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Plane Partitions

Plane partitions were “invented” by Major Percy Alexander
MacMahon around 1900.

They are NOT partitions of the plane, but rather planar analogues
of (integer) partitions.

By definition, a plane partition is an array of non-negative integers
(πi ,j)i ,j such that entries along rows and along columns are
non-increasing, that is,

πi ,j ≥ πi ,j+1 and πi ,j ≥ πi+1,j .

Mihai Ciucu and Christian Krattenthaler A dual of MacMahon’s theorem on plane partitions



Plane Partitions

Plane partitions were “invented” by Major Percy Alexander
MacMahon around 1900.

They are NOT partitions of the plane, but rather planar analogues
of (integer) partitions.

By definition, a plane partition is an array of non-negative integers
(πi ,j)i ,j such that entries along rows and along columns are
non-increasing, that is,

πi ,j ≥ πi ,j+1 and πi ,j ≥ πi+1,j .

Mihai Ciucu and Christian Krattenthaler A dual of MacMahon’s theorem on plane partitions



Plane Partitions

Plane partitions were “invented” by Major Percy Alexander
MacMahon around 1900.

They are NOT partitions of the plane, but rather planar analogues
of (integer) partitions.

By definition, a plane partition is an array of non-negative integers
(πi ,j)i ,j such that entries along rows and along columns are
non-increasing, that is,

πi ,j ≥ πi ,j+1 and πi ,j ≥ πi+1,j .

Mihai Ciucu and Christian Krattenthaler A dual of MacMahon’s theorem on plane partitions



Plane Partitions

Plane partitions were “invented” by Major Percy Alexander
MacMahon around 1900.

They are NOT partitions of the plane, but rather planar analogues
of (integer) partitions.

By definition, a plane partition is an array of non-negative integers
(πi ,j)i ,j such that entries along rows and along columns are
non-increasing, that is,

πi ,j ≥ πi ,j+1 and πi ,j ≥ πi+1,j .
���

���
���

���
���

���
���

���
���

���
�XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Mihai Ciucu and Christian Krattenthaler A dual of MacMahon’s theorem on plane partitions



Plane Partitions - modern perspective

−→ rhombus tilings of a hexagon!
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Plane Partitions - modern perspective

−→ rhombus tilings of a hexagon!

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"
"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"
"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"
"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"
"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"
"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"
"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

bb

b
b
b

b
b
b
bb

""

"
"

"

"
"

"
""

b
b
b
bb

b
b
b
bb "
"

"
""

"
"

"
""

"
"
"
"
""b

b
b
b
bb

""
"
"

"
""

""

""

""

""

"
"
"

""

""

"
"
"
""

"
"
"

"
"
"

"
"
"
""

"
"
"

"
"
"
""

""

"
"
"

"
"
"

"
"
"

"
"
"
""

"
"
"

""

"
"
"

"
"
"

"
"
"

"
"
"
""

""

"
"
"
"""

"
"
""

""

""

"
"
"

""

""
bb

b
b

b
bb

bb

bb

bb

bb

b
b

b

bb

bb

b
b

b
bb

b
b

b

b
b

b

b
b

b
bb

b
b

b

b
b

b
bb

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

b
b

b

bb

b
b

b

b
b

b

b
b

b
b

b
b

bb

bb

b
b

b
bb b

b
b

bb

bb

bb

b
b

b

bb

bb

Mihai Ciucu and Christian Krattenthaler A dual of MacMahon’s theorem on plane partitions



MacMahon’s Plane Partition Theorem

The number of rhombus tilings of a hexagon with side lengths
a, b, c, a, b, c equals

H(a) H(b) H(c) H(a + b + c)

H(a + b) H(a + c) H(b + c)
,

where the hyperfactorials H(n) are defined by

H(n) := 0! 1! · · · (n − 1)! .
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A dual?

There are no rhombus tilings of such a thing!

“Dualise”: “Count” the rhombus tilings of the outside!
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A dual?

Let S∗(a, b, c,m) denote the exterior of an (a, b, c ,m)-shamrock.
Furthermore, let HN(a, b, c ,m) be the hexagonal region of
side-lengths alternating between N + a + b + c and
N + a + b + c + m (the top side being N + a + b + c), and having
the shamrock S(a, b, c ,m) removed from its centre
Then we define

M(S∗(a, b, c ,m))

M(S∗(a + b + c , 0, 0,m))
:= lim

N→∞

M(HN(a, b, c ,m))

M(HN(a + b + c , 0, 0,m))
,

where M(R) denotes the number of rhombus tilings of the region
R.
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The dual MacMahon formula

Theorem

For any non-negative integers a, b, c and m we have

M(S∗(a, b, c ,m))

M(S∗(a + b + c , 0, 0,m))

=
H(a) H(b) H(c) H(a + b + c + m) H(m)2

H(a + m) H(b + m) H(c + m) H(a + b + c)

= P(a, b,m) P(a + b, c ,m),

where P(A,B,C ) denotes the number of rhombus tilings of a
hexagon with side lengths A,B,C ,A,B,C .
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The dual MacMahon formula — m = a + b + c

Corollary

For any non-negative integers a, b, c, we have

M(S∗(a, b, c, a + b + c))

M(S∗(a + b + c , 0, 0, a + b + c))
= P(a, b, c) P(a + b, b + c , c + a),

where P(A,B,C ) denotes the number of rhombus tilings of a
hexagon with side lengths A,B,C ,A,B,C .
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m = a + b + c — geometric interpretation

M(S∗(a, b, c , a + b + c))

M(S∗(a + b + c , 0, 0, a + b + c))
= P(a, b, c) P(a +b, b +c , c +a)
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A more general region - equal parity case

The region SCx ,y ,z(a, b, c ,m):
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A more general region - equal parity case

The region SCx ,y ,z(a, b, c ,m):

y+z

2

x+z

2 x+y

2

+b+c
y+z

2

+a+c
x+z

2

+a+b
x+y

2

y+a+b+c

y+m

a

c

m

x+m

x+a+b+c

b

z+a+b+c

z+m
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The main theorem: equal parity case

Theorem

Let x, y , z, a, b, c and m be nonnegative integers. If x, y and z
have the same parity, we have

M(SCx ,y ,z(a, b, c,m)) =
H(m)3 H(a) H(b) H(c)

H(m + a) H(m + b) H(m + c)

×
H( x+y

2 + m + a + b) H( x+z
2 + m + a + c) H( y+z

2 + m + b + c)

H( x+y
2 + m + c) H( x+z

2 + m + b) H( y+z
2 + m + a)

×
H( x+y

2 + c) H( x+z
2 + b) H( y+z

2 + a)

H( x+y
2 + a + b) H( x+z

2 + a + c) H( y+z
2 + b + c)

× H(x + m + a + b + c) H(y + m + a + b + c)

H(x + y + m + a + b + c) H(x + z + m + a + b + c)

× H(z + m + a + b + c) H(x + y + z + m + a + b + c)

H(y + z + m + a + b + c)
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The main theorem: equal parity case

×
H(d x+y+z

2 e+ m + a + b + c)

H( x+y
2 + m + a + b + c) H( x+z

2 + m + a + b + c)

×
H(b x+y+z

2 c+ m + a + b + c) H( y+z
2 + m+a+b+c

2 )2

H( y+z
2 + m + a + b + c) H( x+y

2 ) H( x+z
2 ) H( y+z

2 )

×
H(d x2eH(b x2c) H(d y2 e)

H(d x2e+ m+a+b+c
2 ) H(b x2c+ m+a+b+c

2 ) H(d y2 e+ m+a+b+c
2 )

×
H(b y2 c) H(d z2e) H(b z2c)

H(b y2 c+ m+a+b+c
2 ) H(d z2e+ m+a+b+c

2 ) H(b z2c+ m+a+b+c
2 )

×
H(m+a+b+c

2 )2 H( x+y
2 + m+a+b+c

2 )2 H( x+z
2 + m+a+b+c

2 )2

H(d x+y+z
2 e+ m+a+b+c

2 ) H(b x+y+z
2 c+ m+a+b+c

2 )
,

where

H(n) :=

{∏n−1
k=0 Γ(k + 1), for n a positive integer,∏n− 1

2
k=0 Γ(k + 1

2), for n a positive half-integer,
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A more general region - unequal parity case

The region SCx ,y ,z(a, b, c ,m):

y+z

2

x+z+
x+y−

2
2

x+m

x+a+b+c

z+m

y+a+b+c

z+a+b+c

y+m

m

b

a

c

+a+c
1

1
+a+b

x+z−1

2

+b+c
y+z

2

x+y+1

2
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The main theorem: unequal parity case

Theorem

Let x, y , z, a, b, c and m be nonnegative integers. If x has parity
different from the parity of y and z, we have

M(SCx ,y ,z(a, b, c,m)) =
H(m)3 H(a) H(b) H(c)

H(m + a) H(m + b) H(m + c)

×
H(b x+y

2 c+ m + a + b) H(d x+z
2 e+ m + a + c) H( y+z

2 + m + b + c)

H(d x+y
2 e+ m + c) H(b x+z

2 c+ m + b) H( y+z
2 + m + a)

×
H(d x+y

2 e+ c) H(b x+z
2 c+ b) H( y+z

2 + a)

H(b x+y
2 c+ a + b) H(d x+z

2 e+ a + c) H( y+z
2 + b + c)

× H(x + m + a + b + c) H(y + m + a + b + c)

H(x + y + m + a + b + c) H(x + z + m + a + b + c)

× H(z + m + a + b + c) H(x + y + z + m + a + b + c)

H(y + z + m + a + b + c)
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The main theorem: unequal parity case

×
H(d x+y+z

2 e+ m + a + b + c)

H(b x+y
2 c+ m + a + b + c) H(d x+z

2 e+ m + a + b + c)

×
H(b x+y+z

2 c+ m + a + b + c)

H( y+z
2 + m + a + b + c)

×
H(d x2e) H(b x2c) H(d y2 e)

H(d x2e+ m+a+b+c
2 ) H(b x2c+ m+a+b+c

2 ) H(d y2 + m+a+b+c
2 )

×
H(b y2 c) H(d z2e) H(b z2c)

H(b y2 c+ m+a+b+c
2 ) H(d z2e+ m+a+b+c

2 ) H(b z2c+ m+a+b+c
2 )

×
H(m+a+b+c

2 )2 H(d x+y
2 e+ m+a+b+c

2 ) H(b x+y
2 c+ m+a+b+c

2 )

H(d x+y+z
2 e+ m+a+b+c

2 ) H(b x+y+z
2 c+ m+a+b+c

2 ) H(d x+y
2 e)

×
H(d x+z

2 e+ m+a+b+c
2 ) H(b x+z

2 c+ m+a+b+c
2 ) H( y+z

2 + m+a+b+c
2 )2

H(b x+z
2 c) H( y+z

2 )
.
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Kuo’s graphical condensation

Theorem (Kuo)

Let G = (V1,V2,E ) be a plane bipartite graph in which
|V1| = |V2|. Let vertices α, β, γ and δ appear cyclically on a face
of G . If α, γ ∈ V1 and β, δ ∈ V2, then

M(G )M(G − {α, β, γ, δ})
= M(G −{α, β})M(G −{γ, δ}) + M(G −{α, δ})M(G −{β, γ}),

where M(H) denotes the number of perfect matchings of the
bipartite graph H.

This is, as worked out by Fulmek, a combinatorial version of
Dodgon’s condensation formula for determinants ( = of a special
case of a determinant formula of Jacobi . . . ).
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The proof of the main theorem

Both, the equal parity case and the unequal parity case, are
simultaneously proved by induction on x + y + z .

The induction base. These are the cases where x = 0, y = 0, or
z = 0. Again, there are several cases. In the equal parity case, by
symmetry of parameters it is sufficient to consider the case where
z = 0.
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Proof of the main theorem: z = 0

The region SC4,4,0(3, 1, 2, 2):
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Proof of the main theorem: z = 0

¡ We need to know the number of rhombus tilings of regions of the
form

x+m

c
a+b+c

y+m

x+c

y+c

m

b

a
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Proof of the main theorem: z = 0

Theorem

For any nonnegative integers x, y , a, b, c and m, the number of
rhombus tiling of this region equals

=
H(m)2 H(a) H(b) H(c) H(m + a + b + c)

H(m + a) H(m + b) H(m + c)

× H(x + m + a + c) H(y + m + b + c)

H(x + y + m + c)

H(x + y + c)

H(x + a + c) H(y + b + c)

× H(x + y + m + a + b + c)

H(x + m + a + b + c) H(y + m + a + b + c)

H(x) H(y)

H(x + y)
.

Proof.

This can also be proved by means of Kuo’s condensation.
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Proof of the main theorem

Induction step: We apply Kuo’s condensation. For α, β, γ, δ we
choose triangles along in the corners of the outer boundary of the
hexagon.
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Proof of the main theorem
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Proof of the main theorem

The implied recurrence:

M(SCx ,y ,z(a, b, c ,m))M(SCx ,y−1,z−1(a, b, c ,m))

= M(SCy ,x ,z−1(b, a, c ,m))M(SCz,y−1,x(c , b, a,m))

+ M(SCx−1,y ,z(a, b, c ,m))M(SCx+1,y−1,z−1(a, b, c,m)).

One needs to verify that the guessed formula satisfies the same
recurrence.
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Proof of the main theorem

One substitutes the guessed expression in the recurrence to be
verified and forms the quotient of the two sides of the recurrence.
After a lot of simplification, this quotient becomes

Γ(y + z + a + b + c + m) Γ(x + y + z + a + b + c + m − 1)

Γ(y + z + a + b + c + m − 1) Γ(x + y + z + a + b + c + m)

×
Γ
(⌈

x+y+z−1
2

⌉
+ a + b + c + m

)
Γ
(⌈ x+y+z

2

⌉
+ a+b+c+m

2

)
Γ
(⌈ x+y+z

2

⌉
+ a + b + c + m

)
Γ
(⌈

x+y+z−1
2

⌉
+ a+b+c+m

2

)
+

Γ(x + a + b + c + m + 1) Γ(x + y + z + a + b + c + m − 1)

Γ(x + a + b + c + m) Γ(x + y + z + a + b + c + m)

×
Γ
(⌈

x+1
2

⌉)
Γ
(⌈

x
2

⌉
+ a+b+c+m

2

)
Γ
(⌈

x
2

⌉)
Γ
(⌈

x+1
2

⌉
+ a+b+c+m

2

)
×

Γ
(⌈

x+y+z−1
2

⌉
+ a + b + c + m

)
Γ
(⌈ x+y+z

2

⌉
+ a+b+c+m

2

)
Γ
(⌈ x+y+z

2

⌉
+ a + b + c + m

)
Γ
(⌈

x+y+z−1
2

⌉
+ a+b+c+m

2

) .
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Proof of the main theorem

If all of x , y , z are even, this condenses down to

(y + z + a + b + c + m − 1)

(x + y + z + a + b + c + m − 1)

+
(x + a + b + c + m)

(x + y + z + a + b + c + m − 1)
· x/2

(x + a + b + c + m)/2
,

which indeed equals 1.

The other cases are similar.
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The dual MacMahon formula

For the dual of MacMahon’s formula, we need to do asymptotics
of hyperfactorials.

By the Glaisher–Kinkelin formula, which gives the asymptotics of
the Barnes G -function, we have

lim
n→∞

0! 1! · · · (n − 1)!

n
n2

2
− 1

12 (2π)
n
2 e−

3n2

4

=
e

1
12

A
,

where A = 1.28242712... is the so-called the Glaisher–Kinkelin
constant.
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The dual MacMahon formula

lim
n→∞

H(n)

n
n2

2
− 1

12 (2π)
n
2 e−

3n2

4

=
e

1
12

A
,

where A = 1.28242712... is the so-called the Glaisher–Kinkelin
constant.

This leads (more or less) straightforwardly to the dual MacMahon
formula:

Theorem

For any non-negative integers a, b, c and m we have

M(S∗(a, b, c ,m))

M(S∗(a + b + c , 0, 0,m))

=
H(a) H(b) H(c) H(a + b + c + m) H(m)2

H(a + m) H(b + m) H(c + m) H(a + b + c)

= P(a, b,m) P(a + b, c ,m).
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