}^2(x)$ = continuation of $K_{\mathcal{D}}(0, y(x), t)Q_{\mathcal{D}}(0, y(x), t)$ satisfies $F_{\mathcal{D}}^2(x \oplus P) - F_{\mathcal{D}}^2(x) = g(x)$

▶ These imply that $\mathcal{F}(x) \stackrel{\text{def}}{=} L(F_{\mathcal{D}}^2(x)) - h(x)$ satisfies $\mathcal{F}(x \oplus P) = \mathcal{F}(x)$

For these walks, g(x) satisfies a telescoper equation on E_{D}

$$L(g(x)) = h(\sigma(x)) - h(x) = h(x \oplus P) - h(x)$$

▶ Recall $F_{\mathcal{D}}^2(x)$ = continuation of $K_{\mathcal{D}}(0, y(x), t)Q_{\mathcal{D}}(0, y(x), t)$ satisfies $F_{\mathcal{D}}^2(x \oplus P) - F_{\mathcal{D}}^2(x) = g(x)$

► These imply that $\mathcal{F}(x) \stackrel{\text{def}}{=} L(F_{\mathcal{D}}^2(x)) - h(x)$ satisfies $\mathcal{F}(x \oplus P) = \mathcal{F}(x)$

Lifting to C, the univ. cover of E_D, ∃ ω_P ∈ C s.t. $\tilde{F}(x + ω_P) = \tilde{F}(x)$

For these walks, g(x) satisfies a telescoper equation on E_{D}

$$L(g(x)) = h(\sigma(x)) - h(x) = h(x \oplus P) - h(x)$$

▶ Recall $F_{\mathcal{D}}^2(x)$ = continuation of $K_{\mathcal{D}}(0, y(x), t)Q_{\mathcal{D}}(0, y(x), t)$ satisfies $F_{\mathcal{D}}^2(x \oplus P) - F_{\mathcal{D}}^2(x) = g(x)$

► These imply that $\mathcal{F}(x) \stackrel{\text{def}}{=} L(F_{\mathcal{D}}^2(x)) - h(x)$ satisfies $\mathcal{F}(x \oplus P) = \mathcal{F}(x)$

▶ Lifting to \mathbb{C} , the univ. cover of $E_{\mathcal{D}}$, $\exists \omega_P \in \mathbb{C}$ s.t. $\tilde{\mathcal{F}}(x + \omega_P) = \tilde{\mathcal{F}}(x)$

• Kurkova/Raschel $\Rightarrow \exists \mathbb{R}$ -independent $\omega_1 \in \mathbb{C}$ s.t.

$$\tilde{\mathcal{F}}(x+\omega_1)=\tilde{\mathcal{F}}(x)$$

For these walks, g(x) satisfies a telescoper equation on E_{D}

$$L(g(x)) = h(\sigma(x)) - h(x) = h(x \oplus P) - h(x)$$

▶ Recall $F_{\mathcal{D}}^2(x)$ = continuation of $K_{\mathcal{D}}(0, y(x), t)Q_{\mathcal{D}}(0, y(x), t)$ satisfies $F_{\mathcal{D}}^2(x \oplus P) - F_{\mathcal{D}}^2(x) = g(x)$

► These imply that $\mathcal{F}(x) \stackrel{\text{def}}{\equiv} L(F_{\mathcal{D}}^2(x)) - h(x)$ satisfies $\mathcal{F}(x \oplus P) = \mathcal{F}(x)$

Kurkova/Raschel $\Rightarrow \exists \mathbb{R}$ -independent $\omega_1 \in \mathbb{C}$ s.t.

$$\tilde{\mathcal{F}}(\boldsymbol{x}+\omega_1)=\tilde{\mathcal{F}}(\boldsymbol{x})$$

• $\tilde{\mathcal{F}}(x)$ doubly periodic $\Rightarrow \tilde{\mathcal{F}}(x) \text{ DA} \Rightarrow Q_{\mathcal{D}}(0, y, t) y$ -DA.

Differential Transcendence of the 5 walks, $|G_D| = \infty$, genus $(E_D) = 0$.

5 walks with $|G_{\mathcal{D}}| = \infty$, genus($E_{\mathcal{D}}$) = 0.

 $(t \in \mathbb{R} \setminus \overline{\mathbb{Q}})$

Fact: Curves of genus 0 can be parameterized

$$\phi: \mathbb{P}^1 \to E_{\mathcal{D}}$$

where ϕ is a rational map.

5 walks with $|G_D| = \infty$, genus(E_D) = 0.

 $(t \in \mathbb{R} \setminus \overline{\mathbb{Q}})$

Fact: Curves of genus 0 can be parameterized

$$\phi: \mathbb{P}^1 \to E_{\mathcal{D}}$$

where ϕ is a rational map.

Can select ϕ so that

$$x \mapsto \sigma_{\mathcal{D}}(x)$$
 on $E_{\mathcal{D}} \iff x \mapsto qx$, $|q| \neq 1$ on \mathbb{P}^1

5 walks with $|G_{\mathcal{D}}| = \infty$, genus($E_{\mathcal{D}}$) = 0.

 $(t \in \mathbb{R} \setminus \overline{\mathbb{Q}})$

Fact: Curves of genus 0 can be parameterized

$$\phi: \mathbb{P}^1 \to E_{\mathcal{D}}$$

where ϕ is a rational map.

Can select ϕ so that

$$x \mapsto \sigma_{\mathcal{D}}(x)$$
 on $E_{\mathcal{D}} \iff x \mapsto qx$, $|q| \neq 1$ on \mathbb{P}^1

- Restrict K_D(0, y, t)Q(0, y, t) to a small open set in E_D and PULL-BACK to open set in C.
- Analytically continue to get a function f(z) on \mathbb{C} that satisfies f(qz) f(z) = g(z) for some $g \in \mathbb{C}(x)$.
- f is DA $\Leftrightarrow Q(0, y, t)$ is y-DA.
- f is DA ⇒ g(z) = h(qz) h(z) for some h ∈ C(z). Conditions on poles give contradiction.

On the nature of the generating series of walks in the quarter plane

arXiv:1702.04696

Walks in the quarter plane, genus zero case

arXiv:1710.02848