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Essentially two topics from non-linear functional analysis will be treated. Firstly cal-
culus will be extended from finite dimensions (or from Banach spaces, depending on
the readers background) to general locally convex spaces. Secondly tensor-products
will be discussed and their relationship to multi-linear mappings and to function
spaces will be investigated. Of course these two topics are closely related to one
another. Just note that the derivatives of smooth maps are multi-linear, and the
spaces of smooth functions can be analyzed using various tensor products.



3. Tensor Products and Linearization

Algebraic Tensor Product

Remark.
The importance of the tensor product is twofold. First it allows linearizing of multi-
linear mappings and secondly it allows to calculate function spaces.

We will consider the spaces of linear and multi-linear mappings between vector
spaces. If we supply all vector spaces E, E1, . . . , En, F with the finest locally con-
vex topology (i.e. the final locally convex topology with respect to the inclusions
of all finite dimensional subspaces - on which the topology is unique) then all li-
near mappings are continuous and all multi-linear mappings are bounded (but not
necessarily continuous as the evaluation map ev : E∗×E → K on an infinite dimen-
sional vector space E shows) and hence it is consistent to denote the corresponding
function spaces by L(E,F ) = L(E,F ) and L(E1, . . . En;F ).

In more detail the first feature is:

3.1 Proposition. Linearization.
Given two linear spaces E and F , then there exists a solution ⊗ : E×F → E⊗F –
called the algebraic tensor product of E and F – to the following universal problem:

E × F
⊗ //

T
##FF

FF
FF

FF
F E ⊗ F

T̃

!

{{
G

Here ⊗ : E × F → E ⊗ F and T : E × F → G are bilinear and T̃ is linear.

Proof. In order to find E ⊗ F one considers first the case, where G = R. Then we
have that ⊗∗ : (E ⊗ F )∗ → L(E,F ; R) should be an isomorphism. Hence E ⊗ F
could be realized as subspace of (E⊗F )∗∗ ∼= L(E,F ; R)∗. Obviously to each bilinear
functional T : E × F → R corresponds the linear map evT : L(E,F ; R)∗ → R. The
map ⊗ : E × F → E ⊗ F ⊆ L(E,F ; R)∗ has to be such that evT ◦⊗ = T for all
bilinear functionals T : E × F → R, i.e. ⊗(x, y)(T ) = (evT ◦⊗)(x, y) = T (x, y).
Thus we have proved the existence of T̃ := evT for G = R. But uniqueness can be
true only on the linear subspace generated by the image of ⊗, and hence we denote
this subspace E ⊗ F .

For bilinear mappings T : E×F → G into an arbitrary vector space G, we consider
the following diagram, which has quite some similarities with that used in the
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Algebraic Tensor Product 3.2

construction of the c∞-completion in 2.31:

E × F
⊗ //

T

��

E ⊗ F

(3)

eT

��

� � //

(2)

��

L(E,F ; R)∗

evλ◦T

��

(1)xx∏
G′ R

prλ

&&MMMMMMMMMMMM

G
, �

δ

::

λ // R
The right dashed arrow (1) and δ exist uniquely by the universal property of the
product in the center. The arrow (2) exists uniquely as restriction of (1) to the
subspace E ⊗F . Finally (3) exists, since the generating subset ⊗(E ×F ) in E ⊗F
is mapped to T (E × F ) ⊆ G and since δ is injective.

Note that ⊗ extends to a functor, by defining T ⊗ S via the following diagram:

E1 × F1
⊗ //

T×S

��

E1 ⊗ F1

T⊗S!

��
E2 × F2 ⊗

// E2 ⊗ F2

Furthermore one easily proves the existence of the following natural isomorphisms:

E ⊗ R ∼= E

E ⊗ F ∼= F ⊗ E
(E ⊗ F )⊗G ∼= E ⊗ (F ⊗G)

In analogy to the exponential law for smooth mappings or continuous mappings,
we show now the existence of a natural isomorphism

L(E,F ;G) ∼= L(E,L(F,G))

again denoted by ( )∨ with inverse isomorphism ( )∧ given by the same formula as
above.
In fact for a bilinear mapping T : E × F → G, the mapping T∨ has values in
L(F,G), since T (x, ) is linear, and it is linear, since L(F,G) carries the initial
vector space structure with respect to the evaluations evy and evy ◦T∨ = T ( , y) is
also linear. The same way one shows that the converse implication is also true.

Note that if both spaces E and F are finite dimensional, then so is L(E,F ; R) and
hence also the dual L(E,F ; R)∗. But then E ⊗ F is finite dimensional too (in fact
dim(E⊗F ) = dimE ·dimF ), as we will see in 3.30, and hence E⊗F = (E⊗F )∗∗ =
L(E,F ; R)∗.

If one factor is infinite dimensional and the other one is not 0, then this is not true.
In fact take F = R, then E ⊗ R ∼= E whereas L(E,R; R)∗ ∼= L(E,L(R,R))∗ ∼=
L(E,R)∗ = E∗∗.

3.2 Vector-valued functions versus scalar valued ones

The second important usage of the tensor product lies in the possibility to express
spaces of vector valued functions as tensor products of spaces of scalar valued
functions times the space of values. In more detail this means, that given some type
of function f : X → R and a vector y ∈ F , then we can form the function X → F
given by x 7→ f(x) · y. If we denote the space of functions X → F of some specific
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Algebraic Tensor Product 3.2

type by FX then this means that we have a bilinear mapping RX × F → FX . The
question that arises is, whether it has the universal property of the tensor product,
i.e. whether the natural mapping RX ⊗ F → FX is an isomorphism.

Let us consider the case where X itself is a linear space E and the considered
functions are the linear ones. Then our claim is that E∗ ⊗ F ∼= L(E,F ). For this
we consider the following diagram:

E∗ × F
(1) //

⊗
��

L(E,F )

(3)

��

L(E,F )× L(E∗, F ∗)

(3∧)

��
E∗ ⊗ F � � //

(2)
88

L(E∗, F ; R)∗ R

The first dashed arrow is given by bilinear mapping discussed before, namely
(x∗, y) 7→ (x 7→ x∗(x) y). The second one exists by the universal property of the
tensor product. And since the image of the first one generates L(E,F ) provided E
or F is finite dimensional, we conclude that the second one is surjective. Remains
to show that the third one exists and is a left-inverse. By the exponential law this
mapping would correspond to a bilinear mapping (3∧) : L(E,F )×L(E∗, F ; R)→ R,
which we try to piece together as follows:

L(E,F )× L(E∗, F ; R)

∼=
��

L(E,F )× L(E∗, F ∗)

( )∗×L(E∗,F∗)

��
L(F ∗, E∗)× L(E∗, F ∗)

comp

))RRRRRRRRRRRRRR

comp
uullllllllllllll

L(E∗, E∗)
tr

))SSSSSSSSSSSSSSSS
L(F ∗, F ∗)

tr

uukkkkkkkkkkkkkkkk

R

Clearly the transposition mapping L(E,F )→ L(F ∗, E∗) is linear, and if we apply
the composition map from L(F ∗, E∗) × L(E∗, F ∗) to L(E∗, E∗) or to L(F ∗, F ∗)
it remains to find for a vector space G a linear map L(G,G) → R. If G is finite
dimensional such a map is given by the trace, i.e. the sum over the diagonal entries
of a matrix-representation, or equivalently the derivative of the determinate at the
identity, or equivalently the coefficient of (−λ)dim G−1 in the characteristic polyno-
mial det (T − λ). In order to show that the composite L(E,F ) × L(E∗, F ; R) →
L(F ∗, E∗) × L(E∗, F ∗) → L(E∗, E∗) → R gives a left inverse, it is enough by
the universal property of the tensor product to test on x∗ ⊗ y. This is mapped to
x 7→ x∗(x) · y =: S and furthermore to T 7→ trace(S∗ ◦ T∨). So let us calcula-
te (S∗ ◦ T∨)(u∗)(u) = T (u∗, Su) = T (u∗, x∗(u) · y) = T (u∗, y) · x∗(u). Note that
x∗ ∈ G := E∗ and T ( , y) ∈ G∗ := E∗∗, and for g ∈ G and g∗ ∈ G∗ we have
that the trace of g∗( ) · g is trace(g∗( ) · g) = g∗(g). To show this, extend g to a
basis and then the trace is the entry in the upper left corner, which is g∗(g). So
trace(S∗ ◦ T∨) = T (x∗, y), which was to be shown.

In particular we have shown, that G∗⊗G ∼= L(G,G) for finite dimensional G. And
the trace of g∗ ⊗ g ∈ L(G,G) is just g∗(g) and hence corresponds to the bilinear
map ev : G∗ ×G→ R or the corresponding linear map G∗ ⊗G→ R.
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Algebraic Tensor Product 3.4

If both factors are infinite dimensional this will no longer be true, even if we restrict
to continuous mappings. However if we take some appropriate completion, there
might be some chance.

Let us deduce some additional handy formulas for duals, in the case where at least
one of E and F is finite dimensional:

(E ⊗ F )∗ ∼= L(E,F ; R) ∼= L(E,F ∗) ∼= E∗ ⊗ F ∗ and

L(E,F )∗ ∼= (E∗ ⊗ F )∗ ∼= E∗∗ ⊗ F ∗ ∼= L(F,E∗∗) ∼= L(F,E∗; R) ∼= L(E∗, F ∗).

Projective Tensor Product

We turn first to the property of making bilinear continuous mappings into linear
ones. We call the corresponding solution the projective tensor product of E and F
and denote it by E ⊗π F . Obviously it can be obtained by taking the algebraic
tensor product and supplying it with the finest locally convex topology such that
E×F → E⊗F is continuous. This topology exists since the union of locally convex
topologies is locally convex and E×F → E⊗F is continuous for the weak topology
on E ⊗F generated by those linear functionals which correspond to continuous bi-
linear functionals on E × F . It has the universal property, since the inverse image
of a locally convex topology under a linear mapping T̃ is again a locally convex
topology, such that ⊗ is continuous, provided the associated bilinear mapping T is
continuous. However, it is not obvious that this topology is separated, and we prove
that now. We will denote the space of continuous linear mappings from E to F by
L(E,F ), and the space of continuous multi-linear mappings by L(E1, . . . , En;F ).
If all E1, . . . , En are the same space E, we will also write Ln(E;F ).

3.3 Lemma.
E ⊗π F is Hausdorff provided E and F are.

Proof. It is enough to show that the set E∗×F ∗ separates points in E⊗F or even
in L(E,F ; R)∗. So let 0 6= z =

∑
k xk ⊗ yk be given. By replacing linear dependent

xk by the corresponding linear combinations and using bilinearity of ⊗, we may
assume that the xk are linearly independent. Now choose x∗ ∈ E∗ and y∗ ∈ F ∗ be
such that x∗(xk) = δ1,k and y∗(y1) = 1. Then (x∗ ⊗ y∗)(z) = 1 6= 0.

Since a bilinear mapping is continuous iff it is so at 0, a 0-neighborhood basis in
E ⊗π F is given by all those absolutely convex sets, for which the inverse image
under ⊗ is a 0-neighborhood in E × F . A basis is thus given by the absolutely
convex hulls denoted U ⊗ V of the images of U × V under ⊗, where U resp. V
runs through a 0-neighborhood basis of E resp. F . We only have to show that
these sets U ⊗ V are absorbing. So let z =

∑
k xk ⊗ yk ∈ E ⊗ F be arbitrary.

Then there are ak > 0 and bk > 0 such that xk ∈ akU and yk ∈ bkV and hence
z =

∑
k≤K ak bk

xk

ak
⊗ yk

bk
∈ (
∑

k ak bk) · 〈U ⊗ V 〉abs.conv.. The Minkowski-functionals
pU⊗V form a base of the seminorms of E ⊗π F and we will denote them by πU,V .
In terms of the Minkowski-functionals pU and pV of U and V we obtain that
z ∈ (

∑
k pU (xk) pV (yk))U ⊗ V for any z =

∑
k xk ⊗ yk since xk ∈ pU (xk) · U for

closed U , and thus pU⊗V (z) ≤ inf{
∑

k pU (xk) pV (yk) : z =
∑

k xk ⊗ yk}. We now
show the converse:

3.4 Proposition. Seminorms of the projective tensor product.

pU⊗V (z) = inf
{∑

k

pU (xk) · pV (yk) : z =
∑

k

xk ⊗ yk

}
.
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Projective Tensor Product 3.10

Proof. Let z ∈ λ · U ⊗ V with λ > 0. Then z = λ
∑
λkuk ⊗ vk with uk ∈

U , vk ∈ V and
∑

k |λk| = 1. Hence z =
∑
xk ⊗ vk, where xk = λλkuk, and∑

k pU (xk) · pV (vk) ≤
∑
λ|λk| = λ. Taking the infimum of all λ gives now that

pU⊗V (z) is greater or equal to the infimum on the right side.

3.5 Corollary.
E ⊗π F is normable (metrizable) provided E and F are.

3.6 Lemma. The semi-norms of decomposable tensors.

pU,V (x⊗ y) = pU (x) · pV (y).

Proof. According to [1, 7.1.8] there are x∗ ∈ E∗ and y∗ ∈ F ∗ such that |x∗| ≤ pU

and |y∗| ≤ pV and x∗(x) = pU (x) and y∗(y) = pV (y). If x⊗ y =
∑

k xk ⊗ yk, then

pU⊗V (x⊗ y) ≤ pU (x) · pV (y) = x∗(x) · y∗(y) = (x∗ ⊗ y∗)(x⊗ y) =

=
∑

k

x∗(xk) · y∗(yk) ≤
∑

k

pU (xk) · pV (yk),

and taking the infimum gives the desired result.

3.7 Remark. Functorality.
Given two continuous linear maps T1 : E1 → F1 and T2 : E2 → F2 we can consider
bilinear continuous map given by composing T1 × T2 : E1 × E2 → F1 × F2 with
⊗ : F1×F2 → F1⊗F2. By the universal property of E1×E2 → E1⊗E2 we obtain
a continuous linear map denoted by T1 ⊗ T2 : E1 ⊗ E2 → F1 ⊗ F2.

E1 × E2
⊗ //

T1×T2

��

E1 ⊗ E2

T1⊗T2

��
F1 × F2 ⊗

// F1 ⊗ F2

By the uniqueness of the linearization one obtains immediately that ⊗ is a functor.
Because of the uniqueness of universal solutions one sees easily that one has natural
isomorphisms R⊗ E ∼= E, E ⊗ F ∼= F ⊗ E and (E ⊗ F )⊗G ∼= E ⊗ (F ⊗G).

3.10 Adjointness of the tensor functor.
In analogy to the algebraic tensor product we would expect that also for locally
convex spaces ( )⊗πE is left-adjoint to the Hom-functor L(E, ) supplied with some
topology. Since L(E⊗πF,G) ∼= L(E,F ;G) we would need a bijection L(E,F ;G) ∼=
L(E,L(F,G)). Obviously we have the linear injection ( )∨ : L(E,F ;G)→ L(E,L(F,G))
induced from the corresponding bijection of vector-spaces, since a jointly conti-
nuous map is separately continuous, and hence T∨(x) = T (x, ) is continuous. And
if we supply L(F,G) with the topology of uniform convergence on bounded sets,
then T∨ is continuous, since (T∨)−1(NB,W ) = {x : T (x,B) ⊆ W} contains the
0-neighborhood 1

λ U , where U (and V ) are chosen, such that T (U × V ) ⊆ W and
λ > 0 such that B ⊆ λV .

Proposition.
If we supply also L(E,L(F,G)) and L(E,F ;G) with the topology of uniform con-
vergence on bounded sets then the mapping

( )∨ : L(E,F ;G) ↪→ L(E,L(F,G))

is a topological linear embedding.
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Projective Tensor Product 3.12

In fact, a typical neighborhood of L(E,F ;G) is NB1×B2,W and one of L(E,L(F,G))
is NB1,NB2,W

and NB1×B2,W = (( )∨)−1NB1,NB2,W
, so it remains to show that ( )∧

is well defined. Recall that f∧ is given by ev ◦(f ×F ), where ev : L(F,G)×F → G.
However this mappings is continuous only if F is normed. So only for normed
F we have that ( ) ⊗π F is left-adjoint. If F is not normed, then in particular
id ∈ L(F ∗,L(F,R)) but ev = id∧ /∈ L(F ∗, F ; R).

Corollary.
Let E be a normable space. Then ( )⊗π E preserves co-limits.

From the exponential law for continuous and that for smooth mappings, we are used
that one automatically gets an isomorphism between the corresponding function
spaces, cf. 2.48. So one would expect that the linear isomorphism L(E ⊗π F,G) ∼=
L(E,F ;G) is in fact a topological one. If one supplies both spaces with the topology
of uniform convergence on bounded sets, then ⊗∗ : L(E ⊗π F,G) → L(E,F ;G) is
obviously continuous since ⊗ : E × F → E ⊗π F is bounded. In order to prove
that it is an embedding, we have to find for every bounded set B ⊆ E ⊗π F and 0-
neighborhoodW ⊆ G two bounded sets B1 ⊆ E and B2 ⊆ F and a 0-neighborhoods
U ⊆ G, such that ⊗∗(NB,W ) ⊇ NB1×B2,U . In particular if G = R and W = [−1, 1],
then NB,W is the polar Bo of B and for all bilinear continuous functionals, which
map B1×B2 to U = [−K,K], the corresponding linear functional T̃ on E⊗πF must
be in B0. By enlarging B1 we may assume thatK = 1. Using the bipolar theorem we
deduce from (B1⊗B2)o ⊆ Bo that B ⊆ (B1⊗B2)oo = 〈B1⊗B2〉closed,abs.conv.. Thus
the closed absolutely convex hull of the image of B1×B2 must contain B. Whether
this is true is even for Fréchet spaces unknown. This is also called Grothendieck’s
problème de topologies. For the corresponding result on compact subsets see 3.21.

However bornologically we have an isomorphism:

3.11 Lemma.
With respect to the equi-continuous bornology we have a bornological isomorphism

L(E ⊗π F,G) ∼= L(E,F ;G).

Proof. Let us first show that B ⊆ L(E,F ; R) is equi-continuous iff there exist 0-
neighborhoods U in E and V in F such that B ⊆ (U × V )o.
(⇐) Let (x0, y0) ∈ E × F be given. Choose λ ≥ 1 and µ ≥ 1 such that x0 ∈ λU
and y0 ∈ µV . Then we have for y − y0 ∈ 1

λV ⊆ V and for x− x0 ∈ 1
µU ⊆ U that

|b(x, y)− b(x0, y0)| ≤ |b(x− x0︸ ︷︷ ︸
∈U

, y − y0︸ ︷︷ ︸
∈V

)|+ |b(x− x0︸ ︷︷ ︸
∈ 1

µ U

, y0︸︷︷︸
∈µV

)|+ |b( x0︸︷︷︸
∈λU

, y − y0︸ ︷︷ ︸
∈ 1

λ V

)| ≤ 3.

(⇒) is obvious by the equi-continuity at 0 and since b(0, 0) = 0.

Now the isomorphism is clear since the basis of the equi-continuous bornologies are
(U ⊗ V )o and (U × V )o respectively, where U and V run through 0-neighborhood
basis of E and F .

Since every injective mapping f between vector spaces has a linear left inverse and
every surjective one has a right inverse, the same is true for f ⊗ E and hence we
have:

3.12 Lemma.
The projective tensor product preserves injective and surjective continuous linear
mappings.
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Projective Tensor Product 3.16

3.13 Proposition.
The projective tensor product preserves quotients.

Proof. Let F be a locally convex space and f be a quotient mapping and hence
open. We have to show, that f ⊗π F : E1 ⊗π F → E2 ⊗π F is open. So let U ⊗ V
be a typical 0-neighborhood of E1 ⊗ F . Since the image under a linear map of
an absolutely convex hull is the absolutely convex hull of the image, we have that
(f ⊗ F )(U ⊗ V ) = f(U)⊗ V and hence is a 0-neighborhood in E2 ⊗π F .

Let us consider the dual situation next.

3.14 Example.
⊗π does not preserve embeddings.
In fact consider the isometric embedding `2 → C(K), where K is the closed unit-
ball of (`2)∗ supplied with its compact topology of pointwise convergence, see the
corollary to the Alaoğlu-Bourbaki-theorem in [1, 7.4.12]. This subspace has however
no topological complement, since C(K) has the Dunford-Pettis property (see [5,
20.7.8], i.e. x∗n(xn)→ 0 for every two sequences xn → 0 in σ(E,E∗) and x∗n → 0 in
σ(E∗, E∗∗)), but no infinite dimensional reflexive Banach space like `2 has it (e.g.
xn := en, x∗n := en) and hence cannot be a complemented subspace of C(K), see
[5, 20.7].

Suppose now that `2 ⊗π (`2)∗ → C(K) ⊗π (`2)∗ were an embedding. The duality
mapping ev : `2× (`2)∗ → R yields a continuous linear mapping s : `2⊗π (`2)∗ → R
and would hence have a continuous linear extension s̃ : C(K) ⊗ (`2)∗ → R. The
corresponding bilinear map would give a continuous mapping s̃∨ : C(K)→ (`2)∗∗ ∼=
`2, which is a left inverse to the embedding `2 → C(K), a contradiction.

In connection with the second usage of tensor products we would expect that for
the product EN = (R ⊗π E)N = RN ⊗π E, i.e. we are looking for preservation of
certain products. But even purely algebraically this fails to be true. In fact take
the coproduct E = R(N). Using that RN ⊗ ( ) is left-adjoint and hence preserves
colimits we get RN ⊗ R(N) ∼= (RN ⊗ R)(N) ∼= (RN)(N), which is strictly smaller
than (R(N))N. However in both spaces the union

⋃
nE

n is dense, so after taking
completions there should be some chance. In order to work with completions we
have to show preservation of dense embeddings. To obtain such a result we need a
dual characterization of such mappings. And this we treat next.

3.16 External duality

There is however a second pair of adjoint functors, which we have used already
several times. Namely we can associate to every locally convex space (E,U) the
dual space E∗ formed by all continuous linear functionals on E supplied with the
bornology of equi-continuous sets. A base of this bornology is given by the polars
Uo of the 0-neighborhoods U ∈ U . For every continuous linear map T : E → F we
obtain a bounded linear map T ∗ : F ∗ → E∗, since T ∗(V o) ⊆ T−1(V )o. In fact let
x∗ ∈ T ∗(V o), i.e. x∗ = T ∗(y∗) = y∗ ◦ T for some y∗ ∈ V o. Then x∗(x) = y∗(Tx) ∈
[−1, 1] for all x ∈ T−1(V ). This gives us a functor ( )∗ : LCS → CBSop.

Conversely we can associate to every bornological space (X,B) the locally convex
space `∞(X,R) formed by all bounded functions onX and supplied with the topolo-
gy of uniform convergence on bounded sets ofX. Every bounded map T : X → Y in-
duces a continuous linear map `∞(T,R) : `∞(Y,R)→ `∞(X,R) given by f 7→ f ◦T .
In fact a typical 0-neighborhood of `∞(X,R) is given by the polar Bo of a bounded
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Projective Tensor Product 3.17

set B ⊆ X and we have `∞(T,R)−1(Bo) = T (B)o. This can be seen directly as
follows:

`∞(T,R)−1(Bo) = {y∗ : (y∗ ◦ T ) ∈ Bo} = {y∗ : (y∗ ◦ T )(B) ⊆ [−1, 1]}
= {y∗ : y∗(T (B)) ⊆ [−1, 1]} = T (B)o.

If X is in addition a convex bornological space E, then we can restrict to the linear
subspaces E′ ⊆ `∞(E,R) formed by the linear bounded functionals, and hence
obtain a functor ( )′ : CBSop → LCS.

Again we show that these two functors form an adjoint pair. So let E be a locally
convex space and F a convex bornological space and consider a linear T : E → F ′.
It is continuous iff for every bounded set B in F there exists a 0-neighborhood U
in E such that T−1(Bo) ⊇ U or equivalently that T∧(U × B) ⊆ [−1, 1], where T∧

denotes the associated bilinear map from E × F → R. If we flip the coordinates
we get a linear map T̃ : F → E∗. In fact T̃ (y) = evy ◦T is continuous, since all
evy : F ′ → R are so. This mapping is bounded, iff for every bounded B ⊆ F there
exists some 0-neighborhood U ⊆ E such that T̃ (B) ⊆ Uo, or equivalently such that
T∧(U × B) ⊆ [−1, 1]. Since for any bounded linear map T : F → E∗ the map T̃
obtained by changing the coordinates is bounded (since evx : E∗ → R are) we have
obtained a natural bijection

LCS(E,F ′) ∼= CBS(F,E∗) = CBSop(E∗, F ).

I.e. ( )′ : CBSop → LCS is right adjoint to ( )∗ : LCS → CBSop and hence carries
limits in CBSop (i.e. colimits in CBS) to limits in LCS and ( )∗ carries colimits
in LCS to limits in CBS.

3.17 Preservation of certain morphisms

Let us show next that ( )∗ carries topological linear embeddings into bornological
quotient mappings, i.e. mappings where each bounded set in the codomain is the
image of a bounded set in the domain. Up to an isomorphism any topological linear
embedding is given by the inclusion T of a subspace E in F . By 3.16 we know that
T ∗ is bounded. In order to show that it is a bornological quotient map let U ⊆ E be
a 0-neighborhood, which is without loss of generality closed and absolutely convex.
We have to find a 0-neighborhood V of F such that Uo ⊆ T ∗(V o). So let p be a
continuous seminorm on F which extends the Minkowski functional of U and let
V be the closed unit-ball of p. Then every continuous linear functional x∗ ∈ Uo

satisfies |x∗| ≤ p on E and hence extends by Hahn-Banach to a continuous linear
functional y∗ ∈ F ∗ with |y∗| ≤ p. Thus y∗ ∈ V o and T ∗(y∗) = y∗ ◦ T = x∗.

Conversely let us show that ( )′ carries bornological quotient mappings into topolo-
gical embeddings. Since a bornological quotient mapping T : E → F obviously has
to be onto, we conclude that T ∗ : F ′ → E′ is injective. Note that we refrain from
denoting this map T ′ : F ′ → E′ in order to avoid confusion with the derivative.
Since T ∗(T (B)o) = T ∗((T ∗)−1(Bo)) = Bo∩ T ∗(F ′), by what we proved above, and
since the sets T (B)o form a 0-neighborhood basis of F ′ we are done.

Thus if T ∗ : F ∗ → E∗ is a bornological quotient map then (T ∗)∗ : (F ∗)′ → (E∗)′ is
a topological embedding and using the embedding E → L((E∗, E),R) of [1, 7.4.11]
and the commutative diagram

E
� � //

T

��

L(E∗,R)

L(T∗,R)

��

(E∗)′

(T∗)∗

��
F

� � // L(F ∗,R) (F ∗)′
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shows that T is an embedding as well. Hence we have proved

3.18 Corollary.
A linear mapping T : E → F is a topological embedding iff the associated mapping
T ∗ : F ∗ → E∗ is a bornological quotient mapping for the equi-continuous bornolo-
gies.
It is a dense embedding iff the associated mapping T ∗ is a bornological isomorphism,
i.e. is invertible in the category of bounded linear mappings.

3.19 Proposition.
The projective tensor product preserves dense mappings and dense embeddings.

Proof. Obviously the tensor product T1⊗T2 of two dense mappings is dense. Other-
wise there would exist a non-trivial continuous linear functional which vanishes on
the image. The corresponding bilinear continuous map would then vanish on the
dense image of T1 × T2, and hence be 0, a contradiction.

Let now T : E2 → E1 be in addition an embedding. By the previous proposition we
have to show that (T ⊗ F )∗ : (E1 ⊗π F )∗ → (E2 ⊗π F )∗ is a quotient mapping for
the equi-continuous bornologies. So let B := (U ⊗ V )o be a typical equi-continuous
subset of (E2 ⊗π F )∗ ∼= L(E2, F ; R) formed by 0-neighborhoods U and V . We may
extend every b ∈ B ⊆ L(E2, F ; R) to a continuous bilinear mapping b̃ ∈ L(E1, F ; R)
defined by ev ◦(E1 × b̌) : E1 × F → E1 × E∗2 = E1 × E∗1 → R. For this recall that
E∗1 = E∗2 by 3.18. This composition is continuous (although the last component is
not), since Ū × V is mapped to ev(Ū × Uo) = ev(Ū × (Ū)o) ⊆ [−1, 1] and Ū is a
0-neighborhood in E1, see [1, 4.10.3]. Hence B̃ := {b̃ : b ∈ B} ⊆ (Ū ⊗ V )o is the
required equi-continuous subset satisfying (T ⊗ F )∗(B̃) ⊇ B.

3.20 Corollary. Completed projective tensor product.
The projective tensor product E1⊗πE2 is a dense topological subspace of Ê1⊗π Ê2.
The completion of E1⊗πE2 equals that of Ê1⊗π Ê2. It will be denoted by E1⊗̂πE2,
and will be called the completed projective tensor product.

3.21 Theorem. Compact subsets of the projective tensor product.

Compact subsets of E⊗̂πF for metrizable spaces E and F are contained in the
closed absolutely convex hull of a tensor product of precompact sets in E and F .

Proof. Every compact set K in the Fréchet space E⊗̂πF is contained in the closed
absolutely convex hull of a 0-sequence zn ∈ E⊗̂πF by [1, 6.4.3]. For this 0-sequence
we can choose kn strictly increasing, such that zk ∈ Un ⊗ Vn for all k ≥ kn, where
(Un)n and (Vn)n are countable 0-neighborhood bases of the topology of E and F .
For kn ≤ k < kn+1 we can choose finite (disjoint) sets Nk ⊆ N and

∑
j∈Nk

|λj | = 1,
xj ∈ Un and yj ∈ Vn such that zk =

∑
j∈Nk

λjxj ⊗ yj . Let A := {xj : j ∈
⋃

k Nk}
and B := {yj : j ∈

⋃
k Nk}. These are two sequences converging to 0, and hence

are precompact. Furthermore z ∈ K can be written as

z =
∑

k

µkzk =
∑

k

∑
j∈Nk

µkλjxj ⊗ yj

with
∑

k |µk| ≤ 1 and
∑

j∈Nk
|λj | = 1 and hence

∑
k |µk|

∑
j∈Nk

|λj | ≤ 1. From
this it easily follows that the series on the right hand side converges Mackey and
hence z is contained in the closed absolutely convex hull of A⊗B.
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3.22 Corollary. Elements of the completed tensor product as limits.
Every z ∈ E⊗̂πF for metrizable E and F has a representation of the form z =∑

n λnxn ⊗ yn, where λ ∈ `1 and x and y are bounded (or even 0-)sequences.

Since for every λ ∈ `1 there exists a ρ ∈ c0 and µ ∈ `1 with λn = ρ2
nµn it is enough

to find bounded sequences xn and yn.

Proof. In the previous proof we have just shown that z =
∑

j µkjλjxj ⊗ yj .

Next we will show some preservation properties with respect to limits. For this we
need.

3.28 Theorem.
The completed projective tensor product ( )⊗̂πE preserves products.

Proof. The functoriality of ( )⊗̂πF gives us a natural mapping

ι :
(∏

i

Ei

)
⊗̂πF →

∏
i

(Ei⊗̂πF ).

We claim that this mapping is an embedding. As in 3.19 it is equivalent to show
that the associated mapping ι∗ :

(∏
i(Ei⊗̂πF )

)∗ → (
(
∏

iEi)⊗̂πF
)∗ is a quotient

map for the equi-continuous bornologies. But this mapping is up to the natural
isomorphisms from 3.11∐

i

L(Ei, F ; R) ∼=
∐

i

(Ei⊗̂πF )∗ ∼=
(∏

i

(Ei⊗̂πF )
)∗

and

L
(∏

i

Ei, F ; R
)
∼=

((∏
i

Ei

)
⊗̂πF

)∗
given by ∐

i

L(Ei, F ; R)→ L
(∏

i

Ei, F ; R
)
.

(bi)i 7→
(
((xi)i, y) 7→

∑
i

bi(xi, y)
)

So let B := ((
∏

i Ui) × V )o be a typical equi-continuous subset of L(
∏

iEi, F ; R),
where Ui are 0-neighborhoods in Ei with Ui = Ei for all i except those in some finite
subset I of the index set, and V is a 0-neighborhood in F . In particular we have for
every b ∈ B that b((xi)i, y) = 0 provided xi = 0 for all i ∈ I, since for all ε > 0 and
y ∈ V we have b((εxi), y) = ε b(( 1

εxi)i, εy) ∈ ε b(
∏

i Ui × V ) ⊆ ε [−1, 1]. Since V is
absorbing it has to be 0. Thus b can be considered as element of

∐
i∈I L(Ei, F ; R)

and lies moreover in the equi-continuous subset
∐

i∈I(Ui × V )o.

Since the algebraic tensor product is left-adjoint to L(E, ) it commutes with copro-
ducts. Hence algebraically we have that (

∐
iEi)⊗F ∼=

∐
i(Ei⊗F ). We will see later

on that topologically this is not true in general. By the density of the coproducts,
we obtain that ι is dense and hence we have the required isomorphism.

3.29 Proposition.
The completed projective tensor product preserves reduced projective limits.

Proof. So let E = lim←−i
Ei be a reduced projective limit, i.e. pri : E → Ei has dense

image. Then pri⊗F : E ⊗ F → Ei ⊗π F has dense image and consequently also
pri ⊗̂πF : E⊗F → Ei⊗̂πF . Since this mapping factors over lim←−i

(Ei⊗̂πF )→ Ei⊗̂πF
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the latter mapping has dense image as well. Thus the limit lim←−i
(Ei⊗̂πF ) is a reduced

one. Let us show next that the natural mapping(
lim←−

i

Ei

)
⊗̂πF → lim←−

i

(Ei⊗̂πF )

is a dense embedding, or equivalently that the dual mapping(
lim←−

i

(Ei⊗̂πF )
)∗
→
((

lim←−
i

Ei

)
⊗̂πF

)∗
is a bornological isomorphism. The left side equals(

lim←−
i

(Ei⊗̂πF )
)∗ ∼= lim−→

i

(Ei⊗̂πF )∗ ∼= lim−→
i

L(Ei, F ; R),

since the dual of a reduced projective limit is an injective one. The right hand side
equals

((
lim←−i

Ei

)
⊗̂πF

)∗ ∼= L(lim←−i
Ei, F ; R

)
. So let (pr−1

j (Uj) × V )o be a typical
bounded set in L(lim←−i

Ei, F ; R). This is the image under the natural mapping of the
bounded set (pri×F )∗((Ui × V )o) in lim−→i

L(Ei, F ; R) =
⋃

i(pri×F )∗(L(Ei, F ; R)).
Thus the natural mapping is a bornological quotient mapping. It remains to show
that it is injective. So let T = (pri×F )∗(Ti) ∈ lim−→i

L(Ei, F ; R) be given with

Ti ∈ L(Ei, F ; R) and such that the associated element ι(T ) = 0 in L
(
lim←−i

Ei, F ; R
)
.

Obviously ι(T ) = Ti ◦ (pri×F ) and since the pri×F has dense image in Ei×F we
conclude that Ti = 0 and hence T = 0.

Since both sides of the natural dense embedding
(
lim←−i

Ei

)
⊗̂πF → lim←−i

(Ei⊗̂πF )
are complete (limits of complete spaces are complete) we have equality.

3.30 Corollary.
For the function space C(X,E) = EX =

∏
x∈X E, where X is a discrete topological

space, we have a natural isomorphism

C(X)⊗̂πE = RX⊗̂πE ∼= (R⊗̂πE)X ∼= EX = C(X,E).

If X is finite and E ∼= RY with finite Y we obtain in particular that RX⊗̂πRY ∼=
(RY )X ∼= RX×Y . Hence we have for finite dimensional spaces that dim(E⊗̂πF ) =
dimE · dimF thus also dim(E ⊗π F ) = dimE · dimF .

Note that for general projective limits the analogue to 3.29 is not true. In fact take
the closed linear subspace `2 → C(K), which is the kernel (a special limit) of the
quotient map C(K) → C(K)/`2. Since `2 ⊗π (`2)∗ → C(K) ⊗π (`2)∗ is not an
embedding (see 3.14), also `2⊗̂π(`2)∗ → C(K)⊗̂π(`2)∗ is not, and so both cannot
be the kernel of some map.

3.32 Example.
In general the projective tensor product does not commute with direct sums. Fur-
thermore it does not preserve strict inductive limits (since R(N) = lim−→n

Rn) and
also not the function space Cc(X) = R(X) for discrete X:
The natural injection of flipping the coordinates from (RN)(N) → (R(N))N is obvious-
ly not onto. Moreover, it can be shown that (RN)(N) and (R(N))N can not even be
isomorphic by some non-canonical isomorphism, since both spaces are B-complete
but their cartesian product is not, see [5, 15.5.1]. A locally convex spaces is called B-
complete, iff every continuous nearly open map (i.e. the closure of the image of any
0-neighborhood is a 0-neighborhood) into some locally convex spaces has complete
image, or equivalently if every such mapping is open onto its image. So isomorphy
would imply that (RN)(N) ∼= (RN×RN)(N) ∼= (RN)(N)× (RN)(N) ∼= (RN)(N)× (R(N))N.
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Then the natural mapping from (R⊗̂πRN)(N) → R(N)⊗̂πRN is not onto as can be
seen also from the following commutative diagram

(R⊗̂πRN)(N) // R(N)⊗̂πRN

∼=

��9
99

99
99

99
99

99
99

99

R⊗̂πRN

injk

bbDDDDDDDD

injk ⊗RN
<<zzzzzzzz ∼=// (R⊗̂πR)N

(injk ⊗R)N
""DD

DD
DD

DD

RN

∼=

OO

injk

||zzzzzzzz
(injk)N

""DDDDDDDD (R(N)⊗̂πR)N

(RN)(N)

∼=

OO

// (R(N))N

∼=
<<zzzzzzzz

since the bottom arrow is obviously not onto.

3.33 Corollary.
Neither the projective tensor product nor the completed projective tensor product
can be left adjoint functors.

The Bornological Tensor Product

We have seen that the classical projective tensor product is not well behaved beyond
normed spaces. And the main reason for that is that it is not longer a left-adjoint
functor.

But we have already seen that bounded mappings are in many respects much nicer
than continuous ones.

And if L(E1, . . . , En;F ) denotes the space of all bounded n-linear mappings from
E1 × . . . × En → F with the topology of uniform convergence on bounded sets in
E1 × . . .× En then we easily show the following.

3.34 Proposition. Exponential law for L.
There are natural topological linear isomorphisms

L(E1, . . . , En+k;F ) ∼= L(E1, . . . , En;L(En+1, . . . , En+k;F )).

Proof. We proof this for bilinear maps, the general case is completely analogous.
We already know that bilinearity translates into linearity into the space of linear
functions. Remains to prove boundedness. So let a set B of bilinear mappings E1×
E2 → F be given. Then B is bounded in L(E1, E2;F ) iff B(B1×B2) ⊆ F is bounded
for all bounded Bi ⊆ Ei. This however is equivalent to B∨(B1) is contained and
bounded in L(E2, F ) for all bounded B ⊆ E1, i.e. B∨ is contained and bounded in
L(E1, L(E2, F )).

That this even a topological isomorporphism follows by the arguments in 3.10.

Hence it is natural to consider the universal problem of making bounded bilinear
mappings into bounded linear ones. The solution is given by the bornological tensor
product E ⊗β F , i.e. the algebraic tensor product with the finest locally convex
topology such that E × F → E ⊗ F is bounded. A 0-neighborhood basis of this
topology is given by those absolutely convex sets, which absorb B1 ⊗ B2 for all
bounded B1 ⊆ E1 and B2 ⊆ E2. Note that this topology is bornological since it is
the finest locally convex topology with given bounded linear mappings on it.
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3.38 Theorem. Bornological tensor product.
The bornological tensor product is left adjoint to the Hom-functor L(E, ) on the
category of bounded linear mappings between locally convex spaces and one has the
following bornological isomorphisms:

L(E ⊗β F,G) ∼= L(E,F ;G) ∼= L(E,L(F,G))
E ⊗β R ∼= E

E ⊗β F ∼= F ⊗β E

(E ⊗β F )⊗β G ∼= E ⊗β (F ⊗β G)

Furthermore the bornological tensor product preserves co-limits. It neither preserves
embeddings nor countable products.

Proof. We show first that this topology has the universal property for bounded
bilinear mappings f : E1 ×E2 → F . Let U be an absolutely convex zero neighbor-
hood in F and let B1, B2 be bounded sets. Then f(B1 × B2) is bounded hence is
absorbed by U . Then f̃−1(U) absorbs ⊗(B1 × B2), where f̃ : E1 ⊗ E2 → F is the
canonically associated linear mapping. So f̃−1(U) is in the zero neighborhood basis
of E1 ⊗β E2 described above. Therefore f̃ is continuous.

A similar argument for sets of mappings shows that the first isomorphism L(E ⊗β

F,G) ∼= L(E,F ;G) is bibounded.

The topology on E1⊗β E2 is finer than the projective tensor product topology and
so it is Hausdorff. The rest of the positive results is clear.

The counter example for embeddings given for the projective tensor product works
also, since all spaces involved are Banach.

Since the bornological tensor-product preserves coproducts it cannot preserve pro-
ducts. In fact (R ⊗β R(N))N ∼= (R(N))N whereas RN ⊗β R(N) ∼= (RN ⊗β R)(N) ∼=
(RN)(N).

3.39 Proposition. Projective versus bornological tensor product.
If every bounded bi-linear mapping on E×F is continuous then E⊗π F = E⊗β F .
In particular we have E ⊗π F = E ⊗β F for any two metrizable spaces and for a
normable space F we have Eborn ⊗π F = E ⊗β F .

Proof. Recall that E ⊗π F carries the finest locally convex topology such that
⊗ : E × F → E ⊗ F is continuous, whereas E ⊗β F carries the finest locally
convex topology such that ⊗ : E × F → E ⊗ F is bounded. So we have that
⊗ : E × F → E ⊗β F is bounded and hence by assumption continuous and thus
the topology of E ⊗π F is finer than that of E ⊗β F . Since the converse is true n
general, we have equality.

In [1, 3.1.6] we have shown that in metrizable locally convex spaces the convergent
sequences coincide with the Mackey-convergent ones. Now let T : E × F → G be
bounded and bilinear. We have to show that T is continuous. So let (xn, yn) be a
convergent sequence in E × F . Without loss of generality we may assume that its
limit is (0, 0). So there are µn → ∞ such that {µn(xn, yn) : n ∈ N} is bounded
and hence also T

(
{µn(xn, yn) : n ∈ N}

)
=
{
µ2

nT (xn, yn) : n ∈ N
}

, i.e. T (xn, yn)
converges even Mackey to 0.

If F is normable, and T : Eborn×F → G is bi-linear and bounded, then Ť : Eborn →
L(F,G) is bounded, and since Eborn is bornological it is even continuous. We have
shown in 3.10 that for normed spaces F the evaluation map ev : L(F,G)× F → G
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is continuous, and hence T = ev ◦(Ť × F ) : Eborn × F → G is continuous. Thus
Eborn ⊗π F = E ⊗β F .

Note that the bornological tensor product is invariant under bornologification, i.e.
Eborn ⊗β Fborn

∼= E ⊗β F . So it is no loss of generality to assume that both spaces
are bornological. Keep however in mind that the corresponding identity for the
projective tensor product does not hold. Another possibility to obtain the identity
E⊗π F = E⊗β F is to assume that E and F are bornological and every separately
continuous bi-linear mapping on E × F is continuous. In fact every bounded bi-
linear mapping is obviously separately bounded and since E and F are assumed
to be bornological it has to be separately continuous. We want to find another
class beside the Fréchet spaces (see [1, Folgerung in 5.5]) which satisfies these
assumptions.

3.47 Theorem. Continuity versus separately continuity.
Let E and F be two barreled spaces with a countable base of bornology. Then every
separately continuous bilinear map E × F → G is continuous.

Proof. Let An and Bn be a basis of the bornologies of E and F . Let T : E×F → G
be separately continuous. Then T∨ : E → L(F,G) is continuous for the topology
of pointwise convergence on L(F,G). Thus T∨(Ak) is bounded for this topology,
and since F is barreled it is equi-continuous. Thus for every 0-neighborhood W
in G there exists a 0-neighborhood Vk in F with T (Ak × Vk) ⊆ W . By symmetry
there exists a 0-neighborhood Uk in E with T (Uk × Bk) ⊆ W . We have to show
that this implies for gDF -spaces E and F the continuity of T , see [5, 15.6.1]. Since
E is quasi-normable, we can find for every 0-neighborhood Un a 0-neighborhood
U ′n such that for every ρ > 0 there is some k(n, ρ) ∈ N with U ′n ⊆ ρUn + Ak(n,ρ).
Since Ak is a basis of bounded sets there exist ρn > 0 such that U :=

⋂
n ρnU

′
n

is a 0-neighborhood in the topology generated by {An}, see [5, 12.3.2]. And this
topology coincides with the given topology since E is gDF , by [5, 12.3.6]. Let
Wn := Vk(n,1/ρn). Then V := 〈

⋃
n

1
ρn
Wn ∩ Bn is a 0-neighborhood again by [5,

12.3.6] and by the description of a 0-neighborhood basis of the topology induced
by {Bn}n given in [5, 12.3.1]. We claim that T (U × V ) ⊆ W . In fact take x ∈ U
and y ∈ V . Then y is an absolutely convex combination of yn ∈ 1

ρn
Wn ∩ Bn.

Since x ∈ ρnU
′
n ⊆ Un + ρnAk(n,1/ρn) there are un ∈ Un and an ∈ Ak(n,1/ρn) with

x = un + ρnan. So

T (x, yn) = T (un, yn)+T (ρnan, yn) ∈ T (Un×Bn)+ρnT (Ak(n,1/ρn)×
1
ρn
Wn) ⊆ 2W

Hence the same is true for the absolutely convex combination T (x, y), i.e. T (U ×
V ) ⊆ 2W .

3.48 Corollary. Projective versus bornological tensor product for LB-
spaces.
Let E and F be countable inductive limits of Banach spaces (e.g. the duals of metri-
zable spaces with their bornological topology, i.e. the bornologification of the strong
topology). Then E ⊗π F ∼= E ⊗β F .

Proof. Let T : E × F → G be bounded. Since both spaces are bornological T is
separately continuous and since both spaces are barreled and DF it is continuous.
This is enough to guarantee the equality of the two tensor products by 3.39.
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Spaces of Multi-Linear Mappings

3.49 Corollary.
The following mappings are bounded multi-linear.

1. lim : Nat(F ,G) → L(limF , limG), where F and G are two functors on the
same index category, and where Nat(F ,G) denotes the space of all natural
transformations with the structure induced by the embedding into

∏
i L(F(i),G(i)).

2. colim : Nat(F ,G)→ L(colimF , colimG).
3.

L : L(E1, F1)× . . .×L(En, Fn)× L(F,E)→
→ L(L(F1, . . . , Fn;F ), L(E1, . . . , En;E))

(T1, . . . , Tn, T ) 7→ (S 7→ T ◦ S ◦ (T1 × . . .× Tn));

4.
n⊗

β : L(E1, F1)× . . .× L(En, Fn)→ L(E1 ⊗β · · · ⊗β En, F1 ⊗β · · · ⊗β Fn).
5.
∧n : L(E,F ) → L(

∧n
E,
∧n

F ), where
∧n

E is the linear subspace of all
alternating tensors in

⊗n
β E. It is the universal solution of

L
( n∧

E,F
)
∼= Ln

alt(E;F ).

6.
∨n : L(E,F ) → L(

∨n
E,
∨n

F ), where
∨n

E is the linear subspace of all
symmetric tensors in

⊗n
β E. It is the universal solution of

L
( n∨

E,F
)
∼= Ln

sym(E;F ).

7.
⊗

β : L(E,F )→ L(
⊗

β E,
⊗

β F ), where
⊗

β E :=
⊕∞

n=0

n
⊗βE is the tensor

algebra of E. Note that is has the universal property of prolonging bounded
linear mappings with values in locally convex spaces, which are algebras with
bounded operations, to continuous algebra homomorphisms:

L(E,F ) ∼= Alg(⊗E,F ).

8.
∧

: L(E,F ) → L(
∧
E,
∧
F ), where

∧
E :=

⊕∞
n=0

∧n
E is the exterior

algebra. It has the universal property of prolonging bounded linear mappings
to continuous algebra homomorphisms into graded-commutative algebras, i.e.
algebras in the sense above, which are as vector spaces a coproduct

∐
n∈N En

and the multiplication maps Ek × El → Ek+l and for x ∈ Ek and y ∈ El

one has x · y = (−1)kly · x.
9.
∨

: L(E,F ) → L(
∨
E,
∨
F ), where

∨
E :=

⊕∞
n=0

∨n
E is the symmetric

algebra. It has the universal property of prolonging bounded linear mappings
to continuous algebra homomorphisms into commutative algebras.

Recall that for permutations π of n := {0, . . . , n− 1} we have an associated linear
mapping π∗ : En → En and hence a linear mapping π̃∗ :

⊗n
E →

⊗n
E. The

exterior product
∧n

E is the space invariant under sign(π) π̃∗ for all permutations
π and the symmetric product

∨n
E is the space invariant under π̃∗ for all per-

mutations π. The symmetric product is given as the image of the symmetrizer
sym : E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E given by

(x1, . . . , xn)→ 1
n!

∑
σ∈Sn

(xσ(1), . . . , xσ(n)).
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Spaces of Multi-Linear Mappings 3.56

Similarly the wedge product is given as the image of the alternator

alt : E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E

given by (x1, . . . , xn)→ 1
n!

∑
σ∈Sn

sign(π) (xσ(1), . . . , xσ(n)).

Proof. All results follow easily by flipping coordinates until a composition of pro-
ducts of evaluation maps remains.

That the spaces in (5), and similar in (6), are universal solutions can be seen from
the following diagram:

E × . . .× E
⊗ //

f

((QQQQQQQQQQQQQQQ E ⊗β · · · ⊗β E
alt //

f̃

��

∧k
E

f̃ |Vk Exxpppppppppppp

F

For (convenient) differential calculus the so-called convenient vector space, i.e. (bor-
nological) locally convex spaces, for which every Mackey-Cauchy sequence conver-
ges, play an important role.

2.27 Theorem. c∞-completeness.
Let E be a locally convex vector space. E is said to be c∞-complete or convenient
if one of the following equivalent (completeness) conditions is satisfied:

1. Any Lipschitz curve in E is locally Riemann integrable.
2. For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c′2 = c1 (existence of

an antiderivative).
3. E is c∞-closed in any locally convex space.
4. If c : R → E is a curve such that ` ◦ c : R → R is smooth for all ` ∈ E∗,

then c is smooth.
5. Any Mackey-Cauchy-sequence (so that (xn − xm) is Mackey convergent to

0) converges; i.e. E Mackey-complete, see 2.11.
6. If B is bounded closed absolutely convex, then EB is a Banach space. This

property is called locally complete in [5].
7. Any continuous linear mapping from a normed space into E has a continuous

extension to the completion of the normed space.

Condition 4 says that in a convenient vector space one can recognize smooth curves
by investigating compositions with continuous linear functionals.

In [3] a convenient vector space is always considered with its bornological topology
— an equivalent but not isomorphic category.

3.56 Theorem. Uniform boundedness principle.
If all Ei are convenient vector spaces and if F is a locally convex space, then the

bornology on the space L(E1, . . . , En;F ) consists of all pointwise bounded sets.

Proof. Let us first consider the case n = 1. So let B ⊂ L(E,F ) be a pointwise
bounded subset. By lemma 3.35 we have to show that it is uniformly bounded on
each bounded subset B of E. We may assume that B is closed absolutely convex
and thus EB is a Banach space, since E is convenient. By the classical Uniform
Boundedness Principle, see [1, 5.2.2], the set {f |EB

: f ∈ B} is bounded in L(EB , F )
and thus B is bounded on B.

The multi-linear case follows from the exponential law 3.34 using induction on
n.
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3.57 Theorem. Multi-linear mappings on convenient vector spaces.
A multi-linear mapping from convenient vector spaces to a locally convex space is
bounded if and only if it is separately bounded.

Proof. Let f : E1 × . . . × En → F be n-linear and separately bounded, i.e. xi 7→
f(x1, . . . , xn) is bounded for each i and fixed xj for all j 6= i. Then f̌ : E1 × . . . ×
En−1 → L(En, F ) is (n − 1)-linear. By 3.56 the bornology on L(En, F ) consists
of the pointwise bounded sets, so f̌ is separately bounded. By induction on n
it is bounded. The bornology on L(En, F ) consists also of the subsets which are
uniformly bounded on bounded sets by lemma 3.35, so f is bounded.
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4. Tensor Products and Function Spaces

Desired Isomorphisms

Let LCS be the category of continuous linear maps between locally convex spaces.

On the other hand we can consider bornological spaces. These are sets X with a
bornology, i.e. a set B of subsets of X, which contains all finite subsets and is closed
under formation of finite unions and subsets. The elements of B are called the
bounded sets of X. And a mapping between such sets is called bounded, iff it maps
the bounded sets to bounded sets. If X is in addition a vector space and addition
and scalar multiplication are bounded, then X is called bornological vector space.
If furthermore the convex hull of each bounded set is bounded, then X is called
convex bornological space. Let CBS denote the category of bounded linear maps
between convex bornological spaces.

To every locally convex space (E,U) we can associate a a convex bornological
space (E,B), where the bornology B is given by the von Neumann bounded sets,
i.e. those sets B ⊆ E which are absorbed by all 0-neighborhoods U ∈ U . This
correspondence extends to a functor b : LCS → CBS which leaves the morphisms
and the underlying vector spaces unchanged.

Conversely, we can associate to every convex bornological space (E,B) a locally
convex topology on E given by the 0-neighborhood basis U formed by all bornivorous
subsets U ⊆ E, i.e. those sets which absorb all the bounded sets B ∈ B. This
correspondence extends to a functor t : CBS → LCS which leaves the morphisms
and the underlying vector spaces unchanged.

4.1. Suppose we are given some category X and a forgetful functor V : LCSb → X,
where the index b indicates that we consider the bounded linear morphisms. Then
for an object X in X and a locally convex space G we can consider the space
of morphisms X(X,V (G)) and we assume that this lifts to a functor F : Xop ×
LCSb → LCSb. Examples of that situation are

1. X := LCSb, V the identity and F the internal hom-functor L.
2. X the category of mappings between sets and F(X,G) :=

∏
X G = GX the

space of all mappings with the topology of pointwise convergence.
3. X the category of continuous maps between topological spaces and F(X,G)

the space C(X,G) of continuous mappings with the topology of uniform
convergence on compact subsets. Here we have to restrict to continuous
linear mappings to get a forgetful functor. Note that (2) is a particular case,
where the topology on X is discrete.

4. X the bounded (better bornological) mappings between bornological spaces
and F (X,G) := `∞(X,G) the space of bornological mappings with the to-
pology of uniform convergence on bounded sets. Note that (2) is a particular
case, where the bounded sets are exactly the finite ones.
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5. X the category of smooth mappings defined on c∞-open subsets of locally
convex spaces G, and F(X,G) := C∞(X,G) supplied with the locally convex
topology described before.

Not completely fitting into this scheme but nevertheless interesting might be the
following function spaces:

6. For sets X the space F(X,G) := G(X) of all functions with finite support
with the final topology induced by the subspaces GA, where A runs through
the finite subsets.

7. For topological spaces X the space F(X,G) := Cc(X,G) of all continuous
functions with compact support with the final topology induced by the sub-
spaces CK(X,G) formed by the continuous functions having support in K,
where K runs through all compact subsets of X and where CK(X,G) carries
the initial topology induced by the inclusion into C(X,G). Note that (6) is
a particular case, where the topology on X is discrete.

8. For a finite dimensional manifold X the space F(X,G) := C∞c (X,G) of all
smooth functions with compact support with the final topology induced by
the subspaces C∞K (X,G) formed by the continuous functions having support
in K, where K runs through all compact subsets of X and where C∞K (X,G)
carries the initial topology induced by the inclusion into C∞(X,G). Note
that (6) is again a particular case, where the manifold is discrete.

Some desirable isomorphisms would then be the following, where we write F(X) as
shortcut for F(X,R) and ⊗? denotes some appropriate tensor product.

F(X,F(Y,G)) ∼= F(X × Y,G) exponential law(E)

F(X)⊗? G ∼= F(X,G) vector valued versus scalar valued(V)

F(X)⊗? F(Y ) ∼= F(X × Y ) compatibility with products(P)

Note that (E) and (V) imply (P):

(P) F(X)⊗? F(Y )
(V)
∼= F(X,F(Y ))

(E)
∼= F(X × Y )

In the particular case (1), where the forgetful functor V forgets nothing, i.e. X =
LCSb, we would expect:

L(E,L(F,G)) ∼= L(E,F ;G) ∼= L(E ⊗β F,G)(E)

E′ ⊗? G ∼= L(E,G)(V)

E′ ⊗? F
′ ∼= L(E,F ′) ∼= (E ⊗β F )′(P)

Applying (P) for L to (V) and (P) for F we would obtain the dualized versions:

F(X)′ ⊗? G
′

(PL)∼= (F(X)⊗β G)′
(V )∼= F(X,G)′(V’)

F(X)′ ⊗? F(Y )′
(PL)∼= (F(X)⊗β F(Y ))′

(P )∼= F(X × Y )′(P’)

Note again that (E) and (V’) imply (P’):

(P’) F(X)′ ⊗? F(Y )′
(V’)
∼= F(X,F(Y ))′

(E)
∼= F(X × Y )′

andreas.kriegl@univie.ac.at c© 7. Februar 2007 20



Desired Isomorphisms 4.3

4.2. Exponential law

Lets us first determine in which situations we have the exponential law (E).

1. For L we have proved in 3.34 that (E) is true.
2. For sets X and Y we obviously have (GY )X ∼= GX×Y .
3. For C we have shown in 2.3 that (E) is a bijection if Y is locally com-

pact. That it is also true for the structure follows immediately since the
0-neighborhood NA,NB,V

corresponds to NA×B,V , where A ⊆ X and B ⊆ Y
are compact and V ⊆ G a 0-neighborhood.

4. That (E) is a bijection for `∞ is obvious, cf. 3.34. That it is also true for
the structure follows the same way as in (3), where A and B are bounded
instead.

5. That (E) is true for C∞ has been shown in 2.47 and 2.48.
6. It is obvious that (G(Y ))(X) ∼= G(X×Y ) is true.
7. For Cc we use that Cc(X,G) is the strict inductive limit of the spaces
CK(X,G), whereK ⊂ X is compact. Obviously the closed subspace CA×B(X×
Y,G) = {f : f(x, y) = 0 if x /∈ A or y /∈ B} of C(X × Y,G) corresponds to
the closed subspace CA(X,CB(Y,G)) = {f∨ ∈ C(X,CB(Y,G)) : f∨(x) =
0 if x /∈ A} of C(X,C(Y,G)) and hence we have a natural injection

Cc(X × Y,G)
⋃

A,B CA×B(X × Y,G) //

∼=
��

⋃
A CA(X,Cc(Y,G))

⋃
A,B CA(X,CB(Y,G)) // Cc(X,Cc(Y,G))

Conversely let B ⊆ CA(X,Cc(Y,G)) be bounded. Then B(A) is bounded in
Cc(Y,G). Now suppose that Y is in addition σ-compact. Then Cc(Y,G) is
the strict inductive limit of a sequence of spaces CB(Y,G) and hence B(A)
has to be bounded in some step CB(Y,G) by [1, 4.8.1]. So B corresponds
to a bounded subset of CA(X,CB(Y,G)). So these correspondences induce
the required bornological isomorphism and hence (E) holds for Cc and σ-
compact Y .

8. For C∞c we can proceed completely analogously to (7) to obtain (E) for C∞

and finite dimensional smooth manifolds.

Now let us come to the other desired isomorphisms. One could ask, whether we
could deduce the case of a general F from that of L. For this we need:

Universal Linearization

4.3. Suppose we can solve the universal problem of linearizing maps in F(X,G),
i.e. find a c∞-complete locally convex space λ(X), also called a free convenient
vector space, and a map ι : X → λ(X) which induces an isomorphism

(F) F(X,G) ∼= L(λ(X), G) the forgetful functor is right adjoint

for all c∞-complete locally convex spaces G, and hence in particular an isomorphism
F(X) ∼= λ(X)′. A consequence of (E) for L and F is that

(P) λ(X × Y ) ∼= λX⊗̃βλY
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This follows, since

L(λ(X)⊗̃βλ(Y ), G)
(EL)∼= L(λ(X), L(λ(Y ), G))

(F)
∼= F(X,L(λ(Y ), G))

(F)
∼= F(X,F(Y,G))

(EF )∼= F(X × Y,G)

shows that λ(X)⊗̃βλ(Y ) has the universal property of λ(X × Y ). Using all this we
can translate the general case to that for L:

F(X,F(Y,G))
(F)
∼= L(λX,L(λY,G))

(EL)∼=(E)

∼= L(λX ⊗β λY,G)
(Pλ)∼= L(λ(X × Y ), G)

(F)
∼= F(X × Y,G)

F(X)⊗G
(F)
∼= λ(X)′ ⊗G

(VL)∼= L(λ(X), G)
(F)
∼= F(X,G)(V)

F(X)⊗F(Y )
(F)
∼= λ(X)′ ⊗ λ(Y )′

(PL)∼=(P)

∼= (λ(X)⊗β λ(Y ))′
(Pλ)∼= (λ(X × Y ))′

(F)
∼= F(X × Y ).

Let us try to construct λ(X). Since F(X) = F(X,R) ∼= λ(X)′ we have a candidate
for the dual of λ(X), and hence λ(X) should be a subspace of λ(X)′′ ∼= F(X)′.
Obviously we have a mapping ι : X → F(X)′ given by x 7→ evx. So our first
problem is to show that ι belongs to F . Recall that for F = C∞ and c∞-complete
locally convex spaces we have the following uniform boundedness principle 3.56:

(U1) f : X → L(E,F ) is F ⇐⇒ evx ◦f : X → F is F for all x ∈ E
So let us assume that (U1) is satisfied for the F under consideration. From the
commuting triangle

X
ι //

f
""FFFFFFFFF F(X)′

evf

��
R

we conclude using (U1) for L(F(X),R) = F(X)′ that ι belongs to F . In order
to obtain the universal property (F) for scalar valued functions we only have to
restrict evf to the subspace λ(X) which is given by the c∞-closure of the vector
space generated by the image {evx : x ∈ X} of ι.

Now to the general case of G-valued functions, where G is at least c∞-complete.
Since ι belongs to F we have that ι∗ : L(λ(X), G) → F(X,G) is well defined and
injective since the linear subspace generated by the image of ι is c∞-dense in λ(X)
by construction. To show surjectivity consider the following diagram:

X
ι //

f

��

λ(X)

(3)

ef

��

� � //

(2)

��

F(X)′

evλ◦T

��

(1)zz∏
G′ R

prλ

$$JJJJJJJJJJ

G
- 

δ

<<yyyyyyyy
λ // R

Note that (2) has values in δ(G), since this is true on the evx, which generate by
definition a c∞-dense subspace of λ(X). Note that this construction of f̃ works for
every f : X → G which is scalarly in F .
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Remains to show that this bijection is a bornological isomorphism. In order to show
that the linear mapping F(X,G)→ L(λ(X), G) is bounded we can reformulate this
equivalently using (E) for L, the universal property of λ(X) and (U1) as follows:

F(X,G)→ L(λ(X), G) is L
(EL)⇐⇒ λ(X)→ L(F(X,G), G) is L

(F)
⇐⇒ X → L(F(X,G), G) is F
(U1)
⇐⇒ X → L(F(X,G), G)

evf→ G is

and since the later map is f we are done. Another way to see this would be to show
that L(E,F ) ⊆ F(E,F ) is initial even for F-morphisms and then apply (E) for F
to translate the map X → L(F(X,G), G) ⊆ F(F(X,G), G) into the identity on
F(X,G), which is a F-map.

Conversely we have to show that L(λ(X), G)→ F(X,G) belongs to L. Composed
with evx : F (X,G)→ G this yields the bounded linear map evδ(x) : L(λ(X), G)→
G. Thus we need the following kind of uniform boundedness principle for the func-
tion space F(X,G):

(U2) T : E → F(X,G) is L ⇐⇒ evx ◦T : E → G is L for all x ∈ X

A Uniform Boundedness Principle

4.4. Lemma. Uniform S-boundedness principle.
Let E be a locally convex space and let S be a point separating set of bounded linear
mappings with common domain E. Then the following conditions are equivalent.

1. If F is a Banach space (or even a c∞-complete lcs) and f : F → E is linear
and λ ◦ f is bounded for all λ ∈ S, then f is bounded.

2. If B ⊆ E is absolutely convex such that λ(B) is bounded for all λ ∈ S and
the normed space EB generated by B is complete, then B is bounded in E.

3. Let (bn) be an unbounded sequence in E with λ(bn) bounded for all λ ∈ S,
then there is some (tn) ∈ `1 such that

∑
tn bn does not converge in E for

the initial locally convex topology induced by S.

Definition. We say that E satisfies the uniform S-boundedness principle if these
equivalent conditions are satisfied.

Proof. (1) ⇒ (3) : Suppose that (3) is not satisfied. So let (bn) be an unbounded
sequence in E such that λ(bn) is bounded for all λ ∈ S, and such that for all
(tn) ∈ `1 the series

∑
tn bn converges in E for the initial locally convex topology

induced by S. We define a linear mapping f : `1 → E by f((tn)n) =
∑
tn bn, i.e.

f(en) = bn. It is easily checked that λ ◦ f is bounded, hence by (1) the image of
the closed unit ball, which contains all bn, is bounded. Contradiction.

(3)⇒ (2): Let B ⊆ E be absolutely convex such that λ(B) is bounded for all λ ∈ S
and that the normed space EB generated by B is complete, and suppose that B is
unbounded. Then B contains an unbounded sequence (bn), so by (3) there is some
(tn) ∈ `1 such that

∑
tn bn does not converge in E for the weak topology induced

by S. But
∑
tn bn is a Cauchy sequence in EB , since

∑m
k=n tnbn ∈ (

∑m
k=n |tn|) ·B,

and thus converges even bornologically, a contradiction.

(2) ⇒ (1): Let F be convenient, and let f : F → E be linear such that λ ◦ f is
bounded for all λ ∈ S. It suffices to show that f(B), the image of an absolutely
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convex bounded set B in F with FB complete, is bounded. By assumption λ(f(B))
is bounded for all λ ∈ S, the normed space Ef(B) is a quotient of the Banach space
FB , hence complete. By (2) the set f(B) is bounded.

4.5. Theorem. Webbed spaces have the uniform boundedness property.
A locally convex space which is webbed satisfies the uniform S-boundedness principle
for any point separating set S of bounded linear functionals.

Proof. Since the bornologification of a webbed space is webbed, cf. [5, 13.3.3 and
13.3.1], we may assume that E is bornological, and hence that every bounded linear
functional is continuous, cf. [5, 13.3.1]. Now the closed graph principle, cf. [1, 5.3.1]
applies to any mapping satisfying the assumptions of 1 in 4.4.

4.6. Lemma. Stability of the uniform boundedness principle.
Let F be a set of bounded linear mappings f : E → Ef between locally convex
spaces, let Sf be a point separating set of bounded linear mappings on Ef for every
f ∈ F , and let S :=

⋃
f∈F f

∗(Sf ) = {g ◦ f : f ∈ F , g ∈ Sf}. If F generates the
bornology and Ef satisfies the uniform Sf -boundedness principle for all f ∈ F , then
E satisfies the uniform S-boundedness principle.

Proof. We check the condition (1) of 4.4. So assume h : F → E is a linear mapping
for which g ◦ f ◦ h is bounded for all f ∈ F and g ∈ Sf . Then f ◦ h is bounded by
the uniform Sf - boundedness principle for Ef . Consequently h is bounded since F
generates the bornology of E.

Note that the uniform boundedness principles (U1) and (U2) have the following
bornological isomorphism as consequence:

(U3) L(E,F(X,G)) ∼= F(X,L(E,G)) flip of variables.

In fact the mapping and its inverse are given by exchanging the coordinates, f 7→
f̃ : (x 7→ (y 7→ f(y)(x))). For f ∈ L(E,F(X,G)) we have f̃(x) = evx ◦f ∈ L(E,G),
since evx : F(X,G) → G is bounded. Furthermore f̃ ∈ F(X,L(E,G)) since
eve ◦f̃ = f(e) ∈ F(X,G) for all e ∈ E, using the uniform boundedness principle
(U1). Conversely for f ∈ F(X,L(E,G)) we have f̃(e) = eve ◦f ∈ F(X,G), since
eve : L(E,G) → G is bounded and hence in F . Furthermore f̃ ∈ L(E,F(X,G))
since evx ◦f̃ = f(x) ∈ L(E,G), using the uniform boundedness principle (U2).

The bijection is bounded in both directions, since this can be tested by applying the
uniform boundedness principles (U1) and (U2) and the equation evx ◦( )̃ = (evx)∗.

On the other hand this isomorphism translates the two uniform boundedness prin-
ciples into each other: For example f ∈ L(E,F(X,G)) iff f̃ ∈ F(X,L(E,G)) and
hence by (U1) iff f̃(x) ∈ L(E,G) and f(x) ∈ F (X,G), which are both satisfied by
assumption.

Let us now discuss the situations where we have free convenient vector spaces λX,
or the two related uniform boundedness principles.

4.7 Examples of free convenient vector spaces and the uniform bounded-
ness principles.

1. For L the uniform boundedness principles (U1) and (U2) are just a direct
corollary of usual uniform boundedness principle, and of course λ(X) = X.
The flipping isomorphism (U3) is L(E,L(F,G)) ∼= L(F,L(E,G)).
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2. The dual of RX is R(X) provided the cardinality of X is non-measurable.
The evaluations evx correspond to the unit vectors ex ∈ R(X), hence λ(X) =
R(X) = (RX)′. The uniform boundedness principle (U2) is just the universal
property of the product and (U1) is trivial. The flipping isomorphism (U3) :
L(E,G)X ∼= L(E,GX) is a particular case of the continuity of L(E, ).

3. For C there exists no λ(X), a candidate for λ(X) with locally compact X
would be the space of Borel-measures on X being the dual of C(X), howe-
ver the uniform boundedness principle (U1) fails: Take X = N∞, E = `2,
G = R and f : N∞ → E defined by f : n 7→ en and f(∞) = 0. Then
f is weakly continuous, but not continuous. Note however that the forgetful
functor preserves limits hence is a candidate for a right adjoint. By [1, 7.5.2]
neither c0 nor L1 is a dual of a normed space, hence there exists no Banach
space λ(N∞) with C(N∞,R) = λ(N∞)′. But since λ(N∞) is a subspace of
C(N∞,R)′ it has to be normable. However (U2) is valid, since it follows from
the fact that C(K,R) is a Banach space via 4.6.

4. For `∞ we have that λ(X) := `1(X) ⊆ `∞(X)′. Recall that `1(X) is by
2.33 equal to the inductive limit of `1(B) over all bounded B ⊆ X and it
is not difficult to show that the c∞-closure of the evaluations in `∞(B)′

is just `1(B). The boundedness principle (U1) is true, since the evx detect
bounded sets. And (U2) is true, since `∞(B,R) is a Banach space. The
flipping isomorphism (U3) is `∞(X,L(E,G)) ∼= L(E, `∞(X,G)).

5. For C∞ we have λ(X). And it can be shown that λ(X) equals the distributi-
ons with compact support if X is a finite dimensional smooth manifold. No
counterexample for λ(X) = C∞(X,R)′ is known for infinite dimensional
spaces X. We already proved that (U1) and (U2) is true, since C∞(R,R)
is a Fréchet space. The flipping isomorphism (U3) is C∞(X,L(E,F )) ∼=
L(E,C∞(X,F )).

6. For G(X) we cannot apply the discussion above directly, since we have no
forgetful functor in this situation. Here a candidate for λ(X) would be RX ,
but the continuous linear functions RX → G have finite support only for
spaces G admitting a continuous norm. We have no flipping isomorphism
(U3), since for X = N, E = R(N) and G = R we have L(E,G)(X) ∼= (RN)(N)

but L(E,G(X)) ∼= (R(N))N. However the uniform boundedness principle (U2)
is true: In fact take a absolutely convex subset B ⊆

∐
iEi, which is bounded

in
∏

iEi and such that (
∐

iEi)B is complete. We claim that B is contained
in some finite subproduct. Otherwise there would be a countable subset N of
the index set and bn ∈ B with bn(n) 6= 0 for all n ∈ N. Choose furthermore
λn ∈ E′n with λn(bn(n)) = 1. Let p :

∐
iEi → R(N) be given by p((xi)i∈I) :=

(λn(xn)n∈N). Then p(B) ⊆ R(N) satisfies the same assumptions as B. But∐
i∈N R is the strict inductive limit of the finite subproducts, hence is webbed

and we may apply the closed graph theorem.
7. Since Cc is a generalization of the previous item, we have no λ here either.

However if Y is σ-compact, then the space Cc(Y,R) is webbed, and hence
Cc(Y,G) satisfies the uniform boundedness principle (U2).

8. The same as in the previous item applies here.

Example.
We consider the space `∞(X) := `∞(X,R) as defined in 2.28 for a set X together
with a family B of subsets called bounded. We have the subspace Cc(X) := {f ∈
`∞(X) : supp f is finite}. And we want to calculate its c∞-closure in `∞(X).

Claim: The c∞-closure of Cc(X) equals C0(X) := {f ∈ `∞(X) : f |B ∈ c0(B) for all B ∈
B} provided X is countable.
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Proof. The right hand side is just the intersection c0(X) :=
⋂

B∈B ι
−1
B (c0(B)),

where ιB : `∞(X) → `∞(B) denotes the restriction map. We use the notation
c0(X), since in the case where X is bounded this is exactly the space {f ∈ `∞(X) :
∀ε > 0{x : |f(x)| ≥ ε} is finite}. In particular this applies to the bounded space N,
where c0(N) = c0. Since `∞(X) carries the initial structure with respect to these
maps c0(X) is closed. It remains to show that Cc(X) is c∞-dense in c0(X). So let
f ∈ c0(X). Let {x1, x2, . . . } := {x : f(x) 6= 0}.
We consider first the case, where there exists some δ > 0 such that |f(xn)| ≥ δ for
all n. Then we consider the functions fn := f · χx1,...,xn

∈ Cc(X). We claim that
n(f − fn) is bounded in `∞(X,R). In fact let B ∈ B. Then {n : xn ∈ B} = {n :
xn ∈ B and |f(xn)| ≥ δ} is finite. Hence {n(f − fn)(x) : x ∈ B} is finite and thus
bounded, i.e. fn converges Mackey to f .

Now the general case. We set Xn := {x ∈ X : |f(x)| ≥ 1
n} and define fn := f ·χXn .

Then each fn satisfies the assumption of the particular case with δ = 1
n and hence is

a Mackey limit of a sequence in Cc(X). Furthermore n(f−fn) is uniformly bounded
by 1, since for x ∈ Xn it is 0 and otherwise |n(f − fn)(x)| = n|f(x)| < 1. So after
forming the Mackey adherence (i.e. adding the limits of all Mackey-convergent
sequences contained in the set, see 2.36 for a formal definition) twice, we obtain
c0(X).

2.33 Example. c0(X).
We claim that c0(X) is the c∞-completion of the subspace Cc(X) in `∞(X) formed
by the finite sequences.
We may assume that the bounded sets of X are formed by those subsets B, for
which f(B) is bounded for all f ∈ `∞(X). Obviously any bounded set has this
property and the space `∞(X) is not changed by adding these sets. Furthermore
the restriction map ιB : `∞(X)→ `∞(B) is also bounded for such a B, since using
the closed graph theorem we only have to show that evb ◦ιB = ι{b} is bounded for
every b ∈ B, see [1, 5.3.8], which is obviously the case.

By the previous proposition it is enough to show the universal property for bounded
linear functionals. In analogy to Banach-theory, we only have to show that the dual
Cc(X)′ is just

`1(X) := {g : X → R : supp g is bounded and g is absolutely summable}.

In fact any such g acts even as bounded linear functional on `∞(X,R) by 〈g, f〉 :=∑
x g(x) f(x), since a subset is bounded in `∞(X) iff it is uniformly bounded on

all bounded sets B ⊆ X. Conversely let ` : Cc(X) → R be bounded and linear
and define g : X → R, by g(x) := `(ex), where ex denotes the function given by
ex(y) := 1 for x = y and 0 otherwise. Obviously `(f) = 〈g, f〉 for all f ∈ Cc(X).
Suppose indirectly supp g = {x : `(ex) 6= 0} is not bounded. Then there exists a
sequence xn ∈ supp g and a function f ∈ `∞(X) such that |f(xn)| ≥ n. In particular
the only bounded subsets of {xn : n ∈ N} are the finite ones. Hence { n

|g(xn)|exn
} is

bounded in Cc(X) but the image under ` is not. Furthermore g has to be absolutely
summable, since the set of finite subsums of

∑
x sign g(x) ex is bounded in Cc(X)

and its image under ` are the subsums of
∑

x |g(x)|.

Thus we should investigate the desired isomorphism (V) (and in particular (P)) for
L. Obviously we have a bilinear mapping E′ × G → L(E,G) and this induces a
linear map ι : E′ ⊗ G → L(E,G). So we have to prove firstly that this map is an
embedding for some topology on E′ ⊗ G (which we can always achieve by taking
the corresponding initial topology) and that secondly it has dense image. So let us
calculate the image first:
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4.8 Lemma. Algebraic tensor product as operators.
The image of the algebraic tensor product E′⊗G in L(E,G) consists exactly of the
finite dimensional operators (i.e. those with finite dimensional image).

Proof. Let T : E → G have finite dimensional image. Then choose a basis (gn)n

of T (E) and continuous linear functionals (λn)n in G′ dual to the gn. Then T =∑
n(λn ◦ T ) · gn. Conversely the image of

∑
n≤N λn ⊗ gn is obviously contained in

〈gn : n ≤ N〉.

We have shown in [1, 6.4.8] that any limit of finite dimensional operators between
Banach spaces is compact. Obviously the identity on a Banach space G is compact
only if G is finite dimensional, so E′ ⊗ E is not dense in L(E,E) for any infinite
dimensional Banach space E. Thus for no infinite dimensional Banach space E = G
there is a topology τ on the algebraic tensor-product such that

(V) E′⊗̂τG ∼= L(E,G)

is true.

Recall that with respect to the completed projective tensor product (V) is true for
F(X, ) := ( )X with discrete X by 3.28. But it fails with respect to the completed
bornological tensor product for G := R(N) and X := N, since

G⊗̂βF(N) = R(N)⊗̂βRN ∼= (RN)(N) 6∼= (R(N))N = F(N, G)

By 3.38 we have that with respect to the completed bornological tensor product (V)
is true for F(X, ) := ( )(X). But it fails with respect to the completed projective
tensor product, since

F(N)⊗̂πG = R(N)⊗̂πRN ∼= (R(N))N 6∼= (RN)(N) = F(N, G).

So we see that the choice of the appropriate tensor topology depends on the function
space functor F under consideration.

Let us now consider (V) (and in particular (P) for G = `∞(Y )) for the function
spaces `∞. Using the free c∞-complete vector space `1 this would translate into

`1(X)′ ⊗? G ∼= `∞(X)⊗? G
(V)
∼= `∞(X,G)

(F)
∼= L(`1(X), G).

But since in particular case, where X = N and G = `∞, the natural inclusion of
`1 → `∞ is not compact - (the image of) the standard basis is not precompact
in `∞ - in cannot lie in the image under the composite of the completion of any
topology on the algebraic tensor product by 4.8. Thus this composite is never onto
and hence for F = `∞ neither (V) nor the particular case (P) can be true.

To C, Cc, C∞ and C∞c we will come later.

Injective Tensor Product

Beside the few situations above the projective tensor product is not well suited for
function spaces. So we need another topology ε on the algebraic tensor product,
such that F ′ ⊗ε G→ L(F,G) is an embedding. We could take this as a definition,
but not every locally convex space E is a dual space F ′. However, since L(F, )
preserves embeddings (see below in 4.21), the same should be true for E ⊗ε ( ).
And since the tensor product should be commutative, we only have to find an
embedding of E → F ′ for some F and then E ⊗ε G ↪→ F ′ ⊗ε G ↪→ L(F,G) should
be an embedding. In fact we can take F = E∗ with the bornology of equi-continuous
sets, see 2.15.
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4.21 Lemma. `∞(X, .) preserves embeddings.
Let T : F1 → F2 be an embedding and X be a bornological space. Then T∗ :
`∞(X,F1) → `∞(X,F2) is an embedding, and if E is a convex bornological space,
then T∗ : L(E,F1)→ L(E,F2) is an embedding.

Proof. Since L(E,Fi) is embedded into `∞(E,Fi), only the first statement has to
be shown. Clearly T∗ is injective, provided T is injective: T ◦f1 = T∗(f1) = T∗(f2) =
T ◦ f2 implies that f1 = f2. Remains to show that T∗ is a homeomorphism onto its
image. So let U ⊆ F1 be a 0-neighborhood and B ⊆ X be bounded. Then NB,U is a
typical 0-neighborhood in `∞(X,F1). By assumption there is some 0-neighborhood
V ⊆ F2, such that T−1(V ) ⊆ U . But then

(T∗)−1(NB,V ) = {f : T∗(f) ∈ NB,V } = {f : T (f(B)) ⊆ V }
⊆ {f : f(B) ⊆ U} = NB,U .

Definition.
Thus we consider the bilinear mapping E×F → L(E∗, F ), given by (x, y) 7→ (x∗ 7→
x∗(x)y). It is well-defined, since evx : E∗ → R is bounded. In fact evx : E∗ → R
is even continuous for the topology of uniform convergence on bounded sets, since
the set {x∗ : |x∗(x)| ≤ 1} is the polar of the bounded set {x} and hence a 0-
neighborhood for this topology. This induces a linear map E ⊗ F → L(E∗, F ),
given by x⊗ y 7→ (x∗ 7→ x∗(x)y).

We claim that this mapping is injective. In fact take
∑

i xi ⊗ yi ∈ E ⊗ F with xi

linearly independent. By Hahn-Banach we can find continuous linear functionals x∗i
with x∗i (xj) = δi,j . Assume that the image of

∑
i xi ⊗ yi is 0 in L(E∗, F ). Since it

has value yi on x∗i , we have that yi = 0 for all i and hence
∑

i xi ⊗ yi = 0.

We define the injective tensor product (also called ε-tensor product in [11]) E ⊗ε F
to be the algebraic tensor product with the locally convex topology induced by the
injective inclusion into L(E∗, F ). Since L(E∗, F ) is Hausdorff, the same is true for
E ⊗ε F .

Note that, since F embeds into (F ∗)′ by 2.15, the structure of E⊗ε F is also initial
with respect to E ⊗ F → L(E∗, F ) → L(E∗, (F ∗)′) ∼= L(E∗, F ∗; R), which gives a
more symmetric form. Since the seminorms of L(E∗, F ∗; R) are given by suprema
on Uo × V o, where U and V are 0-neighborhoods, we have for the corresponding
seminorm εU,V on E ⊗ε F , that

εU,V

(∑
k

xk ⊗ yk

)
:= sup

{∣∣∣∑
k

x∗(xk) y∗(yk)
∣∣∣ : x∗ ∈ Uo, y∗ ∈ V o

}

4.22 Corollary. Seminorms of the injective tensor product.

A defining family of seminorms on E ⊗ε F is given by εU,V :
∑

i xi ⊗ yi 7→
sup{|

∑
i x

∗(xi) y∗(yi)| : x∗ ∈ Uo, y∗ ∈ V o}, where U and V run through the 0-
neighborhoods of E and F . The injective tensor product E⊗ε F is metrizable (resp.
normable) if E and F are.

Let us show next, that the canonical bilinear mapping E × F → L(E∗, F ) is conti-
nuous, which implies that the identity E ⊗π F → E ⊗ε F is continuous.
In fact, take an equi-continuous set E ⊆ E∗, i.e. E is contained in the polar Uo of
a 0-neighborhood U . And take furthermore an absolutely convex 0-neighborhood
V ⊆ F . Then U × V is mapped into {T : T (E) ⊆ V }, since (x⊗ y)(x∗) = x∗(x) y ∈
[−1, 1] · V ⊆ V for x∗ ∈ E ⊆ Uo.
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4.23 Corollary.
E ⊗π F → E ⊗ε F is continuous.

Proof. In the diagram

E ⊗π F // E ⊗ε F
_�

��
E × F

⊗

OO

// L(E∗, F )

continuity of the bilinear map at the bottom implies continuity of the top arrow.

4.24 Definition.
A space E is called nuclear iff E ⊗π F = E ⊗ε F for all F . We will come to this
later on in more detail. Note that every product of R is nuclear, since RX ⊗π E
embeds into RX⊗̂πÊ ∼= ÊX ∼= L(R(X), Ê) ∼= L((RX)∗, Ê) (the second isomorphism
follows from the continuity of L( , Ê)) in which also L((RX)∗, E) and thus RX⊗εE
embeds.

Note however, that E × F → L(E′, F ) is not continuous, even for F = R, see [1,
7.4.20], where E′ carries the topology of uniform convergence on bounded sets, and
hence has as bounded sets those which are uniformly bounded on bounded sets.

4.25 Proposition.
The injective tensor product is commutative and associative.

Proof. Since the description of 0-neighborhoods in E⊗F is symmetric, we conclude
that ⊗ε is commutative. This follows even more directly from the embedding E ⊗ε

F → L(E∗, F ∗; R). For associativity, we consider the embeddings

(E⊗εF )⊗εG ∼= G⊗ε(E⊗εF ) ↪→ L(G∗, E⊗εF ) ↪→ L(G∗, L(E∗, F )) ∼= L(G∗, E∗;F )

and

E ⊗ε (F ⊗ε G) ↪→ L(E∗, F ⊗ε G) ∼= L(E∗, G⊗ε F ) ↪→
↪→ L(E∗, L(G∗, F )) ∼= L(E∗, G∗;F ) ∼= L(G∗, E∗;F )

4.26 Corollary.
The space E′ ⊗ε F embeds into L(E,F ).

Proof. In fact, since E′ ⊗ε F ∼= F ⊗ε E
′ it embeds into L(F ∗, E′) ∼= L(E, (F ∗)′).

This inclusion factors over the embedding L(E,F ) → L(E, (F ∗)′), by x∗ ⊗ y 7→
(x 7→ x∗(x)y). Hence this map E′ ⊗ε F → L(E,F ) is an embedding.

E′ ⊗ε F
� � //

� t

&&

L(E, (F ∗)′)

L(E,F )
?�

OO

4.27 Proposition.
The injective tensor product is a functor, which preserves injective maps and em-
beddings.

andreas.kriegl@univie.ac.at c© 7. Februar 2007 29



Injective Tensor Product 4.31

Proof. That T1 ⊗ε T2 is continuous and thus ⊗ε is a functor follows, since T ∗1 :
E∗2 → E∗1 is bounded and hence L(T ∗1 , T2) = (T2)∗ ◦ (T ∗1 )∗ : L(E∗1 , F1)→ L(E∗2 , F2)
is continuous.

E1 ⊗ε F1
� � //

T1⊗εT2

��

L(E∗1 , F1)

L(T∗
1 ,T2)

��
E2 ⊗ε F2

� � // L(E∗2 , F2)

Since L(E∗, ) preserves injectivity and embeddings, and since ⊗ε is commutative
the claimed preservation properties follow.

4.28 Corollary.
Let F1 and F2 be topological subspaces of E1 and E2. And assume that F1 or F2 is
nuclear. Then F1 ⊗π F2 is a topological subspace of E1 ⊗π E2.

Proof. By 4.27 we have that F1⊗π F2
∼= F1⊗ε F2 is a subspace of E1⊗ε E2. Since

F1 ⊗π F2 → E1 ⊗π E2 → E1 ⊗ε E2 is continuous, the result follows.

4.29 Example.
The injective tensor product of quotient maps is not always a quotient map and it
also doesn’t preserve direct sums.

Proof. The first one follows by taking the tensor product of a quotient mapping
`1 → `2 with the identity on `2. Note that by [5, 6.9.4] every Banach space is a
quotient space of some `1(X) with bounded X, and every separable Banach space
is a quotient of `1.

The second follows from the example R(N)⊗ε RN ∼= R(N)⊗π RN, since RN is nuclear.
Thus also the strict inductive limit lim−→n∈N Rn of the sequence Rn is not preserved.

4.30 Proposition.
The injective tensor product preserves dense subspaces.

Proof. Let E1 ⊆ E2 be a dense topological subspace. Then E1 ⊗ F is dense in
E2 ⊗π F and hence a fortiori in E2 ⊗ε F . By 4.27 we have that E1 ⊗ε F is a
subspace of E2 ⊗ε F .

Remark.
Since E ⊗ε F embeds into L(E∗, F ) and in turn into the complete space L(E∗, F̂ ),
we have that the completed injective tensor product E⊗̂εF is the closure of E ⊗ F
in L(E∗, F̂ ). Note that by 4.30 we have that

E⊗̂εF ∼= Ê⊗̂εF̂ .

4.31 Theorem.
The completed injective tensor product preserves products and reduced projective
limits.

Proof. Since
∏̂

j Fj =
∏

j F̂j (denseness and completeness), we may assume wi-
thout loss of generality that E and all Fj are complete. The natural mapping
E⊗̂ε

∏
j Fj →

∏
j E⊗̂εF is induced from the isomorphism

L
(
E∗,

∏
j

Fj

)
→
∏
j

L(E∗, Fj)
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and hence is an embedding. Since for the algebraic tensor product we have E ⊗∐
j Fj
∼=
∐

j E ⊗Fj and both sides are dense in the corresponding complete spaces
above, we have an isomorphism.

By the corresponding result for the projective tensor product we have that E ⊗
lim←−j

Fj is dense in lim←−j
E⊗̂πFj and hence a fortiori in lim←−j

E⊗̂εFj , which is a

subspace of
∏

j E⊗̂εFj
∼= E⊗̂ε

∏
j Fj . Since lim←−j

Fj is a subspace in
∏

j Fj , we have

by 4.27 that E⊗̂ε lim←−j
Fj → lim←−j

E⊗̂εFj is a embedding and hence an isomorphism.

Some Function Spaces

Let us show now that (V) is satisfied for C:

4.35 Theorem.
If F is complete, then we have

(V) Cm(X)⊗̂εF ∼= Cm(X,F ).

provided X is an open subset in some Rn or m = 0 and X is a compactly generated
completely regular space.

Proof. We try to factorize the natural embedding Cm(X)⊗ε F → L(F ∗, Cm(X))
in the following way:

Cm(X)⊗ε F
� � //

''

L(F ∗, Cm(X))

Cm(X,F )
) 	

ι

77

The right hand side arrow is associated to the bilinear composition map Cm(X,F )×
F ∗ → Cm(X), and hence is given by ι : f 7→ (y∗ 7→ y∗ ◦ f). Note that the
other embedding Cm(X) ⊗ε F → L(Cm(X)∗, F ) cannot be factorized easily. The
image ι(f) belongs to L(F ∗, Cm(X)), since it maps the equi-continuous set V o to
{y∗ ◦ f : y∗ ∈ V o}, which is bounded in Cm(X), since ∂α(y∗ ◦ f)(x) = y∗(∂αf(x)).
Furthermore ι is linear and injective, since F ∗ separates points of F . It is even a
homeomorphic embedding, since a 0-neighborhood basis of Cm(X,F ) is given by
Np,K,V := {f : ∂αf(K) ⊆ V for |α| ≤ p}, where p ≤ m, the set K ⊆ X is compact
and V ⊆ F a closed absolutely convex 0-neighborhood. And a 0-neighborhood basis
of L(F ∗, Cm(X)) is given by Np,V o,Ko := {T : |∂α(T (y∗))(x)| ≤ 1 for |α| ≤ p, y∗ ∈
V o and x ∈ K} and ι−1(Np,V o,Ko) = Np,V,K , since ∂αf(K) ⊆ V iff for all y∗ ∈ V o

we have that y∗(∂αf(K)) ⊆ [−1, 1].

The arrow Cm(X) ⊗ε F → Cm(X,F ) on the left hand side is given by f ⊗ y 7→
(x 7→ f(x) y). Composed with the mapping ι from above we obtain the natural
inclusion Cm(X)⊗ε F → L(F ∗, Cm(X)), given by f ⊗ y 7→ (y∗ 7→ y∗(y) f). Hence
Cm(X)⊗ε F → Cm(X,F ) is an embedding as well.

We show now the required density properties, first for m = 0. So let f ∈ C(X,F ) be
given as well as a 0-neighborhood NK,V , with K ⊆ X compact and V = {y : p(y) ≤
1} ⊆ F a 0-neighborhood. By continuity of f and compactness of K we can find a
finite covering of K by open sets Vi and points xi ∈ Vi, such that p(f(x)−f(xi)) ≤ 1
for all x ∈ Vi. Let (hi) be a partition of unity on K subordinated to this covering.
By Tieze’s extension theorem, we may assume that hi ∈ C(X). In fact we may
extend hi to a continuous function on the Stone-Čech compactification βX of X
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and then restrict it to X. Now take h :=
∑
hi⊗f(xi) ∈ C(X)⊗F . Then for x ∈ K

we have p
(
f(x)− ι(h)(x)

)
≤
∑

i hi(x) p
(
f(x)− f(xi)

)
≤ 1, i.e. ι(h) ∈ f +NK,V .

Now for arbitrary m and open X ⊆ Rn. First note that Cm
c (X,F ) is dense in

Cm(X,F ): In order to see this take a compact set K ⊂ X and choose a bump-
function h ∈ C∞c (X,F ) with h|K = 1. Then for f ∈ Cm(X,F ) we have h · f ∈
Cm

c (X,F ) and f − h · f ∈ Np,K,V for every p and V . So it is enough to show that
C∞c (X)⊗ F is dense in Cm

c (X,F ), considered with its inductive limit topology.
For this let f ∈ Cm

c (X,F ) be given. Let K ⊆ X be compact, such that the support
of f is contained in the interior of K. The trace of an arbitrary neighborhood
of f to Cm

K (X,F ) is a neighborhood in Cm
K (X,F ) ⊆ Cm(X,F ). So it is enough to

approximate f in Cm
K (X,F ) by elements in C∞K (X)⊗F . By what we have shown for

C, we can find fj ∈ C(X)⊗F , which converge to f in C(X,F ). Let h ∈ C∞c (X,F )
be such that h|supp f = 1 and H := supp(h) contained in the interior of K. Then
h·fj ∈ CH(X)⊗F converges to h·f = f in C(X,F ). In order to achieve convergence
of the derivatives, we take convolution with an approximation of unity ρε (see [1,
4.13.6]). Since Cm

c (X,F ) ⊆ Cm
c (Rn, F ), the convolutions ρε ? (h ·fj) ∈ Cm(Rn)⊗F

and ρε ? f ∈ Cm(Rn, F ) are well-defined, ρε ? f converges to f in Cm(Rn, F )
for ε → 0 and ρε ? (h · fj) converges to ρε ? f in C∞(Rn, F ) for j → ∞, since
partial derivatives of a convolution can be moved to one factor (see [1, 4.7.6]). If
we choose ε so small, that supp(ρε) +H ⊆ K, then ρε ? (h · fj) ∈ C∞K (X)⊗ F and
ρε ? f ∈ C∞K (X,F ). Hence the convergence takes place in Cm

K (X,F ).

The proof is now finished, since for complete F the space C(X,F ) is complete
provided X is compactly generated and the space Cm(X,F ) is complete for any
open subset X of Rn. Hence the completion Cm(X)⊗̂εF is isomorphic to the closure
Cm(X,F ) of Cm(X)⊗ F in Cm(X,F ).

Note that on C∞(X,F ) the bornology discussed here is identical to that introdu-
ced in 2.46. In fact both structures are initial with respect to `∗ : C∞(X,F ) →
C∞(X,R) for all ` ∈ F ∗ and on C∞(X,R) both structures satisfy the uniform
{evx : x ∈ X}-boundedness principle.

4.36 Corollary.

C(X × Y ) ∼= C(X)⊗̂εC(Y ) for locally compact X and Y .(P)

C∞(X × Y ) ∼= C∞(X)⊗̂εC
∞(Y ) for open X ⊆ Rn and Y ⊆ Rm.(P)

Proof. Under these assumptions we have the exponential law (E) and hence (P)
follows from (V).

Remark.
Very little about (V) and (P) is known for infinite dimensional spaces X and Y .

The corollary fails for Cm with 0 < m <∞. In fact we do not have an exponential
law in this situation, since for every f ∈ Cm(X,Cm(Y )) the derivative ∂m

1 ∂
m
2 f̂

exists and is continuous, which is not the case for elements of Cm(X × Y ). So the
analogous proof will not work. Moreover from the validity of (P) we could deduce
the scalar valued case of the exponential law (E) using (V):

F(X × Y )
(P)
∼= F(X)⊗̂εF(Y )

(V)
∼= F(X,F(Y )).

Note that for C we can not replace the ε-tensor product by the β- or π-tensor
product, since we have shown in 4.13 that for X = Y = N∞ we don’t have equality.
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We will show in 6.23 that C∞(X,R) is nuclear, so we may replace the ε-tensor
product by the π-tensor product. And since both factors are Fréchet also by the
β-tensor product.

4.37 Proposition.
Let F be complete. Then

S(Rn,S(Rm, F )) ∼= S(Rn × Rm, F )(E)

S(Rn)⊗̂εF ∼= S(Rn, F )(V)

S(Rn)⊗̂εS(Rm) ∼= S(Rn × Rm)(P)

Of course S(Rn, F ) is defined as all f ∈ C∞(Rn, F ) for which p · ∂αf is globally
bounded for all polynomials p on Rn and all multi-indices α. And we supply this
space with the structure inherited from the linear mappings f 7→ p · ∂αf , from
S(Rm, F ) into `∞(Rm, F ), where Rm carries the trivial bornology. Since ∂α(p ·f) =
p ·∂αf +

∑
β>0

(
α
β

)
∂α−βp ·∂βf , we can show by induction that we could use equally

well the expressions ∂α(p · f).

Proof. Note that f ∈ S(Rn,S(Rm, F )), iff for every polynomial p1 on Rn and p2

on Rm and all multi-indices α and β we have that x 7→ (y 7→ ∂β
y (p2(y) · ∂α

x (p1(x) ·
f(x))(y))) belongs to `∞(Rn, `∞(Rm, F )) ∼= `∞(Rn ×Rm, F ). This is equivalent to
the assumption that ∂γ(p · f̂) ∈ `∞(Rn ×Rm;F ) for all γ and all polynomials p on
Rn × Rm.

The rest of the proof is completely analogous to that for C∞. For the density use
that C∞c (Rn, F ) is dense in S(Rn, F ) and C∞c (Rn) ⊗ F is dense in C∞c (Rn, F ) by
what we have proved for C∞.

4.38 Theorem.
If F is complete, then H(X,F ) ∼= H(X)⊗̂εF for every open domain X ⊆ C and
complex locally convex space F .

For a proof of this result see [5, 16.7.5]. Here H(X,F ) denotes the space of all
holomorphic maps X → F with the topology of uniform convergence on compact
subsets of X.

Remark.
Let us consider Cm

c next for m = 0 or m =∞.

Note that for X compact we are in the situation of 4.35. So for m = 0 we can neither
use the bornological nor the projective tensor product. So we try again with the
injective tensor product.

We try to find an embedding Cm
c (X,F ) → L(F ∗, Cm

c (X)) as in the situations
before. Since Cm

c (X,F ) is the inductive limit of Cm
K (X,F ), where K runs through

a basis of the compact subsets of X and since Cm
K (X,F ) carries by definition the

initial structure from the inclusion into Cm(X,F ), we obtain a continuous linear
mapping as follows:

Cm
c (X,F )

(3)

��

Cm
K (X,F )? _oo � � //

(2)

��

Cm(X,F )

(1)

��
L(F ∗, Cm

c (X)) L(F ∗, Cm
K (X))? _oo � � // L(F ∗, Cm(X)),

where (1) was given in the proof for Cm. The map (2) is just the restriction, which
exists, since supp(f) ⊆ K implies that f(x) = 0 for all x 6∈ K and hence also
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y∗(f(x)) = 0 for all y∗ ∈ F ∗, i.e. y∗ ◦ f has support in K. The map (3) exists by
the universal property of the inductive limit.

On the other hand we have a bounded bilinear mapping Cm
c (X)× F → Cm

c (X,F )
induced by

Cm
c (X)

(3)

��

Cm
K (X)? _oo � � //

(2)

��

Cm(X)

(1)

��

Cm(X)⊗ F

(0)

��
L(F,Cm

c (X,F )) L(F,Cm
K (X,F ))? _oo � � // L(F,Cm(X,F )) Cm(X,F ),

where the right most mapping (0) is the embedding given in 4.35. By the same
arguments as before (2) and (3) exist. The associated mapping Cm

c (X)⊗̂βF →
Cm

c (X,F ) clearly has dense image and the composite Cm
c (X)⊗̂βF → Cm

c (X,F )→
L(F ∗, Cm

c (X)) is the natural mapping, which has values in Cm
c (X)⊗̂εF . Thus we

conclude that also Cm
c (X,F )→ L(F ∗, Cm

c (X)) has in values in Cm
c (X)⊗̂εF .

Could this be extended to give us the desired isomorphism (V) : Cm
c (X)⊗̂βF ∼=

Cm
c (X,F )? This is not the case as the example X = N shows, since then we have

Cm
c (X,F ) = F (N) and we have already seen that for the nuclear space F = RN

there is no isomorphism Cm
c (X)⊗̂εF = Cm

c (X)⊗̂πF = R(N)⊗̂πRN ∼= (R(N))N →
(RN)(N) = Cm

c (X,F ).

But we should note that for m > 0 we assumed X to be open in some Rn in 4.35.
So what about such a counter-example (in particular for m =∞)? If X = R, then
we have a direct summand F (N) ⊂ C∞c (R, F ) given by (yn)n 7→

∑
n h( − n) yn,

where h ∈ C∞(R,R) has support in [−1, 1] and is equal to 1 at 0. A retraction is
given by f 7→ (f(n))n∈N. That both maps are continuous follows from the following
diagram, since the restrictions to the bottom row are obviously continuous:

F (N) // C∞c (R, F ) // F (N)

FN //
?�

OO

C∞[−1,N+1](R, F ) //
?�

OO

FN
?�

OO

Now suppose we have some functorial topology τ on the tensor product, i.e. such
that the tensor product becomes a functor with values in LCS. Then an isomor-
phism C∞c (X)⊗̂τF ∼= C∞c (X,F ) would induce an isomorphism R(N)⊗̂τF ∼= F (N).
Taking F = RN shows that this fails for τ = π = ε. Note however, that for τ = β
it is true.

What about the weaker statement (P) for m =∞ (i.e. (V) for F = C∞c (Y )). We ha-
ve a quotient mapping C∞c (R)→ C∞(R)→ RN given by f 7→ (f (n)(0))n∈N (apply
the open mapping theorem to the second map). Now suppose C∞c (R)⊗̂πC

∞
c (R) ∼=

C∞c (R2). Then we have the quotient mapping C∞c (R)⊗̂πC
∞
c (R) → R(N)⊗̂πRN ∼=

(R(N))N. This should correspond to a continuous mapping on C∞c (R2), whose (n, k)-
th coordinate is given by f 7→ ∂k

2 f(n, 0). In fact f⊗g ∈ C∞c (R)⊗πC
∞
c (R) are map-

ped to (f(n))n ⊗ (g(k)(0))k and further to ((f(n) g(k))n)k. The corresponding map
h ∈ C∞c (R2) is given by h(x, y) = f(x) g(y) and hence (f(n) g(k)(0)) = ∂k

2h(n, 0).
Hence the linear mapping C∞c (R2)→ (R(N))N has values in the strict subset (RN)(N),
a contradiction. Since C∞c (X) is nuclear this shows at the same time that the result
fails also for ε.

However, let us show now, that (P) is true for C∞c with respect to the bornological
tensor product:
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4.39 Proposition.
Let X and Y be open in finite dimensional spaces. Then

(P) C∞c (X)⊗̂βC
∞
c (Y ) ∼= C∞c (X × Y ).

Proof. Since C∞c (Z) is the inductive limit of C∞K (Z) ⊆ C∞(Z), where K runs
through a basis of the compact subsets of Z, and since the bornological tensor
product preserves inductive limits it is enough to show that C∞A (X)⊗̂βC

∞
B (Y ) ∼=

C∞A×B(X×Y ) for all compact subsets A ⊆ X and B ⊆ Y . Since C∞(Z) are nuclear
Fréchet spaces, we have from what we have shown above C∞(X)⊗̂βC

∞(Y ) ∼=
C∞(X)⊗̂πC

∞(Y ) ∼= C∞(X)⊗̂εC
∞(Y ) ∼= C∞(X × Y ). So the natural mapping

C∞A (X) ⊗ε C
∞
B (Y ) = C∞A (X) ⊗β C

∞
B (Y ) → C∞A×B(X × Y ) is as restriction initial

as well. Remains to show denseness of C∞A (X)⊗C∞B (Y ) in C∞A×B(X ×Y ). For this
we first show that

⋃
n C

∞
Kn

(Z) is dense in C∞K (Z) provided Kn are compact subsets
of K such that their interiors cover K.
In fact, let f ∈ C∞K (Z). Then for all n and m we have that f (n)(z) is a O(d(z, Z \
K)m) for z → ∂K. By [10, p.77] we may choose an h ∈ C∞K (Z) with h = 1
on Kε := {z ∈ K : d(z, Z \ K) ≥ ε} and h(n)(z) is a O(d(z, Z \ K)−n). Thus
(f · h)(n)(z) = O(d(z, Z)), and hence is smooth on Z.

Note however, that it is even enough to embed C∞A×B(X × Y ) into some space
C∞A′(X)⊗̂εC

∞
B′(Y ), which is much easier to obtain.

Kernel Theorems

4.40. We take up the discussion about the appropriate version of the matrix-
representation of linear-operators

L(Rn,Rm) ∼= Rn·m.

We should replace Rn and Rm by more general (function) spaces E and F . So we
have to rewrite the right hand side in terms of Rn and Rm, i.e.

Rn·m ∼= Rn ⊗ Rm.

Note that the left side is a functor on V Sop × V S and the right side on V S × V S,
so we have to dualize E on one side.

The simplest generalization seems to be from Rn = R{0,...,n−1} to RX with arbitrary
X. For the projective or injective tensor product we have RX⊗̂πRY ∼= (RY )X ∼=
L(R(X),RY ). Recall that R(X) = (RX)∗. Hence we have E⊗̂πF ∼= L(E∗, F ), where
E = RX and F = RY . But we can read this also as an isomorphism for X 7→ R(X),
since (R(X))′ ∼= RX : E′⊗̂πF

′ ∼= L(E,F ′), where E = R(X) and F = R(Y ). Which
seems more appropriate, since for function spaces E often E ⊆ E′ (e.g. C∞c ⊆
(C∞c )′, `1 ⊆ `∞), and we are mainly interested in the operators L(E,E).

Let us consider the corresponding result for Lp with 1 < p ≤ ∞ and 1
p + 1

q = 1
(and hence 1 ≤ q <∞):

Lp(X × Y ) ∼= Lp(X,Lp(Y ))→ L(Lq(X),Lp(Y )),

which is an isomorphism for p = ∞ and discrete X, but not otherwise, since the
image consists of compact operators only, cf. [1, 6.4.8], where we proved this result
for p = q = 2. Note that this mapping is given for discrete X and Y by (kx,y)x,y 7→(
(fx)x 7→ (

∑
x∈X kx,yfx

)
. Or, in general, k is mapped to the integral operator

K : f 7→ (y 7→
∫

X
k(x, y) f(x) dx). So the question of surjectivity amounts to

finding an integral kernel k for an operator K.
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The existence of such a mapping for discrete X and Y can also be seen directly,
since by Schwarz’s Inequality we have

‖Kf‖pp =
∑

y

|
∑

x

k(x, y)f(x)|p =
∑

y

|〈k( , y), f〉|p

≤
∑

y

‖k( , y)‖pp · ‖f‖pq =
∑

y

∑
x

|k(x, y)|p · ‖f‖pq .

4.41 Remark.
We have shown in [1, 6.4.8] that C(I × I) → L(C(I), C(I)) is a well defined map
with values in the compact operators for every interval I.

Furthermore we have the mapping

Lp(X × Y )→ L(Lq(X),Lp(Y )).

So one wants to extend this to some surjective mapping on some function space
F(X × Y ). I.e. for every K ∈ L(Lq(X),Lp(Y )) there should be some “kernel”
k ∈ F(X × Y ). This problem is unsolvable for functions. In fact take p = 2 and
X = Y = R with the Lebesgue-measure. The kernel of the identity would be the
Dirac delta function. Due to [8, 1966] it can be worked out for distributions. For
this we rewrite the above mapping into

Lq(X × Y )′ → L(Lq(X),Lq(Y )′).

This problem has shown to be of importance, in fact we constructed to every par-
tial differential operator D with constant coefficients, and more generally to every
continuous linear operator D : C∞c (Rn) =: D → E := C∞(Rn), which commutes
with translations an integral-kernel k ∈ D′, such that D is given by convolution
with k, in [1, 4.13.5]. Moreover we found a solution operator of such equations as
integral-operator with a distributional kernel ε in [1, 8.3.1]

Now, how could we show such an isomorphism:

L(F(X),F(Y )′) L(F(X),F(Y ); R)∼=
1Loo

F(X)′⊗̂?F(Y )′

2L

66lllllllllllll
3L //

3′F ,,XXXXXXXXXXXXXXXXXXXXXXXXXX (F(X)⊗̂βF(Y ))′
∼=
1L

iiRRRRRRRRRRRRRR

F(X × Y )′
3F

22ffffffffffffffffffffffffffff

Remark.
If one writes the action of a distribution T on a test-function f formally as an
integral Tf =

∫
X
T (x) f(x) dx, then the mapping D(X ×Y )′ → L(D(X),D(Y )′) is

given by k 7→ (f 7→ (g 7→
∫

X×Y
k(x, y) f(x) g(y) d(x, y))). Conversely we now know

that every continuous linear operator K : D(X)→ D(Y )′ is of this form, i.e. has an
distributional kernel k ∈ D(X × Y ). This is a strong generalization of the matrix
representation of finite dimensional operators.

We will show that C∞(X), S(Rp), H(X) and D(X) are nuclear spaces and all
except the last one are Fréchet. Hence
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4.42 Corollary. (P) for several function spaces.

C∞(X)⊗̂εC
∞(Y ) ∼= C∞(X)⊗̂πC

∞(Y ) ∼= C∞(X)⊗̂βC
∞(Y ) ∼= C∞(X × Y )

S(Rp)⊗̂εS(Rq) ∼= S(Rp)⊗̂πS(Rq) ∼= S(Rp)⊗̂βS(Rq) ∼= S(Rp × Rq)

H(X)⊗̂εH(Y ) ∼= H(X)⊗̂πH(Y ) ∼= H(X)⊗̂βH(Y ) ∼= H(X × Y )

D(X)⊗̂εD(Y ) ∼= D(X)⊗̂πD(Y )
!!!

6∼= D(X)⊗̂βD(Y ) ∼= D(X × Y )

Combined with (E) for L this gives:

4.43 Theorem, Schwartz kernel theorem.
We have

C∞(X × Y )′ ∼= L(C∞(X), C∞(Y )′)

S(Rp × Rq)′ ∼= L(S(Rp),S(Rq)′)

H(X × Y )′ ∼= L(H(X),H(Y )′)

D(X × Y )′ ∼= L(D(X),D(Y )′)

Proof. For D we have to proceed differently:

D(X × Y )′
4.39∼= (D(X)⊗̂βD(Y ))′ ∼= L(D(X),D(Y ); R) ∼= L(D(X),D(Y )′).

Little is know about the validity of desired isomorphisms for C∞ and λ in the
infinite dimensional case. See [7] for partial results in the case of C∞.

The Approximation Property

We turn now towards the question of density of the image of E∗ ⊗ F in L(E,F ).

4.44 Theorem. Density of finite dimensional operators.
Let E be a locally convex space and B be a bornology on E. And we consider on all
function spaces L the uniform convergence on sets in B, and hence denote them by
LB. Then the following statements are equivalent:

1. E∗ ⊗ F is dense in LB(E,F ) for every locally convex space F ;
2. E∗ ⊗ F is dense in LB(E,F ) for every Banach space F ;
3. E∗ ⊗ E is dense in LB(E,E);
4. idE is a limit in LB(E,E) of a net in E∗ ⊗ E.

Proof. (1⇒2) is trivial.
(2⇒1) A typical 0-neighborhood in LB(E,F ) is given by NB,V with B ∈ B and V
a 0-neighborhood in F . Let pV : F → F(V ) be the canonical surjection. Since F(V )

is a normed space pV ◦ T : E → F → F(V ) ↪→ F̂(V ) can be uniformly approximated
with respect to p : F(V ) → R on B by finite operators E → F̂(V ) by (2). Since F(V )

is dense with respect to p in F̂(V ) we may assume that the finite operators belong to
L(E,F(V )). Taking inverse images of the vector components, we may even assume
that they belong to L(E,F ).
(1⇒3) and (3⇒4) are trivial.
(4⇒1) Let Ti be a net of finite operators converging to idE , then the net T ◦ Ti of
finite operators converges to T ◦ id = T .
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Let E be complete and assume that the equivalent statements are true for some
bornology B. And let B ∈ B w.l.o.g. be absolutely convex. Since the identity on
E can be approximated uniformly on B by finite operators, we conclude that the
inclusion EB → E can be approximated by finite operators EB → E uniformly on
the unit ball of EB . Hence it has to have relatively compact image on the unit ball,
i.e. B has to be relatively compact:

In fact we have

4.45 Lemma.
The compact operators K(E,F ) from a normed space E into a complete space F
are closed in L(E,F ).

Proof. To see this use that F = lim←−V
F̂(V ), hence a subset K of F is relatively

compact iff pV (K) is relatively compact in F(V ) for all V . Now let Ti ∈ K(E,F )
converge to T ∈ L(E,F ) = L(E,F ). Then the pV ◦ Ti ∈ K(E, F̂(V )) converge to
pV ◦ T in L(E, F̂(V )). Since F̂(V ) is a Banach spaces it can be shown as in [1, 6.4.8]
that pV ◦ T ∈ K(E, F̂(V )). Hence pV (T (oE)) is relatively compact in F̂(V ) and thus
T (oE) is relatively compact in F .

4.46 Definition.
We hence say that a complete space satisfies the approximation property if the
equivalent statements from above are true for the bornology B = cp of all relatively
compact subsets of E. A non-complete space E is said to have the approximation
property, iff Ê has it. Note that the finite dimensional operators may be taken in
L(E,E) in this situation.

A space E is said to have the bornological approximation property, iff E∗⊗F is dense
in L(E,F ) with respect to the bornological topology, which is at least as fine as the
topology of uniform convergence on bounded sets. So a necessary condition is that
all bounded sets are relatively compact. A space with that property is called semi-
Montel space. It is called Montel, iff it is in addition barreled. It is a classical result
of P. Montel that every bounded sequence of holomorphic maps has a convergent
subsequence, i.e. H(X) is Montel for every domain X ⊆ C. By Tychonoff’s theorem
RX is semi-Montel for every X.

Reflexivity and Montel Spaces

Recall that a space is called semi-reflexive, iff the natural mapping E → (E∗)∗ is
onto, where E∗ is considered with the strong topology. A space is called reflexive,
iff the natural mapping E → (E∗)∗ is an isomorphism for the strong topology on
(E∗)∗. This is exactly the case when E is semi-reflexive and (infra-)barreled, since
a space E is (quasi-)barreled iff each pointwise (uniformly) bounded set in L(E,F )
is equi-continuous, see [1, 5.2.2], see also [5, 11.2.2].

One has the following

4.47 Lemma.
The strong dual of a semi-reflexive space is barreled.

Proof. See [11, 373]. Let E∗β denote the strong dual of E and let B be a barrel
in E∗β . Since E is semi-reflexive the strong topology is compatible with the duality,
and hence [1, 7.4.8] B is also closed for the weak-topology σ(E∗, E). We show that
Bo is a bounded subset of E (which implies that B = Boo is a 0-neighborhood in
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E∗β). For this it is enough to show that Bo is bounded in σ(E,E∗). But since B is
assumed to be absorbing, we find for every x∗ ∈ E∗ a c > 0 with cx∗ ∈ B. Thus
|cx∗(Bo)| ≤ 1.

4.48 Proposition. Semi-reflexivity.
The following statements are equivalent:

1. E is semi-reflexive;
2. Every closed bounded set is σ(E,E∗)-compact;
3. E is quasi-complete with respect to σ(E,E∗).

Proof. (1⇒2) Since E is as a vector space the dual of the barreled space E∗β by
the previous lemma it follows that every σ(E,E∗)-bounded set is equi-continuous
and hence relatively compact for the topology σ(E,E∗).

(2⇒3) Since every compact space is complete for any compatible uniformity this is
obvious.

(3⇒1) We only have to show that the strong topology is compatible with the
duality 〈E∗, E〉. By [1, 7.4.15] we must show that this topology coincides with the
topology of uniform convergence on weakly compact sets. But since all bounded
sets are weakly relatively-compact this is obvious.

4.49 Proposition. (U1) for C.
Let X be compactly generated and E be semi-Montel and f : X → E be scalarly
continuous. Then f is continuous.

Proof. Since X is compactly generated, it is enough to show that f |K : K → E
is continuous for every compact subset K ⊆ X. So let xi → x be a convergent net
in K. Then f(xi) → f(x) with respect to the weak-topology, and since f(K) is
scalarly bounded, it is bounded, and hence is relatively compact. But on compact
sets the weak and the given topology obviously coincide. So f(xi)→ f(x) in E.

We have the implications:

4.50 Proposition.
semi-Montel ⇒ semi-reflexive ⇒ quasi-complete ⇒ sequentially complete ⇒ c∞-
complete.

Proof. (semi-Montel ⇒ semi-reflexive) Since every closed bounded set is relatively
compact it is also relatively σ(E,E∗)-compact and hence E is semi-reflexive.

(semi-reflexive ⇒ quasi-complete) Since σ(E,E∗) is quasi-complete by 4.48 it fol-
lows from [5, 3.2.4] that every bounded set is complete.

The other implications are clear.

One has the following stability properties:

4.51 Proposition. Stability of reflexive and of Montel spaces.
Semi-reflexive and semi-Montel spaces are closed with respect to products, closed
subspaces, direct sums, reduced regular inductive limits. Strong duals of reflexive
and of Montel spaces are of the same type.
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4.52. Definition

A locally convex vector space E is called bornologically-reflexive if the canonical
embedding δ : E → E′′ is surjective.

It is then even a bornological isomorphism, since δ is always a bornological embed-
ding. Note that reflexivity as defined here is a bornological concept.

Note also that this notion is in general stronger than the usual locally convex
notion of reflexivity, since the continuous functionals on the strong dual are bounded
functionals on E′ but not conversely.

4.53. Theorem. Bornological reflexivity.
For a bornological locally convex space E the following statements are equivalent.

1. E is bornologically-reflexive.
2. E is reflexive and the strong dual of E is bornological.
3. E is η-reflexive (see [5, p280]).
4. E is completely reflexive (see [4, 1977, p89]).
5. The Schwartzification (or nuclearification) of E is a complete locally convex

space.

Proof. See [3, 5.4.6].

4.54. Corollary. Bornological reflexivity versus reflexivity.

1. A Fréchet space is b-reflexive if and only if it is reflexive.
2. A convenient vector space with a countable base for its bornology is b-reflexive

if and only if its bornological topology is reflexive.

Proof. See [3, 5.4.7].

4.55. Proposition. Duals of bornologically reflexive spaces.
A locally convex vector space is b-reflexive if and only if its bornological topology is
complete and its dual is b-reflexive.

Proof. See [3, 5.4.9].

4.56. Lemma. Subspaces of bornologically reflexive spaces.
A closed linear subspace of a b-reflexive bornological locally convex vector space
is b-reflexive. Products and coproducts of b-reflexive convenient vector spaces are
b-reflexive, if the index set is of non-measurable cardinality.

Proof. See [3, 5.4.8] and [3, 5.4.11]

4.57. Theorem. Reflexivity of function spaces.
If E is a b-reflexive convenient vector space and M is a finite dimensional separable
smooth manifold then C∞(M,E) is b-reflexive.

Proof. See [3, 5.4.13].

4.59 Proposition. Stability of the approximation property.
The approximation property is preserved by products, complemented subspaces, re-
duced projective limits, direct sums, strict inductive limits of sequences of complete
spaces and injective tensor products,
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Proof. (Products) Every compact set K ⊆ E =
∏

j Ej is contained in one of the
form

∏
j Kj withKj ⊆ Ej compact. A 0-neighborhood U ⊆ E can be assumed to be

of the form
∏

j Uj , with 0-neighborhoods Uj ⊆ Ej and Uj = Ej for all but finitely
many j. For those finitely many j, we may find finite operators Tj ∈ L(Ej , Ej) with
(idEj −Tj)(Kj) ⊆ Uj . Then T :=

∑
j Tj ◦ prj ∈ L(E,E) is finite dimensional with

(idE −T )(K) ⊆ U .

Note that if U is a 0-neighborhood basis of closed absolutely convex sets, such that
E(U) have the approximation property, then E has it, see [5, 18.2.2]. In fact we
may assume that E is complete. Then E is the reduced projective limit of Ê(U),
and hence has the approximation property.

(Complemented subspaces) Let E ⊂ F be a subspace admitting a continuous pro-
jection p : F → E. Taking the completion, we may assume that E and F are com-
plete. Let K ⊆ E be compact and U a 0-neighborhood of E. Then there is a finite
operator T ∈ L(F, F ) with (idF −T )(K) ⊆ p−1(U). Then (idE −(p ◦ T )|E)(K) ⊆
p(p−1U) ⊆ U .

(Projective limits) Let E be a reduced projective limit of Ej , we may assume that
all spaces Ej and E are complete. Let K ⊆ E be compact and U a 0-neighborhood
in E. Since the limit is projective, we may assume that it is of the form pr−1

k (Uk)
for some k and 0-neighborhood Uk in Ek. Since the limit is reduced, Fk := prk(E)
is dense in Ek and hence has the approximation property. In particular there exists
a finite operator T ∈ L(Fk, Fk) such that (idFk

−T )(prk(K)) ⊆ Uk. We may assume
that T is of the form T =

∑
j y

∗
j ⊗ prk(xj). Then T̃ :=

∑
j(y

∗
j ◦ prk)⊗ xj is a finite

operator in L(E,E), which satisfies (idE −T̃ )(K) ⊆ U = pr−1
k (Uk).

(Inductive limits) By [1, 4.8.1] we know that such a limit is regular, and hence in
particular every compact set K is contained and compact in some step Ek. Let U be
a 0-neighborhood. Then we can find finite operators T =

∑
j x

∗
j ⊗ xj ∈ L(Ek, Ek),

such that (idEk
−T )(K) ⊆ U . Since Ek is a subspace of E we may assume that

x∗j ∈ E∗, hence T ∈ L(E,E).

(Direct sums) Let E =
∐

j Ej . Then Ê is the direct sum of the Êj , so we may assume
that Ej is complete. Every compact subset of E is contained in some finite subsum.
Since E is the strict inductive limit of the finite subsums and being products these
have the approximation property, we may proceed as before to conclude that E has
it.

(Injective tensor product) See [5, 18.2.8], this uses the associativity of the ε-product
to be discussed later, see 4.68-4.71.

4.60 Lemma. Topology on equicontinuous sets.
On equi-continuous subsets of L(E,F ) the topology τpc of uniform convergence on
precompact subsets of E and the topology of pointwise convergence coincide.

Proof. Let H ⊆ L(E,F ) be equi-continuous and T ∈ H. Let K ⊆ E be precompact
and V ⊆ F an absolutely convex 0-neighborhood of F . Since H is equi-continuous,
there exists a 0-neighborhood U ⊆ E with S(U) ⊆ 1

2V for all S ∈ H. Since
K is precompact there is some finite subset M ⊆ E such that K ⊆ M + 1

2U . If
S ∈ H∩(T+N2M,V ), then Su ∈ 1

2V for all u ∈ U and (S−T )(x) ⊆ 1
2V for all x ∈M .

Thus for all k = x+ 1
2u ∈ K we have (S − T )(k) = (S − T )(x) + 1

2S(u)− 1
2T (u) ∈

1
2V + 1

4V + 1
4V = V , i.e. S ∈ T +NK,V .
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4.61 Alaoğlu-Bourbaki Theorem.
Every equi-continuous set is relatively compact for the topology τpc of uniform con-
vergence on precompact sets.

Proof. By 4.60 we only have to show that it is relatively compact for the topology
σ(E∗, E). Since (E∗, σ(E∗, E) embeds into RE , and equi-continuous sets are point-
wise bounded (see [1, 5.2.2]), it is bounded in RE as well as its closure and hence
is relatively compact there by Tychonoff’s theorem. However the closure in RE of
an equi-continuous set is easily seen to be contained in E∗.

4.62 Examples with the approximation property.
The following spaces have the approximation property:

1. every complete space with an equi-continuous basis;
2. c0 and `p for 1 ≤ p <∞;
3. every Hilbert space;
4. Lp(X,A, µ) for 1 ≤ p ≤ ∞;
5. C(X) for completely regular X;
6. Ck(X) for open subsets X of finite dimensional spaces.

Proof. (1) A space E is said to have an equi-continuous basis, if there are points
xk ∈ E such that every x admits a unique representation x =

∑
k λkxk and the

family of expansion operators Pk : x 7→
∑

j≤k λkxk is equi-continuous. Note that Pk

is finite dimensional and Pk → idE pointwise. By 4.60 this equi-continuous family
converges uniformly on precompact subsets, i.e. on relatively compact subsets since
E is complete and hence the compact subsets are exactly the closed precompact
ones.

(2) It is straight forward to show that the standard unit-vectors ek form an equi-
continuous base.

(3) Let xi be an orthonormal basis in a Hilbert space. Then the projection operators
PF (x) :=

∑
i∈F 〈x, xi〉xi for finite F converge pointwise to the identity and are equi-

continuous. Hence by 4.60 E has the approximation property.

(4) We skip the proof of this, see [5, p411].

(5) Since the completion Ĉ(X) of C(X) is the reduced projective limit of the spaces
C(K), with K ⊆ X compact (use that C(X)→ C(K) is onto for compact subsets
K ⊆ X). It suffices to show that C(X) has the approximation property for compact
X. Let ε > 0 and let K ⊆ C(X) be compact, thus by Arzela-Ascoli-theorem [1,
6.4.4] K is equi-continuous. Thus we can find a finite cover of X by open neigh-
borhoods Uj ⊆ X of some xj ∈ X such that |f(x) − f(xj)| ≤ ε for all x ∈ Uj and
f ∈ K. Let hi be a subordinated partition of unity and set T (f) :=

∑
j f(xj)hj .

We claim that (idE −T )(K) ⊆ U := {f : ‖f‖∞ ≤ ε}. For f ∈ K and x ∈ X we
have

|f(x)− T (f)(x)| ≤
∑

j

|f(x)− f(xj)|hj(x) =
∑

x∈supp(hj)⊆Uj

|f(x)− f(xj)|hj(x)

≤ sup{|f(x)− f(xj)| : x ∈ Uj} ≤ ε.

(6) This can be proved analogously to (5) using smooth partitions of unity. For
k =∞ we will give another proof in 6.23 together with 6.19.

4.63 Remark.
For a long time it was unclear if there are spaces without the approximation pro-
perty at all. It was known that, if such a Banach space exists, then there has to
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be a subspace of c0 failing this property. It was [2] who found a subspace of c0
without this property. In [9] it was shown that L(`2, `2) ∼= L(`2, (`2)∗) ∼= (`2⊗̂π`

2)∗

doesn’t have the approximation property. Note also, that `2 ⊗π `
2 has the approxi-

mation property, since by [5, 18.2.9] every completed projective tensor product of
Fréchet spaces with the approximation property has it. Note however that for Ba-
nach spaces one can show that if E∗ has the approximation property then so does
E, see [5, 18.3.5]. Due to [4] is the existence of a Fréchet-Montel space without the
approximation property, see [5, p416].

We try to identify E⊗̂εF as subspace of L(E∗, F ), and hence in particular, for
F = R, we try to find E⊗̂εR = Ê in L(E∗,R).

4.64 Grothendieck’s completeness criterion.
The completion of E can be identified with Lequi(E∗γ ,R), where E∗γ carries the finest
locally convex topology which coincides with the weak topology on equi-continuous
sets.

Proof. We note that the embedding δ : E → (E∗)′ factors over L(E∗γ ,R) ⊆ (E∗)′,
since δ(x) is obviously continuous for σ(E∗, E). Furthermore L(E∗γ ,R) is clearly clo-
sed in the complete space (E∗)′. So it remains to show that E is dense in L(E∗γ ,R).
For this we use the following lemma. So let ` ∈ L(E∗γ ,R) be given and a typi-
cal 0-neighborhood, which is of the form Ao with equi-continuous A. Since `|A is
by assumption continuous with respect to σ(E∗, E) we may apply 4.65 to obtain a
x ∈ (E∗, σ(E∗, E))∗ = E with |(x−`)(x∗)| ≤ 1 for all x∗ ∈ A. Hence x−` ∈ Ao.

4.65 Lemma.
Let A ⊆ E be absolutely convex and ` : E → R be linear. Then `|A is continuous iff
for every ε > 0 there exists an x∗ ∈ E∗ with |(x∗ − `)(x)| ≤ ε for all x ∈ A.

Proof. (⇐) is clear. (⇒) Since `|A is continuous there exists a 0-neighborhood U
such that |`(x)| ≤ ε for all x ∈ U ∩A. Let qU and qA be the Minkowski-functionals
of U and A. Then ` ≤ ε(qU + qA) on EA. Define

p(x) := inf{ε qU (x− y) + ε qA(y) + `(y) : y ∈ EA}.
Then p is well-defined, since for all (x, y) ∈ E × EA

−ε qU (x) ≤ ε qU (−y) + ε qA(−y)− `(−y)− ε qU (x)

= ε qU (y) + ε qA(y) + `(y)− ε qU (x)

≤ ε qU (x− y) + ε qA(y) + `(y).

Since p is sublinear there exists by [1, 7.1.1] a linear x∗ : E → R with x∗ ≤ p. From
p(x) ≤ ε qU (x) for all x ∈ E it follows that x∗ ∈ E∗. And from p(y) ≤ `(y)+ε qA(y)
for all y ∈ EA we conclude that (x∗ − `)(y) ≤ ε for all y ∈ A. Thus (` − x∗)(y) =
(x∗ − `)(−y) ≤ ε for all y ∈ A.
In the complex case use that LC(E,C) ∼= LR(E,R), see [1, 6.1.5.2].

4.66 Corollary.
We have E∗γ =: γ(E∗, E) = τc(E∗, Ê) := Lcp(Ê,R).

Proof. First note that γ(E∗, E) = γ(E∗, Ê). In fact, since the closures Û in Ê of
the 0-neighborhoods U in E form a 0-neighborhood basis of Ê, the equi-continuous
families on E and on Ê coincide. Furthermore the topologies σ(E∗, E) and σ(E∗, Ê)
coincide on equi-continuous subsets. Thus it is enough to prove the result for com-
plete spaces E.
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(γ ⊇ τc) Let us show first that γ is finer than τc. For this we only have to show
that the inclusion from equi-continuous sets with the weak topology σ(E∗, E) into
τc(E∗, E) = τpc(E∗, E) is continuous, which follows directly from 4.60.

(τc ⊇ γ) Conversely let U be a closed 0-neighborhood for γ. Since by 4.64 γ is
compatible with the duality (E∗, E) we have that Uo is compact for the topology of
uniform convergence on γ-precompact sets in E∗. Since every closed equi-continuous
set for the original topology is by definition of γ and because of 4.61 compact with
respect to γ, we have that Uo is also compact for this weaker topology of uniform
convergence on equi-continuous subsets. But this is just the given topology on E,
so Uo is compact, and hence U = Uoo is a 0-neighborhood for the topology τc.

4.67 Corollary. “Kelley-fication” of the completion.
The space (E∗γ)∗γ has the same compact subsets as Ê and carries the final locally
convex topology with respect to these subsets. If Ê is compactly generated, and hence
in particular if E is metrizable, then we have equality.

Proof. Since by 4.66 the 0-neighborhoods in E∗γ coincide with the 0-neighborhoods
in τc(E∗, Ê), we have that the equi-continuous sets in (E∗γ)∗ coincide with the
subsets of polars of 0-neighborhoods in τc(E∗, Ê) and hence are just the subsets of
compact sets in Ê (use that the bipolar of a compact set in Ê is compact). By the
definition of σ the topology Ê is finer than σ(Ê, E∗γ) and hence they coincide on
compact subsets of Ê.

4.68 Proposition. Approximation property versus ε-product.
A complete space E has the approximation property iff F ⊗ε E is dense in the
ε-product F εE := Lequi(F ∗γ , E) for every locally convex space F .

Proof. Note that F ⊗ E is mapped into L(F ∗γ , E), since for y ∈ F we have δ(y) ∈
(F ∗γ )∗ by 4.64.

(⇐) Consider the following commuting diagram:

E∗γ ⊗ E //

'' ''OOOOOOOOOOO
Lcp(E,E)
I i

wwnnnnnnnnnnn

Lequi((E∗γ)∗γ , E)

By assumption the arrow on the left hand side has dense image. The arrow on the
right hand side is an embedding, since (E∗γ)∗γ → E is a continuous mapping, and
the equi-continuous subsets in (E∗γ)∗γ are exactly the relatively compact subsets of
Ê = E.

(⇒) Let T ∈ L(F ∗γ , E) and let a 0-neighborhood NV o,U in this space be given. Since
T is continuous on V o, we have that K := T (V o) is compact in E. By assumption
E∗ ⊗ E is dense in Lcp(E,E). Hence there exists a finite operator S ∈ L(E,E)
with (idE −S)(K) ⊆ U . Then S ◦ T : F ∗γ → E → E is finite dimensional and since
(F ∗γ )∗ = F̂ by 4.64 it belongs to F̂ ⊗E and (T −ST )(V o) = (1−S)(K) ⊆ U . Thus
T − ST ∈ NV o,U . Hence F̂ ⊗ε E is dense in L(F ∗γ , E) and since F ⊗ E is dense in
F̂ ⊗ε E it is also dense in L(F ∗γ , E).

4.69 Corollary.
Let E be complete and satisfying the approximation property, then F ⊗̂εE = F εE.
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Proof. Recall that F εE = Lequi(F ∗γ , E) is the subspace of L(F ∗, E) formed by
all linear maps T : F ∗ → E, which are continuous on equi-continuous subsets of
F ∗ with respect to the weak-topology σ(F ∗, F ) on F ∗. It is easily checked that for
complete E this space is complete, cf. [5, 16.1.5]. So F ⊗̂εE is the closure of F ⊗E
in L(F ∗, E), which is by 4.68 exactly FεE.

4.70 Lemma.
For complete spaces E and F we have F εE ∼= E εF .

Proof. We only have to show bijectivity, since F εE = Lequi(F ∗γ , E) ⊆ L(F ∗, E)
embeds into the space L(F ∗, E∗′) ∼= L(F ∗, E∗; R). To every continuous T : F ∗γ → E
we associate the continuous T ∗ : E∗γ → (F ∗γ )∗γ (in fact every equi-continuous set Uo

of E∗ is mapped to T ∗(Uo) = {x∗ ◦ T : x∗ ∈ Uo} ⊆ {y∗ : y∗ ∈ (T−1(U))o}, the
polar of a 0-neighborhood in F ∗γ ). And by 4.64 we are done since by the lemma
above the identity (F ∗γ )∗γ → Lequi(F ∗γ ,R) = F̂ is continuous.

4.71 Remark.
It can be shown (see [5, 16.2.6]) that for complete spaces also associativity of the
ε-product is valid, i.e.

E ε (F εG) ∼= (E εF ) εG.

4.72 Property (V) for L.
Remains to find situations where E∗γ coincides with E∗β . By 4.66 this topology γ

coincides with the topology τc(E∗, Ê) of uniform convergence on compact subsets
of Ê, which is for metrizable spaces by [5, 9.4.3] identical to the topology of uniform
convergence on precompact subsets of E. Thus if E is complete and all bounded
sets are precompact (like in Montel spaces) it coincides with the strong topology.
Remains to find situations, where the equi-continuous subsets coincide with the
bounded ones in E∗β . This is exactly the case, when E is infra-barreled.

4.73 Proposition.
If E and F are complete, E is Montel and F (or E) satisfies the approximation
property, then

E⊗̂εF ∼= Lequi(E∗γ , F ) ∼= Lβ(E∗β , F ),

For complete spaces E and F we have under the indicated assumptions the following
version of (V):

E⊗̂εF
app.P.∼= E εF = Lequi(E∗γ , F )

semi-Montel= Lequi(E∗β , F )
infra-barreled

= Lb(E∗β , F )
E∗

β bornological
= L(E∗β , F )

Proof. The first statement follows by what we said above, since Montel spaces are
barreled.

Note that the strong dual of a semi-reflexive space is barreled [5, 11.4.1]. If E is in
addition metrizable, then by [5, 13.4.4] E∗ is bornological, and hence we have

Lβ(E∗β , F ) = L(E′, F ).
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4.74 Proposition.
For complete spaces E∗β and F we have the original version of (V) under the follo-
wing conditions

E∗β⊗̂εF
app.prop.∼= E∗β ε F =

E Montel= Lb((E∗β)∗β , F )
E reflexive

= Lb(E,F ) =
E bornological

= L(E,F ),

Proof. This follows, since the strong dual E∗β of a Montel space E is Montel. Note
that a Montel-space E is reflexive, i.e. (E∗β)∗β = E. Furthermore E∗β is complete,
provided E is bornological.

Now let us consider E∗⊗̂εF . If F is complete and satisfies the approximation pro-
perty, then E∗γ⊗̂εF ∼= Lequi((E∗γ)∗γ , F ). By Grothendieck’s completeness criterion
we have Ê ∼= Lequi(E∗γ ,R).

The following result can be found in [5, 16.1.7]:

4.75 Theorem.
One has the following natural isomorphisms for Fréchet spaces E and F :

(E⊗̂πF )∗γ ∼= E∗γεF
∗
γ E⊗̂πF ∼= (E∗γεF

∗
γ )∗γ

(EεF )∗γ ∼= E∗γ⊗̂πF
∗
γ EεF ∼= (E∗γ⊗̂πF

∗
γ )∗γ

Proof. Note that the isomorphisms on the right follow from the ones on the left
by applying ( )∗γ and using that (G∗γ)∗γ ∼= Ĝ for all metrizable spaces G.

(1) In fact (E⊗̂πF )∗ = L(E,F ; R) and

E∗γεF
∗
γ = Lequi((E∗γ)∗γ , F

∗
γ ) = Lcp(E,Lcp(F,R)).

Since T : E × F → R is continuous, iff it is continuous on compact sets, and
hence iff Ť : E → Lcp(F,R) is continuous, we obtain a bijection. That this is a
homeomorphism follows since γ is the topology of uniform convergence on compact
sets, and the compact sets in E⊗̂πF are given by bipolars of tensor-products of two
compact sets in E and F .

For the second pair of isomorphisms see [5, 16.1.7]

The Approximation Property for Banach Spaces

For Banach spaces E, F etc. we have E∗ = E′ and we consider on E∗ the operator-
norm topology induced by that of E′. Moreover L(E,F ) = L(E,F ).

4.76 Proposition. Compact operators as tensor product.
For Banach spaces E and F one has

E∗βεF
∼= K(E,F )

Proof. By completeness we have E∗βεF = FεE∗β = Lequi(F ∗γ , E
∗
β). Remains to

show that T 7→ T ∗ is a isomorphism K(E,F ) → Lequi(F ∗γ , E
∗
β). If T is compact,

then T (oE) is relatively compact in F and hence (T ∗)−1(o(E∗)) = T (oE)o is a
0-neighborhood in the topology τcp(F ∗, F ) = γ, i.e. T ∗ ∈ L(F ∗γ , E

∗
β). Conversely
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assume that T ∗ : F ∗γ → E∗β is continuous. Then the set T (oE)o = (T ∗)−1(o(E∗))
is a 0-neighborhood in γ(F ∗, F ) = τcp(F ∗, F ), and hence T (oE) is contained in a
compact subset of F . So T 7→ T ∗ is a bijection. That it is a homeomorphism follows
immediately since {T ∗ : T ∈ NoE,U} = NUo,oE∗ .

4.77 Proposition. Approximation property and compact operators.
For a Banach space E one has that:

1. E has the approximation property iff F ∗ ⊗ E is dense in K(F,E) for every
Banach space F , i.e. F ∗⊗̂εE = K(F,E).

2. E∗ has the approximation property iff E∗⊗F is dense in K(E,F ) for every
Banach space F , i.e. E∗⊗̂εF = K(E,F ).

Recall that for Hilbert spaces E we have shown in [1, 6.4.8] that E∗ ⊗ E is dense
in K(E,E).
Moreover one can show that in (1) and (2) it is enough to have denseness for all
closed subspaces of c0 or all reflexive separable Banach spaces.

Proof. (⇒) If E or F ∗ have the approximation property then F ∗⊗̂εE ∼= F ∗εE by
4.68 and F ∗εE ∼= K(F,E) by 4.76.

(⇐) Since in 4.68 it is enough to have denseness for all Banach spaces (see [5,
18.1.8]), this is true for the second statement. For the first one has to proceed more
carefully, see [5].

For a proof of the second part see [5, 18.3.2].

4.78 Lemma.
For Banach spaces E and F we have a natural surjective linear map ι : F ∗⊗̂πE →
Lcp(E,F )∗, where Lcp denotes L with the topology of uniform convergence on com-
pact sets in E.

Proof. The map ι is associated to the bounded multi-linear composition map F ∗×
E × L(E,F ) → R, hence is a well defined continuous map F ∗⊗̂πE = F ∗⊗̂βE →
L(E,F )∗ given by y∗ ⊗ x 7→ (T 7→ y∗(Tx)).

Its image is contained in Lcp(E,F )∗, since every z ∈ F ∗⊗̂πE can be written as
z =

∑
k λky

∗
k ⊗ xk with λ ∈ `1, ‖y∗k‖ → 0 and ‖xk‖ → 0, see [11, 15.6.4]. In

other words (λkyk)k ∈ `1{F ∗} and (xk)k ∈ c0{E}. Without loss of generality we
may assume

∑
k ‖λky

∗
k‖ ≤ 1 (move some factor to the xk). By [1, 6.4.3] the closed

absolutely convex hull K of the xn is compact. Thus NK,oF is a 0-neighborhood in
Lcp(E,F ). Let T ∈ NK,oF . Then |ι(z)(T )| ≤

∑
k |λky

∗
k(T (xk))| ≤

∑
k ‖λk y

∗
k‖ ≤ 1,

i.e. ι(z) ∈ No
K,oF .

Conversely let ϕ ∈ Lcp(E,F )∗. Then ϕ ∈ (NK,oF )o for some compact K ⊆ E. By
[1, 6.4] we may assume that K is contained in the closed absolutely convex hull of
some sequence xn → 0 in E. Consider the Banach space c0(N, F ) = c0{F} with
the supremum norm sup{‖xn‖ : n ∈ N}. Then ψ : L(E,F ) → c0(N, F ) given by

T 7→ (T (xn))n is continuous and linear. Hence its dual is ψ∗ : `1{F ∗} = `1(N, F ∗)
!∼=

c0(N, F )∗ → L(E,F )∗ (see [5, p405] for the duality) is continuous for the weak∗-
topologies. Thus the absolutely convex set K1 := ψ∗(o(`1{F ∗})) ⊆ L(E,F )∗ is
compact for this topology. We claim that ϕ ∈ K1. Otherwise, by Hahn-Banach
there is a T ∈ L(E,F ) with ϕ(T ) > 1 and |ϕ1(T )| ≤ 1 for all ϕ1 ∈ K1, i.e.∑

k |y∗k(Txk)| ≤ 1 for all (y∗k)k ∈ o(`1{F ∗}). In particular |y∗(Txk)| ≤ 1 for all
y∗ ∈ o(F ∗) and all k, i.e. T ∈ NK,oF and hence |ϕ(T )| ≤ 1, a contradiction.
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Since ϕ ∈ K1 = ψ∗(o(`1{F ∗})) there is some (y∗k)k ∈ o(`1{F ∗}) with ϕ = ψ∗((y∗k)k).
Now

∑
k y

∗
k ⊗ xk ∈ F ∗⊗̂πE and

ψ∗((y∗k)k)(T ) =
∑

k

y∗kT (xk) = ι(
∑

k

y∗k ⊗ xk)(T ) for all T ∈ L(E,F ),

i.e. ψ∗((y∗k)) = ι(
∑

k y
∗
k ⊗ xk).

4.79 Proposition. Approximation property and tensor products.

For a Banach space E the following properties are equivalent:

1. E has the approximation property.
2. The map F ⊗̂βE = F ⊗̂πE → F ⊗̂εE ⊆ L(F ∗, E) is injective for every Ba-

nach space F .
3. The map F ∗⊗̂βE = F ∗⊗̂πE → F ∗⊗̂εE ⊆ L(F,E) is injective for every

Banach space F .
4. The map E∗⊗̂βE = E∗⊗̂πE → E∗⊗̂εE ⊆ L(E,E) is injective.
5. The evaluation map ev : E∗ × E → R extends to a linear functional Tr :
N (E,E)→ R, where N (E,E) denotes the image of E∗⊗̂πE in L(E,E).

Proof. (1⇒2) Consider the following commuting diagram:

F ⊗̂πE //
_�

δ⊗E

��

� t

δ

&&NNNNNNNNNN
F ⊗̂εE

� � // L(F ∗, E) � � δ∗ // L(F ∗, E∗′)

∼=
��

(F ⊗̂πE)∗′
∼= // L(E,F ; R)′

∼=
��

L(F ∗, E∗; R)

∼=
��

F ∗∗⊗̂πE // // Lcp(E,F ∗)∗ // L(E,F ∗)′ // (E∗ ⊗β F
∗)′

The arrow L(E,F ∗)′ → (F ∗⊗βE
∗)′ at the bottom is well-defined, since E∗×F ∗ →

L(E,F ∗) is bounded.
Now start with z0 in the top-left hand corner and assume it is mapped to 0 in
F ⊗̂εE. So it is mapped to 0 in the bottom-right hand corner. Since the composite
of the last two arrows at the bottom is injective, because E∗ ⊗ F ∗ is dense in
Lcp(E,F ∗) by (1), it is mapped to 0 in Lcp(E,F ∗)∗ and hence also in L(E,F ∗)′.
By the injectivity of the diagonal maps we conclude that z0 = 0.

(2⇒3⇒4⇒5) are trivial.

(5⇒1) For this we consider the following commuting diagram:

E∗⊗̂πE // //

ev

&&MMMMMMMMMMMM

����

Lcp(E,E)∗ //

evid

��

(E∗ ⊗β E)∗

∼=
��

R (E ⊗β E
∗)′

∼=
��

N (E,E) � � //

tr

88qqqqqqqqqqqq
L(E,E) � � δ∗ // L(E, (E∗)′)

Note that the second arrow on the top is well-defined, since the mapping E∗ ×
E → Lb(E,E) → Lcp(E,E) is bounded, and the top-triangle commutes, since for
z = x∗⊗x we have ev(z) = ev(x∗⊗x) = x∗(x) = x∗(id(x)) = ι(x∗⊗x)(id) = ϕ(id).
We have to show that E∗ ⊗ E is dense in Lcp(E,E). For this it is enough to show
that all ϕ ∈ Lcp(E,E)∗ which vanish on E∗ ⊗ E vanishes on idE . By [5, 18.3.3]
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every such ϕ is in the image of some z =
∑∞

n=1 x
∗
n ⊗ xn ∈ E∗⊗̂πE, i.e. ϕ = ι(z).

For all (x∗, x) ∈ E∗ × E we have 0 = ϕ(x∗ ⊗ x) = ι(
∑

n x
∗
n ⊗ xn)(x∗ ⊗ x) =∑

n x
∗
n((x∗ ⊗ x)(xn)) =

∑
n x

∗
n(x) · x∗(xn) = x∗

(∑
n x

∗
n(x)xn

)
. Thus the image of

z in the top-right corner is 0, and hence also in the bottom-right corner. Since the
bottom arrows are injective it is 0 in the bottom-left corner. Hence its image in the
center is 0, which is exactly ϕ(id).
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