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1. Motivation

Equations on Function Spaces

1.1

It should be unnecessary to convince the reader, that differential calculus is an im-
portant tool in mathematics. But probably some motivation is necessary why one
should extend it to infinite dimensional spaces. One of our main tasks as mathe-
maticians is, like it or not, to solve equations like

f(u) = 0.

However quite often one has to consider functions f which don’t take (real) numbers
as arguments u but functions. Let us just mention differential equations, where f
is of the following form

f(u)(t) := F (t, u(t), u′(t), . . . , u(n)(t)).

Note that this is not the most general form of a differential equation, consider for
example the function f given by f(u) = u′ − u ◦ u, which is not treated by the
standard theory. If the arguments t of u are (real) numbers, then this is the general
form of an ordinary differential equation. In the generic case one can solve the
implicit equation f(t, u(t), u′(t), . . . , u(n)(t)) = 0 with respect to u(n)(t) and hence
obtains an equation of the form

u(n)(t) = g(t, u(t), u′(t), . . . , u(n−1)(t)).

By substituting u0(t) := u(t), u1(t) := u(1)(t), . . . , un−1(t) := u(n−1)(t) one obtains
a (vector valued) equation

u′0(t) = u1(t)

u′1(t) = u2(t)
...

u′n−2(t) = un−1(t)

u′n−1(t) = g(t, u0(t), . . . , un−1(t))

And if we write u := (u0, . . . , un−1) and

g(t,u) := (u1(t), . . . , un−1(t), g(t, u0(t), . . . , un−1(t))),

we arrive at a ordinary differential equation of order 1

u′(t) = g(t,u(t)).

So we are searching for a solution u of the equation u′ = G(u), where G(u)(t) :=
g(t,u(t)). The usual general existence and uniqueness results of an equation all
have the requirement, that the domain and the range space are the same or at least
isomorphic. Recall, for example, that in order to solve an equation 0 = g(u) one
often transforms it into a fixed point equation u = u− g(u) and then tries to apply
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Equations on Function Spaces 1.2

some fixed point theorem. So we need that u 7→ u′−G(u) is a selfmapping. In order
to apply it to a function u, we need that u is 1-times differentiable, but in order that
the image u′−G(u) is 1-times differentiable, we need that u is twice differentiable.
Inductively we come to the conclusion that u should be smooth. So are there spaces
of smooth functions, to which we can apply some fixed point theorem?

Spaces of Differentiable Functions

1.2

In [2, 3.2.5] we have shown that the space C(X,R) of continuous real-valued func-
tions on X is a Banach-space with respect to the supremum-norm, provided X
is compact. Recall the proof goes as follows: If fn is a Cauchy-sequence, then it
converges pointwise (using that the point-evaluations evx = δx : C(X,R) → R are
continuous linear functionals), by the triangle inequality the convergence is uni-
form and by elementary analysis (e.g. see [13, 104.2]) a uniform limit of continuous
functions is continuous.

If X is not compact, one can nevertheless consider the linear restriction maps
C(X,R)→ C(K,R) for compact subsets K ⊆ X and then use the initial structure
on X, given by the seminorms f 7→ ‖f |K‖∞, where K runs through some basis
of the compact sets. If X has a countable basis of compact sets, then we obtain a
countable seminormed space. If we try to show completeness, we get a function f ,
which is on compact sets the uniform limit of the Cauchy-sequence fn, and hence
is continuous on these sets. If X is Kelley (= compactly generated, i.e. a set is
open if its trace to all compact subsets is open, or equivalently if X carries the final
topology with respect to all the inclusions of compact subsets) then we can conclude
that f is continuous and hence C(X,R) is complete. So under these assumptions
(and in particular if X is locally compact) the space C(X,R) is a Fréchet-space.

Is it really necessary to use countably many seminorms for non-compact X? -
There is no norm which defines an equivalent structure on C(X,R). Otherwise some
seminorm pK := ‖ |K‖∞ must dominate it. However this is not possible, since pK

is not a norm: Since X is not compact there is some point a ∈ X \K and hence the
function f defined by f |K = 0 and f(a) = 1 is continuous on K ∪ {a}. By Tietze-
Urysohn it can be extended to a continuous function on X, which is obviously in
the kernel of pK but not zero.
Is there some other reasonable norm turning C(X,R) into a Banach space E? - By
reasonable we mean that at least the point-evaluations should be continuous (i.e.
the topology should be finer than that of pointwise convergence). Then the identity
mapping E → C(X,R) is continuous by the application in [2, 5.3.8] of the closed
graph theorem. Hence by the open mapping theorem for Fréchet spaces the identity
is an isomorphism, and thus E is not Banach. Note that this shows that in a certain
sense the structure of C(X,R) is unique.

Now what can be said about spaces of differentiable functions? - Of course the space
D1(X,R) of differentiable functions on some interval X is contained in C(X,R).
However it is not closed in C(X,R) and hence not complete in the supremum-
norm, since a uniform limit of differentiable functions need not be differentiable
anymore. We need some control on the derivative. So we consider the space C1(X,R)
of continuously differentiable functions with the initial topology induced by the
inclusion in C(X,R) and by the map C1(X,R)→ C(X,R) given by f 7→ f ′. If X is
compact we can consider equally well instead of the corresponding two seminorms
f 7→ ‖f‖∞ and f 7→ ‖f ′‖∞ their maximum and obtain a norm on C1(X,R). Again
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Spaces of Differentiable Functions 1.4

elementary analysis gives completeness, since for a Cauchy-sequence fn we have a
uniform limit f of fn and a uniform limit f1 of f ′n, and hence (e.g. see [13, 104.3] or
2.40) f is differentiable with derivative f1. Inductively, we obtain that for compact
intervals X and natural numbers n the spaces Cn(X,R) can be made canonically
into Banach-spaces, see [2, 4.2.5].

1.3

What about the space C∞(X,R) of infinite differentiable maps? - Then we have
countably many seminorms f 7→ ‖f (n)‖∞, and as before we obtain completeness.
So we have a Fréchet space.

Again the question arises: Is it really necessary to use countably many seminorms?
This time we have continuous norms, if we use the sum of the supremum norm and
the supremum norm of some derivative. So we cannot argue as for C(X). So let us
assume that there is some norm on C∞(X,R) defining an equivalent structure. In
particular it has to be continuous and hence has to be dominated by the maximum
of the suprema of finitely many derivatives. Let us take an even higher derivative.
Then the supremum of this derivative must be dominated by the norm. This is
however not possible, since there exist smooth functions f , for which all derivatives
of order less than n are globally bounded by 1, but which have arbitrarily large
n-th derivative at a given point, say 0. In fact, without loss of generality, we may
assume assume that n is even and let b ≥ 1. Take f(x) := a cos bx with a := 1/bn−1.
Then |f (k)(x)| = bk+1−n ≤ 1 for k < n, but fn(0) = ±b cos 0.
Is there some reasonable (inequivalent) norm which turns C∞(X,R) into a Banach-
space? - Well the same arguments as before show that any reasonable Fréchet-
structure on C∞(X,R) is identical to the standard one and hence not normable.

1.4

So the naive formulation of a fixed point equation for a general differential equation,
does not lead to Banach spaces. There is however a way around this difficulty. The
idea can be seen from the simplest differential equation, namely when F doesn’t
depend on u, i.e. u′(t) = F (t). Then the (initial value) problem can be solved by
integration: u(t) = u(0) +

∫ t

0
F (s) ds and in fact similar methods work in the case

of separated variables, i.e. u′(t) = F1(t)F2(u), since then G2(u) :=
∫

1
F2(u) du =

c+
∫
F1(t) dt =: G1(t) and hence u(t) = G−1

2 (G1(t)).
In [2, 1.3.2] we have seen how to prove an existence and uniqueness result for a
differential equation with initial value conditions u(0) = a. Namely by integration
one transforms it into the integral equation

u(t) = a+
∫ t

0

g(s, u(s)) ds.

Thus one has to find a fixed point u of u = G(u), where G is the integral operator
given by

G(u)(t) := a+
∫ t

0

g(s, u(s)) ds.

As space of possible solutions u one can now take the vector space C(I) of conti-
nuous functions on some interval I around 0. If one takes I sufficiently small then
it is easily seen that G is a contraction provided g is sufficiently smooth, e.g. locally
Lipschitz. Hence the existence of a fixed point follows from Banach’s fixed point
theorem [2, 1.2.2].
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Spaces of Differentiable Functions 1.5

In [2, 3.5.1] we have elaborated on these ideas in the case of linear differential equa-
tions. We have seen that the solution of a linear differential equation with constant
coefficients u′ = Au and initial condition u(0) = u0 is given by u(t) := etA u0.
Furthermore the solution of a general initial value problem of a linear differential
equation of order n

u(n)(t) +
n−1∑
i=0

ai(t)u(i)(t) = s(t), u(0) = u0, . . . , u
(n−1)(0) = un−1.

is given by an integral operator G : f 7→ u defined by (Gf)(t) := f(t)+
∫ 1

0
g(t, τ) dτ ,

with a certain continuous integral kernel g. We have also seen that a boundary value
problem of second order

u′′(t) + a1(t)u′(t) + a0(t)u(t) = s(t), Ra(u) = 0 = Rb(u),

where the boundary conditions are Ra(u) := ra,0 u(a) + ra,1 u
′(a) and Rb(u) :=

rb,0 u(b) + rb,1 u
′(b) is also solved in the generic case by an integral operator

u(t) =
∫ b

a

g(t, τ) f(τ) dτ,

with continuous integral kernel obtained from the solutions of corresponding initial
value problems.

Partial Differential Equations

1.5

Now what happens, if the arguments u are functions of several numerical variables.
Then the derivatives u(k) are given by the corresponding Jacobi-matrices of partial
derivatives, and our equation is a partial differential equation, see [2, 4.7.1].

Even if we have a partial linear differential equation with constant coefficients

D(u)(x) :=
∑
|α|≤n

aα · ∂αu(x) = s(x)

we cannot apply the trick above. The first problem is, that we no longer have a
natural candidate, with respect to which we could pass to a explicit equation. In
some special cases one can do. An example is the equation of heat-conduction

∂

∂t
u = ∆u,

where u : R ×X → R is the heat-distribution at the time t in the point x and ∆
denotes the Laplace-operator given on X = Rn by ∆ :=

∑n
k=1

(
∂

∂xk

)2
. So this is

just an ordinary differential equation in an infinite dimensional space of functions
on X. If we want ∆ to be a self-mapping, we need smooth functions. But if we
want to solve the equation as u(t) = et∆u0 we need the functional calculus and
hence a Hilbert space of functions. But then ∆ becomes an unbounded symmetric
operator. This we treated in [3, 12.48]. Another example of such a situation is the
Schrödinger equation

i}
d

dt
u = S u.

where the Schrödinger-operator is given by S = − }2

2m∆ + U(x) for some potential
U .

A third important equation is the wave-equation ( ∂
∂t )

2u = ∆u. If one makes an An-
satz of separated variables u(t, x) = u1(t)u2(x) one obtains an Eigen-value equation
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Partial Differential Equations 1.5

∆u(x) = λu(x) for ∆ and after having obtained the Eigen-functions un : X → R,
one is lead to the problem of finding coefficients ak and bk such that

u(t, x) :=
∑

k

(
ak cos(

√
λk t) + bk sin(

√
λk t)

)
uk(x)

solves the initial conditions

u(0, x) =
∑

k

akuk(x) and ∂1u(0, x) =
∑

k

√
λk bk uk(x)

If we have an inner-product, for which the uk are orthonormal, we can easily
calculate the coefficients ak and bk. The space C2π of 2π-periodic functions is
however not a Hilbert space. Otherwise it would be isomorphic to its dual, by
the Riesz Representation theorem [2, 6.2.9]. However for t 6= s we have that
‖ evt− evs ‖ = sup{|f(t)− f(s) : ‖f‖∞ ≤ 1} = 1 if we chose f(t) = 1 and f(s) = 0.
Thus C(X,R)′ is not separable, since otherwise for every t there would be an `t in a
fixed dense countable subset with ‖ evt−`t‖ < 1

2 . Since the t are uncountable there
have to be t 6= s for which `t = `s, a contradiction. Another method to see this is
to use Krein-Milman [2, 7.5.1]: If C(X) were a dual-space, then its unit-ball would
have to be contained in the closed convex hull of its extremal points. A function f
in the unit-ball, which is not everywhere of absolute value 1, is is not extremal. In
fact, take a t0 with |f(t0)| < 1 and a function v with support in a neighborhood of
t0. Then f + s v lies in the unit ball for all values of s near 0. Hence we have by far
too few extremal points, since those real-valued functions have to be constant on
connectivity components.

In analogy to the inner product on Rn we can however consider the continuous
positive definite hermitian bilinear map (f, g) 7→

∫
X
f(x) g(x) dx. By what we said

above, it cannot give a complete norm on C(X,R). But we can take the completion
of C(X,R) with respect to this norm and arrive at L2(X), a space not consisting
of functions, but equivalence classes thereof. Now for the one-dimensional wave-
equation, i.e. the equation of an vibrating string, we can solve the Eigenvalue-
problem directly (it is given by an ordinary differential equation). And Fourier-
series solves the problem, see [2, 5.4] and [2, 6.3.8].

In general the Laplace operator will be symmetric with respect to that inner pro-
duct. If it were bounded, then it would be selfadjoint and one could apply geometry
in order to find Eigen-values and Eigen-vectors by minimizing the angle between
x and Tx, or equivalently by maximizing |〈Tx, x〉|, see [2, 6.5.3]. It is quite ob-
vious that for a selfadjoint bounded operator the supremum of |〈Tx, x〉| is its norm,
and that a point were it is attained is an Eigen-vector with maximal absolute
Eigen-value. So one needs compactness to show the existence of such a point. Since
Eigen-vectors to different Eigen-values are orthogonal to each other, one can then
proceed recursively, provided the operator is compact.

Again the idea is that although the linear differential-operator D is not even boun-
ded, its inverse should be an integral operator G (the Green-operator) with conti-
nuous kernel ε and hence compact. And obviously instead of solving Du = λu we
can equally well solve 1

λu = Gu.

In order to find the Green operator, we have seen in [2, 4.7.7] that a possible
solution operator G : s 7→ u would be given by convolution of s with a Green-
function ε, i.e. a solution of D(ε) = δ, where δ is the neutral element with respect
to convolution. In fact, since u := ε?s should be a solution of D(u) = s, we conclude
that s = D(u) = D(ε ? s) = D(ε) ? s. However such an element doesn’t exist in
the algebra of smooth functions, and one has to extend the notion of function to
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Partial Differential Equations 1.6

include so called generalized functions or distributions. These are the continuous
linear functionals on the space D of smooth functions with compact support.

As we have seen in [2, 4.8.2] the space D is no longer a Fréchet space, but a strict
inductive limit of the Fréchet spaces C∞K (X) := {f ∈ C∞ : supp f ⊆ K}. Assume
that there is some Fréchet structure on C∞c . Then by the same arguments as before
the identity from D to C∞c would be continuous, hence closed, and hence the inverse
to the webbed space D would be continuous too, i.e. a homeomorphism. Remains
to show that the standard structure is not a Fréchet structure. If it were, then D
would be Baire. However the closed linear subspaces C∞K have as union D and have
empty interior, since non-empty open sets are absorbing. A contradiction to the
Baire-property.

By passing to the transposed, we have seen in [2, 4.9.1] that every linear partial diffe-
rential operator D can be extended to a continuous linear map D̃ : D′ → D′, and so
one can consider distributional solutions of such differential equations. In [2, 8.3.1]
we have proven the Malgrange Ehrenpreis theorem on the existence of distributional
fundamental solutions using the generalization of Fourier-series, namely the Fourier-
transform F . The idea is that 1 = F(δ) = F(D(ε)) = F (P (∂)(ε)) = P · F(ε) and
hence ε = F−1(1/P ). For this we have to consider the Schwartz-space S of rapidly
decreasing smooth functions, which is a Fréchet space, and its dual S ′. In order
that the poles of 1/P make no trouble we had to show that the Fourier-transform
of smooth functions with compact support and even of distributions with compact
support are entire functions.

If we want to solve linear partial differential equations with non-constant coefficients
or even non-linear partial differential equations, we have to consider not only the
linear theory of D but the non-linear one. See [7] for an approach to this.

Exponential Law

1.6

But let us consider a much more elementary result. In fact even in the introductory
courses in analysis one considers infinite dimensional results, but of course disguised.
Recall the result about differentiation under the integral sign. There one considers
a function f of two real variables and takes the integral

∫ 1

0
f(t, s) ds with respect to

one variable, and then one asks the question under what assumptions is the resulting
function differentiable with respect to t and what is its derivative? Before we try
to remember the correct answer let us reformulate this result without being afraid
of infinite dimensions. We are given the function f : R × I → R, (t, s) 7→ f(t, s).
What do we actually mean by writing down

∫ 1

0
f(t, s) ds? - Well we keep t fixed

and consider the function ft : I → R given by s 7→ f(t, s) and integrate it, i.e.∫ 1

0
f(t, s) ds := I(ft), where I denotes the integration operator I : C[0, 1] → R,

g 7→
∫ 1

0
g(s) ds. But now we want to vary t, so we have to consider the result as a

function t 7→ I(ft), so we have to consider t 7→ ft and we denote this function by f̌ .
It is given by the formula f̌(t)(s) = ft(s) = f(t, s). Then I(ft) = (I ◦ f̌)(t). Thus
what we actually are interested in is, whether the composition I ◦ f̌ is differentiable
and what its derivative is. This problem is usually solved by the chain-rule, but the
situation here is much easier. In fact recall that integration is linear and continuous
with respect to the supremum norm (or even the 1-norm) and f̌ is a curve (into
some function space). Now if ` is continuous and linear and c is a differentiable
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Exponential Law 1.7

curve then ` ◦ c is differentiable with derivative `(c′(t)) at t: In fact

lim
s→0

`(c(t+ s))− `(c(t))
s

= lim
s→0

`

(
c(t+ s)− c(t)

s

)
=

= `

(
lim
s→0

c(t+ s)− c(t)
s

)
= `(c′(t)).

So it remains to show that f̌ : R→ C(I,R) is differentiable and to find its derivative.
Let us assume it is differentiable and try to determine the derivative. On C(I,R)
we have nice continuous linear functionals, namely the point evaluations δs = evs :
g 7→ g(s). These are continuous and linear and separate points (they are far from
being all continuous linear functionals, see Riesz’s Representation theorem [2, 7.3.3]
and [2, 7.3.4]). Applying what we said before to ` := δs and c := f̌ we obtain
δs(f̌ ′(t)) = (δs◦ f̌)′(t), and (δs◦ f̌)(t) = δs(f̌(t)) = f̌(t)(s) = f(t, s). Hence δs(f̌ ′(t))
is nothing else but the first partial derivative ∂

∂tf(t, s). Conversely, assume that the
first partial derivative of f exists on R×I and is continuous, then we want to show,
that f̌ is differentiable, and (f̌)′(t)(s) = ∂

∂tf(t, s) = ∂1f(t, s), or in other words
(∂1f)∨ = (f̌)′.

For this we first consider the corresponding topological problem: Are the continuous
mappings f : X × Y → Z exactly the continuous maps f̌ : X → C(Y, Z)? This
has been solved in the calculus courses. In fact a mapping f̌ is well-defined and
continuous provided

1. f(x, ) is continuous for all x;
2. f( , y) is equi-continuous with respect to y.

This however is equivalent to the continuity of f , as can be seen for example in [13,
107.2], provided Y is compact.

Let us try to generalize this result. We will write Y X for the function spaces C(X,Y )
for reasons of cardinality. How is ĝ : X × Y → Z constructed from a continuous
g : X → ZY . Well, one can consider g × Y : X × Y → ZY × Y and compose it
with the evaluation map ev : ZY × Y → Z. Since the product of continuous maps
is continuous, it remains to show that the evaluation map is continuous in order to
obtain that ĝ is continuous. So let f ∈ ZY and y ∈ Y and let U be a neighborhood
of f(y). If Y is locally compact, we can find a compact neighborhood W of y and
then f ∈ NW,U := {g : g(W ) ⊂ U} and ev(NW,U ×W ) ⊆ U .

Conversely let a continuous f : X × Y → Z be given. Then we consider f∗ :=
fY : (X × Y )Y → ZY and compose it from the right with the insertion map
ins : X → (X × Y )Y given by x 7→ (y 7→ (x, y)). Then we arrive at f̌ . Obviously f∗
is continuous since (f∗)−1NK,U = NK,f−1U . The insertion map is continuous, since
ins−1(NK,U×V ) = U if K ⊆ V and is empty otherwise, so f̌ is continuous. Thus
the only difficult part was the continuity of the evaluation map.

Moreover we have the

1.7 Lemma.
Let X, Y and Z be topological spaces with Y being locally compact. Then we have a
homeomorphism ZX×Y ∼= (ZY )X , given by f 7→ f̌ , where the function spaces carry
the compact open topology.

Proof. We have already proved that we have a bijection. That this gives a ho-
meomorphism follows, since the corresponding subbases NK1×K2,U and NK1,NK2,U

correspond to each other.
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Exponential Law 1.8

In general the compact open topology on ZY will not be locally compact even for
locally compact spaces Y and Z (e.g. C([0, 1],R) is an infinite dimensional and
hence not locally compact Banach space). So in order to get an intrinsic exponen-
tial law, one can modify the notion of continuity and call a mapping f : X → Y
between Hausdorff topological spaces compactly-continuous iff its restriction to eve-
ry compact subset K ⊆ X is continuous. Thus f : X × Y → Z is continuous iff
f |K×L : K × L → Z is continuous for all compact subsets K ⊆ X and L ⊆ Y .
By the exponential law for compact sets this is equivalent to f̌ : K → ZL being
continuous. Since ZY carries the initial structure with respect to ZL → ZY , this is
furthermore equivalent to the continuity of f̌ : K → ZY , and thus to f̌ : X → ZY

being compactly-continuous, but for this we have to denote with ZY the space of
compactly continuous maps from Y → Z.

Instead of the category of compactly continuous maps between Hausdorff topolo-
gical spaces, one can use the equivalent category of continuous mappings between
compactly generated spaces. Recall that a Hausdorff topological space is called com-
pactly generated or a Kelley space iff it carries the final topology with respect to the
inclusions of its compact subsets with their trace topology. The equivalence between
these two categories is given by the identity functor one one side, and on the other
side by the Kelley-fication, i.e. by replacing the topology by the final topology with
respect to the compact subsets. Note that the identity is compactly continuous in
both directions. However the natural topology on product in this category is the
Kelley-fication of the product topology and also on the function space one has to
consider the Kelly-fication of the compact open topology.

Now back to the differentiability question. We assume that ∂1f exists and is conti-
nuous. Hence (∂1f)∨ : R → C(I,R) is continuous. We want to show that f̌ : R →
C(I,R) is differentiable (say at 0) with this function (at 0) as derivative. So we
have to show that the mapping t 7→ f̌(t)−f̌(0)

t is continuously extendable to R by
defining its value at 0 as (∂1f)∨(0). Or equivalently, by what we have shown for
continuous maps before, that the map

(t, s) 7→

{
f(t,s)−f(0,s)

t for t 6= 0
∂1f(0, s) otherwise

is continuous. This follows immediately from the continuity of ∂1 and that of
∫ 1

0
dr,

since it can be written as
∫ 1

0
∂1f(r t, s) dr by the fundamental theorem.

So we arrive under this assumption at the conclusion, that
∫ 1

0
f(t, s) ds is differen-

tiable with derivative

d

dt

∫ 1

0

f(t, s) ds = I((f̌)′(t)) =
∫ 1

0

∂

∂t
f(t, s) ds.

Thus we have proved the

1.8 Proposition.
For a continuous map f : R × I → R the partial derivative ∂1f exists and is
continuous iff f̌ : R→ C(I,R) is continuously differentiable. And in this situation
I((f̌)′(t)) = d

dt

∫ 1

0
f(t, s) ds =

∫ 1

0
∂
∂tf(t, s) ds.

And we see, that it is much more natural to formulate and prove this result with
the help of the infinite dimensional space C([0, 1],R). But this not only simplifies
the proof, but is of importance for its own sake, as we will show now.
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Exponential Law 1.9

Variational Calculus

1.9 In physics one is not a priori given an equation f(x) = 0, but often some
optimization problem. One is searching for those x, for which the values f(x) of
some real-valued function (like the Lagrange function in classical mechanics, which
is given by the difference of kinematic energy and the potential) attain an extremum
(i.e. are minimal or maximal). Again x is often not a finite dimensional vector but
functions and then f is often given by some integral (like the action (german:
Wirkungsintegral) in classical mechanics)

f(x) :=
∫ 1

0

F (t, x(t), x′(t)) dt.

For finite dimensional vectors x one finds solutions of the problem f(x)→ min by
applying differential calculus and searching for solutions of f ′(x) = 0. In infinite
dimensions one proceeds similarly in the calculus of variations, by finding those
points x, where the directional derivatives f ′(x)(v) vanish for all directions v. Since
the boundary values of x are given, the variation v has to vanish on the boundary
{0, 1}. One can calculate the directional derivative by what we have shown before
as follows:

f ′(x)(v) :=
d

dt

∣∣∣∣
t=0

f(x+ tv)

=
d

dt

∣∣∣∣
t=0

∫ 1

0

F
(
s, (x+ tv)(s), (x+ tv)′(s)

)
ds

=
∫ 1

0

∂

∂t

∣∣∣∣
t=0

F
(
s, (x+ tv)(s), (x+ tv)′(s)

)
ds

=
∫ 1

0

(
∂2F (s, x(s), x′(s)) · v(s) + ∂3F (s, x(s), x′(s)) · v′(s)

)
ds

=
∫ 1

0

(
∂2F (s, x(s), x′(s))− d

ds
∂3F (s, x(s), x′(s))

)
· v(s) ds

We have used partial integration and that the variation v has to vanish at the
boundary points 0 and 1. Since f ′(x)(v) has to be 0 for all such v we arrive at the
Euler-Lagrange partial differential equation

∂2F (s, x(s), x′(s)) =
d

ds
∂3F (s, x(s), x′(s)),

or with slight abuse of notation:

∂

∂x
F =

(
∂

∂ẋ
F

)
,̇

where ( )̇ denotes the derivative with respect to time s.

Warning: abuse may lead to disaster! In physics for example one has the gas-equation
p · V · t = 1, where p is pressure, V the volume and t the temperature scaled
appropriately. So we obtain the following partial derivatives:

∂p

∂V
=

∂

∂V

1
V t

= − 1
t V 2

∂V

∂t
=

∂

∂t

1
t p

= − 1
p t2

∂t

∂p
=

∂

∂p

1
p V

= − 1
V p2
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Variational Calculus 1.11

And hence cancellation yields

1 =
∂p

∂V
· ∂V
∂t
· ∂t
∂p

= (−1)3
1
t V 2

· 1
p t2
· 1
V p2

= − 1
(pV t)3

= −1.

Try to find the mistake!

1.10 Flows

Another situation, where it is natural to consider differentiable curves into function
spaces, are flows. So we are considering the ordinary time-independent differential
equation is, i.e. equations of the form u̇ = f(u). For given initial value u(0) = a we
can consider the solution ua and obtain a mapping u : R×X → X given by (t, a) 7→
ua(t). Obviously u(0, x) = x and by uniqueness we have u(t+ s, x) = u(t, u(s, x)),
i.e. u is a flow on X. Conversely we can reconstruct the differential equation by
differentiating with respect to t at t = 0, i.e. ∂

∂t |t=0u(t, x) = f(u(t, x))|t=0 = f(x).
It would be more natural to consider the associate mapping ǔ with values in some
space of mappings from X → X. The flow property translates into the assumption
that t 7→ ǔ(t) is a group-homomorphism from R into the group of invertible maps on
X. The vector field f can thus be interpreted as the tangent vector at 0 of the curve
ǔ. Thus we should have that ǔ is differentiable into the group Diff(X) of diffeo-
morphisms on X, and this group should carry some smooth structure, analogously
to classical Lie-groups. In particular the composition Diff(X)×Diff(X)→ Diff(X)
map should be differentiable. Since (f, g) 7→ f ◦ g is linear in the first variable,
the difficult part is the differentiability in the second variable, i.e. that of the map
f∗ : g 7→ f ◦ g. If we compose this map with the linear functionals given by point-
evaluations δx we obtain g 7→ (δx ◦ f∗)(g) = f(g(x)). And if we calculate the
directional derivative (δx ◦ f∗)′(g)(h) we obtain

(δx◦f∗)′(g)(h) =
∂

∂t

∣∣∣∣
t=0

(δx◦f∗)(g+t h) =
∂

∂t

∣∣∣∣
t=0

f(g(x)+t h(x)) = f ′(g(x))(h(x)),

by using the chain-rule. Thus in order that the composition map is differentiable,
we need that the first variable is differentiable, hence Diff should mean at least
1-times differentiable. But then in order that the derivative of the composition
map has 1-time differentiable values we need that f ′ is 1-times differentiable, i.e.
f is twice differentiable. Inductively we arrive at the smoothness of f , i.e. infinite
often differentiability. But as we have mentioned before, even in the simplest case
C∞([0, 1],R), these function spaces are not Banach-spaces anymore, but Fréchet-
spaces.

1.11 Exponential law

A similar thing happens when searching for an exponential law for differentiable
functions. If we want a nice correspondence between differentiable functions on a
product and differentiable functions into a function space, we have seen that the
curve associated to a C1-function on a product is differentiable into the space of
continuous functions (using the first partial derivative). The second partial deri-
vative says, that this curve has even values in the space of C1-functions. And is
continuous therein. So if we want to use a single function space, we should at least
take C1-functions, and the curve should be C1 into this space. However one easily
sees that this amounts to the existence and continuity of f , ∂2f , ∂1f and ∂2∂1f . If
we want this concept to be independent on the choice of a basis, we need at least a
C2-function f . Inductively we arrive that only for C∞-functions will it be possible
to obtain a nice correspondence.
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We have learned a few things from these introductory words.

1. Problems in finite dimensions often lead to infinite dimensional function-
spaces, which are quite often not Banach spaces, but Fréchet spaces or even
more general ones.

2. Functions of 2 variables f : X × Y → Z, should often be considered as
maps f̌ from X to a space of functions from Y to Z and properties such as
continuity or differentiability should translate nicely.

3. At least for continuous linear operators T one should have the chain rule
(T ◦ c)′(t) = T (c′(t)).

Continuous and Higher Order Differentiability

1.12

Well, as has been discovered at the turn of the last century, the derivative should
be a linear (more precisely, an affine) approximation to the function. Assume we
have already defined the concept of derivative f ′(x) ∈ L(E,F ) for functions f :
E ⊇ U → F at a given point x ∈ U . By collecting for all x in the open domain
U of f these derivatives f ′(x), we obtain a mapping x 7→ f ′(x), the derivative
f ′ : E ⊇ U → L(E,F ) with values in the space of continuous linear mappings.
In order to speak about continuous differentiable (short: C1) mappings, we need
some topology on L(E,F ) and then this amounts to the assumption, that f ′ :
U → L(E,F ) is continuous. For C1-maps we should have a chain-rule, which
guarantees that the composite f◦g of C1-maps is again C1 and the derivative should
be (f ◦g)′(x) = f ′(g(x))◦g′(x). This map is thus given by the following description:
Given x then first calculate g(x) and then f ′(g(x)) ∈ L(F,G) and g′(x) ∈ L(E,F ),
and finally apply the composition map L(F,G) × L(E,F ) → L(E,G) to obtain
f ′(g(x)) ◦ g′(x). Since f and g are assumed to be C1 the components f ′ ◦ g and g′

are continuous. So it remains to show the continuity of the composition mapping.
Let us consider the simplified case where G = E = R. Then composition reduces to
the evaluation map ev : F ′ × F → R and we are looking for a topology on F ′ such
that this map is continuous. Assume we have found such a topology. Then there
exists 0-neighborhoods V in F ′ and U in F such that ev(V × U) ⊆ [−1, 1]. Since
scalar-multiplication on F ′ should be continuous, we can find for every ` ∈ F ′ a
number K > 0, such that ` ∈ K V . Thus for x ∈ U we have `(x) = ev(K 1

K `, x) =
K ev( 1

K `, x) ∈ K ev(V × U) ⊆ [−K,K]. This shows that U is scalarly bounded,
and hence is bounded by the corollary in [2, 5.2.7]. However, a seminormed space,
which has a bounded 0-neighborhood has to be normed, by Kolmogoroff’s theorem
[2, 2.6.2]. So it seems that there is no reasonable notion of C1, which applies to
more than just functions between Banach spaces. However, we have assumed that
continuity is meant with respect to topologies, so there have been several (more
or less successful) attempts in the past to remedy this situation by considering
convergence structures on L(E,F ). If one defines that a net (or a filter) fα should
converge to f in L(E,F ) iff for nets (or filters) xβ converging to some x in E the
net (or filter) fα(xβ) should converge to f(x), then the evaluation map, and more
generally the composition map becomes continuous. A second way to come around
this problem, is to assume for C1 the continuity of f̂ ′ : U × E → F instead. Then
the chain-rule becomes easy. However this notion is bad, since it will not give the
inverse function theorem for C1 even in Banach spaces.
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Continuous and Higher Order Differentiability 1.14

1.13

If we want to define higher derivatives - as we need them in conditions for local
extrema and the like - we would call a function f by recursion (n+1)-times differen-
tiable iff f ′ exists and is n-times differentiable. In order to show that the composite
f ◦g of two D2-maps is again D2, we have to show that (f ◦g)′ : x 7→ f ′(g(x))◦g′(x)
is again D1. Now this map is given by the following composition: Given x then first
calculate g(x) and then f ′(g(x)) ∈ L(F,G) and g′(x) ∈ L(E,F ), and finally apply
the composition map L(F,G) × L(E,F ) → L(E,G) to obtain f ′(g(x)) ◦ g′(x). By
the chain-rule for D1-mappings, we would obtain that f ′ ◦ g ∈ D1 and by assump-
tion g′ ∈ D1. So it remains to differentiate the bilinear composition map. Since it is
linear in both entries separately, its partial derivatives should obviously exist and
the derivative also. But recall that it is not even continuous.

1.14 Resumé

1. The composition map, or at least the evaluation map, should be differentia-
ble, although it is not continuous.

2. There is no reasonable notion of C1 for functions between spaces beyond
Banach spaces.

3. It is not clear, how to obtain a chain-rule, although this is essential.

After having found lots of difficulties, let’s look what can be done easily:

1. It is obvious what differentiability for a curve c into any locally convex space
means.

2. Hence we have also the notion of C1, n-times differentiable and smoothness
for such curves.

3. Continuous (multi-)linear maps preserve smoothness, and satisfy the chain-
rule.

4. Directional derivatives can be easily defined for arbitrary functions.
5. Derivatives can be detected by reducing to 1-dimensional spaces via affine

mappings.
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2. Calculus

Curves

As we have already seen in the introduction curves pose no big problems and in
particular we can give the following definitions.

2.1 Differentiable curves

Let E be a locally convex vector space. A curve c : R → E is called differentiable
if the derivative c′(t) := lims→0

1
s (c(t + s) − c(t)) at t exists for all t. A curve

c : R → E is called smooth or C∞ if all iterated derivatives exist. It is called Cn

for some finite n iff its iterated derivatives up to order n exist and are continuous.

Likewise a mapping f : Rn → E is called smooth if all iterated partial derivatives
∂i1,...,ip

f := ∂
∂xi1 . . .

∂
∂xip f exist for all i1, . . . , ip ∈ {1, . . . , n}.

A curve c : R → E is called locally Lipschitzian if every point r ∈ R has a
neighborhood U such that the Lipschitz condition is satisfied on U , i.e. the set{

1
t−s

(
c(t) − c(s)

)
: t 6= s; t, s ∈ U

}
is bounded. Note that this implies that the

curve satisfies the Lipschitz condition on each bounded interval, since

c(tn)− c(t0)
tn − t0

=
∑ ti+1 − ti

tn − t0
c(ti+1)− c(ti)
ti+1 − ti

is in the absolutely convex hull of a finite union of bounded sets.

A curve c : R → E is called Lipk or Ck+1− if all derivatives up to order k exist
and are locally Lipschitzian.

We have the following implications:

Cn+1 =⇒ Lipn =⇒ Cn,

differentiable =⇒ C.

In fact continuity of the derivative implies locally its boundedness, and since this
can be tested by continuous linear functionals (see [2, 5.2.7]) we conclude from the
1-dimensional mean value-theorem the boundedness of the difference quotient.

2.2 Lemma. Continuous linear mappings are smooth.
A continuous linear mapping ` : E → F between locally convex vector spaces maps
Lipk-curves in E to Lipk-curves in F , for all 0 ≤ k ≤ ∞ and for k > 0 one has
(` ◦ c)′(t) = `(c′(t)).

Proof. As a linear map ` commutes with difference quotients, hence the image of
a Lipschitz curve is Lipschitz since ` is bounded. As a continuous map it commutes
with the formation of the respective limits. Hence (` ◦ c)′(t) = `(c′(t)).

andreas.kriegl@univie.ac.at c© 7. Februar 2007 16



Curves 2.3

Note that a differentiable curve is continuous, and that a continuously differentiable
curve is locally Lipschitz: For ` ∈ E′ we have

`

(
c(t)− c(s)
t− s

)
=

(` ◦ c)(t)− (` ◦ c)(s)
t− s

=
∫ 1

0

(` ◦ c)′(s+ (t− s)r)dr,

which is bounded, since (` ◦ c)′ is locally bounded.

Now the rest follows by induction.

2.3 The mean value theorem

In classical analysis the basic tool for using the derivative to get statements on
the original curve is the mean value theorem. So we try to generalize it to infinite
dimensions. For this let c : R→ E be a differentiable curve. If E = R the classical
mean value theorem states, that the difference quotient c(a)−c(b)

a−b equals some in-
termediate value of c′. Already if E is two dimensional this is no longer true. Take
for example a parameterization of the circle by arc-length. However, we will show
that c(a)−c(b)

a−b lies still in the closed convex hull of {c′(r) : r}. Having weakened
the conclusion, we can try to weaken the assumption. And in fact c may be not
differentiable in at most countably many points. Recall however, that there exist
strictly monotonous functions f : R → R, which have vanishing derivative outside
a Cantor set (which is uncountable, but has still measure 0).

Sometimes one uses in 1-dimensional analysis a generalized version of the mean
value theorem, where one has a second differentiable function h with non-vanishing
derivative and the conclusion says that c(a)−c(b)

h(a)−h(b) equals some intermediate value of
c′

h′ . A more-dimensional version would be that c(a)−c(b)
h(a)−h(b) lies in the closed convex

hull of { c′(r)
h′(r) : r}. Here one obviously has to assume that h is scalar valued. If we

do not assume that h′ exists everywhere, we should replace the assumption that
h′ doesn’t vanish by the assumption that h′ has constant sign, or, more generally,
that h is monotonic. And if we allow h′ to vanish somewhere, we can not form the
quotients. Therefore we should assume that c′(t) ∈ h′(t) ·A, where A is some closed
convex set, and should be able to conclude that c(b)− c(a) ∈ (h(b)−h(a)) ·A. This
is the version of the mean value theorem that we will prove now. However we will
make use of it only in the case where h = id and c is everywhere differentiable in
the interior.

Proposition. Mean value theorem.
Let c : [a, b] =: I → E be a continuous curve, which is differentiable except at
points in a countable subset D ⊆ I. And let h be a continuous monotone function
h : I → R, which is differentiable on I \D. Let A be a convex closed subset of E,
such that c′(t) ∈ h′(t) ·A for all t /∈ D. Then c(b)− c(a) ∈ (h(b)− h(a)) ·A.

Proof. Assume that this is not the case. By Hahn Banach (see [2, 7.2.4]) there exists
a continuous linear functional ` with `(c(b)− c(a)) /∈ `((h(b)− h(a)) ·A). But then
` ◦ c and `(A) satisfy the same assumptions as c and A and hence we may assume
that c is real-valued and A is just a closed interval [α, β]. We may furthermore
assume that h is monotonely increasing. Then h′(t) ≥ 0 and h(b) − h(a) ≥ 0.
Thus the assumption says that αh′(t) ≤ c′(t) ≤ βh′(t) and we want to conclude
that α(h(b) − h(a)) ≤ c(b) − c(a) ≤ β(h(b) − h(a)). If we replace c by c − βh or
by αh − c it is enough to show that c′(t) ≤ 0 implies that c(b) − c(a) ≤ 0. For
given ε > 0 we will show that c(b) − c(a) ≤ ε(b − a + 1). For this let A be the
set {t ∈ [a, b] : c(s) − c(a) ≤ ε ((s − a) +

∑
tn<s 2−n) for all 0 ≤ s < t}, where
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D := {tn : n ∈ N}. Obviously A is a closed interval containing 0, say [0, t]. By
continuity of c we obtain that c(t)− c(0) ≤ ε ((t− a) +

∑
tn<t 2−n). Suppose t < b.

If t /∈ D, then there exists a subinterval [t, t+ δ] of [a, b] such that for t ≤ s < t+ δ
we have

c(s)− c(t)− c′(t)(s− t) ≤ ε(s− t)
Hence

c(s)− c(t) ≤ c′(t)(s− t) + ε(s− t) ≤ ε(s− t).
Thus

c(s)− c(a) ≤ c(s)− c(t) + c(t)− c(a)

≤ ε(s− t) + ε
(
t− a+

∑
tn<t

2−n
)
≤ ε
(
s− a+

∑
tn<s

2−n
)
.

On the other hand if t ∈ D, i.e. t = tm for some m, then by continuity of c we can
find an interval [t, t+ δ] contained in [a, b] such that for all t ≤ s < t+ δ we have

c(s)− c(t) ≤ ε2−m.

Again we deduce that

c(s)− c(a) ≤ ε2−m + ε
(
t− a+

∑
tn<t

2−n
)
≤ ε
(
s− a+

∑
tn<s

2−n
)
.

So we reach in both cases a contradiction to the maximality of t.

Warning: One cannot drop the monotonicity assumption. In fact take h(t) := t2,
c(t) := t3 and [a, b] = [−1, 1]. Then c′(t) ∈ h′(t)[−2, 2], but c(1) − c(−1) = 2 /∈
{0} = (h(1)− h(−1))[−2, 2].

2.4 Testing with functionals

Recall that in classical analysis vector valued curves c : R → Rn are often treated
by considering their components ck := prk ◦c, where prk : Rn → R denotes the
canonical projection onto the k-th factor R. Since general locally convex spaces,
do not have appropriate bases, we have to make this independent on the base and
hence use all continuous linear functionals instead of the projections prk. We will
say that a property of a curve c : R→ E is scalarly true, iff ` ◦ c : R→ E → R has
this property for all continuous linear functionals ` on E.

We want to compare scalar differentiability with differentiability. For finite dimen-
sional spaces we know the trivial fact that these to notions coincide. For infinite
dimensions we first consider Lip-curves c : R → E. Since by [2, 5.2.7] bounded-
ness can be tested by the continuous linear functionals we see, that c is Lip iff
`◦c : R→ R is Lip for all ` ∈ E∗. Recall that E∗ denotes the space of all continuous
linear functionals, whereas E′ denotes space of all bounded linear functionals on E.
Moreover if for a bounded interval J ⊂ R we take as B the absolutely convex hull
of the bounded set c(J)∪{ c(t)−c(s)

t−s : t 6= s; t, s ∈ J}, then we see that c|J : J → EB

is a well-defined Lip-curve into EB . Where by EB we denote the linear span of
B in E, equipped with the Minkowski functional pB(v) := inf{λ > 0 : v ∈ λ.B}.
This is a normed space. Thus we have the following equivalent characterizations of
Lip-curves:

1. locally c factors over a Lip-curve into some EB ;
2. c is Lip;
3. ` ◦ c is Lip for all ` ∈ E∗.
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For continuous instead of Lipschitz curves we obviously have the analogous impli-
cations (1 ⇒ 2 ⇒ 3). However if we take a non-convergent sequence (xn)n, which
converges weakly (e.g. take an orthonormal base in a separable Hilbert space), and
consider an infinite polygon c through these points xn, say with c( 1

n ) = xn and
c(0) = 0. Then this is obviously a non-continuous curve but ` ◦ c is continuous for
all ` ∈ E∗.

Furthermore the “worst” continuous curve - i.e. c : R →
∏

C(R,R) R =: E given
by (c(t))f := f(t) for all t ∈ R and f ∈ C(R,R) - cannot be factored locally as
a continuous curve over some EB . Otherwise c(tn) would converge into some EB

to c(0), where tn is a given sequence converging to 0, say tn := 1
n . So c(tn) would

converge Mackey to c(0), i.e. there have to be µn → ∞ with {µn(c(tn) − c(0)) :
n ∈ N} bounded in E. Since a set is bounded in the product iff its coordinates
are bounded, we conclude that for all f ∈ C(R,R) the sequence µn(f(tn) − f(0))
has to be bounded. But we can choose a continuous function f with f(0) = 0 and
f(tn) = 1√

µn
and conclude that µn(f(tn)− f(0)) =

√
µn is unbounded.

Similarly one shows that the reverse implications do not hold for differentiable, for
C1-curves and for Cn-curves.

However if we put instead some Lipschitz condition on the derivatives, there should
be some chance, since this is a bornological concept. But in order to obtain this
result, we should study convergence of sequences in EB .

2.5 Lemma. Mackey-convergence.
Let B be a bounded and absolutely convex subset of E and (xγ)γ∈Γ be a net in EB

and x ∈ EB. Then the following two conditions are equivalent:

1. xγ converges to x in the normed space EB;
2. There exists a net µγ → 0 in R, such that xγ − x ∈ µγ ·B.

In (2) we may assume that µ ≥ 0 and is monotonely decreasing. In the particular
case of a sequence (or where we have a cofinal countable subset of Γ) we can choose
all µn > 0 and hence may divide.

A net (xγ) for which a bounded absolutely convex B ⊆ E exists, such that xγ

converges to x in EB is called Mackey convergent or short M -convergent.

Proof. (⇓) Let δ > 1 and set µγ := δ pB(xγ − x). By assumption µγ → 0 and
xγ − x = µγ

xγ−x
µγ

, where xγ−x
µγ

:= 0 if µγ = 0. Since pB(xγ−x
µγ

) = 1
δ < 1 or is 0, we

conclude that xγ−x
µγ
∈ B.

If we replace µγ by min{1, sup{|µγ′ | : γ′ ≥ γ}} we see that we may choose µ ≥ 0
and monotonely decreasing with respect to γ.

If we have a sequence (γn)n∈N which is cofinal in Γ, i.e. for every γ ∈ Γ there exists
an n ∈ N with γ ≤ γn, then we may replace µγ by max({µγ : γm ≥ γ} ∪ { 1

m}) to
conclude that µγ 6= 0 for all γ.

(⇑) Let xγ −x = µγ · bγ with bγ ∈ B and µγ → 0. Then pB(xγ −x) = |µγ | pB(bγ) ≤
|µγ | → 0, i.e. xγ → x in EB .

If Γ is the ordered set of all countable ordinals, then it is not possible to find a net
(µγ)γ∈Γ, which is positive everywhere and converges to 0.

Now we show to describe the quality of convergence of the difference quotient.
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2.6 Corollary. The difference quotient converges Mackey.
Let c : R → E be a Lip1-curve. Then the curve t 7→ 1

t (
1
t (c(t) − c(0)) − c′(0)) is

bounded on bounded subsets of R \ {0}.

Proof. We apply 2.3 to c and obtain:

c(t)− c(0)
t

− c′(0) ∈
〈
c′(r) : 0 < |r| < |t|

〉
closed,convex

− c′(0)

=
〈
c′(r)− c′(0) : 0 < |r| < |t|

〉
closed,convex

=
〈
r
c′(r)− c′(0)

r
: 0 < |r| < |t|

〉
closed,convex

Let a > 0. Since { c′(r)−c′(0)
r : 0 < |r| < a} is bounded and hence is contained in a

closed absolutely convex and bounded set B, we can conclude that

1
t

(
c(t)− c(0)

t
− c′(0)

)
∈
〈r
t

c′(r)− c′(0)
r

: 0 < |r| < |t|
〉

closed,convex
⊆ B.

2.7 Corollary. Smoothness of curves is a bornological concept.
For 0 ≤ k < ∞ a curve c in a locally convex vector space E is Lipk if and only if
for each bounded open interval J ⊂ R there exists an absolutely convex bounded set
B ⊂ E such that c|J is a Lipk-curve in the normed space EB.

Attention: A smooth curve factors locally into some EB as a Lipk-curve for each
finite k only, in general. Take the “worst” smooth curve c : R →

∏
C∞(R,R) R,

analogously to 2.4, and, using Borel’s theorem, deduce from c(k)(0) ∈ EB for all
k ∈ N a contradiction.

Proof. For k = 0 this was shown before. For k ≥ 1 take a closed absolutely
convex bounded set B ⊆ E containing all derivatives c(i) on J up to order k as
well as their difference quotients on {(t, s) : t 6= s, t, s ∈ J}. We show first that c
is differentiable, say at 0, with derivative c′(0). By the previous corollary we have
that the expression 1

t

(
c(t)−c(0)

t − c′(0)
)

lies in B. So c(t)−c(0)
t − c′(0) converges to

0 in EB . For the higher order derivatives we can now proceed by induction.

The converse follows from lemma 2.2.

A consequence of this is, that smoothness doesn’t depend on the topology but only
on the dual (so all topologies with the same dual have the same smooth curves), and
in fact it depends only on the bounded sets. Since on L(E,F ) there is essentially
only one bornology (by the uniform boundedness principle) there is only one notion
of Lipn-curves into L(E,F ). Furthermore the class of Lipn-curves doesn’t change
if we pass from a given locally convex topology to its bornologification, i.e. finest
locally convex topology having the same bounded sets.

2.8 Lemma. Bornologification.
The bornologification Eborn of a locally convex space can be described in the following
equivalent ways:

1. It is the finest locally convex structure having the same bounded sets;
2. It is the final locally convex structure with respect to the inclusions EB → E,

where B runs through all bounded (closed) absolutely convex subsets.
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Moreover, Eborn is bornological. Its continuous seminorms are exactly the bounded
seminorms of E. An absolutely convex set is a 0-neighborhood in Eborn iff it is
bornivorous, i.e. absorbs bounded sets.

Proof. Let Eborn be the vector space E supplied with the finest locally convex
structure having the same bounded sets as E.

(⇑) Since all bounded sets B in E are bounded in Eborn, the inclusions EB → Eborn

are bounded and hence continuous. Thus the final structure on E induced by the
inclusions EB → E is finer than the structure of Eborn.

(⇓) Since every bounded subset of E is contained in some absolutely convex bounded
set B ⊆ E it has to be bounded in the final structure given by all inclusions
EB → E. Hence this final structure has exactly the same bounded sets as E. And
we have equality between the final structure and that of Eborn.

A seminorm p on E is bounded, iff p(B) is bounded for all bounded B, and this is
exactly the case if p|EB

is a continuous seminorm on EB for all B, or equivalently
that p is a continuous seminorm for the final structure Eborn on E induced by the
inclusions EB → E, see [2, 4.3.2].

As a consequence all bounded seminorms on Eborn are continuous, and hence Eborn

is bornological. Recall the following equivalent properties characterizing bornologi-
cal spaces E:

1. Every bounded linear mapping T : E → F is continuous;
2. Every bounded seminorm on E is continuous;
3. Every absolutely convex bornivorous subset is a 0-neighborhood.

(3 ⇒ 2), since for a > 0 the inverse images under bounded seminorms of intervals
(−∞, a) are absolutely convex and bornivorous. In fact let B be bounded and
a > 0. Then by assumption p(B) is bounded and hence there exists a C > 0 with
p(B) ⊆ C · (−∞, a). Hence B ⊆ C · p−1(−∞, a).
(2⇒ 1), since p ◦ T is a bounded seminorm, for every continuous seminorm on F .

(2 ⇒ 3), since the Minkowski-functional p generated by an absolutely convex bor-
nivorous subset is a bounded seminorm.

(1 ⇒ 2) Since the canonical projection T : E → E/ker p is bounded, for any
bounded seminorm p, it is by assumption continuous. Hence p = p̃◦T is continuous,
where p̃ denotes the canonical norm on E/ker p induced from p.

An absolutely convex subset U is a 0-neighborhood for the final structure induced
by EB → E iff U ∩EB is a 0-neighborhood, or equivalently if U absorbs B, for all
bounded absolutely convex B, i.e. U is bornivorous.

Let us now return to the scalar differentiability. Corollary 2.6 gives us Lipn-ness
provided we have appropriate candidates for the derivatives.

2.9 Corollary. Scalar testing of curves.
Let ck : R→ E for k < n+1 be curves such that `◦c0 is Lipn and (`◦c0)(k) = `◦ck
for all k < n+ 1 and all ` ∈ E∗. Then c0 is Lipn and (c0)(k) = ck.

Proof. For n = 0 this was shown in 2.4. For n ≥ 1, we have by 2.6 applied to
`◦c that `

(
1
t

(
c(t)−c(0)

t − c1(0)
))

is locally bounded and hence by [2, 5.2.7] the set{
1
t

(
c(t)−c(0)

t − c1(0)
)

: t ∈ I
}

is bounded. Thus c(t)−c(0)
t converges even Mackey

to c1(0). Now the general statement follows by induction.

andreas.kriegl@univie.ac.at c© 7. Februar 2007 21



Curves 2.11

Completeness

But do we really need the knowledge of a candidate for the derivative? In finite
dimensional analysis one uses often the Cauchy-condition to prove convergence.
Here we will replace the Cauchy-condition again by a stronger condition, which
provides information about the quality of Cauchy-ness:

A net (xγ)γ∈Γ in E is called Mackey-Cauchy provided that there exists a bounded
(absolutely convex) set B and a net (µγ,γ′)(γ,γ′)∈Γ×Γ in R converging to 0, such that
xγ − xγ′ ∈ µγ,γ′ B. As in 2.3 one shows that for a net xγ in EB this is equivalent
to the condition that xγ is Cauchy in the normed space EB .

2.10 Lemma. The difference quotient is Mackey-Cauchy.
Let c : R→ E be scalarly a Lip1-curve. Then t 7→ c(t)−c(0)

t is a Mackey-Cauchy net
for t→ 0.

Proof. For Lip1-curves this is a immediate consequence of 2.6 but we only assume it
to be scalarly Lip1. It is enough to show that 1

t−s

(
c(t)−c(0)

t − c(s)−c(0)
s

)
is bounded

on bounded subsets on R\{0}. We may test this with continuous linear functionals,
and hence may assume that E = R. Then by the fundamental theorem of calculus
we have

1
t− s

(
c(t)− c(0)

t
− c(s)− c(0)

s

)
=
∫ 1

0

c′(tr)− c′(sr)
t− s

dr

=
∫ 1

0

c′(tr)− c′(sr)
tr − sr

r dr.

Since c′(tr)−c′(sr)
tr−sr is locally bounded by assumption, the same is true for the integral,

and we are done.

2.11 Lemma. Mackey-Completeness.
For a space E the following conditions are equivalent:

1. Every Mackey-Cauchy net converges in E;
2. Every Mackey-Cauchy sequence converges in E;
3. For every absolutely convex closed bounded set B the space EB is complete;
4. For every bounded set B there exists an absolutely convex bounded set B′ ⊇ B

such that EB′ is complete.

A space satisfying the equivalent conditions is called Mackey-complete. Note that a
sequentially complete space is Mackey-complete.

Proof. (1 ⇒ 2) and (3 ⇒ 4) are trivial.

(2⇒ 3) Since EB is normed, it is enough to show sequential-completeness. So let xn

be a Cauchy-sequence in EB . Then xn is Mackey-Cauchy in E and hence converges
in E to some point x. Since pB(xn−xm)→ 0 there exists for every ε > 0 an N ∈ N
such that for all n,m ≥ N we have pB(xn − xm) < ε and hence xn − xm ∈ εB.
Taking the limit form→∞ and using closedness of B we conclude that xn−x ∈ εB
for all n > N . In particular x ∈ EB and xn → x in EB .

(4⇒ 1) Let (xγ)γ∈Γ be a Mackey-Cauchy net in E. So there is some net µγ,γ′ → 0,
such that xγ−xγ′ ∈ µγ,γ′ B for some bounded set B. Let γ0 be arbitrary. By (4) we
may assume that B is absolutely convex, and contains xγ0 and EB is complete. For
γ ∈ Γ we have that xγ = xγ0 + xγ − xγ0 ∈ xγ0 + µγ,γ0 B ∈ EB , and pB(xγ − xγ′) ≤
µγ,γ′ → 0. So xγ is a Cauchy net in EB and hence converges in EB and thus also
in E.

andreas.kriegl@univie.ac.at c© 7. Februar 2007 22



Completeness 2.14

2.12 Corollary. Scalar testing of differentiable curves.
Let E be Mackey-complete and c : R→ E be a curve for which ` ◦ c is Lipn for all
` ∈ E∗. Then c is Lipn.

Proof. For n = 0 this was shown in 2.4 without using any completeness, so let
n ≥ 1. Since we have shown in 2.10 that the difference quotient is a Mackey-Cauchy
net we conclude that the derivative c′ exists and hence (` ◦ c)′ = ` ◦ c′. So we may
apply the induction hypothesis to conclude that c′ is Lipn−1 and consequently c is
Lipn.

Next we turn to integration. For continuous curves c : [0, 1] → E one can show
completely analogously to 1-dimensional analysis that the Riemann sums R(c,Z, ξ),
defined by

∑
k(tk − tk−1)c(ξk), where 0 = t0 < t1 < · · · < tn = 1 is a partition Z

of [0, 1] and ξk ∈ [tk−1, tk], form a Cauchy net with respect to the partial ordering
given by the size of the mesh max{|tk−tk−1| : 0 < k < n}. So under the assumption
of sequential completeness we have a Riemann-integral of curves. A second way to
see this is the following reduction to the 1-dimensional case.

2.13 Lemma.
Let L(E∗equi,R) be the space of all linear functionals on E∗ which are bounded
on equi-continuous sets, equipped with the complete locally convex topology of uni-
form convergence on these sets. There is a natural topological embedding δ : E →
L(E∗equi,R) given by δ(x)(`) := `(x).

Proof. Let U be a basis of absolutely convex closed 0-neighborhoods in E. Then
the family of polars Uo := {` ∈ E∗ : |`(x)| ≤ 1 for all x ∈ U}, with U ∈ U form a
basis for the equi-continuous sets. And hence the bipolars Uoo := {`∗ ∈ L(E∗equi,R) :
|`∗(`)| ≤ 1 for all ` ∈ Uo} form a basis of 0-neighborhoods in L(E∗equi,R). By the
bipolar-theorem [2, 7.4.7] we have U = δ−1(Uoo) for all U ∈ U . This shows that δ
is a homeomorphism onto its image.

2.14 Lemma. Integral of continuous curves.
Let c : R → E be a continuous curve in a locally convex vector space. Then there
is a unique differentiable curve

∫
c : R → Ê in the completion Ê of E such that

(
∫
c)(0) = 0 and (

∫
c)′ = c.

Proof. We show uniqueness first. Let c1 : R→ Ê be a curve with derivative c and
c1(0) = 0. For every ` ∈ E∗ the composite ` ◦ c1 is an antiderivative of ` ◦ c with
initial value 0, so it is uniquely determined, and since E∗ separates points c1 is also
uniquely determined.

Now we show the existence. By the previous lemma we have that Ê is (isomorphic
to) the closure of E in the obviously complete space L(E∗equi,R). We define (

∫
c)(t) :

E∗ → R by ` 7→
∫ t

0
(` ◦ c)(s)ds. It is a bounded linear functional on E∗equi since for

an equi-continuous subset E ⊂ E∗ the set {(` ◦ c)(s) : ` ∈ E , s ∈ [0, t]} is bounded.
So
∫
c : R→ L(E∗equi,R).

Now we show that
∫
c is differentiable with derivative δ ◦ c.(

(
∫
c)(t+ r)− (

∫
c)(r)

t
− (δ ◦ c)(r)

)
(`) =

=
1
t

(∫ t+r

0

(` ◦ c)(s)ds−
∫ r

0

(` ◦ c)(s)ds− t(` ◦ c)(r)
)

=

=
1
t

∫ r+t

r

(
(` ◦ c)(s)− (` ◦ c)(r)

)
ds =

∫ 1

0

(
δ(c(r + ts))− δ(c(r))

)
(`)ds.
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Let E ⊂ E∗ be equi-continuous and let ε > 0. Then there exists a neighborhood U
of 0 such that |`(U)| < ε for all ` ∈ E . For sufficiently small t, all s ∈ [0, 1] and fixed
r we have c(r + ts) − c(r) ∈ U . So |

∫ 1

0
`(c(r + ts) − c(r))ds| < ε. This shows that

the difference quotient of
∫
c at r converges to c(r) uniformly on equi-continuous

subsets.

It remains to show that (
∫
c)(t) ∈ Ê. By the mean value theorem 2.3 the difference

quotient 1
t ((
∫
c)(t)− (

∫
c)(0)) is contained in the closed convex hull in L(E∗equi,R)

of the subset {c(s) : 0 < s < t} of E. So it lies in Ê.

Definition of the integral.
For continuous curves c : R → E the definite integral

∫ b

a
c ∈ Ê is given by

∫ b

a
c =

(
∫
c)(b)− (

∫
c)(a).

2.15 Corollary. Basics on the integral.
For a continuous curve c : R→ E we have:

1. `(
∫ b

a
c) =

∫ b

a
(` ◦ c) for all ` ∈ E′.

2.
∫ b

a
c+

∫ d

b
c =

∫ d

a
c.

3.
∫ b

a
(c ◦ ϕ)ϕ′ =

∫ ϕ(b)

ϕ(a)
c for ϕ ∈ C1(R,R).

4.
∫ b

a
c lies in the closed convex hull in Ê of the set

{(b− a)c(t) : a < t < b} in E.
5.
∫ b

a
: C(R, E)→ Ê is linear.

6. (Fundamental theorem of calculus.) For each C1-curve c : R → E we have
c(s)− c(t) =

∫ s

t
c′.

Since we are interested in smooth curves mainly and for the scalar testing we
only needed Mackey-completeness, we should try to apply this here too. So let
c : [0, 1] → E be a Lip-curve and take a partition Z with mesh µ(Z) at most
δ. If we have a second partition, then we can take the common refinement. Let
[a, b] be one interval of the original partition with intermediate point t, and let
a = t0 < t1 < · · · < tn = b be the refinement. Note that |b − a| ≤ δ and hence
|t− tk| ≤ δ Then we can estimate as follows:

(b− a) c(t)−
∑

k

(tk − tk−1)c(tk) =
∑

k

(tk − tk−1) (c(t)− c(tk)) =
∑

k

µkbk,

where bk := c(t)−c(tk)
δ is contained in the absolutely convex Lipschitz bound B :=〈{

c(t)−c(s)
t−s : t, s ∈ [0, 1]

}〉
abs.conv

of c and µk := (tk − tk−1)δ ≥ 0 and satisfies∑
k µk = (b − a)δ. Hence we have for the Riemann-sums with respect to the ori-

ginal partition Z1 and the refinement Z ′ that R(c,Z1) − R(c,Z ′) lies in δ · B.
So R(c,Z1) − R(c,Z2) ∈ 2δB for any two partitions Z1 and Z2 of mesh at most
δ, i.e. the Riemann-sums form a Mackey-Cauchy net with coefficients µZ1,Z2 :=

1
max{µ(Z1),µ(Z2)} and we have proved:

2.16 Proposition. Integral of Lipschitz curves.
Let c : [0, 1] → E be a Lipschitz curve into a Mackey-complete space. Then the
Riemann-integral exists in E as (Mackey)-limit of the Riemann-sums.

Next we have to discuss the relationship between differentiable curves and Mackey
convergent sequences. Recall that for tn → t and any continuous curve c we have
that c(tn)→ c(t) and, conversely, given xn → x then there exists a continuous curve
c (i.e. a reparametrization of the infinite polygon) and tn ↘ 0 with c(tn) = xn. The
corresponding result for smooth curves is the
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2.17 Special curve lemma.
Let xn be a sequence which converges fast to x in E, i.e. for each k ∈ N the

sequence nk(xn − x) is bounded.

Then the infinite polygon through the xn can be parameterized as a smooth curve
c : R→ E such that c( 1

n ) = xn and c(0) = x.

Proof. Let ϕ : R → [0, 1] be a smooth map, which is 0 on {t : t ≤ 0} and 1 on
{t : t ≥ 1}. The parameterization c is defined as follows:

c(t) :=


x for t ≤ 0,

xn+1 + ϕ
(

t− 1
n+1

1
n−

1
n+1

)
(xn − xn+1) for 1

n+1 ≤ t ≤
1
n ,

x1 for t ≥ 1

.

Obviously c is smooth on R \ {0} and the p-th derivative of c for t ∈ [ 1
n+1 ,

1
n ] is

given by

c(p)(t) = ϕ(p)

(
t− 1

n+1
1
n −

1
n+1

)
(n(n+ 1))p(xn − xn+1).

Since xn converges fast to x, we have that c(p)(t) → 0 for t → 0, since the first
factor is bounded and the second goes to zero. Hence c is smooth on R, by the
following lemma.

2.18 Lemma. Differentiable extension to an isolated point.
Let c : R → E be continuous and on R \ {0} differentiable, and assume that the
derivative c′ : R\{0} → E has a continuous extension to R. Then c is differentiable
at 0 and c′(0) = limt→0 c

′(t).

Proof. Let a := limt→0 c
′(t). By the mean value theorem 2.3 we have that c(t)−c(0)

t ∈
〈c′(s) : 0 6= |s| ≤ |t|〉closed,abs.conv.. Since c′ is assumed to be continuously exten-
dable to 0 we have that for any closed absolutely convex 0-neighborhood U there
exists a δ > 0 such that c′(t) ∈ a + U for all |t| < δ. Hence c(t)−c(0)

t − a ∈ U , i.e.
c′(0) = a.

The next result shows that we can pass though certain sequences xn → x even with
given velocities vn → 0.

2.19 Corollary.
If xn → x fast and vn → 0 fast in E, then there is smoothly parameterized polygon
c : R→ E and tn → 0 in R such that c(tn + t) = xn + tvn for t in a neighborhood
of 0 depending on n.

Proof. Consider the sequence yn defined by y2n := xn + 1
4n(2n+1)vn and y2n+1 :=

xn− 1
4n(2n+1)vn. It is easy to show that yn converges fast to x and the parameteriza-

tion c of the polygon through the yn (using a function ϕ which satisfies ϕ(t) = t for
t near 1

2 ) has the claimed properties, where tn := 4n+1
4n(2n+1) = 1

2

(
1
2n + 1

2n+1

)
.

As first application we can give the following sharpening of 2.2.

2.20 Corollary. Bounded linear maps.
A linear mapping ` : E → F between locally convex vector spaces is bounded (or
bornological), i.e. maps bounded sets to bounded ones, if and only if it maps smooth
curves in E to smooth curves in F .

Proof. As in the proof of 2.2 one shows using 2.6 that a bounded linear map
preserves Lipk-curves. Conversely assume that a linear map ` : E → F carries
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smooth curves to locally bounded curves. Take a bounded set B and assume that
f(B) is unbounded. Then there is a sequence bn in B and some λ ∈ F ′ such
that |(λ ◦ `)(bn)| ≥ nn+1. The sequence n−nbn converges fast to 0, hence lies on
some compact part of a smooth curve by 2.17. Consequently (λ ◦ `)(n−nbn) =
n−n(λ ◦ `)(bn) is bounded, a contradiction.

With respect to non-linear mappings we have the following two results:

2.2o. Lemma.
Let U be a c∞-open subset of a locally convex space, let µn →∞ be a real sequence,
and let f : U → F be a mapping which is bounded on each µ-converging sequence in
U . Then f is bounded on every bornologically compact subset (i.e. compact
in some EB) of U .

Proof. By composing with a linear functional we may assume that F = R. Let
K ⊂ EB ∩U be compact in EB for some bounded absolutely convex set B. Assume
that f(K) is not bounded. So there is a sequence (xn) in K with |f(xn)| → ∞.
Since K is compact in the normed space EB we may assume that (xn) converges to
x ∈ K. By passing to a subsequence we may even assume that xn is µ-converging.
Contradiction.

2.21 Corollary. Bounded seminorms.
For a seminorm p and a sequence µn →∞ the following statements are equivalent:

1. p is bounded;
2. p is bounded on compact sets;
3. p is bounded on M -converging sequences;
4. p is bounded on µ-converging sequences;
5. p is bounded on images of bounded intervals under Lipk-curves.

The corresponding statement for subsets of E is the following. For a radial subset
U ⊂ E the following properties are equivalent:

1. U is bornivorous.
2. For all absolutely convex bounded sets B, the trace U ∩EB is a 0-neighbor-

hood in EB.
3. U absorbs all compact subsets in E.
4. U absorbs all Mackey convergent sequences.

(4’). U absorbs all sequences convering Mackey to 0.
5. U absorbs all µ-convergent sequences (for a fixed µ).

(5’). U absorbs all sequences being µ-convergent to 0.
6. U absorbs the images of compact sets under Lipk-curves (for a fixed k).

A set U is called radial if [0, 1] · U ⊂ U .
A sequence xn is called µ-convergent to x iff {µn(xn − x) : n ∈ N} is bounded.

Proof. We prove the statement on radial subsets, for seminorms p it then follows
by using the radial set U := {x ∈ E : p(x) ≤ 1} and the equality K · U = {x ∈ E :
p(x) ≤ K}.
(1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (5)’, (4) ⇒ (4)’, (3) ⇒ (6) are trivial.

(6) ⇒ (5’, for µ fast falling). Such a sequence lies by the special curve lemma 2.17
on some compact part of a smooth curve, hence gets absorbed by (6).

(5’, for any µ) ⇒ (1). Suppose U does not absorb some bounded B. Hence there
are bn ∈ B with bn /∈ µ2

nU . However, bn

µn
is µ-convergent to 0, so it is contained in

andreas.kriegl@univie.ac.at c© 7. Februar 2007 26



Completeness 2.24

KU for some K > 0. Equivalently, bn ∈ µnKU ⊆ µ2
nU for all µn ≥ K, which gives

a contradiction.

2.22 Corollary. Bornologification as locally convexification.

The bornologification of E is the finest locally convex topology with one (hence all)
of the following properties:

1. It has the same bounded sets as E.
2. It has the same Mackey converging sequences as E.
3. It has the same µ-converging sequences as E (for some fixed µ).
4. It has the same Lipk-curves as E (for some fixed k ≤ ∞).
5. It has the same bounded linear mappings from E into arbitrary locally convex

spaces.
6. It has the same continuous linear mappings from normed spaces into E.

Proof. Since the bornologification has the same bounded sets as the original topo-
logy, the other objects are also the same: they depend only on the bornology – this
would not be true for compact sets. Conversely we consider a topology τ which has
for one of the above mentioned types the same objects as the original one. Then
τ has by 2.21 the same bornivorous absolutely convex subsets as the original one.
Hence any 0-neighborhood of τ has to be bornivorous for the original topology, and
hence is a 0-neighborhood of the bornologification of the original topology.

2.23 Definition.
The c∞-topology on a locally convex space E is the final topology with respect to
all smooth curves R → E. Its open sets will be called c∞-open. We will see later
that in general it is not a topological vector space topology. However, by 2.22 and
2.26 we get that the finest locally convex topology coarser than the c∞-topology is
the bornologification of the locally convex topology.

2.24 Theorem. c∞-open subsets.
Let µ → ∞ be a real-valued sequence. Then a subset U ⊂ E is open for the c∞-
topology if it satisfies any of the following equivalent conditions:

1. All inverse images under Lipk-curves are open in R (for fixed k ∈ N∞).
2. All inverse images under µ-converging sequences are open in N∞.
3. The traces to EB are open in EB for all absolutely convex bounded subsets
B ⊂ E.

Note for closed subsets an equivalent statement reads as follows: A set A is c∞-
closed iff for every sequence xn ∈ A, which is µ-converging (respectively M -converging,
resp. fast falling) towards x, the point x belongs to A.

The topology described in (2) is also called Mackey-closure topology. It is not the
Mackey topology discussed in duality theory.

Proof. (1) ⇒ (2). Suppose xn is µ-converging to x ∈ U , but xn /∈ U for infinitely
many n. Then we may choose a subsequence again denoted by xn, which is fast
falling to x, hence lies on some compact part of a smooth curve c as described in
2.17. Then c( 1

n ) = xn /∈ U but c(0) = x ∈ U . This is a contradiction.

(2)⇒ (3). A sequence xn, which converges in EB to x with respect to pB , is Mackey
convergent, hence has a µ-converging subsequence. Note that EB is normed and
hence it is enough to consider sequences.
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(3) ⇒ (2). Suppose xn is µ-converging to x. Then the absolutely convex hull B of
{µn(xn − x) : n ∈ N} ∪ {x} is bounded, and xn → x in (EB , pB), since µn(xn − x)
is bounded.

(2) ⇒ (1). Use that for a converging sequence of parameters tn the images xn :=
c(tn) under a Lip-curve c are Mackey converging.

By 2.24 every M -convergent sequence gives a continuous mapping N∞ → c∞E and
hence converges in c∞E. Conversely a sequence converging in c∞E is not necessarily
Mackey convergent, see [9].

However one has the following result:

2.25 Lemma. c∞-convergent sequences.
A sequence xn is convergent to x in the c∞-topology if and only if every subsequence
has a subsequence which is Mackey convergent to x.

Proof. (⇐) is true for any topological convergence. In fact if xn would not converge
to x, then there would be a neighborhood U of x and a subsequence of xn which
lies outside of U and hence cannot have a subsequence converging to x.

(⇒) It is enough to show that xn has a subsequence converging to x, since every
subsequence of a c∞-convergent sequence is clearly c∞-convergent to the same limit.
Without loss of generality we may assume that x /∈ A := {xn : n ∈ N}. Hence A
cannot be c∞-closed, and thus there is a sequence nk ∈ N such that xnk

converges
Mackey to some point x′. The set {nk : k ∈ N} cannot be bounded and hence we
may assume that the nk are strictly increasing by passing to a subsequence. But
then xnk

is a subsequence of x which converges in c∞E to x and Mackey to x′

hence also in c∞E. Thus x′ = x and we are done.

Remark

A consequence of this lemma is, that there is no topology having as convergent
sequences exactly the M -convergent ones, since this topology obviously would have
to be coarser than the c∞-topology.

One can use this lemma also to show that the c∞-topology on a locally convex
vector space gives a so called arc-generated vector space. See [10, 2.3.9 and 2.3.13]
for a discussion of this.

2.26 Lemma.
Let E be a bornological locally convex vector space, U ⊂ E a convex subset. Then
U is open for the locally convex topology of E iff U is open for the c∞-topology.
Furthermore, an absolutely convex subset U of E is a 0-neighborhood for the locally
convex topology if and only if it is so for the c∞-topology.

Proof. (⇒) The c∞-topology is finer than the locally convex topology, cf. 2.8.

(⇐) Let U be a convex 0-neighborhood with respect to the c∞-topology. By passing
to U ∩ −U ⊂ U we may assume that U is absolutely convex. By 2.21 it is enough
to show that U is bornivorous, i.e. absorbs bounded subsets. Assume that some
bounded B does not get absorbed by U . Then for every n ∈ N there exists a bn ∈ B
with bn /∈ nU . Since 1

nbn is Mackey convergent to 0, we conclude that 1
nbn ∈ U for

sufficiently large n. This yields a contradiction.

Let now U be an absolutely convex 0-neighborhood for the c∞-topology. Hence U
absorbs Mackey-0-sequences. By 2.22 we have to show that U is bornivorous, in
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order to obtain that U is a 0-neighborhood for the locally convex topology, but this
follows immediately from 2.21.

2.26a Corollary.
The bornologification of a locally convex space E is the finest locally convex topology
coarser than the c∞-topology on E.

Let us show next that the c∞-topology and c∞-completeness are intimately related.

2.27 Theorem. c∞-completeness.
Let E be a locally convex vector space. E is said to be c∞-complete or convenient
if one of the following equivalent (completeness) conditions is satisfied:

1. Any Lipschitz curve in E is locally Riemann integrable.
2. For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c′2 = c1 (existence of

an antiderivative).
3. E is c∞-closed in any locally convex space.
4. If c : R → E is a curve such that ` ◦ c : R → R is smooth for all ` ∈ E∗,

then c is smooth.
5. Any Mackey-Cauchy-sequence (so that (xn − xm) is Mackey convergent to

0) converges; i.e. E Mackey-complete, see 2.11.
6. If B is bounded closed absolutely convex, then EB is a Banach space. This

property is called locally complete in [14].
7. Any continuous linear mapping from a normed space into E has a continuous

extension to the completion of the normed space.

Condition 4 says that in a convenient vector space one can recognize smooth curves
by investigating compositions with continuous linear functionals.

In [10] a convenient vector space is always considered with its bornological topology
— an equivalent but not isomorphic category.

Proof. For Mackey-complete spaces, i.e. when (5) is satisfied, we have shown in
2.12 that (4), in 2.16 that (1) is true, and in 2.11 that (6) is true.

(1⇒2) A smooth curve is Lipschitz, thus locally Riemann integrable. The indefinite
Riemann integral equals the “weakly defined” integral of lemma 2.14, hence is an
antiderivative.

(2⇒3) Let E be a topological subspace of F . To show that E is closed we use 2.24.
Let xn → x∞ be fast falling, xn ∈ E but x∞ ∈ F . By 2.17 the polygon c through
(xn) can be smoothly parameterized. Hence c′ is smooth and has values in the
vector space generated by {xn : n 6=∞}, which is contained in E. Its antiderivative
c2 is up to a constant equal to c and by (2) x1 − x∞ = c(1)− c(0) = c2(1)− c2(0)
lies in E. So x∞ ∈ E.

(3⇒5) Let F be the completion Ê of E. Any Mackey Cauchy sequence in E has
a limit in F and since E is by assumption c∞-closed in F the limit lies in E, and
hence the sequence converges in E.

(5⇒6) This we have already proved in Lemma 2.11.

(6⇒7) Let f : F → E be a continuous mapping on a normed space F . Since the
image of the unit ball is bounded, it is a bounded mapping into EB for some closed
absolutely convex B. But into EB it can be extended to the completion, since EB

is complete.

(7⇒1) Let c : R→ E be a Lipschitz curve. Then c is locally a continuous curve into
EB for some absolutely convex B. The inclusion of EB into E has a continuous
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extension to the completion of EB and c is Riemann integrable in this Banach
space, so also in E.

(3⇒4) Let c : R → E be scalarwise smooth. So t 7→ c(t)−c(0)
t is Lipschitz on each

bounded subset of R \ {0}. Then c(tn)−c(0)
tn

is a Mackey Cauchy sequence for each
sequence tn → 0, so it converges by (3), so c is differentiable at 0 and its derivative
is again scalarwise smooth by 2.20. So by induction c is smooth.

(4⇒3) Let E be embedded in some space F . We use again 2.24 in order to show that
E is c∞-closed in F . So let xn → x0 fast falling, xn ∈ E for n 6= 0, but x0 ∈ F . By
2.17 the polygon c through (xn) can be smoothly parameterized in F , and c(t) ∈ E
for t 6= 0. We consider c̃(t) := tc(t). This is a curve in E which is smooth in F , so
it is scalarwise smooth in E, thus smooth in E by (4). Then x0 = c̃′(0) ∈ E.

2.28 Theorem. Inheritance of c∞-completeness.
The following constructions preserve c∞-completeness: limits, direct sums, strict
inductive limits of sequences of closed embeddings, as well as formation of `∞(X, ),
where X is a set together with a family B of subsets of X containing the finite
ones, which are called bounded and `∞(X,F ) denotes the space of all functions
f : X → F , which are bounded on all B ∈ B, supplied with the topology of uniform
convergence on the sets in B.

See 3.23 for an introduction to the categorical concept of limits.

Proof. The projective limit of a cone F is the c∞-closed linear subspace{
(xα) ∈

∏
F(α) : F(f)xα = xβ for all f : α→ β

}
,

hence is c∞-complete, since the product of c∞-complete factors is obviously c∞-
complete.

Since the coproduct of spaces Xα is the topological direct sum, and has as bounded
sets those which are contained and bounded in some finite subproduct, it is c∞-
complete if all factors are.

For colimits this is in general not true. For strict inductive limits of sequences of
closed embeddings it is true, since bounded sets are contained and bounded in some
step, see [2, 4.8.1].

For the result on `∞(X,F ) we consider first the case, where X itself is bounded.
Then c∞-completeness can be proved as in [2, 3.2.3] or reduced to this result. In fact
let B be bounded in `∞(X,F ). Then B(X) is bounded in F and hence contained in
some absolutely convex bounded set B, for which FB is a Banach space. So we may
assume that B := {f ∈ `∞(X,F ) : f(X) ⊆ B}. The space `∞(X,F )B is just the
space `∞(X,FB) with the supremum norm, which is a Banach space by [2, 3.2.3].

Let now X and B be arbitrary. Then the restriction maps `∞(X,F ) → `∞(B,F )
give an embedding ι of `∞(X,F ) into the product

∏
B∈B `

∞(B,F ). Since this pro-
duct is complete, by what we have shown above, it is enough to show that this
embedding has a closed image. So let fα|B converge to some fB in `∞(B,F ). Define
f(x) := f{x}(x). For anyB ∈ B containing x we have that fB(x) = (limα fα|B)(x) =
limα(fα(x)) = limα fα|{x} = f{x}(x) = f(x). And f(B) is bounded for all B ∈ B,
since f |B = fB ∈ `∞(B,F ).

Note that the definition of the topology of uniform convergence as initial topology
shows, that adding all subsets of finite unions of elements in B to B does not change
this topology. Hence we may always assume that B has this stability property.
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Example.
In general a quotient and an inductive limit of c∞-complete spaces need not be
c∞-complete. In fact let ED := {x ∈ RN : suppx ⊆ D} for any subset D ⊆ N of
density densD := lim sup{ |D∩[1,n]|

n } = 0. It can be shown that E :=
⋃

n∈N ED is
the inductive limit of the Fréchet subspaces ED

∼= RD. It cannot be c∞-complete,
since finite sequences are contained in E and are dense in RN ⊃ E.

In general the trace of the c∞-topology on a linear subspace is not its c∞-topology.
However for closed subspaces this is true:

2.29 Lemma. Closed embedding lemma.
Let E be a linear c∞-closed subspace of F . Then the trace of the c∞-topology of F
on E is the c∞-topology on E

Proof. Since the inclusion is continuous and hence bounded it is c∞-continuous.
Hence it is enough to show that it is closed for the c∞-topologies. So let A ⊂ E be
c∞E-closed. And let xn ∈ A converge Mackey towards x in F . Then x ∈ E, since
E is assumed to be c∞-closed, and hence xn converges Mackey to x in E. Since A
is c∞-closed in E, we have that x ∈ A.

Let us give an example which shows that c∞-closedness of the subspace is essential
for this result. Another example will be given in 2.34.

2.30 Example.
The trace of the c∞-topology is not the c∞-topology.

Proof. Consider E = RN×R(N), A := {an,k := ( 1
nχ{1,..,k},

1
kχ{n}) : n, k ∈ N} ⊂ E.

Let F be the linear subspace of E generated by A. We show that the closure of A
with respect to the c∞-topology of F is strictly smaller than that with respect to
the trace topology of the c∞-topology of E.

A is closed in the c∞-topology of F : Assume that a sequence (anj ,kj ) is M-converging
to (x, y). Then the second component of anj ,kj has to be bounded. Thus j 7→ nj

has to be bounded and may be assumed to have constant value n∞. If j 7→ kj

were unbounded, then (x, y) = ( 1
n∞

χN, 0), which is not an element of F . Thus
j 7→ kj has to be bounded too and may be assumed to have constant value k∞.
Thus (x, y) = an∞,k∞ ∈ A.

A is not closed in the trace topology since (0,0) is contained in the closure of A
with respect to the c∞-topology of E: For k →∞ and fixed n the sequence an,k is
M-converging to ( 1

nχN, 0) and 1
nχN is M-converging to 0 for n→∞.

2.31 Theorem. The c∞-completion.
For any locally convex space E there exists a unique (up to a bounded isomorphism)
convenient vector space Ẽ and a bounded linear injection i : E → Ẽ with the
following universal property:

1. Each bounded linear mapping ` : E → F into a convenient vector space F
has a unique bounded extension ˜̀ : Ẽ → F such that ˜̀◦ i = `.

Furthermore i(E) is dense for the c∞-topology in Ẽ.

Proof. Let Ẽ be the c∞-closure of E in the locally convex completion Êborn of the
bornologification Eborn of E. The inclusion i : E → Ẽ is bounded (not continuous
in general). By 2.29 the c∞-topology on Ẽ is the trace of the c∞-topology on Êborn.
Hence i(E) is dense also for the c∞-topology in Ẽ.
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Using the universal property of the locally convex completion the mapping ` has
a unique extension ˆ̀ : Êborn → F̂ into the locally convex completion of F , whose
restriction to Ẽ has values in F , since F is c∞-closed in F̂ , so it is the desired ˜̀.
Uniqueness follows, since i(E) is dense for the c∞-topology in Ẽ.

Example.
We consider the space `∞(X) := `∞(X,R) as defined in 2.28 for a set X together
with a family B of subsets called bounded. We have the subspace Cc(X) := {f ∈
`∞(X) : supp f is finite}. And we want to calculate its c∞-closure in `∞(X).

Claim: The c∞-closure of Cc(X) equals C0(X) := {f ∈ `∞(X) : f |B ∈ c0(B) for all B ∈
B} provided X is countable.

Proof. The right hand side is just the intersection c0(X) :=
⋂

B∈B ι
−1
B (c0(B)),

where ιB : `∞(X) → `∞(B) denotes the restriction map. We use the notation
c0(X), since in the case where X is bounded this is exactly the space {f ∈ `∞(X) :
∀ε > 0{x : |f(x)| ≥ ε} is finite}. In particular this applies to the bounded space N,
where c0(N) = c0. Since `∞(X) carries the initial structure with respect to these
maps c0(X) is closed. It remains to show that Cc(X) is c∞-dense in c0(X). So let
f ∈ c0(X). Let {x1, x2, . . . } := {x : f(x) 6= 0}.

We consider first the case, where there exists some δ > 0 such that |f(xn)| ≥ δ for
all n. Then we consider the functions fn := f · χx1,...,xn ∈ Cc(X). We claim that
n(f − fn) is bounded in `∞(X,R). In fact let B ∈ B. Then {n : xn ∈ B} = {n :
xn ∈ B and |f(xn)| ≥ δ} is finite. Hence {n(f − fn)(x) : x ∈ B} is finite and thus
bounded, i.e. fn converges Mackey to f .

Now the general case. We set Xn := {x ∈ X : |f(x)| ≥ 1
n} and define fn := f ·χXn .

Then each fn satisfies the assumption of the particular case with δ = 1
n and hence is

a Mackey limit of a sequence in Cc(X). Furthermore n(f−fn) is uniformly bounded
by 1, since for x ∈ Xn it is 0 and otherwise |n(f − fn)(x)| = n|f(x)| < 1. So after
forming the Mackey adherence (i.e. adding the limits of all Mackey-convergent
sequences contained in the set, see 2.36 for a formal definition) twice, we obtain
c0(X).

Now we want to show that c0(X) is in fact the c∞-completion of Cc(X). For this
we need the following proposition:

2.32 Proposition. c∞-completion via c∞-dense embeddings.
Let E be c∞-dense and bornologically embedded into a c∞-complete seminormed
space F . If E → F has the extension property for bounded linear functionals, then
F is bornologically isomorphic to the c∞-completion of E.

Proof. We have to show that E → F has the universal property for extending
bounded linear maps T into c∞-complete seminormed spaces G. Since we are only
interested in bounded mappings, we may take the bornologification of G and hence
may assume that G is bornological. Consider the following diagram

E //

T

��

F

λ̃◦T

��

��eT

��

∏
G′ R

prλ

""E
EEEEEEE

G
- 

δ
<<yyyyyyyy

� � λ // R
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The arrow δ, given by δ(x)λ := λ(x), is a bornological embedding, i.e. the image of
a set is bounded iff the set is bounded, since B ⊆ G is bounded iff λ(B) ⊆ R is
bounded for all ` ∈ G′, i.e. δ(B) ⊆

∏
G′ R is bounded.

By assumption the dashed arrow on the right hand side exists, hence by the uni-
versal property of the product the dashed vertical arrow exists. Remains to show
that it has values in the image of δ. But it is bounded, hence we have

T̃ (F ) = T̃ (E
c∞

) ⊆ T̃ (E)
c∞

⊆ δ(G)
c∞

= δ(G),

since G is c∞-complete and hence also δ(G), which is thus c∞-closed.

The uniqueness follows, since as a bounded linear map T̃ has to be continuous
for the c∞-topology (since it preserves the smooth curves by 2.20 which in turn
generate the c∞-topology) and E lies dense in F with respect to this topology.

2.33 Example. c0(X).
We claim that c0(X) is the c∞-completion of the subspace Cc(X) in `∞(X) formed
by the finite sequences.
We may assume that the bounded sets of X are formed by those subsets B, for
which f(B) is bounded for all f ∈ `∞(X). Obviously any bounded set has this
property and the space `∞(X) is not changed by adding these sets. Furthermore
the restriction map ιB : `∞(X)→ `∞(B) is also bounded for such a B, since using
the closed graph theorem we only have to show that evb ◦ιB = ι{b} is bounded for
every b ∈ B, see [2, 5.3.8], which is obviously the case.

By the previous proposition it is enough to show the universal property for bounded
linear functionals. In analogy to Banach-theory, we only have to show that the dual
Cc(X)′ is just

`1(X) := {g : X → R : supp g is bounded and g is absolutely summable}.

In fact any such g acts even as bounded linear functional on `∞(X,R) by 〈g, f〉 :=∑
x g(x) f(x), since a subset is bounded in `∞(X) iff it is uniformly bounded on

all bounded sets B ⊆ X. Conversely let ` : Cc(X) → R be bounded and linear
and define g : X → R, by g(x) := `(ex), where ex denotes the function given by
ex(y) := 1 for x = y and 0 otherwise. Obviously `(f) = 〈g, f〉 for all f ∈ Cc(X).
Suppose indirectly supp g = {x : `(ex) 6= 0} is not bounded. Then there exists a
sequence xn ∈ supp g and a function f ∈ `∞(X) such that |f(xn)| ≥ n. In particular
the only bounded subsets of {xn : n ∈ N} are the finite ones. Hence { n

|g(xn)|exn} is
bounded in Cc(X) but the image under ` is not. Furthermore g has to be absolutely
summable, since the set of finite subsums of

∑
x sign g(x) ex is bounded in Cc(X)

and its image under ` are the subsums of
∑

x |g(x)|.

2.34 Corollary. Counter-examples on c∞-topology.
The following statements are false:

1. The c∞-closure of a subset (or of a linear subspace) is given by the Mackey
adherence.

2. A subset U of E that contains a point x and has the property, that every
sequence which M -converges to x belongs to it finally, is a c∞-neighborhood
of x.

3. A c∞-dense subspace of a c∞-complete space has this space as c∞-comple-
tion.

4. If a subspace E is c∞-dense in the total space, then it is also c∞-dense in
each linear subspace lying inbetween.
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5. The c∞-topology of a linear subspace is the trace of the c∞-topology of the
whole space.

6. Every bounded linear functional on a linear subspace can be extended to such
a functional on the whole space.

7. A linear subspace of a bornological locally convex space is bornological.
8. The c∞-completion preserves embeddings.

Proof. (1) For this we give an example, where the M -adherence of Cc(X) is not
all of c0(X). By M -adherence we mean the set formed by all limits of sequences in
this subset which are M -convergent in the total space.
Let X = N × N and take as bounded sets all sets of the form Bµ := {(n, k) : n ≤
µ(k)}, where µ runs through all functions N → N. Let f : X → R be defined by
f(n, k) := 1

k . Obviously f ∈ c0(X), since for given j ∈ N and function µ the set of
points (n, k) ∈ Bµ for which f(n, k) = 1

k ≥
1
j is the finite set {(n, k) : k ≤ j, n ≤

µ(k)}.
Assume there were some sequence fn ∈ Cc(X) Mackey-convergent to f . By passing
to a subsequence we may assume that n2(f − fn) is bounded. Now choose µ(k) to
be larger than all of the finitely many n, with fk(n, k) 6= 0. If k2(f −fk) is bounded
on Bµ, then in particular {k2(f − fk)(µ(k), k) : k ∈ N} has to be bounded, but
k2(f − fk)(µ(k), k) = k2 1

k − 0 = k.

(2) Let A be a set for which (1) fails, and choose x in the c∞-closure of A but not
in the M -adherence of A. Then U := E \ A satisfies the assumptions of (2). In
fact let xn be a sequence, which converges Mackey to x and assume that it is not
finally in U . So we may assume without loss of generality that xn /∈ U for all n, but
then A 3 xn → x would imply that x is in the Mackey adherence of A. However
U cannot be a c∞-neighborhood of x. In fact such a neighborhood must meet A,
since x is assumed to be in the c∞-closure of A.

(3) Let F be a locally convex vector space whose M-adherence in its c∞-completion
E is not all of E, e.g. Cc(X) ⊆ c0(X) as in the previous counter-example. Choose
a y ∈ E that is not contained in the M-adherence of F and let F1 be the subspace
of E generated by F ∪ {y}. We claim that F1 ⊂ E can not be the c∞-completion
although F1 is obviously Mackey dense in the convenient vector space E. In order
to see this we consider the linear map ` : F1 → R characterized by `(F ) = 0 and
`(y) = 1. Clearly ` is well defined.

` : F1 → R is bornological: For any bounded B ⊂ F1 there exists an N such that
B ⊆ F + [−N,N ]y. Otherwise bn = xn + tny ∈ B would exist with tn → ∞ and
xn ∈ F . This would imply that bn = tn(xn

tn
+ y) and thus −xn

tn
would converge

Mackey to y; contradiction.

Now assume that a bornological extension ¯̀to E exists. Then F ⊆ ker(¯̀) and ker(¯̀)
is c∞-closed, which is a contradiction to the c∞-denseness of F in E. So F1 ⊂ E
does not have the universal property of a c∞-completion.

This shows also that (6) fails.

(4) Furthermore it follows that F is c∞F1-closed in F1 although F and hence F1

are c∞-dense in E.

(5) The trace of the c∞-topology of E to F1 cannot be the c∞-topology of F1, since
for the first one F is obviously dense.

(7) Obviously the trace topology of the bornological topology on E cannot be
bornological on F1, since otherwise the bounded linear functionals on F1 would be
continuous and hence extendable to E.
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(8) Furthermore, the extension of the inclusion ι : F ⊕ R ∼= F1 → E to the com-
pletion is given by (x, t) ∈ E ⊕ R ∼= F̃ ⊕ R = F̃1 7→ x + ty ∈ E and has as kernel
the linear subspace generated by (y,−1). Hence the extension of an embedding to
the c∞-completions need not be an embedding anymore, in particular the inclusion
functor does not preserve injectivity of morphisms.

2.35 Proposition. Inductive representation of bornological lcs.
For a locally convex space E the bornologification Eborn is the colimit of all the
normed spaces EB for the absolutely convex bounded sets B. The colimit of the
respective completions ẼB is the linear subspace of the c∞-completion Ẽ consisting
of all limits in Ẽ of Mackey Cauchy sequences in E.

Proof. Let E1 be the Mackey adherence of E in the c∞-completion Ẽ, which is
a subspace of the locally convex completion Êborn. For every absolutely convex
bounded set B we have the continuous inclusion EB → Eborn, and by passing
to the c∞-completion we get mappings ÊB = ẼB → Ẽ. These mappings commute
with the inclusions ÊB → ÊB′ for B ⊆ B′ and have values in the Mackey adherence
of E, since every point in ÊB is the limit of a sequence in EB and hence its image
is the limit of this Mackey-Cauchy-sequence in E.

ÊB

  A
AA

AA
AA

A
// ÊB′

}}||
||

||
||

E1
_�

��
Ẽ

We claim that the Mackey adherence E1 together with these mappings has the
universal property of the colimit colimB ÊB . In fact let T : E1 → F be a linear
mapping, such that ÊB → E1 → F is continuous for all B. In particular T |E : E →
F has to be bounded, and hence T |Eborn : Eborn → F is continuous. Thus it has a
unique continuous extension T̂ : E1 → F̂ and it remains to show that this extension
is T . So take a point x ∈ E1. Then there exists a sequence (xn) in E, which converges
Mackey to x. Thus the xn form a Cauchy-sequence in some EB and hence converge
to some y in ÊB . Then ιB(y) = x, since the mapping ιB : ÊB → E1 is continuous.
Since the trace of T to ÊB is continuous T (xn) converges to T (ιB(y)) = T (x) and
T (xn) = T̂ (xn) converges to T̂ (x), i.e. T (x) = T̂ (x).

In spite of (1) in 2.34 we can use the Mackey adherence to describe the c∞-closure
in the following inductive way:

2.36 Proposition. Mackey adherences.
For ordinals α let the Mackey-adherence A(α) of order α be defined recursively by:

A(α) :=

{
M-Adh(A(β)) if α = β + 1⋃

β<αA
(β) if α is a limit ordinal.

Then A
c∞

= AΩ, where Ω denotes the first uncountable ordinal, i.e. the set of all
countable ordinals.

Proof. Let us first show that A(Ω) is c∞-closed. So take a sequence xn ∈ A(Ω) =⋃
α<ω A

(α), which converges Mackey to some x. Then there are αn < Ω with xn ∈
A(αn). Let α := supn αn. Then α is a again countable and hence less than Ω.
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Thus xn ∈ A(αn) ⊆ A(α) and therefore x ∈ M-Adh(A(α)) = A(α+1) ⊆ A(Ω) since
α+ 1 ≤ Ω.

It remains to show that A(α) is contained in A
c∞

for all α. We prove this by
transfinite induction. So assume that for all β < α we have A(β) ⊆ A

c∞

. If α is
a limit ordinal then A(α) =

⋃
β<αA

(β) ⊆ A
c∞

. If α = β + 1 then every point in

A(α) = M-Adh(A(β)) is the Mackey-limit of some sequence in A(β) ⊆ Ac∞

, and since
A

c∞

is c∞-closed, this limit has to belong to it. So A(α) ⊆ Ac∞

in all cases.

Smooth Maps and the Exponential Law

Now let us start proving the exponential law C∞(U × V, F ) ∼= C∞(U,C∞(V, F ))
first for U = V = F = R.

2.37 Theorem. Simplest case of exponential law.
Let f : R2 → R be an arbitrary mapping. Then all iterated partial derivatives exist
and are locally bounded if and only if the associated mapping f∨ : R → C∞(R,R)
exists as a smooth curve, where c∞(R,R) is considered as the Fréchet space with the
topology of uniform convergence of each derivative on compact sets. Furthermore
we have (∂1f)∨ = d(f∨) and (∂2f)∨ = d ◦ f∨ = d∗(f∨).

Proof. We have several possibilities to prove this result. Either we show Mackey-
convergence of the difference quotients, via the boundedness of 1

t

(
c(t)−c(0)

t − c′(0)
)
.

And then use the trivial exponential law `∞(X×Y,R) ∼= `∞(X, `∞(Y,R)), or we use
the induction step proved in 1.8, namely that f∨ : R→ C(R,R) is differentiable iff
∂1f exists and is continuous R2 → R, together with the exponential law C(R2,R) ∼=
C(R, C(R,R)). We choose the latter method.

For this we have to note first that if for a function g the partial derivatives ∂1g and
∂2g exist and are locally bounded then g is continuous:

g(x, y)− g(0, 0) = g(x, y)− g(x, 0) + g(x, 0)− g(0, 0)

= y∂2g(x, r2y) + x∂1g(r1x, 0)

for suitable r1, r2 ∈ [0, 1], which goes to 0 with (x, y).

(⇒) By what we just said, all iterated partial derivatives of f are continuous.

First observe that f∨ : R → C∞(R,R) makes sense and dq(f∨(t)) = (∂q
2f)∨(t) for

all t ∈ R.

Next we claim that f∨ : R → C∞(R,R) is differentiable, with derivative d(f∨) =
(∂1f)∨, or equivalently that for all a the curve

c : t 7→

{
f∨(t+a)−f∨(a)

t for t 6= 0
(∂1f)∨(a) otherwise

is continuous as curve R → C∞(R,R). Without loss of generality we may assume
that a = 0. Since C∞(R,R) carries the initial structure with respect to the linear
mappings dp : C∞(R,R) → C(R,R) we have to show that dp ◦ c : R → C(R,R)
is continuous, or equivalently by the exponential law for continuous maps, that
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(dp ◦ c)∧ : R2 → R is continuous. For t 6= 0 and s ∈ R we have

(dp ◦ c)∧(t, s) = dp(c(t))(s)

= dp

(
f∨(t)− f∨(0)

t

)
(s)

=
∂p
2f(t, s)− ∂p

2f(0, s)
t

by what we mentioned above

=
∫ 1

0

∂1∂
p
2f(t τ, s) dτ by the fundamental theorem.

For t = 0 we have

(dp ◦ c)∧(0, s) = dp(c(0))(s)

= dp((∂1f)∨(0))(s)

= (∂p
2 (∂1f))∨(0)(s) by what we mentioned above

= ∂p
2 (∂1f(0, s))

= ∂1(∂
p
2f(0, s)) by the theorem of Schwarz

So we see that (dp◦c)∧(t, s) =
∫ 1

0
∂1∂

p
2f(t τ, s) dτ for all (t, s). This function is conti-

nuous in (t, s), since ∂1∂
p
2f : R2 → R is continuous, hence (t, s, τ) 7→ ∂1∂

p
2f(t τ, s) is

continuous, and therefore also (t, s) 7→ (τ 7→ ∂1∂
p
2f(t τ, s)) from R2 → C([0, 1],R).

Composition with the continuous linear mapping
∫ 1

0
: C([0, 1],R) → R gives the

continuity of (dp ◦ c)∧.

Now we proceed by induction. By the induction hypothesis applied to ∂1f , we
obtain that d(f∨) = (∂1f)∨ and (∂1f)∨ : R → C∞(R,R) is n-times differentiable,
so f∨ is (n+ 1)-times differentiable.

(⇐) First remark that for a smooth map f : R → C∞(R,R) the associated map
f∧ : R2 → R is locally bounded: Since f is smooth f(I1) is compact hence bounded
in C∞(R,R) for all compact intervals I1. In particular f(I1)(I2) = f∧(I1 × I2) has
to be bounded in R for all compact intervals I1 and I2.

Since f is smooth both curves df and d ◦ f = d∗f are smooth (use 2.2 and that
d is continuous and linear). An easy calculation shows that the partial derivatives
of f∧ exist and are given by ∂1f

∧ = (df)∧ and ∂2f
∧ = (d ◦ f)∧. So one obtains

inductively that all iterated derivatives of f∧ exist and are locally bounded, since
they are associated to smooth curves R→ C∞(R,R).

In order to proceed to more general cases of the exponential law we need a definition
of C∞-maps defined on infinite dimensional spaces. This definition should at least
guarantee the chain rule. And so one could take the weakest notion that satisfies
the chain rule. However consider the following

2.38 Example.
We consider the following 3-fold “singular covering” f : R2 → R2 given in polar
coordinates by (r, ϕ) 7→ (r, 3ϕ). In cartesian coordinates we obtain the following
formula for the values of f :

(r cos(3ϕ), r sin(3ϕ)) = r
(
(cosϕ)3 − 3 cosϕ(sinϕ)2, 3 sinϕ(cosϕ)2 − (sinϕ)3

)
=
(
x3 − 3xy2

x2 + y2
,
3x2y − y3

x2 + y2

)
.

Note that the composite from the left with any orthonormal projection is just the
composite of the first component of f with a rotation from the right (Use that f
intertwines the rotation with angle δ and the rotation with angle 3δ).
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Obviously the map f is smooth on R2 \ {0, 0}. It is homogeneous of degree 1, and
hence the directional derivative is f ′(0)(v) = ∂

∂t |t=0f(tv) = f(v). However both
components are not linear with respect to v and thus are not differentiable at
(0, 0).

Obviously f : R2 → R2 is continuous.

We claim that f is differentiable along differentiable curves, i.e. (f ◦ c)′(0) exists,
provided c′(0) exists.
Only the case c(0) = 0 is not trivial. Since c is differentiable at 0 the curve c1 defined
by c1(t) := c(t)

t for t 6= 0 and c′(0) for t = 0 is continuous at 0. Hence f(c(t))−f(c(0))
t =

f(t c1(t))−0
t = f(c1(t)). This converges to f(c1(0)), since f is continuous.

Furthermore, if f ′(x)(v) denotes the directional derivative, which exists everywhere,
then (f ◦ c)′(t) = f ′(c(t))(c′(t)). Indeed for c(t) 6= 0 this is clear and for c(t) = 0 it
follows from f ′(0)(v) = f(v).

The directional derivative of the 1-homogeneous mapping f is 0-homogeneous: In
fact for s 6= 0 we have

f ′(sx)(v) =
∂

∂t

∣∣∣∣
t=0

f(s x+ tv) =

= s
∂

∂t

∣∣∣∣
t=0

f(x+
t

s
v) = s f ′(x)(

1
s
v) = f ′(x)(v)

For any s ∈ R we have f ′(s v)(v) = ∂
∂t |t=0f(s v + tv) = ∂

∂t |t=st f(v) = f(v).

Using this homogeneity we show next, that it is also continuously differentiable
along continuously differentiable curves. So we have to show that (f ◦ c)′(t) →
(f ◦ c)′(0) for t→ 0. Again only the case c(0) = 0 is interesting. As before we factor
c as c(t) = t c1(t). In the case, where c′(0) = c1(0) 6= 0 we have for t 6= 0 that

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(t c1(t))(c′(t))− f ′(0)(c1(0))

= f ′(c1(t))(c′(t))− f ′(c1(0))(c1(0))

= f ′(c1(t))(c′(t))− f ′(c1(0))(c′(0)),

which converges to 0 for t → 0, since (f ′)∧ is continuous (and even smooth) on
(R2 \ {0})× R2.
In the other case, where c′(0) = c1(0) = 0 we consider first the values of t, for which
c(t) = 0. Then

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(0)(c′(t))− f ′(0)(c′(0))

= f(c′(t))− f(c′(0))→ 0,

since f is continuous. For the remaining values of t, where c(t) 6= 0, we factor
c(t) = |c(t)| c1(t), with c1(t) ∈ {x : ‖x‖ = 1}. Then

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(c1(t))(c′(t))− 0→ 0,

since f ′(x)(c′(t))→ 0 for t→ 0 uniformly for ‖x‖ = 1, since c′(t)→ 0.

Furthermore f ◦ c is smooth for all c which are smooth and nowhere infinitely
flat. In fact a smooth curve c with c(k)(0) = 0 for k < n can be factored as
c(t) = tncn(t) with smooth cn, by Taylor’s formula with integral remainder. Since
c(n)(0) = n! cn(0), we may assume that n is chosen maximal and hence cn(0) 6= 0.
But then (f ◦ c)(t) = tn · (f ◦ cn)(t), and f ◦ cn is smooth.

A completely analogous argument shows also that f ◦ c is real analytic for all real
analytic curves c : R→ R2.
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However, let us show that f ◦c is not Lipschitz-differentiable even for smooth curves
c. For x 6= 0 we have

(∂2)2f(x, 0) =
(

∂
∂s

)2 |s=0f(x, s) = x
(

∂
∂s

)2 |s=0f(1, 1
xs) =

= 1
x

(
∂
∂s

)2 |s=0f(1, s) =: a
x 6= 0.

Now we choose a smooth curve which passes for each n in finite time tn through
( 1

n2n+1 , 0) with locally constant velocity vector (0, 1
nn ). Then

(f ◦ c)′(tn + t) = ∂1f(c(tn + t)) pr1(c
′(tn + t))︸ ︷︷ ︸
=0

+∂2f(c(tn + t)) pr2(c
′(tn + t))

(f ◦ c)′′(tn) = (∂2)2f(c(tn)) (pr2(c
′′(tn)))2 = a

n2n+1

n2n
= na,

which is unbounded.

So although preservation of (continuous) differentiability is not enough to ensure
differentiability of a function R2 → R we now prove that smoothness can be tested
with smooth curves.

2.39 Boman’s theorem.
[5] For a mapping f : R2 → R the following assertions are equivalent:

1. All iterated partial derivatives exist and are continuous.
2. All iterated partial derivatives exist and are locally bounded.
3. For v ∈ R2 the directional derivatives

dn
vf(x) := ( ∂

∂t )
n|t=0(f(x+ tv))

exist and are locally bounded with respect to x.
4. For all smooth curves c : R→ R2 the composite f ◦ c is smooth.

Proof. (1⇒2) is obvious.

(2⇒1) follows immediately, since the local boundedness of ∂1f and ∂2f imply the
continuity of f (see also the proof of 2.37):

f(t, s)− f(0, 0) = t

∫ 1

0

∂1f(τt, s)dτ + s

∫ 1

0

∂2f(0, σs)dσ.

(1⇒4) is a direct consequence of the chain rule, namely that (f ◦ c)′(t) = ∂1f(c(t)) ·
x′(t) + ∂2f(c(t)) · y′(t), where c = (x, y).

(4⇒3) Obviously dp
vf(x) := ( d

dt )
p|t=0f(x+ tv) exists, since t 7→ x+ tv is a smooth

curve. Suppose dp
vf is not locally bounded. So we may assume w.l.o.g. that a fast

converging sequence xn to x exists such that |dp
vf(xn)| ≥ 2n2

. Let c be a smooth
curve with c(t + tn) = xn + t

2n v locally for some sequence tn → 0. Then (f ◦
c)(p)(tn) = dp

vf(xn) 1
2np is unbounded, which is a contradiction.

(3⇒1) First we claim that dp
vf is continuous. We prove this by induction on p:

dp
vf(.+ tv)− dvpf(.) = t

∫ 1

0
dp+1

v f(.+ tτv)dτ → 0 for t→ 0 uniformly on bounded
sets. Suppose now that |dp

vf(xn)−dp
vf(x)| ≥ ε for some sequence xn → x. Without

loss of generality we may assume that dp
vf(xn)− dp

vf(x) ≥ ε. Then by the uniform
convergence there exists a δ > 0 such that dp

vf(xn + tv) − dp
vf(x + tv) ≥ ε

2 for
|t| ≤ δ. Integration

∫ δ

0
dt yields

dp−1
v f(xn + δv)− dp−1

v f(xn)−
(
dp−1

v f(x+ δv)− dp−1
v f(x)

)
≥ εδ

2 ,
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but by induction hypothesis the left hand side converges towards(
dp−1

v f(x+ δv)− dp−1
v f(x)

)
−
(
dp−1

v f(x+ δv)− dp−1
v f(x)

)
= 0

To complete the proof we use convolution by an approximation of unity. So let
ϕ ∈ C∞(R2,R) have compact support,

∫
ϕ = 1, and ϕ(y) ≥ 0 for all y. Define

ϕε(x) := 1
ε2ϕ( 1

εx) and let

fε(x) := (f ? ϕε)(x) =
∫

R2
f(x− y)ϕε(y) dy =

∫
R2
f(x− εy)ϕ(y)dy.

Since the convolution fε := f ?ϕε of a continuous function f with a smooth function
ϕε with compact support is differentiable with directional derivative dv(f ?ϕε)(x) =
(f ? dvϕε)(x), we obtain that fε is smooth. And since f ? ϕε → f in C(R2,R) for
ε→ 0 and any continuous function f , we conclude dp

vfε = dp
vf ?ϕε → dp

vf uniformly
on compact sets.

We remark now that for a smooth map g : R2 → R we have by the chain rule

dvg(x+ tv) =
d

dt
g(x+ tv) = ∂1g(x+ tv) · v1 + ∂2g(x+ tv) · v2

that

dp
vg(x) =

p∑
j=0

(
p

i

)
vi
1v

p−i
2 ∂i

1∂
p−i
2 g(x).

Hence we can calculate the iterated derivatives ∂i
1∂

p−i
2 for 0 ≤ i ≤ p from p +

1 many derivatives dp
vjg(x) provided the vj are chosen in such a way, that the

Vandermonde’s determinant det((vj
1)

i(vj
2)

p−i)ij 6= 0. For this choose v2 = 1 and all
the v1 pairwise distinct, then det((vj

1)
i(vj

2)
p−i)ij =

∏
j>k(v1,j − v1,k) 6= 0.

Hence the iterated derivatives of fε are linear combinations of the derivatives dp
vfε

for p + 1 many vectors v, where the coefficients depend only on the v’s. So we
conclude that the iterated derivatives of fε form a Cauchy-sequence in C(R2,R)
and hence converge to continuous functions fα. Hence all iterated derivatives ∂αf of
f exist and are equal to these continuous functions fα, by the following lemma.

2.40 Lemma.
Let fε → f in C(R2,R) and dvfε → fv in C(R2,R). Then dvf exists and equals
fv.

Proof. We have to show that for fixed x, v ∈ R2 the curve

c : t 7→

{
f(x+tv)−f(x)

t for t 6= 0
fv(x) otherwise

is continuous from R → R. The corresponding curve cε for fε can be rewritten
as cε(t) =

∫ 1

0
dvfε(x + τ t v) dτ , which converges by assumption uniformly for t in

compact sets to the continuous curve t 7→
∫ 1

0
fv(x+ τ t v) dτ . Pointwise it converges

to c(t), hence c is continuous.

For the vector valued case of the exponential law we need a locally convex structure
on C∞(R, E).
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2.41 Definition. Space of curves

Let C∞(R, E) be the locally convex vector space of all smooth curves in E, with
the pointwise vector operations and with the topology of uniform convergence on
compact sets of each derivative separately. This is the initial topology with respect
to the linear mappings C∞(R, E) −dk

→ C∞(R, E) → `∞(K,E), where k runs
through N, where K runs through all compact subsets of R, and where `∞(K,E)
carries the topology of uniform convergence.

Note that the derivatives dk : C∞(R, E) → C∞(R, E), the point evaluations evt :
C∞(R, E)→ E and the pull backs g∗ : C∞(R, E)→ C∞(R, E) for all g ∈ C∞(R,R)
are continuous and linear.

2.42 Lemma.
A space E is c∞-complete iff C∞(R, E) is.

Proof. (⇒) The mapping c 7→ (c(n))n∈N gives by definition an embedding of
C∞(R, E) into the c∞-complete product

∏
n∈N `

∞(R, E). Its image is a closed sub-
space, since the previous lemma can be easily generalized to curves c : R→ E.

(⇐) Consider the continuous linear mapping const : E → C∞(R, E) given by
x 7→ (t 7→ x). It has as continuous left-inverse the evaluation at any point (e.g.
ev0 : C∞(R, E)→ E, c 7→ c(0)). Hence E can be identified with the closed subspace
of C∞(R, E), given by the constant curves, and is thereby itself c∞-complete.

2.43 Lemma. Curves into limits.
A curve into a c∞-closed subspace of a space is smooth if and only if it is smooth
into the total space. In particular a curve is smooth into a projective limit, if all its
components are smooth.

Proof. Since the derivative of a smooth curve is the Mackey-limit of the difference
quotient, the c∞-closedness implies that this limit belongs to the subspace. Thus
we deduce inductively that all derivatives belong to the subspace, and hence the
curve is smooth into the subspace.

The result on projective limits now follows, since obviously a curve is smooth into
a product, if all its components are smooth.

We show now that the bornology, but obviously not the topology, on function spaces
can be tested with the linear functionals on the range space.

2.44 Lemma. Bornology of C∞(R, E).
The family

{`∗ : C∞(R, E)→ C∞(R,R) : ` ∈ E∗}
generates the bornology of C∞(R, E).

A set is bounded if and only if each derivative is uniformly bounded on compact
subsets.

Proof. A set B ⊂ C∞(R, E) is bounded if and only if the sets {dnc(x) : x ∈ I, c ∈
B} are bounded in E for all n ∈ N and compact subsets I ⊂ R.

This is further equivalent to the condition that the set {`(dnc(x)) = dn(` ◦ c)(x) :
x ∈ I, c ∈ B} is bounded in R for all ` ∈ E′, n ∈ N, and compact subsets I ⊂ R
and in turn equivalent to: {` ◦ c : c ∈ B} is bounded in C∞(R,R).

2.45 Proposition. Vector valued simplest exponential law.
For a mapping f : R2 → E the following assertions are equivalent:
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1. f is smooth along smooth curves.
2. All iterated directional derivatives dp

vf exist and are locally bounded.
3. All ∂αf exist and are locally bounded.
4. f∨ : R→ C∞(R, E) exists as a smooth curve.

Proof. We prove this result first for c∞-complete spaces E. Then each of the
statements (1-4) are valid iff the corresponding statement for ` ◦ f is valid for all
` ∈ E∗. Only (4) needs some arguments: In fact f∨(t) ∈ C∞(R, E) iff `∗(f∨(t)) =
(` ◦ f)∨(t) ∈ C∞(R,R) for all ` ∈ E∗ by 2.27. Since C∞(R, E) is c∞-complete
its bornologically isomorphic image in

∏
`∈E∗ C

∞(R,R) is c∞-closed. So f∨ : R→
C∞(R, E) is smooth, iff `∗ ◦f∨ = (`◦f)∨ : R→ C∞(R,R) is smooth for all ` ∈ E∗.
So the proof is reduced to the scalar valid case, which was proved in 2.37 and 2.39.

Now the general case. For the existence of certain derivatives we know by 2.9 that
it is enough that we have some candidate in the space, which is the corresponding
derivative of the map considered as map into the c∞-completion (or even some
larger space). Since the derivatives required in (1-4) depend linearly on each other,
this is true. In more detail this means:

(1⇒ 2) is obvious.

(2⇒ 3) is the fact that ∂α is a universal linear combination of d|α|v f .

(3⇒ 1) follows from the chain rule, saying that (f ◦ c)(p)(t) is a universal linear
combination of ∂αf(c(t))c(p1)

i1
(t) . . . c(pq)

iq
(t) for α = (i1, . . . , iq) and

∑
pj = p.

(3⇔4) since (∂1f)∨ = d(f∨) and (∂2f)∨ = d ◦ f∨ = d∗(f∨). In order to apply 2.9
we have to use that C∞(R, E) is embedded into C∞(R, Ẽ), which is obvious.

For the general case of the exponential law we need a notion of smooth mappings
and a locally convex topology on the corresponding function spaces. Of coarse it
would be also handy to have a notion of smoothness for locally defined mappings.
Since the idea is to test smoothness with smooth curves, such curves should have
locally values in the domains of definition, and hence these domains should be
c∞-open.

2.46 Definition. Smooth mappings and spaces of them

A mapping f : E ⊇ U → F defined on a c∞-open subset U is called smooth (or
C∞) if it maps smooth curves in U to smooth curves in F .

Let C∞(U,F ) denote the locally convex space of all smooth mappings U → F with
pointwise linear structure and the initial topology with respect to all mappings
c∗ : C∞(U,F )→ C∞(R, F ) for c ∈ C∞(R, U).

For U = E = R this coincides with our old definition. Obviously any composition
of smooth mappings is also smooth.

Lemma.
The space C∞(U,F ) is the limit of spaces C∞(R, F ), one for each c ∈ C∞(R, U)
where the connecting mappings are pull backs g∗ along reparametrizations g ∈
C∞(R,R).

Note that this limit is the closed linear subspace in the product∏
c∈C∞(R,U)

C∞(R, F )

consisting of all (fc) with fc◦g = fc ◦ g for all c and all g ∈ C∞(R,R).
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Proof. The mappings c∗ : C∞(U,F ) → C∞(R, F ) define a continuous linear em-
bedding C∞(U,F )→ limc{C∞(R, F )−g∗→ C∞(R, F )}, since c∗(f) ◦ g = f ◦ c ◦ g =
(c ◦ g)∗(f). It is surjective since for any (fc) ∈ limc C

∞(R, F ) one has fc = f ◦ c
where f is defined as x 7→ fconstx(0).

2.47 Theorem. Cartesian closedness.
Let Ui ⊂ Ei be c∞-open subsets. Then a mapping f : U1 × U2 → F is smooth if
and only if the canonically associated mapping f∨ : U1 → C∞(U2, F ) exists and is
smooth.

Proof. We have the following implications:

1. f∨ : U1 → C∞(U2, F ) is smooth.
2. ”⇔”f∨ ◦ c1 : R → C∞(U2, F ) is smooth for all smooth curves c1 in U1, by

2.46.
3. ”⇔”c∗2 ◦ f∨ ◦ c1 : R → C∞(R, F ) is smooth for all smooth curves ci in Ui,

by 2.46 and 2.43.
4. ”⇔”f ◦ (c1 × c2) = (c∗2 ◦ f∨ ◦ c1)∧ : R2 → F is smooth for all smooth curves
ci in Ui, by 2.45.

5. ”⇒”f : U1×U2 → F is smooth, since each curve into U1×U2 is of the form
(c1, c2) = (c1 × c2) ◦∆, where ∆ is the diagonal mapping.

6. ”⇒”f ◦ (c1 × c2) : R2 → F is smooth for all smooth curves ci in Ui, since
the product and the composite of smooth mappings is smooth by 2.46 (and
by 2.39).

2.48 Corollary. Consequences of cartesian closedness.
Let E, F , etc. be locally convex spaces and let U , V , etc. be c∞-open subsets of
such. Then the following canonical mappings are smooth.

1. ev : C∞(U,F )× U → F , (f, x) 7→ f(x);
2. ins : E → C∞(F,E × F ), x 7→ (y 7→ (x, y));
3. ( )∧ : C∞(U,C∞(V,G))→ C∞(U × V,G);
4. ( )∨ : C∞(U × V,G)→ C∞(U,C∞(V,G));
5. comp : C∞(F,G)× C∞(U,F )→ C∞(U,G), (f, g) 7→ f ◦ g;
6. C∞( , ) : C∞(E2, E1)× C∞(F1, F2)→
→ C∞(C∞(E1, F1), C∞(E2, F2)), (f, g) 7→ (h 7→ g ◦ h ◦ f);

7.
∏

:
∏
C∞(Ei, Fi)→ C∞(

∏
Ei,
∏
Fi).

Proof. (1). The mapping associated to ev via cartesian closedness is the identity
on C∞(U,F ), which is C∞, thus ev is also C∞.

(2). The mapping associated to ins via cartesian closedness is the identity on E×F ,
hence ins is C∞.

(3). The mapping associated via cartesian closedness is (f ;x, y) 7→ f(x)(y), which
is the C∞-mapping ev ◦(ev×id).
(4). The mapping associated by applying cartesian closedness twice is (f ;x; y) 7→
f(x, y), which is just a C∞ evaluation mapping.

(5). The mapping associated to comp via cartesian closedness is just (f, g;x) 7→
f(g(x)), which is the C∞-mapping ev ◦(id× ev).

(6). The mapping associated by applying cartesian closed twice is (f, g;h, x) 7→
g(h(f(x))), which is the C∞-mapping ev ◦(id× ev) ◦ (id× id× ev).

(7). Up to a flip of factors the mapping associated via cartesian closedness is the
product of the evaluation mappings C∞(Ei, Fi)× Ei → Fi.
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Next we generalize 2.39 to each finite dimensions.

2.49 Corollary.
[5]. The smooth mappings on open subsets of Rn in the sense of definition 2.46 are
exactly the usual smooth mappings.

Proof. Both conditions are of local nature, so we may assume that the open subset
of Rn is an open box and in turn even Rn itself.

(⇒) If f : Rn → F is smooth then by cartesian closedness 2.47, for each coordinate
the respective associated mapping f∨i : Rn−1 → C∞(R, F ) is smooth, so again by
2.47 we have ∂if = (d∗f∨i)∧, so all first partial derivatives exist and are smooth.
Inductively all iterated partial derivatives exist and are smooth, thus continuous,
so f is smooth in the usual sense.

(⇐) Obviously f is smooth along smooth curves, by the usual chain rule.

2.50 Differentiation of an integral

We turn now again to the question of differentiating an integral. So let f : E ×
R → F be smooth. Then we may form the function f0 : E → F̃ defined by x 7→∫ 1

0
f(x, t) dt. We claim that it is smooth and the directional derivative dvf0(x) =∫ 1

0
dv(f( , t))(x) dt. By cartesian closedness 2.47 the associated mapping f∨ : E →

C∞(R, F ) is smooth, so the mapping
∫ 1

0
◦f∨ : E → F̃ is smooth since integration

is a bounded linear operator and

dvf0(x) = ∂
∂s

∣∣
s=0

f0(x+ sv)

= ∂
∂s

∣∣
s=0

∫ 1

0

f(x+ sv, t)dt

=
∫ 1

0

∂

∂s

∣∣∣∣
s=0

f(x+ sv, t)dt

=
∫ 1

0

dv(f( , t))(x) dt.

But we want to generalize this to functions f defined only on some c∞-open subset
U ⊆ E×R. We have to show that the natural domain U0 := {x ∈ E : {x}× [0, 1] ⊆
U} of f0 is c∞-open in E. We will do this in the following lemma. But then the
proof runs exactly the same way as for globally defined functions. So we obtain the

Proposition.
Let f : E × R ⊇ U → F be smooth with c∞-open U ⊆ E. Then x 7→

∫ b

a
f(x, t) dt

is smooth U0 := {x ∈ E : {x} × [0, 1] ⊆ U} → F̃ and dvf0(x) =
∫ 1

0
dv(f( , t))(x) dt

for all x ∈ U0 and v ∈ E.

2.51 Lemma.
Let U be c∞-open in E×R and K ⊆ R be compact. Then U0 := {x ∈ E : {x}×K ⊆
U} is c∞-open in E.

Proof. Let x : R → E be a smooth curve in E with x(0) ∈ U0, i.e. (x(0), t) ∈ U
for all t ∈ K. We have to show that this is true for all t sufficiently close to 0. So
consider the smooth map x × R : R × R → E × R. By assumption (x × R)−1(U)
is open in c∞(R2) = R2. It contains the compact set {0} × K and hence also a
W × K for some neighborhood W of 0 in R. But this amounts in saying that
x(W ) ⊆ U0.
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Although the c∞-topology of a product is in general not the product of the c∞-
topologies we have:

Corollary. The c∞-topology of a product with Rn.
The c∞-topology of E × Rn is the product-topology of the c∞-topologies of the two
factors, i.e. c∞(E × Rn) = c∞(E)× Rn.

Proof. Since the projections to the factors are linear and continuous, hence smooth,
we always have that the identity c∞(E ×F )→ c∞(E)× c∞(F ) is continuous. It is
not always a homeomorphism: Just take a bounded separately continuous bi-linear
functional, which is not continuous (like the evaluation map) and such that the
c∞-topology on both factors is the bornological topology.
The case of F = Rn follows recursively from the special case where F = R, for which
we can proceed as follows. Take a c∞-open neighborhood U of some point (x, t) ∈
E×R. Since the inclusion map s 7→ (x, s) from R into E×R is continuous and linear
the inverse image of U in R is a neighborhood of t. Let’s take a smaller compact
neighborhood K of t. Then by the previous lemma U0 := {y ∈ E : {y} ×K ⊆ U}
is a c∞-open neighborhood of x and hence U0 ×Ko is a neighborhood of (x, t) in
c∞(E)× R, what was to be shown.

Now we want to define the derivative of a general smooth map and prove the chain
rule for them.

2.52 Corollary. Smoothness of the difference quotient.
For a smooth curve c : R→ E the difference quotient

(t, s) 7→


c(t)− c(s)
t− s

for t 6= s

c′(t) for t = s

is a smooth mapping R2 → E.

Proof. By 2.14 we have f : (t, s) 7→ c(t)−c(s)
t−s =

∫ 1

0
c′(s + r(t − s))dr and by 2.50

it is smooth R2 → Ê. The left hand side has values in E and for t 6= s this is also
true for all iterated directional derivatives. Remains to consider the derivatives for
t = 0. The iterated partial derivatives are given by 2.50 as

dp
vf(t, s) = dp

v

∫ 1

0

c′(s+ r(t− s)) dr

=
∫ 1

0

dp
vc
′(s+ r(t− s)) dr,

where dv acts on the (t, s)-variable. The later integrand is for t = s just a linear
combination of derivatives of c which are independent on r, hence dp

vf(t, s) ∈ E.
Since the derivatives of f ◦ c0 can be expressed as linear combinations of these
directional derivatives by 2.45, these derivatives also belong to E, and thus f is
smooth into E.

2.53 Definition. Spaces of linear mappings

Let L(E,F ) denote the space of all bounded (equivalently smooth by 2.20) linear
mappings from E to F . It is a closed linear subspace of C∞(E,F ) since f is linear
if and only if for all x, y ∈ E and λ ∈ R we have (evx +λ evy − evx+λy)f = 0 . We
equip it with this topology and linear structure.
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So f : U → L(E,F ) is smooth if and only if the composite U −f→ L(E,F ) →
C∞(E,F ) is smooth.

2.54 Theorem. Chain rule.
Let E and F be locally convex spaces and let U ⊂ E be c∞-open. Then the diffe-

rentiation operator

d : C∞(U,F )→ C∞(U,L(E,F )),

df(x)v := lim
t→0

f(x+ tv)− f(x)
t

,

exists and is linear and bounded (smooth). Also the chain rule holds:

d(f ◦ g)(x)v = df(g(x))dg(x)v.

Proof. Since t 7→ x+tv is a smooth curve we know that ˆ̂
d : C∞(U,F )×U×E → F

exists. We want to show that it is smooth, so let (f, x, v) : R→ C∞(U,F )×U ×E
be a smooth curve. Then ˆ̂

d(f(t), x(t), v(t)) = lims→0
f(t)(x(t)+sv(t))−f(t)(x(t))

s =
∂2h(t, 0), which is smooth in t, where the smooth mapping h : R2 → F is gi-
ven by (t, s) 7→ f∧(t, x(t) + sv(t)). By cartesian closedness 2.47 the mapping
d∧ : C∞(U,F )× U → C∞(E,F ) is smooth.

Now we show that this mapping has values in the subspace L(E,F ): d∧(f, x) is ob-
viously homogeneous. It is additive, because we may consider the smooth mapping
(t, s) 7→ f(x+ tv + sw) and compute as follows, using 2.49.

df(x)(v + w) = ∂
∂t

∣∣
t=0

f(x+ t(v + w))

= ∂
∂t

∣∣
t=0

f(x+ tv + 0w) + ∂
∂t

∣∣
t=0

f(x+ 0v + tw)

= df(x)(v) + df(x)w.

So d∧ : C∞(U,F )×U → L(E,F ) is smooth and by 2.47 the mapping d : C∞(U,F )→
C∞(U,L(E,F )) is smooth and obviously linear.

We first prove the chain rule for a smooth curve c instead of g. We have to show
that the curve

t 7→

{
f(c(t))−f(c(0))

t for t 6= 0
f ′(c(0))(c′(0)) for t = 0

is continuous at 0. It can be rewritten as t 7→
∫ 1

0
f ′(c(0) + s(c(t)− c(0)))(c1(t)) ds,

where c1 is the smooth curve given by

t 7→

{
c(t)−c(0)

t for t 6= 0
c′(0) for t = 0

.

Since h : R2 → U × E given by

(t, s) 7→ (c(0) + s(c(t)− c(0)), c1(t))

is smooth, the map t 7→ (s 7→ f ′(c(0) + s(c(t) − c(0)))(c1(t))) is smooth U →
C∞(R, E), and hence t 7→

∫ 1

0
f ′(c(0) + s(c(t) − c(0)))(c1(t))) ds is smooth, and

hence continuous.

For general g we have d(f◦g)(x)(v) = ∂
∂t

∣∣
t=0

(f◦g)(x+tv) = (df)(g(x+0v))( ∂
∂t

∣∣
t=0

(g(x+
tv))) = (df)(g(x))(dg(x)(v)).

2.55 Lemma.
Two locally convex spaces are locally diffeomorphic if and only if they are linearly
diffeomorphic.
Any smooth and 1-homogeneous mapping is linear.
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Proof. By the chain rule the derivatives at corresponding points give the linear
diffeomorphisms.

For a 1-homogeneous mapping f one has df(0)v = ∂
∂t

∣∣
t=0

f(tv) = f(v) and this is
linear in v.

2.56 Exercises

1. Show that a differentiable curve at 0 is continuous at 0.

2. Show that for a locally Lipschitz curve c the convergence

c(± 1
n )− c(0)
± 1

n

→ x

is enough to ensure that c is differentiable at 0 with derivative x.
Hint: Consider

c(t)− c(0)
t

−

(
λ
c( 1

n )− c(0)
1
n

+ µ
c( 1

n+1 )− c(0)
1

n+1

)
with λ 1

n + µ 1
n+1 = t > 0

3. Show that a mapping f : R2 → E is locally Lipschitz along Lipschitz curves if
and only if the partial difference quotients f(t,s)−f(t′,s)

t−t′ and f(t,s)−f(t,s′)
s−s′ are locally

bounded.

4. Show that for a map f : R2 → E the partial difference quotient f(t,s)−f(t′,s)
t−t′ is

locally bounded if and only if f∨ : R→ C(R, E) is locally Lipschitz.

5. Let f(s, t) = sϕ( t
s2 ) where ϕ is smooth and has compact support. Then f is

continuous, the first partial difference quotient is locally bounded, f is smooth in
the second variable, but f is not locally Lipschitz.

6. Let E be a Banach space. Show that a mapping f : E → F is locally Lipschitz
along locally Lipschitz curves if and only if f is locally Lipschitz, i.e. for every a ∈ E
there is a neighborhood U of E such that the set { f(x)−f(y)

‖x−y‖ : x, y ∈ U, x 6= y} is
bounded.
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3. Tensor Products and Linearization

Algebraic Tensor Product

Remark.
The importance of the tensor product is twofold. First it allows linearizing of multi-
linear mappings and secondly it allows to calculate function spaces.

We will consider the spaces of linear and multi-linear mappings between vector
spaces. If we supply all vector spaces E, E1, . . . , En, F with the finest locally con-
vex topology (i.e. the final locally convex topology with respect to the inclusions
of all finite dimensional subspaces - on which the topology is unique) then all li-
near mappings are continuous and all multi-linear mappings are bounded (but not
necessarily continuous as the evaluation map ev : E∗×E → K on an infinite dimen-
sional vector space E shows) and hence it is consistent to denote the corresponding
function spaces by L(E,F ) = L(E,F ) and L(E1, . . . En;F ).

In more detail the first feature is:

3.1 Proposition. Linearization.
Given two linear spaces E and F , then there exists a solution ⊗ : E×F → E⊗F –
called the algebraic tensor product of E and F – to the following universal problem:

E × F
⊗ //

T
##F

FF
FF

FF
FF

E ⊗ F

T̃

!

{{
G

Here ⊗ : E × F → E ⊗ F and T : E × F → G are bilinear and T̃ is linear.

Proof. In order to find E ⊗ F one considers first the case, where G = R. Then we
have that ⊗∗ : (E ⊗ F )∗ → L(E,F ; R) should be an isomorphism. Hence E ⊗ F
could be realized as subspace of (E⊗F )∗∗ ∼= L(E,F ; R)∗. Obviously to each bilinear
functional T : E × F → R corresponds the linear map evT : L(E,F ; R)∗ → R. The
map ⊗ : E × F → E ⊗ F ⊆ L(E,F ; R)∗ has to be such that evT ◦⊗ = T for all
bilinear functionals T : E × F → R, i.e. ⊗(x, y)(T ) = (evT ◦⊗)(x, y) = T (x, y).
Thus we have proved the existence of T̃ := evT for G = R. But uniqueness can be
true only on the linear subspace generated by the image of ⊗, and hence we denote
this subspace E ⊗ F .

For bilinear mappings T : E×F → G into an arbitrary vector space G, we consider
the following diagram, which has quite some similarities with that used in the
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construction of the c∞-completion in 2.31:

E × F
⊗ //

T

��

E ⊗ F

(3)

eT

��

� � //

(2)

��

L(E,F ; R)∗

evλ◦T

��

(1)xx∏
G′ R

prλ

&&MMMMMMMMMMMM

G
, �

δ

::

λ // R
The right dashed arrow (1) and δ exist uniquely by the universal property of the
product in the center. The arrow (2) exists uniquely as restriction of (1) to the
subspace E ⊗F . Finally (3) exists, since the generating subset ⊗(E ×F ) in E ⊗F
is mapped to T (E × F ) ⊆ G and since δ is injective.

Note that ⊗ extends to a functor, by defining T ⊗ S via the following diagram:

E1 × F1
⊗ //

T×S

��

E1 ⊗ F1

T⊗S!

��
E2 × F2 ⊗

// E2 ⊗ F2

Furthermore one easily proves the existence of the following natural isomorphisms:

E ⊗ R ∼= E

E ⊗ F ∼= F ⊗ E
(E ⊗ F )⊗G ∼= E ⊗ (F ⊗G)

In analogy to the exponential law for smooth mappings or continuous mappings,
we show now the existence of a natural isomorphism

L(E,F ;G) ∼= L(E,L(F,G))

again denoted by ( )∨ with inverse isomorphism ( )∧ given by the same formula as
above.
In fact for a bilinear mapping T : E × F → G, the mapping T∨ has values in
L(F,G), since T (x, ) is linear, and it is linear, since L(F,G) carries the initial
vector space structure with respect to the evaluations evy and evy ◦T∨ = T ( , y) is
also linear. The same way one shows that the converse implication is also true.

Note that if both spaces E and F are finite dimensional, then so is L(E,F ; R) and
hence also the dual L(E,F ; R)∗. But then E ⊗ F is finite dimensional too (in fact
dim(E⊗F ) = dimE ·dimF ), as we will see in 3.30, and hence E⊗F = (E⊗F )∗∗ =
L(E,F ; R)∗.

If one factor is infinite dimensional and the other one is not 0, then this is not true.
In fact take F = R, then E ⊗ R ∼= E whereas L(E,R; R)∗ ∼= L(E,L(R,R))∗ ∼=
L(E,R)∗ = E∗∗.

3.2 Vector-valued functions versus scalar valued ones

The second important usage of the tensor product lies in the possibility to express
spaces of vector valued functions as tensor products of spaces of scalar valued
functions times the space of values. In more detail this means, that given some type
of function f : X → R and a vector y ∈ F , then we can form the function X → F
given by x 7→ f(x) · y. If we denote the space of functions X → F of some specific
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type by FX then this means that we have a bilinear mapping RX × F → FX . The
question that arises is, whether it has the universal property of the tensor product,
i.e. whether the natural mapping RX ⊗ F → FX is an isomorphism.

Let us consider the case where X itself is a linear space E and the considered
functions are the linear ones. Then our claim is that E∗ ⊗ F ∼= L(E,F ). For this
we consider the following diagram:

E∗ × F
(1) //

⊗
��

L(E,F )

(3)

��

L(E,F )× L(E∗, F ∗)

(3∧)

��
E∗ ⊗ F � � //

(2)
88

L(E∗, F ; R)∗ R

The first dashed arrow is given by bilinear mapping discussed before, namely
(x∗, y) 7→ (x 7→ x∗(x) y). The second one exists by the universal property of the
tensor product. And since the image of the first one generates L(E,F ) provided E
or F is finite dimensional, we conclude that the second one is surjective. Remains
to show that the third one exists and is a left-inverse. By the exponential law this
mapping would correspond to a bilinear mapping (3∧) : L(E,F )×L(E∗, F ; R)→ R,
which we try to piece together as follows:

L(E,F )× L(E∗, F ; R)

∼=
��

L(E,F )× L(E∗, F ∗)

( )∗×L(E∗,F∗)

��
L(F ∗, E∗)× L(E∗, F ∗)

comp

))RRRRRRRRRRRRRR

comp
uullllllllllllll

L(E∗, E∗)
tr

))SSSSSSSSSSSSSSSS
L(F ∗, F ∗)

tr

uukkkkkkkkkkkkkkkk

R

Clearly the transposition mapping L(E,F )→ L(F ∗, E∗) is linear, and if we apply
the composition map from L(F ∗, E∗) × L(E∗, F ∗) to L(E∗, E∗) or to L(F ∗, F ∗)
it remains to find for a vector space G a linear map L(G,G) → R. If G is finite
dimensional such a map is given by the trace, i.e. the sum over the diagonal entries
of a matrix-representation, or equivalently the derivative of the determinate at the
identity, or equivalently the coefficient of (−λ)dim G−1 in the characteristic polyno-
mial det (T − λ). In order to show that the composite L(E,F ) × L(E∗, F ; R) →
L(F ∗, E∗) × L(E∗, F ∗) → L(E∗, E∗) → R gives a left inverse, it is enough by
the universal property of the tensor product to test on x∗ ⊗ y. This is mapped to
x 7→ x∗(x) · y =: S and furthermore to T 7→ trace(S∗ ◦ T∨). So let us calcula-
te (S∗ ◦ T∨)(u∗)(u) = T (u∗, Su) = T (u∗, x∗(u) · y) = T (u∗, y) · x∗(u). Note that
x∗ ∈ G := E∗ and T ( , y) ∈ G∗ := E∗∗, and for g ∈ G and g∗ ∈ G∗ we have
that the trace of g∗( ) · g is trace(g∗( ) · g) = g∗(g). To show this, extend g to a
basis and then the trace is the entry in the upper left corner, which is g∗(g). So
trace(S∗ ◦ T∨) = T (x∗, y), which was to be shown.

In particular we have shown, that G∗⊗G ∼= L(G,G) for finite dimensional G. And
the trace of g∗ ⊗ g ∈ L(G,G) is just g∗(g) and hence corresponds to the bilinear
map ev : G∗ ×G→ R or the corresponding linear map G∗ ⊗G→ R.
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If both factors are infinite dimensional this will no longer be true, even if we restrict
to continuous mappings. However if we take some appropriate completion, there
might be some chance.

Let us deduce some additional handy formulas for duals, in the case where at least
one of E and F is finite dimensional:

(E ⊗ F )∗ ∼= L(E,F ; R) ∼= L(E,F ∗) ∼= E∗ ⊗ F ∗ and

L(E,F )∗ ∼= (E∗ ⊗ F )∗ ∼= E∗∗ ⊗ F ∗ ∼= L(F,E∗∗) ∼= L(F,E∗; R) ∼= L(E∗, F ∗).

Projective Tensor Product

We turn first to the property of making bilinear continuous mappings into linear
ones. We call the corresponding solution the projective tensor product of E and F
and denote it by E ⊗π F . Obviously it can be obtained by taking the algebraic
tensor product and supplying it with the finest locally convex topology such that
E×F → E⊗F is continuous. This topology exists since the union of locally convex
topologies is locally convex and E×F → E⊗F is continuous for the weak topology
on E ⊗F generated by those linear functionals which correspond to continuous bi-
linear functionals on E × F . It has the universal property, since the inverse image
of a locally convex topology under a linear mapping T̃ is again a locally convex
topology, such that ⊗ is continuous, provided the associated bilinear mapping T is
continuous. However, it is not obvious that this topology is separated, and we prove
that now. We will denote the space of continuous linear mappings from E to F by
L(E,F ), and the space of continuous multi-linear mappings by L(E1, . . . , En;F ).
If all E1, . . . , En are the same space E, we will also write Ln(E;F ).

3.3 Lemma.
E ⊗π F is Hausdorff provided E and F are.

Proof. It is enough to show that the set E∗×F ∗ separates points in E⊗F or even
in L(E,F ; R)∗. So let 0 6= z =

∑
k xk ⊗ yk be given. By replacing linear dependent

xk by the corresponding linear combinations and using bilinearity of ⊗, we may
assume that the xk are linearly independent. Now choose x∗ ∈ E∗ and y∗ ∈ F ∗ be
such that x∗(xk) = δ1,k and y∗(y1) = 1. Then (x∗ ⊗ y∗)(z) = 1 6= 0.

Since a bilinear mapping is continuous iff it is so at 0, a 0-neighborhood basis in
E ⊗π F is given by all those absolutely convex sets, for which the inverse image
under ⊗ is a 0-neighborhood in E × F . A basis is thus given by the absolutely
convex hulls denoted U ⊗ V of the images of U × V under ⊗, where U resp. V
runs through a 0-neighborhood basis of E resp. F . We only have to show that
these sets U ⊗ V are absorbing. So let z =

∑
k xk ⊗ yk ∈ E ⊗ F be arbitrary.

Then there are ak > 0 and bk > 0 such that xk ∈ akU and yk ∈ bkV and hence
z =

∑
k≤K ak bk

xk

ak
⊗ yk

bk
∈ (
∑

k ak bk) · 〈U ⊗ V 〉abs.conv.. The Minkowski-functionals
pU⊗V form a base of the seminorms of E ⊗π F and we will denote them by πU,V .
In terms of the Minkowski-functionals pU and pV of U and V we obtain that
z ∈ (

∑
k pU (xk) pV (yk))U ⊗ V for any z =

∑
k xk ⊗ yk since xk ∈ pU (xk) · U for

closed U , and thus pU⊗V (z) ≤ inf{
∑

k pU (xk) pV (yk) : z =
∑

k xk ⊗ yk}. We now
show the converse:

3.4 Proposition. Seminorms of the projective tensor product.

pU⊗V (z) = inf
{∑

k

pU (xk) · pV (yk) : z =
∑

k

xk ⊗ yk

}
.
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Proof. Let z ∈ λ · U ⊗ V with λ > 0. Then z = λ
∑
λkuk ⊗ vk with uk ∈

U , vk ∈ V and
∑

k |λk| = 1. Hence z =
∑
xk ⊗ vk, where xk = λλkuk, and∑

k pU (xk) · pV (vk) ≤
∑
λ|λk| = λ. Taking the infimum of all λ gives now that

pU⊗V (z) is greater or equal to the infimum on the right side.

3.5 Corollary.
E ⊗π F is normable (metrizable) provided E and F are.

3.6 Lemma. The semi-norms of decomposable tensors.

pU,V (x⊗ y) = pU (x) · pV (y).

Proof. According to [2, 7.1.8] there are x∗ ∈ E∗ and y∗ ∈ F ∗ such that |x∗| ≤ pU

and |y∗| ≤ pV and x∗(x) = pU (x) and y∗(y) = pV (y). If x⊗ y =
∑

k xk ⊗ yk, then

pU⊗V (x⊗ y) ≤ pU (x) · pV (y) = x∗(x) · y∗(y) = (x∗ ⊗ y∗)(x⊗ y) =

=
∑

k

x∗(xk) · y∗(yk) ≤
∑

k

pU (xk) · pV (yk),

and taking the infimum gives the desired result.

3.7 Remark. Functorality.
Given two continuous linear maps T1 : E1 → F1 and T2 : E2 → F2 we can consider
bilinear continuous map given by composing T1 × T2 : E1 × E2 → F1 × F2 with
⊗ : F1×F2 → F1⊗F2. By the universal property of E1×E2 → E1⊗E2 we obtain
a continuous linear map denoted by T1 ⊗ T2 : E1 ⊗ E2 → F1 ⊗ F2.

E1 × E2
⊗ //

T1×T2

��

E1 ⊗ E2

T1⊗T2

��
F1 × F2 ⊗

// F1 ⊗ F2

By the uniqueness of the linearization one obtains immediately that ⊗ is a functor.
Because of the uniqueness of universal solutions one sees easily that one has natural
isomorphisms R⊗ E ∼= E, E ⊗ F ∼= F ⊗ E and (E ⊗ F )⊗G ∼= E ⊗ (F ⊗G).

3.8 Adjoint functors

It would be nice to identify the tensor-product as a left-adjoint functor, since then
several inheritance properties would automatically hold. In order to formulate ad-
jointness of functors we need the notion of Hom-functor: Given a category F we
have the set F (F1, F2) of all morphisms from F1 to F2 for any two objects F1, F2 in
F . This extends to a functor, called Hom-functor, from F op×F to the category Set
of mappings between sets, by defining F (f, g) := f∗ ◦ g∗ = g∗ ◦ f∗ : h 7→ g ◦h◦ f for
any two morphisms f and g in F . Now two functors L : G← F and R : G→ F are
called left and right adjoint to each other, provided there exists a natural isomor-
phism F (F,R(G)) ∼= G(L(F ), G), i.e. for every object F in F and G in G one has
a bijection ( )∨ : G(L(F ), G) → F (F,R(G)), which makes the following diagrams
commutative for all F -morphisms f and G-morphisms g:

G(L(F1), G1)
∼= //

G(L(f),g)

��

F (F1, R(G1))

F (f,R(g))

��
G(L(F2), G2)

∼= // F (F2, R(G2))
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Projective Tensor Product 3.9

We have so far encountered the following examples of adjoint functors:

1. For any locally compact space X the product functor ( )×X from the cate-
gory of continuous maps between topological spaces to itself is left-adjoint to
the function space functor C(X, ) with the topology of uniform convergence
on compact sets, as we have shown in 1.7.

C(Y ×X,Z) ∼= C(Y,C(X,Z))

2. For any locally convex space E the product functor ( )×E from the category
of smooth maps between locally convex spaces to itself is left-adjoint to the
function space functor C∞(E, ). See 2.47 and 2.48.

C∞(F × E,G) ∼= C∞(F,C∞(E,G))

3. The c∞-completion functor E 7→ Ẽ from the category of bounded linear
maps between locally convex spaces and into that of c∞-complete locally
convex spaces is left-adjoint to the forgetful functor in the opposite direction.
See 2.31.

L(Ẽ, F ) ∼= L(E,F ) for all c∞-complete F

4. The bornologification functor E 7→ Eborn from the category of continuous
linear maps between locally convex spaces to that of bornological locally con-
vex spaces is right adjoint to the forgetful functor in the opposite direction.
See 2.8.

L(E,F ) ∼= L(E,Fborn) for all bornological E

5. For any vector space E the tensor product functor ( )⊗E from the category
of linear mappings between vector spaces to itself is left-adjoint to the Hom-
functor L(E, ). See 3.1.

L(F ⊗ E,G) ∼= L(F,L(E,G))

6. The functor, which assigns to each vector space the same space with its finest
locally convex topology is left adjoint to the forgetful functor, which forgets
the topology.

7. Let E be any vector space. Then L( , E) becomes a functor from the cate-
gory of linear maps between vector spaces, into its opposite category, whe-
re all arrows are reversed. The equation L(E,L(F,G)) ∼= L(F,L(E,G)) =
Lop(L(E,G), F ), shows that the functor L( , E) : V S → V Sop is left-adjoint
to the functor L( , E) : V Sop → V S.

One important property of adjoint functors is the following

3.9 Proposition. Continuity of adjoint functors.
Let R be a right adjoint functor. Then R is continuous, i.e. preserves limits. Dually,
let L be a left adjoint functor. Then L is co-continuous, i.e. preserves co-limits.

Proof. It is enough to show the statement for a right-adjoint functor R. So let

Ai
f // Aj

A

pi

__@@@@@@@@ pj

>>~~~~~~~
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be a limit diagram in A. We have to show that

R(Ai)
R(f) // R(Aj)

R(A)
R(pi)

ccGGGGGGGGG R(pj)

;;vvvvvvvvv

is a limit diagram in B. So consider the following diagrams

R(Ai)
R(f) // R(Aj) Ai

f // Aj

R(A)

R(pi)
ccGGGGGGGGG

R(pj)
;;vvvvvvvvv

A

pi

aaDDDDDDDDD

pj

==zzzzzzzzz

B

gi

\\99999999999999999

gj

BB�����������������
h∨ !

OO

L(B)

g∧i

\\99999999999999999

g∧j

BB�����������������
h !

OO

Where the dashed arrow on the right exists by the limit property of A and the one
one the left by the natural isomorphism.

3.10 Adjointness of the tensor functor.
In analogy to the algebraic tensor product we would expect that also for locally
convex spaces ( )⊗πE is left-adjoint to the Hom-functor L(E, ) supplied with some
topology. Since L(E⊗πF,G) ∼= L(E,F ;G) we would need a bijection L(E,F ;G) ∼=
L(E,L(F,G)). Obviously we have the linear injection ( )∨ : L(E,F ;G)→ L(E,L(F,G))
induced from the corresponding bijection of vector-spaces, since a jointly conti-
nuous map is separately continuous, and hence T∨(x) = T (x, ) is continuous. And
if we supply L(F,G) with the topology of uniform convergence on bounded sets,
then T∨ is continuous, since (T∨)−1(NB,W ) = {x : T (x,B) ⊆ W} contains the
0-neighborhood 1

λ U , where U (and V ) are chosen, such that T (U × V ) ⊆ W and
λ > 0 such that B ⊆ λV .

Proposition.
If we supply also L(E,L(F,G)) and L(E,F ;G) with the topology of uniform con-
vergence on bounded sets then the mapping

( )∨ : L(E,F ;G) ↪→ L(E,L(F,G))

is a topological linear embedding.

In fact, a typical neighborhood of L(E,F ;G) is NB1×B2,W and one of L(E,L(F,G))
is NB1,NB2,W

and NB1×B2,W = (( )∨)−1NB1,NB2,W
, so it remains to show that ( )∧

is well defined. Recall that f∧ is given by ev ◦(f ×F ), where ev : L(F,G)×F → G.
However this mappings is continuous only if F is normed. So only for normed
F we have that ( ) ⊗π F is left-adjoint. If F is not normed, then in particular
id ∈ L(F ∗,L(F,R)) but ev = id∧ /∈ L(F ∗, F ; R).

Corollary.
Let E be a normable space. Then ( )⊗π E preserves co-limits.

From the exponential law for continuous and that for smooth mappings, we are used
that one automatically gets an isomorphism between the corresponding function
spaces, cf. 2.48. So one would expect that the linear isomorphism L(E ⊗π F,G) ∼=
L(E,F ;G) is in fact a topological one. If one supplies both spaces with the topology
of uniform convergence on bounded sets, then ⊗∗ : L(E ⊗π F,G) → L(E,F ;G) is
obviously continuous since ⊗ : E × F → E ⊗π F is bounded. In order to prove
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that it is an embedding, we have to find for every bounded set B ⊆ E ⊗π F and 0-
neighborhoodW ⊆ G two bounded sets B1 ⊆ E and B2 ⊆ F and a 0-neighborhoods
U ⊆ G, such that ⊗∗(NB,W ) ⊇ NB1×B2,U . In particular if G = R and W = [−1, 1],
then NB,W is the polar Bo of B and for all bilinear continuous functionals, which
map B1×B2 to U = [−K,K], the corresponding linear functional T̃ on E⊗πF must
be in B0. By enlarging B1 we may assume thatK = 1. Using the bipolar theorem we
deduce from (B1⊗B2)o ⊆ Bo that B ⊆ (B1⊗B2)oo = 〈B1⊗B2〉closed,abs.conv.. Thus
the closed absolutely convex hull of the image of B1×B2 must contain B. Whether
this is true is even for Fréchet spaces unknown. This is also called Grothendieck’s
problème de topologies. For the corresponding result on compact subsets see 3.21.

However bornologically we have an isomorphism:

3.11 Lemma.
With respect to the equi-continuous bornology we have a bornological isomorphism

L(E ⊗π F,G) ∼= L(E,F ;G).

Proof. Let us first show that B ⊆ L(E,F ; R) is equi-continuous iff there exist 0-
neighborhoods U in E and V in F such that B ⊆ (U × V )o.
(⇐) Let (x0, y0) ∈ E × F be given. Choose λ ≥ 1 and µ ≥ 1 such that x0 ∈ λU
and y0 ∈ µV . Then we have for y − y0 ∈ 1

λV ⊆ V and for x− x0 ∈ 1
µU ⊆ U that

|b(x, y)− b(x0, y0)| ≤ |b(x− x0︸ ︷︷ ︸
∈U

, y − y0︸ ︷︷ ︸
∈V

)|+ |b(x− x0︸ ︷︷ ︸
∈ 1

µ U

, y0︸︷︷︸
∈µV

)|+ |b( x0︸︷︷︸
∈λU

, y − y0︸ ︷︷ ︸
∈ 1

λ V

)| ≤ 3.

(⇒) is obvious by the equi-continuity at 0 and since b(0, 0) = 0.

Now the isomorphism is clear since the basis of the equi-continuous bornologies are
(U ⊗ V )o and (U × V )o respectively, where U and V run through 0-neighborhood
basis of E and F .

Since every injective mapping f between vector spaces has a linear left inverse and
every surjective one has a right inverse, the same is true for f ⊗ E and hence we
have:

3.12 Lemma.
The projective tensor product preserves injective and surjective continuous linear
mappings.

3.13 Proposition.
The projective tensor product preserves quotients.

Proof. Let F be a locally convex space and f be a quotient mapping and hence
open. We have to show, that f ⊗π F : E1 ⊗π F → E2 ⊗π F is open. So let U ⊗ V
be a typical 0-neighborhood of E1 ⊗ F . Since the image under a linear map of
an absolutely convex hull is the absolutely convex hull of the image, we have that
(f ⊗ F )(U ⊗ V ) = f(U)⊗ V and hence is a 0-neighborhood in E2 ⊗π F .

Let us consider the dual situation next.

3.14 Example.
⊗π does not preserve embeddings.
In fact consider the isometric embedding `2 → C(K), where K is the closed unit-
ball of (`2)∗ supplied with its compact topology of pointwise convergence, see the
corollary to the Alaoğlu-Bourbaki-theorem in [2, 7.4.12]. This subspace has however
no topological complement, since C(K) has the Dunford-Pettis property (see [14,
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20.7.8], i.e. x∗n(xn)→ 0 for every two sequences xn → 0 in σ(E,E∗) and x∗n → 0 in
σ(E∗, E∗∗)), but no infinite dimensional reflexive Banach space like `2 has it (e.g.
xn := en, x∗n := en) and hence cannot be a complemented subspace of C(K), see
[14, 20.7].

Suppose now that `2 ⊗π (`2)∗ → C(K) ⊗π (`2)∗ were an embedding. The duality
mapping ev : `2× (`2)∗ → R yields a continuous linear mapping s : `2⊗π (`2)∗ → R
and would hence have a continuous linear extension s̃ : C(K) ⊗ (`2)∗ → R. The
corresponding bilinear map would give a continuous mapping s̃∨ : C(K)→ (`2)∗∗ ∼=
`2, which is a left inverse to the embedding `2 → C(K), a contradiction.

In connection with the second usage of tensor products we would expect that for
the product EN = (R ⊗π E)N = RN ⊗π E, i.e. we are looking for preservation of
certain products. But even purely algebraically this fails to be true. In fact take
the coproduct E = R(N). Using that RN ⊗ ( ) is left-adjoint and hence preserves
colimits we get RN ⊗ R(N) ∼= (RN ⊗ R)(N) ∼= (RN)(N), which is strictly smaller
than (R(N))N. However in both spaces the union

⋃
nE

n is dense, so after taking
completions there should be some chance. In order to work with completions we
have to show preservation of dense embeddings. To obtain such a result we need a
dual characterization of such mappings. And this we treat next.

Duality between Topology and Bornology

3.15 Topologifying and Bornologifying

Let LCS be the category of continuous linear maps between locally convex spaces.

On the other hand we can consider bornological spaces. These are sets X with a
bornology, i.e. a set B of subsets of X, which contains all finite subsets and is closed
under formation of finite unions and subsets. The elements of B are called the
bounded sets of X. And a mapping between such sets is called bounded, iff it maps
the bounded sets to bounded sets. If X is in addition a vector space and addition
and scalar multiplication are bounded, then X is called bornological vector space.
If furthermore the convex hull of each bounded set is bounded, then X is called
convex bornological space. Let CBS denote the category of bounded linear maps
between convex bornological spaces.

To every locally convex space (E,U) we can associate a a convex bornological
space (E,B), where the bornology B is given by the von Neumann bounded sets,
i.e. those sets B ⊆ E which are absorbed by all 0-neighborhoods U ∈ U . This
correspondence extends to a functor b : LCS → CBS which leaves the morphisms
and the underlying vector spaces unchanged.

Conversely, we can associate to every convex bornological space (E,B) a locally
convex topology on E given by the 0-neighborhood basis U formed by all bornivorous
subsets U ⊆ E, i.e. those sets which absorb all the bounded sets B ∈ B. This
correspondence extends to a functor t : CBS → LCS which leaves the morphisms
and the underlying vector spaces unchanged.

Let us show next that these functors are adjoint to each other. Since all 0-neighborhoods
are obviously bornivorous with respect to the von Neumann bounded sets we have
that the identity from t(b(E)) → E is continuous. So let F be a convex borno-
logical space and T : t(F ) → E a continuous linear map. We have to show that
T : F → b(E) is bounded. So let B ⊆ F be bounded and U ⊆ E a 0-neighborhood.
We have to show that T (B) gets absorbed by U . But since T : t(F ) → E is con-
tinuous, we have that T−1(U) ⊆ t(F ) absorbs B, i.e. B ⊆ K · T−1(U) for some
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K > 0, and hence T (B) ⊆ K · T (T−1U) ⊆ K ·U . Thus we have a natural bijection
LCS(t(F ), E) ∼= CBS(F, b(E)), and hence t is left adjoint to b. In particular it
follows that b preserves limits and t colimits.

Recall that a locally convex space E is called bornological if tbE = E or equiva-
lently that E lies in the image of t. Conversely a convex bornological space E is
called topological if btE = E or equivalently if E lies in the image of b, i.e. the
bornology is the von Neumann bornology of some locally convex topology. The two
functors t and b restrict to an isomorphism between the category of continuous
linear maps between bornological locally convex spaces and bounded linear maps
between topological convex bornological spaces.

3.16 External duality

There is however a second pair of adjoint functors, which we have used already
several times. Namely we can associate to every locally convex space (E,U) the
dual space E∗ formed by all continuous linear functionals on E supplied with the
bornology of equi-continuous sets. A base of this bornology is given by the polars
Uo of the 0-neighborhoods U ∈ U . For every continuous linear map T : E → F we
obtain a bounded linear map T ∗ : F ∗ → E∗, since T ∗(V o) ⊆ T−1(V )o. In fact let
x∗ ∈ T ∗(V o), i.e. x∗ = T ∗(y∗) = y∗ ◦ T for some y∗ ∈ V o. Then x∗(x) = y∗(Tx) ∈
[−1, 1] for all x ∈ T−1(V ). This gives us a functor ( )∗ : LCS → CBSop.

Conversely we can associate to every bornological space (X,B) the locally convex
space `∞(X,R) formed by all bounded functions onX and supplied with the topolo-
gy of uniform convergence on bounded sets ofX. Every bounded map T : X → Y in-
duces a continuous linear map `∞(T,R) : `∞(Y,R)→ `∞(X,R) given by f 7→ f ◦T .
In fact a typical 0-neighborhood of `∞(X,R) is given by the polar Bo of a bounded
set B ⊆ X and we have `∞(T,R)−1(Bo) = T (B)o. This can be seen directly as
follows:

`∞(T,R)−1(Bo) = {y∗ : (y∗ ◦ T ) ∈ Bo} = {y∗ : (y∗ ◦ T )(B) ⊆ [−1, 1]}
= {y∗ : y∗(T (B)) ⊆ [−1, 1]} = T (B)o.

If X is in addition a convex bornological space E, then we can restrict to the linear
subspaces E′ ⊆ `∞(E,R) formed by the linear bounded functionals, and hence
obtain a functor ( )′ : CBSop → LCS.

Again we show that these two functors form an adjoint pair. So let E be a locally
convex space and F a convex bornological space and consider a linear T : E → F ′.
It is continuous iff for every bounded set B in F there exists a 0-neighborhood U
in E such that T−1(Bo) ⊇ U or equivalently that T∧(U × B) ⊆ [−1, 1], where T∧

denotes the associated bilinear map from E × F → R. If we flip the coordinates
we get a linear map T̃ : F → E∗. In fact T̃ (y) = evy ◦T is continuous, since all
evy : F ′ → R are so. This mapping is bounded, iff for every bounded B ⊆ F there
exists some 0-neighborhood U ⊆ E such that T̃ (B) ⊆ Uo, or equivalently such that
T∧(U × B) ⊆ [−1, 1]. Since for any bounded linear map T : F → E∗ the map T̃
obtained by changing the coordinates is bounded (since evx : E∗ → R are) we have
obtained a natural bijection

LCS(E,F ′) ∼= CBS(F,E∗) = CBSop(E∗, F ).

I.e. ( )′ : CBSop → LCS is right adjoint to ( )∗ : LCS → CBSop and hence carries
limits in CBSop (i.e. colimits in CBS) to limits in LCS and ( )∗ carries colimits
in LCS to limits in CBS.
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3.17 Preservation of certain morphisms

Let us show next that ( )∗ carries topological linear embeddings into bornological
quotient mappings, i.e. mappings where each bounded set in the codomain is the
image of a bounded set in the domain. Up to an isomorphism any topological linear
embedding is given by the inclusion T of a subspace E in F . By 3.16 we know that
T ∗ is bounded. In order to show that it is a bornological quotient map let U ⊆ E be
a 0-neighborhood, which is without loss of generality closed and absolutely convex.
We have to find a 0-neighborhood V of F such that Uo ⊆ T ∗(V o). So let p be a
continuous seminorm on F which extends the Minkowski functional of U and let
V be the closed unit-ball of p. Then every continuous linear functional x∗ ∈ Uo

satisfies |x∗| ≤ p on E and hence extends by Hahn-Banach to a continuous linear
functional y∗ ∈ F ∗ with |y∗| ≤ p. Thus y∗ ∈ V o and T ∗(y∗) = y∗ ◦ T = x∗.

Conversely let us show that ( )′ carries bornological quotient mappings into topolo-
gical embeddings. Since a bornological quotient mapping T : E → F obviously has
to be onto, we conclude that T ∗ : F ′ → E′ is injective. Note that we refrain from
denoting this map T ′ : F ′ → E′ in order to avoid confusion with the derivative.
Since T ∗(T (B)o) = T ∗((T ∗)−1(Bo)) = Bo∩ T ∗(F ′), by what we proved above, and
since the sets T (B)o form a 0-neighborhood basis of F ′ we are done.

Thus if T ∗ : F ∗ → E∗ is a bornological quotient map then (T ∗)∗ : (F ∗)′ → (E∗)′ is
a topological embedding and using the embedding E → L((E∗, E),R) of [2, 7.4.11]
and the commutative diagram

E
� � //

T

��

L(E∗,R)

L(T∗,R)

��

(E∗)′

(T∗)∗

��
F

� � // L(F ∗,R) (F ∗)′

shows that T is an embedding as well. Hence we have proved

3.18 Corollary.
A linear mapping T : E → F is a topological embedding iff the associated mapping
T ∗ : F ∗ → E∗ is a bornological quotient mapping for the equi-continuous bornolo-
gies.
It is a dense embedding iff the associated mapping T ∗ is a bornological isomorphism,
i.e. is invertible in the category of bounded linear mappings.

3.19 Proposition.
The projective tensor product preserves dense mappings and dense embeddings.

Proof. Obviously the tensor product T1⊗T2 of two dense mappings is dense. Other-
wise there would exist a non-trivial continuous linear functional which vanishes on
the image. The corresponding bilinear continuous map would then vanish on the
dense image of T1 × T2, and hence be 0, a contradiction.

Let now T : E2 → E1 be in addition an embedding. By the previous proposition we
have to show that (T ⊗ F )∗ : (E1 ⊗π F )∗ → (E2 ⊗π F )∗ is a quotient mapping for
the equi-continuous bornologies. So let B := (U ⊗ V )o be a typical equi-continuous
subset of (E2 ⊗π F )∗ ∼= L(E2, F ; R) formed by 0-neighborhoods U and V . We may
extend every b ∈ B ⊆ L(E2, F ; R) to a continuous bilinear mapping b̃ ∈ L(E1, F ; R)
defined by ev ◦(E1 × b̌) : E1 × F → E1 × E∗2 = E1 × E∗1 → R. For this recall that
E∗1 = E∗2 by 3.18. This composition is continuous (although the last component is
not), since Ū × V is mapped to ev(Ū × Uo) = ev(Ū × (Ū)o) ⊆ [−1, 1] and Ū is a
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0-neighborhood in E1, see [2, 4.10.3]. Hence B̃ := {b̃ : b ∈ B} ⊆ (Ū ⊗ V )o is the
required equi-continuous subset satisfying (T ⊗ F )∗(B̃) ⊇ B.

3.20 Corollary. Completed projective tensor product.
The projective tensor product E1⊗πE2 is a dense topological subspace of Ê1⊗π Ê2.
The completion of E1⊗πE2 equals that of Ê1⊗π Ê2. It will be denoted by E1⊗̂πE2,
and will be called the completed projective tensor product.

3.21 Theorem. Compact subsets of the projective tensor product.

Compact subsets of E⊗̂πF for metrizable spaces E and F are contained in the
closed absolutely convex hull of a tensor product of precompact sets in E and F .

Proof. Every compact set K in the Fréchet space E⊗̂πF is contained in the closed
absolutely convex hull of a 0-sequence zn ∈ E⊗̂πF by [2, 6.4.3]. For this 0-sequence
we can choose kn strictly increasing, such that zk ∈ Un ⊗ Vn for all k ≥ kn, where
(Un)n and (Vn)n are countable 0-neighborhood bases of the topology of E and F .
For kn ≤ k < kn+1 we can choose finite (disjoint) sets Nk ⊆ N and

∑
j∈Nk

|λj | = 1,
xj ∈ Un and yj ∈ Vn such that zk =

∑
j∈Nk

λjxj ⊗ yj . Let A := {xj : j ∈
⋃

k Nk}
and B := {yj : j ∈

⋃
k Nk}. These are two sequences converging to 0, and hence

are precompact. Furthermore z ∈ K can be written as

z =
∑

k

µkzk =
∑

k

∑
j∈Nk

µkλjxj ⊗ yj

with
∑

k |µk| ≤ 1 and
∑

j∈Nk
|λj | = 1 and hence

∑
k |µk|

∑
j∈Nk

|λj | ≤ 1. From
this it easily follows that the series on the right hand side converges Mackey and
hence z is contained in the closed absolutely convex hull of A⊗B.

3.22 Corollary. Elements of the completed tensor product as limits.
Every z ∈ E⊗̂πF for metrizable E and F has a representation of the form z =∑

n λnxn ⊗ yn, where λ ∈ `1 and x and y are bounded (or even 0-)sequences.

Since for every λ ∈ `1 there exists a ρ ∈ c0 and µ ∈ `1 with λn = ρ2
nµn it is enough

to find bounded sequences xn and yn.

Proof. In the previous proof we have just shown that z =
∑

j µkjλjxj ⊗ yj .

Next we will show some preservation properties with respect to limits. For this we
need.

Some Remarks on Limits

3.23 In category theory one defines a diagram X as a functor from a small category
I (i.e. a category consisting only of a set of morphisms) into some category A. A
cone over such a diagram is an object A ∈ A together with morphisms fi : A→ Xi

for all objects i in I and such that for every morphism α : i→ j in I the following
triangle commutes:

Xi
Xα // Xj

A

fi

``@@@@@@@@

fj

>>~~~~~~~
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A limit is then a maximal cone (X∞, (pi)i) in the following sense. For every cone
(A, (fi)i) there has to be a unique morphism f : A→ X∞ such that all triangles

Xi

X∞

pi

aaCCCCCCCC

A

fi

OO

!

f

==

commute. We can write this into one diagram

Xi
Xα // Xj

X∞

pi

aaCCCCCCCC

pj

=={{{{{{{{

A

fi

\\99999999999999999

fj

BB�����������������
! f

OO

Special cases of limits (The reader is advised to draw the corresponding diagrams):

1. A terminal object X is the limit of the empty diagram, i.e. an object X such
that for every object Y there is a unique morphism Y → X.

2. The product
∏

iXi is the limit of the diagram X given by a discrete category
I, i.e. there are no morphisms beside the identities.

3. A projective limit lim←−i
Xi is a limit of a diagram X indexed by a category

whose objects are the elements of a partially ordered set (T,�) and for all
i � j a unique morphism say (i, j) from i to j is given. In addition one
assumes that any finitely many i have a lower bound. It is easy to check that
for any i ∈ I one has that lim←−j�i

Xj
∼= lim←−j

Xj .
4. An equalizer is the limit of a diagram of the form 1 ⇒ 2 , i.e. two arrows

from one object to another. Note that among the two required arrows the
arrow p2 : X∞ → X2 is superfluous, since it can be obtained as composite
X∞ → X1 ⇒ X2.

5. A pullback X1 ×X3 X2 is the limit of a diagram of the form

X3

X1

Xα1

==||||||||
X2

Xα2

aaBBBBBBBB

Similar to what we said before among the 3 required arrows the arrow p3 : X∞ → X3

is superfluous. And the condition of being a cone only says that Xα1 ◦p1 = Xα2 ◦p2.
The dual concepts, i.e. if all arrows are reversed, are the following:

1. Initial objects are dual to terminal ones;
2. Coproducts are dual to products;
3. Inductive limits are dual to projective ones;
4. Coequalizer are dual to equalizer;
5. Pushouts are dual to pullbacks.

Let us determine these limits in LCS and in CBS.
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We start with the equalizer of two maps f1, f2 : X1 → X2. It is given as the subspace
X∞ := {x ∈ X1 : f1(x) = f2(x)} of X1 with the initial structure inherited from X1.
Note that this is just the kernel of the morphism f1− f2. Dual to this construction
is the formation of quotients (i.e. cokernels).

Next the product is just the set theoretic product with the initial structure induced
by the projections pri :

∏
iXi → Xi. In case of an empty index set, we obtain the

terminal object given by the 0 vector space. This is also an initial object. Coproducts
are also called direct sums.

The pullback is given by the subspaceX∞ := {(x1, x2) ∈ X1×X2 : f1(x1) = f2(x2)}
of the product X1 ×X2 with its initial structure.

A general limit is the subspace

X∞ :=
{

(xi)i ∈
∏

i

Xi : Xf (xi) = xj for all morphisms f : i→ j in I
}

of the product.

This is also true purely categorical. I.e. any limit can be constructed as the equalizer
of the two maps α, β :

∏
iXi →

∏
f Xcod f , where the second product runs over all

morphisms f in I, and α and β are given given by the following diagrams (For a
morphism f : X → Y we call X the domain of f and Y the codomain of X and
denote them dom f and cod f):∏

iXi
α //

prcod f %%KKKKKKKKKK

∏
f Xcod f

prf

��
Xcod f

and ∏
iXi

β //

prdom f

��

∏
f Xcod f

prf

��
Xdom f

Xf

// Xcod f .

A second way to construct an arbitrary limit is by taking the limits limX|J of the
restrictions of the diagram to all finite subcategories J of I. Since these subcatego-
ries are ordered by J ′ � J iff J ′ ⊇ J we may take the projective limit lim←−J

limX|J .
This is then the limit limX of the full diagram X. In particular the product is
given by the projective limit of all finite subproducts.

3.24 Projective representation of a locally convex space.
Let us consider an important particular case. Let E be a locally convex space. We
have shown in [2, 4.3.4] that E carries the initial structure with respect to the
family of projections πp : E → Ep := E/ ker p indexed by all continuous seminorms
where E/ ker p is considered as normed space with respect to the norm induced by
p. The natural partial ordering between seminorms turns these Ep into a projective
system. And since the projections E → Ep separate points we obtain an embedding
E → lim←−p

Ep. Let us show that this embedding has dense image. For this we use that

a basis of 0-neighborhoods in a projective limit lim←−i
Ei is given by the sets pr−1

i (Ui)
where Ui runs through the 0-neighborhoods of Ei. In fact for finitely many j and
0-neighborhoods Uj ⊆ Ej we may choose an i with i � j for all those j and take
Ui :=

⋂
j T

−1
i,j (Uj), where Ti,j : Ei → Ej denotes the connecting morphism. Then

pr−1
i (Ui) ⊆

⋂
j pr−1

j (Uj). Now let z ∈ lim←−p
Ep and take a 0-neighborhood pr−1

p (Up)
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in lim←−p
Ep. Since πp : E → Ep is onto we can find a x ∈ E with πp(x) = prp(z).

Thus ι(x)−z ∈ pr−1
p (Up), i.e. ι has dense image. In general this mapping is however

not onto. Take for example the subspace E ⊆ RN formed by all finite sequences.
Then a basis of seminorms is given by pn : x 7→ max{|xi| : i ≤ n}. The kernel of pn

is {x : xi = 0 for i ≤ n} and hence En := Epn
∼= Rn. As we already mentioned the

projective limit of Rn is just RN and E is only dense in this space.

So to get an isomorphism we could take completions on both sides and obtain

Ê ∼= l̂im←−
p

Ep.

We want to show that the completion functor preserves this projective limit, i.e.
that

l̂im←−
p

Ep
∼= lim←−

p

Êp.

Obviously the limit limi fi of embeddings fi is an embedding, since this is true for
products, see the following diagram

limiXi
� � //

limi fi

��

∏
iXiQ

i fi

��
limi Yi

� � // ∏
i Yi.

The user should try to give categorical definitions of
∏

i fi and limi fi using universal
properties.

Remains to show that certain projective limits of dense mappings are dense:

3.25 Lemma. Reduced projective limits.
Let lim←−i

Xi be a reduced projective limit, and fi : Xi → Yi be continuous linear
mappings with dense image which intertwine with all connecting mappings. Then
the canonical mapping lim←−i

fi : lim←−i
Xi → lim←−i

Yi has dense image.

A projective limit is called reduced if all projections prj : lim←−j
Ej → Ej have dense

image. By replacing Ej by the closure of the image of prj we see that every projective
limit is the reduced projective limit of some modified diagram.

Note that the projective limit lim←−p
Ep is obviously reduced, since πp : E → Ep is

onto and hence the same is true for prp : lim←−p
Ep → Ep. And consequently also the

projective limit lim←−p
Êp is reduced.

Proof. Let z ∈ lim←−i
Yi be given. Take an arbitrary 0-neighborhood pr−1

i (2Ui). Since
fi has dense image we may find an xi ∈ Xi with fi(xi)−pri(z) ∈ Ui. Since the first
limit is reduced we can find an x ∈ E with pri(x)− xi ∈ f−1

i (Ui). But then

pri

(
lim←−

i

fi(x)− z
)

= (fi ◦ pri)(x)− fi(xi) + fi(xi)− pri(z) ∈ 2Ui,

i.e. lim←−i
fi has dense image.

3.26 Lemma.
The functor ( )∗ : LCS → CBSop preserves products.
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Proof. For any functor F : A → B we have a natural mapping F(limXi) →
limF(Xi) by the universal property of the right side.

Xi
Xα // Xj F(Xi)

F(Xα) // F(Xj)

limk F(Xk)

pi

aaDDDDDDDD

pj

=={{{{{{{{

limk Xk

pi

\\88888888888888888

pj

BB�����������������
F(limk Xk)

F(fi)

ZZ5555555555555555

F(fj)

DD																
! f

OO

Thus we have a mapping
∐

iX
∗
i → (

∏
iXi)∗, where

∐
iX

∗
i denotes the coproduct

in CBS and hence the product in CBSop. Since
∏

iXi obviously separates points
in
∐

iX
∗
i this mapping is injective. Let us show that it is a bornological quotient

map. This implies that it is a isomorphism. So let (
∏

i Ui)o be a typical bounded
subset of (

∏
iXi)∗, i.e. the Ui are 0-neighborhoods of Xi and Ui = Xi except i in

some finite subset J of I. Let T ∈ (
∏

i Ui)o. Then T ((xi)i) = 0 for all (xi)i with
xj = 0 for all j ∈ J (use that for such (xi)i every multiple belongs to

∏
i Ui). Let

Ti := T ◦ inji ∈ Uo
i ⊆ X∗

i . Then T =
∑

j∈J Tj ∈
∐

j U
o
j and

∐
j U

o
j is bounded in∐

iX
∗
i .

Next we want to investigate stability properties of ( )∗ with respect to projective
limits.

3.27 Lemma. The dual of a reduced projective limit.
The functor ( )∗ : LCS → CBSop preserves reduced projective limits

Proof. So let E = lim←−i
Ei be a reduced projective limit. As in the proof of 3.26

we have a natural mapping lim−→i
E∗i → (lim←−Ei)∗. Since all projections pri : E → Ei

have dense image the dual cone pr∗i : E∗i → E∗ consists of injective mappings only.
Let x∗ ∈ E∗ be given. Then there has to exist an i and a 0-neighborhood Ui ⊆ Ei

with x∗(pr−1
i (Ui)) ⊆ [−1, 1]. In particular x∗(ker pri |E) = 0 and hence there exists

a linear x∗i : pri(E)→ R with x∗i ◦pri = x∗. Since x∗i (Ui∩pri(E)) ⊆ [−1, 1] we may
extend it to a continuous functional on the closure Ei of pri(E) which lies in Uo

i .
Thus the union of all images pr∗i (Ei)∗ is E∗. Moreover the same argument shows
that every bounded set (pr−1

i (Ui))o is the image of the bounded set Uo
i under pr∗i ,

i.e. the natural mapping is a bornological quotient mapping. From this it is clear
that (lim←−i

Ei)∗ is the injective limit, since any family of bounded linear mappings
Ti : E∗i → F that commute with the connecting morphisms can be extended to a
bounded linear mapping T : E∗ =

⋃
i pr∗i (E

∗
i )→ F .

3.28 Theorem.
The completed projective tensor product ( )⊗̂πE preserves products.

Proof. The functoriality of ( )⊗̂πF gives us a natural mapping

ι :
(∏

i

Ei

)
⊗̂πF →

∏
i

(Ei⊗̂πF ).

We claim that this mapping is an embedding. As in 3.19 it is equivalent to show
that the associated mapping ι∗ :

(∏
i(Ei⊗̂πF )

)∗ → (
(
∏

iEi)⊗̂πF
)∗ is a quotient

map for the equi-continuous bornologies. But this mapping is up to the natural
isomorphisms from 3.11∐

i

L(Ei, F ; R) ∼=
∐

i

(Ei⊗̂πF )∗ ∼=
(∏

i

(Ei⊗̂πF )
)∗
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and

L
(∏

i

Ei, F ; R
)
∼=

((∏
i

Ei

)
⊗̂πF

)∗
given by ∐

i

L(Ei, F ; R)→ L
(∏

i

Ei, F ; R
)
.

(bi)i 7→
(
((xi)i, y) 7→

∑
i

bi(xi, y)
)

So let B := ((
∏

i Ui) × V )o be a typical equi-continuous subset of L(
∏

iEi, F ; R),
where Ui are 0-neighborhoods in Ei with Ui = Ei for all i except those in some finite
subset I of the index set, and V is a 0-neighborhood in F . In particular we have for
every b ∈ B that b((xi)i, y) = 0 provided xi = 0 for all i ∈ I, since for all ε > 0 and
y ∈ V we have b((εxi), y) = ε b(( 1

εxi)i, εy) ∈ ε b(
∏

i Ui × V ) ⊆ ε [−1, 1]. Since V is
absorbing it has to be 0. Thus b can be considered as element of

∐
i∈I L(Ei, F ; R)

and lies moreover in the equi-continuous subset
∐

i∈I(Ui × V )o.

Since the algebraic tensor product is left-adjoint to L(E, ) it commutes with copro-
ducts. Hence algebraically we have that (

∐
iEi)⊗F ∼=

∐
i(Ei⊗F ). We will see later

on that topologically this is not true in general. By the density of the coproducts,
we obtain that ι is dense and hence we have the required isomorphism.

3.29 Proposition.
The completed projective tensor product preserves reduced projective limits.

Proof. So let E = lim←−i
Ei be a reduced projective limit, i.e. pri : E → Ei has dense

image. Then pri⊗F : E ⊗ F → Ei ⊗π F has dense image and consequently also
pri ⊗̂πF : E⊗F → Ei⊗̂πF . Since this mapping factors over lim←−i

(Ei⊗̂πF )→ Ei⊗̂πF

the latter mapping has dense image as well. Thus the limit lim←−i
(Ei⊗̂πF ) is a reduced

one. Let us show next that the natural mapping(
lim←−

i

Ei

)
⊗̂πF → lim←−

i

(Ei⊗̂πF )

is a dense embedding, or equivalently that the dual mapping(
lim←−

i

(Ei⊗̂πF )
)∗
→
((

lim←−
i

Ei

)
⊗̂πF

)∗
is a bornological isomorphism. The left side equals(

lim←−
i

(Ei⊗̂πF )
)∗ ∼= lim−→

i

(Ei⊗̂πF )∗ ∼= lim−→
i

L(Ei, F ; R),

since the dual of a reduced projective limit is an injective one. The right hand side
equals

((
lim←−i

Ei

)
⊗̂πF

)∗ ∼= L(lim←−i
Ei, F ; R

)
. So let (pr−1

j (Uj) × V )o be a typical
bounded set in L(lim←−i

Ei, F ; R). This is the image under the natural mapping of the
bounded set (pri×F )∗((Ui × V )o) in lim−→i

L(Ei, F ; R) =
⋃

i(pri×F )∗(L(Ei, F ; R)).
Thus the natural mapping is a bornological quotient mapping. It remains to show
that it is injective. So let T = (pri×F )∗(Ti) ∈ lim−→i

L(Ei, F ; R) be given with

Ti ∈ L(Ei, F ; R) and such that the associated element ι(T ) = 0 in L
(
lim←−i

Ei, F ; R
)
.

Obviously ι(T ) = Ti ◦ (pri×F ) and since the pri×F has dense image in Ei×F we
conclude that Ti = 0 and hence T = 0.

Since both sides of the natural dense embedding
(
lim←−i

Ei

)
⊗̂πF → lim←−i

(Ei⊗̂πF )
are complete (limits of complete spaces are complete) we have equality.
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3.30 Corollary.
For the function space C(X,E) = EX =

∏
x∈X E, where X is a discrete topological

space, we have a natural isomorphism

C(X)⊗̂πE = RX⊗̂πE ∼= (R⊗̂πE)X ∼= EX = C(X,E).

If X is finite and E ∼= RY with finite Y we obtain in particular that RX⊗̂πRY ∼=
(RY )X ∼= RX×Y . Hence we have for finite dimensional spaces that dim(E⊗̂πF ) =
dimE · dimF thus also dim(E ⊗π F ) = dimE · dimF .

Note that for general projective limits the analogue to 3.29 is not true. In fact take
the closed linear subspace `2 → C(K), which is the kernel (a special limit) of the
quotient map C(K) → C(K)/`2. Since `2 ⊗π (`2)∗ → C(K) ⊗π (`2)∗ is not an
embedding (see 3.14), also `2⊗̂π(`2)∗ → C(K)⊗̂π(`2)∗ is not, and so both cannot
be the kernel of some map.

3.32 Example.
In general the projective tensor product does not commute with direct sums. Fur-
thermore it does not preserve strict inductive limits (since R(N) = lim−→n

Rn) and
also not the function space Cc(X) = R(X) for discrete X:
The natural injection of flipping the coordinates from (RN)(N) → (R(N))N is obvious-
ly not onto. Moreover, it can be shown that (RN)(N) and (R(N))N can not even be
isomorphic by some non-canonical isomorphism, since both spaces are B-complete
but their cartesian product is not, see [14, 15.5.1]. A locally convex spaces is called
B-complete, iff every continuous nearly open map (i.e. the closure of the image of any
0-neighborhood is a 0-neighborhood) into some locally convex spaces has complete
image, or equivalently if every such mapping is open onto its image. So isomorphy
would imply that (RN)(N) ∼= (RN×RN)(N) ∼= (RN)(N)× (RN)(N) ∼= (RN)(N)× (R(N))N.
Then the natural mapping from (R⊗̂πRN)(N) → R(N)⊗̂πRN is not onto as can be
seen also from the following commutative diagram

(R⊗̂πRN)(N) // R(N)⊗̂πRN

∼=

��9
99

99
99

99
99

99
99

99

R⊗̂πRN

injk

bbDDDDDDDD

injk ⊗RN
<<zzzzzzzz ∼=// (R⊗̂πR)N

(injk ⊗R)N
""D

DD
DD

DD
D

RN

∼=

OO

injk

||zzzzzzzz
(injk)N

""D
DDDDDDD (R(N)⊗̂πR)N

(RN)(N)

∼=

OO

// (R(N))N

∼=
<<zzzzzzzz

since the bottom arrow is obviously not onto.

3.33 Corollary.
Neither the projective tensor product nor the completed projective tensor product
can be left adjoint functors.

The Bornological Tensor Product

We have seen that the classical projective tensor product is not well behaved beyond
normed spaces. And the main reason for that is that it is not longer a left-adjoint
functor.
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But we have already seen that bounded mappings are in many respects much nicer
than continuous ones.

And if L(E1, . . . , En;F ) denotes the space of all bounded n-linear mappings from
E1 × . . . × En → F with the topology of uniform convergence on bounded sets in
E1 × . . .× En then we easily show the following.

3.34 Proposition. Exponential law for L.
There are natural topological linear isomorphisms

L(E1, . . . , En+k;F ) ∼= L(E1, . . . , En;L(En+1, . . . , En+k;F )).

Proof. We proof this for bilinear maps, the general case is completely analogous.
We already know that bilinearity translates into linearity into the space of linear
functions. Remains to prove boundedness. So let a set B of bilinear mappings E1×
E2 → F be given. Then B is bounded in L(E1, E2;F ) iff B(B1×B2) ⊆ F is bounded
for all bounded Bi ⊆ Ei. This however is equivalent to B∨(B1) is contained and
bounded in L(E2, F ) for all bounded B ⊆ E1, i.e. B∨ is contained and bounded in
L(E1, L(E2, F )).

That this even a topological isomorporphism follows by the arguments in 3.10.

Recall that we already put a structure on L(E,F ) in 2.53, namely the initial one
with respect to the inclusion in C∞(E,F ). Let us now show that bornologically
these definitions agree:

3.35 Lemma. Structure on L.
A subset is bounded in L(E,F ) ⊆ C∞(E,F ) if and only if it is uniformly bounded
on bounded subsets of E, i.e. L(E,F )→ C∞(E,F ) is initial.

Proof. Let B ⊆ L(E,F ) be bounded in C∞(E,F ) and assume that it is not
uniformly bounded on some bounded set B ⊂ E. So there are fn ∈ B, bn ∈ B,
and ` ∈ F ∗ with |`(fn(bn))| ≥ nn. Then the sequence n1−nbn converges fast to 0
and hence lies on some compact part of a smooth curve c by 2.18. So B cannot be
bounded, since otherwise C∞(`, c) = `∗ ◦ c∗ : C∞(E,F ) → C∞(R,R) → `∞(R,R)
would have bounded image, i.e. {` ◦ fn ◦ c : n ∈ N} would be uniformly bounded on
any compact interval.

Conversely let B ⊆ L(E,F ) be uniformly bounded on bounded sets and hence in
particular on compact parts of smooth curves. We have to show that dn ◦ c∗ :
L(E,F )→ C∞(R, F )→ `∞(R, F ) has bounded image. But for linear smooth maps
we have by the chain rule recursively applied that dn(f ◦ c)(t) = f(c(n)(t)), and
since c(n) is still a smooth curve we are done.

Let us now generalize this result to multi-linear mappings. For this we first charac-
terize bounded multi-linear mappings in the following two ways:

3.3o. Lemma.
A multilinear mapping is bounded if and only if it is bounded on each sequence
which converges Mackey to 0.

Proof. Suppose that f : E1 × . . .× Ek → F is not bounded on some bounded set
B ⊂ E1 × . . . × Ek. By composing with a linear functional we may assume that
F = R. So there are bn ∈ B with λk+1

n := |f(bn)| → ∞. Then |f( 1
λn
bn)| = λn →∞,

but ( 1
λn
bn) is Mackey convergent to 0.
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3.36 Lemma. Bounded multi-linear mappings are smooth.
Let f : E1 × . . . × En → F be a multi-linear mapping. Then f is bounded if and
only if it is smooth. For the derivative we have the product rule:

df(x1, . . . , xn)(v1, . . . , vn) =
n∑

i=1

f(x1, . . . , xi−1, vi, xi+1, . . . , xn).

In particular we get for f : E ⊇ U → R, g : E ⊇ U → F and x ∈ U , v ∈ E the
Leibnitz formula

(f · g)′(x)(v) = f ′(x)(v) · g(x) + f(x) · g′(x)(v).

Proof. We use induction on n. The case n = 1 is corollary 2.21. The induction goes
as follows:

. f is bounded
⇐⇒ . f(B1 × . . . × Bn) = f∨(B1 × . . . × Bn−1)(Bn) is bounded for all bounded

sets Bi in Ei;
⇐⇒ . f∨(B1 × . . .×Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 3.35;
⇐⇒ . f∨ : E1 × . . .× En−1 → C∞(En, F ) is bounded;
⇐⇒ . f∨ : E1 × . . .×En−1 → C∞(En, F ) is smooth by the inductive assumption;
⇐⇒ . f∨ : E1 × . . .× En → F is smooth by cartesian closedness 2.48.

The particular case follows by application to the scalar multiplication R×E → E.

Now let us show that also the structures coincide:

3.37 Proposition. Structure on space of multi-linear maps.
The injection of L(E1, . . . , En;F ) → C∞(E1 × . . . × En, F ) is a bornological em-
bedding.

Proof. We can show this by induction. In fact let B ⊆ L(E1, . . . , En;F ). Then

. B is bounded
⇐⇒ . B(B1× . . .×Bn) = B∨(B1× . . .×Bn−1)(Bn) is bounded for all bounded Bi

in Ei;
⇐⇒ . B∨(B1 × . . .×Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 3.35;
⇐⇒ . B∨ ⊆ C∞(E1× . . .×En−1, C

∞(En, F )) is bounded by the inductive assump-
tion;

⇐⇒ . B ⊆ C∞(E1 × . . .× En, F ) is bounded by cartesian closedness 2.48.

Hence it is natural to consider the universal problem of making bounded bilinear
mappings into bounded linear ones. The solution is given by the bornological tensor
product E ⊗β F , i.e. the algebraic tensor product with the finest locally convex
topology such that E × F → E ⊗ F is bounded. A 0-neighborhood basis of this
topology is given by those absolutely convex sets, which absorb B1 ⊗ B2 for all
bounded B1 ⊆ E1 and B2 ⊆ E2. Note that this topology is bornological since it is
the finest locally convex topology with given bounded linear mappings on it.

3.38 Theorem. Bornological tensor product.
The bornological tensor product is left adjoint to the Hom-functor L(E, ) on the
category of bounded linear mappings between locally convex spaces and one has the
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following bornological isomorphisms:

L(E ⊗β F,G) ∼= L(E,F ;G) ∼= L(E,L(F,G))
E ⊗β R ∼= E

E ⊗β F ∼= F ⊗β E

(E ⊗β F )⊗β G ∼= E ⊗β (F ⊗β G)

Furthermore the bornological tensor product preserves co-limits. It neither preserves
embeddings nor countable products.

Proof. We show first that this topology has the universal property for bounded
bilinear mappings f : E1 ×E2 → F . Let U be an absolutely convex zero neighbor-
hood in F and let B1, B2 be bounded sets. Then f(B1 × B2) is bounded hence is
absorbed by U . Then f̃−1(U) absorbs ⊗(B1 × B2), where f̃ : E1 ⊗ E2 → F is the
canonically associated linear mapping. So f̃−1(U) is in the zero neighborhood basis
of E1 ⊗β E2 described above. Therefore f̃ is continuous.

A similar argument for sets of mappings shows that the first isomorphism L(E ⊗β

F,G) ∼= L(E,F ;G) is bibounded.

The topology on E1⊗β E2 is finer than the projective tensor product topology and
so it is Hausdorff. The rest of the positive results is clear.

The counter example for embeddings given for the projective tensor product works
also, since all spaces involved are Banach.

Since the bornological tensor-product preserves coproducts it cannot preserve pro-
ducts. In fact (R ⊗β R(N))N ∼= (R(N))N whereas RN ⊗β R(N) ∼= (RN ⊗β R)(N) ∼=
(RN)(N).

3.39 Proposition. Projective versus bornological tensor product.
If every bounded bi-linear mapping on E×F is continuous then E⊗π F = E⊗β F .
In particular we have E ⊗π F = E ⊗β F for any two metrizable spaces and for a
normable space F we have Eborn ⊗π F = E ⊗β F .

Proof. Recall that E ⊗π F carries the finest locally convex topology such that
⊗ : E × F → E ⊗ F is continuous, whereas E ⊗β F carries the finest locally
convex topology such that ⊗ : E × F → E ⊗ F is bounded. So we have that
⊗ : E × F → E ⊗β F is bounded and hence by assumption continuous and thus
the topology of E ⊗π F is finer than that of E ⊗β F . Since the converse is true n
general, we have equality.

In [2, 3.1.6] we have shown that in metrizable locally convex spaces the convergent
sequences coincide with the Mackey-convergent ones. Now let T : E × F → G be
bounded and bilinear. We have to show that T is continuous. So let (xn, yn) be a
convergent sequence in E × F . Without loss of generality we may assume that its
limit is (0, 0). So there are µn → ∞ such that {µn(xn, yn) : n ∈ N} is bounded
and hence also T

(
{µn(xn, yn) : n ∈ N}

)
=
{
µ2

nT (xn, yn) : n ∈ N
}

, i.e. T (xn, yn)
converges even Mackey to 0.

If F is normable, and T : Eborn×F → G is bi-linear and bounded, then Ť : Eborn →
L(F,G) is bounded, and since Eborn is bornological it is even continuous. We have
shown in 3.10 that for normed spaces F the evaluation map ev : L(F,G)× F → G
is continuous, and hence T = ev ◦(Ť × F ) : Eborn × F → G is continuous. Thus
Eborn ⊗π F = E ⊗β F .

Note that the bornological tensor product is invariant under bornologification, i.e.
Eborn ⊗β Fborn

∼= E ⊗β F . So it is no loss of generality to assume that both spaces
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are bornological. Keep however in mind that the corresponding identity for the
projective tensor product does not hold. Another possibility to obtain the identity
E⊗π F = E⊗β F is to assume that E and F are bornological and every separately
continuous bi-linear mapping on E × F is continuous. In fact every bounded bi-
linear mapping is obviously separately bounded and since E and F are assumed
to be bornological it has to be separately continuous. We want to find another
class beside the Fréchet spaces (see [2, Folgerung in 5.5]) which satisfies these
assumptions.

Some Remarks on Duals of Fréchet Spaces

3.40 Proposition. Dual of Fréchet spaces.
Let E be metrizable and F be the strong dual E∗β of E, i.e. the space of continuous
linear functionals on F with the topology of uniform convergence on bounded sets.
The the following statements are equivalent:

1. F is ultra-bornological, i.e. every absolutely convex set, which absorbs Ba-
nach-disks (that is absolutely convex bounded sets B for which FB is com-
plete) is a 0-neighborhood;

2. F is bornological, i.e. every absolutely convex set which is bornivorous (that
is, absorbs (absolutely convex) bounded sets) is a 0-neighborhood;

3. F is barreled, i.e. every barrel (that is every closed absolutely convex absor-
bent subset) is a 0-neighborhood;

4. F is infra-barreled, i.e. every bornivorous barrel is a 0-neighborhood.

Recall that a space is barreled iff every pointwise bounded set of continuous linear
functions into some lcs is equi-continuous, see [14, 11.1.1].
It is infra-barreled (or quasi-barreled) iff every bounded set of continuous linear
functions is equi-continuous, see [14, 11.3.7].
It is bornological iff every bounded linear mapping into any lcs is continuous, see [14,
13.1.1]. These are exactly the inductive limits of normed spaces, see [14, 13.2.2].
It is ultra-bornological iff every linear map that is bounded on Banach-disks is
continuous, see [14, 13.1.1]. These are exactly the inductive limits of Banach spaces,
see [14, 13.2.2].

However the strong dual of a Fréchet space does not always satisfy these equivalent
conditions. Thus one needs some weakenings:

3.41 Definition.
A space is called c0-barreled iff every 0-sequence in E′ with respect to the weak to-
pology σ(E′, E) is equi-continuous. It is called quasi c0-barreled iff every 0-sequence
in E′ with respect to the strong topology β(E′, E) is equi-continuous, see [14, 12.1].

For a c0-barreled space E every bounded subset of (E′, σ(E′, E)) is bounded in
(E′, β(E′, E)). A space is (quasi-)c0-barreled iff for every sequence (Un) of closed
absolutely convex 0-neighborhoods in (E, σ(E,E′)) such that every finite (bounded)
set is contained in

⋂
n≥m Un for some m it holds that

⋂
n Un is a 0-neighborhood,

see [14, 12.2.6].

A space is called (quasi) countably barreled) iff every (bornivorous) barrel which is
the intersection of countably many closed absolutely convex 0-neighborhoods is a
0-neighborhood, see [14, 12.2]. Equivalently if every pointwise bounded (uniformly
on bounded sets bounded) countable set of continuous linear functions with values
in some lcs are equi-continuous, see [14, 12.2.1].
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For c∞-complete spaces one has the following reverse implications:

1. bornological =⇒ ultra-bornological, see also [14, 13.2.4].
2. quasi-barreled =⇒ barreled, [14, 11.2.5].
3. quasi-countably-barreled =⇒ countably-barreled, [14, 12.2.2].

Any c0-barreled quasi countablybarreled resp. quasi-barreled space is countably-
barreled resp. barreled, [14, 12.3.3].

Hence we have the following diagram, where the dotted implications are valid under
the assumption of c∞-completeness:

ulta-bornological

++VVVVVVVVVVVVVVVVVVkk

��
barreled

++VVVVVVVVVVVVVVVVVVVkk

��

bornological

��
countably barreled

++VVVVVVVVVVVVVVVVVVkk

��

quasi-barreled

��
c0-barreled

++VVVVVVVVVVVVVVVVVVkk
quasi countably barreled

��
quasi-c0-barreled

3.42 Proposition.
The strong dual of any metrizable locally convex space is countably barreled.

Proof. Let E be a metrizable space and F its strong dual space. Since F is com-
plete it is enough to show quasi countablybarreledness. So suppose we are given
closed absolutely convex 0-neighborhoods Vn in F such that V :=

⋂
n Vn is a borni-

vorous barrel. We have to show that V is a 0-neighborhood. For this we construct
recursively bounded sets Bn in E and ρn > 0 such that

Bo
k ⊆ Vk and ρkU

o
k ⊆ 1

2k+1V ∩Bo
j for k, j ≤ n.

For n = 1 this is easily done. For n we first choose ρn > 0 such that ρnU
o
n ⊆ 1

2n+1V ∩⋂
k<nB

o
k. Then the set K :=

∑
k≤n ρkU

o
k is absolutely convex, σ(E′, E)-compact

and is contained in
∑

j≤n
1

2j+1V ⊆ 1
2Vn. Now choose an absolutely convex and

σ(E′, E)-closed 0-neighborhood V ′ of F contained in 1
2Vn. Then Bn := (V ′ +K)o

is bounded in E and by the bipolar-theorem Bo
n = V ′ +K. Since K ⊆ 1

2Vn we get
Bo

n ⊆ Vn.

Finally the set W :=
⋂

nB
o
n satisfies W = W oo and absorbs every Uo

n hence it is
a barrel in (E′, σ(E′, E)) and hence by [14, 8.3.2] is a 0-neighborhood in F . Since
W ⊆ V the same is true for V .

By an absorbent resp. bornivorous sequence one understands a sequence of absolutely
convex subsets An ⊆ E satisfying 2An ⊆ An+1, A0 := {0} and every finite resp.
bounded set is contained in An for some n.

3.43 Lemma. Final topology with respect to a absorbent sequence.
Let (An)n be an absorbent sequence in E and let U be a 0-neighborhood basis in E.
Let τ be the final locally convex topology induced by the inclusions of An → E. Then
the sets 〈

⋃
k Ak +Uk〉abs.conv with Uk ∈ U form a 0-neighborhood basis of τ . If each
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Ak is in addition bounded then for any sequence Un of 0-neighborhoods one can find
ρn > 0 such that

⋂
k ρkUk is a 0-neighborhood. [14, 12.3.1] and [14, 12.3.2].

3.44 Proposition. Barreledness and absorbent sequences.

If E is (quasi) countablybarreled, then it carries the finest locally convex topology
which coincides on every An with the trace topology, where An is some absorbent
(bornivorous) sequence, [14, 12.3.6].

A locally convex space is called df-space if it is quasi-c0-barreled and has a countable
basis of the bornology, [14, 12.4.1]. The strong dual of a space E is Fréchet iff
(E,µ(E,E′)) is df , see [14, 12.4.1].

A space is called DF (for dual-Fréchet) if it is quasi-countablybarreled and has a
countable basis of the bornology, [14, 12.4.1].

A space is called gDF (for generalized dual-Fréchet) if it has a countable base B of
the bornology and its topology coincides with the final one induced by B, [14, 12.4].
A space E is gDF if the space L(E,F ) of continuous linear mappings is Fréchet for
any Fréchet space F , [14, 12.4.2], and equivalently if it has a countable basis of its
bornology and every 0-sequence in L(E,F ) is equi-continuous for every lcs F , [14,
12.4.3].

One has the implications DF
[14, 12.3.6]⇒ gDF

[14, 12.4]⇒ df .

3.45 Corollary.
The strong dual of a metrizable lcs is a complete DF -space.

Proof. This follows from 3.42 since a countable base of the bornology is given by
the polars of a countable 0-neighborhood basis, see also [14, 12.4.5].

Remark.
A metrizable space that has a countable base of its bornology is already normed,
[14, 12.4.4]. Every sequentially complete df -space is strictly webbed, [14, 12.4.6].

3.46 Proposition.
Every gDF -space is quasi-normable, i.e. for every 0-neighborhood U there exists
a smaller 0-neighborhood V such that for all t > 0 there exists a bounded set B
with V ⊆ tU + B, see [14, 10.7.1] and [14, 12.4.7]. Note that a normed space is
quasi-normed. In fact we may take V = B := U .

Proof. Let (An) be a base of the bounded sets. Let U be an absolutely convex
closed 0-neighborhood. Let D :=

⋃
nDk, where Dk := Ao

k ∩ kUo. We claim that D
is equi-continuous. So for k ∈ N we choose nk ≤ k such that Ak ⊆ nkU . Then

Ak ∩
1
nk
U = Ak ∩

( ⋂
n≤nk

1
n
U
)
∩
( ⋂

n>nk

An

)
⊆ Ak ∩

(⋂
n∈N

1
n
U ∪An

)
⊆ Ak ∩Do ⊆ Do.

Since 〈
⋃

k Ak ∩ 1
nk
U〉abs.conv ⊆ Do it follows from [14, 12.3.1] that Do is a 0-neigh-

borhood in E and hence D is equi-continuous. One can now show that for ρ > 0
there exists some bounded set B such that Do ⊆ ρU +B.
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A space is a bornological df - (or equivalently DF -) space iff it is the inductive limit
of a sequence of normable spaces, [14, 13.2.6].

3.47 Theorem. Continuity versus separately continuity.
Let E and F be two barreled spaces with a countable base of bornology. Then every
separately continuous bilinear map E × F → G is continuous.

Proof. Let An and Bn be a basis of the bornologies of E and F . Let T : E×F → G
be separately continuous. Then T∨ : E → L(F,G) is continuous for the topology of
pointwise convergence on L(F,G). Thus T∨(Ak) is bounded for this topology, and
since F is barreled it is equi-continuous. Thus for every 0-neighborhood W in G
there exists a 0-neighborhood Vk in F with T (Ak × Vk) ⊆ W . By symmetry there
exists a 0-neighborhood Uk in E with T (Uk × Bk) ⊆ W . We have to show that
this implies for gDF -spaces E and F the continuity of T , see [14, 15.6.1]. Since
E is quasi-normable, we can find for every 0-neighborhood Un a 0-neighborhood
U ′n such that for every ρ > 0 there is some k(n, ρ) ∈ N with U ′n ⊆ ρUn + Ak(n,ρ).
Since Ak is a basis of bounded sets there exist ρn > 0 such that U :=

⋂
n ρnU

′
n

is a 0-neighborhood in the topology generated by {An}, see [14, 12.3.2]. And this
topology coincides with the given topology since E is gDF , by [14, 12.3.6]. Let
Wn := Vk(n,1/ρn). Then V := 〈

⋃
n

1
ρn
Wn ∩ Bn is a 0-neighborhood again by [14,

12.3.6] and by the description of a 0-neighborhood basis of the topology induced
by {Bn}n given in [14, 12.3.1]. We claim that T (U × V ) ⊆ W . In fact take x ∈ U
and y ∈ V . Then y is an absolutely convex combination of yn ∈ 1

ρn
Wn ∩ Bn.

Since x ∈ ρnU
′
n ⊆ Un + ρnAk(n,1/ρn) there are un ∈ Un and an ∈ Ak(n,1/ρn) with

x = un + ρnan. So

T (x, yn) = T (un, yn)+T (ρnan, yn) ∈ T (Un×Bn)+ρnT (Ak(n,1/ρn)×
1
ρn
Wn) ⊆ 2W

Hence the same is true for the absolutely convex combination T (x, y), i.e. T (U ×
V ) ⊆ 2W .

3.48 Corollary. Projective versus bornological tensor product for LB-
spaces.
Let E and F be countable inductive limits of Banach spaces (e.g. the duals of metri-
zable spaces with their bornological topology, i.e. the bornologification of the strong
topology). Then E ⊗π F ∼= E ⊗β F .

Proof. Let T : E × F → G be bounded. Since both spaces are bornological T is
separately continuous and since both spaces are barreled and DF it is continuous.
This is enough to guarantee the equality of the two tensor products by 3.39.

One can show that the projective tensor product of two gDF (resp. DF ) spaces is
again a gDF (resp. DF ) space, see [14, 15.6.2]. Long proof!

If E and F are two DF spaces which are in addition barreled (quasi-barreled,
bornological) then so is E ⊗π F , [14, 15.6.8].

If E and F are metrizable and barreled, then E ⊗π F is barrelled, see [14, 15.6.6].

However the projective tensor product of barreled spaces is not barreled in general,
e.g. RN ⊗π R(N) see [14, 15.5.2].

The following spaces are preserved by passage to the completion (quasi) barreled
spaces [14, 11.3.1], DF , gDF and df spaces [14, 12.4.8].
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Spaces of Multi-Linear Mappings

3.49 Corollary.
The following mappings are bounded multi-linear.

1. lim : Nat(F ,G) → L(limF , limG), where F and G are two functors on the
same index category, and where Nat(F ,G) denotes the space of all natural
transformations with the structure induced by the embedding into

∏
i L(F(i),G(i)).

2. colim : Nat(F ,G)→ L(colimF , colimG).
3.

L : L(E1, F1)× . . .×L(En, Fn)× L(F,E)→
→ L(L(F1, . . . , Fn;F ), L(E1, . . . , En;E))

(T1, . . . , Tn, T ) 7→ (S 7→ T ◦ S ◦ (T1 × . . .× Tn));

4.
n⊗

β : L(E1, F1)× . . .× L(En, Fn)→ L(E1 ⊗β · · · ⊗β En, F1 ⊗β · · · ⊗β Fn).
5.
∧n : L(E,F ) → L(

∧n
E,
∧n

F ), where
∧n

E is the linear subspace of all
alternating tensors in

⊗n
β E. It is the universal solution of

L
( n∧

E,F
)
∼= Ln

alt(E;F ).

6.
∨n : L(E,F ) → L(

∨n
E,
∨n

F ), where
∨n

E is the linear subspace of all
symmetric tensors in

⊗n
β E. It is the universal solution of

L
( n∨

E,F
)
∼= Ln

sym(E;F ).

7.
⊗

β : L(E,F )→ L(
⊗

β E,
⊗

β F ), where
⊗

β E :=
⊕∞

n=0

n
⊗βE is the tensor

algebra of E. Note that is has the universal property of prolonging bounded
linear mappings with values in locally convex spaces, which are algebras with
bounded operations, to continuous algebra homomorphisms:

L(E,F ) ∼= Alg(⊗E,F ).

8.
∧

: L(E,F ) → L(
∧
E,
∧
F ), where

∧
E :=

⊕∞
n=0

∧n
E is the exterior

algebra. It has the universal property of prolonging bounded linear mappings
to continuous algebra homomorphisms into graded-commutative algebras, i.e.
algebras in the sense above, which are as vector spaces a coproduct

∐
n∈N En

and the multiplication maps Ek × El → Ek+l and for x ∈ Ek and y ∈ El

one has x · y = (−1)kly · x.
9.
∨

: L(E,F ) → L(
∨
E,
∨
F ), where

∨
E :=

⊕∞
n=0

∨n
E is the symmetric

algebra. It has the universal property of prolonging bounded linear mappings
to continuous algebra homomorphisms into commutative algebras.

Recall that for permutations π of n := {0, . . . , n− 1} we have an associated linear
mapping π∗ : En → En and hence a linear mapping π̃∗ :

⊗n
E →

⊗n
E. The

exterior product
∧n

E is the space invariant under sign(π) π̃∗ for all permutations
π and the symmetric product

∨n
E is the space invariant under π̃∗ for all per-

mutations π. The symmetric product is given as the image of the symmetrizer
sym : E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E given by

(x1, . . . , xn)→ 1
n!

∑
σ∈Sn

(xσ(1), . . . , xσ(n)).
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Similarly the wedge product is given as the image of the alternator

alt : E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E

given by (x1, . . . , xn)→ 1
n!

∑
σ∈Sn

sign(π) (xσ(1), . . . , xσ(n)).

Proof. All results follow easily by flipping coordinates until a composition of pro-
ducts of evaluation maps remains.

That the spaces in (5), and similar in (6), are universal solutions can be seen from
the following diagram:

E × . . .× E
⊗ //

f

((QQQQQQQQQQQQQQQ E ⊗β · · · ⊗β E
alt //

f̃

��

∧k
E

f̃ |Vk Exxpppppppppppp

F

3.50 Corollary. Symmetry of higher derivatives.
Let f : E ⊃ U → F be smooth. The n-th derivative f (n)(x) = dnf(x), con-
sidered as an element of Ln(E;F ), is symmetric, i.e. has values in the space
Lsym(E, . . . , E;F ) ∼= L(

∨k
E;F )

Proof. Recall that we can form iterated derivatives as follows:

f : E ⊇ U → F

df : E ⊇ U → L(E,F )

d(df) : E ⊇ U → L(E,L(E,F )) ∼= L(E,E;F )
...

d(. . . (d(df)) . . . ) : E ⊇ U → L(E, . . . , L(E,F ) . . . ) ∼= L(E, . . . , E;F )

Thus the iterated derivative dnf(x)(v1, . . . , vn) is given by
∂

∂t1
|t1=0 · · · ∂

∂tn
|tn=0f(x+ t1v1 + · · ·+ tnvn) = ∂1 . . . ∂nf̃(0, . . . , 0),

where f̃(t1, . . . , tn) := f(x + t1v1 + · · · + tnvn). The result now follows from the
finite dimensional property.

3.51 Corollary.
The following subspaces are direct summands:

L(E1, . . . , En;F ) ⊆ C∞(E1 × . . .× En, F ),

Ln
sym(E;F ) ⊆ Ln(E;F ) := L(E, . . . , E;F ),

Ln
alt(E;F ) ⊆ Ln(E;F ),

Ln
sym(E;F )→ C∞(E,F ).

Note that direct summand is meant in the bornological category, i.e. the embedding
admits a left-inverse in the category of bounded linear mappings, or, equivalently,
with respect to the bornological topology it is a topological direct summand.

Proof. The projection for L(E,F ) ⊂ C∞(E,F ) is f 7→ df(0). The statement on
Ln follows by induction using cartesian closedness and 3.34. The projections for the
next two subspaces are the symmetrizer and alternator, respectively.

The last embedding is given by 4∗, which is bounded and linear C∞(E × . . . ×
E,F ) → C∞(E,F ). Here ∆ : E → E × . . . × E denotes the diagonal mapping
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x 7→ (x, . . . , x). A bounded linear left inverse C∞(E,F )→ Lk
sym(E;F ) is given by

f 7→ 1
k!d

kf(0). See the following diagram:

Lk
sym(E;F )

��

� � // L(E, . . . , E;F )
_�

��
C∞(E,F ) C∞(E × . . .× E;F )

∆∗
oo

Remark.
We are now going to discuss polynomials between locally convex spaces. Recall that
for finite dimensional spaces E = Rn a polynomial is just a finite sum∑

k∈Nn

akx
k,

where ak ∈ F and xk :=
∏n

i=1 x
ki
i . Thus it is just an element in the algebra genera-

ted by the coordinate projections pri tensorized with F . Since every (continuous)
linear functional on E = Rn is a finite linear combination of coordinate projections,
this algebra is also the algebra generated by E∗. For a general locally convex space
E we define the algebra of finite type polynomials to be the one generated by E∗.

However there is also another way to define polynomials, namely as those smooth
functions for which some derivative is equal to 0. Take for example the square of
the norm ‖ ‖2 : E → R on some infinite dimensional Hilbert space E. Its derivative
is given by x 7→ (v 7→ 2〈x, v〉) and hence is linear. The second derivative is x 7→
((v, w) 7→ 2〈v, w〉) and hence constant. Thus the third derivative vanishes.
This function is not a finite type polynomial. Otherwise it would be continuous for
the weak topology σ(E,E∗). Hence the unit ball would be a 0-neighborhood for the
weak topology, which is not true, since it is compact for it.
Note that the series

∑
k x

2
k converges pointwise and even uniformly on compact sets.

In fact, every compact set is contained in the absolutely convex hull of a 0-sequence
xn. In particular µk := sup{|xn

k | : n ∈ N} → 0 for k → ∞ (otherwise we can find
an ε > 0 and kj → ∞ and nj ∈ N with ‖xnj‖2 ≥ |x

nj

kj
| ≥ ε. Since xn ∈ `2 ⊆ c0,

we conclude that nj → ∞, which yields a contradiction to ‖xn‖2 → 0.) Thus
K ⊆ 〈xn : n ∈ N〉abs.conv ⊆ 〈µne

n〉abs.conv and hence
∑

k≥n |xk| ≤ max{µk : k ≥ n}
for all x ∈ K.
The series does not converge uniformly on bounded sets. To see this choose x = ek.

3.52 Definition

A smooth mapping f : E → F is called a polynomial if some derivative dnf vanishes
on E. The largest p such that dpf 6= 0 is called the degree of the polynomial. The
mapping f is called a monomial of degree p if it is of the form f(x) = f̃(x, . . . , x)
for some f̃ ∈ Lp

sym(E;F ).

3.53 Lemma. Polynomials versus monomials.

1. The smooth p-homogeneous maps are exactly the monomials of degree p.
2. The symmetric multi-linear mapping representing a monomial is unique.
3. A smooth mapping is a polynomial of degree ≤ p if and only if its restriction

to each one dimensional subspace is a polynomial of degree ≤ p.
4. The polynomials are exactly the finite sums of monomials.
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Proof. (1) Every monomial of degree p is clearly smooth and p-homogeneous. If f
is smooth and p-homogeneous, then

(dpf)(0)(x, . . . , x) = ( ∂
∂t )

p
∣∣
t=0

f(tx) = ( ∂
∂t )

p
∣∣
t=0

tpf(x) = p!f(x).

(2) The symmetric multi-linear mapping g ∈ Lp
sym(E;F ) representing f is uniquely

determined, since we have (dpf)(0)(x1, . . . , xp) = p!g(x1, . . . , xp).

(3+4) Let the restriction of f to each one dimensional subspace be a polynomial of
degree≤ p, i.e. for each x ∈ E and ` ∈ F ′ we have `(f(tx)) =

∑p
k=0

tk

k! ( ∂
∂t )

i
∣∣
t=0

`(f(tx)).
So f(x) =

∑p
k=0

1
k!d

kf(0.x)(x, . . . , x) and hence is a finite sum of monomials.
For the derivatives of a monomial q of degree k we have q(j)(tx)(v1, . . . , vj) =
k(k − 1) · (k − j + 1)tk−j q̃(x, . . . , x, v1, . . . , vj). Hence any such finite sum is a po-
lynomial in the sense of 3.52.
Finally any such polynomial has a polynomial as trace on each one dimensional
subspace.

3.54 Lemma. Spaces of polynomials.
The space Polyp(E,F ) of polynomials of degree ≤ p is isomorphic to

∑
k≤p L(

∨k
E;F )

and is a direct summand in C∞(E,F ) with a complement given by the smooth func-
tions which are p-flat at 0.

Proof. We have already shown that L(
∨k

E;F ) embeds into C∞(E,F ) as a di-
rect summand, where a retraction is given by the derivative of order k at 0.
Furthermore we have shown that the polynomials of degree ≤ p are exactly the
direct sums of homogeneous terms in L(

∨k
E;F ). A retraction to the inclusion⊕

k≤p L(
∨k

E;F )→ C∞(E,F ) is hence given by
⊕

k≤p
1
k!d

k|0.

Remark.
The corresponding statement is false for infinitely flat functions. I.e. the sequence
E → C∞(R,R)→ RN does not split, where E denotes the space of smooth functi-
ons which are infinitely flat at 0. Otherwise RN would be a subspace of C∞(I,R)
(compose the section with the restriction map from C∞(R,R) → C∞(I,R)) and
hence would have a continuous norm. This is however easily seen to be not the case.

3.55 Theorem. Taylor formula.
Let f : U → F be smooth, where U is c∞-open in E. Then for each segment
[x, x+ y] = {x+ ty : 0 ≤ t ≤ 1} ⊂ U we have

f(x+ y) =
n∑

k=0

1
k!
dkf(x)yk +

∫ 1

0

(1− t)n

n!
dn+1f(x+ ty)yn+1dt,

where yk = (y, . . . , y) ∈ Ek.

Proof. This is an assertion on the smooth curve t 7→ f(x+ ty). Using functionals
we can reduce it to the scalar valued case, or we proceed directly by induction on
n: The first step is (6) in 2.15, and the induction step is partial integration of the
remainder integral.

3.56 Theorem. Uniform boundedness principle.
If all Ei are convenient vector spaces and if F is a locally convex space, then the

bornology on the space L(E1, . . . , En;F ) consists of all pointwise bounded sets.

So a mapping into L(E1, . . . , En;F ) is smooth if and only if all composites with
evaluations at points in E1 × . . .× En are smooth.

andreas.kriegl@univie.ac.at c© 7. Februar 2007 76



Spaces of Multi-Linear Mappings 3.58

Proof. Let us first consider the case n = 1. So let B ⊂ L(E,F ) be a pointwise
bounded subset. By lemma 3.35 we have to show that it is uniformly bounded on
each bounded subset B of E. We may assume that B is closed absolutely convex
and thus EB is a Banach space, since E is convenient. By the classical Uniform
Boundedness Principle, see [2, 5.2.2], the set {f |EB

: f ∈ B} is bounded in L(EB , F )
and thus B is bounded on B.

The smoothness detection principle: Clearly it suffices to recognize smooth curves.
If c : R → L(E,F ) is such that evx ◦c : R → F is smooth for all x ∈ E, then
clearly R −c→ L(E,F ) −j→

∏
E F is smooth. We will show that (j ◦ c)′ has values

in L(E,F ) ⊂
∏

E F . Clearly (j ◦ c)′(s) is linear E → F . The family of mappings
c(s+t)−c(s)

t : E → F is pointwise bounded for s fixed and t in a compact interval,
so by the first part it is uniformly bounded on bounded subsets of E. It converges
pointwise to (j ◦ c)′(s), so this is also a bounded linear mapping E → F . By the
first part j : L(E,F ) →

∏
E F is a bornological embedding, so c is differentiable

into L(E,F ). Smoothness follows now by induction on the order of the derivative.

The multi-linear case follows from the exponential law 3.34 using induction on
n.

3.57 Theorem. Multi-linear mappings on convenient vector spaces.
A multi-linear mapping from convenient vector spaces to a locally convex space is
bounded if and only if it is separately bounded.

Proof. Let f : E1 × . . . × En → F be n-linear and separately bounded, i.e. xi 7→
f(x1, . . . , xn) is bounded for each i and fixed xj for all j 6= i. Then f̌ : E1 × . . . ×
En−1 → L(En, F ) is (n − 1)-linear. By 3.56 the bornology on L(En, F ) consists
of the pointwise bounded sets, so f̌ is separately bounded. By induction on n
it is bounded. The bornology on L(En, F ) consists also of the subsets which are
uniformly bounded on bounded sets by lemma 3.35, so f is bounded.

We will now give an infinite dimensional version of 2.39, which gives as minimal
requirements for a mapping to be smooth.

3.58 Theorem.
Let E be a convenient vector space. An arbitrary mapping f : E ⊃ U → F is
smooth if and only if all unidirectional iterated derivatives dp

vf(x) = ( ∂
∂t )

p|0f(x+tv)
exist, x 7→ dp

vf(x) is bounded on sequences which are Mackey converging in U , and
v 7→ dp

vf(x) is bounded on sequences which are fast falling to 0.

Proof. A smooth mapping obviously satisfies this requirement. Conversely from
2.39 we see that f is smooth restricted to each finite dimensional subspace and the
iterated directional derivatives dv1 . . . dvnf(x) exist and are bounded multi-linear
mappings in v1, . . . , vn by 3.3o, since they are universal linear combinations of
the unidirectional iterated derivatives dp

vf(x), compare with the proof of 2.39. So
dnf : U → Ln(E;F ) is bounded on Mackey converging sequences with respect to
the pointwise bornology on Ln(E;F ). By the uniform boundedness principle 3.56
together with lemma 2.2o the mapping dnf : U×En → F is bounded on sets which
are contained in a product of a bornologically compact set in U - i.e. a set
in U which is contained and compact in some EB - and a bounded set in En.

Now let c : R→ U be a smooth curve. We have to show that f(c(t))−f(c(0))
t converges

to f ′(c(0))(c′(0)). It suffices to check that

1
t

(
f(c(t))− f(c(0))

t
− f ′(c(0))(c′(0))

)
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is locally bounded with respect to t. Integrating along the segment from c(0) to c(t)
we see that this expression equals

1
t

∫ 1

0

(
f ′
(
c(0) + s(c(t)− c(0))

)(c(t)− c(0)
t

)
− f ′(c(0))(c′(0))

)
ds

=
∫ 1

0

f ′
(
c(0) + s(c(t)− c(0))

)( c(t)−c(0)
t − c′(0)

t

)
ds

+
∫ 1

0

∫ 1

0

f ′′
(
c(0) + rs(c(t)− c(0))

)(
s
c(t)− c(0)

t
, c′(0)

)
dr ds

The first integral is bounded since df : U × E → F is bounded on the product of
the bornologically compact set {c(0)+ s(c(t)− c(0)) : 0 ≤ s ≤ 1, t near 0} in U and
the bounded set { 1

t

(
c(t)−c(0)

t − c′(0)
)

: t near 0} in E (use 2.5).

The second integral is bounded since d2f : U ×E2 → F is bounded on the product
of the bornologically compact set {c(0) + rs(c(t)− c(0)) : 0 ≤ r, s ≤ 1, t near 0} in
U and the bounded set {

(
s c(t)−c(0)

t , c′(0)
)

: 0s ≤ 1, t near 0} in E2.

So f ◦ c is differentiable in F with derivative df ◦ (c, c′). Now df : U × E → F
satisfies again the assumptions of the theorem, so we may iterate.
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Desired Isomorphisms

4.1. Suppose we are given some category X and a forgetful functor V : LCSb → X,
where the index b indicates that we consider the bounded linear morphisms. Then
for an object X in X and a locally convex space G we can consider the space
of morphisms X(X,V (G)) and we assume that this lifts to a functor F : Xop ×
LCSb → LCSb. Examples of that situation are

1. X := LCSb, V the identity and F the internal hom-functor L.
2. X the category of mappings between sets and F(X,G) :=

∏
X G = GX the

space of all mappings with the topology of pointwise convergence.
3. X the category of continuous maps between topological spaces and F(X,G)

the space C(X,G) of continuous mappings with the topology of uniform
convergence on compact subsets. Here we have to restrict to continuous
linear mappings to get a forgetful functor. Note that (2) is a particular case,
where the topology on X is discrete.

4. X the bounded (better bornological) mappings between bornological spaces
and F (X,G) := `∞(X,G) the space of bornological mappings with the to-
pology of uniform convergence on bounded sets. Note that (2) is a particular
case, where the bounded sets are exactly the finite ones.

5. X the category of smooth mappings defined on c∞-open subsets of locally
convex spaces G, and F(X,G) := C∞(X,G) supplied with the locally convex
topology described before.

Not completely fitting into this scheme but nevertheless interesting might be the
following function spaces:

6. For sets X the space F(X,G) := G(X) of all functions with finite support
with the final topology induced by the subspaces GA, where A runs through
the finite subsets.

7. For topological spaces X the space F(X,G) := Cc(X,G) of all continuous
functions with compact support with the final topology induced by the sub-
spaces CK(X,G) formed by the continuous functions having support in K,
where K runs through all compact subsets of X and where CK(X,G) carries
the initial topology induced by the inclusion into C(X,G). Note that (6) is
a particular case, where the topology on X is discrete.

8. For a finite dimensional manifold X the space F(X,G) := C∞c (X,G) of all
smooth functions with compact support with the final topology induced by
the subspaces C∞K (X,G) formed by the continuous functions having support
in K, where K runs through all compact subsets of X and where C∞K (X,G)
carries the initial topology induced by the inclusion into C∞(X,G). Note
that (6) is again a particular case, where the manifold is discrete.
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Some desirable isomorphisms would then be the following, where we write F(X) as
shortcut for F(X,R) and ⊗? denotes some appropriate tensor product.

F(X,F(Y,G)) ∼= F(X × Y,G) exponential law

F(X)⊗? G ∼= F(X,G) vector valued versus scalar valued

F(X)⊗? F(Y ) ∼= F(X × Y ) compatibility with products

Note that (E) and (V) imply (P):

F(X)⊗? F(Y )
(V)
∼= F(X,F(Y ))

(E)
∼= F(X × Y )

In the particular case (1), where the forgetful functor V forgets nothing, i.e. X =
LCSb, we would expect:

L(E,L(F,G)) ∼= L(E,F ;G) ∼= L(E ⊗β F,G)

E′ ⊗? G ∼= L(E,G)

E′ ⊗? F
′ ∼= L(E,F ′) ∼= (E ⊗β F )′

Applying (P) for L to (V) and (P) for F we would obtain the dualized versions:

F(X)′ ⊗? G
′

(PL)∼= (F(X)⊗β G)′
(V )∼= F(X,G)′

F(X)′ ⊗? F(Y )′
(PL)∼= (F(X)⊗β F(Y ))′

(P )∼= F(X × Y )′

Note again that (E) and (V’) imply (P’):

F(X)′ ⊗? F(Y )′
(V’)
∼= F(X,F(Y ))′

(E)
∼= F(X × Y )′

4.2. Exponential law

Lets us first determine in which situations we have the exponential law (E).

1. For L we have proved in 3.34 that (E) is true.
2. For sets X and Y we obviously have (GY )X ∼= GX×Y .
3. For C we have shown in 2.3 that (E) is a bijection if Y is locally com-

pact. That it is also true for the structure follows immediately since the
0-neighborhood NA,NB,V

corresponds to NA×B,V , where A ⊆ X and B ⊆ Y
are compact and V ⊆ G a 0-neighborhood.

4. That (E) is a bijection for `∞ is obvious, cf. 3.34. That it is also true for
the structure follows the same way as in (3), where A and B are bounded
instead.

5. That (E) is true for C∞ has been shown in 2.47 and 2.48.
6. It is obvious that (G(Y ))(X) ∼= G(X×Y ) is true.
7. For Cc we use that Cc(X,G) is the strict inductive limit of the spaces
CK(X,G), whereK ⊂ X is compact. Obviously the closed subspace CA×B(X×
Y,G) = {f : f(x, y) = 0 if x /∈ A or y /∈ B} of C(X × Y,G) corresponds to
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the closed subspace CA(X,CB(Y,G)) = {f∨ ∈ C(X,CB(Y,G)) : f∨(x) =
0 if x /∈ A} of C(X,C(Y,G)) and hence we have a natural injection

Cc(X × Y,G)
⋃

A,B CA×B(X × Y,G) //

∼=
��

⋃
A CA(X,Cc(Y,G))

⋃
A,B CA(X,CB(Y,G)) // Cc(X,Cc(Y,G))

Conversely let B ⊆ CA(X,Cc(Y,G)) be bounded. Then B(A) is bounded in
Cc(Y,G). Now suppose that Y is in addition σ-compact. Then Cc(Y,G) is
the strict inductive limit of a sequence of spaces CB(Y,G) and hence B(A)
has to be bounded in some step CB(Y,G) by [2, 4.8.1]. So B corresponds
to a bounded subset of CA(X,CB(Y,G)). So these correspondences induce
the required bornological isomorphism and hence (E) holds for Cc and σ-
compact Y .

8. For C∞c we can proceed completely analogously to (7) to obtain (E) for C∞

and finite dimensional smooth manifolds.

Now let us come to the other desired isomorphisms. One could ask, whether we
could deduce the case of a general F from that of L. For this we need:

Universal Linearization

4.3. Suppose we can solve the universal problem of linearizing maps in F(X,G),
i.e. find a c∞-complete locally convex space λ(X), also called a free convenient
vector space, and a map ι : X → λ(X) which induces an isomorphism

F(X,G) ∼= L(λ(X), G) the forgetful functor is right adjoint

for all c∞-complete locally convex spaces G, and hence in particular an isomorphism
F(X) ∼= λ(X)′. A consequence of (E) for L and F is that

λ(X × Y ) ∼= λX⊗̃βλY

This follows, since

L(λ(X)⊗̃βλ(Y ), G)
(EL)∼= L(λ(X), L(λ(Y ), G))

(F)
∼= F(X,L(λ(Y ), G))

(F)
∼= F(X,F(Y,G))

(EF )∼= F(X × Y,G)

shows that λ(X)⊗̃βλ(Y ) has the universal property of λ(X × Y ). Using all this we
can translate the general case to that for L:

F(X,F(Y,G))
(F)
∼= L(λX,L(λY,G))

(EL)∼=

∼= L(λX ⊗β λY,G)
(Pλ)∼= L(λ(X × Y ), G)

(F)
∼= F(X × Y,G)

F(X)⊗G
(F)
∼= λ(X)′ ⊗G

(VL)∼= L(λ(X), G)
(F)
∼= F(X,G)

F(X)⊗F(Y )
(F)
∼= λ(X)′ ⊗ λ(Y )′

(PL)∼=

∼= (λ(X)⊗β λ(Y ))′
(Pλ)∼= (λ(X × Y ))′

(F)
∼= F(X × Y ).

Let us try to construct λ(X). Since F(X) = F(X,R) ∼= λ(X)′ we have a candidate
for the dual of λ(X), and hence λ(X) should be a subspace of λ(X)′′ ∼= F(X)′.
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Obviously we have a mapping ι : X → F(X)′ given by x 7→ evx. So our first
problem is to show that ι belongs to F . Recall that for F = C∞ and c∞-complete
locally convex spaces we have the following uniform boundedness principle 3.56:

f : X → L(E,F ) is F ⇐⇒ evx ◦f : X → F is F for all x ∈ E

So let us assume that (U1) is satisfied for the F under consideration. From the
commuting triangle

X
ι //

f
""F

FFFFFFFF F(X)′

evf

��
R

we conclude using (U1) for L(F(X),R) = F(X)′ that ι belongs to F . In order
to obtain the universal property (F) for scalar valued functions we only have to
restrict evf to the subspace λ(X) which is given by the c∞-closure of the vector
space generated by the image {evx : x ∈ X} of ι.

Now to the general case of G-valued functions, where G is at least c∞-complete.
Since ι belongs to F we have that ι∗ : L(λ(X), G) → F(X,G) is well defined and
injective since the linear subspace generated by the image of ι is c∞-dense in λ(X)
by construction. To show surjectivity consider the following diagram:

X
ι //

f

��

λ(X)

(3)

ef

��

� � //

(2)

��

F(X)′

evλ◦T

��

(1)zz∏
G′ R

prλ

$$JJJJJJJJJJ

G
- 

δ

<<yyyyyyyy
λ // R

Note that (2) has values in δ(G), since this is true on the evx, which generate by
definition a c∞-dense subspace of λ(X). Note that this construction of f̃ works for
every f : X → G which is scalarly in F .

Remains to show that this bijection is a bornological isomorphism. In order to show
that the linear mapping F(X,G)→ L(λ(X), G) is bounded we can reformulate this
equivalently using (E) for L, the universal property of λ(X) and (U1) as follows:

F(X,G)→ L(λ(X), G) is L
(EL)⇐⇒ λ(X)→ L(F(X,G), G) is L

(F)
⇐⇒ X → L(F(X,G), G) is F
(U1)
⇐⇒ X → L(F(X,G), G)

evf→ G is

and since the later map is f we are done. Another way to see this would be to show
that L(E,F ) ⊆ F(E,F ) is initial even for F-morphisms and then apply (E) for F
to translate the map X → L(F(X,G), G) ⊆ F(F(X,G), G) into the identity on
F(X,G), which is a F-map.

Conversely we have to show that L(λ(X), G)→ F(X,G) belongs to L. Composed
with evx : F (X,G)→ G this yields the bounded linear map evδ(x) : L(λ(X), G)→
G. Thus we need the following kind of uniform boundedness principle for the func-
tion space F(X,G):

T : E → F(X,G) is L ⇐⇒ evx ◦T : E → G is L for all x ∈ X
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A Uniform Boundedness Principle

4.4. Lemma. Uniform S-boundedness principle.
Let E be a locally convex space and let S be a point separating set of bounded linear
mappings with common domain E. Then the following conditions are equivalent.

1. If F is a Banach space (or even a c∞-complete lcs) and f : F → E is linear
and λ ◦ f is bounded for all λ ∈ S, then f is bounded.

2. If B ⊆ E is absolutely convex such that λ(B) is bounded for all λ ∈ S and
the normed space EB generated by B is complete, then B is bounded in E.

3. Let (bn) be an unbounded sequence in E with λ(bn) bounded for all λ ∈ S,
then there is some (tn) ∈ `1 such that

∑
tn bn does not converge in E for

the initial locally convex topology induced by S.

Definition. We say that E satisfies the uniform S-boundedness principle if these
equivalent conditions are satisfied.

Proof. (1) ⇒ (3) : Suppose that (3) is not satisfied. So let (bn) be an unbounded
sequence in E such that λ(bn) is bounded for all λ ∈ S, and such that for all
(tn) ∈ `1 the series

∑
tn bn converges in E for the initial locally convex topology

induced by S. We define a linear mapping f : `1 → E by f((tn)n) =
∑
tn bn, i.e.

f(en) = bn. It is easily checked that λ ◦ f is bounded, hence by (1) the image of
the closed unit ball, which contains all bn, is bounded. Contradiction.

(3)⇒ (2): Let B ⊆ E be absolutely convex such that λ(B) is bounded for all λ ∈ S
and that the normed space EB generated by B is complete, and suppose that B is
unbounded. Then B contains an unbounded sequence (bn), so by (3) there is some
(tn) ∈ `1 such that

∑
tn bn does not converge in E for the weak topology induced

by S. But
∑
tn bn is a Cauchy sequence in EB , since

∑m
k=n tnbn ∈ (

∑m
k=n |tn|) ·B,

and thus converges even bornologically, a contradiction.

(2) ⇒ (1): Let F be convenient, and let f : F → E be linear such that λ ◦ f is
bounded for all λ ∈ S. It suffices to show that f(B), the image of an absolutely
convex bounded set B in F with FB complete, is bounded. By assumption λ(f(B))
is bounded for all λ ∈ S, the normed space Ef(B) is a quotient of the Banach space
FB , hence complete. By (2) the set f(B) is bounded.

4.5. Theorem. Webbed spaces have the uniform boundedness property.
A locally convex space which is webbed satisfies the uniform S-boundedness principle
for any point separating set S of bounded linear functionals.

Proof. Since the bornologification of a webbed space is webbed, cf. [14, 13.3.3
and 13.3.1], we may assume that E is bornological, and hence that every bounded
linear functional is continuous, cf. [14, 13.3.1]. Now the closed graph principle, cf.
[2, 5.3.1] applies to any mapping satisfying the assumptions of 1 in 4.4.

4.6. Lemma. Stability of the uniform boundedness principle.
Let F be a set of bounded linear mappings f : E → Ef between locally convex
spaces, let Sf be a point separating set of bounded linear mappings on Ef for every
f ∈ F , and let S :=

⋃
f∈F f

∗(Sf ) = {g ◦ f : f ∈ F , g ∈ Sf}. If F generates the
bornology and Ef satisfies the uniform Sf -boundedness principle for all f ∈ F , then
E satisfies the uniform S-boundedness principle.

Proof. We check the condition (1) of 4.4. So assume h : F → E is a linear mapping
for which g ◦ f ◦ h is bounded for all f ∈ F and g ∈ Sf . Then f ◦ h is bounded by
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A Uniform Boundedness Principle 4.7

the uniform Sf - boundedness principle for Ef . Consequently h is bounded since F
generates the bornology of E.

Note that the uniform boundedness principles (U1) and (U2) have the following
bornological isomorphism as consequence:

L(E,F(X,G)) ∼= F(X,L(E,G)) flip of variables.

In fact the mapping and its inverse are given by exchanging the coordinates, f 7→
f̃ : (x 7→ (y 7→ f(y)(x))). For f ∈ L(E,F(X,G)) we have f̃(x) = evx ◦f ∈ L(E,G),
since evx : F(X,G) → G is bounded. Furthermore f̃ ∈ F(X,L(E,G)) since
eve ◦f̃ = f(e) ∈ F(X,G) for all e ∈ E, using the uniform boundedness principle
(U1). Conversely for f ∈ F(X,L(E,G)) we have f̃(e) = eve ◦f ∈ F(X,G), since
eve : L(E,G) → G is bounded and hence in F . Furthermore f̃ ∈ L(E,F(X,G))
since evx ◦f̃ = f(x) ∈ L(E,G), using the uniform boundedness principle (U2).

The bijection is bounded in both directions, since this can be tested by applying the
uniform boundedness principles (U1) and (U2) and the equation evx ◦( )̃ = (evx)∗.

On the other hand this isomorphism translates the two uniform boundedness prin-
ciples into each other: For example f ∈ L(E,F(X,G)) iff f̃ ∈ F(X,L(E,G)) and
hence by (U1) iff f̃(x) ∈ L(E,G) and f(x) ∈ F (X,G), which are both satisfied by
assumption.

Let us now discuss the situations where we have free convenient vector spaces λX,
or the two related uniform boundedness principles.

4.7 Examples of free convenient vector spaces and the uniform bounded-
ness principles.

1. For L the uniform boundedness principles (U1) and (U2) are just a direct
corollary of usual uniform boundedness principle, and of course λ(X) = X.
The flipping isomorphism (U3) is L(E,L(F,G)) ∼= L(F,L(E,G)).

2. The dual of RX is R(X) provided the cardinality of X is non-measurable.
The evaluations evx correspond to the unit vectors ex ∈ R(X), hence λ(X) =
R(X) = (RX)′. The uniform boundedness principle (U2) is just the universal
property of the product and (U1) is trivial. The flipping isomorphism (U3) :
L(E,G)X ∼= L(E,GX) is a particular case of the continuity of L(E, ).

3. For C there exists no λ(X), a candidate for λ(X) with locally compact X
would be the space of Borel-measures on X being the dual of C(X), howe-
ver the uniform boundedness principle (U1) fails: Take X = N∞, E = `2,
G = R and f : N∞ → E defined by f : n 7→ en and f(∞) = 0. Then
f is weakly continuous, but not continuous. Note however that the forgetful
functor preserves limits hence is a candidate for a right adjoint. By [2, 7.5.2]
neither c0 nor L1 is a dual of a normed space, hence there exists no Banach
space λ(N∞) with C(N∞,R) = λ(N∞)′. But since λ(N∞) is a subspace of
C(N∞,R)′ it has to be normable. However (U2) is valid, since it follows from
the fact that C(K,R) is a Banach space via 4.6.

4. For `∞ we have that λ(X) := `1(X) ⊆ `∞(X)′. Recall that `1(X) is by
2.33 equal to the inductive limit of `1(B) over all bounded B ⊆ X and it
is not difficult to show that the c∞-closure of the evaluations in `∞(B)′

is just `1(B). The boundedness principle (U1) is true, since the evx detect
bounded sets. And (U2) is true, since `∞(B,R) is a Banach space. The
flipping isomorphism (U3) is `∞(X,L(E,G)) ∼= L(E, `∞(X,G)).

5. For C∞ we have λ(X). And it can be shown that λ(X) equals the distributi-
ons with compact support if X is a finite dimensional smooth manifold. No

andreas.kriegl@univie.ac.at c© 7. Februar 2007 84



A Uniform Boundedness Principle 4.8

counterexample for λ(X) = C∞(X,R)′ is known for infinite dimensional
spaces X. We already proved that (U1) and (U2) is true, since C∞(R,R)
is a Fréchet space. The flipping isomorphism (U3) is C∞(X,L(E,F )) ∼=
L(E,C∞(X,F )).

6. For G(X) we cannot apply the discussion above directly, since we have no
forgetful functor in this situation. Here a candidate for λ(X) would be RX ,
but the continuous linear functions RX → G have finite support only for
spaces G admitting a continuous norm. We have no flipping isomorphism
(U3), since for X = N, E = R(N) and G = R we have L(E,G)(X) ∼= (RN)(N)

but L(E,G(X)) ∼= (R(N))N. However the uniform boundedness principle (U2)
is true: In fact take a absolutely convex subset B ⊆

∐
iEi, which is bounded

in
∏

iEi and such that (
∐

iEi)B is complete. We claim that B is contained
in some finite subproduct. Otherwise there would be a countable subset N of
the index set and bn ∈ B with bn(n) 6= 0 for all n ∈ N. Choose furthermore
λn ∈ E′n with λn(bn(n)) = 1. Let p :

∐
iEi → R(N) be given by p((xi)i∈I) :=

(λn(xn)n∈N). Then p(B) ⊆ R(N) satisfies the same assumptions as B. But∐
i∈N R is the strict inductive limit of the finite subproducts, hence is webbed

and we may apply the closed graph theorem.
7. Since Cc is a generalization of the previous item, we have no λ here either.

However if Y is σ-compact, then the space Cc(Y,R) is webbed, and hence
Cc(Y,G) satisfies the uniform boundedness principle (U2).

8. The same as in the previous item applies here.

Thus we should investigate the desired isomorphism (V) (and in particular (P)) for
L. Obviously we have a bilinear mapping E′ × G → L(E,G) and this induces a
linear map ι : E′ ⊗ G → L(E,G). So we have to prove firstly that this map is an
embedding for some topology on E′ ⊗ G (which we can always achieve by taking
the corresponding initial topology) and that secondly it has dense image. So let us
calculate the image first:

4.8 Lemma. Algebraic tensor product as operators.
The image of the algebraic tensor product E′⊗G in L(E,G) consists exactly of the
finite dimensional operators (i.e. those with finite dimensional image).

Proof. Let T : E → G have finite dimensional image. Then choose a basis (gn)n

of T (E) and continuous linear functionals (λn)n in G′ dual to the gn. Then T =∑
n(λn ◦ T ) · gn. Conversely the image of

∑
n≤N λn ⊗ gn is obviously contained in

〈gn : n ≤ N〉.

We have shown in [2, 6.4.8] that any limit of finite dimensional operators between
Banach spaces is compact. Obviously the identity on a Banach space G is compact
only if G is finite dimensional, so E′ ⊗ E is not dense in L(E,E) for any infinite
dimensional Banach space E. Thus for no infinite dimensional Banach space E = G
there is a topology τ on the algebraic tensor-product such that

E′⊗̂τG ∼= L(E,G)

is true.

Recall that with respect to the completed projective tensor product (V) is true for
F(X, ) := ( )X with discrete X by 3.28. But it fails with respect to the completed
bornological tensor product for G := R(N) and X := N, since

G⊗̂βF(N) = R(N)⊗̂βRN ∼= (RN)(N) 6∼= (R(N))N = F(N, G)

By 3.38 we have that with respect to the completed bornological tensor product (V)
is true for F(X, ) := ( )(X). But it fails with respect to the completed projective
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tensor product, since

F(N)⊗̂πG = R(N)⊗̂πRN ∼= (R(N))N 6∼= (RN)(N) = F(N, G).

So we see that the choice of the appropriate tensor topology depends on the function
space functor F under consideration.

Let us now consider (V) (and in particular (P) for G = `∞(Y )) for the function
spaces `∞. Using the free c∞-complete vector space `1 this would translate into

`1(X)′ ⊗? G ∼= `∞(X)⊗? G
(V)
∼= `∞(X,G)

(F)
∼= L(`1(X), G).

But since in particular case, where X = N and G = `∞, the natural inclusion of
`1 → `∞ is not compact - (the image of) the standard basis is not precompact
in `∞ - in cannot lie in the image under the composite of the completion of any
topology on the algebraic tensor product by 4.8. Thus this composite is never onto
and hence for F = `∞ neither (V) nor the particular case (P) can be true.

To C, Cc, C∞ and C∞c we will come later.

Integrable Functions

4.9. Since the free c∞-complete vector space `1(X) of a bornological set X is a
space of functions, we could try to generalize this space to the vector valued case.
We will restrict ourselves to the case where X is bounded. It would however be
nice to treat also the case of a general bornological space X. It is quite natural to
define `1(B,G) as those functions f : B → G for which p̃(f) :=

∑
x∈B p(f(x)) <∞

for every continuous seminorm p on G. A basis of seminorms on `1(B,G) is the
given by these p̃. (For general X one could define `1(X,G) as the inductive limit of
`1(B,G)).

It is easy to show that (E) is true for `1. In fact
∑

x

∑
y p(gx,y) converges iff∑

x,y p(gx,y) does. Furthermore the seminorms correspond to each other.

Let us try to find a universal solution λ(X) for linearization. For countable X we
have in 2.33 already shown that the closure of the finite sequences in `∞(X) ∼=
`1(X)′ is given by

c0(X) := {f : X → R : supp(f) is countable and
for every ε > 0 and bounded B

the set {x ∈ B : |f(x)| > ε} is finite}.

This can be similarly proved for general bornological spaces X. All scalar `1-
functions f : X → G induce functions in L(c0(X), G) via λ 7→

∑
x λ(x) f(x),

and in fact one can show the converse, see [14, 19.4.3]. Recall that according to
2.4 we call a function f : X → G to be scalarly `1 iff ` ◦ f ∈ `1(X) for all ` ∈ E∗.
Thus we would need at least that all scalar `1-functions are `1, in order to obtain a
universal solution. For X = N and sequentially complete G one obviously has the
following implications:

absolutely summable =⇒ unconditionally summ. =⇒ scalarly absolutely summ.

A series
∑

k xk is called unconditionally summable, iff for every bijection σ : N→ N
the series

∑
k xσ(k) converges in E. Using the linear functionals shows that this

limit does not depend on the permutation σ.
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4.10 Lemma.
The second implication can be reversed - i.e. the scalar `1-functions on N are exact-
ly the unconditionally summable series - provided G′ is countably-barreled for the
Mackey-topology µ(G′, G), see [14, p.357].

Lemma.
A sequence xn is unconditionally summable iff the net F 7→

∑
k∈F xk converges,

where F runs through all finite subsets directed by inclusion.

Proof. (⇒) Let x =
∑

k xk. Suppose indirectly that there is a 0-neighborhood U
such that for every finite set F there exists a set F ′ ⊇ F such that

∑
k∈F ′ xk /∈ x+U .

By assumption there exists a n0 such that
∑

k≤n xk ∈ x + U for all n ≥ n0. Let
F0 := {1, . . . , n0}. We construct by induction Fk := {1, . . . ,maxF ′k−1} ⊇ F ′k−1.
Let F ′k be the corresponding set F ′k ⊇ Fk with

∑
k∈F ′k

xk /∈ x+ U . Enumerate the
natural numbers in the order F0 ≤ F ′0 ≤ F1 ≤ · · · ≤ Fk ≤ F ′k ≤ Fk+1 ≤ . . . . For
this permutation σ we have that

∑
k∈σ−1(F ′k) xσ(k) /∈ x+ U .

(⇐) Let x = limF

∑
x∈F xk. Let U be a 0-neighborhood and σ be a permutation

of N. By assumption there is some finite set F ⊆ N such that
∑

k∈F ′ xk ∈ x + U

for all finite F ′ ⊇ F . Let N := maxσ−1(F ). Then we have F ′ := σ({1, . . . , n}) ⊇
σ(σ−1F ) = F for every n ≥ N and hence

∑
k≤n xσ(k) =

∑
k∈F ′ xk ∈ x+ U .

4.11 Remark.
There is however a theorem by Dvoretzky-Rogers, which we will prove later (for
p = 1), and which says that a Banach space for which every scalar `p-sequence
is `p for some 1 ≤ p < ∞ has to be finite dimensional, see [14, 19.6.9]. Take for
example the sequence xn := 1

nen ∈ c0. This sequence is not absolutely summable,
but is unconditionally summable. So we have L(c0(N), G) ⊃ `1(N, G) in particular
for G = `1(N).

However one can show directly that (V) and hence (P) is true for complete spaces
G and F = `1:

4.12 Lemma.
For bornological spaces X and complete locally convex spaces G we have

`1(X)⊗̂πG ∼= `1(X,G)

Proof. We first show that the natural mapping `1c(X) ⊗π G → `1c(X,G) is an
isomorphism, where `1c(X) is the dense subspace in `1(X) of finite sequences and
`1c(X,G) the analogous subspace in `1(X,G). Since Rk ⊗π G ∼= Gk we have a
bijection. Let z =

∑
k fk⊗ yk ∈ `1c(X)⊗G. Let p be a seminorm on G and ‖ ‖1 the

usual norm on `1(X). We have for the corresponding norm p̃ on `1c(X,G) (see 4.9)
that

p̃(z) :=
∑
x∈X

p(z(x)) =
∑
x∈X

p

(∑
k

fk(x) yk

)
≤

≤
∑

k

∑
x∈X

|fk(x)| p(yk) =
∑

k

‖fk‖1 · p(yk),

Taking the infimum of the right side over all representations of z shows that this
norm p̃ is smaller than the corresponding projective tensor norm pπ. Conversely
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each z ∈ `1c(X,G) can be written as finite sum
∑

x ex ⊗ z(x), where ex denotes the
standard unit vector in `1(X). Thus we have for the tensor norm pπ that

pπ(z) ≤
∑

x

‖ex‖1 · p(z(x)) =
∑
x∈X

p(z(x)) = p̃(z)

which shows the converse relation.

Now since `1c(X,G) is dense in `1(X,G) and the latter space is complete (as can be
shown analogously to the case `1(N,R)), we have the desired isomorphism:

`1(X,G) = ̂`1c(X,G) ∼= `1c(X)⊗̂πG ∼= `1(X)⊗̂πG.

4.13 Corollary.
For the dual of `1(X,G) and a bornological and (complete) locally convex space G
we have:

`1(X,G)′
(V)
∼= (`1(X)⊗π G)′ = (`1(X)⊗β G)′

(EL)∼= L(`1(X), G; R)

(EL)∼= L(`1(X), G′)
(F)
∼= `∞(X,G′)

(U3)
∼= L(G, `∞(X))

Note however that the latter space is not isomorphic to `1(X)′⊗βG
′ = `1(X)′⊗πG

′,
as we have seen above for X = N and G = `1(X). Hence (V’) and (P’) fail to be
true for `1.

4.14. `p-spaces

A consequence is that for X = Y = N we have

(c0(X)⊗β c0(Y ))′ ∼= L(c0(X), c0(Y )′) ∼= L(c0(X), `1(Y ))

⊃
4.11

`1(X, `1(Y )) ∼= `1(X × Y ) ∼= c0(X × Y )′

Thus c0(X)⊗̂βc0(Y ) 6= c0(X × Y ). Which shows that (P) fails for C with respect
to the bornological and the projective tensor product. And so we should search for
an appropriate different topology on the tensor product.

For 1 ≤ p < ∞ one can show (see [22, 469]) that (E) holds, i.e. `p(X × Y ) ∼=
`p(X, `p(Y )), and that L(`p

∗
, G) is isomorphic to the space of scalar `p-sequences

in G for 1 < p ≤ ∞, see [14, 19.4.3]. However, as we mentioned before for p < ∞
these are strictly more than the `p-sequences, and hence there is no free convenient
vector space λ(N) in this situation. One can furthermore show that (P) fails for
all `p with p > 1. And in particular for the Hilbert-spaces `2. This can be seen as
follows: Suppose

`2⊗̂`2 ∼= `2(N× N)

then

L(`2, `2) ∼= L(`2, (`2)′) ∼= (`2⊗̂π`
2)′ ∼= `2(N× N)′ ∼= `2(N× N)

But the identity corresponds to the characteristic function on the diagonal, which
does not belong to `2(N× N).
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4.15 Measure spaces

Let us consider another category, namely that of measure spacesX, i.e. sets together
with a σ-algebra and a positive measure µ on X. Then we would like to define
L1(X,G) for all locally convex spaces G and try to prove the desired isomorphisms
(E), (V), (P), (V’) and (P’).

We want to generalize the spaces L1(X) and L∞(X) of [2, 4.12.5] to the vector
valued case. So let (X,A, µ) be a measure space and G be an arbitrary locally
convex space. As in [2, 4.12.1] we consider the space of simple functions, i.e. the
vector space of functions X → G generated by the functions χA⊗ y : x 7→ χA(x) y,
where y ∈ G and A ∈ A with µ(A) <∞ and χA denotes the characteristic function
of A. For those functions f =

∑
k χAk

⊗ yk we may define an integral
∫

X
f dµ :=∑

k µ(Ak) · yk ∈ G. And if p is a continuous seminorm on G we may define a
seminorm p̃ given by p̃(f) :=

∫
X
p ◦ f dµ =

∫
X
p(f(x)) dµ(x) ∈ R. These seminorms

have a common kernel, namely those simple functions, which are zero outside a set
of µ-measure 0. In fact if f(x) = 0 for x /∈ A, where A has measure 0, then the
same is true for the scalar valued elementary function p ◦ f , and hence p̃(f) = 0.
Conversely suppose that the necessarily measurable set A := f−1(G \ {0}) is not a
0-set. Since f takes only finitely many values on A, by shrinking A we may assume
w.l.o.g. that f is constant on A and µ(A) > 0. Now take a seminorm p which
does not vanish on f(A), then p̃(f) ≥

∫
A
p ◦ f dµ > 0. We denote the quotient

of the space of simple functions supplied with all these seminorms modulo their
common kernel by Simp(X;G). And it is now natural to define L1(X;G) to be the
completion of Simp(X;G). Our aim is to show how to obtain this completion from
that of Simp(X; R) =: Simp(X).

4.16 Lemma.
Simp(X)⊗π G ∼= Simp(X;G).

Proof. Obviously we have a bilinear continuous map Simp(X)×G→ Simp(X;G)
given by (

∑
k χAk

, y) 7→
∑

k χAk
⊗y and hence we obtain a map ι : Simp(X)⊗πG→

Simp(X;G). By construction of Simp(X;G) we have that ι is onto. Let us show that
it is injective. So let 0 6= z =

∑
i fi⊗yi ∈ Simp(X)⊗G be given, such that ι(z) = 0.

W.l.o.g. we may assume that the yi are linearly independent and we can take
y∗i ∈ G∗ dual to those yi. From ι(z) = 0 we get that fi =

∑
j fj ·y∗i (yj) = y∗i ◦ι(z) = 0

µ-a.e. and hence z = 0.

For z =
∑

i fi ⊗ yi ∈ Simp(X)⊗G we obtain that

p̃(ι(z)) ≤
∫

X

∑
i

|fi(x)| · p(yi) dµ(x) =
∑

i

‖fi‖1 · p(yi),

and hence p̃ ◦ ι is dominated by the projective tensor norm π1,p formed from the
1-norm on Simp(X) and p on F .

Conversely we may assume that the Ak are pairwise disjoint and then the tensor
norm is less or equal to∑

j

p(yj) · µ(Aj) =
∫

X

p(ι(z)(x)) dµ(x) = p̃(ι(z)),

and hence we have equality. Thus the two topologies are the same.

4.17 Corollary.
For complete G and measure space X we have L1(X)⊗̂πG ∼= L1(X;G)
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Proof. This follows from 3.19 since

L1(X;G) := ̂Simp(X;G) ∼= ̂Simp(X)⊗π G ∼= ̂Simp(X)⊗̂πG = L1(X)⊗̂πG

One can show that for Banach spaces G the space L1(X;G) can be realized as the
space of all measurable functions f for which

∫
X
‖f‖ dµ <∞, the so called Bochner

integrable functions, see [14, p340], modulo equality µ-a.e..

4.18 Corollary.
We have

L1(X)⊗̂πL1(Y ) ∼= L1(X;L1(Y )) ∼= L1(X × Y ).

Proof. The first isomorphism follows directly from 4.17. The second one is valid
for all Lp-spaces with finite p. In fact Simp(X, Simp(Y )) embeds into Simp(X×Y )
via

∑
i gi · χAi 7→

∑
i

∑
j ci,jχAi×Bj , where gi =

∑
j ci,j · χBj . And for the norms

we have

‖
∑

i

∑
j

ci,j · χAi×Bj‖ =
∑
i,j

ci,j · µ(Ai) · µ(Bj) =
∑

i

‖gi‖ · µ(Ai).

The rest follows from density considerations.

Remark.
The corresponding result is not true for L2. In fact

(f, g) 7→
∫

R2
e−2πixy f(x) g(y) d(x, y)

defines a norm-1 bilinear mapping on L2(R)×L2(R) which cannot be extended to
a continuous linear mapping on L2(R2).

We have shown in [2, 6.4.8] that any k ∈ L2(X×X) defines a compact linear operator
K : L2(X)→ L2(X) by Kf(x) :=

∫
X
k(x, y) f(y) dy. Furthermore L2(X)⊗ L2(X)

is dense in L2(X ×X).

Consider the identity `2 → `2. It is a non-compact continuous linear mapping. It
gives us a continuous bilinear mapping b : `2 × `2 ∼= `2 × (`2)∗ → R, by L(`2, `2) =
L(`2, (`2)∗∗) ∼= L(`2, (`2)∗; R) ∼= (`2⊗̂π(`2)∗)∗. Suppose this would correspond to a
continuous linear functional on `2(N×N) and hence to a square-summable double-
sequence (bi,j)(i,j). We can calculate the entries bi,j by applying this linear func-
tional to ei ⊗ ej , or equivalently by calculating b(ei, e

j) = b̌(ei)(ej) = δj
i . But this

series is not square-summable. Thus `2⊗̂π`
2 6∼= `2(N× N) ∼= `2(N, `2(N)) (see 4.14)

and also `2(X)⊗̂πG 6∼= `2(X,G).

Let us now turn towards L∞(X;G). This is defined to be the quotient space of all
bounded measurable functions fromX → Gmodulo equality µ-a.e. supplied with the
corresponding quotient semi-norms of the infinity norms f 7→ sup{p(f(x)) : x ∈ X}
on `∞(X,G). If G is a Fréchet space, then this space is Hausdorff, since the subspace
formed by those functions, which are 0 µ-a.e. is sequentially closed.

4.19 Theorem, Dunford-Pettis theorem.
Let G be a separable Banach space and X a measure space. Then

L1(X,G) ∼= L1(X)⊗̂πG

and

L1(X,G)∗ ∼= (L1(X)⊗π G)∗ ∼= L(L1(X), G; R) ∼= L(L1(X), G∗)
∼= L(G,L1(X)∗) = L(G,L∞(X)) ∼= L∞(X,G∗),
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the space of scalarly measurable bounded functions.

For a proof see [22, 46.2].

It would be nice to show a corresponding statement for `1(X,G), where X is a
bornological space.

Injective Tensor Product

Beside the few situations above the projective tensor product is not well suited for
function spaces. So we need another topology ε on the algebraic tensor product,
such that F ′ ⊗ε G→ L(F,G) is an embedding. We could take this as a definition,
but not every locally convex space E is a dual space F ′. However, since L(F, )
preserves embeddings (see below in 4.21), the same should be true for E ⊗ε ( ).
And since the tensor product should be commutative, we only have to find an
embedding of E → F ′ for some F and then E ⊗ε G ↪→ F ′ ⊗ε G ↪→ L(F,G) should
be an embedding. In fact we can take F = E∗ with the bornology of equi-continuous
sets, see 2.15.

4.21 Lemma. `∞(X, .) preserves embeddings.
Let T : F1 → F2 be an embedding and X be a bornological space. Then T∗ :
`∞(X,F1) → `∞(X,F2) is an embedding, and if E is a convex bornological space,
then T∗ : L(E,F1)→ L(E,F2) is an embedding.

Proof. Since L(E,Fi) is embedded into `∞(E,Fi), only the first statement has to
be shown. Clearly T∗ is injective, provided T is injective: T ◦f1 = T∗(f1) = T∗(f2) =
T ◦ f2 implies that f1 = f2. Remains to show that T∗ is a homeomorphism onto its
image. So let U ⊆ F1 be a 0-neighborhood and B ⊆ X be bounded. Then NB,U is a
typical 0-neighborhood in `∞(X,F1). By assumption there is some 0-neighborhood
V ⊆ F2, such that T−1(V ) ⊆ U . But then

(T∗)−1(NB,V ) = {f : T∗(f) ∈ NB,V } = {f : T (f(B)) ⊆ V }
⊆ {f : f(B) ⊆ U} = NB,U .

Definition.
Thus we consider the bilinear mapping E×F → L(E∗, F ), given by (x, y) 7→ (x∗ 7→
x∗(x)y). It is well-defined, since evx : E∗ → R is bounded. In fact evx : E∗ → R
is even continuous for the topology of uniform convergence on bounded sets, since
the set {x∗ : |x∗(x)| ≤ 1} is the polar of the bounded set {x} and hence a 0-
neighborhood for this topology. This induces a linear map E ⊗ F → L(E∗, F ),
given by x⊗ y 7→ (x∗ 7→ x∗(x)y).

We claim that this mapping is injective. In fact take
∑

i xi ⊗ yi ∈ E ⊗ F with xi

linearly independent. By Hahn-Banach we can find continuous linear functionals x∗i
with x∗i (xj) = δi,j . Assume that the image of

∑
i xi ⊗ yi is 0 in L(E∗, F ). Since it

has value yi on x∗i , we have that yi = 0 for all i and hence
∑

i xi ⊗ yi = 0.

We define the injective tensor product (also called ε-tensor product in [22]) E ⊗ε F
to be the algebraic tensor product with the locally convex topology induced by the
injective inclusion into L(E∗, F ). Since L(E∗, F ) is Hausdorff, the same is true for
E ⊗ε F .

Note that, since F embeds into (F ∗)′ by 2.15, the structure of E⊗ε F is also initial
with respect to E ⊗ F → L(E∗, F ) → L(E∗, (F ∗)′) ∼= L(E∗, F ∗; R), which gives a
more symmetric form. Since the seminorms of L(E∗, F ∗; R) are given by suprema
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on Uo × V o, where U and V are 0-neighborhoods, we have for the corresponding
seminorm εU,V on E ⊗ε F , that

εU,V

(∑
k

xk ⊗ yk

)
:= sup

{∣∣∣∑
k

x∗(xk) y∗(yk)
∣∣∣ : x∗ ∈ Uo, y∗ ∈ V o

}

4.22 Corollary. Seminorms of the injective tensor product.

A defining family of seminorms on E ⊗ε F is given by εU,V :
∑

i xi ⊗ yi 7→
sup{|

∑
i x
∗(xi) y∗(yi)| : x∗ ∈ Uo, y∗ ∈ V o}, where U and V run through the 0-

neighborhoods of E and F . The injective tensor product E⊗ε F is metrizable (resp.
normable) if E and F are.

Let us show next, that the canonical bilinear mapping E × F → L(E∗, F ) is conti-
nuous, which implies that the identity E ⊗π F → E ⊗ε F is continuous.
In fact, take an equi-continuous set E ⊆ E∗, i.e. E is contained in the polar Uo of
a 0-neighborhood U . And take furthermore an absolutely convex 0-neighborhood
V ⊆ F . Then U × V is mapped into {T : T (E) ⊆ V }, since (x⊗ y)(x∗) = x∗(x) y ∈
[−1, 1] · V ⊆ V for x∗ ∈ E ⊆ Uo.

4.23 Corollary.
E ⊗π F → E ⊗ε F is continuous.

Proof. In the diagram
E ⊗π F // E ⊗ε F

_�

��
E × F

⊗

OO

// L(E∗, F )

continuity of the bilinear map at the bottom implies continuity of the top arrow.

4.24 Definition.
A space E is called nuclear iff E ⊗π F = E ⊗ε F for all F . We will come to this
later on in more detail. Note that every product of R is nuclear, since RX ⊗π E
embeds into RX⊗̂πÊ ∼= ÊX ∼= L(R(X), Ê) ∼= L((RX)∗, Ê) (the second isomorphism
follows from the continuity of L( , Ê)) in which also L((RX)∗, E) and thus RX⊗εE
embeds.

Note however, that E × F → L(E′, F ) is not continuous, even for F = R, see [2,
7.4.20], where E′ carries the topology of uniform convergence on bounded sets, and
hence has as bounded sets those which are uniformly bounded on bounded sets.

4.25 Proposition.
The injective tensor product is commutative and associative.

Proof. Since the description of 0-neighborhoods in E⊗F is symmetric, we conclude
that ⊗ε is commutative. This follows even more directly from the embedding E ⊗ε

F → L(E∗, F ∗; R). For associativity, we consider the embeddings

(E⊗εF )⊗εG ∼= G⊗ε(E⊗εF ) ↪→ L(G∗, E⊗εF ) ↪→ L(G∗, L(E∗, F )) ∼= L(G∗, E∗;F )

and

E ⊗ε (F ⊗ε G) ↪→ L(E∗, F ⊗ε G) ∼= L(E∗, G⊗ε F ) ↪→
↪→ L(E∗, L(G∗, F )) ∼= L(E∗, G∗;F ) ∼= L(G∗, E∗;F )
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4.26 Corollary.
The space E′ ⊗ε F embeds into L(E,F ).

Proof. In fact, since E′ ⊗ε F ∼= F ⊗ε E
′ it embeds into L(F ∗, E′) ∼= L(E, (F ∗)′).

This inclusion factors over the embedding L(E,F ) → L(E, (F ∗)′), by x∗ ⊗ y 7→
(x 7→ x∗(x)y). Hence this map E′ ⊗ε F → L(E,F ) is an embedding.

E′ ⊗ε F
� � //

� t

&&

L(E, (F ∗)′)

L(E,F )
?�

OO

4.27 Proposition.
The injective tensor product is a functor, which preserves injective maps and em-
beddings.

Proof. That T1 ⊗ε T2 is continuous and thus ⊗ε is a functor follows, since T ∗1 :
E∗2 → E∗1 is bounded and hence L(T ∗1 , T2) = (T2)∗ ◦ (T ∗1 )∗ : L(E∗1 , F1)→ L(E∗2 , F2)
is continuous.

E1 ⊗ε F1
� � //

T1⊗εT2

��

L(E∗1 , F1)

L(T∗1 ,T2)

��
E2 ⊗ε F2

� � // L(E∗2 , F2)

Since L(E∗, ) preserves injectivity and embeddings, and since ⊗ε is commutative
the claimed preservation properties follow.

4.28 Corollary.
Let F1 and F2 be topological subspaces of E1 and E2. And assume that F1 or F2 is
nuclear. Then F1 ⊗π F2 is a topological subspace of E1 ⊗π E2.

Proof. By 4.27 we have that F1⊗π F2
∼= F1⊗ε F2 is a subspace of E1⊗ε E2. Since

F1 ⊗π F2 → E1 ⊗π E2 → E1 ⊗ε E2 is continuous, the result follows.

4.29 Example.
The injective tensor product of quotient maps is not always a quotient map and it
also doesn’t preserve direct sums.

Proof. The first one follows by taking the tensor product of a quotient mapping
`1 → `2 with the identity on `2. Note that by [14, 6.9.4] every Banach space is a
quotient space of some `1(X) with bounded X, and every separable Banach space
is a quotient of `1.

The second follows from the example R(N)⊗ε RN ∼= R(N)⊗π RN, since RN is nuclear.
Thus also the strict inductive limit lim−→n∈N Rn of the sequence Rn is not preserved.

4.30 Proposition.
The injective tensor product preserves dense subspaces.

Proof. Let E1 ⊆ E2 be a dense topological subspace. Then E1 ⊗ F is dense in
E2 ⊗π F and hence a fortiori in E2 ⊗ε F . By 4.27 we have that E1 ⊗ε F is a
subspace of E2 ⊗ε F .
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Remark.
Since E ⊗ε F embeds into L(E∗, F ) and in turn into the complete space L(E∗, F̂ ),
we have that the completed injective tensor product E⊗̂εF is the closure of E ⊗ F
in L(E∗, F̂ ). Note that by 4.30 we have that

E⊗̂εF ∼= Ê⊗̂εF̂ .

4.31 Theorem.
The completed injective tensor product preserves products and reduced projective
limits.

Proof. Since
∏̂

j Fj =
∏

j F̂j (denseness and completeness), we may assume wi-
thout loss of generality that E and all Fj are complete. The natural mapping
E⊗̂ε

∏
j Fj →

∏
j E⊗̂εF is induced from the isomorphism

L
(
E∗,

∏
j

Fj

)
→
∏
j

L(E∗, Fj)

and hence is an embedding. Since for the algebraic tensor product we have E ⊗∐
j Fj
∼=
∐

j E ⊗Fj and both sides are dense in the corresponding complete spaces
above, we have an isomorphism.

By the corresponding result for the projective tensor product we have that E ⊗
lim←−j

Fj is dense in lim←−j
E⊗̂πFj and hence a fortiori in lim←−j

E⊗̂εFj , which is a

subspace of
∏

j E⊗̂εFj
∼= E⊗̂ε

∏
j Fj . Since lim←−j

Fj is a subspace in
∏

j Fj , we have

by 4.27 that E⊗̂ε lim←−j
Fj → lim←−j

E⊗̂εFj is a embedding and hence an isomorphism.

Some Function Spaces

Let F be complete. We denote with `1{F} := `1(N, F ) ∼= `1⊗̂πF (see 4.12) the
space of all absolutely summable sequences in F , with `1〈F 〉 the space of all un-
conditionally summable sequences in F , and with `1[F ] ∼= L(c0, F ) the space of all
scalarly absolutely summable sequences. We have already shown the inclusions

`1{F} ⊆ `1〈F 〉 ⊆ `1[F ].

Let us describe the structure on `1[F ] induced by the bijection with L(c0, F ).

4.32 Lemma. The space of scalarly absolutely summable sequences.
The structure on `1[F ] induced from L(c0, F ) is given by the seminorms

p̃(f) := sup
{ ∞∑

n=1

|y∗(fn)| : |y∗| ≤ p
}
,

where p runs through all continuous seminorms of F .

Proof. Let p be a continuous seminorm on F and V := {y ∈ F : p(y) ≤ 1}. As in
4.22 we use that p(y) = sup{|y∗(y)| : y∗ ∈ V o}. Thus we can calculate the seminorm
p∞ on L(c0, F ) associated to p as follows, where B denotes the closed unit-ball in
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c0 and ι : `1[F ]→ L(c0, F ), ι(f)(λ) =
∑

k fkλk the canonical bijection:

p̃(f) := p∞(ι(f)) := sup{p(ι(f)(λ)) : λ ∈ B}

= sup
{∣∣∣y∗( ∞∑

k=1

fkλk

)∣∣∣ : λ ∈ B, y∗ ∈ V o
}

= sup
{∣∣∣ ∞∑

k=1

λky
∗(fk)

∣∣∣ : λ ∈ B, y∗ ∈ V o
}

≤ sup
{

sup{|λk|}︸ ︷︷ ︸
≤1

∞∑
k=1

|y∗(fk)| : λ ∈ B, y∗ ∈ V o
}

≤ sup
{ ∞∑

k=1

|y∗(fk)| : y∗ ∈ V o
}

Conversely we can find for ε > 0 an n such that
∑∞

k>n |y∗(fk)| < ε. Let λk :=
sign(y∗(fk)) for k ≤ n and 0 otherwise. Then λ ∈ B and
∞∑

k=1

|y∗(fk)| =
∣∣∣∑
k≤n

λk y
∗(fk)

∣∣∣+∑
k>n

|y∗(fk)| ≤
∣∣∣ ∞∑
k=1

λk y
∗(fk)

∣∣∣+ ε ≤ p∞(ι(f)) + ε.

Hence we have also the converse relation.

4.33 Lemma. The space of unconditionally summable sequences.
For complete F the subspace `1〈F 〉 of `1[F ] is closed and both spaces are complete.
Hence we will consider always the initial structure on `1〈F 〉 induced from `1[F ]

Proof. Since `1[F ] ∼= L(c0, F ), it is complete. So we only have to show that `1〈F 〉
is closed in `1[F ]. Take an element x in the closure of `1〈F 〉. We have to show
that the net K 7→

∑
k∈K xk converges, where K runs through the finite subsets of

N. Since F is complete, it is enough to show that this is a Cauchy-net. So let p
be a seminorm of F and ε > 0. By the assumption we can find a y ∈ `1〈F 〉 with
p̃(x−y) ≤ ε. Thus the net

∑
k∈K yk converges in F , i.e. there is a finite K0 ⊆ N such

that p
(∑

k∈N yk−
∑

k∈K yk

)
≤ ε for all K ⊇ K0. Hence we have for K0 ⊆ K1 ⊂ K2

p
(∑

k∈K2

xk −
∑

k∈K1

xk

)
= p
( ∑

k∈K2\K1

xk

)
≤ p
( ∑

k∈K2\K1

(xk − yk)
)

+ p
(∑

k∈K2

yk −
∑

k∈K1

yk

)
≤ sup

{∣∣∣y∗( ∑
k∈K2\K1

(xk − yk)
)∣∣∣ : |y∗| ≤ p}

+ p
(∑

k∈N
yk −

∑
k∈K1

yk

)
+ p
(∑

k∈K2

yk −
∑
k∈N

yk

)
4.32
≤ p̃(x− y) + p

(∑
k∈N

yk −
∑

k∈K1

yk

)
+ p
(∑

k∈K2

yk −
∑
k∈N

yk

)
≤ ε+ ε+ ε,

which shows that K 7→
∑

k∈K xk is a Cauchy-net.

4.34 Theorem.
Let F be complete then `1⊗̂εF ∼= `1〈F 〉, i.e. (V) is valid for `1〈 〉, the space of
unconditionally summable sequences.
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Proof. By 4.26 we have that `1(X)⊗ε F ∼= c0(X)′ ⊗ε F embeds into L(c0(X), F ),
the space of scalarly absolutely summable functions. Obviously λ ⊗ y ∈ `1 ⊗ F is
contained in `1{F} ⊆ `1〈F 〉. Since the latter space is complete, we only have to
show that `1c ⊗F = R(N)⊗F ∼= F (N) is dense in `1〈F 〉 with respect to the structure
inherited from `1[F ]. So let x ∈ `1〈F 〉 and consider xn := x|[1,...,n] ∈ Fn ⊆ F (N) ⊆
`1[F ]. We claim that xn → x in `1[F ]. So let p be a continuous seminorm on F .
Since K 7→

∑
k∈K xk converges, we have that

p̃(x− xn) = sup
{∑

k>n

|y∗(xk)| : |y∗| ≤ p
}

= sup
{∣∣∣y∗( ∑

k>n
y∗(xk)≥0

xk

)∣∣∣+ ∣∣∣y∗( ∑
k>n

y∗(xk)<0

xk

)∣∣∣ : |y∗| ≤ p}

≤ sup
{
p
( ∑

k>n
y∗(xk)≥0

xk

)
+ p
( ∑

k>n
y∗(xk)<0

xk

)}
≤ 2ε

for n sufficiently large. In the complex case we have to make a more involved
estimation for

∑
k>n |y∗(xk)|. Let P := {z ∈ C : <z > 0 and − <z < =z ≤ <z}.

For every z 6= 0 there is a unique j ∈ {0, 1, 2, 3} with ij z ∈ P . Then |z| ≤ 2<(ij z) ≤
2|z|. Thus we can split the sum into 4 parts corresponding to j ∈ {0, 1, 2, 3}, where
ijy∗(xk) ∈ P . For each subsum we have∑

k>n
ij y∗(xk)∈P

|y∗(xk)| =
∑
k>n

ij y∗(xk)∈P

2<(ij y∗(xk)) = 2<
(
ij y∗

( ∑
k>n

ij y∗(xk)∈P

xk

))

≤ 2
∣∣∣y∗( ∑

k>n
ij y∗(xk)∈P

xk

)∣∣∣ ≤ 2 p
( ∑

k>n
ij y∗(xk)∈P

xk

)
≤ 2 ε

Thus we have p̃(x− xn) ≤ 8 ε.

Let us show now that (V) is satisfied for C:

4.35 Theorem.
If F is complete, then we have

Cm(X)⊗̂εF ∼= Cm(X,F ).

provided X is an open subset in some Rn or m = 0 and X is a compactly generated
completely regular space.

Proof. We try to factorize the natural embedding Cm(X)⊗ε F → L(F ∗, Cm(X))
in the following way:

Cm(X)⊗ε F
� � //

''

L(F ∗, Cm(X))

Cm(X,F )
) 	

ι

77

The right hand side arrow is associated to the bilinear composition map Cm(X,F )×
F ∗ → Cm(X), and hence is given by ι : f 7→ (y∗ 7→ y∗ ◦ f). Note that the
other embedding Cm(X) ⊗ε F → L(Cm(X)∗, F ) cannot be factorized easily. The
image ι(f) belongs to L(F ∗, Cm(X)), since it maps the equi-continuous set V o to
{y∗ ◦ f : y∗ ∈ V o}, which is bounded in Cm(X), since ∂α(y∗ ◦ f)(x) = y∗(∂αf(x)).
Furthermore ι is linear and injective, since F ∗ separates points of F . It is even a
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homeomorphic embedding, since a 0-neighborhood basis of Cm(X,F ) is given by
Np,K,V := {f : ∂αf(K) ⊆ V for |α| ≤ p}, where p ≤ m, the set K ⊆ X is compact
and V ⊆ F a closed absolutely convex 0-neighborhood. And a 0-neighborhood basis
of L(F ∗, Cm(X)) is given by Np,V o,Ko := {T : |∂α(T (y∗))(x)| ≤ 1 for |α| ≤ p, y∗ ∈
V o and x ∈ K} and ι−1(Np,V o,Ko) = Np,V,K , since ∂αf(K) ⊆ V iff for all y∗ ∈ V o

we have that y∗(∂αf(K)) ⊆ [−1, 1].

The arrow Cm(X) ⊗ε F → Cm(X,F ) on the left hand side is given by f ⊗ y 7→
(x 7→ f(x) y). Composed with the mapping ι from above we obtain the natural
inclusion Cm(X)⊗ε F → L(F ∗, Cm(X)), given by f ⊗ y 7→ (y∗ 7→ y∗(y) f). Hence
Cm(X)⊗ε F → Cm(X,F ) is an embedding as well.

We show now the required density properties, first for m = 0. So let f ∈ C(X,F ) be
given as well as a 0-neighborhood NK,V , with K ⊆ X compact and V = {y : p(y) ≤
1} ⊆ F a 0-neighborhood. By continuity of f and compactness of K we can find a
finite covering of K by open sets Vi and points xi ∈ Vi, such that p(f(x)−f(xi)) ≤ 1
for all x ∈ Vi. Let (hi) be a partition of unity on K subordinated to this covering.
By Tieze’s extension theorem, we may assume that hi ∈ C(X). In fact we may
extend hi to a continuous function on the Stone-Čech compactification βX of X
and then restrict it to X. Now take h :=

∑
hi⊗f(xi) ∈ C(X)⊗F . Then for x ∈ K

we have p
(
f(x)− ι(h)(x)

)
≤
∑

i hi(x) p
(
f(x)− f(xi)

)
≤ 1, i.e. ι(h) ∈ f +NK,V .

Now for arbitrary m and open X ⊆ Rn. First note that Cm
c (X,F ) is dense in

Cm(X,F ): In order to see this take a compact set K ⊂ X and choose a bump-
function h ∈ C∞c (X,F ) with h|K = 1. Then for f ∈ Cm(X,F ) we have h · f ∈
Cm

c (X,F ) and f − h · f ∈ Np,K,V for every p and V . So it is enough to show that
C∞c (X)⊗ F is dense in Cm

c (X,F ), considered with its inductive limit topology.
For this let f ∈ Cm

c (X,F ) be given. Let K ⊆ X be compact, such that the support
of f is contained in the interior of K. The trace of an arbitrary neighborhood
of f to Cm

K (X,F ) is a neighborhood in Cm
K (X,F ) ⊆ Cm(X,F ). So it is enough to

approximate f in Cm
K (X,F ) by elements in C∞K (X)⊗F . By what we have shown for

C, we can find fj ∈ C(X)⊗F , which converge to f in C(X,F ). Let h ∈ C∞c (X,F )
be such that h|supp f = 1 and H := supp(h) contained in the interior of K. Then
h·fj ∈ CH(X)⊗F converges to h·f = f in C(X,F ). In order to achieve convergence
of the derivatives, we take convolution with an approximation of unity ρε (see [2,
4.13.6]). Since Cm

c (X,F ) ⊆ Cm
c (Rn, F ), the convolutions ρε ? (h ·fj) ∈ Cm(Rn)⊗F

and ρε ? f ∈ Cm(Rn, F ) are well-defined, ρε ? f converges to f in Cm(Rn, F )
for ε → 0 and ρε ? (h · fj) converges to ρε ? f in C∞(Rn, F ) for j → ∞, since
partial derivatives of a convolution can be moved to one factor (see [2, 4.7.6]). If
we choose ε so small, that supp(ρε) +H ⊆ K, then ρε ? (h · fj) ∈ C∞K (X)⊗ F and
ρε ? f ∈ C∞K (X,F ). Hence the convergence takes place in Cm

K (X,F ).

The proof is now finished, since for complete F the space C(X,F ) is complete
provided X is compactly generated and the space Cm(X,F ) is complete for any
open subset X of Rn. Hence the completion Cm(X)⊗̂εF is isomorphic to the closure
Cm(X,F ) of Cm(X)⊗ F in Cm(X,F ).

Note that on C∞(X,F ) the bornology discussed here is identical to that introdu-
ced in 2.46. In fact both structures are initial with respect to `∗ : C∞(X,F ) →
C∞(X,R) for all ` ∈ F ∗ and on C∞(X,R) both structures satisfy the uniform
{evx : x ∈ X}-boundedness principle.
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4.36 Corollary.

C(X × Y ) ∼= C(X)⊗̂εC(Y ) for locally compact X and Y .

C∞(X × Y ) ∼= C∞(X)⊗̂εC
∞(Y ) for open X ⊆ Rn and Y ⊆ Rm.

Proof. Under these assumptions we have the exponential law (E) and hence (P)
follows from (V).

Remark.
Very little about (V) and (P) is known for infinite dimensional spaces X and Y .

The corollary fails for Cm with 0 < m <∞. In fact we do not have an exponential
law in this situation, since for every f ∈ Cm(X,Cm(Y )) the derivative ∂m

1 ∂
m
2 f̂

exists and is continuous, which is not the case for elements of Cm(X × Y ). So the
analogous proof will not work. Moreover from the validity of (P) we could deduce
the scalar valued case of the exponential law (E) using (V):

F(X × Y )
(P)
∼= F(X)⊗̂εF(Y )

(V)
∼= F(X,F(Y )).

Note that for C we can not replace the ε-tensor product by the β- or π-tensor
product, since we have shown in 4.13 that for X = Y = N∞ we don’t have equality.

We will show in 6.23 that C∞(X,R) is nuclear, so we may replace the ε-tensor
product by the π-tensor product. And since both factors are Fréchet also by the
β-tensor product.

4.37 Proposition.
Let F be complete. Then

S(Rn,S(Rm, F )) ∼= S(Rn × Rm, F )

S(Rn)⊗̂εF ∼= S(Rn, F )

S(Rn)⊗̂εS(Rm) ∼= S(Rn × Rm)

Of course S(Rn, F ) is defined as all f ∈ C∞(Rn, F ) for which p · ∂αf is globally
bounded for all polynomials p on Rn and all multi-indices α. And we supply this
space with the structure inherited from the linear mappings f 7→ p · ∂αf , from
S(Rm, F ) into `∞(Rm, F ), where Rm carries the trivial bornology. Since ∂α(p ·f) =
p ·∂αf +

∑
β>0

(
α
β

)
∂α−βp ·∂βf , we can show by induction that we could use equally

well the expressions ∂α(p · f).

Proof. Note that f ∈ S(Rn,S(Rm, F )), iff for every polynomial p1 on Rn and p2

on Rm and all multi-indices α and β we have that x 7→ (y 7→ ∂β
y (p2(y) · ∂α

x (p1(x) ·
f(x))(y))) belongs to `∞(Rn, `∞(Rm, F )) ∼= `∞(Rn ×Rm, F ). This is equivalent to
the assumption that ∂γ(p · f̂) ∈ `∞(Rn ×Rm;F ) for all γ and all polynomials p on
Rn × Rm.

The rest of the proof is completely analogous to that for C∞. For the density use
that C∞c (Rn, F ) is dense in S(Rn, F ) and C∞c (Rn) ⊗ F is dense in C∞c (Rn, F ) by
what we have proved for C∞.

4.38 Theorem.
If F is complete, then H(X,F ) ∼= H(X)⊗̂εF for every open domain X ⊆ C and
complex locally convex space F .
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For a proof of this result see [14, 16.7.5]. Here H(X,F ) denotes the space of all
holomorphic maps X → F with the topology of uniform convergence on compact
subsets of X.

Remark.
Let us consider Cm

c next for m = 0 or m =∞.

Note that for X compact we are in the situation of 4.35. So for m = 0 we can neither
use the bornological nor the projective tensor product. So we try again with the
injective tensor product.

We try to find an embedding Cm
c (X,F ) → L(F ∗, Cm

c (X)) as in the situations
before. Since Cm

c (X,F ) is the inductive limit of Cm
K (X,F ), where K runs through

a basis of the compact subsets of X and since Cm
K (X,F ) carries by definition the

initial structure from the inclusion into Cm(X,F ), we obtain a continuous linear
mapping as follows:

Cm
c (X,F )

(3)

��

Cm
K (X,F )? _oo � � //

(2)

��

Cm(X,F )

(1)

��
L(F ∗, Cm

c (X)) L(F ∗, Cm
K (X))? _oo � � // L(F ∗, Cm(X)),

where (1) was given in the proof for Cm. The map (2) is just the restriction, which
exists, since supp(f) ⊆ K implies that f(x) = 0 for all x 6∈ K and hence also
y∗(f(x)) = 0 for all y∗ ∈ F ∗, i.e. y∗ ◦ f has support in K. The map (3) exists by
the universal property of the inductive limit.

On the other hand we have a bounded bilinear mapping Cm
c (X)× F → Cm

c (X,F )
induced by

Cm
c (X)

(3)

��

Cm
K (X)? _oo � � //

(2)

��

Cm(X)

(1)

��

Cm(X)⊗ F

(0)

��
L(F,Cm

c (X,F )) L(F,Cm
K (X,F ))? _oo � � // L(F,Cm(X,F )) Cm(X,F ),

where the right most mapping (0) is the embedding given in 4.35. By the same
arguments as before (2) and (3) exist. The associated mapping Cm

c (X)⊗̂βF →
Cm

c (X,F ) clearly has dense image and the composite Cm
c (X)⊗̂βF → Cm

c (X,F )→
L(F ∗, Cm

c (X)) is the natural mapping, which has values in Cm
c (X)⊗̂εF . Thus we

conclude that also Cm
c (X,F )→ L(F ∗, Cm

c (X)) has in values in Cm
c (X)⊗̂εF .

Could this be extended to give us the desired isomorphism (V) : Cm
c (X)⊗̂βF ∼=

Cm
c (X,F )? This is not the case as the example X = N shows, since then we have

Cm
c (X,F ) = F (N) and we have already seen that for the nuclear space F = RN

there is no isomorphism Cm
c (X)⊗̂εF = Cm

c (X)⊗̂πF = R(N)⊗̂πRN ∼= (R(N))N →
(RN)(N) = Cm

c (X,F ).

But we should note that for m > 0 we assumed X to be open in some Rn in 4.35.
So what about such a counter-example (in particular for m =∞)? If X = R, then
we have a direct summand F (N) ⊂ C∞c (R, F ) given by (yn)n 7→

∑
n h( − n) yn,

where h ∈ C∞(R,R) has support in [−1, 1] and is equal to 1 at 0. A retraction is
given by f 7→ (f(n))n∈N. That both maps are continuous follows from the following
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diagram, since the restrictions to the bottom row are obviously continuous:

F (N) // C∞c (R, F ) // F (N)

FN //
?�

OO

C∞[−1,N+1](R, F ) //
?�

OO

FN
?�

OO

Now suppose we have some functorial topology τ on the tensor product, i.e. such
that the tensor product becomes a functor with values in LCS. Then an isomor-
phism C∞c (X)⊗̂τF ∼= C∞c (X,F ) would induce an isomorphism R(N)⊗̂τF ∼= F (N).
Taking F = RN shows that this fails for τ = π = ε. Note however, that for τ = β
it is true.

What about the weaker statement (P) for m =∞ (i.e. (V) for F = C∞c (Y )). We ha-
ve a quotient mapping C∞c (R)→ C∞(R)→ RN given by f 7→ (f (n)(0))n∈N (apply
the open mapping theorem to the second map). Now suppose C∞c (R)⊗̂πC

∞
c (R) ∼=

C∞c (R2). Then we have the quotient mapping C∞c (R)⊗̂πC
∞
c (R) → R(N)⊗̂πRN ∼=

(R(N))N. This should correspond to a continuous mapping on C∞c (R2), whose (n, k)-
th coordinate is given by f 7→ ∂k

2 f(n, 0). In fact f⊗g ∈ C∞c (R)⊗πC
∞
c (R) are map-

ped to (f(n))n ⊗ (g(k)(0))k and further to ((f(n) g(k))n)k. The corresponding map
h ∈ C∞c (R2) is given by h(x, y) = f(x) g(y) and hence (f(n) g(k)(0)) = ∂k

2h(n, 0).
Hence the linear mapping C∞c (R2)→ (R(N))N has values in the strict subset (RN)(N),
a contradiction. Since C∞c (X) is nuclear this shows at the same time that the result
fails also for ε.

However, let us show now, that (P) is true for C∞c with respect to the bornological
tensor product:

4.39 Proposition.
Let X and Y be open in finite dimensional spaces. Then

C∞c (X)⊗̂βC
∞
c (Y ) ∼= C∞c (X × Y ).

Proof. Since C∞c (Z) is the inductive limit of C∞K (Z) ⊆ C∞(Z), where K runs
through a basis of the compact subsets of Z, and since the bornological tensor
product preserves inductive limits it is enough to show that C∞A (X)⊗̂βC

∞
B (Y ) ∼=

C∞A×B(X×Y ) for all compact subsets A ⊆ X and B ⊆ Y . Since C∞(Z) are nuclear
Fréchet spaces, we have from what we have shown above C∞(X)⊗̂βC

∞(Y ) ∼=
C∞(X)⊗̂πC

∞(Y ) ∼= C∞(X)⊗̂εC
∞(Y ) ∼= C∞(X × Y ). So the natural mapping

C∞A (X) ⊗ε C
∞
B (Y ) = C∞A (X) ⊗β C

∞
B (Y ) → C∞A×B(X × Y ) is as restriction initial

as well. Remains to show denseness of C∞A (X)⊗C∞B (Y ) in C∞A×B(X ×Y ). For this
we first show that

⋃
n C

∞
Kn

(Z) is dense in C∞K (Z) provided Kn are compact subsets
of K such that their interiors cover K.
In fact, let f ∈ C∞K (Z). Then for all n and m we have that f (n)(z) is a O(d(z, Z \
K)m) for z → ∂K. By [21, p.77] we may choose an h ∈ C∞K (Z) with h = 1
on Kε := {z ∈ K : d(z, Z \ K) ≥ ε} and h(n)(z) is a O(d(z, Z \ K)−n). Thus
(f · h)(n)(z) = O(d(z, Z)), and hence is smooth on Z.

Note however, that it is even enough to embed C∞A×B(X × Y ) into some space
C∞A′(X)⊗̂εC

∞
B′(Y ), which is much easier to obtain.
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Kernel Theorems

4.40. We take up the discussion about the appropriate version of the matrix-
representation of linear-operators

L(Rn,Rm) ∼= Rn·m.

We should replace Rn and Rm by more general (function) spaces E and F . So we
have to rewrite the right hand side in terms of Rn and Rm, i.e.

Rn·m ∼= Rn ⊗ Rm.

Note that the left side is a functor on V Sop × V S and the right side on V S × V S,
so we have to dualize E on one side.

The simplest generalization seems to be from Rn = R{0,...,n−1} to RX with arbitrary
X. For the projective or injective tensor product we have RX⊗̂πRY ∼= (RY )X ∼=
L(R(X),RY ). Recall that R(X) = (RX)∗. Hence we have E⊗̂πF ∼= L(E∗, F ), where
E = RX and F = RY . But we can read this also as an isomorphism for X 7→ R(X),
since (R(X))′ ∼= RX : E′⊗̂πF

′ ∼= L(E,F ′), where E = R(X) and F = R(Y ). Which
seems more appropriate, since for function spaces E often E ⊆ E′ (e.g. C∞c ⊆
(C∞c )′, `1 ⊆ `∞), and we are mainly interested in the operators L(E,E).

Let us consider the corresponding result for Lp with 1 < p ≤ ∞ and 1
p + 1

q = 1
(and hence 1 ≤ q <∞):

Lp(X × Y ) ∼= Lp(X,Lp(Y ))→ L(Lq(X),Lp(Y )),

which is an isomorphism for p = ∞ and discrete X, but not otherwise, since the
image consists of compact operators only, cf. [2, 6.4.8], where we proved this result
for p = q = 2. Note that this mapping is given for discrete X and Y by (kx,y)x,y 7→(
(fx)x 7→ (

∑
x∈X kx,yfx

)
. Or, in general, k is mapped to the integral operator

K : f 7→ (y 7→
∫

X
k(x, y) f(x) dx). So the question of surjectivity amounts to

finding an integral kernel k for an operator K.

The existence of such a mapping for discrete X and Y can also be seen directly,
since by Schwarz’s Inequality we have

‖Kf‖pp =
∑

y

|
∑

x

k(x, y)f(x)|p =
∑

y

|〈k( , y), f〉|p

≤
∑

y

‖k( , y)‖pp · ‖f‖pq =
∑

y

∑
x

|k(x, y)|p · ‖f‖pq .

4.41 Remark.
We have shown in [2, 6.4.8] that C(I × I) → L(C(I), C(I)) is a well defined map
with values in the compact operators for every interval I.

Furthermore we have the mapping

Lp(X × Y )→ L(Lq(X),Lp(Y )).

So one wants to extend this to some surjective mapping on some function space
F(X × Y ). I.e. for every K ∈ L(Lq(X),Lp(Y )) there should be some “kernel”
k ∈ F(X × Y ). This problem is unsolvable for functions. In fact take p = 2 and
X = Y = R with the Lebesgue-measure. The kernel of the identity would be the
Dirac delta function. Due to [19, 1966] it can be worked out for distributions. For
this we rewrite the above mapping into

Lq(X × Y )′ → L(Lq(X),Lq(Y )′).
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This problem has shown to be of importance, in fact we constructed to every par-
tial differential operator D with constant coefficients, and more generally to every
continuous linear operator D : C∞c (Rn) =: D → E := C∞(Rn), which commutes
with translations an integral-kernel k ∈ D′, such that D is given by convolution
with k, in [2, 4.13.5]. Moreover we found a solution operator of such equations as
integral-operator with a distributional kernel ε in [2, 8.3.1]

Now, how could we show such an isomorphism:

L(F(X),F(Y )′) L(F(X),F(Y ); R)∼=
1Loo

F(X)′⊗̂?F(Y )′

2L

66lllllllllllll
3L //

3′F ,,XXXXXXXXXXXXXXXXXXXXXXXXXX (F(X)⊗̂βF(Y ))′
∼=
1L

iiRRRRRRRRRRRRRR

F(X × Y )′
3F

22ffffffffffffffffffffffffffff

Remark.
If one writes the action of a distribution T on a test-function f formally as an
integral Tf =

∫
X
T (x) f(x) dx, then the mapping D(X ×Y )′ → L(D(X),D(Y )′) is

given by k 7→ (f 7→ (g 7→
∫

X×Y
k(x, y) f(x) g(y) d(x, y))). Conversely we now know

that every continuous linear operator K : D(X)→ D(Y )′ is of this form, i.e. has an
distributional kernel k ∈ D(X × Y ). This is a strong generalization of the matrix
representation of finite dimensional operators.

We will show that C∞(X), S(Rp), H(X) and D(X) are nuclear spaces and all
except the last one are Fréchet. Hence

4.42 Corollary. (P) for several function spaces.

C∞(X)⊗̂εC
∞(Y ) ∼= C∞(X)⊗̂πC

∞(Y ) ∼= C∞(X)⊗̂βC
∞(Y ) ∼= C∞(X × Y )

S(Rp)⊗̂εS(Rq) ∼= S(Rp)⊗̂πS(Rq) ∼= S(Rp)⊗̂βS(Rq) ∼= S(Rp × Rq)

H(X)⊗̂εH(Y ) ∼= H(X)⊗̂πH(Y ) ∼= H(X)⊗̂βH(Y ) ∼= H(X × Y )

D(X)⊗̂εD(Y ) ∼= D(X)⊗̂πD(Y )
!!!

6∼= D(X)⊗̂βD(Y ) ∼= D(X × Y )

Combined with (E) for L this gives:

4.43 Theorem, Schwartz kernel theorem.
We have

C∞(X × Y )′ ∼= L(C∞(X), C∞(Y )′)

S(Rp × Rq)′ ∼= L(S(Rp),S(Rq)′)

H(X × Y )′ ∼= L(H(X),H(Y )′)

D(X × Y )′ ∼= L(D(X),D(Y )′)

Proof. For D we have to proceed differently:

D(X × Y )′
4.39∼= (D(X)⊗̂βD(Y ))′ ∼= L(D(X),D(Y ); R) ∼= L(D(X),D(Y )′).

Little is know about the validity of desired isomorphisms for C∞ and λ in the
infinite dimensional case. See [16] for partial results in the case of C∞.
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The Approximation Property

We turn now towards the question of density of the image of E∗ ⊗ F in L(E,F ).

4.44 Theorem. Density of finite dimensional operators.
Let E be a locally convex space and B be a bornology on E. And we consider on all
function spaces L the uniform convergence on sets in B, and hence denote them by
LB. Then the following statements are equivalent:

1. E∗ ⊗ F is dense in LB(E,F ) for every locally convex space F ;
2. E∗ ⊗ F is dense in LB(E,F ) for every Banach space F ;
3. E∗ ⊗ E is dense in LB(E,E);
4. idE is a limit in LB(E,E) of a net in E∗ ⊗ E.

Proof. (1⇒2) is trivial.
(2⇒1) A typical 0-neighborhood in LB(E,F ) is given by NB,V with B ∈ B and V
a 0-neighborhood in F . Let pV : F → F(V ) be the canonical surjection. Since F(V )

is a normed space pV ◦ T : E → F → F(V ) ↪→ F̂(V ) can be uniformly approximated
with respect to p : F(V ) → R on B by finite operators E → F̂(V ) by (2). Since F(V )

is dense with respect to p in F̂(V ) we may assume that the finite operators belong to
L(E,F(V )). Taking inverse images of the vector components, we may even assume
that they belong to L(E,F ).
(1⇒3) and (3⇒4) are trivial.
(4⇒1) Let Ti be a net of finite operators converging to idE , then the net T ◦ Ti of
finite operators converges to T ◦ id = T .

Let E be complete and assume that the equivalent statements are true for some
bornology B. And let B ∈ B w.l.o.g. be absolutely convex. Since the identity on
E can be approximated uniformly on B by finite operators, we conclude that the
inclusion EB → E can be approximated by finite operators EB → E uniformly on
the unit ball of EB . Hence it has to have relatively compact image on the unit ball,
i.e. B has to be relatively compact:

In fact we have

4.45 Lemma.
The compact operators K(E,F ) from a normed space E into a complete space F
are closed in L(E,F ).

Proof. To see this use that F = lim←−V
F̂(V ), hence a subset K of F is relatively

compact iff pV (K) is relatively compact in F(V ) for all V . Now let Ti ∈ K(E,F )
converge to T ∈ L(E,F ) = L(E,F ). Then the pV ◦ Ti ∈ K(E, F̂(V )) converge to
pV ◦ T in L(E, F̂(V )). Since F̂(V ) is a Banach spaces it can be shown as in [2, 6.4.8]
that pV ◦ T ∈ K(E, F̂(V )). Hence pV (T (oE)) is relatively compact in F̂(V ) and thus
T (oE) is relatively compact in F .

4.46 Definition.
We hence say that a complete space satisfies the approximation property if the
equivalent statements from above are true for the bornology B = cp of all relatively
compact subsets of E. A non-complete space E is said to have the approximation
property, iff Ê has it. Note that the finite dimensional operators may be taken in
L(E,E) in this situation.

A space E is said to have the bornological approximation property, iff E∗⊗F is dense
in L(E,F ) with respect to the bornological topology, which is at least as fine as the
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topology of uniform convergence on bounded sets. So a necessary condition is that
all bounded sets are relatively compact. A space with that property is called semi-
Montel space. It is called Montel, iff it is in addition barreled. It is a classical result
of P. Montel that every bounded sequence of holomorphic maps has a convergent
subsequence, i.e. H(X) is Montel for every domain X ⊆ C. By Tychonoff’s theorem
RX is semi-Montel for every X.

Reflexivity and Montel Spaces

Recall that a space is called semi-reflexive, iff the natural mapping E → (E∗)∗ is
onto, where E∗ is considered with the strong topology. A space is called reflexive,
iff the natural mapping E → (E∗)∗ is an isomorphism for the strong topology on
(E∗)∗. This is exactly the case when E is semi-reflexive and (infra-)barreled, since
a space E is (quasi-)barreled iff each pointwise (uniformly) bounded set in L(E,F )
is equi-continuous, see [2, 5.2.2], see also [14, 11.2.2].

One has the following

4.47 Lemma.
The strong dual of a semi-reflexive space is barreled.

Proof. See [22, 373]. Let E∗β denote the strong dual of E and let B be a barrel
in E∗β . Since E is semi-reflexive the strong topology is compatible with the duality,
and hence [2, 7.4.8] B is also closed for the weak-topology σ(E∗, E). We show that
Bo is a bounded subset of E (which implies that B = Boo is a 0-neighborhood in
E∗β). For this it is enough to show that Bo is bounded in σ(E,E∗). But since B is
assumed to be absorbing, we find for every x∗ ∈ E∗ a c > 0 with cx∗ ∈ B. Thus
|cx∗(Bo)| ≤ 1.

4.48 Proposition. Semi-reflexivity.
The following statements are equivalent:

1. E is semi-reflexive;
2. Every closed bounded set is σ(E,E∗)-compact;
3. E is quasi-complete with respect to σ(E,E∗).

Proof. (1⇒2) Since E is as a vector space the dual of the barreled space E∗β by
the previous lemma it follows that every σ(E,E∗)-bounded set is equi-continuous
and hence relatively compact for the topology σ(E,E∗).

(2⇒3) Since every compact space is complete for any compatible uniformity this is
obvious.

(3⇒1) We only have to show that the strong topology is compatible with the
duality 〈E∗, E〉. By [2, 7.4.15] we must show that this topology coincides with the
topology of uniform convergence on weakly compact sets. But since all bounded
sets are weakly relatively-compact this is obvious.

4.49 Proposition. (U1) for C.
Let X be compactly generated and E be semi-Montel and f : X → E be scalarly
continuous. Then f is continuous.

Proof. Since X is compactly generated, it is enough to show that f |K : K → E
is continuous for every compact subset K ⊆ X. So let xi → x be a convergent net
in K. Then f(xi) → f(x) with respect to the weak-topology, and since f(K) is

andreas.kriegl@univie.ac.at c© 7. Februar 2007 104



Reflexivity and Montel Spaces 4.54

scalarly bounded, it is bounded, and hence is relatively compact. But on compact
sets the weak and the given topology obviously coincide. So f(xi)→ f(x) in E.

We have the implications:

4.50 Proposition.
semi-Montel ⇒ semi-reflexive ⇒ quasi-complete ⇒ sequentially complete ⇒ c∞-
complete.

Proof. (semi-Montel ⇒ semi-reflexive) Since every closed bounded set is relatively
compact it is also relatively σ(E,E∗)-compact and hence E is semi-reflexive.

(semi-reflexive ⇒ quasi-complete) Since σ(E,E∗) is quasi-complete by 4.48 it fol-
lows from [14, 3.2.4] that every bounded set is complete.

The other implications are clear.

One has the following stability properties:

4.51 Proposition. Stability of reflexive and of Montel spaces.
Semi-reflexive and semi-Montel spaces are closed with respect to products, closed
subspaces, direct sums, reduced regular inductive limits. Strong duals of reflexive
and of Montel spaces are of the same type.

4.52. Definition

A locally convex vector space E is called bornologically-reflexive if the canonical
embedding δ : E → E′′ is surjective.

It is then even a bornological isomorphism, since δ is always a bornological embed-
ding. Note that reflexivity as defined here is a bornological concept.

Note also that this notion is in general stronger than the usual locally convex
notion of reflexivity, since the continuous functionals on the strong dual are bounded
functionals on E′ but not conversely.

4.53. Theorem. Bornological reflexivity.
For a bornological locally convex space E the following statements are equivalent.

1. E is bornologically-reflexive.
2. E is reflexive and the strong dual of E is bornological.
3. E is η-reflexive (see [14, p280]).
4. E is completely reflexive (see [12, 1977, p89]).
5. The Schwartzification (or nuclearification) of E is a complete locally convex

space.

Proof. See [10, 5.4.6].

4.54. Corollary. Bornological reflexivity versus reflexivity.

1. A Fréchet space is b-reflexive if and only if it is reflexive.
2. A convenient vector space with a countable base for its bornology is b-reflexive

if and only if its bornological topology is reflexive.
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Proof. See [10, 5.4.7].

4.55. Proposition. Duals of bornologically reflexive spaces.
A locally convex vector space is b-reflexive if and only if its bornological topology is
complete and its dual is b-reflexive.

Proof. See [10, 5.4.9].

4.56. Lemma. Subspaces of bornologically reflexive spaces.
A closed linear subspace of a b-reflexive bornological locally convex vector space
is b-reflexive. Products and coproducts of b-reflexive convenient vector spaces are
b-reflexive, if the index set is of non-measurable cardinality.

Proof. See [10, 5.4.8] and [10, 5.4.11]

4.57. Theorem. Reflexivity of function spaces.
If E is a b-reflexive convenient vector space and M is a finite dimensional separable
smooth manifold then C∞(M,E) is b-reflexive.

Proof. See [10, 5.4.13].

4.59 Proposition. Stability of the approximation property.
The approximation property is preserved by products, complemented subspaces, re-
duced projective limits, direct sums, strict inductive limits of sequences of complete
spaces and injective tensor products,

Proof. (Products) Every compact set K ⊆ E =
∏

j Ej is contained in one of the
form

∏
j Kj withKj ⊆ Ej compact. A 0-neighborhood U ⊆ E can be assumed to be

of the form
∏

j Uj , with 0-neighborhoods Uj ⊆ Ej and Uj = Ej for all but finitely
many j. For those finitely many j, we may find finite operators Tj ∈ L(Ej , Ej) with
(idEj −Tj)(Kj) ⊆ Uj . Then T :=

∑
j Tj ◦ prj ∈ L(E,E) is finite dimensional with

(idE −T )(K) ⊆ U .

Note that if U is a 0-neighborhood basis of closed absolutely convex sets, such that
E(U) have the approximation property, then E has it, see [14, 18.2.2]. In fact we
may assume that E is complete. Then E is the reduced projective limit of Ê(U),
and hence has the approximation property.

(Complemented subspaces) Let E ⊂ F be a subspace admitting a continuous pro-
jection p : F → E. Taking the completion, we may assume that E and F are com-
plete. Let K ⊆ E be compact and U a 0-neighborhood of E. Then there is a finite
operator T ∈ L(F, F ) with (idF −T )(K) ⊆ p−1(U). Then (idE −(p ◦ T )|E)(K) ⊆
p(p−1U) ⊆ U .

(Projective limits) Let E be a reduced projective limit of Ej , we may assume that
all spaces Ej and E are complete. Let K ⊆ E be compact and U a 0-neighborhood
in E. Since the limit is projective, we may assume that it is of the form pr−1

k (Uk)
for some k and 0-neighborhood Uk in Ek. Since the limit is reduced, Fk := prk(E)
is dense in Ek and hence has the approximation property. In particular there exists
a finite operator T ∈ L(Fk, Fk) such that (idFk

−T )(prk(K)) ⊆ Uk. We may assume
that T is of the form T =

∑
j y

∗
j ⊗ prk(xj). Then T̃ :=

∑
j(y

∗
j ◦ prk)⊗ xj is a finite

operator in L(E,E), which satisfies (idE −T̃ )(K) ⊆ U = pr−1
k (Uk).

(Inductive limits) By [2, 4.8.1] we know that such a limit is regular, and hence in
particular every compact set K is contained and compact in some step Ek. Let U be
a 0-neighborhood. Then we can find finite operators T =

∑
j x

∗
j ⊗ xj ∈ L(Ek, Ek),

andreas.kriegl@univie.ac.at c© 7. Februar 2007 106



Reflexivity and Montel Spaces 4.62

such that (idEk
−T )(K) ⊆ U . Since Ek is a subspace of E we may assume that

x∗j ∈ E∗, hence T ∈ L(E,E).

(Direct sums) Let E =
∐

j Ej . Then Ê is the direct sum of the Êj , so we may assume
that Ej is complete. Every compact subset of E is contained in some finite subsum.
Since E is the strict inductive limit of the finite subsums and being products these
have the approximation property, we may proceed as before to conclude that E has
it.

(Injective tensor product) See [14, 18.2.8], this uses the associativity of the ε-
product to be discussed later, see 4.68-4.71.

4.60 Lemma. Topology on equicontinuous sets.
On equi-continuous subsets of L(E,F ) the topology τpc of uniform convergence on
precompact subsets of E and the topology of pointwise convergence coincide.

Proof. Let H ⊆ L(E,F ) be equi-continuous and T ∈ H. Let K ⊆ E be precompact
and V ⊆ F an absolutely convex 0-neighborhood of F . Since H is equi-continuous,
there exists a 0-neighborhood U ⊆ E with S(U) ⊆ 1

2V for all S ∈ H. Since
K is precompact there is some finite subset M ⊆ E such that K ⊆ M + 1

2U . If
S ∈ H∩(T+N2M,V ), then Su ∈ 1

2V for all u ∈ U and (S−T )(x) ⊆ 1
2V for all x ∈M .

Thus for all k = x+ 1
2u ∈ K we have (S − T )(k) = (S − T )(x) + 1

2S(u)− 1
2T (u) ∈

1
2V + 1

4V + 1
4V = V , i.e. S ∈ T +NK,V .

4.61 Alaoğlu-Bourbaki Theorem.
Every equi-continuous set is relatively compact for the topology τpc of uniform con-
vergence on precompact sets.

Proof. By 4.60 we only have to show that it is relatively compact for the topology
σ(E∗, E). Since (E∗, σ(E∗, E) embeds into RE , and equi-continuous sets are point-
wise bounded (see [2, 5.2.2]), it is bounded in RE as well as its closure and hence
is relatively compact there by Tychonoff’s theorem. However the closure in RE of
an equi-continuous set is easily seen to be contained in E∗.

4.62 Examples with the approximation property.
The following spaces have the approximation property:

1. every complete space with an equi-continuous basis;
2. c0 and `p for 1 ≤ p <∞;
3. every Hilbert space;
4. Lp(X,A, µ) for 1 ≤ p ≤ ∞;
5. C(X) for completely regular X;
6. Ck(X) for open subsets X of finite dimensional spaces.

Proof. (1) A space E is said to have an equi-continuous basis, if there are points
xk ∈ E such that every x admits a unique representation x =

∑
k λkxk and the

family of expansion operators Pk : x 7→
∑

j≤k λkxk is equi-continuous. Note that Pk

is finite dimensional and Pk → idE pointwise. By 4.60 this equi-continuous family
converges uniformly on precompact subsets, i.e. on relatively compact subsets since
E is complete and hence the compact subsets are exactly the closed precompact
ones.

(2) It is straight forward to show that the standard unit-vectors ek form an equi-
continuous base.
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(3) Let xi be an orthonormal basis in a Hilbert space. Then the projection operators
PF (x) :=

∑
i∈F 〈x, xi〉xi for finite F converge pointwise to the identity and are equi-

continuous. Hence by 4.60 E has the approximation property.

(4) We skip the proof of this, see [14, p411].

(5) Since the completion Ĉ(X) of C(X) is the reduced projective limit of the spaces
C(K), with K ⊆ X compact (use that C(X)→ C(K) is onto for compact subsets
K ⊆ X). It suffices to show that C(X) has the approximation property for compact
X. Let ε > 0 and let K ⊆ C(X) be compact, thus by Arzela-Ascoli-theorem [2,
6.4.4] K is equi-continuous. Thus we can find a finite cover of X by open neigh-
borhoods Uj ⊆ X of some xj ∈ X such that |f(x) − f(xj)| ≤ ε for all x ∈ Uj and
f ∈ K. Let hi be a subordinated partition of unity and set T (f) :=

∑
j f(xj)hj .

We claim that (idE −T )(K) ⊆ U := {f : ‖f‖∞ ≤ ε}. For f ∈ K and x ∈ X we
have

|f(x)− T (f)(x)| ≤
∑

j

|f(x)− f(xj)|hj(x) =
∑

x∈supp(hj)⊆Uj

|f(x)− f(xj)|hj(x)

≤ sup{|f(x)− f(xj)| : x ∈ Uj} ≤ ε.

(6) This can be proved analogously to (5) using smooth partitions of unity. For
k =∞ we will give another proof in 6.23 together with 6.19.

4.63 Remark.
For a long time it was unclear if there are spaces without the approximation pro-
perty at all. It was known that, if such a Banach space exists, then there has to
be a subspace of c0 failing this property. It was [6] who found a subspace of c0 wi-
thout this property. In [20] it was shown that L(`2, `2) ∼= L(`2, (`2)∗) ∼= (`2⊗̂π`

2)∗

doesn’t have the approximation property. Note also, that `2 ⊗π `
2 has the approxi-

mation property, since by [14, 18.2.9] every completed projective tensor product of
Fréchet spaces with the approximation property has it. Note however that for Ba-
nach spaces one can show that if E∗ has the approximation property then so does
E, see [14, 18.3.5]. Due to [12] is the existence of a Fréchet-Montel space without
the approximation property, see [14, p416].

We try to identify E⊗̂εF as subspace of L(E∗, F ), and hence in particular, for
F = R, we try to find E⊗̂εR = Ê in L(E∗,R).

4.64 Grothendieck’s completeness criterion.
The completion of E can be identified with Lequi(E∗γ ,R), where E∗γ carries the finest
locally convex topology which coincides with the weak topology on equi-continuous
sets.

Proof. We note that the embedding δ : E → (E∗)′ factors over L(E∗γ ,R) ⊆ (E∗)′,
since δ(x) is obviously continuous for σ(E∗, E). Furthermore L(E∗γ ,R) is clearly clo-
sed in the complete space (E∗)′. So it remains to show that E is dense in L(E∗γ ,R).
For this we use the following lemma. So let ` ∈ L(E∗γ ,R) be given and a typi-
cal 0-neighborhood, which is of the form Ao with equi-continuous A. Since `|A is
by assumption continuous with respect to σ(E∗, E) we may apply 4.65 to obtain a
x ∈ (E∗, σ(E∗, E))∗ = E with |(x−`)(x∗)| ≤ 1 for all x∗ ∈ A. Hence x−` ∈ Ao.

4.65 Lemma.
Let A ⊆ E be absolutely convex and ` : E → R be linear. Then `|A is continuous iff
for every ε > 0 there exists an x∗ ∈ E∗ with |(x∗ − `)(x)| ≤ ε for all x ∈ A.
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Proof. (⇐) is clear. (⇒) Since `|A is continuous there exists a 0-neighborhood U
such that |`(x)| ≤ ε for all x ∈ U ∩A. Let qU and qA be the Minkowski-functionals
of U and A. Then ` ≤ ε(qU + qA) on EA. Define

p(x) := inf{ε qU (x− y) + ε qA(y) + `(y) : y ∈ EA}.

Then p is well-defined, since for all (x, y) ∈ E × EA

−ε qU (x) ≤ ε qU (−y) + ε qA(−y)− `(−y)− ε qU (x)

= ε qU (y) + ε qA(y) + `(y)− ε qU (x)

≤ ε qU (x− y) + ε qA(y) + `(y).

Since p is sublinear there exists by [2, 7.1.1] a linear x∗ : E → R with x∗ ≤ p. From
p(x) ≤ ε qU (x) for all x ∈ E it follows that x∗ ∈ E∗. And from p(y) ≤ `(y)+ε qA(y)
for all y ∈ EA we conclude that (x∗ − `)(y) ≤ ε for all y ∈ A. Thus (` − x∗)(y) =
(x∗ − `)(−y) ≤ ε for all y ∈ A.
In the complex case use that LC(E,C) ∼= LR(E,R), see [2, 6.1.5.2].

4.66 Corollary.
We have E∗γ =: γ(E∗, E) = τc(E∗, Ê) := Lcp(Ê,R).

Proof. First note that γ(E∗, E) = γ(E∗, Ê). In fact, since the closures Û in Ê of
the 0-neighborhoods U in E form a 0-neighborhood basis of Ê, the equi-continuous
families on E and on Ê coincide. Furthermore the topologies σ(E∗, E) and σ(E∗, Ê)
coincide on equi-continuous subsets. Thus it is enough to prove the result for com-
plete spaces E.

(γ ⊇ τc) Let us show first that γ is finer than τc. For this we only have to show
that the inclusion from equi-continuous sets with the weak topology σ(E∗, E) into
τc(E∗, E) = τpc(E∗, E) is continuous, which follows directly from 4.60.

(τc ⊇ γ) Conversely let U be a closed 0-neighborhood for γ. Since by 4.64 γ is
compatible with the duality (E∗, E) we have that Uo is compact for the topology of
uniform convergence on γ-precompact sets in E∗. Since every closed equi-continuous
set for the original topology is by definition of γ and because of 4.61 compact with
respect to γ, we have that Uo is also compact for this weaker topology of uniform
convergence on equi-continuous subsets. But this is just the given topology on E,
so Uo is compact, and hence U = Uoo is a 0-neighborhood for the topology τc.

4.67 Corollary. “Kelley-fication” of the completion.
The space (E∗γ)∗γ has the same compact subsets as Ê and carries the final locally
convex topology with respect to these subsets. If Ê is compactly generated, and hence
in particular if E is metrizable, then we have equality.

Proof. Since by 4.66 the 0-neighborhoods in E∗γ coincide with the 0-neighborhoods
in τc(E∗, Ê), we have that the equi-continuous sets in (E∗γ)∗ coincide with the
subsets of polars of 0-neighborhoods in τc(E∗, Ê) and hence are just the subsets of
compact sets in Ê (use that the bipolar of a compact set in Ê is compact). By the
definition of σ the topology Ê is finer than σ(Ê, E∗γ) and hence they coincide on
compact subsets of Ê.

4.68 Proposition. Approximation property versus ε-product.
A complete space E has the approximation property iff F ⊗ε E is dense in the
ε-product F εE := Lequi(F ∗γ , E) for every locally convex space F .
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Proof. Note that F ⊗ E is mapped into L(F ∗γ , E), since for y ∈ F we have δ(y) ∈
(F ∗γ )∗ by 4.64.

(⇐) Consider the following commuting diagram:

E∗γ ⊗ E //

'' ''OOOOOOOOOOO
Lcp(E,E)
I i

wwnnnnnnnnnnn

Lequi((E∗γ)∗γ , E)

By assumption the arrow on the left hand side has dense image. The arrow on the
right hand side is an embedding, since (E∗γ)∗γ → E is a continuous mapping, and
the equi-continuous subsets in (E∗γ)∗γ are exactly the relatively compact subsets of
Ê = E.

(⇒) Let T ∈ L(F ∗γ , E) and let a 0-neighborhood NV o,U in this space be given. Since
T is continuous on V o, we have that K := T (V o) is compact in E. By assumption
E∗ ⊗ E is dense in Lcp(E,E). Hence there exists a finite operator S ∈ L(E,E)
with (idE −S)(K) ⊆ U . Then S ◦ T : F ∗γ → E → E is finite dimensional and since
(F ∗γ )∗ = F̂ by 4.64 it belongs to F̂ ⊗E and (T −ST )(V o) = (1−S)(K) ⊆ U . Thus
T − ST ∈ NV o,U . Hence F̂ ⊗ε E is dense in L(F ∗γ , E) and since F ⊗ E is dense in
F̂ ⊗ε E it is also dense in L(F ∗γ , E).

4.69 Corollary.
Let E be complete and satisfying the approximation property, then F ⊗̂εE = F εE.

Proof. Recall that F εE = Lequi(F ∗γ , E) is the subspace of L(F ∗, E) formed by
all linear maps T : F ∗ → E, which are continuous on equi-continuous subsets of
F ∗ with respect to the weak-topology σ(F ∗, F ) on F ∗. It is easily checked that for
complete E this space is complete, cf. [14, 16.1.5]. So F ⊗̂εE is the closure of F ⊗E
in L(F ∗, E), which is by 4.68 exactly FεE.

4.70 Lemma.
For complete spaces E and F we have F εE ∼= E εF .

Proof. We only have to show bijectivity, since F εE = Lequi(F ∗γ , E) ⊆ L(F ∗, E)
embeds into the space L(F ∗, E∗′) ∼= L(F ∗, E∗; R). To every continuous T : F ∗γ → E
we associate the continuous T ∗ : E∗γ → (F ∗γ )∗γ (in fact every equi-continuous set Uo

of E∗ is mapped to T ∗(Uo) = {x∗ ◦ T : x∗ ∈ Uo} ⊆ {y∗ : y∗ ∈ (T−1(U))o}, the
polar of a 0-neighborhood in F ∗γ ). And by 4.64 we are done since by the lemma
above the identity (F ∗γ )∗γ → Lequi(F ∗γ ,R) = F̂ is continuous.

4.71 Remark.
It can be shown (see [14, 16.2.6]) that for complete spaces also associativity of the
ε-product is valid, i.e.

E ε (F εG) ∼= (E εF ) εG.

4.72 Property (V) for L.
Remains to find situations where E∗γ coincides with E∗β . By 4.66 this topology γ

coincides with the topology τc(E∗, Ê) of uniform convergence on compact subsets of
Ê, which is for metrizable spaces by [14, 9.4.3] identical to the topology of uniform
convergence on precompact subsets of E. Thus if E is complete and all bounded
sets are precompact (like in Montel spaces) it coincides with the strong topology.
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Remains to find situations, where the equi-continuous subsets coincide with the
bounded ones in E∗β . This is exactly the case, when E is infra-barreled.

4.73 Proposition.
If E and F are complete, E is Montel and F (or E) satisfies the approximation
property, then

E⊗̂εF ∼= Lequi(E∗γ , F ) ∼= Lβ(E∗β , F ),

For complete spaces E and F we have under the indicated assumptions the following
version of (V):

E⊗̂εF
app.P.∼= E εF = Lequi(E∗γ , F )

semi-Montel= Lequi(E∗β , F )
infra-barreled

= Lb(E∗β , F )
E∗β bornological

= L(E∗β , F )

Proof. The first statement follows by what we said above, since Montel spaces are
barreled.

Note that the strong dual of a semi-reflexive space is barreled [14, 11.4.1]. If E is
in addition metrizable, then by [14, 13.4.4] E∗ is bornological, and hence we have

Lβ(E∗β , F ) = L(E′, F ).

4.74 Proposition.
For complete spaces E∗β and F we have the original version of (V) under the follo-
wing conditions

E∗β⊗̂εF
app.prop.∼= E∗β ε F =

E Montel= Lb((E∗β)∗β , F )
E reflexive

= Lb(E,F ) =
E bornological

= L(E,F ),

Proof. This follows, since the strong dual E∗β of a Montel space E is Montel. Note
that a Montel-space E is reflexive, i.e. (E∗β)∗β = E. Furthermore E∗β is complete,
provided E is bornological.

Now let us consider E∗⊗̂εF . If F is complete and satisfies the approximation pro-
perty, then E∗γ⊗̂εF ∼= Lequi((E∗γ)∗γ , F ). By Grothendieck’s completeness criterion
we have Ê ∼= Lequi(E∗γ ,R).

The following result can be found in [14, 16.1.7]:

4.75 Theorem.
One has the following natural isomorphisms for Fréchet spaces E and F :

(E⊗̂πF )∗γ ∼= E∗γεF
∗
γ E⊗̂πF ∼= (E∗γεF

∗
γ )∗γ

(EεF )∗γ ∼= E∗γ⊗̂πF
∗
γ EεF ∼= (E∗γ⊗̂πF

∗
γ )∗γ

Proof. Note that the isomorphisms on the right follow from the ones on the left
by applying ( )∗γ and using that (G∗γ)∗γ ∼= Ĝ for all metrizable spaces G.
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(1) In fact (E⊗̂πF )∗ = L(E,F ; R) and

E∗γεF
∗
γ = Lequi((E∗γ)∗γ , F

∗
γ ) = Lcp(E,Lcp(F,R)).

Since T : E × F → R is continuous, iff it is continuous on compact sets, and
hence iff Ť : E → Lcp(F,R) is continuous, we obtain a bijection. That this is a
homeomorphism follows since γ is the topology of uniform convergence on compact
sets, and the compact sets in E⊗̂πF are given by bipolars of tensor-products of two
compact sets in E and F .

For the second pair of isomorphisms see [14, 16.1.7]

The Approximation Property for Banach Spaces

For Banach spaces E, F etc. we have E∗ = E′ and we consider on E∗ the operator-
norm topology induced by that of E′. Moreover L(E,F ) = L(E,F ).

4.76 Proposition. Compact operators as tensor product.
For Banach spaces E and F one has

E∗βεF
∼= K(E,F )

Proof. By completeness we have E∗βεF = FεE∗β = Lequi(F ∗γ , E
∗
β). Remains to

show that T 7→ T ∗ is a isomorphism K(E,F ) → Lequi(F ∗γ , E
∗
β). If T is compact,

then T (oE) is relatively compact in F and hence (T ∗)−1(o(E∗)) = T (oE)o is a
0-neighborhood in the topology τcp(F ∗, F ) = γ, i.e. T ∗ ∈ L(F ∗γ , E

∗
β). Conversely

assume that T ∗ : F ∗γ → E∗β is continuous. Then the set T (oE)o = (T ∗)−1(o(E∗))
is a 0-neighborhood in γ(F ∗, F ) = τcp(F ∗, F ), and hence T (oE) is contained in a
compact subset of F . So T 7→ T ∗ is a bijection. That it is a homeomorphism follows
immediately since {T ∗ : T ∈ NoE,U} = NUo,oE∗ .

4.77 Proposition. Approximation property and compact operators.
For a Banach space E one has that:

1. E has the approximation property iff F ∗ ⊗ E is dense in K(F,E) for every
Banach space F , i.e. F ∗⊗̂εE = K(F,E).

2. E∗ has the approximation property iff E∗⊗F is dense in K(E,F ) for every
Banach space F , i.e. E∗⊗̂εF = K(E,F ).

Recall that for Hilbert spaces E we have shown in [2, 6.4.8] that E∗ ⊗ E is dense
in K(E,E).
Moreover one can show that in (1) and (2) it is enough to have denseness for all
closed subspaces of c0 or all reflexive separable Banach spaces.

Proof. (⇒) If E or F ∗ have the approximation property then F ∗⊗̂εE ∼= F ∗εE by
4.68 and F ∗εE ∼= K(F,E) by 4.76.

(⇐) Since in 4.68 it is enough to have denseness for all Banach spaces (see [14,
18.1.8]), this is true for the second statement. For the first one has to proceed more
carefully, see [14].

For a proof of the second part see [14, 18.3.2].

4.78 Lemma.
For Banach spaces E and F we have a natural surjective linear map ι : F ∗⊗̂πE →
Lcp(E,F )∗, where Lcp denotes L with the topology of uniform convergence on com-
pact sets in E.
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Proof. The map ι is associated to the bounded multi-linear composition map F ∗×
E × L(E,F ) → R, hence is a well defined continuous map F ∗⊗̂πE = F ∗⊗̂βE →
L(E,F )∗ given by y∗ ⊗ x 7→ (T 7→ y∗(Tx)).

Its image is contained in Lcp(E,F )∗, since every z ∈ F ∗⊗̂πE can be written as
z =

∑
k λky

∗
k ⊗ xk with λ ∈ `1, ‖y∗k‖ → 0 and ‖xk‖ → 0, see [22, 15.6.4]. In

other words (λkyk)k ∈ `1{F ∗} and (xk)k ∈ c0{E}. Without loss of generality we
may assume

∑
k ‖λky

∗
k‖ ≤ 1 (move some factor to the xk). By [2, 6.4.3] the closed

absolutely convex hull K of the xn is compact. Thus NK,oF is a 0-neighborhood in
Lcp(E,F ). Let T ∈ NK,oF . Then |ι(z)(T )| ≤

∑
k |λky

∗
k(T (xk))| ≤

∑
k ‖λk y

∗
k‖ ≤ 1,

i.e. ι(z) ∈ No
K,oF .

Conversely let ϕ ∈ Lcp(E,F )∗. Then ϕ ∈ (NK,oF )o for some compact K ⊆ E. By
[2, 6.4] we may assume that K is contained in the closed absolutely convex hull of
some sequence xn → 0 in E. Consider the Banach space c0(N, F ) = c0{F} with
the supremum norm sup{‖xn‖ : n ∈ N}. Then ψ : L(E,F ) → c0(N, F ) given by

T 7→ (T (xn))n is continuous and linear. Hence its dual is ψ∗ : `1{F ∗} = `1(N, F ∗)
!∼=

c0(N, F )∗ → L(E,F )∗ (see [14, p405] for the duality) is continuous for the weak∗-
topologies. Thus the absolutely convex set K1 := ψ∗(o(`1{F ∗})) ⊆ L(E,F )∗ is
compact for this topology. We claim that ϕ ∈ K1. Otherwise, by Hahn-Banach
there is a T ∈ L(E,F ) with ϕ(T ) > 1 and |ϕ1(T )| ≤ 1 for all ϕ1 ∈ K1, i.e.∑

k |y∗k(Txk)| ≤ 1 for all (y∗k)k ∈ o(`1{F ∗}). In particular |y∗(Txk)| ≤ 1 for all
y∗ ∈ o(F ∗) and all k, i.e. T ∈ NK,oF and hence |ϕ(T )| ≤ 1, a contradiction.

Since ϕ ∈ K1 = ψ∗(o(`1{F ∗})) there is some (y∗k)k ∈ o(`1{F ∗}) with ϕ = ψ∗((y∗k)k).
Now

∑
k y

∗
k ⊗ xk ∈ F ∗⊗̂πE and

ψ∗((y∗k)k)(T ) =
∑

k

y∗kT (xk) = ι(
∑

k

y∗k ⊗ xk)(T ) for all T ∈ L(E,F ),

i.e. ψ∗((y∗k)) = ι(
∑

k y
∗
k ⊗ xk).

4.79 Proposition. Approximation property and tensor products.

For a Banach space E the following properties are equivalent:

1. E has the approximation property.
2. The map F ⊗̂βE = F ⊗̂πE → F ⊗̂εE ⊆ L(F ∗, E) is injective for every Ba-

nach space F .
3. The map F ∗⊗̂βE = F ∗⊗̂πE → F ∗⊗̂εE ⊆ L(F,E) is injective for every

Banach space F .
4. The map E∗⊗̂βE = E∗⊗̂πE → E∗⊗̂εE ⊆ L(E,E) is injective.
5. The evaluation map ev : E∗ × E → R extends to a linear functional Tr :
N (E,E)→ R, where N (E,E) denotes the image of E∗⊗̂πE in L(E,E).

Proof. (1⇒2) Consider the following commuting diagram:

F ⊗̂πE //
_�

δ⊗E

��

� t

δ

&&NNNNNNNNNN
F ⊗̂εE

� � // L(F ∗, E) � � δ∗ // L(F ∗, E∗′)

∼=
��

(F ⊗̂πE)∗′
∼= // L(E,F ; R)′

∼=
��

L(F ∗, E∗; R)

∼=
��

F ∗∗⊗̂πE // // Lcp(E,F ∗)∗ // L(E,F ∗)′ // (E∗ ⊗β F
∗)′
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The arrow L(E,F ∗)′ → (F ∗⊗βE
∗)′ at the bottom is well-defined, since E∗×F ∗ →

L(E,F ∗) is bounded.
Now start with z0 in the top-left hand corner and assume it is mapped to 0 in
F ⊗̂εE. So it is mapped to 0 in the bottom-right hand corner. Since the composite
of the last two arrows at the bottom is injective, because E∗ ⊗ F ∗ is dense in
Lcp(E,F ∗) by (1), it is mapped to 0 in Lcp(E,F ∗)∗ and hence also in L(E,F ∗)′.
By the injectivity of the diagonal maps we conclude that z0 = 0.

(2⇒3⇒4⇒5) are trivial.

(5⇒1) For this we consider the following commuting diagram:

E∗⊗̂πE // //

ev

&&MMMMMMMMMMMM

����

Lcp(E,E)∗ //

evid

��

(E∗ ⊗β E)∗

∼=
��

R (E ⊗β E
∗)′

∼=
��

N (E,E) � � //

tr

88qqqqqqqqqqqq
L(E,E) � � δ∗ // L(E, (E∗)′)

Note that the second arrow on the top is well-defined, since the mapping E∗ ×
E → Lb(E,E) → Lcp(E,E) is bounded, and the top-triangle commutes, since for
z = x∗⊗x we have ev(z) = ev(x∗⊗x) = x∗(x) = x∗(id(x)) = ι(x∗⊗x)(id) = ϕ(id).
We have to show that E∗ ⊗ E is dense in Lcp(E,E). For this it is enough to show
that all ϕ ∈ Lcp(E,E)∗ which vanish on E∗ ⊗ E vanishes on idE . By [14, 18.3.3]
every such ϕ is in the image of some z =

∑∞
n=1 x

∗
n ⊗ xn ∈ E∗⊗̂πE, i.e. ϕ = ι(z).

For all (x∗, x) ∈ E∗ × E we have 0 = ϕ(x∗ ⊗ x) = ι(
∑

n x
∗
n ⊗ xn)(x∗ ⊗ x) =∑

n x
∗
n((x∗ ⊗ x)(xn)) =

∑
n x

∗
n(x) · x∗(xn) = x∗

(∑
n x

∗
n(x)xn

)
. Thus the image of

z in the top-right corner is 0, and hence also in the bottom-right corner. Since the
bottom arrows are injective it is 0 in the bottom-left corner. Hence its image in the
center is 0, which is exactly ϕ(id).
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5. Operator Ideals

We will discuss spaces E for which the connecting maps Ê(U) → Ê(V ) for U ⊆ V
belong to certain subclasses I of all continuous linear maps.

So these classes I will be described by linear subspaces I(E,F ) of L(E,F ) for every
Banach space E and F . And that I is an operator ideal means that RTS ∈ I(E1, F1)
for every T ∈ I(E,F ) and all R ∈ L(F, F1) and S ∈ L(E1, E).

5.1. The smallest reasonable operator ideal F is given by the finite operators, i.e.
the image of E∗ ⊗ F in L(E,F ). In fact this is an ideal, since for T =

∑
k x

∗
k ⊗ yk

we have that R ◦ T ◦ S =
∑

k(x∗k ◦ S)⊗R(yk) =
∑

k S
∗(x∗k)⊗R(yk).

Compact Operators

Another ideal K is given by the compact operators, i.e. those operators T : E → F
which map the unit-ball to a relatively compact set. This is an ideal, since S(oF1) ⊆
‖S‖ · oF and hence (RTS)(oF1) is contained in the compact image of ‖S‖ · T (oF )
under R.

Recall that we have shown in [3, 11.21]

5.2 Schauder’s theorem.
A continuous linear operator T : E → F between Banach spaces is compact iff its
adjoint T ∗ is compact.

5.3 Lemma. Orthogonal representation of compact operators.
An operator T between Hilbert spaces is compact iff there are orthonormal sequences
en and fn and λn → 0 such that Tx =

∑
n λn〈en, x〉fn.

Proof. (⇐) If T has such a representation, then the finite sums define finite di-
mensional operators which converge to T .

(⇒) Since any compact T : E → F induces a compact injective operator T :
(kerT )⊥ → TE with dense image, we may assume that T is injective. Now we
consider the positive compact operator T ∗T . Its eigenvalues are all non-zero, since
T ∗Tx = 0 implies ‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 = 0. By [2, 6.5.4] there is an
orthonormal sequences of Eigen-vectors en with Eigen-value 0 6= λ2

n → 0 such that
T ∗Tx =

∑
n λ

2
n〈en, x〉en. Let fn := 1

λn
Ten. Then a simple direct calculation shows

that the fn are orthonormal. Note that x =
∑

n〈en, x〉en. Otherwise the compact
positive operator T ∗T restricted to the orthogonal complement {ek : k}⊥ would
have a unit Eigen-vector e with positive Eigen-value λ. Which is impossible by
definition of the ek. So we obtain Tx =

∑
n〈en, x〉λnfn.

Anther way to prove this is to use the polar decomposition T = U |T |, see [3,
10.18], where U is a partial isometry and |T | a positive and also compact operator.
The spectral theorem for |T | gives an orthonormal family en and λ ∈ c0, such
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that Tx =
∑

k λk〈ek, x〉ek. Applying U to this equation, shows that we may take
fk := Uek.

As a warning it should be mentioned that one can not read off from the spectrum
whether an operator is compact.

5.4 Corollary.
An operator T between Hilbert spaces is compact iff 〈Ten, fn〉 → 0 holds for all
orthonormal sequences en and fn.

Proof. (⇒) Since |〈Ten, fn〉 ≤ ‖Ten‖ · ‖fn‖ = ‖Ten‖ it is enough to show that
Ten → 0. Since en converges weakly to 0 (in fact 〈x, ek〉 is even quadratic summable)
we conclude that Ten converges to 0 weakly. Since en is contained in the unit-ball
and T is compact, every subsequence of Ten has a subsequence, which is convergent.
And the limit has to be 0, since this is true for the weak topology. But from this it
easily follows that Tek → 0.

(⇐) Given ε > 0 we choose maximal orthonormal sequences (ei)i∈I and (fi)i∈I such
that |〈Tei, fi〉| ≥ ε. By assumption I must be finite. We consider the orthonormal
projections P :=

∑
i ei⊗ei and Q :=

∑
i fi⊗fi. For the composition with the ortho-

projections on the complement we obtain (1−Q)T (1−P ) = T−(TP+QT−QTP ) =:
T − S. Hence S is a finite dimensional operator and we claim that ‖T − S‖ ≤ ε.
Suppose this were not true. Then there is an x with ‖(T − S)x‖ > ε ‖x‖ and
hence an y such that |〈T (1 − P )x, (1 − Q)y〉| = |〈(T − S)x, y〉| > ε ‖x‖ ‖y‖. Let
e0 := (1−P )x and f0 := (1−Q)y. Obviously e0, f0 6= 0 and hence we may assume
without loss of generality that ‖e0‖ = 1 = ‖f0‖ and hence ‖x‖ ≥ 1 and ‖y‖ ≥ 1.
Since e0 ∈ (1−P )(E) ⊆ P (E)⊥ = {ei : i ∈ I}⊥ and f0 ∈ (1−Q)(F ) ⊆ {fi : i ∈ I}⊥
we get a contradiction to the maximality of I.

In [3, 11.29] we have shown

5.5 Proposition.
In a separable Hilbert space H the compact operators form the unique non-trivial
ideal, which is closed in L(H,H).

Note that this is not true for non-separable Hilbert spaces. In fact we may consider
those operators, for which the image is contained in a separable subspace. These
form obviously a non-trivial operator ideal, which is strictly larger than the compact
operators, since it contains the ortho-projections to separable subspaces. Finally it
is closed, since the image of the limit of a sequence of such operators is contained
in the closure of the union of the images.

Recall furthermore that for Banach spaces E and F we have

K(E,F ) ∼= E∗εF,

and the latter space coincides with E∗⊗̂εF , if F (or E∗) has the approximation
property.

Note that one can generalize the notion of a compact operator to linear maps T :
E → F between locally convex spaces, by assuming that there is a 0-neighborhood
U ⊆ E which is mapped to a relatively compact subset of F .

Nuclear Operators

The corresponding ideal N for the projective tensor product is formed by the nucle-
ar operators, i.e. those which are contained in the image of E∗⊗̂πF in L(E,F ). Thus
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an operator T between Banach spaces is nuclear iff there are x∗k ∈ E∗, yk ∈ F ,
λk ∈ R with ‖x∗k‖ ≤ 1, ‖yk‖ ≤ 1 and λ ∈ `1 such that

Tx =
∞∑

k=0

λkx
∗
k(x)yk for all x ∈ E.

That this is an ideal follows as for the finite dimensional operators:

R
( ∞∑

k=0

λkx
∗
k ⊗ yk

)
S =

∞∑
k=0

λkS
∗(x∗k)⊗R(yk).

We have the following factorization result

5.6 Proposition. Factorization property of N .
A map T : E → F between Banach spaces is nuclear iff there are continuous linear
operators S : E → `∞ and R : `1 → F such that T factors as diagonal operator
`∞ → `1 with diagonal λ ∈ `1, i.e.

E
T //

S

��

F

`∞
λ
// `1

R

OO

Proof. (⇒) Let T be represented by
∑

k λk x
∗
k ⊗ yk. Then S(x) := (x∗k(x))k and

R((µk)k) :=
∑

k µk yk define linear operators of norm ≤ 1 and T = RλS, where
λ : `∞ → `1 denotes the diagonal operator, with diagonal (λk)k.

(⇐) Since the nuclear operators form an ideal, it is enough to show that such
diagonal operators T : (µk)k 7→ (λkµk)k are nuclear, which is clear since they can
be represented by

∑
k λkx

∗
k⊗yk, where x∗k := ek ∈ `1 ⊆ (`∞)∗ and yk := ek ∈ `1.

More generally one can call a linear map T : E → F between locally convex spaces
E and F nuclear iff there is an absolutely convex 0-neighborhood U ⊆ E and an
absolutely convex bounded subset B ⊆ F , for which FB is complete, such that T
factors over a nuclear mapping T1 : Ê(U) → FB , i.e.

E
T //

��

F

Ê(U) T1

// FB

OO

Obviously that is exactly the case, iff there is an equi-continuous sequence x∗n ∈ E∗
and a sequence yn which is contained in a bounded absolutely convex B ⊆ F with
complete FB and λ ∈ `1, such that T has a description of form

∑
k λkx

∗
k ⊗ yk.

5.7 Lemma. N ⊆ K.
Every nuclear mapping is compact.

Proof. Let T be a nuclear mapping. Since the compact mappings form an ideal,
we may assume that T is a diagonal-operator `∞ → `1 with absolutely summable
diagonal (λk)k. Such an operator is compact, since the finite sub-sums

∑
k≤n λkek⊗

ek define finite dimensional operators, which converge to T uniformly on the unit-
ball of `∞.

A first connection to nuclear spaces is given by the following
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5.8 Proposition.
Let T : E → F be nuclear. Then T ⊗G : E ⊗ε G→ F ⊗π G is continuous for every
locally convex space G.

Proof. We use the factorization of T as T = RλS given in 5.6. The diagram

E ⊗ε G
T⊗G //

S⊗εG

��

F ⊗π G

`∞ ⊗ε G
λ⊗G // `1 ⊗π G

R⊗πG

OO

shows that we may assume that T is a diagonal operator λ : `∞ → `1.
Moreover, since `1⊗πG→ `1⊗̂πĜ is a dense embedding and Ĝ is a reduced projec-
tive limit lim←−W

Ĝ(W ) and thus `1⊗̂πG = lim←−W
`1⊗̂πĜ(W ), it is enough to show that

λ⊗ Ĝ(W ) : `∞ ⊗ε Ĝ(W ) → `1 ⊗π Ĝ(W ) is continuous. In fact consider the following
diagram:

`∞ ⊗ε G
λ⊗G //

`∞⊗εpW

��

`1 ⊗π G

`1⊗πpW

��
`∞⊗̂εĜ(W )

̂
λ⊗Ĝ(W )// `1⊗̂πĜ(W )

`∞ ⊗ Ĝ(W )

?�

OO

λ⊗Ĝ(W )// `1 ⊗π Ĝ(W )

?�

OO

Thus we may assume that E = `∞, F = `1, G is a Banach space, and T a diagonal
operator with absolutely summable diagonal λ.
Now let z =

∑
j≤n xj ⊗yj ∈ `∞⊗G be given. Then xj =

∑∞
k=0 e

∗
k(xj)ek and hence

T (xj) =
∞∑

k=0

e∗k(xj)T (ek) =
∞∑

k=0

λke
∗
k(xj)ek

and thus

(T ⊗G)(z) =
∑
j≤n

T (xj)⊗ yj =
∑
j≤n

∞∑
k=0

λke
∗
k(xj)ek ⊗ yj

=
∑

k

λkek ⊗
∑

j

e∗k(xj)yj .

So we get

‖(T ⊗G)(z)‖π ≤
∞∑

k=0

‖λkek ⊗
∑

j

e∗k(xj)yj‖π

≤
∞∑

k=0

‖λkek‖∞︸ ︷︷ ︸
=|λk|

· ‖
∑

j

e∗k(xj)yj‖G︸ ︷︷ ︸
sup{|y∗(

P
j e∗k(xj)yj)|:‖y∗‖≤1}

≤
∞∑

k=0

|λk| · sup{|
∑

j

x∗(xj) y∗(yj)| : x∗ ∈ o(`∞)∗, ‖y∗‖ ≤ 1}

≤ ‖λ‖1 · ‖z‖ε.

It can be shown that the adjoint of a nuclear operator between Banach spaces is
nuclear, see [14, 17.3.6]. The converse however is false.
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Recall thatN (E,F ) ∼= E∗⊗̂πF by 4.79, provided F has the approximation property.
In this case we have that N (E,F ) is a Banach space with dual

N (E,F )∗ ∼= (E∗⊗̂πF )∗ ∼= L(E∗, F ; R) ∼= L(F,E∗′) ∼= L(E∗, F ′).

Hence if in addition E is reflexive, then N (E,F )∗ ∼= L(F,E).

In the general case, we will always consider N (E,F ) as quotient of the Banach
space E∗⊗̂πF , with the corresponding quotient norm.

5.9 Definition.
More generally an operator T : E → F between Banach spaces is called p-nuclear
(see [14, 19.7]) for 1 ≤ p <∞ iff there are bounded sequences (xn)n ∈ `p{E∗} and
(yn) ∈ `q{F} with T =

∑
n x

∗
n ⊗ yn and 1

p + 1
q = 1. One can extend this notion to

p =∞ using c0{E∗} instead of `p{E∗}. The class of all p-nuclear operators will be
denoted Np. Note that this generalizes nuclear operators, i.e. N1 = N .

One has the analogous factorization theorem:

E
Np //

��

F

`∞
`p
// `p

OO

[14, 19.7.4]

Integral Mappings

5.10 Definition.
Since the identity induces continuous bijections E ⊗β F → E ⊗π F → E ⊗ε F , we
get inclusions

(E ⊗ε F )∗ → (E ⊗π F )∗ → (E ⊗β F )∗.
Recall that the last space coincides with the bounded bilinear forms, the second
one with the continuous bilinear forms and for the first one we give the following
definition:
A bilinear form b : E×F → R is called integral, iff it belongs to the dual of E⊗εF .

5.11 Proposition. Integral forms as integrals.
For a bilinear mapping b : E × F → R the following statements are equivalent:

1. b is integral;
2. There are 0-neighborhoods U ⊆ E and V ⊆ F and a measure µ on Uo × V o

such that b(x, y) =
∫

Uo×V o x
∗(x) y∗(y) dµ(x∗, y∗).

Proof. (1⇒2) Let b : E ⊗ε F → R be continuous. So we may assume that
b : Ê⊗̂εF̂ = E⊗̂εF → R is continuous. Recall that Ê ∼= lim←− Ê(U), is a redu-
ced projective limit and similarly for F , so the linear continuous mapping b on
lim←−U,V

Ê(U)⊗̂εF̂(V ) factors over some E ⊗ε F → E(U) ⊗ε F(V ) → Ê(U)⊗̂εF̂(V ). We
now consider Uo with its compact topology σ(Uo, E) and define a linear mapping
δ : E → C(Uo) by x 7→ (x∗ 7→ x∗(x)). We may assume that U = {x ∈ E : p(x) ≤ 1}
for some seminorm p of E and then ‖δ(x)‖∞ = sup{|x∗(x)| : x∗ ∈ Uo} = p(x). Thus
this induces an isometric embedding E(U) ↪→ C(Uo). Taking the tensor product we
get an embedding

E(U) ⊗ε F(V ) ↪→ C(Uo)⊗ε C(V o) ↪→ C(Uo)⊗̂εC(V o)
4.36∼= C(Uo × V o).

andreas.kriegl@univie.ac.at c© 7. Februar 2007 119



Integral Mappings 5.13

By Hahn-Banach we may extend b to a continuous linear functional b ∈ C(Uo ×
V o)∗, and hence there is a measure µ on Uo× V o, such that the required represen-
tation is valid.

(2⇒1) cf. [22, 502].
Let b be given by a measure on Uo × V o. We have to show that b : E ⊗ε F → R is
continuous. Consider the 0-neighborhood

W :=
{
z =

n∑
i=1

xi ⊗ yi : sup
{∣∣∣ n∑

i=1

x∗(xi)y∗(yi)
∣∣∣ : x∗ ∈ Uo, y∗ ∈ V o

}
≤ 1
}

in E ⊗ε F . Since

|b(z)| =
∣∣∣∑

i

∫
Uo×V o

x∗(xi)y∗(yi) dµ(x∗, y∗)
∣∣∣ ≤

≤
∫

Uo×V o

∣∣∣∑
i

x∗(xi)y∗(yi)
∣∣∣ dµ(x∗, y∗) ≤ µ(Uo × V o)

for all z =
∑

i xi ⊗ yi ∈W we are done.

5.12 Factorization of integral forms.
Note that we have shown that for an integral form b : E × F → R there is a
compact space K = Uo × V o and a measure µ on K, and two continuous linear
mappings R : E → C(K) and S : F → C(K) given by x 7→ ((x∗, y∗) 7→ x∗(x)) and
y 7→ ((x∗, y∗) 7→ y∗(y)) such that

b(x, y) =
∫

K

R(x) · S(y) · dµ,

or in other words:

b = i ◦ (R× S) and hence b̌ = (i ◦ (R× S))∨ = S∗ ◦ ǐ ◦R,
where i : C(K) × C(K) → R denotes the continuous bilinear mapping (f, g) 7→∫

K
f(z) g(z) dµ(z). Recall that for compact spaces we have natural continuous maps

C(K)→ L∞(µ)→ L1(µ)

and by Hölder’s inequality the map i “extends” to a continuous bilinear map

i : L1(µ)× L∞(µ)→ R and in particular i : L1(µ)× C(K)→ R.

So ǐ : L1(µ)→ C(K)′ is continuous and we get the following factorization for b̌

E
R //

""

C(K) ǐ //

��

C(K)′ S∗ // F ′

L∞(µ) ǐ // L1(µ)

ǐ

OO <<

5.13 Definition.
A linear operator T : E → F is called integral iff the associated bilinear form
E × F ∗ → R given by (δ ◦ T )̂= ev ◦(T × F ∗) is an integral bilinear form, where
δ : F → F ∗∗ denotes the natural embedding. In fact

(ev ◦(T × F ∗))(x, y∗) = ev(T (x), y∗) = y∗(T (x))

= δ(T (x))(y∗) = (δ ◦ T )(x)(y∗) = (δ ◦ T ) (̂x, y∗)

Lemma.
The integral operators form an ideal I.
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Proof. Let T : E → F be integral and R : F → F1 and S : E1 → E be continuous.
Let b : E × F ∗ → R be the bilinear form associated to T . Then the bilinear
form E1 × F ∗1 → R associated to R ◦ T ◦ S is given by b ◦ (S × R∗). In fact let
b := ev ◦(T × F ∗) and b1 := ev ◦(R ◦ T ◦ S × F ∗1 ) be the associated bilinear forms.
Then

b((S ×R∗)(x, y∗1)) = b(Sx,R∗y∗1) = R∗(y∗1)(TSx) = y∗1(RTSx) = b1(x, y∗1).

Since S ⊗R∗ : E1 ⊗ε F
∗
1 → E ⊗ε F

∗ is continuous, this form is integral.

5.14 Lemma.
Let T : E → F be nuclear, then it is integral, i.e. N ⊆ I.

Proof. Without loss of generality we may assume that T : E → F is a nuclear
mapping between Banach spaces (In fact a diagonal mapping `∞ → `1 would be
enough). We have to show that the bilinear form b = ev ◦(T × F ∗) : E × F ∗ →
F × F ∗ → R is integral, which is clear, since it induces by 5.8 the continuous map

ev ◦(T ⊗ F ∗) : E ⊗ε F
∗ → F ⊗π F

∗ → R.

5.15 Lemma. Factorization of integral operators.
Every integral operator T : E → F between Banach spaces can be factored as

E
I //

R

��

F
� � δ // F ′′

C(K) // L∞(µ) � � // L1(µ) ǐ // C(K)′

S∗

OO

where K is some compact space and µ a measure on K.

One can show that the converse is true as well, see [14, 17.4.2].

Proof. We consider the associated integral form b : E×F ∗ → R given by b(x, y∗) =
y∗(Tx). By what we said above there are continuous linear operators R : E →
C(K)→ L∞(µ) and S : F ∗ → C(K), such that

(δTx)(y∗) = y∗(Tx) = b(x, y∗) = b̌(x)(y∗) = (S∗ǐR)(x)(y∗).

5.16 Proposition.
A mapping T : E → F between Banach spaces is integral iff the adjoint mapping
T ∗ : F ∗β → E∗β is.

Proof. Let T : E → F be a linear operator and bT := ev ◦(T × F ∗) and bT∗ :
ev ◦(T ∗ × E∗∗) the associated bilinear forms. Then

bT∗(y∗, δ(x)) = δ(x)(T ∗(y∗)) = T ∗(y∗)(x) = y∗(Tx) = bT (x, y∗).

(⇐) is now obvious, since integrality of bT∗ implies that of bT = bT∗ ◦ (F ∗ × δ) ◦ κ,
where κ denotes the flipping isomorphism exchanging the factors F ∗ and E.

(⇒) We use the factorization given in 5.15, i.e.

E
T //

S

��

F
δF

##G
GG

GG
GG

GG

F ′′

L∞(µ) i // L1(µ)
R

<<yyyyyyyy

andreas.kriegl@univie.ac.at c© 7. Februar 2007 121



Integral Mappings

Dualizing it gives:

E′ F ′
T∗oo F ′∼=

F ′oo

δF ′

}}||
||

||
||

F ′′

δ∗F

ccGGGGGGGGG

R∗{{xxxxxxxx

L∞(µ)′

S∗

OO

L1(µ)′i∗oo

(L1(µ))′′ L∞(µ)

izzvvvvvvvvv

L1(µ)
2 RδL1(µ)

ddJJJJJJJJJ

This factorization T ∗ = (S∗ ◦ δL1) ◦ i ◦ (R∗ ◦ δF ′) shows that T ∗ is integral, by the
converse to 5.15.

5.17 Proposition.
Let T : E → F be linear between Banach spaces. Then T is integral iff for every
Banach space G we have that T ⊗G : E ⊗ε G→ F ⊗π G is continuous.

For a proof see [14, 17.4.7].

It can be shown that all integral mappings are weakly compact, i.e. map the unit
ball to a compact set in (F, σ(F, F ∗)), see [14, 17.4.3].

Moreover one can prove the following result:

5.18 Theorem.
If E is a reflexive Banach space or a separable dual of some Banach space, then
N (F,E) = I(F,E) for all Banach spaces F .

For a proof see [14, 17.6.5], [14, 17.6.6] and in particular case of Hilbert spaces also
[22, 49.6,p506].

Recall that under the approximation property K(E,F ) ∼= E∗ ε F = E∗⊗̂εF . Hence
K(E,F )∗ coincides with the space of integral forms E∗ × F → R. Every integral
operator T : F → E gives rise to an integral form bT : F × E∗ → R defined by
bT (y, x∗) = x∗(Ty). And conversely every integral form b : F × E∗ → R defines an
operator F → E∗′, and hence, if we assume reflexivity of E, an operator Tb : F → E.
Thus under these conditions we have:

K(E,F )∗ ∼= I(F,E)

K(E,F )∗∗ ∼= I(F,E)∗ ∼= N (F,E)∗ ∼= L(E,F )

Compare this to the dualities:

c′0 = `1 and c′′0 = (`1)′ = `∞

Absolutely Summing Operators

Definition.
Let T : E → F be a linear operator between Banach spaces and 1 ≤ p < ∞.
Then T is called absolutely p-summing (or p-summing for short) (see [14, 19.5])
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iff T maps weakly p-summing sequences to p-summing ones. With Sp we denote
the class formed by these operators. Note that we could extend this definition to
the case p = ∞, either by taking c0-sequences and hence characterizing the fully
complete operators, see [14, p420], or the `∞-sequences, and hence characterizing
bounded (=continuous) linear operators.

Note furthermore that every p-summing operator T : E → F is continuous, since
otherwise there would exists a bounded sequence xn ∈ E with ‖Txn‖ > 2n. Hence
(2−nxn) ∈ `p[E] but (2−nxn) /∈ `p{F}.

5.19 Lemma.
Every p-summing operator induces a continuous linear map from `p[E] → `p{F}.
Thus we may consider Sp(E,F ) as normed subspace of the space L(`p[E], `p{F}).

Here we consider the space `p{F} supplied with the norm

‖(yk)k‖π :=
(∑

k

‖yk‖pF
)1/p

.

As in 4.12 one can show that `p{F} is complete (see [14, 19.4.1]). For p > 1 it is
however not isomorphic to `p⊗̂πF . Otherwise we would obtain for E = `p, that
`p⊗̂π`

p = `p{`p} = `p(N× N), which is not the case..

On `p[E] we consider the norm ‖(xk)k‖ε := sup{(
∑

k |x∗(xk)|p)1/p : x∗ ∈ oE∗}.
As in 4.33 one can show that `p[E] is complete and in fact isomorphic to L(`q, E),
where 1

p + 1
q = 1 for p > 1, see [14, 19.4.3]. Furthermore `p⊗̂εE is an isometrically

embedded subspace, see [14, 19.4.4].

It is obvious, that the inclusion `p{E} → `p[E] is a contraction (i.e. has norm ≤ 1).

Proof. Let T : E → F be a p-summing operator. We will apply the closed graph
theorem to T∗, so it is enough to consider a sequence (x(k)) ∈ `p[E] which converges
to x in `p[E] and for which T∗(x(k)) converges to y in `p{F}. Since ‖T∗(z)‖ε ≤
‖T‖ · ‖z‖ε we get ‖y − T∗x‖ε ≤ ‖y − T∗x(k)‖ε + ‖T (x(k) − x)‖ε ≤ ‖y − T∗x(k)‖π +
‖T‖ ‖x(k) − x‖ε, and hence T∗x = y.

5.20 Corollary.
An operator T : E → F is p-summing iff there exists a R > 0 such that(∑

k

‖Txk‖p
)1/p

≤ R · sup
‖x∗‖≤1

(∑
k

|x∗(xk)|p
)1/p

for all finite sequences xk. The smallest such R is the norm of T∗ : `p[E]→ `p{F},
and is also denoted ‖T‖Sp . In particular Sp(E,F ) is a Banach space.

Proof. (⇒) By 5.19 we have that T∗ is continuous, and hence we have the required
property for R := ‖T∗‖ and all (even the infinite) sequences in `p[E].

(⇐) For x = (xk)k ∈ `p[E] we have ‖(Txk)k‖π = supn(
∑n

k=1 ‖Txk‖p)1/p ≤ R ·
‖(xk)k≤n‖ε ≤ R · ‖(xk)k‖ε <∞ and hence (Txk)k ∈ `p{F}.

5.21 Proposition.
For p ≤ q we have Sp ⊆ Sq.

Under the same assumption it can be shown that also Np ⊆ Nq, see [14, 19.7.5].
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Proof. Let r ≥ p be given by 1
r + 1

q = 1
p and let T ∈ Sp. Let λk := ‖Txk‖q/r.

Then ‖Txk‖ = λ
r/q
k and hence ‖λkT (xk)‖p = ‖T (λkxk)‖p = λp

k · ‖Txk‖p =
‖Txk‖p(1+ q

r ) = ‖Txk‖q and so Hölder’s inequality shows that(∑
k

‖Txk‖q
)1/p

=
(∑

k

‖T (λkxk)‖p
)1/p

≤ ‖T‖Sp · sup
‖x∗‖≤1

(∑
k

λp
k|x

∗(xk)|p
)1/p

≤ ‖T‖Sp
·
(∑

k

λr
k

)1/r

· sup
‖x∗‖≤1

(∑
k

|x∗(xk)|q
)1/q

≤ ‖T‖Sp
·
(∑

k

‖Txk‖q
)1/r

· sup
‖x∗‖≤1

(∑
k

|x∗(xk)|q
)1/q

Dividing by
(∑

k ‖Txk‖q
)1/r

=
(∑

k ‖Txk‖q
)1/p−1/q

gives(∑
k

‖Txk‖q
)1/q

≤ ‖T‖Sp · sup
‖x∗‖≤1

(
|x∗(xk)|q

)1/q

.

Thus T ∈ Sq by 5.20.

5.22 Lemma. Summing via measures.
An operator T is p-summing iff there exists some probability measure µ on oE∗ and

an M > 0 such that ‖Tx‖ ≤M ·
(∫

oE∗
|x∗(x)|p dµ(x∗)

)1/p

.

Proof. Note that the right hand side is nothing else but M · ‖δ(x)‖p, where δ(x) ∈
C(oE∗).

(⇐) If µ is an probability measure with that property, we have∑
k

‖Txk‖p ≤Mp

∫
oE∗

∑
k

|x∗(xk)|p dµ(x∗) ≤Mp · sup{
∑

k

|x∗(xk)|p : x∗ ∈ oE∗}.

So T ∈ Sp by [14, 19.5.2].

(⇒) Let T ∈ Sp(E,F ). For every finite sequence x = (x1, . . . , xn) in E let fx ∈
C(oE∗) be defined by

fx(x∗) := ‖T‖pSp
·
∑

i

|x∗(xi)|p −
∑

i

‖Txi‖p =
∑

i

(
‖T‖pSp

· |x∗(xi)|p − ‖Txi‖p
)
.

The set B := {fM : M ⊆ E is finite} is convex in C(oE∗). In fact let x and y
be two finite sequences in E and λ + µ = 1 with λ ≥ 0 and µ ≥ 0. Let z be the
sequence obtained by appending µ1/py to λ1/px. Then

(λfx + µfy)(x∗) =
∑

i

λ
(
‖T‖pSp

|x∗(xi)|p − ‖Txi‖p
)

+
∑

j

µ
(
‖T‖pSp

|x∗(yj)|p − ‖Tyj‖p
)

=
∑

i

(‖T‖pSp
)|x∗(λ1/pxi)|p − ‖T (λ1/pxi)‖p

+
∑

j

(‖T‖pSp
)|x∗(µ1/pyj)|p − ‖T (µ1/pyj)‖p

=
∑

k

(‖T‖pSp
)|x∗(zk)|p − ‖T (zk)‖p = fz(x∗).

By 5.20 we have that supx∗∈oE∗ fx(x∗) ≥ 0. Thus the open set A := {f ∈ C(oE∗) :
supx∗∈oE∗ f(x) < 0} is disjoint from B. So by [2, 7.2.1] there exists a regular Borel
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measure µ on oE∗ and a constant α such that 〈µ, f〉 < α ≤ 〈µ, g〉 for all f ∈ A and
g ∈ B. Since 0 ∈ B we have α ≤ 0. Since A contains the constant negative functions
we have α = 0 and µ(oE∗) > 0. Without loss of generality we may assume ‖µ‖ = 1.
Hence for every x ∈ E we have

0 ≤ 〈µ, fx〉 =
∫

oE∗

(
‖T‖pSp

|x∗(x)|p − ‖Tx‖p
)
dµ(x∗)

and thus ‖Tx‖p ≤ ‖T‖pSp
·
∫

oE∗
|x∗(x)|p dµ(x∗).

5.23 Lemma.
Every continuous linear operator T : F → `∞(X) defined on a subspace F of a
normed space E extends to a continuous linear operator T̃ : E → `∞(X) with
‖T̃‖ = ‖T‖.

Proof. Every evx ◦T admits a continuous extension `x : E → R, with ‖`x‖ =
‖evx ◦ T‖ ≤ ‖T‖. Thus T̃ := (`x)x is the required extension.

5.24 Theorem. Factorization of absolutely summing operators.
The operators T in Sp are characterized by the existence of a compact space K and
a measure µ on K such that we have the following factorization:

E
T //

��

F
δ // `∞(oF ∗)

C(K) � � i // Lp(µ)

OO

or, for p = 2, equivalently

E
T //

��

F

C(K) � � i // L2(µ)

OO

Proof. (⇐) It is enough to show that the canonical mapping i : C(K)→ Lp(µ) is
absolutely p-summable. Since then δ ◦ T is absolutely p-summable, since Sp is an
ideal. And hence T is in Sp, since δ is an embedding. So let δx be the point measure
at x. Then for fk ∈ C(K) we have∑

k

‖i(fk)‖pp =
∫

K

∑
k

|fk(x)|p dµ(x) =
∫

K

∑
k

|δx(fk)|p dµ(x)

≤ µ(K) · sup
{∑

k

|ν(fk)|p : ν ∈ oC(K)∗
}
,

hence the natural mapping i belongs to Sp by [14, 19.5.2].

(⇒) By 5.22 there is some probability measure µ ∈M(oE∗) such that

‖Tx‖ ≤M ·
(∫

oE∗
|x∗(x)|p dµ(x∗)

)1/p

.
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The map δ : E → C(oE∗), x 7→ evx is isometric by what we have shown in the
proof of 5.11. Now consider the diagram

E
T //

δ

��

S
##G

GG
GG

GG
GG

G F

δ

%%KKKKKKKKKK

H

R

<<

� p

!!D
DD

DD
DD

D
`∞(oF ∗)

C(oE∗) i // Lp(µ)
R̃

99

where H denotes the image of δ ◦ i in Lp(µ). The operator T factorizes via a
continuous linear operator R : H → F , since ‖Tx‖ ≤M ·‖i(δ(x))‖p for someM > 0.
By [14, 7.4.4] it extends to a continuous linear operator R̃ : Lp(µ)→ `∞(oF ∗).

If p = 2 then the closure of the image of H is a direct summand in L2(µ). Using
the ortho-projection P onto H we get the factorization R ◦ P ◦ (i ◦ δ) = R ◦ i ◦ δ =
R ◦ S = T .

5.25 Corollary.
Every integral operator is absolutely 1-summing, i.e. I ⊆ S1.

Proof. Let T : E → F be integral. By 5.15 we have a factorization

E
E //

R

��

F
� � δ // F ′′

� � // `∞(oF ∗)

C(K) // L∞(µ) � � // L1(µ) // C(K)′

S∗

OO

So T ∈ S1 by 5.24.

Approximable Operators

Definition.
For T ∈ L(E,F ) the approximation numbers an(T ) are defined by an(T ) :=
inf{‖T − S‖ : dimS(E) ≤ n}. Obviously ‖T‖ ≥ an(T ) ≥ an+1(T ) and an(T ) → 0
iff T is in the closure of E∗ ⊗ F in L(E,F ).

For 1 ≤ p < ∞ an operator T is called p-approximable (see [14, 19.8]) iff the
sequence of approximation-numbers an(T ) belongs to `p. The class of all p-approxi-
mable operators will be denoted Ap.

5.26 Auerbach’s Lemma.
Let E be a finite dimensional Banach space. Then there are unit vectors xi ∈ E
and x∗i ∈ E∗ with x∗i (xj) = δi,j for 1 ≤ i, j ≤ dimE.

Proof. Let e1, . . . , en be an algebraic basis of E. For the compact set K := oE∗

we consider the continuous map f : Kn → R, (x∗1, . . . , x
∗
n) 7→ |det(x∗j (ei))|. Let

(x∗1, . . . , x
∗
n) be a point where it attains its maximum. Since the ej are linearly

independent this maximum is positive. Hence there is a unique solution with xj ∈ E
of the equations ∑

j

x∗j (ei)xj = ei for 1 ≤ i ≤ n.
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Applying some x∗k to this equation, yields the equations∑
j

x∗j (ei)x∗k(xj) = x∗k(ei) for 1 ≤ i ≤ n.

whose unique solution is x∗j (xi) = δi,j .

f(x∗1, . . . , x
∗
n) · |det(y∗j (xi))| = |det(x∗j (ei)) · det(y∗j (xi))|

= |det(
∑

k

x∗k(ei) y∗j (xk))| = |det(y∗j (ei))|

= f(y∗1 , . . . , y
∗
n) ≤ f(x∗1, . . . , x

∗
n) for all y∗i ∈ K.

Thus |det(y∗j (xi))| ≤ 1. Choosing y∗j = x∗j for all j 6= k shows that |y∗k(xk)| ≤ 1
and hence ‖xk‖ ≤ 1. From 1 = x∗j (xj) ≤ ‖x∗j‖ ‖xj‖ we conclude that ‖xj‖ = 1 =
‖x∗j‖.

5.27 Lemma.
Let T ∈ L(E,F ) be such that dimT (E) = k < ∞. Then T can be written as
T =

∑k
j=1 λj x

∗
j ⊗ yj with ‖xj‖ ≤ 1 and ‖yj‖ ≤ 1 and 0 < λj ≤ ‖T‖.

Proof. We may assume that F = T (E). By 5.26 we have a biorthogonal sequence
yj and y∗j for F . Let λj := ‖T ∗y∗j ‖. Then 0 < λj ≤ ‖T ∗‖ = ‖T‖ and x∗j := 1

λj
T ∗y∗j ∈

oE∗. So we have Tx =
∑

j y
∗
j (Tx) yj =

∑
j λj x

∗
j (x) yj .

5.28 Corollary.
We have A1 ⊆ N .

Proof. See [14, 19.8.5]. Let T ∈ A1(E,F ). We have to show that it can be written
as T =

∑
n λn x

∗
n ⊗ yn with x∗n ∈ oE∗, yn ∈ oF and λ ∈ `1.

Let ε > 0. Choose Tn with dimTn(E) ≤ 2n and ‖T − Tn‖ ≤ (1 + ε) a2n(T ). Let
Dn := Tn+1 − Tn. Then dn := dimDn(E) ≤ 3 · 2n and since an(T ) → 0 we have
‖T −Tn‖ → 0, hence T =

∑
nDn. By 5.27 we have T =

∑∞
n=0

∑dn

i=1 λn,i x
∗
n,i⊗yn,i,

with x∗n,i ∈ oE∗, yn,i ∈ oF and 0 ≤ λn,i ≤ ‖Dn‖. We estimate as follows

∑
n

dn∑
i=1

λn,i ≤
∑

n

dn ‖Dn‖ ≤ 3
∑

n

2n(‖Tn+1 − T‖+ ‖Tn − T‖)

≤ 3 ·
∑

n

2n(1 + ε)(a2n+1(T ) + a2n(T ))

≤ 3 ·
∑

n

2n+1(1 + ε) a2n(T )

≤ 22 3 (1 + ε)
∑

n

2n−1 a2n(T )

≤ 22 3 (1 + ε)
∑

n

an(T ) since an(T ) is decreasing

to conclude that (λn,i)n,i ∈ `1.

5.29 Proposition.
Let 0 < p, q, r <∞ with 1

r = 1
p + 1

q . Then Aq ◦ Ap ⊆ Ar. In particular we will use
A2 ◦ A2 ⊆ A1.
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More generally one has for 1
r = 1

p + 1
q :

Ap ◦ Aq ⊆ Ar, see [14, 19.10.1]

Sp ◦ Sq ⊆ Sr, see [14, 19.10.3]

Np ◦ Sq ⊆ Nr, see [14, 19.10.5]

Sp ◦ Nq ⊆ Nr, see [14, 19.10.5]
and in particular Np ◦ Nq ⊆ Nr

Proof. We have an+m(S ◦ T ) ≤ an(S) am(T ):
In fact let R := S0 ◦ T + (S − S0) ◦ T0 for finite dimensional S0 and T0. Then
an+m(S ◦ T ) ≤ ‖S ◦ T − R‖ = ‖(S − S0) ◦ (T − T0)‖ ≤ ‖S − S0‖ · ‖T − T0‖ and
hence an+m(S ◦ T ) ≤ an(S) · am(T ).

Using the Hölder inequality for r
p + r

q = 1 we obtain:(∑
n

an(S ◦ T )r
)1/r

≤ 21/r
(∑

n

a2n(S ◦ T )r
)1/r

≤ 21/r
(∑

n

an(S)r · an(T )r
)1/r

≤ 21/r
(∑

n

an(S)p
)1/p

·
(∑

n

an(T )q
)1/q

Ideals for Hilbert Spaces

5.30 Proposition.
An operator T : E → F between Hilbert spaces is p-approximable provided (〈Ten, fn〉)n ∈
`p for all orthonormal sequences en and fn.

It can be shown that the converse is valid as well, see [14, 20.2.3]. Using the polar
decomposition T = U · |T | one shows easily that

T ∈ Ap ⇔ |T | ∈ Ap

⇔ |T | is compact and the sequence of Eigen-values of |T | belongs to `p.

Moreover one can show that the Eigen-values of |T | are the approximation numbers
an(T ). So those operators are up to isomorphisms just the multiplications with `p-
sequences. The operators in Ap are also called of Schatten or of von Neumann class
p.

Note that a non-normal compact operator need not have any Eigen-values and
the spectrum can be {0}. Take for example the operator T : `2 → `2 given by
(x1, x2, x3, . . . ) 7→ (0, x1,

x2
2 ,

x3
3 , . . . ). Obviously T is compact and from Tx = λx

for λ 6= 0 one inductively obtains xi = 0.

Proof. By 5.4 we conclude that T is compact and hence admits by 5.3 a representa-
tion Tx =

∑
n λn〈en, x〉fn with λn → 0 and orthonormal sequences en and fn. Since

λn = 〈Ten, fn〉 we have that (λn)n ∈ `p. By applying a permutation and putting
signs to fn we may assume that 0 < λn+1 ≤ λn Let Tn(x) :=

∑
k<n λk〈ek, x〉fk.
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Then

an(T ) ≤ ‖T − Tn‖ = sup
{∥∥∥∑

k≥n

λk〈ek, x〉fk

∥∥∥ : x ∈ oE
}

= sup
{(∑

k≥n

λ2
k|〈ek, x〉|2

)1/2

: x ∈ oE
}
≤ λn,

hence T ∈ Ap.

5.31 Proposition.
For Hilbert spaces we have S2 ⊆ A2.

Proof. We estimate using 5.20 for orthonormal families ek and fk as follows(∑
k

‖Tek‖2
)1/2

≤ ‖T‖S2 · sup
‖x‖≤1

(∑
k

|〈x, ek〉|2
)1/2

By the Cauchy-Schwarz inequality |〈Tek, fk〉| ≤ ‖Tek‖ · ‖fk‖ = ‖Tek‖ we have∑
k〈Tek, fk〉2 ≤

∑
k ‖Tek‖2 <∞ and hence T ∈ A2 by 5.20.

In addition the following duality result holds:

5.32 Proposition. Duals of the operator ideals.
See [14, 20.2.5].

A∗p = Aq for 1 < p <∞ and
1
p

+
1
q

= 1, K′ = A1, A′1 = L

One can show:

5.33 Proposition, Hilbert-Schmidt-Operators.
See [14, 20.5.1]. For Hilbert spaces one has the following identities

A2 = Nq = Sp for 1 ≤ p <∞ and 1 < q ≤ ∞.

The operators in this class are called Hilbert-Schmidt operators.

5.34 Proposition.
See [14, 20.5.2] and [14, 20.2.7]. For a continuous linear operator T : E → F
between Hilbert spaces the following statements are equivalent:

1. T is Hilbert-Schmidt
2. T has the following lifting property: For every quotient map F1 → F between

Banach spaces there exists a continuous linear lift T1 : E → F1.
3. T has the following extension property: For every embedding E1 → E of a

Banach space there exists a continuous linear extension T1 : E1 → F .
4. T can be factored over `1;
5. T can be factored over c0;
6. T ∗ is Hilbert Schmidt;
7. (‖Tei‖)i∈I belongs to `2(I) for some (any) orthonormal basis (ei)i∈I .

5.35 Proposition, Trace-class operators.
See [14, 20.2.4+20.2.5+20.2.8]. One has the following identities

A1 = N1 = A2 ◦ A2.

This class is also called trace-class.
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Overview of Operator Ideals

5.36. We have the following inclusions:

A1

5.28
⊆ N1

5.14
⊆ J1

5.25
⊆ S1

(clear) ∩pp 5.21 ∩pp 5.21 ∩pp

Ap Np

[14, 19.7.8]

⊆ Sp

For Hilbert spaces we have the following results:

p = 1 A1
5.28= N1

5.18= J1 ⊂ S1

∩ ∩ 5.33 pppp
1 < p <∞ A2

5.33= Np
5.33= Sp

∩ pppp ∩
p =∞ A∞ N∞ ⊂ S∞
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6. Projective Representations

In this chapter we will consider locally convex spaces E for which the projective re-
presentation E = lim←−p

Ep has additional properties in the sense that the connecting
morphisms Φ : Ep → Eq can be chosen as elements of certain operator ideals.

Precompact Sets

Recall that we have shown in [2, 6.4.2] that a subset of a complete space is compact
iff it is closed and precompact. We also have:

6.1 Lemma.

1. The continuous linear image of a precompact set is precompact.
2. The closure of a precompact set is precompact.
3. A subset of a precompact set is precompact.
4. If E is embedded into F and K ⊆ E is precompact in F then also in E.

Proof. (1) Let f : E → F be continuous linear, K ⊆ E precompact and V a 0-
neighborhood in F . Then there is some finite set A ⊆ K such that K ⊆ A+ f−1V ,
and hence f(K) ⊆ f(A+ f−1V ) = f(

⋃
a∈A a+ f−1V ) =

⋃
a∈A f(a) + f(f−1V ) ⊆

f(A) + V .

(2) Let K be precompact and U be a closed 0-neighborhood in E. Then there
is some finite set A ⊆ K such that K ⊆ A + U . But then K ⊆

⋃
a∈A a+ U =⋃

a∈A a+ U = A+ U .

(3) Is obvious, since it is enough to find the finite set as subset of E.

(4) Let U be a 0-neighborhood in E. Then there exists a 0-neighborhood V in F
with V ∩ E = U . By assumption there is some finite subset A ⊆ K (!) such that
K ⊆ A + V , hence K = K ∩ E = (A + V ) ∩ E = A + (V ∩ E) = A + U , since
A ⊆ K ⊆ E.

6.2 Corollary.
A set K ⊆ E is precompact in E iff it is relatively compact in the completion Ê.

Proof. (⇒) Let K ⊆ E be precompact. By the lemma the closure K̂ of K in Ê is
precompact (and closed) hence compact.

(⇐) Let K ⊆ E be relatively compact in Ê. Then K̄ is compact and hence pre-
compact in Ê. By the lemma the subset K is precompact in Ê and also in E.

6.3 Proposition.
A subset of a product is precompact iff it is contained in a product of pre-compact
subsets.
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A subset of a coproduct is precompact iff it is contained in a finite product of pre-
compact sets.

Proof. Since the completion of
∏

iEi is
∏

i Êi the first part follows from Tychonoff’s
theorem for compact sets.

Since the completion of
∐

iEi is
∐

i Êi the second part follows, since bounded sets
are contained in a finite subproduct.

Schwartz Spaces

6.4 Definition.
A locally convex space is called Schwartz iff for every 0-neighborhood U there
exist another one V ⊆ U , such that the connecting morphism E(V ) → E(U) is
pre-compact (i.e. the image of the unit-ball is pre-compact), or equivalently that
Ê(V ) → Ê(U) is compact.

Note that E is Schwartz iff

∀U ∈ U ∃V ∈ U , V ⊂ U, ∀ε > 0 ∃M
finite
⊆ E : V ⊆M + εU.

This just expresses the fact, that the image of the unit-ball under the natural
mapping from E(V ) → E(U) is pre-compact. Comparison with the definition of
quasi-normed spaces (see 3.46) shows that every Schwartz space is quasi-normed.
And if every bounded set B is precompact, then there is a finite set M ⊆ E such
that B ⊆M + εU , and we have the converse implication.
Let B ⊆ E be bounded in a Schwartz space. Then for every 0-neighborhood U
there exists another one V ⊆ U such that E(V ) → E(U) has precompact image on
every bounded set B. Hence the image is relatively compact in Ê(U) and thus also
in
∏

U Ê(U). Since E embeds into this product B is precompact in E. Thus we have
shown:

6.5 Proposition. Schwartz versus quasi-normable spaces.
A locally convex space E is Schwartz iff it is quasi-normable and every bounded set
is precompact.

6.6 Corollary. Schwartz versus semi-Montel spaces.
A Schwartz space is semi-Montel iff it is quasi-complete, i.e. every bounded closed
subset is complete.

6.7 Corollary.
A space E is Schwartz iff L(E,F ) = K(E,F ) for all Banach spaces F .

Proof. (⇒) Let T : E → F be continuous linear with values in a Banach space F .
Since E is Schwartz, we can find a 0-neighborhood V ⊆ U := T−1(oF ), such that
the canonical mapping E(V ) → E(U) is precompact. Since U = T−1(oF ) we obtain
a factorization:

E
T //

��

F

E(V ) pcp.
// E(U)

OO

hence T has precompact (=relatively compact) image on V .
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(⇐) By assumption the canonical linear map E → E(U) ↪→ Ê(U) into the Banach
space Ê(U) is compact for every 0-neighborhood U , i.e. there is some 0-neighborhood
V such that the image of V in Ê(U) is relatively compact. Since we may assume
that V ⊆ U , we obtain that the connecting map Ê(V ) → Ê(U) is compact.

Schwartz Function Spaces

6.8 Proposition.
For every completely regular space X the space C(X) is quasi-normable.

Proof. Let U := {f ∈ C(X) : |f(x)| ≤ ε for x ∈ K} be a typical 0-neighborhood in
C(X) with ε > 0 and compactK ⊆ X. We choose V = U , and consider the bounded
set B := {f : |f(x)| ≤ 2ε for all x}. We claim that V ⊆ B+λU for 0 < λ ≤ 1. Since
X is completely regular their exists an h ∈ C(X, [0, 1]) with h|K = 1 and h|A = 0,
where A := {x ∈ X : |f(x)| ≥ 2ε}. Then f = (1−λ)hf +(1− (1−λ)h)f ∈ B+λU ,
since |(1 − λ)(hf)(x)| ≤ |(hf)(x)| ≤ 2ε for all x ∈ X and |((1 − (1 − λ)h)f)(x)| =
|((1− h) + λh)f)(x)| = |λ |f(x)| ≤ ε λ for x ∈ K.

6.9 Proposition.
For completely regular spaces X the following statements are equivalent:

1. C(X) is Schwartz;
2. Every bounded set in C(X) is precompact;
3. Every compact set in X is finite.

Note that a compactly generated space with property (3) of 6.9 has to be discrete,
since every subset has obviously open trace on the finite subsets.

Proof. (1⇔2) is obvious from 6.5 and 6.8.

(2⇒ 3) Suppose there is some infinite compact K ⊆ X. By assumption the bounded
set B := {f : ‖f‖ ≤ 1} has to be precompact. Thus for the 0-neighborhood U :=
{f : |f(x)| < 1 for all x ∈ K} there has to exist finitely many f1, . . . , fn with
B ⊆ {f1, . . . , fn} + U . Choose n different points xj ∈ K and an f ∈ B such that
for 1 ≤ j ≤ n we have

f(xj) =

{
−1 for fj(xj) ≥ 0
+1 otherwise

.

Thus ‖f − fj‖∞ ≥ |f(xj)− fj(xj)| ≥ 1, i.e. f /∈ {f1, . . . , fn}+ U . A contradiction.

(3⇒ 2) Since compact sets K are finite, we have that every bounded set in C(K) =
RK is precompact, and hence the same is true for the subspace C(X) of

∏
K C(K).

In a similar spirit is the following

6.10 Proposition.
See [14, 11.7.7].
For completely regular spaces X the following statements are equivalent:

1. C(X) is (semi-)Montel;
2. C(X) is (semi-)reflexive;
3. X is discrete.
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In this context one has the following two results:

6.11 Nachbin-Shirota-theorem.
See [14, 13.6.1].
For completely regular spaces X the following statements are equivalent:

1. C(X) is (ultra-)bornological;
2. X is realcompact, i.e. every real-valued algebra homomorphism on C(X) is

a point evaluation.

6.12 Nachbin-Shirota-theorem.
See [14, 11.7.5].
For completely regular spaces X the following statements are equivalent:

1. C(X) is barreled;
2. every bounding closed subset is compact.

Here a set K ⊆ X is called bounding, iff f(K) is bounded in R for every f ∈ C(X).

6.13 Proposition. FM-spaces.
See [14, 11.6.1+11.6.2].
For a Fréchet space E the following statements are equivalent:

1. E is Montel;
2. E is separable and every σ(E∗, E)-convergent sequences in E∗ is β(E∗, E)-

convergent.
3. E∗β is Schwartz;

Proof. We show only that Fréchet Montel spaces are separable.
By assumption E embeds into

∏
nEUn for some countable 0-neighborhood basis

{Un}n. Let pn be the corresponding seminorms. So it is enough to show that E(Un)

is separable, and without loss of generality we may assume n = 1. Suppose E(U1)

is not separable. Then there has to exist an ε > 0 and a countable subset A1 ⊆ E,
with p1(x− y) ≥ ε for all x 6= y in A1 (Otherwise we could take for every ε > 0 a
maximal and hence countable subset Aε and then A :=

⋃
nA1/n would be countable

and dense in E). Since the sets Un have to be absorbing, we can choose inductively
λn > 0 such that An := An−1 ∩ λn Un is still uncountable. Now choose recursively
xn ∈ An \ {x1, . . . , xn−1}. For n > m we have xn ∈ An ⊆ Am+1 ⊆ λm Um, and
hence pm(xn) ≤ λm. Thus {xn : n ∈ N} is bounded and hence precompact. Since E
is Fréchet it is sequentially compact, i.e. we can find a subsequence xnj converging
to some x ∈ E. But then p1(xnj

−x) < ε
2 for sufficiently large j, a contradiction.

Moreover one has the following characterization of duals:

6.14 Proposition. Duals of FM-spaces.
See [10, 4.4.38].
For a locally convex space E the following statements are equivalent:

1. E is the strong dual of a Fréchet-Montel space (which can be chosen to be
E∗β);

2. E is a (quasi-)complete DF -Schwartz space;
3. E is bornological and the bornology of compact subsets has a countable base;
4. E is bornological and Montel, and the von Neumann bornology has a coun-

table base.
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We will show in (5) of 7.4 that on these spaces the topology is final with respect to
all convergent sequences.

For Schwartz spaces one has:

6.15 Proposition. FS-spaces.
See [14, 11.6.3].
For a Fréchet space E the following statements are equivalent:

1. E is Schwartz;
2. E is separable and σ(E∗, E)-convergent sequences in E∗ converge Mackey

with respect to the bornology of equi-continuous subsets.

6.16 Proposition. Duals of FS-spaces.
See [14, 12.5.9] and [10, 4.4.39].
For a locally convex space E the following statements are equivalent:

1. E is the strong dual of a Fréchet-Schwartz space (which can be chosen to be
E∗β);

2. E is a (quasi-)complete DF -Schwartz space, and every 0-sequence converges
Mackey;

3. E is (ultra-)bornological and the bornology of bornologically compact subsets
has a countable base;

4. E is (ultra-)bornological, every bounded set is bornologically relatively com-
pact, and the von Neumann bornology has a countable base.

5. E is the inductive limit of a sequence of Banach spaces with compact connec-
ting mappings.

A space satisfying these equivalent conditions is called Silva space. From what we
said about duals of Fréchet Montel spaces it follows that the c∞-topology on Silva
spaces coincides with the locally convex topology.

Köthe gave an example of a Fréchet-Montel space which has `1 as quotient, and
hence cannot be Schwartz. See also [14, p233].

Hogbe-Nlend gave an example of a Fréchet Schwartz space without the approxima-
tion property, see [14, p416].

Nuclear Spaces

6.17 Theorem. Nuclear spaces.
The following statements are equivalent

1. E is nuclear;
2. E ⊗π F = E ⊗ε F for every Banach space F ;
3. `1 ⊗π E = `1 ⊗ε E;
4. `1{E} = `1〈E〉 topologically;
5. `1{E} = `1[E] topologically;
6. The connecting maps of the projective representation can be chosen absolu-

tely summable (or Sp);
7. The connecting maps of the projective representation can be chosen nuclear

(or Np);
8. The connecting maps of the projective representation can be chosen traceable

(or Ap);
9. The connecting maps of the projective representation can be chosen integral;
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10. Every continuous linear map into a Banach space is nuclear.

2

��

1oo 10OO

��
3 // 6 //

��

7

__???????

OO

��
4

OO

5oo 8, 9

Proof. (1⇒2⇒3) and (5⇒4⇒3) are obvious.

(3⇒6) From (3) we obtain that `1〈Ê〉 ∼= `1{Ê}. Thus for every U ⊆ E there exists
a V ⊆ E and a δ > 0 such that πU ≤ δεV , where

πU ((xk)k) :=
∑

k

pU (xk)

is the semi-norm associated to U on `1⊗̂πE ∼= `1{E}, see 4.12, and where

εV ((xk)k) := sup{
∑

k

|y∗(xk)| : y∗ ∈ V o}

is the semi-norm associated to U on L(c0, F ) = `1[E] and hence on the subspace
`1〈E〉 ∼= `1⊗̂εE, see 4.34. From this it follows by 5.20 that the connecting map is
absolutely summable.

(6⇒5) For every U we can find by assumption a V such that the connecting map
Φ : E(U) → E(V ) is absolutely summable. Hence if (xn) ∈ `1[E], then the images
are in `1[Ê(V )] and hence in `1{Ê(U)}. Moreover

‖(xk)k‖πU
=
∑

k

qU (xk) =
∑

k

||xk||U

≤ ‖Φ‖S1 · sup{
∑

k

|x∗(xk)| : x∗ ∈ V o} ≤ ‖Φ‖S1 · εV ((xk)k),

Since U was arbitrary we have (5).

(7⇒1) By assumption for every U there exists a U ′ such that the connecting map
ΦU,U ′ is nuclear (or integral). By [14, 17.3.8] we have that ΦU,U ′ ⊗ F̂(V ) : Ê(U ′) ⊗ε

F̂(V ) → Ê(U) ⊗π F̂(V ) is continuous. Thus πU,V ≤ c · εU,V for some c > 0, i.e.
E ⊗ε F = E ⊗π F . Recall that πU,V (x) := inf{

∑
k pU (xk)pV (yk) : z =

∑
k xk ⊗ yk}

and εU,V (
∑

k xk ⊗ yk) := sup{|
∑

k x
∗(xk)y∗(yk) : x∗ ∈ Uo, y∗ ∈ V o} are the

corresponding norms on E(U) ⊗π E(V ) and on E(U) ⊗ε E(V ).

Now let us show that for all mentioned ideals it is the same to assume that the
connecting mappings belong to them.
In fact we have A1 ⊆ N1 ⊆ I1 ⊆ S1 ⊆ S2. The composite of 3 maps in S2 belongs to
A2, since using 5.24 the following diagram shows that it factors over a map between
Hilbert spaces of class S2 ⊆ A2 by 5.31:

E3
S2 //

##F
FFFFFFF E2

S2 // E1
S2 //

##F
FFFFFFF E0

L2(µ3)

;;xxxxxxxx S2⊆A2 // L2(µ1)

;;xxxxxxxx

andreas.kriegl@univie.ac.at c© 7. Februar 2007 136



Nuclear Spaces 6.21

Since (A2)2 ⊆ A1 we have (S2)6 ⊆ A1. Now choose for a given seminorm p succes-
sively p6 ≥ p5 ≥ · · · ≥ p1 ≥ p such that the connecting maps all belong to S2. Then
the connecting mapping Êp6 → Êp belongs to A1.

This shows (6⇔ 7⇔ 8⇔ 9).

(7⇔10) Recall that a map T : E → F with values in a Banach space is called
nuclear (see 5.6), iff it factors over a nuclear map T1 : E1 → F on some Banach
space E1. In fact for E1 we may choose Ê(U) for some 0-neighborhood U . Now we
can proceed as for the corresponding result 6.7 for compact mappings and Schwartz
spaces.

6.18 Proposition. NF-spaces.
A Fréchet space is nuclear if `1{E} = `1[E] or `1{E} = `1〈E〉 holds algebraically.

Proof. Since `1{E} and `1〈E〉 are Fréchet spaces it follows from the closed graph
theorem that the identity is a homeomorphism.

6.19 Proposition. Consequences of nuclearity.
For a nuclear space the following is true:

1. It has a basis of Hilbert seminorms, i.e. seminorms which are induced from
continuous bilinear symmetric forms.

2. It satisfies the approximation property.
3. It is Schwartz.
4. Bounded sets are precompact.
5. If it is Fréchet, then it is separable.
6. If it is normable, then it is finite dimensional.

Proof. (1) By what we have shown in the proof of 6.17 every natural mapping
E → Ep factors over some Hilbert-space H. Taking the norm q of the Hilbert-
space, we get a continuous seminorm E → H → R, which dominates p.

(2) Since by (1) E is a reduced projective limit of Hilbert-spaces, it satisfies the
approximation property, by [14, 18.2.1].

(3) Since nuclear mappings are compact by 5.7, every nuclear space is Schwartz.

(4) is true for Schwartz spaces by 6.5.

(5) is true for Fréchet Montel spaces by 6.13.

(6) is true for normable Schwartz spaces by 6.5 together with [2, 4.4.5].

6.20 Proposition.
A space E is nuclear iff it has a basis of Hilbert-seminorms and E⊗ε E = E⊗π E.

Sketch of a proof. By assumption given U we can find V such that the connecting
map ΦU,V is between Hilbert spaces and ΦU,V ⊗ ΦU,V is continuous from the ε-
tensor product into the projective one. From this it is easily shown that ΦU,V is
Hilbert-Schmidt, and hence E is nuclear.

6.21 Proposition.
Both the nuclear and the Schwartz spaces are stable with respect to initial struc-
tures, countable direct sums, quotients, completions, projective and injective tensor
products and ε-products.

Proof.
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(Products) Let E =
∏

iEi. Then a typical seminorm is of the form p : x 7→
maxi∈A pi(xi), where A is finite and pi are seminorms on Ei. Obviously Êp =∏

i∈A (̂Ei)pi
. For every pi we can find a seminorm qi ≥ pi such that the canoni-

cal mapping (̂Ei)qi
→ (̂Ei)pi

is precompact/nuclear. Then the canonical mapping∏
i∈A (̂Ei)qi

→
∏

i∈A (̂Ei)qi
is precompact/nuclear, in fact a finite product

∏
i∈A Ti

can be written as
∑

i∈A inji ◦Ti ◦ pri and hence belongs to the considered ideal.
Hence we may use q := maxi∈A qi as the required seminorm.

(Subspaces) First for Schwartz spaces. Let E be a subspace of F . The seminorms
on E are the restrictions of seminorms p on F . Let q ≥ p be a seminorm such that
Fq → Fp is precompact. Since Ep|E → Fp is an embedding we have the diagram:

Eq|E //
_�

��

Ep|E
_�

��
Fq // Fp

Since the bottom arrow is precompact, the same is true for the top arrow.

Now for nuclear spaces. The corresponding proof will not work for nuclear mappings,
but for absolutely summable mappings, since the ideal S1 is obviously injective, i.e.
if T : E → F1 ↪→ F belongs to S1 and F1 is a closed subspace of F , then T : E → F1

belongs to S1.

(Countable Sums) first for Schwartz spaces. Recall that a basis of seminorms on
a countable co-product E =

∐
k Ek is given by supk pk, where the pk run through

the seminorms of Ek and supk pk : (xk)k 7→ supk pk(xk). By assumption we can
find seminorms qk ≥ pk such that the connecting map Tk : (Ek)qk

→ (Ek)pk
is

precompact. Furthermore we may assume that its norm is less than 1
2k , by replacing

qk with 2k‖Tk‖qk. Now the following diagram shows that we get a natural bijection∐
k(Ek)pk

∼= (
∐

k Ek)supk pk
which is an isometry iff we supply

∐
k(Ek)pk

with the
norm (xk)k 7→ sup{pk(xk) : k} and analogously for the qk.

ker(supk pk)
_�

��

∐
k ker(pk)

_�

��∐
k Ek

supk pk

%%KKKKKKKKKKK

����

∐
k Ek

‘
k pkyyssssssssss

����

R
∐

k Rsupoo

(
∐

k Ek)supk pk
oo ∼= //

99sssssssssss ∐
k(Ek)pk

eeKKKKKKKKKK

Up to these isometries the connecting map is nothing else but

T :=
∐
k

Tk :
∐
k

(Ek)qk
→
∐
k

(Ek)pk
.

Since the finite subsums
∐

k≤n Tk converge uniformly to
∐

k Tk on the unit-ball with
respect to p = supk pk and are precompact operators by the result on products,
hence so is the infinite sum.

Now for nuclear spaces. We proceed as before using that the connecting mappings
Tk can be chosen of the form Tk =

∑
j(λk)j(x∗k)j⊗(yk)j with λk ∈ `1 and sequences

x∗k ∈ o((Ek)qk
)∗ and yk ∈ o(Ek)pk

. By replacing qk by ‖λk‖1 2kqk, we have that
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(λ1, λ2, . . . ) ∈ `1 and hence the connecting mapping T admits the representation∑
k,j(λk)j(x∗k)j ⊗ (yk)j , where (x∗k)j can be extended to the corresponding space,

since (Ek)qk
embeds isometrically into it.

(Quotients) First for Schwartz spaces. Let F := E/N , where N is a closed subspace
and let π : E → F denote the quotient mapping. Let p̃ be a seminorm on F . By
assumption there exists a seminorm q on E with q ≥ p̃◦π and such that Eq → Fp̃◦π
is precompact. Let q̃ be the corresponding quotient semi-norm on F , see [2, 4.3.3].
Then q ≥ q̃ ◦ π ≥ p̃ ◦ π. Now the following diagram shows that we get a natural
isometry Ep̃◦π ∼= Fp̃ and similarly for q̃.

N
� � // ker p̃ ◦ π

_�

��

π−1(ker p̃) // // ker p̃
_�

��
N

� � // E // //

����

p̃◦π

''NNNNNNNNNNNNN F
p̃

xxrrrrrrrrrrrr

����

R

Ep̃◦π

p̃◦π
88

∼= // Fp̃

p̃

ee

Another formulation of the same result would be an application of the isomorphy-
theorem

F/ ker p̃ ∼= (E/N)/(ker(p̃ ◦ π)/N) ∼= E/ ker(p̃ ◦ π)
Hence we have the diagram:

Fq̃ // Fp̃

Eq // //

== ==zzzzzzzz
Eq̃◦π // //

∼=

OO

Ep̃◦π.

∼=

OO

Note that connecting morphisms are always quotient maps, since the projections
E → Eq are. So the diagonal arrow is open, since it is up to the vertical isomorphism
the connecting map Eq → Eq̃◦π. Hence the inverse image of the unit ball in Eq̃ is
bounded in Eq. But then its image is precompact in Fp̃

∼= Ep̃◦π.

Now in order that the proof given for Schwartz spaces works for nuclear spaces, we
can use the following: It is enough to consider the situation, where E → E1 → F is
nuclear, E → E1 is a quotient map and E a Hilbert space. But then the sequence
E2 → E → E1 splits, where E2 is the kernel of the quotient map E → E1, and
hence T : E1 → F can be written as E1 → E → E1 → F and thus is nuclear.

(Completions) Use that Êq = ̂̂
Eq̂, where q̂ denotes the unique extension of q to a

seminorm on Ê.

(Projective tensor product) for Schwartz spaces. Recall that the typical 0-neighborhoods
of E ⊗π F are U := 〈U1 ⊗ U2〉abs.conv., where the Ui are absolutely convex 0-
neighborhoods in Ei. By assumption there are 0-neighborhoods Vi ⊆ Ui in Ei such
that for every 0 < ε ≤ 1 there is a finite set Bi such that Vi ⊆ Bi + εUi. Taking
intersection with Ui shows that Vi ⊆ (Bi + εUi) ∩ Ui ⊆ (B ∩ 2Ui + εUi). In fact
b + εu ∈ U implies that b ∈ U − εu ⊆ U − U ⊆ 2U . Thus we may assume that
Bi ⊆ 2Ui. Now we have that

V1 ⊗ V2 ⊆ B1 ⊗B2 + εB1 ⊗ U2 + εU1 ⊗B2 + ε2U1 ⊗ U2

⊆ B1 ⊗B2 + (2ε+ 2ε+ ε2)U1 ⊗ U2.
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So let V be the absolutely convex hull of 1
5V1 ⊗ V2 ⊆ 1

4+ε (V1 ⊗ V2) and B the
finite dimensional bounded set 1

4+ε 〈B1 ⊗ B2〉abs.conv.. Then V ⊆ B + εU . Since B
is precompact, we can find a finite set B0 ⊆ B such that B ⊆ B0 + εU , and so
V ⊆ B0 + 2εU .

For nuclear spaces E and F we take an arbitrary lcs G and calculate as follows:

(E ⊗π F )⊗ε G
E nucl.∼= (E ⊗ε F )⊗ε G ∼= E ⊗ε (F ⊗ε G)
F nucl.∼= E ⊗ε (F ⊗π G)

E nucl.∼= E ⊗π (F ⊗π G)
∼= (E ⊗π F )⊗π G.

(ε-product and ε-tensor product) For Schwartz spaces this follows from 6.33 since
E ⊗ε F ⊆ E εF ⊆ L(E∗γ , F ) and (E∗γ)∗γ = Ê is Schwartz.

For nuclear spaces this follows, since by the approximation property E⊗̂πF =
E⊗̂εF = Ê ε F̂ , and the first space is nuclear.

Examples of Nuclear Spaces

6.22 Lemma.
The space s of all fast falling sequences is nuclear.

Proof. Recall that

s := {x ∈ RN : ‖p · x‖∞ <∞ for all polynomials p on N}.
Since

‖p · x‖∞ = sup
{
|p(n)xn| : n ∈ N

}
≤ ‖p · x‖1 =

∑
n

|p(n)xn| ≤
∑

n

∣∣∣ 1
n2 + 1

(1 + n2)p(n)xn

∣∣∣
≤ sup

{∣∣∣(1 + n2)p(n)xn

∣∣∣ : n ∈ N
}
·
∑

n

1
1 + n2

we may replace the supremum by the sum. Thus x 7→ p·x is a well defined continuous
linear mapping s → `1. If p has no roots in N (which is no restriction to assume),
then this mapping has dense image, since the finite sequences belong to s and are
dense in `1. Moreover in this case the kernel of ‖ ‖p is trivial, so the Banach space
ŝp generated by ‖p · ‖1 is isomorphic to `1. Given p then q : n 7→ (1 + n2)p(n)
induces the multiplication operator ŝq

∼= `1 → `1 ∼= ŝp by the summable sequence
λ := ( 1

1+n2 )n, and hence is nuclear since it factors over the nuclear multiplication
operator `∞ → `1 with the same diagonal.

s
q·

}}||
||

||
|| p·

""E
EE

EE
EE

EE

`1
λ //

  A
AA

AA
AA

A `1

`∞

λ

<<zzzzzzzz

6.23 Corollary. Nuclear function spaces.
All the spaces C∞(X), C∞K (X), C∞c (X), S(Rn), H(X) as well as their strong duals
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are nuclear, where X denotes an open subset in a finite dimensional vector space
and K a compact subset of X.

Proof. We have shown in [2, 5.4.5] that the Fourier-coefficients give an isomorphism
of s with C∞2π(R), the space of 2π-periodic smooth functions. Thus C∞2π is nuclear.

Now let K be a compact subset in R. We choose an affine isomorphism α : R→ R
which maps K to a subset α(K) of the open interval (−π, π). Hence α∗ gives an
isomorphism C∞α(K)(R) ∼= C∞K (R). Since all functions in C∞α(K)(R) are infinitely flat
at ±π we can prolong them to 2π-periodic functions on R. Thus C∞α(K)(R) can be
considered as closed subspace of C∞2π(R) and hence is nuclear.

Recall that C∞A×B(X×Y ) ∼= C∞A (X)⊗̂εC
∞
B (Y ) (or at least embeds into the injective

tensor product of such spaces). Since the injective tensor product of nuclear spaces
is nuclear as are closed subspaces we obtain that C∞K1×...×Kn

(Rn) is nuclear. Since
every compact subset K of an open subset X ⊆ Rn can be covered by finitely
many compact boxes, we can embed C∞K (X) into a finite product of nuclear spaces
C∞I1×...×In

(Rn), hence C∞K (X) is nuclear.

Thus also the strict inductive countable limit C∞c (X) of the spaces C∞K (X) with
K ⊆ X is nuclear.

Since C∞(X) carries the initial structure with respect to multiplication mappings
C∞(X)→ C∞c (X) by smooth-functions hn ∈ C∞Kn+1

(Rm) with hn|Kn = 1 for some
countable base Kn of the compact subsets of X, we conclude that C∞(X) is nuclear
as a closed subspace of a product of nuclear spaces.

Being a subspace of C∞(X) the space H(X) is also nuclear.

Furthermore S(R) can be considered as subspace of C∞2π(R) ∼= C∞(S1) (see [22,
429]).
For this we consider R as the stereographic image of S1 \ {1} with pole 1. This
chart is easily seen to be given by R 3 r 7→ ( r2−1

r2+1 ,
2r

r2+1 ) ∈ S1. The chart-change to
the stereographic image of S1 \ {−1} with pole −1 is given by t 7→ 1

t , by a direct
application of similar triangles, see [1, ???] or [3, I,9.20]. So in order to show that
every f ∈ S induces a smooth map f̃ : S1 → R, which is infinitely flat at 1, it is
enough to show that f ◦i : R→ R is smooth and infinitely flat at 0, where i : t 7→ 1

t .
Obviously f ◦ i is smooth on R \ {0}. For the derivatives we have that (f ◦ i)(n)(t)
equals (− 1

t2 )n f (n)( 1
t ) plus a universal linear combination of f (k)( 1

t ) · (
1
t )

k+n with
0 ≤ k < n. Since f ∈ S we have that for 1

t →∞ these terms go to 0. By the closed
graph theorem the linear mapping f 7→ f̃ is continuous from S to C∞0 (S1), the
space of smooth mappings which are infinitely flat at 1.
Moreover this mapping is onto. Since given f̃ ∈ C∞0 (S1), then the corresponding
f is obviously smooth on R and f ◦ i is smooth on R and infinite flat at 0. So by
Taylor’s theorem we have that f(n)(1/t)

tk → 0 for all n, k ≥ 0. By induction with
respect to n we have that

±f (n)(
1
t
)

1
t2n+k

=
(f ◦ i)(n)(t)

tk
+ a linear comb. of

{
f (j)(

1
t
)

1
tj+n+k

: j < n
}
→ 0

for t → 0. But this means that sk f (n)(s) → 0 for s → ∞, i.e. f ∈ S. By the
open mapping theorem for Fréchet spaces we have that S as lcs is isomorphic with
C∞0 (S1). Hence S(R) is nuclear, as is S(Rn) ∼= S(R)⊗̂ε · · · ⊗̂εS(R).
Note that C∞K (R) is isomorphic to the subspace of C∞2π(R,R) ∼= C∞(S1) formed by
those functions which are infinitely flat at 0, if K is the closed interval [0, 2π]. In fact
every f ∈ C∞K (R) has to be infinitely flat at 0 and at 2π. Hence it can be prolonged
to a 2π-periodic function on R which is infinitely flat at 0. Conversely every such
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function can be turned into a function in C∞K (R) by replacing it by 0 outside K.
The closed graph theorem shows that this bijection is a homeomorphism.

One can even show that S(R) ∼= s. In fact [2, 6.3.9] we have discussed the Hermite-
polynomials Hn, which are obtained by orthornormalizing the polynomials tn on
L2

ρ(R,R), where the inner product is given by 〈f, g〉ρ :=
∫

R f(t) g(t) ρ(t) dt, where
ρ(t) := e−1/t2 . The Hermite-polynomials are solutions of the second order dif-
ferential equation H ′′

n(t) − tH ′
n(t) + nHn(t) = 0 and are proportional to t 7→

et2/2( d
dt )

ne−t2/2. Now one defines the Hermite functions hn to be proportional to
t 7→ e−t2/2Hn(

√
2 · t). So they are solutions of the differential equation:

h′′n(t)− t2 hn(t) + (2n+ 1)hn = 0.

In fact

h′n(t) =
d

dt

(
e−t2/2Hn(

√
2 t)
)

= e−t2/2 (−tHn(
√

2 t) +
√

2H ′
n(
√

2 t))⇒

h′′n(t) = e−t2/2 (−t(−tHn(
√

2 t) +
√

2H ′
n(
√

2 t))

−Hn(
√

2 t)−
√

2 tH ′
n(
√

2 t) + 2H ′′
n(
√

2 t))

= e−t2/2 ((t2 − 1)Hn(
√

2 t)− 2
√

2 tH ′
n(
√

2 t) + 2H ′′
n(
√

2 t))⇒
h′′n(t)+(2n+ 1− t2)hn(t) =

= e−t2/2 ((t2 − 1)Hn(
√

2 t)− 2
√

2 tH ′
n(
√

2 t)

+ 2H ′′
n(
√

2 t) + (2n+ 1− t2)Hn(
√

2 t))

= e−t2/2 ((t2 − 1)Hn(
√

2 t)− 2
√

2 tH ′
n(
√

2 t)

+ 2
√

2 tH ′
n(
√

2 t)− 2nHn(
√

2 t) + (2n+ 1− t2)Hn(
√

2 t)) = 0

Thus the hn are Eigen-functions of the differential operator D : h 7→ (t2+1)hn−h′′n
2 for

the Eigen-value (n+1). Note that the multiplication operator s→ s, (xn) 7→ (nxn)
has n as Eigen-values and en as corresponding Eigen-vectors. One can show that the
continuous seminorms h 7→ ‖Dmh‖2 generate the topology, and that the Fourier-
coefficients with respect to hn give an isomorphism of S(R) with s.

All but C∞c (X) are Fréchet spaces, hence co-nuclear by 6.30, i.e. their strong dual
is nuclear. Since C∞c (X) is a strict inductive limit of nuclear Fréchet spaces it is
also co-nuclear by 6.31.

It can be shown that C∞(R,R) ∼= sN, which is a universal nuclear Fréchet space,
i.e. the nuclear Fréchet spaces are exactly the closed subspaces of C∞(R,R). Since
sN⊗̂εs

N ∼= sN×N ∼= sN, we have that C∞(Rn,R) ∼= sN ∼= C∞(R,R). It is also not
difficult to show that s⊗̂εs ∼= s.

Remark.
Note that the weak-topology σ(E,E∗) on any locally convex space is Schwartz.
In fact the typical seminorms are given by p := max{|x∗j | : 1 ≤ j ≤ n} for some
x∗j ∈ E∗. So (x∗j )j≤n:E→Rn induces a injection Ep → Rn, and hence the connecting
mappings are even finite dimensional. So we may consider the finest locally convex
Schwartz topology ESchw. coarser than the given topology on E. Similarly there is
a finest locally convex nuclear topology Enucl. coarser than the given topology of
E. We will call these modifications the Schwartzification and the nuclearification.

6.24 Proposition.
A locally convex space E is Schwartz iff every equi-continuous set is contained
in the closed convex hull of a sequence x∗n, which converges Mackey to 0 in E∗
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with respect to the equi-continuous bornology, i.e. there are λn → ∞ and a 0-
neighborhood U ⊆ E, such that λnx

∗
n ∈ Uo for all n.

A locally convex space E is nuclear iff every equi-continuous set is contained in the
closed convex hull of a sequence x∗n, which is fast falling in E∗ with respect to the
equi-continuous bornology, i.e. for every k ∈ N there exists a 0-neighborhood U ⊆ E
such that nk x∗n ∈ Uo for all n.

Sketch of Proof. (⇒) Let Uo be equi-continuous. Then one may find Vk ⊆ U such
that the connecting map E(Vk) → E(U) belongs to A1/n . We take representations
via some orthonormal sequences. Together we obtain an orthonormal basis in E∗(Uo)

and after appropriate renorming the required fast falling sequence in E∗.

(⇐) From the assumption it follows that E has a basis of polars of fast falling
sequences in E∗equi. Let U := {x∗n}o and V := {n2x∗n}o. Then R : `1 → E∗(Uo)

given by λ 7→
∑

n λnx
∗
n and S : `1 → E∗(V o) given by λ 7→

∑
n λnn

2x∗n are quotient
mappings and the lift of the connecting morphism Φ along R and S is given by the
nuclear diagonal operator D with diagonal ( 1

n2 )n. Dualizing this gives the nuclear
mapping R∗ ◦ Φ∗ = (Φ ◦ R)∗ = (S ◦ D)∗ = D∗ ◦ S∗. Since R∗ is an isometric
embedding, we have that the trace of Φ∗ to Ê(V ) → E(U) is absolutely summable.

Using this one can show:

6.25 Corollary.
The Schwartzification ESchw. of a locally convex space is the topology of uniform
convergence on sequences which converge Mackey to 0 in E∗.
The nuclearification Enucl. of a locally convex space is the topology of uniform con-
vergence on sequences which are fast falling in E∗.

From this one can construct universal Schwartz and nuclear spaces:

6.26 Proposition.
The Schwartz spaces are exactly the subspaces of a product of the Schwartzification
of c0, or of its completion ̂(c0)Schw. = (`∞, µ(`∞, `1)).
The nuclear spaces are exactly the subspaces of a product of s. A metrizable space
E is nuclear iff it embeds into sN ∼= C∞(R,R)

The first statement is also called Schur’s lemma, see [14, 218]. The second is Ko-
mura’s Theorem, see [14, 21.7.1].

Proof. In fact by 6.24 one has a basis of 0-neighborhoods given by the polars of fast
falling sequences (x∗n)n in E∗. The map x 7→ (〈x∗n, x〉)n∈N thus defines a continuous
linear map from E → s, and together they give an embedding E →

∏
(x∗n) s.

If E is normable, then the Schwartzification is the topology of uniform convergence
on compact subsets of E∗β , see [14, 10.4.5].

This Schwartzification has several applications. Among them are:

6.27 Proposition.
The dual of a Banach space E has the approximation property iff ESchw. has it.

We mentioned earlier that a bornological locally convex space is bornologically
reflexive iff its Schwartzification is complete.
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Nuclear Function Spaces

Note that RX is nuclear and hence Schwartz for all sets X. However its dual R(X) is
not quasi-normed (hence not Schwartz and not nuclear) if X is uncountable. Recall
that the typical seminorms on R(X) are given by f 7→

∑
x cx‖fx‖ with cx ≥ 0.

Thus for the seminorm with cx = 1 for all x there exist another seminorm given
by some corresponding cx > 0 such that for all ε > 0 there is some bounded set
Bε with {f :

∑
x cx|fx| ≤ 1} ⊆ Bε + ε {f :

∑
x |fx| ≤ 1}. For some δ > 0 the set

I := {x : cx ≤ 1
δ } has to be infinite. Now choose ε = δ

2 . Then Bε is contained in a
finite subsum, so there is some x ∈ I with prx(Bε) = {0}. Since δ · ex is an element
of the left hand side hence also of the right hand side. Thus there has to exist a
b ∈ Bε and f with ‖fx‖ ≤ 1 with δ · ex = b + ε f and hence prx(b) ≥ δ − δ

2 > 0, a
contradiction.

6.28 Definition.
A lcs E is called co-nuclear iff for every disk B there exists a larger disk C such
that ÊB → ÊC is nuclear.

6.29 Proposition.
A space is co-nuclear iff its strong dual E∗β is nuclear.

Proof. We need and hence prove only (⇒). A typical 0-neighborhood in E∗β is Bo

for some bounded (absolutely convex and closed) B ⊆ E. By assumption there
is some bounded C ⊇ B such that ÊB → ÊC is nuclear. Then its dual mapping
(EC)∗ → (EB)∗ is also nuclear. Now note that (E∗)(Bo) is isometrically embed-
ded into (EB)∗, since the inclusion EB → E induces a morphism E∗ → (EB)∗,
which factors over (E∗)(Bo) via an embedding, since ‖x∗‖(EB)∗ = sup{|x∗(x)| :
pB(x) ≤ 1} = sup{|x∗(x)| : x ∈ B = Boo} = pBo(x∗). So the connecting morphism
from (E∗)(Co) → (E∗)(Bo) is absolutely summable as restriction of the absolutely
summable map (EC)∗ → (EB)∗, i.e. E∗β is nuclear.

6.30 Proposition.
For metrizable or df-spaces nuclearity and co-nuclearity are equivalent.

Proof. We only need (nuclear
(F )⇒ conuclear) Let pn be an increasing sequence of

seminorms defining the topology such that the connecting morphism Tn : Epn+1 →
Epn is nuclear, and hence admits a representation

Tn =
∑

k

λn,kx
∗
n,k ⊗ yn,k.

with xn,k ∈ o(Epn+1)
∗, yn,k ∈ o(Epn

) and λn :=
∑

k |λn,k| <∞. Now let B ⊆ E be
a closed disk and choose σn > 0 with pn+1(B) ≤ σn. Let ρn := max{σn, λn ·σn} and
set C := {x ∈ E :

∑
n

1
2nρn

pn(x) ≤ 1}. For x ∈ B we have pn(x) ≤ pn+1(B) ≤ σn,
hence

∑
n

1
2nρn

pn(x) ≤
∑

n
1

2nσn
σn = 1, i.e. B ⊆ C. Furthermore C is bounded

since pn(C) ≤ 2n. The connecting morphism EB → EC is absolutely summable,
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since for arbitrary finitely many xi ∈ EB ⊆ E we have∑
i

pn(xi) =
∑

i

pn(Tn(xi)) ≤
∑

i

∑
j

pn(λn,j x
∗
n,j(xi) yn,i)

≤
∑

i

∑
j

|λn,j | |x∗n,j(xi)| ≤ λn sup
x∗∈Uo

n+1

∑
i

|x∗(xi)|

≤ λn sup
x∗∈σnBo

n

∑
i

|x∗(xi)|

≤ λnσn sup
x∗∈Bo

∑
j

|x∗(xi)|

≤ ρn sup
x∗∈Bo

∑
j

|x∗(xi)|.

Thus
∑

i qC(xi) ≤ sup{
∑

i |x∗(xi) : x∗ ∈ Bo} and hence the identity EB → EC is
absolutely summable by 5.20. Since S6

1 ⊆ A1 ⊆ N we may assume that it is even
nuclear, and hence E is co-nuclear.

for the remaining implications see [14, 21.5.3].

6.31 Proposition.
Every strict inductive limit of a sequence of nuclear Fréchet spaces is co-nuclear.

Proof. In fact it is immediate that the strict inductive limit of a sequence of co-
nuclear spaces is co-nuclear.

6.32 Theorem.
Let E and F be Fréchet spaces with E nuclear. Then we have the following isomor-
phisms:

1. E⊗̂βF ∼= E⊗̂πF ∼= E⊗̂εF ∼= L(E′, F );
2. E′⊗̂πF ∼= E′⊗̂εF ∼= L(E,F );
3. E′⊗̂βF

′ ∼= E′⊗̂πF
′ ∼= E′⊗̂εF

′ ∼= L(E,F ′) ∼= (E⊗̂πF )′;

Proof. (1) Recall that we have shown in 4.73 that for complete spaces we have
E⊗̂εF ∼= L(E∗β , F ) provided E satisfies the approximation property, is Montel and
E∗β is bornological. These conditions are satisfied if E is a nuclear Fréchet.

(2) Recall that we have shown in 4.74 that for complete spaces E∗β and F we
have E∗β⊗̂εF ∼= L(E,F ) provided E∗β satisfies the approximation property and E is
Montel and bornological. This is all satisfied if E is a nuclear Fréchet space, since
then E∗β is nuclear.

(3) the same argument as in (2) applies and hence E′⊗̂εF
′ ∼= L(E,F ′). In general

we have L(E,F ′) ∼= L(E,F ; R) = (E⊗̂βF )′, and since E and F are Fréchet and E
is nuclear we can replace this by any of the other two tensor products.

6.33 Proposition.
Let B be a bornology on E. Then LB(E,F ) is Schwartz iff E∗B and F are Schwartz.
And LB(E,F ) is nuclear iff E∗B and F are nuclear.

Proof. (⇒) is obvious, since F and E∗B can be considered as subspaces.

(⇐) First one shows that a 0-neighborhood basis in LB(E,F ) is given by the sets
N := N{xn},{y∗n}o , where xn is Mackey-convergent to 0 in E with respect to B and
y∗n is Mackey convergent to 0 in F ∗ with respect to the bornology of equi-continuous
sets, in fact the polars of these sequences form bases. Without loss of generality
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we may replace xn by λnxn and y∗n by µny
∗
n with λ and µ in c0. The functionals

`j,k : LB(E,F )→ R given by T 7→ y∗j (T (xk)) form an equi-continuous family, since
N is mapped into [−1, 1]. Thus λkµj`j,k are Mackey-convergent to 0 with respect
to the bornology of equi-continuous subsets. Hence its polar is a neighborhood in
the Schwartzification of LB(E,F ) which is contained in N .

The proof for nuclearity is analogous using that by [14, 21.9.1] the nuclearification
is given by the topology of uniform convergence on fast falling sequences x∗n ∈ E∗.
Note that that the sequences which are fast falling in a fixed space E∗(U) generate
the strongly nuclear topology.

In order to get results about spaces of smooth functions between infinite dimensional
spaces, we need an explicit description of the bornological topology of C∞(U,F ).
If we can find some finer Fréchet space structure on C∞(U,F ), then this has to be
the bornological topology (see [14, 13.3.5]) by the closed graph theorem. In fact
the compositions of the point-evaluations with the identity from the bornological
topology to the Fréchet topology are continuous, and hence the identity is conti-
nuous by [2, 5.3.8]. Note that (for U 6= ∅) the space L(E,F ) is a complemented
subspace of C∞(U,F ), where the retraction is given by f 7→ f ′(x), for any x ∈ U .
So in order for C∞(U,F ) to be Fréchet we need that L(E,F ) is Fréchet, hence that
F is Fréchet and E has a countable base of bornology, i.e. E′ is Fréchet.

Note that (for U 6= ∅) the space F is isomorphic to the complemented subspace
of C∞(U,F ) formed by the constant functions. Hence we need that F is Fréchet.
Note that for every bornologically compact set K ⊆ EB ∩ U ⊆ E and continuous
seminorm p on F the seminorm

f 7→ sup{p(f (n)(x)(v1, . . . , vn)) : x, v1, . . . , vn ∈ K}
is a bounded seminorm on C∞(U,F ). Hence if we can find a countable base of the
b-compact sets in U ⊆ E and a countable 0-neighborhood basis of F , then those
seminorms define a finer Fréchet topology on C∞(U,F ). This shows the first part
of

6.34 Proposition. C∞(X,F) as Fréchet space.
See [8] and [10, 5.4.16]. If E is the dual of a Fréchet-Schwartz space, F is a Fréchet
space, and U ⊆ E is c∞-open, then the bornological topology of C∞(U,F ) is Fréchet.
If F is in addition Montel, then so is C∞(U,F ).
If F is in addition Schwartz, then so is C∞(U,F ).

Remark.
In [17], see also [8], it is shown that for infinite dimensional domains U ⊆ E the
space C∞(U,R) is most often not nuclear. It is shown that if E contains an infinite
dimensional compact absolutely convex subset, then C∞(U,R) is not nuclear. This
is proved for a different class of smooth functions and a different topology on the
function space than the ones treated here. But if E is the dual of a Fréchet Schwartz
space F , then the c∞-topology on E coincides with the locally convex topology by
7.4 and the natural topology on C∞(E,R) is Fréchet by 6.34. Hence in this situation
the concepts agree and by 6.16 every closed bounded set is (bornologically) compact.
So it is enough to find a 0-neighborhood U ⊆ F such that the equi-continuous and
hence bounded set given by the polar of U is infinite dimensional. This does not
exist for F = RN but already F = s or F = C∞(R,R) yield examples. In the
first case take U := {x ∈ s : ‖x‖∞ ≤ 1}. Then the functionals evn belong to
Uo and are obviously linearly independent. In the second case take U := {f :
|f(x)| ≤ 1 for all |x| ≤ 1}. Then the distributions ev1/n ∈ Uo for n ∈ N are linearly
independent.
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The proof of Meise’s result goes as follows.

It is easily seen that for any non-empty open U ⊆ E the natural mapping C∞(E,R)→∏
x∈E C

∞(U,R) given by f 7→ (f( − x)|U )x∈E is an embedding. Thus nuclearity
of C∞(U,R) would imply that also C∞(E,R) is nuclear by 6.21. So it is enough to
show this result for U = E.

Assume that C∞(E,R) is nuclear and K ⊆ E a (bornologically-)compact abso-
lutely convex infinite dimensional subset and choose {xn : n ∈ N} ⊆ K linearly
independent. Then for the continuous seminorm p : f 7→ ‖f |K‖∞ there has to exist
a continuous seminorm q ≥ p such that the connecting mapping

Φ : ̂C∞(E,R)q → ̂C∞(E,R)p

is of class A1/2. Without loss of generality we may assume that q is given by
f 7→ sup{|f (i)(x)(yi)| : x ∈ Q, y ∈ Q, i ≤ k} for some bornologically compact
Q ⊆ E and k ∈ N. Obviously the restriction map C∞(E,R) → C(K,R) factors
continuously over C∞(E,R)p. Hence we obtain a natural extension

̂C∞(E,R)p → C(K).

Now let En be the linear subspace of E generated by {x1, . . . , xn}. Obviously ι :
(t1, . . . , tn) 7→

∑n
k=1 tkxk defines an isomorphism Rn ∼= En. Let Pn : E → En be so-

me continuous linear projection. Then the composite C∞(Rn,R) ∼= C∞(En,R)−P
∗
n→

C∞(E,R) → C∞(E,R)q ⊆ ̂C∞(E,R)q is continuous with respect to the topology
of Ck(Rn,R) induced on C∞(Rn,R). Since C∞(Rn,R) is dense for this topology,
we may extend this composite to a continuous linear mapping

Ck(Rn,R)→ ̂C∞(E,R)q.

Now consider the separately 1
n -periodic functions on Rn. Obviously Ck

1/n-per.(R
n) ⊆

Ck(Rn). Since K is absolutely convex the isomorphism ι : Rn → En restricts to a
map [0, 1

n ]n → K ∩ En ⊆ K. Thus we obtain a continuous linear mapping

C(K)−ι∗→ C([0, 1
n ]n)→ L2([0, 1

n ]n).

Using the ideal property of A1/2 we obtain a mapping of that type

Ck
1/n-per.(R

n) ⊆ Ck(Rn)→ ̂C∞(E,R)q → ̂C∞(E,R)p → C(K)→ L2([0, 1
n ]n).

Note that this mapping is nothing else but the natural inclusion. Applying some
homothety we may replace 1

n by 2π.

Now this finite dimensional statement can be shown to fail using Fourier-series and
an idea of [11]. Namely one considers the Hilbert space

H :=
{

(aj)j ∈ RNn

: ‖a‖2 :=
∑
j∈Nn

n∏
i=1

j2i
∑
i∈Nn

|i|≤k

j2ia2
j <∞

}
.

Then the mapping T : H → Ck
2π-per.(Rn) given by

(aj)j 7→
(
(xi)n

i=1 7→
∑
j∈Nn

aj

n∏
i=1

sin(jixi)
)

is continuous and linear. And the composite with the mapping from above gives a
type A1/2-mapping between Hilbert spaces. Using that the functions

fj : (xi)n
i=1 7→

n∏
i=1

sin(jixi)
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are orthogonal in L2([0, 2π]n) one concludes that the approximation numbers of the
composite are the monotone reordering of((

2n
n∏

i=1

ji

√∑
|i|≤k

i2k
)−1

)
j∈Nn

.

An easy evaluation shows that this does not belong to `1/2 for N ≥ l + 2.
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7. The c∞-topology

Refinements of the Locally Convex Topology

In 2.23 we defined the c∞-topology on an arbitrary locally convex space E as the
final topology with respect to the smooth curves c : R→ E. Now we will compare
the c∞-topology with other refinements of a given locally convex topology. We first
specify those refinements.

7.1. Definition

Let E be a locally convex vector space.

(i) We denote with kE the Kelleyfication of the locally convex topology of E, i.e.
the vector space E together with the final topology induced by the inclusions of
the subsets being compact for the locally convex topology.

(ii) We denote with sE the vector space E with the final topology induced by
the curves being continuous for the locally convex topology, or equivalently the
sequences N∞ → E converging in the locally convex topology. The equivalence
holds since the infinite polygon through a converging sequence can be continuously
parametrized by a compact interval.

(iii) We recall that by c∞E we denote the vector space E with its M-closure topo-
logy, i.e. the final topology induced by the smooth curves.

Using that smooth curves are continuous and that converging sequences N∞ → E
have compact images, the following identities are continuous: c∞E → sE → kE →
E.

If the locally convex topology of E coincides with the topology of c∞E, resp. sE,
resp. kE then we call E smoothly generated, resp. sequentially generated, resp.
compactly generated.

7.2. Example

On E = RJ all these refinements are different, i.e. c∞E 6= sE 6= kE 6= E, provided
the cardinality of the index set J is at least that of the continuum. Proof. It is enough
to show this for J equipotent to the continuum, since RJ1 is a direct summand in
RJ2 for J1 ⊂ J2.

(c∞E 6= sE) We may take as index set J the set c0 of all real sequences converging
to 0. Define a sequence (xn) in E by (xn)j := jn. Since every j ∈ J is a 0-sequence
we conclude that the xn converge to 0 in the locally convex topology of the product,
hence also in sE. Assume now that the xn converge towards 0 in c∞E. Then by 2.7
some subsequence converges Mackey to 0. Thus there exists an unbounded sequence
of reals λn with {λnx

n : n ∈ N} bounded. Let j be a 0-sequence with {jnλn : n ∈ N}
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unbounded ( e.g. (jn)−2 := 1 + max{|λk| : k ≤ n}). Then the j-th coordinate jnλn

of λnx
n is not bounded with respect to n, contradiction.

(sE 6= kE) Consider in E the subset

A :=
{
x ∈ {0, 1}J : xj = 1 for at most countably many j ∈ J

}
.

It is clearly closed with respect to the converging sequences, hence closed in sE.
But it is not closed in kE since it is dense in the compact set {0, 1}J .

(kE 6= E) Consider in E the subsets

An :=
{
x ∈ E : |xj | < n for at most n many j ∈ J

}
.

Each An is closed in E since its complement is the union of the open sets {x ∈ E :
|xj | < n for all j ∈ Jo} where Jo runs through all subsets of J with n+1 elements.
We show that the union A :=

⋃
n∈N An is closed in kE. So let K be a compact

subset of E; then K ⊂
∏
prj(K) and each prj(K) is compact, hence bounded in

R. Since the family {j ∈ J : prj(K) ⊂ [−n, n]}n∈N covers J there has to exist an
N ∈ N and infinitely many j ∈ J with prj(K) ⊂ [−N,N ]. Thus K ∩An = ∅ for all
n > N . And hence A∩K =

⋃
n∈N An ∩K is closed. Nevertheless A is not closed in

E, since 0 is in Ā but not in A.

Let us now describe several important situations where at least some of these to-
pologies coincide. For the proof we will need the following

7.3. Lemma.
[23, 1968] For any locally convex space E the following statements are equivalent:

1. The sequential closure of any subset is formed by all limits of sequences in
the subset.

2. For any given double sequence (xn,k) in E with xn,k convergent to some
xk for n → ∞ and k fixed and xk convergent to some x, there are strictly
increasing sequences i 7→ n(i) and i 7→ k(i) with xn(i),k(i) → x for i→∞.

Proof. (1⇒2) Take an a0 ∈ E different from k · (xn+k,k − x) and from k · (xk − x)
for all k and n. Define A := {an,k := xn+k,k − 1

k · a0 : n, k ∈ N, n ≥ k}. Then x is
in the sequential closure of A, since xn,k − 1

k · a0 converges to xk − 1
k · a0 as n→∞

and xk − 1
k · a0 converges to x− 0 = x as k →∞. Hence by (1) there has to exist a

sequence i 7→ (n(i), k(i)) with an(i),k(i) convergent to x. By passing to a subsequence
we may suppose that i 7→ k(i) and i 7→ n(i) is monotonely increasing. Assume that
i 7→ k(i) is bounded, hence finally constant. Then a subsequence of xn(i),k− 1

k(i) ·a0

is converging to xk − 1
k · a0 6= x if i 7→ n(i) is unbounded and to xn,k − 1

k · a0 6= x
if i 7→ n(i) is bounded, which both yields a contradiction. Thus i 7→ k(i) can be
chosen strictly increasing. But then xn(i)+k(i),k(i) = an(i),k(i) + 1

k(i)a0 → x.

(1 ⇐ 2) is obvious.

7.4. Theorem.
For any bornological vector space E the following implications hold:

1. c∞E = E provided the closure of subsets in E is formed by all limits of
sequences in the subset; hence in particular if E is metrizable.

2. c∞E = E provided E is the strong dual of a Fréchet Schwartz space;
3. c∞E = kE provided E is the strict inductive limit of a sequence of Fréchet

spaces.
4. c∞E = sE provided E satisfies the M -convergence condition, i.e. every

sequence converging in the locally convex topology is M-convergent.
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5. sE = E provided E is the strong dual of a Fréchet Montel space;

Proof. (1) Using the lemma above one obtains that the closure and the sequential
closure coincide, hence sE = E. It remains to show that sE → c∞E is continuous.
So suppose a sequence converging to x is given and let (xn) be an arbitrary sub-
sequence. Then xn,k := k(xn − x) → k · 0 = 0 for n → ∞, and hence by lemma
7.3 there are subsequences k(i), n(i) with k(i) · (xn(i) − x) → 0, i.e. i 7→ xn(i) is
M-convergent to x. Thus the original sequence converges in c∞E by 2.5.

(3) Let E be the strict inductive limit of the Fréchet spaces En. By [2, 4.8.1] every
En carries the trace topology of E, hence is closed in E and every bounded subset of
E is contained in some En. Thus every compact subset of E is contained as compact
subset in some En. Since En is a Fréchet space such a subset is even b-compact
and hence compact in c∞E. Thus the identity kE → c∞E is continuous.

(4) is valid, since the M-closure topology is the final one induced by the M-converging
sequences.

(5) Let E be the dual of any Fréchet Montel space F . By 6.14 E is bornological.
Fréchet Montel spaces have a reflexive dual by 4.51. First we show that kE = sE.
Let K ⊂ E = F ′ be compact for the locally convex topology. Then K is bounded,
hence equicontinuous and since F is separable by 6.13 K is metrizable in the weak
topology σ(E,F ) [14, p157]. Since K is compact the weak topology and the locally
convex topology of E coincide on E, thus the topology on K is the initial one
induced by the converging sequences. Hence the identity kE → sE is continuous
and therefore sE = kE.

It remains to show kE = E. Since F is Montel the locally convex topology of
the strong dual coincides with the topology of uniform convergence on precom-
pact subsets of F . Since F is metrizable this topology coincides with the so-called
equicontinuous weak∗-topology, cf. [14, p182], which is the final topology induced
by the inclusions of the equicontinuous subsets. These subsets are by the Alaoğlu-
Bourbaki theorem 4.61 relatively compact in the topology of uniform convergence
on precompact subsets. Thus the locally convex topology of E is compactly gene-
rated.

(2). By (5) and since Fréchet Schwartz spaces are Montel by 6.6 we have sE = E
and it remains to show that c∞E = sE. So let (xn) be a sequence converging to
0 in E. Then {xn : n ∈ N} is relatively compact and by [10, 4.4.39] this set is
relatively compact in some Banach space EB . Hence at least a subsequence has to
be convergent in EB . Clearly its Mackey limit has to be 0. This shows that (xn) is
convergent to 0 in c∞E and hence c∞E = sE. One can even show, see 6.15, that
E satisfies the Mackey convergence condition.

We give now a non-metrizable example to which (1) applies.

7.5. Example

Let E denote the subspace of RJ of all sequences with countable support. Then
the closure of subsets of E is given by all limits of sequences in the subset but for
non-countable J the space E is not metrizable. This was proved in [4].

7.6. Remark

The conditions (1) and (2) in 7.4 are rather disjoint since every locally convex
space that has a countable basis of its von Neumann bornology and for which the
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sequential adherence of subsets is sequentially closed is normable as the following
proposition shows:

Proposition.
Let E be a non-normable bornological locally convex space that has a countable basis
of its bornology. Then there exists a subset of E whose sequential adherence is not
sequentially closed.

Proof. Let {Bk : k ∈ N0} be an increasing basis of the von Neumann bornolo-
gy with B0 = {0}. Since E is non-normable we may assume that Bk does not
absorb Bk+1 for all k. Now choose bn,k ∈ 1

nBk+1 with bn,k /∈ Bk. We consider
the double sequence {bk,0 − bn,k : n, k ≥ 1}. For fixed k the sequence bn,k con-
verges by construction (in EBk+1) to 0 for n → ∞. Thus bk,0 − 0 is the limit of
the sequence bk,0 − bn,k for n → ∞ and bk,0 converges to 0 for k → ∞. Sup-
pose bk(i),0 − bn(i),k(i) converges to 0. Thus it has to be bounded and so the-
re must be an N ∈ N with B1 − {bk(i),0 − bn(i),k(i) : i ∈ N} ⊂ BN . Hence
bn(i),k(i) = bk(i),0 − (bk(i),0 − bn(i),k(i)) ∈ BN , i.e. k(i) < N . This contradicts
7.3(2).

Continuity of the Addition and Regularity

Now we describe classes of spaces where c∞E 6= E or where c∞E is not even
a topological vector space. Finally we give an example where the Mackey-closure
topology is not completely regular.

We begin with the relationship between the c∞-topology and the locally convex
topology on locally convex vector spaces.

7.7. Proposition.
Let E and F be bornological locally convex vector spaces. If there exists a bilinear
bounded mapping m : E × F → R that is not continuous with respect to the locally
convex topologies, then c∞(E × F ) is not a topological vector space.

Proof. Suppose that addition c∞(E×F )× c∞(E×F )→ c∞(E×F ) is continuous
with respect to the product topology. Using the continuous inclusions c∞E →
c∞(E × F ) and c∞F → c∞(E × F ) we can write m as composite of continuous
maps as follows: c∞E × c∞F → c∞(E × F )× c∞(E × F )−+→ c∞(E × F )−m→ R.
Thus for every ε > 0 there are 0-neighborhoods U and V with respect to the c∞-
topology such that m(U × V ) ⊂ (−ε, ε). Then also m(〈U〉 × 〈V 〉) ⊂ (−ε, ε) where
〈 〉 denotes the absolutely convex hull. By 2.26 one concludes that m is continuous
with respect to the locally convex topology, a contradiction.

7.8. Corollary.
Let E be a bornological non-normable locally convex space. Then c∞(E×E′) is not
a topological vector space.

Proof. By 7.7 it is enough to show that ev : E × E′ → R is not continuous; if it
were so then there would be a neighborhood U of 0 in E and a neighborhood U ′

of 0 in E′ such that ev(U × U ′) ⊂ [−1, 1]. Since U ′ is absorbing, U is scalarwise
bounded, hence a bounded neighborhood. Thus E is normable.

In order to get a large variety of spaces where the c∞-topology is not a topological
vector space topology the next three technical lemmas will be useful.
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7.9. Proposition. General situations, where addition is not continuous.
Let E be a locally convex vector space. Suppose a double sequence bn,k in E exists
which satisfies the following two conditions:

1. ”(b’)For every sequence k 7→ n(k) the sequence k 7→ bn(k),k has no accumu-
lation point in c∞E.

(b”). For all k the sequence n 7→ bn,k converges to 0 in c∞E.

Suppose furthermore that a double sequence cn,k in E exists that satisfies the follo-
wing two conditions:

1. ”(c’)For every 0-neighborhood U in c∞E there exists a k0 such that cn,k ∈ U
for all k ≥ k0 and all n.

2. ”(c”)For all k the sequence n 7→ cn,k has no accumulation point in c∞E.

Then c∞E is not a topological vector space.

Proof. Here convergence is meant always with respect to c∞E. We may without
loss of generality assume that cn,k 6= 0 for all n, k, since by (c”) we may delete all
those cn,k which are equal to 0. Then we consider A := {bn,k + εn,kcn,k : n, k ∈ N}
where the εn,k ∈ {−1, 1} are chosen in such a way that 0 /∈ A.

We first show that A is closed in the sequentially generated topology c∞E: Let
bn(i),k(i) +εn(i),k(i)cn(i),k(i) → x and assume that (k(i)) is unbounded. By passing if
necessary to a subsequence we may even assume that i 7→ k(i) is strictly increasing.
Then cn(i),k(i) → 0 by (c’), hence by 2.7 bn(i),k(i) → x which is a contradiction
to (b’). Thus (k(i)) is bounded and we may assume constant. Now suppose that
(n(i)) is unbounded. Then bn(i),k → 0 by (b”) and hence εn(i),kcn(i),k → x and for
a subsequence where ε is constant one has cn(i),k → ±x, which is a contradiction
to (c”). Thus n(i) is bounded as well and we may assume constant. Hence x =
bn,k + εn,kcn,k ∈ A.

Assume now that the addition c∞E × c∞E → c∞E is continuous. Then there has
to exist an open and symmetric 0-neighborhood U in c∞E with U + U ⊂ E \ A.
For K sufficiently large and n arbitrary one has cn,K ∈ U by (c’). For such a fixed
K and N sufficiently large bN,K ∈ U by (b’). Thus bN,K + εN,KcN,K /∈ A, which is
a contradiction.

Let us now show that many spaces have a double sequence cn,k as in the above
lemma.

7.10. Lemma.
Let E be an infinite dimensional metrizable locally convex space. Then a double
sequence cn,k subject to the conditions (c’) and (c”) of 7.9 exists.

Proof. If E is normable we choose a sequence cn in the unit ball without accu-
mulation point and define cn,k := 1

k cn. If E is not normable we take a countable
increasing family of non-equivalent seminorms pk generating the locally convex to-
pology, and we choose cn,k with pk(cn,k) = 1

k and pk+1(cn,k) > n.

Next we show that many spaces have a double sequence bn,k as in lemma 2.20.

7.11. Lemma.
Let E be a non-normable bornological locally convex space having a countable basis
of its bornology. Then a double sequence bn,k subject to the conditions (b’) and (b”)
of 2.20 exists.
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Proof. Let Bn (n ∈ N) be absolutely convex sets forming an increasing basis of the
bornology. Since E is not normable the sets Bn can be chosen such that Bn does
not absorb Bn+1. Now choose bn,k ∈ 1

nBk+1 with bn,k /∈ Bk.

Using these lemmas one obtains the

7.12. Proposition. Examples, where addition is not continuous.
For the following bornological locally convex spaces the c∞-topology is not a vector
space topology:

1. ”(i)Ëvery bornological locally convex space that contains as M-closed sub-
spaces an infinite dimensional Fréchet space and a space which is not nor-
mable and has a countable basis of its bornology.

2. ”(ii)Ëvery strict inductive limit of a strictly increasing sequence of infinite
dimensional Fréchet spaces.

3. ”(iii)Ëvery product for which at least 2ℵ0 many factors are non-zero.
4. ”(iv)Ëvery coproduct for which at least 2ℵ0 many summands are non-zero.

Proof. (i) follows directly from the last 3 lemmas.

(ii) Let E be the strict inductive limit of the spaces En (n ∈ N). Then E contains
the infinite dimensional Fréchet space E1 as subspace. The subspace generated by
points xn ∈ En+1 \ En (n ∈ N) is bornologically isomorphic to R(N), hence its
bornology has a countable basis. Thus by (i) we are done.

(iii) Such a product E contains the Fréchet space RN as complemented subspace.
We want to show that R(N) is also a subspace of E. For this we may assume that the
index set J is RN and all factors are equal to R. Now consider the linear subspace E1

of the product that is generated by the sequence xn ∈ E = RN where (xn)j := j(n)
for every j ∈ J = RN. The linear map R(N) → E1 ⊂ E that maps the n-th unit
vector to xn is injective, since for a given finite linear combination

∑
tnx

n = 0 the j-
th coordinate for j(n) := sign(tn) equals

∑
|tn|. It is a morphism since R(N) carries

the finest structure. So it remains to show that it is a bornological embedding.
We have to show that any bounded B ⊂ E1 is contained in a subspace generated
by finitely many xn. Otherwise there would exist a strictly increasing sequence
(nk) and bk =

∑
n≤nk

tknx
n ∈ B with tknk

6= 0. Define an index j recursively by
j(n) := n|tkn|−1 · sign

(∑
m<n t

k
mj(m)

)
if n = nk and j(n) := 0 if n 6= nk for all k.

Then the absolute value of the j-th coordinate of bk evaluates as follows:

|(bk)j | =
∣∣∣ ∑
n≤nk

tknj(n)
∣∣∣ = ∣∣∣ ∑

n<nk

tknj(n) + tknk
j(nk)

∣∣∣
=
∣∣∣ ∑
n<nk

tknj(n)|+ |tknk
j(nk)

∣∣∣ ≥ |tknk
j(nk)| ≥ nk.

Hence the j-th coordinates of {bk : k ∈ N} are unbounded with respect to k ∈ N
and thus B is unbounded.

(iv) We can not apply lemma 2.20 since every double sequence has countable sup-
port and hence is contained in the dual R(A) of a Fréchet Schwartz space RA for
some countable subset A ⊂ J . It is enough to show (iv) for R(J) where J = N∪ c0.
Let A := {jn(en + ej) : n ∈ N, j ∈ c0, jn 6= 0 for all n}, where en and ej denote
the unit vectors in the corresponding summand. The set A is M-closed, since its
intersection with finite subsums is finite. Suppose there exists a symmetric M-open
0-neighborhood U with U + U ⊂ E \ A. Then for every n there exists a jn 6= 0
with jnen ∈ U and we may assume that n 7→ jn converges to 0 and hence defines
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an element j ∈ c0. Furthermore there has to be an N ∈ N with jNej ∈ U , thus
jN (eN + ej) ∈ (U + U) ∩A, in contradiction to U + U ⊂ E \A.

Remark.
A nice and simple example where one either uses (i) or (ii) is RN⊕R(N). The locally
convex topology on both factors coincides with their Mackey-closure topology (the
first being a Fréchet (Schwartz) space, cf. (i) of 7.4, the second as dual of the first,
cf. (ii) of 7.4); but the c∞-topology on their product is not even a vector space
topology.

Although the c∞-topology on a convenient vector space is always functionally sepa-
rated, hence Hausdorff, it is not always completely regular as the following example
shows.

7.13. Theorem. c∞-topology is not completely regular.
The c∞-topology of RJ is not completely regular if the cardinality of J is at least
2ℵ0 .

Proof. It is enough to show this for an index set J of cardinality 2ℵ0 , since the
corresponding product is a complemented subspace in every product with larger
index set. We prove the theorem by showing that every function f : RJ → R which
is continuous for the Mackey-closure topology is also continuous with respect to
the locally convex topology. Hence the completely regular topology associated to
the Mackey-closure topology is the locally convex topology of E. That these two
topologies are different was shown in 7.2. We use the following theorem of [18, 1952]:
Let E0 := {x ∈ RJ : supp(x) is countable} and let f : E0 → R be sequentially
continuous. Then there is some countable subset A ⊂ J such that f(x) = f(xA),
where in this proof xA is defined as xA(j) := x(j) for j ∈ A and xA(j) = 0 for
j /∈ A. Every sequence which is converging in the locally convex topology of E0 is
contained in a metrizable complemented subspace RA for some countable A and
therefore is even M-convergent. Thus this theorem of Mazur remains true if f is
assumed to be continuous for the M-closure topology. This generalization follows
also from the fact that c∞E0 = E0, cf. 7.5. Now let f : RJ → R be continuous for
the c∞-topology. Then f |E0 : E0 → R is continuous for the c∞-topology and hence
there exists a countable set A0 ⊂ J such that f(x) = f(xA0) for any x ∈ E0. We
want to show that the same is true for arbitrary x ∈ RJ . In order to show this we
consider for x ∈ RJ the map ϕx : 2J → R defined by ϕx(A) := f(xA) − f(xA∩A0)
for any A ⊂ J , i.e. A ∈ 2J . For countable A one has xA ∈ E0, hence ϕx(A) = 0.
Furthermore ϕx is sequentially continuous where one considers on 2J the product
topology of the discrete factors 2. In order to see this consider a converging sequence
of subsets An → A, i.e. for every j ∈ J one has for the characteristic functions
χAn(j) = χA(j) for n sufficiently large. Then {n(xAn − xA) : n ∈ N} is bounded
in RJ since for fixed j ∈ J the j-th coordinate equals 0 for n sufficiently large.
Thus xAn converges Mackey to xA and since f is continuous for the c∞-topology
ϕx(An) → ϕx(A). Now we can apply another theorem of [18, 1952]: Any function
f : 2J → R that is sequentially continuous and is zero on all countable subsets of
J is identically 0 provided the cardinality of J is smaller than the first inaccessible
cardinal. Thus we conclude that 0 = ϕx(J) = f(x)− f(xAn) for all x ∈ RJ . Hence
f factors over the metrizable space RA0 and is therefore continuous for the locally
convex topology.
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8. Additional Stuff

I will end this lecture notes by an overview about related and - as I think - interesting
topics which could be touched upon in future seminars.

8.1 Partitions of unity

The existence of sufficiently many smooth functions (like bump-functions or par-
titions of unity) depends heavily on the geometry of the locally convex or even
of the Banach space under consideration. Some of the available results have been
discussed in my seminar in the Winter semester 1992/93.

8.2 Differentiability of convex functions

This is related to the previous topic. It circles around the question of differentiability
of semi-norms. Recall that every Hilbert-seminorm is smooth outside its kernel,
since its square is induced from a continuous bilinear from. In general it is not
always the case that the smooth seminorms generate the topology.

8.3 Solvability of equations

Beyond Banach spaces there are no inverse function theorems for general smooth
functions. For tame Fréchet spaces one has the famous Hamilton-Nash-Moser in-
verse function theorem.

8.4 Algebras of smooth functions: characters and derivations

This topic concerns the question of classifying those spaces X, where every algebra
homomorphism C∞(X,R)→ R is given by a point-evaluation at some point x ∈ X.
Similarly one wants to know whether every derivation C∞(X,R) → R over some
point x is given by a (tangent-)vector to X at x.

8.5 Bounded seminorms and bounding sets

Of course it is important to determine the bornological topology on a given function
space C∞(X,F ). In general there seems to be no direct description. This question
is closely related to the bounding sets, since suprema over such sets give bounded
seminorms.
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8.6 Extension and lifting properties

This concerns the question of a Hahn-Banach/Tietze-Urysohn like extension results
for smooth mappings. For real valued functions on finite dimensional spaces this is
provided by Whitney’s extension theorem. In general however it is not true even
for closed linear subspaces of nuclear Fréchet spaces. The dual property is of course
a lifting problem.

8.7 Approximation results

As we have seen it is quite often important to have denseness of certain subspaces
of function spaces. Again there are only partial extensions to the smooth case in
infinite dimensions of results like the Stone-Weierstrass theorem.

8.8 Non-linear spaces, manifolds

Obviously this frame work for calculus in locally convex spaces is only the starting
point for a theory of non-linear infinite dimensional objects generalizing smooth
manifolds. It has been shown that several function spaces carry natural infinite di-
mensional manifold structures. There have been also attempts to introduce smooth
structures which are not manifolds, since this notion seems to be to restrictive in
infinite dimensions.

8.9 Holomorphic mappings

The calculus presented here has been extended to complex differentiability by cal-
ling a function holomorphic iff its composites with holomorphic curves (i.e. maps
from the complex unit disk into the space) are holomorphic curves. In fact life is
much easier in the holomorphic theory since 1-times differentiable implies smooth-
ness. So the problems discussed in 1.12 are not so severe here.

8.10 Real-analytic mappings

The calculus also extends to real analytic mappings. But this is more difficult than
the smooth case, since even in 2 dimensions a function which is real analytic along
real analytic curves is not necessarily real analytic and real analyticity can not be
tested with continuous linear functionals in general.
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