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Exercises for Algebraic Topology

SS 2006

Andreas Kriegl

1.1.A1.
Prove the following statements:

(a) Let X and Y be topological spaces, A ⊆ X, B ⊆ Y . Then A × Ḃ ∪ Ȧ × B is the boundary of
A×B in X × Y .

(b) Let A ⊆ Rm and B ⊆ Rn be convex. Then A×B ⊆ Rn+m is convex.

1.1.A2.
The convex hull 〈A〉cv of A ⊆ Rn is defined to be the smallest convex subset of Rn which contains A.
This is the intersection of all convex subsets of Rn containing A. Show that

A =
{ q∑
i=0

λi xi : q ∈ N, λi ≥ 0, xi ∈ A,
q∑
i=0

λi = 1
}
.

1.1.A3.
For R > r > 0 let X be the subset of R3 obtained by rotating a circle in the x-z-plane with center
(R, 0, 0) and radius r around the z-axes. Prove that

(a) X is given by the equation (
√
x2 + y2 −R)2 + z2 = r2.

(b) (x, y) = (x1, x2; y1, y2) 7→ ((R+ ry1)x, ry2) is an embedding of S1 × S1 onto X.

(c) The filled torus V ⊆ R3 is the union {(x, y, z) : (
√
x2 + y2 − R)2 + z2 ≤ r2} of X and its

“interior”. Show that the formula in (b) gives a homeomorphism S1 ×D2 ∼= V .

1.1.A4.
Show that for any x, y ∈

◦
Dn there is a homeomorphism of pairs (Dn, {x}) ∼= (Dn, {y}).

1.3.A1.
Show that the mapping (i1, . . . , in) : X1 ∨ · · · ∨Xn → X1× . . .×Xn defined in (1.41) is an embedding.

1.3.A2.
Show: (S1 × S1)/(S1 ∨ S1) ∼= S2.

1.3.A3.
Show that Rn/Dn ∼= Rn and that Rn/

◦
Dn is not Hausdorff.

1.3.A4.
Show that any continuous f : X → Y induces a continuous mapping C(f) : C(X) → C(Y ) between
the cones, via f × I : X × I → Y × I.

1.3.A5.
The suspension (dt. Einhängung) of a topological space X is E(X) := C(X)/X, where X is embedded
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into C(X) via x 7→ (x, 1). Show that f : X → Y induces a mapping E(f) : E(X) → E(Y ). Show
furthermore, that E(Dn) ∼= Dn+1 and E(Sn) ∼= Sn+1.

1.5.A4.
Show that the lens space L( 1

2 ) is homeomorphic to P3
R.

1.6.A2.
Describe a mapping f : S2 → S2 ∨ S1 such that (S2 ∨ S1) ∪f D3 ∼= S2 × S1. Hint: (1.12).

1.6.A3.
Consider the subspace X := S1 ∪ D1 ⊆ C and a mapping f : S1 → X which runs through the top
half circle, the diameter D1, the bottom half circle, and again the diameter. Show that X ∪f D2 is
homeomorphic to the Möbius strip. Hint: Use (1.94).

1.7.A3.
Let Z act on R2 by n : (x1, x2) 7→ (x1 + n, (−1)nx2). Show that R2/Z is homeomorphic to the open
Möbius strip (i.e. the Möbius strip from (1.59) without ist boundary S1).

1.7.A5.
Let G be the subgroup of homeomorphisms on R2 generated by (x1, x2) 7→ (x1 + 1, x2) and (x1, x2) 7→
(−x1, x2 + 1). Show that R2/G is homeomorphic to Kleins bottle.

1.7.A6.
Let T be the torus into R3 as in (1.18). Consider the action of the group S0 = {±1} on T given by

(1) (x, y, z) −17−→ (−x,−y, z) and show that T/S0 ∼= S1 × S1.

(2) (x, y, z) −17−→ (x,−y,−z) and show that T/S0 ∼= S2.

(3) (x, y, z) −17−→ (−x,−y,−z) and show that T/S0 is homeomorphic to Kleins bottle.

2.1.A2.
Show that X × Y is contractible provided X and Y are contractible.

2.1.A5.
Two homeomorphisms f0, f1 : X → Y are called isotopic, iff there exists a homotopy t 7→ ft consisting
of homeomorphism ft : X → Y only. Let f : Dn → Dn be a homeomorphism with f |Sn−1 = id and
f(0) = 0. Show that idDn

is isotopic f to via ft : x 7→ t f̃(x/t), where f̃ : Rn → Rn is an appropriate
extension of f .

2.1.A7.
Show that X is contractible if and only if ∆ : X → X × X, x 7→ (x, x) is 0-homotopic.

2.2.A1.
Show that the pointwise multiplication defines an Abelian group structure on [X,S1] and, furthermore,
that deg : [S1, S1]→ (Z,+) is a group-homomorphism with respect to this group structure for X := S1.

2.2.A2.
Let f : D2 → R2 be a continuous function with f |S1 odd. Show that there exists an z ∈ D2 with
f(z) = 0. Deduce the existence of a solution (x, y) ∈ R2 for

x cos(y) = x2 + y2 − 1 and y cos(x) = sin(2π(x2 + y2))
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2.2.A4.
Show that S∞ is contractible.
Hint: Let p : R∞ \ {0} → S∞ given by x 7→ x

‖x‖2 , where ‖x‖2 :=
√∑

k x
2
k. Show that ht :

(x0, x1, x2, . . . ) 7→ p((1 − t)x0, tx0 + (1 − t)x1, tx1 + (1 − t)x2, tx2 + (1 − t)x3, . . . ) defines a homo-
topy between idS∞ and the right shift S∞ → {x ∈ S∞ : x0 = 0}. Now consider the homotopy
(0, x1, x2, . . . ) 7→ p(t, (1− t)x1, (1− t)x2, . . . ).

2.4.A3.
Let p, q ∈ S1 × S1 be different points. Show that S1 × S1 \ {p, q} ∼ S1 ∨ S1 ∨ S1.

2.4.A4.
Show that R3 \ S1 ∼ S1 ∨ S2, where S1 is the unit-circle in R2 × {0}.

2.4.A5.
Show that S3 \ S1 ∼ S1, where S1 is the unit-circle in R2 × {(0, 0)}.

2.4.A9.
Show that the mapping cylinder of z 7→ z2, S1 → S1 is homeomorphic to the Möbius strip.

2.4.A10.
Show that for f : Sn−1 → Y one has Mf/S

n−1 ∼ Y ∪f Dn.

2.4.A13.
Show that O(n) ⊆ GL(n) is an SDR. Hint: Apply Gram-Schmidt orthonormalization to the columns of
A ∈ GL(n) to obtain r(A) ∈ O(n). This procedure is given by multiplication with an upper triangular
matrix with positive diagonal entries depending smoothly on A. Now deform the matrix to the identity
matrix.

3.1.A8.
Let K be a simplicial complex in Rn and p ∈ Rn+1 \Rn. The cone C(K, p) is the set consisting of {p},
all simplices of K, and all simplicies 〈p, x0, . . . , xi〉 for 〈x0, . . . , xi〉 ∈ K. The suspension is E(K) :=
C(K, p) ∪ C(K,−p). Show that C(K, p) and E(K) are simplicial complexes with |C(K, p)| ∼= C(|K|)
and |E(K)| = E(|K|).

3.1.A9.
The cartesian product of two polyeder is a polyeder. Hint: Show that the product of two closed
simplices σ̄ and τ̄ can be triangulated using C((σ × τ)·) = σ̄ × τ̄ .

3.1.A13.
LetK be a simplicial complex and αi the number of i-simplices ofK. The number χ(K) :=

∑
i≥0(−1)iαi

is called Euler-characteristic of K. Show that

• For any triangulation K of S1 we have χ(K) = 0.

• χ(C(K, p)) = 1 for the cone C(K, p) given in exercise (3.1.A8).

• χ(E(K)) = 2− χ(K) for the suspension E(K) given in exercise (3.1.A8).

• χ(σ̇) = 1 + (−1)n where σ̇ := {τ : τ < σ} for any n+ 1-simplex σ.

3.2.A2.
Let x0, . . . , xq be vertices of K. Show that stK(x0) ∩ · · · ∩ stK(xq) 6= ∅ ⇔ 〈x0, . . . , xq〉 ∈ K.

3.3.A1.
Show that S1 6∼ Sn for n > 1 and deduce R2 6∼= Rn+1. Hint: (3.33).

Andreas Kriegl 11. November 2011



4

4.1.A1.
Describe CW-decompositions with as few cells as possible for Dn, S1 × I, the closed Möbiusstrip, and
the disk D2

g with g holes as in (1.4.13).

4.1.A5.
Show that the lens space L( qp ) is a 3-dimensional CW-complex with exactly one cell in each dimension.
Hint: Consider the CW-decomposition of D3 given by the p-th unit-roots on S1 ⊆ S2 ⊆ D3, the
segments on S1 between them, the two hemispheres of S2 and the interior of D3. Now take the images
under the quotient mapping D3 → L( qp ).

4.2.A1.
Show that Sn × Sm/Sn ∨ Sm is a CW -space which is homeomorphic to Sn+m.

4.2.A2.
Show that the cone and the suspension of a CW-space is also a CW-space.

4.2.A3.
Show that the mapping cylinder of a cellular mapping between CW-spaces is a CW-space.

4.3.A1.
Show that a CW-space X is path-connected if and only if X1 is path-connected. Hint: (4.3.4)

4.3.A2.
Let X be a CW-space and x0 ∈ X0. Let Y be a connected CW-space without 1-cells and hence with
only one 0-cell y0. Then any two homotopic mappings fj : X → Y which preserve the basepoints are
homotopic relative {x0}. Hint: (4.3.4).

4.3.A4.
Let X be a CW -space with dim(X) < n. Show that [X,Sn] = {0}. Hint: (4.3.4) and cellular mappings
X → Sn = e0 ∪ en are constant.

5.4.A4.
Determine the fundamental group of S1 × P2, P2 ∨ P2, P2 × P2, S1 × Sm for m ≥ 2, and of R3 \ S1.

The following exercises (5.3.7A)–(5.7.A4e) show, that the isomorphy problem is algorithmically unsol-
vable for m-manifolds with m ≥ 4. For this it is enough to show that evevry finitely presented group
appears as fundamental group of such a manifold.

5.3.A7.
Let M be a connected manifold of dimension m ≥ 3. Show that π1(M \D0

1) ∼= π1(M) for M \D0
1 as

in (1.5.5).

5.3.A8.
Let M and N be connected manifolds of dimension m ≥ 3. Then for the connected sum we have
π1(M]N) ∼= π1(M)

∐
π1(N).

5.7.A4a.
Show that for m ≥ 4 the fundamental group of the connected sum M of k copies of S1 × Sm−1 is the
free group 〈{s1, . . . , sk} : ∅〉 with k generators.

5.7.A4c.
Let f : S1 ×Dm−1 → M an embedding into an m-manifold M . Show that π1(M) ∼= π1(M \ f(S1 ×
Dm−1)).
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5.7.A4d.
Let f be as in (5.7.A4c) with M as in (5.7.A4a). Show that π(M ∪f (D2 × Sm−2) ∼= 〈{s1, . . . , sk} :
{f |S1×{0}}〉.

5.7.A4e.
Let G = 〈{s1, . . . , sk} : {r1, . . . , rl}〉 be a finitely represented group. Now construct a compact connec-
ted manifold without boundary recursively by starting with M from (5.7.A4a) and cutting for every
ri ∈ π1(M) a neighborhood homeomorphic to S1 ×Dm−1 of a appropriately choosen representant of
ri and pasting a cylinder D2 × Sm−2 as in (5.7.A4d).

6.1.A1.
Show that for a, b, c, d ∈ Z with m := ad−bc 6= 0 the mapping S1×S1 → S1×S1, (z, w) 7→ (zawb, zcwd)
is an m-fold covering.

6.1.A5.
Consider a torus T ⊆ R3 with the z-axes as rotation axis. Now glue g ≥ 2 many handles to T such
that the resulting surface Fg+1 is symetric with respect to rotation R around the z-axes by the angle
2π/g. Let G be the cyclic group generated by R. Show that Fg+1/G ∼= F2 and hence Fg+1 → F2 is a
covering.

6.3.A3.
Consider the covering p : R → S1, t 7→ e2πit. Let Y := S1 ∨ S1 ⊆ S1 × S1 and X := (p × p)−1(Y ) =
{(x, y) ∈ R2 : x ∈ Z oder y ∈ Z}. Show that:

1. (p× p)|Y : X → Y is an infinite covering.

2. π1(X) is a free group with infinite many generators (Hint: (5.5.14))

3. Show that the image of π1(X) in π1(Y ) is the commutator subgroup of π1(Y ) = Z
∐

Z.

4. Note that this subgroup of the free group with 2 generators is a free group with infinite many
generators.

7.2.10A.
Determine the homology of the Möbius strip M as in (7.2.10). Use this to calculate the relative
homology H(M,∂M), see (7.4.7).

7.1.A6.
For a simplicial complex K let βq be the Betti-number of G := Hq(K), i.e. the rank of the free part
G/Tor(G), where Tor(G) := {g ∈ G : ∃n > 0 : n · g = 0} denotes the torsion subgroup. Show that the
Euler-charakteristik from example (3.1.A13) is

χ(K) =
∑
i

(−1)qβq

Hint: Let αq, ρq and γq denote the rank of the free abelian groups Cq(K), Bq(K) and Zq(K) then
αq = γq + ρq−1 and γq = βq + ρq. Use the formula rank(A/B) + rank(B) = rank(A) from the proof of
(8.2.1a).

9.2.A4.
Let A ⊆ X be path-connected. Show that H1(X) → H1(X,A) → 0 is exakt and give a geometric
interpretation of this result.
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