
A Galoisian Approach to Counting Walks

Michael F. Singer

Department of Mathematics
North Carolina State University

Raleigh, NC 27695-8205
singer@math.ncsu.edu

Workshop on ”Enumerative Combinatorics”
Erwin Schrödinger International Institute for Mathematics and Physics

October 16 - 20, 2017

1/28



Talk 1: An Introduction to the Galois theory of difference
equations

Talk 2: Walks, Difference Equations and Elliptic Curves

2/28



Talk 1: An Introduction to the Galois theory of difference
equations

Talk 2: Walks, Difference Equations and Elliptic Curves

2/28



Galois theory give us computable conditions to
determine when generating functions satisfy or

do not satisfy differential equations.
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Walks

Consider the walks in the quarter plane starting from (0, 0) with steps in a
fixed set

D ⊂ {←,↖, ↑,↗,→,↘, ↓,↙}.

Example with possible directions

D ⊂ { , , , }.

256 possible choices for D. Triviality, Symmetries⇒ 79 interesting ones.
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Walks

qD,i,j,k = the number of walks in N2 starting from (0, 0) ending at (i , j) using k
steps from D.

Generating series: QD(x , y , t) :=
∑
i,j,k

qD,i,j,k x iy j tk .

Classification problem: when is QD(x , y , t)

Algebraic over C(x , y , t)?

Holonomic over C(x , y , t)?(x-, y -, and t-holonomic)

Differentially Algebraic over C(x , y , t)? (x-,y -, and t-diff. algebraic)

f (x , y , t) is x-holonomic if for some n and ai ∈ C(x , y , t),

an(x , y , t)
∂nf
∂xn + . . .+ a1(x , y , t)

∂f
∂x

+ a0(x , y , z)f = 0
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Walks

Fayolle, Iasnorodski, Malyshev (1999), Bousquet-Mélou, Mishna (2010) -
associate to a set of steps D,

an algebraic curve ED of genus 0 or 1, and

a group GD, finite or infinite.

Results: For the 79 walks

|GD| <∞ for 23 walks⇒ QD(x , y , t) algebraic or holonomic.
→ A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers, M. Mishna, . . .

|GD| =∞ for 56 walks⇒ QD(x , y , t) not holonomic.
5 walks with genus(ED) = 0→ S. Melzcer, M. Mishna, A. Rechnitzer, . . .
51 walks with genus(ED) = 1→A. Bostan, I. Kurkova, K. Raschel, B. Salvy, . . .

Differentially Algebraic???
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Walks: 51 walks with |GD| = ∞, genus(ED) = 1

Theorem (D-H-R-S, 2017a): For t ∈ C\Q
1. In 42 cases, x 7→ QD(x , 0, t) is not x-DA, y 7→ QD(0, y , t) is not y -DA.
2. In 9 cases, x 7→ QD(x , 0, t) is x-DA, y 7→ QD(0, y , t) is y -DA but neither is holon.

• 1. implies QD(x , y , t) is not DA (and so not holon.) in these cases.
• 2+. first shown by O. Bernardi, M. Bousquet-Mélou, K. Raschel
• 1. true for weighted cases as well. See recent paper of Dreyfus/Raschel.
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Walks: 5 walks with |GD| = ∞, genus(ED) = 0

Theorem (D-H-R-S, 2017b): For t ∈ R\Q
In all cases, x 7→ QD(x , 0, t), is not x-DA and y 7→ QD(0, y , t) is not y -DA.

• This implies QD(x , y , t) is not DA (and so not holon.) in these cases.
• True for weighted cases as well.
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Generalities about Walks

Differential Transcendence of the 42 walks, |GD| =∞, genus(ED) = 1.

Differential Algebraicity of the 9 walks, |GD| =∞, genus(ED) = 1.

Differential Transcendence of the 5 walks, |GD| =∞, genus(ED) = 0.
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Generalities about Walks

11/28



Functional Equation of the Walk

qD,i,j,k = the number of walks in N2 starting from (0, 0) ending at (i , j) using k
steps from D.

Generating series: QD(x , y , t) :=
∑
i,j,k

qD,i,j,k x iy j tk .

Step Inventory: SD(x , y) =
∑

(i,j)∈D x iy j

Kernel of the Walk: KD(x , y , t) = xy(1− tSD(x , y))
Functional Equation:

KD(x , y , t)QD(x , y , t) =

xy − KD(x , 0, t)QD(x , 0, t)− KD(0, y , t)QD(0, y , t)

+ KD(0, 0, t)QD(0, 0, t).
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Curve of the Walk
Step Inventory: SD(x , y) =

∑
(i,j)∈D x iy j

Kernel of the Walk: KD(x , y , t) = xy(1− tSD(x , y))
Functional Equation:

KD(x , y , t)QD(x , y , t) =

xy − KD(x , 0, t)QD(x , 0, t)− KD(0, y , t)QD(0, y , t)

+ KD(0, 0, t)QD(0, 0, t).

The Curve of the Walk is the curve

ED = {(x , y) | KD(x , y , t) = 0}
Zariski

⊂ P1(C)× P1(C)

Fact: ED is biquadratic and has genus 0 or 1.

Ex: 1) D = ED : xy− t(y2 +x2y2 +x2 +x) = 0 ⇒ g(ED) = 1

2) D = ED : xy − t(y2 + xy2 + x2) = 0 ⇒ g(ED) = 0

for t ∈ C\Q
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Group of the Walk

ED = {(x , y) | KD(x , y , t) = 0}
Zariski

⊂ P1(C)× P1(C)

We define two involutions of ED and an automorphism:

ι1(x , y) = (x , 1
y

∑
(i,−1)∈D x i∑
(i,+1)∈D x i )

ι2(x , y) = ( 1
x

∑
(−1,j)∈D y j∑
(+1,j)∈D y j , y)

σD = ι2 ◦ ι1

The Group of the Walk GD is the group generated by ι1, ι2.

Facts: 1) GD is infinite iff σD is infinite.
2) g(ED) = 1⇒ ∃P ∈ ED, s.t. σD(Q) = Q ⊕ P. σD is infinite iff

P nontorsion.
3) Of the 79 interesting walks, |GD| =∞ for 56 walks, 5 with g = 0

and 51 with g = 1 when t ∈ C\Q (Bousquet-Mélou/Mishna).
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Differential Transcendence of the 42 walks,
|GD| = ∞,genus(ED) = 1.
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Proving Differential Transcendence: The Gamma Function

Γ(x) =

∫ ∞
0

tx−1e−tdt

Analysis: Γ(x) extends merom. to the plane and Γ(x + 1) = xΓ(x) so
f (x) = Γ′(x)

Γ(x)
satisfies

f (x + 1)− f (x) =
1
x
.

Galois Theory: If f (x) is DA then for some n and complex numbers ai

dn

dxn (
1
x

) + an−1
dn−1

dxn−1 (
1
x

) + . . .+ a0(
1
x

) = h(x + 1)− h(x)

for some rational function h(x)

Computation: LHS has only one pole and RHS has at least two poles⇒
CONTRADICTION.
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Proving Differential Transcendence of Function F (x)

Analysis is used to find that a related function f (x) s.t.

F (x) DA⇒ f (x) DA, and

f (x) satisfies a functional equation

f (σ(x))− f (x) = g(x).

σ(x) = x + 1 or qx or . . . and g(x) a rational function.

Galois Theory implies that if f is DA then for some n and complex
numbers ai

dng
dxn + an−1

dn−1g
dxn−1 + . . .+ a0g = h(σ(x))− h(x)

for some rational function h(x)

Computation of poles shows that this Telescoper Equation cannot
happen.
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Differential Transcendence: |GD| = ∞,g(ED) = 1, (t ∈ C\Q)

Generating Series: QD(x , y , t) :=
∑
i,j,k

qD,i,j,k x iy j tk satisfies

KD(x, y, t)QD(x, y, t) = xy−KD(x, 0, t)QD(x, 0, t)−KD(0, y, t)QD(0, y, t)+KD(0, 0, t)QD(0, 0, t)

Curve: ED := {(x , y) | KD(x , y , t) = 0}
Zariski

⊂ P1(C)× P1(C)

Group: GD := 〈ι1, ι2〉, σD = ι2 ◦ ι1 σD(Q) = Q ⊕ P.

Analysis is used to find a related function f (x) satisfying
a functional equation f (σ(x))− f (x) = g(x).

Kurkova/Raschel: 1) QD(x , y , t) converges for |x |, |y | < 1.

2) K (x , 0, t)QD(x , 0, t) and K (0, y , t)QD(0, y , t) - analytically continued to
multivalued fnc. F 1

D(X ) and F 2
D(X ) on ED.

3) Each F i
D(X ) satisfies

F i
D(σD(X ))− F i

D(X ) = g i
D(X )

on ED for some g i
D(X ) ∈ C(ED) = C(x , y).
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Galois Theory

Ex. D = ED : xy − t(y2 + x2y2 + x2 + x) = 0 ⇒ g(ED) = 1

F 2
D(X) satisfies F 2

D(σD(X))− F 2
D(X) = g2

D(X) := x(
x2 + x

y(x2 + 1)
− y)

σD gives and automorphism f (X ) 7→ f (X ⊕ P) on C(ED)

There is a derivation δD on C(ED) such that δD ◦ σD = σD ◦ δD.

F 2
D is DA wrt δD iff QD(0, y , t) is y-DA over C(x , y , t).

Galois Theory implies that if F 2
D is DA then for some n

and complex numbers ai

δn(gD) + an−1δ
n−1(gD) + . . .+ a0gD = hD(σ(x))−hD(x)

for some hD ∈ C(ED).

How does one decide if such a telescoper equation exists?

Computation of poles shows when this happens.
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Telescoper Equations

k = C(x), σ(x) = x + 1, δ = d
dx y(x + 1)− y(x) = g(x) g(x) ∈ k

When does g satisfy a telescoper equation
dng
dxn + an−1

dn−1g
dxn−1 + . . .+ a0g = h(x + 1)− h(x)?

Definition Let g ∈ C(x), α ∈ C and c i
α be the coefficient of (x − α)−i in the

partial fraction expansion of g. The ith orbit residue of g at α is

oresi
α(g) =

∑
n∈Z

c i
α+n

Existence of Telescopers. k = C(x), σ(x) = x + 1, δ = d
dx and g ∈ k . The

following are equivalent:

g satisfies a telescoper equation.

For each i ∈ N>0, α ∈ C, oresi
α(g) = 0.

g = h(x + 1)− h(x) for some h ∈ k .

Corollary. If for some α ∈ C, g has a unique pole in {α + n}n∈Z, then g
satisfies no telescoper eqn.
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Telescopers in C(E), E an Elliptic Curve

E elliptic curve, P nontorsion point, k = C(E), σ(f (Y )) = f (Y ⊕ P), δ deriv δσ = σδ

When does an g ∈ C(E) satisfy a telescoper equation L(g) = σh − h?

Def. 1) {uQ | Q ∈ E} local param. are coherent if uQ	P = σ(uQ).

2) f ∈ C(E), Q ∈ E , and c i
Q = coeff. of 1

ui
Q

in u-adic expansion of g. The ith orbit

residue of g at Q is
oresi

Q(g) =
∑
n∈Z

c i
Q⊕nP .

Existence of Telescopers. k = C(E), σ(Y ) = Y ⊕ P, δσ = σδ and g ∈ k . The following
are equivalent:

g satisfies a telescoper equation.

For each i ∈ N>0,Q ∈ E , oresi
Q(g) = 0.

There exists Q ∈ E , h ∈ k and e ∈ L(Q + (Q ⊕ P)) s.t. g = σh − h+e.

Corollary. If for some Q ∈ E , g has a unique pole in {Q ⊕ nP}n∈Z, then no telescoper
for g.
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An Example

D = ED ⊂ P1 × P1 : xy − t(y2 + x2y2 + x2 + x) = 0

KD(0, y , t)QD(0, y , t) is y -DA⇒ F 2
D(x) is DA⇒

gD = x(
x2 + x

y(x2 + 1)
− y)

would satisfy a telescoper equation. This cannot happen because g has a
pole unique in its orbit.

Poles: P = {(∞,±i), (±i,∞), (±i,±it + t)}

Fact: The autom. τ : i 7→ −i of Q(i) commutes with σD : (∞, i) 7→ (∞, i)⊕ P.

Claim: {σn
D(∞, i) |n ∈ Z} ∩ P = (∞, i) where σD(Q) = Q ⊕ P.

Proof: If (∞,−i) = σn
D(∞, i), then

(∞, i) = τ(∞,−i) = τ(σn
D(∞, i)) = σn

D(τ(∞, i)) = σn
D(∞,−i) = σ2n

D (∞, i)

So (∞, i) = (∞, i)⊕ 2nP ⇒ 0 = 2nP, contradicting the fact that P is
nontorsion. σn(∞, i) 6= other poles similarly.
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KD(0, y , t)QD(0, y , t) is y -DA⇒ F 2
D(x) is DA⇒

gD = x(
x2 + x

y(x2 + 1)
− y)

would satisfy a telescoper equation. This cannot happen because g has a
pole unique in its orbit.

Poles: P = {(∞,±i), (±i,∞), (±i,±it + t)}

Fact: The autom. τ : i 7→ −i of Q(i) commutes with σD : (∞, i) 7→ (∞, i)⊕ P.
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Differential Algebraicity of the 9 walks,
|GD| = ∞,genus(ED) = 1.

23/28



Showing Differential Transcendence

F 2
D = continuation of KD(0, y , t)QD(0, y , t) satisfies

F 2
D(σD(X ))− F 2

D(X ) = g(X )

on ED.

QD(0, y , t) DA⇒ g(X ) satisfies telescoper equation

L(g(X )) = h(σ(X ))− h(X )

on ED

Conditions on the poles of g(X )⇔ g(X ) satisfies telescoper equation.

for 42 cases g(X ) does not satisfy conditions⇒ QD(0, y, t) not DA.

For 9 cases g(x) does satisfy these conditions.
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DA for 9 cases
For these walks, g(x) satisfies a telescoper equation on ED

L(g(x)) = h(σ(x))− h(x) = h(x ⊕ P)− h(x)

Recall F 2
D(x) = continuation of KD(0, y(x), t)QD(0, y(x), t) satisfies

F 2
D(x ⊕ P)− F 2

D(x) = g(x)

These imply that F(x)
def≡ L(F 2

D(x))− h(x) satisfies

F(x ⊕ P) = F(x)

Lifting to C, the univ. cover of ED, ∃ ωP ∈ C s.t.

F̃(x + ωP) = F̃(x)

Kurkova/Raschel⇒ ∃ R-independent ω1 ∈ C s.t.

F̃(x + ω1) = F̃(x)

F̃(x) doubly periodic⇒ F̃(x) DA⇒ QD(0, y , t) y-DA.
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Differential Transcendence of the 5 walks,
|GD| = ∞,genus(ED) = 0.
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5 walks with |GD| = ∞, genus(ED) = 0. (t ∈ R\Q)

Fact: Curves of genus 0 can be parameterized

φ : P1 → ED

where φ is a rational map.

Can select φ so that

x 7→ σD(x) on ED ⇐⇒ x 7→ qx , |q| 6= 1 on P1

Restrict KD(0, y , t)Q(0, y , t) to a small open set in ED and PULL-BACK
to open set in C.

Analytically continue to get a function f (z) on C that satisfies
f (qz)− f (z) = g(z) for some g ∈ C(x).

f is DA⇔ Q(0, y , t) is y -DA.

f is DA⇒ g(z) = h(qz)− h(z) for some h ∈ C(z). Conditions on poles
give contradiction.
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On the nature of the generating series of walks in the quarter
plane

arXiv:1702.04696

Walks in the quarter plane, genus zero case

arXiv:1710.02848
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