
DIPLOMARBEIT

Titel der Diplomarbeit

Max-Flow Min-Cut

angestrebter akademischer Grad

Magister der Naturwissenschaften (Mag. rer. nat.)

Verfasser: TIMON THALWITZER
Matrikel-Nummer: 0103857
Studienkennzahl lt. Studienblatt: A 405
Studienrichtung lt. Studienblatt: Mathematik
Betreuer: Univ.Prof. Dr. Christian Krattenthaler

Wien, am 11.11.2008

Abstract

This is a monograph on network flows. Network flow theory constitutes
a widely applied mathematical field, which is used in practice in fields like
economics, traffic routing, urban planning, telecommunication, and countless
more. From a mathematical point of view, it is interesting that networks
can be treated equally well by methods from graph theory and from linear
programming. In fact, this text deals with a certain kind of linear programs
with a fairly specific structure. Both of these seemingly different approaches
have their advantages and disadvantages.

Networks and flows are thoroughly studied notions, and there has been
done a lot of research on them since the 1950s. A vast body of literature on
both network flows and linear programming exists. In this thesis, I focus on
the Max-Flow Min-Cut Theorem, as well as on describing various algorithms
for constructing maximal flows in a given network. I also try to present the
combinatorial and the linear programming point of view as homogeneous as
possible, using a notation that lends itself well to both.

One aspect that might appear a little unusual is that I formulated all
definitions and theorems using throughout a fairly general network model,
whereas in most works done on this topic, a more restricted definition for
networks is used, with the aim of keeping the proofs and calculations shorter.
Since the more general case can easily be reduced to the more specific one,
my approach constitutes by no means the gain of new or unknown theorems.
But all of the proofs extended very naturally to the generalizations without
becoming more complicated, and hence it made sense to me to present the
material in this way.

Zusammenfassung

Die vorliegende Arbeit ist eine Monographie über Netzwerke. Die Theorie
der Netzwerkflüsse ist ein mathematisches Gebiet, das weitverbreitete An-
wendung findet in Feldern wie Ökonomie, Verkehrs- und Städteplanung, Te-
lekommunikation und vielen anderen mehr. Aus mathematischer Sicht ist es
interessant, dass Netzwerke gleichermaßen mit Methoden der Graphentheo-
rie, als auch mit solchen aus der linearen Programmierung behandelt werden
können. Im Grunde behandelt der vorliegende Text eine bestimmte Art von
linearen Programmen, die eine sehr spezifische Struktur aufweisen. Jeder die-
ser scheinbar unterschiedlichen Zugänge hat seine Vor- und Nachteile.

Netzwerke und Netzwerflüsse stellen ausführlich behandelte Begriffe dar,
und sind seit den 1950ern Gegenstand einer intensiven Forschungstätigkeit.
Ein umfangreicher Bestand an Literatur zu sowohl Netzwerkflüssen als auch
zur linearen Programmierung ist heute verfügbar. In dieser Diplomarbeit
behandle ich vor allem das Max-Flow Min-Cut Theorem, als auch verschie-
dene Algorithmen, die zum Auffinden von maximalen Netzwerkflüssen die-
nen. Ich versuche dabei, die kombinatorische Herangehensweise und jene
von der linearen Programmierung herkommende so homogen wie möglich
zu präsentieren und dabei eine Notation zu verwenden, die beiden Zugängen
gerecht wird.

Ein Aspekt der etwas ungewöhnlich erscheinen könnte ist, dass ich alle
Definitionen und Sätze unter Verwendung eines sehr allgemeinen Netzwerk-
begriffs formuliere, während in den meisten Arbeiten zu diesem Thema ein
engerer Netzwerkbegriff verwendet wird, welcher dazu dienen soll, die Bewei-
se und Rechnungen kürzer zu halten. Da die allgemeinere Definition leicht
auf die speziellere zurückgeführt werden kann, ergibt sich durch meine Vor-
gehensweise keinesfalls der Gewinn neuer oder unbekannter Sätze. Jedoch
ließen sich alle Beweise auf sehr natürliche Weise verallgemeinern ohne dabei
komplizierter zu werden, und deshalb erschien es mir sinnvoll, das Thema in
dieser Art und Weise darzustellen.

1

Contents

1 Introduction and Preliminaries 3

1.1 Introduction . 3

1.2 General Terminology . 5

1.3 Preliminaries on Graph Theory 7

1.3.1 Undirected Graphs . 7

1.3.2 Directed Graphs . 14

1.4 Preliminaries on Linear Programming 25

1.4.1 Vectors and Matrices 26

1.4.2 Linear Programs . 27

1.4.3 The Simplex Method 29

1.4.4 The Ellipsoid Method 42

1.4.5 Duality . 43

2 A Combinatorial Approach to Maximal Flow 47

2.1 The Function excess . 48

2.2 Networks and Flows . 49

2.3 Cuts . 58

2.4 The Max-Flow Min-Cut Theorem 60

2.5 The Min-Flow Max-Cocapacity Theorem 69

2.6 Existence of Feasible Flows . 71

2.7 Extensions of the Network Model 75

2.7.1 Node Capacities . 76

2.7.2 Upper and Lower Balance Bounds 76

2.7.3 Traversal Times . 77

2.7.4 ‘Lossy’ and ‘Gainy’ Arcs 77

3 A Linear Programming Approach to Maximal Flow 79

3.1 Flow and Cut Optimization are Linear Programs 79

3.2 The Max-Flow Min-Cut Theorem Revisited 82

2 Contents

4 Algorithms for Flow Maximization 87
4.1 Max-Flow and Related Problems 88

4.1.1 The Min-Cost Flow Problem 88
4.1.2 The Shortest Path Problem 89
4.1.3 The Max-Flow Problem 91

4.2 Primal Algorithms . 93
4.2.1 The Ford-Fulkerson Algorithm 94
4.2.2 The Edmonds-Karp Algorithm 96
4.2.3 The Dinic Algorithm 97
4.2.4 Other Primal Algorithms 100

4.3 Dual Algorithms . 100
4.3.1 The Goldberg-Tarjan Algorithm 101

4.4 Algorithms Derived from Methods from Linear Programming . 105
4.4.1 The Network Simplex Algorithm 105
4.4.2 Variants . 113

5 Applications 115
5.1 Combinatorial Applications 115

5.1.1 Menger’s Theorem . 115
5.1.2 König’s Matching Theorem 117
5.1.3 Hall’s Marriage Theorem 120

5.2 ‘Real World’ Applications . 123
5.2.1 Historical Notes . 123
5.2.2 Supply/Demand . 124
5.2.3 The Transportation Problem 125
5.2.4 The Assignment Problem 127

Bibliography 131

Curriculum Vitae 133

3

Chapter 1

Introduction and Preliminaries

In Section 1.1, I give a brief overview of the history and development of
network flow theory and its applications, as well as a rough description of
the main results that are presented in this thesis. I also outline the material
included in each of the upcoming four main chapters.

In the subsequent Sections 1.2–1.4, I shall introduce some rather general
notions, mainly from graph theory and linear programming, that are needed
in the remainder of the text. As most of the material of these sections is only
preliminary and will probably be familiar to some readers, it might well be
skipped, or alternatively be consulted on demand.

1.1 Introduction

Networks can be observed in all areas of modern life. They occur in rather
diverse forms, ranging from small scale objects, like electronic circuits, to
fairly large scale structures, like international trade relations. The common
abstract background of what is casually referred to as a network is the fol-
lowing: some quantity (be it electricity, water, information, goods, money,
people,. . .) is moved along an underlying supporting medium (circuit boards,

s t

Figure 1.1: A network.

4 Chapter 1. Introduction and Preliminaries

pipelines, roads, antennas and the air between them,. . .).
The circles and lines depicted in Figure 1.1 on page 3 are meant to grasp

the underlying universals of all these instances. This ‘generalized’ network
essentially consists of some points, called vertices, and lines (or arrows), called
arcs, connecting some of them. In mathematical terminology, this kind of
object is usually referred to as a graph. A network in the mathematical sense
is a graph with some additional properties. For example, one might specify
two ‘special’ vertices (like s and t in the above figure). Then a task that
might be of interest would be to find all possible connections between s and
t. In addition, one could assign numbers to all the arcs, representing the
capacity of the respective arc; in other words, the amount of some quantity
that can at most be sent through the arc. A question that naturally arises
asks for the maximum amount of that quantity that can altogether be sent
from s to t. Furthermore, if another set of numbers representing per-unit
costs of using each of the arcs is assigned to the network, then a problem
worth considering might be how a certain amount of the quantity can be sent
from s to t such that the total costs are minimized. These are the kind of
questions that are the subject of network flow theory.

The hour of birth of graph theory is usually considered to be 1736. In
that year, Leonhard Euler (1707–1783) gave a solution to the well-known
“Königsberger Brückenproblem”1. The beginnings of network flow theory
can only be traced back to somewhat more recently: the works of Gustav
Robert Kirchhoff (1824–1887) and other pioneers of electrical engineering laid
the ground for modern network flow theory as it is pursued by researchers
today. A nice exposition of how electrical circuits can be described in terms
of mathematical network theory is found in [24], among many other books
on the topic. Yet more recently started the formal and detailed analysis of
the abstract mathematical notion of networks as it is still in use now. In the
1950s, the term flow first came up, namely in the RAND group2, then being
the working place of, among others, George Bernard Dantzig (1914–2005),
Delbert Ray Fulkerson (1924–1976), and Lester Randolph Ford Jr. (*1927).
Flow is the mathematical take on what I described earlier as the quantity
that is to be transported along the arcs of the network. In Section 5.2.1,
I present the practical ‘application’ that ultimately gave rise to the first
comprehensive monograph on network flows: Flows in Networks, written by
Ford and Fulkerson in 1962 (see [8]). In the past five decades, especially since
the inception of complexity theory as a mathematical discipline in its own

1also known as “Seven Bridges of Königsberg”
2Research ANd Development; according to [25] “a nonprofit global policy think tank

first formed to offer research and analysis to the United States armed forces”. Formed in
1946. Also see [19].

1.2. General Terminology 5

right, efforts have mainly focussed on the development of efficient algorithms
for the practical and computational solution of the problems hinted at above.

This thesis comprises four main chapters. Chapters 2 and 3 are both
mostly concerned with one of the central theorems of network flow theory.
Though not difficult to prove, it has far-reaching im- and applications, of
both inner- and outer-mathematical nature.

In Chapter 2, the discussion is a purely graph theoretical one. Using a
definition of networks that allows upper and lower capacity bounds for arcs,
arbitrary sets of source and sink vertices, and balance constraints for all other
vertices, the basic notions and relations of network theory are developed and
ultimately led to a detailed proof of the Max-Flow Min-Cut Theorem. Several
illustrating examples are provided along the way.

Chapter 3 uses a different approach. The same theorem is proved again,
but with techniques from linear programming.

In Chapter 4, various successful algorithms for flow maximization in a
network that have been designed over the years are presented. Here again
the position of network flows in the intersection of graph theory and lin-
ear programming becomes apparent; there are algorithms derived from com-
binatorial considerations and algorithms derived from linear programming
methods.

Finally, in Chapter 5, I first demonstrate how the Max-Flow Min-Cut
Theorem can be utilized as a tool to prove other graph theoretical theorems.
Then, to give an idea of how network flow techniques are typically applied
in practical contexts, I shall state some characteristic examples.

1.2 General Terminology

In this section I gather together a few basic notions that could be regarded
as ‘general mathematical knowledge’. I still wanted to include them here to
have a quick reference at hand, if needed.

Numbers, Sets and Functions

N = {0, 1, 2, . . . } is the set of natural numbers. R is the set of real numbers.
To simplify some notations, I set

R := R ∪ {−∞,∞}.

Here the infinity-symbol is used in the familiar way: −∞ < r < ∞ for all
r ∈ R.

6 Chapter 1. Introduction and Preliminaries

Let X be any set and f : X → R any function. For a subset Y ⊆ X,
define f(Y) :=

∑
y∈Y f(y).

If X = {xi}i∈I for an arbitrary index set I, then set X−1 := {x−1
i }i∈I .

This is a purely formal definition; for the moment it does not matter whether
or not the symbols x−1

i have a specific meaning or not.

Ordered Sets

Let X be some set. A set of ordered pairs of elements from X is called a
relation or a partial relation on X. For such a a relation R, often xRy is
written instead of (x, y) ∈ R.

A relation R on X is called total if for every pair (x, y) ∈ X×X, at least
one of xRy or yRx holds. It is called reflexive if xRx for all x ∈ X. It is
called transitive if for all x, y, z ∈ X, xRy and yRz imply xRz. It is called
anti-symmetric if for all x, y ∈ R, xRy and yRx imply x = y.

A relation ≤ is called a pre-order on X if ≤ is reflexive and transitive. A
pre-order ≤ is called an order on X if ≤ is anti-symmetric. In that case, X
is referred to as a partially ordered set. If in addition ≤ is total, then X is
called an ordered set.

Complexity and Algorithms

In the study of running times of algorithms (Section 4), I will need the
following (a little informal) definitions, 3

1.1 Definition. Let A be an algorithm with inputs from some set X. Let
f : X → R. If there exists a constant α ≥ 0 such that A terminates its
computations for input x ∈ X after no more than αf(x) elementary steps
(such as basic arithmetic operations), then A is said to run in time O(f), or
that its running time or (time) complexity is O(f).

Let g : X → R be another function. If there exists a constant α ∈ R
such that for every x ∈ X the equation |g(x)| ≤ αf(x) + α holds, we write
g = O(f). Note that the so defined relation is transitive and reflexive, but
not symmetric.

For further information on what ‘algorithm’ or ‘elementary steps’ means,
or why this ‘O(.)-notation’ is a widespread, and broadly accepted, way of
measuring the efficiency of algorithms, I refer the interested reader to [14],
[21], [1], [3], [6], [17], [18], [9], [13], or [2].

3They can be found in many textbooks. These versions are taken from [14, p. 6],
respectively [21, p. 13].

1.3. Preliminaries on Graph Theory 7

Partitions

Let X be some set. A family of subsets {Yi | i ∈ I} (here I is an arbitrary
index set), is called a partition of X if and only if the following two conditions
hold:

(i)
⋃
i∈I

Yi = X

(ii) i 6= j =⇒ Yi ∩ Yj = ∅.

1.3 Preliminaries on Graph Theory

As the terminology for this combinatorial field is (unfortunately) not stan-
dardized at all, I introduce briefly all the concepts and notions that will be
utilized later on. Most of it is fairly basic material. I also provide numer-
ous examples for nearly all of the definitions. Consequently, I think that
even a reader who has never encountered a graph before should be able to
comprehend this thesis (at least this is the aim of this section).

Detailed introductions to graph theory are readily available in numerous
text books. Examples include [21], [2], [13], [1], [12], and [4].

1.3.1 Undirected Graphs

The two main objects of interest in graph theory are undirected graphs (or
simply graphs) and directed graphs (or shorter digraphs). The difference
between the two is whether or not the edges are oriented. In this thesis, we
will mainly encounter certain directed graphs, but as undirected graphs do
crop up in a few places, I provide the basic definitions for them as well.

Graphs

A graph or undirected graph is an ordered pair G = (V,E), where V is some
finite set, called the set of vertices or the set of nodes of G, and E is a family
of unordered pairs {u, v} of elements of V , called the family of edges of G.
For a given graph G, I sometimes write V (G) (respectively E(G)) for the set
of vertices of G (respectively the family of edges of G). The elements of V
(respectively E) are (as one could have guessed by now) called vertices or
nodes (respectively edges). A pair occurring more than once in E is called a
multiple edge. Two edges which are represented by the same pair of vertices
are called parallel. An edge of the form {v, v} (for some v ∈ V) is called

8 Chapter 1. Introduction and Preliminaries

w

c

b

a

zy

x

Figure 1.2: A simple graph.

d
e
f

g

u v

Figure 1.3: A non-simple graph.

a loop.4 A graph with neither loops nor multiple edges is called simple. A
graph which is not simple is simply called non-simple.

1.2 Example. In Figure 1.2, a graph is shown. Its vertices are represented
by the little grey circles, its edges by the thin black lines connecting some
pairs of vertices. I will always depict graphs in this fashion. If needed, the
names of the vertices are written inside them for reference, as in the case of
vertices x, y, z, or w. Similarly, the reference names of the edges are attached
to them if convenient, as is done with a, b, and c. Note that the graph in
Figure 1.2 is simple: it contains neither loops nor multiple edges.

The graph in Figure 1.3 is not simple: it contains the loop g. Furthermore,
the edge {u, v} is a multiple edge. Another way of stating this is to say that
d, e, and f are parallel.

Incidence and Neighbours

The edge e = {u, v} is said to connect u and v and to be incident with u
and incident with v, whereas u and v are referred to as the ends of {u, v}.
Each of them is said to be incident with {u, v}. If, on the other hand, u 6∈ e
holds, u and e are called disjoint from one another. Two edges e and f are
said to be incident if e ∩ f 6= ∅ and are called disjoint if e ∩ f = ∅. Two
vertices u and v are called neighbours if {u, v} ∈ E. For U ⊆ V , define

δG(U) := {e ∈ E | |e ∩ U | = 1} and

NG(U) := {v ∈ V \U | ∃u ∈ U : {u, v} ∈ E},

the family of edges incident to U , respectively the set of U ’s neighbours. If
U = {u}, I often leave out the braces. The subscript G is omitted when no
confusion is to be expected.

Let U,W ⊆ V (G). If for an edge e we have e∩U 6= ∅, then we say e and
U are incident to each other. If e ∩W 6= ∅ as well, then e is said to connect
U and W . If e ∩ U = ∅, then e and U are said to be disjoint.

4If edges are regarded as sets, then a loop would contain only one element, because then
{v, v} = {v}. To avoid this, one can simply define edges as multisets, that can contain
elements in multiplicities greater than one.

1.3. Preliminaries on Graph Theory 9

1.3 Example. I continue Example 1.2 by presenting instances of the just
introduced notions, taken from Figures 1.2 and 1.3 on page 8: the edge a
connects the vertices x and y. b is incident with y, as is a. Moreover, b is
incident with c. z is an end of b. Both of the depicted graphs happen to
contain not a single pair of disjoint edges. u and v are neighbours. We have
δ(x) = {a, c} and N(x) = {y, z}.

Define X := {y, z}. Then we can say that a is incident with X. x and X
are connected by a. The same is true for {x} and X. w and c are disjoint,
and so are {w} and c.

Subgraphs

A subgraph of a graph G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G).
Let this relation be denoted by H ≤ G. A subgraph H ≤ G is called the
subgraph of G induced by W if

V (H) = W and

E(H) = {a = {u, v} ∈ E(G) | u, v ∈ W}.

The set of subgraphs of a given graph G is a partially ordered set with respect
to the just defined relation ≤.

1.4 Example. The graph from Figure 1.2 on page 8 (let us call it G) contains
all of the following subgraphs:

H := ({x}, ∅)
I := ({x, y}, ∅)
J := ({x, y}, {a})
K := ({x, y, z}, {b, c})

We have H ≤ I ≤ J ≤ G and also H ≤ I ≤ K ≤ G. But J and K cannot
be compared in this way; we have J � K and K � J . The subgraph of G
induced by {x, y} is J (not I, for instance). On the other hand, the subgraph
of K induced by {x, y} is I. Note that for example the following ordered pair
is not a subgraph of G:

L := ({x, y}, {a, b}).

Although L satisfies V (L) ⊆ V (G) as well as E(L) ⊆ E(G), L fails to be a
graph. This is because b * E(L).

10 Chapter 1. Introduction and Preliminaries

Paths

Let G be a graph. A walk in G is a sequence

P = (s = v0, e1, v1, . . . , en, vn = t)

with n ∈ N, vi ∈ V (G) for i = 0, . . . , n, and ei ∈ E(G) an edge connecting
vi−1 and vi (i.e., ei = {vi−1, vi}), for i = 1, . . . , n. s is called the starting or
first vertex of P , t its end or last vertex. Sometimes s and t are both called
the end vertices of P and v1, . . . , vn−1 P ’s internal vertices. P is also referred
to as an s − t-walk. n, the number of edges in P , is called the length of P .
A walk of length 0 is called trivial, walks of length ≥ 1 are referred to as
nontrivial. If the end vertices coincide, P is called a closed walk. We denote

V (P) := {v0, . . . , vn}, and

E(P) := {e1, . . . , en},

the families of vertices respectively edges occurring in P , counted by their
multiplicities. P is said to traverse all of the vertices in V (P), as well as all
the edges in E(P).

P is said to connect s and t. If S, T ⊆ V (G) and s ∈ S, t ∈ T , then P
is said to connect S and T or to be an S − T -walk. The notions s− T -walk
and S − t-walk are likewise defined.

If all the internal vertices are distinct (and consequently all the ei’s as
well), then P is called a path, or, in analogy to the above, an s−t-, respectively
an S − T -path. A closed path is called a cycle. (Explicitly, this means that
the first vertex is the same as the last, and all other vertices as well as the
edges traversed are distinct.)

1.5 Example. Figure 1.4 on page 11 shows the graph G:

V (G) ={s, s′, s′′, u, v, w, x, t, t′},
A(G) ={{s, u}, {s, s′}, {s′, u}, {s′, v}, {s′′, v}, {s′′, w},

{u, v}, {u, t}, {v, t′}, {v, x}, {w, t}, {t′, x}}.

The grey dashed line is meant to indicate the subsets S := {s, s′, s′′} and
T := {t, t′} of V (G). The thick black line with arrows next to it represents
the following walk in G (the arrows indicating the direction in which the
path is traversed):

P := (s, {s, u}, u, {u, v}, v, {v, s′}, s′, {s′, u}, u, {u, t}, t).

1.3. Preliminaries on Graph Theory 11

TS

s’

w

v

u

t’

ts

s’’ x

Figure 1.4: An S−T -walk that is no path (thick black line) and an S−T -
path (dashed black line).

This is a walk in G, but not a path (u is traversed twice). P is an s− t-walk,
as well as an S − T -walk, an s− T -walk, and an S − t-walk. We have

V (P) := {s, s′, u, u, v, t}, and

E(P) := {{s, u}, {s′, u}, {s′, v}, {u, v}, {u, t}}.

The length of P is 5. If we wanted, we could create an S−T -walk of greater
length by going around the triangle in the middle twice:

P ′ := (s, {s, u},u, {u, v}, v, {v, s′}, s′, {s′, u},
u, {u, v}, v, {v, s′}, s′, {s′, u}, u, {u, t}, t).

The edges highlighted by the thick dashed lines form a path of length 3:

R := (s′′, {s′′, v}, v, {v, x}, x, {x, t′}, t′).

R is an S − T -path. One could as well define the following T − S-path:

Q := (t′, {t′, x}, x, {x, v}, v, {v, s′′}, s′′).

A closed walk is given by the concatenation of R and Q, i.e., first walk from
s′′ to t′ along R, then from there back to s′′ along Q. This does not result in
a cycle. An example of a cycle is given by:

(s′′, {s′′, w}, w, {w, t}, t, {t, u}, u, {u, v}, v, {v, s′′}, s′′).

12 Chapter 1. Introduction and Preliminaries

Figure 1.5: A simple example of a simple graph that is not connected.

Connectivity and Components

A graph G is called connected if there is a path connecting s and t, for all
s, t ∈ V (G). A maximal connected nonempty subgraph (maximal in the
set of subgraphs, with respect to ≤) is called a component or a connected
component of G. Every vertex and every edge of G belongs to exactly one
component of G.

1.6 Example. Figure 1.5 shows a graph that is not connected: it is not
hard to identify a pair of vertices that cannot be connected by a path. The
graph has exactly two components. One contains two vertices and an edge,
the other one just one vertex.

Matchings and Vertex Covers

Let G be a graph. A matching in G is a set of pairwise disjoint edges of G.
I denote the set of all matchings of G by M(G). For a matching M , or in
fact for any subset M ⊆ E(G) of edges, it is handy to set

V (M) :=
⋃

{u,v}∈M

{u, v}.

This is the set of all vertices of G that are incident with some edge of M .

A vertex cover of G is a set of vertices of G that intersects each edge of
G, i.e., a set W ⊆ V (G) such that e ∩W 6= ∅ for all e ∈ E(G), or in other
words, all edges of G are incident with some w ∈ W . I denote the set of all
vertex covers of G by V(G).

1.7 Example. In Figure 1.6 on page 13, the set of black-coloured vertices
is a vertex cover of the graph depicted: all of the edges are incident with
some black vertex. The set of all vertices is an example of a vertex cover
containing more vertices. The two thick black lines form a matching: they
are disjoint. The empty set is an example of a matching containing fewer
edges.

Try to find a vertex cover containing fewer vertices and a matching con-
taining more edges!

1.3. Preliminaries on Graph Theory 13

Figure 1.6: A vertex cover and a matching.

u

w

v

x
ts

y

Figure 1.7: A typical graph.

14 Chapter 1. Introduction and Preliminaries

1.8 Example. Let us now once again go through all the important notions
introduced in this section, and give another example for each. In Figure 1.7
on page 13, some graph G is depicted. We have

V (G) = {s, t, u, v, w, x, y}, and

E(G) = {{s, v}, {s, v}, {s, w}, {s, w}, {t, v},
{t, w}, {t, y}, {u, u}, {u, x}, {v, y}, {w, y}}.

There are multiple edges: two pairs of two parallel edges each ({s, v} and
{s, w}). There is also one loop ({u, u}). Therefore, G is not a simple graph.
The graph H = (V (H), E(H)) with

V (H) := {t, w, y}
E(H) := {{t, w}, {t, y}, {w, y}}

is a subgraph of G. In fact, it is the subgraph of G induced by {t, w, y}. H
is a simple graph, as is easily verified.

The sequence (s, {s, w}, w, {w, y}, y, {y, t}, t, {t, w}, w) is a walk in G.
More exactly, it is an s − w-walk, as well as an s − V (H)-walk. It is not a
path in G, since w occurs in it more often than once.

G is not connected because there is no path connecting s and u. It has
exactly two components, namely the subgraphs induced by {u, x} and by
{s, t, v, w, y}.

A matching in G is given by {{u, x}, {w, y}, {t, v}}. An example of a
vertex cover of G is {s, t, u, y}.

1.3.2 Directed Graphs

The central object to be examined in this thesis are networks. Basically,
these are directed graphs, only with some additional information and a few
numbers assigned to them. This section includes the essential definitions,
most of which are used many times in the remainder of the text. Nearly all
of these definitions can be found in any standard introductory textbook on
graph theory.

Digraphs

A directed graph, or simply digraph, is an ordered pair D = (V,A), where
V is some finite set, called the set of vertices or the set of nodes of D, and
A is a family of ordered pairs (u, v) of elements of V , called the family of
arcs of D. For a given digraph D, one sometimes writes V (D) (respectively

1.3. Preliminaries on Graph Theory 15

d

e

z

x

y

w

a

b

c

Figure 1.8: A simple digraph.

f
g
h

i
vu

Figure 1.9: A non-simple digraph.

A(D)) for the set of vertices or nodes (respectively the family of arcs) of D.
The elements of V (respectively A) are (as one could have guessed by now)
called vertices or nodes (respectively arcs). An ordered pair occurring more
than once in A is called a multiple arc. Two arcs which are represented by
the same pair of vertices in the same order are called parallel. For an arc
a = (u, v), the ordered pair a−1 := (v, u) is called the inverse of a. An arc
of the form (v, v) (for some v ∈ V) is called a loop. A digraph with neither
loops nor multiple arcs is called simple. A graph which is not simple is called
non-simple.

1.9 Example. In Figures 1.8 and 1.9, two examples of digraphs are shown.
The pictures should give an idea of how most people think of digraphs: as
a number of little circles, plus some arrows, each pointing from one circle to
another.

The digraph D, depicted in the first of the two graphics, consists of the
following elements:

V (D) = {w, x, y, z}, and

A(D) = {a, b, c, d, e}, with

a = (x, y), b = (z, y), c = (x, z), d = (w, x), and e = (x,w).

It is a simple digraph: there are no loops and no multiple arcs. In particular,
d and e are not parallel. Rather, we have (w, x) = (x,w)−1. In other words,
d and e−1 are parallel, but as e−1 6∈ A(D), this does not affect the simpleness
of D.

In the second of the two figures, the digraph E is shown. We have:

E =
(
{u, v}, {f, g, h, i}

)
, with

f = (u, v), g = (v, u), h = (u, v), and i = (v, v).

E is not a simple digraph: i is a loop. Moreover, E contains the multiple arc
(u, v): f and h are parallel.

16 Chapter 1. Introduction and Preliminaries

Incidence and Neighbours

The arc a = (u, v) is said to connect u and v, to run from u to v, to leave u,
and to enter v. u and v are referred to as the ends of (u, v). More specifically,
u is a’s head or its starting vertex and v is a’s tail or its ending vertex. If, on
the other hand, u is not an end of a, then u and a are called disjoint from
one another. Two arcs a and b are said to be incident with each other if
they have a vertex in common and are called disjoint otherwise. If there is
an arc connecting u and v, then they are called adjacent or connected. The
vertex v is called an outneighbour of the vertex u if (u, v) ∈ A. It is called
an inneighbour of u if (u, v) ∈ A. For u ∈ V , define

δout
D (u) := {(u, v) ∈ A | v ∈ V \{u}},
δin
D(u) := {(v, u) ∈ A | v ∈ V \{u}},

N out
D (u) := {v ∈ V \{u} | (u, v) ∈ A}, and

N in
D (u) := {v ∈ V \{u} | (v, u) ∈ A}.

These sets are (in this order): the family of arcs leaving u, or outarcs of u,
the family of arcs entering u, or inarcs of u, the set of u’s outneighbours,
and the set of u’s inneighbours. As usual, the subscript D is omitted when
no confusion is to be expected. Similarily, set for U ⊆ V

δout
D (U) := {(u, v) ∈ A | u ∈ U, v 6∈ U},
δin
D(U) := {(v, u) ∈ A | v 6∈ U, u ∈ U},

N out
D (U) := {v ∈ V \U | ∃u ∈ U : (u, v) ∈ A}, and

N in
D (U) := {v ∈ V \U | ∃u ∈ U : (v, u) ∈ A}.

Let S, T ⊆ V (D). An arc a = (u, v) is said to leave S if u ∈ S and v 6∈ T .
It is said to enter T if u 6∈ S and v ∈ T . If u ∈ S and v ∈ T , then one says
that a connects S and T .

1.10 Example. Let us look for examples of these ideas in Figures 1.8 and
1.9 on page 15. As before, I will refer to the first of these graphs as D and
to the second as E.

In D, d’s head is x. x is also the tail of a. c is incident with all other
arcs. e and a are incident, whereas e and b are disjoint. x is adjacent to all
other vertices. In fact, all other vertices are outneighbours of x, and w is an
inneighbour as well. We have

δin
D(y) = {a, b} = δout

D ({x,w, z}).

1.3. Preliminaries on Graph Theory 17

If we set U := {x, y} and V := {w, z}, then the arcs b, c, d, and e all are
connecting U and V . More specifically, c and e are leaving U and entering
V , whereas b and d are leaving V and entering U .

In E, due to the relatively small number of vertices, we find that every
arc is incident with all other arcs as well as with all vertices. Moreover, all
vertices are adjacent to all other vertices. We have δout

E (v) = {g}. Note that
loop i is not an out- nor an inarc for any vertex or any set of vertices. The
same is true for any loop in any digraph.

Subgraphs

A subgraph E of a digraph D is a digraph with V (E) ⊆ V (D) and A(E) ⊆
A(D). This is sometimes denoted by E ≤ D. A subgraph E ≤ D is called
the subgraph of D induced by W if

V (E) = W and

A(E) = {(u, v) ∈ A(D) | u, v ∈ W}.

The set of subgraphs of a given digraph D is a partially ordered set with
respect to ≤.

1.11 Example. The graph E depicted in Figure 1.9 on page 15 has exactly
the following graphs as simple subgraphs:

({u}, ∅), ({v}, ∅), ({u, v}, ∅), ({u, v}, {f}), ({u, v}, {g}),
({u, v}, {h}), ({u, v}, {f, g}), and ({u, v}, {g, h}).

The subgraph induced by {u} is the first graph of this list, the one induced
by {v} is the second, and the subgraph of E induced by {u, v} is E itself.
The ‘smallest’ non-simple digraph (in the sense that is has not more vertices
and not more arcs than any other non-simple digraph) is also a subgraph of
E: ({v}, i).

Directed and Undirected Paths

Let D = (V,A) be a digraph. A directed walk or diwalk, sometimes simply
walk, in D, is a sequence

P = (s = v0, a1, v1, . . . , an, vn = t)

with n ∈ N, vi ∈ V for i = 0, . . . , n, and ai ∈ A an arc running from vi−1 to
vi (i.e., ai = (vi−1, vi)), for i = 1, . . . , n. s is called the starting or first vertex
of P , t its end or last vertex. Sometimes s and t are both called the end

18 Chapter 1. Introduction and Preliminaries

T
s

s’

u

v

w

x

t

t’

S

Figure 1.10: A digraph containing lots of paths.

vertices of P and v1, . . . , vn−1 P ’s internal vertices. P is also referred to as a
(directed) s− t-walk, or an s− t-diwalk. n is called the length of P . A walk of
length 0 is called trivial, walks of length ≥ 1 are referred to as nontrivial. If
the first and the last vertex coincide (i.e., s = t), the walk is called a closed
walk. I denote by

V (P) := {v0, . . . , vn} respectively

E(P) := {a1, . . . , ak}

the families of vertices respectively arcs occurring in P , counted by their
multiplicities. P is said to traverse all of the vertices in V (P), as well as all
the arcs in A(P).

Suppose S, T ⊆ V and s ∈ S, t ∈ T . Then P is said to connect S and
T , to run from s to t, or to be an S − T -path. If S = {s} or T = {t}, the
braces are usually left out.

If all the internal vertices are distinct, and consequently all the traversed
arcs as well, then P is called a directed path or dipath, or sometimes simply
a path. Similarly to the above, I will also speak of (directed) S − T -paths
or S − T -dipaths. A closed path is called a cycle. (So in this case the first
and last vertex coincide, whereas all other traversed vertices and all traversed
arcs are distinct.) I denote the set of all paths of a given digraph D by P(D),
and for sets S, T ⊆ V the set of all S − T -paths by PS,T (D). Here again, if
S = {s} or T = {t}, the braces are likely to be left out.

An undirected walk in D = (V,A) is a directed walk in the directed
graph D′ := (V,A ∪ A−1). Analogously defined are undirected paths, closed
undirected walks, undirected cycles, undirected S − T -walks, and undirected
S − T -paths.

1.12 Example. In the graph D, shown in Figure 1.10, there is a path from
every vertex to every other vertex. In some cases, there are not many choices
though, how to reach a vertex from another one, using paths only. Starting
at s, there is for example only one path that ends in t′. This is expressed by

1.3. Preliminaries on Graph Theory 19

the following statement:

Ps,t′ = {(s, (s, s′), s′, (s′, v), v, (v, x), x, (x, t), t, (t, w), w, (w, t′), t′)}.

Starting in u instead, we find that the situation is similar: there is only one
u − t′-path P in D. It is obtained from the unique s − t′-path by adding
u, (u, s) to its left. P traverses all vertices of D, formally: V (P) = V (D).
It can be prolonged to a closed walk traversing all of D’s vertices by going
from t′ back to x, then to v and finally to u again. After trying hard to find
one for some time, we conclude that there is no closed path (i.e., no cycle) in
D that contains all vertices.

The light grey dashes lines encircling s and s′, respectively t and t′, with
the uppercase letters written next to them, shall indicate the two sets

S := {s, s′} respectively T := {t, t′}.

It is not hard to convince oneself that there is also just one of each of the
following: an s− t-path, an s′− t-path, and an s′− t′-path. Therefore, there
are altogether 4 different S−T -paths. Of course, there are a lot more S−T -
walks. In fact, there are infinitely many, because one could go round the
graph in ‘circles’ over and over again.

There are two x − v-paths; one has length 1, the other one has length
3. The cycle (u, (u, s), s, (s, s′), s′, (s′, v), v, (v, u), u) has length 4. Is there a
cycle of greater length in D? The following is an undirected cycle:

(v, (v, x), x, (x, t′), t′, (t, w), w, (w, v), v).

(v, (v, x), x, (x, v), v) is another one—but not a very interesting one, be-
cause it is a directed cycle as well. Contrary to that, the undirected cycle
(x, (x, t′), t′, (t′, x), x) is not a directed cycle. Trying to find at least an undi-
rected cycle that traverses all vertices of D, we have to conclude that not
even that is possible.

Connectivity and Components

For digraphs, the notion of connectivity is a little more subtle than in the
undirected case. There are two alternative concepts, corresponding to dif-
ferent ‘degrees’ of connectivity. A digraph D is called connected if for every
pair u, v ∈ V (D), there is an undirected path connecting u and v. A digraph
D is called strongly connected if for every pair u, v ∈ V (D), there is a dipath
connecting u and v. Hence, every strongly connected digraph is connected,
whereas the converse is not true.

20 Chapter 1. Introduction and Preliminaries

l

b

c

d

e

f

g

h

i

j

k

a

Figure 1.11: A digraph that is not weakly connected.

A maximal connected nonempty subgraph (maximal in the set of sub-
graphs, with respect to taking subgraphs) is called a connected component
or a weakly connected, or weak, component of D. Every vertex and every arc
of D belongs to exactly one weak component of D.

A maximal strongly connected nonempty subgraph (maximal in the set
of subgraphs, with respect to ≤) is called a strongly connected component or
a strong component of D. Every vertex of D belongs to exactly one strong
component of D, but there may be arcs that belong to no strong component.
In fact, it is not very hard to prove that (u, v) ∈ A(D) belongs to some strong
component of D if and only if there exists a v − u-dipath in D.

1.13 Example. Figure 1.11 illustrates the concepts of strong and weak con-
nectivity in digraphs. Let us call the depicted graph D. It has 12 vertices
and 16 arcs. D is a simple graph. It is not connected, since there is no
i− l-path in D. Consequently, it is not strongly connected either.

There are exactly two weak components in D. One of them is the sub-
graph of D induced by {k, l}, the other component is the subgraph induced
by V (D)\{k, l}. Let them be called E, F respectively. Note that every arc
in A(D) belongs to exactly one of the sets A(E) or A(F), just as every vertex
in V (D) belongs to exactly one of the sets V (E) or V (F).

Looking for strong components, we notice that the situation is quite dif-
ferent. D contains exactly the following strong components (remember that
strong components are subgraphs):

({a, d}, {(a, d), (d, a)}), ({b, c, f}, {(b, c), (c, f), (f, b)}),
({e}, ∅), ({g}, ∅), ({h}, ∅), ({i}, ∅), ({j}, ∅), ({k}, ∅), ({l}, ∅).

Again, every vertex belongs to exactly one strong component. But there
are a lot of arcs that belong to no strong component (11 out of 16). Take

1.3. Preliminaries on Graph Theory 21

for example the arc (i, h). If a subgraph of D contains that arc, it has to
contain the vertices h and i as well. But there is no dipath from h to i in
D. Consequently, no subgraph of D can contain such a path. This means
that no strongly connected subgraph can contain h and i at the same time,
implying that no strongly connected subgraph (and hence no component of
D) can contain the arc (i, h).

Let us now construct a new graph D′ from D by reversing the arc (j, h).
That is, delete arc (j, h) from D and add the new arc (h, j) instead. As far as
weak connectivity is concerned, this does not change anything. But the new
situation is quite different in terms of strong components: there are now only
3 of them (instead of 9 for D). They are: ({k}, ∅), ({l}, ∅), and the subgraph
of D′ induced by its remaining vertices. Equivalently, this last component
is the subgraph of D′ obtained from D′ by deleting E (defined above). For
example, the (unique) a− c-path in this component is:

(a, (a, d), d, (d, g), g, (g, h), h, (h, j), j, (j, i), i, (i, f), f, (f, b), b, (b, c), c).

The two existing c − a-paths are also paths in D, they do not use the new
arc. They are:

(c, (c, f), f, (f, e), e, (e, a), a) and (c, (c, f), f, (f, e), e, (e, d), d, (d, a), a).

Trees

Let D = (V,A) be a digraph. A subgraph containing no nontrivial undirected
cycles is called a forest. A connected forest is called a tree. A subgraph of a
tree T that is a tree is called a subtree of T . A tree T containing all vertices
of D, i.e., V (T) = V , is called a spanning tree of D. It is not difficult to
show that the following proposition is correct:

1.14 Proposition. Let D = (V,A) be a digraph and T ≤ D a subgraph of
D. Then the following statements are equivalent:

1. T is a spanning tree.

2. T is a forest and |A(T)| = |V | − 1.

If D is connected, then it contains a spanning tree.

From the fact that there are no nontrivial undirected cycles in a forest, it
can be deduced that there is at most one undirected path in a forest between
every pair of vertices. In the case of trees, as they are connected, there exists
exactly one undirected path between every pair of its vertices.

22 Chapter 1. Introduction and Preliminaries

Let T be a spanning tree of the digraph D = (V,A). We call T a shortest
path tree if for every pair u, v ∈ V of vertices of the digraph, the unique path
from u to v in T is at the same time a shortest path from u to v in the graph.

A vertex of a tree that is adjacent to at most one other vertex is called
a leaf. (The case that a leaf vertex has zero neighbours can only occur if it
is the only vertex of the tree.) For some purposes a special vertex r, called
root, is designated. In that case, one also speaks of a tree rooted at r.

Underlying Undirected Graphs

For every directed graph D = (V,A), define the underlying undirected graph
to be the undirected graph GD := (V,E(A)), where E(A) is the family of
unordered pairs of vertices of D obtained from A by deleting the orientaion
of its elements:

E(A) := {{u, v} | (u, v) ∈ A}.

For example, the graph in Figure 1.7 on page 13 is the underlying undirected
graph of the graph in Figure 1.12 on page 24. Each walk (respectively path)
P = (v0, a1, v1, a2, . . . , vk−1, ak, vk) in D, directed or undirected (i.e., ai ∈
A ∪ A−1, i = 1, . . . , k is allowed), gives rise in a natural manner to a walk
(respectively path) in GD, namely R := (v0, e1, v1, e2, . . . , vk−1, ek, vk) with
ei := {vi−1, vi}.

One could have also defined the weak components and weak connectivity
using underlying undirected graphs. The weak components of a digraph cor-
respond exactly to the components of its underlying graph. In particular, a
digraph D is weakly connected if and only if its underlying undirected graph
is connected. A subgraph is a weak component of D if and only if its under-
lying undirected graph is a component of the underlying undirected graph
of D. To verify this for some examples, have another look at Figure 1.11 on
page 20, or at Figure 1.12 on page 24, discussed in Example 1.17.

Observe that walks in the underlying undirected graph are not quite the
same as undirected walks in the digraph itself: suppose for example that
the edge {vi−1, vi} is traversed in a walk of the underlying undirected graph.
Then, in a hypothetical equivalent undirected walk in the digraph itself, this
could correspond to the traverse of (vi−1, vi) or to the traverse of the inverse
of the conversely oriented arc (vi, vi−1)

−1. Of course this ambivalence can
only occur if we have (vi−1, vi) ∈ A and (vi, vi−1) ∈ A at the same time.
Hence, the two notions coincide if and only if the implication

a ∈ A =⇒ a−1 6∈ A (1.1)

holds true. This is the also the reason why the following definition makes

1.3. Preliminaries on Graph Theory 23

sense for paths in the underlying undirected graph of a digraph (in place of
undirected paths in a digraph) only if Condition (1.1) is satisfied:

Characteristic Function of a Path

If P is a (possibly undirected) path in a digraph D = (V,A), define the
characteristic funtion χP ∈ RA of P through

χP (a) :=

1 a ∈ A(P),

−1 a−1 ∈ A(P),

0 otherwise.

Note that no ambiguity can arise in this definition: at most one of a, a−1

can be an element of A(P), since P is a path (in which each vertex occurs
at most once).

1.15 Example. Let us go back to the digraph D of Figure 1.11 on page 20
for a moment. I shall calculate the values of χP for some randomly chosen
P . To illustrate the minor technical point mentioned above, that could cause
confusion and needs a little care, call the arc (a, d) =: x and the arc (d, a) =: y
for the moment. I define the following undirected path in the graph depicted:

P = (f, (f, e), e, (e, a), a, y−1, d, (d, g), g, (g, j), j, (j, h), h, (h, i), i, (i, f), f).

Here are the values of the characteristic function of P :

χP (α) :=

1 α ∈ {(f, e), (e, a), (d, g), (j, h), (i, f)},
−1 α ∈ {y, (j, g), (i, h)},
0 α ∈ {(f, b), (b, c), (c, f), (e, d), x, (g, h), (j, i), (l, k)}.

Incidence Matrices

Let D = (V,A) be a digraph. For subsets U ⊆ V and B ⊆ A, define the
node-arc incidence matrix (of U and B), alternatively called U×B-incidence
matrix, as the following |U | × |B| matrix ∆:

∆ = (δu,b)(u,b)∈U×B , wherein

δu,b :=

1 if b ∈ δout(u)

−1 if b ∈ δin(u)

0 otherwise.

24 Chapter 1. Introduction and Preliminaries

u

w

v

x
ts

y

Figure 1.12: A typical digraph.

1.16 Example. Let us write down the node-arc incidence matrix for a par-
ticular digraph. This should give a feeling for how they typically look like:
quite big, but with a lot of zero’s as entries. The graph D = (V,A), shown
in Figure 1.12, has 7 vertices and 11 arcs. Therefore, its node-arc incidence
matrix (so in the above definition, take U = V and B = A) is a 7 × 11-
matrix. In order to fit the whole matrix nicely on the page, I write down its
transpose:

s t u v w x y
(s, v) 1 0 0 −1 0 0 0
(s, w) 1 0 0 0 −1 0 0
(s, w) 1 0 0 0 −1 0 0
(t, y) 0 1 0 0 0 0 −1
(u, u) 0 0 0 0 0 0 0
(v, s) −1 0 0 1 0 0 0
(v, t) 0 −1 0 1 0 0 0
(v, y) 0 0 0 1 0 0 −1
(w, t) 0 −1 0 0 1 0 0
(x, u) 0 0 −1 0 0 1 0
(y, w) 0 0 0 0 −1 0 1

Note that columns (or rows, in our case) corresponding to multiple arcs, like
(s, w), are identical. Columns (rows) corresponding to loops, like (u, u) in
our example, contain only zeros.

1.17 Example. Figure 1.12 illustrates once again various of the concepts
introduced in this section. It shows the digraphD. D is a non-simple digraph:
it has a multiple arc, namely (s, w), which appears twice in A(D). Moreover,
D contains the loop (u, u). D is not weakly connected, hence even less so
strongly. There are two weak components. These are the subgraphs induced
by {x, u} and by {s, t, v, w, y}. The strong components are the subgraphs of
D induced by the following sets of vertices: {x}, {u}, {s, v}, and {t, w, y}.
The strong components all happen to be simple graphs.

1.4. Preliminaries on Linear Programming 25

What are the directed cycles in D? A cycle is always contained entirely
in a single strong component. (This is because, wandering along the cycle,
we can find a path from every vertex of the cycle to each of the other vertices
of the same cycle.) For every vertex, there is exactly one cycle of length 0
(namely (z), for vertex z). Cycles of length 1 arise from loops; there is exactly
one of those: (u, (u, u), u). The cycles of length 2 occur, if there is a pair
of ‘anti-parallel’ arcs; the only two examples in D are (s, (s, v), v, (v, s), s)
and (v, (v, s), s, (s, v), v). Finally, there are three cycles of length 3: they
can be found in the ‘largest’ strong component of D, the one containing the
vertices t, w, and y. Starting from each of these vertices, there is exactly
one cycle of length 3. As there is no strong component containing more than
three vertices, we do not have to look for cycles of greater length; our list is
complete already.

Set b := (s, v), c := (v, s). Furthermore, assign the labels d respectively
e to the two parallel arcs (s, w). The following is an undirected cycle C
(that is not directed) containing all vertices of the larger of the two weak
components:

C := (s, b, v, (v, t), t, (t, y), y, (y, w), w, d−1, s).

It uses the ordered pair d−1 = (w, s), which is not an arc of D. The charac-
teristic function of this cycle is the following:

χC(a) =

1 if a ∈ {b, (v, t), (t, y), (y, w)}
−1 if a = d

0 if a ∈ {c, (v, y), (w, t), e, (x, u), (u, u)}
.

Here is an x − u-walk that is not a path: (x, (x, u), u, (u, u), u). There are
four s− t-paths: (s, d, w, (w, t), t), (s, e, w, (w, t), t), (s, (s, v), v, (v, t), t), and
(s, (s, v), v, (v, y), y, (y, w), w, (w, t), t).

Vertex s has two outneighbours (w and v) and one inneighbour (v). The
vertex having the most outneighbours is v. It has three: s, t, and y. The
vertex with the fewest outneighbours is u: it does not have any.

1.4 Preliminaries on Linear Programming

This section briefly introduces some of the basic concepts of linear program-
ming. There are no proofs provided, and very little detail or broader contex-
tual concepts. I just included the definitions and facts that are necessary to
describe network flows as linear programs, and to understand how the general
results from the theory of linear programming apply to flow optimization.

26 Chapter 1. Introduction and Preliminaries

More comprehensive introductions to linear programming can for example
be found in [5], [10], [3], [17], [14], [9], [16], [23], [6], [18], or [21].

1.4.1 Vectors and Matrices

Let m,n ∈ N, and X be any set. Elements x ∈ Xn are column vectors:

x =

x1
...
xn

 .

The set of m× n matrices with entries from some set X will be denoted by
Mm,n(X). If m = n, the notation Mn(X) is also in common use. A matrix
M ∈Mn(X) is called square.

The transpose of a vector x ∈ Xn (respectively a matrix M ∈Mm,n(X))
is written as xT (respectively MT). The dimension of x ∈ Xn is defined to
be the natural number

dim(x) := n.

Analogously, for a matrix M ∈Mm,n(X),

dim(M) := mn.

For x, y ∈ Rn, x = (xi)i∈{1,...,n}, y = (yi)i∈{1,...,n}, the scalar product of x and
y is the following sum:

xTy :=
n∑
i=1

xiyi.

A partial order on R can be defined through

x ≤ y :⇐⇒ ∀i ∈ {1, . . . , n} : xi ≤ yi .

Although this use of the symbol ≤ is a little ambiguous, it will be utilized
such that no confusion should arise. A norm on Rn that will be needed in
one place is given by

‖x‖1 :=
n∑
i=1

|xi|.

This norm induces the following example of a metric on Rn:

d1(x, y) := ‖x− y‖1.

Hence, Rn is a metric space. I will also need the following quite elementary
existence result from analysis. It is cited from [20, p. 102], but can be found
in any calculus textbook.

1.4. Preliminaries on Linear Programming 27

1.18 Theorem. Let X be a nonempty, compact subset of a metric space.
Let f : X → R be a continuous function. Set

M := sup
v∈X

f(v), m := inf
v∈X

f(v). (1.2)

Then there exist v0, u0 with f(v0) = M and f(u0) = m. In other words, the
supremum in (1.2) is a maximum and the infimum is a minimum.

Let A, B be some finite sets. As the set XA of all functions from A to X
is isomorphic to X |A|, I use both notions without clear distinction. Similarly,
for matrices I use notations like MA,B(X) instead of M|A|,|B|(X). For a set

X and x ∈ Xn, y ∈ Xm, the vector z =

(
x
y

)
is the element of Xn+m defined

as

z = (zi)i∈{1,...,n+m}, zi :=

{
xi if 1 ≤ i ≤ n

yi−n if n+ 1 ≤ i ≤ n+m
.

I will also use similar notations for matrices consisting of smaller matrices. If
a vector x is indexed by some set J , i.e., x = (xj)j∈J ∈ XJ , and some subset
I ⊆ J is given, then xI := (xj)j∈I . A square matrix M = (mi,j) is called
lower triangular (respectively upper triangular) if it contains only nonzero
entries from the main diagonal downwards (respectively upwards). In other
words, if it satisfies mi,j 6= 0⇒ i ≥ j (respectively i ≤ j). Finally, define IA
to be the identity matrix on the set A, i.e.,

IA := (ia,b)(a,b)∈A×A with ia,b :=

{
1 if a = b

0 otherwise
.

1.4.2 Linear Programs

Linear programs constitute a most powerful tool in applied mathematics. In
the form we know them today, they were developed in the first half of the
last century in military context. Since then, linear programs have been ap-
plied successfully in a great variety of different settings. They can be found
whenever a large number of interacting entities is to be modelled mathemati-
cally. The linearity assumption in many cases provides a sufficiently accurate
approximation, while at the same time it guarantees solvability and efficient
computability.

An excellent introduction (not entirely modern though) including a de-
tailed overview of the prehistory and history of linear programming up to the
early 1960s is [5]. This book can be regarded as the staring point of linear

28 Chapter 1. Introduction and Preliminaries

programming in today’s form. Its author, George B. Dantzig, is commonly
perceived as the ‘father’ of linear programming.

Basically, a linear program consists of a set of variables, together with
a set of linear constraints imposed on them, and a linear objective function
that is to be optimized (while respecting all constraints). The following is a
standard formulation, as found in many textbooks:

1.19 Definition. Let m,n ∈ N. A set P ⊆ Rn is called a polyhedron if there
exists an m× n matrix A with real entries and a vector b ∈ Rm such that

P = {x ∈ Rn | Ax ≤ b}. (1.3)

1.20 Definition. A linear program is the task of maximizing (or minimizing)
a given linear function over a polyhedron. In other words: Let m,n ∈ N,
A ∈ Mm,n(R), b ∈ Rm, c ∈ Rn, and P := {x ∈ Rn | Ax ≤ b}. The following
problem is a linear program:

Find x ∈ Rn such that

(i) x ∈ P
(ii) cTx is maximal.

Or, shorter:

max{cTx | Ax ≤ b} = max{cTx | x ∈ P}. (1.4)

The function x 7→ cTx is called objective function or cost function5. c is
sometimes called cost vector. If P 6= ∅, the program is called feasible. If
x ∈ P (not necessarily optimal), x is called feasible.

As this is not exactly the formulation suited best for the network model
I am going to introduce, I give another, fairly general, definition of linear
programs. It is taken from [21].

1.21 Definition. Let A, B, C, D, E, F, G, H, K be (real) matrices, and let
α, β, γ, δ, ε, ζ be (real) vectors. A linear program is the following problem
(assuming that the dimensions of all vectors and matrices are compatible):

max{δTx+ εTy + ζTz | x ≥ 0, z ≤ 0,

Ax+By + Cz ≤ α,

Dx+ Ey + Fz = β,

Gx+Hy +Kz ≥ γ}. (1.5)

5The word ‘cost’ stems from the analog minimization problem.

1.4. Preliminaries on Linear Programming 29

Any linear program can be written in many different forms. There are
several standard forms found frequently in linear programming literature.
Quite often, they are stated in terms of minimizing the objective function,
instead of maximizing it. The linear program given in (1.5) can be converted
to such a formulation by exchanging δ, ε, and ζ by −δ, −ε, and −ζ. Here
are some examples of common definitions of linear programs, and how they
can be derived from (1.5):

general form : ζ = 0, A = B = C = F = K = 0.

canonical form : ε = ζ = 0, A = B = C = D = E = F = H = K = 0.

standard form : ε = ζ = 0, A = B = C = E = F = G = H = K = 0.

It is not hard to show that all of these versions of linear programs are equiv-
alent. Every formulation can be converted into each of the alternative for-
mulations by some notational changes. In Chapter 3, I am going to use
formulation (1.5) with δ = ζ = 0, A = C = D = F = G = K = 0, and
B = H = I the identity matrix. The reason for using just that formula-
tion simply is that the constraints needed come up naturally in that way. I
would see no advantage in transferring them artificially to a different, more
standardized, formulation. In fact, that would make the linear programs
considered more complicated and would blur the underlying ideas.

1.4.3 The Simplex Method

The Simplex Method was the first algorithm to solve the general linear pro-
gram. It was conceived by Dantzig. As mentioned earlier, he describes it
extensively in his classical monograph [5]. Other detailed expositions include
[16], [10], [18], and [17]. It works very efficiently in practice, and it is the
most widespread used algorithm for solving linear programs.

I shall describe the Simplex Algorithm for linear programs in the exact
form that will naturally arise from the graph theoretical discussion in Chap-
ter 2. This section does not provide detailed information on the various steps
performed during the Simplex Algorithm, in a way that it could for example
be implemented efficiently without further reference. Mention of the numer-
ous variants of the algorithm, most of which being suited better for some
situations and not as good for other ones, is rather rudimentary. This short
introduction is meant to give more of an overview of the basic ideas utilized
by the algorithm. It is mainly based on [1] and [16].

30 Chapter 1. Introduction and Preliminaries

E D

C

BA x

y

5

3

2

1

!1 54321

Figure 1.13: Feasible region of a linear program.

A Graphical Solution - Extreme Points

If a linear program involves only one, two or three variables, then there exists
an illuminating graphical representation and solution method that will help
to understand the main ideas behind the Simplex Algorithm. I want to start
this brief résumé by an example illustrating this graphical approach:

1.22 Example. Consider the following linear program:

Maximize u(x, y) = 2x+ y

subject to x+ 2y ≤ 9

−1 ≤x ≤ 3, 0 ≤ y ≤ 4

The grey shaded region of Figure 1.13 is the set of feasible solutions for this
program. Besides, it is an example of a polyhedron.

The vertices A = (−1, 0), B = (3, 0), C = (3, 3), D = (1, 4), and E =
(−1, 4) are the extreme points of this polyhedron. These are the points
formed by the intersection of the lines corresponding to the various con-
straints of the linear program. Furthermore, they are not a strict convex
combination of any two distinct points of the polyhedron. More generally,
it can be shown that an element of a polyhedron is an extreme point of it if
and only if it is not the strict convex combination of two distinct points of
the polyhedron.

The linear program asks for a point (x, y) of the polyhedron ABCDEA
that maximizes u(x, y) = 2x + y. Equivalently, one can ask for the largest

1.4. Preliminaries on Linear Programming 31

value of U , such that the line 2x + y = U has a point in common with the
polyhedron. This last problem can be solved by successively drawing parallel
lines, moving as far to the right as possible. In this specific case, this can be
done until the line 2x+ y = U intersects the polyhedron only in the extreme
point C = (3, 3), where the maximum value U = 9 of the objective function is
obtained. Moving the line even further to the right, it would end up disjoint
from the polyhedron, such that no feasible solutions were lying on the line
any more.

The most important property of linear programs that should be illustrated
by this example is, that if an optimal solution exists, then they always have
optimal solutions that are extreme points of the underlying polyhedron.6

Hence, when looking for an optimal solution, one needs only consider a finite
candidate set of points (the set of extreme points is always finite, if the
number of constraints is finite).

The Simplex Algorithm starts at some feasible extreme point and moves
to an adjacent extreme point in each iteration, while improving the values of
the objective function in every step (or sometimes not altering them). This
continues until an optimal extreme point solution is reached. Which extreme
point is chosen as the next one to be visited is dependent on certain rules
known as pivot rules. They exist in many variants, each leading to a different
version of the Simplex Algorithm. For example, if in the above polyhedron
the Simplex Algorithm would be initiated with vertex A as a starting point,
it might first visit the points E, then D, before finally finding the optimum
solution C. Alternatively, it might first consider the point B, then C.

Basic (Feasible) Solutions and Canonical Form

Let the following linear program be given:

max{uTf | d ≤ f ≤ c, ∆f = b}. (1.6)

Herein, u, f, c, and d are n-dimensional vectors, b is anm-dimensional vector,
and ∆ is an m × n-matrix. The equation ∆f = b can be viewed as m
constraints imposed on the n variables (fa)a∈A. LetA be a set with n elements

6Not all optimal solutions need to be extreme points. For example, changing the
objective function to u′(x, y) = x+ 2y, all the points of the line segment CD end up being
optimal solutions.

32 Chapter 1. Introduction and Preliminaries

and let V be one with m elements. Then I henceforth write

b = (bv)v∈V ,

c = (ca)a∈A,

d = (da)a∈A,

f = (fa)a∈A,

u = (ua)a∈A, and

∆ = (δv,a)v∈V, a∈A.

As mentioned earlier, a vector f with d ≤ f ≤ c satisfying ∆f = b is called
feasible, or a feasible solution of (1.6). If the number of linearly independent
constraints

∑
a∈A δv,afa = bv is greater than the number n of variables, then

(1.6) is infeasible, i.e., no feasible solutions exist. As linearly dependent
constraints can be omitted without altering the set of feasible solutions, let
us henceforth assume that n ≥ m. For a ∈ A, I will also refer to [da, ca]
as the feasible or the feasibility interval of fa, or as the capacity interval
corresponding to index a.

I now want to explain the so-called basic solutions of (1.6). Basic solutions
actually need not really be solutions, as they need not be feasible. If they are
feasible, they are called basic feasible solutions, and these latter ones are of
central importance for the Simplex Algorithm. To facilitate understanding,
I first give an example.

1.23 Example. Have a look at the following linear program in the form of
(1.6):

Maximize u(f) = 3f1 + f2 + 4f3 − 6f4 (1.7)

subject to f1 + f2 − 3f3 + 4f4 = 4 (1.8)

f1 + 2f2 − 4f3 + 2f4 = −2 (1.9)

0 ≤f1, f3 ≤ 10, −2 ≤ f2, f4 ≤ 5 (1.10)

A well-known way of finding a solution is to use elementary row operations.
The general Simplex Algorithm also employs them. They consist of the
following actions in arbitrary sequence:

1. Multiplying a row (i.e., a constraint) by a constant, or

2. Adding one row to another or to the objective function.

We could for example multiply (1.8) by −3 and add the result to the objective
function. If then (1.9) is multiplied by −1

2
and added to (1.8), the result is

1.4. Preliminaries on Linear Programming 33

as follows:

Maximize u(f) = 0f1 − 2f2 + 13f3 − 18f4 + 12 (1.11)

subject to
1

2
f1 − f3 + 3f4 = 5 (1.12)

f1 + 2f2 − 4f3 + 2f4 = −2 (1.13)

0 ≤f1, f3 ≤ 10, −2 ≤ f2, f4 ≤ 5 (1.14)

Now multiplying (1.12) by −2 and adding the result to (1.13) transforms our
linear program into the following form:

Maximize u(f) = 0f1 − 2f2 + 13f3 − 18f4 + 12 (1.15)

subject to
1

2
f1 − f3 + 3f4 = 5 (1.16)

2f2 − 2f3 − 4f4 = −12 (1.17)

0 ≤f1, f3 ≤ 10, −2 ≤ f2, f4 ≤ 5 (1.18)

Finally, we add (1.17) to (1.15), then multiply (1.16) by 2 and (1.17) by 1
2
.

This yields the following linear program:

Maximize u(f) = 0f1 − 0f2 + 11f3 − 22f4 + 24 (1.19)

subject to f1 − 2f3 + 6f4 = 10 (1.20)

f2 − f3 − 2f4 = −6 (1.21)

0 ≤f1, f3 ≤ 10, −2 ≤ f2, f4 ≤ 5 (1.22)

Note that (1.7)–(1.10) and (1.19)–(1.22) are equivalent linear programs, i.e.,
they have the same set of feasible solutions, and the optimum values of their
respective objective functions coincide.

In (1.19)–(1.22), the variables f1 and f2 are said to be isolated. That is,
they appear in exactly one constraint equation, with coefficient 1, and do
neither appear in any other equation nor in the objective function. If exactly
one variable is isolated in each constraint and if all of these variables have
coefficient zero in the objective function, then the linear program is said to
have canonical form. Under the initially made assumption that n ≥ m, it
is always possible to transform a linear program into canonical form using
elementary row operations.

The reason why it is useful to transform a linear program into canonical
form is that one can calculate a certain type of solutions from it quite easily:
in (1.19)–(1.22), arbitrarily set the non-isolated variables f3 and f4 to its
respective upper or lower bounds, e.g., f3 = 0, f4=5. Then to satisfy (1.20),
we must have f1 = −20. Similarly, to satisfy (1.21), we necessarily have

34 Chapter 1. Introduction and Preliminaries

f2 = 4. These values for (f1, f2, f3, f4) are an example of a basic solution.
In this case, f2 satisfies its required bounds (1.22), whereas f1 does not.
Therefore this basic solution (f1, f2, f3, f4) is not a feasible one. If it was, it
would be called a basic feasible solution.

Interestingly, it can be shown that the basic feasible solutions of a lin-
ear program are exactly the extreme points (the vertices) of the polyhedron
defined by the constraints of the linear program. The Simplex Algorithm
moves from one basic feasible solution to another, until an optimal solution
is reached.

In general, a basic solution is obtained as follows. The set of variables is
partitioned into three subsets: the set of variables that are to be isolated (of
which there is one per linearly independent constraint), henceforth referred
to as basic variables, the set of non-basic variables that are set to their upper
bounds, and the set of non-basic variables that are set to their lower bounds.
I denote the respective index sets of the variables by B, C and D. Hence,
for the index set A of all variables, A = B ∪C ∪D. Such a triplet (B,C,D)
is called a basis structure. For every basis structure, some further notational
conventions will prove useful: let the column of the constraint matrix ∆
corresponding to index a ∈ A be denoted by ∆a, i.e., ∆ = (∆a)a∈A. Then
the following matrices are needed in the sequel:

∆B := (∆a)a∈B, ∆C := (∆a)a∈C , ∆D := (∆a)a∈D.

Here the matrix ∆B, corresponding to the basic variables, is an m×m square
matrix. Likewise, the variables f = (fa)a∈A are partitioned into three sets as
follows:

fB := (fa)a∈B, fC := (fa)a∈C , fD := (fa)a∈D.

With these definitions, the constraint equation ∆f = b can be reformulated
in the following way:

∆BfB + ∆CfC + ∆DfD = b. (1.23)

If the columns of ∆ corresponding to the m basic variables fB are linearly
independent, then these variables are called a basis, and the matrix ∆B is
called a basis matrix. Henceforth, it will always be assumed implicitly that
the basic variables meet this requirement. Then ∆B can be inverted and the
following solution can be inferred from (1.23):

fB = ∆−1
B b−∆−1

B ∆CfC −∆−1
B ∆DfD, fC = cC , fD = dD. (1.24)

For some choices of (B,C,D) this basic solution will be feasible, which is
the case if and only if dB ≤ fB ≤ cB, and for other choices it will not.
Accordingly, one speaks of feasible and infeasible basis structures.

1.4. Preliminaries on Linear Programming 35

What is left in order to transform the linear program into canonical form
is to make sure that all basic variables have a zero coefficient in the objective
function. This is the topic of the next section.

Reduced Costs

For a given basis structure (B,C,D), transforming the objective function
of a linear program into canonical form can be achieved by performing a
sequence of elementary row operations. This is equivalent to multiplying
each constraint

∑
a∈A δv,afa − bv = 0 by a constant πv, and subtracting the

result from the cost function
∑

a∈A uafa. This results in the following updated
cost function: ∑

a∈A

uafa −
∑
v∈V

πv
(∑
a∈A

δv,afa − bv
)
.

Collecting terms in this expression, and setting u0 :=
∑

v∈V πvbv, it can be
rewritten as

U(f) :=
∑
a∈B

(
ua −

∑
v∈V

πvδv,a
)
fa +

∑
a∈C∪D

(
ua −

∑
v∈V

πvδv,a
)
fa + u0. (1.25)

To obtain an objective function in canonical form, one has to choose the
vector π = (πv)v∈V such that

ua =
∑
v∈V

πvδv,a for all a ∈ B.

Using matrices, this can be written as

πT∆B = uT
B or, equivalently, πT = uT

B∆−1
B .

The numbers (πv)v∈V = π := (∆T
B)−1uB are called the simplex multipliers

associated with the basis B. For every a ∈ A, uπa := ua −
∑

v∈V πvδv,a is
referred to as the reduced cost of the variable fa with respect to the basis
B. Consequently, all the basic variables have reduced cost 0. Note that
the value of the objective function in canonical form corresponding to the
basis structure (B,C,D) can now be calculated, using (1.24), as follows (with

36 Chapter 1. Introduction and Preliminaries

non-basic variables set to their upper or lower bounds):

U(f) =
∑
a∈C

(
ua −

∑
v∈V

πvδv,a
)
ca +

∑
a∈D

(
ua −

∑
v∈V

πvδv,a
)
da + u0

=
∑
a∈C

(
ua − π∆a

)
ca +

∑
a∈D

(
ua − π∆a

)
da + πb

= uT
CcC − πT∆CcC + uT

DdD − πT∆DdD + πTb

= uT
CcC − uT

B∆−1
B ∆CcC + uT

DdD − uT
B∆−1

B ∆DdD + uT
B∆−1

B b

= uT
BfB + uT

CcC + uT
DdD = uTf.

This verifies that for the basic solution f , the modified cost function (1.25)
assumes the same value as the original cost function.

Description of the Simplex Algorithm

Simplex Algorithm is actually the name of a family of numerous closely re-
lated algorithms. They all work as follows: given an initial basic feasible
solution, it maintains such a solution at every step. First, a certain opti-
mality criterion is applied to the solution. If the solution is optimal, the
algorithm (naturally) stops. Otherwise, an operation called pivot operation
is performed to obtain another basis structure with corresponding equal or
greater value of the objective function. This is done by first selecting one
non-basic variable, called entering variable, which is to become a basic vari-
able in the next step. Then one of the basic variables, called leaving variable,
is selected to become a non-basic variable. Afterwards, the linear program
is updated in order to obtain canonical form with respect to the new basis
structure. This whole procedure is repeated until the optimality criterion is
satisfied. As mentioned before, which basis structure (which entering and
leaving variable) is chosen in each step depends on the so-called pivot rules.
Different sets of pivot rules lead to differences in the performance of the
Simplex Algorithm. For almost all versions of the Simplex Algorithm, there
are counterexamples, showing that the running time is not necessarily poly-
nomial. However, despite this exponential worst-case time complexity, the
Simplex Method works very well and fast empirically, and for problems of
seemingly arbitrary size.

I summarize all of these basic operations of the Simplex Algorithm in the
following table:

1.4. Preliminaries on Linear Programming 37

Simplex Algorithm

Input • Vectors b, c, d, u and a matrix ∆ of the linear program
max{uTf | d ≤ f ≤ c, ∆f = b}
• An initial feasible basis structure (B,C,D)

Output A feasible solution fmax of maximal value

¬ Compute the basic solution f and the reduced costs (uπa)a∈A
corresponding to the current basis structure.

 Look for non-basic variables violating their optimality

criterion.

- If none exists, stop. fmax := f is maximal.

- Otherwise, select one of them as the entering variable

and go to ®.

® Select a leaving variable.

¯ Update (B,C,D) and go to ¬.

One problem that could possibly arise is that if the value of the objective
function does not increase during a couple of consecutive steps, the algorithm
might get caught in an infinite cycle, in which the same sequence of solutions
is considered repeatedly. In order to prevent this, a couple of anti-cycling
rules have been conceived, that constitute adaptions to the various pivot
rules.

Now, I would like to have a closer look at the various steps that are
performed during an execution of the Simplex Algorithm.

Finding an Initial Feasible Solution

As a basic solution need not be feasible, the first important topic is how to
find an initial feasible solution. Unfortunately, there is no easy way for de-
termining a feasible basis structure. In fact, finding one is almost as difficult
as finding an optimal solution, given some feasible solution is already known.

Nevertheless, there exists a simple technique of finding an optimal so-
lution to an augmented linear program for which an initial basic feasible
solution is known and whose optimal solutions coincide with the ones of the
original program (in case this latter one has any feasible solutions at all). The

38 Chapter 1. Introduction and Preliminaries

method consists of introducing a set of artificial new variables g = (gv)v∈V
with sufficiently large negative costs M = (Mv)v∈V , one for every constraint
equation of the original linear program. This augmented program is the
following linear program:

max{uTf +MTg | d ≤ f ≤ c, 0 ≤ g <∞, ∆f + εg = b}. (1.26)

Here ε = (εu,v)u,v∈V is a diagonal matrix, with the only nonzero elements
being diagonal entries equalling 1 or −1. The v-th entry εv,v is chosen ac-
cording to whether the v-th row of b−∆d is positive or negative. The purpose
of this is that g can then be restricted to nonnegative values, as is done in
(1.26), without sacrificing the easy solvability of the program. The system of
constraint equations in (1.26) is still in the form used in (1.6), as by setting
∆′ := (∆, ε) and f ′ := (f, g), it can be written as ∆′f ′ = b. Analogously, the
objective function can be dealt with.

It is not difficult to show that the original program has a feasible solution
if and only if the auxiliary program has an optimal solution for which g = 0V .
This is because the large negative cost coefficients of the variables gv prevent
them from being nonzero in an optimal solution if this is not necessary for
obtaining any solution at all. The solutions of the auxiliary program in which
the artificial variables are all zero are also solutions to the original program.
Therefore, solving the auxiliary program also solves the original program.

The point herein is that an initial basis structure and a basic feasible
solution for the augmented program is obtained very easily: the basis is the
set of artificial variables, all non-artificial variables are set to their lower
bounds. The values of the artificial variables can be calculated according to
the equation εg = b −∆d. Due to the choice of εv,v, gv is guaranteed to be
≥ 0, i.e., to be feasible.

An Optimality Criterion

The value of the objective function in the canonical form of a linear program,
with respect to a feasible basis structure (B,C,D), is the following:

U(f) =
∑
a∈C

uπaca +
∑
a∈D

uπada + u0 (1.27)

Here the coefficients uπa = ua −
∑

v∈V πvδv,a are the reduced costs of the
non-basic variables fa and u0 =

∑
v∈V πvbv. The numbers πv are the simplex

multipliers associated with B. Since for all a ∈ A we have fa ≤ ca and
fa ≥ da, the value of (1.27) is an upper bound on the value of the objective
function if

1.4. Preliminaries on Linear Programming 39

1. uπa ≥ 0 for all a ∈ C, and

2. uπa ≤ 0 for all a ∈ D.

If 1. and 2. are satisfied, then a decrease of the value of some fa for a ∈ C
would result in a decrease of the value of the objective function. The same is
true for a potential increase of the value of fa for some a ∈ D. The condition
uπa ≥ 0, respectively uπa ≤ 0, is therefore called optimality condition for the
variable a ∈ C, respectively a ∈ D.

Consequently, as for the current basic feasible solution f the objective
function U assumes the value U(f) given in (1.27), if Conditions 1. and 2.
hold, this solution must be optimal.

Entering Variable Criterion

Any variable that violates its optimality condition is eligible as an entering
variable. That is, the entering variable fe has to satisfy one of

1. e ∈ C and uπe < 0, or

2. e ∈ D and uπe > 0.

Obviously, there is more than one way to choose an entering variable among
possible candidates. Equation (1.27) implies that, in the case that 1. respec-
tively 2. holds for some index a, |uπa | is the rate of increase of the objective
function U(f) per unit decrease of the variable fa (for a ∈ C), or per unit
increase of the variable fa (for a ∈ D). If fa is chosen as the entering variable,
in the next step the algorithm will try to decrease (for a ∈ C) or increase
(for a ∈ D) the value of fa as much as possible. Hence, it is a good idea
to choose a variable fa whose reduced cost currently has maximum absolute
value |uπa | as the next entering variable fe. This criterion is often referred
to as Dantzig’s pivot rule, as it was first suggested by George B. Dantzig.
The drawback of this method are high computational costs, since a lot of
variables have to be tested in every step. Another common rule for choosing
an entering variable is the following: a list of all variables violating their op-
timality condition is maintained and, quite simple, the first variable in that
list is selected. Compared to Dantzig’s rule, this is the opposite extreme:
there is very little computation necessary to find a suitable variable, but it
is chosen with little carefulness, such that the number of iterations the algo-
rithm needs for finding an optimal solution might increase. There are also
implementations that are sort of a mixture and use elements of both of these
approaches.

40 Chapter 1. Introduction and Preliminaries

Leaving Variable Criterion

Suppose the current basis structure for the linear program

max{uTf | d ≤ f ≤ c, ∆f = b}

is (B,C,D), and the non-basic variable fe has been chosen as the next en-
tering variable. Recall that

fB = ∆−1
B b−∆−1

B ∆CfC −∆−1
B ∆DfD. (1.28)

Here ∆ = (∆a)a∈A, with ∆a = (δv,a)v∈V . Also, for J ⊆ A, ∆J = (∆a)a∈J .
Choose any Bijection B → V . Then one can write b = (ba)a∈B instead of
b = (bv)v∈V . Similarly, ∆a = (δv,a)v∈B. For enhanced readability, a few
further notations should be introduced:

b =(ba)a∈B := ∆−1
B b

∆j =(δa,j)a∈B := ∆−1
B ∆j for all j ∈ A

∆J :=(∆j)j∈J = ∆−1
B ∆J for all J ⊆ A.

Since for all non-basic variables we have fa = ca (for a ∈ C), or fa = da (if
a ∈ D), (1.28) can now compactly be rewritten as

fB = b−∆CcC −∆DdD,

or, equivalently,

fa = ba −
∑
j∈C

δa,jcj −
∑
j∈D

δa,jdj for all a ∈ B. (1.29)

Assume for the moment that e ∈ C. In order to increase the value of U(f),
let us try to decrease the value of fe = ce as much as possible, subject to
the requirement that the constraints ∆f = b and d ≤ f ≤ c remain valid.
Suppose that the value of fe is decreased by the amount θ, i.e., fe = ce − θ.
Then for a ∈ B, by (1.29), the value of fa changes to:

fa = ba −
∑
j∈C

δa,jcj −
∑
j∈D

δa,jdj + δa,eθ. (1.30)

If δa,e > 0 for some a ∈ B, then the value of the basic variable fa will
gradually increase as the value of θ is increased, until it finally reaches ca.
Similarly, if δa,e < 0 for a ∈ B, then the value of fa will decrease as the value
of θ is increased, until it reaches da. If δa,e = 0, then θ can be increased

1.4. Preliminaries on Linear Programming 41

arbitrarily, without fa ever leaving its feasible interval. As we would like to
maintain the validity of the inequalities da ≤ fa ≤ ca for all a ∈ B at the
same time (and hence the feasibility of the current solution), we define for
a ∈ B:

θa :=

(δa,e)

−1
(
ca − ba +

∑
j∈C δa,jcj +

∑
j∈D δa,jdj

)
for δa,e > 0

∞ for δa,e = 0

(δa,e)
−1
(
da − ba +

∑
j∈C δa,jcj +

∑
j∈D δa,jdj

)
for δa,e < 0

.

It is also necessary to take care that the variable fe does not leave its own
feasible interval. Therefore, the maximum possible value for θ that maintains
feasibility of the solution, and which is hence chosen, in order to increase the
value of the objective function as much as possible, is:

θ := min
{
ce − de,min{θa | a ∈ B}

}
≥ 0.

If θ = ce − de, then the basis structure remains unaltered, the index e of the
variable fe just moves from C to D. In the remaining case, if θ = θa for some
a ∈ B, then the values of all the variables fa with θa = θ assume one of ca or
da. One of these variables can be chosen as the leaving variable fl. Again,
there are various possibilities as to which one of them is selected. This can in
practice be quite an important topic, the reasons for which will be discussed
in the next section.

The other case, in which a variable fe at its lower bound de is selected
as the entering variable, i.e., e ∈ D, is completely analogous to the above
considerations.

Finally, once a leaving variable fl has been selected, the triplet (B,C,D)
is updated and the system is brought into canonical form with respect to
the new basis structure. This can be done using elementary row operations.
There exist implementations of the Simplex Algorithm with largely differing
computational costs. In particular, in most of the linear programs arising
in practice, the constraint matrix ∆ contains many entries that are zero (90
percent or more are not a rarity). This can be exploited by modifications to
the method discussed above and by specifically designed implementations.
For example, the Revised Simplex Algorithm is a clever variant in which not
all of the columns ∆j have to be computed in every step and thus the number
and complexity of elementary row operations that have to be performed are
in most cases drastically reduced.

Finite Termination of the Simplex Algorithm

During the execution of the Simplex Algorithm, in each iteration it moves
from one basic feasible solution to another. While doing this, according to

42 Chapter 1. Introduction and Preliminaries

(1.27), the value of the objective function is improved by the amount uπe θ
in every step. Here e is the index of the entering variable. If θ = 0, the
pivot is referred to as degenerate. If θ > 0, it is called nondegenerate. The
situation that θ =∞ might also possibly arise. Since uπe 6= 0 (if uπe = 0, then
fe does not violate its optimality condition), this means that the value of
the objective function can be increased arbitrarily and is hence unbounded.
Therefore, no finite optimal solution exists. However, this can only possibly
happen if there is some a ∈ A with ca =∞ or da = −∞.

If every pivot is nondegenerate, the value of the objective function strictly
increases as the algorithm proceeds, which means that no solution can occur
twice during an execution of the Algorithm. Since there are only

(
n
m

)
2n−m

different basis structures, i.e., only so many basic solutions, this would imply
the finiteness of the method.

Unfortunately, in general there is no simple way to guarantee the nonde-
generacy of every pivot. In fact, in practice typically by far the most pivots
are degenerate. As in this case solutions might be repeated any number of
times, finiteness of the algorithm cannot be guaranteed without some fur-
ther precautions. There are several possibilities to ensure finiteness of the
Simplex Algorithm. Most of them use refined rules with regard to which
variables should be chosen as entering or leaving variables. For example, us-
ing a simple lexicographic rule to break ties in the case of multiple entering
or leaving candidates, solves the problem successfully.

Concluding, here are again the three possible outcomes of an execution
of the Simplex Algorithm:

• The algorithm terminates with a pivot in which θ =∞. In this case, the
objective function is unbounded and hence no finite optimal solution
exists.

• The algorithm terminates with an optimal solution in which the value
of some artificial variable is nonzero (cf. page 37). In this case the
original program has no feasible solution.

• The algorithm terminates with a finite solution in which all artificial
variables have zero value. Then this solution is a finite optimal solution
for the original program.

1.4.4 The Ellipsoid Method

Although in practice almost useless due to its long average running time,
the Ellipsoid Method for solving linear programs has a better worst-case
running time than the Simplex Algorithm and has therefore proved useful

1.4. Preliminaries on Linear Programming 43

for the derivation of some theoretical results. In fact, it was the algorithm
with which the polynomiality of the general linear programming problem
originally was established, namely by Khachiyan in 1979.

For an introduction see for example [18, Section 8.7], or [21, Section 5.11].
A more in-depth survey including some implications for combinatorial opti-
mization can be found in [9].

In [14, p. 82], the following running time bound for solving the linear
program (1.4) using Kachiyan’s Ellipsoid Method is given:

O
((

dim(b) + dim(c)
)9(

size(A) + size(b) + size(c)
)2)

.

Here size(x) denotes the binary encoding length of x. When compared with
the time complexities of the algorithms examined in Chapter 4, this illustrates
the practical infeasibility of the Ellipsoid Method for computation of maximal
network flows or related problems.

1.4.5 Duality

Duality is arguably the most useful concept in all of linear programming.
According to Dantzig, the first one to point out the power of this principle
was John von Neumann (cf. [5, p. 29]). This piece of work deals mainly with
a specialization of the general duality principles, namely with the concepts
that result when applied to networks.

1.24 Definition. Associated with every linear program is its dual program.
For the program (1.4), which in this context is called the primal program, it
looks as follows:

Find y ∈ Rm such that

(i) y ≥ 0

(ii) yTA = cT

(iii) yTb is minimal.

Or shorter,
min{yTb | y ≥ 0, yTA = cT}. (1.31)

Analogously to Definition 1.20, the mapping y 7→ yTb is called objective
function or cost function.

The following is the most important theorem of this chapter. It is one of
the most fundamental theorems in linear programming. Proofs can be found
in nearly all introductory books on linear programs. It was first proved by

44 Chapter 1. Introduction and Preliminaries

von Neumann in 1947. This version is taken from [21, p. 62]. The Max-Flow
Min-Cut Theorem, that I want to examine in detail in Section 2.4, is a special
case of the general Duality Theorem of Linear Programming. This fact will
be proved in Section 3.2.

1.25 Theorem (Duality Theorem of Linear Programming). Let m,n ∈ N
and A ∈Mm,n(R), b ∈ Rm, c ∈ Rn. Then

max
x∈Rn
{cTx | Ax ≤ b} = min

y∈Rm
{yTb | y ≥ 0, yTA = cT}, (1.32)

if at least one of these optima is finite.

1.26 Remark. It is not hard to show that the minimum is always greater
or equal the maximum in (1.32), not only in the case of finiteness of one of
the optima. Provided finiteness is known, the converse inequality is harder
to prove. For the special case of networks, I shall deduce this statement in
Section 2.4. From Theorem 1.25, it follows that there are only the following
possibilities for a pair of dual programs:7

• primal program has a finite optimum =⇒ dual program has a finite
optimum

• primal program has an unbounded objective function =⇒ dual program
is infeasible

• primal program is infeasible =⇒ dual program is either infeasible, or
feasible and has an unbounded objective function

Simple examples show that all of these cases can actually occur (see for
example [18, p. 70f.]). Hence, there are exactly the above possibilities for a
pair of dual programs.

1.27 Remark. As mentioned before, every linear program can be written
in many equivalent ways. Moreover, the dual program (1.31) can be written
as a primal program of the form (1.4). It is not hard to verify that then the
dual of the dual is again the original primal program. Hence, which program
deserves to be called the primal one, and to which the adjective dual should
be assigned, is quite an arbitrary choice.

I now want to state the Duality Theorem of Linear Programming in a
more general version, as the linear programs that will come up in our study
of networks are not exactly in the form for which Theorem 1.25 is formulated.
This formulation is also taken from [21, p. 62]:

7this is taken from [18, p. 70]

1.4. Preliminaries on Linear Programming 45

1.28 Theorem (General Duality Theorem of Linear Programming). Let
A, B, C, D, E, F, G, H, K be matrices and α, β, γ, δ, ε, ζ be vectors. As-
sume that all dimensions in the following expression are compatible. Then

max{δTx+ εTy + ζTz | x ≥ 0, z ≤ 0,

Ax+By + Cz ≤ α,

Dx+ Ey + Fz = β,

Gx+Hy +Kz ≥ γ}
= min{uTα + vTβ + wTγ | u ≥ 0, w ≤ 0,

uTA+ vTD + wTG ≥ δT,

uTB + vTE + wTH = εT,

uTC + vTF + wTK ≤ ζT},

in case that at least one of these optima is finite.

47

Chapter 2

A Combinatorial Approach to
Maximal Flow

In this chapter, I am going to introduce networks, the objects that are ex-
amined in the remainder of this text. Networks are basically digraphs, just
with some additional numbers assigned to the arcs and vertices. Flows can
be thought of as some quantity that is exchanged—or ‘flows’—along the arcs
of these networks. The problem of finding flows satisfying certain proper-
ties can be regarded as a linear optimization problem. Although this might
not be completely apparent at first sight, if formulated appropriately, the
translation from graph theory to linear programming, or vice versa, is a very
natural one. First, I want to discuss networks and flows utterly in graph
theoretical terms. Then, in Chapter 3, I will show what the very same the-
ory looks like if formulated in the language of linear programming. In order
to achieve maximal consistency, and to emphasize the equivalence between
the two approaches, I tried to choose the notation such that the change is
effortless and intuitive.

In Section 2.1, a certain function is described that will reappear frequently
later on. Section 2.2 contains the definition of most of the central objects, as
well as some of their basic properties and a couple of illustrating examples.
The subsequent Section 2.3 is dedicated to cuts, a notion that is dual to
the one of flows. Most of the theory of network flows could equally well be
formulated focussing on cuts rather than on flows. Sections 2.4, respectively
2.5, consist mainly of the detailed proof of the famous Max-Flow Min-Cut
Theorem, respectively the completely analogous Min-Flow Max-Cocapacity
Theorem. Section 2.6 addresses a topic that is suspended in the preceding
sections: examining the exact assumptions needed to guarantee the existence
of flows of certain types for a given network. Finally, in Section 2.7, vari-
ous alternative definitions of networks that are found in the literature are

48 Chapter 2. A Combinatorial Approach to Maximal Flow

presented.

In the line of proof of the central theorem of this chapter, the Max-Flow
Min-Cut Theorem, in both its classical and its slightly more general version,
I mostly follow [21, Chapter 10]. There you can find a very clear, concise and
elegant exposition of the topic. The structure and the ideas used are more or
less the same as in the classical monograph [8] by Ford and Fulkerson. The
proof is almost constructive, i.e., an instruction how to find a maximal flow
can be inferred from it. Except for one point, that is, which is left open: there
is no recipe given how to find a so-called augmenting path. Augmenting paths
are used to construct a flow of greater value from a given flow. In Section 4.2,
we will see how the proof of the Max-Flow Min-Cut Theorem gives rise to
different algorithms that find a maximal flow, the various algorithms basically
differing in the way an augmenting path is chosen.

In graph theory in general, there are no fully established notational con-
ventions. Of course few of the alternatives that are in use represent major
qualitative differences between the various approaches, but the deviations
are still numerous and big enough to be annoying, and sometimes they cause
irritation when reading texts from an unknown author. The same is true
for the subject area of this thesis; there is no real standard terminology for
network flow theory. Over the years many variations have surfaced and dis-
appeared again. I tried to use a terminology that I found most intuitive and
flexible. To this end, I used ideas from [21] and [2], as well as some new
elements that I found indespensable.

2.1 The Function excess

First, I want to introduce a function that will prove hugely useful for the
formulation and the proof of the Max-Flow Min-Cut Theorem.

Remember that for any function f : A→ R and any finite subset U ⊆ A,
we have set f(U) :=

∑
u∈U f(a). Hence, f(∅) = 0.

2.1 Definition (Excess Function). Let D = (V,A) be a digraph and let
f : A→ R be some function. Define the excess function of f as

excessf : V → R, v 7→ f(δin(v))− f(δout(v)).

2.2 Lemma. Let D = (V,A) be a digraph, f : A→ R a function and U ⊆ V
arbitrary. Then

excessf (U) = f(δin(U))− f(δout(U)).

2.2. Networks and Flows 49

Proof. We have

excessf (U) =
∑
u∈U

excessf (u)

=
∑
u∈U

(∑
a∈δin(u)

f(a)−
∑

a∈δout(u)

f(a)
)
, and (2.1)

f(δin(U))− f(δout(U)) =
∑

a∈δin(U)

f(a)−
∑

a∈δout(U)

f(a). (2.2)

Now count the multiplicities with which the terms on the right-hand sides of
(2.1) and (2.2) occur. All the terms are of one of the forms f(a) or −f(a),
for some a ∈ A. Choose a = (u, v) ∈ A. There are four cases:

• First, suppose u ∈ U , v 6∈ U , i.e., a ∈ δout(U). Then −f(a) occurs
exactly once in (2.1) and (2.2).

• Second, u 6∈ U , v ∈ U , i.e., a ∈ δin(U). Then f(a) occurs exactly once
in (2.1) and (2.2).

• Third, u, v 6∈ U . In neither (2.1) nor (2.2) any term involving a occurs.

• Fourth, u, v ∈ U . This is the only interesting case. Neither f(a)
nor −f(a) occurs in (2.2), but in (2.1), there are two vertices w with
a ∈ δin(w) ∪ δout(w) (namely w = u and w = v). So we have the terms
f(a) and −f(a) once each, adding to 0.

We have thus seen term-wise equality between the right-hand sides of (2.1)
and (2.2). This completes the proof.

2.2 Networks and Flows

Networks can be found everywhere around us. Personal networks, telecomu-
nication systems, urban traffic, pipelines, . . . Although appearing in many
different forms, they all share some basic common features. These are con-
densed in the mathematical description given below. This description is
simple enough that one could hope that even persons with no mathematical
knowledge are able to comprehend it, while also general enough to capture
most characteristics one would expect intuitively from a network.

Often associated with a network, in its heuristic sense, is something that
moves along the network, something that is exchanged through it. The net-
work usually is not a static object, constructed for its own sake, but rather

50 Chapter 2. A Combinatorial Approach to Maximal Flow

functions as a carrier for something else, be it water, people, information,
money, . . . This ‘something’ that travels around a network will abstractly
be introduced as flow.

The following is the central definition of this exposé, in which the objects
of our main interest are introduced. The remaining text is mainly a survey
on these notions.

2.3 Definition (Networks, Flows, Balance Vectors, Capacity and Demand
Functions). Let D = (V,A) be a digraph, S, T ⊆ V , and let c, d : A → R,
f : A → R, and b : V → R be functions. In the context of networks, such a
function f is called a flow in D. More specifically, a flow f in D is called
a b, c, d-flow from S to T in D, or an (S, T, b, c, d)-flow in D, or simply a
feasible flow in D, if and only if

(i) excessf (v) = b(v) ∀v ∈ V \(S ∪ T), (2.3)

(ii) f(a) ≤ c(a) ∀a ∈ A, (2.4)

(iii) f(a) ≥ d(a) ∀a ∈ A. (2.5)

b is called a balance vector, c a capacity function, and d a demand function
for D. The interval [d(a), c(a)] ⊆ R is called capacity interval of a. It could
be empty or unbounded. I will refer to the quintuple (S, T, b, c, d) as a flow-
quintuple for D.

(D,S, T) is usually referred to as a network. The vertices s ∈ S are called
the sources of the network, the vertices t ∈ T its sinks. For every such triplet
(D,S, T), I will, for convenience and readability, abbreviate R := V \(S ∪T).
Sometimes, I will refer to a graph D together with a whole flow-quintuple
(S, T, b, c, d) as a network. If for such a network (D,S, T, b, c, d) some feasible
flow exists, the network is called feasible. Otherwise, it is called infeasible.

For b = 0R, the condition (2.3) is usually called flow-condition or flow-
conservation law. To avoid confusion, I will use the term balance-condition
if b 6= 0R.

I denote the set of all flows in D by F(D). For the set of all (S, T, b, c, d)-
flows in D, I write F b,c,dS,T (D). In all of the above notations, if S = {s} or
T = {t}, I will usually leave out the braces. If it is understood from the
context which digraph I am talking about, I will omit specific reference to
D.

An (S, T, b, c, d)-flow f is called integral if it is an integer-valued function,
i.e., if f(A) ⊆ Z.

2.4 Remark. Clearly, a feasible flow f as in the above definition can only
exist if c ≥ d. A few additional examples of networks with F b,c,dS,T = ∅ are
depicted in Figures 2.1–2.3 on page 51.

2.2. Networks and Flows 51

v
[!2,7]

b(v)=!3
s

Figure 2.1: An infeasible net-
work.

b(v)=2

[0,3]
vs t

[2,5]

Figure 2.2: Another infeasible net-
work.

x

y

[6,10]
b(x)=1

[3,3] [3,7]
[2,9]

[!2,7]

b(u)=!1

[5,11]

b(v)=3

[!3,1]

[1,6]

[!2,2]
b(y)=2

b(w)=0

s t

u

v

w

Figure 2.3: Yet another infeasible network.

In Figure 2.1, a simple graph with only two vertices and one arc (weakly)
connecting them is depicted. If we set T := ∅, then there is no feasible
s − T -flow: such a flow f would have to satisfy excessf (v) = f(δin(v)) −
f(δout(v)) = −3. But for any choice of f we have f(δout(v)) = f(∅) = 0.
As f(δin(v)) = f((s, v)) ≥ d((s, v)) = −2, the balance-condition of vertex
v cannot be satisfied by any flow f with d ≤ f ≤ c. Hence, no flow in the
graph is feasible.

Figure 2.2 shows the network (D, s, t, b, c, d). Here

D =
({
s, v, t

}
,
{

(s, v), (v, t)
})
.

The balance-condition for v, b(v) = 2, tells us that 2 flow-units more must
enter v than leave v. But at most c((s, v)) = 3 units can enter v. At least
d((v, t)) = 2 have to leave v. These are contradictory requirements, whence
the network is infeasible.

Finally, the network depicted in Figure 2.3 is a little bit more complex.
The task of verifying that no feasible s− t-flow for this network exists is left
to the reader. This example is meant to illustrate the fact that in bigger
networks it might be a rather nontrivial question whether or not there exists
a feasible flow.

52 Chapter 2. A Combinatorial Approach to Maximal Flow

[!2,1]

[!25,79]

[0,2]
b(w)=2

b(u)=!1

b(v)=!2S

T

s’

s’’

t

t’

u

v

w

s
[2,7] [3,5]

[1,6]

[!1,1] [!3,!2]

[0,3]

Figure 2.4: A typical network.

Necessary and sufficient conditions for the existence of feasible flows in
a given network are discussed in more detail in Section 2.6. Moreover, an
algorithm is presented that finds a feasible flow or decides that there is none.

2.5 Example. The network of Figure 2.4 is a bit more complicated than the
previous examples. We have:

V = {s, s′, s′′, t, t′, u, v, w},
A = {(s, v), (s′, t′), (s′′, w), (t, s), (t, t′), (t′, w), (u, s′), (v, s′′), (v, t)},
S = {s, s′, s′′}, the set of sources,

T = {t, t′}, the set of sinks, and

R = {u, v, w}.

The closed interval next to each arc a shall indicate the lower and upper
capacity bounds [d(a), c(a)]. Furthermore, the values of b are written next
to the respective vertices. Let us try to find out whether there is a feasible
(S, T, b, c, d)-flow for D.

For this purpose, we first try to match the balance-vectors of u, v, and w.
No flow can enter u, therefore −1 = excessf (u) = −f(δout(u)) = −f((u, s′)).
This implies that a feasible flow must satisfy f((u, s′)) = 1, which luckily lies
in the capacity interval [0, 2] of (u, s′).

For vertex v, from the demand and capacity constraints on adjacent arcs,
we infer 2 ≤ f(δin(v)) ≤ 7 and 2 ≤ f(δout(v)) ≤ 6. As 2 units more should
leave v than enter it, this can clearly be achieved (e.g., set f((s, v)) = 4,
f((v, s′′)) = 1, f((v, t)) = 5).

2.2. Networks and Flows 53

Skilled as we are by now, it is easy to see that f((s′′, w)) = 3, f((t′, w)) =
−1 is a solution for w that respects b(w) as well as all involved demands and
capacities. Setting the values of f arbitrarily within the respective capacity
intervals of the remaining arcs completes our construction of a feasible f ∈
F b,c,dS,T :

f((t, s)) = 1, f((t, t′)) = −17, f((s′, t′)) = −2.

Note that these choices make f an integer flow.

2.6 Definition (Value of a Flow). Let D = (V,A) be a digraph, (S, T, b, c, d)
a flow-quintuple for D. Let f be a (not necessarily feasible) flow. The real
number

value(f) := f(δout(S))− f(δin(S))

is called the value of f . A feasible flow is called maximal if and only if it
is of maximum value (in the set of feasible flows). Analogously, it is called
minimal if and only if it is of minimum value (in the set of feasible flows).

2.7 Example. For the feasible flow constructed in Example 2.5, we have:

value(f) = f(δout(S))− f(δin(S))

=f((s, v)) + f((s′, t′)) + f((s′′, w))− f((t, s))− f((u, s′))− f((v, s′′))

=4 + (−2) + 3− 1− 1− 1 = 2

Is this a maximal flow or can we find one of greater value? Or maybe it
happens to be minimal? We take a heuristic approach and see if we can
answer these questions straightforwardly.

We have seen that any feasible flow must satisfy f((u, s′)) = 1, no room
for improvement here. The arcs (t, s) and (s′, t′) are easy to handle, too:
the only constrains that have to be met are given by capacity and demand.
Hence, to achieve maximality, flow will be at the lower bound on arc (t, s)
and at its capacity on arc (s′, t′), whereas for a minimal flow, it will be the
other way round. f((t, t′)) has no influence on value(f), so we can choose
that as we like within capacity bounds. As f , constructed in Example 2.5,
is at the upper bound on arc (s′′, w) already, no other flow could do better
there. To achieve little value, we would rather set f((s′′, w)) = 1 = f((t′, w)),
which also satisfies the balance prescribed for w.

Slightly more complicated is the situation at v, since there all of the three
remaining arcs are involved. Two units more must flow out of v than into it,
and for maximal value, we have to maximize f((s, v))− f((v, s′′)). At most
five units can leave v via (v, t). So all we send into v exceeding 3 units along
(s, v) must re-enter S via (v, s′′), such that nothing would be gained or lost.
Here lies a certain flexibility, there is more than one choice for a maximal

54 Chapter 2. A Combinatorial Approach to Maximal Flow

flow. The choice for f from above can be seen to be maximal already. For
minimal flows, the situation is different: of course we want f((s, v)) to be no
more than 2 if possible, and ideally f((v, s′′)) = 1 as well. But this becomes
feasible by setting f((v, t)) = 3. Consequently, here the choice for a minimal
flow is unique.

We summarize our findings in the following table, giving an example of
a maximal, and the unique minimal flow for the network in Figure 2.4 on
page 52:

fmax fmin
(s, v) 4 2
(s′, t′) −2 −3
(s′′, w) 3 1
(t, s) 1 6
(t, t′) 73 37
(t′, w) −1 1
(u, s′) 1 1
(v, s′′) 1 1
(v, t) 5 3
value 2 −8

One thing these calculations were supposed to show is that the utilized, fairly
heuristic and intuitive, approach is a little clumsy and likely to not be efficient
when the problems become more complex and the networks bigger. In fact,
describing the used ‘algorithm’ formally, such that a computer could execute
the procedure, one would probably get a highly inefficient tool for finding
maximal flows. It is also not clear at all what such a description would look
like. It might not always be possible to decide directly—as we managed in the
last example—which decisions are the right ones, if the ‘interdependencies’
between constraints and requirements on different arcs and vertices become
more involved

Consequently, one might hope to find better algorithms that are easier to
describe, that are guaranteed to work for every network, and that are more
efficient than our heuristic attempt. Luckily, there are many such algorithms
readily available. A discussion of a few of the most popular ones is given in
Chapter 4.

A straightforward calculation verifies the following fact, that will be
needed later on:

2.8 Lemma (Continuity of the Function value). The function value : F → R
is linear. Consequently, it is continuous.

2.2. Networks and Flows 55

2.9 Remark. Let D, (S, T, b, c, d), and f be as in Definition 2.6. The value
of f can be regarded as the net amount of ‘flow’ leaving S. Taking U = V
in Lemma 2.2, it can be seen that

0 = excessf (V) =
∑
s∈S

excessf (s) +
∑
v∈R

excessf (v) +
∑
t∈T

excessf (t)

= excessf (S) +
∑
v∈R

b(v) + excessf (T).

Therefore,

value(f) = − excessf (S) = b(R) + f(δin(T))− f(δout(T)).

For b(R) = 0 (e.g., if b = 0R), this amounts to the net amount of flow leaving
S being equal to the net amount of flow entering T .

For S = ∅, all f ∈ F(D) satisfy value(f) = 0. So in this case, to search
for a maximum flow (which is the topic of Chapter 4) is equivalent with just
searching for any feasible flow.

2.10 Remark. As mentioned before, there are many variations in the termi-
nology used to describe networks. A lot of authors (certainly not all though)
prefer to define networks in forms that appear to be less general than how I
introduced them above. For example, usually the set of sources and the set
of sinks are required to contain exactly one element. But this is not really a
confinement, since the ‘general’ case can easily be reduced to the one-source
one-sink-case: just adjoin two additional vertices s0 and t0 (a ‘super-source’
and a ‘super-sink’) to the network, along with arcs of unlimited capacity and
zero demand, of the form (s0, s) for every s ∈ S and (t, t0) for every t ∈ T .
Also, set b(v) = 0 for all v ∈ S ∪ T . Then there is a one-to-one correspon-
dence between the ST -flows of value W in the augmented network and the
s0 − t0-flows of value W in the original network.

Similar auxiliary networks can be constructed for reductions of the ‘gen-
eral’ version to the cases b = 0R respectively d = 0A (see [2, p. 101] or [21,
p. 175f.], respectively [2, p. 99f.] or [4, p. 140–143]). Another detailed elabo-
ration on transformations between different network models can be found in
[1, p. 38–46].

The case of S = T = ∅ is most often treated separately and called a
circulation (for b = 0R) or a (b-)transshipment (if b 6= 0R is allowed). The
classical case considered by Ford and Fulkerson in [8], as well as by most

56 Chapter 2. A Combinatorial Approach to Maximal Flow

other authors on the subject, is

S ={s},
T ={t},
b =0R,

c ≥0A,

d =0A.

Summarizing, it can be said that the most often encountered approach is
to define network flows in a seemingly specialized form and then reduce all
generalizations to the basic model.

When I was studying Ford and Fulkerson’s proof of the Max-Flow Min-
Cut Theorem, I found that there was no real alteration necessary in order to
formulate and prove the different lemmas and theorems with the terminology
introduced above (hardly more than using capital letters instead of some
lowercase ones had to be changed; and writing d(a) or

∑
v∈R b(v) instead

of 0 in a few places). Moreover, the basic ideas were not disguised by the
relatively few additional technical details. Therefore, I found it very natural
to use this terminology. I also tried to add a few further ‘generalizations’ that
are in common use (all of which can be reduced to the more basic network
definitions with little effort). But in most cases I did not quite see how to
include them in the proofs without having to use rather different approaches,
or getting technically cluttered. That is why I decided to introduce the
notions of networks and flows in just the generality that can be seen above.

2.11 Remark. The set F(D) is isomorphic to the real vectorspace RA. It
is partially ordered by the relation

f1 ≤ f2 :⇐⇒ f1(a) ≤ f2(a) for all a ∈ A.

The following is a total pre-order on F(D):

f1 ≤ f2 :⇐⇒ value(f1) ≤ value(f2).

Furthermore, the set F0,∞,0
S,T (D) is a submonoid of F(D) (with respect to the

arc-wise addition of flows), whereas F0,∞,−∞
S,T (D) is even a subspace.

All of these claims can be verified in an elementary way. As I will not
need them and have stated them just for illustration, the proofs are omitted.

2.12 Lemma (Properties of F b,c,dS,T (D)). Let D = (V,A) be a digraph and let

(S, T, b, c, d) be a flow-quintuple for D. Then the set F b,c,dS,T (D) is a closed,
convex subset of F(D). It is bounded and hence compact if −∞ < d and
c <∞.

2.2. Networks and Flows 57

Proof. If F b,c,dS,T (D) = ∅, then it is a closed, convex and bounded set trivially.

Now suppose F b,c,dS,T (D) 6= ∅. To see convexity, let f, g ∈ F b,c,dS,T (D) and
0 ≤ λ ≤ 1. We have d ≤ f, g ≤ c, implying

d = λd+ (1− λ)d ≤ λf + (1− λ)g ≤ λc+ (1− λ)c = c.

This is the capacity constraints (2.5) and (2.4) for the flow λf + (1 − λ)g.
To verify the balance-condition (2.3), let v ∈ R. Then

excessλf+(1−λ)g(v) = (λf + (1− λ)g)(δin(v))− (λf + (1− λ)g)(δout(v))

= λ
(
f(δin(v))− f(δout(v))

)
+ (1− λ)

(
g(δin(v))− g(δout(v))

)
= λb(v) + (1− λ)b(v) = b(v).

To see that F b,c,dS,T (D) is a closed set, observe that all of the following sets are
closed:

{f ∈ F(D) | f ≤ c},
{f ∈ F(D) | f ≥ d},
{f ∈ F(D) | ∀v ∈ V : excessf (v) = b(v)}.

Since the proof of this last statement is analytic and can be found in most
introductory textbooks on analysis, let us just assume it is true.1 Now,
F b,c,dS,T (D) is the intersection of these three sets, therefore it is closed as well.

That F b,c,dS,T (D) is bounded, if −∞ < d and c < ∞, is quite apparent.
It is for example contained in the closed ball with centre 0A and radius
max{|d|, |c|}, which is a bounded set because F(D) is a finite-dimensional
vector space.

2.13 Lemma (Existence of Minimal and Maximal Flows). Let D = (V,A)
be a digraph. Let (S, T, b, c, d) be a flow-quintuple for D. Suppose that

F b,c,dS,T 6= ∅, (2.6)

−∞ < d, and (2.7)

c <∞. (2.8)

Then there exists an (S, T, b, c, d)-flow of maximum value, as well as an
(S, T, b, c, d)-flow of minimum value.

Proof. This follows from the previous theorem and from Theorem 1.18 on
page 27: by (2.6) – (2.8), F b,c,dS,T (D) is a nonempty, compact subset of the
metric space F(D). As value is a continuous function by Lemma 2.8, it has
a maximum as well as a minimum in F b,c,dS,T (D).

1Good introductions to analysis include [11] and [20].

58 Chapter 2. A Combinatorial Approach to Maximal Flow

2.3 Cuts

In this section, a concept is introduced that is in a certain sense dual to the
one of flows in networks. What is nowadays usually called a cut, is what
originally initiated the study of network flows.2 In Chapter 1.4, we will see
how the relationship between flows and cuts corresponds to the relationship
between primal and dual linear programs. First, I give the definition of
a related notion that will be needed in the sequel, although only on rare
occasions.

2.14 Definition (Disconnecting Arc Sets). Let D = (V,A) be a digraph
and S, T ⊆ V . A subset C ⊆ A is called an S − T -disconnecting arc set if
and only if it intersects every S − T -path in D. If S = {s}, or T = {t}, the
braces are left out.

Let us now turn our attention to a certain, quite important, class of
disconnecting arc sets. Although I formally introduce cuts not as sets of arcs
but rather as sets of vertices, the connection will become apparent soon. The
following is one of the central definitions in this thesis:

2.15 Definition (Cuts). Let D = (V,A) be a digraph. A subset U ⊆ V is
called a cut of D. Let S, T ⊆ V be two sets of vertices. Then U is called an
S − T -cut if and only if

U ⊇ S, and (2.9)

U ∩ T = ∅. (2.10)

I denote the set of all cuts of D by C(D) and the set of all S − T -cuts of
D by CS,T (D). If S = {s} or T = {t}, the braces are left out. In this case,
conditions (2.9) and (2.10) amount to s ∈ U , t 6∈ U .

If (S, T, b, c, d) is a flow-quintuple for D, then for any cut U ⊆ V , the
capacity of U is defined as

capacity(U) := c(δout(U))− d(δin(U)) + b(U\S).

I also define the cocapacity of U as

cocapacity(U) := d(δout(U))− c(δin(U)) + b(U\S).

A minimum (S − T -) cut is a cut U ∈ CS,T (D) of minimum capacity.

2cf. Section 5.2.1

2.3. Cuts 59

[!25,79]

[0,2]
b(w)=2

b(u)=!1

b(v)=!2S

T

s’

s’’

t

t’

u

v

w

s
[2,7] [3,5]

[1,6]

[!1,1] [!3,!2]

[0,3]
[!2,1]

Figure 2.5: A typical cut.

2.16 Example. Let us revisit the network (D = (V,A), S, T) examined
in Examples 2.5 and 2.7. Figure 2.5 shows a cut for this network. To be
more exact, U := {s, s′, s′′, w} is an S − T -cut, and the thick light grey line
marks the arcs in δout(U) ∪ δin(U). U is also an s − T -cut, an s′ − t′-cut,
etc. The partition (U, V \U) of the vertices of the network corresponds to
another cut as well: the T − S-cut W := V \U = {t, t′, u, v}. We have
δout(W) ∪ δin(W) = δout(U) ∪ δin(U). Let us calculate the capacity and the
cocapacity of U :

capacity(U) = c(δout(U))− d(δin(U)) + b(U\S)

= c({(s, v), (s′, t′)})− d({(t, s), (t′, w), (u, s′), (v, s′′)}) + b(w)

= (7 + (−2))− (1 + (−2) + 0 + (−1)) + (2) = 9;

cocapacity(U) = d(δout(U))− c(δin(U)) + b(U\S)

= d({(s, v), (s′, t′)})− c({(t, s), (t′, w), (u, s′), (v, s′′)}) + b(w)

= (2 + (−3))− (6 + 1 + 2 + 1) + (2) = −9.

2.17 Remark. Here again, I have chosen to use terminology which slightly
differs from all variants I have so far encountered in textbooks on network
flows. If one is not familiar with the notion of cuts in graphs, then it is at
first not at all apparent why an arbitrary set of vertices should now suddenly
be called a cut. Indeed, the above definition gives at first little inside into
the idea behind cuts.

The essential fact about cuts is that they separate the vertices of a
(di)graph into two classes: the vertices which belong to a set U ⊆ V , and the
ones that belong to V \U . It ‘cuts’ the (di)graph into two parts. Therefore,
a cut is often defined as a pair (U,U), where U is the complement of U in V

60 Chapter 2. A Combinatorial Approach to Maximal Flow

(although one of the two sets in the pair is clearly redundant).
On the other hand, the object one is actually really interested in, in

network flow theory, is the set of arcs δout(U). Hence, this object should
actually deserve to be called a cut (a terminology for example used by Schri-
jver in [21]). Nice about this notation is, that in the (standard) case with
d = 0A, b = 0R, the capacity of a cut can simply be defined as the thing one
would expect it to be, namely as c(δout(U)).

Unfortunately, the set U is not uniquely determined by δout(U) unless one
has some further information, like δin(U). Since it is sometimes convenient
to have a well-defined set U of vertices at hand when speaking of a cut, one
again would have to determine a pair, such as (δout(U), δin(U)) or (δout(U), U)
(this last version again being redundant).

Summarizing, I felt the most natural and easiest compromise would be
to give the definition you can see above, while bearing in mind that one is
actually examining δout(U) and δin(U). To remind of this fact, a peculiar
name is given to a simple set of vertices.

2.18 Remark. Let D = (V,A) be a digraph. In correspondence to Re-
mark 2.11, the sets C(D) and CS,T (D) are partially ordered by the relation

C1 ≤ C2 :⇐⇒ C1 ⊆ C2.

A total pre-order for both sets is given by

C1 ≤ C2 :⇐⇒ capacity(C1) ≤ capacity(C2).

Note that if S is empty, then ∅ is an S − T -cut (of capacity 0) for every
T ⊆ V , since then ∅ ⊇ S, and ∅ ∩ T = ∅. If T = ∅, then V is an S − T -cut
(of capacity 0) for every S ⊆ V , since ∅ = δout(V), V ⊇ S, and V ∩ T = ∅.

2.19 Remark. Let D = (V,A) be a digraph. We always have C(D) 6= ∅,
since ∅ ∈ C(D). In fact, with the terminology chosen here, C(D) is nothing
but 2V .

As for the existence of S − T -cuts, (2.9) and (2.10) imply the necessity
of S ∩ T = ∅. In fact, we have

CS,T (D) 6= ∅ ⇐⇒ S ∩ T = ∅,

since then U := S satisfies (2.9) and (2.10). In this case, CS,T (D) ∼= 2R.

2.4 The Max-Flow Min-Cut Theorem

As mentioned before, the proof elaborated below is more or less constructive.
It is basically the same proof as originally given by Ford and Fulkerson. There

2.4. The Max-Flow Min-Cut Theorem 61

have been proposed other proofs as well. For example, the Max-Flow Min-
Cut Theorem could be derived from the famous theorem by Menger about
disjoint paths. The reverse implication holds as well, which is proved in
Section 5.1.1. There are also some other combinatorial results that imply
the Max-Flow Min-Cut Theorem.

An alternative approach is considered in Chapter 3, where flow theory is
regarded as a branch of linear programming, and consequently treated with
linear programming techniques. In that way, another (nonconstructive) proof
of the Max-Flow Min-Cut Theorem is obtained.

2.20 Theorem. Let D = (V,A) be a digraph, (S, T, b, c, d) a flow-quintuple
for D. Then, for every (S, T, b, c, d)-flow f and for every S − T -cut U , the
inequalities

value(f) ≤ capacity(U) (2.11)

cocapacity(U) ≤ value(f) (2.12)

are valid. Equality in (2.11) holds if and only if both

f(a) = c(a) for every a ∈ δout(U) and (2.13)

f(a) = d(a) for every a ∈ δin(U) (2.14)

hold. Equality in (2.12) holds analogously if and only if both of the following
conditions hold:

f(a) = d(a) for every a ∈ δout(U) and (2.15)

f(a) = c(a) for every a ∈ δin(U). (2.16)

Proof. Let f ∈ F b,c,dS,T and U ∈ CS,T . We have

− excessf (U) = −
∑
u∈U

excessf (u) = −
∑
u∈S

excessf (u)−
∑
u∈U\S

excessf (u)

= − excessf (S)−
∑
u∈U\S

b(u) = value(f)−
∑
u∈U\S

b(u).

Here the first and the last equalities are Lemma 2.2 (for U respectively for
S), and the third one is Definition 2.3. Now this can be written as

value(f) = − excessf (U) + b(U\S) = f(δout(U))− f(δin(U)) + b(U\S).
(2.17)

This expression is bounded from above by

≤ c(δout(U))− d(δin(U)) + b(U\S),

62 Chapter 2. A Combinatorial Approach to Maximal Flow

[!2,1]

[!25,79]

[0,2]
b(w)=2

b(u)=!1

b(v)=!2

T

S

s’

s’’

t

t’

u

v

w

s
[2,7] [3,5]

[1,6]

[!1,1] [!3,!2]

[0,3]

Figure 2.6: A minimal cut.

with equality holding if and only if

f(δout(U)) = c(δout(U)) and (2.18)

f(δin(U)) = d(δin(U)). (2.19)

This equivalence follows from f(δout(U)) ≤ c(δout(U)) and from f(δin(U)) ≥
d(δin(U)). Similarly, the last expression in (2.17) is bounded from below by

≥ d(δout(U))− c(δin(U)) + b(U\S),

where in this case equality holds exactly if

f(δout(U)) = d(δout(U)) and (2.20)

f(δin(U)) = c(δin(U)). (2.21)

To see that (2.18)–(2.21) are equivalent with (2.13)–(2.16), just remember
that for all a ∈ A, we have d(a) ≤ f(a) ≤ c(a).

2.21 Example. Let us see if we can verify the statement of this theorem for
the network (D = (V,A), S, T) that we already examined in Examples 2.5,
2.7, and 2.16. In Example 2.7, we have constructed (S, T, b, c, d)-flows fmax
and fmin, satisfying

value(fmax) = 2 and value(fmin) = −8. (2.22)

In Example 2.16, we had a look at the S − T -cut U , with

capacity(U) = 9 and cocapacity(U) = −9.

2.4. The Max-Flow Min-Cut Theorem 63

Reassuringly, these values are in agreement with the predictions of The-
orem 2.20. Let us see if we can improve the values of capacity(U) and
cocapacity(U). Note that there are not too many choices: any S − T -cut
X must satisfy s, s′, s′′ ∈ X and t, t′ 6∈ X. Hence, we can only decide
whether u, v, and w should be in the cut or in its compliment. This gives a
total of 8 different S − T -cuts in D: |CS,T (D)| = 8.

First, we try to find a cut of minimum capacity. Then u should be in the
cut: b(u) = −1 lessens the capacity while −d((u, s′)) = 0 would add nothing
to it (if we left u outside the cut). Next, including w would add the term
b(w) = 2 to the capacity, as well as −d((t′, w)) = 2, adding to 4. Hence, it
is better to leave w outside the cut, which amounts to only having the term
c((s′′, w)) = 3 in the calculation of the cut’s capacity. For v, if we leave it
outside, the following terms arise: c((s, v)) = 7, and −d((v, s′′)) = 1, which
makes 8 altogether. Clearly, including v and hence having b(v) = −2 and
c((v, t)) = 5 in the sum, yields a cut of much smaller capacity. We can thus
define Umin := {s, s′, s′′, u, v}. This cut is depicted in Figure 2.6 on page 62.

Second, we try to find a cut of maximum cocapacity. For this purpose, it
is again better to include u in the cut. Although this gives rise to the term
b(u) = −1, this is still better than −c((u, s′)) = −2, which we would have
otherwise. How about w? If it is in, we have b(w) = 2 and −c((t′, w)) = −1,
adding to 1. If it is out, d((s′′, w)) = 0 is all there is, so w is in. Finally v:
leaving it outside the cut, v leads to the terms d((s, v)) = 2 and −c((v, s′′)) =
−1. Having it in the cut, the terms b(v) = −2 and d((v, t)) = 3 arise. This is a
draw: we can choose v to be in the cut or in its complement, both choices will
yield a cut of maximum cocapacity. We hence set U co

max := {s, s′, s′′, u, v, w}.
Let us calculate the capacity and the cocapacity of these two cuts:

capacity(Umin) = c(δout(Umin))− d(δin(Umin)) + b(Umin\S)

= c({(s′, t′), (s′′, w), (v, t)})− d({(t, s)}) + b({u, v})
= ((−2) + 3 + 5)− (1) + ((−1) + (−2)) = 2;

cocapacity(U co
max) = d(δout(U co

max))− c(δin(U co
max)) + b(U co

max\S)

= d({(s′, t′), (v, t)})− c({(t, s), (t′, w)}) + b({u, v, w})
= ((−3) + 3)− (6 + 1) + ((−1) + (−2) + 2) = −8.

Comparing this with (2.22), it can be inferred from Theorem 2.20 that our
considerations were correct; it cannot be hoped to find cuts of smaller capac-
ity or greater cocapacity.

2.22 Definition (Residual Graph). Let D = (V,A) be a digraph and let
(S, T, b, c, d) be a flow-quintuple for D. Let f : A → R be any function.

64 Chapter 2. A Combinatorial Approach to Maximal Flow

Then two useful subsets of A, and two of A ∪ A−1, are defined as follows:

Af<c := {a ∈ A | f(a) < c} (2.23)

Af>d := {a ∈ A | f(a) > d} (2.24)

Af := Af<c ∪ (Af>d)−1 (2.25)

Acof := (Af<c)−1 ∪ Af>d (2.26)

The residual graph of f is Df := (V,Af). The co-residual graph of f is
Dco
f := (V,Acof). So Df and Dco

f are digraphs, in fact subgraphs of the digraph
(V,A ∪ A−1). Obviously, Df and Dco

f do not only depend on D and f , but
on c and d as well. However, I will only use them in contexts where D, c,
and d stay fixed while f is varying, such that no ambiguity should arise. A
directed S − (T\S)-path in Df is called a flow-augmenting path, for reasons
that will become apparent soon. Note that in the case S ∩ T = ∅, we have
PS,(T\S) = PS,T . A directed S−(T\S)-path in Dco

f is called a flow-diminishing
path, for reasons that will become apparent in Section 2.5.

2.23 Proposition. Let D = (V,A) be a digraph, and let (S, T, b, c, d) be a
flow-quintuple for D. Assume

F b,c,dS,T (D) 6= ∅,
CS,T (D) 6= ∅.

Let f be an (S, T, b, c, d)-flow. Suppose there is no S−T -dipath in the residual
graph Df . Define U ⊆ V to be the set of all vertices reachable from S in Df

(i.e., the set of all vertices u ∈ V such that there is an S − u-dipath in Df).
Then

value(f) = capacity(U).

In particular, it follows from Theorem 2.20 that f is maximal.

Proof. First note that U ⊇ S and U ∩ T = ∅, hence U is an S − T -cut.
Let a ∈ δout

D (U), a = (u, v). So u ∈ U , v 6∈ U . We have a 6∈ Af , because
otherwise, since u ∈ U (i.e., reachable from S in Df), v would be reachable
from S in Df , too (i.e., v ∈ U), a contradiction. It follows from (2.23) and
(2.25) that f(a) = c(a) for every a ∈ δout

D (U).
Now let a ∈ δin

D(U), a = (u, v). This means u 6∈ U and v ∈ U . Again,
a−1 ∈ Af would imply the reachability of u from S in Df , so it can be
concluded that a−1 6∈ Af . From (2.24) and (2.25) it follows that f(a) = d(a)
for all a ∈ δin

D(U).
We thus have seen that conditions (2.13) and (2.14), guaranteeing equality

in Theorem 2.20, hold in this situation and the proof is finished.

2.4. The Max-Flow Min-Cut Theorem 65

The following proposition is a little technical. Although being not very
difficult, its proof still is a little lengthy, due to the necessity to tediously
distinguish between several cases. Fortunately, this is about the only point
in the deduction of the Max-Flow Min-Cut Theorem where it is necessary to
resort to this kind of technicality.

2.24 Proposition (Augmentation of Flows). Let D = (V,A) be a digraph,
(S, T, b, c, d) a flow-quintuple for D. Let f ∈ F b,c,dS,T (D). Suppose there is an

S− (T\S)-path P in Df . Then there exists an f ′ ∈ F b,c,dS,T (D) of greater value
than f . If all of f , c, and d are integral, then f ′ can be chosen integral as
well.

Proof. Let P = (v0, a1, v1, . . . , ak, vk) be a path with v0 ∈ S, vk ∈ (T\S).
Write s := v0 and t := vk. Also, set

ε := min
{
c− f(a) | a ∈ Af<c ∩ A(P)

}
∪
{
f(a)− d(a) | a−1 ∈ (Af>d)−1 ∩ A(P)

}
> 0,

f ′ := f + εχP .3

In case the above value for ε was =∞, just define ε as any real number > 0,
e.g., ε := 1. f ′ still satisfies demand- and capacity-conditions (2.5) and (2.4)
by construction. To see that f ′ also satisfies the balance-condition (2.3) for
all v ∈ R, i.e., f ′ is an (S, T, b, c, d)-flow, some cases have to be examined.

For any vertex v 6∈ V (P), and all arcs a adjacent to v, we have f ′(a) =
f(a). This means that the left-hand side of (2.3) for v remains term-wise the
same, if f is replaced by f ′. In particular, f ′ satisfies (2.3) for v.

Now let v ∈ V (P)∩R. The validity of (2.3) for v needs to be verified. Let
for example v = vi. For all arcs a ∈ A adjacent to v in D with a, a−1 6∈ A(P),
we have again f ′(a) = f(a). Since P is a path and v 6= s, t, there are exactly
two arcs a ∈ A(D) adjacent to v that satisfy one of a ∈ A(P) or a−1 ∈ A(P).
One of them, let us call it x, is either ai or a−1

i , the other one, y, is either
ai+1 or a−1

i+1. Thus far, it can be concluded that

excessf ′(v) =
∑

a∈δinD(v)

f ′(a)−
∑

a∈δout
D (v)

f ′(a)

=
(∑
a∈δinD(v)\{x,y}

f(a)−
∑

a∈δout
D (v)\{x,y}

f(a)
)
± f ′(x)± f ′(y), (2.27)

where the signs of the last two terms depend on whether x ∈ δin
D(v) or

x ∈ δout
D (v), and on whether y ∈ δin

D(v) or y ∈ δout
D (v).

3The definition of χP was given on page 23 in Section 1.3.2.

66 Chapter 2. A Combinatorial Approach to Maximal Flow

• x = ai, y = ai+1. Then x ∈ δin
D(v), y ∈ δout

D (v), which means the signs
in (2.27) should be +, − respectively. Also, f ′(x) = (f + εχP)(x) =
f(x) + ε. Similarly f ′(y) = f(y) + ε. Therefore, with (2.27), it follows
that

excessf ′(v) =
∑

a∈δinD(v)\{x}

f(a)−
∑

a∈δout
D (v)\{y}

f(a) + (f(x) + ε)− (f(y) + ε)

= f(δin
D(v))− f(δout

D (v)) = excessf (v) = b(v),

so (2.3) for v is valid for f ′.

• x = ai, y = a−1
i+1. Then x, y ∈ δin

D(v), and the signs in (2.27) are
both +. We have f ′(x) = (f + εχP)(x) = f(x) + ε, whereas f ′(y) =
(f + εχP)(y) = f(y)− ε. So in this case, (2.27) yields

excessf ′(v) =
∑

a∈δinD(v)\{x,y}

f(a)−
∑

a∈δout
D (v)

f(a) + (f(x) + ε) + (f(y)− ε)

= f(δin
D(v))− f(δout

D (v)) = excessf (v) = b(v),

This means again, (2.3) for v is satisfied by f ′.

• x = a−1
i , y = ai+1. Now x, y ∈ δout

D (v), the signs in (2.27) both being
negative. f ′(x) = f(x)− ε and f ′(y) = f(y) + ε. The calculation hence
reads

excessf ′(v) =
∑

a∈δinD(v)

f(a)−
∑

a∈δout
D (v)\{x,y}

f(a)− (f(x)− ε)− (f(y) + ε)

= f(δin
D(v))− f(δout

D (v)) = excessf (v) = b(v),

Again, (2.3) for v remains valid for f ′.

• x = a−1
i , y = a−1

i+1. Then x ∈ δout
D (v), y ∈ δin

D(v), and the signs in (2.27)
this time are −, + respectively. Also, f ′(x) = f(x)−ε, f ′(y) = f(y)−ε.

excessf ′(v) =
∑

a∈δinD(v)\{y}

f(a)−
∑

a∈δout
D (v)\{x}

f(a)− (f(x)− ε) + (f(y)− ε)

= f(δin
D(v))− f(δout

D (v)) = excessf (v) = b(v).

Hence (2.3) for v holds for f ′.

Thus it is established that f ′ satisfies (2.3) for every choice of v ∈ R, i.e.,
f ′ is again an (S, T, b, c, d)-flow for D. Let us now calculate value(f ′) =

2.4. The Max-Flow Min-Cut Theorem 67

f ′(δout
D (S)) − f ′(δin

D(S)). For all arcs a ∈ δout
D (S) ∪ δin

D(S) which are not
traversed by P , we have f ′(a) = f(a) + χP (a) = f(a). This means that in
the following sum, there is no term involving a:

value(f ′)− value(f) =

value(f ′ − f) = (f ′ − f)(δout
D (S))− (f ′ − f)(δin

D(S)). (2.28)

So let the edge a ∈ δout
D (S) ∪ δin

D(S) be traversed by P . Analogously to the
above, there are four cases.

• Let P be leaving S in Df via a or a−1.

– If χP (a)=1, then a ∈ δout
D (S). Therefore, f ′(a) = f(a) + εχP (a) =

f(a) + ε.

– Otherwise, χP (a) = −1. Then a ∈ δin
D(S) and f ′(a) = f(a) +

εχP (a) = f(a)− ε.

In either case, it is hence clear that for each time P leaves S, there is
a corresponding term +ε in the sum (2.28).

• Now suppose P is entering S in Df via a or a−1.

– If χP (a) = 1, then a ∈ δin
D(S) and f ′(a) = f(a) + ε.

– If χP (a) = −1, then a ∈ δout
D (S), as well as f ′(a) = f(a)− ε.

From these two cases it can be inferred that for each time P leaves S,
there is a corresponding term −ε in the sum (2.28).

Now, P starts in S and terminates outside S. So P has to leave S at
some stage. In fact, P has to leave S exactly once more than P enters S.
Therefore, (2.28) can be calculated exactly: value(f ′) − value(f) = ε, in
particular value(f ′) > value(f), which concludes the proof of the first part
of this theorem.

To see that its last sentence is true, too, observe that if f , c, and d
are all integer-valued functions, then ε as defined above is also an integer.
Consequently, f ′ is integral as well.

2.25 Remark. As mentioned before, the path P of Proposition 2.24 is called
a flow-augmenting path. The technique used in the proof is referred to as aug-
menting f along P . It was invented by Ford and Fulkerson. Once any feasible
flow is known, this idea of flow-augmentation can be used algorithmically to
construct a flow of maximum value, as described in the next section.

68 Chapter 2. A Combinatorial Approach to Maximal Flow

2.26 Theorem. Let D = (V,A) be a digraph, (S, T, b, c, d) a flow-quintuple
for D. Assume

F b,c,dS,T (D) 6= ∅,
CS,T (D) 6= ∅.

Let f ∈ F b,c,dS,T (D). Then f is maximal if and only if there is no flow-
augmenting path, i.e., if and only if Df contains no directed S − T -path.

Proof. If there is a flow-augmenting path, apply Proposition 2.24 to see that
f is not of maximal value.4 If there is no flow-augmenting path, apply Propo-
sition 2.23 to see that f is maximal.

Now everything is prepared to summarize all of the pieces gathered so
far in one neatly formulated theorem about the relation between flows and
cuts. The second part of the theorem, about integer flows, is sometimes
called “Integrality Theorem”. Both the Max-Flow Min-Cut Theorem and
the Integrality Theorem were first proved by Ford and Fulkerson.

2.27 Theorem (Maximum-Flow Minimum-Cut). Let D = (V,A) be a di-
graph, (S, T, b, c, d) a flow-quintuple for D. Suppose that

F b,c,dS,T (D) 6= ∅, (2.29)

CS,T (D) 6= ∅, (2.30)

c <∞, (2.31)

d > −∞. (2.32)

Then
max

f∈Fb,c,d
S,T (D)

value(f) = min
U∈CS,T (D)

capacity(U). (2.33)

If, in addition, c and d are integral, and if there is an integer (S, T, b, c, d)-
flow, then there exists an integer maximum flow, i.e., a flow g such that
g(A) ⊆ Z and value(g) = maxf∈Fb,c,d

S,T (D) value(f).

Proof. By (2.29) and Lemma 2.13, there exists an (S, T, b, c, d)-flow f of
maximum value. For this f , by Theorem 2.26, there is no flow-augmenting
path. By Proposition 2.23, ≥ in (2.33) is correct. By Theorem 2.20, we also
have ≤.

If there is an integer (S, T, b, c, d)-flow f , it can be augmented until no S−
T -path in D exists. This is, because it can be inferred from the construction

4Note that in the case of CS,T (D) 6= ∅, every S − T -path is in fact an S − (T\S)-path,
because then S ∪ T = ∅.

2.5. The Min-Flow Max-Cocapacity Theorem 69

in the proof of Proposition 2.24 that in each iteration the value of f can be
augmented by at least 1, and because (2.31) and (2.32) are assumed to be
true. Moreover, this can be done in such a way that the finally resulting flow
g is integral as well (cf. Proposition 2.24). Then the rest of the statement
again can be deduced from Proposition 2.23 and Theorem 2.20.

In Theorem 2.33 in Section 2.6, it will be shown that in order to guarantee
existence of an integer maximal flow, it suffices to require b, c, and d to be
integral, as then an integer flow exists (if any flow exists).

2.28 Theorem (Maximum-Flow Minimum-Cut, Classical Version). Let D =
(V,A) be a digraph, s 6= t ∈ V . Let furthermore be c : A→ [0,∞) a capacity
function. Then the maximum value of an s− t-flow f : A→ [0,∞) subject to
c equals the minimum capacity of an s− t-cut U . If c is integral, there exists
an integer flow of maximum value.

Proof. In Theorem 2.27, take S := {s}, T := {t}, b := 0R, and d := 0A.
Then the non-emptiness conditions are satisfied since f := 0A ∈ F b,c,dS,T (D)
and {s} ∈ CS,T (D).

The statement about integrality follows from the fact that d = 0A and
f := 0A are both integral.

2.5 The Min-Flow Max-Cocapacity Theorem

Analogously to the theory developed in the last section, one can examine min-
imal (S, T, b, c, d)-flows. I will give an outline of the things that change when
reversing the game. As hinted at implicitly in Theorem 2.20, it turns out that
in this case, the quantity that gets optimized dually instead of cut-capacities
is nicely described as cut-cocapacity, as introduced in Definition 2.15.

In Chapter 4, we will see that the Max-Flow Problem (respectively the
Min-Flow Problem), that is, finding a maximum flow (respectively a min-
imum flow), can be solved by algorithms with a polynomial running time,
i.e., these problems are in the class P. Interestingly, the Max-Cut Problem,
i.e., finding a cut (or an S − T -cut) of maximal capacity in a digraph, is
NP-complete (see [9, p. 249f.] or [13, p. 479]).

2.29 Proposition. Let D = (V,A) be a digraph, and let (S, T, b, c, d) be a
flow-quintuple for D. Let f ∈ F b,c,dS,T (D). Suppose there is no S−T -dipath in
Dco
f . Define U ⊆ V to be the set of all vertices reachable from S in Dco

f (i.e.,
the set of all vertices u ∈ V such that there is an S−u-dipath in Dco

f). Then

value(f) = cocapacity(U).

In particular, it follows from Theorem 2.20 that f is minimal.

70 Chapter 2. A Combinatorial Approach to Maximal Flow

Proof. Completely analogous to the proof of Proposition 2.23. this time
(towards the end of the proof) exploiting the other half of Theorem 2.20,
i.e., (2.12).

2.30 Proposition (Diminution of Flows). Let D = (V,A) be a digraph. Let
(S, T, b, c, d) be a flow-quintuple for D and f ∈ F b,c,dS,T (D). Suppose there is

an S − (T\S)-dipath P in Dco
f . Then there exists f ′ ∈ F b,c,dS,T (D) of smaller

value than f . If, in addition, f , c, and d are integral, then f ′ can be chosen
integral.

Proof. Let P = (s = v0, a1, v1, . . . , ak, vk = t) be a path with s ∈ S, t ∈
(T\S). Set

ε := min
{
c− f(a) | a−1 ∈(Af<c)−1 ∩ A(P)

}
∪
{
f(a)− d(a) | a ∈ Af>d ∩ A(P)

}
> 0.

The feasible flow of smaller value than f that we are looking for is

f ′ := f − εχP .

Verification of feasibility and the of the fact that value(f ′) < value(f) is
completely analogous to the proof of Proposition 2.24. The same holds true
for the statement about integrality.

2.31 Theorem. Let D = (V,A) be a digraph, (S, T, b, c, d) a flow-quintuple
for D. Assume

F b,c,dS,T (D) 6= ∅,
CS,T (D) 6= ∅.

Let f ∈ F b,c,dS,T . Then value(f) is minimal if and only if there is no flow-
diminishing path, i.e., if and only if Dco

f contains no directed S − T -path.

Proof. If there is a flow-diminishing path, apply Proposition 2.30 to see that
f is not of minimal value. If there is no flow-diminishing path, apply Propo-
sition 2.29 to see that f is minimal.

2.32 Theorem (Minumum-Flow Maximum-Cocapacity). Let D = (V,A) be
a digraph, (S, T, b, c, d) a flow-quintuple for D. Suppose that

F b,c,dS,T (D) 6= ∅, (2.34)

CS,T (D) 6= ∅, (2.35)

c <∞, (2.36)

d > −∞. (2.37)

2.6. Existence of Feasible Flows 71

Then
min

f∈Fb,c,d
S,T (D)

value(f) = max
U∈CS,T (D)

cocapacity(U). (2.38)

If, in addition c and d are integral, and if there exists any integer flow, then
there is an integer flow of minimal value.

Proof. By (2.34) and Lemma 2.13, there exists an (S, T, b, c, d)-flow f of
minimum value. For this f , by Theorem 2.31, there is no flow-diminishing
path. By Proposition 2.29, ≤ in (2.38) is valid. By Theorem 2.20, the same
is true for ≥.

The statement about integrality is proved completely analogous to the
corresponding statement about maximal flows in the proof of Theorem 2.27.

2.6 Existence of Feasible Flows

As I see it, the main difference between the above presented approach and the
one using a narrower definition of networks and flows, is when the question of
existence of flows has to be discussed (and this also certainly is a quantitative
rather than a qualitative difference). In the standard case with

S ={s},
T ={t},
b =0R,

c ≥0A,

d =0A,

the question of existence does not arise at all, since always 0A ∈ F b,c,dS,T .
Hence, the existence of feasible flows usually is discussed in the context of
circulations (i.e., S = T = ∅) satisfying certain upper and lower bounds.
With the definition given in Section 2.2, it is in general never clear whether
or not F b,c,dS,T 6= ∅, and if yes, how to find a feasible flow. This will be of par-
ticular importance for the algorithms constructing maximal flows, discussed
in Chapter 4.

The main existence result stems from Hoffmann, proved in 1956, and is
well-known under the name “Hoffmann’s Circulation Theorem”. I formulate
it such that it fits Definitions 2.3. The proof is adapted from [21, p. 171f.].

2.33 Theorem. Let D = (V,A) be a digraph and (S, T, b, c, d) a flow-
quintuple for D. Suppose A 6= ∅. Then we have F b,c,dS,T (D) 6= ∅ if and only if

72 Chapter 2. A Combinatorial Approach to Maximal Flow

the following conditions hold:

d ≤ c (2.39)

c > −∞ (2.40)

d <∞ (2.41)

capacity(U) ≥ 0 for all U ⊆ R (2.42)

cocapacity(U) ≤ 0 for all U ⊆ R (2.43)

In the trivial case A = ∅, we have

F b,c,dS,T 6= ∅ ⇐⇒ b = 0R.

If, in addition, b, c, and d are integral, then there exists an integer flow.

Proof. Let A 6= ∅. The necessity of (2.39) was already mentioned and is quite
obvious. Also obviously necessary for the existence of a function f : A → R
satisfying d ≤ f ≤ c are (2.40) and (2.41). Now let U ⊆ R. Then

capacity(U) = c(δout(U))− d(δin(U)) +
∑
u∈U

b(u), and

cocapacity(U) = d(δout(U))− c(δin(U)) +
∑
u∈U

b(u).

To see the necessity of (2.42) and (2.43), let f ∈ F b,c,dS,T . Then∑
u∈U

b(u) =
∑
u∈U

excessf (u) = excessf (U) = f(δin(U))− f(δout(U))

≥ d(δin(U))− c(δout(U)). (2.44)

Here the first equality is the balance-condition (2.3), the third is Lemma 2.2,
and the final inequality is Conditions (2.4) and (2.5). Since U ⊆ R was
chosen without restriction, it is plain to see that (2.44) is equivalent with
(2.42). Likewise obtained is the following equation, which is equivalent to
(2.43): ∑

u∈U

b(u) ≤ c(δin(U))− d(δout(U)).

Conversely, assume (2.39)–(2.43). Choose a function f : A → R with
d ≤ f ≤ c (this can be achieved due to (2.39)–(2.41)). This function can be
chosen such that it minimizes the expression

‖ excessf − b‖15 =
∑
v∈R

| excessf (v)− b(v)|. (2.45)

2.6. Existence of Feasible Flows 73

To see this, observe that the set of functions f : A → R with d ≤ f ≤ c
is a nonempty, compact subset of the metric space RA. As the function
defined in (2.45) has that set as its domain, and as it is the composite of
continuous function (hence it is itself continuous), Theorem 1.18 guarantees
the existence of a minimum. Now set

RS := {v ∈ R | excessf (v)− b(v) > 0},
RT := {v ∈ R | excessf (v)− b(v) < 0}.

Let Df = (V,Af) be the residual graph. If Df contained an RS − RT -, an
RS − S-, an RS − T -, an S − RT -, or an T − RT -path, then this path could
be used to reduce ‖ excessf − b‖1 without violating d ≤ f ≤ c, and while
maintaining excessf (v) = b(v) for v ∈ R\(RS ∪ RT). This could be done
completely similarly to the flow-augmenting technique used in the proof of
Proposition 2.24. (Recall that for vertices in S ∪ T Condition (2.3) does not
have to be satisfied. Therefore arbitrary amounts of excess flow could be
transported from RS to that set, or from that set to RT .) Hence, there are
no such paths in Df .

Let U ⊆ V , respectively W ⊆ V , be the set of vertices reachable from RS

in Df , respectively the set of vertices from which RT is reachable in Df . For
every a ∈ δout

D (U) we have a 6∈ Af (otherwise the endpoint of a would also be
reachable from RS in Df), and hence f(a) = c(a). Similarly, the remaining
three of the following statements are derived:

a ∈ δout
D (U) =⇒ f(a) = c(a),

a ∈ δin
D(U) =⇒ f(a) = d(a),

a ∈ δin
D(W) =⇒ f(a) = c(a), and

a ∈ δout
D (W) =⇒ f(a) = d(a).

Since U ∩RT = ∅, and since excessf (v)−b(v) = 0 for every v ∈ R\(RS∪RT),
the capacity of U can now be calculated:

capacity(U) = c(δout(U))− d(δin(U)) + b(U)

= f(δout(U))− f(δin(U)) + b(U) = −(excessf (U)− b(U))

= −(excessf (RS)− b(RS)) = −
(∑
v∈RS

excessf (v)− b(v)
)
.

Due to the definition of RS, the last expression would be < 0 for RS 6= ∅
(contradicting (2.42)). Hence, necessarily RS = ∅ holds. A similar argument

5The norm ‖.‖1 was defined on page 26 in Section 1.4.1.

74 Chapter 2. A Combinatorial Approach to Maximal Flow

leads to RT = ∅: we have W ∩RS = ∅. Therefore,

cocapacity(W) = d(δout(W))− c(δin(W)) + b(W)

= f(δout(W))− f(δin(W)) + b(W) = −(excessf (W)− b(W))

= −(excessf (RT)− b(RT)) = −
(∑
v∈RT

excessf (v)− b(v)
)
.

The last expression would be > 0 for RT 6= ∅, contradicting (2.43). Conse-
quently RT = ∅. This shows excessf (v) = b(v) for all v ∈ R, which means

that f ∈ F b,c,dS,T , as desired.
Finally for A = ∅, d ≤ f and f ≤ c are vacuously true. Consequently,

the only flow f = ∅ is feasible exactly if b = 0R.
In the case of integer-valued functions b, c, and d, the flow f with

d ≤ f ≤ c with which the construction in this proof was started, can be
chosen integral. This property could be maintained in every iteration while
applying the flow-augmentation technique of Proposition 2.24. In this way,
the statement about existence of integer flows can also be seen to be true.

2.34 Remark. If Theorem 2.33 is applied to circulations (S = T = ∅), then
taking U := V (= R), the set of all vertices, in (2.42) and (2.43) yields

0 ≥ cocapacity(V) = d(δout(V))− c(δout(V)) +
∑
v∈V

b(v)

= d(∅)− c(∅) +
∑
v∈V

b(v) =
∑
v∈V

b(v).

Analogously,

0 ≤
∑
v∈V

b(v).

This means that it is necessary, for F b,c,dS,T to be nonempty, that∑
v∈V

b(v) = 0.

This can be interpreted as no flow being ‘produced’ or ‘absorbed’ anywhere in
D. This is probably what you would expect anyway, when there are neither
sources nor sinks.

2.35 Remark. Similarly to the algorithms described in Chapter 4, the last
proof can be used to find a feasible flow, if there is any. For this purpose, one
could start with any flow f satisfying d ≤ f ≤ c (for example f = d), and

2.7. Extensions of the Network Model 75

then repeatedly use paths in the residual graph to modify f along them, in
order to reduce ‖ excessf − b‖1. When there are no suitable paths anymore,

then either the resulting flow is feasible, or F b,c,dS,T = ∅ can be concluded.
Moreover, all of the more efficient algorithms for finding maximal flows

described in Chapter 4 could be used instead (with the necessary notational
alterations). Summarizing, trying to find a maximal (S, T, b, c, d)-flow basi-
cally amounts to a two-phase task, where in each phase a flow maximization
problem is to be solved.

2.36 Remark. In Chapter 3, we will see that maximizing value(f) over
the set of feasible flows and minimizing capacity(U) over the set of S − T -
cuts is in fact a primal-dual pair of linear programs. Therefore, there is a
direct correspondence between the cases enumerated in Remark 1.26, where
the possibilities for a primal-dual pair regarding feasibility/finiteness of the
optima are listed, and the facts about flows and cuts gathered so far:

• The case examined in Theorem 2.27, where F b,c,dS,T 6= ∅ and CS,T 6= ∅, is
the first case listed in Remark 1.26: the primal and the dual program
both have finite optima.

• If F b,c,dS,T 6= ∅ and the function value is unbounded, then at least one
of the Conditions (2.7) or (2.8) from Lemma 2.13 must be violated; in
either case no S − T -cut of finite capacity can exist. This corresponds
to the second case of Remark 1.26.

• The case F b,c,dS,T = ∅ is the third case of Remark 1.26: the dual program
could be infeasible (i.e., S ∩ T 6= ∅, as discussed in Remark 2.19), or
the function capacity could be unbounded.

2.7 Extensions of the Network Model

In Remark 2.10, I discussed the pros and cons of the terminology for networks
and flows that I introduced in Definition 2.3. I also stated that from a
theoretical point of view, there are not many significant differences between
the various definitions found in the literature. Nevertheless, for practical
purposes, when trying to put together a network model of some real life
situation, it might be useful to have a fairly flexible terminology at hand. In
that way, it is possible to first construct a model in which important features
of the original structure can be represented directly in a one-to-one fashion.
Then, in a separate second step, one can reduce the network developed in
that way to a more basic network model (of probably greater size though)

76 Chapter 2. A Combinatorial Approach to Maximal Flow

that might for example satisfy a certain input format for a specific algorithm.
This appears likely to be an easier task than having to accomplish these two
steps at once.

Consequently, I would briefly like to outline a few more general and hence
more flexible network notions (in the above sense) than the one from Defini-
tion 2.3.

2.7.1 Node Capacities

A question that comes up naturally in several modelling applications is that
of vertex capacities. For example, the vertices could represent antennas or
control centres in a telephone network. Then, even if there are no capacity
problems otherwise, clearly it will not be possible to process an unlimited
number of calls through each of the antennas or control centres. When mod-
elling the waste water system of a town, the vertices might represent storage
tanks (having a limited capacity). Likewise, the vertices could be used to
model airports in a traffic network, capable of providing service only for a
certain number of takeoffs and landings.

The common technique to reduce a network with capacitated nodes to
the case without (unlimited) capacities is to split every vertex v into two
vertices vin and vout plus two new arcs (vin, vout) and (vout, vin). The capacity
of v is assigned to these two arcs. Moreover, every arc (u, v) respectively
(v, w) is replaced by an arc (uout, vin) respectively (vout, win). This approach
is for example described in [8, Section 1.11], [1, p. 41–43], or [21, p. 176].

In the case b(v) 6= 0, restrictions could of course either be put upon flow
into v, flow out of v, or both. In the mentioned case with vertices representing
airports and the flow representing incoming and outgoing flights, it might

even be suitable to put a capacity bound upon the sum
∑

a∈δin(v)∪δout(v)

|f(a)|.

2.7.2 Upper and Lower Balance Bounds

This variant is taken from [21, Section 11.5]: instead of prescribing exact
values for excessf at the vertices, one could impose upper and lower bounds
bc, bd. To be a little bit more exact, let D = (V,A) be a digraph, S, T ⊆
V , and c respectively d a capacity respectively a demand function. Let
furthermore be bc, bd : R → R. Then a function f : A → R is called an

2.7. Extensions of the Network Model 77

(S, T, bc, bd, c, d)-flow if and only if

(i) f(a) ≥ d(a) ∀a ∈ A,
(ii) f(a) ≤ c(a) ∀a ∈ A,

(iii) excessf (v) ≥ bd(v) ∀v ∈ R,
(iv) excessf (v) ≤ bc(v) ∀v ∈ R.

For this situation, an existence result similar to the one formulated as The-
orem 2.33 can be established (see for example [21, p. 175].

2.7.3 Traversal Times

In the majority of applications, it will require a certain amount of time for
the ‘flow’ (whatever it represents) to traverse the arc (u, v). In other words,
starting at u, a unit of flow will need a certain time t(a) to reach v. Sometimes
this time might be negligible or irrelevant. In other cases it might be the only
matter of interest.

In a model respecting those traversal times, the flow capacity bounds are
often thought of as per-unit time bounds. That is, in each of the discrete time
states T1, T2, . . . , a given arc can at most (or least) carry flow as specified by
its assigned capacity bounds. ‘Storing capacities’ on the vertices is another
variation: in this case, one can decide whether flow is sent immediately from
one vertex to the next, or stored for a while, for later processing.

These topics are examined in [8, Section III.7–III.9], [22, Section 6.2], [7,
p. 82–84], or [21, Section 12.5.c]. Basically it can be said that all of these
‘dynamic flow’ models can be reduced to a ‘static’ one by adding arcs and
vertices.

2.7.4 ‘Lossy’ and ‘Gainy’ Arcs

The situation becomes a little different if one desires to include ‘lossy’ or
‘gainy’ arcs into the model. These arcs could for example represent leakage
in a system of pipelines or waterpipes, loss of quality during the transmission
of a message, or well-invested money in an econometrical model.

Formally, this situation can be described by replacing balance-condition
(2.3) by ∑

a∈δin(v)

µ(a)f(a)−
∑

a∈δout(v)

f(a) = b(v).

Here µ ∈ [0,∞)A, the µ(a)’s being certain ‘multipliers’, representing the
degree of loss or gain in the respective arc.

78 Chapter 2. A Combinatorial Approach to Maximal Flow

In [1], this type of network is called a generalized network. For such a net-
work, the Max-Flow Problem is significantly more difficult to solve (i.e., the
solution takes longer) than in the classical (loss- and gainless) case. Among
the fastest algorithms for it is the “Generalized Network Simplex Algorithm”.
This is a specialization of Dantzig’s general Simplex Algorithm for general-
ized networks. It works similar to the Network Simplex Algorithm described
in Section 4.4.1.

A detailed study can be found in [1, Chapter 15]. Other places where
this topic is treated (under the name of “signal flows”) are [24, Chapter 8],
and [7, Chapter 3].

79

Chapter 3

A Linear Programming
Approach to Maximal Flow

In this chapter, I am going to describe a rather different approach to the
Max-Flow Min-Cut topic. Conditions (2.5), (2.4), and (2.3) of Definition 2.3
are defining a certain polyhedron in P ⊆ Rn (for some n ∈ N). The problem
of finding a maximal flow in a network is the same as finding a vector f ∈ P
in the corresponding polyhedron that maximizes the objective function value.
These findings are elaborated in Section 3.1.

Then, in Section 3.2, I am first going to discuss in detail the correspon-
dence between feasible flows for a given flow-quintuple (S, T, b, c, d) in a given
digraph D and feasible solutions of a certain linear program. This program
will be regarded as the primal one.

The second step will be to show a similar correspondence between S−T -
cuts in the same graph and certain feasible solutions of the associated dual
program. The Max-Flow Min-Cut Theorem will then, after considering finite-
ness of the optima of the so constructed programs, follow as a consequence
of the Duality Theorem of Linear Programming, which was stated in Sec-
tion 1.4.5.

3.1 Flow and Cut Optimization are Linear

Programs

Let D = (V,A) be a digraph, (S, T, b, c, d) a flow-quintuple for D. In order
to construct a corresponding linear program, an objective function needs to
be specified, as well as the constraints subject to which that function is to
be optimized (i.e., which solutions are the feasible ones), and the underlying
vector space.

80 Chapter 3. A Linear Programming Approach to Maximal Flow

In this section, the capacity bounds c and d, respectively flows f , should

be thought of as vectors in RA, respectively R, and the balance-vector b as a

vector in RR1. Let us make the following definition:

u := (ua)a∈A with ua :=

1 if a ∈ δout(S)

−1 if a ∈ δin(S)

0 otherwise

.

Moreover, define ∆ = (δv,a)(v,a)∈R×A to be the R × A-incidence matrix, as
defined in Section 1.3.2, on page 23. IA is the identity matrix on A, defined
in Section 1.4.1. The dimension of ∆ is |R| × |A| and the dimension of IA is
|A| × |A|. Therefore:

b ∈ RR,

c, d ∈ RA,
u ∈ {−1, 0, 1}A,
∆ ∈MR,A({−1, 0, 1}),
IA ∈MA,A{0, 1}.

The linear program of our interest in the current chapter is the following:

max
f∈RA
{uTf | d ≤ f ≤ c, ∆f = b}. (3.1)

I will refer to a linear program in the form of (3.1) as a network flow linear
program or as a linear program in network flow form. Observe that this
is a special case of the form in which linear programs were introduced in
Definition 1.21. It is obtained from (1.5) by setting

dim(x) = dim(z) := 0,

dim(y) := |A|,
α := c,

β := b,

γ := d,

ε := u,

B = H := IA,

E := ∆.

1Remember that R := V \(S ∪ T).

3.1. Flow and Cut Optimization are Linear Programs 81

If the general version of the Duality Theorem of Linear Programming, The-
orem 1.28, is applied to (3.1), this yields the following equation:

max
f∈RA
{uTf | d ≤ f ≤ c, ∆f = b}

= min
x,z∈RA, y∈RR

{xTc+ yTb+ zTd | x ≥ 0A, z ≤ 0A, x
T + yT∆ + zT = uT}.

Writing this slightly differently, and using the transpose ∆T = (δv,a)(a,v)∈A×V
of the incidence matrix ∆, the following statement results. Remember that
it holds true if and only if at least one of the optima is finite.

max
f∈RA
{uTf | d ≤ f ≤ c, ∆f = b} (3.2)

= min
x,y∈RA, z∈RR

{cTx− dTy + bTz | x, y ≥ 0A, x− y + ∆Tz = u}. (3.3)

Now, what exactly is the connection between (3.2) and (S, T, b, c, d)-flows in
D, and between (3.3) and S − T -cuts in D? This question is the topic of
the next section. We will see that the last equation, (3.2)=(3.3), is actually
exactly the Max-Flow Min-Cut Theorem.

Before I can deduce this fact, one more powerful concept from the du-
ality theory of linear programming needs to be introduced: complementary
slackness. This concept gives necessary and sufficient conditions for a pair of
solutions to a primal-dual pair of linear programs to be optimal. I formulate
it for a primal linear program in network flow form, i.e., for the Primal-Dual
Pair (3.2) and (3.3).

3.1 Lemma (Complementary Slackness). Let f, (x, y, z) be a pair of solu-
tions for the Linear Programs (3.2) and (3.3) respectively. They are optimal
solutions if and only if for all a ∈ A the following two conditions hold:

xa > 0 =⇒ fa = ca, (3.4)

ya > 0 =⇒ fa = da. (3.5)

Proof. Since d ≤ f ≤ c and x, y ≥ 0, Conditions (3.4) and (3.5) hold for all
a ∈ A if and only if the following equation holds for all a ∈ A:

xa(ca − fa) + ya(fa − da) = 0. (3.6)

The left-hand side of (3.6) is ≥ 0, therefore (3.6) holds for all a ∈ A if and
only if ∑

a∈A

xa(ca − fa) +
∑
a∈A

ya(fa − da) = 0,

82 Chapter 3. A Linear Programming Approach to Maximal Flow

which can also be written as

xTc− xTf + yTf − yTd = 0. (3.7)

Let us compute the value of the objective function of the Program (3.2):

uTf = (xT − yT + zT∆)f = xTf − yTf + zT∆f = xTf − yTf + zTb.

The pair f, (x, y, z) is a pair of optimal solutions if and only if the values of
their objective functions coincide, that is, if and only if

xTf − yTf + zTb = xTc− yTd+ zTb. (3.8)

Clearly, Equation (3.8) is equivalent with Equation (3.7). This completes the
proof.

3.2 The Max-Flow Min-Cut Theorem Revis-

ited

I am now going to re-prove the Max-Flow Min-Cut Theorem. It is a special
case of the Duality Theorem of Linear Programming.

3.2 Theorem (Maximum-Flow Minimum-Cut). Let D = (V,A) be a di-
graph, (S, T, b, c, d) a flow-quintuple for D. Suppose that

F b,c,dS,T (D) 6= ∅, (3.9)

CS,T (D) 6= ∅, (3.10)

c <∞, (3.11)

d > −∞. (3.12)

Then
max

f∈Fb,c,d
S,T (D)

value(f) = min
U∈CS,T (D)

capacity(U). (3.13)

Proof. Let ∆ = (δv,a)(v,a)∈R×A and u be defined as in the last section. The
first things that needs to be shown, is that

max
f∈RA
{uTf | d ≤ f ≤ c, ∆f = b} = max

f∈Fb,c,d
S,T (D)

value(f). (3.14)

But this becomes almost obvious after a quick look at the definitions of u
and ∆: we have uTf = value(f), and

∆f = b⇐⇒ balance-condition (2.3) holds for all v ∈ R.

3.2. The Max-Flow Min-Cut Theorem Revisited 83

The left-hand side of (3.14) is bounded as f lies between d and c, and because
the objective function is linear. Therefore, the conditions of Theorem 1.28
are satisfied. As described at the end of the previous section, this yields

max
f∈RA
{uTf | d ≤ f ≤ c, ∆f = b} (3.15)

= min
x,y∈RA, z∈RR

{cTx− dTy + bTz | x, y ≥ 0A, x− y + ∆Tz = u}. (3.16)

It remains to show, in order to re-prove the Max-Flow Min-Cut Theorem,
that (3.16) equals

min
U∈CS,T (D)

(
c(δout(U))− d(δin(U)) +

∑
v∈U\S

b(v)
)
. (3.17)

First, I will show that (3.16) ≤ (3.17). Choose an S − T -cut U ⊆ V . Re-
member it satisfies U ⊇ S and U ∩ T = ∅. Define

x := (xa)a∈A with xa :=

{
1 if a ∈ δout

D (U)

0 otherwise
,

y := (ya)a∈A with ya :=

{
1 if a ∈ δin

D(U)

0 otherwise
, and

z := (zv)v∈R with zv :=

{
1 if v ∈ U
0 otherwise

.

Clearly, x and y are ∈ RA and ≥ 0A, and z ∈ RR. Now choose a = (v1, v2) ∈
A. Then δv1,a = 1, δv2,a = −1, and δv,a = 0 for all other vertices v ∈ V . To
see that the vector x−y+∆Tz equals the vector u, the two can be compared
coordinate-wisely. This amounts to the verification of

xa − ya + (∆Tz)a = ua. (3.18)

Here (∆Tz)a =
∑
v∈R

δv,azv =
∑

v∈R∩{v1,v2}

δv,azv is the a-th entry of the |A|-

dimensional vector (∆Tz). It has to be distinguished between a few cases.

• Firstly, suppose a ∈ δout(S), i.e., v1 ∈ S ⊆ U (so v1 6∈ R, consequently
zv1 is not defined), and v2 6∈ S. Then ua = 1. Since v1 ∈ U , we have
a 6∈ δin(U), hence ya = 0.

– If a ∈ δout(U), then xa = 1 and v2 6∈ U\S. Hence zv2 is either = 0
or not defined, and the sum on the left-hand side of (3.18) equals
1, as desired.

84 Chapter 3. A Linear Programming Approach to Maximal Flow

– If, on the other hand, a 6∈ δout(U), then xa = 0. v1 ∈ U implies
v2 ∈ U . Consequently, v2 ∈ U\S. As U ∩ T = ∅, v2 ∈ R.
Therefore, zv2 ∈ U ∩R and hence zv2 = 1. Again, the sum on the
left-hand side of (3.18) equals 1.

• Secondly, suppose a ∈ δin(S), i.e., v1 6∈ S, v2 ∈ S ⊆ U (then v2 6∈ R,
and zv2 is not defined). It follows that ua = −1. Since v2 ∈ U , we have
a 6∈ δout(U), so xa = 0.

– If a ∈ δin(U), then ya = 1 and v1 6∈ U\S. Hence zv1 = 0 and the
sum on the left-hand side of (3.18) equals −1, as desired.

– If, on the other hand, a 6∈ δin(U), then ya = 0. v2 ∈ U implies
v1 ∈ U . Consequently, v1 ∈ U\S, so zv1 = 1. As U ∩ T = ∅,
v1 ∈ R. The sum on the left-hand side of (3.18) equals −1.

• If v1, v2 ∈ S, then ua = 0 = xa = ya. zv1 and zv2 are not defined.

• The last case is v1, v2 6∈ S. Here also, ua = 0.

– If v1, v2 6∈ U , then xa = ya = 0. zv1 and zv2 are either = 0 or not
defined. The sum on the left-hand side of (3.18) equals 0.

– If v1, v2 ∈ U , then xa = ya = 0. As v1, v2 ∈ U\S, zv1 = zv2 = 1.
As U ∩ T = ∅, v1, v2 ∈ R. We have δv1,a = −1 and δv2,a = 1.
Hence, the sum on the left-hand side of (3.18) equals 0.

– If a ∈ δin(U), zv1 is = 0 or not defined, zv2 = 1, xa = 0, ya = 1.
We have v2 ∈ U ∩ R. The sum on the left-hand side of (3.18)
equals 0.

– If a ∈ δout(U), zv1 = 1, zv2 is = 0 or not defined, xa = 1, ya = 0.
We have v1 ∈ U ∩ R. The sum on the left-hand side of (3.18)
equals 0.

This establishes the validity of (3.18). Furthermore, we clearly have

cTx− dTy + bTz = c(δout(U))− d(δin(U)) +
∑
v∈U\S

b(v).

Thus for every S − T -cut U in D, we have found a feasible vector (x, y, z) of
the dual linear program (3.16) such that the value of its objective function
equals capacity(U). It can be concluded that

min
x,y∈RA, z∈RR

{cTx− dTy + bTz | x, y ≥ 0A, x− y + ∆Tz = u}

≤ min
U∈CS,T (D)

(
c(δout(U))− d(δin(U)) +

∑
v∈U\S

b(v)
)
.

3.2. The Max-Flow Min-Cut Theorem Revisited 85

To show that the opposite inequality holds as well, let x, y ∈ RA with
x, y ≥ 0, and z ∈ RR such that x− y + ∆Tz = u. The theorem is proved if
an S − T -cut U with capacity(U) ≤ cTx− dTy + bTz is found.

To this end, let f, (x, y, z) be a pair of optimal solutions for (3.15) re-
spectively (3.16). Define the following set of vertices of D:

U := S ∪ {u ∈ R | z < 0}.

Then U is an S − T -cut, because U ⊇ S and U ∩ T = ∅. I shall show the
following two statements:

xa > 0 for all a ∈ δout(U), (3.19)

ya > 0 for all a ∈ δin(U). (3.20)

From the Lemma 3.1 about complementary slackness and from the optimality
of the pair of solutions, it can then be concluded that

fa = ca for all a ∈ δout(U), (3.21)

fa = da for all a ∈ δin(U). (3.22)

Using (3.21) and (3.22), followed by an application of the elementary Equa-
tion (2.17) from the proof of Theorem 2.20, the definition of u, and ultimately
the fact that the value of the respective objective functions coincide for a pair
of optimal solutions, we can calculate the capacity of the cut U :

capacity(U) = c(δout(U))− d(δin(U)) + b(U\S)

= f(δout(U))− f(δin(U)) + b(U\S) = value(f) = uTf

= cTx− dTy + bTz.

Hence, the theorem is proved if (3.19) and (3.20) can be shown. As (x, y, z)
is a feasible solution of the dual Program (3.16), we have x− y + ∆Tz = u.
For the arc a = (v1, v2) ∈ A, this means that

xa − ya +
∑

v∈{v1,v2}∩R

δv,azv = ua. (3.23)

We examine (3.23) for various arcs. To simplify the notation, set zv := 0 for
v ∈ S ∪ T . Let a = (v1, v2) ∈ δout(U). Then v1 ∈ U , i.e., either v1 ∈ S or
zv1 < 0, and v2 6∈ U , i.e., zv2 ≥ 0. Furthermore, δv1,a = 1 and δv2,a = −1.

• First, suppose v1 ∈ S. Then from (3.23), we infer xa − ya − zv2 = 1,
or, equivalently, xa − ya = 1 + zv2 > 0. As ya ≥ 0, it can be concluded
that xa > 0.

86 Chapter 3. A Linear Programming Approach to Maximal Flow

• Otherwise, v1 ∈ U\S. Then (3.23) yields xa− ya + zv1 − zv2 = 0, which
can be written as xa−ya = zv2−zv1 > 0. Again, ya ≥ 0 implies xa > 0.

Now let a = (v1, v2) ∈ δin(U). Then v1 6∈ U , i.e., zv1 ≥ 0, and v2 ∈ U , i.e.,
v2 ∈ S or zv2 < 0. Moreover, δv1,a = 1 and δv2,a = −1.

• Suppose that v2 ∈ S. Then (3.23) implies xa − ya + zv1 = −1, or in
other words, xa − ya = −1− zv1 < 0. As xa ≥ 0, we must have ya > 0.

• Otherwise, v2 ∈ U\S. Then, from (3.23), it can be inferred that xa −
ya+zv1−zv2 = 0. Writing this differently yields xa−ya = zv2−zv1 < 0.
Because of xa ≥ 0, this necessitates ya > 0.

We have thus shown the validity of (3.19) and (3.20), and this completes the
proof.

87

Chapter 4

Algorithms for Flow
Maximization

Since its inception, network flow theory has spawn a reputable number of
algorithms for finding a maximum flow in a network. They have diversely
been classified. Most of the algorithms available maintain feasibility of either
the primal or the dual variables throughout its execution. This is the feature
that will be used in this chapter to distinguish between two major groups of
algorithms: primal and dual ones.

This is by no means the only classification available of algorithms for
solving the Maximum Flow Problem, but maybe the most widespread one.
However, there are variants focussing on different aspects of the algorithm.
For example Ahuja, Magnati, and Orlin in [1] distinguish between “augment-
ing path algorithms” and “preflow-push algorithms”, which yields almost the
same classification that is used in this text.

Section 4.1 presents a few of the most popular graph theoretical problems:
the Min-Cost Flow Problem, the Shortest Path Problem, and finally the one
of most relevance for this thesis, the Max-Flow Problem. In Section 4.2, three
well-known algorithms that solve the Max-Flow Problem are discussed. They
all belong to the first category of “primal” or “augmenting path” algorithms.
The algorithm examined in Section 4.3 on the other hand, is an example of
a “dual”, or a “preflow-push” algorithm. The last section of this chapter,
Section 4.4 comprises the specialization of the general Simplex Method of
linear programming to the case of network flows, which results in the potent
Network Simplex Algorithm.

88 Chapter 4. Algorithms for Flow Maximization

4.1 Max-Flow and Related Problems

In this thesis, I have limited the material to selections from quite a spe-
cific topic: maximal flows in networks. Of course there are a lot of related
subjects, in particular from combinatorial optimization, that would deserve
being included, in order to give a more complete picture of network flows.
Some of them are indeed very closely connected with flow maximization.
With regard to the applications to be discussed in the next chapter, I want
to mention at least briefly some other aspects of network flow theory that
are most widespread in applications, in- and outside of mathematics.

4.1.1 The Min-Cost Flow Problem

The following is a well-investigated and -documented, and rather general
problem, that has a very large range of applications. In a sense, it can be re-
garded as one of the most fundamental problems in network theory. It is the
common generalization of the Maximum Flow and the Shortest Path Prob-
lem, both of which are popular research areas with numerous applications.
In order to formulate it, I give a definition first:

4.1 Definition (General Cost Function). Let D = (V,A) be a digraph, and

(S, T, b, c, d) a flow-quintuple for D. A function cost : RA → R is called a

(general) cost function. One says f ∈ RA is of cost K if cost(f) = K.

The (fairly general) formulation of the Min-Cost Flow Problem that I
want to use now reads as follows:

Min-Cost Flow Problem

Input • A digraph D = (V,A)

• A flow-quintuple (S, T, b, c, d)

• A number W ∈ R
• A cost function cost

Output • An answer to whether or not {f ∈ F b,c,dS,T | value(f) = W}
= ∅ and

• If not, an (S, T, b, c, d)-flow f with value(f) = W that minimizes
cost(f)

In this most general setting, not much can be said about the solution. This
is, because the solution obviously completely depends upon the nature of

4.1. Max-Flow and Related Problems 89

the function cost, as is exemplified by a simple exchange of cost by (− cost).
Therefore, usually restrictions are imposed upon cost. The most common
version is as follows.

4.2 Definition (Linear Cost Function). Let D = (V,A) be a digraph, and

(S, T, b, c, d) a flow-quintuple for D. Let k ∈ RA. The function

cost : F b,c,dS,T → R, f 7→
∑
a∈A

kaf(a)

is called a (linear) cost function.

For the solution of this much more specialized version (let us call it the
Linear Min-Cost Flow Problem), polynomial time algorithms similar to the
ones for the Max-Flow Problem (discussed below) exist. Another popular
variant is to allow convex functions depending on f(a) for the ka’s of the
above definition, and not restrict them to be constants (for a discussion, see
for example [1, Chapter 14]). In the following special case of the Min-Cost
Flow Problem, the cost of an arc is thought of in terms of distance between
its two ends.

4.1.2 The Shortest Path Problem

Paths belong to the most fundamental and most important objects in graph
theoretical optimization. They are of direct practical relevance, coming up
when searching for any kind of connection. Being able to find short connec-
tions is of obvious interest in many areas, ranging from personal route planing
to macroeconomics. Here ‘short’ need not mean geographic distance, but may
also rather concern costs, travel time, a combination of some of these, etc.

Another aspect of (short) paths that makes them worth studying is that
finding them often arises as a component of another combinatorial problem.
In particular, some of the algorithms that find maximum flows in a network
do so by actually repeatedly finding (shortest) paths as sub-procedures.

4.3 Definition. Let D = (V,A) be a digraph and S, T ⊆ V two subsets.

Let l ∈ RA. The function

length: PS,T → R, P 7→
∑

a∈A(P)

la

is called a length function. A shortest S − T -path is a path P ∈ PS,T that
minimizes length(P).

90 Chapter 4. Algorithms for Flow Maximization

Shortest Path Problem

Input • A digraph D = (V,A)

• Subsets S, T ⊆ V

• A vector l ∈ RA

Output • An answer to whether or not PS,T = ∅ and

• If not, a shortest S − T -path P (with respect to length)

This task is contained in the Linear Min-Cost Flow Problem. Straightfor-
wardly, it can be verified that it is obtained from it by taking:

b :=0V ,

c :=1A,

d :=0A,

W :=1,

k :=l.

From any integer output-flow f of the Min-Cost Flow Problem with these
parameters, the shortest path P one was looking for is obtained as the one
with arc set A(P) = {a ∈ A | f(a) 6= 0} (the arc set A(P) obviously
determines P).

The difficulty of the Shortest Path Problem naturally heavily depends
upon the function length, i.e., upon the vector l. While the problem is
relatively easy to solve in the case of, say l = 1A, it is much harder to solve if
l might have negative components. I want to describe a simple, but efficient,
algorithm by Berge and Moore that finds shortest paths in the case of unit
lengths, i.e., l = 1A. Several of the algorithms introduced in the next section
use an algorithm of this kind as a subroutine. This description is adopted
from [21, p. 88f.]:

Berge-Moore Algorithm

Input • A connected digraph D = (V,A)

• Subsets S, T ⊆ D

Output A shortest S − T -path in D

¬ Let V0 := S and set i = 0.

 Check whether or not T ∩
(
V \
⋃i
j=0 Vj

)
6= ∅.

4.1. Max-Flow and Related Problems 91

- If yes, go to ®.

- Otherwise, go to ¯.

® Define Vi+1 to be the set of vertices v ∈ V \
⋃i
j=0 Vj for

which (u, v) ∈ A for some u ∈ Vi. Store one such arc for

every v ∈ Vi+1. Reset i = i+ 1 and go to .

¯ The arcs used so far form subtree of a shortest path tree

of D which contains all vertices of T. For a vertex

v ∈ Vi, there is a path from S to v in D of length i.
Let i0 := min{i | Vi ∩ T 6= ∅} and choose t0 ∈ Vi0 ∩ T. Then

any path from S to t0 in the shortest path tree is a

shortest S − T-path in D.

It can be shown that this algorithm finds a shortest S−T -path in time O(|A|)
(see [21, p. 88f.]). It is hence one of the fastest algorithms available for this
task.

4.1.3 The Max-Flow Problem

The remainder of this section is dedicated to a problem that is another special
case of the Min-Cost Flow Problem:

Max-Flow Problem

Input • A digraph D = (V,A)

• A flow-quintuple (S, T, b, c, d)

Output • An answer to whether or not F b,c,dS,T = ∅ and

• If not, a maximal (S, T, b, c, d)-flow f

As shown in the previous sections, this problem is equivalent to the task of
finding a minimum cut. (This does of course not mean that in certain cases
one of the two might not be better suited for a direct algorithmic approach
than the other.)

To see that the Max-Flow Problem is included in the Linear Min-Cost
Flow Problem, choose two new vertices s0, t0 6∈ V and construct a slightly
bigger network from the one given as input of the Max-Flow Problem as

92 Chapter 4. Algorithms for Flow Maximization

follows:

V ′ :=V ∪ {s0} ∪ {t0},
a0 :=(s0, t0),

A′ :=A ∪ {a0},
D′ :=(V ′, A′),

S ′ :=S ∪ {s0},
T ′ :=T ∪ {t0},
b′ :=b,

c′(a) :=

{
c(a) if a ∈ A
∞ if a = a0

,

d′(a) :=

{
d(a) if a ∈ A
∞ if a = a0

,

W :=∞

ka :=

−1 if a ∈ δout(S)

1 if a ∈ δin(S)

0 otherwise

.

Every feasible flow in this augmented network has a value of = ∞,1 only
the costs K =

∑
a∈A kaf(a) are varying. There is a bijective correspondence

between flows of cost K in the augmented network and the flows of value K
in the original network, as is not difficult to see. Hence, a solution of the
Min-Cost Flow Problem for the augmented setting gives a solution of the
originally posed Max-Flow Problem.

The Shortest Path Problem and the Max-Flow Problem are in a sense
complementary (with respect to the Min-Cost Flow Problem): in the former,
there are no capacity constraints. The aim is just to minimize certain costs.
In the latter, costs are irrelevant, the end is solely maximization of flow,
subject to given capacities and certain demands.

Now, let us have a look at some of the standard algorithms for finding
solutions to the Max-Flow Problem.

1In Definition 2.3, I refrained from allowing flows assuming infinite values on the arcs.
This was mainly because most of the theory of linear programming is usually formulated
for real (finite) functions. Still, most of the results presented in this text could easily be
formulated for ‘infinite’ flows without major changes.

4.2. Primal Algorithms 93

4.2 Primal Algorithms

In the integer case, all of the three problems described in the previous section
consist of choosing some object from a finite set of possibilities. Therefore,
they can theoretically be solved by listing all possibilities and picking the
best one. Obviously, this might take a lot of time. In particular, this ‘algo-
rithm’ does not have a running time that is polynomial in the number of arcs
and vertices of the network: the number of feasible flows in the Max-Flow
Problem is for example not polynomial in |A| and |V |, since it depends on
the arc capacities.

The first algorithm (deserving this label) for finding a maximum flow in a
network was given by L.R. Ford Jr. and D.R. Fulkerson in 1955. In its original
form, it has two main drawbacks: firstly, there are examples (specifically
constructed, not taken from practice) for which disadvantageous choices of
the augmenting path2 can lead to non-polynomial running time. Secondly,
if not all of the edge-capacities are rational, then even worse, the algorithm
is not guaranteed to stop at all. (It should not go unmentioned that this
second problem is a mere theoretical one; computers deal only with rational
numbers.) Fortunately, both of these issues can be dealt with by quite simple
rules regarding which path is to be chosen as an augmenting path. Examples
of such rules were given by E.A. Dinic3 as well as by J. Edmonds and R.M.
Karp. They guarantee a bound on the number of steps the Ford-Fulkerson
Algorithm needs to find a maximum flow which is polynomial in the size of
|V | and |A|, regardless of the arc-capacities or other input-data.

Since then, a number of variants as well as quite different algorithms
have been introduced by various authors. Since the Max-Flow Problem can
be formulated as a linear program (as described in Chapter 3), all algorithms
available for linear programming can be utilized for solving it. As one might
expect though, due to their generality, few of them can compete with specif-
ically designed ‘combinatorial’ algorithms in terms of running time. That is,
unless they are used in a somewhat more specialized version. In fact, there
can be shown equivalence up to different degrees between some general linear
programming algorithms and other more combinatorial ones.

The description of the algorithms in this section is rather informal and
should just give an overall idea of how implementations would basically work.

2see Section 2.4
3another transcription of the name of this Russian mathematician that is sometimes

found in the literature is “Dinits”

94 Chapter 4. Algorithms for Flow Maximization

4.2.1 The Ford-Fulkerson Algorithm

The first algorithm I want to have a closer look at is the classical “labelling
algorithm” by Ford and Fulkerson which I already mentioned several times.
I start with giving a compact overview of its structure:

Ford-Fulkerson Algorithm

Input • A digraph D = (V,A)

• A flow-quintuple (S, T, b, c, d) for D

• An initial feasible flow f ∈ F b,c,dS,T

Output A flow fmax ∈ F b,c,dS,T of maximal value

¬ Compute Df
4.

 Look for an S − T-path P in Df.

- If none exists stop. fmax := f is maximal.

- If a path P is found, go to ®.

® Compute a suitable ε and augment f along P by ε, i.e.,

reset f := f + χP ε. Then go to ¬.

How to choose ε as large as possible, such that f remains feasible after the
augmentation in ®, was described in the proof of Proposition 2.24. The main
questions left open are how to find an initial flow and how to efficiently find
and choose an augmenting path. The former was discussed in Section 2.6:
basically any of the algorithms of the current chapter can be applied to some
starting flow (not necessarily an (S, T, b, c, d)-flow) in order to find a feasible
flow or to decide that there is none. For the moment, let us focus on the
latter.

In fact, step is a well-known graph theoretical problem itself (namely
the Shortest Path Problem with l = 0a), for which several algorithms exist.
For example, the Berge-Moore Algorithm from the prvious section, or the
algorithm “FINDPATH” described by Papadimitriou and Steiglitz (cf. [18,
p. 198]) both find an S − T -path in a digraph, if one exists. They are
both basically implementations of an idea called breadth-first search (BFS),
which represents a commonly used method for finding paths in a graph, be
it directed or not.

4the residual graph; see Definition 2.22 on page 63

4.2. Primal Algorithms 95

Complementary in a sense is depth-first search (DFS), another very well-
known method of path searching. It dates back to 1882, when M. Tremaux
suggested it as a method to traverse mazes (see [13, p. 234]). The problem of
finding any S−T -path is usually somewhat easier than our original problem of
finding a maximal S − T -flow. (Fortunately! Otherwise the above described
procedure would not be a very useful one.) This algorithmic scheme, of
splitting more complex problems repeatedly into related simpler problems,
reappears in a lot of the algorithms presented in this chapter.

I now want to (very roughly) estimate the complexity of Ford and Fulker-
son’s Algorithm: as mentioned before, there are search-algorithms that can
be implemented such that they find an S − T -path in time O(|A|) (for ex-
ample the Berge-Moore Algorithm). This is (more or less) the time needed
to perform one iteration of the algorithm. How many iterations will there
be? If all input data are assumed to be integral (if they are rational, they
can simply be rescaled, using least common multiples; if irrational numbers
occur, the algorithm need not terminate at all, as mentioned before), then in
each iteration the flow value is augmented at least by 1. Consequently, the
maximal number of iterations necessary to obtain a maximum flow equals the
difference between the value of the initial flow and the maximum flow value.
This difference can be estimated using Theorem 2.20 for any cut, e.g., S. Let
f0 respectively fmax be the initial feasible flow respectively any maximum
flow. Set U := max{c(a)− d(a) | a ∈ A}. Then

value(fmax)− value(f0) ≤ capacity(S)− cocapacity(S)

=
(
c(δout(S))− d(δin(S))

)
−
(
d(δout(S))− c(δin(S))

)
=
(
c(δout(S))− d(δout(S))

)
+
(
c(δin(S))− d(δin(S))

)
≤ |A|U + |A|U = O(|A| · U)

The time the algorithm needs is the time needed for one iteration times the
number of iterations. Thus, a time complexity of O(|A|2 · U) is established.
(If |U | =∞, the algorithm obviously need not terminate.) Here one problem
becomes apparent: the bound involves the arc capacities. If some of them
are for example of size 2|A|, the running time is not polynomial in |A| and
|V |.

Ford and Fulkerson’s Algorithm of often termed “labelling algorithm”,
the reason for which is that the computation in ¬ and of ε in ® can be
implemented as a procedure of successively assigning certain labels to the
vertices of D. That process, as originally described in [8, p. 11f.] (and
since then in hundreds of other books), also yields some S − T -path P in
Df (if there is one). The problem is that the path found in that way is not
chosen carefully enough to obtain a polynomial-time bound for the worst-case

96 Chapter 4. Algorithms for Flow Maximization

running time. Ford and Fulkerson were already aware of the fact that their
algorithm need not terminate and gave a counterexample (cf. [8, p. 21f.]).
For slightly terminology-wise slicker formulations of the same example, see
[18, p. 124–128] or [21, p. 153f.]. A few different examples can be found in
[1, p. 205f.]. Examples that illustrate the exponential worst-case running
time can also be found in the first two books ([18, p. 200], respectively [21,
p. 153]), as well as in [14, p. 156]. As mentioned before, all of these difficulties
are resolved by a slight variation of step :

4.2.2 The Edmonds-Karp Algorithm

Edmonds and Karp were the first to give a polynomial-time algorithm for
the Max-Flow Problem, namely in 1972. This was achieved by quite a simple
idea. Here is an outline of the algorithm:

Edmonds-Karp Algorithm

Input • A digraph D = (V,A)

• A flow-quintuple (S, T, b, c, d) for D

• An initial feasible flow f ∈ F b,c,dS,T

Output A flow fmax ∈ F b,c,dS,T of maximal value

¬ Compute Df.

 Look for an S − T-path P in Df.

- If none exists stop. fmax := f is maximal.

- If a path is found, choose some shortest S − T-path
P and go to ®.

® Compute a suitable ε and augment f along P by ε. Then go

to ¬.

So everything stays the same as in the Ford-Fulkerson Algorithm, except
for the type of the (easier) combinatorial problem which the original one
(of finding a maximum flow) is reduced to. It is a little more difficult this
time: finding a shortest S − T -path, instead of just any S − T -path. Here
‘shortest’ means containing a minimum number of edges. The reward for
this additional effort is the following:

4.2. Primal Algorithms 97

4.4 Theorem. Let D = (V,A) be a digraph, (S, T, b, c, d) a flow-quintuple
for D. Let some (S, T, b, c, d)-flow f be given. Then the Edmonds-Karp
Algorithm, initiated with f , stops after at most |V | · |A| iterations and yields
a maximal flow.

A proof can for example be found in [14, p. 160f.], or [21, p. 153f.]. A
breadth-first search algorithm can (as mentioned before) be implemented in
timeO(|A|), which hence is also a bound for the time needed for each iteration
of the algorithm. The resulting overall running time for the Edmonds-Karp
Algorithm can therefore be estimated by O(|V | · |A|2). Note that, as desired,
this does not depend on any arc capacities.

The problem of finding a shortest path in a (di)graph is a very well docu-
mented one (as described in the previous section). Besides the Berge-Moore
Algorithm, there are many more algorithms available. For example, the
above mentioned “FINDPATH” by Papadimitriou and Steiglitz can be im-
plemented in such a way (in breadth-first manner) that it delivers a shortest
S − T -path. In fact, all breath-first algorithms produce a shortest path tree.
Another example of this is given by the popular shortest path algorithm by
Dijkstra—documented, among many other publications, in [21, Section 7.2],
[1, Section 4.5], [2, Section 2.3.3], [13, Section 3.6], or [14, p. 141f.].

Depth-first search can in general not be used for implementation of Ed-
monds and Karp’s Algorithm, since it is not guaranteed to find a path that
is a shortest one. For thorough discussions see [21, Chapters 6–8], [2, Chap-
ter 2], or [13, Chapter 3].

4.2.3 The Dinic Algorithm

Dinic observed that Ford and Fulkerson’s Algorithm could be speeded up
if in each iteration one would augment f not only along a simple path in
Df , but use a whole flow g in Df for augmentation. Achieved in this way is
the following: in Edmonds and Karp’s Algorithm, it can be proved that the
length of a shortest S − T -path in Df is non-decreasing from one iteration
to the next (See [2, p. 115], [13, p. 167], or [21, p. 154f.]). It hence runs in
‘phases’ of increasing shortest S − T -path-length, during each of which the
length of a shortest S − T -path remains the same. Using Dinic’s technique,
it can be achieved that the length of a shortest S − T -path in Df increases
in every iteration of the algorithm. As the length any path lies between 0
and |A|, the algorithm consequently yields a maximum flow in at most |A|
iterations.

How does augementation along flows work? Let f ∈ F b,c,dS,T (D). Define a

98 Chapter 4. Algorithms for Flow Maximization

capacity function cf on Af as follows:{
cf (a) := c(a)− f(a) if a ∈ Af<c

cf (a
−1) := f(a)− d(a) if a ∈ Af>d

Then, for any (S, T,0R, cf ,0Af
)-flow g in Df , it can be shown that f ′ ∈

F b,c,dS,T (D), for the flow

f ′ : A→ R, a 7→ f(a) + g(a)− g(a−1).

(Herein, set g(a) = 0, respectively g(a−1) = 0, if those expressions are not
defined, i.e., if a 6∈ Af , respectively a−1 6∈ Af .) With this definition, Ford
and Fulkerson’s Algorithm, as well as Edmonds and Karp’s, can be viewed
as special cases in which the augmenting flows are nonzero only on single
S − T -paths. The question hence is how to make a choice of g cleverer than
that. It turns out that the sum of all ‘single-pathed’ augmenting flows used
in one ‘phase’ of Edmonds and Karp’s Algorithm is a flow g which is a good
choice. Of course, one would not want to have to execute Edmonds and
Karp’s Algorithm in order to find out what such a g would be. Fortunately,
it can be shown that the flows of this kind are exactly so-called blocking flows
in the so-called level graph of Df .

4.5 Definition. Let D = (V,A) be a digraph. A function measuring the
distances between different vertices of D is defined as follows: let S, T ⊆ V .
Then set

distD(S, T) :=

{
the length of a shortest S − T -path if PS,T (D) 6= ∅
∞ if PS,T (D) = ∅

.

If S = {s}, or T = {t}, then the braces are left out, as usually.

4.6 Definition. For a digraph D = (V,A) and a flow-quintuple (S, T, b, c, d)
for D, the level graph DL

f of Df is the digraph(
V,
{

(u, v) ∈ Af | distDf
(S, v) = distDf

(S, u) + 1
})
.

Also define cLf to be the restriction of cf to A(DL
f).

4.7 Definition. For a digraph D = (V,A) and a flow-quintuple (S, T, b, c, d)
for D, a flow f ∈ F b,c,dS,T (D) is called a blocking flow if (V,Af<c) contains no

S − T -path; or equivalently if for every flow f ′ ∈ F b,c,dS,T (D) the inequality
f ≤ f ′ ≤ c implies f ′ = f .

4.2. Primal Algorithms 99

b(v)=0

[0,2]

[0,2]
[0,2]

v ts

Figure 4.1: A blocking flow need not be maximal.

4.8 Example. Note that a blocking flow need not be of maximum value.
Take a look a Figure 4.1. Let the s− t-flow f be defined as follows:

f((s, v)) = f((t, v)) = 1, f((v, t)) = 2.

f is a blocking flow, but value(f) = 1 and f is not maximal: the following
s− t-flow fmax has greater value (in fact, it is the unique maximal s− t-flow
in the graph):

fmax((s, v)) = fmax((v, t)) = 2, fmax((t, v)) = 0.

Dinic Algorithm

Input • A digraph D = (V,A)

• A flow-quintuple (S, T, b, c, d) for D

• An initial feasible flow f ∈ F b,c,dS,T

Output A flow fmax ∈ F b,c,dS,T of maximal value

¬ Compute DL
f .

 Check if there is a blocking flow g 6= 0A(DL
f) in DL

f which

is feasible with respect to (S, T,0R, c
L
f ,0AL

f
).

- If none exists stop. fmax := f is maximal.

- If such a g is found, go to ®.

® Augment f along g. Go to ¬.

A worst-case running time bound for Dinic’s Algorithm is given by O(|V |2 ·
|A|). This result is shown, e.g., in [21, p. 154f.], [2, p. 116f.], or [1, p. 221–223].

100 Chapter 4. Algorithms for Flow Maximization

I did not explain explicitly how to find a blocking flow; however with sub-
routines for this task other than the one suggested by Dinic, better running
times can be obtained: sleator described a method for finding blocking flows
that improved the running time of the above algorithm to O(|V | · |A| · log |V |)
(cf. [14, p. 162f.]).

4.2.4 Other Primal Algorithms

There are other variants of the ideas exploited by Edmonds and Karp’s or
Dinic’s Algorithm. For example, Papadimitriou and Steiglitz proposed the
following algorithm in [18, Section 9.4]: in each iteration the residual graph is
constructed, just like in all of the above algorithms. Only, instead of looking
for a shortest augmenting path or a blocking flow in order to augment the
current feasible solution, they give a clever rule for finding a maximal flow
in the layered residual graph, which is then used for augmentation. The
running time bound they derive for their algorithm is O(|V |3).

Another possibility is to look for a path in the residual graph along which
a maximum augmentation is possible, usually dubbed fattest augmenting
path. To this end, one has to look for a path such that the ‘bottleneck’ (i.e.,
the minimum residual capacity) is maximized. This can be achieved using a
suitable variant of Dijkstra’s shortest path algorithm.

4.3 Dual Algorithms

All of the algorithms discussed so far worked after a common scheme: it
follows from Definition 2.3 and Proposition 2.23, that for a function f : A→
R, to be an (S, T, b, c, d)-flow of maximum value is equivalent to satisfying
the following conditions:

(i) excessf (v) = b(v) ∀v ∈ R, (4.1)

(ii) f(a) ≤ c(a) ∀a ∈ A, (4.2)

(iii) f(a) ≥ d(a) ∀a ∈ A, (4.3)

(iv) @ S − T -path in Df . (4.4)

The algorithms of Ford and Fulkerson, Edmonds and Karp, and Dinic all
start with a function f satisfying Conditions (i)–(iii) (i.e., f is a feasible
(S, T, b, c, d)-flow), and maintain them in each iteration, until Condition (iv)
is finally fulfilled as well. Since Conditions (i)–(iii) correspond to feasibility
of the primal problem (finding a maximum flow), which is maintained at all
time, these algorithms can be thought of as primal ones.

4.3. Dual Algorithms 101

Another approach was introduced by Goldberg and Tarjan. If Condi-
tion (iv) is satisfied, then for the set U ⊆ V of all vertices of D reachable
from S in Df (as considered in Proposition 2.23), we have U ∈ CS,T . This
is because clearly every vertex v ∈ S is reachable in Df from S (so U ⊇ S),
and by Condition (iv), the same is true for none of the vertices v ∈ T (hence
U ∩ T = ∅). So validity of (iv) corresponds to feasibility of the dual prob-
lem (i.e., finding a minimum S − T -cut). As this feasibility is maintained
throughout, this algorithm (and algorithms having a similar concept) is often
referred to as a dual algorithm.

Goldberg and Tarjan’s Algorithm starts with a function f satisfying Con-
ditions (ii)–(iv), maintains them throughout, and stops as soon as Condi-
tion (i) holds as well. At every stage, a feasible dual solution can be ob-
tained directly from f , therefore Goldberg and Tarjan’s Algorithm can be
considered a dual algorithm.

4.3.1 The Goldberg-Tarjan Algorithm

A few notions need to be introduced first, in order to describe Goldberg and
Tarjan’s Algorithm:

4.9 Definition. Let D = (V,A) be a digraph, and (S, T, b, c, d) be a flow-
quintuple for D. A function f : A → R is called an (S, T, b, c, d)-preflow for
D if it satisfies

(i’) excessf (v) ≥ b(v) ∀v ∈ R, (4.5)

(ii) f(a) ≤ c(a) ∀a ∈ A, (4.6)

(iii) f(a) ≥ d(a) ∀a ∈ A. (4.7)

A vertex v ∈ R with excessf (v) > b(v) is called active. Vertices which are
not active are called inactive.

Then, obviously, an (S, T, b, c, d)-preflow is an (S, T, b, c, d)-flow if and
only if there are no active vertices in V .

4.10 Definition. Let D = (V,A) be a digraph and (S, T, b, c, d) be a flow-
quintuple for D. Let f be an (S, T, b, c, d)-preflow. A function label : V → Z+

is called a distance labelling if

label(s) = |V | ∀s ∈ S, (4.8)

label(t) = 0 ∀t ∈ T, (4.9)

label(v) ≤ label(w) + 1 ∀(v, w) ∈ Af . (4.10)

102 Chapter 4. Algorithms for Flow Maximization

4.11 Lemma. Let D = (V,A) be a digraph and (S, T, b, c, d) be a flow-
quintuple for D. Let f be a preflow. Then a distance labelling exists if and
only if there is no S − T -path in Df . (Which, if f happens to be a flow, is
by Proposition 2.23 equivalent to f being of maximal value.)

Proof. Suppose there is an S − T -path P in Df . Let label be any function
satisying (4.8) and (4.10). P is a path, hence it traverses every vertex at
most once. Therefore, |V (P)| ≤ |V |. The first vertex s of P is in S, so
label(s) = |V | by (4.8). Now (4.10) implies that if one walks along the
vertices of P , the value of label can decrease at most by 1 from one vertex
to the next. For the last vertex t ∈ T of P , this necessitates

label(t) ≥ label(s)− (|V (P)| − 1) ≥ |V | − |V |+ 1 = 1.

This is clearly a contradiction to (4.9), such that label cannot be a distance
labelling.

Conversly suppose that Df contains no S − T -path. Let U ⊆ V be the
set of all vertices reachable from S in Df . As then U ∩ T = ∅, it is not hard
to verify that the following function is a distance labelling:

label(v) :=

{
|V | if v ∈ U
0 otherwise

.

Goldberg-Tarjan Algorithm

Input • A digraph D = (V,A)

• A flow-quintuple (S, T, b, c, d) for D

• An initial feasible flow f0 ∈ F b,c,dS,T

Output A flow fmax ∈ F b,c,dS,T of maximal value

4.3. Dual Algorithms 103

¬ Initialize

label(v) :=

{
|V | if v ∈ S
0 otherwise

f(a) :=

{
c(a) if a ∈ δout(S)

f0(a) otherwise

 Check if there is an active vertex in v ∈ R.

- If none exixts, stop. fmax := f is maximal.

- If such a v is found, go to ®.

® While v is active, iteratively do the following until v
becomes inactive: check if there is an arc a = (v, w) ∈ Af
with label(w) = label(v)− 1.

- If none exists, call the subroutine Relabel with input

v.

- If such an a is found, call the subroutine Push with

input a.

When v becomes inactive, go to .

Relabel(v)

¬ Reset label(v) := label(v) + 1.

Push(a)

¬ - If a = (v, w) ∈ A, reset f(a) := f(a) + ε with

ε := min
{
c(a)− f(a), excessf (v)− b(v)

}
.

- If a−1 = (w, v) ∈ A, reset f(a−1) := f(a−1)− δ with

δ := min
{
f(a−1)− d(a−1), excessf (v)− b(v)

}
.

104 Chapter 4. Algorithms for Flow Maximization

Now, let us have a look at whether this algorithm really does what it is hoped
to do, i.e., whether it works correctly and finds a maximum flow:

4.12 Proposition. The function f is a preflow at all stages of the algorithm.
In particular, when the algorithm stops, f is a flow.

Proof. The flow f0 given as input is a preflow trivially. In step ¬, while
moving from f0 to f , obviously Conditions (4.6) and (4.7) remain valid.
What is altered are only flow-values at arcs a entering some vertices v ∈ R
(i.e., arcs a ∈ δin(v)). At arcs where an alteration occurs, f is augmented,
resulting in an augmentation of excessf (v). But this maintains (4.5).

It is straightforward to verify that ε and δ in the procedure Push are
chosen just right, in order to keep (4.5), (4.6), and (4.7) valid. A run of
Relabel is irrelevant for f being a preflow or not.

4.13 Proposition. The function label is a distance labelling at all stages of
the algorithm. In particular, when the algorithm stops with flow f as output,
f is of maximum value.

Proof. For the initial f , the residual graph Df does not contain an S − T -
path. So by Lemma 4.11, the initial label is a distance labelling. Let v ∈ R.
By (4.10), for all vertices w ∈ δout

Df
(v), we have label(w) ≥ label(v) − 1. If

the procedure Relabel(v) is called, then only because there are no vertices
w ∈ δout

Df
(v) with label(w) = label(v)− 1. By integrality of label, this implies

label′(w) = label(w) ≥ label(v) = label′(v)−1 for all w ∈ δout
Df

(v), with label′

being the updated function. This is (4.10) for the updated function. For
vertices in S ∪ T , the value of label is never changed.

In the procedure Push(a), the only thing that could happen related to
label is that arcs might be added to Af (or be erased from it; but this
makes Condition (4.10) only easier to satisfy). But Push(a) is only called
for a = (v, w) with label(w) = label(v) − 1. The arc (w, v) is the only one
that could be added to Af , and for this arc, (4.10) holds valid: label(w) =
label(v)− 1 ≤ label(v) + 1.

So label is a distance labelling initially and maintains this property at
every iteration of the algorithm.

It is thus established that Goldberg and Tarjan’s Algorithm works as
it should. It is the fastest of the algorithms that have been considered in
this chapter. In fact, it is one of the fastest algorithms available. Running
time bounds that can be proved for various clever implementations include

O(|V |2 ·
√
|A|), or alternatively O(|V |·|A|·log |V |

2

|A|). For a complexity analysis

see for example [14, p. 165–168] or [21, p. 157–159].

4.4. Algorithms Derived from Methods from Linear Programming 105

4.4 Algorithms Derived from Methods from

Linear Programming

The Simplex Algorithm was the first algorithm developed that could solve a
general linear program of the form (1.4):

max{cTx|Ax ≤ b}.

By now, there are a lot of variants and different implementations of it. In
addition, several algorithms of thoroughly different structures have been con-
ceived, such as the ellipsoid method mentioned before. One feature all these
algorithms have in common is, that in their most general formulation, suited
to solve any linear program, they do not have running times useful in practice
when applied to highly specialized linear programs such as the combinato-
rial problems considered in Section 4.1. In these cases, the performances are
greatly inferior when compared with the algorithms described in Sections 4.2
and 4.3.

The reason for this is quite obvious: being able to handle so many prob-
lems simultaneously, they cannot exploit the particular structure of specific
combinatorial problems. An example illustrating this can be found in [23,
p. 190f.].

However, there is a ‘streamlined’ version of the general Simplex Algo-
rithm, called the Network Simplex Algorithm, that is designed specifically for
solving network flow problems and hence delivers much better running times.

4.4.1 The Network Simplex Algorithm

In this Section, I want to demonstrate how to efficiently apply the Simplex
Algorithm, as described in Section 1.4.3, to the Max-Flow Problem intro-
duced in Section 4.1.3. Let therefore the digraph G = (V,A) be given (the
symbol D is unfortunately needed for something else in this section), as well
as a flow-quintuple (S, T, b, c, d) for G. Recall that R = V \S ∪ T . As in
Section 3.1, the balance condition can be written as

∆f = b. (4.11)

Here ∆ = (∆a)a∈A is the |V | × |A| node-arc incidence matrix of G, defined
on page 23. Each ∆a is a |V |-dimensional vector, f is |A|-dimensional, and
b is |V |-dimensional. Furthermore, a feasible flow f should satisfy

d ≤ f ≤ c. (4.12)

106 Chapter 4. Algorithms for Flow Maximization

d and c are both |A|-dimensional. Finally, the objective function that is to
be maximized is

uTf =
∑
a∈A

uaf(a), with ua :=

1 if a ∈ δout(S)

−1 if a ∈ δin(S)

0 otherwise

. (4.13)

Basic Solutions

First, I want to discuss the graph theoretical equivalents of bases and basis
structures from the Simplex Algorithm. It turns out that there is a one-to-
one correspondence between basic solutions and a certain type of flows in G,
called spanning tree solutions.

4.14 Definition. Let G = (V,A) be a digraph, (S, T, b, c, d) a flow-quintuple
for G. Let T be a spanning tree of G. Set B := A(T). A (not necessarily
feasible) flow f of G satisfying the balance-condition (4.11) is a called a basic
solution if for every arc a ∈ A\B one of f(a) = c(a) or f(a) = d(a) holds. If
in addition d ≤ f ≤ c, i.e., f is a feasible (S, T, b, c, d)-flow, then f is called
a spanning tree solution.

If (C,D) is a partition of A\B, then the triplet (B,C,D) is called a
spanning tree structure (for the tree T) of G. If there exists a (feasible)
spanning tree solution f such that f(a) = c(a) for all a ∈ C and f(a) =
d(a) for all a ∈ D, then the spanning tree structure is called feasible. It
can be shown that assigning flow values to all arcs in A\B determines the
entire flow (assuming that the balance-condition needs to be respected). In
particular, for every spanning tree structure (B,C,D), there exists a unique
basic solution f such that f(a) = c(a) for all a ∈ C and f(a) = d(a) for all
a ∈ D.

It will in the sequel prove useful to randomly select one vertex r ∈ V and
to think of the spanning tree T as rooted at r. Set V ′ := V \{r}. For a ∈ A,
define ∆′a := (δv,a)v∈V ′ to be the vector obtained from ∆a by deleting the row
corresponding to the vertex r. Also set ∆′ := (∆′a)a∈A and ∆′J := (∆′a)a∈J ,
for any subset J ⊆ A. Let b′ be the |V |−1-dimensional vector obtained from
b by deleting b(r).

If all the rows of Equation (4.11) are summed, the following equation is
obtained:∑
v∈R

b(v) =
∑
v∈R

(∑
a∈δin(v)

f(a)−
∑

a∈δout(v)

f(a)
)

=
∑

a∈δin(R)

f(a)−
∑

v∈δout(R)

f(a).

4.4. Algorithms Derived from Methods from Linear Programming 107

This is just a re-statement of the conclusion of Lemma 2.2 for U = R. But
Lemma 2.2 is valid in general. Hence, the system (4.11) is redundant, and it
can be concluded that (at least) one of the constraints is superfluous. This
means that the system is linearly dependent. As the maximum number of
linearly independent columns is the same as the maximum number of linearly
independent rows, the number of linearly independent columns in ∆ is less
or equal to |V | − 1. The opposite inequality needs a little preparation:

4.15 Definition. Two indices can be assigned to the vertices in V ′ in the
following way. Choose v ∈ V ′. Let Pv be the unique undirected r − v-path
in T . Define pred(v) to be the second last vertex of Pv, i.e., the one visited
directly before v when following the direction of Pv. pred(v) is referred to as
the predecessor of v. A vertex w is called a successor of v if pred(v) = w.
Consequently, the vertices without successors are exactly the leaves of the
tree. Note that a vertex may have several successors, but every vertex has
exactly one predecessor. The descendants of v are v itself, its successors, the
successors of its successors, and so on.

The second index, thread(v), arises from a traversal of the whole tree, and
defines an order of the vertices in V . To this end, a depth-first search starting
at r is performed. For v ∈ V , thread(v) is defined to be the vertex visited
by the depth-first algorithm just after v. For the last vertex encountered,
the thread-index is set to be r. A thread traversal of the tree is an order
of its vertices according to the thread-index. That is, r is the first vertex,
thread(r) the second one, and so on. A reverse thread traversal is the reverse
of that order. That is, the vertex w with thread(w) = r is the first vertex,
the vertex with thread-index w is the second, and so on.

Without going into details of depth-first search, the important property of
the so defined thread-index, which is not very hard to show,5 is the following:
in a reverse thread traversal, every vertex is visited after all of its descendants
(other than the vertex itself) have been visited.

4.16 Proposition. Let G = (V,A) be a digraph, T a spanning tree of G
rooted at r. Let B = A(T). Then the rows and columns of the the matrix
∆′B can be rearranged in such a way that the resulting matrix is lower trian-
gular, with nonzero-entries only in the main diagonal. Consequently, ∆′B is
nonsingular, its columns are linearly independent.

Proof. As T is a spanning tree, it has |V | vertices and |V | − 1 arcs. Hence,
the matrix ∆′B, obtained from the |V | × (|V | − 1) node-arc incidence matrix

5see for example [1, p. 76]

108 Chapter 4. Algorithms for Flow Maximization

of T by deleting the row corresponding to the vertex r, has the dimension
(|V | − 1)× (|V | − 1).

Now the rows of ∆′B are rearranged according to the reverse thread-
traversal. Moreover, each arc a ∈ B can be assigned uniquely to the vertex v
for which a is the last arc of the unique r− v-path Pv in T . In that way, the
columns of the matrix can also be ordered according to the reverse thread
traversal. The resulting matrix is lower triangular: select any vertex v ∈ V ′.
Suppose that v is the i-th vertex selected by the reverse thread traversal.
The i-th arc a selected by the reverse thread traversal is the last arc of Pv.
In particular, a is incident to v. This means that the element δv,a = ±1,
corresponding to v and a, is a diagonal element in the rearranged matrix.
We have |V ′| = |V | − 1, therefore all of the |V | − 1 diagonal elements of the
rearranged matrix have to be nonzero.

Let pred(v) = w. If w = r, then δv,a is the only nonzero element in
the column ∆′a corresponding to a. Otherwise, as v is a descendant of w, v
will be visited before w in the reverse thread-traversal. So there is another
nonzero entry in the column corresponding to a, but it must lie below the
diagonal.

4.17 Proposition. Let G = (V,A) be a connected digraph. Then there
exists a one-to-one correspondence between basis structures of the Max-Flow
Problem and spanning tree structures of G.

Proof. Let (B,C,D) be a spanning tree structure for the tree T rooted at
r, with A(T) = B. Then, by the previous proposition, the |V | − 1 columns
of ∆′B are linearly independent. Hence, (B,C,D) is a basis structure of the
Max-Flow Problem.

Let conversely (B,C,D) be a basis structure. By Proposition 1.14, there
exists a spanning tree T0 of G. The node-arc incidence matrix (∆a)a∈A(T0)

of T0, which is a submatrix of ∆, has |V | − 1 linearly independent columns.
Consequently, ∆ has at least |V | − 1 linearly independent columns. But,
as mentioned above, ∆ has at most, and hence exactly, |V | − 1 linearly
independent columns. This means that |B| = |V | − 1. B corresponds to a
subgraph T of G having |V | − 1 arcs.

Now let K be an undirected cycle in G, assigned with an arbitrary orien-
tation. Then the expression ∑

a∈A(K)

χK(a)∆′a (4.14)

is a linear combination of some of the columns of ∆′. As K is a cycle, for every
vertex in V (K)\{r} there are exactly two indices a1, a2 ∈ A(K) for which

4.4. Algorithms Derived from Methods from Linear Programming 109

the entry δv,ai
of ∆′ai

is 6= 0. In fact, it is not hard to see that the sum (4.14)
equals zero: either one of these two entries δv,ai

is 1 and the other one equals
−1, with χK(a1) = χK(a2), or δv,a1 = δv,a2 are both 1 or −1, with χK(a1) = 1
and χK(a2) = −1, or the other way round. This means that the columns
of ∆′ corresponding to a cycle in G are linearly dependent. As (B,C,D) is
a basis structure, ∆′B has only linearly independent columns. Therefore T
cannot contain a cycle and hence is a forest. By Proposition 1.14, T is a
tree.

Henceforth, fix a root node r for the spanning tree T and set B := A(T).
Then the V ′ × B node-arc incidence matrix ∆′B is exactly the basis matrix
used in the Simplex Method. From now on, ∆′B will be assumed to be in
lower triangular form, the rows and columns ordered according to the reverse
thread traversal, as in the proof Proposition 4.16. The main steps of the
Network Simplex Algorithm can be overviewed as follows:

Network Simplex Algorithm

Input • A digraph G = (V,A)

• A flow-quintuple (S, T, b, c, d) for G

• An initial feasible spanning tree structure (B,C,D)

Output A flow fmax ∈ F b,c,dS,T of maximal value

¬ Compute the flow f and the reduced costs (uπa)a∈A
corresponding to the current spanning tree structure.

 Look for arcs in C with reduced cost less than zero or

arcs in D with reduced cost greater than zero.

- If none exists, stop. fmax := f is maximal.

- Otherwise, select one of them as the entering arc and

got to ®.

® Select a leaving arc.

¯ Update (B,C,D) and go to ¬.

110 Chapter 4. Algorithms for Flow Maximization

Finding an Initial Feasible Flow

I now want to explain how the technique described in Section 1.4.3, on
page 37, for avoiding the problem of having to find an initial feasible so-
lution, translates to the case of networks.

Introducing new variables means introducing new arcs. This can be done
in the following way: a new vertex v without balance-condition is added (v
can be thought of as being a source or a sink vertex, i.e., an element of S or
T). Then some arcs are added as well: for v ∈ R, let

b(v) := b(v)−
∑

a∈δin(v)

d(a) +
∑

a∈δout(v)

d(a).

Then add the arc (v, v) for every vertex v ∈ R with b(v) > 0, and the arc
(v, v) for every vertex v ∈ R with b(v) < 0. Write A for the set of new
arcs. The capacity intervals of the new arcs are [0,M], where M needs to be
chosen sufficiently large (≥ max{|b(v)| | v ∈ R}), and the objective function
has to be altered suitably:

U(f) :=
∑
a∈A

uaf(a)−
∑
a∈A

uaf(a),

where ua are large numbers. Then the following flow is a feasible initial flow
for the augmented network:

f(a) :=

d(a) if a ∈ A
b(v) if a = (v, v)

−b(v) if a = (v, v)

.

Computing the Flow Corresponding to a Given Spanning Tree
Structure

Let (B,C,D) be a spanning tree structure. Then the Simplex Algorithm
would, as described in Section 1.4.3, compute the values of the arcs in B by
premultiplying the following equation by (∆′B)−1:

∆′BfB = b′ −∆′CcC −∆′DdD. (4.15)

Since ∆′B is lower triangular, in the case of networks the calculation of fB
can be performed relatively simply: the first row of ∆′B contains only one
nonzero entry, namely in the first column. This entry is either 1 or −1, as all
the nonzero entries of ∆′B, because ∆′B is a node-arc incidence matrix. The

4.4. Algorithms Derived from Methods from Linear Programming 111

value of the first entry of fB can therefore be obtained by multiplying the
first row of the right-hand side of (4.15) by the inverse of the nonzero entry
of the first row of ∆′B (which is the same as that entry itself, 1 or −1).

Proceeding further, there are at most two nonzero entries in the second
row of ∆′B, in the first and in the second column. But as the first entry of
fB (corresponding to the first column of ∆′B) has already been determined,
the value of the second entry of fB can be calculated just as easily.

Using this approach of forward substitution, the whole vector fB can be
computed very economically, the only arithmetic operations utilized being
additions and subtractions.

How do these calculations translate into combinatorial terminology? The
first row of ∆′B contains only one nonzero entry. This implies that it corre-
sponds to a node v1 that is incident to only one arc a1 of the spanning tree,
i.e., v1 is a leaf node. As bv1 is known, and as there is only one arc a incident
to v1 for which fa is variable (all other arcs a of G incident to v1 are in C
or D, and hence the flow on these arcs is bound to be ca respectively da),
to obtain a feasible flow f that satisfies the balance-condition for v1, it is
necessary to set

fa1
:= b(v1)−

(∑
a∈δinG (v1)∩C

ca +
∑

a∈δinG (v1)∩D

da
)

+
(∑
a∈δout

G (v1)∩C

ca +
∑

a∈δout
G (v1)∩D

da
)
, or

fa1
:= −b(v1)+

(∑
a∈δinG (v1)∩C

ca +
∑

a∈δinG (v1)∩D

da
)

−
(∑
a∈δout

G (v1)∩C

ca +
∑

a∈δout
G (v1)∩D

da
)
,

depending on whether v1 is the head or the tail of a1. As they are no longer
being needed, v1 and a1 can now be deleted from the spanning tree, obtaining
a new, smaller tree. The procedure described above arithmetically amounts
to successively calculating the flow for leaf nodes of a tree, and generating a
new tree by deleting the leaf and its unique incident tree arc.

Reduced Costs

Due to the triangularity of the basis matrix, the calculation of the reduced
costs of the non-basic variables for a given spanning tree structure is sim-
plified in a way similar to what was described in the previous section. The
general Simplex Algorithm finds the simplex multipliers by multiplying the

112 Chapter 4. Algorithms for Flow Maximization

following equation by (∆′B)−1 from the right:

πT∆′B = uT
B.

As the last column of ∆′B contains only one nonzero entry, namely in the last
row (equalling 1 or −1), the last entry of π can be obtained immediately. As
the first but last column of ∆′B has at most two nonzero entries, namely in
the last two rows, and as the value of the last entry of π is already known,
its second last entry can now be computed easily. Iterating this approach
of backward substitution, the vector π can be determined by a number of
additions and subtractions.

Choosing Entering and Leaving Arcs

If a non-tree arc e violating its optimality condition is selected as the entering
arc and added to T , exactly one (undirected) cycle K is formed in T . Choose
the orientation of K such that e is traversed in forward direction. Suppose
that e ∈ C (the case e ∈ D being similar). If the value of fe is decreased by
the amount θ, then in order to maintain the balance constraints, the amount
of flow has to be reduced by θ in the forward arcs of K (the arcs oriented
in the same direction as K), and an additional amount of θ has to be sent
through the backward arcs (the arcs oriented in the opposite direction as K).
This shows that, according to Equation (1.30) on page 40, the coefficients
δa,e have to be equal to 1 for all forward arcs a of K, −1 for all backward
arcs a of K, and 0 for all other arcs a of T .

The value of fe can be decreased until the value fa of the flow in some
arc a ∈ A(K) reaches the boundaries of its feasibility interval. Then one of
the arcs now at its upper or lower bound is selected as the leaving arc l (this
could possibly again be e).

Running Time

The running time of the Network Simplex Algorithm heavily depends on the
details of the pivot rules used as entering and leaving arc criteria. In 1951,
Dantzig implemented the Simplex Algorithm for network flows such that he
achieved a running time complexity of O(|V |2 · |A| ·U), where U is a constant
depending on the arc-capacities and -demands.

Developing a polynomial-time Network Simplex Algorithm was one of the
major research topics in network flow theory for quite some time. However,
by now there are pivot rules that guarantee a polynomial performance of
O(|V |2 · |A|), which is almost as good as the Goldberg-Tarjan Algorithm.

4.4. Algorithms Derived from Methods from Linear Programming 113

Once again, it deserves mention that this running time, that is vastly supe-
rior when compared with the best available bounds achieved for the general
Simplex Algorithm (which are non-polynomial), is mainly due to the special
structure of networks and the triangularity of the node-arc incidence matrix.

4.4.2 Variants

I want to only mention that there are a few other algorithms which are closely
related to the Network Simplex Algorithm and which can analogously be
derived from Simplex Methods of linear programming.

The Parametric Network Simplex Algorithm stems from the Paramet-
ric Simplex Algorithm, whereas the Dual Network Simplex Algorithm is an
application of the Dual Simplex Algorithm to networks. Both of these al-
gorithms start with and maintain a solution that is possibly infeasible but
always satisfies the optimality conditions. Therefore, they can be regarded
as dual algorithms.

115

Chapter 5

Applications

Network flows are among the most widespread applied fields in all of math-
ematics. They can be found in fairly different contexts. I would like to start
out this chapter in Section 5.1 with a few examples of inner-mathematical
topics where network flow techniques have been applied advantageously. In
Section 5.2, in order to round off this thesis, I give a very brief overview of
the historical origins of network flow theory, as well as a résumé of three
well-known examples of how this theory is applied for modelling ‘real world’
situations.

5.1 Combinatorial Applications

In this section, I am going to use the Max-Flow Min-Cut Theorem 2.27 to give
proofs to a few well-known combinatorial min-max problems. This strategy
was already introduced by Ford and Fulkerson ([8, Chapter II]). The following
are problems in which the minimum of some quantity equals the maximum
of some other quantity. I will approach all of these problems by constructing
a digraph D = (V,A) and a suitable quintuple (S, T, b, c, d), then checking
that the conditions of Theorem 2.27 are satisfied, and finally examining the
correspondence between (S, T, b, c, d)-flows in D and the quantity which is to
be maximized, as well as between S − T -cuts in D and the quantity which
is to be minimized.

5.1.1 Menger’s Theorem

The following theorem was first proved by Menger in 1927. Ford and Fulker-
son gave a proof using network flows in [8, p. 55]. Menger’s Theorem exists
in arc- and vertex-disjoint versions, for both digraphs and undirected graphs.

116 Chapter 5. Applications

5.1 Theorem (Menger’s Theorem—directed arc-disjoint version). Let D =
(V,A) be a digraph and S, T ⊆ V . Suppose S, T 6= ∅ and S ∩ T = ∅. Then
the maximum number of pairwise arc-disjoint S − T -paths equals

min
U∈CS,T (D)

|δout(U)|.

Proof. Set

b := 0R,

c := 1A,

d := 0A.

Then f = 0A ∈ F b,c,dS,T (D) 6= ∅. CS,T (D) is nonempty because S∩T = ∅. Con-
sequently, Conditions (2.29)–(2.32) of the Max-Flow Min-Cut Theorem 2.27
are satisfied.

Clearly, capacity(U) = |δout(U)| for every U ∈ CS,T (D). It therefore only
remains to show that the maximum value of an (S, T, b, c, d)-flow is equal to
the maximum number of pairwise arc-disjoint S − T -paths in D, since then
an application of Theorem 2.27 completes the proof.

Suppose there are n pairwise arc-disjoint S−T -paths P1, . . . , Pn. For the
starting flow f = 0A, P1 is a flow-augmenting paths, since it is an S−T -path
in Df = D. Along P1, value(f) = 0 can be augmented by 1 since then the
variable ε in the proof of Proposition 2.24 equals 1. This yields the updated
flow

f1(a) :=

{
1 if a ∈ A(P1)

f(a) = 0 if a 6∈ A(P1)
.

We have value(f1) = 1. Now, P2 is also an f -augmenting path in D (since it
is an S−T -path in Df = D), but because P1 and P2 are pairwise arc-disjoint,
P2 must also be an S−T -path in Df1 , i.e., an f1-augmenting path. Iterating
this, a sequence {fi}i∈{1,...,n} of flows with value(fi) = i is obtained:

fi(a) :=

{
1 if a ∈ A(Pi)

fi−1(a) if a 6∈ A(Pi)
.

In fact, we have

fn(a) :=

{
1 if a ∈

⋃n
i=1A(Pi)

0 otherwise
.

As value(fn) = n, it is proved that the maximum value of an (S, T, b, c, d)-flow
is not less than the maximum number of pairwise arc-disjoint S − T -paths
in D.

5.1. Combinatorial Applications 117

Conversely, let f be an integer maximal (S, T, b, c, d)-flow in D (maximal
in the set of all (S, T, b, c, d)-flows), the existence of which is guaranteed
by Theorem 2.27. Then f assumes only the values 0 or 1 on all arcs. Set
n := value(f). I am going to show in a somewhat informal way how to
construct n pairwise arc-disjoint S−T -paths in D. If n = 0, there is nothing
to prove. If n = value(f) > 0, there must be some arc a = (u, v) ∈ δout(S)
with f(a) = 1. As b(v) = 0, the unit of flow that enters v through a has to
leave v through some arc. In this way, it is possible to construct walks starting
in S. If, at some stage of the construction, one comes back to an already
visited vertex, a cycle has been formed that would destroy the ‘pathiness’ of
the walk. This problem can always be solved by leaving out some arcs and
vertices from the cycle such that the remainder still forms a path: a cycle is
formed if some vertex is visited twice during the construction of one path.
This vertex can be left again through another, not yet used arc, due to the 0-
balance condition. If at some stage S is reached again, the constructed path
can be left out. Otherwise, the procedure is continued until T is reached.
(At some stage, the path has to reach one of S or T , since the unit of flow
it carries has to ‘go somewhere’.) There have to be n more paths leaving
S that carry a unit of flow to T than paths reentering S. This is because
value(f) = f(δout(S))− f(δin(S)) = n.

Although the technical details are left out, it should hence be plausible
that in the described manner, ultimately n arc-disjoint S − T -paths can be
constructed, which finishes the proof.

5.1.2 König’s Matching Theorem

Another field in which network flow techniques proved useful is the part of
graph theory dealing with bipartite graphs. In a certain sense, digraphs are
closely connected with undirected bipartite graphs. The basic terminology
concerning matchings and vertex covers (that will be the subject of the next
theorem) was introduced in Section 1.3.1, on page 12. I first give a central
definition:

5.2 Definition. An undirected graph B = (V,E) is called bipartite if and
only if there is a partition (X, Y) of V such that every element of E can be
written in the form {x, y}, where x ∈ X and y ∈ Y .

5.3 Remark. A matrix M is called totally unimodular if every square sub-
matrix of M has determinant 0, 1, or −1. Undirected bipartite graphs have
totally unimodular node-arc incidence matrices, just like directed graphs. In
fact, it can be shown that an undirected graph has a totally unimodular

118 Chapter 5. Applications

node-arc incidence matrix if and only if it is bipartite. In this sense, directed
graphs can be regarded as a generalization of bipartite graphs.

5.4 Theorem (König’s Matching Theorem). Let B = (V,E) be a bipartite
graph. Then the maximum size of a matching in B equals the minimum size
of a vertex cover in B.

Proof. Let {X, Y } be a partition of V such that every element of E can be
written in the form {x, y}, where x ∈ X and y ∈ Y . Define the digraph D
through V (D) := {s} ∪ V ∪ {t} (for some s, t 6∈ V , s 6= t), and A(D) :=
A1 ∪ A2 ∪ A3 with

A1 := {(s, x) | x ∈ X},
A2 := {(x, y) | x ∈ X, y ∈ Y }, and

A3 := {(y, t) | y ∈ Y }.

Set b := 0R(D), and d := 0A(D). Let us also define a capacity function c for
D:

c(a) :=

{
1 for a ∈ A1 ∪ A3

|V |+ 1 for a ∈ A2

.

Since 0A ∈ F b,c,dS,T (D) 6= ∅ and s 6= t, Conditions (2.29)–(2.32) of the Max-
Flow Min-Cut Theorem 2.27 are satisfied in this setting. Now let

V0 := {Z ∈ V(B) | ∀y ∈ Z ∩ Y : ∃x ∈ δB(y) : x 6∈ Z},

a certain set of (relatively small, or at least not ‘unnecessarily’ big) vertex
covers of B, as well as

C0 := {U ∈ Cs,t(D) | ∀y ∈ Y : (y ∈ U ⇔ ∃x ∈ U : (x, y) ∈ A(D))},

a set of certain cuts of D with relatively small capacity. Note δout(U)∩A2 = ∅
for all U ∈ C0. I claim that the mapping

g : C0 → V0, U 7→ {x ∈ X | x 6∈ U} ∪ {y ∈ Y | y ∈ U}

is a bijection. In order to verify this, the first thing to prove is g(U) ∈ V0.
Suppose g(U) ∈ 2V \V . Choose {x, y} ∈ E with x ∈ X, y ∈ Y , and {x, y} ∩
g(U) = ∅. This means x ∈ U, y 6∈ U . As this would imply (x, y) ∈ δout(U),
and as (x, y) ∈ A2 this is impossible. So g(U) ∈ V . The other way g(U)
could fail to be ∈ V0 is that there is a y ∈ g(U) ∩ Y with x ∈ g(U) for all
x with x ∈ δB(y), or equivalently for all x with y ∈ δout

D (x). But this would
mean y ∈ U , although there is no x ∈ U such that (x, y) ∈ A(D), which
contradicts the definition of C0.

5.1. Combinatorial Applications 119

g is bijective, because it has an inverse, given by

g−1 : V0 → C0, Z 7→ {s} ∪ (X\Z) ∪ (Y ∩ Z).

We have g−1(Z) ∈ C0: obviously g−1(Z) ∈ Cs,t(D). Furthermore, let y ∈ Y .
Suppose y ∈ g−1(Z). Then y ∈ Z and consequently, by definition of V0, there
is an x ∈ δB(y) with x 6∈ Z. This implies x ∈ g−1(Z), as desired. If on the
other hand y 6∈ g−1(Z), then y 6∈ Z. As Z is a vertex cover, it must be x ∈ Z
whenever (x, y) ∈ A(D). But then x 6∈ g−1(Z) for all x with (x, y) ∈ A(D).
This shows g−1(Z) ∈ C0. The fact that g ◦ g−1 = idC0 and g−1 ◦ g = idV0 is
easy to check.

Note that C0 contains the s − t-cuts of minimum capacity: A1 = δout(s)
is an s − t-cut (since s ∈ {s} and t 6∈ {s}) of capacity c(A1) = |X|, which
is < c(a) for all a ∈ A2. Therefore, no minimal s − t-cut can have a set of
outarcs that contains an edge from A2. Moreover, V0 contains the minimum-
size vertex covers: let Z ∈ V containing a y ∈ Y with x ∈ Z for all x ∈ δB(y).
Then Z ′ := Z\{y} is a vertex cover of size |Z| − 1. Hence, as |g(U)| =
|c(δout(U))| = capacity(U) for all U ∈ C0, the minimum size of a vertex cover
in B equals the minimum capacity of an s− t-cut in D.

Similarly, there is a correspondence between matchings in B and integer
s− t-flows in D: consider the mapping

h : M(B)→ F b,c,ds,t (D) ∩ ZA, M 7→ f.

Herein f = h(M) is the flow

f(a) :=

1 if a = (s, x) for some x ∈ V (M)

1 if a = (x, y) for some {x, y} ∈M
1 if a = (x, t) for some x ∈ V (M)

0 in all other cases

.

To see that this mapping is a bijection, note that clearly d ≤ f ≤ c and
f : A→ Z. The balance-condition (2.3) with b = 0R is also satisfied: for the
vertices v that are endpoints of some edge in M (and hence of exactly one
edge in M , because M is a matching), we have f(δin

D(v)) = f(δout
D (v)) = 1.

For v ∈ V (B)\V (M) we have f(δin
D(v)) = f(δout

D (v)) = 0. For s and t, there is
nothing to show. Consequently, we indeed have f = h(M) ∈ F b,c,ds,t (D)∩ZA.

The inverse of h is

h−1 : F b,c,ds,t (D) ∩ ZA →M(B), f 7→ E ∩ E(supp(f)).

Here supp(f) denotes the set of arcs a of D such that f(a) 6= 0. Recall that
E(A0), for some arc-set A0, is the set of the corresponding unordered versions

120 Chapter 5. Applications

of the pairs of A0. The fact that h−1(f) is a matching is a consequence of
the distribution of capacities in D: each x ∈ X can be endpoint to at most
one edge {x, y} ∈ E with f((x, y)) 6= 0 since f(δin

D(x)) = f((s, x)) ≤ 1 and
since b(x) = 0. Similarly, each y ∈ Y can be endpoint to at most one edge
{x, y} ∈ E with f((x, y)) 6= 0 since f(δout

D (y)) = f((y, t)) ≤ 1 and since
b(y) = 0. Finally, the equations h ◦ h−1 = idM(B) and h−1 ◦ h = idFb,c,d

s,t (D)∩ZA

are easy to check.
By Theorem 2.27, F b,c,ds,t (D) ∩ ZA contains a maximum flow (i.e., a flow

maximal in the set of all (s, t, b, c, d)-flows). Due to our construction, we
have

value(h(M)) = h(M)(δout
D (s))− h(M)(δin

D(s)) = |M | − 0 = |M |.

Therefore, the maximum size of a matching in B equals the maximum value
of an s−t-flow in D. The statement of the theorem is now just the Max-Flow
Min-Cut Theorem 2.27 applied to D.

5.5 Remark. Papadimitriou and Steiglitz gave a complexity bound for find-
ing a maximum size matching by finding a maximum network flow, as in
the above proof. They used their max-flow algorithm mentioned in Sec-
tion 4.2.4. It turns out that this algorithm performs particularly well in the
case of networks with unit capacities1 in which every vertex has indegree 1
or 0, or outdegree 1 or 0. In that way, they derive a running time bound of
O(|V | 12 · |A|).

5.1.3 Hall’s Marriage Theorem

Yet another example of an interesting combinatorial application of network
flow techniques can be found in the theory of transversals. What a transversal
is, is clarified by the following definition:

5.6 Definition. Let X be a finite set and X = (X1, X2, . . . , Xk) a family
of subsets of X. A partial transversal of X is a set Z ⊆

⋃k
i=1Xi such that

for every i ∈ {1, . . . , k} we have |Z ∩ Xi| ≤ 1. So a partial transversal is
a subset of X that contains exactly one element from each of Xi1 , . . . , Xir ,
where {i1, . . . , ir} is some subset of {1, . . . , n}.

The next theorem is cited from [21, p. 380] (for a ‘dual’ formulation, see
[13, p. 211]), whereas the idea for the proof stems from the construction

1The value of a maximum flow in the network constructed in the proof does obviously
not change if the large arc capacities on A2 are changed to 1. Those capacities were only
chosen in that way to make the argumentation in the proof easier.

5.1. Combinatorial Applications 121

given in [12, p. 56f.], for the ‘classical’ version of Hall’s Theorem, a slightly
less general situation. (Usually though, the theorem as formulated below
is proved by reduction to the classical one.) Hall was the first to prove his
version of the theorem, 1935. It was dubbed “marriage theorem” by Weyl in
1949, because of the interpretation he gave of it.

5.7 Theorem (Defect Form of Hall’s Marriage Theorem). Let k, n ∈ N, and
let X = {x1, . . . , xn} be a finite set. Let X = (X1, X2, . . . , Xk) be a family of
subsets of X. Then the maximum size of a partial transversal of X is equal
to

min
Y⊆X

(
|X\Y |+ |{i | Xi ∩ Y 6= ∅}|

)
.

Proof. I am going to construct a digraph and choose (s, t, b, c, d) such that the
Max-Flow Min-Cut Theorem 2.27 can be applied. Choose two new elements
s 6= t that are not in X. Set

V := {s} ∪X ∪ X ∪ {t},
A1 := {(s, xi) | i ∈ {1, . . . , n}},
A2 := {(xi, Xj) | xi ∈ Xj, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}},
A3 := {(Xj, t) | j ∈ {1, . . . , k}},
A := A1 ∪ A2 ∪ A3,

D := (V,A),

b := 0R,

c(a) :=

{
1 for a ∈ A1 ∪ A3

n+ 1 for a ∈ A2

,

d := 0A.

Note that Conditions (2.29)–(2.32) of the Max-Flow Min-Cut Theorem 2.27
are satisfied, since f = 0A ∈ F b,c,ds,t (D) and {s} ∈ Cs,t(D). We have δin(s) = ∅
and c(δout(s)) = c(A1) = n.

A minimal s− t-cut cannot have an arc from A2 as one of it outarcs, since
then {s} would be a smaller cut (i.e., a cut a smaller capacity). Moreover, if a
cut U has the arcs (s, xi1), . . . , (s, xir) ∈ A1 as outarcs (i.e., xi1 , . . . , xir 6∈ U),
as well as an arc (Xj0 , t) ∈ A3 (i.e., Xj0 ∈ U) for an Xj0 ⊆ {xi1 , . . . , xir},
in other words, there is no x ∈ X\{xi1 , . . . , xir} with (x,Xj0) ∈ A, then a
smaller cut can be obtained from U by leaving out Xj0 . So if looking for
possible candidates for a minimal cut, it suffices to regard cuts constructed
as follows: choose Y ⊆ X and set U := {s} ∪ Y ∪ {Xi ∈ X | Xi ∩ Y 6=
∅}. The result are only cuts that have no ‘unnecessary’ arcs from A3, and

122 Chapter 5. Applications

no ‘expensive’ arcs from A2 as outarcs. As for these cuts capacity(U) =
c(δout(U)) = |δout(U)| = |X\Y | + |{Xi ∈ X | Xi ∩ Y 6= ∅}|, it is thus shown
that

min
Y⊆X

(
|X\Y |+ |{i | Xi ∩ Y 6= ∅}|

)
= min

C∈Cs,t

(D) capacity(U).

If I can now also show that the value of a maximum flow equals the max-
imum size of a partial transversal of X , then an application of Theorem 2.27
proves the statement of the theorem.

To this end, let first Z be a partial transversal of X . It can be written
as Z = {z1, . . . , zr} with zi ∈ Xji for i ∈ {1, . . . , r}, and with j1, . . . , jr ∈
{1, . . . , k} all distinct. Define an integer flow f of value |Z| = r by

f(a) :=

1 if a = (s, zi), i ∈ {1, . . . , r}
0 for all other arcs in A1

1 if a = (zi, Xji), i ∈ {1, . . . , r}
0 for all other arcs in A2

1 if a = (Xji , t), i ∈ {1, . . . , r}
0 for all other arcs in A3

.

Let us check that f is indeed an (s, t, b, c, d)-flow: capacity-conditions (2.4)
and (2.5) are clearly satisfied. The fact that Z contains at most one element
from each Xi (i.e., h 6= i =⇒ jh 6= ji) ensures that the balance-condition (2.3)
is valid, too. Furthermore, we have

value(f) = f(δout(s))− f(δin(s)) = f(δout(s)) =
∑

a∈δout(s)

f(a) =
r∑
i=1

1 = r.

If one is conversely given any integer (s, t, b, c, d)-flow f , a partial transver-
sal Z of X with |Z| = value(f) can be obtained as follows. There are ex-
actly v := value(f) indices j1, . . . , jv ∈ {1, . . . , n} with f((s, xji)) = 1. Let
Z := {xj1 , . . . , xjv}. Then clearly |Z| = value(f).

Because of the balance-condition (2.3), applied to the vertices of the set
X, there are vertices Xk1 , . . . , Xkv ∈ X of D with (xji , Xki

) ∈ A2 (namely the
endpoints of the v arcs from A2 for which f((xji , Xki

)) = 1). This implies

xji ∈ Xki
for i ∈ {1, . . . , v} and hence Z ⊆

⋃k
j=1Xj. Because of (2.3) applied

to the vertices of the set X , we have

∀h, i ∈ {1, . . . , v} : h 6= i =⇒ Xkh
6= Xki

.

But this implies |Z ∩ Xj| ≤ 1 for j ∈ {1, . . . , k}, i.e., Z is indeed a partial
transversal of X .

5.2. ‘Real World’ Applications 123

A combination of these two observations shows that the maximum value
of an (s, t, b, c, d)-flow equals the maximum size of a partial transversal of X ,
and the proof is finished.

5.2 ‘Real World’ Applications

Network flow techniques have not only been applied diversely within the
realms of mathematical theory, but are also encountered regularly in different
areas of the rest of the world. I want to use this section to first give a brief
overview of the origins that have led to the development of the complex and
extensive theory of which some parts we had a glimpse at in this thesis.

5.2.1 Historical Notes

The Max-Flow Min-Cut question was originally posed to Ford and Fulkerson
by T.E. Harris and General F.S. Ross ([8, p. 1]). They issued a secret report
for the U.S. Air Force, entitled Fundamentals of a Method for Evaluating
Rail Net Capacities and dated 24 October 1955 (cf. [21, p. 166]). This report
was downgraded to “unclassified” as late as 1999. The main objective of
the report was not to find a flow of maximum value through a given railway
network, but rather the dual problem: interdicting it as efficiently as possible
(i.e., finding a minimum capacity cut; or in other words: how one has to
destroy as few railroad tracks as possible, such that no traffic is possible
anymore). In the report a heuristic “flooding technique” due to Boldyreff was
described and proposed for usage. The technique did not deliver optimum
results for every possible case. Harris and Ross also applied the technique as
an example to a simplified model of the Soviet and East European Railroads.
The model was an (undirected) graph with 44 vertices (each of which modeled
some subdivision of the railroad system) and 105 edges. For the data, they
referred to several secret C.I.A. reports. They achieved an estimate for the
flow capacity from the Soviet Union to East European “satellite” countries,
along with a cut of equal capacity, which they indicated as the ‘bottleneck’
of the railway system.

It is probably not surprising from today’s perspective that the Max-Flow
Problem and the Max-Flow Min-Cut Theorem arose from a ‘practical prob-
lem’, considered that the theory of network flows is one of the most applied
fields in all of mathematics. Fortunately, since the dark days of its inception,
a great number of somewhat more constructive interpretations of networks
have been developed and successfully applied. The fields in which these
applications can be found are diverse: transportation of goods, scheduling,

124 Chapter 5. Applications

assignment, route planing, data security, public transport systems, commu-
nication networks, operations research/management sciences, waste water
systems, electric engineering, macroeconomics, supply/demand models, di-
eting, . . .

Still, the literature on applications is far not as numerous as literature on
the theory behind them. A real wealth of examples is for instance found in the
comprehensive book Network Flows. Theory, Algorithms, and Applications
by Ahuja, Magnanti, and Orlin ([1]). Besides a thorough treatment of the
underlying theory, it presents around 150 applications of network flow-related
theory from all imaginable areas of human life. Mainly various problems from
economics that can be modelled by network flows are described in [22] and
[7]. Other collections of applications include [24] and [15].

To illustrate the various approaches, I would like to give a few brief, but
hopefully illuminating, examples of how network flow theory is employed to
model situations arising in economics or other areas.

5.2.2 Supply/Demand

The following is one of the most intuitive interpretations of network flows.
It exists in many variations, examples for which can among others be found
in [1, p. 169f.], or [9, p. 233].

Supply/Demand Problem
Suppose a certain good is available at some sea ports and desired at others.
The stock available and amount desired at every port is known, as well as
the maximum amount which can be shipped from some ports to others
(e.g., within a fixed period of time). Can all demands be met? Can all the
stock available be sold?

It appears to be very suitable to model this situation by a network as follows:

V := a finite set of vertices, such that there is exactly one vertex

for every port,

S :=T := ∅,
A :=V × V,

b(v) := the demand of the port represented by the vertex v ∈ V
minus the amount available at v,

c((u, v)) := the maximum amount of the good that can be shipped from

the port represented by u to the port represented by v,

d :=0A.

5.2. ‘Real World’ Applications 125

For f ∈ RA, interpret f((u, v)) as the amount being shipped from the
port represented by u to the port represented by v. Then it is easy to see
that there exists a possibility to ship goods from some ports to some others
in a way such that in the end there is exactly as great an amount of the good
at every port as desired (and at the same time such that all the available
stock is used up) if and only if there is an (S, T, b, c, d)-flow for D.

Moreover, there exists a possibility to ship goods from some ports to some
others in a way such that in the end there is at least as great an amount of the
good at every port as desired if and only if there is an (S, T, b, c, d)-preflow2

for D (in which case there might be unused stock remaining).
A related but more complex problem arises when the balance-vector b is

replaced by a finite family of balance-vectors b1, . . . , bn : V → R. This models
the situation when one simultaneously wishes to satisfy demands of n differ-
ent goods, subject to available supplies and total capacity constraints. This
is an example of a so-called multicommodity flow. Multicommodity flows are
much more difficult to handle then the one-commodity flows described in this
piece of work. In the models considered so far, there were possibly several
source- or sink-nodes, but it did not matter from which source to which sink
the flow was transported. As discussed earlier, this is not essentially differ-
ent from the situation with only one source and one sink. Multicommodity
flows can be thought of having additional requirements specifying from which
sources how much flow should be transported to which sinks. This problem
turns out to be far more complex.

5.2.3 The Transportation Problem

As a variation to the Supply/Demand Problem described in the previous
section, a per-unit cost k(u,v) could be assigned to each arc a = (u, v). Then
another natural question is how to minimize the total costs such that all
demands are met (assuming that this is possible)? This is exactly the Linear
Min-Cost Flow Problem as described in Section 4.1. The total costs for a
feasible solution (i.e., for f ∈ F b,c,dS,T) are

cost(f) =
∑

(u,v)∈A

k(u,v)f((u, v)).

In the following slightly varied bipartite form, this problem is usually
referred to as the Hitchcock Transportation Problem. It was formulated by
F.L. Hitchcock in 1941. A quite extensive discussion in terms of linear pro-
gramming is for example [10, Chapter 9]. Other variations of it, illustrating

2cf. Definition 4.9, on p. 101

126 Chapter 5. Applications

different facets, can be found in countless books on applied graph theory, net-
work flows, and linear programming, such as [2, Section 3.12], [6, Chapter 11],
[9, p. 232f.], [23, Chapter 6 and 7/§6], [8, Chapter III], [5, Kapitel 14–15 and
20], [24, Chapter 2], [17, Section 1.3.5], . . . An actual case study can be
found in [10, Section 12.4].

Hitchcock Transportation Problem

Input • A finite set of factories together with their respective supply
production in units

• A finite set of retail stores together with their respective de-
mands in units

• The maximum number of units that can be transported from
every factory to each retail store

• Per-unit costs for transportation from each factory to every re-
tail store

Output A transportation schedule subject to the transportational capac-
ities that satisfies all demands from the available supplies and mini-
mizes the total costs

In terms of networks, this problem looks as follows:

X := a finite set of vertices, one for every factory,

Y := a finite set of vertices, one for every retail store,

V :=X ∪ Y,
S :=T := ∅,
A :=X × Y,

b(v) :=

{
the unit production of factory v if v ∈ X
(−1) times the unit demand of retail store v if v ∈ Y

,

c((x, y)) := the maximal number of units that can be transported from the

factory represented by x to the retail store represented by y,

d :=0A,

k(x,y) := the costs of transporting one unit from the factory represented

by x to the retail store represented by y.

As mentioned before, this is an instance of the Linear Min-Cost Flow Prob-
lem. As the resulting graph D is bipartite, an interesting special case results

5.2. ‘Real World’ Applications 127

for |X| = |Y | and

b(v) :=

{
1 if v ∈ X
−1 if v ∈ Y

.

Finding an integral min-cost flow in this network is the same as finding
a minimum perfect matching3 for D (i.e., a matching M = {a1, . . . , a|X|}
covering all vertices of D such that

∑|X|
i=1 kai

ai is minimal).
This last version of the Hitchcock transportation problem yields, if inter-

preted appropriately, yet another famous problem of classical combinatorial
optimization:

5.2.4 The Assignment Problem

Now regard the vertices in X from the previous section as persons looking for
a job or machines available for one, and the vertices from Y as the jobs that
are vacant or need to be processed. k(x,y) could be interpreted as a measure of
proficiency or efficiency of x for job y. Here smaller values of k(x,y) correspond
to higher proficiency/efficiency (alternatively, this correspondence could be
reversed, resulting in a maximization problem). Finding an integral feasible
flow minimizing the total costs is known as the Assignment Problem:

Assignment Problem

Input • n persons looking for a job

• n jobs

• Numbers k(x,y) measuring the aptitude of person x for job y

Output An assignment of every person to a job such that overall opti-
mality is achieved

Studies of this problem are as numerous as for the Hitchcock transportation
problem: [2, Section 3.12], [6, Chapter 10], [13, p. 273, Chapter 14], [4,
Section 7.1], [3, Chapters 4, 5], [22, Section 6.4], [17, Section III.2.3], . . .

3matching was defined in Section 1.3.1, on page 12

129

Bibliography

[1] Ravindra K. Ahuja, Thomas L. Magnati, and James B. Orlin, Network
Flows. Theory, Algorithms, and Applications, Prentice-Hall, Upper Sad-
dle River, New Jersey, 1993. pages 6, 7, 29, 55, 76, 78, 87, 89, 96, 97,
99, 107, 124

[2] Jørgen Bang-Jensen and Gregory Gutin, Digraphs: Theory, Algorithms
and Applications, Springer Monographs in Mathematics, Springer-
Verlag, London Berlin Heidelberg, 2001. pages 6, 7, 48, 55, 97, 99,
126, 127

[3] Dimitri P. Bertsekas, Linear Network Optimization: Algorithms and
Codes, The MIT Press, Cambridge (Massachusetts), London, 1991.
pages 6, 26, 127

[4] Andreas Brandstädt, Graphen und Algorithmen, Leitfäden und Mono-
graphien der Informatik, B. G. Teubner, Stuttgart, 1994. pages 7, 55,
127

[5] George B. Dantzig, Lineare Programmierung und Erweiterung,
Ökonometrie und Unternehmensforschung, no. II, Springer-Verlag,
Berlin Heidelberg, 1966. pages 26, 27, 29, 43, 126

[6] Ulrich Derigs, Programming in Networks and Graphs, Lecture Notes in
Economics and Mathematical Systems, no. 300, Springer-Verlag, Berlin
Heidelberg New York, 1988. pages 6, 26, 126, 127

[7] Salah E. Elmaghraby, Some Network Models in Management Science,
Lecture Notes in Economics and Mathematical Systems. Economics,
Computer Science, Information and Control, no. 29, Springer-Verlag,
Berlin Heidelberg, 1970. pages 77, 78, 124

[8] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton Uni-
versity Press, Princeton, New Jersey, 1962. pages 4, 48, 55, 76, 77, 95,
96, 115, 123, 126

130 Bibliography

[9] Martin Grötschl, László Lovász, and Alexander Schrijver, Geometric
Algorithms and Combinatorial Optimization, Algorithms and Combina-
torics, no. 2, Springer-Verlag, Berlin Heidelberg, 1988. pages 6, 26, 43,
69, 124, 126

[10] G. Hadley, Linear Programming, Addison-Wesley Series in Industrial
Management, Addison-Wesley Publishing Company, Reading (Mas-
sachusetts), London, 1962. pages 26, 29, 125, 126

[11] Harro Heuser, Lehrbuch der Analysis, Teil 1, 13. ed., B. G. Teubner,
Stuttgart/Leipzig/Wiesbaden, 2000. pages 57

[12] Konrad Jacobs, Einführung in die Kombinatorik, Walter de Gruyter,
Berlin New York, 1983. pages 7, 121

[13] Dieter Jungnickel, Graphs, Networks and Algorithms, second ed., Algo-
rithms and Computation in Mathematics, vol. 5, Springer, Berlin Hei-
delberg New York, 2005. pages 6, 7, 69, 95, 97, 120, 127

[14] Bernhard Korte and Jens Vygen, Combinatorial Optimization. The-
ory and Algorithms, 2nd ed., Algorithms and Combinatorics, no. 21,
Springer-Verlag, Berlin Heidelberg, 2002. pages 6, 26, 43, 96, 97, 100,
104

[15] Christoph Mandl, Applied Network Optimization, Academic Press Inc.,
London, 1979. pages 124

[16] Kurt Marti and Detlef Grötel, Einführung in die lineare und nichtlineare
Optimierung, Physica-Verlag, Heidelberg, 2000. pages 26, 29

[17] L. George Nemhauser and Laurence A. Wolsey, Integer and Combina-
torial Optimization, Wiley-Interscience series in discrete mathematics
and opimization, John Wiley and Sons, New York Chichester Brisbane
Toronto Singapore, 1988. pages 6, 26, 29, 126, 127

[18] Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial Opti-
mization. Algorithms and Complexity, Prentice-Hall, Englewood Cliffs,
NJ, 1982. pages 6, 26, 29, 43, 44, 94, 96, 100

[19] RAND, Rand Corporation Provides Objective Research Services and
Public Policy Analysis, http://www.rand.org/. pages 4

[20] Walter Rudin, Analysis, R. Oldenbourg Verlag, München, 1998. pages
26, 57

Bibliography 131

[21] Alexander Schrijver, Combinatorial Optimization. Polyhedra and Effi-
ciency, vol. A, Algorithms and Combinatorics, no. 24, Springer-Verlag,
Berlin Heidelberg New York, 2003. pages 6, 7, 26, 28, 43, 44, 48, 55, 60,
71, 76, 77, 90, 91, 96, 97, 99, 104, 120, 123

[22] H. Steckhan, Güterströme in Netzen, Lecture Notes in Economics and
Mathematical Systems. Operations Research, no. 88, Springer-Verlag,
Berlin Heidelberg New York, 1973. pages 77, 124, 127

[23] James K. Strayer, Linear Programming and its Applications, Undergrad-
uate Texts in Mathematics, Springer-Verlag, New York, 1989. pages 26,
105, 126

[24] H. Walther, Anwendungen der Graphentheorie, Friedr. Vieweg and Sohn,
Braunschweig/Wiesbaden, 1978. pages 4, 78, 124, 126

[25] Wikipedia, Rand - Wikipedia, the Free Encyclopedia,
http://en.wikipedia.org/wiki/RAND. pages 4

133

Curriculum Vitae

Timon Thalwitzer

Contact

Email: TimonThalwitzer@gmx.net
Homepage: www.myspace.com/TimonThalwitzer

Personal Details

Gender: Male
Date of birth: 28th of January, 1983
Place of birth: Vienna, Austria
Present Citizenship: Austria

Education

10/2001-10/2008 Diplomstudium Mathematik at the University of Vienna, Austria.
Main interests algebra and graph theory

since 2001 Diplomstudium Musikwissenschaft at the University of Vienna, Aus-
tria. Main interests history and theory of jazz

09/2006-06/2007 Jazz Drums at the Gustav-Mahler Konservatorium in Vienna, Aus-
tria

09/1993-06/2001 Secondary School at the GRG 13 Wenzgasse in Vienna, Austria

09/1989-06/1993 Primary School

Vienna, November 11, 2008
Ort, Datum Timon Thalwitzer

