Exercises for Algebraic Topology

SS 2006

Andreas Kriegl

1.1.A1.

Prove the following statements:
(a) Let X and Y be topological spaces, $A \subseteq X, B \subseteq Y$. Then $\bar{A} \times \dot{B} \cup \dot{A} \times \bar{B}$ is the boundary of $A \times B$ in $X \times Y$.
(b) Let $A \subseteq \mathbb{R}^{m}$ and $B \subseteq \mathbb{R}^{n}$ be convex. Then $A \times B \subseteq \mathbb{R}^{n+m}$ is convex.

1.1.A2.

The convex hull $\langle A\rangle_{\mathrm{cv}}$ of $A \subseteq \mathbb{R}^{n}$ is defined to be the smallest convex subset of \mathbb{R}^{n} which contains A. This is the intersection of all convex subsets of \mathbb{R}^{n} containing A. Show that

$$
A=\left\{\sum_{i=0}^{q} \lambda_{i} x_{i}: q \in \mathbb{N}, \lambda_{i} \geq 0, x_{i} \in A, \sum_{i=0}^{q} \lambda_{i}=1\right\} .
$$

1.1.A3.

For $R>r>0$ let X be the subset of \mathbb{R}^{3} obtained by rotating a circle in the x-z-plane with center $(R, 0,0)$ and radius r around the z-axes. Prove that
(a) X is given by the equation $\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}$.
(b) $(x, y)=\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) \mapsto\left(\left(R+r y_{1}\right) x, r y_{2}\right)$ is an embedding of $S^{1} \times S^{1}$ onto X.
(c) The filled torus $V \subseteq \mathbb{R}^{3}$ is the union $\left\{(x, y, z):\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2} \leq r^{2}\right\}$ of X and its "interior". Show that the formula in (b) gives a homeomorphism $S^{1} \times D^{2} \cong V$.

1.1.A4.

Show that for any $x, y \in \stackrel{\circ}{D}^{n}$ there is a homeomorphism of pairs $\left(D^{n},\{x\}\right) \cong\left(D^{n},\{y\}\right)$.

1.3.A1.

Show that the mapping $\left(i_{1}, \ldots, i_{n}\right): X_{1} \vee \cdots \vee X_{n} \rightarrow X_{1} \times \ldots \times X_{n}$ defined in (1.41) is an embedding.

1.3.A2.

Show: $\left(S^{1} \times S^{1}\right) /\left(S^{1} \vee S^{1}\right) \cong S^{2}$.

1.3.A3.

Show that $\mathbb{R}^{n} / D^{n} \cong \mathbb{R}^{n}$ and that \mathbb{R}^{n} / D^{n} is not Hausdorff.

1.3.A4.

Show that any continuous $f: X \rightarrow Y$ induces a continuous mapping $C(f): C(X) \rightarrow C(Y)$ between the cones, via $f \times I: X \times I \rightarrow Y \times I$.

1.3.A5.

The suspension (dt. Einhängung) of a topological space X is $E(X):=C(X) / X$, where X is embedded
into $C(X)$ via $x \mapsto(x, 1)$. Show that $f: X \rightarrow Y$ induces a mapping $E(f): E(X) \rightarrow E(Y)$. Show furthermore, that $E\left(D^{n}\right) \cong D^{n+1}$ and $E\left(S^{n}\right) \cong S^{n+1}$.

1.5.A4.

Show that the lens space $L\left(\frac{1}{2}\right)$ is homeomorphic to $\mathbb{P}_{\mathbb{R}}^{3}$.

1.6.A2.

Describe a mapping $f: S^{2} \rightarrow S^{2} \vee S^{1}$ such that $\left(S^{2} \vee S^{1}\right) \cup_{f} D^{3} \cong S^{2} \times S^{1}$. Hint: (1.12).

1.6.A3.

Consider the subspace $X:=S^{1} \cup D^{1} \subseteq \mathbb{C}$ and a mapping $f: S^{1} \rightarrow X$ which runs through the top half circle, the diameter D^{1}, the bottom half circle, and again the diameter. Show that $X \cup_{f} D^{2}$ is homeomorphic to the Möbius strip. Hint: Use (1.94).

1.7.A3.

Let \mathbb{Z} act on \mathbb{R}^{2} by $n:\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}+n,(-1)^{n} x_{2}\right)$. Show that $\mathbb{R}^{2} / \mathbb{Z}$ is homeomorphic to the open Möbius strip (i.e. the Möbius strip from (1.59) without ist boundary S^{1}).

1.7.A5.

Let G be the subgroup of homeomorphisms on \mathbb{R}^{2} generated by $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}+1, x_{2}\right)$ and $\left(x_{1}, x_{2}\right) \mapsto$ $\left(-x_{1}, x_{2}+1\right)$. Show that \mathbb{R}^{2} / G is homeomorphic to Kleins bottle.

1.7.A6.

Let T be the torus into \mathbb{R}^{3} as in (1.18). Consider the action of the group $S^{0}=\{ \pm 1\}$ on T given by
(1) $(x, y, z) \stackrel{-1}{\longmapsto}(-x,-y, z)$ and show that $T / S^{0} \cong S^{1} \times S^{1}$.
(2) $(x, y, z) \stackrel{-1}{\longmapsto}(x,-y,-z)$ and show that $T / S^{0} \cong S^{2}$.
(3) $(x, y, z) \stackrel{-1}{\longmapsto}(-x,-y,-z)$ and show that T / S^{0} is homeomorphic to Kleins bottle.

2.1.A2.

Show that $X \times Y$ is contractible provided X and Y are contractible.

2.1.A5.

Two homeomorphisms $f_{0}, f_{1}: X \rightarrow Y$ are called isotopic, iff there exists a homotopy $t \mapsto f_{t}$ consisting of homeomorphism $f_{t}: X \rightarrow Y$ only. Let $f: D^{n} \rightarrow D^{n}$ be a homeomorphism with $\left.f\right|_{S^{n-1}}=$ id and $f(0)=0$. Show that $\operatorname{id}_{D_{n}}$ is isotopic f to via $f_{t}: x \mapsto t \tilde{f}(x / t)$, where $\tilde{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an appropriate extension of f.

2.1.A7.

Show that X is contractible if and only if $\Delta: X \rightarrow X \times X, x \mapsto(x, x)$ is 0 -homotopic.

2.2.A1.

Show that the pointwise multiplication defines an Abelian group structure on $\left[X, S^{1}\right]$ and, furthermore, that deg : $\left[S^{1}, S^{1}\right] \rightarrow(\mathbb{Z},+)$ is a group-homomorphism with respect to this group structure for $X:=S^{1}$.

2.2.A2.

Let $f: D^{2} \rightarrow \mathbb{R}^{2}$ be a continuous function with $\left.f\right|_{S^{1}}$ odd. Show that there exists an $z \in D^{2}$ with $f(z)=0$. Deduce the existence of a solution $(x, y) \in \mathbb{R}^{2}$ for

$$
x \cos (y)=x^{2}+y^{2}-1 \text { and } y \cos (x)=\sin \left(2 \pi\left(x^{2}+y^{2}\right)\right)
$$

2.2.A4.

Show that S^{∞} is contractible.
Hint: Let $p: \mathbb{R}^{\infty} \backslash\{0\} \rightarrow S^{\infty}$ given by $x \mapsto \frac{x}{\|x\|_{2}}$, where $\|x\|_{2}:=\sqrt{\sum_{k} x_{k}^{2}}$. Show that h_{t} : $\left(x_{0}, x_{1}, x_{2}, \ldots\right) \mapsto p\left((1-t) x_{0}, t x_{0}+(1-t) x_{1}, t x_{1}+(1-t) x_{2}, t x_{2}+(1-t) x_{3}, \ldots\right)$ defines a homotopy between $\operatorname{id}_{S \infty}$ and the right shift $S^{\infty} \rightarrow\left\{x \in S^{\infty}: x_{0}=0\right\}$. Now consider the homotopy $\left(0, x_{1}, x_{2}, \ldots\right) \mapsto p\left(t,(1-t) x_{1},(1-t) x_{2}, \ldots\right)$.

2.4.A3.

Let $p, q \in S^{1} \times S^{1}$ be different points. Show that $S^{1} \times S^{1} \backslash\{p, q\} \sim S^{1} \vee S^{1} \vee S^{1}$.

2.4.A4.

Show that $\mathbb{R}^{3} \backslash S^{1} \sim S^{1} \vee S^{2}$, where S^{1} is the unit-circle in $\mathbb{R}^{2} \times\{0\}$.

2.4.A5.

Show that $S^{3} \backslash S^{1} \sim S^{1}$, where S^{1} is the unit-circle in $\mathbb{R}^{2} \times\{(0,0)\}$.

2.4.A9.

Show that the mapping cylinder of $z \mapsto z^{2}, S^{1} \rightarrow S^{1}$ is homeomorphic to the Möbius strip.

2.4.A10.

Show that for $f: S^{n-1} \rightarrow Y$ one has $M_{f} / S^{n-1} \sim Y \cup_{f} D^{n}$.

2.4.A13.

Show that $O(n) \subseteq G L(n)$ is an SDR. Hint: Apply Gram-Schmidt orthonormalization to the columns of $A \in G L(n)$ to obtain $r(A) \in O(n)$. This procedure is given by multiplication with an upper triangular matrix with positive diagonal entries depending smoothly on A. Now deform the matrix to the identity matrix.

3.1.A8.

Let K be a simplicial complex in \mathbb{R}^{n} and $p \in \mathbb{R}^{n+1} \backslash \mathbb{R}^{n}$. The cone $C(K, p)$ is the set consisting of $\{p\}$, all simplices of K, and all simplicies $\left\langle p, x_{0}, \ldots, x_{i}\right\rangle$ for $\left\langle x_{0}, \ldots, x_{i}\right\rangle \in K$. The suspension is $E(K):=$ $C(K, p) \cup C(K,-p)$. Show that $C(K, p)$ and $E(K)$ are simplicial complexes with $|C(K, p)| \cong C(|K|)$ and $|E(K)|=E(|K|)$.

3.1.A9.

The cartesian product of two polyeder is a polyeder. Hint: Show that the product of two closed simplices $\bar{\sigma}$ and $\bar{\tau}$ can be triangulated using $C\left((\sigma \times \tau)^{\cdot}\right)=\bar{\sigma} \times \bar{\tau}$.

3.1.A13.

Let K be a simplicial complex and α_{i} the number of i-simplices of K. The number $\chi(K):=\sum_{i \geq 0}(-1)^{i} \alpha_{i}$ is called Euler-characteristic of K. Show that

- For any triangulation K of S^{1} we have $\chi(K)=0$.
- $\chi(C(K, p))=1$ for the cone $C(K, p)$ given in exercise (3.1.A8).
- $\chi(E(K))=2-\chi(K)$ for the suspension $E(K)$ given in exercise (3.1.A8).
- $\chi(\dot{\sigma})=1+(-1)^{n}$ where $\dot{\sigma}:=\{\tau: \tau<\sigma\}$ for any $n+1$-simplex σ.

3.2.A2.

Let x_{0}, \ldots, x_{q} be vertices of K. Show that $\mathrm{st}_{K}\left(x_{0}\right) \cap \cdots \cap \operatorname{st}_{K}\left(x_{q}\right) \neq \emptyset \Leftrightarrow\left\langle x_{0}, \ldots, x_{q}\right\rangle \in K$.

3.3.A1.

Show that $S^{1} \nsim S^{n}$ for $n>1$ and deduce $\mathbb{R}^{2} \not \not \mathbb{R}^{n+1}$. Hint: (3.33).

4.1.A1.

Describe CW-decompositions with as few cells as possible for $D^{n}, S^{1} \times I$, the closed Möbiusstrip, and the disk D_{g}^{2} with g holes as in (1.4.13).

4.1.A5.

Show that the lens space $L\left(\frac{q}{p}\right)$ is a 3-dimensional CW-complex with exactly one cell in each dimension. Hint: Consider the CW-decomposition of D^{3} given by the p-th unit-roots on $S^{1} \subseteq S^{2} \subseteq D^{3}$, the segments on S^{1} between them, the two hemispheres of S^{2} and the interior of D^{3}. Now take the images under the quotient mapping $D^{3} \rightarrow L\left(\frac{q}{p}\right)$.

4.2.A1.

Show that $S^{n} \times S^{m} / S^{n} \vee S^{m}$ is a $C W$-space which is homeomorphic to S^{n+m}.

4.2.A2.

Show that the cone and the suspension of a CW-space is also a CW-space.

4.2.A3.

Show that the mapping cylinder of a cellular mapping between CW-spaces is a CW-space.

4.3.A1.

Show that a CW-space X is path-connected if and only if X^{1} is path-connected. Hint: (4.3.4)

4.3.A2.

Let X be a CW-space and $x_{0} \in X^{0}$. Let Y be a connected CW-space without 1-cells and hence with only one 0 -cell y_{0}. Then any two homotopic mappings $f_{j}: X \rightarrow Y$ which preserve the basepoints are homotopic relative $\left\{x_{0}\right\}$. Hint: (4.3.4).

4.3.A4.

Let X be a $C W$-space with $\operatorname{dim}(X)<n$. Show that $\left[X, S^{n}\right]=\{0\}$. Hint: (4.3.4) and cellular mappings $X \rightarrow S^{n}=e^{0} \cup e^{n}$ are constant.

5.4.A4.

Determine the fundamental group of $S^{1} \times \mathbb{P}^{2}, \mathbb{P}^{2} \vee \mathbb{P}^{2}, \mathbb{P}^{2} \times \mathbb{P}^{2}, S^{1} \times S^{m}$ for $m \geq 2$, and of $\mathbb{R}^{3} \backslash S^{1}$.
The following exercises (5.3.7A)-(5.7.A4e) show, that the isomorphy problem is algorithmically unsolvable for m-manifolds with $m \geq 4$. For this it is enough to show that evevry finitely presented group appears as fundamental group of such a manifold.

5.3.A7.

Let M be a connected manifold of dimension $m \geq 3$. Show that $\pi_{1}\left(M \backslash D_{1}^{0}\right) \cong \pi_{1}(M)$ for $M \backslash D_{1}^{0}$ as in (1.5.5).

5.3.A8.

Let M and N be connected manifolds of dimension $m \geq 3$. Then for the connected sum we have $\pi_{1}(M \sharp N) \cong \pi_{1}(M) \coprod \pi_{1}(N)$.

5.7.A4a.

Show that for $m \geq 4$ the fundamental group of the connected sum M of k copies of $S^{1} \times S^{m-1}$ is the free group $\left\langle\left\{s_{1}, \ldots, s_{k}\right\}: \emptyset\right\rangle$ with k generators.

5.7.A4c.

Let $f: S^{1} \times D^{m-1} \rightarrow M$ an embedding into an m-manifold M. Show that $\pi_{1}(M) \cong \pi_{1}\left(M \backslash f\left(S^{1} \times\right.\right.$ $\left.D^{m-1}\right)$.

5.7.A4d.

Let f be as in (5.7.A4c) with M as in (5.7.A4a). Show that $\pi\left(M \cup_{f}\left(D^{2} \times S^{m-2}\right) \cong\left\langle\left\{s_{1}, \ldots, s_{k}\right\}\right.\right.$: $\left.\left\{\left.f\right|_{S^{1} \times\{0\}}\right\}\right\rangle$.

5.7.A4e.

Let $G=\left\langle\left\{s_{1}, \ldots, s_{k}\right\}:\left\{r_{1}, \ldots, r_{l}\right\}\right\rangle$ be a finitely represented group. Now construct a compact connected manifold without boundary recursively by starting with M from (5.7.A4a) and cutting for every $r_{i} \in \pi_{1}(M)$ a neighborhood homeomorphic to $S^{1} \times D^{m-1}$ of a appropriately choosen representant of r_{i} and pasting a cylinder $D^{2} \times S^{m-2}$ as in (5.7.A4d).

6.1.A1.

Show that for $a, b, c, d \in \mathbb{Z}$ with $m:=a d-b c \neq 0$ the mapping $S^{1} \times S^{1} \rightarrow S^{1} \times S^{1},(z, w) \mapsto\left(z^{a} w^{b}, z^{c} w^{d}\right)$ is an m-fold covering.

6.1.A5.

Consider a torus $T \subseteq \mathbb{R}^{3}$ with the z-axes as rotation axis. Now glue $g \geq 2$ many handles to T such that the resulting surface F_{g+1} is symetric with respect to rotation R around the z-axes by the angle $2 \pi / g$. Let G be the cyclic group generated by R. Show that $F_{g+1} / G \cong F_{2}$ and hence $F_{g+1} \rightarrow F_{2}$ is a covering.

6.3.A3.

Consider the covering $p: \mathbb{R} \rightarrow S^{1}, t \mapsto e^{2 \pi i t}$. Let $Y:=S^{1} \vee S^{1} \subseteq S^{1} \times S^{1}$ and $X:=(p \times p)^{-1}(Y)=$ $\left\{(x, y) \in \mathbb{R}^{2}: x \in \mathbb{Z}\right.$ oder $\left.y \in \mathbb{Z}\right\}$. Show that:

1. $\left.(p \times p)\right|_{Y}: X \rightarrow Y$ is an infinite covering.
2. $\pi_{1}(X)$ is a free group with infinite many generators (Hint: (5.5.14))
3. Show that the image of $\pi_{1}(X)$ in $\pi_{1}(Y)$ is the commutator subgroup of $\pi_{1}(Y)=\mathbb{Z} \amalg \mathbb{Z}$.
4. Note that this subgroup of the free group with 2 generators is a free group with infinite many generators.

7.2.10A.

Determine the homology of the Möbius strip M as in (7.2.10). Use this to calculate the relative homology $H(M, \partial M)$, see (7.4.7).

7.1.A6.

For a simplicial complex K let β_{q} be the Betti-number of $G:=H_{q}(K)$, i.e. the rank of the free part $G / \operatorname{Tor}(G)$, where $\operatorname{Tor}(G):=\{g \in G: \exists n>0: n \cdot g=0\}$ denotes the torsion subgroup. Show that the Euler-charakteristik from example (3.1.A13) is

$$
\chi(K)=\sum_{i}(-1)^{q} \beta_{q}
$$

Hint: Let α_{q}, ρ_{q} and γ_{q} denote the rank of the free abelian groups $C_{q}(K), B_{q}(K)$ and $Z_{q}(K)$ then $\alpha_{q}=\gamma_{q}+\rho_{q-1}$ and $\gamma_{q}=\beta_{q}+\rho_{q}$. Use the formula $\operatorname{rank}(A / B)+\operatorname{rank}(B)=\operatorname{rank}(A)$ from the proof of (8.2.1a).

9.2.A4.

Let $A \subseteq X$ be path-connected. Show that $H_{1}(X) \rightarrow H_{1}(X, A) \rightarrow 0$ is exakt and give a geometric interpretation of this result.

