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S-type and J-type continued fractions

If (an)n≥0 is a sequence of combinatorial numbers or polynomials
with a0 = 1, it is often fruitful (total positivity of (ai+j)i ,j≥0,
log-convexity, γ-positivity, moment sequence, ...) to seek to
express its ordinary generating function (OGF) as a continued
fraction of either Stieltjes (S) type,

∞∑
n=0

ant
n =

1

1−
α1t

1−
α2t

1− · · ·

,

or Jacobi type (J),
∞∑
n=0

ant
n =

1

1− γ0t −
β1t

2

1− γ1t −
β2t

2

1− · · ·

,



Contraction formulae of an S-fraction to a J-fraction

1

1−
α1x

1−
α2x

· · ·

=
1

1− α1x −
α1α2x

2

1− (α2 + α3)x −
α3α4x

2

· · ·

.

i.e.,

γ0 = α1

γn = α2n + α2n+1 for n ≥ 1

βn = α2n−1α2n.



Two approaches

This line of investigation, i.e. (an) 7→ (αn) (or ((γn), (βn))), goes
back at least to Euler, but it gained impetus following Flajolet’s
seminal discovery that any S-type (resp. J-type) continued
fraction can be interpreted combinatorially as a generating function
of Dyck (resp. Motzkin) paths with suitable weights for each rise
and fall (resp. each rise, fall and level step).

Our approach will be (in part) to run this program in reverse: we
start from a continued fraction in which the coefficients α (or γ
and β) contain indeterminates in a nice pattern, and we attempt to
find a combinatorial interpretation for the resulting polynomials an.
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Euler’s continued formulae

∑
n≥0

n!xn =
1

1−
1x

1−
1x

1−
2x

1−
2x

· · ·
=

1

1− x −
12x2

1− 3x −
22x2

· · ·

with coefficients α2k−1 = k, α2k = k .



A naive generalization

Introduce the polynomials Pn(x , y , u, v) by the following CF

∑
n≥0

Pn(x , y , u, v)tn =
1

1−
x t

1−
y t

1−
(x + u) t

1−
(y + v) t

1− · · ·

. (1)

with coefficients

α2k−1 = x + (k − 1)u α2k = y + (k − 1)v . (2)

Clearly Pn(x , y , u, v) is a homogeneous polynomial of degree n and
Pn(1, 1, 1, 1) = n!.



Record classification

Given a permutation Sn, an index i ∈ [n] (or value σ(i) ∈ [n]) is
called a

record (rec) (or left-to-right maximum) if σ(j) < σ(i) for all
j < i ;

antirecord (arec) (or right-to-left minimum) if σ(j) > σ(i) for
all j > i ;

exclusive record (erec) if it is a record and not also an
antirecord;

exclusive antirecord (earec) if it is an antirecord and not also a
record;

record-antirecord (rar) if it is both a record and an antirecord;

neither-record-antirecord (nrar) if it is neither a record nor an
antirecord.



Cycle classification

We say that an index i ∈ [n] is a

cycle peak (cpeak) if σ−1(i) < i > σ(i);

cycle valley (cval) if σ−1(i) > i < σ(i);

cycle double rise (cdrise) if σ−1(i) < i < σ(i);

cycle double fall (cdfall) if σ−1(i) > i > σ(i);

fixed point (fix) if σ−1(i) = i = σ(i).

We denote the number of cycles, records, antirecords, ... in σ by
cyc(σ), rec(σ), arec(σ), ..., respectively.
A rougher classification is that an index i ∈ [n] (or value σ(i)) is
an

excedance (exc) if σ(i) > i ;

anti-excedance (aexc) if σ < i ;

fixed point (fix) if σ = i .



Two combinatorial interpretations

Theorem 1

The polynomials defined by the S-fraction have the combinatorial
interpretations

Pn(x , y , u, v) =
∑
σ∈Sn

xarec(σ)y erec(σ)un−exc(σ)−arec(σ)v exc(σ)−erec(σ) (3)

and

Pn(x , y , u, v) =
∑
σ∈Sn

xcyc(σ)y erec(σ)un−exc(σ)−cyc(σ)v exc(σ)−erec(σ). (4)

N.B. The triple statistics (arec, erec, exc) and (cyc, erec, exc) are
equidistributed on Sn.



Special cases (1)

The Stirling cycle polynomials

Pn(x , 1, 1, 1) =
n∑

k=0

S(n, k)xk = x(x + 1) . . . (x + n − 1).

or their homogenized version

Pn(x , y , y , y) =
n∑

k=0

S(n, k)xkyn−k = x(x+y) . . . (x+(n−1)y).

The Eulerian polynomials

Pn(1, y , 1, y) = An(y) =
n∑

k=0

A(n, k)yk

or

Pn(x , y , x , y) = An(x , y) =
n∑

k=0

A(n, k)xn−kyk .



Special cases (2): Dumont-Kreweras 1988

The record-antirecord permutation polynomials

Pn(a, b, 1, 1) =
∑
σ∈Sn

aarec(σ)berec(σ)

or
Pn(a, b, c , c) =

∑
σ∈Sn

aarec(σ)berec(σ)cn−arec(σ)−erec(σ).

Note that

∞∑
n=0

Pn(a, b, 1, 1)tn =
2F0(a, b;−|t)

2F0(a, b − 1;−|t)
.



Special cases (3)

The polynomials [sequence A145879/A202992]

Pn(x , x , u, u) =
n∑

k=0

T (n, k)xn−kuk

where T (n, k) is the number of permutations in Sn having exactly
k indices that are the middle point of a pattern 321 (or 123). In
particular T (n, 0) is the number of 123-avoiding permutations,
which equals the Catalan number Cn. So the polynomials
interpolate between Cn and n!.



Special cases (4): Narayanan polynomials

Pn(x , y , 0, 0) =
∑

σ∈Sn(123)

xarec(σ)y erec(σ)

=
∑

σ∈Sn(123)

xcyc(σ)y erec(σ)

=
n∑

k=0

1

n

(
n

k

)(
n

k − 1

)
xkyn−k .

The cycle interpretation (with y = 1) was given by Parviainen
(2007).



Record and cycle classifications

We have classified indices in a permutation according to their
record status:
exlusive record, exclusive antirecord, record-antirecord or
neither-record-antirecord
and aslo according to their cycle status:
cycle peak, cycle valley, cycle double rise, cycle double fall or
fixed point.
Applying now both classifications simultaneously, we obtain 10
disjoint categories.



Record-cycle classifications: 10 classes

ereccval: exclusive records that are also cycle valleys;

erecdrise: exclusive records that are also cycle double rises;

eareccpeak: exclusive antirecords that are also cycle peaks;

eareccdfall: exclusive antirecords that are also cycle double
falls;

rar: record-antirecords (that are always fixed points);

nrcpeak: neither-record-antirecords that are also cycle peakss;

nrcval: neither-record-antirecords that are also cycle valleys;

nrcdrise: neither-record-antirecords that are also cycle double
falls;

nrcfall: neither-record-antirecords that are also cycle falls;

nrfix: neither-record-antirecords that are also fixed points.



First J-fraction

Qn(x1, x2,y1, y2, z , u1, u2, v1, v2,w) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 z rar(σ)

× u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)

If i is a fixed point of σ, we define its level by

lev(i , σ) := #{j < i : σ(j) > i} = #{j > i : σ(j) < i}.

Clearly, a fixed point i is a record-antirecord if its level is 0, and a
neither-record-antirecord if its level is ≥ 1.



First master polynomial

Introduce indeterminates w = (w`)`≥0 and write

wfix(σ) :=
∞∏
`=0

w
fix(σ,`)
` =

∏
i∈Fix(σ)

wlev(i ,σ).

The master polynomial encoding all these (now infinitely many)
statistics is

Qn(x1, x2,y1, y2, u1, u2, v1, v2,w) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2

× u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)



Theorem 2 (First J-fraction for permutations)

The OGF of the polynomials Qn has the J-type continued fraction

∞∑
n=0

Qn(x1, x2, y1, y2, u1, u2, v1, v2,w)tn =

1

1− w0t −
x1y1t

2

1− (x2 + y2 + w1)t −
(x1 + u1)(y1 + v1)t2

1− · · ·

,

with coefficients γ0 = w0,

γn = [x2 + (n − 1)u2] + [y2 + (n − 1)v2] + wn for n ≥ 1

βn = [x1 + (n − 1)u1][y1 + (n − 1)v1].



Second J-fraction

Define the polynomial

Q̂n(x1, x2, y1, y2, u1, u2, v1, v2,w, λ) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2

× u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)λcyc(σ).



Second J-fraction

Theorem 3 (Second J-fraction for permutations)

The OGF of the polynomials Qn has the J-type continued fraction

∞∑
n=0

Q̂n(x1, x2, y1, y2, u1, u2, y1, y2,w, λ)tn =

1

1− λw0t −
λx1y1t

2

1− (x2 + y2 + λw1)t −
(λ+ 1)(x1 + u1)t2

1− · · ·

,

with coefficients γ0 = λw0,

γn = [x2 + (n − 1)u2] + ny2 + λwn for n ≥ 1

βn = (λ+ n − 1)[x1 + (n − 1)u1]y1.



Statistics on permutations (1)

Comparing Theorem 1 (1) with the first J-fraction the polynomial
Qn reduces to Pn(x , y , u, v) if we set

x1 = x2 = x , y1 = y2 = y , w0 = xz

u1 = u2 = w` = 1 (` ≥ 1), v1 = v2 = v .

The weight function reduces to

w(σ) = xarec(σ)y erec(σ)v exc(σ)z rar(σ).

Comparing with Theorem 1 (2) with the second J-fraction the
polynomial Q̂n reduces to Pn(x , y , u, v) if we set

x1 = x2 = y , u1 = u2 = v , w0 = z

y1 = y2 = v1 = v2 = w` = 1(` ≥ 1), λ = x .

The weight function reduces to

ŵ(σ) = xcyc(σ)y earec(σ)vaexc(σ)z rar(σ).



Statistics on permutations (2)

We have the following equidistribution:

(arec, erec, exc, rar) ∼ (cyc, erec, exc, rar).

Cori (2008) and Foata-Han (2009) : (cyc, arec) ∼ (rec, arec)
on Sn and the distribution of (cyc, arec) is symmetric.

Kim-Stanton (2015): (rec, arec, rar) moments of associated
Laguerre polynomials.

Elizalde (2017): (cyc, fix, aexc, cdfall), which is
∼ (cyc, fix, exc, cdrise) by σ 7→ σ−1.



Setting v = 1 and z = y we have

∞∑
n=0

(∑
σ∈Sn

xcyc(σ)yarec(σ)

)
tn =

1

1− xy t −
xy t

1− (x + y + 1) t −
(x + 1)(y + 1) t

1− · · ·

with γ0 = xy ,

γn = x + y + 2n − 1

βn = (x + n − 1)(y + n − 1) for n ≥ 1.



p,q-generalizations of Euler’s continued fractions

We define

[n]p,q =
pn − qn

p − q
=

n−1∑
j=0

pjqn−1−j .

Foata-Zeilberger (1990), Biane (1993), De Mdicis-Viennot (1994),
Simion-Stanton(1994, 1996), Clarke-Steingrimsson-Z. (1997),
Randrianarivony (1998), Corteel (2007), ...
Let [n; a]p,q = apn−1 + pn−2q + · · ·+ pqn−2 + qn−1. Then
Randrianarivony (1998) :

γn = (a[n + 1;α]r ,s + b[n;β]t,u)xn,

βn = cd [n; γ]p,q[n;µ]v ,wx
2n−1.



Crossings and nestings

To the permutation π = (1, 9, 10, 2, 3, 7)(4)(5, 6, 11)(8) ∈ S11 we
associate a pictorial representation as follows:

1 2 3 4 5 6 7 8 9 10 11



Upper and lower crossings and nestings

We say that a quadruple i < j < k < l forms an

upper crossing (ucross) if k = σ(i) and l = σ(j);

lower crossing (lcross) if i = σ(k) and j = σ(l);

upper nesting (unest) if l = σ(i) and k = σ(j);

lower nesting (lnest) if i = σ(l) and j = σ(k).

We consider also some ”degenerate” cases with j = k , by saying a
triplet i < j < k forms an

upper joining (ujoin) if j = σ(i) and l = σ(j);

lower joining (lcross) if i = σ(j) and j = σ(l);

upper pseudo-nesting (upsnest) if l = σ(i) and j = σ(j);

lower pseudo-nesting (lpsnest) if i = σ(l) and j = σ(j).



Refinement of crossing categories

We say that a quadruplet i < j < k < l forms an

upper crossing of type cval (ucrosscval) if k = σ(i) and
l = σ(j) and σ−1(j) > j ;

upper crossing of type cdrise (ucrosscdrise) if k = σ(i) and
l = σ(j) and σ−1(j) < j ;

lower crossing of type cpeak lcrosscpeak) if l = σ(i) and
σ−1(k) < k ;

lower crossing of type cdfall (lcrosscdfall) if i = σ(k) and
j = σ(l) and σ−1(k) > k ;



Refinement of nesting categories

We say that a quadruplet i < j < k < l forms an

upper nesting of type cval (unestcval) if l = σ(i) and
k = σ(j) and σ−1(j) > j ;

upper nesting of type cdrise (unestcdrise) if l = σ(i) and
k = σ(j) and σ−1(j) < j ;

lower nesting of type cpeak (lnestcdpeak) if l = σ(i) and
j = σ(j) and σ−1(k) < k ;

lower nesting of type cdfall (lnestcdfall) if i = σ(l) and
j = σ(j) and σ−1(k) > k .



First J-fraction for permutations 1

Define the polynomial

Qn(x, y,u, v,w,p,q, s) := Qn(x1, x2, y1, y2, u1, u2, v1, v2,w,

p+1, p+2, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)×

p
ucrosscval(σ)
+1 p

ucrosscdrise(σ)
+2 p

lcrosscpeak(σ)
−1 p

lcrosscdfall(σ)
−2 ×

q
unestcval(σ)
+1 q

unestcdrise(σ)
+2 q

lnestcpeak(σ)
−1 q

inestcdfall(σ)
−2 spsnest(σ).



First J-fraction for permutations 2

∞∑
n=0

Qn(x, y,u, v,w,p,q, s)tn =

1

1− w0t −
x1y1t

2

1− (x2 + y2 + sw1)t −
(p1x1 + q−1u1)(p+1y1 + q+1v1)t2

1− · · ·

with coefficents γ0 = w0 and for n ≥ 1,

γn = (pn−1
−2 x2 + q−2[n − 1]p−2,q−2u2) + (pn−1

+2 y2 + q+2[n − 1]p+2,q+2v2)

+ snwn

βn = (pn−1
−1 x1 + q−1[n − 1]p−1,q−1u1)(pn−1

+1 y1 + q+1[n − 1]p+1,q+1v1).



First master J-fraction (1)

Rather than counting the total numbers of nestings, we should
instead count the number of upper (resp. lower) crossings or
nestings that use a particular vertex j (resp. k) in second (resp.
third) position, and then attribute weights to the vertex j (resp. k)
depending on these values.

ucross(j , σ) = #{i < j < k < l : k = σ(i) and l = σ(j)}
unest(j , σ) = #{i < j < k < l : k = σ(j) and l = σ(i)}

lcross(k, σ) = #{i < j < k < l : i = σ(k) and j = σ(l)}
lnest(k, σ) = #{i < j < k < l : i = σ(l) and j = σ(k)}.



First master J-fraction (2)

N.B. ucross(j , σ) and unest(j , σ) can be nonzero only when j is a
cycle valley or a cycle double rise, while lcross(k, σ) and lnest(k, σ)
can be nonzero only when k is a cycle peak or a cycle double fall.
And obviously we have

ucrosscval(σ) =
∑
j∈cval

ucross(j , σ)

and analogously for the other seven crossing/nesting quantities.



First master J-fraction (3)

We now introduce five infinite families of indeterminates a,b, c,d
where x = (x`,`′)`,`′≥0 and w = (w`)`≥0, and define the polynomial

Qn(a,b, c,d,w) =∑
σ∈Sn

∏
i∈cval

aucross(i ,σ),unest(i ,σ)

∏
i∈cpeak

blcross(i ,σ),lnest(i ,σ)×∏
i∈cdfall

clcross(i ,σ),lnest(i ,σ)

∏
i∈cdrise

ducross(i ,σ),unest(i ,σ)

∏
i∈fix

wlev(i ,σ)

These polynomials then have a beautiful J-fraction.



First master J-fraction (4)

Theorem 4 (First master J-fraction for permutations)

The OGF of the polynomials Qn(a,b, c,d,w) has the J-type
continued fraction

∞∑
n=0

Qn(a,b, c,d,w)tn =

1

1− w0t −
a00b00t

2

1− (c00 + d00 + w1)t −
(a00 + a10)(b01 + b10)t2

1− · · ·

with coefficients γn = c∗n−1 + d∗n−1 +wn and βn = a∗n−1b
∗
n−1, where

a∗n−1 :=
∑n−1

`=0 a`,n−1−` = a0,n−1 + a1,n−2 + . . .+ an−1,0.



A remark on the inversion statistic

A inversion of a permutation σ ∈ Sn is a pair i , j ∈ [n] such that
i < j and σ(i) > σ(j).

Lemma 1 (Shin-Z. 2010)

We have

inv = cval + cdrise + cdfall + ucross + lcross

+ 2(unest + lnest + psnest)

= exc +(ucross + lcross + ljoin) + 2(unest + lnest + psnest).



p,q-generalization of the second J-fraction

We can also make a (p,q)-generalization of the second J-fraction
involving cyc. Define the polynomial

Q̂n(x1, x2, y1, y2, u1, u2, v1, v2,w,

p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s, λ) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

earccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)×

p
ucrosscval(σ)
+1 p

ucrosscdrise(σ)
+2 p

lcrosscpeak(σ)
−1 p

lcrosscdfall(σ)
−2 ×

q
unestcval(σ)
+1 q

unestcdrise(σ)
+2 q

lnestcpeak(σ)
−1 q

lnestcdfall(σ)
−2 spsnest(σ) λcyc(σ).



p,q-generalization of the second J-fraction

Theorem 5 (Second J-fraction for permutations)

∞∑
n=0

Q̂n(x1, x2, y1, y2, u1, u2, v1, v2,w,

p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s, λ)tn =

1

1− λw0t −
λx1y1t

2

1− (x2 + y2 + λw1)t −
(λ+ 1)(x1 + u1)t2

1− · · ·

,

with coefficients γ0 = λw0,

γn = (pn−1
−2 x2 + q−2[n − 1]p−2,q−2u2) + npn−1

+2 y2 + λsnwn for n ≥ 1

βn = (pn−1
−1 x1 + q−1[n − 1]p−1,q−1u1)pn−1

+1 y1(λ+ n − 1).



Set partitions: S-fraction

The Bell number Bn is the number of partitions of an n-element
set into nonempty blocks with B0 = 1.

∞∑
n=0

Bn t
n =

1

1−
1 t

1−
1 t

1−
1 t

1−
2 t

1− · · ·

with coefficients α2k−1 = 1, α2k = k .



∞∑
n=0

Bn(x , y , v) tn =
1

1−
x t

1−
y t

1−
x t

1−
(y + 2v) t

1− · · ·
with coefficients α2k−1 = x , α2k = y + (k − 1)v .
Clearly Bn(x , y , v) is a homogeneous polynomial of degree n; it has
three truly independent variables.



Theorem 6 (S-fraction for set)

The polynomials Bn(x , y , v) have the combinatorial interpretation

Bn(x , y , v) =
∑
π∈Πn

x |π|y erec(π)vn−|π|−erec(π)

where |π| (resp. erec(π)) denotes the number of blocks (resp.
exclusive records) in π.

Given π ∈ Πn, for i ∈ [n], we define σ′(i) to be the next-larger
element after i in its block, if i is not the largest element in its
block, and 0 otherwise. Then erec(π) := erec(σ′). For example, if
π = {1, 5} − {2, 3, 7} − {4} − {6}, then σ′ = 5370000.



Given a partition π of [n], we say that an element i ∈ [n] is

an opener if it is the smallest element of a block of size ≥ 2;

a colser if it is the largest element of a block of size ≥ 2;

an insider if it is a non-opener non-closer element of a block
of size ≥ 3;

a singleton if it is the sole element of a block of size 1.

Clearly every element i ∈ [n] belongs to precisely one of these four
classes.



J-fraction

We can refine the polynomial Bn(x , y , v) by distinguishing between
singletons and blocks of size ≥ 2; in addition, we can distinguish
between exclusive records that are openers and those that are
insiders. Define

Bn(x1, x2, y1, y2, v) =
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 ×

y
erecin(π)
1 y

erecop(π)
2 vn−|π|−erec(π),

where m1(π) is the number of singletons in π, m≥2(π) is the
number of non-singletons blocks, erecin(π) is the number of
exclusive records that are insiders, and erecop(π) is the number of
exclusive records that are openers.



Theorem 7 (J-fraction for set partitions)

∞∑
n=0

Bn(x1, x2, y1, y2, v)tn =

1

1− x1t −
x2y2t

2

1− (x1 + y1)t −
x2(y2 + v)t2

1− · · ·

with coefficients γ0 = x1,

γn = x1 + y1 + (n − 1)v for n ≥ 1

βn = x2[y2 + (n − 1)v ].



First p, q−generalization

Let π = {B1,B2, . . . ,Bk} be a partition of [n]. We associate a
graph Gπ with vertex set [n] such that i , j are joined by an edge if
and only if they are consecutive elements within the same block.
We then say that a quadruplet i < j < k < l forms a

crossing (cr) if (i , k) ∈ Gπ and (j , l) ∈ Gπ;

nesting (ne) if (i , l) ∈ Gπ and (j , k) ∈ Gπ.

We also say that a triplet i < k < l forms a

pseudo-nesting (psne) if (i , l) ∈ Gπ.

1 2 3 4 5 6 7 8 9 10 11

π = {{1, 9, 10}, {2, 3, 7}, {4}, {5, 6, 11}, {8}}.



We now introduce a (p, q)-generalization of previous polynomial:

Bn(x1, x2, y1, y2, v , p, q, r) =
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 y

erecin(π)
1 y

erecop(π)
2 ×

vn−|π|−erecop(π)pcr(π)qne(π)rpsne(π).

Theorem 8

∞∑
n=0

Bn(x1, x2, y1, y2, v , p, q, r)tn =
1

1− x1t −
x2y2t

2

1− · · ·
with coefficients γ0 = x1,

γ = rnx1 + pn−1y1 + q[n − 1]p,qv for n ≥ 1

βn = x2(pn−1y2 + q[n − 1]p,qv).



First master J-fraction

Rather that counting the total numbers of quadrauplets
i < j < k < l that form crossings or nestings, we should instead
count the number of crossings or nestings that use a particular
vertex k in third (or sometimes second) position, and then attribute
weights to the vertex k depending on those values. We define

cr(k , π) = #{i < j < k < l : (i , k) ∈ Gπ and (j , l) ∈ Gπ}
ne(k , π) = #{i < j < k < l : (i , l) ∈ Gπ and (j , k) ∈ Gπ}

psne(k , π) = #{i < k < l : k is a singleton and (i , l) ∈ Gπ}



First master J-fraction

Note that cr(π) and ne(k, π) can be nonzero only when k is either
an insider or a closer; and we obviously have

cr(π) =
∑

k∈insiders∩ closers

cr(k , π)

ne(π) =
∑

k∈insiders∩ closers

ne(k , π)

psne(π) =
∑

k∈singletons

psne(k , π).

Finally we define

crne′(π) = #{i < k < l : k is an opener and (i , l) ∈ Gπ}

which counts the number of times that the opener k occurs in
second position in a crossing or nesting.



First master J-fraction

We now introduce four infinite families of indterminates
a = (a`)`≥0, b = (a`,`′)`,`′≥0, c = (c`,`′)`,`′≥0, e = (e`)`≥0 and
define the polynomials Bn(a,b, c, e) by

Bn(a,b, c, e) =
∑
π∈Πn

∏
i∈openers

acrne′(i ,π)

∏
i∈closers

bcr(i ,π),ne(i ,π)∏
i∈insiders

ccr(i ,π),ne(i ,π)

∏
i∈singletons

epsne(i ,π)



Theorem 9 (Master J-fraction for set partitions)

The OGF of the polynomials Bn(a,b, c, e) has the J-type CF

∞∑
n=0

Bn(a,b, c, e)tn =

1

1− e0t −
a0b00t

2

1− (c00 + e1)t −
a1(b01 + b10)t2

1− · · ·

with coefficients

γn =
∑n−1

`=0 c`,n−1−` + en, βn = an−1
∑n−1

`=0 b`,n−1−`.



Perfect matchings

Euler:
∞∑
n=0

(2n − 1)!!tn =
1

1−
1 t

1−
2 t

1−
3 t

1− · · ·
We introduce the polytnomials Mn(x , y , u, v) by

∞∑
n=0

Mn(x , y , u, v)tn =
1

1−
x t

1−
(x + v) t

1−
(x + 2u) t

1− · · ·
with coefficients α2k−1 = x + (2k − 2)u, α2k = y + (2k − 1)v



Master S-fraction

We can regard a perfect matching either as a special type of
partition (namely, one in which all blocks are of size 2) or as a
special type of permutation (namely, a fixed-point-free involution).
We now introduce four infinite families of indterminates
a = (a`)`≥0, b = (a`,`′)`,`′≥0,and define the polynomials Mn(a,b)
by

Mn(a,b) =
∑
π∈Mn

∏
i∈openers

acrne′(i ,π)

∏
i∈closers

bcr(i ,π),ne(i ,π).

Of course, we have Mn(a,b) = B2n(a,b, 0, 0).



Theorem 10 (Master S-fraction for perfect matchings)

The OGF of the polynomials Bn(a,b) has the S-type CF

∞∑
n=0

Mn(a,b)tn =
1

1−
a0b00t

2

1−
a1(b01 + b10)t2

1− · · ·

with coefficients αn = an−1b
∗
n−1, where

b∗n−1 =
∑n−1

`=0 b`,n−1−`.


