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Abstract

The asymmetric simple exclusion process (ASEP) is an important model from sta-
tistical mechanics. It describes a system of particles hopping left and right on a one-
dimensional lattice of n sites. At both boundaries particles may be injected and ejected,
and the particles are subject to a strong exclusion rule which admits at most one par-
ticle per site at each time. The ASEP is regarded as a primitive model of kinetics of
polymerization or traffic flow, and recently a connection to orthogonal polynomials was
noted too.

Furthermore, it has been observed that the unique stationary distribution Pn has
remarkable connections to combinatorics, which is the starting point of this text. Here,
we provide an overview about the work that was done investigating the combinatorics
that lie behind the process. We start by showing how the stationary distribution Pn

can be expressed in terms of a simple matrix formulation, the so-called Matrix-Ansatz.
We shall use this matrix formulation to establish a connection between certain lattice
paths and states of a restricted version of the ASEP, where particles are only allowed
to travel in one direction. We can then express the stationary probabilities Pn in terms
of lattice paths, e.g., One up paths or bicolored Motzkin paths. Enumeration of these
paths yields the stationary distribution of the process.

One can generalize these results by making use of a fairly new class of combinatorial
objects, namely permutation tableaux or alternative tableaux. With the help of these
tableaux, we can handle more general cases as with lattice paths, like the partially
ASEP, where particles travel to both sides, but can only enter at one boundary and
leave at the opposite boundary, or the symmetric ASEP in which particles travel left
and right at same rate and enter or leave the system to both sides. Again, we rely
on the Matrix Ansatz, and, additionally, consider the combinatorics on permutation
tableaux to obtain results concerning the stationary distributions of these processes.
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Zusammenfassung

Der “asymmetric simple exclusion process”, (ASEP), ist ein wichtiges Modell in
der statistischen Mechanik. Es beschreibt Teilchen, die entlang eines eindimensionalen
Weges mit n Plätzen nach links oder rechts wandern können. Die Teilchen können am
Rand des Systems eintreten oder es eben dort verlassen. Außerdem unterliegen sie einer
Exklusionsregel; auf Grund starker Wechselwirkungen darf sich zu jedem Zeitpunkt
höchstens ein Teilchen an jeder Stelle aufhalten.

Der ASEP gilt, unter anderem, als ein einfaches Modell für den Vorgang der Poly-
merisation oder für den Verkehrsfluss. Des Weiteren wurde auch eine Verbindung zu
Orthogonalpolynomen entdeckt.

Aus kombinatorischer Sicht ist der Prozess vor allem interessant, weil die eindeutige
stationäre Verteilung Pn enge Verbindungen zu der Kombinatorik aufweist. Diese
Beobachtung ist der Ausgangspunkt dieser Arbeit, in der verschiedene kombinatorische
Zugänge zu dem ASEP präsentiert werden. Eingangs wird gezeigt, dass man die sta-
tionäre Verteilung Pn mit Hilfe einer simplen Matrixformel ausdrücken kann, mittels des
sogenannten Matrix Ansatzes. Durch Interpretation von Matrizen, die diesem Ansatz
genügen, kann man eine Verbindung zwischen den Zuständen des Prozesses und Git-
terpfaden herstellen. Die Resultate werden für einen Spezialfall des ASEP gezeigt, bei
dem sich Teilchen nur in eine Richtung fortbewegen können. Die stationäre Verteilung
kann man dann mittels Abzählen von Gitterpfaden, nämlich von One up Pfaden oder
von zweifärbigen Motzkin Pfaden, berechnen. Diese Herangehensweise kann man ve-
rallgemeinern, und zwar mittels relativ neuer kombinatorischer Objekte, sogenannter
Permutation Tableaux und Alternative Tableaux. Untersucht man die Struktur und
Eigenschaften dieser Tableaux, kann man, wiederum mit Hilfe des Matrix Ansatzes,
Ausdrücke für die stationäre Verteilung der folgenden beiden Spezialfälle des ASEP
finden: Für den Fall, dass Teilchen in beide Richtungen wandern, aber nur an der einen
Seite eintreten und an der anderen Seite das System verlassen können, und für den recht
allgemeinen Fall, dass Teilchen in beliebige Richtungen wandern können, dies aber mit
den selben Wahrscheinlichkeiten tun.
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CHAPTER 0

Introduction

The asymmetric simple exclusion process (ASEP) is a model from statistical me-
chanics that has been studied extensively.

Although quite simple, it exhibits some interesting behavior, like boundary-induced
phase transitions, spontaneous symmetry breaking and phase separation, and especially
the stationary properties have attracted much attention. It is regarded as a primitive
model of kinetics of biopolymerization [16] or traffic flow [1], for formation of shocks [10]
and also appears in enzyme kinetics [21]. Recently, a connection to orthogonal polyno-
mials was noted as well [20,26].

The ASEP describes a model of particles traveling on a one-dimensional lattice path
of n sites with a strong exclusion interaction, allowing at most one particle per site.
In an infinite small time interval dt, particles may hop to the right with probability
pdt, or to the left with probability qdt. Furthermore, new particles may be injected
on or removed from the left-most site with probability αdt and γdt, respectively, and
at the right-most site with probability δdt and βdt, respectively – see Figure 0.1 for
an informal illustration. In the long time limit this Markov chain reaches a unique
stationary distribution (as shown in Chapter 2).

These steady state probabilities can be expressed using a matrix formulation as
noted in [9]: for each state, the steady state probability Pn is given by fn

Zn
, where fn are

unnormalized weights given through a product of matrices (which satisfy some simple
algebraic relations) and Zn, the partition function, is a multiplicative constant (inde-
pendent of the state). This approach is known as the Matrix Ansatz and has become a
standard technique for investigations of the stationary properties of the ASEP. It also
yields an easy way of calculating the n-point (correlation) function which indicates how
particles influence each other at different sites.

Our main interest shall be to describe stationary properties of the ASEP combi-
natorially. We shall find combinatorial interpretations for the unnormalized weights
fn as well as for the partition function Zn and the n-point function, and, the other
way round, derive these quantities through combinatorial methods. Depending on the
choice of parameters, we use a range of well known objects (e.g. Dyck paths) and some
fairly new objects (e.g. alternative tableaux ).

α β

γ δ

p q

Figure 0.1. An informal illustration of the ASEP.
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viii 0. INTRODUCTION

We will mainly rely on the Matrix Ansatz. Other combinatorial approaches by-
passing the Matrix Ansatz include the considerations of new Markov chains which are
linked to the ASEP in the sense that a walk on them is indistinguishable from a walk
on the ASEP. In [11] this Markov chain reveals a second row of particles traveling
backwards while in [5] the Markov chain is defined on permutation tableaux which are
in bijection with permutations.

Other interesting results which are based on the Matrix Ansatz can be found, e.g.,
in [26]. There, an eigenvector to one of the matrices whose entries are related to
orthogonal polynomials is found. By orthogonality relation and exploitation of the
eigenvector property, the partition function can then be expressed in terms of integrals.

Finally, in [14] the model is placed in the context of Markov chain theory.

The structure of this text is as follows. The first chapter, Chapter 0, is devoted
to the precise definition of the asymmetric simple exclusion process (ASEP) and to
notation.

We then shall consider the Matrix Ansatz Theorem in Chapter 2 as it builds the
basis for the results that are to follow. This Matrix Ansatz Theorem (Theorem 2.1)
provides a simple way to calculate the long time limit probability Pn of finding the
ASEP in a fixed state. The theorem states that the unnormalized weights fn which
differ from Pn by a constant can be expressed as the product of matrices for which
some simply algebraic equations hold. The constant that normalizes the weights fn is
given by 1/Zn, where Zn is the so-called partition function. We shall later note that
the validity of the Matrix Ansatz Theorem is not only limited to matrices, but since
we mainly deal with matrices in the subsequent chapters, we investigate their form and
size in Section 2.2 – we shall see that, in general, they are infinite-dimensional and
triangular.

In Chapter 3 we start to investigate the combinatorics that lies behind the ASEP
by first considering the case where particles can only hop to the right and do so at
the same rate at which they enter and leave the system. We call this the totally
asymmetric simple exclusion process (TASEP) with maximal regime flow. We first
consider the partition function Zn and show that it can be expressed by enumerating
certain lattice paths, namely One up paths (Lemma 3.5) and we derive that Zn = Cn+1,
where Cn+1 is a Catalan number (Corollary 3.8). To do so we interpret a matrix
representation for the Matrix Ansatz in terms of transfer matrices, see Section 3.1.
Moreover, we shall see that each unnormalized weight fn corresponds to a set of One
up paths for which restrictions concerning the position of up and down steps hold
(Lemma 3.9). Through usage of different bijections we shall see that fn can also be
expressed in terms of pairs of non-intersecting paths (Proposition 3.13), or in terms
of a determinant (Theorem 3.16). Additionally, we derive a formula to calculate the
probability of finding a fixed number of particles in the TASEP with maximal flow
regime (Proposition 3.17). For the proofs we use, among others, the Lindström-Gessel-
Viennot Theorem (Theorem A.1). In Section 3.5 we shall see that in the case where we
additionally allow particles to hop to the left, one can, by the same methods as before,
express Pn, the steady state probabilites, in terms of lattice paths, more precisely, in
terms of Motzkin paths. We close the chapter by giving a short overview on how similar
results can be obtained by applying the methods described before to the TASEP with
general parameters (Section 3.7).
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The subsequent chapter, Chapter 4, is dedicated to a more general case of the ASEP:
this time we allow particles to hop left or right and to enter the system at the left-hand
and leave it at the right-hand side, the partially asymmetric simple exclusion process
(PASEP). We shall connect the ASEP and its states to permutation tableaux, a certain
class of tableaux with 0− 1-fillings (Definition 4.1). We show that for the PASEP the
unnormalized weights fn are obtained through considerations of certain statistics of
permutation tableaux (Theorem 4.3). The method is similar to the one in Chapter 3.
Again, we present a representation for the Matrix Ansatz, but this time we see that the
entries in the matrices correspond to a generating function for permutation tableaux
according to certain statistics (see Section 4.2). (This is actually how the representation
was found, through considerations of combinatorics on permutation tableaux, see [6],
p. 296).

In Chapter 5 we then consider so-called alternative tableaux. These are tableaux with
partial filling consisting of ↑ and ←, they stand in bijection with permutation tableaux
and were first introduced in [27]. Whereas in the case of permutation tableaux the
statistics involved eventually seem a little artificial, the results from Chapter 4 can
be reformulated in a somewhat more catchy way through alternative tableaux. Before
doing so, we shall present the bijection between permutation tableaux and alternative
tableaux in Section 5.1. We shall formulate the bijection by means of two algorithms
ϕ, ψ, one sending permutation tableaux to alternative tableaux and and the other doing
the reverse operation. To this end we examine the type of entries in the fillings of
permutation tableaux and alternative tableaux and work out the details of the results
of X. Viennot in [27] explicitly.

In the last chapter, Chapter 6, we present results concerning the case of the ASEP
where particles hop left and right at the same rate but might enter and leave the system
at different rates on both sides (symmetric ASEP). Since we allow two more parameters
to be different from 0 (namely the rates of particles entering at the right and leaving
to the left) we will have to generalize the tableaux used so far to reflect this. We do
so by introducing a labeling along the right-hand border of the tableaux. This leads
to the definition of bordered permutation tableaux and bordered alternative tableaux in
Section 6.1. With the help of these objects we can again express the unnormalized
weights fn as well as the partition function Zn in terms of tableaux and their statistics
(Theorems 6.4, 6.5). The proofs are given in Section 6.2. Finally, in Section 6.3, we
present a second proof of the results in Section 6.1. Again, we modify the definition
of the tableaux a little and use decorated bordered permutation tableaux. The special
feature in this section is that we see that the Matrix Ansatz, although suggested by the
name, is not only limited to matrices. We define some linear operators on the infinite-
dimensional vector space whose basis is labeled by decorated bordered permutation
tableaux and show that for them the Matrix Ansatz holds. We then show that the
operators posses the desired combinatorial properties and hence imply the result.

The Appendix is devoted to the proof of the Lindström-Gessel-Viennot Theorem
and some results which are implied by this theorem, and which are used in the main
text.





CHAPTER 1

Definitions and Notation

1.1. The Asymmetric Simple Exclusion Process – ASEP

In physics literature (see, e.g., ([14], p. 261) or ([9], Section 11.1.)) the one-
dimensional asymmetric simple exclusion process (ASEP) is defined as a continuous-
time Markov process modeling left and right hopping particles on a one-dimensional
lattice of n sites, each of the sites being either empty or occupied by a particle. Due
to an exclusion rule a given site is at most occupied by one particle. Particles in the
system try to move on the lattice path but have a unit exponential holding time. Once
a particle gets active it has the following options:

• it hops to the next site at its right at rate p if this next site is empty (for
particles on site 1 ≤ i ≤ n− 1)

• it hops to the next site at its left at rate q if this next site is empty (for particles
on site 2 ≤ i ≤ n)

If the site to which the particle is aiming to hop to is occupied, then the jump is
suppressed due to the exclusion rule. Through rescaling time we can always set p = 1.
Furthermore, a particle

• is injected at site i = 1 at rate α if the site is empty,
• is removed from site i = 1 at rate γ,
• is injected at site i = n at rate δ if the site is empty,
• is removed from site i = n at rate β,

where α, β, γ, δ ≥ 0. We denote a state of the ASEP with n sites in two different
ways: either as a word in {◦, •}n (where ◦ means that the site is empty and • that
the site is occupied) or as τ = (τ1, . . . , τn) where τi ∈ {0, 1} for i = 1, . . . , n. The first
notation already suggests interpreting the ASEP as a system where not only particles
and empty sites travel, but rather black particles and white particles. This point of
view also exhibits a symmetry within the ASEP, e.g. in the case of p = γ = δ = 0 black
particles travel to the right, while white particles travel to the left – see Figure 1.1. This
black particle/white particle symmetry (or particle/hole symmetry) of the model can
be made explicit as follows: if black particles travel right at rate p, then white particles
travel left at the same rate. In the case where all parameters are non-zero the following
symmetry between black and white particles can be noted:

sites : i↔ n + 1− i i = 1, . . . , n

rates : q ↔ −1, α↔ q−1δ, β ↔ q−1γ, γ ↔ q−1β, δ ↔ q−1α

To confirm this claim, note that the white particles move to the left at rate q and to
the right at rate 1. If we want a white particle to travel “forward” (which now is to the
left) at rate 1, then we have to rescale time by factor q−1. So, for white particles we

1



2 1. DEFINITIONS AND NOTATION

Notation Parameters free to choose Fixed parameters
ASEP q, α, β, γ, δ
TASEP α, β q = 0, γ = δ = 0
PASEP q, α, β γ = δ = 0
symmetric ASEP α, β, γ, δ q = 1

Table 1. Some special cases of the ASEP.

obtain the parameters states above. Hence, for the general ASEP it suffices to consider
the case where 0 ≤ q ≤ 1.

Depending on the choice of the probability q (and the other parameters), physics
literature knows a lot of different special cases of the ASEP and a range of different
names for it. We will use the following notation. The simplest case is the case where
particles can only enter at the left-hand side and move to the right until they leave
the system – this is the case where only α, β ≥ 0. We call this the TASEP (totally
asymmetric simple exclusion process). A special case of the TASEP is the choice α =
β = 1, the maximal flow regime. If not only α, β ≥ 0 but, additionally, q 	= 0 we
call this the PASEP (partially asymmetric simple exclusion process). The case where
all parameters on the boundaries are chosen freely but q = 1 is called the symmetric
ASEP. Table 1.1 provides a compact overview.

Remark. It might seem strange to introduce a “symmetric case” of the asymmetric
simple exclusion process, but it is more convenient to stick with the same name of the
system, ASEP, all the time instead of changing it to, e.g. SSEP (symmetric simple
exclusion process).

1.2. ASEP as a Discrete-Time Markov Chain

One can also describe the ASEP in terms of a discrete-time Markov chain, as it was
done in ([6], Definition 2.2.). Through considerations of points in time at which an
event occurs one can generally derive a discrete version of a time-continuous Markov
chain.

Definition 1.1. Let α′, β ′, γ′, δ′ and p, q′ be constants such that α′, β ′, γ′, δ′ ≥ 0,
and 0 ≤ pq′ ≤ p ≤ 1. Let Bn be the set of all 2n words in the language {◦, •}. The
ASEP is the Markov chain on Bn with transition probabilities:

• If X = A•, ◦B and Y = A◦, •B then PX,Y = 1
2p(n+1)

(particle hops right) and

PY,X = q′
2p(n+1)

(particle hops left)

α β

γ δ

p q

Figure 1.1. The symmetry of black and white particles within the
ASEP – compare to Figure 0.1.
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• If X = ◦B and Y = •B then PX,Y = α′
2p(n+1)

(particle enters from the left)

• If X = B• and Y = B◦ then PX,Y = β′
2p(n+1)

(particle exits to the right)

• If X = •B and Y = ◦B then PX,Y = γ′
2p(n+1)

(particle exits to the left)

• If X = B◦ and Y = B• then PX,Y = δ′
2p(n+1)

(particle enters from the right)

• Otherwise PX,Y = 0 for Y 	= X and PX,X = 1−∑X �=Y PX,Y .

We indicate the equivalence of the two chains following the arguments of ([11],
Section 1.2.): Another way to describe the time-continuous ASEP is the following: we
do not focus on the particles but on the walls between the particles. Each of the walls
is considered independently (more precisely, each wall between a ordered pair of sites,
hence there are two walls between any two sites). We think of them as being “asleep”
and having unit exponential holding times before waking up and eventually triggering a
move. The move consists in exchanging a particle and an empty site on the left-hand and
the right-hand side of the wall and occurs with the transition rates of the ASEP. (This
point of view is derived through coupling as in ([14], p. 215). Now we only consider
the points in time where a wall wakes up. The index of the next wall to awake is then
uniformly distributed among the total number of walls {0, 1, . . . , 2n+ 2} ([13], Satz 16
(c)) and the probability of a transition occurring is given by the rates of the ASEP.
Setting α′ = α/p, β ′ = β/p etc. (this is the analogon to the rescaling in the continuous
version) we arrive at Definition 1.1. Furthermore, these considerations imply that the
ASEP and its discrete-time Markov chain replica have the same stationary distribution.

1.3. Generalizations of the ASEP

There also exist some generalizations like the 3-ASEP where three types of particle
travel within the system. A “strong-type” particle can not only hop to empty sites
but force a neighboring “weak-type” particle to change places, while the “weak-type”
particle can only hop to the left or to the right if the neighboring site is empty. In-
terpreting empty sites as white particles we obtain the remaining third type. See, e.g.,
([11], Section 4.1.).





CHAPTER 2

The Matrix Ansatz

The Matrix Ansatz for the ASEP was introduced by Derrida et al. [9] and provides
a very useful tool in further investigations. It reduces the problem of calculating the
unique stationary distribution to finding matrices D,E, V,W for which some simple al-
gebraic equations hold. Actually, D,E, V,W do not even need to be matrices (although
most of the time we will consider a matrix representation) but they can be something
else, e.g., operators between vector spaces. For now we focus on matrices, but we also
give an example for the representation in terms of operators (see Section 6.3).

Remark. In this chapter we omit the assumption p = 1.

We are striving to find an expression for the quantity Pn(τ1, . . . , τn), the steady state
probability of finding the ASEP in the state τ = (τ1, . . . , τn) in the long time limit. It
turns out to be more convenient to consider unnormalized weights fn(τ1, . . . , τn), which
are equal to Pn(τ1, . . . , τn) up to a multiplicative constant:

Pn(τ1, . . . , τn) =
fn(τ1, . . . , τn)

Zn
(2.1)

with
Zn =

∑
(τ1,...,τn)∈{0,1}n

fn(τ1, . . . , τn) (2.2)

being the so-called partition function.

Theorem 2.1 ([9], Section 2). Suppose that D and E are matrices, V a column
vector, and W a row vector such that the following equations hold:

pDE − qED = D + E (2.3)

(βD − δE)V = V (2.4)

W (αE − γD) = W (2.5)

Then, the unnormalized steady state probability fn(τ1, . . . , τn) of the ASEP being in state
τ = (τ1, . . . , τn) ∈ {0, 1}n is given by

fn(τ1, . . . , τn) = W

(
n∏

i=1

(τiD + (1− τi)E)

)
V, (2.6)

where we assume that W (
∏n

i=1 (τiD + (1− τi)E))V has the same sign for all possible
states τ ∈ {0, 1}nand that fn exists (i.e. that the matrix product is well-defined).

So, it turns out that the unnormalized weights fn(τ1, . . . , τn) can be expressed as
the product of n matrices D or E with the matrix D at position i if site i is occupied
(τi = 1) and the matrix E at position i if site i is empty. Consider the following, simple
example.

5



6 2. THE MATRIX ANSATZ

Example. Consider the TASEP with 3 sites where we set p = 1, α = β = 1/2
and the remaining parameters equal 0; that is, particles travel to the right at rate 1,
and enter the system at the left and leave it to the right, both at rate 1/2. Consider
the state (◦, •, ◦). We set D = 1/β = 2, E = 1/α = 2 and W = V = 1. Then,
the Matrix Ansatz Equations (2.3)– (2.5) are satisfied. Hence the unnormalized steady
state probability of finding the TASEP in the state τ = (0, 1, 0) is given by

fn = EDE =
1

α

1

β

1

α
=

1

α2β
.

Another consequence of Theorem 2.1 is that the partition function Zn can be written
as

Zn = W (D + E)nV. (2.7)

Since, by definition, Zn equals the sum of the unnormalized weights fn, we have

Zn =
∑

(τ1,...,τn)∈{0,1}n

fn(τ1, . . . , τn) (2.8)

=
∑

(τ1,...,τn)∈{0,1}n

W

(
n∏

i=1

(τiD + (1− τi)E)

)
V (2.9)

= W
∑

(τ1,...,τn)∈{0,1}n

(
n∏

i=1

(τiD + (1− τi)E)

)
V = W (D + E)nV. (2.10)

If we find D,E, V,W such that the Matrix Ansatz equations hold, we can easily cal-
culate the steady state probabilities since then the Matrix Ansatz Theorem immediately
provides the unnormalized weights fn as well as the partition function Zn.

Remark. Although the assumption that all quantitiesW (
∏n

i=1 (τiD + (1− τi)E))V
have the same sign might appear very restrictive in Theorem 2.1, it actually is not. In
general, it is feasible to drop this restriction using some Markov chain theory, see ([14],
p. 263, Proof of Theorem 3.1.). But for all solutions D,E, V,W to the Matrix Ansatz
which we provide later on — we will refer to them as representations most of the time
— the assumption holds simply by definition of D,E, V,W . Also by definition of these
matrices we will ensure that the matrix product in fn is well-defined.

2.1. Proof of the Matrix Ansatz Theorem

Proof of Theorem 2.1. Consider the ASEP with n sites and note that it is a
continuous Markov chain with 2n states – each of the n sites can either be empty or
occupied. Let Q ∈ R2n×2n

be the transition rate matrix of the Markov chain, that is

Qi,j =

{
the transition rate from state i into state j i 	= j

−∑j �=iQi,j i = j
(2.11)

The ASEP, as a Markov chain, is irreducible (that is, one can reach any state out of
any other state – in our case most of the time passing through several other states but
that does not matter) and recurrent (that is, the probability of returning to a given
state i after having started in this state is equal to 1 – for our Markov chain there is no
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reason why it should be less likely to return into a given state). Therefore, there exists
a unitary stationary distribution which we will denote by P ([18], Theorem 3.5.2).

Markov chain theory provides the following to find this unitary stationary distribu-
tion: if for a vector

P = (P1, . . . , P2n) ∈ R2n

with Pi ≥ 0 and
∑2n

i=1 Pi = 1 the equation

P ∗Q = 0 (2.12)

holds, then P is the stationary distribution P ([18], Theorem 3.5.5). We will show that
the unnormalized steady state probability is given by (2.6) and that P can hence be
obtained by (2.1).

Since each entry of P gives us the steady state probability of the state τ , we denote
the entries of the vector P by Pn(τ1, . . . , τn) with τ = (τ1, . . . , τn) being a state of the
ASEP.

Solving the matrix equation in (2.12), we obtain a system of 2n equations. Number
all possible states of the ASEP by i = 1, . . . , 2n and let them be represented by Si. Fix
a state (τ1, . . . , τn) =: Sk. Then the k-th equation reads

Pn(S1) ∗Q1,k + . . .+ Pn(S2n) ∗Q2n,k = 0 (2.13)

where Qi,k is the transition rate from state Si into state Sk. If Equation (2.13) holds
for k = 1, 2, . . . 2k, then Pn is the steady state distribution.

Let us take a closer look at the transition rates, the entries of the matrix Q. We find
a lot of 0 entries in Q, since in each row there are at most n + 2 entries different from
0. (This can be seen by using one of the points of view in Chapter 1.2. If the ASEP
has n sites, then there are n + 1 walls between these n slots. Any of these walls can
become active and might trigger a move, so there are up to n+ 1 possible new states –
the exact number depends on the number of particles in a given state. Additionally, in
the diagonal of the matrix we find one more (negative) entry that corresponds to the
rate of staying in the given state.) For investigations, we split the transition matrix Q
up into “smaller pieces” and rewrite Equation(s) (2.13). We use the following notation.
Define

h1 :=

(
−α α
γ −γ

)
. (2.14)

This matrix represents the transition rates due to particles entering or leaving at the left-
hand boundary side. We will not label the entries of the matrix by {1; 2} as usually but
by {0; 1}. This is a very intuitive labeling, since e.g. (h1)0;1 = α gives the transition-rate
out of the state (0, τ2, . . . , τn) into the state (1, τ2, . . . , τn) (this being a particle entering
at the left-hand side) whereas (h1)1;0 = γ gives the transition-rate out of the state
(1, τ2, . . . , τn) into the (0, τ2, . . . , τn) (particle leaving at the left-hand side). Entries in
the diagonal of h1 are analogous to the entries in the diagonal of the transition rate
matrix Q.

Similarly we define hn to be the matrix whose entries represent the transition rates
due to particles leaving or entering from the right-hand boundary site:

hn :=

(
−δ δ
β −β

)
. (2.15)
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Again label the entries by {0; 1}. The transitions that occur due to a particle hopping
between a pair of non-boundary sites i, i+ 1 are either

from (τ1, . . . , τi−1, 1, 0, τi+2, . . . , τn) to (τ1, . . . , τi−1, 0, 1, τi+2, . . . , τn) at rate p;

from (τ1, . . . , τi−1, 0, 1, τi+2, . . . , τn) to (τ1, . . . , τi−1, 1, 0, τi+2, . . . , τn) at rate q..

Therefore, we define

h :=

⎛⎜⎜⎝
0 0 0 0
0 −q q 0
0 p −p 0
0 0 0 0

⎞⎟⎟⎠ , (2.16)

this time choosing the labeling to be {0, 0; 0, 1; 1, 0; 1, 1}.
We now rewrite and solve Equation (2.13) (which is just one representative for the

2n equations). We will denote the left-hand side of (2.13) by d
dt
Pn(τ1, . . . , τn). This is

a common notation in the literature ([9], p. 1495) (and intuitively proposes that the
distribution Pn(τ1, . . . , τn) is stationary). If

d

dt
Pn(τ1, . . . , τn) = 0 (2.17)

then (2.13) is satisfied. Using (2.14) – (2.16) we can rewrite (2.13) as follows:

d

dt
Pn(τ1, . . . , τn) =

∑
σ1=0,1

(h1)σ1;τ1Pn(σ1, τ2, . . . , τn)

+
n−1∑
i=1

∑
σi,σi+1

(h)σi,σi+1;τi,τi+1
Pn(τ1, . . . , σi, σi+1, . . . , τn)

+
∑

σn=0,1

(hn)σn;τnPn(τ1, . . . , τn−1, σn) (2.18)

We postpone showing that (2.13) equals (2.18) until the end of this proof. Note that
in the term ∑

σi,σi+1

(h)σi,σi+1;τi,τi+1
Pn(τ1, . . . , σi, σi+1, . . . , τn)

the sum is over (σi, σi+1) ∈ {0, 1}2. Furthermore note that τ1 and τn do not necessarily
appear in the term (although they are written down explicitly). The notation rather
means that σi and σi+1 are injected on the i-th and (i+1)-th position (this could also be
the first position) whereas the remaining positions are “filled up” by the corresponding
τj .

Now, suppose that the following algebraic equations hold for D,E, V,W , and some
χ ∈ R:

pDE − qED = χ(D + E) (2.19)

(βD − δE)V = χV (2.20)

W (αE − γD) = χW (2.21)

Additionally, set
x0 = −aχ, x1 = aχ, (2.22)

where a ∈ R will be chosen later on.
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Recall that our aim is find a conditions for the probabilities P (τ1, . . . , τn) such
that Equation (2.18) equals 0. If we can show that for the probabilities the following
equations hold

∑
σ1

(h1)σ1;τ1Pn(σ1, τ2, . . . , τn) = xτ1Pn−1(τ2, . . . , τn), (2.23)∑
σi,σi+1

(h)σi,σi+1;τi,τi+1
Pn(τ1, . . ., σi, σi+1, . . . , τn)

= −xτi
Pn−1(τ1, . . . , τi−1, τi+1, . . . , τn)

+ xτi+1
Pn−1(τ1, . . . , τi, τi+2, . . . , τn), (2.24)∑

σn

(hn)σn;τnPn(τ1, . . . , τn−1, σn) = −xτnPn−1(τ1, . . . , τn−1), (2.25)

then the Pn which satisfy the recursions in (2.23) – (2.25) are automatically in a
steady state, since upon substituting (2.23) – (2.25) into (2.18), the coefficients of xτi

cancel and the sums add up to zero, giving d
dt
Pn = 0. Let us examine Equations (2.23)

– (2.25). We start with Equation (2.23) and set τ1 = 0.

−αPn(0, τ2, . . . , τn) + δPn(1, τ2, . . . , τn) = x0Pn−1(τ2, . . . , τn)

−αfn(0, τ2, . . . , τn)

Zn
+ δ

fn(1, τ2, . . . , τn)

Zn
= x0

fn−1(τ2, . . . , τn)

Zn−1
(2.26)

where we replaced Pn by the unnormalized weights fn and the partition function Zn.
Now we substitute fn by their expressions (2.6):

fn(0, τ2, . . . , τn) = W
(
E

n∏
i=2

(τiD + (1− τi)E)
)
V, (2.27)

fn(1, τ2, . . . , τn) = W
(
D

n∏
i=2

(τiD + (1− τi)E)
)
V, (2.28)

fn−1(τ2, . . . , τn) = W
( n∏

i=2

(τiD + (1− τi)E)
)
V. (2.29)

Plugging (2.27) – (2.29) into (2.26) we obtain

−αWEAV
Zn

+ δ
WDAV
Zn

= x0
WAV
Zn−1

(2.30)

where we used the abbreviation

A =
n∏

i=2

(τiD + (1− τi)E). (2.31)

Rearranging of (2.30) yields

−αWEAV + δWDAV = x0
Zn

Zn−1
WAV. (2.32)
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If we now set

a =
Zn−1

Zn
(2.33)

in (2.22), we can rewrite (2.32) as

−αWEAV + δWDAV = −χWAV. (2.34)

Analogously we consider (2.23) in the case of τ1 = 1:

αPn(0, τ2, . . . , τn)− δPn(1, τ2, . . . , τn) = x1Pn−1(τ2, . . . , τn)

α
fn(0, τ2, . . . , τn)

Zn
− δ

fn(1, τ2, . . . , τn)

Zn
= x1

fn−1(τ2, . . . , τn)

Zn−1

αfn(0, τ2, . . . , τn)− δfn(1, τ2, . . . , τn) = x1
Zn

Zn−1
fn−1(τ2, . . . , τn).

Using (2.33) together with (2.22) gives

αfn(0, τ2, . . . , τn)− δfn(1, τ2, . . . , τn) = χfn−1(τ2, . . . , τn),

which can be rewritten as

αWEAV − δWDAV = χWAV (2.35)

with the help of the abbreviation introduced in (2.31).
We conclude that Equation (2.23) is satisfied if Equations (2.34) and (2.35) hold.

But Equations (2.34) and (2.35) are an immediate consequence of Matrix Ansatz Equa-
tion (2.21) (we just need to multiply by AV from the left).

Similarly we can reformulate the recursions (2.24) and (2.25) and derive their validity
out of the generalized Matrix Ansatz equations. With the following abbreviations

B =

j−1∏
i=1

(τiD + (1− τi)E), (2.36)

C =
n∏

i=j+2

(τiD + (1− τi)E), (2.37)

Equation (2.24) yields

−qWBEDCV + pWBEDCV = χWBECV + χWBDCV, (2.38)

which certainly holds if (2.19) holds. On the other hand, abbreviating

D =

n∏
i=2

(τiD + (1− τi)E),

Equation (2.25) yields

βDV − δDEV = χV. (2.39)

This equation is implied by (2.25). Thus, we see that by assuming (2.19) – (2.21),
Equations (2.23) – (2.25) hold, from which follows that d

dt
Pn = 0. Setting

χ = 1,

in (2.23) – (2.25), we obtain the Matrix Ansatz equations.
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To finish the proof, we still need to show that (2.13) and (2.18) are indeed the same.
Consider Equation (2.13) for a fixed state Sk = (τ1, . . . , τn):

Pn(S1) ∗Q1,k + . . .+ Pn(S2n) ∗Q2n,k = 0.

Recall that Qi,k is the transition rate from state Si to state Sk For a lot of states the
transition rate into state Sk is equal to 0. Only three types of states can evolve directly
into Sk and therefore have non-zero transition rates:

• states which only differ in τ1 (the next move could be a particle entering re-
spectively leaving at the left-hand side boundary, depending on τ1)

• states which only differ in τn (a particle could leave or enter at the right-hand
side boundary)

• some states that differ in two neighboring sites τi, τi+1 — this corresponds to
the fact that a particle could hop left or right. (As an example: the state
(τ1, . . . , τi−1, 1, 0, τi+2, . . . , τn) can evolve into (τ1, . . . , τi−1, 0, 1, τi+2, . . . , τn)).

We claim that each of these three types of states is contained in the Formula (2.18).
Consider the first part of the formula.

d

dt
Pn(τ1, . . . , τn) =

∑
σ1=0,1

(h1)σ1;τ1Pn(σ1, τ2, . . . , τn)︸ ︷︷ ︸ (2.40)

+ . . .

+ . . .

The Pn(σ1, τ2, . . . , τn) are exactly the states that differ from Pn(τ1, . . . , τn) by the first
site (this is denoted by σ1 ∈ {0, 1}). Recalling the definition of the matrix h1 (see (2.14))
we see that the entry (h1)σ1;τ1 is the transition rate from state (σ1, τ2, . . . , τn) into
(τ1, τ2, . . . , τn). So the term in (2.40) gives all Pn which can evolve into Pn(τ) by a
particle entering/leaving at left-hand side multiplied by the corresponding transition
rate.

In the same vain, the third term in (2.18),

d

dt
Pn(τ1, . . . , τn) = . . .

+ . . .

+
∑

σn=0,1

(hn)σn;τnPn(τ1, . . . , τn−1, σn)︸ ︷︷ ︸,

contains all states that can evolve into (τ1, . . . , τn) by entering/leaving of a particle
at right-hand side multiplied by the corresponding transition rates. The third type of
states with non-zero transition rates are the states which differ from the fixed state Sk

only by two neighboring sites τi, τi+1 (as mentioned before). They are “encoded” in the
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remaining term of (2.18).

d

dt
Pn(τ1, . . . , τn) = . . .

+
n−1∑
i=1

∑
σi,σi+1

(h)σi,σi+1;τi,τi+1
Pn(τ1, . . . , σi, σi+1, . . . , τn)︸ ︷︷ ︸

+ . . .

We only need to consider the pairs (τi, τi+1) = (0, 1), (1, 0) since in configurations
(τi, τi+1) = (1, 1) or (0, 0) a jump of particles is suppressed (since no site is empty,
respectively, there is no particle that could jump). This is reflected by the fact that h
has only 0 entries in rows and columns which are indexed by (0, 0) or (1, 1) (see (2.16)
for definition and recall the non-standard labeling of the matrix entries). The remaining
entries (h)σi,σi+1;τi,τi+1

of the matrix h contain the transition rates corresponding to the
remaining states — these are the states which can possible evolve into Sk (including the
state Sk itself). Hence, we have seen that (2.13) and (2.18) are equal, and the theorem
is proven. �

The Matrix Ansatz Theorem as stated above was first used to explicitly calculate the
steady state probability or the n-point function (as defined in Chapter 3) in ([9], Section
5.-9.). A thorough inspection of the proof leads to the following two results which will
turn out to be useful later: in one of the subsequent chapters we will need a somewhat
more general version of the Matrix Ansatz Theorem which follows immediately out of
the proof of Theorem 2.1 if we do not set χ = 1:

Corollary 2.2 ([7], Corollary 5.2). Let χ ∈ R, and suppose that D and E are
matrices, V a column vector, and W a row vector such that the following conditions
hold:

pDE − qED = χ(D + E) (2.41)

(βD − δE)V = χV (2.42)

W (αE − γD) = χW (2.43)

Then

fn(τ1, . . . , τn) = W

(
n∏

i=1

(τiD + (1− τi)E)

)
V, (2.44)

where we assume that W (
∏n

i=1 (τiD + (1− τi)E))V has the same sign for all possible
states τ ∈ {0, 1}n and that fn exists (i.e. that the matrix product is well-defined).

2.2. Representations for the Matrix Ansatz

So far, we have seen that if some D,E, V,W satisfy the Matrix Ansatz (2.3) – (2.5),
then the unnormalized stationary distribution of the ASEP can be derived as a product
of these matrices by (2.6).

But what do D,E, V,W look like? We will (as the name already proposes) realize
D,E, V,W as matrices. Most of the time these shall be infinite-dimensional matrices.
We could also interpret them as, e.g., linear operators between infinite-dimensional
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vector spaces (which we will actually do in the end of Chapter 6) or as any other
abstract objects for which the equations of the Matrix Ansatz hold. But most of the
time we will realize them as matrices.

The question arises of which form and size these matrices shall be. We will show
that finite-dimensional matrices suffice if the following holds:

(p− q)(α + δ)(β + γ) = (α+ δ + β + γ)(αβ − γδ). (2.45)

In particular, one can then realize D,E, V,W as one-dimensional matrices. If (2.45)
does not hold (which is the common case), infinite-dimensional matrices are needed.
To be precise, we show that then D,E, V,W can not be finite-dimensional, and we
will present some infinite-dimensional matrix representations for different choices of
parameters later on.

2.2.1. Case 1: D and E commute. Let us assume that D and E commute.
Consider the first equation of the Matrix Ansatz, Equation (2.3),

(p− q)ED = D + E. (2.46)

Multiplying by W from the left and V from the right yields

(p− q)WEDV = W (D + E)V = WDV +WEV. (2.47)

We use the remaining two equations of the Matrix Ansatz to express the terms WEDV ,
WDV and WEV .

Consider Equations (2.4) and (2.5). If we multiply (2.4) byW from the left and (2.5)
by V from the right, we obtain

I: βWDV − δWEV = WV (2.48)

II: αWEV − γWDV = WV. (2.49)

For convenience, we set D̂ = WDV and Ê = WEV . Equations (2.48) and (2.49) then
read

I: βD̂ − δÊ = WV (2.50)

II: αÊ − γD̂ = WV. (2.51)

We now solve for D̂ and Ê. We multiply the equations by α and δ, respectively,

I: αβD̂ − αδÊ = αWV

II: αδÊ − γδD̂ = δWV,

and by summing them we obtain

(αβ − γδ)D̂ = (α + δ)WV,

from which follows that

D̂ =
(α + δ)

(αβ − γδ)
WV. (2.52)
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Substituting D̂ into (2.51), we obtain

αÊ = WV + γD̂

αÊ =

(
1 +

γ(α + δ)

(αβ − γδ)

)
WV

αÊ =
(αβ − γδ) + γ(α + δ)

(αβ − γδ)
WV

Ê =
(αβ − γδ) + γ(α + δ)

α(αβ − γδ)
WV. (2.53)

Similarly, we multiply (2.4) by WD from the left and (2.5) by DV from the right to
find

I: βWDDV − δWDEV = WDV

II: αWEDV − γWDDV = WDV,

which, since DE = ED by assumption, is the same as

I: βWD2V − δWEDV = D̂ (2.54)

II: αWEDV − γWD2V = D̂. (2.55)

By the same method as above we solve the equations, this time for WEDV .

I: γβWD2V − γδWEDV = γD̂ (2.56)

II: αβWEDV − γβWD2V = βD̂. (2.57)

Summing (2.56) and (2.57) yields

(αβ − γδ)WEDV = (γ + β)D̂.

We therefore find

WEDV =
(γ + β)

(αβ − γδ)
D̂ =

(γ + β)(α + δ)

(αβ − γδ)2
WV, (2.58)

where we used (2.52).

We now plug D̂ = WDV , Ê = WEV , and WDEV (Equations (2.52), (2.53),
and (2.58)) into (2.47) which yields

(p− q)
(γ + β)(α+ δ)

(αβ − γδ)2
WV =

(α + δ)

(αβ − γδ)
WV +

γ(α + δ) + (αβ − γδ)

α(αβ − γδ)
WV

(p− q)
(γ + β)(α+ δ)

(αβ − γδ)2
=
α(α + δ) + γ(α + δ) + (αβ − γδ)

α(αβ − γδ)

(p− q)
(γ + β)(α+ δ)

(αβ − γδ)
= (α + δ + γ + β)

(p− q)(γ + β)(α+ δ) = (αβ − γδ)(α + δ + γ + β),

as claimed in the beginning. Hence, if we suppose that D and E commute, Equal-
ity (2.45) has to be satisfied. In this case, we can choose D and E to be one-dimensional,
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namely

D =
(α + δ)

(αβ − γδ)
(2.59)

E =
γ(α + δ) + (αβ − γδ)

α(αβ − γδ)
. (2.60)

To see this, just choose V = W = 1 (it is actually sufficient to demand VW = 1). Then
Equations (2.52) and (2.53) give precisely D,E as defined above. Clearly D,E, V,W
then satisfy the Matrix Ansatz since we constructed this representation from the Matrix
Ansatz equations.

So, if (2.45) holds, then we can give a one-dimensional representation. If (2.45) does
not hold, then D and E can not be commutative — we will examine the consequences
for D,E, V,W in the next subsection.

2.2.2. Case 2: D and E do not commute. What happens if D and E do not
commute? In this case infinite-dimensional matrices are needed. To prove the claim,
we consider the special case TASEP where the parameters α, β are chosen freely, p = 1
and q = 0 = γ = δ. If for this special case finite-dimensional matrices do not work, then
they clearly will not work for the general case where all parameters can be chosen freely
(since, in particular, we can set the parameters as in the TASEP). For the TASEP the
equations of the Matrix Ansatz (2.3) – (2.5) simplify to

DE = D + E

(βD)V = V

W (αE) = W

which can be rewritten as

DE = D + E (2.61)

DV =
1

β
V (2.62)

WE =
1

α
W (2.63)

Remark. Note that then the vector V is a (right) eigenvector to the matrix D with
eigenvalue 1

β
and W a (left) eigenvector to the matrix E with eigenvalue 1

α
.

Let us first assume that D,E do not commute. We can then show that D,E can
not be finite as follows. Suppose D,E were finite. From (2.61) we find

DE = D + E (2.64)

DE −D = E

D(E − 1) = E

D = E(E − 1)−1, (2.65)

where in (2.65) we assumed that (E − 1)−1 is invertible. That this assumption holds is
seen as follows: there is no non-zero vector v such that Ev = v, because otherwise

Dv = DEv
(2.64)
= (D + E)v = Dv + Ev

Ev=v
= Dv + v (2.66)
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which implies that v = 0. So, no non-zero vector v exists such that Ev = v, or
equivalently, for all v 	= 0, (E−1)v 	= 0 from which follows (by theory of linear algebra)
that (E − 1) is invertible. So, (2.65) holds. But D = E(E − 1)−1 does commute with
E: first note that E(E − 1) = (E − 1)E:

E(E − 1) = E2 − E = (E − 1)E.

Then, it follows that (E − 1)−1E = E(E − 1)−1:

E(E − 1) = (E − 1)E

(E − 1)−1E = E(E − 1)−1.

Finally DE = ED can be derived:

DE = E(E − 1)−1E = EE(E − 1)−1 = ED. (2.67)

That D,E commute is a contradiction to the assumptions made in the beginning,
therefore D,E can not be of finite dimension.

In the general case where all parameters p, q and α, β, γ, δ can be chosen freely, it
clearly follows that if there are non-commuting matrices D,E that satisfy the Matrix
Ansatz, then they have to be infinite-dimensional.

The infinite-dimensional matrices D,E which we are going to consider will always
be triangular matrices. We therefore avoid problems such as having to consider the
convergence of infinite sums when forming the matrix product or having to exchange
infinite sums when using associativity of matrix multiplication. The matrices V,W will
be realized as (infinite-dimensional) vectors most of the time — V as a column vector
and W as a row vector. In the following chapters we will present some representations
and give combinatorial interpretations of them. Not all of the results presented in the
following chapters rely on the Matrix Ansatz, but a great part of them does — although
some of them could also be derived by bypassing the Matrix Ansatz. It turns out to be
a useful tool since it offers a simple way to calculate the stationary distribution.

2.3. A Stronger Version of the Matrix Ansatz Theorem

Let us return to the proof of Theorem 2.1 one more time. A thorough inspection of
the proof actually leads to a another, stronger version of the Matrix Ansatz Theorem
which we will need in the last chapter of this text. In this version we do not limit
ourselves to matrices and have weaker assumptions than in the original version.

Theorem 2.3. Suppose that D,E, V,W are operators, and χ ∈ R. Furthermore,
let C be the set of words of length less or equal n− 2 in the language {D,E}. If

pDECV − qEDCV = χ(D + E)CV, (2.68)

(βD − δE)V = χV, (2.69)

W (αE − γD) = χW, (2.70)

hold for all C ∈ C, then

fn(τ1, . . . , τn) = W

(
n∏

i=1

(τiD + (1− τi)E)

)
V, (2.71)
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where we assume that W (
∏n

i=1 (τiD + (1− τi)E))V has the same sign for all possible
states τ ∈ {0, 1}n and that fn exists.

Proof. Consider the proof of Theorem 2.1. First, note that the Matrix Ansatz
equations are algebraic equations and that we have never actually made use of the
assumption that D,E, V,W are matrices in the proof (we only mentioned that we will
realize them as matrices most of the time). Hence, there is no obstacle to express
D,E, V,W in terms of any other operators.

Furthermore, consider Equation (2.38) again. We concluded that this equation holds
if (2.19) is satisfied. But it is actually sufficient to assume that

pDECV − qEDCV = χ(D + E)CV

for

C =
n∏

i=j+1

τiD + (1− τi)E

for all j with 1 ≤ j ≤ n. Hence, we can modify the Matrix Ansatz Equation (2.3) as
claimed by the Theorem. �





CHAPTER 3

TASEP and Lattice Path Interpretation

In this chapter we shall see some interesting combinatorial properties of the TASEP,
or, more precisely, the TASEP with maximal flow regime — that is, the ASEP
where particles enter the system at the left-hand side and travel to the right until
leaving the system at the right-hand side, all at the same rate. This is equal to setting
the parameters p = α = β and q = γ = δ = 0. Since we can always assume that p = 1,
the only non-zero parameters are p = α = β = 1. Basically, the entire section will be
dedicated to the above mentioned restriction of parameters, and we will discover some
connections of the TASEP with maximal flow regime and various lattice paths. In the
end we shall see a generalization for the case where we allow particles to hop to the
left as well (Section 3.6) and we roughly outline results on the TASEP with general
parameters (Section 3.7). We start by a short motivation.

In physics literature the so-called n-point correlation function is of great interest
(see, e.g., [8] or ([26], p. 4988)). To avoid confusion with our notation we will simply
call it the k-point correlation function. This function is defined as

P (τi1 = 1, τi2 = 1, . . . , τik = 1) (3.1)

with 1 ≤ i1 ≤ . . . ≤ ik ≤ n fixed. This is the probability of finding the PASEP in one
of the states τ = (τ1, . . . , τn) with the determined sites τi1 , τi2 , . . . , τik being occupied
(other sites can be occupied as well, but do not have to).

Due to the Matrix Ansatz (Theorem 2.1), the k-point correlation function in (3.1)
is given by

W (D + E)i1−1D(D + E)i2−i1−1D . . . (D + E)ik−ik−1−1D(D + E)n−ikV

Zn
. (3.2)

One can see this by considering the products in (2.6): since the sites i1, . . . , ik are occu-
pied, they contribute a D to the product at the corresponding position. The remaining
elements of the product can either beD’s or E’s, each combination representing another
state considered in the k-point correlation function. Summing up all these combinations
yields (3.2).

While physicists are interested in the quantity or the form of the k-point correlation
function (to see how particles at different positions influence each other, in other words,
how they correlate) we use it for another purpose: by using a lattice path interpretation,
we show that in the case of TASEP with α = β = p = 1 and q = γ = δ = 0, (3.2)
leads to a set of lattice paths and that hence states can be represented in terms of
paths. Afterwards, this is used to calculate the steady state probability of finding the
system in a fixed state τ (see, e.g., Proposition 3.13 and Theorem 3.16). Through these
consideration we shall also deduce a formula for finding exactly l particles in the system
in the long-time limit distribution (Proposition 3.17).

19
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The basis for our considerations is a representation D0, E0, V0,W0 for which the
Matrix Ansatz (Theorem 2.1) holds. Consider the following matrices:

D =

⎛⎜⎜⎜⎜⎝
1
β

κ 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
0 0 0 1 1 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ , E =

⎛⎜⎜⎜⎜⎝
1
α

0 0 0 0 · · ·
κ 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ ,
and

W = (1, 0, 0, 0, . . .), V = (1, 0, 0, 0, . . .)T ,

where we set κ2 = α+β−1
αβ

. The fact that κ2 might be negative is of no importance

because in the equations κ will only enter through κ2 (see [9], p. 1500). In the case
where α = β = 1, which is relevant for us, the matrices take the following forms, which
shall be our definitions:

D0 :=

⎛⎜⎜⎜⎜⎝
1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
0 0 0 1 1 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ , E0 :=

⎛⎜⎜⎜⎜⎝
1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ , (3.3)

and

W0 := (1, 0, 0, 0, . . .), V0 := (1, 0, 0, 0, . . .)T , (3.4)

We first show that the Matrix Ansatz for these matrices holds:

Lemma 3.1. For the matrices D0, E0, V0,W0 as defined in (3.3) and (3.4), the Matrix
Ansatz Equations (2.3) – (2.5) with p = α = β = 1 and q = 0 = δ = γ hold.

Proof. First, note that by setting α = β = 1 and q = 0 = δ = γ in Equations (2.3)
– (2.5) the Matrix Ansatz equations read as follows:

D0E0 = D0 + E0 (3.5)

D0V0 = V0 (3.6)

W0E0 = W0 (3.7)

We will show that these equations are satisfied. We first consider Equation (3.5).
By (3.3) it is immediately seen that the right-hand side is equal to

D0 + E0 =

⎛⎜⎜⎜⎜⎝
2 1 0 0 0 · · ·
1 2 1 0 0 · · ·
0 1 2 1 0 · · ·
0 0 1 2 1 · · ·
...

...
...

...
...

⎞⎟⎟⎟⎟⎠ . (3.8)

For the left-hand side we consider the definition of the matrices D0 and E0 again:

(D0)i,j =

{
1, j = i, i+ 1

0, otherwise
(3.9)
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and

(E0)i,j =

{
1, j = i− 1, i

0, otherwise
(3.10)

If we fix some i, the sum (D0E0)i,j =
∑

k≥1Di,kEk,j can be reduced to the terms that
might differ from 0:

(D0E0)i,j =
∑
k≥1

Di,kEk,j = (D0)i,i(E0)i,j + (D0)i,i+1(E0)i+1,j (3.11)

So, for the entries (i, j) of (D0E0)i,j we see that

(D0E0)i,j = (D0)i,i(E0)i,j + (D0)i,i+1(E0)i+1,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, j = i− 1

2, j = i

1, j = i+ 1

0, otherwise

(3.12)

which are precisely the entries (D0E0)i,j in (3.8). Therefore, Equation (3.5) is shown.
Since ⎛⎜⎜⎜⎜⎝

1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
0 0 0 1 1 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1
0
0
0
...

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
0
0
0
...

⎞⎟⎟⎟⎟⎠ (3.13)

and

(
1 0 0 0 · · ·

)
⎛⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ =
(
1 0 0 0 · · ·

)
(3.14)

we see that (3.6) and (3.7) hold, too. We therefore have ensured that the matrices
D0, E0, V0,W0 satisfy the Matrix Ansatz equations. �

An advantage of the choice of parameters p = α = β = 1 and q = δ = γ = 0 is that
the first equation of the Matrix Ansatz, Equation (2.3), simplifies to DE = D + E.
Hence, recalling (2.7), we can rewrite the partition function Zn as

Zn = W (D + E)nV = W (DE)nV, (3.15)

as well as we can rewrite the k-point correlation function (3.2)

W (DE)i1−1D(DE)i2−i1−1D . . . (DE)ik−ik−1−1D(DE)n−ikV

Zn

. (3.16)

Both will be useful for the following interpretation.
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Figure 3.1. A lattice path ω of length 6 and of weight 72.

3.1. Lattice Paths and the Transfer Matrix Method

We now interpret the matrices introduced in the last section in terms of transfer
matrices. In combinatorics, the transfer matrix method is a method used for counting
walks in a directed graph and is essentially the same as the theory of finite Markov
chains in probability theory. Here, we just present the ideas which will serve for our
purpose 1. This section mainly follows Section 2 in [2].

We consider paths with steps above the x-axis, more precisely, paths whose steps
are between vertices which lie in Ξ = {(x, y)|x ∈ Z, y ∈ Z+}, where Z is the set of
integers and Z+ is the set of non-negative integers.

Definition 3.2 ([2], Section 2, Definition 1). A lattice path, ω, of length n ≥ 0
is a sequence of vertices (v0, v1, . . . , vn) where vi = (xi, yi) ∈ Ξ and, vi − vi−1 ∈ SΩ

where SΩ is the set of allowed steps, i = 0, . . . , n. For a particular path, ω, denote the
corresponding sequence of steps by ε(ω) = e1e2 · · · en, ei = (vi−1, vi).

Definition 3.3. Let ω be a lattice path of length n. We assign each step ei ∈ ε(ω)
a weight wi, the starting vertex v0 the weight w0 and the final vertex the weight wn+1,
where wi ∈ Z+, i = 0, . . . , n + 1. Then, the weight wt(ω) of a path ω is defined as
the product of these weights,

wt(ω) =
n+1∏
i=0

wi.

Example. The lattice path ω shown in Figure 3.1 is of length 6. The weights are
indicated above or below the steps. The bold numbers stand for the weights of the
initial and final vertex, respectively. Hence, the weight of the path ω is given by

wt(ω) = 2 · 1 · 1 · 2 · 3 · 2 · 1 · 3 = 72.

As indicated before, we want to link matrices with lattice paths. The entries of these
matrices shall represent the weight of steps of lattice paths. By matrix multiplication
one can then calculate the weight of all paths between some starting and end vertices.

We label the rows of the matrix D0 by odd integers Zodd = {1, 3, 5, . . .} and the
columns by even integers starting with 0, Zeven = {0, 2, 4, . . .}. Then the entry (D0)k,l

gives the weight of a step from an odd height k to an even height l. Analogously (but

1For more details on the method (and, eventually, further references) see, e.g., ([22], p. 241 – 262).
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D0 =

0 2 4 6
1
3
5
7

⎛⎜⎜⎝
⎞⎟⎟⎠ E0 =

1 3 5 7
0
2
4
6

⎛⎜⎜⎝
⎞⎟⎟⎠

� �

Figure 3.2. Interpretation of D0 and E0 as lattice path matrices. The
entries are the weights of steps of the heights indicated by the arrows.

the other way round) we label the rows of the matrix E0 by even and the columns by
odd integers. Therefore, (E0)l,m represents the weight of a step from even height l to
odd height m – see Figure 3.2.

Let d[i,k] be the entry of D0 which is located in the row labeled by i and column
labeled by j. We will call d[i,k] the [i, j] entry of D0. Analogously we define e[k,j], the
[k, j] entry of E0. (We write square brackets to remind ourselves that here it is not
the standard integer labeling of rows and columns which is used). If we now form the
product D0E0 = C0, then all entries of this matrix are of the form∑

k∈Zeven

d[i,k]e[k,j], (3.17)

for some i, j. Actually, if we use the row labeling of D0 and the column labeling of E0,
then (3.17) is the [i, j] entry of the matrix C0. So, how can we interpret this entry?
Fix k ∈ Zeven and i, j ∈ Zodd. Then d[i,k]e[k,j] is the product of the weights of a step
from height i to height k and a step from height k to height j. Hence, (3.17) sums up
the weights of all paths from odd height i to even height k to odd height j (where the
weight of a path is defined as the product of the weights of its steps).

Multiplying D0E0 again by D0 then leads to the weight of all paths starting at
odd height i to even height k to odd height j to even height l in the [i, l] entry of the
resulting matrix (where, again, we label the column of the resulting matrix D0E0D0

like the first matrix and the rows like the last matrix of the product).
This can be generalized for more than two steps, so the [i, j] entry of any product

(D0E0)
n can be interpreted as the sum of the weights of all paths going from i to j with

exactly 2n steps of odd height. Since we only use non-negative integers to label the
rows and columns of the matrices, all steps are taken in the upper half of Z2. Similarly
we label the entries of W0, V0 by odd integers; they will represent weights attached to
the initial vertices (W0) and the final vertices (V0). Now consider the expression

Zn = W0(D0E0)
nV0. (3.18)

After having started a path at any odd height k, with weight W[1,k] attached to the
beginning vertex, the matrices D0 and E0 contribute successively weights for each fur-
ther step (odd to even heights and even to odd heights) ending after 2n steps at an
odd height m with weight V[m,1] attached to the final vertex. Therefore, we see that
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Zn = W0(D0E0)
nV0 is giving the weighted sum over all paths of length 2n that begin

and end at odd height and stay above the x-axis all the time.

Example. We illustrate the lattice path interpretation of matrices (or interpreta-
tion as transfer matrices) by an example. First, we shall consider lattice paths of length
2 without additional weights at the initial and final vertices. Set

D =

0 2
1
3

(
δ1
0

δ2
δ3

)
,

E =

1 3
0
2

(
ε1
0

ε2
ε3

)
,

where δi, εi > 0 for i = 1, 2, 3. We now interpret these matrices as transfer matrices.
Consider D first: the transfer matrix D admits steps from height 1 to height 0 (weighted
by δ1), steps from height 1 to height 2 (weighted by δ2) and steps from height 3 to height
2 (weighted by δ3). Since the weight of a step from height 3 to height 0 is 0, we omit
this step (paths containing steps of weight 0 have total weight 0 and are not of interest
for us). The steps are shown in Figure 3.3(a). Analogously we interpret E and obtain
steps from height 0 to height 1 or from height 2 either to height 3 or height 1. The
steps and their weights are shown in Figure 3.3(b). Now, We form a sequence of two
steps by multiplication of D and E. We find DE to be equal to

1 3
1
3

(
δ1ε1 + δ2ε2

δ3ε2

δ2ε3
δ3ε3

)
,

(3.19)

where we labeled the rows of the matrix in (3.19) like the rows of D and the columns
like the columns of E. The entries in (3.19) give the sum of the weights of the paths
between to given vertices: the sum of weights of paths that start and end at height 1 is
equal to δ1ε1 + δ2ε2, while the sum of weights of paths starting at height 1 and ending
at height 3 is equal to δ2ε3. This is in correspondence with the paths formed by the
solid and dashed steps in Figure 3.3(c).

Now, we can also attach weights to the initial and final vertices. We assign to the
vertex (0, 1) the weight 1 and the weight 0 to the vertex (0, 3). The final vertices are
weighted by 1. This is done by the following:

1 3
W =

(
1 0

)
,

1 3
V =

(
1 1

)
T .

(3.20)

Therefore, paths starting at height 3 have a total weight of 0 and can be omitted. Only
three different paths with non-zero weights remain. The sum of their weights is given
by

WDEV = δ1ε1 + δ2ε2 + δ2ε3. (3.21)

Note that by setting δi = εi = 1 (i = 1, 2, 3), WDEV gives exactly the number of lattice
paths that start at (1, 0) and have length 2. This already suggests that by choosing
the weights of the steps and vertices in a certain manner one can count certain types
of lattice paths.

After this example we return to the matrices D0, E0, V0,W0 which were defined
in (3.3) and (3.4) and examine the consequences of the lattice path interpretation.
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(c) Lattice paths whose weights are
summed by WDEV . The bold numbers
indicate the weights of the initial and fi-
nal vertices. The step starting in the ver-
tex with weight 0 is dashed to indicate
that paths containing this step do not
contribute to the sum of weights of all
paths.

Figure 3.3. An example for the lattice path interpretation by means of
the transfer matrix method.

3.2. One Up Paths, Dyck Paths and the Partition Function of the TASEP

Definition 3.4. The set of One up paths of length 2n, O2n, is the set of lattice
paths which have step set SO = {(1, 1), (1,−1)}, start at v0 = (0, 1) and end at v2n =
(2n, 1).

An example of a One up path of length 10 is shown in Figure 3.4.

Remark. Note that all One up paths have to be of even length, since they start
and end at height 1 and their steps are of height 1.

Lemma 3.5. The partition function Zn for the matrix representation D0,W0, V0,W0

can be written as

Zn =
∑

ω∈O2n

1, (3.22)

where the sum ranges over all One up paths of length 2n.
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Figure 3.4. A One up path of length 10.

• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •

�
�
�
�
�
��
��
��
�
�
�
�
��
��
��
��
�

Figure 3.5. A Dyck path of length 12.

Proof. This is an immediate consequence of the interpretation of the matrices as
transfer matrices. Note that due to odd labeling of the entries of W0 = (1, 0, 0, 0, . . .),
only paths starting at v0 = (0, 1) have a non-zero weight attached to their starting
point, as well as only paths ending at v2n = (2n, 1) have a non-zero weight attached to
their end point since V0 = (1, 0, 0, 0, . . .)T . Consider the values of the entries of D0 and
E0 together with their labeling:

D0 =

0 2 4 6 · · ·
1
3
5
7
...

⎛⎜⎜⎜⎜⎝
1
0
0
0
...

1
1
0
0
...

0
1
1
0
...

0
0
1
1
...

· · ·
· · ·
· · ·
· · ·
. . .

⎞⎟⎟⎟⎟⎠ E0 =

1 3 5 7 · · ·
0
2
4
6
...

⎛⎜⎜⎜⎜⎝
1
1
0
0
...

0
1
1
0
...

0
0
1
1
...

0
0
0
1
...

· · ·
· · ·
· · ·
· · ·
. . .

⎞⎟⎟⎟⎟⎠ (3.23)

We see that D0 and E0 only assign non-zero weights to steps that are either up steps of
height 1 or down steps of height 1. Also note that all weights of steps and vertices are
equal to 1, therefore each path has weight 1. Putting this together we see that exactly
One up paths are the paths whose weights are non-zero if we interpret the product for
Zn in (3.18) in terms of transfer matrices. �

Definition 3.6. The set of Dyck paths of length 2n, PD
2n, is the set of lattice paths

which have step set SD = {(1, 1), (1,−1)}, start at v0 = (0, 0) and end at v2n = (2n, 0).

An example of a Dyck path of length 12 is shown in Figure 3.5.
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Proposition 3.7. The number of Dyck paths of length 2n is given by the Catalan
numbers

Cn =
1

n+ 1

(
2n

n

)
. (3.24)

Proof. This is a well known fact. See, e.g., ([23], Corollary 6.2.3 (v)). �

As an immediate consequence of Lemma 3.5 we obtain for the TASEP with α = β = 1
the following Corollary:

Corollary 3.8. For the TASEP with n sites, p = 1 and the boundary conditions
α = β = 1 the partition function Zn is given by

Zn = Cn+1, (3.25)

where Cn+1 is a Catalan number.

Proof. This can be seen as follows: Zn can be expressed as the number of One up
paths of length 2n (Lemma 3.5). One up paths are in bijection with Dyck paths. The
bijection is not too hard to guess once we have noted that they only differ in the height
of their starting and final vertices. First, add an up step to the starting point (this up
step starts at height 0 and ends at height 1) and a down step to the final vertex. Then,
move this path by one unit to the right (to ensure that this new path starts at (0, 0)).
This procedure turns every One up path of length 2n into a Dyck path of length 2n+2.
As an illustration compare Figure 3.4 and Figure 3.5. On the other hand, deleting the
first and the last step of a Dyck path yields a One up path (after having moved the
path to the left by one unit). We already know that the number of Dyck paths of length
2(n+ 1) is equal to Cn+1 (Corollary 3.7). Hence

Zn = # number of One up paths of length 2n

= # number of Dyck paths of length 2(n+ 1)

= Cn+1,

and the corollary is proven. �

3.3. States of the TASEP in Terms of Lattice Paths

Let us now return to the k-point correlation function from (3.16). We will consider
the numerator, the unnormalized k-point function

G(τi1 , . . . , τik ;n) := W (DE)i1−1D(DE)i2−i1−1D . . . (DE)ik−ik−1−1D(DE)n−ikV. (3.26)

We recall that we have obtained the function G(τi1 , . . . , τik ;n) by exchanging the term
(DE) by D in the corresponding site of Zn = W (DE)nV (see the paragraph after
(3.2)). So, if we want in the correlation function G a particle at site il, we delete the
il-th (DE) in Zn and replace it by D, or, equivalently, we replace the il-th E by the
identity matrix I! Analogously, if we want the site il to be empty, we replace in the
partition function Zn the il-th D by I. Since this is the crucial point in what is to
follow we give a short example to illustrate it.
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Example. We look for the probability P (τ1 = 1, τ3 = 0) of a TASEP with 3 sites.
The partition function is given by Zn = W (DE)3V = W (DE)(DE)(DE)V where
D,E,W, V satisfy the Matrix Ansatz equations (e.g. D = D0, E = E0, V = V0,
W = W0). The probability of finding the TASEP in state (•, τ2, ◦), where τ2 ∈ {◦, •}
is then given by

W (DI)(DE)(IE)V

Zn

=
W (D)(DE)(E)V

Zn

.

Now, speaking in terms of One up paths (in particular referring to the representation
D0, E0, V0,W0) recall that Zn is equal to the number of all One up paths of length 2n
(see Lemma 3.5). We claim that replacing the il-th E0 by the unit matrix I in Zn leads
to a One up path with the step s2il (starting at x = 2il−1 and ending at x = 2il) being
an up step. To see this, first note that the il-th E0 is at the (2il − 1)-th position in the
product Zn (not counting the vector W0 that assigns weights to the starting vertices
but does not represent a step) and then recall the labeling of the matrix E0, the matrix
that used to be at the (2il − 1)-th position:

E0 =

1 3 5 7
0
2
4
6

⎛⎜⎜⎝
⎞⎟⎟⎠

�
I0 =

1 3 5 7
0
2
4
6

⎛⎜⎜⎝
⎞⎟⎟⎠

1 0 0 0
0 1 0 0

10 0 0
00 0 1

�

The identity matrix has only non-zero entries in the diagonal, so this corresponds
to an up step (with weight 1) in the lattice path interpretation — that is, the paths
that have a forced up step, as we will call it, at the corresponding position do not have
weight 0 and therefore are of importance for our considerations. So, a particle at site
il forces the step s2il in the corresponding One up paths to be an up step.

On the other hand, an empty site il corresponds to replacing the il-th D0 in Zn by
the identity matrix. Recalling the labeling of the matrix at this position (see Figure 3.2)
produces a forced down step s2il−1 (starting at x = 2il − 2 and ending at x = 2il − 1)
in the corresponding One up paths.

We summarize this. To represent certain states of the TASEP in terms of One up
paths we need to put some restrictions upon certain steps: If site il is supposed to
be occupied, than the step s2il (ending at x = 2il) has to be an up step, if site il is
supposed to be empty, than the step s2il−1 (ending at x = 2il − 1) has to be a down
step. Consider a state τ = (τ1, . . . , τn) ∈ {0, 1}n where entries τl1 , . . . , τlv are equal to 1
and τj1 , . . . , τjw are equal to 0. Clearly v + w ≤ n. The remaining sites are not fixed.
We define

O(τl1, . . . , τlv ; τj1 , . . . , τjw ; 2n)

to be the set of One up paths of length 2n, o = (o1, . . . , o2n), for which the following
restrictions hold:

steps o2l1 , . . . , o2lv are down steps,

steps o2j1−1, . . . , o2jw−1 are up steps.

By O(2n) we denote the set of all One up paths of length 2n (without any restrictions).
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Lemma 3.9. For the TASEP (q = γ = δ = 0) with n sites, p = 1, and the boundary
conditions α = β = 1, the probability of finding the system in a state τ with v particles
at sites l1, . . . , lv and w empty sites j1, . . . , jw (with v + w ≤ n) is given by

P (τl1 = . . . = τlv = 1, τj1 = . . . = τjw = 0) =
|O(τl1, . . . , τlv ; τj1 , . . . , τjw ; 2n)|

|O(2n)| . (3.27)

Proof. This lemma follows from the lattice path interpretation and only summa-
rizes the considerations made above. �

So we have seen how to “manipulate” One up paths (in terms of putting restric-
tions upon certain steps) to represent certain states of the TASEP. We will use the
knowledge acquired so far to show to find simple formulas for calculating the steady
state probabilities for certain states. Afterwards we formulate the Lemma 3.9 and its
consequences in a more catchy way.

3.4. Formulas for the Stationary Distribution Through Pairs of
Non-Intersecting Paths

We introduce a new type of paths, this time allowing steps to lie below the x-axis.

Definition 3.10 ([2], Section 7, Definition 1). A binomial path is defined to be
a path ω = (v0, . . . , vn) whose vertices lie in the plane, vi = (xi, yi) ∈ Z×Z, i = 0, . . . , n
and whose step set Sb is defined as Sb = {(1,−1), (1, 1)} (that is, the vertices are such
that vi − vi−1 ∈ Sb).

Furthermore, we need the following two definitions as they will help us to express
the steady state probabilities in a compact form.

Definition 3.11 ([2], Section 7, Definition 3). Let ω1 and ω2 be two binomial paths
both of length n. Let ω1 start at (0, 0) and let ω2 start at (0,−2). If the two paths
have no vertices in common, then we call them non-intersecting.

For an example of a pair of non-intersecting paths see Figure 3.8(d).

Definition 3.12 ([2], Section 7, Definition 2). Let τ = (τ1, . . . , τn) ∈ {◦, •}n a
state of the TASEP with n sites. A state path ω = (v0, . . . , vn) of type τ is a binomial
path starting at (0, 0) where

vi − vi−1 =

{
(1, 1) if τi = •
(1,−1) if τi = ◦. (3.28)

So, a particle in the state τ is encoded by an up step in the state path, where an
empty site contributes a down step.

Example. Consider the TASEP with maximal flow regime (that is, particles only
travel to the right, p = α = β = 1) and 5 sites. Consider the state (◦, •, •, ◦, ◦). Then,
the corresponding state path is shown in Figure 3.6.

Remark. Note that until now there is no connection between a One up path cor-
responding to a state τ and the state path defined above. For the TASEP with n sites,
there usually is a number greater than 1 of One up paths linked to a state τ , since only
some steps, the forced steps, are determined by occupied or empty sites while there is
a one-to-one correspondence between states and state paths of length n.
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Figure 3.6. State path corresponding to the state (◦, •, •, ◦, ◦).
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Figure 3.7. The state path for the state (◦, •, ◦) and the two pairs of
non-intersecting binomial paths.

Proposition 3.13 ([2], Chapter 7, Proposition 5). For the TASEP (q = 0 = γ =
δ) with n sites and the boundary conditions α = β = 1 the probability of finding the
system in state τ with precisely l particles is given by

Pn(τ) =
|{ω1, ω2}|
Cn+1

(3.29)

where {ω1, ω2} is the set of all pairs of non-intersecting paths where ω2 is any bino-
mial path that starts at (0,−2) and ends at (n, 2l − n − 2), and ω1 is the state path
corresponding to the state τ . Cn+1 is the (n+ 1)-th Catalan number.

Before giving the proof we illustrate the proposition on an example:

Example. Consider the TASEP with 3 sites and the state (◦, •, ◦), that is, τ =
(0, 1, 0). The corresponding state path ω1 is shown on the left-hand side in Figure 3.7.
We need to count the number of pairs of non-intersecting paths ω1, ω2. The state τ
contains 1 particle, hence l = 1. So, ω2 has to start at (0,−2) and end at (3, 2·1−3−2) =
(3,−3). There are two pairs of paths that satisfy these conditions; they are shown in
Figure 3.7. Noting that C4 = 14 we find

Pn((◦, •, ◦)) = Pn((0, 1, 0)) =
2

14
=

1

7
.

Proof of Proposition 3.13. Let τ be a state of the TASEP with n sites and the
parameters as above. As seen in Lemma 3.9, representing certain states of the TASEP
in terms of One up paths is equivalent to putting some restrictions upon certain steps:
if site il is occupied, then step s2il (ending at x = 2il) has to be an up step, if site il is
empty, then step s2il−1 (ending at x = 2il − 1) has to be a down step. We introduce
the following notation to encode this: we denote a One up path of length 2n as a word
in {D,U}2n:

−−−−−− · · · − − −−−−︸ ︷︷ ︸
2n

− ∈ {D,U} (3.30)
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D DUUD

D DUUD U DUDU

(a) A state and the forced steps in a correspond-
ing One up path

(b) A possible choice for a One up path corre-
sponding to the state (forced steps are empha-
sized)

D DUUD D DUDU

D U U D D

D U D U U

U D U D D

One up path

non−forced steps

ω1

ω2

ω1

ω2

(c) The One up path in the second line is sepa-
rated into a pair of non-intersecting paths ω1, ω2

(d) The pair of non-intersecting binomial paths
corresponding to the One up path from Figure (b)

Figure 3.8. An example for how to obtain a pair of non-intersecting
binomial paths ω1, ω2 corresponding to a state of the ASEP.

Every dash, −, is either replaced by a D (down steps) or a U (up steps). Of course, these
replacements have to be consistent with the One up path constraints, see Definition 3.4.
So, due to the above mentioned “forced steps”, we substitute “−U” at positions 2il− 1
and 2il if site il is occupied. This reflects the fact that step 2il− 1 can be chosen freely
while the step 2il has to be an up step. On the other hand, an empty site is represented
by the pair “D−” at corresponding position:

• ↔ −U and ◦ ↔ D− (3.31)

Having “translated” the state τ into a sequence of forced D,U ’s and dashes, n of
the dashes remain to be filled with U ’s and D’s to obtain all possible One up paths
corresponding to the state τ . Now we claim that from any of these sequences, we can
construct a pair of non-intersecting paths (ω1, ω2) and vice versa. The process is shown
in Figure 3.8 and is described in the following.

In a One up path o we separate the forced steps from the non-forced ones. The
non-forced steps are inverted (each down step D becomes an up step U and vice versa)
and form a path ω2 while the forced steps form the path ω1. This path ω1 is the state
path from Definition 3.12. (This is seen easily as every particle in τ contributes a forced
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U in the One up path and at forming the path ω1 remains an up step. So, every particle
causes an up step in the path ω1 and, conversely, every empty site causes a down step
in path ω1. This is exactly the definition of the state path). Let us examine the paths
ω1, ω2:

Clearly, the length of each path is n. By assumption, the state path ω1 starts at
(0, 0) while we let the path ω2 start at (0,−2). The ending height of state path ω1

results as the difference between the number of particles in τ (which produce an up
step in the state path) and empty sites (which produce a down step in the state path),
so y = l − (n− l) = 2l − n. What about the ending height of the path ω2? In the One
up path o every U of ω1 used to be a U as well. So, in the One up path there had to be
a down step D within the non-forced steps to balance the number of up and down steps
(a One up path starts and ends at same height). Since the same argument holds for a
step D in ω1 we see that the number of U ’s and D’s in ω2 is the same as the number
of U ’s and D’s in ω1. Hence, the ending height of ω2 is y = 2l− n− 2 (subtracting 2 is
due to the fact that ω2 starts at height −2). It remains to show that these two paths
ω1, ω2 are indeed non-intersecting.

To see this, we use a process which separates a One up path step by step into ω1

and ω2. For better understanding keep Figure 3.9 in mind. We draw the One up path
o together with the x-axis. This axis builds the bottom, or lower ground, of the path;
it might be “touched” (meaning that there might lie some vertices on the axis) but
there are no steps below the x-axis. We start reading the One up path from the left,
distinguishing between forced up and forced down steps (denoted by U and D) and
non-forced up and non-forced down steps (denoted by U and D). So, when reaching a
non-forced up step U we delete this step from the path. We close the gap by “gluing”
the following up and down steps directly to the last vertex and call this new path o1.
After leaving the first step of the x-axis unchanged, we lower the rest of the x-axis by
one level (see Figure 3.9). So, our bottom line (once the x-axis) now consists of two
lines and all steps of the new path o1 are above them. We note that a non-forced up
step has caused a down shifting of the bottom line.

We turn again to the path o1. We continue “reading” the path from the left-hand
side. Let us assume that the next non-forced step we find in o1 is a down step D.
We proceed as follows: we delete the down step and again fill the gap by gluing the
remaining tail to the last vertex. Let us denote this new path by o2. We now lift the
bottom line after a step: so the former x-axis now consists of one vertical step of length
1 at height 0, one vertical step of length 1 at height −1 and another vertical line at
height 0 (see Figure 3.9). Again for the path o2 this forms a bottom line which is never
crossed. This time we note that a non-forced down step D has caused the bottom line
to rise by one unit.

Proceeding in the same way, we obtain a path on which happens to be the state
path ω1 (on consists only of the forced steps, and they form the state path, as noted
in the beginning) and a lower path which is staircase shaped, and which we denote by
s. Due to the construction during the process, the path ω1 might touch this staircase
path s, but never actually crosses it. Turning this staircase path into a binomial path

(by replacing every corner �� by a down step � and every corner �� by an up step �),
we obtain a binomial path that lies below ω1 but might touch it at some point. By
lowering this path by one unit we obtain a binomial path which we now call ω2. Note
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Figure 3.9. Turning a One up path into a pair of non-intersecting bi-
nomial paths.

that this path has no vertex in common with ω1. Hence the process has yielded two
binomial paths ω1, ω2 that are non-intersecting (in the sense of Definition 3.11).

Finally, note that any given pair of non-intersecting paths ω1, ω2 starting at (0, 0)
and (0,−2), respectively, and ending at (n, 2l−n) and (n, 2l−n− 2), respectively, can
be “retranslated” into a One up path of length 2n which encodes information about the
state τ . So we have actually found a bijection between all One up paths representing
a state τ and all paths ω2 starting at (0,−2), ending at (n, 2l − n − 2) and being
non-intersecting with the state path ω1. We therefore have proven the proposition. �

For the proof of the next result we rotate the whole scenario by 45◦ counterclockwise
and therefore need the following definition.

Definition 3.14. A simple lattice path of width n is a lattice path from v0 = (0, y0)
to vn = (n, yn), where n, y0, yn ≥ 0, with step set SS = {(1, 0), (0, 1)}, initial vertex v0

and final vertex vn.

For an example of a simple lattice path see Figure A.2 in the Appendix. Furthermore,
we introduce the following restriction of the binomial coefficient:

Definition 3.15. For n, k ∈ Z we define(
n

k

)
+

:=

{(
n
k

)
n ≥ k ≥ 0,

0 n < k or k < 0.
(3.32)

Theorem 3.16. Consider the TASEP (q = 0 = γ = δ) with n sites and the boundary
conditions α = β = 1. Fix a state τ = {0, 1}n. Let e be the number of empty sites and
ζi (i = 1, . . . , e) be the number of particles to the left of the i-th empty site. Then the
probability Pτ of finding the system in the state τ in the long-time limit is given by

Pτ = det
1≤i,j≤n

((
ζi + 1

j − i+ 1

)
+

)
/Cn+1. (3.33)

Proof. The theorem follows from Proposition 3.13 and Proposition A.4 in the
Appendix. We know that we can calculate the probability of finding the TASEP in
state τ with the help of non-intersecting paths ω1, ω2 due to Proposition 3.13. Let
us rotate the whole scenario by 45◦ counterclockwise, hence the paths become lattice
paths consisting of north and east steps, or, more precisely, simple lattice paths. Let
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the path that is obtained from of ω1 be denoted by ω1. In general, the condition for
the corresponding state path reads as follows:

vi − vi−1 =

{
(1, 0) if τi = ◦
(0, 1) if τi = •. (3.34)

Let ω2, together with the entire scenario, also be rotated by 45◦ and lifted up by
two units (that is, let the path start at (0, 0)); we denote this path by ω2. Then
Proposition 3.13 can be reformulated as the task of finding all simple lattice paths ω2

which lie on or above the x-axis, have ω1 as their upper border and have the same final
vertex as ω1. (We allow both paths to share steps, but the s-th vertex of ω2 must not
lie higher than the s-th vertex of the state path ω1.)

That this reformulation is correct is not hard to see; it is indicated in Figure 3.10.
Consider the state path ω1 and all possible paths ω2 such that a pair of non-intersecting
paths is obtained. Consider the two extremes which form the upper and the lower
boundary for the path ω2: for the lower boundary, denote it by lb, we choose as many
down steps as possible followed by as many up steps as necessary to arrive at the fixed
final vertex (with notation of Proposition 3.13 this is the vertex (n, 2l − n − 2)). For
the upper boundary, denote it by ub we note that the step-sequence is the same as in
the path ω1. This is true because for the upper boundary we want as many up steps as
possible, but every time ω1 takes a down step, ω2 has to do the same, because otherwise
the paths would already intersect. So, all other choices of step-sequences for ω2 lie in
between these two paths. Turning the scenario by 45◦ we see that the reformulation
holds.

The number of such simple lattice paths that run within some given borders is given
through the determinant in Proposition A.4 in the Appendix; we only need to choose
the borders a,b correctly. Let τ be a state with n sites. First, note that the state path
ends at (e, n − e), where e is the number of empty sites in τ . This is obvious since
empty sites cause an east step in the state path, whereas particles cause an up step.
Hence we choose the entries of b as follows:

b = (0, . . . , 0︸ ︷︷ ︸
e

)

As the height of the i-th step in the state path is determined by the number of particles
within the first i sites of τ , we set

a = (ζ1, . . . , ζe),

where ζi (i = 1, . . . , e) was the number of particles left to the i-th empty site. Now we
can deduce that the number of paths that start at (0, 0), end at (e, n−e) and stay below
the state path all the time is given by (3.33). As seen, this number equals the number
of non-intersecting paths in Proposition 3.13 and hence the theorem is proven. �

Proposition 3.17 ([2], Section 7, Proposition 6). For the TASEP (q = 0 = γ = δ)
with n sites and the boundary conditions α = β = 1 the probability Pn,l of finding l



3.4. FORMULAS FOR THE STATIONARY DISTRIBUTION 35

�
��
�
�
��
�
�
�

.......
..
..
..
..
..........�

�
�
�
�
��
�
�
�

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

ω1

ub

lb

(a) State path ω1 and the
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aries, lb, ub. For any path
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a pair of non-intersecting
paths is obtained.
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(c) The boundaries
are lifted up by
two. One sees that
all possible pairs
of non-intersecting
paths can be ex-
pressed in terms of
simple lattice path
that stay within the
borders

Figure 3.10. An example of the bijection between a pair of non-
intersecting paths and a simple lattice path that stays within some bor-
ders. The state path to the state (◦, •, •, ◦, ◦), denoted by ω1, is fixed.
up and bl, the upper and lower boundaries, are such that any path that
lies within them forms a pair of non-intersecting paths together with
ω1. Through the bijection it follows that enumerating pairs on non-
intersecting paths is equal to enumerating simple lattice paths which start
at (0, 0) and stay below the path ω1 before ending at the same final vertex.

particles in the stationary state of the system is given by

Pn,l =
∑

τ∈{•l,◦n−l}
Pn(τ) =

1

Cn+1

det

∣∣∣∣ (nl) ( n
l−1

)(
n

l+1

) (
n
l

) ∣∣∣∣ (3.35)

=
1

(n + 1)Cn+1

(
n+ 1

l

)(
n+ 1

n− l

)
(3.36)

where the sum is over all states τ with exactly l particles and n− l empty sites.

Proof. To show that the equality in (3.35) holds, we use Proposition 3.13: to any
state τ with l particles corresponds exactly one of the state paths ending at height
(n, n− 2l). (This is seen easily: each state path starts at (0, 0) by definition. If in state
τ there was no particle at all, then all steps would be up steps. So, the state path would
end at (n, n). But for any particle in τ , we turn an up step into a down step, therefore
lowering the end point by y = 2. Hence, each path starting at (0, 0) and ending at height
(n, n − 2l) bijects to one state with exactly l particles.) Recall that the steady state
probability of any state τ is given by the number of paths which are non-intersecting
with the state path of τ (see Proposition 3.13). So, the sum

∑
τ∈{•l,◦n−l} Pn(τ) becomes
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a double sum over all state paths ending at (n, n − 2l) and all non-intersecting paths
starting at (0, 2) and ending at (n, n−2l+2). This number is given by the Lindstr”om-
Gessel-Viennot determinant,

det

∣∣∣∣ (nl) ( n
l−1

)(
n

l+1

) (
n
l

) ∣∣∣∣ , (3.37)

as shown in the Appendix, Lemma A.3. Bearing in mind the normalization factor (or
partition function) 1/Cn+1, the first equality follows.

To prove equality with (3.36), we need to show that the determinant (3.37) is equal
to (

n

l

)(
n

l

)
−
(

n

l − 1

)(
n

l + 1

)
=

1

(n+ 1)

(
n+ 1

l

)(
n+ 1

n− l

)
(3.38)

We examine the left-hand side of (3.38):(
n

l

)(
n

l

)
−
(

n

l − 1

)(
n

l + 1

)
=

n!

(l)!(n− l)!

n!

(l)!(n− l)!
− n!

(l − 1)!(n− l + 1)!

n!

(l + 1)!(n− l − 1)!
=

(n!)2(l + 1)(n− l + 1)− (n!)2(l)(n− l)

(l + 1)!(l)!(n− l + 1)!(n− l)!
=

(n!)2(n+ 1)

(l + 1)!(l)!(n− l + 1)!(n− l)!
· n + 1

n + 1
=

1

n+ 1

(
n + 1

l

)(
n + 1

l + 1

)
, (3.39)

which is equal to the right-hand side of (3.38) due to binomial coefficient identities.
The numbers appearing in (3.39) are the so-called Narayana numbers, see, e.g., ([23],
p. 237). �

Remark. Lemma 3.16 was already proven by Louis Shapiro and Doron Zeilberger
([21], Theorem 1.) more than ten years before Derrida et.al. even came up with the
Matrix Ansatz in [9]. Although not mentioning it explicitly, they also considered non-
intersecting lattice paths (in their paper they focused on sequences of 0’s and 1’s).
Exchanging up steps with 1’s and down steps with 0’s in the step sequences of the
non-intersecting paths ω1, ω2 in Lemma 3.13 yields exactly Theorem 1 in [21]. The
proof of L. Shapiro and D. Zeilberger basically just uses the definition of the stationary
distribution and considerations on how many ways there are to arrive at a certain state
τ , and how many ways there are to leave this state.

Remark. Note that we could use the definition of a state path (Definition 3.12) not
only for the TASEP, but as well for the more general case of PASEP (where particles
might also hop to the left). To a certain extant we will do so, although we will use more
complex combinatorial objects to encode the states of the PASEP, since paths will turn
out to be not sufficiently adopted to carry the information we would like to keep track
of. But we will present another result that is still linked to paths – this time we use so
called bicolored Motzkin paths – and extend the results established so far.

First, we establish a one-to-one correspondence between any state τ of the TASEP
and bicolored Motzkin paths:
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Figure 3.11. Bicolored Motzkin path of length 10. E∗ denotes a step
ES∗ and E∗ denotes a step ES∗.

3.5. Motzkin Paths

A bicolored Motzkin path is a lattice path consisting of up, down, and east steps.
While there is nothing special to the up and down steps, we admit two different varieties
of side steps. One can distinguish them by coloring them differently. We simply give
them different names.

Definition 3.18. A bicolored Motzkin path of length n is a lattice path that
starts at v0 = (0, 0), ends at vn = (n, 0) and has step set

SM = {(1, 1), (1,−1), (1, 0)},
where east steps vi − vi−1 = (1, 0) are either of type ES∗ or ES∗. We denote up steps,
(1, 1), by US and down steps, (1,−1), by DS.

Furthermore, we denote by Mn the set of all bicolored Motzkin paths of length n.

Remark. Note that the definition of a lattice path does not require only steps
above the x-axis but also admits steps on the x-axis.

Remark. In figures, we sometimes shorten ES∗ to E∗ and ES∗ to S∗. See, e.g.,
Figure 3.11, which is an example of a bicolored Motzkin path.

The following observation concerning bicolored Motzkin paths shall turn out to be
very useful for our purposes.

Proposition 3.19. Bicolored Motzkin paths of length n are in bijection with One
up paths of length 2n.

Proof. Let o = (o1, . . . , o2n) be a One up path of length 2n consisting of up
and down steps, denoted by U and D, respectively. Furthermore, we denote by m =
(m1, . . . , mn) a bicolored Motzkin path with mi ∈ {US,DS,ES∗, ES∗}, 1 ≤ i ≤ n,
where US and DS represent an up or a down step, respectively, and ES∗ and ES∗

stand for the two types of east steps. We will define the bijection by considering two
consecutive steps of the One up path o. If these two steps happen to be up steps, we
change them to a single up step. Two consecutive down steps are turned into a single
down step. If the pair consists of an up and a down step, we turn it into an east step
of type ES∗, and into a colored east step of type ES∗ if the first step is a down step
followed by an up step. See Figure 3.12 for an example. More precisely: we define

mi = b((oj , oj+1)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
US if (oj, oj+1) = (U,U)

DS if (oj, oj+1) = (D,D)

ES∗ if (oj, oj+1) = (U,D)

ES∗ if (oj, oj+1) = (D,U)

(3.40)
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Figure 3.12. Example for the bijection between One up paths and
Motzkin paths.

with i, j as defined above, let the path m = (m1, . . . , mn) start in (0, 0).
We claim that we what we obtain is a bicolored Motzkin path: first, it is clear, that

m is of length n since n pairs of steps are changed into US,DS,ES∗ or ES∗.
Next, we check that the path m ends in (n, 0).
To see this, we examine the number of up and down steps of the One up path. Let

r be the number of up steps, and consequently also be the number of down steps, in
o (that these two numbers are the same follows from the definition of a One up path
since by definition it starts and ends at height 1). First, consider the pairs (oj, oj+1)
(where j was defined above) which form a “hook”; by this we mean the pairs (U,D)
and (D,U). Through the mapping b they become east steps, so the hooks do not affect
the height (the y coordinate) of the bicolored Motzkin path m. Let h be the number of
hooks in o, so r − h up steps and r − h down steps remain, which, if paired, are of the
form (D,D) or (U,U). The number of pairs (U,U) has to be equal to the number of
pairs (D,D) (namely r−h

2
) and hence the number of up steps US in m is equal to the

number of down steps DS.
Finally we have to ensure that m does never lie below the x-axis. If it were below

the x-axis, then, at some point, the number of down steps DS would exceed the number
of up steps US. This would imply that there were more down steps than up steps in
the One up path at some point. But this can not occur since a One up path always
stays above the x-axis.

On the other hand, each bicolored Motzkin path can be transformed into a One up
path of length 2n by inverting (3.40):

((oj, oj+1)) = b−1(mi)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(oj, oj+1) = (U,U) if mi = US

(oj, oj+1) = (D,D) if mi = DS

(oj, oj+1) = (U,D) if mi = ES∗

(oj, oj+1) = (D,U) if mi = ES∗

(3.41)

with i, j as defined above. Let the resulting path start in (0, 1). Then, one can check
analogously as above that the resulting path

• is of length 2n (this is obvious)
• ends in (2n, 1) (because if not then one can conclude that the bicolored Motzkin

path does not end in (n, 0))
• lies above the x-axis (because otherwise the bicolored Motzkin path would cross

the x-axis at some point)
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Therefore we have found a bijection between bicolored Motzkin paths and One up
paths. �

Using bicolored Motzkin paths, we can phrase the observed results from Lemma 3.9
more succinctly:

As already seen, the probability of finding the TASEP with n sites in state τ in the
long-time limit can be represented by considerations of One Up paths, namely by

# of One up paths of length 2n with n forced steps

# of One up paths of length 2n
, (3.42)

where the n forced steps depend on the state τ = (τ1, . . . , τn),

τi = 0 if and only if step o2i−1 (ending at x = 2i− 1) is a down step,

τi = 1 if and only if step o2i (ending at x = 2i) is an up step,

where o = (o1, . . . , o2n) is a One up path. (Recall that this was a consequence of
the lattice path interpretation). Now, using the bijection between One up paths and
bicolored Motzkin paths (3.41), we see that for a pair of steps (oj, oj+1) there follows:

τi = 0 ⇔ step o2i−1 is a down step ⇔ (oj, oj+1) = (D, .),

τi = 1 ⇔ step o2i is an up step ⇔ (oj, oj+1) = (., U),

where the slot is either filled up with an up or down step. Hence, if τi = 0, then the
pair of steps (oj , oj+1) of a corresponding One up path can either be equal to (D,D) or
(D,U). This implies that the bicolored Motzkin path has either a down step DS or an
east step of type ES∗ at position j+1

2
. Conversly, if τi = 1, the pair of steps (oj, oj+1)

of a corresponding One up path has to be equal to (D,U) or (U,U). Hence, again
using the bijection from (3.41), it follows that the step at position j+1

2
in the bicolored

Motzkin path is either an up step US or an east step of type ES∗. It follows that for
a bicolored Motzkin path m = (m1, . . . , mn) corresponding to a state τ the following
holds:

τi = 0 if and only if mi ∈ {DS,ES∗} (3.43)

τi = 1 if and only if mi ∈ {US,ES∗} (3.44)

We therefore can restate Lemma 3.9 as follows:

Lemma 3.20. For the TASEP (q = γ = δ = 0) with n sites, p = 1, and the boundary
conditions α = β = 1, the probability of finding the system in a state τ with v particles
at sites l1, . . . , lv and w empty sites j1, . . . , jw (with v + w ≤ n) is given by

P (τl1 = . . . = τlv = 1, τj1 = . . . = τjw = 0) =
|Mn(l1, . . . , lv; j1, . . . , jw)|

|Mn| , (3.45)

where Mn is the set of all bicolored Motzkinpaths of length n, and

Mn(l1, . . . , lv; j1, . . . , jw)

is the set of all bicolored Motzkin paths that either have an up step US or an east step
of type ES∗ at positions l1, . . . , lv and either a down step DS or an east step of type
ES∗ at positions j1, . . . , jw (while the remaining steps are arbitrary but in accordance
with the Definition 3.18 of bicolored Motzkin paths).
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Proof. The proof was already presented above. It follows from Lemma 3.9 and
the bijection between One up paths and bicolored Motzkin paths given in (3.41), which
leads to (3.43) - (3.44). �

Analogously to Definition 3.12, we use (3.43) – (3.44) to define a bicolored Motzkin
path of type τ :

Definition 3.21. Fix a state τ = (τ1, . . . , τn). A bicolored Motzkin path is said to
be of type τ if (3.43) – (3.44) hold, namely:

τi = 0 if and only if mi ∈ {DS,ES∗}, (3.46)

τi = 1 if and only if mi ∈ {US,ES∗}. (3.47)

We denote the set of bicolored Motzkin paths of type τ by Mτ .

Using Lemma 3.20 and Definition 3.21, we can state the following corollary:

Corollary 3.22 ([6], Corollary 6.2.). For the TASEP (q = 0 = γ = δ) with n
sites and the boundary conditions α = β = 1, the probability of finding the system in
the state τ = (τ1, . . . , τn) ∈ {0, 1}n is given by

|Mτ |
|Mn| =

# of bicolored Motzkin paths of of type τ

# of bicolored Motzkin paths of length n
. (3.48)

Proof. This is seen easily using Lemma 3.20. For a state τ = (τ1, . . . , τn), we
obtain

P (τ) = P (τl1 = . . . = τlv = 1, τj1 = . . . = τjw = 0) =
|Mn(l1, . . . , lv; j1, . . . , jw)|

|Mn| ,

with v+w = n. Consider the numerator, and note that the steps l1, . . . , lv are either US
or ES∗, while steps j1 . . . , jw are either DS or ES∗. Comparing this to Definition 3.21,
we see that we obtain exactly the bicolored Motzkin paths of type τ . The denominator
does not change, and hence we arrive at (3.48). �

3.6. PASEP with Parameters α = β = 1

We can even extend Corollary 3.22 to the case where particles might also hop to
the left: for the PASEP with α = β = 1 and q ≥ 0. (Until now we have required q,
the probability of a particle to hop left, to be equal to 0.) Recall that the weight of a
lattice path was defined as the product of the weight of the steps and the weight of its
starting and ending vertex. So far, we were only confronted with weights equal to 1.
This will change now. We assign the steps of bicolored Motzkin paths different weights
which depend on the value of q and the height of the step. We will see that in the
case of q = 0 the weights reduce to 1. Let m = (m1, . . . , mn) be a bicolored Motzkin
path. Let the step mi end at the vertex (xi, yi). Define [y] to be q-analog of the number
y ∈ Z0, namely 1 + q + . . . + qy−1. We assign each step mi the weight [y + 1]. Denote
by wt(m) the weight of a lattice path m and let

Mτ (q) :=
∑

m∈Mτ

wt(m)

be the sum of the weights of all bicolored Motzkin paths of type τ .
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Corollary 3.23 ([6], Corollary 6.2.). For the PASEP with q ≥ 0 and boundary
conditions α = β = 1, γ = δ = 0 the probability of finding the model in state τ =
(τ1, . . . , τn) ∈ {0, 1}n is given by

Mτ (q)

|Mn| :=

∑
m∈Mτ

wt(m)

|Mn| (3.49)

We present the proof after the following preparations.
Corollary 3.23 is a generalization of Lemma 3.20, which is itself based upon the

lattice path interpretation of the matrices D0, E0, V0,W0. Hence we can expect that
these matrices show up again, somehow. Recall that [y] is the q-analog of the number
y ∈ Z0, namely 1 + q + . . .+ qy−1. We define

D0̂ :=

⎛⎜⎜⎜⎜⎝
[1] [2] 0 0 0 · · ·
0 [2] [3] 0 0 · · ·
0 0 [3] [4] 0 · · ·
0 0 0 [4] [5] · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ , E0̂ :=

⎛⎜⎜⎜⎜⎝
[1] 0 0 0 0 · · ·
[1] [2] 0 0 0 · · ·
0 [2] [3] 0 0 · · ·
0 0 [3] [4] 0 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ , (3.50)

while the matrices W0̂, V0̂ remain as before

W0̂ := W0 = (1, 0, 0, 0, . . .), V0̂ := V0 = (1, 0, 0, 0, . . .)T . (3.51)

Note that for q = 0 it follows that D0̂ = D0 and E0̂ = E0.
Lemma 3.24. For the matrices D0̂, E0̂, V0̂,W0̂ defined in (3.50) – (3.51) the Matrix

Ansatz equations (2.3) – (2.5) hold.

Proof. We start with Equation (2.5). Due to the choice of parameters, the equa-
tion simplifies to

W0̂E0̂ = W0̂. (3.52)

To see that this is indeed true, we just need to note that

W0 = (1, 0, 0, 0, . . .) ·

⎛⎜⎜⎜⎜⎝
[1] 0 0 0 0 · · ·
[1] [2] 0 0 0 · · ·
0 [2] [3] 0 0 · · ·
0 0 [3] [4] 0 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ = ([1], 0, 0, . . .). (3.53)

Since [1] = 1, Equation (3.52) follows.
Similarly, we can see that Equation (2.4), which in our case reads

D0̂V0̂ = V0̂, (3.54)

holds:

D0̂ :=

⎛⎜⎜⎜⎜⎝
[1] [2] 0 0 0 · · ·
0 [2] [3] 0 0 · · ·
0 0 [3] [4] 0 · · ·
0 0 0 [4] [5] · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝

1
0
0
0
...

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
[1]
0
0
0
...

⎞⎟⎟⎟⎟⎠ (3.55)
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Finally, Equation (2.3) remains to be checked. Unfortunately, this equation does
not simplify, so we have to show that

D0̂E0̂ − qE0̂D0̂ = D0̂ + E0̂. (3.56)

We start by examining the right-hand side of (3.56). We see that

D0̂ + E0̂ =

⎛⎜⎜⎜⎜⎝
2[1] [2] 0 0 0 · · ·
[1] 2[2] [3] 0 0 · · ·
0 [2] 2[3] [4] 0 · · ·
0 0 [3] 2[4] [5] · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ (3.57)

or, more precisely

D0̂ + E0̂ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[i− 1] j = i− 1,

2[i] j = i,

[i+ 1] j = i+ 1,

0 otherwise

(3.58)

Now consider the left-hand side of (3.56). We start with the product (D0̂E0̂)i,j. If
we fix some i, the sum

∑
k≥1 (D0̂)i,k(E0̂)k,j = (D0̂E0̂)i,j can be reduced to the terms

that might differ from 0; these are, since by definition only (D0̂)i,i, (D0̂)i,i+1 	= 0 the
following:

(D0̂E0̂)i,j =
∑
k≥1

(D0̂)i,k(E0̂)k,j = (D0̂)i,i(E0̂)i,j + (D0̂)i,i+1(D0̂)i+1,j (3.59)

So, for the entries (i, j) of (D0̂E0̂)i,j, the following holds

(D0̂E0̂)i,j = (D0̂)i,i(E0̂)i,j + (D0̂)i,i+1(E0̂)i+1,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[i][i− 1] j = i− 1,

[i][i] + [i+ 1][i] j = i,

[i+ 1][i+ 1] j = i+ 1,

0 otherwise.

(3.60)

On the other hand, the entries (E0̂D0̂)i,j of the product E0̂D0̂ are given by:

(E0̂D0̂)i,j = (E0̂)i,i−1(D0̂)i−1,j + (E0̂)i,i(D0̂)i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[i− 1][i− 1] j = i− 1,

[i− 1][i] + [i][i] j = i,

[i][i+ 1] j = i+ 1,

0 otherwise.

(3.61)

Hence it follows from (3.60) and (3.61) that the left-hand side of (3.56) is equal to

(D0̂E0̂)i,j − q(E0̂D0̂)i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[i][i− 1]− q[i− 1][i− 1] j = i− 1

[i][i] + [i+ 1][i]− q([i− 1][i] + [i][i]) j = i

[i+ 1][i+ 1]− q[i][i+ 1] j = i+ 1

0 otherwise

(3.62)

Now, noting that

[i]− q[i− 1] = (1 + q + . . .+ qi−1)− q(1 + q + . . .+ qi−2) = 1, (3.63)
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we find

[i][i− 1]− q[i− 1][i− 1] = [i− 1]([i]− q[i− 1]︸ ︷︷ ︸)
= [i− 1]( 1 ) (3.64)

[i][i] + [i+ 1][i]− q([i− 1][i] + [i][i]) = [i]([i] + [i+ 1]− q[i− 1]− q[i])

= [i]([i]− q[i− 1]︸ ︷︷ ︸+ [i+ 1]− q[i]︸ ︷︷ ︸)
= [i]( 1 + 1 )

= [i]( 2 ) (3.65)

[i+ 1][i+ 1]− q[i][i+ 1] = [i+ 1]([i+ 1]− q[i]︸ ︷︷ ︸)
= [i+ 1]( 1 ) (3.66)

where we have only been using (3.63) (and some rearranging). Substituting (3.64) –
(3.66) into (3.62), we obtain precisely D0̂ + E0̂ (as in (3.58)). Hence we have shown
that Equation (3.56) holds. �

We are now ready for the proof of Corollary 3.23.

Proof of Corollary 3.23. We will show that the probability of finding the sys-
tem in the state τ = (τ1, . . . , τn) ∈ {0, 1}n is given by

Mτ

Mn
=

sum of weights of bicolored Motzkin paths of of type τ

sum of weights of bicolored Motzkin paths of length n
. (3.67)

To this end, we use the matrices D0̂, E0̂, V0̂,W0̂ defined in (3.50) – (3.51), the Matrix
Ansatz and a lattice path interpretation (similar to the one of One up paths). This time,
let the rows and columns of D0̂, E0̂ be labeled by integers Z0 = {0, 1, 2 . . .} as shown in
Figure 3.13. Analogously we label the entries of the vectors V0̂,W0̂ by Z0 = {0, 1, 2 . . .}.
Now fix a state τ = (τ1, . . . , τn) ∈ {0, 1}n. Since for D0̂, E0̂, V0̂,W0̂ the Matrix Ansatz
equations hold (see Lemma 3.24), and since all entries are positive (i.e., have the same
sign), the steady-state probability of finding the system in state τ is given by

W0̂(
∏n

i=1 (τiD0̂ + (1− τi)E0̂))V0̂

W0̂(D0̂ + E0̂)
nV0̂

. (3.68)

We claim that (3.68) and (3.67) are equal to each other. In order to see this, we examine
the product

W0̂

(
n∏

i=1

(τiD0̂ + (1− τi)E0̂)

)
V0̂ (3.69)

in (3.68) for the state τ . Using the lattice path interpretation described above (Sec-
tion 3.1), we note the following: W0̂ contributes the weight in the starting vertices, so
only paths starting at height 0 can end up with non-zero weight (see (3.71)). Hence, the
matrix D0̂ offers two possibilities for steps which have non-zero weights assigned to it:
either an up step of height 1 or an east step (use Figure 3.13 together with (3.70)). On
the other hand, the matrix E0̂ assigns non-zero weights only to down steps of height 1 as
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D0̂ =

0 1 2 3
0
1
2
3

⎛⎜⎜⎝
⎞⎟⎟⎠ E0̂ =

0 1 2 3
0
1
2
3

⎛⎜⎜⎝
⎞⎟⎟⎠

� �

W0̂ =
0 1 2 3

(
)

V0̂ =
0 1 2 3

(
)T

Figure 3.13. Scheme of the labeling of the matrices D0̂, E0̂, V0̂,W0̂.

well as to east steps (see Figure 3.13 together with (3.70)). So, all paths (with non-zero
weights) might consist of down steps, up steps, and two different kinds of east steps.
Note that, due to the entries of V0̂, only paths ending at height 0 can have non-zero
weights. Finally, consider the values of the entries of D0̂, E0̂ — we see that steps ending
at height h ≥ 0 have weight [h + 1] assigned to it. So, for fixed τ , Equation (3.69)
represents bicolored Motzkin paths. But even more: these bicolored Motzkin paths are
of type τ ! This follows since D0̂ enters in the product at position i (respectively i+1 if
one also takes the factor W0̂ into account) if and only if τi = 1. Since D0̂ admits only
an up or east step, we obtain (3.47) in Definition 3.21. On the other hand, if τi = 0,
then E0̂ enters, and the resulting step in the path is either a down or an east step (as
required in (3.46)).

D0̂ =

⎛⎜⎜⎜⎜⎝
[1] [2] 0 0 0 · · ·
0 [2] [3] 0 0 · · ·
0 0 [3] [4] 0 · · ·
0 0 0 [4] [5] · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ E0̂ =

⎛⎜⎜⎜⎜⎝
[1] 0 0 0 0 · · ·
[1] [2] 0 0 0 · · ·
0 [2] [3] 0 0 · · ·
0 0 [3] [4] 0 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ (3.70)

W0̂ = (1, 0, 0, 0, . . .) V0̂ = (1, 0, 0, 0, . . .)T (3.71)

So, we have seen that the numerators of (3.67) and (3.68) yield the same result. Be-
cause of this, we can also conclude that the denominators are equal: by calculating (or
expanding) the term

W0̂(D0̂ + E0̂)
nV0̂,

is equal to summing up

W0̂(Word(D0̂, E0̂))V0̂,

with Word(D0̂, E0̂) being any word in {D0̂, E0̂}n. This is the same as summing up all
bicolored Motzkin paths of length n. This is exactly the denominator of (3.67) and
hence we have shown that (3.67) and (3.68) are equal. �
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Figure 3.14. The Markov chain revealing a second row of particles trav-
eling backwards for the TASEP.

3.7. Overview: Results for the TASEP with General Parameters α, β

There was also some work done on the TASEP with general parameters α, β. In [2],
not only an interpretation of the partition function for TASEP with maximal flow
regime in terms of lattice paths is given, but for the TASEP with general parameters
interpretations in terms of various weighted lattice paths are presented; namely in terms
of weighted One up paths, Jump step paths and Cross paths ([2], Lemma 1). The result
is shown analogously to Lemma 3.5, by interpreting some matrix representations for the
Matrix Ansatz as transfer matrices: the representations are those presented in ([9], p.
1499 – 1500) and one only has to check that they satisfy the Matrix Ansatz equations.
Labeling them as we did for the TASEP with p = α = β = 1 in Section 3.1, one
can apply the transfer-matrix method and hence arrives at the weighted lattice paths
named above.

Another interesting approach was presented by E. Duchi and G. Schaeffer [11]. In
their work, they reveal a second row of sites (beneath the ASEP) in which the particles
that have left the system travel backwards before eventually entering the ASEP again
([11], Subsection 1.4). The authors then define a Markov Chain on these two rows with
the top row representing exactly the TASEP (see Figure 3.14) and the states being
so-called complete configurations. These configurations turn out to be in bijection with
bicolored Motzkin paths. The authors first obtain the results (the derivation of the
steady-state probability) for the TASEP with α = β = 1 ([11], Theorem 3.2.) before
introducing a weight function on the complete configurations to obtain the steady-state
probability in the case of arbitrary α, β ([11], Theorem 3.3).





CHAPTER 4

PASEP and Permutation Tableaux

The following chapter is dedicated to the partially asymmetric simple exclusion
process (PASEP). Recall that that for the PASEP only the parameters α, β, p, q are
greater than 0; that is, particles can hop to both sides but only enter at the left-hand
side and leave at the right-hand side. As before, we will always assume that p = 1.
The combinatorial approach presented in this and the remaining chapters was provided
by Sylvie Corteel and Lauren K. Williams [5–7]. They first considered permutation
tableaux, a class of tableaux, introduced by E. Steingŕımsson and Lauren K. Williams
in [24]. These tableaux are a distinguished subset of so-called L-diagrams of Alex
Postnikov ([19], Section 6) and are in bijection with permutations ([24], Section 2).
Through considerations of the combinatorics of permutation tableaux, S. Corteel and
L. Williams succeeded in providing a solution to the Matrix Ansatz for the PASEP [6].
Furthermore, they established a connection between the stationary distribution of the
PASEP and permutation tableaux in their work.

The representation for the Matrix Ansatz is substance of Lemma 4.4. The connec-
tion between the stationary distribution of the PASEP and permutation tableaux is
established in Theorem 4.3. The formulation and proof of this theorem is the main
task of this chapter.

4.1. Permutation Tableaux

We do some preparatory work before actually introducing permutation tableaux.
First, we consider some diagrams, which we call shapes.

Let k, l be non-negative integers such that their sum n is greater than 0, n = k+ l >
0.

Consider a rectangle consisting of k × l boxes with unit length sides. Let p be a
path within the rectangle, consisting of west and south steps of unit length, such that
p starts in the upper-rightmost corner and ends in the the lower-leftmost corner. See
Figure 4.1. The path, interpreted as the right-hand outer border line, and the boxes
in the rectangle which lie above the path form a diagram, as in the right-hand side of
Figure 4.1. Such a diagram is called a shape. A shape is understood to consist of rows,
and columns. The length of a row is given by the number of boxes in this row, and,
equally, the length of a column is given by the number of boxes in a column. Note that
we also allow rows or columns of length 0 (to which we will also refer as empty rows
or empty columns). The shape in Figure 4.1 consists of 4 rows and of 5 columns. The
length of a shape λ is defined as the sum of the number of rows and the number of
columns and denoted by length(λ). The shape in Figure 4.1 is of length 9.

Now, every path p that consists of k west steps and l south steps can be placed
within a k× l rectangle as described above and yields a shape. (It is clear that the path
p stays within the rectangle and does not cross the borders.) Vice-versa, given a shape

47
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Figure 4.1. The path on the left-hand side is placed within the rectangle
of 4× 5 boxes in the middle of the figure. Considering only the path and
the boxes that lie above this path, the shape on the right-hand side is
obtained.

1 0 0 0

0 0

0

0

00

00

11

1 11

1 1

0 1

Figure 4.2. A permutation tableau of length 12.

λ of length n, we can understand the right-hand border line as a path of n south and
west steps, starting in the upper-rightmost corner and ending in the lower-leftmost one.
Hence, there is a one-to-one correspondence between paths consisting of n south and
west steps and shapes of length n – see the left-hand side of Figure 4.1. For a shape
λ of length n we denote the (to the right-hand border line) corresponding path by pλ.
We call pλ the shape path of λ. Denoting west steps by W and south steps by S, we
have pλ ∈ {W,S}n. Note that in the shape path a west step corresponds to the bottom
of a column while a south step corresponds to the right end of a row. In general, we
call a path pλ ∈ {W,S}n a shape path of length n.

We can now define a permutation tableau:

Definition 4.1 ([24], Section 1). A permutation tableau T is a shape λ whose
shape path pλ starts with a south step and whose cells are filled with 0’s and 1’s such
that the following conditions hold:

(1) Each column of the shape contains at least one 1.
(2) There is no 0 which has a 1 above it in the same column and a 1 to its left in

the same row.

Such a filling will be called a valid filling of λ. We say that T is a permutation tableau
of shape λ.

We denote the set of permutation tableaux of shape λ by Tshape[λ] and the set
of permutation tableaux of length n by T n.

Note that condition (2) in aboves definition can be verified easily by the following
steps: Read the columns of a permutation tableau from right to left. If in a column you
find a 0 that lies beneath some 1, then the whole row left to this 0 must also contain
only 0’s.
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Remark. Permutation tableaux inherit all concepts introduced for shapes so far,
e.g., the length of a permutation tableau of shape λ is defined as the length of its shape
λ and so on.

Now let us see how to link permutation tableaux to the PASEP. The idea is that
every state τ of the PASEP corresponds to a shape λ. If we then consider the valid
fillings of this shape, we obtain a set of permutation tableaux that correspond to the
state τ . Then we consider some statistics on the permutation tableaux and through
them draw conclusions concerning the steady state probability of the state τ . Let us
make this more precise:

Let τ be a state of the PASEP with n sides, that is τ ∈ {0, 1}n. We associate to it
a path p of length n+ 1, p = (p1, . . . , pn+1) ∈ {S,W}n+1 by the following rules:

pi =

⎧⎪⎨⎪⎩
S i = 0

S τi = 1

W τi = 0

(4.1)

where i = 1, . . . , n. Hence, the path p starts with a forced south step, while the
remaining n steps are encoding the state τ by defining the i+ 1 step to be a south step
if and only if τi = 1 (otherwise, τi = 0). The path p can now be interpreted as the
shape path pλ of a shape λ by understanding it as the right-hand border line of a shape
– this was already shown above Definition 4.1. Thus, we have associated a shape λ to
the state τ . We denote this shape associated to the state τ by λ(τ). Vice-versa, given
a shape λ we can consider the state associated to it by considering the shape path of
λ and inversing (4.1). (This simply yields the state τ for which λ(τ) = τ holds.) We
denote the state associated to λ by τ(λ).

Finally, we consider the set of permutation tableaux of shape λ. To do so, we only
need to add the valid fillings to the shape λ. Note that the forced first south step in (4.1)
ensures that λ yields a permutation tableaux (the shape path of a permutation tableaux
has to start with a south step by definition). So, to a state τ we have associated the
set Tshape[λ], the set of permutation tableaux of shape λ = λ(τ).

state τ → (shape) path p → shape λ(τ) → Tshape[λ] (4.2)

We now define some statistics on permutation tableaux as in ([7], above Theorem
3.1) which we will use to “extract information” out of the tableaux:

1
0 1

0
1 1

1
1 1

� � �
(◦, •, ◦)

(0, 1, 0)

Figure 4.3. An example for he association of a state of the ASEP to
the permutation tableaux of a certain shape.
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Let T be a permutation tableaux of length n, with m columns and k rows. (Re-
member that a permutation tableau can only possess rows of length 0 but columns
contain at least one cell). We define the rank rk(T ) as the number of 1’s in the filling
minus m. The subtraction of m is due to the fact that a permutation tableau with m
columns has to contain at least m 1’s (see Definition 4.1). Therefore, the rank counts
the number of extra 1’s beyond the required ones. We define f(T ) to be the number of
1’s in the first row of T . If an entry in the first row is not 1, then we call the topmost
1 in the column distinguished and define f ′(T ) to be the number of distinguished 1’s.
It is clear that f(T ) + f ′(T ) = m. Concerning the 0’s of a filling we call a 0 restricted
if it has a 1 above it somewhere in the same column. The rightmost restricted 0 in a
row is called a distinguished 0 (due to condition (2) of Definition 4.1 a distinguished
0 causes all entries to the left in the same row to be 0’s). Now we define u′(T ) to be
number of distinguished 0’s in T . A row is called unrestricted if it does not contain
any restricted entry. Let u(T ) be the number of unrestricted rows of T minus 1. We
subtract 1 since the first row is always unrestricted. Due to the fact that a row either
contains a distinguished 0, which at the same time is a restricted 0, or is unrestricted,
it is clear that u(T ) + u′(T ) = k − 1.

We summarize these definitions to provide a compact overview:

Definition 4.2. Let T be a permutation tableaux of length n, with m columns
and k rows. We define

restricted 0: a 0 that lies below some 1;
distinguished 0: the rightmost restricted 0 in its row;
distinguished 1: the topmost 1 in a column if not located in the first row;

and furthermore
rk(T ): as the number of 1’s in the filling minus m (also called the

rank of the permutation tableau)
f(T ): to be the numbers of 1’s in the first row of T ,
f ′(T ): as the numbers of distinguished 1’s,
u(T ): to be the number of unrestricted rows minus 1, with a row

being unrestricted if it does not contain a restricted 0,
u′(T ): as the number of distinguished 0’s.

Example. Consider the permutation tableau T shown in Figure 4.2. First note
that is of length 12 and consists of 6 columns and of 6 rows. It contains six restricted
0’s of which three are also distinguished. Three is also the number of distinguished 1’s
that are found in the tableau. The rank rk(T ) is equal to 9 − 6 = 3. There are three
1’s in the first row, therefore f(T ) = 3, and, as already noted, f ′(T ) = 3. We have that
f(T ) + f ′(T ) is equal to the number of columns. The tableau contains 3 unrestricted
rows (rows that do not contain a restricted 0), and hence u(T ) = 3− 1 = 2. We have
already noted that u′(T ) = 3, and we have that u′(T ) + u(T ) = 6− 1 = 5.

We can now state the first theorem that shows how, with the help of permutation
tableaux, one can calculate the stationary distribution of the PASEP. (We recall that
for the PASEP the probability of a particle entering at the left-hand side equals α, of
leaving at the right-hand side equals β, of hopping right equals 1 and of hopping to the
left equals q, while for the remaining parameters we have γ = δ = 0.) This observation
was the starting point for a lot of other results (e.g. [7], [5]).
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Theorem 4.3 ([6], Theorem 3.1). Consider the PASEP (with general parameters
α, β, q but γ = δ = 0) and let τ be a state of the process with n sites. Let

Zn =
∑

T ∈T n+1

qrk(T )α−f(T )β−u(T )

where the sum is over all permutation tableaux of length n + 1. Then the steady state
probability of the PASEP being in state τ is∑

T ∈Tshape[λ]
qrk(T )α−f(T )β−u(T )

Zn
, (4.3)

where the sum ranges over all permutation tableaux T of shape λ with λ = λ(τ) being

the shape associated to τ .

The proof is given in the next section; we first illustrate this theorem by the following
example.

Example ([7], Example 2.6.). Consider the PASEP with n = 3 sites and the state
(◦, •, ◦) which we denote by τ = (0, 1, 0). The path corresponding to τ is given by
(S,W, S,W ) and therefore the associated shape consists of a row of length 2 and a row
of length 1. In Figure 4.3 the shape and the three different permutation tableaux of
shape λ(τ) are shown. So, the numerator in (4.3) is:

α−2 + α−1β−1 + qα−2β−1.

For the denominator Zn we find 24 different permutation tableaux of length n+ 1 = 4
(with 8 different shapes). One can calculate

Z3 = α−3 + 2α−2 + 2α−1 + α−2β−1 + 2α−1β−1 + 2β−1 + α−1β−2 + 2β−2 + β−3

+ q(α−2 + α−2β−1 + 4α−1β−1 + α−1β−2 + β−2) + q2(α−2β−1 + α−1β−2).

So, the steady state probability of finding the PASEP in the state (0,1,0) is given by

α−2 + α−1β−1 + qα−2β−1

Z3
.

4.2. Proof of Theorem 4.3

We will show that certain matricesD1, E1, V1,W1, for which the Matrix Ansatz equa-
tions hold, at the same time provide a generating function for permutation tableaux.
More precisely, the term

∑
T ∈Tshape[λ]

qrk(T )α−f(T )β−u(T ) can be expressed as

∑
T ∈Tshape[λ]

qrk(T )α−f(T )β−u(T ) = W1

(
n∏

i=1

(τiD1 + (1− τi)E1)

)
V1,

where τ = (τ1, . . . , τn) ∈ {0, 1}n is the state of the PASEP which is associated to λ,
τ = τ(λ). We will also derive that Zn = W1(D1 + E1)

nV1.
These relations were noted by S. Corteel and L. Williams and this section mainly

follows their arguments provided in [6]. We define the following (infinite) matrices: set
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D1 =

⎛⎜⎜⎜⎜⎝
0 β−1 0 0 · · ·
0 0 β−1 0 · · ·
0 0 0 β−1 · · ·
0 0 0 0 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ (4.4)

and

E1 =

⎛⎜⎜⎜⎜⎝
α−1 0 0 0 · · ·
α−1β 1 + α−1q 0 0 · · ·
α−1β2 β(1 + 2α−1q) 1 + q + α−1q2 0 · · ·
α−1β3 β2(1 + 3α−1q) β(1 + 2q + 3α−1q2) 1 + q + q2 + α−1q3 · · ·

...
...

...
...

⎞⎟⎟⎟⎟⎠ (4.5)

with the (i, j) entry of the lower triangular matrix (E1)i,j being defined by

(E1)i,j =

{
βi−j(α−1qj−1

(
i−1
j−1

)
+
∑j−2

r=0

(
i−j+r

r

)
qr), j ≤ i

0, otherwise

Furthermore, let W1 be the (row) vector

W1 = (1, 0, 0, . . .), (4.6)

and V1 be the (column) vector

V1 = (1, 1, 1, . . .)T . (4.7)

In order to prove Theorem 4.3 we first show in Lemma 4.4 that for the matrices
D1, E1,W1, V1 the Matrix Ansatz equations (2.3) – (2.5) hold. Then, we check that the
matrices have the desired combinatorial interpretation.

We start by proving the following lemma.

Lemma 4.4 ([6], Lemma 2.5.). For the matrices D1, E1, V1,W1 defined in (4.4) –
(4.7) the Matrix Ansatz Equations (2.3) – (2.5) (with p = 1) hold.

Proof. We begin by showing that (2.3) holds, that is D1E1 − qE1D1 = D1 + E1.
We first note that

(D1E1)i,j = β−1(E1)i+1,j = βi−j

(
α−1qj−1

(
i

j − 1

)
+

j−2∑
r=0

(
i− j − r + 1

r

)
qr

)
,

if j ≤ i+ 1 and it equals 0 otherwise. Then we note that

q(E1D1)i,j = qβ−1(E1)i,j−1 = βi−jq

(
α−1qj−2

(
i− 1

j − 2

)
+

j−3∑
r=0

(
i− j − r + 1

r

)
qr

)
if 1 ≤ j − 1 ≤ i and it equals 0 otherwise. Putting this together, we obtain in the
following four different cases for ((D1E1)− q(E1D1))i,j, depending on the values of i, j.
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We find the term to be equal to

((D1E1)− q(D1E1))i,j

= βi−j

(
α−1qj−1

(
i

j − 1

)
+

j−2∑
r=0

(
i− j + r + 1

r

)
qr

)

− βi−jq

(
α−1qj−2

(
i− 1

j − 2

)
+

j−3∑
r=0

(
i− j − r + 1

r

)
qr

)

= βi−jα−1qj−1

(
i− 1

j − 1

)
+ βi−j

j−2∑
r=0

(
i− j + r + 1

r

)
qr − βi−j

j−2∑
s=1

(
i− j + s

s− 1

)
qs

= βi−jα−1qj−1

(
i− 1

j − 1

)
+ βi−j

j−2∑
r=0

(
i− j + r

r

)
qr,

which is the same as (D1 +E1)i,j = (E1)i,j for 1 < j ≤ i. Due to the above calculations,
it is easy to see that ((D1E1)−q(E1D1))i,j is equal to β−1 for j = i+1, equal to α−1βi−1

if j = 1, and it is equal to 0 when j > i + 1, which are precisely the corresponding
entries of the matrix (D1 +E1)i,j. Showing that the remaining Matrix Ansatz equations
hold is a straightforward calculation: if we set γ = δ = 0, then (2.4) and (2.5) read

D1V1 =
1

β
V1, (4.8)

W1E1 =
1

α
W1. (4.9)

Now note that

D1V1 =

⎛⎜⎜⎜⎜⎝
0 β−1 0 0 · · ·
0 0 β−1 0 · · ·
0 0 0 β−1 · · ·
0 0 0 0 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1
1
1
1
...

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
β−1

β−1

β−1

β−1

...

⎞⎟⎟⎟⎟⎠ =
1

β
V1. (4.10)

We also note that multiplying E1 by W1 from the left gives a row vector whose entries
are equal to the first row of E1,

(α−1, 0, 0, . . .) =
1

α
(1, 0, 0, . . .),

which shows that W1E1 = 1
α
W1 also holds. �

So far we have shown that the matrices D1, E1, V1,W1 satisfy the Matrix Ansatz
equations. Note, that all entries of the matrices D1, E1, V1,W1 are non-negative and
hence the product W1(

∏n
i=1 (τiD1 + (1− τi)E1))V1 is always non-negative. So, all as-

sumptions of the Matrix Ansatz Theorem (Theorem 2.1) hold. Hence the steady state
probability for any state τ of the PASEP (with γ = δ = 0) can be expressed as a prod-
uct of these matrices. But our focus lies upon combinatorial approaches to the subject
and hence we show how these matrices are linked to permutation tableaux. So, in the
next step we shall see that the term W1(

∏n
i=1 (τiD1 + (1− τi)E1))V1 can be interpreted

as a generating function for permutation tableaux:
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Theorem 4.5 ([6], Theorem 3.1.). Let λ be a shape of length n + 1. Let τ(λ) =
(τ1, . . . , τn) ∈ {0, 1}n be the state of the PASEP corresponding to the shape λ. Then,
for Fλ(q), the generating function for all permutation tableaux of shape λ defined below,
we have

Fλ(q) :=
∑

T ∈Tshape[λ]

qrk(T )α−f(T )β−u(T ) = W1

(
n∏

i=1

(τiD1 + (1− τi)E1)

)
V1.

Moreover, for F n+1(q), the generating function for all permutation tableaux of length
n + 1 defined below, we have

F n+1(q) :=
∑

T ∈T n+1

qrk(T )α−f(T )β−u(T ) = W1(D1 + E1)
nV1.

To prove this theorem we use the following partition notation (which is inspired by
interpreting the shape λ of a permutation tableau as the Young diagram of a partition).
We see a shape as a collection of rows consisting of cells. So, we denote a shape λ of a
permutation tableau of length n by λ = (r1, . . . , rk) with k being the number of rows
(therefore k ≥ 1) and ri being the number of cells in the i-th row, where we start
counting at the top row of the shape (therefore ri ∈ Z and rk ≥ rk−1 . . . ≥ 0). It
follows that rk + k = n. As an example, the shape in Figure 4.2 is represented by
λ = (6, 5, 5, 3, 2, 0). This notation allows us to denote a shape in a short and intuitive
way. (Note that this notation can only be used because we require the shape path of
a permutation tableau to start with a south step. If we used shapes whose shape path
starts with a west step, we would have at least one column of length 0 (caused by the
west step) – this case could not be covered by the newly introduced notation).

Proof. The theorem is proved by induction. We consider the matrix

Mλ :=
n∏

i=1

(τiD1 + (1− τi)E1),

where (τ1, . . . , τn) = λ(τ), the shape associated to the state τ . We shall see that the
sum of the entries in the top row corresponds to the generating function Fλ(q).

We denote by iTshape[λ] permutation tableaux T of shape λ which have exactly i
unrestricted rows and define

iFλ(q) :=
∑

T ∈iTshape[λ]

qrk(T )α−f(T )β−u(T ) =
∑

T ∈iTshape[λ]

qrk(T )α−f(T )β−i+1.

Recall that u(T ) was defined as the number of unrestricted rows minus 1 and that in
every permutation tableau the top row is always unrestricted. It is then clear that
Fλ(q) =

∑
i≥1 iFshape[λ](q).

We will now show that the entry Mλ[1, i] in position (1, i) of Mλ is iFλ(q). To do
this, we use induction on n, where n is the number of sites in the PASEP (and n + 1
is the length of the shape λ). Recall the notation for permutation tableaux introduced
above.

n = 1 : In the case of one site and length l = 2, there are two possible different
shapes, namely (0, 0) and (1) (partition notation!) as shown in Figure 4.4. If λ = (0, 0),
then the corresponding state is τ(λ) = (1), and hence Mλ = D1. So, the top row of
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Mλ is (0, β−1, 0, 0, . . .). There is just one permutation tableau of shape (0, 0) with no
column but two rows. For this permutation tableau T we have rk(T ) = 0, u(T ) = 1
and f(T ) = 0 (since there are no 1’s in the filling but two unrestricted rows). So the
only iFλ(q) 	= 0 is 2Fλ(q) = β−1. This corresponds to the top row of D1. Similarly,
if λ = (1) then Mλ = E1 since τ(λ) = (0). Again, there is just a single permutation
tableau, this time consisting of one cell (that has to be filled with a 1). For this tableau
the statistics are rk(T ) = 0 , f(T ) = 1 and u(T ) = 0 (since it has one unrestricted
row). This corresponds to the top row of E1 being (α−1, 0, 0, . . .).

(0,0)

1

(1)

Figure 4.4. Permutation tableaux of length l = 2.

n → n + 1 : Assuming that the claim is true for n (and therefore for permutation
tableaux of length less than or equal to n + 1), we can interpret the i-th entry in the
top row of Mλ as a generating function enumerating permutation tableaux of shape λ
with i unrestricted rows, according to weight.

Now, consider a permutation tableau of length n + 2 of shape λ′. There are two
different cases.

(1) The last row of the shape λ′ is an empty row. In this case the last step of the
shape path is a south step (which forms the row of length 0).

(2) The last row of the shape λ′ is not an empty row. Then, the length of the
leftmost column of λ′ is equal to the number of rows of the shape. This is the
case if the last step of the shape path is a west step.

If we delete the last step of the shape path of λ′, we arrive at a shape λ of length n+1.
We will make use of this observation, but we go the other way around: if we consider
a shape λ of length n + 1, then we can add either a south step or a west step to the
shape path to obtain a shape λ′ of length n+ 2. Note that every shape of length n+ 2
can be obtained through addition of a step to a shape of length n + 1. What we need
to do is to check how one can obtain a valid filling of the shape λ′ out of a valid filling
of the shape λ, and how this influences the generating function.

First, how does adding a south step to the shape path of λ affect the generating
function? Any permutation tableau T of shape λ′ can be obtained from a permutation
tableau of shape λ by adding an empty (and therefore unrestricted) row. So, in this
case we have 1Fλ′(q) = 0 and iFλ′(q) = β−1

iFλ(q) if i > 1. Comparing this to the
matrix product MλD1, we see that the top row (0, β−1Mλ[1, 1], β−1Mλ[1, 2], . . .) indeed
reflects these identities.

The case of addition of a west step to the shape path of λ = (λ1, . . . , λr) remains
to be examined. In this case, an additional column is attached to the left-hand side of
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the tableau. Speaking in terms of partitions, a new partition λ′ = (λ1 + 1, . . . , λr + 1)
is obtained. We will show that

aFλ′(q) =
∑
b≥a

ha,b(q) bFλ(q),

where

ha,b(q) := βb−a

(
α−1qa−1

(
b− 1

a− 1

)
+

a−2∑
j=0

qj

(
b− a + j

j

))
. (4.11)

To prove this, we will examine how addition of a column of length r to the left-hand side
to a permutation tableau in bTshape[λ] will affect the terms of the generating function

bFλ(q): fix a permutation tableau T of shape λ with exactly b unrestricted rows and
consider the terms of the generating function bFλ(q) containing qrk(T ). If we now add a
column to the left-hand side of the tableau T , and consider the possibilities of adding a
valid filling, we claim that the generating function aFλ′(q) of the permutation tableaux
T ′ of shape λ′ with exactly a unrestricted rows can be obtained by multiplying the term
containing qrk(T ) of bFλ(q) by ha,b(q). The claim can be proven by examining how an
additional column can be filled with 0’s and 1’s such that a valid filling is obtained, and
how this affects the statistics of the permutation tableau: the tableau T has exactly b
unrestricted rows; so in the newly added column we have to put a 0 in every already
restricted row (since a row is restricted if it contains a 0 entry below some 1 and so
all entries to the left of this 0 have to be 0’s as well). Let us label the remaining cells
yet to fill from top to bottom by c1, . . . , cb. If we want the new tableau T to have
a unrestricted rows (where a ≤ b), and if we suppose that the topmost 1 in the new
column is in position ci, then we will have i − 1 entries that are already 0. Since we
want our new permutation tableau to have b − a additional restricted rows, we need
to place another b − a 0’s within the b − i cells below the topmost 1 in ci; there are(

b−i
b−a

)
ways to do so. The remaining (b − i) − (b − a) = a − i entries must be 1’s. For

these choices of filling the column, the weights change as follows: the rank rk(T ) rises
by a− i, therefore the column contributes an extra weight of qa−i if i 	= 1, whereas in
the case of i = 1 the extra weight contributed equals α−1qa−i for having also added an
additional 1 to the first row. In both cases, we have added b− a unrestricted rows and
there is an extra weight of βb−a. Summing over all possibilities of adding a column to
the permutation tableau, we obtain

α−1qa−1

(
b− 1

a− 1

)
+

a∑
i=2

qa−i

(
b− i

b− a

)
, (4.12)

which is equal to

α−1qa−1

(
b− 1

a− 1

)
+

a−2∑
j=0

qj

(
b− a + j

j

)
. (4.13)

It therefore follows that aFλ′(q) =
∑

b≥a ha,b(q) bFλ(q). As desired, this corresponds to
the first row of the matrix product MλE1, being equal to(∑

b≥1

h1,b(q)Mλ[1, b],
∑
b≥2

h2,b(q)Mλ[1, b],
∑
b≥3

h3,b(q)Mλ[1, b], . . .

)
.
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This shows that the entry Mλ′ [1, i] in position (1, i) of Mλ′ is iFλ′(q) as claimed in
the beginning.

The first part of the theorem is now derived easily: fix a shape λ. Note that
multiplying the product Mλ =

∏n
i=1 (τiD1 + (1− τi)E1) by W1 from the left and by V1

from the right is equal to summing the top row of Mλ. As shown, the entries of the top
row, Mλ[1, i], are equal to iFλ′(q). Now, recall that

∑
i≥1 iFshape[λ](q) = Fλ, and hence∑

T ∈Tshape[λ]

qrk(T )α−f(T )β−u(T ) = Fλ = W1

(
n∏

i=1

(τiD1 + (1− τi)E1)

)
V1.

The second part, stating that the generating function F n+1 of all permutation
tableaux with length n + 1 is equal to W1(D1 + E1)

nV1 follows from the fact that,
for the generating function, summing over all permutation tableaux of length n + 1
yields the same as summing up all the expressions

∏n
i=1 (τiD1 + (1− τi)E1) over all

words τ ∈ {0, 1}n which can also be written as W1(D1 + E1)
nV1. �

We now have seen a combinatorial interpretation of the matrices D1, E1, V1,W1 in
terms of a generating function for permutation tableaux. Combining this last theorem
and Lemma 4.4, Theorem 4.3 follows immediately:

Proof of Theorem 4.3. Due to Lemma 4.4, we know that for D1, E1, V1,W1 the
Matrix Ansatz equations hold and that therefore the steady state probability of finding
the PASEP in a state τ ∈ {0, 1}n is given by

W1(
∏n

i=1 (τiD1 + (1− τi)E1))V1

W1(
∏n

i=1 (D1 + E1)n)V1

. (4.14)

On the other hand, we have seen in Theorem 4.5 that numerator and denominator
in (4.14) can be rewritten as∑

Tshape[λ]
qrk(T )α−f(T )β−u(T )∑

T n+1 qrk(T )α−f(T )β−u(T )
, (4.15)

where λ = λ(τ), the shape corresponding to τ . Since Theorem 2.1 claims that for any
D,E, V,W for which the Matrix Ansatz hold the term W (

∏n
i=1 (τiD + (1− τi)E))V

yields the same result (namely the steady state probability of finding the PASEP in
state τ), it follows that

W (
∏n

i=1 (τiD + (1− τi)E))V

W (
∏n

i=1 (D + E)n)V
(4.16)

is equal to (4.14) and therefore as well to (4.15). This is precisely what the theorem
claims. �

Remark. As mentioned in the beginning, Theorem 4.3 is due to S. Corteel and
L. Williams [6]. In a subsequent publication they were able to reproduce their result
concerning the stationary distribution, this time bypassing the Matrix Ansatz. They
constructed a Markov chain on permutation tableaux (and therefore on permutations)
that projects to the PASEP, in a sense that a random walk on the constructed Markov
chain is indistinguishable from a random walk on the PASEP. For more details on this
approach we refer to [5].





CHAPTER 5

PASEP and Alternative Tableaux

It was noted by several people (A. Burstein [3], S. Corteel and P. Nadeau [4]) that
permutation tableaux are determined by the position of their distinguished 1’s and 0’s.
(Recall that a 1 is called distinguished if it is the topmost one in its column but does not
lie in the first row, whereas a 0 is called distinguished if it is the rightmost restricted 0
in its row.) This observation led to the definition of so called alternative tableaux which
were first introduced by X. Viennot [27]. In the next section we will give the definition
as well as a bijection between alternative tableaux and permutation tableaux. We will
than restate Theorem 4.5, and we will give another result concerning the steady state
distribution of the symmetric case of the simple exclusion process proved by S. Corteel
and L. Williams [7].

The following definition was given by X. Viennot ([27]): an alternative tableau T̂
is a shape λ̂ (where we allow rows and columns of length 0), in which cells are either
empty, red or blue, such that the following conditions hold:

(1) there is no colored cell left of a blue cell;
(2) there is no colored cell above a red cell.

Another way to put this is the following, noted by Phillipe Nadeau, which is the
definition we will use:

Definition 5.1. ([17], Definition 2) An alternative tableau T̂ is a shape λ̂ (where
we allow rows and columns of length 0), in which cells are either empty or contain a
left arrow ← or an up arrow ↑, such that the following conditions hold:

(1) there is no other arrow left of ←;
(2) there is no other arrow above a ↑.

Figure 5.1. An alternative tableau of length 11.

We denote the set of alternative tableaux of shape λ̂ by T̂shape[λ̂] and the set

of alternative tableaux of length n by T̂ n.

Remark. Since an alternative tableau is based upon a shape (just like a permuta-
tion tableau), it inherits most of the concepts that we have introduced for permutation
tableaux, i.e., length and shape path.

59
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↑ ←
� � �

(◦, •, ◦)

(0, 1, 0)

Figure 5.2. An example for the association of a state of the PASEP to
the alternative tableaux of a certain shape.

Similarly to what we did in Section 4.1, we can associate alternative tableaux of a
certain shape associate to states of the PASEP. Let τ = (τ1, . . . , τn) ∈ {0, 1}n be a state
of the PASEP with n sites. To the state τ we associate a path p = (p1, . . . , pn) ∈ {W,S}n

consisting of south steps (denoted by S) and west steps (denoted by W ) by the rule:

pi =

{
S τi = 1,

W τi = 0.
(5.1)

Analogue to the procedure in (4.2), we interpret p as the shape path, and thus obtain

a shape λ̂(τ) = λ̂ associated to the state τ . Lastly, we consider the set of alternative

tableaux of shape λ̂, denoted by T̂λ̂. These are the alternative tableaux that we associate
to the state τ . The procedure is shown in (5.2) and Figure 5.2.

state τ → (shape) path p → shape λ̂(τ) → T̂shape[λ̂] (5.2)

Through considerations of statics on alternative tableaux, we will again be able to derive
results concerning the steady state distribution of the PASEP. So, like permutation
tableaux, alternative tableaux also encode information about the PASEP. We will even
see that they encode it in a somehow more elegant way. But first we examine a bijection
between permutation tableaux and alternative tableaux introduced in [27] and the
correspondence of some statistics of permutation tableaux and alternative tableaux
(noted in [27] and [17]).

5.1. Bijection Between Permutation Tableaux and Alternative Tableaux

First, as we will need this through the entire section, we introduce classes of entries
of a filling. We therefore recall and extend Definition 4.2.

Definition 5.2. We consider the entries of a filling of a permutation tableau. We
recall that a restricted 0 is a 0 which lies below some 1 and we define:

top-row 0: a 0 which is located in the top row in the permutation tableau;
distinguished 0: is the rightmost restricted 0 in its row;

limited 0: a restricted 0 which is not a distinguished 0;
additional 0: all 0’s which are neither restricted 0’s nor top-row 0’s;

top-row 1: a 1 which is located in the top row in the permutation tableau;
distinguished 1: a 1 which is the topmost one in its column, but not a top-row 1;

additional 1: all 1’s that are neither top-row 1’s nor distinguished 1’s.
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1 2 3 4 5 6

Figure 5.3. A permutation tableaux with rows and columns labeled.

Figure 5.4. Example for free cells in an alternative tableau (marked
with X).

One can easily verify that each entry of a permutation tableau belongs to exactly one
of the classes. We call the classes type of entry.

Example. Let us consider the permutation tableau in Figure 5.3. There are exactly
three representatives of each class defined above. In the figure we have labeled the
columns and rows by 1 through 6. By (x, y) we denote the entry of the tableau that is
found in the x-th row and the y-th column. Then, the representatives are to be found
in the following positions:

top-row 0: (1, 2), (1, 4), (1, 5)
distinguished 0: (3, 4), (4, 1), (5, 2)

limited 0: (3, 3), (3, 1), (5, 1)
additional 0: (2, 2), (2, 5), (3, 2)

top-row 1: (1, 1), (1, 3), (1, 6)
distinguished 1: (2, 4), (3, 5), (4, 2)

additional 1: (2, 1), (2, 3), (4, 3)

We also need an additional definition concerning the entries of alternative tableaux:

Definition 5.3 ([17], Definition 2). In the filling of an alternative tableau we call
an (empty) cell that does not have a ↑ below it and no ← to its right a free cell. In
other words, in an alternative tableau free cells are exactly the empty cells to which no
arrow points to.

Example. For an example of free cells see Figure 5.4. There, the three free cells in
the tableau are marked with an X.

After these preparations we now aim to define a bijection between permutation
tableaux and alternative tableaux. To this end, we define two maps ϕ and ψ, both of
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(e) Step (4) (f) Step (5) – an alterna-
tive tableau

Figure 5.5. The steps of the algorithm ϕ.

them described through an algorithm. We then carefully check that these two algo-
rithms actually have the desired properties, i.e., that ϕ sends permutation tableaux to
alternative tableaux, that ψ does so vice-versa, and that the maps ϕ and ψ are inverse
to each other. The maps φ, ψ, as well as the outline of the proof of Theorem 5.8, were
first presented in [27].

We start by defining ϕ, a map that sends a permutation tableau to an alternative
tableau, through an algorithm. We will show then, that what we obtain by ϕ is indeed
an alternative tableau. The steps are illustrated in Figure 5.5.

(1) Every 1 which is not the topmost 1 in its column is marked by an F .
(2) Delete the first row and turn all the remaining 1’s into a ↑.
(3) Delete all the remaining entries and mark all the cells above a ↑ (by extending

the ↑ by a line).
(4) In every row that contains empty, not marked cells turn the rightmost of these

cells into a ←.
(5) Delete the marks and the F ’s.

Considering the single steps of the algorithm ϕ (we identify the algorithm with the
map ϕ), we note that it terminates with having produced a new shape (that differs
from the original shape by lacking the first row) together with a filling. We still need
to make sure that this filling satisfies the conditions of an alternative tableau, i.e., that
no arrow is above a ↑ and that no arrow is left to a ←. We will do so after proving a
lemma concerning the algorithm ϕ and its actions upon the entries of a permutation
tableau.

First, recall Definition 5.2. We will show that ϕ treats entries of same type the same
way. As every entry in a permutation tableau belongs to exactly one of these types,
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we can easily see how ϕ acts on the entries. We examine the steps of the algorithm ϕ,
bearing the definition of types of entries in mind.

(1′) In Step (1) all additional 1’s are marked by an F .
(2′) In Step (2) all top-row 1’s and top-row 0’s are deleted. Furthermore, distin-

guished 1’s are turned into ↑’s (these are the only 1-entries that are left at this
time, since top-row 1’s are already deleted and additional 1’s are marked by
an F ).

(3′) In Step (3) all remaining entries are deleted. Hence, every cell that contains
an additional, distinguished, or limited 0 is now emptied. Note that these
are the only empty cells. Now all cells above a ↑ are marked. These cells
correspond to the additional 0’s, since ↑ used to be (distinguished) 1’s, and
neither distinguished nor limited 0’s can lie above a 1.

(4′) In Step (4) the empty, non-marked cells that remain correspond to restricted
0’s (i.e., limited or distinguished 0’s). The rightmost empty cell in each row is,
by definition, a distinguished 0 and turned into a ← by ϕ.

(5′) In Step (5) the marks and the F ’s are deleted.

Through these considerations we can immediately derive the following lemma:

Lemma 5.4 ([27]). The map ϕ maps

• all distinguished 1’s to ↑’s but maps no other entries to ↑’s;
• all distinguished 0’s to ←’s but maps no other entries to ←’s;

Proof. That the first claim holds is easy to see: in (2′) every distinguished 1 is
turned into a ↑. Later on no ↑’s are introduced.

The second claim is shown similarly: in (4′) every distinguished 0 is turned into a
←. Again, this is the only step in which ← are introduced. �

We have not made sure yet that the application of ϕ to a permutation tableau
indeed yields an alternative tableau. To do so, we still have to check that there is no
arrow above a ↑ or left to a ←. We use the lemma above.

Consider an up arrow ↑. By Lemma 5.4, ↑’s correspond to a distinguished 1’s. Now,
suppose that there is another ↑ above the fixed up arrow. This means that there are
two distinguished 1’s in the same column. This cannot be by definition of distinguished
1. On the other hand, suppose that there is a ← above the fixed up arrow. Then note
that a ← corresponds to a distinguished 0, and a distinguished 0 lies below some 1.
Hence, we would have a 1 above a distinguished 1 which cannot be by definition of a
distinguished 1.

Now, fix a left arrow ←. ←’s used to be a distinguished 0’s before the application
of ϕ. Hence, if there is another ← to the left of the fixed one, then there are two
distinguished 0’s in a row which cannot occur in a permutation tableau. If there is a ↑
left to the fixed ←, then this corresponds to finding a (distinguished) 1 to the left of a
distinguished 0. This cannot be, either.

Thus, we have shown the following:

Lemma 5.5 ([27]). ϕ is a map from the set of all permutation tableaux to the set of
alternative tableaux.

We note another property of ϕ which will turn out to be important later:
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Figure 5.6. Correspondence between distinguished 0’s, distinguished
1’s and additional 1’s in a permutation tableaux T and left arrows, up
arrows and free cells in an alternative tableau.

Lemma 5.6 ([27]). The map ϕ maps additional 1’s to free cells but maps no other
entries to free cells.

Proof. To prove this claim, we have to go a little more into detail. Consider an
additional 1. By ϕ this cell is turned into an empty cell (first the cell is marked by
an F , and then the F is deleted). Now, suppose that there is a ↑ below this cell. We
already know that a ↑ used to be a distinguished 1. But this would mean that there
was a distinguished 1 below an additional 1 which cannot be by definition. On the
other hand, suppose that a ← points towards a cell that used to contain an additional
1. Since ← used to be distinguished 0’s (as seen before), we would have a 1 left to a
distinguished 0. This cannot be by definition.

It is also true, that any other cell, which is not an additional 1, is either filled by an
arrow or has some arrow pointing towards it: top row entries disappear through ϕ so
we do not need to consider them. Distinguished 1’s and distinguished 0’s correspond
to ↑ and ←, respectively. So, it only remains to show that additional 0’s are mapped
to cells that at least have an arrow pointing towards it. But this is easy to prove, since
by definition an additional 0 is not restricted and thus has to lie above a distinguished
1 (which is the topmost 1 in its column). Since distinguished 1’s correspond to ↑, we
have shown that there is an arrow pointing towards a cell that used to be filled with a
0. �

Now, to go in the other direction, we define a map ψ (again described through an

algorithm) that maps any alternative tableau T̂ to a permutation tableau T . The steps
are illustrated in Figure 5.7:

(1) Mark the cells left of ← and above ↑ (by extending the arrows by a line,
denoting the marked cells by �, �, �).

(2) Put an F in the cells that are not marked nor contain an arrow.
(3) Add a new row whose length equals the number of columns in the tableau, and

put a 0 in the cells to which a ↑ points to and fill the other cells with 1’s.
(4) Turn all ↑’s and all F into 1’s.
(5) Turn all ←’s and the remaining marked cells ( �, �, � ) into 0’s.

It is clear that we obtain a shape with a filling of 0’s and 1’s: all cells are filled when
the algorithm stops (there are non-empty cells containing arrows, empty cells that are
marked in Step (2) or empty cells that are not marked (Step (5)), and all of them
are somehow filled once during the algorithm). What we need to check is whether we
always obtain a valid filling (see Definition 4.1). Seeing that the first condition holds
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Figure 5.7. The steps of the algorithm ψ.

1

01

Figure 5.8. The forbidden pattern in a permutation tableau.

(i.e., that there is at least one entry being 1 in each column) is easy: either a column
of the alternative tableau contains a ↑, then this arrow is turned into a 1 in Step (4),
or the column does not contain a ↑, then a 1 is put into the corresponding entry of the
additional row in Step (3). So, it remains to check that the second condition holds: if
a 0 is below any 1 then there is no 1 to the left in the same row of this 0. We call this
the forbidden pattern (see Figure 5.8).

So first, we check which cells of the alternative tableau are turned into 0’s by the
algorithm ψ. Then, we check whether this 0 will be below a 1, and if so, we check that
there can only be 0’s left to it. First, we recall the single steps of ψ and note that by
ψ a 0 is introduced

(a) eventually in the added first row. Or in the rows below in one of the following
cases:

(b) when replacing a ←,
(c) to the left of a ← but not above a ↑
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(d) above a ↑ and not to the left of a ←.
(e) to the left of a ← and above a ↑

(The last three cases correspond to the marked cells �, �, and � in the description
of ψ). In case (a) the 0 cannot lie below any 1 (since it was injected in the first row).
In the cases (b),(c),(e) the cell either contained a ← or was marked in Step (1) by �
or �. So in all three of the cases the cells to the left are of type � or � and therefore
become 0’s in Step (4); the forbidden pattern from Figure 5.8 cannot occur. In the
remaining case, case (d), all cells above ↑ are of type � or � and hence become 0’s in
Step (4). Therefore there can not be a 1 above the considered cell and there is no need
to check the entries to its left. This shows that through the map ψ we obtained indeed
a permutation tableau.

We summarize the considerations made above in the following lemma:

Lemma 5.7 ([27]). ψ is a map from the set of all alternative tableaux to the set of
permutation tableaux.

We can now state the main results of this section.

Theorem 5.8 ([27]). The map ϕ is a bijection between the set of all permutation
tableaux and the set of all alternative tableaux, and its inverse is given by ψ.

Proof. We have already proven that ϕ maps any permutation tableau T to a
unique alternative tableau, and that ψ maps any alternative tableau to a unique per-
mutation tableau. It remains to show that ϕ−1 = ψ. To do so, we will prove that for
any fixed permutation tableau T it is true that T = ψ(ϕ(T )). First, we note that T
and ψ(ϕ(T )) have the same shape λ. (This is easy to see in terms of the corresponding
shape paths: ϕ erases the first south step of λ by deleting the entire first row and ψ
adds a south step to the beginning of the shape path by adding a new row). It remains
to show that the fillings of T and ψ(ϕ(T )) are the same. We consider each cell sep-
arately and show how applications of ϕ and ψ changes their contents. We claim that
every 0 in T is mapped to a 0 and every 1 to a 1 after having applied ϕ, followed by
ψ. We start with the entries 1 and separate them into the following types, as defined
in Definition 5.2.

• distinguished 1’s: those are 1’s that are topmost in their column but are not
situated in the first row;

• additional 1’s: those are 1’s which lie below some other 1;
• top-row 1’s: are located in the top-row.

We show that every type is mapped to a 1 again:
distinguished 1’s : ϕ maps a distinguished 1 to a ↑ (Step (2)). Afterwards, ψ maps

every ↑ back to a 1 (Step (4)).
additional 1’s : ϕ maps an additional 1 to a free cell, and ψ maps free cells to 1’s

(Step (4)).
top-row 1’s The top row cells with a 1 are deleted by ϕ. But note that then no ↑ is

in the corresponding column (Step (2)). When afterwards ψ adds a new first row, then
there is no arrow pointing to this cell and hence it is filled with a 1 (Step (3)).

It remains to check that ψ(ϕ(T )) maps 0’s to 0’s: first, let us consider 0’s in the
top row. If a 0 is in the top row of the permutation tableau, then the cell is deleted
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after having applied ϕ (because the whole row is deleted). But in the corresponding
row there remains a ↑ (since the topmost 1 of every column, which obviously is not
located in the top row, is turned into a ↑ in Step (2)). So, when applying ψ, a new row
is added, and the cell in the column is filled with a 0 due to Step (3). If we consider
a 0 that is not part of the top row, then it is either turned into a ← or into an empty
cell (which cannot be a free cell since only 1’s are mapped into them, see Lemma 5.4).
But since ψ maps all cells of type ←, �, �, � (which are exactly the cells that are not
free cells or ↑) to 0’s, we are done. �

Putting together some of the properties of the maps ϕ and ψ, we make some obser-
vations.

Focusing on shapes of tableaux only, we easily note the following:

Corollary 5.9. Let λ be a shape and let λ̂ be the shape arising from λ by removing
the top row. Then ϕ is a bijection between the set of permutation tableaux of shape λ

and the set of alternative tableaux of shape λ̂.

So far we have seen that ϕ is a bijection between permutation tableaux and alter-
native tableaux. If we consider an entry in a permutation tableau T , we know that
in the permutation tableau ψ(ϕ(T )) we find the same entry in the same position. In
particular, 1’s are mapped to 1’s again and 0’s to 0’s. But one could doubt that the
types of entries (as defined in Definition 5.2) are preserved, e.g., that a distinguished 1
in T is again distinguished in the permutation tableau ψ(ϕ(T )). But it is seen easily
that types are preserved as well: note that the type of an entry depends only on its
surrounding and its position in the tableau, e.g., a distinguished 0 is a 0 that lies below
some 1 and is the rightmost 0 in its row. So, we can immediately formulate the following
corollary which extends Lemma 5.4 and Lemma 5.6.

Corollary 5.10 ([27]). Let T be a permutation tableau and let T̂ be ϕ(T ), the
corresponding alternative tableau. Then, there is a one-to-one correspondence between

• distinguished 0’s in T and ←’s in T̂ ,

• distinguished 1’s in T and ↑’s in T̂ ,

• additional 1’s in T and free cells in T̂ .

In particular, the number of the corresponding entries is equal.

Hence, the number of distinguished 0’s in a permutation tableau T and the number

of ←’s in the alternative tableau ϕ(T ) = T̂ are equal, the number of distinguished 1’s
and ↑’s, and the number of additional 1’s and free cells. This observation turns out to
be important for the reformulation of Theorem 4.3 in terms of alternative tableaux.

5.2. Restatement in Terms of Alternative Tableaux

Our goal is to restate Theorem 4.3 in terms of alternative tableaux. We do so in
Theorem 5.12 after having made some preparations.

Let T̂ be an alternative tableau Extending the definitions in ([17], below Definition
2), we define a free row to be a row with no ← and denote the number of free rows
by frow(T ). Furthermore we define a free column to be a column without any ↑ and
denote by fcol(T ) the number of free columns. Recall that a free cell is an empty cell
without having any ← up ↑ pointing towards it; by fcell(T ) we denote the number
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of free cells in an alternative tableaux. Finally, with τ ∈ {0, 1}n being a state of the

PASEP, let λ̂(τ) be the shape λ(τ) with the top row removed.
When recalling Definition 4.2, we note an analogy to the statistics defined above.

The parts which are important for us are made explicit.

Lemma 5.11. Let T be a permutation tableau of shape λ and T̂ = ϕ(T ) the corre-
sponding alternative tableau. Then, with the definitions from above and Definition 4.2,
we have

frow(T̂ ) = u(T ),

fcol(T̂ ) = f(T ),

fcell(T̂ ) = rk(T ).

Proof. Suppose that λ is a shape with k rows and m columns, and set T̂ = ϕ(T ).

By Corollary 5.9 we conclude that T̂ is of shape λ̂, with m columns and k − 1 rows.

We show frow(T̂ ) = u(T ). Recall that u(T ) is the number of unrestricted rows in
T minus 1 and u′(T ) is the number of distinguished 0’s. Also recall that u(T )+u′(T ) =

k − 1. Let left(T̂ ) be the number of ← in T̂ . Due to Corollary 5.10, we know that
distinguished 0’s correspond to ←, so

left(T̂ ) = u′(T ).

Hence k − 1 = u(T ) + u′(T ) = u(T ) + left(T̂ ), from which follows that

u(T ) = k − 1− left(T̂ ). (5.3)

In every row of an alternative tableau there can be at most one ←, so left(T̂ ) is equal
to the number of rows containing a ←. So, the right-hand side of (5.3) can also be read

as the number of rows of λ̂ (which is equal to k−1, see above) minus the number of rows

that contain a←. This is exactly the definition of frow(T̂ ), therefore frow(T̂ ) = u(T ).

Now we show that fcol(T̂ ) = f(T ). Recall that f(T ) is the number of 1’s in the
first row of the permutation tableau T , and that f ′(T ) is the number of distinguished

1’s. Also recall that f(T ) + f ′(T ) = m. If we denote the number of ↑’s in T̂ by up(T̂ ),
we have

f ′(T ) = up(T̂ ),

again by Corollary 5.10. Hence, m = f(T )+f ′(T ) = f(T )+up(T̂ ), from which follows

f(T ) = m− up(T̂ ). (5.4)

In every column of an alternative tableau there can be at most one ↑, so up(T̂ ) also
equals the number of columns containing a ↑. Hence (5.4) can be read as follows: f(T )

equals the number of columns of λ̂ minus the number of columns containing an ↑. This

is exactly the definition of frow(T̂ ).

Finally, we show that fcell(T̂ ) = rk(T ). Recall that rk(T ) is the number of 1’s
minus the number of columns of λ. If we can show that this is equal to the number of
additional 1’s in the filling (see Definition 5.2), then it follows from Corollary 5.10 that

rk(T ) = fcell(T̂ ). But the above claim is easy to verify: each column of T contains at
least one 1. Consider the topmost one in each of the m columns. Either it is located
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in the first row (then it is a top-row 1) or not (then it is a distinguished 1). All other
1’s in the filling have to be additional 1’s and their number is equal the number of 1’s
minus m, which was claimed. �

Theorem 5.12 ([17], Corollary 5). Consider the PASEP with n sites, with 0 ≤ q ≤
p = 1 and freely chosen boundary conditions α, β (and γ = δ = 0). Let τ be a state of
the PASEP. Set

Zn =
∑
T̂ ∈T̂ n

qfcell(T̂ )α−fcol(T̂ )β−frow(T̂ ),

with the sum ranging over all alternative tableaux of length n. Then the steady state
probability of the PASEP being in state τ is∑

T̂ ∈T̂
shape[λ̂]

qfcell(T̂ )α−fcol(T̂ )β−frow(T̂ )

Zn
, (5.5)

where the sum ranges over all alternative tableaux of shape λ̂ = λ̂(τ), the shape associ-
ated to the state τ .

Proof. The theorem follows by Theorem 4.3 and Lemma 5.11. We show that the
numerator and denominator are equal to the ones in Theorem 4.3. First, we check the
claim for the numerators∑

Tshape(λ)

qrk(T )α−f(T )β−u(T ) =
∑

T
shape(λ̂)

qfcell(T̂ )α−fcol(T̂ )β−frow(T̂ ). (5.6)

The claim is proven as follows: fix T , a permutation tableau of shape λ. There is an

alternative tableau of shape λ̂ for which ϕ(T ) = T̂ (Corollary 5.9). By Lemma 5.11
follows that the corresponding terms in the sums of (5.6) are the same. But Corollary 5.9

also states that every alternative tableau of shape λ̂ has a counterpart in the set of
permutation tableaux of shape λ. Hence both sums yield the same result.

To see that the denominators in 4.3 and 5.5 are equal, apply the same argument as
above, this time to all shapes λ of permutation tableaux of length n+ 1. �

Alternative tableaux seem to encode information about the PASEP in a somehow
more natural way: The shapes that correspond to the states of a PASEP with n sides
are of length n, and also the analogous definitions of the so far essential statistics such

as fcell(T̂ ) and fcol(T̂ ) seem more natural in case of alternative tableaux. But still,
we consider as well permutation tableaux as alternative tableaux in the next chapter.
On the one side, we want to cover as many starting points for further developments
as possible. On the other side, the proofs presented in the last chapters relied on
permutation tableaux and their structure, and the methods used so far can be applied
to provide further results, as we shall see in the next chapter.





CHAPTER 6

Symmetric ASEP and Bordered Tableaux

This chapter includes the most recent results in the literature of this text. As in
the last chapter, the main results are due to S. Corteel and L. Williams. We will follow
the arguments in [7].

The aim is to generalize Theorem 4.3, respectively Theorem 5.12, for the case where
the parameters γ, δ are general, too. We will not succeed in doing so but we will get
close, using the restriction of the symmetric displacement of the particles. This means
that the probability of a particle hopping to the left is the same as hopping to the right
(p = q = 1). To this end, we introduce the slightly more general bordered permutation
tableaux and bordered alternative tableaux.

6.1. Bordered Tableaux and States of the Symmetric ASEP

The idea is to consider tableaux containing some additional information on their
right-hand outer border line, namely labels α, β, γ and δ. We want to derive results once
in terms of permutation tableaux and once in terms of alternative tableaux. So, from a
heuristic point of view, it can be expected that we need some adoptions on the definition
of the border line, since the shapes of a permutation tableau and the corresponding
alternative tableau differ by one row (compare to Corollary 5.9). Speaking in terms of
shape paths, we note that if the shape path pper of a permutation tableau Tper is pper =
(p0, p1, p2, . . . , pn), then the shape path palt of the alternative tableau ϕ(Tper) = Talt is
given by palt = (p1, p2, . . . , pn). To avoid having to distinguish between these two shape
paths we give the following definition:

We define the border path bp of an alternative tableau Talt to be the shape path palt

of the tableau. For a permutation tableau we define the border path bp to be the shape
path pper omitting the first step p0. Hence, with notation from above, we have that the
border paths of Tper and ϕ(Tper) = Talt are the same, namely bp = (p1, p2, . . . , pn).

We assign to each step pi of the border path, respectively to the corresponding step
in the border of the tableau T , a weight bi ∈ {α, β, γ, δ} for i = 1, . . . , n. We call this
sequence of weights a border sequence, denoted as bord(T ). Furthermore we define
the edge(T ) as the product of the elements of the border sequence.

So, in other words, we take any alternative tableau and label the right-hand border
line by α, β, γ or δ. In the case of a permutation tableau, we also label the right-hand
border line, but we ignore the topmost south step, which we do not consider to be part
of the border. This is due to the fact that p0 is a “forced” step of the shape path and
does not contribute additional information about the state τ of the PASEP. To define
bordered tableaux we will put a restriction on the labeling.

71
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Figure 6.1. An example for a bordered permutation tableau and a bor-
dered alternative tableau.

Definition 6.1. A bordered permutation tableau is defined to be a permuta-
tion tableau T together with a labeling of the border path bp such that the following
conditions hold:

• a vertical edge (respectively a south step) is either labeled by α or by γ;
• a horizontal edge (respectively a west step) is either labeled by β or by δ.

We call such a labeling a valid labeling for the border of a permutation tableaux. Denote
by bord T n the set of all bordered permutation tableaux of length n.

Analogously, we define bordered alternative tableaux:

Definition 6.2. A bordered alternative tableau is defined to be a permutation

tableau T̂ together with a labeling of the border path bp such that the following con-
ditions hold:

• a vertical edge (respectively a south step) is either labeled by α or by γ;
• a horizontal edge (respectively a west step) is either labeled by β or by δ.

We call such a labeling a valid labeling for the border of an alternative tableau. Denote

by bord T̂ n the set of all bordered permutation tableaux of length n.

Remark. Again, concepts introduced earlier, such as length, shape, and so on, are
inherited by bordered permutation tableaux and bordered alternative tableaux.

Whereas in Chapter 4 and Chapter 5 we associated to a state τ ∈ {0, 1} of the
PASEP all permutation tableaux of a certain shape λ(τ), we will now generalize this
and associate bordered tableaux of various shapes and bordered labellings to the state
τ .

Definition 6.3. Let T be a bordered permutation tableau of length n + 1 or an
alternative tableau of length n. T is said to be of type τ , τ = (τ1, . . . , τn) ∈ {0, 1}n, if
for its border sequence bord(T ) = (b1, . . . , bn) the following holds:

τi = 1 if and only if bi = α, δ; (6.1)

τi = 0 if and only if bi = β, γ; (6.2)

for i = 1 . . . , n. We denote the set of all bordered permutation tableaux of type τ
by Ttype[τ ] and the set of all bordered alternative tableaux of type τ by T̂type[τ ].

Example. We show how Definitions 6.1 and 6.3 are put together. Let τ be the state
(◦, •, ◦) of the TASEP with 3 sites (equivalently, τ = (0, 1, 0)). We want to identify
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Figure 6.2. Labeled shapes of bordered permutation tableaux of type (0, 1, 0).

the bordered permutation tableaux of type τ . Note that the definition of type concerns
shapes and their labeling, so for now, we focus on shapes only (and omit fillings of the
tableau). So, due to Definition 6.3, the border path of the shapes has to satisfy the
following:

b1 = β, γ b2 = α, δ b3 = β, γ

We compare this to Definition 6.1 which says that steps of the border path must have
the following appearance:

α, γ β, δ

Hence, the first step of the border path of a bordered permutation tableau of type
τ can either be a west step labeled β or a south step labeled γ. The second step of
the bordered path might be a south step labeled α or a west step labeled δ. And the
third step is either a west step labeled β or a south step labeled γ. So, there remain 8
different labeled shapes, as seen in Figure 6.2. Adding valid fillings yields all bordered
permutation tableaux of type τ .

Compare this to Figure 4.3 in Chapter 4. There, just one of the shapes was associ-
ated to the state (◦, •, ◦) of the PASEP (with γ = δ = 0 but without the restriction of
p = q = 1). This shape is the one that remains in Figure 6.2, if the shapes with labels γ
or δ are omitted. We return to this observation after having established the connection
between bordered shapes and the symmetric ASEP.

We now state the main result of this chapter. First, we do so in terms of permutation
tableaux. Recall that f ′(T ) and u′(T ) are the number of distinguished 1’s and 0’s,
respectively. Furthermore recall the definition of edge, the product of the labels of a
shape.

Theorem 6.4. Consider a state τ of the PASEP with n sites, with general param-
eters α, β, γ, δ and q = 1. Set

Zn =
∑

T ∈bord T n+1

edge(T )(α + γ)f ′(T )(β + δ)u′(T ),

where the sum is over all bordered permutation tableaux of length n+1. Then the steady
state probability that the PASEP is at state τ is given by∑

T ∈Ttype[τ ]
edge(T )(α+ γ)f ′(T )(β + δ)u′(T )

Zn
(6.3)
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Figure 6.3. Some bordered permutation tableaux of type (0, 1, 0).

where the sum is over all bordered permutation tableaux T of type τ .

We can restate this theorem in terms of alternative tableaux. For an alternative
tableau T̂ we define up(T̂ ) to be the numbers of ↑’s and left(T̂ ) to be the number of
←’s in the tableau.

Theorem 6.5. Consider any state τ of the PASEP with n sites, where the param-
eters α, β, γ, δ are general and q = 1. Set

Zn =
∑

T̂ ∈bord T̂ n

edge(T̂ )(α + γ)up(T̂ )(β + δ)left(T̂ ),

where the sum is over all bordered alternative tableaux of length n. Then the steady
state probability that the PASEP is at state τ is equal to∑

T̂ ∈T̂type[τ ]
edge(T̂ )(α + γ)up(T̂ )(β + δ)left(T̂ )

Zn

(6.4)

where the sum is over all bordered alternative tableaux T̂ of type τ .

Example. Again, consider the TASEP with 3 sites and the state τ = (◦, •, ◦) (which
is equal to τ = (0, 1, 0)). We indicate how to calculate (6.3). In the last example we
have already seen that there are 8 different labeled shapes which yield to bordered
permutation tableaux of type τ (see Figure 6.2). In one of the earlier examples we have
noted that by adding valid fillings to these shapes we obtain 24 different permutation
tableaux of type τ . As an example, consider the shape (2, 1) with border sequence
b = (β, α, β) – this is the second shape in the second row in Figure 6.2. There are 3
ways to add a valid filling (see Figure 6.3). By doing so we obtain the following terms
of the numerator in (6.3):

αβ2(α+ γ) + αβ2(β + δ) + αβ2.

Analogously, the remaining terms of
∑
T ∈Ttype[τ ]

edge(T )(α + γ)f ′(T )(β + δ)u′(T ) can be

found. For the denominator Zn, one would have to do the same for all bordered per-
mutation tableaux of length 4. So for each of the 24 permutation tableaux mentioned
above there are 23 = 8 different ways to label their border paths. Hence there are
24 · 8 = 192 differently labeled permutation tableaux.

If we compare Theorem 6.4 to Theorem 4.3, we note that we should be able to derive
one out of the other. By setting γ = δ = 0 in Theorem 6.4 we obtain Theorem 4.3 with
q = 1: if γ = δ = 0, then summing over all bordered permutation tableaux of length n+1
in (6.3) is like summing over all permutation tableaux of length n+1 : in the denomina-
tor
∑
T ∈T n+1 edge(T )(α+ γ)f ′(T )(β + δ)u′(T ) the term edge(T ) is different from 0 only

when all south steps are labeled by α and all west steps are labeled by β. So, for each
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bordered permutation tableau of length n+1 just one representative of each shape con-
tributes to the sum. The numerator in (6.3),

∑
T ∈Ttype[τ ]

edge(T )(α+ γ)f ′(T )(β + δ)u′(T ),

becomes a sum over all permutation tableaux of shape λ(τ). To see this, note first that,
again, the term edge(T ) becomes 0 if some weight on the border is chosen to be γ or
δ. These tableaux do not contribute to the sum in the numerator. Therefore, we can
implicitly omit these tableaux by modifying (6.1) and (6.2):

τi = 1 if and only if bi = α,

τi = 0 if and only if bi = β.

Using the same arguments, we conclude for the weights of the border path in Defini-
tion 6.1 that:

only south steps S are weighted with α,

only west steps W are weighted with β.

Putting this together we obtain for the shape path p = (S, p1, . . . , pn):

τi = 1 if and only if pi = S,

τi = 0 if and only if pi = W,

which is exactly the bijection between a state τ and a shape λ(τ) given in Section 4.1.
(Here we have used that the border path of a permutation tableaux does not contain
the first step of the shape path, and we have used that a shape path of a permutation
tableau always starts with a south step). Hence, the sum in the numerator can be seen
as sum over permutation tableaux of type τ . So, having seen how the range for the
sums in Theorem 6.4 changes, we now let T be a permutation tableau with k rows and
m columns. It follows then that

edge(T )(α + γ)f ′(T )(β + δ)u′(T ) = edge(T )αf ′(T )βu′(T )

= αk−1βmαf ′(T )βu′(T ) (6.5)

= αk−1βmαm−f(T )βk−1−u(T ) (6.6)

= αk−1+m−f(T )βm+k−1−u(T ) (6.7)

= αn−f(T )βn−u(T ). (6.8)

In (6.5) we have used that the first south step in a permutation tableau is not part of
the border path, in (6.6) we have used that f(T )+f ′(T ) = m and u(T )+u′(T ) = k−1,
and in (6.8) we have used that k+m = n+1. So summarizing this, the fraction in (6.3)
of Theorem 6.4 with γ = δ = 0 and q = 1 can be read in the following way: the sum
in the denominator is a sum over all permutation tableaux of length n+ 1, the sum in
the numerator is a sum over all permutation tableaux of shape λ(τ), and, dividing the
terms in both numerator and denominator by αnβn (see (6.8)), we arrive at (4.3) in
Theorem 4.3.

6.2. Proof of Theorems 6.4 and 6.5

We will prove these theorems in a manner similar to the proof of Theorem 4.3. We
define matrices D2, E2, V2,W2 for which the Matrix Ansatz equations hold and which,
at the same time, have the desired combinatorial interpretation.
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We define the following:

(D2)i,j = di,j :=

⎧⎪⎨⎪⎩
δ(β + δ)i−j

((
i−1
j−1

)
+ (α + γ)

(
i−1
j−2

))
for j < i+ 1

α j = i+ 1

0 j > i+ 1

(6.9)

(E2)i,j = ei,j :=

⎧⎪⎨⎪⎩
β(β + δ)i−j

((
i−1
j−1

)
+ (α+ γ)

(
i−1
j−2

))
for j < i+ 1

γ j = i+ 1

0 j > i+ 1

(6.10)

Furthermore, let W2 be the following (row) vector

W2 = (1, 0, 0, . . .), (6.11)

and V2 be the (column) vector

V2 = (1, 1, 1, . . .)T . (6.12)

This time, we apply the “more general” version of the Matrix Ansatz Theorem,
Theorem 2.2.

Lemma 6.6. For the matrices D2, E2, V2,W2 defined as above the Matrix Ansatz
equations (2.41) – (2.43) hold.

Proof. We check that equations (2.41) - (2.43) hold for the matrices D2, E2, V2,W2

defined in (6.9) – (6.12) and for χ = αβ − γδ. We first check Equation (2.43), that is

W2(αE2 − γD2) = χW2.

Due to the entries of W2, it is enough to show that the first row of αE2 − γD2 is equal
to (χ, 0, 0, . . .). We note that the entries (D2)i,j, (E2)i,j are very similar. If we write

X(i, j) = (β + δ)i−j
((

i−1
j−1

)
+ (α + γ)

(
i−1
j−2

))
, then

(αE2 − γD2)i,j =

⎧⎪⎨⎪⎩
αβX(1, 1)− γδX(1, 1) = αβ − γδ = χ i = 1, j = 1

αγ − γα = 0 i = 1, j = 2

0 i = 1, j ≥ 3

(6.13)

which gives the desired equality.
In the case of Equation (2.42), which in our setting reads

(βD2 − δE2)V2 = χV2,

we note that each row of the matrix (βD2−δE2) is added up by multiplication with V2,
so the sum of each row of (βD2−δE2) has to be equal to χ = αβ−γδ for Equation (2.43)
to hold. This is the case since by definition of the matrices D2, E2, we find the row sum
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for each row i to be equal to∑
j≥1

(βD2 − δE2)i,j

=

i∑
j=1

(βD2 − δE2)i,j +
∑

j=i+1

(βD2 − δE2)i,j +
∑

j≥i+2

(βD2 − δE2)i,j

=

i∑
j=1

β(δX(i, j))− δ(βX(i, j))︸ ︷︷ ︸
=0

+ (βα− δγ) +
∑

j≥i+2

(βD2 − δE2)i,j︸ ︷︷ ︸
=0

= χ.

To prove the remaining Equation (2.41),

D2E2 − qE2D2 = χ(D2 + E2),

we first find expressions for the terms (D2E2)i,j and (E2D2)i,j. We claim that

(D2E2)i,j =

⎧⎪⎨⎪⎩
0 j > i+ 2

αγ j = i+ 2

γdi,j−1 +
∑i

k=j di,kek,j + αei+1,j j < i+ 2

(6.14)

and

(E2D2)i,j =

⎧⎪⎨⎪⎩
0 j > i+ 2

αγ j = i+ 2

αei,j−1 +
∑i

k=j ei,kdk,j + γdi+1,j j < i+ 2

(6.15)

To confirm these claims, we consider the matrix multiplication (D2E2)i,j =
∑

k≥1 di,kek,j.
In the case of j > i+2, all products are equal to 0 because then at least one of the fac-
tors is equal to 0. To see that note that ek,j = 0 for j > k+1 or, equivalently, k < j−1,
and di,k = 0 for k > i+ 1. So only if k ≥ j − 1 and k ≤ i+ 1 there are non-zero terms,
but that can only happen if j − 1 ≤ i + 1 or, equivalently, j ≤ i + 2. In the case of
j = i+ 2, it follows that exactly one summand is not 0, namely di,i+1ei+1,i+2 = αγ. In
the case of j < i+ 2, we can write the sum as follows:

(D2E2)i,j =
∑
k≥1

di,kek,j

=

j−2∑
k=1

di,k ek,j︸︷︷︸
=0

+ di,j−1 ej−1,j︸ ︷︷ ︸
=γ

+
i∑

k=j

di,kek,j + di,i+1︸ ︷︷ ︸
=α

ei+1,j +
∑

k≥i+2

di,k︸︷︷︸
=0

ek,j

= γdi,j−1 +
i∑

k=j

di,kek,j + αei+1,j.

Interchanging the roles of di,j and ei,j, we obtain the analogous results for (E2D2)i,j.
We now use (6.14) and (6.15) to calculate the term (D2E2 − E2D2)i,j, where we

distinguish three cases: j ≤ i, j = i + 1, j ≥ i + 2. It immediately follows by (6.14)
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and (6.15) that

(D2E2 − E2D2)i,j = 0, for j ≥ i+ 2. (6.16)

If j = i + 1, then the term
∑i

k=j ei,kdk,j gives 0 in (6.14) and (6.15) (since the sum is

empty), and we obtain

(D2E2 − E2D2)i,i+1 = (D2E2)i,i+1 − (E2D2)i,i+1

= (γdi,i + αei+1,i+1)− (αei,i + γdi+1,i+1)

= (γ
δ

β
ei,i + αei+1,i+1)− (αei,i + γ

δ

β
ei+1,i+1)

= (α− γ
δ

β
) (ei+1,i+1 − ei,i)

= (α− γ
δ

β
) β((1 + (α + γ)i)− (1 + (α + γ)(i− 1)))

= (αβ − γδ) (α + γ) = χ(α + γ). (6.17)

In the case of j ≤ i+ 1, (D2E2 − E2D2)i,j reads

(D2E2 − E2D2)i,j

= (γdi,j−1 +
i∑

k=j

di,kek,j + αei+1,j)− (αei,j−1 +
i∑

k=j

ei,kdk,j + γdi+1,j). (6.18)

We note that, since in the case of j ≤ k ≤ i , we have di,k = δ
β
ei,k and dk,j = δ

β
ek,j, the

sums cancel,

i∑
k=j

di,kek,j −
i∑

k=j

ei,kdk,j = 0.

Thus (6.18) reduces to

(D2E2 − E2D2)i,j

= (γdi,j−1 + αei+1,j)− (αei,j−1 + γdi+1,j)

= (γ
δ

β
ei,j−1 + αei+1,j)− (αei,j−1 + γ

δ

β
ei+1,j)

= (α− γ
δ

β
)(ei+1,j − ei,j−1)

= (αβ − γδ)(β + δ)i−j+1

×
((

i

j − 1

)
+ (α + γ)

(
i

j − 2

)
−
(
i− 1

j − 2

)
− (α + γ)

(
i− 1

j − 3

))
= χ(β + δ)i−j+1

((
i− 1

j − 1

)
+ (α + γ)

(
i− 1

j − 2

))
. (6.19)
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Putting equations (6.16), (6.17) and (6.19) together, we obtain

(D2E2 − E2D2)i,j =

⎧⎪⎨⎪⎩
χ(β + δ)i−j+1

((
i−1
j−1

)
+ (α + γ)

(
i−1
j−2

))
j ≤ i

χ(α + γ) j = i+ 1

0 j ≥ i+ 2.

(6.20)

On the other hand, we see that, due to the definitions of D2, E2, there are three
different types of entries for the right hand side of the matrix Ansatz equation (2.41),

(D2 + E2)i,j =

⎧⎪⎨⎪⎩
(β + δ)i−j+1

((
i−1
j−1

)
+ (α+ γ)

(
i−1
j−2

))
j ≤ i

(α + γ) j = i+ 1

0 j ≥ i+ 2

(6.21)

which, multiplied by χ, corresponds exactly to the expressions of (D2E2 − E2D2)i,j

in (6.20). We therefore have shown that the Matrix Ansatz holds for the matrices
D2, E2,W2, V2. �

Remark. Again, the matrices D2, E2, V2,W2 have only non-negative entries, and
hence all their products have non-negative entries, as required by Theorem 2.1.

We now show that the matrices also have the desired combinatorial interpretation.
So, analogously as in Chapter 4 we state the following theorem:

Theorem 6.7 ([7], Theorem 4.1.). Let (τ1, . . . , τn) ∈ {0, 1}n be a state of the
PASEP with n sites. Then, for the generating function for all bordered permutation
tableaux of type τ as defined below, we have

Fτ :=
∑

T ∈Ttype[τ ]

edge(T )(α + γ)f ′(T )(β + δ)u′(T ) = W2

(
n∏

i=1

(τiD2 + (1− τi)E2)

)
V2.

Moreover, for the generating function of all bordered permutation tableaux of length
n + 1 as defined below, the following holds:

F n+1 :=
∑

T ∈bord T n+1

edge(T )(α+ γ)f ′(T )(β + δ)u′(T ) = W2(D2 + E2)
nV2,

where the sum ranges over all bordered permutation tableaux of length n+ 1.

Proof. The theorem is proved by induction on n. We consider the matrix

Mτ :=

n∏
i=1

(τiD2 + (1− τi)E2),

where τ = (τ1, . . . , τn) is a state of the PASEP. W shall see that the sum of the entries
in the top row corresponds to the generating function

Fτ =
∑

T ∈Ttype[τ ]

edge(T )(α + γ)f ′(T )(β + δ)u′(T )

.
We define jFτ to be the set of all permutation tableaux of type λ which have exactly

j unrestricted rows, and we set jFτ :=
∑
T ∈jTtype[τ ]

edge(T )(α+ γ)f ′(T )(β + δ)u′(T ). It

is clear then that Fτ =
∑

j≥1 jFτ .
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1

T1

β

1

T2

δ

T3

α

T4

γ

Figure 6.4. Bordered permutation tableaux of length 2.

We now show that the entry Mτ [1, j] in position (1, j) of Mτ is jFτ . For this, we
use induction by n, where n is the number of sites of the PASEP.

n = 1 : If we consider the lattice path with just one side, then there are only two
possibilities to choose a state τ , namely (◦) or (•), respectively τ = (τ1) = (0) or
τ = (τ1) = (1). We consider the permutation tableaux of those types. In general,
there are two different shapes of permutation tableaux and four different bordered
permutation tableaux that are linked to the states of the 1-side PASEP – see Figure 6.4.

Recalling the conditions on the types and borders of permutation tableaux

τi = 1 if and only if bi = α, δ,

τi = 0 if and only if bi = β, γ.

and considering Figure 6.4, we see that T1 and T4 are of type τ = (τ1) = (0). T1 contains
one unrestricted row, whereas T4 contains two of them. Considering the statistics
on the entries, we obtain for the generating function of permutation tableaux with 1
unrestricted row

1Fτ = edge(T )(α+ γ)f ′(T )(β + δ)u′(T ) = β,

and for 2 unrestricted rows

2Fτ = edge(T )(α + γ)f ′(T )(β + δ)u′(T ) = γ,

since for both tableaux we have f ′(T ) = u′(T ) = 0, and only the edges contribute to
the term. Due to the fact that there are no other bordered permutation tableaux of
type τ = (0), it follows that

jFτ = 0, for j ≥ 3.

These observations correspond to the first row of E2 being equal to (β, γ, 0, 0, . . .). Anal-
ogously, we see that the two bordered permutation tableaux in the middle of Figure 6.4,
T2 and T3, are of type τ = (τ1) = (1), and we immediately obtain

1Fτ = δ

2Fτ = α

jFτ = 0, for j ≥ 3,

which, again, corresponds to the top row of D2 , as desired. So, in the case of n = 1 it
is true that M [1, j] = jFτ .

n → n + 1 : Let τ̃ be (τ1, . . . , τn, τn+1). We now want to show that the entry Mτ̃ [1, j]
is equal to jFτ̃ , the generating function of all permutation tableaux of type τ̃ with



6.2. PROOF OF THEOREMS 6.4 AND 6.5 81

exactly j unrestricted rows. To do so, we see how to obtain jFτ̃ out of jFτ . We then
compare this to Mτ̃ [1, j], which, by definition, is given by Mτ multiplied by D2 or E2.

It is clear, that every bordered permutation tableau of type τ̃ leads to a bordered
permutation tableau of type τ by deleting the south-west most step of the shape (and
therefore deleting the bottommost row or the leftmost column, depending on the deleted
step). On the other hand, each bordered permutation tableau of type τ̃ can be obtained
from a bordered permutation tableau of type τ , namely by adding a step to the south-
west corner (bearing in mind the restrictions that are valid for bordered permutation
tableaux of a certain type) and by filling the newly created cells with 0’s and 1’s such
that a valid filling results. We shall see how to obtain all bordered permutation tableaux
of type τ̃ with exactly j unrestricted rows out of the set of all bordered permutation
tableaux of type τ with i ≥ j − 1 unrestricted rows (we will see that by adding a south
step an unrestricted row is added, whereas by adding a west step we might reduce the
number of rows due to the filling of the new column).

Note that the border path of a bordered permutation tableaux T of type τ̃ is of
length n + 1, and let the border path be denoted by bp(T ) = (b1, . . . , bn+1) ∈ {S,W}
(where S denotes a south step and W denotes a west step).

We obtain jFτ̃ in two steps,

jFτ̃ = jFτ̃ (south) + jFτ̃ (west),

where

jFτ̃ (south) :=
∑

T ∈jTtype[τ̃],
bn+1=S

edge(T )(α + γ)f ′(T )(β + δ)u′(T ),

with the sum ranging over all bordered permutation tableaux of type τ̃ with exactly j
unrestricted rows and with the last step of the corresponding border path being a south
step, and analogously

jFτ̃ (west) :=
∑

T ∈jTtype[τ̃]

bn+1=W

edge(T )(α+ γ)f ′(T )(β + δ)u′(T ),

with the sum ranging over all bordered permutation tableaux of type τ̃ with exactly j
unrestricted rows and with the last step of the corresponding border path being a west
step.

We first consider τ̃ = (τ1, . . . , τn, τn+1) = (τ1, . . . , τn, 1), the case were we add a
occupied site to the state τ first. The case of adding an empty site is treated easily
analogously.

Starting with jFτ̃ (south), we check which bordered permutation tableau of type
τ̃ we can obtain out of a bordered permutation tableau of type τ by adding a south
step. So, if we add a south step to a tableau, then this step has to be weighted with α
due to Definitions 6.1 and 6.3. There are no cells to fill hence the statistics f ′(T ) and
u′(T ) do not change (since there is no additional distinguished 0 or 1). But we have
added one unrestricted row and an additional α in the term edge(T ). We therefore find

jFτ̃ (south) = α j−1Fτ .
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Now we focus on jFτ̃ (west). We claim that

jFτ̃ (west) =
∑
i≥j

δ(β + δ)i−j

((
i− 1

j − 1

)
+ (α + γ)

(
i− 1

j − 2

))
iFτ . (6.22)

To prove this, it is sufficient to see which bordered permutation tableaux with j un-
restricted rows can be obtained out of a given bordered permutation tableau with i
unrestricted rows by adding a west step. So, fix a bordered permutation tableau T
with i unrestricted rows of type τ and add a west step. Due to Definitions 6.1 and 6.3
(and the fact that we chose τn+1 = 1), this step is weighted with δ. Since we are adding
a whole column, this time, we have to check how many valid fillings are possible and
how the number of unrestricted rows and the statistics f ′(T ) and u′(T ) change due to
these fillings. Since the tableau contains i unrestricted rows, we can only choose freely
how to fill i newly created cells. The other cells lie in restricted rows and therefore have
to be filled with a 0. Within these i cells – let us label them by c1, . . . , ci from top to
bottom – we consider the topmost 1 (any column has to contain at least one 1):

Case (a): Let us assume that the topmost 1 is located in the top row (c1 = 1).
Recall that we want the resulting bordered permutation tableau to have j unrestricted
rows. Hence, we have to place exactly i − j 0’s below that topmost 1; there are

(
i−1
i−j

)
ways to do so. The remaining cells have to be filled with 1’s. So, in this case we obtain(

i−1
i−j

)
bordered permutation tableaux of type τ̃ with additional factors δ (weight on the

border) and (β + δ)i−j (since we have added (i− j) distinguished 0’s).

Case (b): We now assume that the topmost 1 is not located in the top row, hence
being a distinguished 1. Let the cell cs, for some s = 2, . . . , n, contain the topmost 1.
There remain

(
i−s
i−j

)
ways to place the desired i − j (restricted) 0’s in the cells below.

Since the topmost 1 can be placed in any of the cells c2, . . . , cn, we sum up to find that
there are, all in all,

∑i
s=2

(
i−s
i−j

)
possibilities for the filling. The additional weights are

δ (on the border), (β + δ)i−j (due to (i− j) additional distinguished 0’s), and (α + γ)
(due to the additional distinguished 1).

Putting the cases (a) and (b) together, we find

jFτ̃ = jFτ̃ (south) + jFτ̃ (west) (6.23)

= α j−1Fτ +
∑
i≥j

δ(β + δ)i−j

((
i− 1

i− j

)
+ (α + γ)

j∑
s=2

(
i− s

i− j

))
iFτ . (6.24)

Through the computations, (
i− 1

i− j

)
=

(
i− 1

j − 1

)
,

j∑
s=2

(
i− s

i− j

)
=

j−2∑
s=0

(
i− 2− s

i− j

)
=

j−2∑
s=0

(
i− j + s

i− j

)
=

(
i− 1

i− j + 1

)
=

(
i− 1

j − 2

)
,



6.2. PROOF OF THEOREMS 6.4 AND 6.5 83

we arrive at

jFτ̃ = α j−1Fτ +
∑
i≥j

δ(β + δ)i−j

((
i− 1

i− j

)
+ (α+ γ)

j∑
s=2

(
i− s

i− j

))
iFτ (6.25)

= α j−1Fτ +
∑
i≥j

δ(β + δ)i−j

((
i− 1

j − 1

)
+ (α + γ)

(
i− 1

j − 2

))
iFτ . (6.26)

This corresponds exactly to the entry Mτ̃ [1, j]:

Mτ̃ [1, j] = (MτD2)[1, j] (6.27)

=
∑
i≥1

M1,i(D2)i,j (6.28)

=

j−2∑
i≥1

M1,i (D2)i,j−2︸ ︷︷ ︸
=0

+M1,j−1 (D2)j−1,j︸ ︷︷ ︸
=α

+
∑
i≥j

M1,i(D2)i,j (6.29)

= αM1,j−1 +
∑
i≥j

δ(β + δ)i−j

((
i− 1

j − 1

)
+ (α + γ)

(
i− 1

j − 2

))
M1,i (6.30)

= α j−1Fτ +
∑
i≥j

δ(β + δ)i−j

((
i− 1

j − 1

)
+ (α + γ)

(
i− 1

j − 2

))
iFτ . (6.31)

In line (6.29) we have used the definition of the matrix D2, and in line (6.31) we have
used the induction hypothesis. We therefore have shown that the (1, j) entry of the
matrix Mτ̃ is jFτ̃ .

To finish the proof, we note that multiplying Mτ by W2 from the left and V2 from
the right is equal to summing up the top row of the matrix so that W2MτV2 is indeed
equal to Fτ =

∑
Ttype[τ ]

edge(T )(α + γ)f ′(T )(β + δ)u′(T ). As in the proof of Theorem 4.5,

it follows that W2(D2 + E2)
nV2 is equal to

∑
T n+1 edge(T )(α + γ)f ′(T )(β + δ)u′(T ). �

Theorem 6.4, our main goal, is now easy to prove:

Proof of Theorem 6.4. Using Lemma 6.6 and Theorem 6.7, we simply can fol-
low the lines in the proof of Theorem 4.3. �

To prove the analogous result for alternative tableaux we need one more lemma:

Lemma 6.8. The bijection ϕ between permutation tableaux and alternative tableaux
(see Section 5.1) can naturally be extended to a bijection ϕ between bordered permutation
tableaux and bordered alternative tableaux. ϕ then preserves the type of a tableau.

Proof. Considering the bijection ϕ between permutation tableaux and alternative
tableaux, we note that we can easily extend it to a bijection ϕ between bordered per-
mutation tableaux and bordered alternative tableaux by mapping the weights of the
border path of a bordered permutation tableau T to the weights of the border path

of the corresponding alternative tableau ϕ(T ) = T̂ . (We simply transfer the weights
on the right-hand outer border line, see Figure 6.1). It therefore is also clear that ϕ
preserves the type τ of a tableau, since the type is determined by the weights of the
border path, which are left unchanged by ϕ. �
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Example. See Figure 6.1 for an example of a bordered permutation tableau and
its corresponding bordered alternative tableau.

Remark. Clearly other properties of ϕ that concern the shape or filling of a per-
mutation tableau also hold for ϕ. In particular, Corollary 5.10 and Lemma 5.11 are
also true for ϕ.

Theorem 6.5 then follows immediately out of Theorem 6.4.

Proof of Theorem 6.5. For the proof we only need to follow the lines in the
proof of Theorem 5.12. Considering Theorem 6.4, the bijection ϕ maps each bordered
permutation tableau of length n + 1 to a bordered alternative tableau of length n and
each bordered permutation tableau of type τ to a bordered alternative tableau of type

τ (see Lemma 6.8) where f ′(T ) = up(T̂ ) and u′(T ) = left(T ) (due to Corollary 5.11).
Therefore Theorem 6.5 follows. �

6.3. Matrix Ansatz and Linear Operators – Alternative Proof of
Theorem 6.4

In [7], another proof of Theorem 6.4 is given. It is actually equivalent to the proof
stated above, as noted by the authors, but it avoids the explicit form of the matrices
D2, E2, V2,W2. Instead, the matrices are interpreted as linear operators on the infinite-
dimensional vector space whose basis is labeled by weighted permutation tableaux. We
make this more precise in a moment. This subsection follows mainly the arguments in
([7], Section 5).

Consider the formula for Fτ in Theorem 6.7. There, every bordered permutation
tableau contributes a certain weight, i.e., each distinguished 0 and distinguished 1 have
a binomial associated to it: each distinguished 0 contributes the binomial (β+ δ) while
each distinguished 1 contributes the binomial (α + γ). Another interpretation is the
following that each distinguished 0 is either labeled by β or by δ and, depending on
the labeling of the 0, contributes a monomial. So, instead of one bordered permutation
tableau, we have a variety of decorated bordered permutation tableaux. For an example,
see Figure 6.5, where we have two decorated bordered permutation tableaux instead of
one bordered permutation tableau.

The above considerations motivate the following definition.

1
0 1

β
α

β

αβ2(α + γ)

�����

�����

1γ

0 1
β

α
β

αβ2(γ)

1α

0 1
β

α
β

αβ2(α)

Figure 6.5. A bordered permutation tableau, the two corresponding
decorated bordered permutation (dbp) tableaux, and their weights.
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Definition 6.9. A dbp tableau (decorated bordered permutation tableau) is a
bordered permutation tableau where every distinguished 0 is either of type 0β or of type
0δ, and each distinguished 1 is either of type 1α or of type 1γ .

Example. On the right-hand side of Figure 6.5 two dbp tableaux are shown.

Remark. Due to the bijection between bordered permutation tableaux and bor-
dered alternative tableaux, one could also define decorated bordered alternative tableaux
by assigning weights to each arrow.

For a dbp tableau T we define a weight consisting of two compounds: we define
mon(T ) to be the product of the labels of the distinguished entries 0β, 0δ, 1α, 1γ. Thus,
each distinguished entry contributes to the term mon(T ). For the second compound,
recall edge(T ), the product of the labels on the border of T (or, equivalently, the
product of the weights of the border path). We define the weight wt(T ) of a dpb
tableau T by

wt(T ) = edge(T )mon(T ).

Now, let D be the infinite-dimensional vector space with basis indexed by the set
of all dbp tableaux. We define operators Dα, Dδ, Eβ, Eγ on this vector space D. They
act by sending each basis vector bT labeled by a dbp tableau T to a linear combination
of basis vectors labeled by some other dbp tableaux T ′1 , . . . , T ′l . The coefficients of the
linear combination will turn out to be the weight of the dbp tableau labeling the vector.
To simplify notation, we identify a basis vector bT with the dbp tableau T labeling it.
Hence, D is the vector space formed by all dbp tableaux. Before defining the mentioned
linear operators, we introduce the following sets: let T be a dbp tableau, and recall
that the border path of a permutation tableau corresponds to the right-hand border
line of the tableau (without the first south step). We define

Uα(T ) to be the dbp tableaux which can be obtained from T by adding a new row of
length 0 to each tableau and labeling the new edge by α.

Uγ(T ) to be the dbp tableaux which can be obtained from T by adding a new row of
length 0 to each tableau and labeling the new edge by γ.

Uδ(T ) to be the set of dbp tableaux which can be obtained from T by adding a new
column to the left of the tableau (with the same length as the left-hand border
line in T ), labeling the new edge on the bottom by δ, and adding all possible
fillings of 0’s and 1’s to the new column such that a valid filling is obtained;

Uβ(T ) to be the set of dbp tableaux which can be obtained from T , by adding a new
column to the left of the tableau (with the same length as the left-hand border
line in T ), labeling the new edge on the bottom by β, and adding all possible
fillings of 0’s and 1’s to the new column such that a valid filling is obtained.

Now we can define the operators Dα, Dδ, Eβ, Eγ on D by their action on a basis
vector of D, hence by their actions on a dbp tableau. Note that we apply the operators
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from the right-hand side. We define

(T )Dα =
∑

U∈Uα(T )

wt(U)

wt(T )
U , (6.32)

(T )Eγ =
∑

U∈Uγ(T )

wt(U)

wt(T )
U , (6.33)

(T )Dδ =
∑

U∈Uδ(T )

wt(U)

wt(T )
U , (6.34)

(T )Eβ =
∑

U∈Uβ(T )

wt(U)

wt(T )
U . (6.35)

Let us take a closer look at these operators. Note that in (6.32) and (6.33), Dα and Eβ

yield only a single dbp tableau, namely the tableau T with an additional empty row
labeled by α or β, respectively.

On the other hand, Dδ and Eγ yield a sum of dbp tableaux that are obtained as
follows: by adding an additional column to T (of the length of the left-hand border side
of the shape T ) and filling this column with 0’s and 1’s such that a valid filling results.
The new edge on the bottom is labeled by δ or γ, respectively. We can alternatively
describe Dα, Dδ, Eβ, Eγ by their action on the shape of dbp tableau T :

Dα acts by adding a south step to the south-west most corner of λ with weight α;
Eγ acts by adding a south step to the south-west most corner of λ with weight γ;
Dδ acts by adding a west step to the south-west most corner of λ with weight δ;
Eβ acts by adding a west step to the south-west most corner of λ with weight β.

This is equivalent to adding an empty row (Dα, Eγ) or adding a new column (Dδ, Eβ).
Adding valid fillings to the shape (in accordance with the filling of T ), we obtain the
dbp tableaux that are summed up in the definitions (6.32) – (6.35).

Furthermore, we define W be the empty tableau consisting of a single, non-labeled
south step, and set mon(W ) = edge(W ) = 1. Hence, the weight of W is given by

wt(W ) = 1.

Now, given a word C = C1 . . . Cn in Dα, Dδ, Eβ, Eγ , we form WC; that is, we
apply C1, . . . , Cn one after the other to the empty tableau. (Recall that we start the
acting of the word C from the left-hand side.) This yields a (finite) linear combination
of basis vectors indexed by certain dbp tableaux. We denote by C the set of dbp
tableaux that appear in the linear combinationWC, and we say that these dbp tableaux
are constructed by C. By the considerations above, we can conclude that these dbp
tableaux all have the same shape and that this shape is constructed by the operators
Dα, Dδ, Eβ, Eγ as described above. Adding a valid filling to this shapes yields all dbp
tableaux that are summed up by WC.

Turning to the coefficients in the linear combination WC, we claim that they cor-
respond to the weight of the dbp tableaux, hence can be written as

WC =
∑
U∈ C

edge(U)mon(U) U . (6.36)
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This is due to the term
wt(U)

wt(T )

in (6.32) – (6.35), since every time we apply an operator Dα, Dδ, Eβ, Eγ to T , we divide
by the weight of T which is the coefficient of T . Only the term in the numerator, the
weight wt(U), remains.

Finally, we introduce one last operator in D. For a (finite) linear combination of
basis vectors

∑n
j=1 εjdj , with dj ∈ D and εj ∈ R we define

n∑
j=1

εjej =
n∑

j=1

εj .

Assuming that WC is a finite linear combination of basis vectors as above, we we have

WCV =
∑
U∈ C

wt(U). (6.37)

Now, we can give a second proof of Theorem 6.4. In this proof we will examine
the structure of dbp tableaux and establish one-to-one correspondences between dbp
tableaux of different shapes.

Second proof of Theorem 6.4. ([7], Second proof of Theorem 4.1.)
We define D = Dα +Dδ and E = Eβ + Eγ. V,W are defined as above. This time,

we apply Theorem 2.3, the stronger version of the Matrix Ansatz Theorem. Hence, we
check that the operators D,E, V,W satisfy Equations (2.68) – (2.70). We set p = q = 1
(since we are considering the symmetric case) and χ = αβ − γδ. We start with (2.68),
which in our setting reads

DECV − EDCV = (αβ − γδ)(D + E)CV. (6.38)

We want to show that this equation holds for any (finite) word C in {D,E}. Since C
is a product of the terms D = Dα +Dδ and E = Eβ + Eγ, it can also be expressed in
terms of sums of words in Dα, Dδ, Eβ, Eγ . As all operators are linear, it is sufficient to
consider the case where C is a word in Dα, Dδ, Eβ, Eγ . Consider the terms of

DECV = (Dα +Dδ)(Eβ + Eγ)CV

= DαEβCV +DδEβCV +DαEγCV +DδEγCV. (6.39)

First, we claim that
DαEγCV = EγDαCV. (6.40)

How to read this equation and how can we verify it? Equation (6.40) means that for
any dbp tableau T , we have

(T )DαEγCV = (T )EγDαCV. (6.41)

We examine this equation: first, consider the left-hand side. T DαEγC is a linear com-
bination consisting of all dbp tableaux whose labeled shape is constructed by T DαEγC.
(This is the labeled shape obtained from T by first adding a south step labeled α (due
to Dα), a south step labeled γ (due to Eγ), and then adding the steps according to C).
The coefficient in the linear combination of each tableau is given by the weight of the
corresponding dbp tableaux (multiplied by 1/wt(T )). Turn to to right-hand side of the
Equation (6.41). (T )EγDαC also yields a linear combination of dbp tableaux. These
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α
α γ
γ

(a) T DαEγC ←→ T EγDαC

ββ δδ

(b) T DδEβ ←→ T EβDδC

Figure 6.6. An informal illustration of the correspondence of dbp tableaux.

tableaux are not the same tableaux that appear in (T )EγDαC; but they are all of same
shape, only the labeling of the border is different, see Figure 6.6(a).

Nevertheless, Equation (6.41) only claims that summation of the coefficients of the
linear combinations (T )DαEγC and (T )EγDαC yields the same result (V sums up the
coefficients of a linear combination).

To verify this claim, we compare the dbp tableaux appearing in each linear combi-
nation. The main idea is the following: if we find a one-to-one correspondence between
tableaux of (T )DαEγC and (T )EγDαC with the same weights, then summation of the
coefficients has to lead to the same quantity, as the coefficients are determined by the
weights.

Such a correspondence is found relatively easily: since the shapes of the tableaux
in (T )DαEγC and (T )EγDαC are the same, we can use the same valid fillings for both
labeled shapes. So, to every dbp tableau U in (T )DαEγC corresponds a dpt tableau U ′
in (T )EγDαC that has the same filling and differs only in the order of the labels on the
border. Now, since U and U ′ have the same filling, they also have the same distinguished
entries, and hence mon(U) = mon(U ′). Furthermore, edge(U) = edge(U ′), since only
the order of two labels α, β have changed, but the product of all labels gives the same
quantity. Thus, we have wt(U) = wt(U ′). So, for every dbp tableau U in (T )DαEγC
the corresponding U ′ in (T )EγDαC has the same weight, and hence the coefficients in
the linear combinations are the same. Adding them up (through application of V ) gives
the same, and Equation (6.41) is shown.

In analogous manner we approach the following equation:

DδEβCV = EβDδCV. (6.42)

Again, we have to check that

(T )DδEβCV = (T )EβDδCV,

for a dbp tableau T and a word C ∈ {Dα, Dδ, Eβ, Eγ}. The term on the left-hand side,
(T )DδEβC adds two west steps with labels δ, β to T and then applies C. The term
on the right-hand side, (T )EβDδC also adds two west steps before applying C, but
the label of the steps are in different order, see Figure 6.6(b). As before, we establish
a correspondence between dbp tableaux of (T )DδEβC and (T )EβDδC. The bordered
shapes of the tableaux on both sides differ only in the order of the labels δ, β. Hence,
every filling of the labeled shape on the left-hand side in Figure 6.6(b) is also a valid
filling for the labeled shape on the right-hand side in Figure 6.6(b). We associate the
dbp tableaux of both sides to each other which have the same filling. Hence, mon gives
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the same (since the fillings are the same). edge yields the same quantity as well, since
only the order of the labels δ, β is different, but not their values. So, the corresponding
dbp tableaux have the same weight. As the coefficients in (T )DδEβC and (T )EβDδC
are determined by the weight, they are equal, too. Therefore, summing them up by
application of V gives the same result. This is what Equation (6.42) claims.

The cases of other combinations of operators in (6.39) are a little more complicated.
Take, for example, the following equation

DαEβ [1]CV = EβDαCV. (6.43)

Here, the [1] means that the corner which is created by adding a south step (Dα)
followed by a west step (Eβ) is filled with an additional 1 (hence, it is not the topmost
1 in its column, see Definition 5.2). We will see afterwards why the distinction of the
type of entry is important. We want to show that Equation (6.43) holds. With the
same shorthand as above, it actually means

(T )DαEβ [1]CV = (T )EβDαCV. (6.44)

As before, we establish a correspondence of dbp tableau with same weights. Consider
the second shape in Figure 6.7(a). A valid filling of this shape becomes a valid filling
for the first shape if we add the entry [1]. To go into the other direction, note that in
a valid filling of the first shape we can erase the box containing the additional [1] to
obtain a valid filling for the lower shape. (Here it is important to note that after erasing
the additional 1 another 1 remains in the column, as required for a valid filling). We
still have to check that the weights of the corresponding dbp tableaux are equal: the
quantity of mon is the same (since the distinguished entries are the same), and edge is
the same (since only the order of the steps and therefore of labels have changed, but
not the values). Thus, summing up the coefficients (T )DαEβ[1]C or (T )EβDαC gives
the same, and (6.44) is established.

With the same method (and shorthand) we show the following equalities.

DαEβ[1γ]CV = αβEγCV, (6.45)

DαEβ[1α]CV = αβDαCV, (6.46)

DαEβ[0β]CV = αβEβCV, (6.47)

DαEβ [0δ]CV = αβDδCV. (6.48)

For example, [1γ] means that the corner created by the south step (Dα) and west step
(Eβ) contains a distinguished 1 labeled γ, whereas [0β] means that this corner contains
a distinguished 0 labeled β, see Figure 6.7(b) and Figure 6.7(c).

First, we consider (6.45). To establish a correspondence of dbp tableaux constructed
by DαEβ[1γ ]C and EγC, see Figure 6.7(b) and consider a valid filling of the first labeled
shape. If the corner created by DαEβ contains a 1γ, then the whole column above must
contain only 0’s (by definition, since a distinguished 1 is the topmost 1 in its column).
Cutting this column out, we obtain a valid filling for the labeled shape on the right-hand
side in the figure. Conversely, we can introduce such a column of 0’s and a 1 in a dbp
tableau as on the right-hand side of Figure 6.7(b) without spoiling the validity of the
filling: the crucial point here is that a column containing only 0’s and a 1, which is the
rightmost one in its row, does not influence any other entries in the filling. (If the 1 was
located at a higher position in its column, it could lie left to a distinguished 0 which
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is forbidden). So, through addition or deletion of this row, we have a correspondence
between the dbp tableaux in DαEβ[1γ ]C and EγCV . We still have to compare the
weights of the corresponding tableaux, to check whether the coefficients (determined
by the weights) are the same. According to Figure 6.7(c), the left-hand shape differs
from the right-hand shape by a distinguished 1 labeled γ and by two steps labeled
α, β; hence there is an additional factor αβγ in the weight. On the other hand, the
right-hand shape contains an additional step labeled γ. Multiplying by αβ, we adjust
the weights of EγC, and so Equation (6.45) holds.

Equation (6.46) follows in analogous manner (only exchange 1α and 1γ and one
label).

Now, consider Equation (6.47). Here, the corner created by Dα, Eβ is filled with a
distinguished 0 labeled with β, see Figure 6.8(a). In the first labeled shape this corner
is indicated. To establish a correspondence between DαEβ[0β]C and EβC consider the
first shape in Figure 6.8(a). Since the entry 0β is distinguished, all entries to its left
have to be 0’s (see Definition 5.2). If we cut this row out, we obtain a valid filling for the
second shape. Conversely, if we add this row to the second shape again, the rightmost 0
becomes a distinguished 0 (since there is at least one 1 in the column above) and a valid
filling for the first shape is obtained. We only need to check that the weights of the
corresponding tableaux are the same. Compare the weight of a dbp tableau constructed
by DαEβ[0β]C to the weight of the corresponding dbp tableau constructed by EβC. We
see that the weight of the first tableau differs by the factors α, β (contributed by the
steps) and β (the label of 0β) from the weight of the second tableau. On the other hand,
an additional β is contributed by the step Dδ to the weight of the second tableau. For
this reason, we only need to multiply (T )DδC by αβ to obtain equality of the weights,
and so Equation (6.48) follows.

With the same notation we also have

DδEγCV = EγDδ(1)CV (6.49)

γδEγCV = EγDδ(1γ)CV (6.50)

γδDαCV = EγDδ(1α)CV (6.51)

γδEβCV = EγDδ(0β)CV (6.52)

γδDδCV = EγDδ(0δ)CV. (6.53)

This equations are similar to (6.43) and (6.45) – (6.48): if we exchange the left-hand
sides and the right-hand sides, we obtain the same shapes as before, with the only
difference that the labels of the border have to be changed.

We now add up Equations (6.40), (6.42), (6.43), (6.45) – (6.48) and (6.49) – (6.53)
step by step.

First note that (6.43), (6.45) – (6.48) yield to

DαEβCV = (EβDα + αβ(Dα +Dδ + Eβ + Eγ))CV. (6.54)

Then, note that (6.49) – (6.53) add up to

(DδEγ + γδ(Dα +Dδ + Eβ + Eγ))CV = EγDδCV. (6.55)
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1
αα β

β

(a) T DαEβ(1)C ↔ αβT EβDαC

0
0

0
0

α

β

γ1γ

(b) T DαEβ(1γ)C ↔ αβEγC

0 0 0 00 α

β

δ0β

(c) T DαEβ(0β)C ↔ αβEβC

Figure 6.7. An informal illustration of the correspondence of dbp tableaux.

Now (6.54) and (6.55) together with (6.40) and (6.42) give

(DαEγ +DδEβ +DαEβ +DδEγ + EγDδ + γδ(Dα +Dδ + Eβ + Eγ))CV

= (EγDα + EβDδ + EβDα + αβ(Dα +Dδ + Eβ + Eγ))CV. (6.56)

This can be rewritten as

((Dα +Dδ)(Eβ + Eγ))CV + γδ(Dα +Dδ + Eβ + Eγ)CV

= ((Dα +Dδ)(Eβ + Eγ))CV + (αβ(Dα +Dδ + Eβ + Eγ))CV. (6.57)

Recalling that D = Dα +Dδ and E = Eβ + Eγ , the equation above implies

DECV + γδ(D + E)CV = EDCV + αβ(D + E)CV, (6.58)

which is equivalent to the desired Equation (6.38).
In a similar manner, we show that the next Matrix Ansatz equation, Equation (2.69),

holds. We need to show that

(βD − δE)V = (αβ − γδ)V. (6.59)
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α

(a) T Dα ↔ αT

γ

(b) γT ↔ T Eγ

βδ
(c) βT Dδ ↔ δT Eβ

Figure 6.8. An informal illustration of the correspondence of dbp tableaux.

We note that

DαV = αV, (6.60)

βDδV = δEβV, (6.61)

γV = EγV. (6.62)

This equations are verified similarly to the ones before. We have to check that for a
dbp tableau T

(T )DαV = α(T )V, (6.63)

β(T )DδV = δ(T )EβV, (6.64)

γ(T )V = (T )EγV. (6.65)

Again, this is done by establishing a correspondence of dbp tableau. They are illustrated
in Figure 6.8. To establish a correspondence for the first equation, consider a dbp
tableau constructed by (T )Dα. Deleting the last south step labeled α (introduced by
Dα) gives T . The lost of the label α is compensated by multiplication by α on the right-
hand side in (6.63). This is illustrated in Figure 6.8(a). Changing the roles of α and γ,
Equation (6.65) follows, too, see Figure 6.8(b). For Equation (6.64), see Figure 6.8(c).
The bordered shapes only differ in their labels, hence the correspondence is established
immediately. Only the weights have to be adjusted by multiplication of β or δ.

We rewrite Equations (6.60) – (6.62) to find

βDαV = αβV

βDδV = δEβV

γδV = δEγV
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Summing up, we obtain

β(Dα +Dδ)V + γδV = αβV + δ(Eβ + Eγ)V. (6.66)

This can be rewritten as

βDV + γδV = αβV + δEV

βDV − δEV = (αβ − γδ)V (6.67)

Equation (6.67) is exactly the desired Equation (6.59).
Finally, the third Matrix Ansatz equation, Equation (2.70) remains to be shown,

W (αE − γD) = (αβ − γδ)W. (6.68)

Note that

αWEγ = γWDα (6.69)

αWEβ = αβW (6.70)

γδW = γWDδ. (6.71)

That is, for a word C in {Dα, Eβ, Eγ , Dδ} we need to show that

αWEγC = γWDαC (6.72)

αWEβC = αβWC (6.73)

γδWC = γWDδC. (6.74)

Equation (6.72) is evident, see Figure 6.9(a). WEγ and WDα yield the same shape,
only one of the labels α or γ change. This is compensated by multiplication by α or
γ, respectively. To check Equation (6.73), see Figure 6.9(b): the right-most column of
every tableau constructed by WEβC contains a single cell filled with a 1 (there has to
be at least one 1 in every column). Cutting this cell out yields another dbp tableau
constructed by WC. The lost of the label β is compensated by multiplication by β.
Equation (6.74) follows analogously, only replacing the label of the west step, β, by δ,
see Figure 6.9(c). Again, through summation and rewriting we obtain

αWEγ + αWEβ + γδW = γWDα + αβW + γWDδ

WαE + γδW = WγD + αβW

W (αE − γD) = (αβ − γδ)W.

This is exactly the desired equation.
We have now seen that D,E, V,W satisfy the Matrix Ansatz Theorem and that

therefore the unnormalized probability fn of finding the TASEP in state τ ∈ {0, 1}n is
given by

fn = W

(
n∏

i=1

(τiD + (1− τi)E)

)
V. (6.75)

We claim that this quantity at the same time is the sum of the weights of all bordered
permutation tableaux of type τ . Once we have shown that this is true, the theorem is
established. Dα, Eβ, Eγ, Dδ introduce south and west steps that are labeled by α, β, γ, δ.
Recalling Definition 6.1, we see that all labels are such that a dbp tableau results.
Furthermore, if τi = 1, then D = (Dα +Dδ) enters in the formula in (6.75). So, either
a south step with label α is added to the tableau or a west step with label δ. If τi = 0
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αγ

(a) αWEγC ↔ γWDαC

1

β

(b) αWEβC ↔ αβWC

1

δ

(c) γδWC ↔ γWDδC

Figure 6.9. An informal illustration of the correspondence of dbp tableaux.

then E = (Eβ +Eγ) enters, either a south step with label γ or a west step with label β
is added. Comparing this to Definition 6.3, we see that these are exactly the conditions
for a dbp tableau to be of type τ = (τ1, . . . , τn). Since afterwards we consider the
weights of the dbp tableaux, we can group the monomials that appear in the sum (due
to the labeling of the distinguished 0’s and 1’s) and obtain the same result as summing
the weights of bordered permutation tableaux (the grouping is seen in Figure 6.5 by
reversing the arrows).

�
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APPENDIX A

Counting Lattice Paths and the

Lindström-Gessel-Viennot-Determinant

In this appendix we prove two results concerning the number of certain lattice
paths that are needed in Section 3.4. On the one hand, we shall see how to calculate
the number of non-intersecting paths as defined in Definition 3.13 — this is done in
Lemma A.3 — and, on the other hand, we shall see how to enumerate simple lattice
paths that lie within some upper and lower boundaries — this is done in Lemma A.4.
To this end, we first introduce the so-called Lindström-Gessel-Viennot-Determinant 2.

We start with some notation. Let D be an acyclic graph (that is a directed graph
containing no directed cycles). D need not to be finite, but we assume that between
two vertices there is only a finite number of paths.

Let k, a positive integer, be fixed and call a k-vertex a k-tuple of vertices in D.
Choose two disjoint sets of vertices {u1, . . . , uk}, {v1, . . . , vk} and let u = (u1, . . . , uk)
and v = (v1, . . . , vk) be two k-vertices. Then, a k-tuple of paths ω = (ω1, . . . , ωn), where
ωi is a path from ui to vi, is called a k-path. This k-path is said to be non-intersecting,
if all paths Ai are vertex-disjoint (that is, they do not have a vertex in common). Let
Sk be the set of permutations of {1, . . . , k}. For π ∈ Sk, we mean by π(v) the k-vertex
(vπ(1), . . . , vπ(k)).

We finally assign a weight to every edge of D. The weight of a path is defined as the
product of the weights of its edges, and the weight of a k-path is defined as the product
of the weights of its components. Let P (ui, vi) be the set of all paths from ui to vi. We
define WP (ui, vi) to be the sum of the weights of the paths in P (ui, vi). Analogously
we define P (u,v) to be the set of all k-paths from u to v. We define WP (u,v) to be
the sum of all weights of the paths in P (u,v). Finally, let N(u,v) be the subset of all
disjoint k-paths in P (u,v), and let WN (u,v) be the sum of their weights. Then, the
Theorem of Lindström-Gessel-Viennot reads as follows:

Theorem A.1 ([15], Lemma 1). With the above notations, we have

∑
π∈Sk

(sgn π)WN(u, π(v)) = det
1≤i,j≤n

∣∣WP (ui, vj)
∣∣ (A.1)

2The result was originally obtained by B. Lindström in [15, Lemma 1]. By a curious coincidence
the result was rediscovered in the 1980s in three different communities at about the same time. But
since only I. Gessel and X. Viennot rediscovered it in its most general form (see, e.g. [12]), we refer to
it as the Lindström-Gessel-Viennot-Determinant.
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Proof. First, we rewrite the right-hand side of (A.1):∑
π∈Sk

(sgn π)WN(u, π(v)) = det
1≤i,j≤n

∣∣WP (ui, vj)
∣∣

=
∑
π∈Sk

sgn(π) WP (u, π(v)),

where we used the definition of the determinant of a matrix. We will prove that the
equation derived above,∑

π∈Sk

(sgn π)WN(u, π(v)) =
∑
π∈Sk

sgn(π) WP (u, π(v)), (A.2)

holds. To this end, we consider the set

Υ =
⋃

π∈Sk

[P (u, π(v))−N(u, π(v))] , (A.3)

which is the set of k-paths from the k-vertex (u1, . . . , un) to (vπ(1), . . . , vπ(n)) which are
non-intersecting. On this set Υ we construct a bijection ∗ : A → A∗ from the set to
itself with the following properties:

(1) A∗∗ = A for A ∈ Υ;
(2) the weight of A equals the weight of A∗ for A ∈ Υ;
(3) if A = P (u, π(v)) and A∗ = P (u, σ(v)), then sgn (π) = − sgn (σ).

We then can group all elements in Υ in pairs {A,A∗}, and the terms corresponding to
these pairs cancel in the sum on the right-hand side of (A.2). As noted before, these
are exactly the terms corresponding to non-disjoint k-paths, and hence in (A.2) only
the terms on the left-hand side remain in the sum of the right-hand side, which would
prove the theorem.

So how to construct a bijection ∗ with the desired properties ? Let

A = (A1, . . . , Ak) ∈ Υ

be a non-disjoint k-path. Set 1 ≤ i ≤ k, such that Ai is the path with the least index to
intersect with another path. Furthermore, let p be the point of the first intersection of
Ai with another path, and let j be the least integer (greater i) such that Aj also passes
through p. We define

A∗ = (A∗1, . . . , A
∗
i , . . . , A

∗
j , . . . , A

∗
k) ∈ Υ

as follows: let A∗i be the path that follows Ai up to p, and from p follows the path Aj.
On the other hand, let A∗j be the path that follows Aj until p, and from there follows
Ai to the end. For g 	= i, j, set A∗g = Ag. It easily follows that Properties (1)– (3) hold:
first, note that by applying the mapping ∗ again to A∗, the same components of the
graph as before are chosen (namely the paths labeled by i, j), and thus the paths Ai, Aj

are recovered – this shows that (1) holds. Note that the weight of a k-path A is equal
to the product of all edges which form part of the components A1, . . . , Ak (this follows
immediately from the definition). Since the components of A∗ contain the same edges
as the ones of A (only rearranged), we immediately see that the weights of A and A∗

are the same, and thus Property (2) holds as well. Noting that by applying ∗ we have
interchanged exactly one pair of end vertices (the ones of Ai and Aj), we see that for



A.1. ENUMERATING NON-INTERSECTING PATHS 99

ppA1

A2

A3

A∗1

A∗2

A∗3

Figure A.1. The bijection ∗ : A → A∗ as defined in the proof of Theorem A.1.

any permutation π the sign changes, and hence (3) follows. Thus, we are done and the
theorem is established. �

A.1. Enumerating Non-Intersecting Paths

Now, our first aim is to find a formula for counting non-intersecting paths of fixed
length n. We will need the following lemma. Recall that binomial paths are lattice
paths with step set Sb = {(1,−1), (1, 1)}.

Lemma A.2. The number of binomial paths of length n that start at (0, 0) and end
at (n, y) is given by

∣∣P ((0, 0), (n, y))
∣∣ = {( n

n+y
2

)
if n+ y is even,

0 otherwise.
(A.4)

Proof. We check how many ways there are to construct binomial paths of length n
that end at height y. We have n steps at disposal, up and down steps of height 1 (more
precisely, diagonal steps of height 1). From this it follows that paths of odd length can
only end at odd height and paths of even length can only end at even height – this
explains why the number of binomial paths equals 0 in the case where n+y is not even.
Let us also assume y ≥ 0; otherwise reflect the path along the x-axis. We count how
many of the n steps can, or actually have to be, chosen to be up steps. The number of
up steps, denoted by up, has to exceed the number of down steps, denoted by do, by y,

up− y = do,

since we want our path to end at height y. The number of up and down steps has to
add up to n, hence

up+ do = n.

Putting this together, we find

up+ do = n (A.5)

up = n− do (A.6)

up = n− (up− y) (A.7)

2 · up = n+ y (A.8)

up =
n+ y

2
. (A.9)
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Therefore, there are
(

n
n+y

2

)
ways to place the up steps within the path, and this (since

the other steps are down steps, consequently) equals the total number of paths starting
at (0, 0) and ending at (n, y). �

Now let ω1, ω2 be two non-intersecting paths, as in Definition 3.13, for which we
assume the following: both paths are of fixed length n ≥ 1. Furthermore, let ω1 be any
binomial path that starts at (0, 0) and ends at (n, 2n− l) and ω2 any binomial path that
starts at (0, 2) and ends at (n, n− 2l + 2), with l ≥ 0. Then, we claim the following:

Lemma A.3 ([2], Chapter 7, Proposition 6). The number of non-intersecting paths
ω1, ω2 is given by

det

∣∣∣∣ (nl) ( n
l−1

)(
n

l+1

) (
n
l

) ∣∣∣∣ .
Proof. We will make use of the Lindströ-Gessel-Viennot-Theorem. Consider the

square grid Z× Z and turn it counter-clockwise in a 45◦ angle around the point (0, 0).
We denote this new grid by Θ. Let all edges in this grid be directed towards east and
weight them by 1 – this shall be our graph D. Fix the integers n ≥ 1 and l ≥ 0.
Furthermore, set u1 = (0, 0), u2 = (0, 2) and v1 = (n, 2n− l), v2 = (n, 2n− l + 2).

Now, we consider the left-hand side of (A.1),∑
π∈Sk

(sgn π)WN(u, π(v)). (A.10)

Note that we have chosen all weights to be equal 1, hence each path has total weight 1.
So, in this case, WN (u, π(v)), the sum of the weights of the paths, equals N(u, π(v)),
the number of paths. Therefore, (A.10) equals∑

π∈Sk

(sgn π)N(u, π(v)). (A.11)

Let us examine the terms N(u, π(v)) for π ∈ Sk. In our case, k, the number of paths,
equals 2. Consider all permutations in S2 and their signs:

π1: π1(1) = 1, π1(2) = 2 and sgn(π1) = 1;
π2: π2(1) = 2, π2(2) = 1 and sgn(π2) = −1.

So, the sum in (A.11) contains the following terms: N(u, π1(v)) and −N(u, π2(v)).
Let us first examine N(u, π1(v)) = N(u,v). This is the number of all disjoint

k-paths from u = (u1, u2) to v = (v1, v2), namely all paths ω1 from u1 to v1 and ω2

from u2 to v2 that are non-intersecting. We claim that these paths ω1 and ω2 are
non-intersecting in the sense of Definition 3.13. First, note that the paths are indeed
binomial paths (the edges of D correspond to the step set of a lattice path). Also note
that starting and end points are (0, 0), (n, 2n− l) and (0, 2), (n, 2n− l+2), respectively.
Furthermore, the paths are non-intersecting (in the sense that they do not share a
vertex). Hence, ω1, ω2 are non-intersecting in the sense of Definition 3.13, and their
number is given by N(u,v).

Now, N(u, π2(v)) remains to be calculated. We note that N(u, π2(v)) gives the
number of non-intersecting k-paths going from (u1, u2) to (vπ2(1), vπ2(2)) = (v2, v1). We
claim that this number is equal to 0. There can not be any pair of disjoint paths from
u1 to v2 and u2 to v1, respectively: assume that such a pair existed. These two paths
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would have to cross each other at some point (since the starting point of the first path,
u1, lies below the starting point of the second path, u2, but the endpoint of the first
path, v2, lies above the end point of the second path, v1). Both paths start at even
height and have step heights equal to 1. Hence, at each time both paths are either at
even or at odd height, and therefore have to share a vertex if they cross. So, the paths
can not be non-intersecting, and it follows that N(u, π2(v)) = 0. This shows that the
left-hand side of (A.1) is equal to N(u,v) which was shown to be the number of the
non-intersecting paths ω1, ω2.

Let us turn to the right-hand side of equation (A.1). We need to consider the 2× 2
matrix whose entries are WP (ui, vj) for i, j ∈ {1, 2}. Since we have chosen the weights
of all steps to be equal to 1, WPui, vj equals the number of paths in D from ui to vj;
that is, the number of binomial paths from ui to vj . Due to Lemma A.2, we know that
the number of binomial paths from (0, 0) to (n, k) is given by

∣∣P ((0, 0), (n, y))
∣∣ = {( n

n+y
2

)
if n+ y is even,

0 otherwise.
(A.12)

Hence, we conclude that

WP (u1, v1) = |P ((0, 0), (n, n− 2l))| =
(

n
2n−2l

2

)
=

(
n

n− l

)
=

(
n

l

)
, (A.13)

WP (u1, v2) = |P ((0, 0), (n, n− 2l + 2))| =
(

n
2n−2l+2

2

)
=

(
n

n− l + 1

)
=

(
n

l + 1

)
.

(A.14)

Through up-shifting of the starting vertex u2 by two, we also obtain

WP (u2, v1) = |P ((0, 2), (n, n− 2l))| = P ((0, 0), (n, n− 2l − 2)) =(
n

2n−2l−2
2

)
=

(
n

n− l − 1

)
=

(
n

l − 1

)
, (A.15)

WP (u2, v2) = |P ((0, 2), (n, n− 2l + 2))| = P ((0, 0), (n, n− 2l)) =(
n

2n−2l
2

)
=

(
n

n− l

)
=

(
n

l

)
. (A.16)

Substituting (A.13) - (A.16) in the right-hand side of A.1, and recalling that the left-
hand side of (A.1) is exactly the number of non-intersecting paths ω1, ω2, we see that
Lemma A.3 holds. �

A.2. Enumerating Simple Lattice Paths

Our second aim is to derive a formula for counting simple lattice paths of fixed length
n that stay within some upper and lower boundaries (these boundaries are formed by
simple lattice paths, as well). Recall that a simple lattice path consists of up steps and
horizontal steps, and that its width is given by the x-coordinate of its final vertex. An
example of a simple lattice path is shown in Figure A.2, the precise definition was given
in Definition 3.14. Again, we use the Lindström-Gessel-Viennot-Determinant to obtain
the desired result.
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• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •(5, 4)•

Figure A.2. A simple lattice path of width 5.

Recall Definition 3.32, the restriction of the binomial coefficient,(
n

k

)
+

:=

{(
n
k

)
n ≥ k ≥ 0,

0 n < k or k < 0,
(A.17)

for n, k ∈ Z.

Theorem A.4 ([25], p. 92). Let a = (a1, . . . , an) and b = (b1, . . . , bn) be integer
sequences with a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn, and ai ≤ bi, i = 1, 2, . . . , n.
The number of all simple lattice paths from (0, a1) to (n, bn) with the height of the i-th
horizontal step being at least ai and not greater than bi (i = 1, 2, . . . , n), is given by

det
1≤i,j≤n

((
bi − aj + 1

j − i+ 1

)
+

)
. (A.18)

Proof. We want to count simple lattice paths whose steps lie in between fixed
heights. To do so we establish a one-to-one correspondence between these lattice paths
and non-intersecting k-paths whose number is given by the Lindström-Gessel-Viennot-
Determinant in Theorem A.1.

More precisely: let a = (a1, . . . , an) and b = (b1, . . . , bn) be integer sequences with
a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn, and ai ≤ bi, i = 1, 2, . . . , n. For a simple lattice
path of width n denote by h(i) the height of the i-th horizontal step si (that is, a step
of the form (1, 0)), and set h = (h(1) . . . , h(n)). We then want to count simple lattice
paths of width n, starting at (0, a1) and ending at (n, bn) with a ≤ h ≤ b (this means
that ai ≤ h(i) ≤ bi, for i = 1, . . . , n).

Fix a simple lattice path ρ. First, note that it is sufficient to know the initial vertex,
the end vertex, and the horizontal steps to reconstruct the path. Now, only focusing on
horizontal steps, we consider the restriction ai ≤ h(i) ≤ bi. Having a horizontal step of
height bi as upper boundary and of height ai as lower boundary for the i-th horizontal
step si, we create a new path as seen in Figure A.3: we connect the starting vertex of
the upper boundary by down steps with the step si. This step is then connected with
the ending vertex of the lower boundary, again by down steps. Through this process
each step and its boundaries are turned into a new lattice path (with step set consisting
of down steps and a horizontal step to the right). Proceeding in the same manner for
all horizontal steps of ρ, we obtain n new lattice paths (see Figure A.4(b)). Note that
they might be intersecting (namely if two vertical steps of ρ are of same height). But
through lifting each of the newly created paths up by one unit relatively to each other,
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Figure A.3. A possible choice for the step height hi between the bound-
aries ai, bi and a corresponding lattice path.
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Figure A.4. Bijection between bounded simple lattice paths and a fam-
ily of disjoint lattice paths.

we ensure that they are non-intersecting. So, we have obtained a non-intersecting k-
path (P1, . . . , Pn), where the path Pi runs from (i− 1, bi + i) to (i, ai + i) and the step
set consists of down steps and horizontal steps to the right.

Conversely, we can easily retrieve a simple lattice path from a non-intersecting k-
path by reversing the process. Hence, we have found a bijection between the two
counting problems. It only remains to evaluate the number of non-intersecting k-paths
that run from

u = ((0, b1), (1, b2 + 2), . . . , (i− 1, bi + i), . . . , (n− 1, bn + n)) (A.19)

to

v = ((1, a1 + 1), (2, a2 + 2), . . . , (i, ai + i), . . . , (n, an + n)). (A.20)

This number is given by the Lindström-Gessel-Viennot-Determinant (Theorem A.1);
but we still have to specify the graph D: we choose D to be the square grid Z × Z

where all edges are directed towards south or towards east and are weighted by 1.
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Now, consider equation (A.1),∑
π∈Sk

(sgn π)WN(u, π(v)) =
∣∣WP (ui, vj)

∣∣ .
Since all weights are equal 1, each path has a total weight of 1. So, WN (u, π(v)), the
sum of the weight of all paths, is equal to N(u, π(v)). We can therefore rewrite (A.1)
as ∑

π∈Sk

(sgn π)N(u, π(v)) = det
∣∣WP (ui, vj)

∣∣ . (A.21)

We claim that on the left-hand side of (A.21) the only non-zero term is the term for
which π(v) = v. For any other permutation there can not exist a non-intersecting k-
path. To see this, note the following: consider a path t that starts in un = (n−1, bn+n).
Since only down steps and horizontal steps to the right are permitted in D, the path
t can only end in a vertex that lies to the right or below its initial vertex, namely in
vn = (n, an + n) or vn−1 = (n− 1, an−1 + n− 1). We show that the path has to end in
the right-most of these vertices, vn: suppose that this is not true. Then, t runs from un

to vn−1. But there has to be a path t̃ that ends in vn. For this path t̃ an initial vertex
ui (out of (A.19)) has to be chosen. If there is no vertex whose y-coordinate is at least
the y-coordinate of vn, we are already finished. Otherwise, denote the initial vertex of

t̃ by (u
(x)
i , u

(y)
i ). Now, we claim that these two paths t, t̃ share a vertex, see Figure A.5.

First, recall that t runs from un = (n − 1, bn + n) to vn−1 = (n− 1, an−1 + n− 1) and

that t̃ runs from ui = (u
(x)
i , u

(y)
i ) to vn = (n, an + n). It follows that u

(x)
i < n− 1, since

t̃ starts to the left of t. Hence, u
(y)
i < bn + n, since u

(y)
i = bi + i, and b1 ≤ · · · ≤ bn. So,

the initial vertex of t̃ lies below and to the left of the initial vertex of t. On the other
hand, the final vertex of t̃ lies above and to the right of the final vertex of t. As we only
allow down steps and horizontal steps to the right, the paths have to intersect at some
point.

We have seen that for the right-most path of a non-intersecting k-path from u to v
the final vertex can not be chosen freely. Now, we consider the next to the last initial
vertex un−1 and omit the path t which runs from un to vn. Applying the same argument
as before, we see that out of the two remaining possible final vertices, vn−1 and vn−2,
the right-most one has to be chosen. There is only one combination of initial and final
vertices which yields a non-intersecting k-path going from u to v, and its number is
given by N(u,v). So, the only non-zero term in left-hand side of (A.21) is N(u,v). To
calculate this quantity, we evaluate the terms WP (ui, vj). First, assume that bi ≥ aj

and j ≥ i + 1: to go from ui to vj we need bi + i − (aj + j) down steps and j − i + 1
horizontal steps. Hence, the total number of steps is

bi + i− aj − j + j − i+ 1 = bi − aj + 1,

and it follows that WP (ui, vj) =
(

bi−aj+1
j−i+1

)
. Putting this together, Equation (A.1) reads

# disjoint k-paths = N(u,v) = WN (u,v)

= det
1≤i,j≤n

P (ui, vj) = det
1≤i,j≤n

((
bi − aj + 1

j − i+ 1

)
+

)
.
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u2

u3

t̃

u4

t

Figure A.5. Consider the path t starting in u4. Suppose that t does
not end in v4. Then, t has to have its final vertex in v3, since only down
steps and horizontal steps to the right are admitted. But some path t̃ has
to end in v4. The only possible initial vertex for t̃ is u3, since u2 and u1

lie lower than v4. u3 lies below u4 and v4 lies above v3, hence the paths
t, t̃ have to intersect each other.

In the case where bi ≥ aj or j < i, there is no path from ui to vj (since up steps
are not permitted), neither in the case of j < i (since left steps are not permitted);
note that the definition of the restricted binomial coefficient reflects this and gives 0 for
these cases. Hence, the theorem is established. �
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