
Nonlinear Functional Analysis, SS 2008

Andreas Kriegl



This manuscript is the outcome of a lecture course given at the University of Vienna
in the Summer Semester 1993. So I want to use this opportunity to thank all those
who attended these lectures and inspired me with the feedback I got from them.
In particular I want to thank Cornelia Vizman who posed well selected and highly
relevant questions after reading parts of my manuscript. My special thanks go to
Konni Rietsch, who not only strongly influenced the selection of the covered topics
but also sacrificed a huge amount of time during her holidays and lots of energy in
order to make sense out of a preliminary version of these lecture notes. This way
she supplied me with an extensive list of misprints, Germanisms, and imprecise or
even incorrect mathematical formulations. All the remaining (and newly inserted)
faux pas are of course all my own responsibility. And, as always, I explicitly ask
the readers not only to pardon them but also to inform me about anything which
sounds weird including possibly missing definitions and explanations.

Thank you all in advance,

Andreas Kriegl, August 1993

In the second edition an extensive list of misprints and corrections provided by Eva
Adam has been taken gratefully into account.

Andreas Kriegl, September 1994

After some minor corrections I ported to source to LATEX. Since chapter 1 and 2
have been incorperated into the book [14] they have been replaced by the (slightly
modified) sections from there.

Andreas Kriegl, Feber 2008



Contents

0. Motivation 5

Chapter I
Calculus of Smooth Mappings 19

1. Smooth Curves 20
2. Completeness 25
3. Smooth Mappings and the Exponential Law 32
4. The c∞-Topology 43
5. Uniform Boundedness Principles and Multilinearity 60
Algebraic Tensor Product 62
Projective Tensor Product 63
41. Jets and Whitney Topologies 79
6. Some Spaces of Smooth Functions 82
54. Differentiabilities discussed by Keller [13] 86
55. Silva-Differentiability 91

Chapter IV
Smoothly Realcompact Spaces 95

17. Basic Concepts and Topological Realcompactness 95
18. Evaluation Properties of Homomorphisms 104
Countably Evaluating Homomorphisms 107
Evaluating Homomorphisms 112

19. Stability of Smoothly Realcompact Spaces 117
Short Exact Sequences 122
A Class of C∞lfs-Realcompact Locally Convex Spaces 127

20. Sets on which all Functions are Bounded 130

Chapter V
Extensions and Liftings of Mappings 133

21. Extension and Lifting Properties 134
22. Whitney’s Extension Theorem Revisited 139
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0. Motivation

0.1 Equations on function spaces. It should be unnecessary to convince
the reader, that differential calculus is an important tool in mathematics. But
probably some motivation is necessary why one should extend it to infinite dimen-
sional spaces. One of our main tasks as mathematicians is, like it or not, to solve
equations like

f(u) = 0.
However quite often one has to consider functions f which don’t take (real) numbers
as arguments u but functions. Let us just mention differential equations,
where f is of the following form

f(u)(t) := F (t, u(t), u′(t), . . . , u(n)(t)).

Note that this is not the most general form of a differential equation, consider for
example the function f given by f(u) := u′ − u ◦ u, which is not treated by the
standard theory.

If the arguments t of u are (real) numbers, then this is the general form of an
ordinary differential equation, and in the generic case one can solve this
implicit equation F (t, u(t), u′(t), . . . , u(n)(t)) = 0 with respect to u(n)(t) and obtains
an equation of the form

u(n)(t) = g(t, u(t), u′(t), . . . , u(n−1)(t)).

By substituting u0(t) := u(t), u1(t) := u(1)(t), . . . , un−1(t) := u(n−1)(t) one obtains
a (vector valued) equation

u′0(t) = u1(t)

u′1(t) = u2(t)
...

u′n−2(t) = un−1(t)

u′n−1(t) = g(t, u0(t), . . . , un−1(t))

And if we write u := (u0, . . . , un−1) and

g(t,u) := (u1(t), . . . , un−1(t), g(t, u0(t), . . . , un−1(t))),

we arrive at the ordinary differential equation of order 1

u′(t) = g(t,u(t)).

So we are searching for a solution u of the equation u′ = G(u), where G(u)(t) :=
g(t,u(t)). The general existence and uniqueness results for equations usually de-
pend on some fixed-point theorem and so the domain and the range space have
to be equal or at least to be isomorphic. So we need that u 7→ u′ − G(u) is a
selfmapping. In order to apply it to a function u, we need that u is 1-times differ-
entiable, but in order that the image u′ − G(u) is 1-times differentiable, we need
that u is twice differentiable. Inductively we come to the conclusion that u should
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0.2 0. Motivation

be smooth. So are there spaces of smooth functions, to which we can apply some
fixed point theorem?

0.2 Spaces of continuous and differentiable functions. In [5, 3.2.5]
we have shown that the space C(X,R) of continuous real-valued functions on X
is a Banach-space with respect to the supremum-norm, provided X is compact.
Recall that the proof goes as follows: If fn is a Cauchy-sequence, then it converges
pointwise (since the point-evaluations evx = δx : C(X,R) → R are continuous
linear functionals), by the triangle inequality the convergence is uniform and by
elementary analysis (e.g. see [1, 4.2.8]) a uniform limit of continuous functions is
continuous.

If X is not compact, one can nevertheless consider the linear restriction maps
C(X,R)→ C(K,R) for compact subsets K ⊆ X and then use the initial structure
on C(X,R), given by the seminorms f 7→ ‖f |K‖∞, where K runs through some
basis of the compact sets, see [5, 3.2.8]. If X has a countable basis of compact
sets, then we obtain a countably seminormed space C(X,R). If we try to show
completeness, we get as candidate for the limit a function f , which is on compact
sets the uniform limit of the Cauchy-sequence fn, and hence is continuous on these
sets. If X is Kelley (= compactly generated, i.e. a set is open if its trace to all
compact subsets is open, or equivalently if X carries the final topology with respect
to all the inclusions of compact subsets, see [8, 2.3.1]) then we can conclude that
f is continuous and hence C(X,R) is complete. So under these assumptions (and
in particular if X is locally compact) the space C(X,R) is a Fréchet-space.

Is it really necessary to use countably many seminorms for non-compact X? –
There is no norm which defines an equivalent structure on C(X,R): Otherwise some
seminorm pK := ‖ |K‖∞ must dominate it. However, this is not possible, since pK
is not a norm. In fact, since X is not compact there is some point a ∈ X \K and
hence the function f defined by f |K = 0 and f(a) = 1 is continuous on K ∪ {a}.
By Tietze-Urysohn [8, 1.3.2] it can be extended to a continuous function on X,
which is obviously in the kernel of pK but not zero.
Is there some other reasonable norm turning C(X,R) into a Banach space E? – By
reasonable we mean that at least the point-evaluations should be continuous (i.e.
the topology should be finer than that of pointwise convergence). Then the identity
mapping E → C(X,R) would be continuous by the application in [5, 5.3.8] of the
closed graph theorem. Hence by the open mapping theorem [5, 5.3.5] for Fréchet
spaces the identity would be an isomorphism, and thus E ∼= C(X,R) is not Banach.
Note that this shows that, in a certain sense, the structure of C(X,R) is unique.

Now what can be said about spaces of differentiable functions? – Of course the space
D1(X,R) of differentiable functions on some interval X is contained in C(X,R).
However it is not closed in C(X,R) and hence not complete in the supremum-
norm, since a uniform limit of differentiable functions need not be differentiable
anymore, see the example in [1, 4.2.11]. We need some control on the deriva-
tive. So we consider the space C1(X,R) of continuously differentiable functions
with the initial topology induced by the inclusion in C(X,R) and by the map
d : C1(X,R) → C(X,R) given by f 7→ f ′. If X is compact we can consider in-
stead of the corresponding two seminorms f 7→ ‖f‖∞ and f 7→ ‖f ′‖∞ equally well
their maximum (or sum) and obtain a norm f 7→ max{‖f‖∞, ‖f ′‖∞} on C1(X,R).
Again elementary analysis gives completeness, since for a Cauchy-sequence fn we
have a uniform limit f∞ of fn and a uniform limit f1

∞ of f ′n, and hence (e.g. see [1,
4.2.11] or 2.40 ) f∞ is differentiable with derivative f1

∞. Inductively, we obtain
that for compact intervals X and natural numbers n the spaces Cn(X,R) can be
made canonically into Banach-spaces, see [5, 4.2.5].
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0. Motivation 0.4

0.3 Spaces of smooth functions. What about the space C∞(X,R) of infinite
differentiable maps on a compact interval X? – Here we have countably many
seminorms f 7→ ‖f (n)‖∞, and as before we obtain completeness. So we have again
a Fréchet space.

Again the question arises: Is it really necessary to use countably many seminorms?
Since X is assumed to be compact we have a continuous norm, the supremum
norm, and we cannot argue as before. So let us assume that there is some norm on
C∞(X,R) defining an equivalent structure. In particular it has to be continuous
and hence has to be dominated by the maximum of the suprema of finitely many
derivatives. Let us take an even higher derivative. Then the supremum of this de-
rivative must be dominated by the norm. However, this is not possible, since there
exist smooth functions f , for which all derivatives of order less than n are globally
bounded by 1, but which have arbitrarily large n-th derivative at a given point, say
0. In fact, without loss of generality, we may assume assume that n is even and let
b ≥ 1. Take f(x) := a cos bx with a := 1/bn−1. Then |f (k)(x)| = bk+1−n ≤ 1 for
k < n, but f (n)(0) = ±b cos 0.
Is there some reasonable (nonequivalent) norm which turns C∞(X,R) into a Banach-
space? – Well, the same arguments as before show that any reasonable Fréchet-
structure on C∞(X,R) is identical to the standard one and hence not normable.

0.4 ODE’s. By what we have said in 0.1 the straight forward formulation
of a fixed point equation for a general ordinary differential equation, does not
lead to Banach spaces but to Fréchet spaces. There is however a classical way
around this difficulty. The idea can be seen from the simplest differential equation,
namely when G doesn’t depend on u, i.e. u′(t) = G(t). Then the (initial value)
problem can be solved by integration: u(t) = u(0) +

∫ t
0
G(s) ds and in fact similar

methods work in the case of separated variables, i.e. u′(t) = G1(t)G2(u), since
then H2(u) :=

∫
1

G2(u) du = c+
∫
G1(t) dt =: H1(t) and hence u(t) = H−1

2 (H1(t)).
In [5, 1.3.2] of [2, 6.2.14] we have seen how to prove an existence and uniqueness
result for differential equations u′(t) = g(t, u(t)) with initial value conditions u(0) =
a. Namely, by integration one transforms it into the integral equation

u(t) = a+
∫ t

0

g(s, u(s)) ds.

Thus one has to find a fixed point u of u = G(u), where G is the integral operator
given by

G(u)(t) := a+
∫ t

0

g(s, u(s)) ds.

As space of possible solutions u one can now take the space C(I,R) for some
interval I around 0. If one takes I sufficiently small then it is easily seen that G
is a contraction provided g is sufficiently smooth, e.g. locally Lipschitz. Hence the
existence of a fixed point follows from Banach’s fixed point theorem [5, 1.2.2] (or
[8, 3.1.7], or [1, 3.4.12]).

A more natural approach was taken in [2, 6.2.10]: The idea there is to solve the
equation 0 = u′−f ◦u =: (d−f∗)(u) on a space of differentiable functions u. How-
ever, since we cannot expect global existence of u but only on some interval [−a, a]
we transform the u ∈ C1([−a, a],R) into ua ∈ C1([−1, 1],R), via ua(t) = u(ta) and
the differential equation then becomes u′a(t) = au′(ta) = af(u(ta)) = a f(ua(t)), an
implicit equation 0 = g(a, ua), where g : R×C1([−a, a],R)→ C([−a, a]) is given by
g(a, u)(t) = u′(t)− a f(u(t)) = (d− a f∗)(u)(t). In order to apply the implicit func-
tion theorem we need that g is C1 and ∂2g(0, 0) : C1([−1, 1],R)→ C0([−1, 1,R]) is
invertible. Since d : C1([−1, 1],R)→ C([−1, 1],R) is linear and continuous we only
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0.5 0. Motivation

have to show that f∗ is C1. Since evx : C([−1, 1],R)→ R is continuous and linear
a possible (directional) derivative (f∗)′(g)(h) should satisfy:

(f∗)′(g)(h)(x) =
d

dt
|t=0(evx ◦f∗)(g + t h)(x)

=
d

dt
|t=0f(g(x) + t h(x)) = f ′(g(x))(h(x)),

so we need that f is C1 and then one can show that f∗ : C([−1, 1],R)→ C([−1, 1],R)
is C1 with derivative (f∗)′ = (f ′)∗, see [2, 6.2.10] for the details (in a more general
situation). Then ∂2g(0, 0) = d is an isomorphism if we replace C1([−1, 1],R) by the
closed hyperplane {u ∈ C1([−1, 1],R) : u(0) = 0} involving the initial condition.

In the particular case of linear differential equation with constant co-
efficients u′ = Au we have seen in [5, 3.5.1] the (global) solution u with initial
condition u(0) = u0 is given by u(t) := etA u0. Furthermore the solution of a
general initial value problem of a linear differential equation of order n

u(n)(t) +
n−1∑
i=0

ai(t)u(i)(t) = s(t), u(0) = u0, . . . , u
(n−1)(0) = un−1.

is given by an integral operator G : f 7→ u defined by (Gf)(t) := f(t)+
∫ 1

0
g(t, τ) dτ ,

with a certain continuous integral kernel g. We have also seen in [5, 3.5.5] that a
boundary value problem of second order

u′′(t) + a1(t)u′(t) + a0(t)u(t) = s(t), Ra(u) = 0 = Rb(u),

where the boundary conditions are Ra(u) := ra,0 u(a) + ra,1 u
′(a) and Rb(u) :=

rb,0 u(b) + rb,1 u
′(b) is also solved in the generic case by an integral operator

u(t) =
∫ b

a

g(t, τ) f(τ) dτ,

with continuous integral kernel obtained from the solutions of corresponding initial
value problems.

0.5 PDE’s. Now what happens, if the u in the differential equation are func-
tions of several numerical variables. Then the derivatives u(k) are given by the
corresponding Jacobi-matrices of partial derivatives, and our differential equation
F (t, u(t), . . . u(n)) = 0 of 0.1 is a partial differential equation, see [5, 4.7.1].

Even if we have a partial linear differential equation with constant
coefficients as in [5, 7.4.2]

F (u)(x) := p(∂)(u)(x) :=
∑
|α|≤n

aα · ∂αu(x) = s(x),

where p is the polynomial p(z) =
∑

|α|≤n aα z
α, we cannot apply the trick from

above. The first problem is, that we no longer have a natural candidate, with
respect to which we could pass to a explicit equation. In some special cases one
can do. An example is the equation of heat-conduction

∂

∂t
u = ∆u,

where u : R × X → R is the heat-distribution at the time t in the point x and
∆ denotes the Laplace-operator given on X = Rn by ∆ :=

∑n
k=1

(
∂
∂xk

)2
. So

this is an ordinary linear differential equation in an infinite dimensional space of
functions on X. If we want ∆ to be a self-mapping, we need smooth functions. But
if we want to solve the equation as u(t) = et∆u0 we need the functional calculus (i.e.
applicability of the analytic function e 7→ et to the Operator ∆) and hence a Hilbert
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0. Motivation 0.5

space of functions. But then ∆ becomes an unbounded (symmetric) operator. This
we treated in [6, 12.48].

Another example of such a situation is the Schrödinger equation

i}
d

dt
u = S u.

where the Schrödinger-operator is given by S = − }2

2m∆ + U(x) for some po-
tential U .

A third important equation is the wave-equation ( ∂∂t )
2u = ∆u, see [3, 9.3.1] or

[5, 5.4]. If one makes an Ansatz of separated variables u(t, x) = u1(t)u2(x) one
obtains an Eigen-value equation ∆u(x) = λu(x) for ∆ and after having obtained
the Eigen-functions un : X → R, one is lead to the problem of finding coefficients
ak and bk such that

u(t, x) :=
∑
k

(
ak cos(

√
λk t) + bk sin(

√
λk t)

)
uk(x)

solves the initial conditions

u(0, x) =
∑
k

akuk(x) and ∂1u(0, x) =
∑
k

√
λk bk uk(x)

If we would have an inner-product, for which the uk are orthonormal, then we could
easily calculate the coefficients ak and bk. The space C2π of 2π-periodic functions
is however not a Hilbert space. Otherwise it would be isomorphic to its dual, by
the Riesz Representation theorem [5, 6.2.9]: However for t 6= s we have that
‖ evt− evs ‖ = sup{|f(t)− f(s) : ‖f‖∞ ≤ 1} = 1 if we chose f(t) = 1 and f(s) = 0.
Thus C(X,R)′ is not separable, since otherwise for every t there would be an `t in a
fixed dense countable subset with ‖ evt−`t‖ < 1

2 . Since the t are uncountable there
have to be t 6= s for which `t = `s, a contradiction. Another method to see this is
to use Krein-Milman [5, 7.5.1]: If C(X) were a dual-space, then its unit-ball would
have to be contained in the closed convex hull of its extremal points. A function f
in the unit-ball, which is not everywhere of absolute value 1, is is not extremal. In
fact, take a t0 with |f(t0)| < 1 and a function v with support in a neighborhood of
t0. Then f + s v lies in the unit ball for all values of s near 0. Hence we have by
far too few extremal points, since those real-valued functions have to be constant
on connectivity components.

In analogy to the inner product on Rn we can consider the continuous positive
definite hermitian bilinear map (f, g) 7→

∫
X
f(x) g(x) dx. By what we said above,

it cannot yield a complete norm on C(X,R). But we can take the completion of
C(X,R) with respect to this norm and arrive by [5, 4.12.5] at L2(X), a space
not consisting of functions, but equivalence classes thereof. Now for the one-
dimensional wave-equation, i.e. the equation of an vibrating string, we can solve
the Eigenvalue-problem directly (it is given by an ordinary differential equation).
And Fourier-series solves the problem, see [5, 5.4] and [5, 6.3.8].

For general compact oriented manifolds X the Laplace operator will be symmetric
with respect to that inner product, see [4, 49.1]. If it were bounded, then it would
be selfadjoint and one could apply geometry in order to find Eigen-values and Eigen-
vectors by minimizing the angle between x and Tx, or equivalently by maximizing
|〈Tx, x〉|, see [5, 6.5.3]. It is quite obvious that for a selfadjoint bounded operator
the supremum of |〈Tx, x〉| is its norm, and that a point were it is attained is
an Eigen-vector with maximal absolute Eigen-value. So one needs compactness to
show the existence of such a point. Since Eigen-vectors to different Eigen-values are
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0.6 0. Motivation

orthogonal to each other, one can then proceed recursively, provided the operator
is compact.

Again the idea is that, although the linear differential-operator F is not bounded, its
inverse should be an integral operator G (the Green-operator) with continuous
kernel ε and hence compact. And instead of solving Fu = λu we can equally well
solve 1

λu = Gu, see [4, 49.6].

In order to find the Green operator, we have seen in [5, 4.7.7] that a possible
solution operator G : s 7→ u would be given by convolution of s with a Green-
function ε, i.e. a solution of F (ε) = δ, where δ is the neutral element with respect
to convolution. In fact, since u := ε?s should be a solution of F (u) = s, we conclude
that s = F (u) = F (ε ? s) = F (ε) ? s. However such an element doesn’t exist in
the algebra of smooth functions, and one has to extend the notion of function to
include so called generalized functions or distributions. These are the continuous
linear functionals on the space D of smooth functions with compact support.

As we have seen in [5, 4.8.2] the space D is no longer a Fréchet space, but a
strict inductive limit of the Fréchet spaces C∞K (X) := {f ∈ C∞ : supp f ⊆ K}.
Assume that there is some reasonable Fréchet structure on C∞c . Then by the
same arguments as before the identity from D to C∞c would be continuous, hence
closed, and hence the inverse to the webbed space D would be continuous too,
i.e. a homeomorphism. Remains to show that the standard structure is not a
Fréchet structure. If it were, then D would be Baire. However the closed linear
subspaces C∞K have as union D and have empty interior, since non-empty open sets
are absorbing. A contradiction to the Baire-property.

By passing to the transposed, we have seen in [5, 4.9.1] that every linear partial dif-
ferential operator F can be extended to a continuous linear map F̃ : D′ → D′, and so
one can consider distributional solutions of such differential equations. In [5, 8.3.1]
we have proven the Malgrange Ehrenpreis theorem on the existence of distribu-
tional fundamental solutions using the generalization of Fourier-series, namely the
Fourier-transform F . The idea is that 1 = F(δ) = F(F (ε)) = F(p(∂)(ε)) = p ·F(ε)
and hence ε = F−1(1/p). For this we have to consider the Schwartz-space S of
rapidly decreasing smooth functions, which is a Fréchet space, and its dual S ′.
In order that the poles of 1/p make no trouble we had to show that the Fourier-
transform of smooth functions with compact support and even of distributions with
compact support are entire functions.

If we want to solve linear partial differential equations with non-constant coefficients
or even non-linear partial differential equations, we have to consider not
only the linear theory of D but the non-linear one. See [10] for an approach to this.

0.6 Differentiation and integration commute. Let us consider a much
more elementary result. In fact, even in the introductory courses in analysis one
considers infinite dimensional results, but usually disguised. Recall the result about
differentiation under the integral sign. There one considers a function f

of two real variables and takes the integral
∫ 1

0
f(t, s) ds with respect to one variable,

and then one asks the question: Which assumptions guarantee that the resulting
function is differentiable with respect to remaining variable t and what is its deriv-
ative? Before we try to remember the correct answer let us reformulate this result
without being afraid of infinite dimensions. We are given the function f : R×I → R,
(t, s) 7→ f(t, s). What do we actually mean by writing down

∫ 1

0
f(t, s) ds? – Well

we keep t fixed and consider the function ft : I → R given by s 7→ f(t, s) and
integrate it, i.e.

∫ 1

0
f(t, s) ds :=

∫
(ft), where

∫
denotes the integration operator

10 Andreas Kriegl , Univ.Wien, June 4, 2008



0. Motivation 0.6

∫
: C[0, 1]→ R, g 7→

∫ 1

0
g(s) ds. But now we want to vary t, so we have to consider

the result as a function t 7→
∫

(ft), so we have to consider t 7→ ft and we denote
this function by f̌ . It is given by the formula f̌(t)(s) = ft(s) = f(t, s). Then∫

(ft) = (
∫
◦f̌)(t). Thus what we actually are interested in is, whether the com-

position
∫
◦f̌ is differentiable and what its derivative is. This problem is usually

solved by the chain-rule, but the situation here is much easier. In fact recall that
integration is linear and continuous with respect to the supremum norm (or even
the 1-norm) and f̌ is a curve (into some function space). Now if ` is continuous
and linear and c is a differentiable curve then ` ◦ c is differentiable with derivative
`(c′(t)) at t: In fact

lim
s→0

`(c(t+ s))− `(c(t))
s

= lim
s→0

`

(
c(t+ s)− c(t)

s

)
=

= `

(
lim
s→0

c(t+ s)− c(t)
s

)
= `(c′(t)).

So it remains to show that f̌ : R→ C(I,R) is differentiable and to find its derivative.
Let us assume it is differentiable and try to determine the derivative. On C(I,R)
we have nice continuous linear functionals, namely the point evaluations evs :
g 7→ g(s). These are continuous and linear and separate points (they are far from
being all continuous linear functionals, see Riesz’s Representation theorem [5,
7.3.3] and [5, 7.3.4]). Applying what we said before to ` := evs and c := f̌
we obtain evs(f̌ ′(t)) = (evs ◦f̌)′(t), and (evs ◦f̌)(t) = evs(f̌(t)) = f̌(t)(s) = f(t, s).
Hence evs(f̌ ′(t)) is nothing else but the first partial derivative ∂

∂tf(t, s). Conversely,
assume that the first partial derivative of f exists on R× I and is continuous, then
we want to show, that f̌ is differentiable, and (f̌)′(t)(s) = ∂

∂tf(t, s) = ∂1f(t, s), or
in other words (∂1f)∨ = (f̌)′.

For this we first consider the corresponding topological problem: Are the continuous
mappings f : R × I → R exactly the continuous maps f̌ : R → C(I,R)? This has
been solved in the calculus courses. In fact a mapping f̌ is well-defined iff f(x, ) is
continuous for all x and it is continuous iff f( , y) is equi-continuous with respect
to y, i.e.

∀x ∈ R ∀ε > 0 ∃δ > 0 ∀x′ ∈ R ∀y ∈ I : |x′ − x| < δ ⇒ |f(x, y)− f(x′, y)| < ε.

However, these two conditions together are equivalent to the continuity of f , as can
be seen for example in [1, 3.2.8].

Now to the differentiability question. We assume that ∂1f exists and is continuous.
Hence (∂1f)∨ : R→ C(I,R) is continuous. We want to show that f̌ : R→ C(I,R)
is differentiable (say at 0) with (∂1f)∨ (at 0) as derivative. So we have to show that
the mapping t 7→ f̌(t)−f̌(0)

t is continuously extendable to R by defining its value at 0
as (∂1f)∨(0). Or equivalently, by what we have shown for continuous maps before,
that the map

(t, s) 7→

{
f(t,s)−f(0,s)

t for t 6= 0
∂1f(0, s) otherwise

is continuous. This follows immediately from the continuity of ∂1 and that of
∫ 1

0
dr,

since it can be written as
∫ 1

0
∂1f(r t, s) dr by the fundamental theorem.

So we arrive under this assumption at the conclusion, that
∫ 1

0
f(t, s) ds is differen-

tiable with derivative
d

dt

∫ 1

0

f(t, s) ds =
∫

((f̌)′(t)) =
∫ 1

0

∂

∂t
f(t, s) ds
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0.7 0. Motivation

and we have proved the

Proposition. For a continuous map f : R×I → R the partial derivative ∂1f exists
and is continuous iff f̌ : R → C(I,R) is continuously differentiable. And in this
situation

∫
((f̌)′(t)) = d

dt

∫ 1

0
f(t, s) ds =

∫ 1

0
∂
∂tf(t, s) ds. �

And we see, it is much more natural to formulate and prove this result with the
help of the infinite dimensional space C([0, 1],R). But this not only clarifies the
proof, but is of importance for its own sake, as we will see in 0.8 .

0.7 Exponential law for continuous mappings. Let us try to generalize
this result. We will write Y X for the function spaces C(X,Y ) for reasons of car-
dinality. So the question is whether the continuous mappings f : X × Y → Z
correspond exactly to the continuous maps f̌ : X → C(Y, Z)?

For this we need a topology on C(X,Y ). If Y is a locally convex space (or a
uniform space) we can use the topology of uniform convergence on compact subsets
of X, given by the seminorms f 7→ sup{q(f(x)) : x ∈ K}, where K ⊆ X runs
through the compact subsets and q through the seminorms of Y , see [5, 3.2.8]. For
general Y we consider the compact-open topology, which has as subbasis the sets
NK,U := {f : f(K) ⊆ U} where K runs through (a basis of) the compact subsets
of X and Y through (a basis of) the open subsets of Y , see [8, 2.4.2].

Let us show first that for locally convex spaces F and topological spaces X the
compact-open topology is the locally convex topology of uniform convergence on
compact subsets:

So let K ⊆ X be compact, V ⊆ F be open, and f ∈ NK,V , i.e. f(K) ⊆ V . Then for
each x ∈ K there exists a seminorm q on F and an ε > 0 such that Vf(x) := {y ∈ F :
q(y − f(x)) < ε} ⊆ V . The sets Ux := {z′ ∈ X : q(f(z′)− f(x)) < ε

2} with x ∈ K
form an open converging, so there are finitely many x1, . . . , xn with K ⊆

⋃n
i=1 Ui,

where Ui := Uxi . Let qi be the seminorm and εi the radius corresponding to xi and
Ki := {z′ ∈ K : qi(f(z′) − f(xi)) ≤ εi

2 }. We claim, that qi(g(x) − f(x)) < εi

2 for
all i and x ∈ Ki implies g ∈ NK,U . In fact, let x ∈ K, then there exists an i with
x ∈ Ui ∩K ⊆ Ki and hence qi(g(x)− f(xi)) ≤ qi(g(x)− f(x)) + qi(f(x)− f(xi)) <
εi

2 + εi

2 = εi, i.e. g(x) ∈ Vf(xi) ⊆ V .

Conversely, let a compactK ⊆ X, a seminorm q on F , an ε > 0, and f ∈ C(X,F ) be
given. Note that g ∈ C(X,F ) is a subset ofW := {(x, y) : x ∈ K ⇒ q(y−f(x)) < ε}
iff q(g(x)− f(x)) < ε for all x ∈ K. For x ∈ K let Ux := {x′ : q(f(x′)− f(x)) < ε

3}
and take finitely many x1, . . . , xn such that the Ui := Uxi

cover K. Let Ki := {x ∈
K : q(f(x) − f(xi)) ≤ ε

3} and Vi := {y : q(y − f(xi)) < ε
2} then f(Ki) ⊆ Vi. If

g ∈
⋂
iNKi,Vi then for each x ∈ K there exists an i with x ∈ Ui ∩K ⊆ Ki and thus

q(g(x)− f(x)) ≤ q(g(x)− f(xi)) + q(f(xi)− f(x)) < ε
2 + ε

3 < ε, i.e. g ⊆W .

How is ĝ : X × Y → Z constructed from a continuous g : X → ZY . Well, one
can consider g × Y : X × Y → ZY × Y and compose it with the evaluation
map ev : ZY × Y → Z. Since the product of continuous maps is continuous, it
remains to show that the evaluation map is continuous in order to obtain that ĝ
is continuous. So let f ∈ ZY and y ∈ Y and let U be a neighborhood of f(y).
If Y is locally compact, we can find a compact neighborhood W of y and then
f ∈ NW,U := {g : g(W ) ⊂ U} and ev(NW,U ×W ) ⊆ U .

Conversely let a continuous f : X × Y → Z be given. Then we consider f∗ :=
fY : (X × Y )Y → ZY and compose it from the right with the insertion map
ins : X → (X ×Y )Y given by x 7→ (y 7→ (x, y)). Then we arrive at f̌ . Obviously f∗
is continuous since (f∗)−1NK,U = NK,f−1U . The insertion map is continuous, since
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0. Motivation 0.8

ins−1(NK,U×V ) = U if K ⊆ V and is empty otherwise, so f̌ is continuous. Thus
the only difficult part was the continuity of the evaluation map.

Moreover we have the

Proposition. Let X, Y and Z be topological spaces with Y being locally compact.
Then we have a homeomorphism ZX×Y ∼= (ZY )X , given by f 7→ f̌ , where the
function spaces carry the compact open topology.

Proof. We have already proved that we have a bijection. That this gives a homeo-
morphism follows, since the corresponding subbases NK1×K2,U and NK1,NK2,U

cor-
respond to each other. �

In general the compact open topology on ZY will not be locally compact even for
locally compact spaces Y and Z (e.g. C([0, 1],R) is an infinite dimensional and hence
not locally compact Banach space). So in order to get an intrinsic exponential law,
one can modify the notion of continuity and call a mapping f : X → Y between
Hausdorff topological spaces compactly-continuous iff its restriction to every
compact subset K ⊆ X is continuous. Thus f : X × Y → Z is continuous iff
f |K×L : K × L → Z is continuous for all compact subsets K ⊆ X and L ⊆ Y .
By the exponential law for compact sets this is equivalent to f̌ : K → ZL being
continuous. Since ZY carries the initial structure with respect to inkl∗ : ZY → ZL,
this is furthermore equivalent to the continuity of f̌ : K → ZY , and thus to
f̌ : X → ZY being compactly-continuous, but for this we have to denote with ZY

the space of compactly continuous maps from Y → Z.

Instead of the category of compactly continuous maps between Hausdorff topolog-
ical spaces, one can use the equivalent category (see [7, 1.22]) of continuous
mappings between compactly generated spaces. Recall that a Hausdorff topolog-
ical space is called compactly generated or a Kelley space iff it carries the
final topology with respect to the inclusions of its compact subsets with their trace
topology. The equivalence between these two categories is given by the identity
functor on one side, and on the other side by the Kelley-fication, i.e. by replac-
ing the topology by the final topology with respect to the compact subsets. Note
that the identity is compactly continuous in both directions. However, the natu-
ral topology on the products in this category is the Kelley-fication of the product
topology and also on the function spaces one has to consider the Kelly-fication of
the compact open topology, see [8, 2.4].

0.8 Variational calculus. In physics one is not a priori given an equation
f(x) = 0, but often some optimization problem. One is searching for those x, for
which the values f(x) of some real-valued function (like the Lagrange function
in classical mechanics, which is given by the difference of kinematic energy and
the potential) attain an extremum (i.e. are minimal or maximal), see for example
[4, 45]. Again x is often not a finite dimensional vector but functions and then
f is often given by some integral (like the action (german: Wirkungsintegral) in
classical mechanics)

f(x) :=
∫ 1

0

F (t, x(t), x′(t)) dt.

For finite dimensional vectors x one finds solutions of the problem f(x)→ min by
applying differential calculus and searching for solutions of f ′(x) = 0. In infinite
dimensions one proceeds similarly in the calculus of variations (see [3, 9.4.3]),
by finding those points x, where the directional derivatives f ′(x)(v) vanish for all
directions v. Since the boundary values of x are given, the variation v has to vanish
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0.9 0. Motivation

on the boundary {0, 1}. One can calculate the directional derivative by what we
have shown before as follows:

f ′(x)(v) :=
d

dt

∣∣∣∣
t=0

f(x+ tv)

=
d

dt

∣∣∣∣
t=0

∫ 1

0

F
(
s, (x+ tv)(s), (x+ tv)′(s)

)
ds

=
∫ 1

0

∂

∂t

∣∣∣∣
t=0

F
(
s, (x+ tv)(s), (x+ tv)′(s)

)
ds

=
∫ 1

0

(
∂2F (s, x(s), x′(s)) · v(s) + ∂3F (s, x(s), x′(s)) · v′(s)

)
ds

=
∫ 1

0

(
∂2F (s, x(s), x′(s))− d

ds
∂3F (s, x(s), x′(s))

)
· v(s) ds

We have used partial integration and that the variation v has to vanish at the
boundary points 0 and 1. Since f ′(x)(v) has to be 0 for all such v we arrive at the
Euler-Lagrange partial differential equation

∂2F (s, x(s), x′(s)) =
d

ds
∂3F (s, x(s), x′(s)),

or with slight abuse of notation:

∂

∂x
F =

(
∂

∂ẋ
F

)·
,

where ( )̇ denotes the derivative with respect to time s.

Warning: abuse may lead to disaster! In physics for example one has the gas-
equation p · V · t = 1, where p is pressure, V the volume and t the temperature
scaled appropriately. So we obtain the following partial derivatives:

∂p

∂V
=

∂

∂V

1
V t

= − 1
t V 2

∂V

∂t
=

∂

∂t

1
t p

= − 1
p t2

∂t

∂p
=

∂

∂p

1
p V

= − 1
V p2

And hence cancellation yields

1 =
∂p

∂V
· ∂V
∂t
· ∂t
∂p

= (−1)3
1
t V 2

· 1
p t2
· 1
V p2

= − 1
(pV t)3

= −1.

Try to find the mistake!

0.9 Flows as 1-parameter subgroups of diffeomorphisms. Another sit-
uation, where it is natural to consider differentiable curves into function spaces, are
flows. So we are considering ordinary time-independent differential equations, i.e.
equations of the form u̇ = f(u). For given initial value u(0) = a we can consider the
solution ua and obtain a mapping u : R×X → X given by (t, a) 7→ ua(t). Obviously
u(0, x) = x and by uniqueness we have u(t+s, x) = u(t, u(s, x)), i.e. u is a flow on
X, see [4, 28.3]. Conversely, we can reconstruct the differential equation by differen-
tiating the flow with respect to t at t = 0, i.e. ∂

∂t |t=0u(t, x) = f(u(t, x))|t=0 = f(x).
It would be more natural to consider the associate mapping ǔ with values in some
space of mappings from X → X. The flow property translates into the assump-
tion that t 7→ ǔ(t) is a group-homomorphism from R into the group of invertible
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0. Motivation 0.11

maps on X. The vector field f can thus be interpreted as the tangent vec-
tor ǔ′(0) at 0 of the curve ǔ. Thus we should have that ǔ is differentiable into
a group Diff(X) of diffeomorphisms on X, and this group should carry some
smooth structure, analogously to classical Lie-groups. In particular the composi-
tion Diff(X)×Diff(X)→ Diff(X) map should be differentiable. Since (f, g) 7→ f ◦g
is linear in the first variable (if we consider the range space X as submanifold of
some Rn), the difficult part is the differentiability in the second variable, i.e. that
of the map f∗ : g 7→ f ◦g. We have noted at the end of 0.4 that for f∗ to be differ-
entiable we need that f is differentiable since (f∗)′ = (f ′)∗. Thus in order that the
composition map is differentiable, we need that its first variable f is differentiable,
hence Diff should mean at least 1-times differentiable. But then in order that the
derivative of the composition map has 1-time differentiable values we need that
f ′ is 1-times differentiable, i.e. f is twice differentiable. Inductively we arrive at
the smoothness of f , i.e. infinite often differentiability. But as we have mentioned
before, even in the simplest case C∞([0, 1],R) or C∞(S1,R), these function spaces
are not Banach-spaces anymore, but Fréchet-spaces.

0.10 Exponential law for differentiable mappings. A similar thing hap-
pens when searching for an exponential law for differentiable functions. If we want a
nice correspondence between differentiable functions on a product and differentiable
functions into a function space, we have seen that a curve c : R→ C(R,R) is C1 if
and only if ∂1ĉ : R2 → R exists and is continuous. If we want a (differentiability-
)property which is invariant under base-change in R2, then ∂2ĉ : R2 → R should
exist and be continuous, and hence c : R→ C(R,R) should have values in C1(R,R)
and be continuous R → C1(R,R). Thus ĉ : R2 → R is C1 if and only if c :
R → C(R,R) is C1 (with derivative c′(t)∧ = ∂1ĉ) and is C0 into C1(R,R) (with
(d ◦ c)∧ = ∂2ĉ). So if we want to use just a single functions space (instead of
C0(R,R) and C1(R,R) at the same time) we should assume c : R→ C1(R,R) to be
C1. But then c′ : R→ C1(R,R) has to be continuous, and thus d◦c′ : R→ C(R,R)
has to be continuous, i.e. (d ◦ c′)∧ = ∂2∂1ĉ : R2 → R should be continuous. As-
sumed invariance under base-change yields that ĉ : R2 → R should be C2 and then
ĉ : R→ C(R,R) has to be C2, ĉ : R→ C1(R,R) has to be C1, and ĉ : R→ C2(R,R)
has to be C0. Inductively we get that the exponential law for differentiable functions
can only be valid for C∞-functions.

0.11 Continuity of the derivative. Well, as has been discovered around
1900, the derivative should be a linear (more precisely, an affine) approximation to
the function. Assume we have already defined the concept of derivative f ′(x) ∈
L(E,F ) for functions f : E ⊇ U → F at a given point x ∈ U . By collecting for all x
in the open domain U of f these derivatives f ′(x), we obtain a mapping x 7→ f ′(x),
the derivative f ′ : E ⊇ U → L(E,F ) with values in the space of continuous linear
mappings. In order to speak about continuous differentiable (short: C1) mappings,
we need some topology on L(E,F ) and then this amounts to the assumption, that
f ′ : U → L(E,F ) is continuous. For C1-maps we should have a chain-rule, which
guarantees that the composite f◦g of C1-maps is again C1 and the derivative should
be (f ◦g)′(x) = f ′(g(x))◦g′(x). This map is thus given by the following description:
Given x then first calculate g(x) and then f ′(g(x)) ∈ L(F,G) and g′(x) ∈ L(E,F ),
and finally apply the composition map L(F,G) × L(E,F ) → L(E,G) to obtain
f ′(g(x)) ◦ g′(x). Since f and g are assumed to be C1 the components f ′ ◦ g and g′

are continuous. So it remains to show the continuity of the composition mapping.
Let us consider the simplified case where G = E = R. Then composition reduces to
the evaluation map ev : F ′ × F → R and we are looking for a topology on F ′ such
that this map is continuous. Assume we have found such a topology. Then there
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0.12 0. Motivation

exists 0-neighborhoods V in F ′ and U in F such that ev(V × U) ⊆ [−1, 1]. Since
scalar-multiplication on F ′ should be continuous, we can find for every ` ∈ F ′ a
number K > 0, such that ` ∈ K V . Thus for x ∈ U we have `(x) = ev(K 1

K `, x) =
K ev( 1

K `, x) ∈ K ev(V × U) ⊆ [−K,K]. This shows that U is scalarly bounded,
and hence is bounded by the corollary in [5, 5.2.7]. However, a seminormed space,
which has a bounded 0-neighborhood has to be normed, by Kolmogoroff’s theorem
[5, 2.6.2].

So it seems that there is no reasonable notion of C1, which applies to more than
just functions between Banach spaces. However, we have assumed that continuity
is meant with respect to topologies. In fact, there have been several (more or less
successful) attempts in the past to remedy this situation by considering convergence
structures on L(E,F ). If one defines that a net (or a filter) fα should converge to
f in L(E,F ) iff for nets (or filters) xβ converging to some x in E the net (or filter)
fα(xβ) should converge to f(x), then the evaluation map, and more generally the
composition map becomes continuous. A second way to come around this problem,
is to assume for C1 the continuity of f̂ ′ : U × E → F instead. Then the chain-
rule becomes easy. However this notion is bad, since we cannot prove the inverse
function theorem for C1 even for Banach spaces, see [2, 6.2.1] and [2, 6.3.15].
See [2, 6.1.19] for an example of a differentiable function f on a Hilbert space for
which f̂ ′ is continuous, but f ′ is not. This examples shows in particular that the
exponential law is wrong for continuous functions `2 × `2 → R which are linear in
the second variable if one uses the operator norm on L(`2,R) = (`2)′ ∼= `2.

0.12 Derivatives of higher order. If we want to define higher derivatives - as
we need them in conditions for local extrema and the like - we would call a function
f by recursion (n+ 1)-times differentiable iff f ′ exists and is n-times differentiable
(Dn for short). In order to show that the composite f ◦ g of two D2-maps is again
D2, we have to show that (f ◦ g)′ : x 7→ f ′(g(x)) ◦ g′(x) is again D1. Now this
map is given by the following composition: Given x then first calculate g(x) and
then f ′(g(x)) ∈ L(F,G) and g′(x) ∈ L(E,F ), and finally apply the composition
map L(F,G)×L(E,F )→ L(E,G) to obtain f ′(g(x)) ◦ g′(x). By the chain-rule for
D1-mappings, we would obtain that f ′ ◦ g ∈ D1 and by assumption g′ ∈ D1. So
it remains to differentiate the bilinear composition map. Since it is linear in both
entries separately, its partial derivatives should obviously exist and the derivative
also. But recall that it is not even continuous.
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0.13 Résumé. We have learned a few things from these introductory words:

(1) Problems in finite dimensions often have a more natural formulation (and
proof) involving infinite dimensional function-spaces, which are quite often
not Banach spaces, but Fréchet spaces like C(R,R) and C∞(I,R) or even
more general ones like D and D′.

(2) Mappings of two variables f : X × Y → Z, should often be considered
as mappings f̌ from X to a space of mappings from Y to Z and prop-
erties such as continuity or differentiability should translate nicely. For
differentiability this can only be true for C∞.

(3) It is not clear, how to obtain the basic ingredient to calculus, the chain-
rule. For this the composition map, or at least the evaluation map, should
be smooth, although it is not continuous in the topological setting.

(4) There is no reasonable notion of C1 generalizing classical (Fréchet-)calculus
to mappings between spaces beyond Banach spaces.

After having found lots of, at first view devastating, difficulties, let’s look what can
be done easily:

(1) It is obvious what differentiability for a curve c into any locally convex
space means, since limits of difference quotients make sens. Hence we have
also the notion of continuous differentiable, of n-times differentiable, and
of smoothness for such curves.

(2) Continuous (multi-)linear mappings preserve smoothness of curves, and
satisfy the chain-rule.

(3) Directional derivatives can be easily defined for mappings f between ar-
bitrary locally convex spaces, since they are just derivatives of the curves
c : t 7→ f(x+ t v) obtained by composing f with an affine line t 7→ x+ t v

(4) Candidates for derivatives f ′(x) of mappings f can be obtained by re-
duction to 1-dimensional analysis via affine mappings: `(f ′(x)(v)) =
d
dt |t=0`(f(x+ t v)).
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This chapter is devoted to calculus of smooth mappings in infinite dimensions. The
leading idea of our approach is to base everything on smooth curves in locally
convex spaces, which is a notion without problems, and a mapping between locally
convex spaces will be called smooth if it maps smooth curves to smooth curves.

We start by looking at the set of smooth curves C∞(R, E) with values in a locally
convex space E, and note that it does not depend on the topology of E, only on
the underlying system of bounded sets, its bornology. This is due to the fact, that
for a smooth curve difference quotients converge to the derivative much better 2.1
than arbitrary converging nets or filters: we may multiply it by some unbounded
sequences of scalars without disturbing convergence (or, even better, boundedness).

Then the basic results are proved, like existence, smoothness, and linearity of deriva-
tives, the chain rule 3.18 , and also the most important feature, the ‘exponential
law’ 3.12 and 3.13 : We have

C∞(E × F,G) ∼= C∞(E,C∞(F,G)),

without any restriction, for a natural structure on C∞(F,G).

Smooth curves have integrals in E if and only if a weak completeness condition
is satisfied: it appeared as bornological completeness, Mackey completeness, or
local completeness in the literature, we call it c∞-complete. This is equivalent to
the condition that weakly smooth curves are smooth 2.14 . All calculus in later
chapters in this book will be done on convenient vector spaces: These are
locally convex vector spaces which are c∞-complete; note that the locally convex
topology on a convenient vector space can vary in some range, only the system of
bounded sets must remain the same.

Linear or more generally multilinear mappings are smooth if and only if they are
bounded 5.5 , and one has corresponding exponential laws 5.2 for them as well.
Furthermore, there is an appropriate tensor product, the bornological tensor prod-
uct 5.7 , satisfying

L(E ⊗β F,G) ∼= L(E,F ;G) ∼= L(E,L(F,G)).

An important tool for convenient vector spaces are uniform boundedness principles
as given in 5.18 , 5.24 and 5.26 .
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1.2
Chapter I

Calculus of Smooth Mappings

It is very natural to consider on E the final topology with respect to all smooth
curves, which we call the c∞-topology, since all smooth mappings are continuous
for it: the vector space E, equipped with this topology is denoted by c∞E, with
lower case c in analogy to kE for the Kelley-fication and in order to avoid any
confusion with any space of smooth functions or sections. The special curve lemma
2.8 shows that the c∞-topology coincides with the usual Mackey closure topology.

The space c∞E is not a topological vector space in general. This is related to the
fact that the evaluation E×E′ → R is jointly continuous only for normable E, but
it is always smooth and hence continuous on c∞(E×E′). The c∞-open subsets are
the natural domains of definitions of locally defined functions. For nice spaces (e.g.
Fréchet and strong duals of Fréchet-Schwartz spaces, see 4.11 ) the c∞-topology
coincides with the given locally convex topology. In general, the c∞-topology is
finer than any locally convex topology with the same bounded sets.

In the last section of this chapter we discuss the structure of spaces of smooth
functions on finite dimensional manifolds and, more generally, of smooth sections
of finite dimensional vector bundles. They will become important in chapter IX as
modeling spaces for manifolds of mappings. Furthermore, we give a short account
of reflexivity of convenient vector spaces and on (various) approximation properties
for them.

1. Smooth Curves

1.1. Notation. Since we want to have unique derivatives all locally convex
spaces E will be assumed Hausdorff. The family of all bounded sets in E plays an
important rôle. It is called the bornology of E. A linear mapping is called bounded,
sometimes also called bornological, if it maps bounded sets to bounded sets. A
bounded linear bijection with bounded inverse is called bornological isomorphism.
The space of all continuous linear functionals on E will be denoted by E∗ and the
space of all bounded linear functionals on E by E′. The adjoint or dual mapping of
a linear mapping `, however, will be always denoted by `∗, because of differentiation.

See also the appendix 52 for some background on functional analysis.

1.2. Differentiable curves. The concept of a smooth curve with values in
a locally convex vector space is easy and without problems. Let E be a locally
convex vector space. A curve c : R → E is called differentiable if the derivative
c′(t) := lims→0

1
s (c(t + s) − c(t)) at t exists for all t. A curve c : R → E is called

smooth or C∞ if all iterated derivatives exist. It is called Cn for some finite n if its
iterated derivatives up to order n exist and are continuous.

A curve c : R → E is called locally Lipschitzian if every point r ∈ R has a neigh-
borhood U such that the Lipschitz condition is satisfied on U , i.e., the set{

1
t−s

(
c(t)− c(s)

)
: t 6= s; t, s ∈ U

}
is bounded. Note that this implies that the curve satisfies the Lipschitz condition
on each bounded interval, since for (ti) increasing

c(tn)− c(t0)
tn − t0

=
∑ ti+1 − ti

tn − t0
c(ti+1)− c(ti)
ti+1 − ti

is in the absolutely convex hull of a finite union of bounded sets.

A curve c : R → E is called Lipk or C(k+1)− if all derivatives up to order k exist
and are locally Lipschitzian.
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1.3. Lemma. Continuous linear mappings are smooth. A continuous linear
mapping ` : E → F between locally convex vector spaces maps Lipk-curves in E to
Lipk-curves in F , for all 0 ≤ k ≤ ∞, and for k > 0 one has (` ◦ c)′(t) = `(c′(t)).

Proof. As a linear map ` commutes with the formation of difference quotients,
hence the image of a Lipschitz curve is Lipschitz since ` is bounded.

As a continuous map it commutes with the formation of the respective limits. Hence
(` ◦ c)′(t) = `(c′(t)).

Now the rest follows by induction. �

Note that a differentiable curve is continuous, and that a continuously differentiable
curve is locally Lipschitzian: For ` ∈ E∗ we have

`

(
c(t)− c(s)
t− s

)
=

(` ◦ c)(t)− (` ◦ c)(s)
t− s

=
∫ 1

0

(` ◦ c)′(s+ (t− s)r)dr,

which is bounded, since (` ◦ c)′ = ` ◦ c′ is locally bounded. Since boundedness can
be tested by continuous linear functionals (see [5, 5.2.7]) we conclude that c is
locally Lipschitzian.

More general, we have by induction the following implications:

Cn+1 =⇒ Lipn =⇒ Cn,

differentiable =⇒ C.

1.4. The mean value theorem. In classical analysis the basic tool for using
the derivative to get statements on the original curve is the mean value theorem.
So we try to generalize it to infinite dimensions. For this let c : R → E be a
differentiable curve. If E = R the classical mean value theorem states, that the
difference quotient (c(a)−c(b))/(a−b) equals some intermediate value of c′. Already
if E is two dimensional this is no longer true. Take for example a parameterization
of the circle by arclength. However, we will show that (c(a) − c(b))/(a − b) lies
still in the closed convex hull of {c′(r) : r}. Having weakened the conclusion, we
can try to weaken the assumption. And in fact c may be not differentiable in at
most countably many points. Recall however, that there exist strictly monotone
functions f : R → R, which have vanishing derivative outside a Cantor set (which
is uncountable, but has still measure 0).

Sometimes one uses in one dimensional analysis a generalized version of the mean
value theorem: For an additional differentiable function h with non-vanishing deriv-
ative the quotient (c(a)−c(b))/(h(a)−h(b)) equals some intermediate value of c′/h′.
A version for vector valued c (for real valued h) is that (c(a)− c(b))/(h(a)− h(b))
lies in the closed convex hull of {c′(r)/h′(r) : r}. One can replace the assumption
that h′ vanishes nowhere by the assumption that h′ has constant sign, or, more gen-
erally, that h is monotone. But then we cannot form the quotients, so we should
assume that c′(t) ∈ h′(t) ·A, where A is some closed convex set, and we should be
able to conclude that c(b)− c(a) ∈ (h(b)−h(a)) ·A. This is the version of the mean
value theorem that we are going to prove now. However, we will make use of it only
in the case where h = Id and c is everywhere differentiable in the interior.

Proposition. Mean value theorem. Let c : [a, b] =: I → E be a continuous
curve, which is differentiable except at points in a countable subset D ⊆ I. Let h
be a continuous monotone function h : I → R, which is differentiable on I \D. Let
A be a convex closed subset of E, such that c′(t) ∈ h′(t) ·A for all t /∈ D.

Then c(b)− c(a) ∈ (h(b)− h(a)) ·A.
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1.5 1. Smooth Curves

Proof. Assume that this is not the case. By the theorem of Hahn Banach [5, 7.2.1]
there exists a continuous linear functional ` with `(c(b)−c(a)) /∈ `((h(b)− h(a)) ·A).
But then ` ◦ c and `(A) satisfy the same assumptions as c and A, and hence we
may assume that c is real valued and A is just a closed interval [α, β]. We may
furthermore assume that h is monotonely increasing. Then h′(t) ≥ 0, and h(b) −
h(a) ≥ 0. Thus the assumption says that αh′(t) ≤ c′(t) ≤ βh′(t), and we want to
conclude that α(h(b) − h(a)) ≤ c(b) − c(a) ≤ β(h(b) − h(a)). If we replace c by
c− βh or by αh− c it is enough to show that c′(t) ≤ 0 implies that c(b)− c(a) ≤ 0.
For given ε > 0 we will show that c(b) − c(a) ≤ ε(b − a + 1). For this let J be
the set {t ∈ [a, b] : c(s) − c(a) ≤ ε ((s − a) +

∑
tn<s

2−n) for a ≤ s < t}, where
D =: {tn : n ∈ N}. Obviously, J is a closed interval containing a, say [a, b′]. By
continuity of c we obtain that c(b′) − c(a) ≤ ε ((b′ − a) +

∑
tn<b′

2−n). Suppose
b′ < b. If b′ /∈ D, then there exists a subinterval [b′, b′ + δ] of [a, b] such that for
b′ ≤ s < b′ + δ we have c(s)− c(b′)− c′(b′)(s− b′) ≤ ε(s− b′). Hence we get

c(s)− c(b′) ≤ c′(b′)(s− b′) + ε(s− b′) ≤ ε(s− b′),
and consequently

c(s)− c(a) ≤ c(s)− c(b′) + c(b′)− c(a)

≤ ε(s− b′) + ε
(
b′ − a+

∑
tn<b′

2−n
)
≤ ε
(
s− a+

∑
tn<s

2−n
)
.

On the other hand if b′ ∈ D, i.e., b′ = tm for some m, then by continuity of c we
can find an interval [b′, b′ + δ] contained in [a, b] such that for all b′ ≤ s < b′ + δ we
have

c(s)− c(b′) ≤ ε2−m.
Again we deduce that

c(s)− c(a) ≤ ε2−m + ε
(
b′ − a+

∑
tn<b′

2−n
)
≤ ε
(
s− a+

∑
tn<s

2−n
)
.

So we reach in both cases a contradiction to the maximality of b′. �

Warning: One cannot drop the monotonicity assumption. In fact take h(t) := t2,
c(t) := t3 and [a, b] = [−1, 1]. Then c′(t) ∈ h′(t)[−2, 2], but c(1) − c(−1) = 2 /∈
{0} = (h(1)− h(−1))[−2, 2].

1.5. Testing with functionals. Recall that in classical analysis vector valued
curves c : R → Rn are often treated by considering their components ck := prk ◦c,
where prk : Rn → R denotes the canonical projection onto the k-th factor R. Since
in general locally convex spaces do not have appropriate bases, we use all continuous
linear functionals instead of the projections prk. We will say that a property of a
curve c : R → E is scalarly true, if ` ◦ c : R → E → R has this property for all
continuous linear functionals ` on E.

We want to compare scalar differentiability with differentiability. For finite di-
mensional spaces we know the trivial fact that these two notions coincide. For
infinite dimensions we first consider Lip-curves c : R → E. Since by [5, 5.2.7]
boundedness can be tested by the continuous linear functionals we see, that c is
Lip if and only if ` ◦ c : R → R is Lip for all ` ∈ E∗. Moreover, if for a boun-
ded interval J ⊂ R we take B as the absolutely convex hull of the bounded set
c(J) ∪ { c(t)−c(s)t−s : t 6= s; t, s ∈ J}, then we see that c|J : J → EB is a well defined
Lip-curve into EB . We denote by EB the linear span of B in E, equipped with
the Minkowski functional pB(v) := inf{λ > 0 : v ∈ λ.B}. This is a normed space.
Thus we have the following equivalent characterizations of Lip-curves:
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(1) locally c factors over a Lip-curve into some EB ;
(2) c is Lip;
(3) ` ◦ c is Lip for all ` ∈ E∗.

For continuous instead of Lipschitz curves we obviously have the analogous impli-
cations (1⇒ 2⇒ 3). However, if we take a non-convergent sequence (xn)n, which
converges weakly to 0 (e.g. take an orthonormal base in a separable Hilbert space),
and consider an infinite polygon c through these points xn, say with c( 1

n ) = xn and
c(0) = 0. Then this curve is obviously not continuous but ` ◦ c is continuous for all
` ∈ E∗.

Furthermore, the “worst” continuous curve - i.e. c : R →
∏
C(R,R) R =: E given

by (c(t))f := f(t) for all t ∈ R and f ∈ C(R,R) - cannot be factored locally as
a continuous curve over some EB . Otherwise, c(tn) would converge into some EB
to c(0), where tn is a given sequence converging to 0, say tn := 1

n . So c(tn) would
converge Mackey to c(0), i.e., there have to be µn →∞ with {µn(c(tn)−c(0)) : n ∈
N} bounded in E. Since a set is bounded in the product if and only if its coordinates
are bounded, we conclude that for all f ∈ C(R,R) the sequence µn(f(tn) − f(0))
has to be bounded. But we can choose a continuous function f with f(0) = 0 and
f(tn) = 1√

µn
and conclude that µn(f(tn)− f(0)) =

√
µn is unbounded.

Similarly, one shows that the reverse implications do not hold for differentiable
curves, for C1-curves and for Cn-curves. However, if we put instead some Lip-
schitz condition on the derivatives, there should be some chance, since this is a
bornological concept. In order to obtain this result, we should study convergence
of sequences in EB .

1.6. Lemma. Mackey-convergence. Let B be a bounded and absolutely convex
subset of E and let (xγ)γ∈Γ be a net in EB. Then the following two conditions are
equivalent:

(1) xγ converges to 0 in the normed space EB;
(2) There exists a net µγ → 0 in R, such that xγ ∈ µγ ·B.

In (2) we may assume that µγ ≥ 0 and is decreasing with respect to γ, at least for
large γ. In the particular case of a sequence (or where we have a confinal countable
subset of Γ) we can choose µγ > 0 for all large γ and hence we may divide.

A net (xγ) for which a bounded absolutely convex B ⊆ E exists, such that xγ
converges to x in EB is called Mackey convergent to x or short M -convergent.

Proof. (⇑) Let xγ = µγ ·bγ with bγ ∈ B and µγ → 0. Then pB(xγ) = |µγ | pB(bγ) ≤
|µγ | → 0, i.e. xγ → 0 in EB .

(⇓) Set µγ := 2 pB(xγ) and bγ := xγ

µγ
if µγ 6= 0 and bγ := 0 otherwise. Then

pB(bγ) = 1
2 or pB(bγ) = 0, so bγ ∈ B. By assumption, µγ → 0 and xγ = µγ bγ .

For the final assertions, choose γ1 such that |µγ | ≤ 1 for γ ≥ γ1, and for those γ we
replace µγ by sup{|µγ′ | : γ′ ≥ γ} ≥ |µγ | ≥ 0 which is decreasing with respect to γ.

If we have a sequence (γn)n∈N which is confinal in Γ, i.e. for every γ ∈ Γ there
exists an n ∈ N with γ ≤ γn, then γ 7→ νγ := 1/min{n : γ ≤ γn} > 0 converges to
0, and we can replace µγ by max{µγ , νγ} > 0. �

If Γ is the ordered set of all countable ordinals, then it is not possible to find a net
(µγ)γ∈Γ, which is positive everywhere and converges to 0, since a converging net is
finally constant.

Andreas Kriegl , Univ.Wien, June 4, 2008 23



1.8 1. Smooth Curves

1.7. The difference quotient converges Mackey. Now we show how to
describe the quality of convergence of the difference quotient.

Corollary. Let c : R→ E be a Lip1-curve. Then the curve

t 7→ 1
t

(c(t)− c(0)
t

− c′(0)
)

is bounded on bounded subsets of R \ {0}.

Proof. We apply 1.4 to c and obtain:

c(t)− c(0)
t

− c′(0) ∈
〈
c′(r) : 0 < |r| < |t|

〉
closed, convex

− c′(0)

=
〈
c′(r)− c′(0) : 0 < |r| < |t|

〉
closed, convex

=
〈
r
c′(r)− c′(0)

r
: 0 < |r| < |t|

〉
closed, convex

Let a > 0. Since { c
′(r)−c′(0)

r : 0 < |r| < a} is bounded and hence contained in a
closed absolutely convex and bounded set B, we can conclude that

1
t

(
c(t)− c(0)

t
− c′(0)

)
∈
〈r
t

c′(r)− c′(0)
r

: 0 < |r| < |t|
〉

closed, convex
⊆ B. �

1.8. Corollary. Smoothness of curves is a bornological concept. For
0 ≤ k < ∞ a curve c in a locally convex vector space E is Lipk if and only if for
each bounded open interval J ⊂ R there exists an absolutely convex bounded set
B ⊆ E such that c|J is a Lipk-curve in the normed space EB.

Attention: A smooth curve factors locally into some EB as a Lipk-curve for each
finite k only, in general. Take the “worst” smooth curve c : R →

∏
C∞(R,R) R,

analogously to 1.5 , and, using Borel’s theorem, deduce from c(k)(0) ∈ EB for all
k ∈ N a contradiction.Details!

Proof. (⇑) This follows from lemma 1.3 , since the inclusion EB → E is continu-
ous.

(⇓) For k = 0 this was shown in 1.5 . For k ≥ 1 take a closed absolutely convex
bounded set B ⊆ E containing all derivatives c(i) on J up to order k as well as their
difference quotients on {(t, s) : t 6= s, t, s ∈ J}. We show first that c is differentiable
in EB , say at 0, with derivative c′(0). By the proof of the previous corollary 1.7 we
have that the expression 1

t (
c(t)−c(0)

t − c′(0)) lies in B. So c(t)−c(0)
t − c′(0) converges

to 0 in EB . For the higher order derivatives we can now proceed by induction. �

A consequence of this is, that smoothness does not depend on the topology but only
on the dual (so all topologies with the same dual have the same smooth curves), and
in fact it depends only on the bounded sets, i.e. the bornology. Since on L(E,F )
there is essentially only one bornology (by the uniform boundedness principle, see
[5, 5.2.2]) there is only one notion of Lipn-curves into L(E,F ). Furthermore, the
class of Lipn-curves doesn’t change if we pass from a given locally convex topology
to its bornologification, see 4.2 , which by definition is the finest locally convex
topology having the same bounded sets.

Let us now return to scalar differentiability. Corollary 1.7 gives us Lipn-ness
provided we have appropriate candidates for the derivatives.
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1.9. Corollary. Scalar testing of curves. Let ck : R → E for k < n + 1 be
curves such that ` ◦ c0 is Lipn and (` ◦ c0)(k) = ` ◦ ck for all k < n + 1 and all
` ∈ E∗. Then c0 is Lipn and (c0)(k) = ck.

Proof. For n = 0 this was shown in 1.5 . For n ≥ 1, by 1.7 applied to ` ◦ c0 we
have that

`

(
1
t

(
c0(t)− c0(0)

t
− c1(0)

))
is locally bounded, and hence by [5, 5.2.7] the set{

1
t

(
c0(t)− c0(0)

t
− c1(0)

)
: t ∈ I

}
is bounded. Thus c0(t)−c0(0)

t converges even Mackey to c1(0). Now the general
statement follows by induction. �

2. Completeness

Do we really need the knowledge of a candidate for the derivative, as in 1.9 ? In
finite dimensional analysis one often uses the Cauchy condition to prove conver-
gence. Here we will replace the Cauchy condition again by a stronger condition,
which provides information about the quality of being Cauchy:

A net (xγ)γ∈Γ in E is called Mackey-Cauchy provided that there exist a bounded
(absolutely convex) set B and a net (µγ,γ′)(γ,γ′)∈Γ×Γ in R converging to 0, such
that xγ − xγ′ ∈ µγ,γ′ B. As in 1.6 one shows that for a net xγ in EB this is
equivalent to the condition that xγ is Cauchy in the normed space EB .

2.1. Lemma. The difference quotient is Mackey-Cauchy. Let c : R→ E be
scalarly a Lip1-curve. Then t 7→ c(t)−c(0)

t is a Mackey-Cauchy net for t→ 0.

Proof. For Lip1-curves this is a immediate consequence of 1.7 but we only as-

sume it to be scalarly Lip1. It is enough to show that 1
t−s

(
c(t)−c(0)

t − c(s)−c(0)
s

)
is

bounded on bounded subsets in R \ {0}. We may test this with continuous linear
functionals, and hence may assume that E = R. Then by the fundamental theorem
of calculus we have

1
t− s

(
c(t)− c(0)

t
− c(s)− c(0)

s

)
=
∫ 1

0

c′(tr)− c′(sr)
t− s

dr

=
∫ 1

0

c′(tr)− c′(sr)
tr − sr

r dr.

Since c′(tr)−c′(sr)
tr−sr is locally bounded by assumption, the same is true for the integral,

and we are done. �

2.2. Lemma. Mackey Completeness. For a space E the following conditions
are equivalent:

(1) Every Mackey-Cauchy net converges in E;
(2) Every Mackey-Cauchy sequence converges in E;
(3) For every absolutely convex closed bounded set B the space EB is complete;
(4) For every bounded set B there exists an absolutely convex bounded set

B′ ⊇ B such that EB′ is complete.
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A space satisfying the equivalent conditions is called Mackey complete. Note that a
sequentially complete space is Mackey complete.

Proof. ( 1 ) ⇒ ( 2 ), and ( 3 ) ⇒ ( 4 ) are trivial.

( 2 ) ⇒ ( 3 ) Since EB is normed, it is enough to show sequential completeness.
So let (xn) be a Cauchy sequence in EB . Then (xn) is Mackey-Cauchy in E and
hence converges in E to some point x. Since pB(xn − xm) → 0 there exists for
every ε > 0 an N ∈ N such that for all n,m ≥ N we have pB(xn − xm) < ε, and
hence xn − xm ∈ εB. Taking the limit for m → ∞, and using closedness of B we
conclude that xn− x ∈ εB for all n > N . In particular x ∈ EB and xn → x in EB .

( 4 ) ⇒ ( 1 ) Let (xγ)γ∈Γ be a Mackey-Cauchy net in E. So there is some net
µγ,γ′ → 0, such that xγ−xγ′ ∈ µγ,γ′ B for some bounded set B. Let γ0 be arbitrary.
By (4) we may assume that B is absolutely convex and contains xγ0 , and that EB
is complete. For γ ∈ Γ we have that xγ = xγ0 + xγ − xγ0 ∈ xγ0 + µγ,γ0 B ∈ EB ,
and pB(xγ − xγ′) ≤ µγ,γ′ → 0. So (xγ) is a Cauchy net in EB , hence converges in
EB , and thus also in E. �

2.3. Corollary. Scalar testing of differentiable curves. Let E be Mackey
complete and c : R → E be a curve for which ` ◦ c is Lipn for all ` ∈ E∗. Then c
is Lipn.

Proof. For n = 0 this was shown in 1.5 without using any completeness, so let
n ≥ 1. Since we have shown in 2.1 that the difference quotient is a Mackey-Cauchy
net we conclude that the derivative c′ exists, and hence (` ◦ c)′ = ` ◦ c′. So we may
apply the induction hypothesis to conclude that c′ is Lipn−1, and consequently c is
Lipn. �

Next we turn to integration. For continuous curves c : [0, 1] → E one can show
completely analogously to 1-dimensional analysis that the Riemann sums R(c,Z, ξ),
defined by

∑
k(tk − tk−1)c(ξk), where 0 = t0 < t1 < · · · < tn = 1 is a partition

Z of [0, 1] and ξk ∈ [tk−1, tk], form a Cauchy net with respect to the partial strict
ordering given by the size of the mesh max{|tk − tk−1| : 0 < k < n}. So under
the assumption of sequential completeness we have a Riemann integral of curves.
A second way to see this is the following reduction to the 1-dimensional case.

2.4. Lemma. Let L(E∗equi,R) be the space of all linear functionals on E∗ which are
bounded on equicontinuous sets, equipped with the complete locally convex topology
of uniform convergence on these sets. There is a natural topological embedding
δ : E → L(E∗equi,R) given by δ(x)(`) := `(x).

Proof. The space L(E∗equi,R) is complete, since this is true for the space of all
bounded mappings (see 2.15 ) in which it is obviously closed.

Let U be a basis of absolutely convex closed 0-neighborhoods in E. Then the family
of polars Uo := {` ∈ E∗ : |`(x)| ≤ 1 for all x ∈ U}, with U ∈ U form a basis for
the equicontinuous sets, and hence the bipolars Uoo := {`∗ ∈ L(E∗equi,R) : |`∗(`)| ≤
1 for all ` ∈ Uo} form a basis of 0-neighborhoods in L(E∗equi,R). By the bipolar
theorem [5, 7.4.7] we have U = δ−1(Uoo) for all U ∈ U . This shows that δ is a
homeomorphism onto its image. �

2.5. Lemma. Integral of continuous curves. Let c : R → E be a continuous
curve in a locally convex vector space. Then there is a unique differentiable curve∫
c : R→ Ê in the completion Ê of E such that (

∫
c)(0) = 0 and (

∫
c)′ = c.

26 Andreas Kriegl , Univ.Wien, June 4, 2008



2. Completeness 2.6

Proof. We show uniqueness first. Let c1 : R→ Ê be a curve with derivative c and
c1(0) = 0. For every ` ∈ E∗ the composite ` ◦ c1 is an anti-derivative of ` ◦ c with
initial value 0, so it is uniquely determined, and since E∗ separates points c1 is also
uniquely determined.

Now we show the existence. By the previous lemma we have that Ê is (isomorphic
to) the closure of E in the obviously complete space L(E∗equi,R). We define (

∫
c)(t) :

E∗ → R by ` 7→
∫ t
0
(` ◦ c)(s)ds. It is a bounded linear functional on E∗equi since for

an equicontinuous and hence bounded subset E ⊆ E∗ the set {(` ◦ c)(s) : ` ∈ E , s ∈
[0, t]} is bounded. So

∫
c : R→ L(E∗equi,R). NewLect:Mo/Di

Now we show that
∫
c is differentiable with derivative δ ◦ c.(

(
∫
c)(t+ r)− (

∫
c)(r)

t
− (δ ◦ c)(r)

)
(`) =

=
1
t

(∫ t+r

0

(` ◦ c)(s)ds−
∫ r

0

(` ◦ c)(s)ds− t(` ◦ c)(r)
)

=

=
1
t

∫ r+t

r

(
(` ◦ c)(s)− (` ◦ c)(r)

)
ds =

∫ 1

0

`
(
c(r + ts)− c(r)

)
ds.

Let E ⊆ E∗ be equicontinuous, and let ε > 0. Then there exists a neighborhood U
of 0 such that |`(U)| < ε for all ` ∈ E . For sufficiently small t, all s ∈ [0, 1] and fixed
r we have c(r + ts)− c(r) ∈ U . So |

∫ 1

0
`(c(r + ts)− c(r))ds| < ε. This shows that

the difference quotient of
∫
c at r converges to δ(c(r)) uniformly on equicontinuous

subsets.

It remains to show that (
∫
c)(t) ∈ Ê. By the mean value theorem 1.4 the difference

quotient 1
t ((
∫
c)(t)− (

∫
c)(0)) is contained in the closed convex hull in L(E∗equi,R)

of the subset {c(s) = (
∫
c)′(s) : 0 < s < t} of E. So it lies in Ê. �

Definition of the integral. For continuous curves c : R→ E the definite integral∫ b
a
c ∈ Ê is given by

∫ b
a
c = (

∫
c)(b)− (

∫
c)(a).

2.6. Corollary. Basics on the integral. For a continuous curve c : R→ E we
have:

(1) `(
∫ b
a
c) =

∫ b
a
(` ◦ c) for all ` ∈ E∗.

(2)
∫ b
a
c+

∫ d
b
c =

∫ d
a
c.

(3)
∫ b
a
(c ◦ ϕ)ϕ′ =

∫ ϕ(b)

ϕ(a)
c for ϕ ∈ C1(R,R).

(4)
∫ b
a
c lies in the closed convex hull in Ê of the set

{(b− a)c(t) : a < t < b} in E.
(5)

∫ b
a

: C(R, E)→ Ê is linear.
(6) (Fundamental theorem of calculus.) For each C1-curve c : R→ E we have

c(s)− c(t) =
∫ s
t
c′. �

We are mainly interested in smooth curves and we can test for this by applying linear
functionals if the space is Mackey complete, see 2.3 . So let us try to show that
the integral for such curves lies in E if E is Mackey-complete. So let c : [0, 1]→ E
be a smooth or just a Lip-curve, and take a partition Z with mesh µ(Z) at most
δ. If we have a second partition, then we can take the common refinement. Let
[a, b] be one interval of the original partition with intermediate point t, and let

Andreas Kriegl , Univ.Wien, June 4, 2008 27
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a = t0 < t1 < · · · < tn = b be the refinement. Note that |b − a| ≤ δ and hence
|t− tk| ≤ δ. Then we can estimate as follows.

(b− a) c(t)−
∑
k

(tk − tk−1)c(tk) =
∑
k

(tk − tk−1) (c(t)− c(tk)) =
∑
k

µkbk,

where bk := c(t)−c(tk)
δ is contained in the absolutely convex Lipschitz bound

B :=
〈{

c(t)− c(s)
t− s

: t, s ∈ [0, 1]
}〉

abs.conv

of c and µk := (tk−tk−1)δ ≥ 0 and satisfies
∑
k µk = (b−a)δ. Hence we have for the

Riemann sums with respect to the original partition Z1 and the refinement Z ′ that
R(c,Z1)−R(c,Z ′) lies in δ ·B. So R(c,Z1)−R(c,Z2) ∈ 2δB for any two partitions
Z1 and Z2 of mesh at most δ, i.e. the Riemann sums form a Mackey-Cauchy net
with coefficients µZ1,Z2 := 2 max{µ(Z1), µ(Z2)} and we have proved:

2.7. Proposition. Integral of Lipschitz curves. Let c : [0, 1] → E be a
Lipschitz curve into a Mackey complete space. Then the Riemann integral exists in
E as (Mackey)-limit of the Riemann sums. �

2.8. Now we have to discuss the relationship between differentiable curves and
Mackey convergent sequences. Recall that a sequence (xn) converges if and only if
there exists a continuous curve c (e.g. a reparameterization of the infinite polygon)
and tn ↘ 0 with c(tn) = xn. The corresponding result for smooth curves uses the
following notion.

Definition. We say that a sequence xn in a locally convex space E converges
fast to x in E, or falls fast towards x, if for each k ∈ N the sequence nk(xn − x) is
bounded.

Special curve lemma. Let xn be a sequence which converges fast to x in E.

Then the infinite polygon through the xn can be parameterized as a smooth curve
c : R→ E such that c( 1

n ) = xn and c(0) = x.

Proof. Let ϕ : R→ [0, 1] be a smooth function, which is 0 on {t : t ≤ 0} and 1 on
{t : t ≥ 1}. The parameterization c is defined as follows:

c(t) :=


x for t ≤ 0,

xn+1 + ϕ
(
t− 1

n+1
1
n−

1
n+1

)
(xn − xn+1) for 1

n+1 ≤ t ≤
1
n ,

x1 for t ≥ 1

.

Obviously, c is smooth on R \ {0}, and the p-th derivative of c for 1
n+1 ≤ t ≤ 1

n is
given by

c(p)(t) = ϕ(p)

(
t− 1

n+1
1
n −

1
n+1

)
(n(n+ 1))p(xn − xn+1).

Since xn converges fast to x, we have that c(p)(t) → 0 for t → 0, because the first
factor is bounded and the second goes to zero. Hence c is smooth on R, by the
following lemma. �

2.9. Lemma. Differentiable extension to an isolated point. Let c : R→ E
be continuous and differentiable on R \ {0}, and assume that the derivative c′ :
R \ {0} → E has a continuous extension to R. Then c is differentiable at 0 and
c′(0) = limt→0 c

′(t).
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Proof. Let a := limt→0 c
′(t). By the mean value theorem 1.4 we have c(t)−c(0)

t ∈
〈c′(s) : 0 6= |s| ≤ |t|〉closed, convex. Since c′ is assumed to be continuously extendable
to 0 we have that for any closed convex 0-neighborhood U there exists a δ > 0 such
that c′(t) ∈ a+ U for all 0 < |t| ≤ δ. Hence c(t)−c(0)

t − a ∈ U , i.e. c′(0) = a. �

The next result shows that we can pass through certain sequences xn → x even
with given velocities vn → 0.

2.10. Corollary. If xn → x fast and vn → 0 fast in E, then there exist a smoothly
parameterized polygon c : R → E and tn → 0 in R such that c(tn + t) = xn + tvn
for t in a neighborhood of 0 depending on n.

Proof. Consider the sequence yn defined by

y2n := xn + 1
4n(2n+1)vn and y2n+1 := xn − 1

4n(2n+1)vn.

It is easy to show that yn converges fast to x, and the parameterization c of the
polygon through the yn (using a function ϕ which satisfies ϕ(t) = t for t near 1/2)
has the claimed properties, where

tn := 4n+1
4n(2n+1) =

1
2

(
1
2n

+
1

2n+ 1

)
. �

As first application 2.10 we can give the following sharpening of 1.3 .

2.11. Corollary. Bounded linear maps. A linear mapping ` : E → F between
locally convex vector spaces is bounded (or bornological), i.e. it maps bounded sets
to bounded ones, if and only if it maps smooth curves in E to smooth curves in F .

Proof. As in the proof of 1.3 one shows using 1.7 that a bounded linear map
preserves Lipk-curves. Conversely, assume that a linear map f : E → F carries
smooth curves to locally bounded curves. Take a bounded set B, and assume that
f(B) is unbounded. Then there is a sequence (bn) in B and some λ ∈ F ′ such
that |(λ ◦ f)(bn)| ≥ nn+1. The sequence (n−nbn) converges fast to 0, hence lies on
some compact part of a smooth curve by 2.8 . Consequently, (λ ◦ f)(n−nbn) =
n−n(λ ◦ f)(bn) is bounded, a contradiction. �

2.12. Definition. The c∞-topology on a locally convex space E is the final topol- Motivate
ogy with respect to all smooth curves R→ E. Its open sets will be called c∞-open.
We will treat this topology in more detail in section 4 : In general it describes
neither a topological vector space 4.20 and 4.26 , nor a uniform structure 4.27 .
However, by 4.4 and 4.6 the finest locally convex topology coarser than the
c∞-topology is the bornologification of the locally convex topology.

Let (µn) be a sequence of real numbers converging to ∞. Then a sequence (xn) in
E is called µ-converging to x if the sequence (µn(xn − x)) is bounded in E.

2.13. Theorem. c∞-open subsets. Let µn → ∞ be a real valued sequence and
k ∈ N∞. Then a subset U ⊆ E is open for the c∞-topology if it satisfies any of the
following equivalent conditions:

(1) All inverse images under Lipk-curves are open in R;
(2) All inverse images under µ-converging sequences are open in N∞;
(3) The traces to EB are open in EB for all absolutely convex bounded subsets

B ⊆ E.
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2.14 2. Completeness

Note that for closed subsets an equivalent statement reads as follows: A set A is c∞-
closed if and only if for every sequence xn ∈ A, which is µ-converging (respectively
M -converging, resp. fast falling) towards x, the point x belongs to A.

The topology described in ( 2 ) is also called Mackey-closure topology. It is not the
Mackey topology discussed in duality theory.

Proof. ( 1 ) ⇒ ( 2 ) Suppose (xn) is µ-converging to x ∈ U , but xn /∈ U for
infinitely many n. Then we may choose a subsequence again denoted by (xn),
which is fast falling to x, hence lies on some compact part of a smooth curve c as
described in 2.8 . Then c( 1

n ) = xn /∈ U but c(0) = x ∈ U . This is a contradiction.

( 2 ) ⇒ ( 3 ) A sequence (xn), which converges in EB to x with respect to pB ,
is Mackey convergent, hence has a µ-converging subsequence. Note that EB is
normed, and hence it is enough to consider sequences.

( 3 ) ⇒ ( 1 ) Let c : R → E be Lip. By 1.5 c factors locally as continuous curve
over some EB , hence c−1(U) is open. �

Let us show next that the c∞-topology and c∞-completeness are intimately related.

2.14. Theorem. Convenient vector spaces. Let E be a locally convex vector
space. E is said to be c∞-complete or convenient if one of the following equivalent
(completeness) conditions is satisfied:

(1) Any Lipschitz curve in E is locally Riemann integrable.
(2) For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c′2 = c1 (existence of

an anti-derivative).
(3) E is c∞-closed in any locally convex space.
(4) If c : R → E is a curve such that ` ◦ c : R → R is smooth for all ` ∈ E∗,

then c is smooth.
(5) Any Mackey-Cauchy sequence converges; i.e. E is Mackey complete, see

2.2 .
(6) If B is bounded closed absolutely convex, then EB is a Banach space. This

property is called locally complete in [Jarchow, 1981, p196].
(7) Any continuous linear mapping from a normed space into E has a contin-

uous extension to the completion of the normed space.

Condition ( 4 ) says that in a convenient vector space one can recognize smooth
curves by investigating compositions with continuous linear functionals. Condition
( 5 ) and ( 6 ) say via 2.2.4 that c∞-completeness is a bornological concept. In
[Frölicher, Kriegl, 1988] a convenient vector space is always considered with its
bornological topology — an equivalent but not isomorphic category.

Proof. In 2.3 we showed ( 5 )⇒ ( 4 ), in 2.7 we got ( 5 )⇒ ( 1 ), and in 2.2
we had ( 5 )⇒ ( 6 ).

( 1 ) ⇒ ( 2 ) A smooth curve is Lipschitz, thus locally Riemann integrable. By
2.6.1 the indefinite Riemann integral equals the “weakly defined” integral of

lemma 2.5 , hence is an anti-derivative.

( 2 ) ⇒ ( 3 ) Let E be a topological linear subspace of F . To show that E is c∞-
closed we use 2.13 . Let xn → x∞ be fast falling, xn ∈ E but x∞ ∈ F . By 2.8
the polygon c through (xn) can be smoothly symmetrically parameterized in F .
Hence c′ is smooth and has values in the vector space generated by {xn : n 6=∞},
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which is contained in E. Its anti-derivative c2 is up to a constant equal to c, and
by ( 2 ) x1 − x∞ = c(1)− c(0) = c2(1)− c2(0) lies in E. So x∞ ∈ E.

( 4 ) ⇒ ( 3 ) Let E be a topological linear subspace of F as before. We use again
2.13 in order to show that E is c∞-closed in F . So let xn → x∞ be fast falling,
xn ∈ E for n 6= 0, but x∞ ∈ F . By 2.8 the polygon c through (xn) can be
smoothly symmetrically parameterized in F , and c(t) ∈ E for t 6= 0. We consider
c̃(t) := tc(t). This is a curve in E which is smooth in F , so it is scalarwise smooth
in E, thus smooth in E by (4). Then x∞ = c̃′(0) ∈ E.

( 3 ) ⇒ ( 5 ) Let F be the completion Ê of E. Any Mackey Cauchy sequence in E
has a limit in F , and since E is by assumption c∞-closed in F the limit lies in E.
Hence, the sequence converges in E.

( 6 ) ⇒ ( 7 ) Let f : F → E be a continuous mapping on a normed space F . Since
the image of the unit ball is bounded, it is a bounded mapping into EB for some
closed absolutely convex B. But into EB it can be extended to the completion,
since EB is complete.

( 7 ) ⇒ ( 1 ) Let c : R → E be a Lipschitz curve. Then c is locally a continuous
curve into EB for some absolutely convex bounded set B by 1.5 . The inclusion of
EB into E has a continuous extension to the completion of EB , and c is Riemann
integrable in this Banach space, so also in E. � NewLect: Do/Mo

2.15. Theorem. Inheritance of c∞-completeness. The following construc-
tions preserve c∞-completeness: limits, direct sums, strict inductive limits of se-
quences of closed embeddings, as well as formation of `∞(X, ), where X is a set
together with a family B of subsets of X containing the finite ones, which are called
bounded and `∞(X,F ) denotes the space of all functions f : X → F , which are
bounded on all B ∈ B, supplied with the topology of uniform convergence on the
sets in B.

Note that the definition of the topology of uniform convergence as initial topology
shows, that adding all subsets of finite unions of elements in B to B does not change
this topology. Hence, we may always assume that B has this stability property; this
is the concept of a bornology on a set.

Proof. The projective limit [5, 4.8.1] of a functor F is the c∞-closed linear Appendix: lim,
colimsubspace {

(xα) ∈
∏
F(α) : F(f)xα = xβ for all f : α→ β

}
,

hence is c∞-complete, since the product of c∞-complete factors is obviously c∞-
complete.

Since the coproduct [5, 4.6.1] of spaces Xα is the topological direct sum, and has
as bounded sets those which are contained and bounded in some finite subproduct,
it is c∞-complete if all factors are.

For colimits this is in general not true. For strict inductive limits of sequences of
closed embeddings it is true, since bounded sets are contained and bounded in some
step, see [5, 4.8.1].

For the result on `∞(X,F ) we consider first the case, where X itself is bounded.
Then c∞-completeness can be proved as in [5, 3.2.3] or reduced to this result.
In fact let B be bounded in `∞(X,F ). Then B(X) is bounded in F and hence
contained in some absolutely convex bounded set B, for which FB is a Banach
space. So we may assume that B := {f ∈ `∞(X,F ) : f(X) ⊆ B}. The space

Andreas Kriegl , Univ.Wien, June 4, 2008 31



3.2 2. Completeness

`∞(X,F )B is just the space `∞(X,FB) with the supremum norm, which is a Banach
space by [5, 3.2.3]. In fact, we have the implications

‖f‖∞ := sup{pB(f(x)) : x ∈ X} < λ⇒ f(x)
λ
∈ B∀x ∈ X

⇒ pB

(
f(x)
λ

)
≤ 1∀x ∈ X ⇒ ‖f‖∞ ≤ λ,

i.e.
{λ : ‖f‖∞ < λ} ⊆ {λ : f ∈ λB} ⊆ {λ : ‖f‖∞ ≤ λ}

and hence

inf{λ : ‖f‖∞ < λ}︸ ︷︷ ︸
=‖f‖∞

≥ inf{λ : f ∈ λB}︸ ︷︷ ︸
=pB(f)

≥ inf{λ : ‖f‖∞ ≤ λ}︸ ︷︷ ︸
=‖f‖∞

.

Let now X and B be arbitrary. Then the restriction maps `∞(X,F ) → `∞(B,F )
give an embedding ι of `∞(X,F ) into the product

∏
B∈B `

∞(B,F ). Since this
product is complete, by what we have shown above, it is enough to show that this
embedding has a closed image. So let fα|B converge to some fB in `∞(B,F ).
Define f(x) := f{x}(x). For any B ∈ B containing x we have that fB(x) =
(limα fα|B)(x) = limα(fα(x)) = limα fα|{x} = f{x}(x) = f(x), and f(B) is boun-
ded for all B ∈ B, since f |B = fB ∈ `∞(B,F ). �

Example. In general, a quotient and an inductive limit of c∞-complete spaces
need not be c∞-complete. In fact, let ED := {x ∈ RN : suppx ⊆ D} for any
subset D ⊆ N of density densD := lim sup{ |D∩[1,n]|

n } = 0. It can be shown thatCITAT
E :=

⋃
densD=0ED ⊂ RN is the inductive limit of the Fréchet subspaces ED ∼= RD.

It cannot be c∞-complete, since finite sequences are contained in E and are dense
in RN ⊃ E.

3. Smooth Mappings and the Exponential Law

A particular case of the exponential law for continuous mappings is the following

3.1. Lemma. A map f : R2 → R is continuous if and only if the associated
mapping f∨ : R→ C(R,R) is continuous, where C(R,R) carries the usual Fréchet-
topology of uniform convergence on compact subsets of R.

Proof. (⇒) Obviously f∨ has values f∨(t) : s 7→ f(t, s) in C(R,R). It is con-
tinuous, since for t0 ∈ R, compact J ⊆ R and ε > 0 there is a δ > 0 such that
|f(t, s)− f(t0, s)| < ε for all |t− t0| < δ and s ∈ I, i.e. ‖(f∨(t)− f∨(t0))|J‖∞ ≤ ε
for |t− t0| < δ.

(⇐) Let (t0, s0) ∈ R2 and ε > 0 and choose a compact neighborhood J of s0 such
that |f∨(t0)(s)−f∨(t0)(s0)| < ε for all s ∈ J . Since f∨ is assumed to be continuous
there exists a δ > 0 auch that ‖(f∨(t)− f∨(t0))|J‖∞ ≤ ε for |t− t0| < δ, and hence

|f(t, s)− f(t0, s0)| ≤ |f∨(t)(s)− f∨(t0)(s)|+ |f∨(t0)(s)− f∨(t0)(s0)| ≤ 2ε

for all |t− t0| < δ and all s ∈ J . �

Now let us start proving the exponential law C∞(U × V, F ) ∼= C∞(U,C∞(V, F ))
first for U = V = F = R.

3.2. Theorem. Simplest case of exponential law. Let f : R2 → R be an
arbitrary mapping. Then all iterated partial derivatives exist and are continuous if
and only if the associated mapping f∨ : R → C∞(R,R) exists as a smooth curve,
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where C∞(R,R) is considered as the Fréchet space with the topology of uniform
convergence of each derivative on compact sets. Furthermore, we have (∂1f)∨ =
d(f∨) and (∂2f)∨ = d ◦ f∨ = d∗(f∨).

Proof. We have several possibilities to prove this result. Either we show Mackey
convergence of the difference quotients, via the boundedness of 1

t

(
c(t)−c(0)

t − c′(0)
)
,

and then use the trivial exponential law `∞(X×Y,R) ∼= `∞(X, `∞(Y,R)); or we use
exponential law C(R2,R) ∼= C(R, C(R,R)) of 3.1 . We choose the latter method.

Proof of (⇐) Let g := f∨ : R → C∞(R,R) be smooth. Then both curves dg and
d ◦ g = d∗g are smooth (use 1.3 and that d is continuous and linear). An easy
calculation shows that the partial derivatives of f = g∧ exist and are given by
∂1g

∧ = (dg)∧ and ∂2g
∧ = (d ◦ g)∧. So one obtains inductively that all iterated

derivatives of f exist and are continuous by 3.1 , since they are associated to
smooth curves R→ C∞(R,R)→ C(R,R).

Proof of (⇒) First observe that f∨ : R → C∞(R,R) makes sense and that for all
t ∈ R we have

dp(f∨(t)) = (∂p2f)∨(t).

Next we claim that f∨ : R → C∞(R,R) is differentiable, with derivative d(f∨) =
(∂1f)∨, or equivalently that for all a the curve

c : t 7→

{
f∨(t+a)−f∨(a)

t for t 6= 0
(∂1f)∨(a) otherwise

is continuous (at 0) as curve R → C∞(R,R). Without loss of generality we may
assume that a = 0. Since C∞(R,R) carries the initial structure with respect to the
linear mappings dp : C∞(R,R)→ C(R,R) we have to show that dp◦c : R→ C(R,R)
is continuous, or equivalently by the exponential law for continuous maps, that
(dp ◦ c)∧ : R2 → R is continuous. For t 6= 0 and s ∈ R we have

(dp ◦ c)∧(t, s) = dp(c(t))(s) = dp
(
f∨(t)− f∨(0)

t

)
(s)

=
∂p2f(t, s)− ∂p2f(0, s)

t
by ( 1 )

=
∫ 1

0

∂1∂
p
2f(t τ, s) dτ by the fundamental theorem.

For t = 0 we have

(dp ◦ c)∧(0, s) = dp(c(0))(s) = dp((∂1f)∨(0))(s)

= (∂p2 (∂1f))∨(0)(s) by ( 1 )

= ∂p2∂1f(0, s)

= ∂1∂
p
2f(0, s) by the theorem of Schwarz.

So we see that (dp ◦ c)∧(t, s) =
∫ 1

0
∂1∂

p
2f(t τ, s) dτ for all (t, s). This function

is continuous in (t, s), since ∂1∂
p
2f : R2 → R is assumed to be continuous, hence

(t, s, τ) 7→ ∂1∂
p
2f(t τ, s) is continuous, and therefore also (t, s) 7→ (τ 7→ ∂1∂

p
2f(t τ, s))

from R2 → C([0, 1],R) by 3.1 . Composition with the continuous linear mapping∫ 1

0
: C([0, 1],R)→ R gives the continuity of (dp ◦ c)∧.

Now we proceed by induction. By the induction hypothesis applied to ∂1f , we
obtain that d(f∨) = (∂1f)∨ and (∂1f)∨ : R → C∞(R,R) is n times differentiable,
so f∨ is (n+ 1)-times differentiable. �

Andreas Kriegl , Univ.Wien, June 4, 2008 33



3.3 3. Smooth Mappings and the Exponential Law

In order to proceed to more general cases of the exponential law we need a definition
of C∞-maps defined on infinite dimensional spaces. This definition should at least
guarantee the chain rule, and so one could take the weakest notion that satisfies
the chain rule. However, consider the following

3.3. Example. We consider the following 3-fold “singular covering” f : R2 → R2

given in polar coordinates by (r, ϕ) 7→ (r, 3ϕ). In cartesian coordinates we obtain
the following formula for the values of f :NewLect: Do/Mo

(r cos(3ϕ), r sin(3ϕ)) = r
(
(cosϕ)3 − 3 cosϕ(sinϕ)2, 3 sinϕ(cosϕ)2 − (sinϕ)3

)
=
(
x3 − 3xy2

x2 + y2
,
3x2y − y3

x2 + y2

)
.

Note that the composite from the left with any orthonormal projection is just the
composite of the first component of f with a rotation from the right (Use that f
intertwines the rotation with angle δ and the rotation with angle 3δ).
Obviously, the map f is smooth on R2 \ {0}. It is homogeneous of degree 1, and
hence the directional derivative is f ′(0)(v) = ∂

∂t |t=0f(tv) = f(v). However, both
components are nonlinear with respect to v and thus are not differentiable at (0, 0).

Obviously, f : R2 → R2 is continuous.

We claim that f is differentiable along differentiable curves, i.e. (f ◦ c)′(0) exists,
provided c′(0) exists.
Only the case c(0) = 0 is not trivial. Since c is differentiable at 0 the curve c1
defined by c1(t) := c(t)

t for t 6= 0 and c′(0) for t = 0 is continuous at 0. Hence
f(c(t))−f(c(0))

t = f(t c1(t))−0
t = f(c1(t)). This converges to f(c1(0)), since f is con-

tinuous.

Furthermore, if f ′(x)(v) denotes the directional derivative, which exists everywhere,
then (f ◦ c)′(t) = f ′(c(t))(c′(t)). Indeed for c(t) 6= 0 this is clear and for c(t) = 0 it
follows from f ′(0)(v) = f(v).

The directional derivative of the 1-homogeneous mapping f is 0-homogeneous: In
fact, for s 6= 0 we have

f ′(sx)(v) =
∂

∂t

∣∣∣∣
t=0

f(s x+ tv) = s
∂

∂t

∣∣∣∣
t=0

f(x+
t

s
v) = s f ′(x)(

1
s
v) = f ′(x)(v).

For any s ∈ R we have f ′(s v)(v) = ∂
∂t |t=0f(s v + tv) = ∂

∂t |t=st f(v) = f(v).

Using this homogeneity we show next, that it is also continuously differentiable
along continuously differentiable curves. So we have to show that (f ◦ c)′(t) →
(f ◦ c)′(0) for t → 0. Again only the case c(0) = 0 is interesting. As before we
factor c as c(t) = t c1(t). In the case, where c′(0) = c1(0) 6= 0 we have for t 6= 0
that

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(t c1(t))(c′(t))− f ′(0)(c1(0))

= f ′(c1(t))(c′(t))− f ′(c1(0))(c1(0))

= f ′(c1(t))(c′(t))− f ′(c1(0))(c′(0)),

which converges to 0 for t → 0, since (f ′)∧ is continuous (and even smooth) on
(R2 \ {0})× R2.
In the other case, where c′(0) = c1(0) = 0 we consider first the values of t, for which
c(t) = 0. Then

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(0)(c′(t))− f ′(0)(c′(0))

= f(c′(t))− f(c′(0))→ 0,
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since f is continuous. For the remaining values of t, where c(t) 6= 0, we factor
c(t) = ‖c(t)‖ e(t), with e(t) ∈ {x : ‖x‖ = 1}. Then

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(e(t))(c′(t))− 0→ 0,

since f ′(x)(c′(t))→ 0 for t→ 0 uniformly for ‖x‖ = 1, since c′(t)→ 0.

Furthermore, f ◦ c is smooth for all c which are smooth and nowhere infinitely
flat. In fact, a smooth curve c with c(k)(0) = 0 for k < n can be factored as
c(t) = tncn(t) with smooth cn, by Taylor’s formula with integral remainder. Since
c(n)(0) = n! cn(0), we may assume that n is chosen maximal and hence cn(0) 6= 0.
But then (f ◦ c)(t) = tn · (f ◦ cn)(t), and f ◦ cn is smooth.

A completely analogous argument shows also that f ◦ c is real analytic for all real
analytic curves c : R→ R2.

However, let us show that f ◦c is not Lipschitz differentiable even for smooth curves
c. For x 6= 0 we have

(∂2)2f(x, 0) =
(
∂
∂s

)2 |s=0f(x, s) = x
(
∂
∂s

)2 |s=0f(1, 1
xs) =

= 1
x

(
∂
∂s

)2 |s=0f(1, s) =: ax 6= 0.

Now we choose a smooth curve c which passes for each n in finite time tn through
( 1
n2n+1 , 0) with locally constant velocity vector (0, 1

nn ), by 2.10 . Then for small t
we get

(f ◦ c)′(tn + t) = ∂1f(c(tn + t)) pr1(c
′(tn + t))︸ ︷︷ ︸
=0

+∂2f(c(tn + t)) pr2(c
′(tn + t))

(f ◦ c)′′(tn) = 0 + (∂2)2f(c(tn)) (pr2(c
′(tn)))2 = a

n2n+1

n2n
= na,

which is unbounded.

So although preservation of (continuous) differentiability of curves is not enough to
ensure differentiability of a function R2 → R, we now prove that smoothness can
be tested with smooth curves.

3.4. Boman’s theorem. [Boman, 1967] For a mapping f : R2 → R the following
assertions are equivalent:

(1) All iterated partial derivatives exist and are continuous.
(2) For v ∈ R2 the iterated directional derivatives

dnvf(x) := ( ∂∂t )
n|t=0(f(x+ tv))

exist and are continuous with respect to x.
(3) For v ∈ R2 the iterated directional derivatives

dnvf(x) := ( ∂∂t )
n|t=0(f(x+ tv))

exist and are locally bounded with respect to x.
(4) For all smooth curves c : R→ R2 the composite f ◦ c is smooth.

Proof.

( 1 ) ⇒ ( 4 ) is a direct consequence of the classical chain rule, namely that (f ◦
c)′(t) = ∂1f(c(t)) · x′(t) + ∂2f(c(t)) · y′(t), where c = (x, y).

( 4 ) ⇒ ( 3 ) Obviously, dpvf(x) := ( ddt )
p|t=0f(x + tv) exists, since t 7→ x + tv is

a smooth curve. Suppose dpvf is not locally bounded. So we may find a sequence
xn which converges fast to x, and such that |dpvf(xn)| ≥ 2n

2
. Let c be a smooth
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3.5 3. Smooth Mappings and the Exponential Law

curve with c(t + tn) = xn + t
2n v locally for some sequence tn → 0, by 2.8 . Then

(f ◦ c)(p)(tn) = dpvf(xn) 1
2np is unbounded, which is a contradiction.

( 3 ) ⇒ ( 2 ) We prove this by induction on p:

dpvf( +tv)− dpvf( ) = t

∫ 1

0

dp+1
v f( +tτv)dτ → 0

for t → 0 uniformly on bounded sets. Suppose now that |dpvf(xn) − dpvf(x)| ≥
ε for some sequence xn → x. Without loss of generality we may assume that
dpvf(xn)− dpvf(x) ≥ ε. Then by the uniform convergence there exists a δ > 0 such
that dpvf(xn + tv)− dpvf(x+ tv) ≥ ε

2 for |t| ≤ δ. Integration
∫ δ
0
dt yields(

dp−1
v f(xn + δv)− dp−1

v f(xn)
)
−
(
dp−1
v f(x+ δv)− dp−1

v f(x)
)
≥ εδ

2 ,

but by induction hypothesis the left hand side converges towards(
dp−1
v f(x+ δv)− dp−1

v f(x)
)
−
(
dp−1
v f(x+ δv)− dp−1

v f(x)
)

= 0.

( 2 ) ⇒ ( 1 ) We remark now that for a smooth map g : R2 → R we have by the
chain rule

dvg(x+ tv) =
d

dt
g(x+ tv) = ∂1g(x+ tv) · v1 + ∂2g(x+ tv) · v2

and by induction that

dpvg(x) =
p∑
i=0

(
p

i

)
vi1v

p−i
2 ∂i1∂

p−i
2 g(x).

Hence, we can calculate the iterated derivatives ∂i1∂
p−i
2 g(x) for 0 ≤ i ≤ p from

p+ 1 many derivatives dpvjg(x) provided the vj are chosen in such a way, that the
Vandermonde’s determinant det((vj1)

i(vj2)
p−i)ij 6= 0. For this choose v2 = 1 and all

the v1 pairwise distinct, then det((vj1)
i(vj2)

p−i)ij =
∏
j>k(v

j
1 − vk1 ) 6= 0.

To complete the proof we use convolution by an approximation of unity. So let
ϕ ∈ C∞(R2,R) have compact support,

∫
R2 ϕ = 1, and ϕ(y) ≥ 0 for all y. Define

ϕε(x) := 1
ε2ϕ( 1

εx), and let

fε(x) := (f ? ϕε)(x) =
∫

R2
f(x− y)ϕε(y) dy =

∫
R2
f(x− εy)ϕ(y)dy.

Since the convolution fε := f ?ϕε of a continuous function f with a smooth function
ϕε with compact support is differentiable with directional derivative dv(f ?ϕε)(x) =
(f ? dvϕε)(x), we obtain that fε is smooth. And since f ? ϕε → f in C(R2,R) for
ε→ 0 and any continuous function f , we conclude dpvfε = dpvf ?ϕε → dpvf uniformly
on compact sets.

By what we said above for smooth g, the iterated derivatives of fε are linear combi-
nations of the derivatives dpvfε for p+1 many vectors v, where the coefficients depend
only on the v’s. So we conclude that the iterated partial derivatives of fε form a
Cauchy sequence in C(R2,R), and hence converge to continuous functions fα. Thus,
all iterated derivatives ∂αf of f exist and are equal to these continuous functions
fα, by the following lemma 3.5 recursively applied to cε(s) := ∂αfε(x+ s v). �

3.5. Lemma. Let cε : R→ E be C1 into a locally convex space E such that cε → c
and c′ε → c1 uniformly on bounded subsets of R for ε → 0. Then c : R → E is C1

and c′ = c1. With other words, the injection c 7→ (c, c′), C1(R, E) → `∞(R, E)2

has closed image.
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3. Smooth Mappings and the Exponential Law 3.9

Proof. Since C(R, E) is closed in `∞(R, E) the curves c and c1 are continuous,
Remains to show that for fixed s ∈ R the curve

γ : t 7→

{
c(s+t)−c(s)

t for t 6= 0
c1(s) otherwise

is continuous (at 0). The corresponding curve γε for cε can be rewritten as γε(t) =∫ 1

0
c′ε(s + τ t) dτ , which converges by assumption for ε → 0 uniformly on compact

sets to the continuous curve t 7→
∫ 1

0
c1(s + τ t) dτ . Pointwise it converges to γ(t),

hence γ is continuous. �

For the vector valued case of the exponential law we need a locally convex structure
on C∞(R, E).

3.6. Definition. Space of curves. Let C∞(R, E) be the locally convex
vector space of all smooth curves in E, with the pointwise vector operations,
and with the topology of uniform convergence on compact sets of each deriva-
tive separately. This is the initial topology with respect to the linear mappings
C∞(R, E) −d

k

→ C∞(R, E) → `∞(K,E), where k runs through N, where K runs
through all compact subsets of R, and where `∞(K,E) carries the topology of
uniform convergence, see also 2.15 .

Note that the derivatives dk : C∞(R, E) → C∞(R, E), the point evaluations evt :
C∞(R, E)→ E and the pull backs g∗ : C∞(R, E)→ C∞(R, E) for all g ∈ C∞(R,R)
are continuous and linear. For the later one uses that obviously g∗ : `∞(Y,E) →
`∞(X,E) is continuous for bounded mappings g : X → Y .

3.7. Lemma. A space E is c∞-complete if and only if C∞(R, E) is so.

Proof. (⇒) The mapping c 7→ (c(n))n∈N is by definition an embedding of C∞(R, E)
into the c∞-complete product

∏
n∈N `

∞(R, E). Its image is a closed subspace by
lemma 3.5 .

(⇐) Consider the continuous linear mapping const : E → C∞(R, E) given by
x 7→ (t 7→ x). It has as continuous left inverse the evaluation at any point (e.g. ev0 :
C∞(R, E)→ E, c 7→ c(0)). Hence, E can be identified with the closed subspace of
C∞(R, E) given by the constant curves, and is thereby itself c∞-complete. �

3.8. Lemma. Curves into limits. A curve into a c∞-closed subspace of a space
is smooth if and only if it is smooth into the total space. In particular, a curve is
smooth into a projective limit if and only if all its components are smooth.

Proof. Since the derivative of a smooth curve is the Mackey limit of the difference
quotient, the c∞-closedness implies that this limit belongs to the subspace. Thus,
we deduce inductively that all derivatives belong to the subspace, and hence the
curve is smooth into the subspace.

The result on projective limits now follows, since obviously a curve is smooth into
a product, if all its components are smooth. �

We show now that the bornology, but obviously not the topology, on function spaces
can be tested with the linear functionals on the range space.

3.9. Lemma. Bornology of C∞(R, E). The family

{`∗ : C∞(R, E)→ C∞(R,R) : ` ∈ E∗}
generates the bornology of C∞(R, E). This also holds for E∗ replaced by E′.
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3.10 3. Smooth Mappings and the Exponential Law

A set in C∞(R, E) is bounded if and only if each derivative is uniformly bounded
on compact subsets.

Proof. A set B ⊆ C∞(R, E) is bounded if and only if the sets {dnc(t) : t ∈ I, c ∈ B}
are bounded in E for all n ∈ N and compact subsets I ⊂ R.

This is furthermore equivalent to the condition that the set {`(dnc(t)) = dn(`◦c)(t) :
t ∈ I, c ∈ B} is bounded in R for all ` ∈ E∗, n ∈ N, and compact subsets I ⊂ R
and in turn equivalent to: {` ◦ c : c ∈ B} is bounded in C∞(R,R).

For E∗ replaced by E′ ⊇ E∗ the statement holds, since `∗ is bounded for all ` ∈ E′
by the explicit description of the bounded sets. �

3.10. Proposition. Vector valued simplest exponential law. For a map-
ping f : R2 → E into a locally convex space (which need not be c∞-complete) the
following assertions are equivalent:

(1) f is smooth along smooth curves.
(2) All iterated directional derivatives dpvf exist and are locally bounded.
(3) All iterated partial derivatives ∂αf exist and are locally bounded.
(4) f∨ : R→ C∞(R, E) exists as a smooth curve.Are the coordinate

axes for v in (2)
enough?

Proof. We prove this result first for c∞-complete spaces E.

We could do this either by carrying over the proofs of 3.2 and 3.4 to the vector
valued situation, or we reduce the vector valued one by linear functionals to the
scalar valued situation. We choose here the second way.

Each of the statements (1-4) is valid if and only if the corresponding statement
with f replaced by ` ◦ f is valid for all ` ∈ E∗. Only (4) needs some arguments:
In fact, f∨(t) ∈ C∞(R, E) if and only if `∗(f∨(t)) = (` ◦ f)∨(t) ∈ C∞(R,R) for
all ` ∈ E∗ by 2.14 . Since C∞(R, E) is c∞-complete, its bornologically isomorphic
image in

∏
`∈E∗ C

∞(R,R) is c∞-closed. So f∨ : R → C∞(R, E) is smooth if and
only if `∗ ◦ f∨ = (` ◦ f)∨ : R → C∞(R,R) is smooth for all ` ∈ E∗. Note, that
local boundedness of all iterated partial derivatives is equivalent to their continuity,
since if for a function g the partial derivatives ∂1g and ∂2g exist and are locally
bounded then g is continuous:

g(x, y)− g(0, 0) = g(x, y)− g(x, 0) + g(x, 0)− g(0, 0)

= y∂2g(x, r2y) + x∂1g(r1x, 0)

for suitable r1, r2 ∈ [0, 1], which goes to 0 with (x, y). So the proof is reduced to
the scalar valid case, which was proved in 3.2 and 3.4 .

Now the general case. For the existence of certain derivatives we know by 1.9 that
it is enough that we have some candidate in the space, which is the corresponding
derivative of the map considered as map into the c∞-completion (or even some
larger space). Since the derivatives required in (1-4) depend linearly on each other,
this is true. In more detail this means:

( 1 ) ⇒ ( 2 ) is obvious.

( 2 ) ⇒ ( 3 ) is the fact that ∂α is a universal linear combination of d|α|v f .

( 3 ) ⇒ ( 1 ) follows from the chain rule which says that (f ◦ c)(p)(t) is a universal
linear combination of ∂i1 . . . ∂iqf(c(t))c(p1)i1

(t) . . . c(pq)
iq

(t) for ij ∈ {1, 2} and
∑
pj =

p, see also 10.4 .

( 3 )⇔ ( 4 ) holds by 1.9 since (∂1f)∨ = d(f∨) and (∂2f)∨ = d◦f∨ = d∗(f∨). �
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3. Smooth Mappings and the Exponential Law 3.13

3.11. For the general case of the exponential law we need a notion of smooth
mappings and a locally convex topology on the corresponding function spaces. Of
course, it would be also handy to have a notion of smoothness for locally defined
mappings. Since the idea is to test smoothness with smooth curves, such curves
should have locally values in the domains of definition, and hence these domains
should be c∞-open.

Definition. Smooth mappings and spaces of them. A mapping f : E ⊇
U → F defined on a c∞-open subset U is called smooth (or C∞) if it maps smooth
curves in U to smooth curves in F .

Let C∞(U,F ) denote the locally convex space of all smooth mappings U → F with
pointwise linear structure and the initial topology with respect to all mappings
c∗ : C∞(U,F )→ C∞(R, F ) for c ∈ C∞(R, U).

For U = E = R this coincides with our old definition. Obviously, any composition
of smooth mappings is also smooth.

Lemma. The space C∞(U,F ) is the (inverse) limit of spaces C∞(R, F ), one for
each c ∈ C∞(R, U), where the connecting mappings are pull backs g∗ along repa-
rameterizations g ∈ C∞(R,R).

Note that this limit is the closed linear subspace in the product∏
c∈C∞(R,U)

C∞(R, F )

consisting of all (fc) with fc◦g = fc ◦ g for all c and all g ∈ C∞(R,R).

Proof. The mappings c∗ : C∞(U,F ) → C∞(R, F ) define a continuous linear
embedding C∞(U,F ) → limc C

∞(R, F ), since for the connecting mappings g∗ we
have c∗(f) ◦ g = f ◦ c ◦ g = (c ◦ g)∗(f). It is surjective since for any (fc) ∈
limc C

∞(R, F ) one has fc = f ◦ c where f is defined as x 7→ fconstx
(0). �

3.12. Theorem. Cartesian closedness. Let Ui ⊆ Ei be c∞-open subsets in
locally convex spaces, which need not be c∞-complete. Then a mapping f : U1 ×
U2 → F is smooth if and only if the canonically associated mapping f∨ : U1 →
C∞(U2, F ) exists and is smooth.

Proof. We have the following implications:

f∨ : U1 → C∞(U2, F ) is smooth.
⇔ f∨ ◦ c1 : R → C∞(U2, F ) is smooth for all smooth curves c1 in U1, by

3.11 .
⇔ c∗2 ◦ f∨ ◦ c1 : R → C∞(R, F ) is smooth for all smooth curves ci in Ui, by

3.11 and 3.8 .
⇔ f ◦ (c1 × c2) = (c∗2 ◦ f∨ ◦ c1)∧ : R2 → F is smooth for all smooth curves ci

in Ui, by 3.10 .
⇔ f : U1 × U2 → F is smooth.

Here the last equivalence is seen as follows: Each curve into U1 ×U2 is of the form
(c1, c2) = (c1 × c2) ◦ ∆, where ∆ is the diagonal mapping. Conversely, f ◦ (c1 ×
c2) : R2 → F is smooth for all smooth curves ci in Ui, since the product and the
composite of smooth mappings is smooth by 3.11 (and by 3.4 ). �

3.13. Corollary. Consequences of cartesian closedness. Let E, F , G, etc. be
locally convex spaces, and let U , V be c∞-open subsets of such. Then the following
canonical mappings are smooth.
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3.15 3. Smooth Mappings and the Exponential Law

(1) ev : C∞(U,F )× U → F , (f, x) 7→ f(x);
(2) ins : E → C∞(F,E × F ), x 7→ (y 7→ (x, y));
(3) ( )∧ : C∞(U,C∞(V,G))→ C∞(U × V,G);
(4) ( )∨ : C∞(U × V,G)→ C∞(U,C∞(V,G));
(5) comp : C∞(F,G)× C∞(U,F )→ C∞(U,G), (f, g) 7→ f ◦ g;
(6) C∞( , ) : C∞(E2, E1)× C∞(F1, F2)→
→ C∞(C∞(E1, F1), C∞(E2, F2)), (f, g) 7→ (h 7→ g ◦ h ◦ f);

(7)
∏

:
∏
C∞(Ei, Fi)→ C∞(

∏
Ei,
∏
Fi), for any index set.

Proof. ( 1 ) The mapping associated to ev via cartesian closedness is the identity
on C∞(U,F ), which is C∞, thus ev is also C∞.

( 2 ) The mapping associated to ins via cartesian closedness is the identity on E×F ,
hence ins is C∞.

( 3 ) The mapping associated to ( )∧ via cartesian closedness is the smooth com-
position of evaluations ev ◦(ev× Id) : (f ;x, y) 7→ f(x)(y).

( 4 ) We apply cartesian closedness twice to get the associated mapping (f ;x; y) 7→
f(x, y), which is just a smooth evaluation mapping.

( 5 ) The mapping associated to comp via cartesian closedness is (f, g;x) 7→ f(g(x)),
which is the smooth mapping ev ◦(Id× ev).

( 6 ) The mapping associated to the one in question by applying cartesian closed is
(f, g, h) 7→ g ◦ h ◦ f , which is appart permutation of the variables the C∞-mapping
comp ◦(Id× comp).

( 7 ) Up to a flip of factors the mapping associated via cartesian closedness is the
product of the evaluation mappings C∞(Ei, Fi)× Ei → Fi. �

Next we generalize 3.4 to finite dimensions.

3.14. Corollary. [Boman, 1967]. The smooth mappings on open subsets of Rn in
the sense of definition 3.11 are exactly the usual smooth mappings.

Proof. (⇐) is obvious by the usual chain rule.

(⇒) Both conditions are of local nature, so we may assume that the open subset of
Rn is an open box and (by reparametrizing with a diffeomorphism in usual sense)
even Rn itself.

If f : Rn → F is smooth along smooth curves then by cartesian closedness 3.12 ,
for each coordinate the respective associated mapping f∨i : Rn−1 → C∞(R, F )
is smooth along smooth curves. Moreover the first partial derivative ∂if exists
and we have ∂if = (d ◦ f∨i)∧ (c.f. 3.2 ), so all first partial derivatives exist and
are smooth along smooth curves. Inductively, all iterated partial derivatives exist
and are smooth along smooth curves, thus continuous, so f is smooth in the usual
sense. �

3.15. Differentiation of an integral. We return to the question of differen-
tiating an integral. So let f : E×R→ F be smooth, and let F̂ be the completion of
the locally convex space F . Then we may form the function f0 : E → F̂ defined by
x 7→

∫ 1

0
f(x, t) dt. We claim that it is smooth, and that the directional derivative is

given by dvf0(x) =
∫ 1

0
dv(f( , t))(x) dt. By cartesian closedness 3.12 the associ-

ated mapping f∨ : E → C∞(R, F ) is smooth, so the mapping f0 :=
∫ 1

0
◦f∨ : E → F̂
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3. Smooth Mappings and the Exponential Law 3.16

is smooth since integration is a bounded linear operator, and

dvf0(x) = ∂
∂s

∣∣
s=0

f0(x+ sv) = ∂
∂s

∣∣
s=0

(∫ 1

0

◦f∨
)
(x+ sv)

=
∫ 1

0

(
∂
∂s

∣∣
s=0

f∨(x+ sv)
)
(t) dt =

∫ 1

0

evt
(
∂
∂s

∣∣
s=0

f∨(x+ sv)
)
dt

=
∫ 1

0

∂
∂s

∣∣
s=0

(
evt
(
f∨(x+ sv)

))
dt =

∫ 1

0

∂
∂s

∣∣
s=0

f(x+ sv, t)dt

=
∫ 1

0

dv(f( , t))(x) dt.

We want to generalize this to functions f defined only on some c∞-open subset U ⊆
E×R, so we have to show that the natural domain U0 := {x ∈ E : {x}× [0, 1] ⊆ U}
of f0 is c∞-open in E. We will do this in lemma 4.15 . From then on the proof
runs exactly the same way as for globally defined functions, since for x0 ∈ U0 there
exists a bounded open interval J ⊇ [0, 1] such that {x0} × J ⊆ U and hence f∨ is
defined on a c∞-neighborhood of x0 and smooth into C∞(J, F )→ C([0, 1], F ). So
we obtain the

Proposition. Let f : E × R ⊇ U → F be smooth with c∞-open U ⊆ E × R. Then
x 7→

∫ 1

0
f(x, t) dt is smooth on the c∞-open set U0 := {x ∈ E : {x} × [0, 1] ⊆ U}

with values in the completion F̂ and dvf0(x) =
∫ 1

0
dv(f( , t))(x) dt for all x ∈ U0

and v ∈ E. �

Now we want to define the derivative of a general smooth map and prove the chain
rule for them.

3.16. Corollary. Smoothness of the difference quotient. For a smooth curve
c : R→ E the difference quotient

(t, s) 7→


c(t)− c(s)
t− s

for t 6= s

c′(t) for t = s

is a smooth mapping R2 → E. Cf. 1.7 and 2.1 .

Proof. By 2.5 we have f : (t, s) 7→ c(t)−c(s)
t−s =

∫ 1

0
c′(s+ r(t− s)) dr, and by 3.15

it is smooth R2 → Ê. The left hand side has values in E, and for t 6= s this is also
true for all iterated directional derivatives. It remains to consider the derivatives
for t = s. The iterated directional derivatives are given by 3.15 as

dp(v,w)f(t, s) = dp(v,w)

∫ 1

0

c′(s+ r(t− s)︸ ︷︷ ︸
rt+(1−r)s

) dr

=
∫ 1

0

(
d
du

)p |u=0c
′(r (t+ u v) + (1− r) (s+ uw)︸ ︷︷ ︸

u (r v+(1−r)w)+(r t+(1−r) s

) dr

=
∫ 1

0

(r v + (1− r)w)p c(p+1)(r t+ (1− r) s) dr

The later integrand is for t = s just
∫ 1

0
(r v + (1 − r)w)p dr c(p+1)(t) ∈ E. Hence

dp(v,w)f(t, s) ∈ E. By 3.10 the mapping f is smooth into E. �
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3.17. Definition. Spaces of linear mappings. Let L(E,F ) denote the
space of all bounded (equivalently smooth by 2.11 ) linear mappings from E to F .
It is a closed linear subspace of C∞(E,F ) since f is linear if and only if for all
x, y ∈ E and λ ∈ R we have (evx +λ evy − evx+λy)f = 0. We equip it with this
topology and linear structure.

So a mapping f : U → L(E,F ) is smooth if and only if the composite mapping
U −f→ L(E,F )→ C∞(E,F ) is smooth.

3.18. Theorem. Chain rule. Let E and F be locally convex spaces, and let
U ⊆ E be c∞-open. Then the differentiation operator

d : C∞(U,F )→ C∞(U,L(E,F )),

df(x)v := lim
t→0

f(x+ tv)− f(x)
t

,

exists, is linear and bounded (smooth). Also the chain rule holds:

d(f ◦ g)(x).v = df(g(x)).dg(x).v.

Proof. Since t 7→ x+tv is a smooth curve we know that d∧∧ : C∞(U,F )×U×E →
F exists. We want to show that it is smooth, so let (f, x, v) : R→ C∞(U,F )×U×E
be a smooth curve. Then

d∧∧(f(t), x(t), v(t)) = lim
s→0

f(t)(x(t) + sv(t))− f(t)(x(t))
s

= ∂2h(t, 0),

which is smooth in t, where the smooth mapping h : R2 ⊇ {(t, s) : x(t) + sv(t) ∈
U} → F is given by (t, s) 7→ f∧(t, x(t) + sv(t)). By cartesian closedness 3.12 the
mapping d∧ : C∞(U,F )× U → C∞(E,F ) is smooth.

Now we show that this mapping has values in the subspace L(E,F ): d∧(f, x)
is obviously homogeneous. It is additive, because we may consider the smooth
mapping (t, s) 7→ f(x+ tv + sw) and compute as follows, using 3.14 .

df(x)(v + w) = ∂
∂t

∣∣
0
f(x+ t(v + w))

= ∂
∂t

∣∣
0
f(x+ tv + 0w) + ∂

∂t

∣∣
0
f(x+ 0v + tw) = df(x)v + df(x)w.

So we see that d∧ : C∞(U,F ) × U → L(E,F ) is smooth, and the mapping d :
C∞(U,F )→ C∞(U,L(E,F )) is smooth by 3.12 and obviously linear.

We first prove the chain rule for a smooth curve c instead of g. We have to show
that the curve

t 7→

{
f(c(t))−f(c(0))

t for t 6= 0
df(c(0)).c′(0) for t = 0

is continuous at 0. It can be rewritten as t 7→
∫ 1

0
df(c(0) + s(c(t) − c(0))).c1(t) ds,

where c1 is the (by 3.16 ) smooth curve given by

t 7→

{
c(t)−c(0)

t for t 6= 0
c′(0) for t = 0

.

Since h : R2 → E × E given by

(t, s) 7→ (c(0) + s(c(t)− c(0)), c1(t))

is smooth, there exist open neighborhoods I of [0, 1] and J of 0 in R such that
map t 7→

(
s 7→ df(c(0) + s(c(t)− c(0))).c1(t)

)
is smooth J → C∞(I, F ), and hence

t 7→
∫ 1

0
df(c(0)+s(c(t)−c(0))).c1(t) ds is smooth as in 3.15 , and hence continuous.
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For general g we have

d(f ◦ g)(x)(v) = ∂
∂t

∣∣
0
(f ◦ g)(x+ tv) = (df)(g(x+ 0v))( ∂

∂t

∣∣
0
(g(x+ tv)))

= (df)(g(x))(dg(x)(v)). �

3.19. Lemma. Two locally convex spaces are locally diffeomorphic if and only if
they are linearly diffeomorphic.
Any smooth and 1-homogeneous mapping is linear.

Proof. By the chain rule the derivatives at corresponding points give the linear
diffeomorphisms.

For a 1-homogeneous mapping f one has df(0)v = ∂
∂t

∣∣
0
f(tv) = f(v), and this is

linear in v. �

4. The c∞-Topology

4.1. Definition. A locally convex vector space E is called bornological if and only
if the following equivalent conditions are satisfied:

(1) Any bounded linear mapping T : E → F in any locally convex space F is
continuous; It is sufficient to know this for all Banach spaces F .

(2) Every bounded seminorm on E is continuous.
(3) Every absolutely convex bornivorous subset is a 0-neighborhood.

A radial subset U (i.e. [0, 1]U ⊆ U) of a locally convex space E is called bornivorous
if it absorbs each bounded set, i.e. for every bounded B there exists r > 0 such that
rU ⊇ B.

We will make use of the following simple fact: Let A,B ⊆ E be subsets of a
vector space E with A absolutely convex. Then A absorbs B if and only if the
Minkowski-funktional pA is bounded on B.

Proof.

(1 ⇒ 2) Let p be a bounded seminorm. Then the canonical projection T : E →
E/ker p ⊆ Ê/ker p is bounded and hence continuous by (1). Hence, p = p̃ ◦ T is
continuous, where p̃ denotes the canonical norm on the completion Ê/ker p induced
from p.

(2 ⇒ 3), since the Minkowski-functional p generated by an absolutely convex bor-
nivorous subset is a bounded seminorm.

(3 ⇒ 1) Let T : E → F be bounded linear and V ⊆ F be a absolutely convex
0-neighborhood. Then T−1(V ) is absolutely convex and bornivorous, thus by (3) a
0-neighborhood, i.e. T is continuous. �

4.2. Lemma. Bornologification. The bornologification Eborn of a locally convex
space can be described in the following equivalent ways:

(1) It is the finest locally convex structure having the same bounded sets;
(2) It is the final locally convex structure with respect to the inclusions EB →

E, where B runs through all bounded (closed) absolutely convex subsets.
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Moreover, Eborn is bornological. For any locally convex vector space F the contin-
uous linear mappings Eborn → F are exactly the bounded linear mappings E → F .
The continuous seminorms on Eborn are exactly the bounded seminorms of E. An
absolutely convex set is a 0-neighborhood in Eborn if and only if it is bornivorous,
i.e. absorbs bounded sets.

Proof. Let Eborn be the vector space E supplied with the topology described in
(1) and Efin be E supplied with the final toplogy described in (2).

(Efin → Eborn is continuous), since all bounded absolutely convex sets B in E
are bounded in Eborn, thus the inclusions EB → Eborn are bounded and hence
continuous since EB is normed. Thus, the final structure on E induced by the
inclusions EB → E is finer than the structure of Eborn.

(Eborn → Efin is continuous). It is obviously bounded, since the construction
the bounded subsets B of Eborn are bounded in E, hence contained in bounded
absolutely convex B ⊆ E and hence bounded in EB → Efin.
Hence, Efin has exactly the same bounded sets as E, and so Eborn is by definition
finer than Efin.

Eborn = Efin is bornological by (1) in 4.1 : Let T : E → F be bounded linear, then
T |EB

: EB → E → F is bounded and hence T : Efin → F is continuous.

The remaining statements now follow, since Eborn and E have the same bounded
seminorms, the same bounded linear mappings with values in locally convex spaces
and the same bornivorous absolutely convex subsets. And on the bornological space
Eborn these are by 4.1 exactly the continuous seminorms, the continuous linear
mappings and the absolutely convex 0-neighborhoods. �

4.3. Corollary. Bounded seminorms. For a seminorm p and a sequence
µn →∞ the following statements are equivalent:

(1) p is bounded;
(2) p is bounded on compact sets;
(3) p is bounded on M -converging sequences;
(4) p is bounded on µ-converging sequences;
(5) p is bounded on images of bounded intervals under Lipk-curves (for fixed

0 ≤ k ≤ ∞).

The corresponding statement for subsets of E is the following. For a radial subset
U ⊆ E (i.e., [0, 1] · U ⊆ U) the following properties are equivalent:

( 1 ) U is bornivorous.
( 1 ’) For all absolutely convex bounded sets B, the trace U∩EB is a 0-neighbor-

hood in EB.
( 2 ) U absorbs all compact subsets in E.
( 3 ) U absorbs all Mackey convergent sequences.
( 3 ’) U absorbs all sequences converging Mackey to 0.
( 4 ) U absorbs all µ-convergent sequences (for a fixed µ).
( 4 ’) U absorbs all sequences which are µ-converging to 0.
( 5 ) U absorbs the images of bounded sets under Lipk-curves (for a fixed 0 ≤

k ≤ ∞).

Proof. We prove the statement on radial subsets, for seminorms p it then follows
since p is bounded on a subset A ⊆ E if and only if the radial set U := {x ∈ E :
p(x) ≤ 1} absorbs A (using the equality K · U = {x ∈ E : p(x) ≤ K}).
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( 1 ’) ⇔ ( 1 ) ⇒ ( 2 ) ⇒ ( 3 ) ⇒ ( 4 ) ⇒ ( 4 ’), ( 3 ) ⇒ ( 3 ’) ⇒ ( 4 ’), ( 2 ) ⇒
( 5 ), are trivial.

( 5 ) ⇒ ( 4 ’) Suppose that (xn) is µ-converging to 0 but is not absorbed by U .
Then for each m ∈ N there is an nm ∈ N with xnm /∈ mU and by passing to a
subsequence (nmk

)k of (nm)m we may assume that k 7→ 1/µnmk
is fast falling. The

sequence (xnmk
= 1

µnmk

µnmk
xnmk

)k is then fast falling and lies on some compact

part of a smooth curve by the special curve lemma 2.8 . The set U absorbs this
by ( 5 ), a contradiction to xmmk

/∈ mkU with mk ≥ k →∞.

( 4 ’)⇒ ( 1 ) Suppose U does not absorb some bounded B. Hence, there are bn ∈ B
with bn /∈ µ2

nU . However, bn

µn
is µ-convergent to 0, so it is contained in KU for

some K > 0. Equivalently, bn ∈ µnKU ⊆ µ2
nU for all µn ≥ K, which gives a

contradiction. �

4.4. Corollary. Bornologification as locally-convex-ification.
The bornologification of E is the finest locally convex topology with one (hence all)
of the following properties:

(1) It has the same bounded sets as E.
(2) It has the same Mackey converging sequences as E.
(3) It has the same µ-converging sequences as E (for some fixed µ).
(4) It has the same Lipk-curves as E (for some fixed 0 ≤ k ≤ ∞).
(5) It has the same bounded linear mappings from E into arbitrary locally

convex spaces.
(6) It has the same continuous linear mappings from normed spaces into E.

Proof. Since the bornologification has the same bounded sets as the original topol-
ogy, the other objects are also the same: they depend only on the bornology – this
would not be true for compact sets, e.g. the bornologification of the topology of
pointwise convergence on the dual of any infinite dimensional Banach space is that
of uniform convergence on the unit ball, but the dual unit ball is only compact for
the former.

Conversely, we consider a topology τ which has for one of the above mentioned types
the same objects as the original one. Then τ has by 4.3 the same bornivorous
absolutely convex subsets as the original one. Hence, any 0-neighborhood of τ has
to be bornivorous for the original topology, and hence is by 4.2 a 0-neighborhood
of the bornologification of the original topology. �

4.5. Lemma. Let E be a bornological locally convex vector space, U ⊆ E a convex
subset. Then U is open for the locally convex topology of E if and only if U is open
for the c∞-topology.
Furthermore, an absolutely convex subset U of E is a 0-neighborhood for the locally
convex topology if and only if it is so for the c∞-topology.

Proof. (⇒) The c∞-topology is finer than the locally convex topology, cf. 4.2 .

(⇐) Let first U be an absolutely convex 0-neighborhood for the c∞-topology. Hence,
U absorbs Mackey-0-sequences by 2.13 . By 4.1.3 we have to show that U is
bornivorous, in order to obtain that U is a 0-neighborhood for the locally convex
topology. But this follows immediately from 4.3 .

Let now U be convex and c∞-open, let x ∈ U be arbitrary. We consider the c∞-
open absolutely convex set W := (U − x) ∩ (x − U) which is a 0-neighborhood of
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the locally convex topology by the argument above. Then x ∈ W + x ⊆ U . So U
is open in the locally convex topology. �

4.6. Corollary. The bornologification of a locally convex space E is the finest
locally convex topology coarser than the c∞-topology on E. �

4.7. In 2.12 we defined the c∞-topology on an arbitrary locally convex space
E as the final topology with respect to the smooth curves c : R→ E. Now we will
compare the c∞-topology with other refinements of a given locally convex topology.
We first specify those refinements.

Definition. Let E be a locally convex vector space.

(i) We denote by kE the Kelley-fication of the locally convex topology of E, i.e.
the vector space E together with the final topology induced by the inclusions of
the subsets being compact for the locally convex topology.

(ii) We denote by sE the vector space E with the final topology induced by the
curves being continuous for the locally convex topology, or equivalently the se-
quences N∞ → E converging in the locally convex topology. The equivalence holds
since the infinite polygon through a converging sequence can be continuously pa-
rameterized by a compact interval.

(iii) We recall that by c∞E we denote the vector space E with its c∞-topology, i.e.
the final topology induced by the smooth curves.

Using that smooth curves are continuous and that converging sequences N∞ → E
have compact images, the following identities are continuous: c∞E → sE → kE →
E.

If the locally convex topology of E coincides with the topology of c∞E, resp. sE,
resp. kE then we call E smoothly generated, resp. sequentially generated, resp.
compactly generated.

4.8. Example. On E = RJ all the refinements of the locally convex topology
described in 4.7 above are different, i.e. c∞E 6= sE 6= kE 6= E, provided the
cardinality of the index set J is at least that of the continuum.

Proof. It is enough to show this for J equipotent to the continuum, since RJ1 is a
direct summand in RJ2 for J1 ⊆ J2.

(c∞E 6= sE) We may take as index set J the set c0 of all real sequences converging
to 0. Define a sequence (xn) in E by (xn)j := jn. Since every j ∈ J is a 0-sequence
we conclude that the xn converge to 0 in the locally convex topology of the product,
hence also in sE. Assume now that the xn converge towards 0 in c∞E. Then by
4.9 some subsequence converges Mackey to 0. Thus, there exists an unbounded

sequence of reals λn with {λnxn : n ∈ N} bounded. Let j be a 0-sequence with
{jnλn : n ∈ N} unbounded (e.g. (jn)−2 := 1 + max{|λk| : k ≤ n}). Then the j-th
coordinate jnλn of λnxn is not bounded with respect to n, a contradiction.

(sE 6= kE) Consider in E the subset

A :=
{
x ∈ {0, 1}J : xj = 1 for at most countably many j ∈ J

}
.

It is clearly closed with respect to the converging sequences, hence closed in sE.
But it is not closed in kE since it is dense in the compact set {0, 1}J .

(kE 6= E) Consider in E the subsets

An :=
{
x ∈ E : |xj | < n for at most n many j ∈ J

}
.
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Each An is closed in E since its complement is the union of the open sets {x ∈ E :
|xj | < n for all j ∈ Jo} where Jo runs through all subsets of J with n+1 elements.
We show that the union A :=

⋃
n∈N An is closed in kE. So let K be a compact

subset of E; then K ⊆
∏

prj(K), and each prj(K) is compact, hence bounded in
R. Since the family ({j ∈ J : prj(K) ⊆ [−n, n]})n∈N covers J , there has to exist an
N ∈ N and infinitely many j ∈ J with prj(K) ⊆ [−N,N ]. Thus K ∩An = ∅ for all
n > N , and hence, A ∩K =

⋃
n≤N An ∩K is closed. Nevertheless, A is not closed

in E, since 0 is in Ā but not in A. �

4.9. c∞-convergent sequences. By 2.13 every M -convergent sequence
gives a continuous mapping N∞ → c∞E and hence converges in c∞E. Conversely,
a sequence converging in c∞E is not necessarily Mackey convergent, see [Frölicher,
Kriegl, 1985]. However, one has the following result.

Lemma. A sequence (xn) is convergent to x in the c∞-topology if and only if every
subsequence has a subsequence which is Mackey convergent to x.

Proof. (⇐) is true for any topological convergence. In fact if xn would not converge
to x, then there would be a neighborhood U of x and a subsequence of xn which
lies outside of U and hence cannot have a subsequence converging to x.

(⇒) It is enough to show that (xn) has a subsequence which converges Mackey to x,
since every subsequence of a c∞-convergent sequence is clearly c∞-convergent to the
same limit. Without loss of generality we may assume that x /∈ A := {xn : n ∈ N}.
Hence, A cannot be c∞-closed, and thus there is a sequence nk ∈ N such that
(xnk

) converges Mackey to some point x′ /∈ A. The set {nk : k ∈ N} cannot be
bounded, and hence we may assume that the nk are strictly increasing by passing
to a subsequence. But then (xnk

) is a subsequence of (xn) which converges in c∞E
to x and Mackey to x′ hence also in c∞E. Thus x′ = x. �

Remark. A consequence of this lemma is, that there is no topology in general
having as convergent sequences exactly the M -convergent ones, since this topology
obviously would have to be coarser than the c∞-topology.

One can use this lemma also to show that the c∞-topology on a locally convex
vector space gives a so called arc-generated vector space. See [Frölicher, Kriegl,
1988, 2.3.9 and 2.3.13] for a discussion of this.

Let us now describe several important situations where at least some of these topolo-
gies coincide. For the proof we will need the following

4.10. Lemma. [Averbukh, Smolyanov, 1968] For any locally convex space E the
following statements are equivalent:

(1) The sequential closure of any subset is formed by all limits of sequences
in the subset.

(2) For any given double sequence (xn,k) in E with xn,k convergent to some
xk for n→∞ and k fixed and xk convergent to some x, there are strictly
increasing sequences i 7→ n(i) and i 7→ k(i) with xn(i),k(i) → x for i→∞.

Proof. (1⇒2) Take an a0 ∈ E different from k · (xn+k,k − x) and from k · (xk − x)
for all k and n. Define A := {an,k := xn+k,k − 1

k · a0 : n, k ∈ N}. Then x is in the
sequential closure of A, since xn+k,k − 1

k · a0 converges to xk − 1
k · a0 as n → ∞,

and xk − 1
k · a0 converges to x− 0 = x as k →∞. Hence, by (1) there has to exist

a sequence i 7→ (ni, ki) with ani,ki convergent to x. By passing to a subsequence
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we may suppose that i 7→ ki and i 7→ ni are increasing. Assume that i 7→ ki is
bounded, hence finally constant. Then a subsequence xni+ki,ki− 1

ki
·a0 is converging

to xk − 1
k · a0 6= x if i 7→ ni is unbounded, and to xn+k,k − 1

k · a0 6= x if i 7→ ni
is bounded, which both yield a contradiction. Thus, i 7→ ki can be chosen strictly
increasing. But then

xni+ki,ki
= ani,ki

+ 1
ki
a0 → x.

( 1 ) ⇐ ( 2 ) is obvious. �

4.11. Theorem. For any bornological vector space E the following implications
hold:

(1) c∞E = E provided the closure of subsets in E is formed by all limits of
sequences in the subset; hence in particular if E is metrizable.

(2) c∞E = E provided E is the strong dual of a Fréchet Schwartz space;
(3) c∞E = kE provided E is the strict inductive limit of a sequence of Fréchet

spaces.
(4) c∞E = sE provided E satisfies the M -convergence condition, i.e. every

sequence converging in the locally convex topology is M-convergent.
(5) sE = E provided E is the strong dual of a Fréchet Montel space;

Proof. ( 1 ) Using the lemma 4.10 above one obtains that the closure and the
sequential closure coincide, hence sE = E. It remains to show that sE → c∞E is
(sequentially) continuous. So suppose a sequence converging to x is given, and let
(xn) be an arbitrary subsequence. Then xn,k := k(xn − x)→ k · 0 = 0 for n→∞,
and hence by lemma 4.10 there are subsequences ki, ni with ki · (xni − x) → 0,
i.e. i 7→ xni is M-convergent to x. Thus, the original sequence converges in c∞E

by 4.9 .

( 3 ) Let E be the strict inductive limit of the Fréchet spaces En. By [5, 4.8.1]
every En carries the trace topology of E, hence is closed in E, and every bounded
subset of E is contained in some En. Thus, every compact subset of E is contained
as compact subset in some En. Since En is a Fréchet space such a subset is even
compact in c∞En and hence compact in c∞E. Thus, the identity kE → c∞E is
continuous.

( 4 ) is valid, since the M-closure topology is the final one induced by the M-
converging sequences.

( 5 ) Let E be the dual of any Fréchet Montel space F . By 52.29 E is bornological.
First we show that kE = sE. Let K ⊆ E = F ′ be compact for the locally convex
topology. Then K is bounded, hence equicontinuous since F is barrelled by [5,
5.2.2]. Since F is separable by 52.27 the set K is metrizable in the weak topology
σ(E,F ) by 52.21 . By [5, 7.4.12] this weak topology coincides with the topology
of uniform convergence on precompact subsets of F . Since F is a Montel space, this
latter topology is the strong one, and even the bornological one, as remarked at the
beginning. Thus, the (metrizable) topology on K is the initial one induced by the
converging sequences. Hence, the identity kE → sE is continuous, and therefore
sE = kE.

It remains to show kE = E. Since F is Montel the locally convex topology of
the strong dual coincides with the topology of uniform convergence on precom-
pact subsets of F . Since F is metrizable this topology coincides with the so-called
equicontinuous weak∗-topology, cf. 52.22 , which is the final topology induced by
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the inclusions of the equicontinuous subsets. These subsets are by the Alaoğlu-
Bourbaki theorem [5, 7.4.12] relatively compact in the topology of uniform conver-
gence on precompact subsets. Thus, the locally convex topology of E is compactly
generated.

( 2 ) By ( 5 ), and since Fréchet Schwartz spaces are Montel by 52.24 , we have
sE = E and it remains to show that c∞E = sE. So let (xn) be a sequence
converging to 0 in E. Then the set {xn : n ∈ N} is relatively compact, and by
[11, 4.4.39] it is relatively compact in some Banach space EB . Hence, at least a
subsequence has to be convergent in EB . Clearly its Mackey limit has to be 0. This
shows that (xn) converges to 0 in c∞E, and hence c∞E = sE. One can even show
that E satisfies the Mackey convergence condition, see 52.28 . �

4.12. Example. We give now a non-metrizable example to which 4.11.1
applies. Let E denote the subspace of RJ of all sequences with countable support.
Then the closure of subsets of E is given by all limits of sequences in the subset, but
for non-countable J the space E is not metrizable. This was proved in [Balanzat,
1960].

4.13. Remark. The conditions 4.11.1 and 4.11.2 are rather disjoint since
every locally convex space, that has a countable basis of its bornology and for
which the sequential adherence of subsets (the set of all limits of sequences in it) is
sequentially closed, is normable as the following proposition shows:

Proposition. Let E be a non-normable bornological locally convex space that has
a countable basis of its bornology. Then there exists a subset of E whose sequential
adherence is not sequentially closed.

Proof. Let {Bk : k ∈ N0} be an increasing basis of the von Neumann bornology
with B0 = {0}. Since E is non-normable we may assume that Bk does not absorb
Bk+1 for all k. Now choose bn,k ∈ 1

nBk+1 with bn,k /∈ Bk. We consider the
double sequence {bk,0 − bn,k : n, k ≥ 1}. For fixed k the sequence bn,k converges
by construction (in EBk+1) to 0 for n → ∞. Thus, bk,0 − 0 is the limit of the
sequence bk,0 − bn,k for n → ∞, and bk,0 converges to 0 for k → ∞. Suppose
bk(i),0 − bn(i),k(i) converges to 0. So it has to be bounded, thus there must be
an N ∈ N with B1 − {bk(i),0 − bn(i),k(i) : i ∈ N} ⊆ BN . Hence, bn(i),k(i) =
bk(i),0 − (bk(i),0 − bn(i),k(i)) ∈ BN , i.e. k(i) < N . This contradicts 4.10.2 . �

4.14. Lemma. Let U be a c∞-open subset of a locally convex space, let µn → ∞
be a real sequence, and let f : U → F be a mapping which is bounded on each µ-
converging sequence in U . Then f is bounded on every bornologically compact
subset (i.e. compact in some EB) of U .

Proof. Let K ⊆ EB ∩ U be compact in EB for some bounded absolutely convex
set B. Assume that f(K) is not bounded. By composing with linear functionals
we may assume that F = R. So there is a sequence (xn) in K with |f(xn)| → ∞.
Since K is compact in the normed space EB we may assume that (xn) converges to
x ∈ K. By passing to a subsequence we may even assume that (xn) is µ-converging.
Contradiction. �

4.15. Lemma. Let U be c∞-open in E × R and K ⊆ R be compact. Then
U0 := {x ∈ E : {x} ×K ⊆ U} is c∞-open in E.
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Proof. Let x : R → E be a smooth curve in E with x(0) ∈ U0, i.e. (x(0), t) ∈ U
for all t ∈ K. We have to show that x(s) ∈ U0 for all s near 0. So consider the
smooth map x × R : R × R → E × R. By assumption (x × R)−1(U) is open in
c∞(R2) = R2. It contains the compact set {0} ×K and hence also a W ×K for
some neighborhood W of 0 in R. But this amounts in saying that x(W ) ⊆ U0. �

4.16. The c∞-topology of a product. Consider the product E × F of
two locally convex vector spaces. Since the projections onto the factors are linear
and continuous, and hence smooth, we always have that the identity mapping
c∞(E×F )→ c∞(E)×c∞(F ) is continuous. It is not always a homeomorphism: Just
take a bounded separately continuous bilinear functional, which is not continuous
(like the evaluation map) on a product of spaces where the c∞-topology is the
bornological topology, cf. 4.20 .

However, if one of the factors is finite dimensional the product is well behaved:

Corollary. For any locally convex space E the c∞-topology of E×Rn is the product
topology of the c∞-topologies of the two factors, so that we have c∞(E × Rn) =
c∞(E)× Rn.

Proof. This follows recursively from the special case E × R, for which we can
proceed as follows. Take a c∞-open neighborhood U of some point (x, t) ∈ E × R.
Since the inclusion map s 7→ (x, s) from R into E ×R is continuous and affine, the
inverse image of U in R is an open neighborhood of t. Let’s take a smaller compact
neighborhood K of t. Then by the previous lemma U0 := {y ∈ E : {y} ×K ⊆ U}
is a c∞-open neighborhood of x, and hence U0 ×K is a neighborhood of (x, t) in
c∞(E)× R, what was to be shown. �

4.17. Lemma. Let U be c∞-open in a locally convex space and x ∈ U . Then the
star stx(U) := {x + v : x + λv ∈ U for all |λ| ≤ 1} with center x in U is again
c∞-open.

Proof. Let c : R→ E be a smooth curve with c(0) ∈ stx(U). The smooth mapping
f : (t, s) 7→ (1− s)x+ sc(t) maps {0} × {s : |s| ≤ 1} into U . So there exists δ > 0
with f

(
{(t, s) : |t| < δ, |s| ≤ 1}

)
⊆ U . Thus, c(t) ∈ stx(U) for |t| < δ. �

4.18. Lemma. The (absolutely) convex hull of a c∞-open set is again c∞-open.

Proof. Let U be c∞-open in a locally convex vector space E.
For each x ∈ U the set

Ux := {x+ t(y − x) : t ∈ [0, 1], y ∈ U} = U ∪
⋃

0<t≤1

(x+ t(U − x))

is c∞-open. The convex hull can be constructed by applying n times the operation
U 7→

⋃
x∈U Ux and taking the union over all n ∈ N, which respects c∞-openness.

The absolutely convex hull can be obtained by forming first {λ : |λ| = 1}.U =⋃
|λ|=1 λU which is c∞-open, and then forming the convex hull. �

4.19. Corollary. Let E be a bornological convenient vector space containing a
nonempty c∞-open subset which is either locally compact or metrizable in the c∞-
topology. Then the c∞-topology on E is locally convex. In the first case E is finite
dimensional, in the second case E is a Fréchet space.
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Proof. Let U ⊆ E be a c∞-open metrizable subset. We may assume that 0 ∈ U .
Then there exists a countable neighborhood basis of 0 in U consisting of c∞-open
sets. This is also a neighborhood basis of 0 for the c∞-topology of E. We take
the absolutely convex hulls of these open sets, which are again c∞-open by 4.18 ,
and obtain by 4.5 a countable neighborhood basis for the bornologification of the
locally convex topology, so the latter is metrizable and Fréchet, and by 4.11 it
equals the c∞-topology.

If U is locally compact in the c∞-topology we may find a c∞-open neighborhood V
of 0 with compact closure V in the c∞-topology. By lemma 4.18 the absolutely
convex hull of V is also c∞-open, and by 4.5 it is also open in the bornologification
Eborn of E. The set V is then also compact in Eborn, hence precompact. So
the absolutely convex hull of V is also precompact by [5, 6.4.3]. Therefore, the
absolutely convex hull of V is a precompact neighborhood of 0 in Eborn, thus E is
finite dimensional by [5, 4.4.5]. So Eborn = c∞(E). �

Now we describe classes of spaces where c∞E 6= E or where c∞E is not even a
topological vector space. Finally, we give an example where the c∞-topology is not
completely regular.

4.20. Proposition. Let E and F be bornological locally convex vector spaces. If
there exists a bilinear smooth mapping m : E × F → R that is not continuous with
respect to the locally convex topologies, then c∞(E × F ) is not a topological vector
space.

We shall show in lemma 5.5 below that multilinear mappings are smooth if and
only if they are bounded.

Proof. Suppose that addition c∞(E×F )× c∞(E×F )→ c∞(E×F ) is continuous
with respect to the product topology. Using the continuous inclusions c∞E →
c∞(E × F ) and c∞F → c∞(E × F ) we can factor the identity as c∞E × c∞F →
c∞(E × F )× c∞(E × F )−+→ c∞(E × F ) and hence c∞E × c∞F = c∞(E × F ).

In particular, m : c∞E × c∞F = c∞(E × F ) → R ist continuous. Thus, for every
ε > 0 there are 0-neighborhoods U and V with respect to the c∞-topology such
that m(U×V ) ⊆ (−ε, ε). Then also m(〈U〉×〈V 〉) ⊆ (−ε, ε) where 〈 〉 denotes the
absolutely convex hull. By 4.5 one concludes that m is continuous with respect
to the locally convex topology, a contradiction. �

4.21. Corollary. Let E be a non-normable bornological locally convex space. Then
c∞(E × E′) is not a topological vector space.

Proof. By 4.20 it is enough to show that ev : E × E′ → R is not continuous for
the bornological topologies on E and E′; if it were so there was be a neighborhood
U of 0 in E and a neighborhood U ′ of 0 in E′ such that ev(U ×U ′) ⊆ [−1, 1]. Since
U ′ is absorbing, U is scalarwise bounded, hence a bounded neighborhood. Thus,
E is normable. �

4.22. Remark. In particular, for a Fréchet Schwartz space E (e.g. RN) and
its dual E′ we have c∞(E ×E′) 6= c∞E × c∞E′, since by 4.11 we have c∞E = E

and c∞E′ = E′, so equality would contradict corollary 4.21 .

In order to get a large variety of spaces where the c∞-topology is not a topological
vector space topology the next three technical lemmas will be useful.
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4.23. Lemma. Let E be a locally convex vector space. Suppose a double sequence
bn,k in E exists which satisfies the following two conditions:

(b’) For every sequence k 7→ nk the sequence k 7→ bnk,k has no accumulation
point in c∞E.

(b”) For all k the sequence n 7→ bn,k converges to 0 in c∞E.

Suppose furthermore that a double sequence cn,k in E exists that satisfies the fol-
lowing two conditions:

(c’) For every 0-neighborhood U in c∞E there exists some k0 such that cn,k ∈
U for all k ≥ k0 and all n.

(c”) For all k the sequence n 7→ cn,k has no accumulation point in c∞E.

Then c∞E is not a topological vector space.

Proof. Assume that the addition c∞E × c∞E → c∞E is continuous. In this
proof convergence is meant always with respect to c∞E. We may without loss of
generality assume that cn,k 6= 0 for all n, k, since by (c”) we may delete for each n all
those cn,k which are equal to 0. Then we consider A := {bn,k + εn,kcn,k : n, k ∈ N}
where the εn,k ∈ {−1, 1} are chosen in such a way that 0 /∈ A.

We first show that A is closed in the sequentially generated topology c∞E: Let
bni,ki + εni,kicni,ki → x, and assume first that (ki) is unbounded. By passing if
necessary to a subsequence we may even assume that i 7→ ki is strictly increasing.
Then cni,ki → 0 by (c’), hence bni,ki → x by the assumption that addition is
continuous, which is a contradiction to (b’). Thus, (ki) is bounded, and we may
assume it to be constant. Now suppose that (ni) is unbounded. Then bni,k → 0 by
(b”), and hence εni,kcni,k → x, and for a subsequence where ε is constant one has
cni,k → ±x, which is a contradiction to (c”). Thus, ni is bounded as well, and we
may assume it to be constant. Hence, x = bn,k + εn,kcn,k ∈ A.

By the assumed continuity of the addition there exists an open and symmetric
0-neighborhood U in c∞E with U + U ⊆ E \ A. For K sufficiently large and n
arbitrary one has cn,K ∈ U by (c’). For such a fixed K and N sufficiently large
bN,K ∈ U by (b’). Thus, bN,K + εN,KcN,K /∈ A, which is a contradiction. �

Let us now show that many spaces have a double sequence cn,k as in the above
lemma.

4.24. Lemma. Let E be an infinite dimensional metrizable locally convex space.
Then a double sequence cn,k subject to the conditions (c’) and (c”) of 4.23 exists.

Proof. If E is normable we choose a sequence (cn) in the unit ball without accu-
mulation point and define cn,k := 1

k cn. If E is not normable we take a countable
increasing family of non-equivalent seminorms pk generating the locally convex
topology, and we choose cn,k with pk(cn,k) = 1

k and pk+1(cn,k) > n. �

Next we show that many spaces have a double sequence bn,k as in lemma 4.23 .

4.25. Lemma. Let E be a non-normable bornological locally convex space hav-
ing a countable basis of its bornology. Then a double sequence bn,k subject to the
conditions (b’) and (b”) of 2.11 exists.

Proof. Let Bn (n ∈ N) be absolutely convex sets forming an increasing basis of
the bornology. Since E is not normable the sets Bn can be chosen such that Bn
does not absorb Bn+1. Now choose bn,k ∈ 1

nBk+1 with bn,k /∈ Bk. �
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Using these lemmas one obtains the

4.26. Proposition. For the following bornological locally convex spaces the c∞-
topology is not a vector space topology:

(i) Every bornological locally convex space that contains as c∞-closed sub-
spaces an infinite dimensional Fréchet space and a space which is non-
normable in the bornological topology and having a countable basis of its
bornology.

(ii) Every strict inductive limit of a strictly increasing sequence of infinite
dimensional Fréchet spaces.

(iii) Every product for which at least 2ℵ0 many factors are non-zero.
(iv) Every coproduct for which at least 2ℵ0 many summands are non-zero.

Proof. (i) follows directly from the last 3 lemmas.

(ii) Let E be the strict inductive limit of the spaces En (n ∈ N). Then E contains
the infinite dimensional Fréchet space E1 as subspace. The subspace generated
by points xn ∈ En+1 \ En (n ∈ N) is bornologically isomorphic to R(N), hence its
bornology has a countable basis. Thus, by (i) we are done.

(iii) Such a product E contains the Fréchet space RN as complemented subspace.
We want to show that R(N) is also a subspace of E. For this we may assume that the
index set J is RN and all factors are equal to R. Now consider the linear subspace
E1 of the product generated by the elements xn ∈ E = RJ , where (xn)j := j(n)
for every j ∈ J = RN. The linear map R(N) → E1 ⊆ E that maps the n-th
unit vector to xn is injective, since for a given finite linear combination

∑
tnx

n =
0 the j-th coordinate for j(n) := sign(tn) equals

∑
|tn|. It is continuous since

R(N) carries the finest locally convex structure. So it remains to show that it is a
bornological embedding. We have to show that any bounded B ⊆ E1 is contained
in a subspace generated by finitely many xn. Otherwise, there would exist a strictly
increasing sequence (nk) and bk =

∑
n≤nk

tknx
n ∈ B with tknk

6= 0. Define an index
j recursively by j(n) := n|tkn|−1 · sign

(∑
m<n t

k
mj(m)

)
if n = nk and j(n) := 0 if

n 6= nk for all k. Then the absolute value of the j-th coordinate of bk evaluates as
follows:

|(bk)j | =
∣∣∣ ∑
n≤nk

tknj(n)
∣∣∣ = ∣∣∣ ∑

n<nk

tknj(n) + tknk
j(nk)

∣∣∣
=
∣∣∣ ∑
n<nk

tknj(n)
∣∣∣+ |tknk

j(nk)| ≥ |tknk
j(nk)| = nk.

Hence, the j-th coordinates of {bk : k ∈ N} are unbounded with respect to k ∈ N,
thus B is unbounded.

(iv) We can not apply lemma 4.23 since every double sequence has countable
support and hence is contained in the dual R(A) of a Fréchet Schwartz space RA for
some countable subset A ⊂ J . It is enough to show (iv) for R(J) where J = N∪ c0.
Let A := {jn(en + ej) : n ∈ N, j ∈ c0, jn 6= 0 for all n}, where en and ej denote
the unit vectors in the corresponding summand. The set A is c∞-closed, since its
intersection with finite subsums is finite. Suppose there exists a symmetric c∞-open
0-neighborhood U with U + U ⊆ E \ A. Then for each n there exists a jn 6= 0
with jnen ∈ U . We may assume that n 7→ jn converges to 0 and hence defines
an element j ∈ c0. Furthermore, there has to be an N ∈ N with jNej ∈ U , thus
jN (eN + ej) ∈ (U + U) ∩A, in contradiction to U + U ⊆ E \A. �
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Remark. A nice and simple example where one either uses (i) or (ii) is RN⊕R(N).
The locally convex topology on both factors coincides with their c∞-topology (the
first being a Fréchet (Schwartz) space, cf. (i) of 4.11 , the second as dual of the
first, cf. (ii) of 4.11 ); but the c∞-topology on their product is not even a vector
space topology.

From (ii) it follows also that each space C∞c (M,R) of smooth functions with com-
pact support on a non-compact separable finite dimensional manifold M has the
property, that the c∞-topology is not a vector space topology.

4.27. Although the c∞-topology on a convenient vector space is always func-
tionally separated, hence Hausdorff, it is not always completely regular as the fol-
lowing example shows.

Example. The c∞-topology is not completely regular. The c∞-topology of
RJ is not completely regular if the cardinality of J is at least 2ℵ0 .

Proof. It is enough to show this for an index set J of cardinality 2ℵ0 , since the
corresponding product is a complemented subspace in every product with larger
index set. We prove the theorem by showing that every function f : RJ → R
which is continuous for the c∞-topology is also continuous with respect to the
locally convex topology. Hence, the completely regular topology associated to the
c∞-topology is the locally convex topology of E. That these two topologies are
different was shown in 4.8 . We use the following theorem of [Mazur, 1952]: Let
E0 := {x ∈ RJ : supp(x) is countable}, and let f : E0 → R be sequentially
continuous. Then there is some countable subset A ⊂ J such that f(x) = f(xA),
where in this proof xA is defined as xA(j) := x(j) for j ∈ A and xA(j) = 0 for
j /∈ A. Every sequence which is converging in the locally convex topology of E0

is contained in a metrizable complemented subspace RA for some countable A and
therefore is even M-convergent. Thus, this theorem of Mazur remains true if f is
assumed to be continuous for the M-closure topology. This generalization follows
also from the fact that c∞E0 = E0, cf. 4.12 . Now let f : RJ → R be continuous
for the c∞-topology. Then f |E0 : E0 → R is continuous for the c∞-topology, and
hence there exists a countable set A0 ⊂ J such that f(x) = f(xA0) for any x ∈ E0.
We want to show that the same is true for arbitrary x ∈ RJ . In order to show this
we consider for x ∈ RJ the map ϕx : 2J → R defined by ϕx(A) := f(xA)−f(xA∩A0)
for any A ⊆ J , i.e. A ∈ 2J . For countable A one has xA ∈ E0, hence ϕx(A) = 0.
Furthermore, ϕx is sequentially continuous where one considers on 2J the product
topology of the discrete factors 2 = {0, 1}. In order to see this consider a converging
sequence of subsets An → A, i.e. for every j ∈ J one has for the characteristic
functions χAn(j) = χA(j) for n sufficiently large. Then {n(xAn − xA) : n ∈ N} is
bounded in RJ since for fixed j ∈ J the j-th coordinate equals 0 for n sufficiently
large. Thus, xAn

converges Mackey to xA, and since f is continuous for the c∞-
topology ϕx(An) → ϕx(A). Now we can apply another theorem of [Mazur, 1952]:
Any function f : 2J → R that is sequentially continuous and is zero on all countable
subsets of J is identically 0, provided the cardinality of J is smaller than the first
inaccessible cardinal. Thus, we conclude that 0 = ϕx(J) = f(x) − f(xA0) for all
x ∈ RJ . Hence, f factors over the metrizable space RA0 and is therefore continuous
for the locally convex topology. �

In general, the trace of the c∞-topology on a linear subspace is not its c∞-topology.
However, for c∞-closed subspaces this is true:
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4.28. Lemma. Closed embedding lemma. Let E be a linear c∞-closed sub-
space of F . Then the trace of the c∞-topology of F on E is the c∞-topology on
E

Proof. Since the inclusion is continuous and hence bounded it is c∞-continuous.
Therefore, it is enough to show that it is closed for the c∞-topologies. So let A ⊆ E
be c∞E-closed. And let xn ∈ A converge Mackey towards x in F . Then x ∈ E,
since E is assumed to be c∞-closed, and hence xn converges Mackey to x in E.
Since A is c∞-closed in E, we have that x ∈ A. �

We will give an example in 4.33 below which shows that c∞-closedness of the
subspace is essential for this result. Another example will be given in 4.36 .

4.29. Theorem. The c∞-completion. For any locally convex space E there
exists a unique (up to a bornological isomorphism) convenient vector space Ẽ and
a bounded linear injection i : E → Ẽ with the following universal property:

Each bounded linear mapping ` : E → F into a convenient vector space F
has a unique bounded extension ˜̀ : Ẽ → F such that ˜̀◦ i = `.

Furthermore, i(E) is dense for the c∞-topology in Ẽ.

Proof. Let Ẽ be the c∞-closure of E in the locally convex completion Êborn of
the bornologification Eborn of E. The inclusion i : E → Ẽ is bounded (but not
continuous in general). By 4.28 the c∞-topology on Ẽ is the trace of the c∞-
topology on Êborn. Hence, i(E) is dense also for the c∞-topology in Ẽ.

Using the universal property of the locally convex completion the mapping ` has a
unique continuous extension ˆ̀ : Êborn → F̂ into the locally convex completion of
F , whose restriction to Ẽ has values in F , since F is c∞-closed in F̂ , so it is the
desired ˜̀. Uniqueness follows, since i(E) is dense for the c∞-topology in Ẽ. �

4.30. Proposition. c∞-completion via c∞-dense embeddings. Let E be
c∞-dense and bornologically embedded into a c∞-complete locally convex space F .
If E → F has the extension property for bounded linear functionals, then F is
bornologically isomorphic to the c∞-completion of E.

Proof. We have to show that E → F has the universal property for extending
bounded linear maps T into c∞-complete locally convex spaces G. Since we are
only interested in bounded mappings, we may take the bornologification of G and
hence may assume that G is bornological. Consider the following diagram

E
� � //

T

��

F

λ̃◦T

��

��

��

∏
G′ R

prλ
""E

EEEEEEE

G
- 

δ
<<yyyyyyyy
λ // R

The arrow δ, given by δ(x)λ := λ(x), is a bornological embedding, i.e. the image of
a set is bounded if and only if the set is bounded, since B ⊆ G is bounded if and
only if λ(B) ⊆ R is bounded for all λ ∈ G′, i.e. δ(B) ⊆

∏
G′ R is bounded.

Andreas Kriegl , Univ.Wien, June 4, 2008 55



4.32 4. The c∞-Topology

By assumption, the dashed arrow on the right hand side exists, hence by the uni-
versal property of the product the dashed vertical arrow (denoted T̃ ) exists. It
remains to show that it has values in the image of δ. Since T̃ is bounded we have

T̃ (F ) = T̃ (E
c∞

) ⊆ T̃ (E)
c∞

⊆ δ(G)
c∞

= δ(G),

since G is c∞-complete and hence also δ(G), which is thus c∞-closed.

The uniqueness follows, since as a bounded linear map T̃ has to be continuous
for the c∞-topology (since it preserves the smooth curves by 2.11 which in turn
generate the c∞-topology), and E lies dense in F with respect to this topology. �

4.31. Proposition. Inductive representation of bornological locally con-
vex spaces. For a locally convex space E the bornologification Eborn is by 4.2 the
colimit of all the normed spaces EB for the absolutely convex bounded sets B. The
colimit of the respective completions ẼB is the linear subspace of the c∞-completion
Ẽ consisting of all limits in Ẽ of Mackey Cauchy sequences in E.

Proof. Let E(1) be the Mackey adherence of E in the c∞-completion Ẽ, by which
we mean the limits in Ẽ of all sequences in E which converge Mackey in Ẽ. Then
E(1) is a subspace of the locally convex completion Êborn. For every absolutely
convex bounded set B ⊆ E we have the continuous inclusion EB → Eborn, and by
passing to the c∞-completion we get mappings ÊB = ẼB → Ẽ. These mappings
commute with the inclusions ÊB → ÊB′ for B ⊆ B′ and have values in the Mackey
adherence of E, since every point in ÊB is the limit of a sequence in EB , and hence
its image is the limit of this Mackey Cauchy sequence in E.

We claim that the Mackey adherence E(1) together with these mappings has the
universal property of the colimit lim−→B

ÊB . In fact, let T : E(1) → F be a linear

mapping, such that ÊB → E(1) → F is continuous for all B. In particular T |E :
E → F has to be bounded, and hence T |Eborn : Eborn → F is continuous. Thus, it
has a unique continuous extension T̂ : E(1) ⊆ Êborn → F̂ , and it remains to show
that this extension is T . So take a point x ∈ E(1). Then there exists a sequence
(xn) in E, which converges Mackey to x. Thus, the xn form a Cauchy-sequence
in some EB and hence converge to some y in ÊB . Then ιB(y) = x, since the
mapping ιB : ÊB → E(1) is continuous. Since the trace of T to ÊB is continuous
T (xn) converges to T (ιB(y)) = T (x) and T (xn) = T̂ (xn) converges to T̂ (x), i.e.
T (x) = T̂ (x). �

In spite of (1) in 4.36 we can use the Mackey adherence to describe the c∞-closure
in the following inductive way:

4.32. Proposition. Mackey adherences. For ordinal numbers α the Mackey
adherence A(α) of order α is defined recursively by:

A(α) :=

{
M-Adh(A(β)) if α = β + 1⋃
β<αA

(β) if α is a limit ordinal number.

Then the closure A of A in the c∞-topology coincides with A(ω1), where ω1 denotes
the first uncountable ordinal number, i.e. the set of all countable ordinal numbers.

Proof. Let us first show that A(ω1) is c∞-closed. So take a sequence xn ∈ A(ω1) =⋃
α<ω1

A(α), which converges Mackey to some x. Then there are αn < ω1 with
xn ∈ A(αn). Let α := supn αn. Then α is a again countable and hence less than
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ω1. Thus, xn ∈ A(αn) ⊆ A(α), and therefore x ∈ M-Adh(A(α)) = A(α+1) ⊆ A(ω1)

since α+ 1 ≤ ω1.

It remains to show that A(α) is contained in A for all α. We prove this by transfinite
induction. So assume that for all β < α we have A(β) ⊆ A. If α is a limit
ordinal number then A(α) =

⋃
β<αA

(β) ⊆ A. If α = β + 1 then every point in
A(α) = M-Adh(A(β)) is the Mackey-limit of some sequence in A(β) ⊆ A, and since
A is c∞-closed, this limit has to belong to it. So A(α) ⊆ A in all cases. � Example where ω1-

many steps are in-
deed needed!4.33. Example. The trace of the c∞-topology is not the c∞-topology and the

Mackey-adherence is not the c∞-closure, in general.

Proof. Consider E = RN×R(N), A := {an,k := ( 1
nχ{1,..,k},

1
kχ{n}) : n, k ∈ N} ⊆ E.

Let F be the linear subspace of E generated by A. We show that the closure of A
with respect to the c∞-topology of F is strictly smaller than that with respect to
the trace topology of the c∞-topology of E.

A is closed in the c∞-topology of F : Assume that a sequence (anj ,kj ) is M-
converging to (x, y). Then the second component of anj ,kj has to be bounded.
Thus, j 7→ nj has to be bounded and may be assumed to have constant value n∞.
If j 7→ kj were unbounded, then (x, y) = ( 1

n∞
χN, 0), which is not an element of F .

Thus, j 7→ kj has to be bounded too and may be assumed to have constant value
k∞. Thus, (x, y) = an∞,k∞ ∈ A.

A is not closed in the trace topology since (0,0) is contained in the closure of A
with respect to the c∞-topology of E: For k →∞ and fixed n the sequence an,k is
M-converging to ( 1

nχN, 0), and 1
nχN is M-converging to 0 for n→∞. �

4.34. Example. We consider the space `∞(X) := `∞(X,R) as defined in 2.15 for
a set X together with a family B of subsets called bounded. We have the subspace
Cc(X) := {f ∈ `∞(X) : supp f is finite}. And we want to calculate its c∞-closure
in `∞(X).
Claim: The c∞-closure of Cc(X) equals

c0(X) := {f ∈ `∞(X) : f |B ∈ c0(B) for all B ∈ B},
provided that X is countable.

Proof. The right hand side is just the intersection c0(X) :=
⋂
B∈B ι

−1
B (c0(B)),

where ιB : `∞(X) → `∞(B) denotes the restriction map. We use the notation
c0(X), since in the case where X is bounded this is exactly the space {f ∈ `∞(X) :
{x : |f(x)| ≥ ε} is finite for all ε > 0}. In particular, this applies to the bounded
space N, where c0(N) = c0. Since `∞(X) carries the initial structure with respect
to these maps c0(X) is closed. It remains to show that Cc(X) is c∞-dense in c0(X).
So take f ∈ c0(X). Let {x1, x2, . . . } := {x : f(x) 6= 0}.
We consider first the case, where there exists some δ > 0 such that |f(xn)| ≥ δ for
all n. Then we consider the functions fn := f · χx1,...,xn ∈ Cc(X). We claim that
n(f − fn) is bounded in `∞(X,R). In fact, let B ∈ B. Then {n : xn ∈ B} = {n :
xn ∈ B and |f(xn)| ≥ δ} is finite. Hence, {n(f − fn)(x) : x ∈ B} is finite and thus
bounded, i.e. fn converges Mackey to f .

Now the general case. We set Xn := {x ∈ X : |f(x)| ≥ 1
n} and define fn := f ·χXn .

Then each fn satisfies the assumption of the particular case with δ = 1
n and hence

is a Mackey limit of a sequence in Cc(X). Furthermore, n(f − fn) is uniformly
bounded by 1, since for x ∈ Xn it is 0 and otherwise |n(f−fn)(x)| = n|f(x)| < 1. So
after forming the Mackey adherence (i.e. adding the limits of all Mackey-convergent
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sequences contained in the set, see 4.32 for a formal definition) twice, we obtain
c0(X). �

Now we want to show that c0(X) is in fact the c∞-completion of Cc(X).

4.35. Example. c0(X). We claim that c0(X) is the c∞-completion of the subspace
Cc(X) in `∞(X) formed by the finite sequences.
We may assume that the bounded sets of X are formed by those subsets B, for
which f(B) is bounded for all f ∈ `∞(X). Obviously, any bounded set has this
property, and the space `∞(X) is not changed by adding these sets. Furthermore,
the restriction map ιB : `∞(X)→ `∞(B) is also bounded for such a B, since using
the closed graph theorem [5, 5.3.3] we only have to show that evb ◦ιB = ι{b} is
bounded for every b ∈ B, which is obviously the case.

By proposition 4.30 it is enough to show the universal property for bounded
linear functionals. We only have to show that in analogy to Banach-theory the
dual Cc(X)′ is just

`1(X) := {g : X → R : supp g is bounded and g is absolutely summable}.
In fact, any such g acts even as bounded linear functional on `∞(X,R) by 〈g, f〉 :=∑
x g(x) f(x), since a subset is bounded in `∞(X) if and only if it is uniformly

bounded on all bounded sets B ⊆ X. Conversely, let ` : Cc(X) → R be bounded
and linear and define g : X → R, by g(x) := `(ex), where ex denotes the function
given by ex(y) := 1 for x = y and 0 otherwise. Obviously `(f) = 〈g, f〉 for all
f ∈ Cc(X). Suppose indirectly that supp g = {x : `(ex) 6= 0} is not bounded.
Then there exists a sequence xn ∈ supp g and a function f ∈ `∞(X) such that
|f(xn)| ≥ n. In particular, the only bounded subsets of {xn : n ∈ N} are the finite
ones. Hence { n

|g(xn)|exn : n ∈ N} is bounded in Cc(X), but the image under ` is
not. Furthermore, g has to be absolutely summable since the set of finite subsums
of
∑
x sign g(x) ex is uniformly bounded and hence bounded in Cc(X) and its image

under ` are the subsums of
∑
x |g(x)|.`1(X)′ = `∞(X)

NewLect: Di/Mi
4.36. Corollary. Counter-examples on c∞-topology. The following state-
ments are false:

(1) The c∞-closure of a subset (or of a linear subspace) is given by the Mackey
adherence, i.e. the set formed by all limits of sequences in this subset which
are Mackey convergent in the total space.

(2) A subset U of E that contains a point x and has the property, that every se-
quence which M -converges to x belongs to it finally, is a c∞-neighborhood
of x.

(3) A c∞-dense subspace of a c∞-complete space has this space as c∞-comple-
tion.

(4) If a subspace E is c∞-dense in the total space, then it is also c∞-dense in
each linear subspace lying in between.

(5) The c∞-topology of a linear subspace is the trace of the c∞-topology of the
whole space.

(6) Every bounded linear functional on a linear subspace can be extended to
such a functional on the whole space.

(7) A linear subspace of a bornological locally convex space is bornological.
(8) The c∞-completion preserves embeddings.

Proof. ( 1 ) For this we give an example, where the Mackey adherence of Cc(X)
is not all of c0(X).
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Let X = N × N, and take as bounded sets all sets of the form Bµ := {(n, k) : n ≤
µ(k)}, where µ runs through all functions N → N. Let f : X → R be defined by
f(n, k) := 1

k . Obviously, f ∈ c0(X), since for given j ∈ N and function µ the set of
points (n, k) ∈ Bµ for which f(n, k) = 1

k ≥
1
j is the finite set {(n, k) : k ≤ j, n ≤

µ(k)}.
Assume there is a sequence fn ∈ Cc(X) Mackey convergent to f . By passing to a
subsequence we may assume that n2(f − fn) is bounded. Now choose µ(k) to be
larger than all of the finitely many n, with fk(n, k) 6= 0. If k2(f − fk) is bounded
on Bµ, then in particular {k2(f − fk)(µ(k), k) : k ∈ N} has to be bounded, but
k2(f − fk)(µ(k), k) = k2 1

k − 0 = k.

( 2 ) Let A be a set for which ( 1 ) fails, and choose x in the c∞-closure of A but
not in the M -adherence of A. Then U := E \ A satisfies the assumptions of ( 2 ).
In fact, let xn be a sequence which converges Mackey to x, and assume that it is
not finally in U . So we may assume without loss of generality that xn /∈ U for
all n, but then A 3 xn → x would imply that x is in the Mackey adherence of A.
However, U cannot be a c∞-neighborhood of x. In fact, such a neighborhood must
meet A since x is assumed to be in the c∞-closure of A.

( 3 ) Let F be a locally convex vector space whose Mackey adherence in its c∞-
completion E is not all of E, e.g. Cc(X) ⊆ c0(X) as in ( 1 ). Choose a y ∈ E
that is not contained in the Mackey adherence of F , and let F1 be the subspace
of E generated by F ∪ {y}. We claim that F1 ⊆ E cannot be the c∞-completion
although F1 is obviously c∞-dense in the convenient vector space E. In order to see
this we consider the linear map ` : F1 → R characterized by `(F ) = 0 and `(y) = 1.
Clearly ` is well defined.

` : F1 → R is bornological: For any bounded B ⊆ F1 there exists an N such that
B ⊆ F + [−N,N ]y. Otherwise, bn = xn + tny ∈ B would exist with tn → ∞ and
xn ∈ F . This would imply that bn = tn(xn

tn
+ y), and thus −xn

tn
would converge

Mackey to y; a contradiction.

Now assume that a bornological extension ¯̀ to E exists. Then F ⊆ ker(¯̀) and
ker(¯̀) is c∞-closed, which is a contradiction to the c∞-denseness of F in E. So
F1 ⊆ E does not have the universal property of a c∞-completion.

This shows also that ( 6 ) fails.

( 4 ) Furthermore, it follows that F is c∞F1-closed in F1, although F and hence F1

are c∞-dense in E.

( 5 ) The trace of the c∞-topology of E to F1 cannot be the c∞-topology of F1,
since for the first one F is obviously dense.

( 7 ) Obviously, the trace topology of the bornological topology on E cannot be
bornological on F1, since otherwise the bounded linear functionals on F1 would be
continuous and hence extendable to E.

( 8 ) Furthermore, the extension of the inclusion ι : F ⊕ R ∼= F1 → E to the
completion is given by (x, t) ∈ E⊕R ∼= F̃ ⊕R = F̃1 7→ x+ ty ∈ E and has as kernel
the linear subspace generated by (y,−1). Hence, the extension of an embedding
to the c∞-completions need not be an embedding anymore, in particular the c∞-
completion functor does not preserve injectivity of morphisms. �
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5. Uniform Boundedness Principles and Multilinearity

5.1. The category of locally convex spaces and smooth mappings.
The category of all smooth mappings between bornological vector spaces is a sub-
category of the category of all smooth mappings between locally convex spaces
which is equivalent to it, since a locally convex space and its bornologification 4.4
have the same bounded sets and smoothness depends only on the bornology by
1.8 . So it is also cartesian closed, but the topology on C∞(E,F ) from 3.11

has to be bornologized. For an example showing the necessity see [Kriegl, 1983,
p. 297] or [11, 5.4.19]: The topology on C∞(R,R(N)) is not bornological, in fact
{c = (cn)n ∈ C∞(R,R(N)) : |c(n)

n (0)| < 1} is absolutely convex, bornivorous but not
a 0-neighborhood.

We will in general, however, work in the category of locally convex spaces and
smooth mappings, so function spaces carry the topology of 3.11 .

The category of bounded (equivalently continuous) linear mappings between bor-
nological vector spaces is in the same way equivalent to the category of all bounded
linear mappings between all locally convex spaces, since a linear mapping is smooth
if and only if it is bounded, by 2.11 . It is closed under formation of colimits and
under quotients (this is an easy consequence of 4.1.1 ). The Mackey-Ulam theo-
rem [Jarchow, 1981, 13.5.4] tells us that a product of non trivial bornological vector
spaces is bornological if and only if the index set does not admit a Ulam measure,
i.e. a non trivial {0, 1}-valued measure on the whole power set. A cardinal admit-
ting a Ulam measure has to be strongly inaccessible, so we can restrict set theory
to exclude measurable cardinals.

Let L(E1, . . . , En;F ) denote the space of all bounded n-linear mappings from E1 ×
. . . × En → F with the topology of uniform convergence on bounded sets in E1 ×
. . .× En.

5.2. Proposition. Exponential law for L. There are natural bornological
isomorphisms

L(E1, . . . , En+k;F ) ∼= L(E1, . . . , En;L(En+1, . . . , En+k;F )).

Proof. We proof this for bilinear maps, the general case is completely analogous.
We already know that bilinearity translates into linearity into the space of linear
functions. Remains to prove boundedness. So let B ⊆ L(E1, E2;F ) be given. Then
B is bounded if and only if B(B1 × B2) ⊆ F is bounded for all bounded Bi ⊆ Ei.
This however is equivalent to B∨(B1) is contained and bounded in L(E2, F ) for all
bounded B1 ⊆ E1, i.e. B∨ is contained and bounded in L(E1, L(E2, F )). �

Recall that we have already put a structure on L(E,F ) in 3.17 , namely the initial
one with respect to the inclusion in C∞(E,F ). Let us now show that bornologically
these definitions agree:

5.3. Lemma. Structure on L. A subset is bounded in L(E,F ) ⊆ C∞(E,F )
if and only if it is uniformly bounded on bounded subsets of E, i.e. L(E,F ) →
C∞(E,F ) is initial.

Proof. Let B ⊆ L(E,F ) be bounded in C∞(E,F ), and assume that it is not
uniformly bounded on some bounded set B ⊆ E. So there are fn ∈ B, bn ∈ B, and
` ∈ F ∗ with |`(fn(bn))| ≥ nn. Then the sequence n1−nbn converges fast to 0, and
hence lies on some compact part of a smooth curve c by the special curve lemma
2.8 . So B cannot be bounded, since otherwise C∞(`, c) = `∗ ◦ c∗ : C∞(E,F ) →
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C∞(R,R) → `∞(R,R) would have bounded image, i.e. {` ◦ fn ◦ c : n ∈ N} would
be uniformly bounded on any compact interval.

Conversely, let B ⊆ L(E,F ) be uniformly bounded on bounded sets and hence
in particular on compact parts of smooth curves. We have to show that dn ◦ c∗ :
L(E,F )→ C∞(R, F )→ `∞(R, F ) has bounded image. But for linear smooth maps
we have by the chain rule 3.18 , recursively applied, that dn(f ◦ c)(t) = f(c(n)(t)),
and since c(n) is still a smooth curve we are done. �

Let us now generalize this result to multilinear mappings. For this we first charac-
terize bounded multilinear mappings in the following two ways:

5.4. Lemma. A multilinear mapping is bounded if and only if it is bounded on
each sequence which converges Mackey to 0.

Proof. Suppose that f : E1 × . . .× Ek → F is not bounded on some bounded set
B ⊆ E1 × . . . × Ek. By composing with a linear functional we may assume that
F = R. So there are bn ∈ B with λk+1

n := |f(bn)| → ∞. Then |f( 1
λn
bn)| = λn →∞,

but ( 1
λn
bn) is Mackey convergent to 0. �

5.5. Lemma. Bounded multilinear mappings are smooth. Let f : E1 ×
. . . × En → F be a multilinear mapping. Then f is bounded if and only if it is
smooth. For the derivative we have the product rule:

df(x1, . . . , xn)(v1, . . . , vn) =
n∑
i=1

f(x1, . . . , xi−1, vi, xi+1, . . . , xn).

In particular, we get for f : E ⊇ U → R, g : E ⊇ U → F and x ∈ U , v ∈ E the
Leibniz formula

(f · g)′(x)(v) = f ′(x)(v) · g(x) + f(x) · g′(x)(v).

Proof. We use induction on n. The case n = 1 is corollary 2.11 . The induction
goes as follows:

f is bounded
⇐⇒ f(B1 × . . .×Bn) = f∨(B1 × . . .×Bn−1)(Bn) is bounded for all bounded

sets Bi in Ei;
⇐⇒ f∨(B1 × . . .×Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 5.3 ;
⇐⇒ f∨ : E1 × . . .× En−1 → C∞(En, F ) is bounded;
⇐⇒ f∨ : E1×. . .×En−1 → C∞(En, F ) is smooth by the inductive assumption;
⇐⇒ f : E1 × . . .× En → F is smooth by cartesian closedness 3.13 .

The formula for the derivative follows by direct evaluation of the directional differ-
ence quotient.

The particular case follows by application to the scalar multiplication R × F →
F . � Di/Mi

Now let us show that also the structures coincide:

5.6. Proposition. Structure on space of multilinear maps. The injection
of L(E1, . . . , En;F )→ C∞(E1 × . . .× En, F ) is a bornological embedding.

Proof. We can show this by induction. In fact, let B ⊆ L(E1, . . . , En;F ). Then

B is bounded
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⇐⇒ B(B1 × . . .×Bn) = B∨(B1 × . . .×Bn−1)(Bn) is bounded for all bounded
Bi in Ei;

⇐⇒ B∨(B1 × . . .×Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 5.3 ;
⇐⇒ B∨ ⊆ C∞(E1 × . . . × En−1, C

∞(En, F )) is bounded by the inductive as-
sumption;

⇐⇒ B ⊆ C∞(E1 × . . .×En, F ) is bounded by cartesian closedness 3.13 . �

Algebraic Tensor Product

Remark. The importance of the tensor product is twofold. First it allows lineariz-
ing of multi-linear mappings and secondly it allows to calculate function spaces.

We will consider the spaces of linear and multi-linear mappings between vector
spaces. If we supply all vector spaces E, E1, . . . , En, F with the finest locally con-
vex topology (i.e. the final locally convex topology with respect to the inclusions
of all finite dimensional subspaces - on which the topology is unique) then all lin-
ear mappings are continuous and all multi-linear mappings are bounded (but not
necessarily continuous as the evaluation map ev : E∗×E → K on an infinite dimen-
sional vector space E shows) and hence it is consistent to denote the corresponding
function spaces by L(E,F ) = L(E,F ) and L(E1, . . . En;F ).

In more detail the first feature is:

3.1 Proposition. Linearization. Given two linear spaces E and F , then there
exists a solution ⊗ : E ×F → E ⊗F – called the algebraic tensor product of
E and F – to the following universal problem:

E × F
⊗ //

T
##F

FF
FF

FF
FF

E ⊗ F

T̃

!

{{
G

Here ⊗ : E × F → E ⊗ F and T : E × F → G are bilinear and T̃ is linear.

Proof. In order to find E ⊗F one considers first the case, where G = R. Then we
have that ⊗∗ : (E ⊗ F )∗ → L(E,F ; R) should be an isomorphism. Hence E ⊗ F
could be realized as subspace of (E⊗F )∗∗ ∼= L(E,F ; R)∗. Obviously to each bilinear
functional T : E ×F → R corresponds the linear map evT : L(E,F ; R)∗ → R. The
map ⊗ : E × F → E ⊗ F ⊆ L(E,F ; R)∗ has to be such that evT ◦⊗ = T for all
bilinear functionals T : E × F → R, i.e. ⊗(x, y)(T ) = (evT ◦⊗)(x, y) = T (x, y).
Thus we have proved the existence of T̃ := evT for G = R. But uniqueness can be
true only on the linear subspace generated by the image of ⊗, and hence we denote
this subspace E ⊗ F .

For bilinear mappings T : E×F → G into an arbitrary vector space G, we consider
the following diagram, which has quite some similarities with that used in the
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construction of the c∞-completion in 2.31 :

E × F
⊗ //

T

��

E ⊗ F

(3)

eT

��

� � //

(2)

��

L(E,F ; R)∗

evλ◦T

��

(1)xx∏
G′ R

prλ

&&MMMMMMMMMMMM

G
, �

δ

::

λ // R
The right dashed arrow (1) and δ exist uniquely by the universal property of the
product in the center. The arrow (2) exists uniquely as restriction of (1) to the
subspace E⊗F . Finally (3) exists, since the generating subset ⊗(E×F ) in E⊗F
is mapped to T (E × F ) ⊆ G and since δ is injective. �

Note that ⊗ extends to a functor, by defining T ⊗ S via the following diagram:

E1 × F1
⊗ //

T×S
��

E1 ⊗ F1

T⊗S!

��
E2 × F2 ⊗

// E2 ⊗ F2

Furthermore one easily proves the existence of the following natural isomorphisms:

E ⊗ R ∼= E

E ⊗ F ∼= F ⊗ E
(E ⊗ F )⊗G ∼= E ⊗ (F ⊗G)

In analogy to the exponential law for smooth mappings or continuous mappings,
we show now the existence of a natural isomorphism

L(E,F ;G) ∼= L(E,L(F,G))

again denoted by ( )∨ with inverse isomorphism ( )∧ given by the same formula as
above.
In fact for a bilinear mapping T : E × F → G, the mapping T∨ has values in
L(F,G), since T (x, ) is linear, and it is linear, since L(F,G) carries the initial
vector space structure with respect to the evaluations evy and evy ◦T∨ = T ( , y) is
also linear. The same way one shows that the converse implication is also true.

Note that if both spaces E and F are finite dimensional, then so is L(E,F ; R)
and hence also the dual L(E,F ; R)∗. But then E ⊗ F is finite dimensional too (in
fact dim(E ⊗ F ) = dimE · dimF ), as we will see in 3.30 , and hence E ⊗ F =
(E ⊗ F )∗∗ = L(E,F ; R)∗.

If one factor is infinite dimensional and the other one is not 0, then this is not true.
In fact take F = R, then E ⊗ R ∼= E whereas L(E,R; R)∗ ∼= L(E,L(R,R))∗ ∼=
L(E,R)∗ = E∗∗.

Projective Tensor Product

We turn first to the property of making bilinear continuous mappings into linear
ones. We call the corresponding solution the projective tensor product of E
and F and denote it by E⊗πF . Obviously it can be obtained by taking the algebraic
tensor product and supplying it with the finest locally convex topology such that
E×F → E⊗F is continuous. This topology exists since the union of locally convex
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topologies is locally convex and E×F → E⊗F is continuous for the weak topology
on E ⊗F generated by those linear functionals which correspond to continuous bi-
linear functionals on E × F . It has the universal property, since the inverse image
of a locally convex topology under a linear mapping T̃ is again a locally convex
topology, such that ⊗ is continuous, provided the associated bilinear mapping T
is continuous. However, it is not obvious that this topology is separated, and we
prove that now. We will denote the space of continuous linear mappings from
E to F by L(E,F ), and the space of continuous multi-linear mappings
by L(E1, . . . , En;F ). If all E1, . . . , En are the same space E, we will also write
Ln(E;F ).

3.3 Lemma. E ⊗π F is Hausdorff provided E and F are.

Proof. It is enough to show that the set E∗×F ∗ separates points in E⊗F or even
in L(E,F ; R)∗. So let 0 6= z =

∑
k xk ⊗ yk be given. By replacing linear dependent

xk by the corresponding linear combinations and using bilinearity of ⊗, we may
assume that the xk are linearly independent. Now choose x∗ ∈ E∗ and y∗ ∈ F ∗ be
such that x∗(xk) = δ1,k and y∗(y1) = 1. Then (x∗ ⊗ y∗)(z) = 1 6= 0. �

Since a bilinear mapping is continuous iff it is so at 0, a 0-neighborhood basis in
E ⊗π F is given by all those absolutely convex sets, for which the inverse image
under ⊗ is a 0-neighborhood in E × F . A basis is thus given by the absolutely
convex hulls denoted U ⊗ V of the images of U × V under ⊗, where U resp. V
runs through a 0-neighborhood basis of E resp. F . We only have to show that
these sets U ⊗ V are absorbing. So let z =

∑
k xk ⊗ yk ∈ E ⊗ F be arbitrary.

Then there are ak > 0 and bk > 0 such that xk ∈ akU and yk ∈ bkV and hence
z =

∑
k≤K ak bk

xk

ak
⊗ yk

bk
∈ (
∑
k ak bk) · 〈U ⊗ V 〉abs.conv.. The Minkowski-functionals

pU⊗V form a base of the seminorms of E ⊗π F and we will denote them by πU,V .
In terms of the Minkowski-functionals pU and pV of U and V we obtain that
z ∈ (

∑
k pU (xk) pV (yk))U ⊗ V for any z =

∑
k xk ⊗ yk since xk ∈ pU (xk) · U for

closed U , and thus pU⊗V (z) ≤ inf{
∑
k pU (xk) pV (yk) : z =

∑
k xk ⊗ yk}. We now

show the converse:

3.4 Proposition. Seminorms of the projective tensor product.

pU⊗V (z) = inf
{∑

k

pU (xk) · pV (yk) : z =
∑
k

xk ⊗ yk
}
.

Proof. Let z ∈ λ · U ⊗ V with λ > 0. Then z = λ
∑
λkuk ⊗ vk with uk ∈

U , vk ∈ V and
∑
k |λk| = 1. Hence z =

∑
xk ⊗ vk, where xk = λλkuk, and∑

k pU (xk) · pV (vk) ≤
∑
λ|λk| = λ. Taking the infimum of all λ gives now that

pU⊗V (z) is greater or equal to the infimum on the right side. �

3.5 Corollary. E ⊗π F is normable (metrizable) provided E and F are.

3.6 Lemma. The semi-norms of decomposable tensors.

pU,V (x⊗ y) = pU (x) · pV (y).

Proof. According to [5, 7.1.8] there are x∗ ∈ E∗ and y∗ ∈ F ∗ such that |x∗| ≤ pU
and |y∗| ≤ pV and x∗(x) = pU (x) and y∗(y) = pV (y). If x⊗ y =

∑
k xk ⊗ yk, then

pU⊗V (x⊗ y) ≤ pU (x) · pV (y) = x∗(x) · y∗(y) = (x∗ ⊗ y∗)(x⊗ y) =

=
∑
k

x∗(xk) · y∗(yk) ≤
∑
k

pU (xk) · pV (yk),
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and taking the infimum gives the desired result. �

3.7 Remark. Functorality. Given two continuous linear maps T1 : E1 → F1

and T2 : E2 → F2 we can consider bilinear continuous map given by composing
T1 × T2 : E1 × E2 → F1 × F2 with ⊗ : F1 × F2 → F1 ⊗ F2. By the universal
property of E1 × E2 → E1 ⊗ E2 we obtain a continuous linear map denoted by
T1 ⊗ T2 : E1 ⊗ E2 → F1 ⊗ F2.

E1 × E2
⊗ //

T1×T2

��

E1 ⊗ E2

T1⊗T2

��
F1 × F2 ⊗

// F1 ⊗ F2

By the uniqueness of the linearization one obtains immediately that ⊗ is a functor.
Because of the uniqueness of universal solutions one sees easily that one has natural
isomorphisms R⊗ E ∼= E, E ⊗ F ∼= F ⊗ E and (E ⊗ F )⊗G ∼= E ⊗ (F ⊗G).

3.14 Example. ⊗π does not preserve embeddings.
In fact consider the isometric embedding `2 → C(K), where K is the closed unit-
ball of (`2)∗ supplied with its compact topology of pointwise convergence, see the
corollary to the Alaoğlu-Bourbaki-theorem in [5, 7.4.12]. This subspace has how-
ever no topological complement, since C(K) has the Dunford-Pettis property
(see [12, 20.7.8], i.e. x∗n(xn) → 0 for every two sequences xn → 0 in σ(E,E∗) and
x∗n → 0 in σ(E∗, E∗∗)), but no infinite dimensional reflexive Banach space like `2

has it (e.g. xn := en, x∗n := en) and hence cannot be a complemented subspace of
C(K), see [12, 20.7].

Suppose now that `2 ⊗π (`2)∗ → C(K) ⊗π (`2)∗ were an embedding. The duality
mapping ev : `2× (`2)∗ → R yields a continuous linear mapping s : `2⊗π (`2)∗ → R
and would hence have a continuous linear extension s̃ : C(K) ⊗ (`2)∗ → R. The
corresponding bilinear map would give a continuous mapping s̃∨ : C(K)→ (`2)∗∗ ∼=
`2, which is a left inverse to the embedding `2 → C(K), a contradiction.

In connection with the second usage of tensor products we would expect that for
the product EN = (R ⊗π E)N = RN ⊗π E, i.e. we are looking for preservation of
certain products. But even purely algebraically this fails to be true. In fact take
the coproduct E = R(N). Using that RN ⊗ ( ) is left-adjoint and hence preserves
colimits we get RN ⊗ R(N) ∼= (RN ⊗ R)(N) ∼= (RN)(N), which is strictly smaller
than (R(N))N. However in both spaces the union

⋃
nE

n is dense, so after taking
completions there should be some chance. In order to work with completions we
have to show preservation of dense embeddings. To obtain such a result we need a
dual characterization of such mappings. And this we treat next.

5.7. Bornological tensor product. It is natural to consider the universal
problem of linearizing bounded bilinear mappings. The solution is given by the
bornological tensor product E⊗β F , i.e. the algebraic tensor product with the finest
locally convex topology such that E × F → E ⊗ F is bounded. A 0-neighborhood
basis of this topology is given by those absolutely convex sets, which absorb B1⊗B2

for all bounded B1 ⊆ E1 and B2 ⊆ E2. Note that this topology is bornological
since it is the finest locally convex topology with given bounded linear mappings
on it.

Theorem. The bornological tensor product is the left adjoint functor to the Hom-
functor L(E, ) on the category of bounded linear mappings between locally convex
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spaces, and one has the following bornological isomorphisms:

L(E ⊗β F,G) ∼= L(E,F ;G) ∼= L(E,L(F,G))
E ⊗β R ∼= E

E ⊗β F ∼= F ⊗β E
(E ⊗β F )⊗β G ∼= E ⊗β (F ⊗β G)

Furthermore, the bornological tensor product preserves colimits. It neither preserves
embeddings nor countable products.

Proof. We show first that this topology has the universal property for boun-
ded bilinear mappings f : E1 × E2 → F . Let U be an absolutely convex zero
neighborhood in F , and let B1, B2 be bounded sets. Then f(B1×B2) is bounded,
hence it is absorbed by U . Then f̃−1(U) absorbs ⊗(B1×B2), where f̃ : E1⊗E2 → F

is the canonically associated linear mapping. So f̃−1(U) is in the zero neighborhood
basis of E1 ⊗β E2 described above. Therefore, f̃ is continuous.

A similar argument for sets of mappings shows that the first isomorphism L(E ⊗β
F,G) ∼= L(E,F ;G) is bornological.

The topology on E1⊗βE2 is finer than the projective tensor product topology, and
so it is Hausdorff. The rest of the positive results is clear.

The counter-example for embeddings given for the projective tensor product works
also, since all spaces involved are Banach.

Since the bornological tensor-product preserves coproducts it cannot preserve prod-
ucts. In fact (R ⊗β R(N))N ∼= (R(N))N whereas RN ⊗β R(N) ∼= (RN ⊗β R)(N) ∼=
(RN)(N). �

5.8. Proposition. Projective versus bornological tensor product. If every
bounded bilinear mapping on E × F is continuous then E ⊗π F = E ⊗β F . In
particular, we have E ⊗π F = E ⊗β F for any two metrizable spaces, and for a
normable space F we have Eborn ⊗π F = E ⊗β F .

Proof. Recall that E ⊗π F carries the finest locally convex topology such that
⊗ : E × F → E ⊗ F is continuous, whereas E ⊗β F carries the finest locally
convex topology such that ⊗ : E × F → E ⊗ F is bounded. So we have that
⊗ : E × F → E ⊗β F is bounded and hence by assumption continuous, and thus
the topology of E ⊗π F is finer than that of E ⊗β F . Since the converse is true in
general, we have equality.

In [5, 3.1.6] it is shown that in metrizable locally convex spaces the convergent
sequences coincide with the Mackey-convergent ones. Now let T : E × F → G be
bounded and bilinear. We have to show that T is continuous. So let (xn, yn) be
a convergent sequence in E × F . Without loss of generality we may assume that
its limit is (0, 0). So there are µn →∞ such that {µn(xn, yn) : n ∈ N} is bounded
and hence also T

(
{µn(xn, yn) : n ∈ N}

)
=
{
µ2
nT (xn, yn) : n ∈ N

}
, i.e. T (xn, yn)

converges even Mackey to 0.

If F is normable and T : Eborn × F → G is bounded bilinear then T∨ : Eborn →
L(F,G) is bounded, and since Eborn is bornological it is even continuous. Clearly,
for normed spaces F the evaluation map ev : L(F,G)× F → G is continuous, and
hence T = ev ◦(T∨ × F ) : Eborn × F → G is continuous. Thus, Eborn ⊗π F =
E ⊗β F . �

Note that the bornological tensor product is invariant under bornologification, i.e.
Eborn ⊗β Fborn ∼= E ⊗β F . So it is no loss of generality to assume that both spaces
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are bornological. Keep however in mind that the corresponding identity for the
projective tensor product does not hold. Another possibility to obtain the identity
E⊗π F = E⊗β F is to assume that E and F are bornological and every separately
continuous bilinear mapping on E×F is continuous. In fact, every bounded bilinear
mapping is obviously separately bounded, and since E and F are assumed to be
bornological, it has to be separately continuous. We want to find another class
beside the Fréchet spaces (see [5, 5.2.8]) which satisfies these assumptions.

3.47 Theorem. Continuity versus separately continuity. Let E and F
be two barreled spaces with a countable base of bornology. Then every separately
continuous bilinear map E × F → G is continuous.

Proof. Let An and Bn be a basis of the bornologies of E and F . Let T : E×F → G
be separately continuous. Then T∨ : E → L(F,G) is continuous for the topology of
pointwise convergence on L(F,G). Thus T∨(Ak) is bounded for this topology, and
since F is barreled it is equi-continuous. Thus for every 0-neighborhood W in G
there exists a 0-neighborhood Vk in F with T (Ak × Vk) ⊆ W . By symmetry there
exists a 0-neighborhood Uk in E with T (Uk × Bk) ⊆ W . We have to show that
this implies for gDF -spaces E and F the continuity of T , see [12, 15.6.1]. Since
E is quasi-normable, we can find for every 0-neighborhood Un a 0-neighborhood
U ′n such that for every ρ > 0 there is some k(n, ρ) ∈ N with U ′n ⊆ ρUn + Ak(n,ρ).
Since Ak is a basis of bounded sets there exist ρn > 0 such that U :=

⋂
n ρnU

′
n

is a 0-neighborhood in the topology generated by {An}, see [12, 12.3.2]. And this
topology coincides with the given topology since E is gDF , by [12, 12.3.6]. Let
Wn := Vk(n,1/ρn). Then V := 〈

⋃
n

1
ρn
Wn ∩ Bn is a 0-neighborhood again by [12,

12.3.6] and by the description of a 0-neighborhood basis of the topology induced
by {Bn}n given in [12, 12.3.1]. We claim that T (U × V ) ⊆W . In fact take x ∈ U
and y ∈ V . Then y is an absolutely convex combination of yn ∈ 1

ρn
Wn ∩ Bn.

Since x ∈ ρnU ′n ⊆ Un + ρnAk(n,1/ρn) there are un ∈ Un and an ∈ Ak(n,1/ρn) with
x = un + ρnan. So

T (x, yn) = T (un, yn)+T (ρnan, yn) ∈ T (Un×Bn)+ρnT (Ak(n,1/ρn)×
1
ρn
Wn) ⊆ 2W

Hence the same is true for the absolutely convex combination T (x, y), i.e. T (U ×
V ) ⊆ 2W . �

3.48 Corollary. Projective versus bornological tensor product for LB-
spaces. Let E and F be countable inductive limits of Banach spaces (e.g. the duals
of metrizable spaces with their bornological topology, i.e. the bornologification of the
strong topology). Then E ⊗π F ∼= E ⊗β F .

Proof. Let T : E × F → G be bounded. Since both spaces are bornological T is
separately continuous and since both spaces are barreled and DF it is continuous.
This is enough to guarantee the equality of the two tensor products by 3.39 . �

5.9. Corollary. The following mappings are bounded multilinear.

(1) lim : Nat(F ,G) → L(limF , limG), where F and G are two functors on
the same index category, and where Nat(F ,G) denotes the space of all
natural transformations with the structure induced by the embedding into∏
i L(F(i),G(i)).

(2) colim : Nat(F ,G)→ L(colimF , colimG).
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(3)

L : L(E1, F1)× . . .×L(En, Fn)× L(F,E)→
→ L(L(F1, . . . , Fn;F ), L(E1, . . . , En;E))

(T1, . . . , Tn, T ) 7→ (S 7→ T ◦ S ◦ (T1 × . . .× Tn));

(4)
n⊗
β : L(E1, F1)× . . .×L(En, Fn)→ L(E1⊗β · · · ⊗β En, F1⊗β · · · ⊗β Fn).

(5)
∧n : L(E,F )→ L(

∧n
E,
∧n

F ), where
∧n

E is the linear subspace of all
alternating tensors in

⊗n
β E. It is the universal solution of

L
( n∧

E,F
)
∼= Lnalt(E;F ),

where Lnalt(E;F ) is the space of all bounded n-linear alternating map-
pings E × . . . × E → F . This space is a direct summand of Ln(E;F ) :=
L(E, . . . , E;F ).

(6)
∨n : L(E,F )→ L(

∨n
E,
∨n

F ), where
∨n

E is the linear subspace of all
symmetric tensors in

⊗n
β E. It is the universal solution of

L
( n∨

E,F
)
∼= Lnsym(E;F ),

where Lnsym(E;F ) is the space of all bounded n-linear symmetric mappings
E × . . .× E → F . This space is also a direct summand of Ln(E;F ).

(7)
⊗

β : L(E,F ) → L(
⊗

β E,
⊗

β F ), where
⊗

β E :=
∐∞
n=0

n⊗
βE is the

tensor algebra of E. Note that it has the universal property of prolonging
bounded linear mappings with values in locally convex spaces, which are
algebras with bounded operations, to continuous algebra homomorphisms:

L(E,F ) ∼= Alg
(⊗

β

E,F
)
.

(8)
∧

: L(E,F )→ L(
∧
E,
∧
F ), where

∧
E :=

∐∞
n=0

∧n
E is the exterior al-

gebra. It has the universal property of prolonging bounded linear mappings
to continuous algebra homomorphisms into graded-commutative algebras,
i.e. algebras in the sense above, which are as vector spaces a coproduct∐
n∈N En and the multiplication maps Ek × El → Ek+l and for x ∈ Ek

and y ∈ El one has x · y = (−1)kly · x.
(9)

∨
: L(E,F ) → L(

∨
E,
∨
F ), where

∨
E :=

∐∞
n=0

∨n
E is the symmetric

algebra. It has the universal property of prolonging bounded linear map-
pings to continuous algebra homomorphisms into commutative algebras.

Recall that the symmetric product is given as the image of the symmetrizer sym :
E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E given by

x1 ⊗ · · · ⊗ xn →
1
n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n).

Similarly the wedge product is given as the image of the alternator

alt : E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E

given by x1 ⊗ · · · ⊗ xn →
1
n!

∑
σ∈Sn

sign(σ)xσ(1) ⊗ · · · ⊗ xσ(n).

Symmetrizer and alternator are bounded projections, so both subspaces are com-
plemented in the tensor product.
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Proof. All results follow easily by flipping coordinates until only a composition of
products of evaluation maps remains.

In particular, consider the following diagrams:

( 1 )

Nat(F ,G)× limF //

pri × pri

��

G

pri

��
L(F(i),G(i))×F(i) ev // G(i)

( 2 )

F(i)
inji // colimF // L(Nat(F ,G), colimG)

F(i)×Nat(F ,G)

Id× pri

��

// colimG

F(i)× L(F(i),G(i)) ev // G(i)

inji

OO

( 3 ) (∏
i L(Ei, Fi)

)
× L(F,E)× L(F1, . . . , Fn;F )×

∏
iEi

∼=
��

// E

L(F,E)× L(F1, . . . , Fn;F )×
∏
i(L(Ei, Fi)× Ei)

Id× ev×...×ev

��
L(F,E)× L(F1, . . . , Fn;F )×

∏
i Fi ev

// L(F,E)× F

ev

OO

( 4 )

E1 × . . .× En // L(L(E1, F1), . . . , L(En, Fn);F1 ⊗β · · · ⊗β Fn)

E1 × . . .× En × L(E1, F1)× . . .× L(En, Fn) //

∼=
��

F1 ⊗β · · · ⊗β Fn

L(E1, F1)× E1 × . . .× L(En, Fn)× En
ev×...×ev// F1 × . . .× Fn

OO

( 5 )

L(E,F )

∆

��

// L(
∧n

E,
∧n

F )

L(E,F )× . . .× L(E,F )
Nn

// L(
⊗n

β E,
⊗n

β F )

L(incl,alt)

OO

The projection Ln(E;F )→ Lnalt(E;F ) is given by the alternator

T 7→
(
(v1, . . . , vn) 7→

1
n!

∑
σ

sign(σ)T (vσ(1), . . . , vσ(n))
)
.
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The universal proporty follows from the diagram:

E × . . .× E
⊗ //

f
((QQQQQQQQQQQQQQQ E ⊗β · · · ⊗β E alt //

f̃

��

∧n
E

f̃ |Vn Ewwpppppppppppp

F

( 6 )

L(E,F )

∆

��

// L(
∨n

E,
∨n

F )

L(E,F )× . . .× L(E,F )
Nn

β // L(
⊗n

β E,
⊗n

β F )

L(incl,alt)

OO

The projection Ln(E;F )→ Lnsym(E;F ) symmetrizer

T 7→
(
(v1, . . . , vn) 7→

1
n!

∑
σ

T (vσ(1), . . . , vσ(n))
)
.

The universal proporty follows from the diagram:

E × . . .× E
⊗ //

f
((QQQQQQQQQQQQQQQ E ⊗β · · · ⊗β E

sym //

f̃

��

∨n
E

f̃ |Wn Ewwpppppppppppp

F

( 7 )

L(E,F )
N

//

(
Nn)n

��

L(
⊗

β E,
⊗

β F )

∏
n L(

⊗n
β E,

⊗n
β F )

Q
n incl∗ //

∏
n L(

⊗n
β E,

∐
n

⊗n
β F )

∼=

OO

The universal property holds, since to T ∈ L(E,F ) we can associate
∑
n µn◦

⊗n
T ,

where µn :
⊗
F → F denotes the n-fold multiplication of the algebra F .

( 8 )

L(E,F )
V

//

(
Vn)n

��

L(
∧
E,
∧
F )

∏
n L(

∧n
E,
∧n

F )
Q

n incl∗ // ∏
n L(

∧n
E,
∐
n

∧n
F )

∼=

OO

( 9 )

L(E,F )
W

//

(
Wn)n

��

L(
∨
E,
∨
F )

∏
n L(

∨n
E,
∨n

F )
Q

n incl∗ // ∏
n L(

∨n
E,
∐
n

∨n
F )

∼=

OO

�
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5.12. Theorem. Taylor formula. Let f : U → F be smooth, where U is c∞-open
in E. Then for each segment [x, x+ y] = {x+ ty : 0 ≤ t ≤ 1} ⊆ U we have

f(x+ y) =
n∑
k=0

1
k!
dkf(x)yk +

∫ 1

0

(1− t)n

n!
dn+1f(x+ ty)yn+1dt,

where yk = (y, . . . , y) ∈ Ek.

Proof. Recall that we can form iterated derivatives as follows:

f : E ⊇ U → F

df : E ⊇ U → L(E,F )

d(df) : E ⊇ U → L(E,L(E,F )) ∼= L(E,E;F )
...

d(. . . (d(df)) . . . ) : E ⊇ U → L(E, . . . , L(E,F ) . . . ) ∼= L(E, . . . , E;F )

Thus, the iterated derivative dnf(x)(v1, . . . , vn) is given by

∂
∂t1
|t1=0 · · · ∂

∂tn
|tn=0f(x+ t1v1 + · · ·+ tnvn) = ∂1 . . . ∂nf̃(0, . . . , 0),

where f̃(t1, . . . , tn) := f(x+ t1v1 + · · ·+ tnvn).

This Taylor formula is an assertion on the smooth curve t 7→ f(x + ty). Using
functionals λ we can reduce it to the scalar valued case since ( ddt )

k|t=0λ(f(x+ty)) =
λ(f (k)(x)yk), or we proceed directly by induction on n: The first step is (6) in 2.6 ,
and the induction step is partial integration of the remainder integral. �

5.11. Proposition. Symmetry of higher derivatives. Let f : E ⊇ U → F
be smooth. The n-th derivative f (n)(x) = dnf(x), considered as an element of
Ln(E;F ), is symmetric, so lies in the space Lnsym(E;F ) ∼= L(

∨n
E;F )

Proof. The result now follows from the finite dimensional property, since the
iterated derivative dnf(x)(v1, . . . , vn) is given by

∂
∂t1
|t1=0 · · · ∂

∂tn
|tn=0f(x+ t1v1 + · · ·+ tnvn) = ∂1 . . . ∂nf̃(0, . . . , 0),

where f̃(t1, . . . , tn) := f(x+ t1v1 + · · ·+ tnvn). �

5.13. Corollary. The following subspaces are direct summands:

L(E1, . . . , En;F ) ⊆ C∞(E1 × . . .× En, F ),

Lnsym(E;F ) ∆∗

−→ C∞(E,F ).

Note that direct summand is meant in the bornological category, i.e. the embedding
admits a left-inverse in the category of bounded linear mappings, or, equivalently,
with respect to the bornological topology it is a topological direct summand.

Proof. The projection for L(E,F ) ⊆ C∞(E,F ) is f 7→ df(0). The statement on
Ln follows by induction using the exponential laws 3.13 and 5.2 .

The second embedding is given by 4∗, which is bounded and linear C∞(E × . . .×
E,F ) → C∞(E,F ). Here ∆ : E → E × . . . × E denotes the diagonal mapping
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x 7→ (x, . . . , x).
Lksym(E;F )

��

� � // Lk(E;F )
_�

��
C∞(E,F ) C∞(E × . . .× E,F )

∆∗
oo

A bounded linear left inverse C∞(E,F ) → Lksym(E;F ) is given by f 7→ 1
k!d

kf(0),
since each f = ∆∗(f̃) in the image of ∆∗ is k-homogeneous and so dkf(0)vk =(
d
dt

)k
f(tv)|t=0 = (( ddt )

ktk)|t=0f(v) = k! f(v) = k! f̃ vk and by the polarization
formula 7.13 f̃ = 1

k!d
kf(0).

5.15. Definition. A smooth mapping f : E → F is called a polynomial if
some derivative dpf vanishes on E. The largest p such that dpf 6= 0 is called the
degree of the polynomial. The mapping f is called a monomial of degree p if it is
of the form f(x) = f̃(x, . . . , x) for some f̃ ∈ Lpsym(E;F ).

5.16. Lemma. Polynomials versus monomials.

(1) The smooth p-homogeneous maps are exactly the monomials of degree p.
(2) The symmetric multilinear mapping representing a monomial is unique.
(3) A smooth mapping is a polynomial of degree ≤ p if and only if its restric-

tion to each one dimensional subspace is a polynomial of degree ≤ p.
(4) The polynomials are exactly the finite sums of monomials.

Proof. ( 1 ) Every monomial of degree p is clearly smooth and p-homogeneous. If
f is smooth and p-homogeneous, then

(dpf)(0)(x, . . . , x) = ( ∂∂t )
p
∣∣
t=0

f(tx) = ( ∂∂t )
p
∣∣
t=0

tpf(x) = p!f(x).

( 2 ) The symmetric multilinear mapping g ∈ Lpsym(E;F ) representing a monomial
f is uniquely determined by the polarization formula 7.13 .

( 3 ) & ( 4 ) Let the restriction of f to each one dimensional subspace be a poly-
nomial of degree ≤ p, i.e., we have `(f(tx)) =

∑p
k=0

tk

k! ( ∂∂t )
k
∣∣
t=0

`(f(tx)) for x ∈ E
and ` ∈ F ′. So f(x) =

∑p
k=0

1
k!d

kf(0 · x)(x, . . . , x) and hence is a finite sum of
monomials.
For the derivatives of a monomial q of degree k we have q(j)(tx)(v1, . . . , vj) =
k(k − 1) . . . (k − j + 1)tk−j q̃(x, . . . , x, v1, . . . , vj). Hence, any such finite sum is a
polynomial in the sense of 5.15 .
Finally, any such polynomial has obviously a polynomial as trace on each one di-
mensional subspace. �

5.17. Lemma. Spaces of polynomials. The space Polyp(E,F ) of polynomi-
als of degree ≤ p is isomorphic to

⊕
k≤p L(

∨k
E;F ) and is a direct summand in

C∞(E,F ) with a complement given by the smooth functions which are p-flat at 0.

Proof. By 5.16 the mapping
⊕

k≤p L(
∨k

E;F ) → C∞(E,F ) given on the sum-

mands by L(
∨k

E;F ) ∼= Lksym(E,F ) −∆∗
→ C∞(E,F ) has Polyp(E,F ) as image.

A retraction to it is given by
⊕

k≤p
1
k!d

k|0, since 1
k!d

k|0 is by 5.9.6 together with

5.13 a retraction to the inclusion of the summand L(
∨k

E;F ) which is 0 when
composed with the inclusion of the summands L(

∨j
E;F ) for j 6= k by the formula

for q(k)(x) given in the proof of 5.16 . �
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Remark. The corresponding statement is false for infinitely flat functions. E.g.
the short exact sequence E → C∞(R,R)→ RN does not split, where E denotes the
space of smooth functions which are infinitely flat at 0 and where the projection is
given by the Taylor-coefficients. Otherwise, RN would be a subspace of C∞([0, 1],R)
(compose the section with the restriction map from C∞(R,R)→ C∞([0, 1],R)) and
hence would have the restriction of the supremum norm as continuous norm.

C∞(R,R) // // C∞([0, 1],R)

����
RN Id //

OO

RN

This is however easily seen to be not the case.

5.14. Remark. Recall that for finite dimensional spaces E = Rn a polynomial
into a (locally convex) vector space F is just a finite sum∑

k∈Nn

akx
k,

where ak ∈ F and xk :=
∏n
i=1 x

ki
i . Thus, it is just an element in the algebra gener-

ated by the coordinate projections pri tensorized with F . Since every (continuous)
linear functional on E = Rn is a finite linear combination of coordinate projections,
this algebra is also the algebra generated by E′. For a general locally convex space
E we define the algebra Pf (E) of finite type polynomials to be the subalgebra of
C∞(E,R) ⊆ RE generated by E′.

This is not in general the algebra of polynomials as defined in 5.15 . Take for
example the square of the norm ‖ ‖2 : E → R on some infinite dimensional
Hilbert space E. Its derivative is given by x 7→ (v 7→ 2〈x, v〉), and hence is linear.
The second derivative is x 7→ ((v, w) 7→ 2〈v, w〉) and hence constant. Thus, the
third derivative vanishes.
This function is not a finite type polynomial. Otherwise, it would be continuous
for the weak topology σ(E,E′). Hence, the unit ball would be a 0-neighborhood
for the weak topology, which is not true, since it is compact for it.

Note that for E = `2 the space
∨2

E′ is not even dense in (
∨2

E)′ = L2
sym(E,R)

and hence Pf (`2) is not dense in Poly(`2,R): Otherwise f := ‖ ‖2 ∈ L2
sym(E,R) ⊆

L2(E,R) ∼= L(E,E′) could be approximated by elements in
∨2

E′ ⊆
⊗2

E′. How-
ever f̌ : `2 → (`2)′ ∼= `2 is the identity and elements in

⊗2
E′ correspond to finite

dimensional operators, so they approximate only compact operators.

Note that the series
∑
k x

2
k converges pointwise and even uniformly for x = (xk)k in

compact subsets of `2. In fact, every compact set K is contained in the absolutely
convex hull of a 0-sequence xn. In particular µk := sup{|xnk | : n ∈ N} → 0
for k → ∞ (otherwise, we can find an ε > 0 and kj → ∞ and nj ∈ N with
‖xnj‖2 ≥ |x

nj

kj
| ≥ ε. Since xn ∈ `2 ⊆ c0, we conclude that nj → ∞, which yields a

contradiction to ‖xn‖2 → 0). Thus

K ⊆ 〈xn : n ∈ N〉absolutely convex ⊆ 〈µnen〉absolutely convex,

and hence
∑
k≥n |xk| ≤ max{µk : k ≥ n} for all x ∈ K.

The series does not converge uniformly on bounded sets. To see this choose x = ek.

5.10. Lemma. Let E be a convenient vector space. Then E′ ↪→ Pf (E) :=
〈E′〉alg ⊆ C∞(E,R) is the free commutative algebra over the vector space E′, i.e.
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to every linear mapping f : E′ → A in a commmutative algebra, there exists a
unique algebra homomorphism f̃ : Pf (E)→ A.

Proof. The solution of this universal problem is given by the symmetric alge-
bra

∨
E′ :=

∐∞
k=0

∨k
E′ described in 5.9.9 . In particular we have an algebra

homomorphism ι̃ :
∨
E′ → Pf (E), which is onto, since by definition Pf (E) is gen-

erated by E′. It remains to show that it is injective. So let
∑N
k=1 αk ∈

∨
E′, i.e.

αk ∈
∨k

E′, with ι̃(
∑N
k=1 αk) = 0. Thus all derivatives ι̃(αk) at 0 of this mapping

in Pf (E) ⊆ C∞(E,R) vanish. So it remains to show that
⊗k

β E
′ → L(E, . . . , E; R)

is injective, since then by 5.13 also
∨k

E′ → Pf (E) ⊆ C∞(E,R) is injective.∨k
E′� _

��

// // Lksym(E,R)
� _

��

� � ∆∗
// C∞(E,R)

⊗k
E′ // // Lk(E,R)

We prove by induction that the mapping E′1 ⊗β · · · ⊗β E′n → L(E1, . . . , En; R),
α 7→ α̃ is injective. For n = 0 and n = 1 this is obvious. So let n ≥ 2 and let
α =

∑
k αk⊗xk, where αk ∈ E′1⊗β · · ·⊗βE′n−1 and xk ∈ E′n. We may assume that

(xk)k is linearly independent and hence may choose xj ∈ En with xk(xj) = δkj and
get 0 = α̃(y1, . . . , yn−1, xj) = α̃j(y1, . . . , yn−1) for all y1, . . . , yn−1. Hence α̃j = 0
and by induction hypothesis αj = 0 for all j and so α = 0. �

Note, however, that the injective mapping
∨
E′ → C∞(E,R) is not a bornological

embedding in general:
Otherwise also

∨2
E′ → L2

sym(E,R) would be such an embedding. Take E = `2

and consider B = {zn : n ∈ N} ⊆
∨2

`2 where zn :=
∑n
k=1 ek ⊗ ek. The bilinear

form z̃n ∈ L2
sym(`2,R) associated to zn ist given by z̃n(x, y) =

∑
k≤n ek(x) · ek(y) =∑

k≤n x
k yk. Thus the operator norm of z̃n is

‖z̃n‖ = sup
{∑
k≤n

xk yk : ‖x‖2 ≤ 1, ‖y‖2 ≤ 1
}

= 1.

The projective tensor norm of zn is

‖zn‖π = inf
{∑

k

‖ak‖2 ‖bk‖2 : z =
∑
k

ak ⊗ bk
}
≥ n,

since by Hölders inequality∑
k

‖ak‖2 ‖bk‖2 ≥
∑
k

‖ak · bk‖1 =
∑
k,j

|ajk · b
j
k|

≥
∑
j

∣∣∣∑
k

ajk · b
j
k

∣∣∣ =∑
j

∣∣∣(∑
k

ak ⊗ bk
)∼

(ej , ej)
∣∣∣

=
∑
j

|z̃n(ej , ej)| =
∑
j≤n

1 = n.

5.18. Theorem. Uniform boundedness principle. If all Ei are convenient
vector spaces, and if F is a locally convex space, then the bornology on the space
L(E1, . . . , En;F ) consists of all pointwise bounded sets.

So a mapping into L(E1, . . . , En;F ) is smooth if and only if all composites with
evaluations at points in E1 × . . .× En are smooth.
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Proof. Let us first consider the case n = 1. So let B ⊆ L(E,F ) be a pointwise
bounded subset. By lemma 5.3 we have to show that it is uniformly bounded on
each bounded subset B of E. We may assume that B is closed absolutely convex,
and thus EB is a Banach space, since E is convenient. By the classical uniform
boundedness principle, see [5, 5.2.2], the set B|EB

is bounded in L(EB , F ), and
thus B is bounded on B.

The smoothness detection principle: Clearly it suffices to recognize smooth curves.
If c : R → L(E,F ) is such that evx ◦c : R → F is smooth for all x ∈ E, then
clearly R−c→ L(E,F )−j→

∏
E F is smooth. We will show that (j ◦ c)′ has values

in L(E,F ) ⊆
∏
E F . Clearly, (j ◦ c)′(s) is linear E → F . The family of mappings

c(s+t)−c(s)
t : E → F is pointwise bounded for s fixed and t in a compact interval,

so by the first part it is uniformly bounded on bounded subsets of E. It converges
pointwise to (j ◦ c)′(s), so this is also a bounded linear mapping E → F . By the
first part j : L(E,F ) →

∏
E F is a bornological embedding, so c is differentiable

into L(E,F ). Smoothness follows now by induction on the order of the derivative.

The multilinear case follows from the exponential law 5.2 by induction on n: Let
B ⊆ L(E1, . . . , En;F ) be pointwise bounded. Then B(x1, . . . , xn−1, ) is pointwise
bounded in L(En, F ) for all x1, . . . , xn−1. So by the case n = 1 it is bounded in
the locally convex space L(En, F ) and by induction hypothesis B̌ is bounded in
L(E1, . . . , En−1;L(En, F )). By 5.2 B is bounded. �

5.19. Theorem. Multilinear mappings on convenient vector spaces. A
multilinear mapping from convenient vector spaces to a locally convex space is boun-
ded if and only if it is separately bounded.

Proof. Let f : E1 × . . . × En → F be n-linear and separately bounded, i.e.
xi 7→ f(x1, . . . , xn) is bounded for each i and all fixed xj for j 6= i. Then f∨ :
E1× . . .×En−1 → L(En, F ) is (n− 1)-linear. By 5.18 the bornology on L(En, F )
consists of the pointwise bounded sets, so f∨ is separately bounded. By induction
on n it is bounded. The bornology on L(En, F ) consists also of the subsets which
are uniformly bounded on bounded sets by lemma 5.3 , so f is bounded. �

We will now derive an infinite dimensional version of 3.4 , which gives us minimal
requirements for a mapping to be smooth.

5.20. Theorem. Let E be a convenient vector space. An arbitrary mapping
f : E ⊇ U → F is smooth if and only if all unidirectional iterated derivatives
dpvf(x) = ( ∂∂t )

p|0f(x + tv) exist, x 7→ dpvf(x) is bounded on sequences which are
Mackey converging in U , and v 7→ dpvf(x) is bounded on fast falling sequences.

Proof. A smooth mapping obviously satisfies this requirement. Conversely, from
3.4 we see that f is smooth restricted to each finite dimensional subspace, and

the iterated directional derivatives dv1 . . . dvnf(x) exist and are bounded multilinear
mappings in v1, . . . , vn by 5.4 , since they are universal linear combinations of the
unidirectional iterated derivatives dpvf(x), compare with the proof of 3.4 . So
dnf : U → Ln(E;F ) is bounded on Mackey converging sequences with respect to
the pointwise bornology on Ln(E;F ). By the uniform boundedness principle 5.18
together with lemma 4.14 the mapping dnf : U × En → F is bounded on sets
which are contained in a product of a bornologically compact set in U - i.e.
a set in U which is contained and compact in some EB - and a bounded set in En.
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Now let c : R→ U be a smooth curve. We have to show that f(c(t))−f(c(0))
t converges

to f ′(c(0))(c′(0)). It suffices to check that

1
t

(
f(c(t))− f(c(0))

t
− f ′(c(0))(c′(0))

)
is locally bounded with respect to t. Integrating along the segment from c(0) to
c(t) we see that this expression equals

1
t

∫ 1

0

(
f ′
(
c(0) + s(c(t)− c(0))

)(c(t)− c(0)
t

)
− f ′(c(0))(c′(0))

)
ds =

=
∫ 1

0

f ′
(
c(0) + s(c(t)− c(0))

)( c(t)−c(0)
t − c′(0)

t

)
ds

+
∫ 1

0

∫ 1

0

f ′′
(
c(0) + rs(c(t)− c(0))

)(
s
c(t)− c(0)

t
, c′(0)

)
dr ds.

The first integral is bounded since df : U × E → F is bounded on the product of
the bornologically compact set {c(0)+ s(c(t)− c(0)) : 0 ≤ s ≤ 1, t near 0} in U and
the bounded set

{
1
t

(
c(t)−c(0)

t − c′(0)
)

: t near 0
}

in E (use 1.6 ).

The second integral is bounded since d2f : U ×E2 → F is bounded on the product
of the bornologically compact set {c(0) + rs(c(t)− c(0)) : 0 ≤ r, s ≤ 1, t near 0} in
U and the bounded set

{(
s c(t)−c(0)t , c′(0)

)
: 0 ≤ s ≤ 1, t near 0

}
in E2.

Thus f ◦c is differentiable in F with derivative df ◦(c, c′). Since df((x, v)+t(y, w)) =
df(x + ty, v) + t df(x + ty, w) the mapping df : U × E → F satisfies again the
assumptions of the theorem, so we may iterate. �

5.21. The following result shows that bounded multilinear mappings are the
right ones for uses like homological algebra, where multilinear algebra is essential
and where one wants a kind of ‘continuity’. With continuity itself it does not work.
The same results hold for convenient algebras and modules, one just may take
c∞-completions of the tensor products.

So by a bounded algebra A we mean a (real or complex) algebra which is also
a locally convex vector space, such that the multiplication is a bounded bilinear
mapping. Likewise, we consider bounded modules over bounded algebras, where the
action is bounded bilinear.

Lemma. [Cap et. al., 1993]. Let A be a bounded algebra, M a bounded right
A-module and N a bounded left A-module.

(1) There are a locally convex vector space M⊗AN and a bounded bilinear map
b : M×N →M⊗AN , (m,n) 7→ m⊗An such that b(ma, n) = b(m,an) for
all a ∈ A, m ∈M and n ∈ N which has the following universal property:
If E is a locally convex vector space and f : M × N → E is a bounded
bilinear map such that f(ma, n) = f(m,an) then there is a unique bounded
linear map f̃ : M ⊗A N → E with f̃ ◦ b = f . The space of all such f is
denoted by LA(M,N ;E), a closed linear subspace of L(M,N ;E).

(2) We have a bornological isomorphism

LA(M,N ;E) ∼= L(M ⊗A N,E).

(3) Let B be another bounded algebra such that N is a bounded right B-module
and such that the actions of A and B on N commute. Then M ⊗A N is
in a canonical way a bounded right B-module.
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(4) If in addition P is a bounded left B-module then there is a natural borno-
logical isomorphism M ⊗A (N ⊗B P ) ∼= (M ⊗A N)⊗B P .

Proof. We construct M ⊗A N as follows: Let M ⊗β N be the algebraic tensor
product of M and N equipped with the (bornological) topology mentioned in 5.7
and let V be the locally convex closure of the subspace generated by all elements of
the form ma⊗n−m⊗an, and define M ⊗AN to be M ⊗AN := (M ⊗βN)/V . As
M ⊗β N has the universal property that bounded bilinear maps from M ×N into
arbitrary locally convex spaces induce bounded and hence continuous linear maps
on M ⊗N , ( 1 ) is clear.

( 2 ) By (1) the bounded linear map b∗ : L(M ⊗A N,E) → LA(M,N ;E) is a
bijection. Thus, it suffices to show that its inverse is bounded, too. From 5.7 we
get a bounded linear map ϕ : L(M,N ;E)→ L(M ⊗β N,E) which is inverse to the
map induced by the canonical bilinear map. Now let Lann(V )(M ⊗β N,E) be the
closed linear subspace of L(M ⊗β N,E) consisting of all maps which annihilate V .
Restricting ϕ to LA(M,N ;E) we get a bounded linear map ϕ : LA(M,N ;E) →
Lann(V )(M ⊗β N,E).

Let ψ : M ⊗β N → M ⊗A N be the the canonical projection. Then ψ induces a
well defined linear map ψ̂ : Lann(V )(M ⊗β N,E) → L(M ⊗A N,E), and ψ̂ ◦ ϕ is
inverse to b∗. So it suffices to show that ψ̂ is bounded.

This is the case if and only if the associated map Lann(V )(M⊗βN,E)×(M⊗AN)→
E is bounded. This in turn is equivalent to boundedness of the associated map
M ⊗AN → L(Lann(V )(M ⊗β N,E), E) which sends x to the evaluation at x and is
clearly bounded.

( 3 ) Let ρ : Bop → L(N,N) be the right action ofB onN and let Φ : LA(M,N ;M⊗A
N) ∼= L(M ⊗A N,M ⊗A N) be the isomorphism constructed in ( 2 ). We define
the right module structure on M ⊗A N as:

Bop −ρ→ L(N,N)−Id× → L(M ×N,M ×N)−b∗→
−→ LA(M,N ;M ⊗A N)−Φ→ L(M ⊗A N,M ⊗A N).

This map is obviously bounded and easily seen to be an algebra homomorphism.

( 4 ) Straightforward computations show that both spaces have the following uni-
versal property: For a locally convex vector space E and a trilinear map f : M ×
N × P → E which satisfies f(ma, n, p) = f(m,an, p) and f(m,nb, p) = f(m,n, bp)
there is a unique linear map prolonging f . �

5.22. Lemma. Uniform S-boundedness principle. Let E be a locally convex
space, and let S be a point separating set of bounded linear mappings with common
domain E. Then the following conditions are equivalent.

(1) If F is a Banach space (or even a c∞-complete locally convex space) and
f : F → E is a linear mapping with λ ◦ f bounded for all λ ∈ S, then f is
bounded.

(2) If B ⊆ E is absolutely convex such that λ(B) is bounded for all λ ∈ S and
the normed space EB generated by B is complete, then B is bounded in
E.

(3) Let (bn) be an unbounded sequence in E with λ(bn) bounded for all λ ∈ S,
then there is some (tn) ∈ `1 such that

∑
tn bn does not converge in E for

the initial locally convex topology induced by S.
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Definition. We say that E satisfies the uniform S-boundedness principle if these
equivalent conditions are satisfied.

Proof. ( 1 ) ⇒ ( 3 ) : Suppose that ( 3 ) is not satisfied. So let (bn) be an
unbounded sequence in E such that λ(bn) is bounded for all λ ∈ S, and such that for
all (tn) ∈ `1 the series

∑
tn bn converges in E for the initial locally convex topology

induced by S. We define a linear mapping f : `1 → E by f((tn)n) =
∑
tn bn, i.e.

f(en) = bn. It is easily checked that λ ◦ f is bounded, hence by ( 1 ) the image of
the closed unit ball, which contains all bn, is bounded. Contradiction.

( 3 ) ⇒ ( 2 ): Let B ⊆ E be absolutely convex such that λ(B) is bounded for all
λ ∈ S and that the normed space EB generated by B is complete. Suppose that B
is unbounded. Then B contains an unbounded sequence (bn), so by ( 3 ) there is
some (tn) ∈ `1 such that

∑
tn bn does not converge in E for the initial locally convex

topology induced by S. But
∑
tn bn is a Cauchy sequence in EB , since

∑m
k=n tnbn ∈

(
∑m
k=n |tn|) ·B, and thus converges even bornologically, a contradiction.

( 2 ) ⇒ ( 1 ): Let F be convenient, and let f : F → E be linear such that λ ◦ f
is bounded for all λ ∈ S. It suffices to show that f(B), the image of an absolutely
convex bounded set B in F with FB complete, is bounded. By assumption, λ(f(B))
is bounded for all λ ∈ S and the normed space Ef(B) is a quotient of the Banach
space FB , hence complete.

q̃B(y) = inf{qB(x) : y = f(x)} = inf{λ : y = f(x), x ∈ λB}
= inf{λ : y ∈ λ f(B)} = qf(B)(y).

By ( 2 ) the set f(B) is bounded. �

5.23. Lemma. A convenient vector space E satisfies the uniform S-boundedness
principle for each point separating set S of bounded linear mappings on E if and
only if there exists no strictly weaker ultrabornological topology than the bornological
topology of E.

Proof. (⇒) Let τ be an ultrabornological topology on E which is weaker than the
natural bornological topology. Consider S := {Id : E → (E, τ)} and the identity
(E, τ) → E. Since every ultra-bornological space is an inductive limit of Banach
spaces, cf. 52.31 , it is enough to show that for each of these Banach spaces F the
mapping F → (E, τ)→ E is continous. By 5.22.1 this is the case.

(⇐) If S is a point separating set of bounded linear mappings, the ultrabornological
topology given by the inductive limit of the spaces EB with B satisfying the as-
sumptions of 5.22.2 equals the natural bornological topology of E. Hence, 5.22.2
is satisfied. �

5.24. Theorem. Webbed spaces have the uniform boundedness property.
A locally convex space which is webbed satisfies the uniform S-boundedness principle
for any point separating set S of bounded linear mappings.

Proof. Since the bornologification of a webbed space is webbed, cf. [5, 5.3.3], we
may assume that E is bornological, and hence that every bounded linear mapping
on it is continuous, see 4.1.1 . Now the closed graph principle [5, 5.3.3] applies to
any mapping satisfying the assumptions of 5.22.1 . �

5.25. Lemma. Stability of the uniform boundedness principle. Let F be a
set of bounded linear mappings f : E → Ef between locally convex spaces, let Sf be
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a point separating set of bounded linear mappings on Ef for every f ∈ F , and let
S :=

⋃
f∈F f

∗(Sf ) = {g ◦ f : f ∈ F , g ∈ Sf}. If F generates the bornology and Ef
satisfies the uniform Sf -boundedness principle for all f ∈ F , then E satisfies the
uniform S-boundedness principle.

Proof. We check the condition 5.22.1 . So assume h : F → E is a linear mapping
for which g ◦ f ◦ h is bounded for all f ∈ F and g ∈ Sf . Then f ◦ h is bounded by
the uniform Sf -boundedness principle for Ef . Consequently, h is bounded since F
generates the bornology of E. �

5.26. Theorem. Smooth uniform boundedness principle. Let E and F be
convenient vector spaces, and let U be c∞-open in E. Then C∞(U,F ) satisfies the
uniform S-boundedness principle where S := {evx : x ∈ U}.

Proof. For E = F = R this follows from 5.24 , since C∞(U,R) is a Fréchet space.
The general case then follows from 5.25 . �

41. Jets and Whitney Topologies

Jet spaces or jet bundles consist of the invariant expressions of Taylor developments
up to a certain order of smooth mappings between manifolds. Their invention goes
back to Ehresmann [Ehresmann, 1951.]

41.1. Jets between convenient vector spaces. Let E and F be convenient
vector spaces, and let U ⊆ E and V ⊆ F be c∞-open subsets. For 0 ≤ k ≤ ∞ the
space of k-jets from U to V is defined by

Jk(U, V ) := U × V × Polyk(E,F ), where Polyk(E,F ) =
k∏
j=1

Ljsym(E;F ).

We shall use the source and image projections α : Jk(U, V )→ U and β : Jk(U, V )→
V , and we shall consider Jk(U, V )→ U×V as a trivial bundle, with fibers Jkx (U, V )y
for (x, y) ∈ U×V . Moreover, we have obvious projections πkl : Jk(U, V )→ J l(U, V )
for k > l, given by truncation at order l. For a smooth mapping f : U → V the
k-jet extension is defined by

jkf(x) = jkxf := (x, f(x), df(x),
1
2!
d2f(x), . . . ,

1
j!
djf(x), . . . ),

the Taylor expansion of f at x of order k. If k <∞ then jk : C∞(U,F )→ Jk(U,F )
is smooth with a smooth right inverse (the polynomial), see 5.17 . If k =∞ then
jk need not be surjective for infinite dimensional E, see 15.4 . For later use, we
consider now the truncated composition

• : Polyk(F,G)× Polyk(E,F )→ Polyk(E,G),

where p•q is the composition p◦q of the polynomials p, q (formal power series in case
k =∞) without constant terms, and without all terms of order > k. Obviously, •
is polynomial for finite k and is real analytic for k =∞ since then each component
is polynomial. Now let U ⊂ E, V ⊂ F , and W ⊂ G be open subsets, and consider
the fibered product

Jk(U, V )×U Jk(W,U) = { (σ, τ) ∈ Jk(U, V )× Jk(W,U) : α(σ) = β(τ) }

= U × V ×W × Polyk(E,F )× Polyk(G,E).
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Then the mapping

• : Jk(U, V )×U Jk(W,U)→ Jk(W,V ),

σ • τ = (α(σ), β(σ), σ̄) • (α(τ), β(τ), τ̄) := (α(τ), β(σ), σ̄ • τ̄),

is a real analytic mapping, called the fibered composition of jets.

Let U , U ′ ⊂ E and V ⊂ F be open subsets, and let g : U ′ → U be a smooth diffeo-
morphism. We define a mapping Jk(g, V ) : Jk(U, V )→ Jk(U ′, V ) by Jk(g, V )(σ) =
σ • jkg(g−1(x)), which also satisfies Jk(g, V )(jkf(x)) = jk(f ◦g)(g−1(α(σ))). If g′ :
U ′′ → U ′ is another diffeomorphism, then clearly Jk(g′, V )◦Jk(g, V ) = Jk(g◦g′, V ),
and Jk( , V ) is a contravariant functor acting on diffeomorphisms between open
subsets of E. Since the truncated composition σ̄ 7→ σ̄ • jkg−1(x)g is linear, the
mapping Jkx (g, F ) := Jk(g, F )|Jkx (U,F ) : Jkx (U,F )→ Jkg−1(x)(U

′, F ) is also linear.

Now let U ⊂ E, V ⊂ F , and W ⊂ G be c∞-open subsets, and let h : V → W be a
smooth mapping. Then we define Jk(U, h) : Jk(U, V )→ Jk(U,W ) by Jk(U, h)σ =
jkh(β(σ)) • σ, which satisfies Jk(U, h)(jkf(x)) = jk(h ◦ f)(x). Clearly, Jk(U, )
is a covariant functor acting on smooth mappings between c∞-open subsets of
convenient vector spaces. The mapping Jkx (U, h)y : Jkx (U, V )y → Jkx (U,W )h(y) is
linear if and only if h is affine or k = 1 or U = ∅.

41.3. Jets between manifolds. Now let M and N be smooth manifolds
with smooth atlas (Uα, uα) and (Vβ , vβ), modeled on convenient vector spaces E
and F , respectively. Then we may glue the open subsets Jk(uα(Uα), vβ(Vβ)) of
convenient vector spaces via the chart change mappings

Jk(uα′ ◦ u−1
α , vβ ◦ v−1

β′ ) : Jk(uα′(Uα ∩ Uα′), vβ′(Vβ ∩ Vβ′))→

→ Jk(uα(Uα ∩ Uα′), vβ(Vβ ∩ Vβ′)),

and we obtain a smooth fiber bundle Jk(M,N) → M × N with standard fiber
Polyk(E,F ). With the identification topology Jk(M,N) is Hausdorff, since it is
a fiber bundle and the usual argument for gluing fiber bundles applies which was
given, e.g., in 28.12 .

Theorem. If M and N are smooth manifolds, modeled on convenient vector spaces
E and F , respectively. Let 0 ≤ k ≤ ∞. Then the following results hold.

(1) (Jk(M,N), (α, β),M × N,Polyk(E,F )) is a fiber bundle with standard
fiber Polyk(E,F ), with the smooth group GLk(E)×GLk(F ) as structure
group, where (γ, χ) ∈ GLk(E) × GLk(F ) acts on σ ∈ Polyk(E,F ) by
(γ, χ).σ = χ • σ • γ−1.

(2) If f : M → N is a smooth mapping then jkf : M → Jk(M,N) is also
smooth, called the k-jet extension of f . We have α ◦ jkf = IdM and
β ◦ jkf = f .

(3) If g : M ′ → M is a diffeomorphism then also the induced mapping
Jk(g,N) : Jk(M,N)→ Jk(M ′, N) is a diffeomorphism.

(4) If h : N → N ′ is a smooth mapping then Jk(M,h) : Jk(M,N) →
Jk(M,N ′) is also smooth. Thus, Jk(M, ) is a covariant functor from
the category of smooth manifolds and smooth mappings into itself which
respects each of the following classes of mappings: initial mappings, em-
beddings, closed embeddings, splitting embeddings, fiber bundle projections.
Furthermore, Jk( , ) is a contra-covariant bifunctor, where we have to
restrict in the first variable to the category of diffeomorphisms.
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(5) For k ≥ l, the projections πkl : Jk(M,N) → J l(M,N) are smooth and
natural, i.e., they commute with the mappings from ( 3 ) and ( 4 ).

(6) (Jk(M,N), πkl , J
l(M,N),

∏k
i=l+1 L

i
sym(E;F )) are fiber bundles for all l ≤

k. For finite k the bundle (Jk(M,N), πkk−1, J
k−1(M,N), Lksym(E,F )) is

an affine bundle. The first jet space J1(M,N)→M×N is a vector bundle.
It is isomorphic to the bundle (L(TM,TN), (πM , πN ),M ×N), see 29.4

and 29.5 . Moreover, we have J1
0 (R, N) = TN and J1(M,R)0 = T ∗M .

(7) Truncated composition is a smooth mapping

• : Jk(N,P )×N Jk(M,N)→ Jk(M,P ).

Proof. ( 1 ) is already proved. ( 2 ), ( 3 ), ( 5 ), and ( 7 ) are obvious from 41.1 ,
mainly by the functorial properties of Jk( , ).

( 4 ) It is clear from 41.1 that Jk(M,h) is a smooth mapping. The rest follows by
looking at special chart representations of h and the induced chart representations
for Jk(M,h).

It remains to show ( 6 ), and here we concentrate on the affine bundle. Let a1 +
a ∈ GL(E) ×

∏k
i=2 L

i
sym(F ;F ), σ + σk ∈ Polyk−1(E,F ) × Lksym(E;F ), and b1 +

b ∈ GL(E) ×
∏k
i=2 L

i
sym(E;E), then the only term of degree k containing σk in

(a1 +a)• (σ+σk)• (b1 + b) is a1 ◦σk ◦ bk1 , which depends linearly on σk. To this the
degree k-components of compositions of the lower order terms of σ with the higher
order terms of a and b are added, and these may be quite arbitrary. So an affine
bundle results.

We have J1(M,N) = L(TM,TN) since both bundles have the same transition
functions. Finally,

J1
0 (R, N) = L(T0R, TN) = TN and J1(M,R)0 = L(TM,T0R) = T ∗M. �

41.4. Jets of sections of fiber bundles. If (p : E → M,S) is a fiber
bundle, let (Uα, uα) be a smooth atlas of M such that (Uα, ψα : E|Uα → Uα ×
S) is a fiber bundle atlas. If we glue the smooth manifolds Jk(Uα, S) via (σ 7→
jk(ψαβ(α(σ), ))) • σ : Jk(Uα ∩ Uβ , S) → Jk(Uα ∩ Uβ , S), we obtain the smooth
manifold Jk(E), which for finite k is the space of all k-jets of local sections of E.

Theorem. In this situation we have:

(1) Jk(E) is a splitting closed submanifold of Jk(M,E), namely the set of all
σ ∈ Jkx (M,E) with Jk(M,p)(σ) = jk(IdM )(x).

(2) J1(E) of sections is an affine subbundle of the vector bundle J1(M,E) =
L(TM,TE). In fact, we have

J1(E) = {σ ∈ L(TM,TE) : Tp ◦ σ = IdTM }.
(3) For k finite (Jk(E), πkk−1, J

k−1(E)) is an affine bundle.
(4) If p : E → M is a vector bundle, then (Jk(E), α,M) is also a vector

bundle. If φ : E → E′ is a homomorphism of vector bundles covering the
identity, then Jk(ϕ) is of the same kind.

Proof. Locally Jk(E) in Jk(M,E) looks like uα(Uα)×Polyk(FM , FS) in uα(Uα)×
(uα(Uα)× vβ(Vβ))× Polyk(FM , FM × FS), where FM and FS are modeling spaces
of M and S, respectively, and where (Vβ , vβ) is a smooth atlas for S. The rest is
clear. �
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6. Some Spaces of Smooth Functions

6.1. Proposition. Let M be a smooth finite dimensional paracompact manifold.
Then the space C∞(M,R) of all smooth functions on M is a convenient vector space
in any of the following (bornologically) isomorphic descriptions, and it satisfies the
uniform boundedness principle for the point evaluations.

(1) The initial structure with respect to the cone

C∞(M,R)−c
∗
→ C∞(R,R)

for all c ∈ C∞(R,M).
(2) The initial structure with respect to the cone

C∞(M,R)−(u−1
α )∗→ C∞(Rn,R),

where (Uα, uα) is a smooth atlas with uα(Uα) = Rn.
(3) The initial structure with respect to the cone

C∞(M,R)−j
k

→ C(M ← Jk(M,R))

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth func-
tions on M , where jk is the jet prolongation, and where all the spaces of
continuous sections are equipped with the compact open topology.

It is easy to see that the cones in ( 2 ) and ( 3 ) induce even the same locally
convex topology which is sometimes called the compact C∞ topology, if C∞(Rn,R)
is equipped with its usual Fréchet topology. From ( 2 ) we see also that with the
bornological topology C∞(M,R) is nuclear by 52.35 , and is a Fréchet space if and
only if M is separable.

Proof. For all three descriptions the initial locally convex topology is convenient,
since the spaces are closed linear subspaces in the relevant products of the right
hand sides:
( 1 ) For this structure C∞(M,R) = lim←−cC∞(R,M)

C∞(R,R), where the connecting
mappings are given by g∗ for g ∈ C∞(R,R). Obviously, (c∗)c∈C∞(R,M) has values in
this inductive limit and induces the structure of ( 1 ) on C∞(M,R). This mapping
is bijective, since to (fc)c∈C∞(R,R) ∈ lim←−c C

∞(R,R) we can associate f : M → R
given by f(x) = fconstx(0). Then c∗(f) = fc, since constc(t) = c ◦ constt. Moreover
const∗x(f) = constf(x), so we found the inverse.
( 2 ) For this structure C∞(M,R) = lim←−u C

∞(Rn,R), where u run through all
smooth open embeddings Rn → M and where the connecting mappings are given
by g∗ for smooth embeddings g ∈ C∞(Rn,Rn). Obviously, (u∗)u has values in
this inductive limit and induces the structure of ( 2 ) on C∞(M,R), since locally
such u coincide with some (uα)−1 and C∞(Rn,R) carries the initial structure with
resperct to incl∗V : C∞(Rn,R)→ C∞(V,R), where the V form some open covering
of Rn This mapping (u∗)u is bijective, since to (fu)u ∈ lim←−u C

∞(Rn,R) we can
associate f : M → R given by f(x) = fu(t), where u : Rm → M is some smooth
open embedding with u(t) = x. This definition does not depend on the choice of
(u, t) since two such embeddings can be locally reparametrized into each another.
As before this gives the required invese.
( 3 ) First note for vector bundles p : E → M the compact open topology turns
C(M ← E) into a locally convex space. In fact for a neighborhood subbasis of
this topology it is enough to consider the convex sets NK,U := {σ ∈ C(M ← E) :
σ(K) ⊆ U} for compact subsets K contained in trivializing open subsets V of the
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basis and open sets U ⊆ E of the form ψ−1(V ×W ), where ψ : p−1(V )→ V × Rk
is the trivialization and W ⊆ Rk is open and convex in the typical fiber. This
shows also, that the topology is the initial one induced by the restriction maps
incl∗K : C(M ← E) → C(K ← E|K) ∼= C(K,Rk) ⊆ `∞(K,Rk). So it is enough
to show closednes of the image of C∞(M,R) →

∏
k,K C(K,

∏k
j=0 L

j
sym(Rm,Rk))

where the K are assumed to be compact in some chart domain in M . This is
clearly the case.

Thus, the uniform boundedness principle for the point evaluations holds for all
structures since it holds for all right hand sides (for C(M ← Jk(M,R)) we may
reduce to a connected component of M , and we then have a Fréchet space). So the
identity is bibounded between all structures. �

6.2. Spaces of smooth functions with compact supports. For a smooth
finite dimensional Lindelöf (equivalently, separable metrizable) Hausdorff manifold
M we denote by C∞c (M,R) the vector space of all smooth functions with compact
supports in M .

Corollary. The following convenient structures on the space C∞c (M,R) are all
isomorphic:

(1) Let C∞K (M,R) be the space of all smooth functions on M with supports
contained in the fixed compact subset K ⊆M , a closed linear subspace of
C∞(M,R). Let us consider the final convenient vector space structure on
the space C∞c (M,R) induced by the cone

C∞K (M,R) ↪→ C∞c (M,R)

where K runs through a basis for the compact subsets of M . Then the
space C∞c (M,R) is even the strict inductive limit of a sequence of Fréchet
spaces C∞K (M,R).

(2) We equip C∞c (M,R) with the initial structure with respect to the inclusion
C∞c (M,R)→ C∞(M,R) and the cone

C∞c (M,R)−x
∗
→ Cc(N,R) =

∐
n∈N

Rn = R(N),

where x = (xn)n runs through all sequences in M without accumulation
point.

(3) The initial structure with respect to the cone

C∞c (M,R)−j
k

→ Cc(M ← Jk(M,R))

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth functions
on M , where jk is the jet prolongation, and where the spaces of contin-
uous sections with compact support are equipped with the inductive limit
topology with steps CK(M ← Jk(M,R)) ⊆ C(M ← Jk(M,R)).

For M with only finitely many connected components which are all non-compact,
this is also true for

(4) the convenient vector space structure induced by c∗ : C∞c (M,R)→ C∞c (R,R),
where c : R→M run through the proper smooth curves.

The space C∞c (M,R) satisfies the uniform boundedness principle for the point eval-
uations.
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First Proof. We show that in all four descriptions the space C∞c (M,R) is conve-
nient and satisfies the uniform boundedness principle for point evaluations, hence
the identity is bibounded for all structures:

In ( 1 ) we may assume that the basis of compact subsets of M is countable, since
M is Lindelöf, hence has only countable many connected components and these are
metrizable, so the inductive limit is a strict inductive limit of a sequence of Fréchet
spaces, hence C∞c (M,R) is convenient and webbed by [5, 5.3.3] and [5, 5.3.3] and
satisfies the uniform boundedness principle by 5.24 .

In ( 2 )–( 4 ) the space is a closed subspace of the product of C∞(M,R) and spaces
on the right hand side which are strict inductive limits of Fréchet spaces, hence
convenient and satisfy the uniform boundedness principle:
In ( 2 ) closedness follows, since for smoothness of f : M → R follows from the
inclusion into C∞(M,R), and compactness of the support follows because this can
be tested along sequences without accumulation point.
In ( 3 ) closedness follows, since C∞(M,R) is closed in

∏
k C(M ← Jk(M,R)) by

the proof of 6.1 and the support is that of f = f0 ∈ Cc(M ← J0(M,R)) =
Cc(M,R).
In ( 4 ) this follows from ( 2 ), since every smooth curve in M coincides locally
with a proper smooth curve and if A ⊆ M is closed and not compact then there
exists some end e ∈ lim←−U π(U) (where π(U) denotes the finite set of (non-compact)
connected components of M \ U for open relative compact U ⊆ M) which is in
the closure of A in the compact topology of the Freudenthal-compactification M ∪
lim←−U π(U) with the sets eK ∪ {e′ ∈ lim←−U π(U) : e′K = eK} for the open relative
compact sets U ⊆ M as neighborhoodbasis of e. See [H.Freudenthal: Über die
Enden topologischer Räume und Gruppen, Math. Zeitschrift 33 (1931) 692-713] und
[Frank Reymond: the end point compactification of manifolds, Pacific J. Math. 10
(1960) 947-963]. Thus for every compact Kn ⊆M there exists a point an ∈ eKn

∩A.
Since eKn+1 ⊆ eKn there is a curve in the connected component eKn ⊆ M \ Kn

connecting an with an+1 we may piece these curves smoothly together to obtain a
proper smooth curve c : R→M with c(±n) = an. �

Second Proof.

( 1 → 2 ) For this we consider for sequences x = (xn)n without accumulation point
the diagram

C∞(M,R)

x∗

��

C∞K (M,R) � �
( 1 )

//

x∗

��

? _oo

&&

C∞c (M,R)

( 2 )x∗

��∏
n∈N R Rx−1(K)

� � //? _oo
∐
n∈N R,

where x−1(K) := {n : xn ∈ K} is by assumption finite. Then obviously the identity
on C∞c (M,R) is bounded from the structure ( 1 ) to the structure ( 2 ).

( 1 → 3 ) We consider the diagram:

C∞(M,R)

jk

��

C∞K (M,R) � �
( 1 )

//

jk

��

? _oo

**

C∞c (M,R)

( 3 )jk

��
C(M ← Jk(M,R)) CK(M ← Jk(M,R)) � � //? _oo Cc(M ← Jk(M,R))
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Obviously, the identity on C∞c (M,R) is bounded from the structure ( 1 ) into the
structure ( 3 ).

( 1 → 4 ) follows from the diagram

C∞(M,R)

e∗

��

C∞K (M,R) � �
( 1 )

//

e∗

��

? _oo

''

C∞c (M,R)

( 2 )e∗

��
C∞(R,R) C∞e−1(K)(R,R) � � //? _oo C∞c (R,R)

with proper e : R→M .

( 2 → 1 ) Now let B ⊆ C∞c (M,R) be bounded in the structure of ( 2 ). We claim
that B is contained in some C∞Kn

(M,R), where Kn form an exhaustion of M by
compact subsets such that Kn is contained in the interior of Kn+1. Otherwise there
would be xn /∈ Kn and fn ∈ B with fn(xn) 6= 0. Then x∗(B) ist not bounded in∐

N R = lim−→n
Rn, since this limit is regular, but x∗(fn)(n) = fn(xn) 6= 0. Since

C∞c (M,R) → C∞(M,R) is bounded, B is also bounded in C∞Kn
(M,R) and hence

in the structure ( 1 ).

( 3 → 1 ) Now let B ⊆ C∞c (M,R) be bounded in the structure of ( 3 ). Then
B = j0(B) is bounded in Cc(M ← J0(M,R)) = Cc(M,R) = lim−→K

CK(M,R) and
since this limit is regular there exists a compact K ⊆M such that B ⊆ CK(M,R).
But then also B ⊆ C∞K (M,R). Since jk(B) ⊆ CK(M ← Jk(M,R)) ⊆ Cc(M ←
Jk(M,R)) is bounded we get that B ⊆ C∞c (M,R) is bounded in the structure ( 3 ).

( 4 → 2 ) Let now M have only finitely many connected components which are all
non-compact and let B ⊆ C∞c (M,R) be bounded for the structure ( 4 ). Since
every smooth curve in M coincides locally with a proper smooth curve the set
B is bounded in C∞(M,R). Suppose there were a sequence x = (xn)n without
accumulation point for which x∗(B) is not bounded in

∐
n∈N Rn. Since evxn(B) is

bounded there are infinitely many n ∈ N for which fn ∈ B exists with fn(xn) 6= 0.
Since we only have finitely many connected components we may assume that all xn
are in the same non-compact connected component. Now we may choose a proper
smooth curve c passing through a subsequence of the xn and hence c∗(B) would
not be bounded in C∞c (R,R).

For the uniform boundedness principle we refer to the first proof. �

Remark. Note that the locally convex topologies described in ( 1 ) and ( 3 )
are distinct: The continuous dual of (C∞c (R,R), ( 1 )) is the space of all distri-
butions (generalized functions), whereas the continuous dual of (C∞c (R,R), ( 3 ))
are all distributions of finite order, i.e., globally finite derivatives of continuous
functions.

If M is only assumed to be a smooth paracompact Hausdorff manifold, then we
can still consider the structure on C∞c (M,R) given in 1 . It will no longer be an
inductive limit of a sequence of Fréchet spaces but will still satisfy the uniform
boundedness principle for the point-evaluations, by [11, 3.4.4]. since

C∞c (M,R) = lim−→
K

C∞K (M,R) = lim−→
K

⊕
i

C∞K∩Mi
(Mi,R) ∼=

∼=
∐
i

lim−→
K

C∞K∩Mi
(Mi,R) =

∐
i

C∞c (Mi,R),
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where the Mi are the connected components and these are Lindelöf.

54. Differentiabilities discussed by Keller [13]

54.1 Remark. (e,g. [2, 6.1.4]) Recall that for Banach spaces E and F a map-
ping f : E ⊇ U → F defined on an open subset U of E is called (Fréchet-
)differentiable at x ∈ U iff there exists a continuous linear operator ` : E → F ,
such that

f(x+ v)− f(x)− `(v)
‖v‖

→ 0 for v → 0.

Existence of ` implies its unicity, and hence it is denoted f ′(x) and called the
(Fréchet-)derivative of f at x.

In order to calculate f ′(x) we may consider the directional derivatives

dvf(x) := lim
t↘0

f(x+ tv)− f(x)
t

.

Note that this is R+-homogeneous with respect to v. If f is Fréchet differentiable
at x with derivative f ′(x), then dvf(x) exists and equals f ′(x)(v), since

f(x+ tv)− f(x)
t

− f ′(x)(v) =
f(x+ tv)− f(x)− f ′(x)(tv)

t

=
f(x+ tv)− f(x)− `(tv)

‖tv‖
‖v‖ → 0.

The converse direction is not the case, but one has:

54.2 Lemma. (e.g. [2, 6.1.6]) Let E and F be Banach spaces, U ⊆ E be open,
x ∈ U . Then f : E ⊇ U → F is Fréchet differentiable at x iff the following
conditions are satisfied:

(1) ∀v ∈ E ∃dvf(x);
(2) v 7→ dvf(x) is linear and continuous;
(3) f(x+tv)−f(x)

t → dvf(x) for t↘ 0 uniformly for v in the unit-sphere.

Proof. (⇒) was shown just before this lemma.

(⇐) We claim that v 7→ dvf(x) is the Fréchet derivative of f . So consider an
arbitrary v 6= 0 and put t := ‖v‖, w := 1

t v. Then

f(x+ v)− f(x)− dvf(x)
‖v‖

=
f(x+ t w)− f(x)− dtwf(x)

t

=
f(x+ t w)− f(x)

t
− dwf(x)→ 0

for t = ‖v‖ → 0 uniformly for ‖w‖ = 1. �

Definition. The straight forward generalization of this notion to mappings between
locally convex spaces is the following:

A mapping f : E ⊇ U → F defined on an open subset U of a locally convex space E
is called (B-)differentiable at x ∈ U , iff for all v ∈ E the directional derivative
dvf(x) := limt↘0

f(x+tv)−f(x)
t exists, this convergence is uniformly for x ∈ B, for

any B ∈ B, where B is some given set of bounded subsets of E, and v 7→ dvf(x) is
linear and continuous. In [13] the following particular cases for B are treated:

’s’ the finite subsets (leading to so called simple (or pointwise) convergence).
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’k’ the compact subsets. These are in general not stable under formation of
closed convex hulls.

’pk’ the precompact subsets. These are in contrast stable under formation of
closed convex hulls.

’b’ the bounded sets.

It is called continuously (B-)differentiable (C1
B for short), iff it is differen-

tiable at each point x ∈ U and x 7→ (v 7→ f ′(x)(v)) is continuous from U to
LB(E,F ) := {` : E → F |` is linear and continuous}, where we put the topology of
uniform convergence on sets B ∈ B on L(E,F ).

A mapping f : E ⊇ U → F is called Gâteaux differentiable at x ∈ U , iff for
all v ∈ E the directional derivative dvf(x) exists and is linear in v (and most often
it is also required to be continuous).

Moreover, it is sufficient to assume the continuity of the directional derivative to
get differentiability:

54.3 Lemma. Let f : E ⊇ U → F be as in 54.2 and assume that for all
x ∈ U and v ∈ E the directional derivative dvf(x) exists and x 7→ dvf(x) defines a
continuous mapping f ′ : E ⊇ U → LB(E,F ).

Then f is B-differentiable on U and f ′ is its derivative.

Proof. By 54.2 we only have to show that f(x+tv)−f(x)
t → dvf(x) for t ↘ 0

uniformly for v in B ∈ B. So we consider the difference and get by the principal
theorem of calculus:

f(x+ t v)− f(x)
t

− dvf(x) =
∫ 1

0

1
t

d

ds
f(x+ s t v) ds− dvf(x) ds

=
∫ 1

0

(
dvf(x+ s t v)− dvf(x)

)
(v) ds,

which converges as required, since dvf : U → LB(E,F ) is assumed to be continuous.
�

This observation has been used by [13] to compare various differentiability notions
given in the literature.

However, the problem with this type of definition, is to show the chain-rule for C1
B:

Let f : E → F and g : F → G be C1
B. We would like to have that g ◦ f : E → G is

C1
B and its derivative should be (g ◦ f)′(x) = g′(f(x)) ◦ f ′(x). Obviously f ′ : E →
L(E,F ) is continuous and also g′ ◦ f : E → F → L(F,G). Thus we would need
that the composition ◦ : L(F,G)×L(E,F )→ L(E,G) is continuous. We have seen
that even for E = G = R this is only the case, iff F is normed.

For this reason limit structures where used instead of topology by several authors.
The coarsest reasonable structure is that of continuous convergence (denoted c),
i.e. one calls a filter F on L(E,F ) to be convergent to ` ∈ L(E,F ), iff for each
filter E in E converging to some x ∈ E the image filter F(E) converges to `(x) in F .
This definition turns L(E,F ) into a convergence vector space denoted Lc(E,F ).
This is (by definition) the weakest convergence structure on L(E,F ) which makes
ev : L(E,F ) × E → F continuous. Moreover, a mapping f : X → Lc(E,F ) on a
topological space X is continuous, iff the associated mapping f̂ : X × E → F is
continuous.

Using some convergence structure Λ on L(E,F ) (like continuous convergence) one
can define f : E ⊇ U → F to be C1

Λ, iff it is Gâteaux-differentiable and the
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derivative f ′ : E ⊇ U → LΛ(E,F ) is continuous. For C1
c mappings one can easily

show the chain-rule. However, in Banach spaces one does not recover classical
Fréchet differentiability (for which the inverse and implicit function theorem can
be shown) but something weaker, see the following example of Smolyanov ( 12.13 ).

According to [13] one has the following implications, where qb denotes the limit
structure of quasi-bounded convergence, which I will not explain here.

C1
qb

6

�

C1
b

�

C1
c

6

C1
pk

�C1
k

�C1
s

The two smaller frames indicate groups of definitions which are equivalent for map-
pings between Fréchet spaces. And the large frame indicates that all definitions are
equivalent for Fréchet-Schwarz spaces.

54.4 Higher Order Differentiability. In order to define differentiability of higher
order we need appropriate spaces of multi-linear mappings in which the higher
derivatives should take values.

For the concepts of CnB [13] introduces the spaces HnB(E,F ) (for hyper-continuity)
defined recursively by

H0
B(E,F ) := F

Hn+1
B (E,F ) := LB(E,HnB(E,F ))

For Cnc he considers Lnc (E,F ) as space of all continuous n-linear mappings E ×
. . .× E → F with the convergence structure c of continuous convergence.

54.5 Definition. Let B be some family of bounded sets on E. A mapping f : E ⊇
U → F is called CnB iff it is n-times Gâteaux differentiable, i.e. all the n-fold iterated
directional derivatives dvn

. . . dv1f(x) exist and (v1, . . . , vn) 7→ dvn
. . . dv1f(x) is n-

linear and defines a continuous mapping f (n)(x) : E ⊇ U → HnB(E,F ).

It is called C∞B , if it is CnB for all n ∈ N.

Similarly, let Λ be a convergence structure on Lk(E,F ) for all k ≤ n. Then f is
called CnΛ, iff it is n-times Gâteaux-differentiable and the n-th derivative f (n) : E ⊇
U → LnΛ(E,F ) is continuous. It is called C∞Λ , if it is CnΛ for all n ∈ N.

Again one has the same implications for Cn instead of C1.

Cnqb

6

�

Cnb�

Cnc

6

Cnpk�Cnk�Cns

One gets the following dependencies by using that from the continuity of a higher
derivative with respect to some convergence structure one can deduce continuity of
lower derivatives with respect to certain stronger convergence structures:
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C∞qb

6

�

C∞b�

C∞c

6

C∞pk�C∞k�C∞s

Where this time the definitions in the smaller frame are equivalent for all lcs’s, and
for Fréchet spaces all given definitions are equivalent. This has become popular as
“In Fréchet spaces all concepts of smoothness coincide” although strictly speaking
this is not true: Gâteaux-smoothness is strictly weaker and tame-smoothness and
the concepts of C∞∆ and C∞Θ (see [13]) are strictly stronger.

54.6 Remark. In order to compare the concepts of smoothness to be found in [13]
with our smoothness we first have to compare the spaces of (multi-)linear mappings.
For the following results [15] is the appropriate reference.

54.7 Lemma. Let B be some set of bounded subsets of a locally convex space E,
containing the finite subsets and being stable under the formation of finite unions
and subsets.

We denote with LB(E,F ) the space of all bounded linear mappings with the topology
of uniform convergence on each bounded subset B ∈ B. A 0-neighborhood-basis of
this locally convex topology is given by the sets NB,V := {f : f(B) ⊆ V }, where
B ∈ B and V runs through the 0-neighborhoods in F . Note that LB(E,F ) is the
topological subspace of this space formed by the continuous linear mappings.

A subset F ⊆ LB(E,F ) is bounded, iff it is uniformly bounded on bounded subsets
B ∈ B. In fact, NB,V absorbs F ⇔ ∃k: BB,k V = kNB,V ⊇ F , i.e. F(B) ⊆ k V .

54.8 Corollary. The bornology of LB(E,F ) is that of L(E,F ) provided B is any
of the families mentioned in 4.3 . And if E is c∞-complete then this is true for all
B between s and b.

Proof. By what we said just before, F ⊆ LB(E,F ) is bounded, iff F(B) is bounded
for all B ∈ B, or equivalently, iff F(B) is absorbed by any 0-neighborhood V in F ,
i.e. the absolutely convex set U :=

⋂
f∈F f

−1(V ) absorbs all B. Now we may apply
4.3 and, in the c∞-complete case, 5.18 . �

54.9 Corollary. Let B be any of the bornologies in 54.8 . Then the inclusion
HnB(E,F )→ L(E, . . . , E;F ) is well-defined, bounded and linear.

Proof. For n = 0 nothing is to be shown.

For n = 1 we have that H1
B(E,F ) = LB(E,F ) ⊆ LB(E,F )

b∼= L(E,F ) by 54.8 .
With induction we get for n+ 1 the following sequence of bounded mappings:

Hn+1
B (E,F ) ∼= LB(E,HnB(E,F ))→

→ L(E,HnB(E,F ))→
→ L(E,L(E, . . . , E;F )) ∼= L(E, . . . , E;F )

�

54.10 Theorem. For a mapping f : E ⊇ U → F from a c∞-open subset E of a
lcs E with values in an lcs F the following statements are equivalent:
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(1) f is C∞;
(2) All the iterated directional derivatives dnf(x)(v1, . . . , vn) exist and are

bounded on M -converging sequences in U × En;
(3) The iterated directional derivatives dnf(x)(v1, . . . , vn) exist and define

a mapping dnf : E ⊇ U → L(E, . . . , E;F ) which is bounded on M -
converging sequences (or bornologically compact subsets of U);

If E is c∞-complete then this is further equivalent to

(4) The iterated unidirectional derivatives dnvf(x) exist and are separately
bounded in x and in v on M -converging sequences.

Proof. (4⇒ 3⇒ 1) In the proof of 5.20 we have shown that for c∞-complete lcs
E a mappings satisfying (4) satisfies (3) as well.
Then we showed without using any completeness condition that from (3) the chain
rule for curves c : R→ U follows and hence (1).

(1 ⇒ 3) follows from the chain rule given in 3.18 , since then dnf : E ⊇ U →
L(E, . . . , E;F ) is C∞ and hence continuous on bornologically compact sets K ⊆
EB ⊆ E.

(3 ⇒ 4) and (3 ⇒ 2) are trivial, since bounded subsets of L(E, . . . , E;F ) are
bounded on M -converging sequences, see below.

(2 ⇒ 3) It was shown in 5.20 that from (2) we conclude that dnf : E ⊇ U →
L(E, . . . , E;F ) exists and is bounded on M -converging sequences with respect to
the pointwise topology on L(E, . . . , E;F ). But by assumption this is even true
for the topology of uniform convergence on M -converging sequences, and this is
induces the same bornology as that of uniform convergence on bounded sets by
54.8 . �

54.11 Proposition. Let η be some real sequence converging to ∞ and f : E ⊇
U → F be a mapping from an open subset U of a lcs E with value in an lcs F .
If f ∈ C∞B , where B contains all η-sequences, then f ∈ C∞.
If E is c∞-complete, then f ∈ C∞s implies f ∈ C∞.

Proof. By assumption we have that f is infinite often Gâteaux differentiable and
f (n) : E ⊇ U → HnB(E,F ) is continuous. Since HnB(E,F ) → L(E, . . . , E;F ) is
well-defined and bounded by 54.9 the result follows from 54.10 . �

54.12 Theorem. Let f : E ⊇ U → F with U open in an lcs E and F an lcs. If
c∞(E) = E then f ∈ C∞ ⇔ f ∈ C∞B , with any B as in 54.11 .

Proof. Because of 54.11 we only have to show (⇒). By 3.18 we have the direc-
tional derivative df : E ⊇ U → L(E,F ) which is C∞ as well. So f is infinitely often
Gâteaux differentiable and it remains to show that dnf : E ⊇ U → L(E, . . . , E;F )
is well-defined and continuous into Hnb (E,F ). Since dnf is smooth, we have that
dnf : c∞(U) = c∞(E)|U → c∞(L(E, . . . , E;F )) → L(E, . . . , E;F )born is contin-
uous, and since c∞E = E, we get that dnf : E ⊇ U → L(E, . . . , E;F )born is
continuous. Since c∞E = E we have that E is bornological, so LB(E,F )born =
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L(E,F )born = L(E,Fborn)born and by induction we get

L(E, . . . , E,E;F )born
∼= L(E,L(E, . . . , E;F )born)born

= LB(E,L(E, . . . , E;F )born)born

= LB(E,Ln−1
B (E,F )born)born

= LB(E,Ln−1
B (E,F ))born

= Ln+1
B (E,F )born.

So the derivatives are continuous into LnB(E,F ). �

55. Silva-Differentiability

See [9]. The idea here is to use the normed spaces EB with B bounded in E
and Fq := F/q−1(0) for continuous seminorms q on F associated with each locally
convex space, and in fact for E we only need a convex bornological space
(cbs, for short) E (i.e. a vector space together with a bornology which is invariant
under addition, homotheties and formation of convex hulls).

55.1 Definition. Let E and F be cbs’s. A mapping f : E → F is called Silva
differentiable at x ∈ E ⇔ ∀A ⊆ E absolutely convex bounded ∃B ⊆ F
absolutely convex bounded such that f(x+ )− f(x) : EA → FB is locally around
0 defined and Fréchet differentiable at 0.

Equivalently, ∀A ⊆ E absolutely convex bounded with x ∈ A ∃B ⊆ F absolutely
convex bounded such that f : EA → FB is locally around x defined and Fréchet
differentiable at x.

In fact, f(x + ) − f(x) : EA → FB has some local property at 0 provided f :
EAx → FB−f(x) has the same property at x, where Ax := 〈{x} ∪ A〉abs.conv., since
f(x + ) − f(x) = ( − f(x)) ◦ f ◦ (x + ) and x + : EA → EAx is affine and
bounded because A ⊆ Ax. Conversely, f : EA → FB has some local property
at x ∈ A provided f(x + ) : EA−x

→ Fbf(x) has the same property at 0, since
f( ) = ( + f(x)) ◦ (f(x+ )− f(x)) ◦ ( − x) and − x : EA → EA−x is affine and
bounded as before.

Note that in this situation the derivatives at x of the restrictions of f : E → F
to locally defined mappings EA → FB fit together to define a bounded linear
mapping f ′(x) : E → F . Thus the definition of Silva-differentiability of f at x
can be rephrased as in [9, 1.1.1]: ∃` : E → F bounded and linear, such that for
r(h) := f(x+ h)− f(x)− ` · h one has:
∀A ⊆ E absolutely convex bounded ∃B ⊆ F absolutely convex bounded such that
∃ε > 0 : r(εA) ⊆ B and pB(r(h))/pA(h)→ 0 for pA(h)→ 0.

55.2 Definition. Let E and F be cbs’s and f : E → F . Then f is called Silva
differentiable iff it is Silva-differentiable at each point x ∈ E. Note that the B
in the definition 55.1 of differentiability at x may depend not only on the given
A but also on x. Thus a Silva differentiable f need not have locally differentiable
restrition EA → FB for some B.

55.3 Definition. Let E and F be cbs’s and f : E → F . Then f is called M-
continuous at x ∈ E iff ∀A ⊆ E absolutely convex bounded ∃B ⊆ F absolutely
convex bounded such that f(x + ) − f(x) : EA → FB is defined locally around 0
and continuous at 0, i.e. ∃ε > 0 with f(x+ εA) ⊆ B and pB(f(x+ h)− f(x))→ 0
for pA(h)→ 0.
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55.10 55. Silva-Differentiability

Equivalently, ∀A ⊆ E absolutely convex bounded with x ∈ A ∃B ⊆ F absolutely
convex bounded such that f : EA → FB is locally around x defined and continuous
at x.

The mapping f is called M-continuous, iff it is so at every point x ∈ E.

55.4 Definition. Let E and F be cbs’s and f : E → F . Then f is called
continuously Silva differentiable (S1 for short) iff it is Silva differentiable
and f ′ : E → L(E,F ) is M -continuous, where L(E,F ) denotes the cbs of bounded
linear mappings from E to F with the bornology formed by the subsets being
uniformly bounded in F on each bounded subset of E.

55.5 Definition. Let E and F be cbs’s and f : E → F . Then f is called n + 1-
times continuously Silva differentiable (Sn+1 for short) if it is Sn and the
n-th derivative f (n) : E → L(E, . . . , E;F ) is S1, or equivalently, avoiding the higher
derivative, if f is S1 and its derivative f ′ : E → L(E,F ) is Sn.

The mapping f is called S∞ iff f is n-times Silva-differentiable for all n ∈ N.

55.6 Definition. Let E be a cbs, F an lcs and f : E → F . The f is called Silva
differentiable in the enlarged sense, iff ∀x ∈ E there exists a bounded
linear ` : E → F such that rx(h) := f(x + h) − f(x) − ` · h is a remainder in the
following sense: For every A ⊆ E absolutely convex bounded and every continuous
seminorm q on F we have

q(ra(h))/pA(h)→ 0 for all h→ 0 in EA.

For complete F this condition is equivalent to EA → E → F → F/Ker(q) being
differentiable between normed spaces since then F is embedded as closed subspace
of
∏
q

̂F/Ker(q)

55.7 Definition. Analogously, for n ∈ N ∪ {∞}, one may define n-times (con-
tinuously) Silva differentiable in the enlarged sense (Sne for short) and
this is for complete (and in case n = ∞ even for c∞-complete) F equivalent to
EB → E → F → F/Ker(q) being n-times (continuously) differentiable between
normed spaces. Thus for a locally convex space E and convenient vector spaces F
a mapping f : E → F is S∞e for the von Neumann bornology on E if and only if it
is C∞.

55.8 Remark. This definition makes problems with the chain-rule E → F → G
even if the space F in the middle is a locally convex space, since for F → G we only
have properties on FB but the restriction of E → F to EA need not have values in
FB for some B.

55.9 Example. Note that Sn implies Sne (see [9, 1.4.8]), but not conversely even
for f : E → R, see [9, 2.5.2].

55.10 Definition. Let p ∈ N∪{∞} and E and F be cbs’s. A mapping f : E → F is
called locally p-times differentiable between normed spaces at a point
x ∈ E iff ∀A ⊆ E absolutely convex bounded ∃ε > 0 ∃B ⊆ F absolutely convex
bounded such that f(x+εA) ⊆ B and f : x+{z ∈ EA : ‖z‖A < ε} → FB is p-times
differentiable. Note that here in contrast to definitions 55.1 – 55.4 the bounded
set B is locally independent on x.
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55.11 Proposition. Let E and F be cbs’s and F be polar, i.e. the lcs-closure
of bounded sets is bounded. Then f p + 1-times continuously Silva differentiable
implies f locally p-times continuously differentiable between normed spaces.

55.12 Example. There exists scalar valued mappings which are locally C∞ be-
tween normed spaces but are not S∞, see [9, 2.5].

55.13 Corollary. Let f : E → F be smooth and K ⊆ E be bornologically-compact.
Then the image f(K) in F is bornologically compact. Moreover, if K ⊆ EB is
compact we find a bounded absolutely convex set A ⊆ F such that f : EB ⊇ K → FA
is a contraction.

Proof. Since f : E → F is smooth, we have that g := ` ◦ f : EB → R is C∞

in various senses. In particular it is continuous, and from continuity of g′ : EB →
L(EB ,R) we deduce locally Lipschitzness of g, since

|g(y)− g(x)| =
∣∣∣∣∫ 1

0

g′(x+ t(y − x))(y − x) dt
∣∣∣∣

≤
∫ 1

0

|g′(x+ t(y − x))(y − x)| dt

≤ sup
{
‖g′(x+ t(y − x))‖ : t ∈ [0, 1]

}
· ‖y − x‖

Since K ⊆ EB is compact we get a Lipschitz bound of ` ◦ f on K for each ` ∈ E′
(see below) and hence { f(x)−f(y)

‖x−y‖B
: x, y ∈ K} is bounded in F . Let A be the

absolutely convex hull of this set, then f : EB ⊇ K → FA is a contraction, and
hence continuous and thus f(K) is compact in FA.

A locally Lipschitzian mapping on a normed space is Lipschitzian on each compact
subset: Otherwise we would find xn and yn with |f(xn) − f(yn)|/‖xn − yn‖ un-
bounded. Without loss of generality we may assume that xn → x∞ and yn → y∞.
If x∞ 6= y∞ then by continuity of f we get boundedness of the difference quotient.
And if x∞ = y∞ this contradicts the local Lipschitzness of f at x∞. �

55.14 Proposition. [15] Let E and F be convenient vector spaces and f : E → F .
Then f is C∞ ⇔ ∀K ⊆ E, absolutely convex, bornologically compact, ∀x ∈ K
∀n ∈ N (n 6= ∞) ∃J ⊆ F , absolutely convex, bornologically compact such that f :
EK → FJ is Cn locally around x, i.e. f is locally n-times continuously differentiable
between normed spaces for the bornologies of bornologically compact sets.

Proof. (⇐) Let c : R → E be C∞, let I ⊆ R be a bounded open interval, t0 ∈ I
and n ∈ N. Since δc : R2 → E given by δc(t, s) :=

∫ 1

0
c′(t + r(s − t)) dr is smooth

the image is bornologically-compact. By 55.13 δc(I × I) ∪ · · · ∪ δc(n)(I × I) ∪
{c(t0), . . . , c(n)(t0)} is a bornologically-compact set K and hence compact in some
EB .

Then there exists a sequence xn → 0 in EB such that K is in the closed absolutely
convex hull of {xn : n ∈ N}. The closed convex hull B′ of this sequence is compact
in EB , so K is in the unit-sphere of EB′ with bornologically compact B′.

Now we can deduce recursively that c : I → EB′ is Cn and hence the composite
f ◦ c : I → F is Cn.
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(⇒) Let K be bornologically compact and n ∈ N. It suffices to show the existence
of a bornologically compact Kn ⊆ F such that f : EK ⊇ o(EK)→ FKn

is Cns , i.e.
x 7→ f (k)(x)(v1, . . . vk), oEK → FKn is continuous for all k ≤ n.

Since these derivatives are smooth EB → F there exists some bornologically com-
pact Kn ⊆ F , such that they are Lipschitz EB ⊇ K → EKn by what we proved in
55.13 . Hence they are continuous K ⊆ EK → EB → EKn . �

55.15 Remark. Ulrich Seip defined f to be smooth iff it is smooth along all
smooth mappings c : Rn → U (by Boman [?] n = 1 suffices) and all derivatives are
continuous on compact subsets U × En. This is weaker than C∞c , since continuity
f (n) : U → Lnc (E,F ) is required only on compact subsets of U .

However, it is not clear, whether all compact subsets are bounding.
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As motivation for the developments in this chapter let us tell a mathematical short
story which was posed as an exercise in [Milnor, Stasheff, 1974, p.11]. For a finite
dimensional Hausdorff second countable manifold M , one can prove that the space
of algebra homomorphisms Hom(C∞(M,R),R) equals M as follows. The kernel of
a homomorphism ϕ : C∞(M,R) → R is an ideal of codimension 1 in C∞(M,R).
The zero sets Zf := f−1(0) for f ∈ kerϕ form a filter of closed sets, since Zf ∩Zg =
Zf2+g2 , which contains a compact set Zf for a function f which is proper (i.e.,
compact sets have compact inverse images). Thus

⋂
f∈kerϕ Zf is not empty, it

contains at least one point x0 ∈ M . But then for any f ∈ C∞(M,R) the function
f − ϕ(f)1 belongs to the kernel of ϕ, so vanishes on x0 and we have f(x0) = ϕ(f).

This question has many rather complicated (partial) answers in any infinite dimen-
sional setting which are given in this chapter. One is able to prove that the answer
is positive surprisingly often, but the proofs are involved and tied intimately to the
class of spaces under consideration. The existing counter-examples are based on
rather trivial reasons. We start with setting up notation and listing some interesting
algebras of functions on certain spaces.

First we recall the topological theory of realcompact spaces from the literature and
discuss the connections to the concept of smooth realcompactness. For an algebra
homomorphism ϕ : A → R on some algebra of functions on a spaceX we investigate
when ϕ(f) = f(x) for some x ∈ X for one function f , later for countably many, and
finally for all f ∈ A. We study stability of smooth realcompactness under pullback
along injective mappings, and also under (left) exact sequences. Finally we discuss
the relation between smooth realcompactness and bounding sets, i.e. sets on which
every function of the algebra is bounded. In this chapter, the ordering principle for
sections and results is based on the amount of evaluating properties obtained and
we do not aim for linearly ordered proofs. So we will often use results presented
later in the text. We believe that this is here a more transparent presentation than
the usual one. Most of the material in this chapter can also be found in the theses’
[Biström, 1993] and [Adam, 1993].

17. Basic Concepts and Topological Realcompactness

17.1. The setting. In [Hewitt, 1948, p.85] those completely regular topolog-
ical spaces were considered under the name Q-spaces, for which each real valued
algebra homomorphism on the algebra of all continuous functions is the evaluation
at some point of the space. Later on these spaces where called realcompact spaces.
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Accordingly, we call a ‘space’ smoothly realcompact if this is true for ‘the’ algebra
of smooth functions. There are other algebras for which this question is interest-
ing, like polynomials, real analytic functions, Ck-functions. So we will treat the
question in the following setting. Let

X be a set;

A ⊆ RX a point-separating subalgebra with unit; If X is a topological space we
also require that A ⊆ C(X,R); If X = E is a locally convex vector space we
also assume that A is invariant under all translations and contains the dual
E∗ of all continuous linear functionals;

XA the set X equipped with the initial topology with respect to A;

ϕ : A → R an algebra homomorphism preserving the unit;

Zf := {x ∈ X : f(x) = ϕ(f)} for f ∈ A;

HomA be the set of all real valued algebra homomorphisms A → R preserving
the unit.

Moreover,

ϕ is called F-evaluating for some subset F ⊆ A if there exists an x ∈ X with
ϕ(f) = f(x) for all f ∈ F ; equivalently

⋂
f∈F Zf 6= ∅;

ϕ is called m-evaluating for a cardinal number m if ϕ is F-evaluating for all
F ⊆ A with cardinality of F at most m; This is most important for m = 1
and for m = ω, the first infinite cardinal number;

ϕ is said to be 1̄-evaluating if ϕ(f) ∈ f(X) for all f ∈ A.

ϕ is said to be evaluating if ϕ is A-evaluating, i.e., ϕ = evx for some x ∈ X;

Homω A is the set of all ω-evaluating homomorphisms in HomA;

A is called m-evaluating if ϕ is m-evaluating for each algebra homomorphism
ϕ ∈ HomA;

A is called evaluating if ϕ is evaluating for algebra homomorphism ϕ ∈ HomA;

X is called A-realcompact if A is evaluating; i.e., each algebra homomorphism
ϕ ∈ HomA is the evaluation at some point in X.

The algebra A is called

inversion closed if 1/f ∈ A for all f ∈ A with f(x) > 0 for every x ∈ X;
equivalently, if 1/f ∈ A for all f ∈ A with f nowhere 0 (use f2 > 0).

bounded inversion closed if 1/f ∈ A for f ∈ A with f(x) > ε for some ε > 0 and
all x ∈ X;

C(∞)-algebra if h ◦ f ∈ A for all f ∈ A and h ∈ C∞(R,R);

C∞-algebra if h ◦ (f1, . . . , fn) ∈ A for all fj ∈ A and h ∈ C∞(Rn,R);

C∞lfs-algebra if it is a C∞-algebra which is closed under locally finite sums, with
respect to a specified topology on X. This holds if A is local, i.e., it contains
any function f such that for each x ∈ X there is some fx ∈ A with f = fx
near x.

C∞lfcs-algebra if it is a C∞-algebra which is closed under locally finite countable
sums.
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Interesting algebras are the following, where in this chapter in the notation we shall
generally omit the range space R.

Cb
� � // C

C∞lfcs
� � // C∞ � � // C∞ ∩ C� r

$$H
HHHHHHHH

, �

::uuuuuuuuuu

Pf
� � //
. �

=={{{{{{{
P

� � //� q

##F
FF

FF
FF

FF
Cω � � //

, �

::uuuuuuuuuu
Cω ∩ C� s

%%KKKKKKKKKK

+ �

99ssssssssss
C∞

Cωconv
� � // Cω

, �

::vvvvvvvvv

C(X) = C(X,R), the algebra of continuous functions on a topological space X.
It has all the properties from above.

Cb(X) = Cb(X,R), the algebra of bounded continuous functions on a topological
space X. It is only bounded inversion closed and a C∞-algebra, in general.

C∞(X) = C∞(X,R), the algebra of smooth functions on a Frölicher space X,
see 23.1 , or on a smooth manifold X, see section 27 . It has all properties
from above, where we may use the c∞-topology.

C∞(E) ∩ C(E), the algebra of smooth and continuous functions on a locally
convex space E. It has all properties from above, where we use the locally
convex topology on E.

C∞(E) = C∞(E,R), the algebra of smooth functions, all of whose derivatives
are continuous on a locally convex space E. It has all properties from above,
again for the locally convex topology on E.

Cω(X) = Cω(X,R), the algebra of real analytic functions on a real analytic
manifold X. It is only inversion closed.

Cω(E)∩C(E), the algebra of real analytic and continuous functions on a locally
convex space E. It is only inversion closed.

Cω(E) = Cω(E,R), the algebra of real analytic functions, all of whose derivatives
are continuous on a locally convex space E. It is only inversion closed.

Cωconv(E) = Cωconv(E,R), the algebra of globally convergent power series on a
locally convex space E.

Pf (E) = Polyf (E,R), the algebra of finite type polynomials on a locally convex
space E, i.e. the algebra 〈E′〉Alg generated by E′. This is the free commu-
tative algebra generated by the vector space E′, see 18.12 . It has none of
the properties from above.

P (E) = Poly(E,R), the algebra of polynomials on a locally convex space E, see
5.15 , 5.17 , i.e. the homogeneous parts are given by bounded symmetric

multilinear mappings. No property from above holds.
C∞lfcs(E) = C∞lfcs(E,R), the C∞lfcs-algebra (see below) generated by E′, and hence

also called (E′)∞lfcs. Only the C∞lfs-property does not hold.

17.2. Results. For completely regular topological spaces X and A = C(X) the
following holds:

(9) See [Engelking, 1989, 3.11.16]. The realcompactification νX of a com-
pletely regular space X is defined as the realcompact space Hom(C(X)) ⊆
RC(X) of all R-valued algebra-homomorphisms mit the topology of point-
wise convergence. It is the closure of δ(X) in RC(X). It has the universal
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property of extending continuous functions f : X → Y into realcompact
spaces Y uniquely to continuous functions f̃ : νX → Y .

(10) See [Engelking, 1989, 3.11.10]. The space νX is homeomorphic to the
subspace

⋂
f∈C(X) f̄

−1(R) =
⋂
{h−1((0, 1]) : h ∈ C(βX, [0, 1]), h|X > 0} ⊆

βX where f̄ denotes the extension of f : Y → R → R∞ to the Stone-
Čech-compactification βX.

(11) For every y ∈ βX \ νX there exists countably many closed neighborhoods
Un with νX ∩

⋂
n Un = ∅.

(12) For every y ∈ νX \ X and closed neighborhoods Un of y we have X ∩⋂
n Un 6= ∅.

(1) Due to [Hewitt, 1948, p.85 + p.60] & [Shirota, 1952, p.24], see also [Engel-
king, 1989, 3.12.22.g & 3.11.3]. The space X is called realcompact if all
algebra homomorphisms in HomC(X) are evaluations at points of X,
equivalently, if X is a closed subspace of a product of R’s.

(2) Due to [Hewitt, 1948, p.61] & [Katětov, 1951, p.82], see also [Engelking,
1989, 3.11.4 & 3.11.5]. Hence every closed subspace of a product of real-
compact spaces is realcompact.

(3) Due to [Hewitt, 1948, p.85], see also [Engelking, 1989, 3.11.12]. Each
Lindelöf space is realcompact.

(18) See [Engelking, 1989, 3.11.H] The realcompact spaces are exactly the (pro-
jective) limits of Lindelöf spaces.

(17) See [Engelking, 1989, 3.11.8] If f : X → Y is continuous X and Z ⊆
Y realcompact and Y T2. Then f−1(Z) is realcompact. In particular
functionally open subsets are realcompact.

(15) See [Engelking, 1989, 3.11.1] A topological space is compact if and only if
it is pseudocompact and realcompact.

(16) See [Engelking, 1989, 3.11.2] An example for a non-realcompact space is
the space Ω = [0,Ω) of countable ordinals

(5) Due to [Hewitt, 1950, p.170, p.175] & [Mackey, 1944], see also [Engelk-
ing, 1989, 3.11.D.a]. Discrete spaces are realcompact if and only if their
cardinality is non-measurable.

(8) Due to [Dieudonné, 1939,] see also [Engelking, 1989, 8.5.13.a]. For a
topological space X the following statements are equivalent:
(a) X admits a complete uniformity, i.e. X is Dieudonné complete;
(b) X is closed embedable into a product of complete metrizable spaces;
(c) X is closed embedable into a product of metrizable spaces;
(d) X is a projective limit of complete metrizable spaces;
(e) X is a projective limit of metrizable spaces;

(19) Stone’s Theorem: Let X be metrizable and U an open covering of X.
Then there exists an open locally finite and σ-discrete refinement of U .
Note, that σ-discrete means that it is a countable union of discrete sets
of subsets, i.e. every point in X has a neighborhood that intersections at
most one of the subsets.

(14) See [Engelking, 1989, 5.1.J.e] and [Engelking, 1989, 8.5.13.h]. A topologi-
cal space is realcompact if and only if it is Dieudonné complete and each
closed discrete subspace is realcompact.

(7) [Shirota, 1952], see also [Engelking, 1989, 5.5.10 & 8.5.13.h]. A topologi-
cal space of non-measurable cardinality is realcompact if and only if it is
Dieudonné complete.

(13) See [Engelking, 1989, 8.5.13b] or [Engelking, 1989, 5.1.J.f]. Every para-
compact space is Dieudonné complete.

98 Andreas Kriegl , Univ.Wien, June 4, 2008



17. Basic Concepts and Topological Realcompactness 17.2

(4) Due to [Katětov, 1951, p.82], see also [Engelking, 1989, 5.5.10]. Paracom-
pact spaces are realcompact if and only if all closed discrete subspaces are
realcompact.

(6) Hence Banach spaces (or even Fréchet spaces) are realcompact if and only
if their density (i.e., the cardinality of a maximal discrete or of a minimal
dense subset) or their cardinality is non-measurable.

Realcompact spaces where introduced by [Hewitt, 1948, p.85] under the name Q-
compact spaces. The equivalence in ( 1 ) is due to [Shirota, 1952, p.24]. The
results ( 1 ) and ( 2 ) are proved in [Engelking, 1989] for a different notion of
realcompactness, which was shown to be equivalent to the original one by [Katětov,
1951], see also [Engelking, 1989, 3.12.22.g].

Proof. ( 9 ) See 17.3 . Let νX := Hom(C(X)) ⊆ RC(X) and δ : X → νX
be given by x 7→ evx := (f(x))f . Then every f ∈ C(X) extends along δ to
f̃ := prf : RC(X) → R. Obviously Hom(C(X)) is closed in RC(X) and X is dense
in Hom(C(X)), since for ϕ ∈ ν(X), f1, . . . , fn ∈ C(X) and ε > 0 we find an x ∈ X
with ϕ(fi) = fi(x) for all i. Thus the extension f̃ is unique.

Now let Y be a realcompact space, then δY : Y → ν(Y ) is a homeomorphism and
any continuous f : X → Y induces a continuous map f∗∗ : RC(X) → RC(Y ) which
thus maps δ(X) = νX into δ(f(X)) ⊆ νY . This extension f̃ : νX → νY is unique,
since X is dense in νX.

Furthermore νX is realcompact: Let ϕ : C(νX)→ R be an algebra-homomorphism.
then ψ := ϕ◦(δ∗)−1 : C(X)→ R is an algebra-homomorphism and hence an element
of ν(X), i.e. ϕ(g) = (ψ◦δ∗)(g) = ψ(g◦δ) = g(ψ) = evψ(g), since g = g̃ ◦ δ = evδ∗(g).

( 10 ) Consider the subspace γX :=
⋂
f∈C(X) f̄

−1(R) ⊆ βX. Obviously X is dense
in γX and any f ∈ C(X) extends (uniquely) to f̄ : γX → R. We show the
universal property of the realcompactification for δ : X → γX: So let f : X → Y
be continuous into a realcompact space which is closed in RC(Y ). Then f extends
to a continuous map γX → RC(Y ) and as before it has values in δ(Y ) = Y .

Furthermore,

βX \ ν(X) =
⋃{

f̄−1(∞) : f ∈ C(X,R)
}

=
⋃{

f̄−1(∞) : f ∈ C(X, [1,+∞))
}

=
⋃{

f̄−1(0) : f ∈ C(X, (0, 1])
}
,

where the second equality follows since for f ∈ C(X,R) with f̄(y) = ∞ we can
consider g := 1 + |f | ∈ C(X, [1,+∞)) with ḡ = 1 + |f̄ |, hence ḡ(y) = ∞, and the
third follows by considering 1/f instead of f .

( 11 ) Let y ∈ βX \ νX. By ( 10 ) there exists an f ∈ C(X) with f̄(y) = ∞.
Thus Un := {z ∈ βX : |f̄(z)| ≥ n} are closed neighborhoods of y in βX and⋂
n Un = f̄−1(∞) ⊆ βX \ νX.

( 12 ) Let Un be closed neigborhoods of y ∈ νX \ X. Since νX is completely
regular there are fn ∈ C(νX,R) with fn(y) = 1 and fn(νX \ Un) = 0. Suppose
X ∩

⋂
n Un = ∅. Then

∑
n fn is locally finite on X hence f :=

∑∞
n=1 fn ∈ C(X,R)

but for its extension f̄(y) =∞, so y /∈ νX by ( 10 ).

( 1 ) If X is realcompact, then X ∼= ν(X) ⊆ RC(X) is a closed subspace of a product
of R. Conversely, let ι : X → RJ be a closed embedding. This may be extended to
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a continuous mapping ι̃ : νX → RJ along δ : X → νX. Since δ has dense image
ι̃ has values in ι(X) = ι(X), hence ι−1 ◦ ι̃ ◦ δ = Id and thus δ is a closed dense
embedding, i.e. an isomorphism.

( 2 ) follows trivially from ( 1 ).

( 3 ) follows from 18.11 and 18.24 .

( 18 ) By ( 3 ) and ( 2 ) each limit of Lindelöf spaces is realcompact. Conversely,
realcompact spaces X = νX = Hom(C(X)) embed into

∏
A Hom(A), where A

runs through the finitely generated (hence countable) subrings A of C(X) and
Hom(A) ⊂ RA denotes the ring-homomorphisms preserving the unit. Note that
homogeneity follows by considering rings containing f and λ.

( 17 ) We have f−1(Z) ∼= graph(f |f−1(Z)) = graph(f) ∩X × Z, a closed subspace
of the product X×Z of realcompact spaces, and hence realcompact by ( 2 ). Since
open subsets O ⊆ R are Lindelöf, they are realcompact by ( 3 ) and so is their
inverse image under a continuous mapping in any realcompact space.

( 15 ) Every compact space is Lindelöf hence realcompact by ( 3 ) and obviously
pseudocompact, i.e. every continuous f : X → R is bounded. Conversely, let f be
realcompact and pseudocompact and y ∈ βX \νX = βX \X. Then by ( 10 ) there
exists an f ∈ C(X,R) with f̄(y) = ∞, but since f is by assumption bounded its
extension to βX is bounded, a contradiction.

( 16 ) Obvioulsy Ω is not compact, since {[0, α) : α ∈ Ω} form an open cover. It is
pseudocompact, since otherwise there would be a continuous unbounded function
f : Ω → R and hence countable ordinals αn with |f(αn)| ≥ n. But then α∞ :=
limn αn is also a countable ordinal with f(α∞) =∞.

( 5 ) Let X be discrete. Hence C(X) = RX is complete and by 18.9 any algebra-
homomorphism on C(X) is bounded. We claim that the algebra-homomorphisms ϕ
correspond uniquely to {0, 1}-valued probability measures µ on P(X) via µ(A) :=
ϕ(χA). Since χF

i Ai
=
∑
i χAi we get the countable additivity. From µ(A) =

ϕ(χA) = ϕ(χ2
A) = ϕ(χA)2 = µ(A)2 we get that µ is {0, 1}-valued and in particular

positiv. Moreover µ(X) = ϕ(1) = 1. Conversely, any µ can be extended to all
(=measurable) functions as usual (see [5, 4.12.2]) by defining ϕ(f) := sup{

∫
g dµ :

g ist simple and g ≤ f} for f ≥ 0 and µ(f) := µ(f+) − µ(f−) for general f =
f+ − f−. Since µ is {0, 1}-valued this extension ϕ is multiplicative: In fact, using
µ(A∪B) + µ(A∩B) = µ(A) + µ(B) gives µ(A∩B) = 1 ⇔ µ(A) = 1 = µ(B). The
point-evaluations evx correspond to the point measures µ(A) = 1 iff x ∈ A. Thus
there exists an algebra-homomorphism being not a point evaluation if and only if
there exists such a measure µ with µ({x}) = 0 for all x ∈ X, i.e. iff the cardinality
of X is measurable.

( 8 ) (a⇒d) Let the complete uniformity ofX be given by a directed set of quasimet-
rics d : X ×X → R. Then X embeds as uniform space into the product

∏
dX/ ∼d

of metrizable spaces, where the equivalence relation ∼d is given by x1 ∼d x2 ⇔
d(x1, x2) = 0. As connecting mappings X/ ∼d1→ X/ ∼d2 for d1 ≥ d2 we have
the canonical quotient mappings and X is a dense subspace of the corresponding
projective limit of their completions X̂/ ∼d: In fact, let z be in the completion of
X/ ∼d then for ε > 0 there is some x ∈ X with d([x], z) < ε. Since the uniformity
is complete X coincides with the limit lim←−d X̂/ ∼d.
(d⇒e), (e⇒c) and (b⇒a) are obvious.

(c⇒b) It is enough to embed any metrizable space X closed into a product of
complete metrizable spaces. For this consider the completion X̃ and for each x ∈ X̃\
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X the closed embedding embeddings X̃ \{x} → X̃×R given by y 7→ (y, 1/d(y, x)))
and X →

∏
x∈X̃\X X̃ \ {x}.

( 19 ) Let � be a well-ordering on U and d a metric for X. For n ∈ N and U ∈ U
let

Vn := {VU,n : U ∈ U}, where

VU,n :=
⋃{

U 1
2n

(y) : min
y∈W∈U

W = U ⊇ U 3
2n

(y); y ∈ X \
⋃
k<n

⋃
Vk
}

is recursively defined. Then V :=
⋃∞
n=1 Vn has the required properties:

• VU,n ⊆ U is open.
• For each x ∈ X let U be minimal with x ∈ U and n ∈ N be such that
B3/2n(x) ⊆ U . Then either x ∈

⋃
k<n

⋃
Vk, or x ∈ VU,n, hence V is a

covering of X.
• x1 ∈ VU1,n, x2 ∈ VU2,n with U1 6= U2 implies d(x1, x2) > 1/2n (hence Vn

is discrete, since every 1/2n+1-ball meets at most one member of Vn): Let
U1 � U2. Thus there are points yi as above with xi ∈ U1/2n(yi) ⊆ VUi,n.
In particular, U3/2n(y1) ⊆ U1 and y2 /∈ U1 since U1 ≺ U2. So

d(x1, x2) ≥ d(y1, y2)− d(y1, x1)− d(y2, x2) ≥
3
2n
− 1

2n
− 1

2n
=

1
2n
.

• The set V is locally finite: For x ∈ X there are m,n ≥ 1 and U ∈ U with
U1/2n(x) ⊆ VU,m. We claim that

∀j ≥ n+m∀W ∈ U : U1/2n+m(x) ∩ VW,j = ∅.

The y in the definition of VW,j do not belong to VU,m ⊇ U1/2n(x) for all
j ≥ n+m > m and hence d(x, y) ≥ 1/2n and thus U1/2n+m(x)∩U1/2j (y) =
∅.

( 14 ) If X is realcompact, then X is a closed subspace of RC(X) and hence
Dieudonné-complete by ( 8 ) and each closed subspace of X is realcompact by
( 2 ). Conversely, let X be Dieudonné complete and any discrete closed subspace
realcompact. By the proof of ( 8 , a ⇒ d) the space X is the projective limit
of the metrizable spaces X/ ∼d. Let A ⊆ X/ ∼d be closed and discrete. Then
{a ∈ A : π−1(a)} is a discrete family with closed union in X where π denotes the
natural quotient mapping. By choosing a section σ : A → π−1(A) to π|π−1(A) we
get a closed discrete and hence relacompact subspace σ(A) of X which is home-
omorphic to A. So by ( 2 ) we may assume without loss of generality that X is

metrizable. For y ∈ βX \X let U := {X \UβX : U is a neighborhood of y in βX},
an open covering of X. By 19 we finde a σ-discrete (locally finite open) cover-
ing F =

⋃
n Fn of X which is a refinement of U , in particular Fn is discrete and

y /∈ F
βX

for any F ∈ Fn. By passing to the closures F in X of the F we may
assume w.l.o.g. that the F are closed in X. Let Fn :=

⋃
Fn.

We claim that there exists an f ∈ C(βX, I) with f(y) = 0 and f |X > 0 (then by
( 10 ) we have y /∈ νX, so X = νX is realcompact):

If y /∈ Fn
βX

for all n, then there exist fn ∈ C(βX, [0, 1]) with fn(y) = 0 and
fn|Fn = 1 and thus f :=

∑
n

1
2n fn ∈ C(βX, [0, 1]) with f(y) = 0 and f |X > 0.

Otherwise y ∈ Fn
βX

for some n and we consider the quotient mapping π : Fn ∪
{y} → Fn ∪ {y}. Since Fn is discrete, the elements F ∈ Fn are open sub-
sets of Fn and since Fn ⊆ Fn ∪ {y} is open also in Fn ∪ {y} and hence {F}
is open in Fn ∪ {y}. So Fn ⊆ Fn ∪ {y} is discrete. The restriction mapping
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incl∗ : Cb(Fn ∪ {y})→ Cb(Fn) is bijective, since for every f ∈ Cb(Fn) the compos-
ite f ◦π ∈ Cb(Fn) and hence extends to a bounded continuous function on βX. Its
restriction to Fn∪{y} factors over π to a continuous bounded functions on Fn∪{y}
and since Fn is dense in Fn ∪ {y} this extension is unique. Note that the functions
in Cb(Fn) separate points, since for the discrete subspace Fn this is obvious and
for F ∈ Fn we have y /∈ F βX and hence an f ∈ Cb(βX, I) exists with f |F = 0 and
f(y) = 1. Now we replace f by x 7→ sup(f(F )) for x ∈ F ∈ Fn. Then f is continu-
ous (at y) and constant on the F ∈ Fn hence factors over π. So we have an injective
continuous mapping Fn∪{y} → Alg(Cb(Fn∪{y})) ∼= Alg(Cb(Fn)) = β(Fn). Since
Fn is realcompact (choose points in each F ∈ Fn to obtain a discrete closed sub-
space of X and use 5 ) there exists an f ∈ C(β(Fn), [0, 1]) with f(y) = 0 and
f |Fn > 0 again by ( 10 ). Now f ◦ π|Fn can be extended to X by the theorem
of Tietze and Urysohn (even as positive function, since we may replace f with
max(f, h), where h ∈ C(X, I) with h|Fn

= 0 and h|f−1(0) = 1) and furtheron to
βX and this extension vanishes on y, since it coincides on the dense subset Fn with
f ◦ π and the later one vanishes on y.

( 7 ) follows from 14 and 5 .

( 13 ) We show that the uniformity given by all continuous pseudo-metrics d :
X × X → R is complete. So let xi ∈ X be Cauchy for all d. In particular, for
df (y1, y2) := |f(y1) − f(y2)| for any f ∈ Cb(X,R). So δ(xi)(f) = f(xi) is Cauchy
in RCb(X) and hence converges to some y ∈ βX. Suppose y /∈ X. Since X is
paracompact there is a partition F of unity with y /∈ f−1((0, 1])

βX
for all f ∈ F .

Let d0(x1, x2) :=
∑
f∈F |f(x1) − f(x2)|. Note that this sum is locally finite, since

F is it. So d0 is a continuous pseudo-metric on X. For every x ∈ X and f ∈ F
with f(x) 6= 0 there exists a neighborhood of y in βX on which f vanishes. Let
U be the finite intersection of these neighborhoods. Then xi ∈ U finally. We
claim that d0 has no continuous extension d̃0 to y. Otherwise for x ∈ X we have
d̃0(x, y) = limi d0(x, xi) and d0(x, xi) =

∑
f |f(x)− f(xi)| ≥

∑
f(x) 6=0 f(x) = 1. In

particular d̃0(xi, y) ≥ 1 in contradiction to d̃0(xi, y)→ d̃0(y, y) = 0, so y ∈ X.
Note that d(y, xi) → 0 for each continuous pseudo-metric d : X × X → R, since
xi → y in βX and hence in X and d is continuous, so d(y, xi) = limj d(xj , xi) ≤ ε,
since (xi)i is assumed to be Cauchy.

( 4 ) follows from 13 and 14 .

( 6 ) Banach-spaces (or even Fréchet spaces) are metrizable hence paracompact. So
by 4 they are realcompact iff all their closed discrete subsets are non-measurable,
i.e. their density is non-measurable. �

17.3. Lemma. [Kriegl, Michor, Schachermayer, 1989, 2.2, 2.3]. Let A be 1̄-eval-
uating. Then we have a topological embedding

δ : XA ↪→
∏
A

R, prf ◦δ := f,

with dense image in the closed subset HomA ⊆
∏
A R. Hence X is A-realcompact

if and only if δ has closed image.

Proof. The topology of XA is by definition initial with respect to all f = prf ◦δ,
hence δ is an embedding. Obviously HomA ⊆

∏
A R is closed. Let ϕ : A → R be an

algebra-homomorphism. For f ∈ A consider Zf . If A is 1-evaluating then by 18.8
for any finite subset F ⊆ A there exists an xF ∈

⋂
f∈F Zf . Thus δ(xF )f = ϕ(f)

for all f ∈ F . If A is only 1̄-evaluating, then we get as in the proof of 18.3 for
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every ε > 0 a point xF ∈ X such that |f(xF )−ϕ(f)| < ε for all f ∈ F . Thus δ(xF )
lies in the corresponding neighborhood of (ϕ(f))f . Thus δ(X) is dense in HomA.

Now X is A-realcompact if and only if δ has HomA as image, and hence if and
only if the image of δ is closed. �

17.4. Theorem. [Kriegl, Michor, Schachermayer, 1989, 2.4] & [Adam, Biström,
Kriegl, 1995, 3.1]. The topology of pointwise convergence on Homω A is realcom-
pact. If XA is not realcompact then there exists an ω-evaluating homomorphism ϕ
which is not evaluating.

Proof. We first show the weaker statement, that: If XA is not realcompact then
there exists a non-evaluating ϕ, i.e., X is not A-realcompact.
Assume that X is A-realcompact, then A is 1-evaluating and hence by lemma
17.3 δ : XA →

∏
A R is a closed embedding. Thus by 17.2.1 the space XA is

realcompact.

Now we give a proof of the stronger statement that Homω A is realcompact:
We supply all sets of homomorphisms with the topology of pointwise convergence.
Let M ⊆ 2A be the family of all countable subsets of A containing the unit.
For M ∈ M, consider the topological space Homω〈M〉, where 〈M〉 denotes the
subalgebra generated by M . Obviously the family (δf )f∈M , where δf (ϕ) = ϕ(f), is
a countable subset of C(Homω〈M〉) that separates the points in Homω〈M〉. Hence
Homω〈M〉 = Hom(C(Homω〈M〉)) by 18.25 , since C(Homω〈M〉) is ω-evaluating
by 18.11 , i.e. Homω〈M〉 is realcompact. Now Homω A is an inverse limit of the
spaces Homω〈M〉 for M ∈ M. Since Homω〈M〉 is Hausdorff, we obtain that
Homω A as a closed subset of a product of realcompact spaces is realcompact by
17.2.2 .

Since X is not realcompact in the topology XA, which is that induced from the
embedding into Homω A, we have that X 6= Homω A and the statement is proved.

�

17.5. Counter-example. [Kriegl, Michor, 1993, 3.6.2]. The locally convex space
RΓ
count of all points in the product with countable carrier is not C∞-realcompact, if

Γ is uncountable and not measurable.

Proof. By [Engelking, 1989, 3.10.17 & 3.11.2] the spaceX := RΓ
count is not realcom-

pact, in fact every c∞-continuous function on it extends to a continuous function on
RΓ, see the proof of 4.27 . Since the projections are smooth, XC∞ is the product
topology. So the result follows from 17.4 . �

17.6. Theorem. [Kriegl, Michor, Schachermayer, 1989, 3.2] & [Garrido, Gómez,
Jaramillo, 1994, 1.8]. Let X be a realcompact and completely regular topologi-
cal space, let A be uniformly dense in C(X) (e.g. X is A-paracompact) and 1̄-
evaluating. Then X is A-realcompact.

In [Kriegl, Michor, Schachermayer, 1989] it is shown that C∞lfcs-algebra A is uni-
formly dense in C(X) if and only if A ∩ Cb(X) is uniformly dense in Cb(X). One
may find also other equivalent conditions there.

Proof. Since A ⊆ C(X) we have that the identity X → XA is continuous, and
hence A ⊆ C(XA) ⊆ C(X). For each of these point-separating algebras we consider
the natural inclusion δ of X into the product of factors R over the algebra, given
by prf ◦δ = f . It is a uniform embedding for the uniformity induced on X by this
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algebra and the complete product uniformity on
∏

R with basis formed by the sets
Uf,ε := {(u, v) : |prf (u)− prf (v)| < ε} with ε > 0.

The condition that A ⊆ C is dense implies that the uniformities generated by
C(X), by C(XA) and by A coincide and hence we will consider X as a uniform
space endowed with this uniform structure in the sequel. In fact for an arbitrarily
given continuous map f and ε > 0 choose a g ∈ A such that |g(x) − f(x)| < ε for
all x ∈ X. Then

{(x, y) : |f(x)− f(y)| < ε} ⊆ {(x, y) : |g(x)− g(y)| < 3ε}
⊆ {(x, y) : |f(x)− f(y)| < 5ε}.

Since X is realcompact, δC(X) = Hom(C(X)) and hence X is closed in
∏
C(X) R

and so the uniform structure on X is complete. Thus, also the image δA(X) is a
complete uniform subspace of

∏
A R and so it is closed with respect to the product

topology, i.e. X is A-realcompact by 17.3 . �

17.7. In the case of a locally convex vector space the last result 17.6 can be
slightly generalized to:

Result. [Biström, Lindström, 1993b, Thm.6]. For E a realcompact locally convex
vector space, let E′ ⊆ A ⊆ C(E) be a ω-evaluating C(∞)-algebra which is invari-
ant under translations and homotheties. Moreover, we assume that there exists
a 0-neighborhood U in E such that for each f ∈ C(E) there exists g ∈ A with
supx∈U |f(x)− g(x)| <∞.

Then E is A-realcompact.

18. Evaluation Properties of Homomorphisms

In this section we consider first properties near the evaluation property at single
functions, then evaluation properties for homomorphisms on countable many func-
tions, and finally direct situations where all homomorphisms are point evaluations.

18.1. Remark. If ϕ in HomA is 1-evaluating (i.e., ϕ(f) ∈ f(X) for all f in A),
then ϕ is 1̄-evaluating. �

18.2. Lemma. [Biström, Bjon, Lindström, 1991, p.181]. For a topological space
X the following assertions are equivalent:

(1) ϕ is 1̄-evaluating;
(2) There exists x̃ in the Stone-Čech compactification βX with ϕ(f) = f̃(x̃)

for all f ∈ A.

Here f̃ denotes the extension of f : X → R ↪→ R∞ to the Stone-Čech-compactifi-
cation βX with values in the 1-point compactification R∞ of R.

In [Garrido, Gómez, Jaramillo, 1994, 1.3] it is shown for a subalgebra of Cb(R) that
x̃ need not be unique.

Proof. For f ∈ A and ε > 0 let U(f, ε) := {x ∈ X : |ϕ(f)−f(x)| < ε}. Then U :=
{U(f, ε) : f ∈ A, ε > 0} is a filter basis onX. ConsiderX as embedded into βX and
take an ultrafilter Ũ on βX that is finer than U . For f := (f1−ϕ(f1))2+(f2−ϕ(f2))2

we have in fact
U(f1, ε1) ∩ U(f2, ε2) ⊇ U(f,min{ε1, ε2}2).
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Let x̃ ∈ βX be the point to which Ũ converges. For an arbitrary function f in A
the filter f(U) converges to ϕ(f) by construction. But f̃(Ũ) ≥ f̃(U) = f(U), so
ϕ(f) = f̃(x̃). The converse is obvious since ϕ(f) = f̃(x̃) ∈ f̃(βX) ⊆ f(X) ⊆ R∞,
and ϕ(f) ∈ R. �

18.3. Lemma. [Adam, Biström, Kriegl, 1995, 4.1]. An algebra homomorphism ϕ
is 1̄-evaluating if and only if ϕ extends (uniquely) to an algebra homomorphism on
A∞, the C∞-algebra generated by A.

Proof. For C∞-algebras A, we have that

ϕ(h ◦ (f1, . . . , fn)) = h(ϕ(f1), . . . , ϕ(fn))

for all h ∈ C∞(Rn,R) and f1, . . . , fn in A.

In fact set a := (ϕ(f1), . . . , ϕ(fn)) ∈ Rn. Then

h(x)− h(a) =
∫ 1

0

∑
j≤n

∂jh(a+ t(x− a)) dt · (xj − aj) =
∑
j≤n

haj (x) · (xj − aj),

where haj (x) :=
∫ 1

0
∂jh(a+ t(x− a))dt. Applying ϕ to this equation composed with

the fi one obtains

ϕ(h ◦ (f1, . . . , fn))− h(ϕ(f1), . . . , ϕ(fn)) =

=
∑
j≤n

ϕ(haj ◦ (f1, . . . , fn)) · (ϕ(fj)− ϕ(fj)) = 0.

(⇒) We define ϕ̃(h ◦ (f1, . . . , fn)) := h(ϕ(f1), . . . , ϕ(fn)). By what we have shown
above (1-preserving) algebra homomorphisms are C∞-algebra homomorphisms and
hence this is the only candidate for an extension. This map is well defined. Indeed,
let h ◦ (f1, . . . , fn) = k ◦ (g1, . . . , gm). For each ε > 0 there is a point x ∈ E such
that |ϕ(fi)− fi(x)| < ε for i = 1, ..., n, and |ϕ(gj)− gj(x)| < ε for j = 1, ...,m. In
fact by 18.2 there is a point x̃ ∈ βX with ϕ(f) = f̃(x̃) for

f :=
n∑
i=1

(fi − ϕ(fi))2 +
m∑
j=1

(gj − ϕ(gj))2,

and hence ϕ(fi) = f̃i(x̃) and ϕ(gj) = g̃j(x̃). Now approximate x̃ by x ∈ X.
By continuity of h and k we obtain that

h(ϕ(f1), . . . , ϕ(fn)) = k(ϕ(f1), . . . , ϕ(fm)),

and we therefore have a well defined extension of ϕ. This extension is a homo-
morphism, since for every polynomial θ on Rm (or even for θ ∈ C∞(Rm)) and
gi := hi ◦ (f i1, . . . , f

i
ni

) ∈ A∞ we have

ϕ̃(θ ◦ (g1, . . . , gm)) = ϕ̃(θ ◦ (h1 × . . .× hm) ◦ (f1
1 , . . . , f

m
nm

))

= (θ ◦ (h1 × . . .× hm))(ϕ(f1
1 ), . . . , ϕ(fmnm

))

= θ(h1(ϕ(f1
1 ), . . . , ϕ(f1

n1
)), . . . , hm(ϕ(fm1 ), . . . , ϕ(fmnm

))

= θ(ϕ̃(g1), . . . , ϕ̃(gm)).

(⇐) Suppose there is some f ∈ A with ϕ(f) /∈ f(X). Then we may find an
h ∈ C∞(R) with h(ϕ(f)) = 1 and carrh ∩ f(X) = ∅. Since A∞ is a C∞-algebra,
we conclude from what we said above that ϕ̃(h ◦ f) = h(ϕ(f)) = 1. But since
h ◦ f = 0 we arrive at a contradiction. �

Andreas Kriegl , Univ.Wien, June 4, 2008 105



18.8 18. Evaluation Properties of Homomorphisms

18.4. Proposition. [Garrido, Gómez, Jaramillo, 1994, 1.2]. If A is bounded
inversion closed and ϕ ∈ HomA then ϕ is 1̄-evaluating.

Proof. We assume indirectly that there is a function f ∈ A with ϕ(f) 6∈ f(X).
Let ε := infx∈X |ϕ(f) − f(x)| and g(x) := 1

ε (ϕ(f) − f(x)). Then g ∈ A, ϕ(g) = 0
and |g(x)| = 1

ε |ϕ(f) − f(x)| ≥ 1 for each x ∈ X. Thus 1/g ∈ A. But then
1 = ϕ(g · 1/g) = ϕ(g)ϕ(1/g) = 0 gives a contradiction. �

18.5. Lemma. Any C(∞)-algebra is bounded inversion closed.

Moreover, it is stable under composition with smooth locally defined functions, which
contain the closure of the image in its domain of definition.

Proof. Let A be a C∞-algebra (resp. C(∞)-algebra), n a natural number (resp.
n = 1), U ⊆ Rn open, h ∈ C∞(U,R), f := (f1, . . . , fn), with fi ∈ A such that
f(X) ⊆ U , then h ◦ f ∈ A . Indeed, choose ρ ∈ C∞(R) with ρ|

f(X)
= 1 and

supp ρ ⊆ U . Then k := ρ ·h is a globally smooth function and h◦f = k◦f ∈ A. �

18.6. Lemma. Any inverse closed algebra A is 1-evaluating.

By 18.10 the converse is wrong.

Proof. Let f ∈ A and assume indirectly that Zf = ∅. Let g := f − ϕ(f). Then
g ∈ A and g(x) 6= 0 for all x ∈ X, by which 1/g ∈ A since A is inverse-closed. But
then 1 = ϕ(g · 1/g) = ϕ(g)ϕ(1/g) = 0, which is a contradiction. �

18.7. Proposition. [Biström, Jaramillo, Lindström, 1995, Lem.14] & [Adam, Bi-
ström, Kriegl, 1995, 4.2]. For ϕ in HomA the following statements are equivalent:

(1) ϕ is 1-evaluating.
(2) ϕ extends to a unique (1-evaluating) homomorphism on the algebra RA :=
{f/g : f, g ∈ A, 0 /∈ g(X)}.

(3) ϕ extends to a unique (1-evaluating) homomorphism on the following C∞-
algebra A〈∞〉 constructed from A:

A〈∞〉 := {h ◦ (f1, . . . , fn) :fi ∈ A, (f1, . . . , fn)(X) ⊆ U,
U open in some Rn, h ∈ C∞(U)}.

Proof. ( 1 ) ⇒ ( 3 ) We define ϕ(h ◦ (f1, . . . , fn)) := h(ϕ(f1), . . . , ϕ(fn)). Since
there exists by 18.8 an x with ϕ(fi) = fi(x), we have (ϕ(f1), . . . , ϕ(fn)) ∈ U ,
hence the right side makes sense. The rest follows in the same way as in the proof
of 18.3 .

( 3 ) ⇒ ( 2 ) Existence is obvious, since RA ⊆ A〈∞〉, and uniqueness follows from
the definition of RA.

( 2 ) ⇒ ( 1 ) Since RA is inverse-closed, the extension of ϕ to this algebra is 1-
evaluating by 18.6 , hence the same is true for ϕ on A. �

18.8. Lemma. Every 1-evaluating homomorphism is finitely evaluating.

Proof. Let F be a finite subset of A. Define a function f : X → R by

f :=
∑
g∈F

(g − ϕ(g))2.

Then f ∈ A and ϕ(f) = 0. By assumption there is a point x ∈ X with ϕ(f) = f(x).
Hence g(x) = ϕ(g) for all g ∈ F . �

106 Andreas Kriegl , Univ.Wien, June 4, 2008



18. Evaluation Properties of Homomorphisms 18.11

18.9. Theorem. Automatic boundedness. [Kriegl, Michor, 1993] & [Arias-
de-Reyna, 1988] Every 1-evaluating homomorphism ϕ ∈ HomA is positive, i.e.,
0 ≤ ϕ(f) for all 0 ≤ f ∈ A. Moreover we even have ϕ(f) > 0 for f ∈ A with
f(x) > 0 for all x ∈ X.

Every positive homomorphism ϕ ∈ HomA is bounded for any convenient algebra
structure on A.

A convenient algebra structure on A is a locally convex topology, which turns A
into a convenient vector space and such that the multiplication A × A → A is
bounded, compare 5.21 .

Proof. Positivity: Let f1 ≤ f2. By 17 and 18.8 there exists an x ∈ X such
that ϕ(fi) = fi(x) for i = 1, 2. Thus ϕ(f1) = f1(x) ≤ f2(x) = ϕ(f2). Note that if
f(x) > 0 for all x, then ϕ(f) > 0.

Boundedness: Suppose fn is a bounded sequence, but |ϕ(fn)| is unbounded. By
replacing fn by f2

n we may assume that fn ≥ 0 and hence also ϕ(fn) ≥ 0. Choosing
a subsequence we may even assume that ϕ(fn) ≥ 2n. Now consider

∑
n

1
2n fn. This

series converges Mackey, and since the bornology on A is by assumption complete
the limit is an element f ∈ A. Applying ϕ yields

ϕ(f) = ϕ

(
N∑
n=0

1
2n
fn +

∑
n>N

1
2n
fn

)
=

N∑
n=0

1
2n
ϕ(fn) + ϕ

(∑
n>N

1
2n
fn

)
≥

≥
N∑
n=0

1
2n
ϕ(fn) + 0 =

N∑
n=0

1
2n
ϕ(fn),

where we used the monotonicity of ϕ applied to
∑
n>N

1
2n fn ≥ 0. Thus the series

N 7→
∑N
n=0

1
2nϕ(fn) is bounded and increasing, hence converges, but its summands

are bounded by 1 from below. This is a contradiction. �

18.10. Lemma. For a locally convex vector space E the algebra Pf (E) is 1-
evaluating.

More on the algebra Pf (E) can be found in 18.27 , 18.28 , and 18.12 .

Proof. Every finite type polynomial p is a polynomial in a finite number of linearly
independent functionals `1, . . . , `n in E′. So there is for each i = 1, . . . , n some point
ai ∈ E such that `i(ai) = ϕ(`i) and `j(ai) = 0 for all j 6= i. Let a = a1+· · ·+an ∈ E.
Then `i(a) = `i(ai) = ϕ(`i) for i = 1, . . . , n hence ϕ(p) = p(a). �

Countably Evaluating Homomorphisms

18.11. Theorem. Idea of [Arias-de-Reyna, 1988, proof of thm.8], [Adam, Bis-
tröm, Kriegl, 1995, 2.5]. For a topological space X any C∞lfcs-algebra A ⊆ C(X) is
closed under composition with local smooth functions and is ω-evaluating.

Note that this does not apply to Cω.

Proof. We first show closedness under local smooth functions (and hence in
particular under inversion), i.e. if h ∈ C∞(U), where U ⊆ Rn is open and
f := (f1, . . . , fn) with fi ∈ A has values in U , then h ◦ f ∈ A .
Consider a smooth partition of unity {hj : j ∈ N} of U , such that supphj ⊆ U .
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Then hj ·h is a smooth function on Rn vanishing outside supphj . Hence (hj ·h)◦f ∈
A . Since we have

carr
(
(hj · h) ◦ f

)
⊆ f−1(carrhj),

the family {carr((hj · h) ◦ f) : j ∈ N} is locally finite, f is continuous, and since
1 =

∑
j∈N hj on U we obtain that h ◦ f =

∑
j∈N(hj · h) ◦ f ∈ A .

By 18.6 we have that ϕ is 1-evaluating, hence finitely evaluating by 18.8 . We
now show that ϕ is countably evaluating:
For this take a sequence (fn)n in A. Then hn : x 7→ (fn(x) − ϕ(fn))2 belongs to
A and ϕ(hn) = 0. We have to show that there exists an x ∈ X with hn(x) = 0
for all n. Assume that this were not true, i.e. for all x ∈ X there exists an n with
hn(x) > 0. Take h ∈ C∞(R, [0, 1]) with carrh = {t : t > 0} and let gn : x 7→
h(hn(x)) · h( 1

n − h1(x)) · · · · · h( 1
n − hn−1(x)). Then gn ∈ A and the sum

∑
n

1
2n gn

is locally finite, hence defines a function g ∈ A. Since ϕ is 1-evaluating there exists
for any n an xn ∈ X with hn(xn) = ϕ(hn) = 0 and ϕ(gn) = gn(xn). Hence

ϕ(gn) = gn(xn) = h(hn(xn)) · h( 1
n − h1(xn)) · · · · · h( 1

n − hn−1(xn)) = 0.

By assumption on the hn and h we have that g > 0. Hence by 18.9 ϕ(g) > 0,
since ϕ is 1-evaluating. Let N be so large that 1/2N < ϕ(g). Again since A is
1-evaluating, there is some a ∈ X such that ϕ(g) = g(a) and ϕ(gj) = gj(a) for
j ≤ N . Then

1
2N

< ϕ(g) = g(a) =
∑
n

1
2n
gn(a) =

∑
n≤N

1
2n
ϕ(gn) +

∑
n>N

1
2n
gn(a) ≤ 0 +

1
2N

gives a contradiction. �

18.12. Counter-example. [Biström, Jaramillo, Lindström, 1995, Prop.17]. For
any non-reflexive weakly realcompact locally convex space (and any non-reflexive
Banach space) E the algebra Pf (E) of finite type polynomials is not ω-evaluating.

Moreover, EA is realcompact, but E is not A-realcompact, for A = Pf (E), so that
the converse of the assertion in 17.4 holds only under the additional assumptions
of 17.6 .

As example we may take E = `1, which is non-reflexive, but by 18.27 weakly
realcompact.

By 18.10 the algebra Pf (E) is 1-evaluating and hence by 18.7 it has the same
homomorphisms as RPf (E), Pf (E)∞ or even Pf (E)〈∞〉. So these algebras are not
ω-evaluating for spaces E as above.

Proof. By the universal property 5.10 of Pf (E) we get HomPf (E) ∼= (E′)×, the
space of (not necessarily bounded) linear functionals on E′. For weakly realcompact
E by 18.27 we have Homω Pf (E) = E. So if Pf (E) were ω-evaluating then even
E = HomPf (E). Any bounded subset of E is obviously Pf -bounding and hence
by 20.2 relatively compact in the weak topology, since EPf (E) = (E, σ(E,E′)).
Since E is not semi-reflexive, this is a contradiction, see [Jarchow, 1981, 11.4.1].

If we have a (not necessarily weakly compact) Banach space, we can replace in the
argument above 20.2 by the following version given in [Biström, 1993, 5.10]: If
Homω Pf (E) = HomPf (E) then every A-bounding set with complete closed convex
hull is relatively compact in the weak topology. �
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18.13. Lemma. The C∞lfs-algebra A∞lfs generated by an algebra A can be obtained
in two steps as (A∞)lfs. Also the C∞lfcs-algebra A∞lfcs can be obtained in two steps
as (A∞)lfcs.

Proof. We prove the result only for countable sums, the general case is easier. We
have to show that (A∞)lfcs is closed under composition with smooth mappings. So
take h ∈ C∞(Rn) and

∑
j≥1 fi,j ∈ (A∞)lfcs for i = 1, . . . , n. We put h0 := 0 and

hk := h ◦ (
∑k
j=1 f1,j , . . . ,

∑k
j=1 fn,j) ∈ A∞ and obtain

h ◦ (
∑
j≥1

f1,j , . . . ,
∑
j≥1

fn,j) =
∑
k≥1

(hk − hk−1),

where the right member is locally finite and hence an element of (A∞)lfcs. �

18.14. Theorem. [Adam, Biström, Kriegl, 1995, 4.3]. A homomorphism ϕ in
HomA is ω-evaluating if and only if ϕ extends (uniquely) to an algebra homomor-
phism on the C∞lfcs-algebra A∞lfcs generated by A, which can be obtained in two steps
as (A∞)lfcs (and this extension is ω-evaluating by 18.11 ).

Proof. (⇒) The algebra A∞lfcs is the union of the algebras obtained by a finite
iteration of passing to Alfcs and A∞, where Alfcs := {f : f =

∑
n fn, fn ∈

A, the sum is locally finite}. To A∞ it extends by 18.3 . It is countably eval-
uating there, since in any f ∈ A∞ only finitely many elements of A are involved.
Remains to show that ϕ can be extended to Alfcs and that this extension is also
countably evaluating.
For a locally finite sum f =

∑
k fk we define ϕ(f) :=

∑
k ϕ(fk). This makes sense,

since there exists an x ∈ X with ϕ(fn) = fn(x), and since
∑
n fn is point finite, we

have that the sum
∑
n ϕ(fn) =

∑
n fn(x) is in fact finite. It is well defined, since for∑

n fn =
∑
n gn we can choose an x ∈ X with ϕ(fn) = fn(x) and ϕ(gn) = gn(x) for

all n, and hence
∑
n ϕ(fn) =

∑
n fn(x) =

∑
n gn(x) =

∑
n ϕ(gn). The extension is

a homomorphism, since for the product for example we have

ϕ
((∑

n

fn
)(∑

k

gk
))

= ϕ
(∑
n,k

fn gk

)
=
∑
n,k

ϕ(fn gk) =

=
∑
n,k

ϕ(fn)ϕ(gk) =
(∑

n

ϕ(fn)
)(∑

k

ϕ(gk)
)
.

Remains to show that the extension is countably evaluating. So let fk =
∑
n f

k
n be

given. By assumption there exists an x such that ϕ(fkn) = fkn(x) for all n and all
k. Thus ϕ(fk) =

∑
n ϕ(fkn) =

∑
n f

k
n(x) = fk(x) for all k.

(⇐) Since A∞lfcs is a C∞lfcs-algebra we conclude from 18.11 that the extension of ϕ
is countably evaluating. �

18.15. Proposition. [Garrido, Gómez, Jaramillo, 1994, 1.10]. Let ϕ in HomA
be 1-evaluating, and let fn ∈ A be such that

∑
n λnf

j
n ∈ A for all λ ∈ `1 and

j ∈ {1, 2}.
Then ϕ is {fn : n ∈ N}-evaluating.

For a convenient algebra structure on A and {fn : n ∈ N} bounded in A the second
condition holds, as used in 18.26 .

It would be interesting to know if the assumption for j = 2 can be removed, since
then the application in 18.26 to finite type polynomials would work.
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Proof. Choose a positive absolutely summable sequence (λn)n∈N such that the
sequences (λn ϕ(fn))n∈N and (λn ϕ(fn)2)n∈N are summable. Then the sum

g :=
∞∑
j=1

λj(fj − ϕ(fj))2 ∈ A.

If there exists x ∈ X with g(x) = 0, we are done. If not, then consider the (positive)
function

h :=
∞∑
j=1

1
2j
λj(fj − ϕ(fj))2 ∈ A.

For every n ∈ N there exists xn ∈ X such that ϕ(fj) = fj(xn) for all j ≤ n,
ϕ(g) = g(xn) and ϕ(h) = h(xn). But then for all n ∈ N we have by 18.9 that

0 < 2nϕ(h) =
∑
j>n

2n−jλj ϕ(fj − ϕ(fj))2 ≤
∑
j>n

λj ϕ(fj − ϕ(fj))2 = ϕ(g),

a contradiction. �

18.16. Corollary. [Biström, Jaramillo, Lindström, 1995, Prop.9]. Let E be
a Banach space and A a 1-evaluating algebra containing P (E). Then for each
ϕ ∈ HomA, each f ∈ A, and each sequence (pn)n∈N in P (E) with uniformly
bounded degree, there exists a ∈ E with ϕ(f) = f(a) and ϕ(pn) = pn(a) for all
n ∈ N.

Proof. Let (λn)n∈N be a sequence of positive reals such that {λnpn : n ∈ N} is
bounded. Then by 18.15 the set {f, pn} is evaluated. �

18.17. Theorem. [Adam, Biström, Kriegl, 1995, 3.3]. Let (fγ)γ∈Γ be a family in
A such that

∑
γ∈Γ zγf

j
γ is a pointwise convergent sum in A for all z = (zγ) ∈ `∞(Γ)

and j = 1, 2. Let |Γ| be non-measurable, and let ϕ be ω-evaluating.

Then ϕ is {fγ : γ ∈ Γ}-evaluating.

We will apply this in particular if {fγ : γ ∈ Γ} is locally finite, and A stable
under locally finite sums. Note that we can always add finitely many f ∈ A to
{fγ : γ ∈ Γ}.
Again it would be nice to get rid of the assumption for j = 2.

Proof. Let x ∈ X and set zγ := sign(fγ(x)) for all γ ∈ Γ. Then z = (zγ) ∈ `∞(Γ)
and

∑
γ∈Γ |fγ(x)| =

∑
γ∈Γ zγfγ(x) < ∞, i.e. (fγ(x))γ∈Γ ∈ `1(Γ). Next observe

that (ϕ(fγ))γ∈Γ ∈ c0(Γ), since otherwise there exists some ε > 0 and a countable
set Λ ⊆ Γ with |ϕ(fγ)| ≥ ε for each γ ∈ Λ. By the countably evaluating property
of ϕ there is a point x ∈ X with |fγ(x)| = |ϕ(fλ| ≥ ε for each γ ∈ Λ, violating the
condition (fγ(x))γ∈Γ ∈ `1(Γ). Since as a vector in c0(Γ) it has countable support
and since ϕ is countably evaluating we get even (ϕ(fγ))γ∈Γ ∈ `1(Γ). Therefore we
may consider g, defined by

X 3 x 7→ g(x) :=
(
(fγ(x)− ϕ(fγ))2

)
γ∈Γ
∈ `1(Γ).

This gives a map g∗ : `∞(Γ) = `1(Γ)′ → A, by

g∗(z) : x 7→ 〈z, g(x)〉 =
∑
γ∈Γ

zγ · (fγ(x)− ϕ(fγ))2,

since (ϕ(fγ)γ∈Γ ∈ `1(Γ). Let Φ : `∞(Γ) → R be the linear map Φ := ϕ ◦ g∗ :
`∞(Γ) → A → R. By the countably evaluating property of ϕ, for any sequence
(zn) in `∞(Γ) there exists an x ∈ X such that Φ(zn) = ϕ(g∗(zn)) = g∗(zn)(x) =
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〈zn, g(x)〉 for all n. For non-measurable |Γ| the weak topology on `1(Γ) is realcom-
pact by [Edgar, 1979, p.575]. By 18.19 there exists a point c ∈ `1(Γ) such that
Φ(z) = 〈z, c〉 for all z ∈ `∞(Γ). For each standard unit vector eγ ∈ `∞(Γ) we have
0 = Φ(eγ) = 〈eγ , c〉 = cγ . Hence c = 0 and therefore Φ = 0. For the constant
vector 1 in `∞(Γ), we get 0 = Φ(1) = ϕ(g∗(1)). Since ϕ is 1-evaluating there exists
an a ∈ X with ϕ(g∗(1)) = g∗(1)(a) = 〈1, g(a)〉 =

∑
γ∈Γ(fγ(a) − ϕ(fγ))2, hence

ϕ(fγ) = fγ(a) for each γ ∈ Γ. �

18.18. Valdivia gives in [Valdivia, 1982] a characterization of the locally convex
spaces which are realcompact in their weak topologies. Let us mention some classes
of spaces that are weakly realcompact:

Result.

(1) All locally convex spaces E with σ(E′, E)-separable E′.
(2) All weakly Lindelöf locally convex spaces, and hence in particular all weakly

countably determined Banach spaces, see [Vašák, 1981]. In particular this
applies to c0(X) for locally compact metrizable X by [Corson, 1961, p.5].

(3) The Banach spaces E with angelic weak∗ dual unit ball [Edgar, 1979,
p.564].

Note that (E∗,weak∗) is angelic :⇔ for B ⊆ E∗ bounded the weak∗-
closure is obtained by weak∗-convergent sequences in B, i.e. sequentially
for the weak∗-topology.

(4) `1(Γ) for |Γ| non-measurable. Furthermore the spaces C[0, 1], `∞, L∞[0, 1],
the space JL of [Johnson, Lindenstrauss, 1974] (a short exact sequence
c0 → JL → `2(Γ) exists), the space D[0, 1] or right-continuous functions
having left sided limits, by [Edgar, 1979, p.575] and [Edgar, 1977]. All
these spaces are not weakly Lindelöf.

(5) All closed subspaces of products of the spaces listed above.
(6) Not weakly realcompact are C[0, ω1] and `∞count[0, 1], the space of bounded

functions on [0, 1] with countable support, by [Edgar, 1979].

18.19. Lemma. [Corson, 1961]. If E is a weakly realcompact locally convex space,
then every linear countably evaluating Φ : E′ → R is given by a point-evaluation
evx on E′ with x ∈ E.

Proof. Since Φ : E′ → R is countably evaluating it is linear and F := {ZK : K ⊆
E′ countable} does not contain the empty set and generates a filter. We claim that
this filter is Cauchy with respect to the uniformity defined by the weakly continuous
real functions on E:
To see this, let f : E → R be weakly continuous. For each r ∈ R, let Lr := {x ∈
E : f(x) < r} and similarly Ur := {x ∈ E : f(x) > r}. By [Jarchow, 1981, 8.1.4]
we have that E is σ(E′∗, E′)-dense in E′

∗. Thus there are open disjoint subsets
L̃r and Ũr on E′

∗ having trace Lr and Ur on E (take the complements of the
closures of the complements). Let B ⊆ E′ be an algebraic basis of E′. Then the
map χ : E′∗ → RB, l 7→ (l(x′))x′∈B is a topological isomorphism for σ(E′∗, E′).
By [Bockstein, 1948] there exists a countable subset Kr ⊆ B ⊆ E′, such that the
images under prKr

: RB → RKr of the open sets L̃r and Ũr are disjoint. Let
K =

⋃
r∈Q Kr. For ε > 0 we have that ZK × ZK ⊆ {(x1, x2) : f(x1) = f(x2)} ⊆

{(x1, x2) : |f(x1)− f(x2)| < ε}, i.e. the filter generated by F is Cauchy. In fact, let
x1, x2 ∈ ZK . Then x′(x1) = ϕ(x′) = x′(x2) for all x′ ∈ K. Suppose f(x1) 6= f(x2).
Without loss of generality we find a r ∈ Q with f(x1) < r < f(x2), i.e. x1 ∈ Lr
and x2 ∈ Ur. But then x′(x1) 6= x′(x2) for all x′ ∈ Kr ⊆ K gives a contradiction.
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By realcompactness of (E, σ(E,E′)) the uniform structure generated by the weakly
continuous functions E → R is complete (see [Gillman, Jerison, 1960, p.226]) and
hence the filter F converges to a point a ∈ E. Thus a ∈ ZK for all countable
K ⊆ E′, and in particular Φ(x′) = x′(a) for all x′ ∈ E′. �

18.20. Proposition. [Biström, Jaramillo, Lindström, 1995, Thm.10]. Let E be a
Banach space, let A ⊇ Cωconv(E) be 1-evaluating, let f ∈ A, and let F be a countable
subset of Cωconv(E).

Then {f}∪F is evaluating. In particular, RCωconv(E) (see 18.7.2 ) is ω-evaluating
for every Banach space E.

Proof. Let (pn)n∈N be a sequence in P (E) and (kn)n∈N a sequence of odd natural
numbers with k1 = 1 and kn+1 > 2kn(1 + deg pn) for n ∈ N. Then |pkn

n (x)| ≤
‖pn‖kn · ‖x‖kn deg pn for every x ∈ E. Set

g :=
∞∑
n=1

1
λn
· 1
2n
· 1
n2kn deg pn

(pkn
n − ϕ(pkn

n ))2,

where (λn)n∈N is a sequence of reals with

λn > ‖pn‖2kn + 2|ϕ(pkn
n )| · ‖pn‖kn + (ϕ(p2kn

n ))2 for all n ∈ N.
Then

g(x) ≤
∞∑
n=1

1
2n
· 1
n2kn deg pn

(
‖x‖kn2 deg pn + ‖x‖kn deg pn + 1

)
≤

∞∑
n=1

1
2n
(
‖x
n
‖2kn deg pn + ‖x

n
‖kn deg pn + 1

)
<∞ for all x ∈ E

Since g is pointwise convergent, it is a function in Cωconv(E). By the technique used
in 18.15 we obtain that there exists x ∈ E with ϕ(f) = f(x) and ϕ(pkn

n ) = pkn
n (x)

for all n ∈ N. As for each n ∈ N the number kn is odd, it follows that ϕ(pn) = pn(x)
for all n ∈ N. Since each g ∈ F is a sum

∑
n∈N pn,g of homogeneous polynomials

pn,g ∈ P (E) of degree n for n ∈ N, there exists x ∈ E with ϕ(g) = g(x) for all
g ∈ F , and ϕ(pn,g) = pn,g(x) for all n ∈ N, whence ϕ(g) =

∑
n∈N ϕ(pn,g) for all

g ∈ F . Let a ∈ E with ϕ(f) = f(a) and ϕ(pn,g) = pn,g(a) for all n ∈ N and all
g ∈ F . Then

ϕ(g) =
∑
n∈N

ϕ(pn,g) =
∑
n∈N

pn,g(a) = g(a) for all g ∈ F . �

18.21. Result. [Adam, Biström, Kriegl, 1995, 2.1]. Given two infinite cardinals
m < n, let E := {x ∈ Rn : | suppx| ≤ m} Then for any algebra A ⊆ C(E),
containing the natural projections (prγ)γ∈n, there is a homomorphism ϕ on A that
is m-evaluating but not n-evaluating.

Evaluating Homomorphisms

18.22. Proposition. [Garrido, Gómez, Jaramillo, 1994, 1.7]. Let X be a closed
subspace of a product RΓ. Let A ⊆ C(X) be a subalgebra containing the projections
prγ |X : X ⊆ RΓ → R, and let ϕ ∈ HomA be 1̄-evaluating.

Then ϕ is A-evaluating.

Proof. Set aγ = ϕ(prγ |X). Then the point a = (aγ)γ∈Γ is an element in X.
Otherwise, since X is closed there exists a finite set J ⊆ Γ and ε > 0 such that
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no point y with |yγ − aγ | < ε for all γ ∈ J is contained in X. Set p(x) :=∑
γ∈J(prγ(x)− aγ)2 for x ∈ X. Then p ∈ A and ϕ(p) = 0. By assumption there is

an x ∈ X, such that |ϕ(p)− p(x)| < ε2, but then |prγ(x)− aγ | < ε for all γ ∈ J , a
contradiction. Thus a ∈ X and ϕ(g) = g(a) for all g in the algebra A0 generated
by all functions prγ |X .

By the assumption and by 18.2 there exists a point x̃ in the Stone-Čech compact-
ification βX such that ϕ(f) = f̃(x̃) for all f ∈ A, where f̃ is the unique continuous
extension βX → R∞ of f . We claim that x̃ = a. This holds if x̃ ∈ X since the prγ
separate points on X. So let x̃ ∈ βX \X. Then x̃ is the limit of an ultrafilter U
in X. Since U does not converge to a, there is a neighborhood of a in X, without
loss of generality of the form U = {x ∈ X : f(x) > 0} for some f ∈ A0. But then
the complement of U is in the ultrafilter U , thus f̃(x̃) ≤ 0. But this contradicts
f̃(x̃) = ϕ(f) = f(a) for all f ∈ A0. �

18.23. Corollary. [Kriegl, Michor, 1993, 1]. If A is finitely generated then each
1-evaluating ϕ ∈ HomA is evaluating.

Finitely generated can even be meant in the sense of C〈∞〉-algebra, see the proof.
This applies to the algebras RP , Cω, Cωconv and C∞ on Rn (or a closed submanifold
of Rn).

Proof. Let F ⊆ A be a finite subset which generates A in the sense that A ⊆
F 〈∞〉 := (〈F〉Alg)〈∞〉, compare 18.7.3 . By 18.7 again we have that ϕ restricted
to 〈F〉Alg extends to ϕ̃ ∈ HomF 〈∞〉 by ϕ(h ◦ (f1, . . . , fn)) = h(ϕ(f1), . . . , ϕ(fn))
for fi ∈ F , h ∈ C∞(U,R) where (f1, . . . , fn)(X) ⊆ U and U is open in Rn. For
f ∈ A there exists x ∈ X such that ϕ = evx on f and on F , which implies that
ϕ̃(f) = f(x) = ϕ(f). Finally note that if ϕ = evx on F then ϕ̃ = evx on F 〈∞〉,
thus ϕ = evx on A. �

18.24. Proposition. [Biström, Bjon, Lindström, 1992, Prop.4]. Let ϕ ∈ HomA
be ω-evaluating and X be Lindelöf (for some topology finer than XA).

Then ϕ is evaluating.

This applies to any ω-evaluating algebra on a separable Fréchet space, [Arias-de-
Reyna, 1988, 8].
It applies also to A = C∞lfcs(E) for any weakly Lindelöf space by 18.27 . In par-
ticular, for 1 < p ≤ ∞ the space `p(Γ) is weakly Lindelöf by 18.18.1 as weak∗-
dual of the normed space `q with q := 1/(1 − 1

p ) and the same holds for the
spaces (`1(Γ), σ(`1(Γ), c0(Γ))). Furthermore it is true for (`1(Γ), σ(`1(Γ), `∞(Γ)))
by [Edgar, 1979], and for (c0(Γ), σ(c0(Γ), `1(Γ))) by [Corson, 1961, p.5].

Proof. By the sequentially evaluating property of A the family (Zf )f∈A of closed
sets Zf = {x ∈ X : f(x) = ϕ(f)} has the countable intersection property. Since X
is Lindelöf, the intersection of all sets in this collection is non-empty. Thus ϕ is a
point evaluation with a point in this intersection. �

18.25. Proposition. Let A be an algebra which contains a countable point-separat-
ing subset.

Then every ω-evaluating ϕ in HomA is A is evaluating.

If a Banach space E has weak∗-separable dual and D ⊆ E′ is countable and weak∗-
dense, then D is point-separating, since for x 6= 0 there is some ` ∈ E′ with `(x) = 1
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and since {x′ ∈ E′ : x′(x) > 0} is open in the weak∗-topology also an ` ∈ D with
`(x) > 0. The converse is true as well, see [Biström, 1993, p.28].

Thus 18.25 applies to all Banach-spaces with weak∗-separable dual and the alge-
bras RP , Cω, RCωconv, C

∞.

Proof. Let {fn}n be a countable subset of A separating the points of X. Let
f ∈ A. Since A is ω-evaluating there exists a point xf ∈ X with f(xf ) = ϕ(f)
and fn(xf ) = ϕ(fn). Since the fn are point-separating this point xf is uniquely
determined and hence independent on f ∈ A. �

18.26. Proposition. [Arias-de-Reyna,1988, Thm.8] for Cm on separable Banach
spaces; [Gómez, Llavona, 1988, Thm.1] for ω-evaluating algebras on locally convex
spaces with w∗-separable dual; [Adam, 1993, 6.40]. Let E be a convenient vector
space, let A ⊇ P be an algebra containing a point separating bounded sequence of
homogeneous polynomials of fixed degree.

Then each 1-evaluating homomorphism is evaluating.

In particular this applies to c0 and `p for 1 ≤ p ≤ ∞. It also applies to a dual of a
separable Fréchet space, since then any dense countable subset of E can be made
equicontinuous on E′ by [Biström, 1993, 4.13].

Proof. Let {pn : n ∈ N} be a point-separating bounded sequence. By the polar-
ization formulas given in 7.13 this is equivalent to boundedness of the associated
multilinear symmetric mappings, hence {pn : n ∈ N} satisfies the assumptions of
18.15 and thus {pn : n ∈ N} is evaluated. Now the result follows as in 18.25 . �

18.27. Theorem. [Adam, Biström, Kriegl, 1995, 5.1]. A locally convex space E
is weakly realcompact if and only if E = Homω Pf (E)(= HomC∞lfcs(E)).

Proof. By 18.14 we have Homω Pf (E) = HomC∞lfcs(E).
(⇒) Let E be weakly realcompact. Since E is σ(E′∗, E′)-dense in E′∗ (see [Jarchow,
1981, 8.1.4]), it follows from 18.19 that any ϕ ∈ Homω Pf (E) = HomC∞lfcs(E) is
E′-evaluating and hence also evaluating on the algebra Pf (E) generated by E′.
(⇐) By 17.4 the space Homω(Pf (E)) is realcompact in the topology of pointwise
convergence. Since E = Homω Pf (E) and σ(E,E′) equals the topology of pointwise
convergence on Homω(Pf (E)), we have that (E, σ(E,E′)) is realcompact. �

18.28. Proposition. [Biström, Jaramillo, Lindström, 1995, Thm.13]. Let E be a
Banach space with the Dunford-Pettis property that does not contain a copy of `1.
Then Pf (E) is dense in P (E) for the topology of uniform convergence on bounded
sets.

A Banach space E is said to have the Dunford-Pettis property [Diestel, 1984, p.113]
if x∗n → 0 in σ(E′, E′′)) and xn → 0 in σ(E,E′) implies x∗n(xn) → 0. Well known
Banach spaces with the Dunford-Pettis property are L1(µ), C(K) for any compact
K, and `∞(Γ) for any Γ. Furthermore c0(Γ) and `1(Γ) belong to this class since
if E′ has the Dunford-Pettis property then also E has. According to [Aron, 1976,
p.215], the space `1 is not contained in C(K) if and only if K is dispersed, i.e.
K(α) = ∅ for some α, or equivalently whenever its closed subsets admit isolated
points.

Proof. According to [Carne, Cole, Gamelin, 1989, theorem 7.1], the restriction of
any p ∈ P (E) to a weakly compact set is weakly continuous if E has the Dunford-
Pettis property and, consequently, sequentially weakly continuous. By [Llavona,
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1986, theorems 4.4.7 and 4.5.9], such a polynomial p is weakly uniformly continuous
on bounded sets if E, in addition, does not contain a copy of `1. The assertion
therefore follows from [Llavona, 1986, theorem 4.3.7]. �

18.29. Theorem. [Garrido, Gómez, Jaramillo, 1994, 2.4] & [Adam, Biström,
Kriegl, 1995, 3.4]. Let E be `2n(Γ) for some n and some Γ of non-measurable
cardinality. Let P (E) ⊆ A ⊆ C(E).

Then every 1-evaluating homomorphism ϕ is evaluating.

Proof. For f ∈ A let Af be the algebra generated by f and all i-homogeneous
polynomials in P (E) with degree i ≤ 4n + 2. Take a sequence (pn) of continuous
polynomials with degree i ≤ 2n + 1. Then there is a sequence (tn) in R+ such
that {tnpn : n ∈ N} is bounded, hence ϕ is by 18.15 evaluating on it, i.e. ϕ is
ω-evaluating on Af .
Given z = (zγ) ∈ `∞(Γ) and x ∈ E, set

fz,j(x) := f(x)j +
∑
γ∈Γ

zγ prγ(x)
(2n+1)j ,

where j = 1, 2. Then fz,j ∈ Af and we can apply 18.17 . Thus there is a point
xf ∈ E with ϕ(f) = f(xf ) and ϕ(prγ)2n+1 = prγ(xf )2n+1 for all γ ∈ Γ. Hence
ϕ(prγ) = prγ(xf ), and since (prγ)γ∈Γ is point separating, xf is uniquely determined
and thus not depending on f and we are finished. �

18.30. Proposition. Let E = c0(Γ) with Γ non-measurable. If one of the following
conditions is satisfied, then ϕ is evaluating:

(1) [Biström, 1993, 2.22] & [Adam, Biström, Kriegl, 1995, 5.4]. C∞lfs(E) ⊆ A
and ϕ is ω-evaluating.

(2) [Garrido, Gómez, Jaramillo, 1994, 2.7]. P (E) ⊆ A, every f ∈ A depends
only on countably many coordinates and ϕ is 1-evaluating.

Proof. ( 1 ) Since ϕ is ω-evaluating, it follows that (ϕ(prγ))γ∈Γ ∈ c0(Γ), where
prγ : c0(Γ) → R are the natural coordinate projections (see the proof of 18.17 ).
Fix n and consider the function fn : c0(Γ)→ R defined by the locally finite product

fn(x) :=
∏
γ∈Γ

h
(
n · (prγ(x)− ϕ(prγ))

)
,

where h ∈ C∞(R, [0, 1]) is chosen such that h(t) = 1 for |t| ≤ 1/2 and h(t) = 0 for
|t| ≥ 1. Note that a locally finite product f :=

∏
i∈I fi (i.e. locally only finitely

many factors fi are unequal to 1) can be written as locally finite sum f =
∑
J gJ ,

where gi := fi− 1 and for finite subsets J ⊆ I let gJ :=
∏
j∈J gj ∈ A and the index

J runs through all finite subsets of I. Since I is at least countable, the set of these
indices has the same cardinality as I has.

By means of 18.17 ϕ(fn) =
∏
γ∈Γ h(0) = 1 for all n. Now let f ∈ A. Then there

exists a xf ∈ E with ϕ(f) = f(xf ) and 1 = ϕ(fn) = fn(xf ). Hence |n · (prγ(xf )−
ϕ(prγ))| ≤ 1 for all n, i.e. prγ(xf ) = ϕ(prγ) for all γ ∈ Γ. Since (prγ)γ∈Γ is point
separating, the point xf ∈ E is unique and thus does not depend on f .

( 2 ) By 18.15 or 18.16 the restriction of ϕ to the algebra generated by {prγ :
γ ∈ Γ} is ω-evaluating. Since c0(K) is weakly-realcompact by [Corson, 1961] for
locally compact metrizable K and hence in particular for discrete K, we have by
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18.19 that ϕ is evaluating on this algebra, i.e. there exists a = (aγ)γ∈Γ ∈ E with
aγ = prγ(a) = ϕ(prγ) for all γ ∈ Γ.

Every f ∈ A(E) depends only on countably many coordinates, i.e. there exists a
countable Γf ⊆ Γ and a function f̃ : c0(Γf )→ R with f̃ ◦ prΓf

= f . Let

Af := {g ∈ Rc0(Γf ) : g ◦ prΓf
∈ A}

and let ϕ̃ : Af → R be given by ϕ̃ = ϕ ◦ prΓf
. Since Γf is countable there is by

18.15 an xf ∈ c0(Γf ) with ϕ̃(f̃) = f̃(xf ) and aγ = ϕ(prγ) = ϕ̃(prγ) = prγ(xf ) =
xfγ for all γ ∈ Γf . Thus prΓf

(a) = x and

ϕ(f) = ϕ(f̃ ◦ prΓf
) = ϕ̃(f̃) = f̃(prΓf

(a)) = f(a). �

18.31. Proposition. [Garrido, Gómez, Jaramillo, 1994, 2.7]. Each f ∈ Cω(c0(Γ))
depends only on countably many coordinates.

Proof. Let f : c0(Γ) → R be real analytic. So there is a ball Bε(0) ⊆ c0(Γ) such
that f(x) =

∑∞
n=1 pn(x) for all x ∈ Br(0), where pn ∈ Lnsym(c0(Γ); R) for all n ∈ N.

By 18.28 the space Pf (c0(Γ)) is dense in P (c0(Γ)) for the topology of uniform
convergence on bounded sets, since c0(Γ) has the Dunford-Pettis property and does
not contain `1 as topological linear subspace. Thus we have that for any n, k ∈ N
there is some qnk ∈ Pf (c0(Γ)) with

sup{|pn(x)− qnk(x)| : x ∈ Bε(0)} < 1
k
.

Since each q ∈ Pf (c0(Γ)) is a polynomial form in elements of `1(Γ), there is a count-
able set Λnk ⊆ Γ such that qnk only depends on the coordinates with index in Λnk,
whence pn on Bε(0) only depends on coordinates with index in Λn :=

⋃
k∈N Λnk.

Set Λ :=
⋃
n∈N Λn and let ιΛ : c0(Λ)→ c0(Γ) denote the natural injection given by

(ιΛ(x))γ = xγ if γ ∈ Λ and (ιΛ(x))γ = 0 otherwise. By construction f = f ◦ ιΛ ◦prΛ
on Bε(0). Since both functions are real analytic and agree on Bε(0), they also agree
on c0(Γ). �

18.32. Example. [Garrido, Gómez, Jaramillo, 1994, 2.6]. For uncountable Γ the
space c0(Γ) \ {0} is not Cω-realcompact.

But for non-measurable Γ the whole space c0(Γ) is Cω-evaluating by 18.30 and
18.31 .

Proof. Let Ω := c0(Γ) \ {0}, let f : Ω → R be real analytic and consider any
sequence (um)m∈N in Ω with um → 0. For each m ∈ N there exists εm > 0 and
homogeneous Pnm in P (c0(Γ)) of degree n for all n, such that, for ‖h‖ < εm

f(um + h) = f(um) +
∞∑
n=1

Pnm(h).

As carried out in 18.31 , each Pnm only depends on coordinates with index in some
countable set Λnm ⊆ Γ. The set Λ := (

⋃
n,m∈N Λnm) ∪ (

⋃
m∈N suppum) is countable.

Let γ ∈ Γ \ Λ. Then, since Pnm(eγ) = 0 and um + teγ 6= 0 for all m,n ∈ N and
t ∈ R, we get f(um + teγ) = f(um) for all |t| < εm. Thus f(um + teγ) = f(um) for
every t ∈ R, since the function t 7→ f(um+ teγ) is real analytic on R. In particular,
f(um + eγ) = f(um) and, since um + eγ → eγ , there exists

ϕ(f) := lim
m∈N

f(um) = lim
m∈N

f(um + eγ) = f(eγ).
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Then ϕ is an algebra homomorphism, since a common γ can be found for finitely
many f . And since `1(Γ) ⊆ Cω(Ω) is point separating the homomorphism ϕ cannot
be an evaluation at some point of Ω. �

18.33. Example. [Biström, Jaramillo, Lindström, 1995, Prop.16]. The algebra
Cωconv(`

∞) is not 1-evaluating.

Proof. Suppose that Cωconv(`
∞) is 1-evaluating. By 20.3 the unit ball Bc0 of c0

is Cωconv-bounding in `∞. By 18.20 the algebra Cωconv(`
∞) is ω-evaluating and,

since (`∞)′ admits a point separating sequence, we have `∞ = Hom(Cωconv(`
∞)) by

18.25 . Hence by 20.2 , every Cωconv-bounding set in `∞ is relatively compact in
the initial topology induced by Cωconv(`

∞) and in particular relatively σ(`∞, (`∞)′)-
compact. Therefore, since the topologies σ(c0, `1) and σ(`∞, (`∞)′) coincide on c0,
we have that Bc0 is σ(c0, `1)-compact, which contradicts the non-reflexivity of c0
by by [Jarchow, 1981, 11.4.4]. �

19. Stability of Smoothly Realcompact Spaces

In this section stability of evaluation properties along certain mappings are studied
which furnish some large classes of smoothly realcompact spaces.

19.1. Proposition. Let AX and AY be algebras of functions on sets X and Y as
in 17.1 , let T : X → Y be injective with T ∗(AY ) ⊆ AX , and suppose that Y is
AY -realcompact. Then we have:

(1) [Jaramillo, 1992, 5]. If AX is 1-evaluating and AY is 1-isolating on Y ,
then X is AX-realcompact and AX is 1-isolating on X.

(2) [Biström, Lindström, 1993a, Thm.2]. If AX is ω-evaluating and AY is
ω-isolating on Y , then X is AX-realcompact and AX is ω-isolating on X.

We say that AX is 1-isolating on X if for every x ∈ X there is an f ∈ AX with
{x} = f−1(f(x)).

Similarly AX is called ω-isolating on X if for every x ∈ X there exists a sequence
(fn)n in AX such that {x} =

⋂
n f

−1
n (fn(x)). This was called A-countably sepa-

rated in [Biström, Lindström, 1993a].

Proof. There is a point y ∈ Y with ψ = evy. Let G ⊆ AY be such that
{y} =

⋂
g∈G g

−1(g(y)), where G is either a single function or countably many
functions. Let f ∈ AX be arbitrary. By assumption there exists xf ∈ X with
ϕ(f) = f(xf ) and ϕ(T ∗(g)) = T ∗(g)(xf ) for all g ∈ G. Since g(y) = ψ(g) =
ϕ(T ∗(g) = T ∗(g)(xf ) = g(T (xf )) for all g ∈ G, we obtain that y = T (xf ). Since T
is injective, we get that xf does not depend on f , and hence ϕ is evaluating. �

19.2. Lemma. If E is a convenient vector space which admits a bounded point-
separating sequence in the dual E′ then the algebra P (E) of polynomials is 1-
isolating on E.

Proof. Let {x′n : n ∈ N} ⊆ E′ be such a sequence and let a ∈ E be arbitrary. Then
the series x 7→

∑∞
n=1 2−nx′n(x−a)2 converges in P (E), since x′n( −a)2 is bounded

and
∑∞
n=1 2−n <∞. It gives a polynomial which vanishes exactly at a. �

19.3. Examples. [Garrido, Gómez, Jaramillo, 1994, 2.4 and 2.5.2]. Any super-
reflexive Banach space X of non-measurable cardinality is AX-realcompact, for each

Andreas Kriegl , Univ.Wien, June 4, 2008 117



19.6 19. Stability of Smoothly Realcompact Spaces

1-isolating and 1-evaluating algebra AX as in 17.1 which contains the algebra of

rational functions RP (X), see 18.7.2 .

A Banach-space E is called super-reflexive, if all Banach-spaces F which are finitely
representable in E (i.e. for any finite dimensional subspace F1 and ε > 0 there exists
a isomorphism T : F1

∼= E1 ⊆ E onto a subspace E1 of E with ‖T‖ · ‖T−1‖ ≤ 1+ε)
are reflexive (see [Enflo, Lindenstrauss, Pisier, 1975]). This is by [Enflo, 1972]
equivalent to the existence of an equivalent uniformly convex norm, i.e. inf{2 −
‖x+y‖ : ‖x‖ = ‖y‖ = 1, ‖x−y‖ ≥ ε} > 0 for all 0 < ε < 2. In [Enflo, Lindenstrauss,
Pisier, 1975] it is shown that superreflexivity has the 3-space property.

Proof. A super-reflexive Banach space injects continuously and linearly into `p(Γ)
for some p > 1 and some Γ by [John, Torunczyk, Zizler, 1981, p.133] and hence into
some `2n(Γ). We apply 19.1.1 to the situation X := E → `2n(Γ) =: Y , which is
possible because the algebra P (Y ) is 1-isolating on Y , since the 2n-th power of the
norm is a polynomial and can be used as isolating function. By 18.6 the algebra
RP (Y ) is 1-evaluating, and by 18.29 it is thus evaluating on Y . �

19.4. Lemma.

(1) Every 1-isolating algebra is ω-isolating.
(2) If X is A-regular and XA has first countable topology then A is ω-isolating.
(3) If for a convenient vector space the dual (E′, σ(E′, E)) is separable then

the algebra Pf (E) of finite type polynomials is ω-isolating on E.

Proof. ( 1 ) is trivial.

( 2 ) Let x ∈ X be given and consider a countable neighborhood base (Un)n of x.
Since X is assumed to be A-regular, there exist fn ∈ A with fn(y) = 0 for y 6∈ Un
and fn(x) = 1. Thus

⋂
n f

−1
n (fn(x)) = {x}.

( 3 ) Let {x′n : n ∈ N} be dense in (E′, σ(E′, E)) and 0 6= x ∈ E. Then there
is some x′ ∈ E′ with x′(x) = 1. By the denseness there is some n such that
|x′n(x)− x′(x)| < 1 and hence x′n(x) > 0. So {0} =

⋂
n(x

′
n)
−1(0). �

19.5. Example. For Γ of non-measurable cardinality, the Banach space E :=
c0(Γ) is C∞lfs(E)-paracompact by 16.15 , and hence any ω-evaluating algebra A ⊇
C∞lfs(E) is ω-isolating and evaluating.

Proof. The Banach space E is C∞lfs(E)-paracompact by 16.16 . By 17.6 the
space E is A-realcompact for any A ⊇ C∞lfs(E) and is ω-isolating by 19.4.2 . �

19.6. Example. Let K be a compact space of non-measurable cardinality with
K(ω0) = ∅.

Then the Banach space C(K) is C∞-paracompact by 16.20.1 , hence C∞(C(K))
is ω-isolating and C(K) is C∞-realcompact.

Proof. We use the exact sequence

c0(K \K ′) ∼= {f ∈ C(K) : F |K′ = 0} → C(K)→ C(K ′)

to obtain that C(K) is C∞-paracompact, see 16.19 . By 17.6 the space E is
C∞-realcompact, is ω-isolating by 19.4.2 . �
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19. Stability of Smoothly Realcompact Spaces 19.9

19.7. Example. [Biström, Lindström, 1993a, Corr.3bac]. The following locally
convex space are A-realcompact for each ω-evaluating algebra A ⊇ C∞lfs, if their
cardinality is non-measurable.

(1) Weakly compactly generated (WCG) Banach spaces, in particular separa-
ble Banach spaces and reflexive ones. More generally weakly compactly
determined (WCD) Banach spaces.

(2) C(K) for Valdivia-compact spaces K, i.e. compact subsets K ⊆ RΓ with
K ∩ {x ∈ RΓ : suppx countable} being dense in K.

(3) The dual of any realcompact Asplund Banach space.

Proof. All three classes of spaces inject continuous and linearly into some c0(Γ)
with non-measurable Γ by 53.21 . Now we apply 19.5 for the algebra C∞lfs on
c0(Γ) to see that the conditions of 19.1.2 for the range space Y = c0(Γ) are
satisfied. So 19.1.2 implies the result. �

19.8. Proposition. Let T : X → Y be a closed embedding between topological
spaces equipped with algebras of continuous functions such that T ∗(AY ) ⊆ AX . Let
ϕ ∈ HomAX such that ψ := ϕ ◦ T ∗ is AY -evaluating.

(1) [Kriegl, Michor, 1993, 8]. If ϕ is 1-evaluating on AX and AY has 1-small
zerosets on Y then ϕ is AX-evaluating, and AX has 1-small zerosets on
X.

(2) [Biström, Lindström, 1993b, p.178]. If ϕ is ω-evaluating on AX and AY
has ω-small zerosets on Y then ϕ is AX-evaluating, and AX has ω-small
zerosets on X.

Let m be a cardinal number (often 1 or ω). We say that there are m-small AY -
zerosets on Y or AY has m-small zerosets on Y if for every y ∈ Y and neighborhood
U of y there exists a subset G ⊆ AY with

⋂
g∈G g

−1(g(y)) ⊆ U and |G| ≤ m.
For m = 1 this was called large A-carriers in [Kriegl, Michor, 1993], and for m = ω
it was called weakly A-countably separated in [Biström, Lindström, 1993b, p.178].

Proof. Let y ∈ Y be a point with ψ = evy. Since Y admits m-small AY -
zerosets there exists for every neighborhood U of y a set G ⊆ AY of functions
with

⋂
g∈G g

−1(g(y)) ⊆ U with |G| ≤ m. Let now f ∈ AX be arbitrary. Since AX
is assumed to be m-evaluating, there exists a point xf,U such that f(xf,U ) = ϕ(f)
and g(T (xf,U )) = T ∗(g)(xf,U ) = ϕ(T ∗g) = ψ(g) = g(y) for all g ∈ G, hence
T (xf,U ) ∈ U . Thus the net T (xf,U ) converges to y for U → y and since T is
a closed embedding there exists a unique x with T (x) = y and x = limU xf,U .
Consequently f(x) = f(limU xf,U ) = limU f(xf,U ) = limU ϕ(f) = ϕ(f) since f is
continuous.

The additional assertions are obvious. �

19.9. Corollary. [Adam, Biström, Kriegl, 1995, 5.6]. Let E be a locally convex
space, A ⊇ E′, and let ϕ ∈ HomA be ω-evaluating. Assume ϕ is E′-evaluating
(this holds if (E, σ(E,E′)) is realcompact by 18.27 , e.g.). Let E admit ω-small
((E′)∞ ∩ A)lfs ∩ A-zerosets. Then ϕ is evaluating on A.

In particular, if E is realcompact in the weak topology and admits ω-small C∞lfs-
zerosets then E = Homω C

∞
lfs(E).
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19.11 19. Stability of Smoothly Realcompact Spaces

Proof. We may apply 19.8.2 toX = Y := E, AX = A andAY := ((E′)∞∩A)lfs∩
A . Note that ϕ is evaluating on AY by 18.17 and that C∞lfs(E) = ((E′)∞)lfs by
18.13 . �

19.10. Lemma. [Adam, Biström, Kriegl, 1995, 5.5].

(1) If a space is A-regular then it admits 1-small A-zerosets (and in turn also
ω-small A-zerosets).

(2) For any cardinality m, any m-isolating algebra A has m-small A-zerosets.
(3) If a topological space X is first countable and admits ω-small A-zerosets

then A is ω-isolating.
(4) Any Lindelöf locally convex space admits ω-small Pf -zerosets.

The converse to ( 1 ) is false for Pf (E), where E is an infinite dimensional separable
Banach space E, see [Adam, Biström, Kriegl, 1995, 5.5].
The converse to ( 2 ) is false for Pf (RΓ) with uncountable Γ, see [Adam, Biström,
Kriegl, 1995, 5.5].

Proof. ( 1 ) and ( 2 ) are obvious.

( 3 ) Let x ∈ X and U a countable neighborhood basis of x. For every U ∈ U there
is a countable set GU ⊆ A with

⋂
g∈GU

g−1(g(y)) ⊆ U . Then G :=
⋃
U∈U GU is

countable and ⋂
g∈G

g−1(g(y)) ⊆
⋂
U∈U

⋂
g∈GU

g−1(g(y)) ⊆
⋂
U∈U

U = {y}

( 4 ) Take a point x and an open set U with x ∈ U ⊆ E. For each y ∈ E \ U let
py ∈ E′ ⊆ Pf (E) with py(x) = 0 and py(y) = 1. Set Vy := {z ∈ E : py(z) > 0}. By
the Lindelöf property, there is a sequence (yn) in E \ U such that {U} ∪ {Vyn}n∈N
is a cover of E. Hence for each y ∈ E \ U there is some n ∈ N such that y ∈ Vyn ,
i.e. pyn(y) > 0 = pyn(x). �

19.11. Theorem. [Kriegl, Michor, 1993] & [Biström, Lindström, 1993b, Prop.4].
Let m be 1 or an infinite cardinal and let X be a closed subspace of

∏
i∈I Xi, let

A be an algebra of functions on X and let Ai be algebras on Xi, respectively, such
that pr∗i (Ai) ⊆ A for all i.

If each Xi admits m-small Ai-zerosets then X admits m-small A-zerosets.

If in addition ϕ ∈ HomA is m-evaluating on A and ϕi := ϕ ◦ pr∗i ∈ HomAi is
evaluating on Ai for all i, then ϕ is evaluating A on X.

Proof. We consider Y :=
∏
iXi and the algebra AY generated by

⋃
i{fi ◦ pri :

fi ∈ AXi}, where prj :
∏
iXi → Xj denotes the canonical projection.

Now we prove the first statement for AY . Let x ∈ Y and U a neighborhood of
x = (xi)i in Y . Thus there exists a neighborhood in

∏
iXi contained in U , which

we may assume to be of the form
∏
i Ui with Ui = Xi for all but finitely many

i. Let F be the finite set of those exceptional i. For each i ∈ F we choose a set
Gi ⊆ A with

⋂
g∈Gi

g−1(g(xi)) ⊆ Ui. Without loss of generality we may assume
g(xi) = 0 and g ≥ 0 (replace g by x 7→ (g(x) − g(xi))2). For any g ∈

∏
i∈F Gi we

define g̃ ∈ AY by g̃ :=
∑
i∈F gi ◦ pri ∈ AY . Then g̃(x) =

∑
i∈F gi(x) = 0⋂

g∈
Q

i∈F Gi

g̃−1(0) ⊆ U,
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since for z /∈ U we have zi /∈ Ui for at least one i ∈ F . Note that |
∏
i∈F Gi| ≤ m,

since m is either 1 or infinite.

That AY is evaluating follows trivially since ϕi := ϕ ◦ pri ∗ : AXi → AX → R is an
algebra homomorphism and AXi is evaluating, so there exists a point ai ∈ Xi such
that ϕ(fi ◦ pri) = (ϕ ◦ pri ∗)(fi) = fi(ai) for all fi ∈ AXi . Let a := (ai)i. Then
obviously every f ∈ AY is evaluated at a.

If now X is a closed subspace of the product Y :=
∏
iXi then we can apply 19.8.1

and 19.8.2 . �

19.12. Theorem 19.11 is usually applied as follows. Let U be a zero-neighborhood
basis of a locally convex space E. Then E embeds into

∏
U∈U Ê(U), where Ê(U)

denotes the completion of the Banach space E(U) := E/ ker pU , where pU denotes
the Minkowski functional of U . If E is complete, then this is a closed embedding,
and in order to apply 19.11 we have to find an appropriate basis U and for each
U ∈ U an algebraAU on Ê(U), which pulls back toA along the canonical projections
πU : E → E(U) ⊆ Ê(U), such that the Banach space Ê(U) is AU -realcompact and
has m-small AU -zerosets.

Examples.

(1) [Kriegl, Michor, 1993]. A complete, trans-separable (i.e. contained in prod-
uct of separable normed spaces) locally convex space is A-realcompact for
every 1-evaluating algebra A ⊇

⋃
U π

∗
U (Pf ).

Note that for products of separable Banach spaces one has C∞ = C∞,
see [Adam, 1993, 9.18] & [Kriegl, Michor, 1993].

(2) [Biström, 1993, 4.5]. A complete, Hilbertizable (i.e. there exists a basis
of Hilbert seminorms, in particular nuclear spaces) locally convex space is
A-realcompact for every 1-evaluating A ⊇

⋃
U π

∗
U (P ).

(3) [Biström, Lindström, 1993b, Cor.3]. Every complete non-measurable WCG
locally convex space is C∞-realcompact.

(4) [Biström, Lindström, 1993b, Cor.5]. Any reflexive non-measurable Fréchet
space is C∞ = C∞-realcompact.

(5) [Biström, Lindström, 1993b, Cor.4]. Any complete non-measurable infra-
Schwarz space is C∞-realcompact.

(6) [Biström, 1993, 4.16-4.18]. Every countable coproduct of locally convex
spaces, and every countable `p-sum or c0-sum of Banach-spaces injects
continuously into the corresponding product. Thus from A being ω-isolating
and evaluating on each factor, we deduce the same for the total space by
19.1.2 if A is ω-evaluating on it.

A locally convex space is usually called WCG if there exists a sequence of absolutely
convex, weakly-compact subsets, whose union is dense.

Proof. ( 1 ) We have for Ê(U) that it is A-realcompact for every 1-evaluating
A ⊇ P by 18.26 and Pf is 1-isolating by 19.2 and hence has 1-small zero sets by
19.10.2 .

For a product E of metrizable spaces the two algebras C∞(E) and C∞(E) coin-
cide: For every countable subset A of the index set, the corresponding product is
separable and metrizable, hence C∞-realcompact. Thus there exists a point xA
in this countable product such that ϕ(f) = f(xA) for all f which factor over the
projection to that countable subproduct. Since for A1 ⊆ A2 the projection of xA2
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to the product over A1 is just xA1 (use the coordinate projections for f), there is
a point x in the product, whose projection to the subproduct with index set A is
just xA . Every Mackey continuous function, and in particular every C∞-function,
depends only on countable many coordinates, thus factors over the projection to
some subproduct with countable index set A, hence ϕ(f) = f(xA) = f(x). This
can be shown by the same proof as for a product of factors R in 4.27 , since the
result of [Mazur, 1952] is valid for a product of separable metrizable spaces.

( 2 ) By 19.3 we have that `2(Γ) is A-realcompact for every 1-evaluating A ⊇ P
and P is 1-isolating.

( 3 ) For every U the Banach space Ê(U) is then WCG, hence as in 19.7.1 there is
a SPRI, and by 53.20 a continuous linear injection into some c0(Γ). By 19.5 any
ω-evaluating algebra A on c0(Γ) which contains C∞lfs is evaluating and ω-isolating.

By 19.1.2 this is true for such stable algebras on Ê(U), and hence by 19.11 for
E.

( 4 ) Here E(U) embeds into C(K), where K := (Uo, σ(E′, E′′)) is Talagrand com-
pact [Cascales, Orihuela, 1987, theorem 12] and hence Corson compact [Negrepon-
tis, 1984, 6.23]. Thus by 19.7.2 we have PRI. Now we proceed as in ( 3 ).

( 5 ) Any complete infra-Schwarz space is a closed subspace of a product of reflexive
and hence WCG Banach spaces, since weakly compact mappings factor over such
spaces by [Jarchow, 1981, p.374]. Hence we may proceed as in ( 3 ). �

Short Exact Sequences

In the following we will consider exact sequences of locally convex spaces

0→ H −ι→ E −π→ F,

i.e. ι : H → E is a embedding of a closed subspace and π has ι(H) as kernel. Let
algebras AH , AE and AF on H, E and F be given, which satisfy π∗(AF ) ⊆ AE and
ι∗(AE) ⊇ AH , the latter one telling us that AH functions on H can be extended
to AE functions on E. This is a very strong requirement, since by 21.11 not even
polynomials of degree 2 on a closed subspace of a Banach space can be extended
to a smooth function. The only algebra, where we have the extension property in
general is that of finite type polynomials. So we will apply the following theorem
in 19.14 and 19.15 to situations, where AH is of quite different type then AE
and AF .

19.13. Theorem. [Adam, Biström, Kriegl, 1995, 6.1]. Let 0 → H −ι→ E −π→ F
be an exact sequence of locally convex spaces equipped with algebras satisfying

(i) π∗(AF ) ⊆ AE and ι∗(AE) ⊇ AH .
(ii) AF is ω-isolating on F .
(iii) AE is translation invariant.

Then we have:

(1) If AH is ω-isolating on H then AE is ω-isolating on E.
(2) If H has ω-small AH-zerosets then E has ω-small AE-zerosets.

If in addition

(iv) Homω AF = F and Homω AH = H,

then we have:
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(3) If ϕ ∈ HomAE is ω-evaluating on AE then ϕ is evaluating on A0 := {f ∈
AE : ι∗(f) ∈ AH}.

(4) If ϕ ∈ HomAE is ω-evaluating on AE and if AH is ω-isolating on H then
ϕ is evaluating on AE; i.e., E = Homω AE.

Proof. Let x ∈ E. Since AE is translation invariant, we may assume x = 0. By
(ii) there is a sequence (gn) in AF which isolates π(x) in F , i.e. gn(π(x)) = 0 and⋂
g−1
n (0) = {π(x)}.

( 1 ) By the special assumption in 19.13.1 there exist countable many hn ∈ AH
which isolate 0 in H. According to (i) π∗(gn) ∈ AE and there exist h̃n ∈ AE with
h̃n ◦ ι = hn. By (iii) we have that fn := h̃n( −x) ∈ AE . Now the functions
π∗(gn) together with the sequence (fn) isolate x. Indeed, if x′ ∈ E is such that
(gn ◦ π)(x′) = (gn ◦ π)(x) for all n, then π(x′) = π(x), i.e. x′ − x ∈ H. From
fn(x′) = fn(x) we conclude that hn(x′−x) = h̃n(x′−x) = fn(x′) = fn(x) = hn(0),
and hence x′ = x.

( 2 ) Let U be a 0-neighborhood in E. By the special assumption there are count-
ably many hn ∈ AH with 0 ∈

⋂
n Z(hn) ⊆ U ∩H. As before consider the sequence

of functions fn := h̃n( −x). The common kernel of the functions in the sequences
(fn) and (π∗(gn)) contains x and is contained in π−1(π(x)) = x+H and hence in
(x+ U) ∩ (x+H) ⊆ x+ U .

Now the remaining two statements:
Let ϕ ∈ Homω AE . Then ϕ ◦ π∗ : AF → R is a ω-evaluating homomorphism, and
hence by (iv) given by the evaluation at a point y ∈ F . By (ii) there is a sequence
(gn) in AF which isolates y. Since ϕ is ω-evaluating there exists a point x ∈ E,
such that gn(y) = ϕ(π∗(gn)) = π∗(gn)(x) = gn(π(x)) for all n. Hence y = π(x).
Since ϕ obviously evaluates each countable set in AE at a point in π−1(y) ∼= K, ϕ
induces a ω-evaluating homomorphism ϕH : AH → R by ϕH(ι∗(f)) := ϕ(f( −x))
for f ∈ A0. In fact let f , f̄ ∈ A0 with ι∗(f) = ι∗(f̄). Then ϕ evaluates f( −x),
f̄( −x) and all π∗(gn) at some common point x̄. So π(x̄) = y = π(x), hence
x̄− x ∈ H and f(x̄− x) = f̄(x̄− x).
By (iv), ϕH is given by the evaluation at a point z ∈ H.

( 3 ) Here we have that AH = ι∗(A0), and hence

ϕ(f) = ϕH(ι∗(f( +x)) = ι∗(f( +x)(z)) = f(ι(z) + x)

for all f ∈ A0. So ϕ is evaluating on A0.

( 4 ) We show that ϕ = δι(z)+x on AE . Indeed, by the special assumption there
is a sequence (hn) in AH which isolates z. By (i) and (iii), we may find fn ∈ AE
such that hn = ι∗(fn( +x)). The sequences (π∗(gn)) and (fn) isolate z + x. So
let f ∈ AE be arbitrary. Then there exists a point z′ ∈ E, such that ϕ = δz′ for all
these functions, hence z′ = ι(z) + x. �

19.14. Corollary. [Adam, Biström, Kriegl, 1995, 6.3]. Let 0→ H−ι→ E−π→ F be
a left exact sequence of locally convex spaces and let AF and AE ⊇ E′ be algebras on
F and E, respectively, that satisfy all the assumptions (i-iv) of 19.13 not involving
AH . Let furthermore ϕ : AE → R be ω-evaluating and ϕ ◦ π∗ be evaluating on AF .
Then we have

(1) The homomorphism ϕ is AE-evaluating if (H,σ(H,H ′)) is realcompact
and admits ω-small Pf -zerosets.

(2) The homomorphism ϕ is A0-evaluating if (H,σ(H, ι∗(A0))) is Lindelöf
and A0 ⊆ AE is some subalgebra.

Andreas Kriegl , Univ.Wien, June 4, 2008 123



19.15 Short Exact Sequences

(3) The homomorphism ϕ is E′-evaluating if (H,σ(H,H ′)) is realcompact.

Proof. We will apply 19.13.3 . For this we choose appropriate subalgebras A0 ⊆
AE and put AH := ι∗(A0). Then (i-iii) of 19.13 is satisfied. Remains to show for
(iv) that Homω(AH) = H in the three cases:

( 1 ) Let A0 := AE . Then we have Homω(AH) = H by 19.9 using 18.27 .

( 2 ) If HAH
= (H,σ(H,AH)) is Lindelöf, then H = Homω(AH), by 18.24 .

( 3 ) Let A0 := Pf (E). Then AH := ι∗(A0) = Pf (H) by Hahn-Banach. If H is
σ(H,H ′)-realcompact, then H = Homω(AH), by 18.27 . �

19.15. Theorem. [Adam, Biström, Kriegl, 1995, 6.4 and 6.5]. Let c0(Γ) −ι→
E−π→ F be a short exact sequence of locally convex spaces where AE is translation
invariant and contains (π∗(AF ) ∪ E′)∞lfs, and where F is AF -regular.

Then ι∗(AE) contains the algebra Ac0(Γ) which is generated by all functions x 7→∏
γ∈Γ η(xγ), where η ∈ C∞(R,R) is 1 near 0.

If AF is ω-isolating on F then AE is ω-isolating on E. If in addition F = Homω AF
and Γ is non-measurable then E = Homω AE.

Proof. Let us show that the function x 7→
∏
γ∈Γ η(xγ) can be extended to a

function in AE .
Remark that this product is locally finite, since x ∈ c0(Γ) and η = 1 locally around
0. Let p be an extension of the supremum norm ‖ ‖∞ on c0(Γ) to a continuous
seminorm on E, and let p̃ be the corresponding quotient seminorm on F defined by
p̃(y) := inf{p(x) : π(x) = y}. Let furthermore `γ be a continuous linear extensions
of prγ : c0(Γ) → R which satisfy |`γ(x)| ≤ p(x) for all x ∈ E. Finally let ε > 0 be
such that η(t) = 1 for |t| ≤ ε.
We show first, that for the open subset {x ∈ E : p̃(π(x)) < ε} the product∏
γ∈Γ η(`γ(x)) is locally finite as well. So let p̃(π(x)) < ε and 3 δ := ε − p̃(π(x)).

We claim that
Γx := {γ : |`γ(x)| ≥ p̃(π(x)) + 2δ}

is finite. In fact by definition of the quotient seminorm p̃(π(x)) := inf{p(x + y) :
y ∈ c0(Γ)} there is a y ∈ c0(Γ) such that p(x + y) ≤ p̃(π(x)) + δ. Since y ∈ c0(Γ)
the set Γ0 := {γ : |yγ | ≥ δ} is finite. For all γ /∈ Γ0 we have

|`γ(x)| ≤ |`γ(x+ y)|+ |`γ(y)| ≤ p(x+ y) + |yγ | < p̃(π(x)) + 2 δ,

hence Γx ⊆ Γ0 is finite.
Now take z ∈ E with p(z − x) ≤ δ. Then for γ /∈ Γx we have

|`γ(z)| ≤ |`γ(x)|+ |`γ(z − x)| < p̃(π(x)) + 2 δ + p(z − x) ≤ p̃(π(x)) + 3 δ = ε,

hence η(`γ(z)) = 1 and the product is a locally finite.

In order to obtain the required extension to all of E, we choose 0 < ε′ < ε and a
function g ∈ AF with carrier contained inside {z : p̃(z) ≤ ε′} and with g(0) = 1.
Then f : E → R defined by

f(x) := g(π(x))
∏
γ∈Γ

η(`γ(x))

is an extension belonging to 〈π∗(AF ) ∪ (E′)∞lfs〉Alg ⊆ (π∗(AF ) ∪ E′)∞lfs ⊆ AE .

Let us now show that we can find such an extension with arbitrary small carrier,
and hence that E is AE-regular.
So let an arbitrary seminorm p on E be given. Then there exists a δ > 0 such
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that δ p|c0(Γ) ≤ ‖ ‖∞. Let q be an extension of ‖ ‖∞ to a continuous seminorm
on E. By replacing p with max{q, δ p} we may assume that p|c0(Γ) = ‖ ‖∞ and
the unit ball of the original p contains the δ-ball of the new p. Let again p̃ be the
corresponding quotient norm on F .

Then the construction above with some 0 < ε′ < ε < ε′′ ≤ δ/3, for η ∈ C∞(R,R)
with η(t) = 1 for |t| ≤ ε and η(t) = 0 for |t| > ε′′ > ε and g ∈ C∞(F,R) with
carr(g) ⊆ {y ∈ F : p̃(y) ≤ ε′ < ε} gives us a function f ∈ AE and it remains
to show that the carrier of f is contained in the δ-ball of p. So let x ∈ E be
such that f(x) 6= 0. Then on one hand g(π(x)) 6= 0 and hence p̃(π(x)) ≤ ε′ and
on the other hand η(`γ(x)) 6= 0 for all γ ∈ Γ and hence |`γ(x)| ≤ ε′′. We have
a unique continuous linear mapping T : `1(Γ) → E′, which maps prγ to `γ , and
satisfies |T (y∗)(z)| ≤ ‖y∗‖ p(z) for all z ∈ E since the unit ball of `1(Γ) is the closed
absolutely convex hull of {prγ : γ ∈ Γ}. By Hahn-Banach there is some ` ∈ E′

be such that |`(z)| ≤ p(z) for all z and `(x) = p(x). Hence ι∗(`) = `|c0(Γ) is in
the unit ball of `1(Γ), and hence |T (ι∗(`))(x)| ≤ ε′′, since |`γ(x)| ≤ ε′′. Moreover
|T (ι∗(`))(z)| ≤ p(z). Then `0 := (T ◦ ι∗ − 1)(`) = T (`|c0(Γ)) − ` ∈ E′ vanishes
on c0(Γ) and |`0(z)| ≤ 2 p(z) for all z. Hence |`0(x)| ≤ 2 p̃(π(x)) ≤ 2 ε′. So
p(x) = |`(x)| ≤ |T (ι∗(`))(x)|+ |`0(x)| ≤ ε′′ + 2 ε′ < δ.

Because of the extension property Ac0(Γ) ⊆ ι∗(AE) and since c0(Γ) is Ac0(Γ)-regular
and hence by 19.10.1 ω-isolated, we can apply 19.13.1 to obtain the statement
on ω-isolatedness. The evaluating property now follows from 19.13.4 using that
Homω Ac0(Γ) = c0(Γ) by 18.30.1 . �

19.16. The class c0-ext. We shall show in 19.18 that in the short exact
sequence of 19.15 we can in fact replace c0(Γ) by spaces from a huge class which
we now define.

Definition. Let c0-ext be the class of spaces H, for which there are short exact
sequences c0(Γj)→ Hj → Hj+1 for j = 1, ..., n, with |Γj | non-measurable, Hn+1 =
{0} and T : H → H1 an operator whose kernel is weakly realcompact and has
ω-small Pf -zerosets (By 18.18.1 and 19.2 these two conditions are satisfied, if it
has for example a weak∗-separable dual).

Of course all spaces which admit a continuous linear injection into some c0(Γ) with
non-measurable Γ belong to c0-ext. Besides these there are other natural spaces
in c0-ext. For example let K be a compact space with |K| non-measurable and
K(ω0) = ∅, where ω0 is the first infinite ordinal and K(ω0) the corresponding ω0-th
derived set. Then the Banach space C(K) belongs to c0-ext, but is in general not
even injectable into some c0(Γ), see [Godefroy, Pelant, et. al., 1988]. In fact, from
K(ω) = ∅ and the compactness of K, we conclude that K(n) = ∅ for some integer
n. We have the short exact sequence

c0(K \K(1)) ∼= E −ι→ C(K)−π→ C(K)/E ∼= C(K(1)),

where E := {f ∈ C(K) : f |K(1) = 0}. By using 19.15 inductively the space
C(K) is C∞lfs-regular. Also it is again an example of a Banach space E with
E = HomC∞(E) that we are able to obtain without using the quite complicated
result 16.20.1 that it admits C∞-partition of unity.

19.17. Lemma. Pushout. [Adam, Biström, Kriegl, 1995, 6.6]. Let a closed
subspace ι : H ↪→ E and a continuous linear mapping T : H → H1 of locally convex
spaces be given.
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Then the pushout of ι and T is the locally convex space E1 := H1 × E/{(Tz,−z) :
z ∈ H}. The natural mapping ι1 : H → E1, given by u 7→ [(u, 0)] is a closed
embedding and the natural mapping T1 : E → E1 given by T1(x) := [(0, x)] is
continuous and linear. Moreover, if T is a quotient mapping then so is T1.

Given a short exact sequence H −ι→ E −π→ F of locally convex vector spaces and
a continuous linear map T : H → H1 then we obtain by this construction a short
exact sequence H1 −ι1→ E1 −π1→ F and a (unique) extension T1 : E → E1 of T ,
with kerT = kerT1, such that the following diagram commutes

kerT� _

��

kerT1� _

��

// // 0� _

��
H

� � ι //

T

��

E

T1

��

π // // F

H1
� � ι1 // E1

π1 // // F

Proof. Since H is closed in E the space E1 is a Hausdorff locally convex space.
The mappings ι1 and T1 are clearly continuous and linear. And ι1 is injective, since
(u, 0) ∈ {(T (z),−z) : z ∈ H} implies 0 = z and u = T (z) = T (0) = 0. In order to
see that ι1 is a topological embedding let U be an absolutely convex 0-neighborhood
in H1. Since ι is a topological embedding there is a 0-neighborhood W in E with
W ∩H = T−1(U). Now consider the image of U ×W ⊆ H1×E under the quotient
map H1 ×E → E1. This is a 0-neighborhood in E1 and its inverse image under ι1
is contained in 2U . Indeed, if [(u, 0)] = [(x, z)] with u ∈ H1, x ∈ U and z ∈ W ,
then x− u = T (z) and z ∈ H ∩W , by which u = x− T (z) ∈ U − U = 2U . Hence
ι1 embeds H1 topologically into E1.

We have the universal property of a pushout, since for any two continuous linear
mappings α : E → G and β : H1 → G with β ◦ T = α ◦ ι, there exists a unique
linear mapping γ : E1 → G, given by [(u, x)] 7→ α(x) − β(u) with γ ◦ T1 = α and
γ ◦ ι1 = β. Since H1 ⊕ E → E1 is a quotient mapping γ is continuous as well.

Let now π : E → F be a continuous linear mapping with kernel H, e.g. π the
natural quotient mapping E → F := E/H. Then by the universal property we get
a unique continuous linear π1 : E1 → F with π1 ◦ T1 = π and π1 ◦ ι1 = 0. We have
ι1(H1) = ker(π1), since 0 = π1[(u, z)] = π(z) if and only if z ∈ H, i.e. if and only if
[(u, z)] = [(u+ Tz, 0)] lies in the image of ι1. If π is a quotient map then clearly so
is π1. In particular the image of ι1 is closed.

Since T (x) = 0 if and only if [(0, x)] = [(0, 0)], we have that kerT = kerT1. Assume
now, in addition, that T is a quotient map. Given any [(y, x)] ∈ E1, there is then
some z ∈ H with T (z) = y. Thus T1(x + z) = [(0, x + z)] = [(T (z), x)] = [(y, x)]
and T1 is onto. Remains to prove that T1 is final, which follows by categorical
reasoning. In fact let g : E1 → G be a mapping with g ◦ T1 continuous and linear.
Then g ◦ ι1 : H1 → G is a mapping with (g ◦ ι1)◦T = g ◦T1 ◦ ι continuous and linear
and since T is final also g ◦ ι1 is continuous. Thus g composed with the quotient
mapping H1 ⊕ E → E1 is continuous and linear and thus also g itself. �

19.18. Theorem. [Adam, Biström, Kriegl, 1995, 6.7]. Let H −ι→ E −π→ F be a
short exact sequence of locally convex spaces, let F be C∞lfs-regular and let H be of
class c0-ext, see 19.16 .

If C∞lfs(F ) is ω-isolating on F then C∞lfs(E) is ω-isolating on E. If, in addition,
F = Homω C

∞
lfs(F ) then E = Homω C

∞
lfs(E).
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Proof. Since H is of class c0-ext there are short exact sequences c0(Γj) → Hj →
Hj+1 for j = 1, ..., n such that |Γj | is non-measurable, Hn+1 = {0}, and T : H → H1

is an operator whose kernel is weakly realcompact and has ω-small Pf -zerosets. We
proceed by induction on the length of the resolution

H0 := H → H1 � · · ·� Hn+1 = {0}.

According to 19.17 we have for every continuous linear T : Hj → Hj+1 the
following diagram

kerT� _

��

kerT1� _

��

// // 0� _

��
Hj

� � ιj //

T

��

Ej

T1

��

pj // // F

Hj+1
� � ιj+1 // Ej+1

πj+1 // // F

For j > 0 we have that kerT = c0(Γ) for some none-measurable Γ, and T and T1

are quotient mappings. So let as assume that we have already shown for the bottom
row, that Ej+1 has the required properties and is in addition C∞lfs-regular. Then by
the exactness of the middle column we get the same properties for Ej using 19.15 .
If j = 0, then the kernel is by assumption weakly paracompact and admits ω-small
Pf -zerosets. Thus applying 19.14.1 and 19.13.1 to the left exact middle column
we get the required properties for E = E0. �

A Class of C∞lfs-Realcompact Locally Convex Spaces

19.19. Definition. Following [Adam, Biström, Kriegl, 1995] let RZ denote the
class of all locally convex spaces E which admit ω-small C∞lfs-zerosets and have the
property that E = Homω A for each translation invariant algebra A with C∞lfs(E) ⊆
A ⊆ C(E). In particular this applies to the algebras C, C∞ and C∞ ∩ C.

Note that for every continuous linear T : E → F we have T ∗ : C∞lfs(F )→ C∞lfs(E).
In fact we have T ∗(F ′) ⊆ E′, hence T ∗ : (F ′)∞ → (E′)∞ and T ∗(

∑
i fi) is again

locally finite, if T is continuous and
∑
i fi is it.

A locally convex space E with ω-small C∞lfs-zerosets belongs to RZ if and only if
E = Homω C

∞
lfs(E) = HomC∞lfs(E). In fact by 18.11 we have Homω C

∞
lfs(E) =

HomC∞lfs(E). Now let A ⊇ C∞lfs(E) and let ϕ ∈ Homω A be countably evaluating.
Then by 19.8.2 applied to X = Y = E, AX := A and AY := C∞lfs(E) the
homomorphism ϕ is evaluating on A.

Note that by 19.10.3 for metrizable E the condition of having ω-small C∞lfs-zerosets
can be replaced by C∞lfs being ω-isolating. Moreover, by 19.10.1 it is enough to
assume that E is C∞lfs-regular in order that E belongs to RZ.

19.20. Proposition. The class RZ is closed under formation of arbitrary products
and closed subspaces.

Proof. This is a direct corollary of 19.11 . �

19.21. Proposition. [Adam, Biström, Kriegl, 1995]. Every locally convex space
that admits a linear continuous injection into a metrizable space of class RZ is
itself of class RZ.
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Proof. Use 19.1.2 and 19.10.3 . �

19.22. Corollary. [Adam, Biström, Kriegl, 1995]. The countable locally convex
direct sum of a sequence of metrizable spaces in RZ belongs to RZ.

The class of Banach spaces in RZ is closed under forming countable c0-sums and
`p-sums with 1 ≤ p ≤ ∞.

Proof. By 19.20 the class RZ is stable under (countable) products. And 19.21
applies since a countable product of metrizable is again metrizable. �

19.23. Corollary. [Adam, Biström, Kriegl, 1995]. Among the complete locally
convex spaces the following belong to the class RZ:

(1) All trans-separable (i.e. subspaces of products of separable Banach spaces)
locally convex spaces;

(2) All Hilbertizable locally convex spaces;
(3) All non-measurable WCG locally convex spaces;
(4) All non-measurable reflexive Fréchet spaces;
(5) All non-measurable infra-Schwarz locally convex spaces.

Proof. By 19.20 , 19.5 , and 19.21 we see that every complete locally convex
space E belongs to RZ, if it admits a zero-neighborhood basis U such that each
Banach space Ê(U) for U ∈ U injects into some c0(ΓU ) with non-measurable ΓU .
Apply this to the examples 19.12.1 - 19.12.5 . �

19.24. Proposition. [Adam, Biström, Kriegl, 1995]. Let 0→ H ↪→ E → F be an
exact sequence. Let F be in RZ and let C∞lfs be ω-isolating on F .

Then E is in RZ under any of the following assumptions.

(1) The sequence 0 → H → E → F → 0 is exact, H is in c0-ext and F is
C∞lfs-regular; Here it follows also that C∞lfs is ω-isolating on E.

(2) The sequence 0 → H → E → F → 0 is exact, H = c0(Γ) for some
none-measurable Γ and F is C∞lfs-regular; Here it follows also that E is
C∞lfs-regular.

(3) The weak topology on H is realcompact and H admits ω-small Pf -zerosets.
4 The class c0-ext is a subclass of RZ.

Proof. ( 1 ) This is 19.18 .

( 2 ) follows directly from 19.15 applied to the algebra A = C∞lfs.

( 3 ) By 19.13.2 the space E has ω-small C∞lfs-zerosets. By 19.14.1 we have
assumption (iv) in 19.13 , and then by 19.13.4 we have E = Homω(C∞lfs(E)).
Thus E belongs to RZ.

( 4 ) Since every space E in c0-ext is obtained by applying finitely many construc-
tions as in ( 2 ) and a last one as in ( 3 ) we get it for E. �

19.25. Remark. [Adam, Biström, Kriegl, 1995]. The class RZ is ‘quite big’. By
19.24.4 we have that c0-ext is a subclass of RZ. Also the following spaces are in
RZ:

The space C(K) where K is the one-point compactification of the topological
disjoint union of a sequence of compact spaces Kn with K

(ω)
n = ∅. In fact we
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have a continuous injection given by the countable product of the restriction maps
C(K) → C(Kn). Hence the result follows from 19.24.4 using also the remark in
19.16 for the C(Kn), followed by 19.20 for the product and by 19.21 for C(K).

Remark that in such a situation we might have K(ω) = {∞} 6= ∅.
The space D[0, 1] of all functions f : [0, 1]→ R which are right continuous and have
left limits and endowed with the sup norm is in RZ. Indeed it contains C[0, 1] as a
subspace and D[0, 1]/C[0, 1] ∼= c0[0, 1] according to [Corson, 1961]. By 18.27 we
have that C[0, 1] is weakly Lindelöf and Pf is ω-isolating, since {evt : t ∈ Q∩ [0, 1]}
are point-separating. Now we use 19.24.3 .

Open Problem. Is `∞(Γ) in RZ for |Γ| non-measurable, i.e. is C∞lfs(`
∞(Γ)) ω-

isolating on `∞(Γ) and is Homω C
∞
lfs(`

∞(Γ)) = `∞(Γ)?

If this is true, then every complete locally convex space E of non-measurable cardi-
nality would be in RZ, since every Banach space E is a closed subspace of `∞(Γ),
where Γ is the closed unit-ball of E′.
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20. Sets on which all Functions are Bounded

In this last section the relationship of evaluation properties and bounding sets, i.e.
sets on which every function of the algebra is bounded, are studied.

20.1. Proposition. [Kriegl, Nel, 1990, 2.2]. Let A be a convenient algebra, and
B ⊆ X be A-bounding. Then pB : f 7→ sup{|f(x)| : x ∈ B} is a bounded seminorm
on A.

A subset B ⊆ X is called A-bounding if f(B) ⊆ R is bounded for all f ∈ A .

Proof. Since B is bounding, we have that pB(f) < ∞. Now assume there is
some bounded set F ⊆ A, for which pB(F) is not bounded. Then we may choose
fn ∈ F , such that pB(fn) ≥

√
n2n. Note that {f2 : f ∈ F} is bounded, since

multiplication is assumed to be bounded. Furthermore pB(f2) = sup{|f(x)|2 :
x ∈ B} = sup{|f(x)| : x ∈ B}2 = pB(f)2, since t 7→ t2 is a monotone bijection
R+ → R+, hence pB(f2

n) ≥ n2n. Now consider the series
∑∞
n=0

1
2n f

2
n. This series is

Mackey-Cauchy, since (2−n)n ∈ `1 and {f2
n : n ∈ N} is bounded. SinceA is assumed

to be convenient, we have that this series is Mackey convergent. Let f ∈ A be its
limit. Since all summands are non-negative we have

pB(f) = pB

( ∞∑
n=0

1
2n
f2
n

)
≥ pB(

1
2n
f2
n) =

1
2n
pB(fn)2 ≥ n,

for all n ∈ N, a contradiction. �

20.2. Proposition. [Kriegl, Nel, 1990, 2.3] for A-paracompact, [Biström, Bjon,
Lindström, 1993, Prop.2]. If X is A-realcompact then every A-bounding subset of
X is relatively compact in XA.

Proof. Consider the diagram

XA
� � ∼= // Hom(A) � � // ∏

A R

and let B ⊆ X be A-bounding. Then its image in
∏
A R is relatively compact by

Tychonoff’s theorem. Since Hom(A) ⊆
∏
A R is closed, we have that B is relatively

compact in XA . �

20.3. Proposition. [Biström, Jaramillo, Lindström, 1995, Prop.7]. Every func-
tion f =

∑∞
n=0 pn ∈ Cωconv(`

∞) converges uniformly on the bounded sets in c0. In
particular, each bounded set in c0 is Cωconv-bounding in l∞.

Proof. Take f =
∑∞
n=0 pn ∈ Cωconv(`

∞). According to 7.14 , the function f may
be extended to a holomorphic function f̃ ∈ H(`∞ ⊗ C) on the complexification.
[Josefson, 1978] showed that each holomorphic function on `∞ ⊗ C is bounded on
every bounded set in c0⊗C. Hence, the restriction f̃ |c0⊗C is a holomorphic function
on c0⊗C which is bounded on bounded subsets. By 7.15 its Taylor series at zero∑∞
n=0 p̃n converges uniformly on each bounded subset of c0 ⊗ C. The statement

then follows by restricting to the bounded subsets of the real space c0. �

20.4. Result. [Biström, Jaramillo, Lindström, 1995, Corr.8]. Every weakly com-
pact set in c0, in particular the set {en : n ∈ N} ∪ {0} with en the unit vectors, is
RCωconv-bounding in l∞.

20.5. Result. [Biström, Jaramillo, Lindström, 1995, Thm.5]. Let A be a functorial
algebra on the category of continuous linear maps between Banach spaces with RP ⊆
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A. Then, for every Banach space E, the A-bounding sets are relatively compact in
E if there is a function in A(`∞) that is unbounded on the set of unit vectors in
`∞.

20.6. Result.

(1) [Biström, Jaramillo, 1994, Thm.2] & [Biström, 1993, p.73, Thm.5.23]. In
all Banach spaces the C∞lfcs-bounding sets are relatively compact.

(2) [Biström, Jaramillo, 1994, p.5] & [Biström, 1993, p.74,Cor.5.24]. Any
C∞lfcs-bounding set in a locally convex space E is precompact and therefore
relatively compact if E, in addition, is quasi-complete.

(3) [Biström, Jaramillo, 1994, Cor.4] & [Biström, 1993, p.74, 5.25]. Let E be
a quasi-complete locally convex space. Then E and EC∞lfcs have the same
compact sets. Furthermore xn → x in E if and only if f(xn) → f(x) for
all f ∈ C∞lfcs(E).
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In this chapter we will consider various extension and lifting problems. In the
first section we state the problems and give several counter-examples: We consider
the subspace F of all functions which vanish of infinite order at 0 in the nuclear
Fréchet space E := C∞(R,R), and we construct a smooth function on F that
has no smooth extension to E, and a smooth curve R → F ′ that has not even
locally a smooth lifting along E′ → F ′. These results are based on E. Borel’s
theorem which tells us that RN is isomorphic to the quotient E/F and the fact
that this quotient map E → RN has no continuous right inverse. Also the result
16.8 of [Seeley, 1964] is used which says that, in contrast to F , the subspace
{f ∈ C∞(R,R) : f(t) = 0 for t ≤ 0} of E is complemented.

In section 22 we characterize in terms of a simple boundedness condition on the
difference quotients those functions f : A→ R on an arbitrary subset A ⊆ R which
admit a smooth extension f̃ : R → R as well as those which admit an m-times
differentiable extension f̃ having locally Lipschitzian derivatives. This results are
due to [Frölicher, Kriegl, 1993] and are much stronger than Whitney’s extension
theorem, which holds for closed subsets only and needs the whole jet and conditions
on it. There is, however, up to now no analog in higher dimensions, since difference
quotients are defined only on lattices.

Section 23 gives an introduction to smooth spaces in the sense of Frölicher. These
are sets together with curves and functions which compose into C∞(R,R) and
determine each other by this. They are very useful for chasing smoothness of
mappings which sometimes leave the realm of manifolds.

In section 23 it is shown that there exist free convenient vector spaces over
Frölicher spaces, this means that to every such space X one can associate a con-
venient vector space λX together with a smooth map ιX : X → λX such that
for any convenient vector space E the map (ιX)∗ : L(λX,E) → C∞(X,E) is a
bornological isomorphism. The space λX can be obtained as the c∞-closure of the
linear subspace spanned by the image of the canonical map X → C∞(X,R)′. In
the case where X is a finite dimensional smooth manifold we prove that the linear
subspace generated by {` ◦ evx : x ∈ X, ` ∈ E′} is c∞-dense in C∞(X,E)′. From
this we conclude that the free convenient vector space over a manifold X is the
space of distributions with compact support on X.
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21.1
Chapter V

Extensions and Liftings of Mappings

In the last 3 sections we discuss germs of smooth, holomorphic, and real analytic
functions on convex sets with non-empty interior, following [Kriegl, 1997]. Let us
recall the finite dimensional situation for smooth maps, so let first E = F = R
and X be a non-trivial closed interval. Then a map f : X → R is usually called
smooth, if it is infinite often differentiable on the interior of X and the one-sided
derivatives of all orders exist. The later condition is equivalent to the condition,
that all derivatives extend continuously from the interior of X to X. Furthermore,
by Whitney’s extension theorem these maps turn out to be the restrictions to X of
smooth functions on (some open neighborhood of X in) R. In case where X ⊆ R
is more general, these conditions fall apart. Now what happens if one changes
to X ⊆ Rn. For closed convex sets with non-empty interior the corresponding
conditions to the one dimensional situation still agree. In case of holomorphic and
real analytic maps the germ on such a subset is already defined by the values on
the subset. Hence, we are actually speaking about germs in this situation. In
infinite dimensions we will consider maps on just those convex subsets. So we do
not claim greatest achievable generality, but rather restrict to a situation which is
quite manageable. We will show that even in infinite dimensions the conditions
above often coincide, and that real analytic and holomorphic maps on such sets
are often germs of that class. Furthermore, we have exponential laws for all three
classes, more precisely, the maps on a product correspond uniquely to maps from
the first factor into the corresponding function space on the second.

21. Extension and Lifting Properties

21.1. Remark. The extension property. The general extension problem is to
find an arrow f̃ making a diagram of the following form commutative:

X
i //

f

  @
@@

@@
@@

Y

f̃��
Z

We will consider problems of this type for smooth, for real-analytic and for holo-
morphic mappings between appropriate spaces, e.g., Frölicher spaces as treated in
section 23 .

Let us first sketch a step by step approach to the general problem for the smooth
mappings at hand.

If for a given mapping i : X → Y an extension f̃ : Y → Z exists for all f ∈
C∞(X,Z), then this says that the restriction operator i∗ : C∞(Y, Z)→ C∞(X,Z)
is surjective.

Note that a mapping i : X → Y has the extension property for all f : X → Z
with values in an arbitrary space Z if and only if i is a section, i.e. there exists a
mapping ĨdX : Y → X with ĨdX ◦ i = IdX . (Then f̃ := f ◦ ĨdX is the extension of
a general mapping f).

A particularly interesting case is Z = R. A mapping i : X → Y with the extension
property for all f : X → R is said to have the scalar valued extension property.
Such a mapping is necessarily initial: In fact let g : Z → X be a mapping with
i ◦ g : X → Y being smooth. Then f ◦ g = f̃ ◦ i ◦ g is smooth for all f ∈ C∞(X,R)
and hence g is smooth, since the functions f ∈ C∞(X,R) generate the smooth
structure on the Frölicher space X.
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More generally, we consider the same question for any convenient vector space
Z = E. Let us call this the vector valued extension property. Assume that we have
already shown the scalar valued extension property for i : X → Y , and thus we have
an operator S : C∞(X,R)→ C∞(Y,R) between convenient vector spaces, which is
a right inverse to i∗ : C∞(Y,R)→ C∞(X,R). It is reasonable to hope that S will be
linear (which can be easily checked). So the next thing would be to check, whether
it is bounded. By the uniform boundedness theorem it is enough to show that
evy ◦S : C∞(X,R) → C∞(Y,R) → Y given by f 7→ f̃(y) is smooth, and usually
this is again easily checked. By dualization we get a bounded linear operator S∗ :
C∞(Y,R)′ → C∞(X,R)′ which is a left inverse to i∗∗ : C∞(X,R)′ → C∞(Y,R)′.
Now in order to solve the vector valued extension problem we use the free convenient
vector space λX over a smooth space X given in 23.6 . Thus any f ∈ C∞(X,E)
corresponds to a bounded linear f̃ : λX → E. It is enough to extend f̃ to a bounded
linear operator λY → E given by f̃ ◦ S∗. So we only need that S∗|λY has values
in λX, or equivalently, that S∗ ◦ δY : Y → C∞(Y,R)′ → C∞(X,R)′, given by
y 7→ (f 7→ f̃(y)), has values in λX. In the important cases (e.g. finite dimensional
manifolds X), where λX = C∞(X,R)′, this is automatically satisfied. Otherwise it
is by the uniform boundedness principle enough to find for given y ∈ Y a bounding
sequence (xk)k in X (i.e. every f ∈ C∞(X,R) is bounded on {xk : k ∈ N}) and
an absolutely summable sequence (ak)k ∈ `1 such that f̃(y) =

∑
k akf(xk) for all

f ∈ C∞(X,R). Again we can hope that this can be achieved in many cases.

21.2. Proposition. Let i : X → Y be a smooth mapping, which satisfies the vector
valued extension property. Then there exists a bounded linear extension operator
C∞(X,E)→ C∞(Y,E).

Proof. Since i is smooth, the mapping i∗ : C∞(Y,E) → C∞(X,E) is a bounded
linear operator between convenient vector spaces. Its kernel is ker(i∗) = {f ∈
C∞(Y,E) : f ◦ i = 0}. And we have to show that the sequence

0 // ker(i∗) � � // C∞(Y,E) i∗ // C∞(X,E) // 0

splits via a bounded linear operator σ : C∞(X,E) 3 f 7→ f̃ ∈ C∞(Y,E), i.e. a
bounded linear extension operator.
By the exponential law 3.13 a mapping σ ∈ L(C∞(X,E), C∞(Y,E)) would cor-
respond to σ̃ ∈ C∞(Y, L(C∞(X,E), E)) and σ ◦ i∗ = Id translates to σ̃ ◦ i = Ĩd =
δ : X → L(C∞(X,E), E), given by x 7→ (f 7→ f(x)), i.e. σ̃ must be a solution of
the following vector valued extension problem:

X
i //

δ

&&NNNNNNNNNNN Y

σ̃xx
L(C∞(X,E), E)

By the vector valued extension property such a σ̃ exists. �

21.3. The lifting property. Dual to the extension problem, we have the lifting
problem, i.e. we want to find an arrow f̃ making a diagram of the following form
commutative:

X Y
poo

Z

f
``@@@@@@@ f̃

??
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Note that in this situation it is too restrictive to search for a bounded linear or even
just a smooth lifting operator T : C∞(Z,X) → C∞(Z, Y ). If such an operator
exists for some Z 6= ∅, then p : Y → X has a smooth right inverse namely the
dashed arrow in the following diagram:

X
Id //

const∗

��

''

X

Y

p

77oooooooooooooo

C∞(Z, Y )

p∗ &&NNNNNNNNNNN

evz

OO

C∞(Z,X)
T

88ppppppppppp
Id // C∞(Z,X)

evz

OO

Again the first important case is, when Z = R. If X and Y are even convenient
vector spaces, then we know that the image of a convergent sequence tn → t under
a smooth curve c : R → Y is Mackey convergent. And since one can find by
the general curve lemma a smooth curve passing through sufficiently fast falling
subsequences of a Mackey convergent sequence, the first step could be to check
whether such sequences can be lifted. If bounded sets (or at least sequences) can
be lifted, then the same is true for Mackey convergent sequences. However, this is
not always true as we will show in 21.9 .

21.4. Remarks. The scalar valued extension property for bounded linear map-
pings on a c∞-dense linear subspace is true if and only if the embedding represents
the c∞-completion by 4.30 . In this case it even has the vector valued extension
property by 4.29 .

That in general bounded linear functionals on a (dense or c∞-closed subspace) may
not be extended to bounded (equivalently, smooth) linear functionals on the whole
space was shown in 4.36.6 .

The scalar valued extension problem is true for the c∞-closed subspace of an un-
countable product formed by all points with countable support, see 4.27 (and
4.12 ). As a consequence this subspace is not smoothly real compact, see 17.5 .

Let E be not smoothly regular and U be a corresponding 0-neighborhood. Then
the closed subset X := {0}∪(E\U) ⊆ Y := E does not have the extension property
for the smooth mapping f = χ{0} : X → R.

Let E be not smoothly normal and A0, A1 be the corresponding closed subsets.
Then the closed subset X := A1 ∪ A2 ⊆ Y := E does not have the extension
property for the smooth mapping f = χA1 : X → R.

If q : E → F is a quotient map of convenient vector spaces one might expect that
for every smooth curve c : R → F there exists (at least locally) a smooth lifting,
i.e. a smooth curve c : R→ E with q ◦ c = c. And if ι : F → E is an embedding of
a convenient subspace one might expect that for every smooth function f : F → R
there exists a smooth extension to E. In this section we give examples showing
that both properties fail. As convenient vector spaces we choose spaces of smooth
real functions and their duals. We start with some lemmas.
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21.5. Lemma. Let E := C∞(R,R), let q : E → RN be the infinite jet mapping at
0, given by q(f) := (f (n)(0))n∈N, and let F −ι→ be the kernel of q, consisting of all
smooth functions which are flat of infinite order at 0.

Then the following sequence is exact:

0→ F −ι→ E −q→ RN → 0.

Moreover, ι∗ : E′ → F ′ is a quotient mapping between the strong duals. Every
bounded linear mapping s : RN → E the composite q◦s factors over prN : RN → RN
for some N ∈ N, and so the sequence does not split.

Proof. The mapping q : E → RN is a quotient mapping by the open mapping
theorem [5, 5.3.5] & [5, 5.3.3], since both spaces are Fréchet and q is surjective
by Borel’s theorem 15.4 . The inclusion ι is an embedding of Fréchet spaces, so
the adjoint ι∗ is a quotient mapping for the strong duals 52.28 . Note that these
duals are bornological by 52.29 .

Let s : RN → E be an arbitrary bounded linear mapping. Since RN is bornological
s has to be continuous. The set U := {g ∈ E : |g(t)| ≤ 1 for |t| ≤ 1} is a 0-
neighborhood in the locally convex topology of E. So there has to exist an N ∈ N
such that s(V ) ⊆ U with V := {x ∈ RN : |xn| < 1

N for all n ≤ N}. We show that
q ◦ s factors over RN . So let x ∈ RN with xn = 0 for all n ≤ N . Then k · x ∈ V
for all k ∈ N, hence k · s(x) ∈ U , i.e. |s(x)(t)| ≤ 1

k for all |t| ≤ 1 and k ∈ N. Hence
s(x)(t) = 0 for |t| ≤ 1 and therefore q(s(x)) = 0.

Suppose now that there exists a bounded linear mapping ρ : E → F with ρ◦ι = IdF .
Define s(q(x)) := x − ιρx. This definition makes sense, since q is surjective and
q(x) = q(x′) implies x − x′ ∈ F and thus x − x′ = ρ(x − x′). Moreover s is a
bounded linear mapping, since q is a quotient map, as surjective continuous map
between Fréchet spaces; and (q ◦ s)(q(x)) = q(x)− q(ι(ρ(x))) = q(x)− 0. �

21.6. Proposition. [11, 7.1.5] Let ι∗ : E′ → F ′ the quotient map of 21.5 . The
curve c : R → F ′ defined by c(t) := evt for t ≥ 0 and c(t) = 0 for t < 0 is smooth
but has no smooth lifting locally around 0. In contrast, bounded sets and Mackey
convergent sequences are liftable.

Proof. By the uniform boundedness principle 5.18 c is smooth provided evf ◦c :
R→ R is smooth for all f ∈ F . Since (evf ◦c)(t) = f(t) for t ≥ 0 an (evf ◦c)(t) = 0
for t ≤ 0 this obviously holds.

Assume first that there exists a global smooth lifting of c, i.e. a smooth curve
e : R → E′ with ι∗ ◦ e = c. By exchanging the variables, c corresponds to a
bounded linear mapping c̃ : F → E and e corresponds to a bounded linear mapping
ẽ : E → E with ẽ ◦ ι = c̃. The curve c was chosen in such a way that c̃(f)(t) = f(t)
for t ≥ 0 and c̃(f)(t) = 0 for t ≤ 0.

We show now that such an extension ẽ of c̃ cannot exist. In 16.8 we have shown the
existence of a retraction s to the embedding of the subspace F+ := {f ∈ F : f(t) = 0
for t ≤ 0} of E. For f ∈ F one has s(ẽ(f)) = s(c̃(f)) = c̃(f) since c̃(E) ⊆ F+.
Now let Ψ : E → E, Ψ(f)(t) := f(−t) be the reflection at 0. Then Ψ(F ) ⊆ F and
f = c̃(f) + Ψ(c̃(Ψ(f))) for f ∈ F . We claim that ρ := s ◦ ẽ+ Ψ ◦ s ◦ ẽ ◦Ψ : E → F

is a retraction to the inclusion, and this is a contradiction with 21.5 . In fact

ρ(f) = (s ◦ ẽ)(f) + (Ψ ◦ s ◦ ẽ ◦Ψ)(f) = c̃(f) + Ψ(c̃(Ψ(f))) = f

for all f ∈ F . So we have proved that c has no global smooth lifting.

Andreas Kriegl , Univ.Wien, June 4, 2008 137
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Assume now that c|I has a smooth lifting e0 : U → E′ for some open neighborhood
I of 0. Trivially c|Rr{0} has a smooth lifting e1 defined by the same formula as c.
Take now a smooth partition {f0, f1} of the unity subordinated to the open covering{
(−ε, ε),R r {0}

}
of R, i.e. f0 + f1 = 1 with supp(f0) ⊆ (−ε, ε) and 0 /∈ supp(f1).

Then f0e0 + f1e1 gives a global smooth lifting of c, in contradiction with the case
treated above.

Let now B ⊆ F ′ be bounded. Without loss of generality we may assume that
B = Uo for some 0-neighborhood U in F . Since F is a subspace of the Fréchet
space E, the set U can be written as U = F ∩ V for some 0-neighborhood V in
E. Then the bounded set V o ⊆ E′ is mapped onto B = Uo by the Hahn-Banach
theorem. �

21.7. Proposition. [11, 7.1.7] Let ι : F → E be as in 21.5 . The function
ϕ : F → R defined by ϕ(f) := f(f(1)) for f(1) ≥ 0 and ϕ(f) := 0 for f(1) < 0 is
smooth but has no smooth extension to E and not even to a neighborhood of F in
E.

Proof. We first show that ϕ is smooth. Using the bounded linear c̃ : F → E

associated to the smooth curve c : R→ F ′ of 21.6 we can write ϕ as the composite
ev ◦(c̃, ev1) of smooth maps.

Assume now that a smooth global extension ψ : E → R of ϕ exists. Using a fixed
smooth function h : R → [0, 1] with h(t) = 0 for t ≤ 0 and h(t) = 1 for t ≥ 1, we
then define a map σ : E → E as follows:

(σg)(t) := ψ
(
g +

(
t− g(1)

)
h
)
−
(
t− g(1)

)
h(t).

Obviously σg ∈ E for any g ∈ E, and using cartesian closedness 3.12 one easily
verifies that σ is a smooth map. For f ∈ F one has, using that

(
f+
(
t−f(1)

)
h
)
(1) =

t, the equations

(σf)(t) =
(
f +

(
t− f(1)

)
h
)
(t)−

(
t− f(1)

)
h(t) = f(t)

for t ≥ 0 and (σf)(t) = 0 − (t − f(1))h(t) = 0 for t ≤ 0. This means σf = c̃f for
f ∈ F . So one has c̃ = σ◦ι with σ smooth. Differentiation gives c̃ = c̃′(0) = σ′(0)◦ι,
and σ′(0) is a bounded linear mapping E → E. But in the proof of 21.6 it was
shown that such an extension of c̃ does not exist.

Let us now assume that a local extension to some neighborhood of F in E exists.
This extension could then be multiplied with a smooth function E → R being 1
on F and having support inside the neighborhood (E as nuclear Fréchet space has
smooth partitions of unity see 16.10 ) to obtain a global extension. �

21.8. Remark. As a corollary it is shown in [Frölicher, Kriegl, 1988, 7.1.6] that
the category of smooth spaces is not locally cartesian closed, since pullbacks do not
commute with coequalizers.

Furthermore, this examples shows that the structure curves of a quotient of a
Frölicher space need not be liftable as structure curves and the structure functions
on a subspace of a Frölicher space need not be extendable as structure functions.

In fact, since Mackey-convergent sequences are liftable in the example, one can show
that every f : F ′ → R is smooth, provided f ◦ ι∗ is smooth, see [Frölicher,Kriegl,
1988, 7.1.8].

21.9. Example. In [Jarchow, 1981, 11.6.4] a Fréchet Montel space is given, which
has `1 as quotient. The standard basis in `1 cannot have a bounded lift, since in
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a Montel space every bounded set is by definition relatively compact, hence the
standard basis would be relatively compact.

21.10. Result. [Jarchow, 1981, remark after 9.4.5]. Let q : E → F be a quotient
map between Fréchet spaces. Then (Mackey) convergent sequences lift along q.

This is not true for general spaces. In [11, 7.2.10] it is shown that the quotient
map

∐
densA=0 RA → E := {x ∈ RN : dens(carr(x)) = 0} does not lift Mackey-

converging sequences. Note, however, that this space is not convenient. We do
not know whether smooth curves can be lifted over quotient mappings, even in the
case of Banach spaces.

21.11. Example. There exists a short exact sequence `2−ι→ E → `2, which does
not split, see 13.18.6 . The square of the norm on the subspace `2 does not extend
to a smooth function on E.

Proof. Assume indirectly that a smooth extension of the square of the norm exists.
Let 2b be the second derivative of this extension at 0, then b(x, y) = 〈x, y〉 for all
x, y ∈ `2, and hence the following diagram commutes

`2
� � ι //

]∼=
��

E

b∨

��
(`2)∗ E∗

ι∗oooo

giving a retraction to ι. �

22. Whitney’s Extension Theorem Revisited

Whitney’s extension theorem [Whitney, 1934] concerns extensions of jets and not
of functions. In particular it says, that a real-valued function f from a closed
subset A ⊆ R has a smooth extension if and only if there exists a (not uniquely
determined) sequence fn : A → R, such that the formal Taylor series satisfies the
appropriate remainder conditions, see 22.1 . Following [Frölicher, Kriegl, 1993],
we will characterize in terms of a simple boundedness condition on the difference
quotients those functions f : A → R on an arbitrary subset A ⊆ R which admit a
smooth extension f̃ : R→ R as well as those which admit an m-times differentiable
extension f̃ having locally Lipschitzian derivatives.

We shall use Whitney’s extension theorem in the formulation given in [Stein, 1970].
In order to formulate it we recall some definitions.

22.1. Notation on jets. An m-jet on A is a family F = (F k)k≤m of contin-
uous functions on A. With Jm(A,R) one denotes the vector space of all m-jets on
A.

The canonical map jm : C∞(R,R)→ Jm(A,R) is given by f 7→ (f (k)|A)k≤m.

For k ≤ m one has the ‘differentiation operator’ Dk : Jm(A,R) → Jm−k(A,R)
given by Dk : (F i)i≤m 7→ (F i+k)i≤m−k.

For a ∈ A the Taylor-expansion operator Tma : Jm(A,R) → C∞(R,R) of order m
at a is defined by Tma ((F i)i≤m) : x 7→

∑
k≤m

(x−a)k

k! F k(a).

Finally the remainder operator Rma : Jm(A,R)→ Jm(A,R) at a of order m is given
by F 7→ F − jm(Tma F ).
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In [Stein, 1970, p.176] the space Lip(m + 1, A) denotes all m-jets on A for which
there exists a constant M > 0 such that

|F j(a)| ≤M and
∣∣(Rma F )j(b)

∣∣ ≤M |a− b|m+1−j

for all a, b ∈ A and all j ≤ m.

The smallest constant M defines a norm on Lip(m+ 1, A).

22.2. Whitney’s Extension. The construction of Whitney for finite order
m goes as follows, see [Malgrange, 1966], [Tougeron, 1972] or [Stein, 1970]:

First one picks a special partition of unity Φ for Rn \ A satisfying in particular
diam(suppϕ) ≤ 2 d(suppϕ,A) for ϕ ∈ Φ. For every ϕ ∈ Φ one chooses a nearest
point aϕ ∈ A, i.e. a point aϕ with d(suppϕ,A) = d(suppϕ, aϕ). The extension F̃
of the jet F is then defined by

F̃ (x) :=

{
F 0(x) for x ∈ A∑
ϕ∈Φ′ ϕ(x)Tmaϕ

F (x) otherwise,

where the set Φ′ consists of all ϕ ∈ Φ such that d(suppϕ,A) ≤ 1.

The version of [Stein, 1970, theorem 4, p. 177] of Whitney’s extension theorem is:

Whitney’s Extension Theorem. Let m be an integer and A a compact subset
of R. Then the assignment F 7→ F̃ defines a bounded linear mapping Em : Lip(m+
1, A)→ Lip(m+ 1,R) such that Em(F )|A = F 0.

In order that Em makes sense, one has to identify Lip(m + 1,R) with a space of
functions (and not jets), namely those functions on R which are m-times differen-
tiable on R and the m-th derivative is Lipschitzian. In this way Lip(m + 1,R) is
identified with the space Lipm(R,R) in 1.2 (see also 12.10 ).

Remark. The original condition of [Whitney, 1934] which guarantees a Cm-
extension is:

(Rma F )k(b) = o(|a− b|m−k) for a, b ∈ A with |a− b| → 0 and k ≤ m.

In the following A will be an arbitrary subset of R.

22.3. Difference Quotients. The definition of difference quotients δkf given
in 12.4 works also for functions f : A → R defined on arbitrary subsets A ⊆ R.
The natural domain of definition of δkf is the subset A<k> of Ak+1 of pairwise
distinct points, i.e.

A<k> :=
{
(t0, . . . , tk) ∈ Ak+1 : ti 6= tj for all i 6= j

}
.

The following product rule can be found for example in [Verde-Star, 1988] or
[Frölicher, Kriegl, 1993, 3.3].

22.4. The Leibniz product rule for difference quotients.

δk(f · g) (t0, . . . , tk) =
k∑
i=0

(
k

i

)
δif(t0, . . . , ti) · δk−ig(ti, . . . , tk)

Proof. This is easily proved by induction on k. �

We will make strong use of interpolation polynomials as they have been already
used in the proof of lemma 12.4 . The following descriptions are valid for them:
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22.5. Lemma. Interpolation polynomial. Let f : A→ E be a function with
values in a vector space E and let (t0, . . . , tm) ∈ A<m>. Then there exists a unique
polynomial Pm(t0,...,tm)f of degree at most m which takes the values f(tj) on tj for
all j = 0, . . . ,m. It can be written in the following ways:

Pm(t0,...,tm)f : t 7→
m∑
k=0

1
k!
δkf(t0, . . . , tk)

k−1∏
j=0

(t− tj) (Newton)

t 7→
m∑
k=0

f(tk)
∏
j 6=k

t− tj
tk − tj

(Lagrange).

See, for example, [11, 1.3.7] for a proof of the first description. The second one is
obvious.

22.6. Lemma. For pairwise distinct points a, b, t1, . . . , tm and k ≤ m one has:(
Pm(a,t1,...,tm)f − P

m
(b,t1,...,tm)f

)(k)

(t) =

= (a− b) 1
(m+1)! δ

m+1f(a, b, t1, . . . , tm)·

· k!
∑

i1<···<ik

(t− t1) · · · · · ̂(t− ti1) · · · · · ̂(t− tik) · · · · · (t− tm).

Proof. For the interpolation polynomial we have

Pm(a,t1,...,tm)f(t) = Pm(t1,...,tm,a)f(t) =

= f(t1) + · · ·+ (t− t1) · · · · · (t− tm−1) 1
(m−1)! δ

m−1f (t1, . . . , tm)

+ (t− t1) · · · · · (t− tm) 1
m! δ

mf (t1, . . . , tm, a).

Thus we obtain

Pm(a,t1,...,tm)f(t)− Pm(b,t1,...,tm)f(t) =

= 0 + · · ·+ 0 + (t− t1) · · · · · (t− tm) 1
m! δ

mf (t1, . . . , tm, a)

− (t− t1) · · · · · (t− tm) 1
m! δ

mf (t1, . . . , tm, b)

= (t− t1) · · · · · (t− tm) 1
m!

a−b
m+1 δ

m+1f (t1, . . . , tm, a, b)

= (a− b) · (t− t1) · · · · · (t− tm) 1
(m+1)! δ

m+1f (a, b, t1, . . . , tm).

Differentiation using the product rule 22.4 gives the result. �

22.7. Proposition. Let f : A → R be a function, whose difference quotient of
order m + 1 is bounded on A<m+1>. Then the approximation polynomial Pma f
converges to some polynomial denoted by Pmx f of degree at most m if the point
a ∈ A<m> converges to x ∈ Am+1.

Proof. We claim that Pma f is a Cauchy net for A<m> 3 a → x. Since Pma f is
symmetric in the entries of a we may assume without loss of generality that the
entries xj of x satisfy x0 ≤ x1 ≤ · · · ≤ xm. For a point a ∈ A<m> which is close
to x and any two coordinates i and j with xi < xj we have ai < aj . Let a and b
be two points close to x. Let J be a set of indices on which x is constant. If the
set {aj : j ∈ J} differs from the set {bj : j ∈ J}, then we may order them as in
the proof of lemma 12.4 in such a way that ai 6= bj for i ≤ j in J . If the two sets
are equal we order both strictly increasing and thus have ai < aj = bj for i < j
in J . Since x is constant on J the distance |ai − bj | ≤ |ai − xi|+ |xj − bj | goes to
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zero as a and b approach x. Altogether we obtained that ai 6= bj for all i < j and
applying now 22.6 for k = 0 inductively one obtains:

Pm(a0,...,am)f(t)− Pm(b0,...,bm)f(t) =

=
m∑
j=0

(
Pm(a0,...,aj−1,bj ,...,bm)f(t)− Pm(a0,...,aj ,bj+1,...,bm)f(t)

)

=
m∑
j=0

(aj − bj)(t− a0) . . . (t− aj−1)(t− bj+1) . . . (t− bm)·

· 1
(m+1)!δ

m+1f(a0, . . . , aj , bj , . . . , bm).

Where those summands with aj = bj have to be defined as 0. Since aj − bj → 0
the claim is proved and thus also the convergence of Pma f . �

22.8. Definition of Lipk function spaces. Let E be a convenient vector
space, let A be a subset of R and k a natural number or 0. Then we denote with
Lipkext(A,E) the vector space of all maps f : A → E for which the difference
quotient of order k+1 is bounded on bounded subsets of A<k>. As in 12.10 – but
now for arbitrary subsets A ⊆ R – we put on this space the initial locally convex
topology induced by f 7→ δjf ∈ `∞(A〈j〉, E) for 0 ≤ j ≤ k + 1, where the spaces
`∞ carry the topology of uniform convergence on bounded subsets of A〈j〉 ⊆ Rj+1.

In case where A = R the elements of Lipkext(A,R) are exactly the k-times differ-
entiable functions on R having a locally Lipschitzian derivative of order k + 1 and
the locally convex space Lipkext(A,R) coincides with the convenient vector space
Lipk(R,R) studied in section 12 .

If k is infinite, then Lip∞ext(A,E) or alternatively C∞ext(A,E) denotes the intersection
of Lipjext(A,E) for all finite j.

If A = R then the elements of C∞ext(R,R) are exactly the smooth functions on R
and the space C∞ext(R,R) coincides with the usual Fréchet space C∞(R,R) of all
smooth functions.

22.9. Proposition. Uniform boundedness principle for Lipkext. For any
finite or infinite k and any convenient vector space E the space Lipkext(A,E) is also
convenient. It carries the initial structure with respect to

`∗ : Lipkext(A,E)→ Lipkext(A,R) for ` ∈ E′.
Moreover, it satisfies the {evx : x ∈ A}-uniform boundedness principle. If E is
Fréchet then so is Lipkext(A,E).

Proof. We consider the commutative diagram

Lipmext(A,E)
`∗ //

δj

��

Lipmext(A,R)

δj

��
`∞(A<j>, E)

`∗ // `∞(A<j>,R)

Obviously the bornology is initial with respect to the bottom arrows for ` ∈ E′

and by definition also with respect to the vertical arrows for j ≤ k + 1. Thus also
the top arrows form an initial source. By 2.15 the spaces in the bottom row are
c∞-complete and are metrizable if E is metrizable. Since the boundedness of the
difference quotient of order k+ 1 implies that of order j ≤ k+ 1, also Lipmext(A,E)
is convenient, and it is Fréchet provided E is. The uniform boundedness principle
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follows also from this diagram, using the stability property 5.25 and that the
Fréchet and hence webbed space `∞(A<j>,R) has it by 5.24 . �

22.10. Proposition. For a convenient vector space E the following operators are
well-defined bounded linear mappings:

(1) The restriction operator Lipmext(A1, E) → Lipmext(A2, E) defined by f 7→
f |A2 for A2 ⊆ A1.

(2) For g ∈ Lipmext(A,R) the multiplication operator

Lipmext(A,E)→ Lipmext(A,E)
f 7→ g · f.

(3) The gluing operator

Lipmext(A1, E)×A1∩A2 Lipmext(A2, E)→ Lipmext(A,E)

defined by (f1, f2) 7→ f1 ∪ f2 for any covering of A by relatively open
subsets A1 ⊆ A and A2 ⊆ A.

The fibered product (pull back) Lipmext(A1, E)×A1∩A2Lipmext(A2, E)→ Lipmext(A,E)
is the subspace of Lipmext(A1, E)×Lipmext(A2, E) formed by all (f1, f2) with f1 = f2
on A0 := A1 ∩A2.

Proof. It is enough to consider the particular case where E = R. The general case
follows easily by composing with `∗ for each ` ∈ E′.
( 1 ) is obvious.
( 2 ) follows from the Leibniz formula 22.4 .
( 3 ) First we show that the gluing operator has values in Lipmext(A,R). Suppose
the difference quotient δjf is not bounded for some j ≤ m + 1, which we assume
to be minimal. So there exists a bounded sequence xn ∈ A<j> such that (δjf)(xn)
converges towards infinity. Since A is compact we may assume that xn converges to
some point x∞ ∈ A(j+1). If x∞ does not lie on the diagonal, there are two indices
i1 6= i2 and some δ > 0, such that |xni1 − xni2 | ≥ δ. But then

δjf(xn)(xni1 − xni2) = 1
j

(
δj−1f(. . . , x̂ni2 , . . . )− δj−1f(. . . , x̂ni1 , . . . )

)
.

Which is a contradiction to the boundedness of δj−1f and hence the minimality of
j. So x∞ = (x∞, . . . , x∞) and since the covering {A1, A2} of A is open x∞ lies in
Ai for i = 1 or i = 2. Thus we have that xn ∈ Ai<j> for almost all n, and hence
δjf(xn) = δjfi(xn), which is bounded by assumption on fi.

Because of the uniform boundedness principle 22.9 it only remains to show that
(f1, f2) 7→ f(a) is bounded, which is obvious since f(a) = fi(a) for some i depending
on the location of a. �

22.11. Remark. If A is finite, we define an extension f̃ : R→ E of the given
function f : A → E as the interpolation polynomial of f at all points in A. For
infinite compact sets A ⊂ R we will use Whitney’s extension theorem 22.2 , where
we will replace the Taylor polynomial in the definition 22.2 of the extension by
the interpolation polynomial at appropriately chosen points near aϕ. For this we
associate to each point a ∈ A a sequence a = (a0, a1, . . . ) of points in A starting
from the given point a0 = a.
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22.12. Definition of a 7→ a. Let A be a closed infinite subset of R, and
let a ∈ A. Our aim is to define a sequence a = (a0, a1, a2, . . . ) in a certain sense
close to a. The construction is by induction and goes as follows: a0 := a. For the
induction step we choose for every non-empty finite subset F ⊂ A a point aF in
the closure of A \ F having minimal distance to F . In case F does not contain
an accumulation point the set A \ F is closed and hence aF /∈ F , otherwise the
distance of A \ F to F is 0 and aF is an accumulation point in F . In both cases
we have for the distances d(aF , F ) = d(A \ F, F ). Now suppose (a0, . . . , aj−1) is
already constructed. Then let F := {a0, . . . , aj−1} and define aj := aF .

Lemma. Let a = (a0, . . . ) and b = (b0, . . . ) be constructed as above.

If {a0, . . . , ak} 6= {b0, . . . , bk} then we have for all i, j ≤ k the estimates

|ai − bj | ≤ (i+ j + 1) |a0 − b0|
|ai − aj | ≤ max{i, j} |a0 − b0|
|bi − bj | ≤ max{i, j} |a0 − b0|.

Proof. First remark that if {a0, . . . , ai} = {b0, . . . , bi} for some i, then the same
is true for all larger i, since the construction of ai+1 depends only on the set
{a0, . . . , ai}. Furthermore the set {a0, . . . , ai} contains at most one accumulation
point, since for an accumulation point aj with minimal index j we have by con-
struction that aj = aj+1 = · · · = ai.

We now show by induction on i ∈ {1, . . . , k} that

d(ai+1, {a0, . . . , ai}) ≤ |a0 − b0|,
d(bi+1, {b0, . . . , bi}) ≤ |a0 − b0|.

We proof this statement for ai+1, it then follows for bi+1 by symmetry.
In case where {a0, . . . , ai} ⊇ {b0, . . . , bi} we have that {a0, . . . , ai} ⊃ {b0, . . . , bi} by
assumption. Thus some of the elements of {b0, . . . , bi} have to be equal and hence
are accumulation points. So {a0, . . . , ai} contains an accumulation point, and hence
ai+1 ∈ {a0, . . . , ai} and the claimed inequality is trivially satisfied.
In the other case there exist some j ≤ i such that bj /∈ {a0, . . . , ai}. We choose the
minimal j with this property and obtain

d(ai+1, {a0, . . . , ai}) := d(A \ {a0, . . . , ai}, {a0, . . . , ai}) ≤ d(bj , {a0, . . . , ai}).

If j = 0, then this can be further estimated as follows

d(bj , {a0, . . . , ai}) ≤ |a0 − b0|.

Otherwise {b0, . . . , bj−1} ⊆ {a0, . . . , aj} and hence we have

d(bj , {a0, . . . , ai}) ≤ d(bj , {b0, . . . , bj−1}) ≤ |a0 − b0|

by induction hypothesis. Thus the induction is completed.

From the proven inequalities we deduce by induction on k := max{i, j} that

|ai − aj | ≤ max{i, j} |a0 − b0|

and similarly for |bj − bi|:
For k = 0 this is trivial. Now for k > 0. We may assume that i > j. Let i′ < i be
such that |ai−ai′ | = d(ai, {a0, . . . , ai−1}) ≤ |a0−b0|. Thus by induction hypothesis
|ai′ − aj | ≤ (k − 1) |a0 − b0| and hence

|ai − aj | ≤ |ai − ai′ |+ |ai′ − aj | ≤ k |a0 − b0|.
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By the triangle inequality we finally obtain

|ai − bj | ≤ |ai − a0|+ |a0 − b0|+ |b0 − bj | ≤ (i+ 1 + j) |a0 − b0|. �

22.13. Finite Order Extension Theorem. Let E be a convenient vector space,
A a subset of R and m be a natural number or 0. A function f : A → E admits
an extension to R which is m-times differentiable with locally Lipschitzian m-th
derivative if and only if its difference quotient of order m+1 is bounded on bounded
sets.

Proof. Without loss of generality we may assume that A is infinite. We consider
first the case that A is compact and E = R.

So let f : A → R be in Lipmext. We want to apply Whitney’s extension theorem
22.2 . So we have to find an m-jet F on A. For this we define

F k(a) := (Pma f)(k)(a),

where a denotes the sequence obtained by this construction starting with the point
aand where Pma f denotes the interpolation polynomial of f at the first m + 1
points of a if these are all different; if not, at least one of these m+ 1 points is an
accumulation point of A and then Pma f is taken as limit of interpolation polynomials
according to 22.7 .

Let Φ be the partition of unity mentioned in 22.2 and Φ′ the subset specified there.
Then we define f̃ analogously to 22.2 where aϕ denotes the sequence obtained by
construction 22.12 starting with the point aϕ chosen in 22.2 :

f̃(x) :=

{
f(x) for x ∈ A∑
ϕ∈Φ′ ϕ(x)Pmaϕ

f(x) otherwise.

In order to verify that F belongs to Lip(m+ 1, A) we need the Taylor polynomial

Tma F (x) :=
m∑
k=0

(x− a)k

k!
F k(a) =

m∑
k=0

(x− a)k

k!
(Pma f)(k)(a) = Pma f(x),

where the last equation holds since Pma f is a polynomial of degree at most m. This
shows that our extension f̃ coincides with the classical extension F̃ given in 22.2
of the m-jet F constructed from f .

The remainder term Rma F := F − jm(Tma F ) is given by:

(Rma F )k(b) = F k(b)− (Tma F )(k)(b) = (Pmb f)(k)(b)− (Pma f)(k)(b)

We have to show that for some constant M one has
∣∣(Rma F )k(b)

∣∣ ≤M |a− b|m+1−k

for all a, b ∈ A and all k ≤ m.

In order to estimate this difference we write it as a telescoping sum of terms which
can written by 22.6 as(

Pm(a0,...,ai−1,bi,bi+1,...,bm)f − P
m
(a0,...,ai−1,ai,bi+1,...,bm)f

)(k)

(t) =

=
k!

(m+ 1)!
δm+1f(a0, . . . , ai, bi, . . . , bm)·

· (bi − ai)
∑

i1<···<ik

(t− a0) . . . ̂(t− ai1) . . . ̂(t− bik) . . . (t− bm).

Note that this formula remains valid also in case where the points are not pairwise
different. This follows immediately by passing to the limit with the help of 22.7 .
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We have estimates for the distance of points in {a0, . . . , am; b0, . . . , bm} by 22.12
and so we obtain the required constant M as follows

|(Rma F )k(b)| ≤ k!
(m+ 1)!

m∑
i=0

(2i+ 1) |b− a|m+1−k

∑
i1<···<ik

1 · 2 · · · · · ̂(1 + i1) . . . îk · · · ·m·

· max{|δm+1f({a0, . . . , am, b0, . . . , bm}<m+1>)|}.

In case, where E is an arbitrary convenient vector space we define an extension f̃
for f ∈ Lipmext(A,E) by the same formula as before. Since Φ′ is locally finite, this
defines a function f̃ : R → E. In order to show that f̃ ∈ Lipm(R, E) we compose
with an arbitrary ` ∈ E′. Then ` ◦ f̃ is just the extension of ` ◦ f given above, thus
belongs to Lipm(R,R).

Let now A be a closed subset of R. Then let the compact subsets An ⊂ R be
defined by A1 := A ∩ [−2, 2] and An := [−n + 1, n − 1] ∪ (A ∩ [−n − 1, n + 1]) for
n > 1. We define recursively functions fn ∈ Lipmext(An, E) as follows: Let f1 be
a Lipm-extension of f |A1 . Let fn : An → R be a Lipm-extension of the function
which equals fn−1 on [−n + 1, n − 1] and which equals f on A ∩ [−n − 1, n + 1].
This definition makes sense, since the two sets

An \ [−n+ 1, n− 1] = A ∩
(
[−n− 1, n+ 1] \ [−n+ 1, n− 1]

)
,

An \
(
[−n− 1,−n] ∪ [n, n+ 1]

)
= [−n+ 1, n− 1] ∪

(
A ∩ [−n, n]

)
form an open cover of An, and their intersection is contained in the set A∩ [−n, n]
on which f and fn−1 coincide. Now we apply 22.10 . The sequence fn converges
uniformly on bounded subsets of R to a function f̃ : R → E, since fj = fn on
[−n, n] for all j > n. Since each fn is Lipm, so is f̃ . Furthermore, f̃ is an extension
of f , since f̃ = fn on [−n, n] and hence on A ∩ [−n+ 1, n− 1] equal to f .

Finally the case, where A ⊆ R is completely arbitrary. Let Ā denote the closure of
A in R. Since the first difference quotient is bounded on bounded subsets of A one
concludes that f is Lipschitzian and hence uniformly continuous on bounded subsets
of A, moreover, the values f(a) form a Mackey Cauchy net for A 3 a→ ā ∈ R. Thus
f has a unique continuous extension f̃ to Ā, since the limit f̃(ā) := lima→ā f(a)
exists in E, because E is convenient. Boundedness of the difference quotients of
order j of f̃ can be tested by composition with linear continuous functionals, so we
may assume E = R. Its value at (t̃0, . . . , t̃j) ∈ Ā<j> is the limit of δjf(t0, . . . , tj),
where A<j> 3 (t0, . . . , tj) converges to (t̃0, . . . , t̃j), since in the explicit formula for
δj the factors f(ti) converge to f̃(t̃i). Now we may apply the result for closed A to
obtain the required extension. �

22.14. Extension Operator Theorem. Let E be a convenient vector space and
let m be finite. Then the space Lipmext(A,E) of functions having an extension in
the sense of 22.13 is a convenient vector space and there exists a bounded linear
extension operator from Lipmext(A,E) to Lipm(R, E).

Proof. This follows from 21.2 .

Explicitly the proof runs as follows: For any convenient vector space E we have
to construct a bounded linear operator

T : Lipmext(A,E)→ Lipm(R, E)
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satisfying T (f)|A = f for all f ∈ Lipmext(A,E). Since Lipmext(A,E) is a convenient
vector space, this is by 12.12 via a flip of variables equivalent to the existence of
a Lipm-curve

T̃ : R→ L(Lipmext(A,E), E)
satisfying T̃ (a)(f) = T (f)(a) = f(a). Thus T̃ should be a Lipm-extension of the
map e : A→ L(Lipmext(A,E), E) defined by e(a)(f) := f(a) = eva(f).

By the vector valued finite order extension theorem 22.13 it suffices to show that
this map e belongs to Lipmext(A,L(Lipmext(A,E), E)). So consider the difference
quotient δm+1e of e. Since, by the linear uniform boundedness principle 5.18 ,
boundedness in L(F,E) can be tested pointwise, we consider

δm+1e(a0, . . . , am+1)(f) = δm+1(evf ◦e)(a0, . . . , am+1)

= δm+1f(a0, . . . , am+1).

This expression is bounded for (a0, . . . , am+1) varying in bounded sets, since f ∈
Lipmext(A,E). �

In order to obtain a extension theorem for smooth mappings, we use a modification
of the original construction of [Whitney, 1934]. In particular we need the following
result.

22.15. Result. [Malgrange, 1966, lemma 4.2], also [Tougeron, 1972, lemme 3.3].
There exist constants ck, such that for any compact set K ⊂ R and any δ > 0 there
exists a smooth function hδ on R which satisfies

(1) hδ = 1 locally around K and hδ(x) = 0 for d(x,K) ≥ δ;
(2) for all x ∈ R and k ≥ 0 one has:

∣∣∣h(k)
δ (x)

∣∣∣ ≤ ck

δk .

22.16. Lemma. Let A be compact and Aacc be the compact set of accumulation
points of A. We denote by C∞A (R,R) the set of smooth functions on R which vanish
on A. For finite m we denote by CmA (R,R) the set of Cm-functions on R, which
vanish on A, are m-flat on Aacc and are smooth on the complement of Aacc. Then
C∞A (R,R) is dense in Cm+1

A (R,R) with respect to the structure of Cm(R,R).

Proof. Let ε > 0 and let g ∈ Cm+1
A (R,R) be the function which we want to

approximate. By Taylor’s theorem we have for f ∈ Cm+1(R,R) the equation

f(x)−
k∑
i=0

f (i)(a)
i!

(x− a)i = (x− a)k+1 f
(k+1)(ξ)
(k + 1)!

for some ξ between a and x. If we apply this equation for j ≤ m and k = m− j to
g(j) for some point a ∈ Aacc we obtain∣∣∣g(j)(x)− 0

∣∣∣ ≤ |x− a|m+1−j
∣∣∣∣ g(m+1)

(m+ 1− j)!
(ξ)
∣∣∣∣

Taking the infimum over all a ∈ Aacc we obtain a constant

K := sup
{∣∣∣ g(m+1)

(m+ 1− j)!
(ξ)
∣∣∣ : d(ξ,Aacc) ≤ 1

}
satisfying

∣∣∣g(j)(x)
∣∣∣ ≤ K · d(x,Aacc)m+1−j

for all x with d(x,A) ≤ 1.

We choose 0 < δ < 1 depending on ε such that δ ·max{ci : i ≤ m} ·K · 2m ≤ ε, and
let hδ be the function given in 22.15 for K := Aacc. The function (1 − hδ) · g is
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smooth, since on R \Aacc both factors are smooth and on a neighborhood of Aacc
one has hδ = 1. The function (1− hδ) · g equals g on {x : d(x,Aacc) ≥ δ}, since hδ
vanishes on this set. So it remains to show that the derivatives of hδ · g up to order
m are bounded by ε on {x : d(x,Aacc) ≤ δ}. By the Leibniz rule we have:

(hδ · g)(j) =
j∑
i=0

(
j

i

)
h

(i)
δ g(j−i).

The i-th summand can be estimated as follows:∣∣∣h(i)
δ (x)g(j−i)(x)

∣∣∣ ≤ ci
δi
K d(x,Aacc)m+1+i−j ≤ ciK δm+1−j

An estimate for the derivative now is∣∣∣(hδ · g)(j)(x)∣∣∣ ≤ j∑
i=0

(
j

i

)
ciK δm+1−j

≤ 2j K δm+1−j max{ci : 0 ≤ i ≤ j} ≤ ε. �

22.17. Smooth Extension Theorem. Let E be a Fréchet space (or, slightly
more general, a convenient vector space satisfying Mackey’s countability condition)
A function f : A → E admits a smooth extension to R if and only if each of its
difference quotients is bounded on bounded sets.

A convenient vector space is said to satisfy Mackey’s countability condition if for
every sequence of bounded sets Bn ⊆ E there exists a sequence λn > 0 such that⋃
n∈N λnBn is bounded in E.

Proof. We consider first the case, where E = R. For k ≥ 0 let f̃k be a Lipk-
extension of f according to 22.13 . The difference f̃k+1 − f̃k is an element of
CkA(R,R): It is by construction Ck and on R\A smooth. At an accumulation point a
of A the Taylor expansion of f̃k of order j ≤ k is just the approximation polynomial
P j(a,...,a)f by 22.13 . Thus the derivatives up to order k of f̃k+1 and f̃k are equal
in a, and hence the difference is k-flat at a. Locally around any isolated point of A,
i.e. a point a ∈ A\Aacc, the extension f̃k is just the approximation polynomial P ka
and hence smooth. In order to see this, use that for x with |x− a| < 1

4d(a,A \ {a})
the point aϕ has as first entry a for every ϕ with x ∈ suppϕ: Let b ∈ A \ {a} and
y ∈ suppϕ be arbitrary, then

|b− x| ≥ |b− a| − |a− x| ≥ d(a,A \ {a})− |a− x| > (4− 1) |a− x|
|b− y| ≥ |b− x| − |x− y| > 3 |a− x| − diam(suppϕ)

≥ 3 d(a, suppϕ)− 2 d(a, suppϕ) = d(a, suppϕ)

⇒ d(b, suppϕ) > d(a, suppϕ) ⇒ aϕ = a.

By lemma 22.16 there exists an hk ∈ C∞A (R,R) such that∣∣(f̃k+1 − f̃k − hk)(j)(x)
∣∣ ≤ 1

2k
for all j ≤ k − 1.

Now we consider the function f̃ := f̃0 +
∑
k≥0(f̃

k+1 − f̃k − hk). It is the required
smooth extension of f , since the summands f̃k+1 − f̃k − hk vanish on A, and since
for any n it can be rewritten as f̃ = f̃n+

∑
k<n hk +

∑
k≥n(f̃

k+1− f̃k−hk), where
the first summand is Cn, the first sum is C∞, and the derivatives up to order n− 1
of the terms of the second sum are uniformly summable.

Now we prove the vector valued case, where E satisfies Mackey’s countability con-
dition. It is enough to show the result for compact subsets A ⊂ R, since the
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generalization arguments given in the proof of 22.13 can be applied equally in
the smooth case. First one has to give a vector valued version of 22.16 : Let a
function g ∈ Lipm(R, E) with compact support be given, which vanishes on A, is
m-flat on Aacc and smooth on the complement of Aacc. Then for every ε > 0 there
exists a h ∈ C∞(R,R), which equals 1 on a neighborhood of Aacc and such that
δm(h · g)(Rm+1) is contained in ε times the absolutely convex hull of the image of
δm+1g.

The proof of this assertion is along the lines of that of 22.16 . One only has to
define K as the absolutely convex hull of the image of δm+1g and choose 0 < δ < 1
such that δ ·max{ci : i ≤ m} · 2m ≤ ε.

Now one proceeds as in scalar valued part: Let f̃k be the Lipk-extension of f
according to 22.13 . Then gk := f̃k+1 − f̃k satisfies the assumption of the vector
valued version of 22.16 . LetKk be the absolutely convex hull of the bounded image
of δk+1gk. By assumption on E there exist λn > 0 such that K :=

⋃
k∈N λk ·Kk is

bounded. Hence we may choose an hk ∈ C∞A (R,R) such that δk(hk · gk)(R〈k+1〉) ⊆
λk

2k Kk. Now the extension f̃ is given by

f̃ = f̃0 +
∑
k≥0

hk · gk = f̃n +
∑
k<n

(1− hk) · gk +
∑
k≥n

hk · gk

and the result follows as above using convergence in the Banach space EK . �

22.18. Remark. The restriction operator Lipm(R, E) → Lipmext(A,E) is a
quotient mapping. We constructed a section for it, which is bounded and linear in
the finite order case. It is unclear, whether it is possible to obtain a bounded linear
section also in the smooth case, even if E = R.

If the smooth extension theorem were true for any arbitrary convenient vector space
E, then it would also give the extension operator theorem for the smooth case. Thus
in order to obtain a counter-example to the latter one, the first step might be to
find a counter-example to the vector valued extension theorem. In the particular
cases, where the values lie in a Fréchet space E the vector valued smooth extension
theorem is however true.

22.19. Proposition. Let A be the image of a strictly monotone bounded sequence
{an : n ∈ N}. Then a map f : A → R has a Lipm-extension to R if and only
if the sequence δkf(an, an+1, . . . , an+k) is bounded for k = m + 1 if m is finite,
respectively for all k if m =∞.

Proof. By [11, 1.3.10], the difference quotient δkf(ai0 , . . . , aik) is an element of the
convex hull of the difference quotients δkf(an, . . . , an+k) for all min{i0, . . . , ik} ≤
n ≤ n + k ≤ max{i0, . . . , ik}. So the result follows from the extension theorems
22.13 and 22.17 . �

For explicit descriptions of the boundedness condition for Lipk-mappings defined
on certain sequences and low k see [Frölicher, Kriegl, 1993, Sect. 6].

23. Frölicher Spaces and Free Convenient Vector Spaces

The central theme of this book is ‘infinite dimensional manifolds’. But many natural
examples suggest that this is a quite restricted notion, and it will be very helpful to
have at hand a much more general and also easily useable concept, namely smooth
spaces as they were introduced by [Frölicher, 1980, 1981]. We follow his line of
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development, replacing technical arguments by simple use of cartesian closedness
of smooth calculus on convenient vector spaces, and we call them Frölicher spaces.

23.1. The category of Frölicher spaces. A Frölicher space or a space with
smooth structure is a triple (X, CX ,FX) consisting of a set X, a subset CX of the
set of all mappings R → X, and a subset FX of the set of all functions X → R,
with the following two properties:

(1) A function f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for
all c ∈ CX .

(2) A curve c : R → X belongs to CX if and only if f ◦ c ∈ C∞(R,R) for all
f ∈ FX .

Note that a set X together with any subset F of the set of functions X → R
generates a unique Frölicher space (X, CX ,FX), where we put in turn:

CX := {c : R→ X : f ◦ c ∈ C∞(R,R) for all f ∈ F},
FX := {f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ CX},

so that F ⊆ FX . The set F will be called a generating set of functions for the
Frölicher space. A locally convex space is convenient if and only if it is a Frölicher
space with the smooth curves and smooth functions from section 1 by 2.14 .
Furthermore, c∞-open subsets U of convenient vector spaces E are Frölicher spaces,
where CU = C∞(R, U) and FU = C∞(U,R). Here we can use as generating set F of
functions the restrictions of any set of bounded linear functionals which generates
the bornology of E, see 2.14.4 .

A mapping ϕ : X → Y between two Frölicher spaces is called smooth if the following
three equivalent conditions hold

(3) For each c ∈ CX the composite ϕ ◦ c is in CY .
(4) For each f ∈ FY the composite f ◦ ϕ is in FX .
(5) For each c ∈ CX and for each f ∈ FY the composite f ◦ϕ◦c is in C∞(R,R).

Note that FY can be replaced by any generating set of functions. The set of all
smooth mappings from X to Y will be denoted by C∞(X,Y ). Then we have
C∞(R, X) = CX and C∞(X,R) = FX . Frölicher spaces and smooth mappings
form a category.

23.2. Theorem. The category of Frölicher spaces and smooth mappings has the
following properties:

(1) Complete, i.e., arbitrary limits exist. The underlying set is formed as in
the category of sets as a certain subset of the cartesian product, and the
smooth structure is generated by the smooth functions on the factors.

(2) Cocomplete, i.e., arbitrary colimits exist. The underlying set is formed as
in the category of set as a certain quotient of the disjoint union, and the
smooth functions are exactly those which induce smooth functions on the
cofactors.

(3) Cartesian closed, which means: The set C∞(X,Y ) carries a canonical
smooth structure described by

C∞(X,Y )−C
∞(c,f)→ C∞(R,R)−λ→ R
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where c ∈ C∞(R, X), where f is in C∞(Y,R) or in a generating set of
functions, and where λ ∈ C∞(R,R)′. With this structure the exponential
law holds:

C∞(X × Y, Z) ∼= C∞(X,C∞(Y, Z)).

Proof. Obviously, the limits and colimits described above have all required uni-
versal properties.

We have the following implications:

(1) ”” ϕ∨ : X → C∞(Y, Z) is smooth.
(2) ”⇔” ϕ∨ ◦ cX : R → C∞(Y, Z) is smooth for all smooth curves cX ∈

C∞(R, X), by definition.
(3) ”⇔” C∞(cY , fZ)◦ϕ∨◦cX : R→ C∞(R,R) is smooth for all smooth curves

cX ∈ C∞(R, X), cY ∈ C∞(R, Y ), and smooth functions fZ ∈ C∞(Z,R),
by definition.

(4) ”⇔” fZ ◦ ϕ ◦ (cX × cY ) = fZ ◦ (c∗Y ◦ ϕ∨ ◦ cX)∧ : R2 → R is smooth for all
smooth curves cX , cY , and smooth functions fZ , by the simplest case of
cartesian closedness of smooth calculus 3.10 .

(5) ”⇒” ϕ : X×Y → Z is smooth, since each curve into X×Y is of the form
(cX , cY ) = (cX × cY ) ◦∆, where ∆ is the diagonal mapping.

(6) ”⇒” ϕ ◦ (cX × cY ) : R2 → Z is smooth for all smooth curves cX and cY ,
since the product and the composite of smooth mappings is smooth.

As in the proof of 3.13 it follows in a formal way that the exponential law is a
diffeomorphism for the smooth structures on the mapping spaces. �

23.3. Remark. By [11, 2.4.4] the convenient vector spaces are exactly the
linear Frölicher spaces for which the smooth linear functionals generate the smooth
structure, and which are separated and ‘complete’. On a locally convex space
which is not convenient, one has to saturate to the scalarwise smooth curves and
the associated functions in order to get a Frölicher space.

23.4 Proposition. Let X be a Frölicher space and E a convenient vector space.
Then C∞(X,E) is a convenient vector space with the smooth structure described
in 23.2.3 .

Proof. We consider the locally convex topology on C∞(X,E) induced by c∗ :
C∞(X,E) → C∞(R, E) for all c ∈ C∞(R, X). As in 3.11 one shows that this
describes C∞(X,E) as inverse limit of spaces C∞(R, E), which are convenient by
3.7 . Thus also C∞(X,E) is convenient by 2.15 . By 2.14.4 , 3.8 , 3.9 and
3.7 its smooth curves are exactly those γ : R→ C∞(X,E), for which

R−γ→ C∞(X,E)−c
∗
→ C∞(R, E)−f∗→ C∞(R,R)−λ→ R

is smooth for all c ∈ C∞(R, X), for all f in the generating set E′ of functions, and
all λ ∈ C∞(R,R). This is the smooth structure described in 23.2.3 . �

23.5. Related concepts: Holomorphic Frölicher spaces. They can be
defined in a way similar as smooth Frölicher spaces in 23.1 , with the following
changes: As curves one has to take mappings from the complex unit disk. Then the
results analogous to 23.2 hold, where for the proof one has to use the holomorphic
exponential law 7.22 instead of the smooth one 3.10 , see [Siegl, 1995] and [Siegl,
1997].
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The concept of holomorphic Frölicher spaces is not without problems: Namely
finite dimensional complex manifolds are holomorphic Frölicher spaces if they are
Stein, and compact complex manifolds are never holomorphic Frölicher spaces. But
arbitrary subsetsA of complex convenient vector spaces E are holomorphic Frölicher
spaces with the initial structure, again generated by the restrictions of bounded
complex linear functionals. Note that analytic subsets of complex convenient spaces,
i.e., locally zero sets of holomorphic mappings, are holomorphic spaces. But usually,
as analytic sets, holomorphic functions on them are restrictions of holomorphic
functions defined on neighborhoods, whereas as holomorphic spaces they admit
more holomorphic functions, as the following example shows:

Example. Neil’s parabola P := {z2
1 − z3

2 = 0} ⊂ C2 has the holomorphic curves
a : D → P ⊂ C2 of the form a = (b3, b2) for holomorphic b : D → C: If a(z) =
(zka1(z), zla2(z)) with a(0) = 0 and ai(0) 6= 0, then k = 3n and l = 2n for some
n > 0 and (a1, a2) is still a holomorphic curve in P \ 0, so (a1, a2) = (c3, c2) by the
implicit function theorem, then b(z) = znc(z) is the solution. Thus, z 7→ (z3, z2)
is biholomorphic C → P . So z is a holomorphic function on P which cannot be
extended to a holomorphic function on a neighborhood of 0 in C2, since this would
have infinite differential at 0.

23.6. Theorem. Free Convenient Vector Space. [11, 5.1.1] For every
Frölicher space X there exists a free convenient vector space λX, i.e. a convenient
vector space λX together with a smooth mapping δX : X → λX, such that for every
smooth mapping f : X → G with values in a a convenient vector space G there
exists a unique linear bounded mapping f̃ : λX → G with f̃ ◦ δX = f . Moreover
δ∗ : L(λX,G) ∼= C∞(X,G) is an isomorphisms of convenient vector spaces and δ
is an initial morphism.

Proof. In order to obtain a candidate for λX, we put G := R and thus should have
(λX)′ = L(λX,R) ∼= C∞(X,R) and hence λX should be describable as subspace of
(λX)′′ ∼= C∞(X,R)′. In fact every f ∈ C∞(E,R) acts as bounded linear functional
evf : C∞(X,R)′ → R and if we define δX : X → C∞(X,R)′ to be δX : x 7→ evx
then evf ◦δX = f and δX is smooth, since by the uniform boundedness principle
5.18 it is sufficient to check that evf ◦δX = f : X → C∞(X,R)′ → R is smooth for

all f ∈ C∞(X,R). In order to obtain uniqueness of the extension f̃ := evf , we have
to restrict it to the c∞-closure of the linear span of δX(X). So let λX be this closure
and let f : X → G be an arbitrary smooth mapping with values in some convenient
vector space. Since δ belongs to C∞ we have that δ∗ : L(λX,G) → C∞(X,G) is
well defined and it is injective since the linear subspace generated by the image of
δ is c∞-dense in λX by construction. To show surjectivity consider the following
diagram:

X
δ //

f

��

λX

(3)

ef

��

� � //

(2)

��

C∞(X)′

evλ◦f

��

(1)yy∏
G′ R

prλ

%%KKKKKKKKKK

G
- 

δ

<<yyyyyyyy
λ // R

Note that (2) has values in δ(G), since this is true on the evx, which generate by
definition a c∞-dense subspace of λX.
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Remains to show that this bijection is a bornological isomorphism. In order to
show that the linear mapping C∞(X,G)→ L(λX,G) is bounded we can reformu-
late this equivalently using 3.12 , the universal property of λX and the uniform
boundedness principle 5.18 in turn:

C∞(X,G)→ L(λX,G) is L

⇐⇒ λX → L(C∞(X,G), G) is L

⇐⇒ X → L(C∞(X,G), G) is C∞

⇐⇒ X → L(C∞(X,G), G)
evf→ G is C∞

and since the composition is just f we are done.

Conversely we have to show that L(λX,G)→ C∞(X,G) belongs to L. Composed
with evx : C∞(X,G)→ G this yields the bounded linear map evδ(x) : L(λX,G)→
G. Thus this follows from the uniform boundedness principle 5.26 .

That δX is initial follows immediately from the fact that the structure of X is initial
with respect to family {f = evo ◦δX : f ∈ C∞(X,R)}. �

Remark. The corresponding result with the analogous proof is true for holomor-
phic Frölicher spaces, Lipk-spaces, and `∞-spaces. For the first see [Siegl, 1997] for
the last two see [Frölicher, Kriegl, 1988].

23.7. Corollary. Let X be a Frölicher space such that the functions in C∞(X,R)
separate points on X. Then X is diffeomorphic as Frölicher space to a subspace
of the convenient vector space λ(X) ⊆ C∞(X,R)′ with the initial smooth structure
(generated by the restrictions of linear bounded functionals, among other possibili-
ties). �

We have constructed the free convenient vector space λX as the c∞-closure of the
linear subspace generated by the point evaluations in C∞(X,R)′. This is not very
constructive, in particular since adding Mackey-limits of sequences (or even nets)
of a subspace does not always give its Mackey-closure. In important cases (like
when X is a finite dimensional smooth manifold) one can show however that not
only λX = C∞(X,R)′, but even that every element of λX is the Mackey-limit of
a sequence of linear combinations of point evaluations, and that C∞(X,R)′ is the
space of distributions of compact support.

23.8. Proposition. Let E be a convenient vector space and X a finite dimen-
sional smooth separable manifold. Then for every ` ∈ C∞(X,E)′ there exists a
compact set K ⊆ X such that `(f) = 0 for all f ∈ C∞(X,E) with f |K = 0.

Proof. Since X is separable its compact bornology has a countable basis {Kn : n ∈
N} of compact sets. Assume now that no compact set has the claimed property.
Then for every n ∈ N there has to exist a function fn ∈ C∞(X,E) with fn|Kn

= 0
but `(fn) 6= 0. By multiplying fn with n

`(fn) we may assume that `(fn) = n. Since
every compact subset of X is contained in some Kn one has that {fn : n ∈ N} is
bounded in C∞(X,E), but `({fn : n ∈ N} is not; this contradicts the assumption
that ` is bounded. �
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23.9. Remark. The proposition above remains true if X is a finite dimen-
sional smooth paracompact manifold with non-measurably many components. In
order to show this generalization one uses that for the partition {Xj : j ∈ J} by the
non-measurably many components one has C∞(X,E) ∼=

∏
j∈J C

∞(Xj , E), and the
fact that an ` belongs to the dual of such a product if it is a finite sum of elements
of the duals of the factors. Now the result follows from 23.8 since the components
of a paracompact manifold are paracompact and hence separable.

For such manifoldsX the dual C∞(X,R)′ is the space of distributions with compact
support. In fact, in case X is connected, C∞(X,R)′ is the space of all linear func-
tionals which are continuous for the classically considered topology on C∞(X,R)
by 6.1 ; and in case of an arbitrary X this result follows using the isomorphism
C∞(X,R) ∼=

∏
j C

∞(Xj ,R) where the Xj denote the connected components of X.

23.10. Theorem. [11, 5.1.7] Let E be a convenient vector space and X a finite
dimensional separable smooth manifold. Then the Mackey-adherence of the linear
subspace generated by {` ◦ evx : x ∈ X, ` ∈ E′} is C∞(X,E)′.

Proof. The proof is in several steps.

(Step 1) There exist gn ∈ C∞(R,R) with supp(gn) ⊆ [− 2
n ,

2
n ] such that for every

f ∈ C∞(R, E) the set {n ·
(
f−
∑
k∈Z f(rn,k)gn,k

)
: n ∈ N} is bounded in C∞(R, E),

where rn,k := k
2n and gn,k(t) := gn(t− rn,k).

We choose a smooth h : R → [0, 1] with supp(h) ⊆ [−1, 1] and
∑
k∈Z h(t − k) = 1

for all t ∈ R and we define Qn : C∞(R, E)→ C∞(R, E) by setting

Qn(f)(t) :=
∑
k

f( kn )h(tn− k).

Let K ⊆ R be compact. Then

n(Qn(f)− f)(t) =
∑
k

(f( kn )− f(t)) · n · h(tn− k) ∈ B1(f,K + 1
n supp(h))

for t ∈ K, where Bn(f,K1) denotes the absolutely convex hull of the bounded set
δnf(K〈n〉

1 ).

To get similar estimates for the derivatives we use convolution. Let h1 : R→ R be
a smooth function with support in [−1, 1] and

∫
R h1(s)ds = 1. Then for t ∈ K one

has

(f ∗ h1)(t) :=
∫

R
f(t− s)h1(s)ds ∈ B0(f,K + supp(h1)) · ‖h1‖1,

where ‖h1‖1 :=
∫

R |h1(s)|ds. For smooth functions f, h : R→ R one has (f ∗h)(k) =
f ∗h(k); one immediately deduces that the same holds for smooth functions f : R→
E and one obtains (f ∗h1)(t)−f(t) =

∫
R(f(t−s)−f(t))h1(s)ds ∈ diam(supp(h1)) ·

‖h1‖1 · B1(f,K + supp(h1)) for t ∈ K, where diam(S) := sup{|s| : s ∈ S}. Using
now hn(t) := n · h1(nt) we obtain for t ∈ K:

(Qm(f) ∗ hn − f)(k)(t) = (Qm(f) ∗ h(k)
n − f ∗ h(k)

n )(t) + (f (k) ∗ hn − f (k))(t)

= (Qm(f)− f) ∗ h(k)
n (t) + (f (k) ∗ hn − f (k))(t)

∈ B0(Qm(f)− f,K + supp(hn)) · ‖h(k)
n ‖1+

+B1(f (k),K + supp(hn)) · diam(supp(hn)) · ‖hn‖1
⊆ 1

mn
k ·B1(f,K + supp(hn) + 1

m supp(h)) · ‖h(k)
1 ‖1

+ n ·B1(f (k),K + supp(hn)) · ‖hn‖1.
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Let now m := 2n and Pn(f) := Qm(f) ∗ hn. Then

n ·
(
Pn(f)− f

)(k)(t) ∈ nk+12−n ·B1(f,K + ( 1
n +

1
2n

)[−1, 1])‖h(k)
1 ‖1

+B1(f (k),K + 1
n [−1, 1])‖h1‖1

for t ∈ K and the right hand side is uniformly bounded for n ∈ N.

With gn(t) :=
∫

R h(s2
n − k)hn(t+ k2−n − s)ds =

∫
R h(s2

n)hn(t− s)ds we obtain

Pn(f)(t) = (Q2n

(f) ∗ hn)(t) =
∑
k

f(k2−n)h(t2n − k) ∗ hn

=
∑
k

f(k2−n)
∫

R
h(s2n − k)hn(t− s)ds

=
∑
k

f(k2−n)gn(t− k2−n).

Thus rn,k := k2−n and the gn have all the claimed properties.

(Step 2) For every m ∈ N and every f ∈ C∞(Rm, E) the set{
n ·
(
f −

∑
k1∈Z,...,km∈Z

f(rn;k1,...,km
)gn;k1,...,km

)
: n ∈ N

}
is bounded in C∞(Rm, E), where rn;k1,...,km := (rn,k1 , . . . , rn,km) and

gn;k1,...,km(x1, . . . , xm) := gn,k1(x1) · · · · · gn,km(xm).

We prove this statement by induction on m. For m = 1 it was shown in step 1.
Now assume that it holds for m and C∞(R, E) instead of E. Then by induction
hypothesis applied to f∨ : C∞(Rm, C∞(R, E)) we conclude that{

n ·
(
f −

∑
k1∈Z,...,km∈Z

f(rn;k1,...,km
, )gn;k1,...,km

)
: n ∈ N

}
is bounded in C∞(Rm+1, E). Thus it remains to show that{
n
∑

k1,...,km

gn;k1,...,km

(
f(rn;k1,...,km

, )−
∑
km+1

f(rn;k1,...,km , rkm+1)gn,km+1

)
: n ∈ N

}
is bounded in C∞(Rm+1, E). Since the support of the gn;k1,...,km

is locally finite
only finitely many summands of the outer sum are non-zero on a given compact set.
Thus it is enough to consider each summand separately. By step (1) we know that
the linear operators h 7→ n

(
h −

∑
k h(rn,k)gn,k

)
, n ∈ N, are pointwise bounded.

So they are bounded on bounded sets, by the linear uniform boundedness principle
5.18 . Hence{

n ·
(
f(rn;k1,...,km , )−

∑
km+1

f(rn;k1,...,km , rkm+1)gn,km+1

)
: n ∈ N

}
is bounded in C∞(Rm+1, E). Using that the multiplication R×E → E is bounded
one concludes immediately that also the multiplication with a map g ∈ C∞(X,R)
is bounded from C∞(X,E)→ C∞(X,E) for any Frölicher space X. Thus the proof
of step (2) is complete.

(Step 3) For every ` ∈ C∞(X,E)′ there exist xn,k ∈ X and `n,k ∈ E′ such that
{n(`−

∑
k `n,k ◦ evxn,k

) : n ∈ N} is bounded in C∞(X,E)′, where in the sum only
finitely many terms are non-zero. In particular the subspace generated by `E ◦ evx
for `E ∈ E′ and x ∈ X is c∞-dense.
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By 23.8 there exists a compact set K with f |K = 0 implying `(f) = 0. One
can cover K by finitely many relatively compact Uj ∼= Rm (j = 1 . . . N). Let
{hj : j = 0 . . . N} be a partition of unity subordinated to {X r K,U1, . . . , UN}.
Then `(f) =

∑N
j=1 `(hj · f) for every f . By step (2) the set{
n(hjf −

∑
hjf(rn,k1,...,km)gn,k1,...,km : n ∈ N

}
is bounded in C∞(Uj , E). Since supp(hj) is compact in Uj this is even bounded in
C∞(X,E) and for fixed n only finitely many rn,k1,...,km belong to supp(hj). Thus
the above sum is actually finite and the supports of all functions in the bounded
subset of C∞(Uj , E) are included in a common compact subset. Applying ` to this
subset yields that

{
n
(
(`(hjf)−

∑
`n,k1,...,km ◦ ev(rn,k1,...,km)

)
: n ∈ N

}
is bounded

in R, where `n,k1,...,km
(x) := `

(
hj(rn,k1,...,km)gn;k1,...,km · x

)
.

To complete the proof one only has to take as xn,k all the rn,k1,...,km for the finitely
many charts Uj ∼= Rm and as `n,k the corresponding functionals `n,k1,...,km ∈ E′. �

23.11. Corollary. [11, 5.1.8] Let X be a finite dimensional separable smooth
manifold. Then the free convenient vector space λX over X is equal to C∞(X,R)′.

�

23.12. Remark. In [Kriegl, Nel, 1990] it was shown that the free convenient
vector space over the long line L is not C∞(L,R)′ and the same for the space E of
points with countable support in an uncountable product of R.

In [Adam, 1995, 2.2.6] it is shown that the isomorphism δ∗ : L(C∞(X,R)′, G) ∼=
C∞(X,G) is even a topological isomorphism for (the) natural topologies on all
spaces under consideration provided X is a finite dimensional separable smooth
manifold. Furthermore, the corresponding statement holds for holomorphic map-
pings, provided X is a separable complex manifold modeled on polycylinders. For
Riemannian surfaces X it is shown in [Siegl, 1997, 2.11] that the free convenient
vector space for holomorphic mappings is the Mackey adherence of the linear sub-
space of H(X,C)′ generated by the point evaluations evx for x ∈ X. In [Siegl, 1997,
2.52] the same is shown for pseudo-convex subsets of X ⊆ Cn. Reflexivity of the
space of scalar valued functions implies that the linear space generated by the point
evaluations is dense in the dual of the function space with respect to its bornolo-
gical topology by [Siegl, 1997, 3.3]. And conversely if Λ(X) is this dual, then the
function space is reflexive. Thus Λ(E) 6= C∞(E,R)′ for non-reflexive convenient
vector spaces E. Partial positive results for infinite dimensional spaces have been
obtained in [Siegl, 1997, section 3].

23.13. Remark. On can define convenient co-algebras dually to convenient alge-
bras, as a convenient vector space E together with a compatible co-algebra struc-
ture, i.e. two bounded linear mappings

µ : E → E⊗̃βE, called co-multiplication, into the c∞-completion 4.29 of
the bornological tensor product 5.9 ;
and ε : E → R, called co-unit,

such that one has the following commutative diagrams:

E⊗̃βE
µ⊗̃β Id//

µ

��

(E⊗̃βE)⊗̃βE
∼= // E⊗̃β(E⊗̃βE)

Id ⊗̃βµ

��
E

µ // E⊗̃βE
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E⊗̃βE
ε⊗̃ Id

$$I
IIIIIIII

E
∼= //

µ
==zzzzzzzzz

R⊗̃βE
In words, the co-multiplication has to be co-associative and ε has to be a co-unit
with respect to µ.

If, in addition, the following diagram commutes

E⊗̃βE
∼= // E⊗̃βE

E

µ
bbEEEEEEEE

µ
<<yyyyyyyy

then the co-algebra is called co-commutative.

Morphisms g : E → F between convenient co-algebras E and F are bounded linear
mappings for which the following diagrams commute:

E⊗̃βE
g⊗̃g // F ⊗̃βF R Id // R

E

µE

OO

g // F

µF

OO

E
g //

εE

OO

F

εF

OO

A co-idempotent in a convenient co-algebra E, is an element x ∈ E satisfying
ε(x) = 1 and µ(x) = x ⊗ x. They correspond bijectively to convenient co-algebra
morphisms R→ E, see [11, 5.2.7].

In [11, 5.2.4] it was shown that λ(X × Y ) ∼= λ(X)⊗̃λ(Y ) using only the universal
property of the free convenient vector space. Thus λ(∆) : λ(X) → λ(X × X) ∼=
λ(X)⊗̃λ(X) of the diagonal mapping ∆ : X → X ×X defines a co-multiplication
on λ(X) with co-unit λ(const) : λ(X) → λ({∗}) ∼= R. In this way λ becomes a
functor from the category of Frölicher spaces into that of convenient co-algebras,
see [11, 5.2.5]. In fact this functor is left-adjoint to the functor I, which associates
to each convenient co-algebra the Frölicher space of co-idempotents with the initial
structure inherited from the co-algebra, see [11, 5.2.9].

Furthermore, it was shown in [11, 5.2.18] that any co-idempotent element e of
λ(X) defines an algebra-homomorphism C∞(X,R) ∼= λ(X)′ −eve→ R. Thus the
equality I(λ(X)) = X, i.e. every co-idempotent e ∈ λ(X) is given by evx for some
x ∈ X, is thus satisfied for smoothly realcompact spaces X, as they are treated in
chapter IV.

24. Smooth Mappings on Non-Open Domains

In this section we will discuss smooth maps f : E ⊇ X → F , where E and F
are convenient vector spaces and X are certain not necessarily open subsets of E.
We consider arbitrary subsets X ⊆ E as Frölicher spaces with the initial smooth
structure induced by the inclusion into E, i.e., a map f : E ⊇ X → F is smooth if
and only if for all smooth curves c : R→ X ⊆ E the composite f ◦ c : R→ F is a
smooth curve.

24.1. Lemma. Convex sets with non-void interior.
Let K ⊆ E be a convex set with non-void c∞-interior Ko. Then the segment
(x, y] := {x+ t(y−x) : 0 < t ≤ 1} is contained in Ko for every x ∈ K and y ∈ K0.
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The interior Ko is convex and open even in the locally convex topology. And K is
closed if and only if it is c∞-closed.

Proof. Let y0 := x + t0(y − x) be an arbitrary point on the segment (x, y], i.e.,
0 < t0 ≤ 1. Then x+t0(Ko−x) is an c∞-open neighborhood of y0, since homotheties
are c∞-continuous. It is contained in K, since K is convex.

In particular, the c∞-interior Ko is convex, hence it is not only c∞-open but open
in the locally convex topology 4.5 .

Without loss of generality we now assume that 0 ∈ Ko. We claim that the closure of
K is the set {x : tx ∈ Ko for 0 < t < 1}. This implies the statement on closedness.
Let U := Ko and consider the Minkowski-functional pU (x) := inf{t > 0 : x ∈ tU}.
Since U is convex, the function pU is convex, see [5, 2.3.6]. Using that U is c∞-open
it can easily be shown that U = {x : pU (x) < 1}. From 13.2 we conclude that pU
is c∞-continuous, and furthermore that it is even continuous for the locally convex
topology. Hence, the set {x : tx ∈ Ko for 0 < t < 1} = {x : pU (x) ≤ 1} = {x :
pK(x) ≤ 1} is the closure of K in the locally convex topology by [5, 2.3.6]. �

24.2. Theorem. Derivative of smooth maps.
Let K ⊆ E be a convex subset with non-void interior Ko, and let f : K → R be a
smooth map. Then f |Ko : Ko → F is smooth, and its derivative (f |Ko)′ extends
(uniquely) to a smooth map K → L(E,F ).

Proof. Only the extension property is to be shown. Let us first try to find a
candidate for f ′(x)(v) for x ∈ K and v ∈ E with x + v ∈ Ko. By convexity the
smooth curve cx,v : t 7→ x + t2v has for 0 < |t| < 1 values in Ko and cx,v(0) =
x ∈ K, hence f ◦ cx,v is smooth. In the special case where x ∈ Ko we have by
the chain rule that (f ◦ cx,v)′(t) = f ′(x)(cx,v(t))(c′x,v(t)), hence (f ◦ cx,v)′′(t) =
f ′′(cx,v(t))(c′x,v(t), c

′
x,v(t)) + f ′(cx,v(t))(c′′x,v(t)), and for t = 0 in particular (f ◦

cx,v)′′(0) = 2 f ′(x)(v). Thus we define

2 f ′(x)(v) := (f ◦ cx,v)′′(0) for x ∈ K and v ∈ Ko − x.
Note that for 0 < ε < 1 we have f ′(x)(ε v) = ε f ′(x)(v), since cx,ε v(t) = cx,v(

√
ε t).

Let us show next that f ′( )(v) : {x ∈ K : x + v ∈ Ko} → R is smooth. So let
s 7→ x(s) be a smooth curve in K, and let v ∈ K0 − x(0). Then x(s) + v ∈ Ko for
all sufficiently small s. And thus the map (s, t) 7→ cx(s),v(t) is smooth from some
neighborhood of (0, 0) into K. Hence (s, t) 7→ f(cx(s),v(t)) is smooth and also its
second derivative s 7→ (f ◦ cx(s),v)′′(0) = 2 f ′(x(s))(v).

In particular, let x0 ∈ K and v0 ∈ Ko − x0 and x(s) := x0 + s2v0. Then

2f ′(x0)(v) := (f ◦ cx0,v)
′′(0) = lim

s→0
(f ◦ cx(s),v)′′(0) = lim

s→0
2 f ′(x(s))(v),

with x(s) ∈ Ko for 0 < |s| < 1. Obviously this shows that the given definition of
f ′(x0)(v) is the only possible smooth extension of f ′( )(v) to {x0} ∪Ko.

Now let v ∈ E be arbitrary. Choose a v0 ∈ Ko − x0. Since the set Ko − x0 − v0 is
a c∞-open neighborhood of 0, hence absorbing, there exists some ε > 0 such that
v0 + εv ∈ Ko − x0. Thus

f ′(x)(v) = 1
εf

′(x)(εv) = 1
ε

(
f ′(x)(v0 + εv)− f ′(x)(v0)

)
for all x ∈ K0. By what we have shown above the right side extends smoothly to
{x0} ∪ Ko, hence the same is true for the left side. I.e. we define f ′(x0)(v) :=
lims→0 f

′(x(s))(v) for some smooth curve x : (−1, 1) → K with x(s) ∈ Ko for
0 < |s| < 1. Then f ′(x) is linear as pointwise limit of f ′(x(s)) ∈ L(E,R) and is
bounded by the Banach-Steinhaus theorem (applied to EB). This shows at the
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24. Smooth Mappings on Non-Open Domains 24.3

same time, that the definition does not depend on the smooth curve x, since for
v ∈ x0 +Ko it is the unique extension.

In order to show that f ′ : K → L(E,F ) is smooth it is by 5.18 enough to show
that

s 7→ f ′(x(s))(v), R x→ K
f ′→ L(E,F ) evx→ F

is smooth for all v ∈ E and all smooth curves x : R → K. For v ∈ x0 + Ko

this was shown above. For general v ∈ E, this follows since f ′(x(s))(v) is a linear
combination of f ′(x(s))(v0) for two v0 ∈ x0 +Ko not depending on s locally. �

By 24.2 the following lemma applies in particular to smooth maps.

24.3. Lemma. Chain rule. Let K ⊆ E be a convex subset with non-void interior
Ko, let f : K → R be smooth on Ko and let f ′ : K → L(E,F ) be an extension of
(f |Ko)′, which is continuous for the c∞-topology of K, and let c : R→ K ⊆ E be a
smooth curve. Then (f ◦ c)′(t) = f ′(c(t))(c′(t)).

Proof.

Claim Let g : K → L(E,F ) be continuous along smooth curves in K, then ĝ :
K × E → F is also continuous along smooth curves in K × E.
In order to show this let t 7→ (x(t), v(t)) be a smooth curve in K × E. Then
g ◦ x : R→ L(E,F ) is by assumption continuous (for the bornological topology on
L(E,F )) and v∗ : L(E,F ) → C∞(R, F ) is bounded and linear 3.13 and 3.17 .
Hence, the composite v∗ ◦ g ◦ x : R → C∞(R, F ) → C(R, F ) is continuous. Thus,
(v∗ ◦ g ◦ x)∧ : R2 → F is continuous, and in particular when restricted to the
diagonal in R2. But this restriction is just g ◦ (x, v).

Now choose a y ∈ Ko. And let cs(t) := c(t)+ s2(y− c(t)). Then cs(t) ∈ Ko for 0 <
|s| ≤ 1 and c0 = c. Furthermore, (s, t) 7→ cs(t) is smooth and c′s(t) = (1− s2)c′(t).
And for s 6= 0

f(cs(t))− f(cs(0))
t

=
∫ 1

0

(f ◦ cs)′(tτ)dτ = (1− s2)
∫ 1

0

f ′(cs(tτ))(c′(tτ))dτ .

Now consider the specific case where c(t) := x + tv with x, x + v ∈ K. Since
f is continuous along (t, s) 7→ cs(t), the left side of the above equation converges
to f(c(t))−f(c(0))

t for s → 0. And since f ′(·)(v) is continuous along (t, τ, s) 7→
cs(tτ) we have that f ′(cs(tτ))(v) converges to f ′(c(tτ))(v) uniformly with respect
to 0 ≤ τ ≤ 1 for s → 0. Thus, the right side of the above equation converges to∫ 1

0
f ′(c(tτ))(v)dτ . Hence, we have

f(c(t))− f(c(0))
t

=
∫ 1

0

f ′(c(tτ))(v)dτ →
∫ 1

0

f ′(c(0))(v)dτ = f ′(c(0))(c′(0))

for t→ 0.

Now let c : R→ K be an arbitrary smooth curve. Then (s, t) 7→ c(0)+s(c(t)−c(0))
is smooth and has values in K for 0 ≤ s ≤ 1. By the above consideration we have
for x = c(0) and v = (c(t)− c(0))/t that

f(c(t))− f(c(0))
t

=
∫ 1

0

f ′
(
c(0) + τ(c(t)− c(0))

)(c(t)− c(0)
t

)
which converges to f ′(c(0))(c′(0)) for t → 0, since f ′ is continuous along smooth
curves in K and thus f ′(c(0)+ τ(c(t)− c(0)))→ f ′(c(0)) uniformly on the bounded
set { c(t)−c(0)t : t near 0}. Thus, f ◦ c is differentiable with derivative (f ◦ c)′(t) =
f ′(c(t))(c′(t)). �
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Since f ′ can be considered as a map df : E × E ⊇ K × E → F it is important to
study sets A× B ⊆ E × F . Clearly, A× B is convex provided A ⊆ E and B ⊆ F
are. Remains to consider the openness condition. In the locally convex topology
(A × B)o = Ao × Bo, which would be enough to know in our situation. However,
we are also interested in the corresponding statement for the c∞-topology. This
topology on E × F is in general not the product topology c∞E × c∞F . Thus, we
cannot conclude that A×B has non-void interior with respect to the c∞-topology
on E × F , even if A ⊆ E and B ⊆ F have it. However, in case where B = F
everything is fine.

24.4. Lemma. Interior of a product.
Let X ⊆ E. Then the interior (X × F )o of X × F with respect to the c∞-topology
on E × F is just Xo × F , where Xo denotes the interior of X with respect to the
c∞-topology on E.

Proof. Let W be the saturated hull of (X × F )o with respect to the projection
pr1 : E×F → E, i.e. the c∞-open set (X ×F )o+ {0}×F ⊆ X ×F . Its projection
to E is c∞-open, since it agrees with the intersection with E × {0}. Hence, it is
contained in Xo, and (X × F )o ⊆ Xo × F . The converse inclusion is obvious since
pr1 is continuous. �

24.5. Theorem. Smooth maps on convex sets.
Let K ⊆ E be a convex subset with non-void interior Ko, and let f : K → F be
a map. Then f is smooth if and only if f is smooth on Ko and all derivatives
(f |Ko)(n) extend continuously to K with respect to the c∞-topology of K.

Proof. (⇒) It follows by induction using 24.2 that f (n) has a smooth extension
K → Ln(E;F ).

(⇐) By 24.3 we conclude that for every c : R → K the composite f ◦ c : R → F
is differentiable with derivative (f ◦ c)′(t) = f ′(c(t))(c′(t)) =: df(c(t), c′(t)).

The map df is smooth on the interior Ko × E, linear in the second variable, and
its derivatives (df)(p)(x,w)(y1, w1; . . . , yp, wp) are universal linear combinations of

f (p+1)(x)(y1, . . . , yp;w) and of f (k+1)(x)(yi1 , . . . , yik ;wi0) for k ≤ p.
These summands have unique extensions to K × E. The first one is continuous
along smooth curves in K × E, because for such a curve (t 7→ (x(t), w(t)) the
extension f (k+1) : K → L(Ek, L(E,F )) is continuous along the smooth curve x,
and w∗ : L(E,F ) → C∞(R, F ) is continuous and linear, so the mapping t 7→
(s 7→ f (k+1)(x(t))(yi1 , . . . , yik ;w(s))) is continuous from R → C∞(R, F ) and thus
as map from R2 → F it is continuous, and in particular if restricted to the diagonal.
And the other summands only depend on x, hence have a continuous extension by
assumption.

So we can apply 24.3 inductively using 24.4 , to conclude that f ◦ c : R → F is
smooth. �

In view of the preceding theorem 24.5 it is important to know the c∞-topology
c∞X of X, i.e. the final topology generated by all the smooth curves c : R →
X ⊆ E. So the first question is whether this is the trace topology c∞E|X of the
c∞-topology of E.

24.6. Lemma. The c∞-topology is the trace topology.
In the following cases of subsets X ⊆ E the trace topology c∞E|X equals the topol-
ogy c∞X:
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24. Smooth Mappings on Non-Open Domains 24.7

(1) X is c∞E-open.
(2) X is convex and locally c∞-closed.
(3) The topology c∞E is sequential and X ⊆ E is convex and has non-void

interior.

( 3 ) applies in particular to the case where E is metrizable, see 4.11 . A topology
is called sequential if and only if the closure of any subset equals its adherence,
i.e. the set of all accumulation points of sequences in it. By 2.13 and 2.8 the
adherence of a set X with respect to the c∞-topology, is formed by the limits of all
Mackey-converging sequences in X.

Proof. Note that the inclusion X → E is by definition smooth, hence the identity
c∞X → c∞E|X is always continuous.

( 1 ) Let U ⊆ X be c∞X-open and let c : R→ E be a smooth curve with c(0) ∈ U .
Since X is c∞E-open, c(t) ∈ X for all small t. By composing with a smooth
map h : R → R which satisfies h(t) = t for all small t, we obtain a smooth curve
c ◦ h : R → X, which coincides with c locally around 0. Since U is c∞X-open we
conclude that c(t) = (c ◦ h)(t) ∈ U for small t. Thus, U is c∞E-open.

( 2 ) Let A ⊆ X be c∞X-closed. And let Ā be the c∞E-closure of A. We have to
show that Ā ∩ X ⊆ A. So let x ∈ Ā ∩ X. Since X is locally c∞E-closed, there
exists a c∞E-neighborhood U of x ∈ X with U ∩ X c∞-closed in U . For every
c∞E-neighborhood U of x we have that x is in the closure of A ∩ U in U with
respect to the c∞E-topology (otherwise some open neighborhood of x in U does
not meet A∩U , hence also not A). Let an ∈ A∩U be Mackey converging to a ∈ U .
Then an ∈ X ∩ U which is closed in U thus a ∈ X. Since X is convex the infinite
polygon through the an lies in X and can be smoothly parameterized by the special
curve lemma 2.8 . Using that A is c∞X-closed, we conclude that a ∈ A. Thus,
A ∩ U is c∞U -closed and x ∈ A.

( 3 ) Let A ⊆ X be c∞X-closed. And let Ā denote the closure of A in c∞E. We
have to show that Ā ∩ X ⊆ A. So let x ∈ Ā ∩ X. Since c∞E is sequential there
is a Mackey converging sequence A 3 an → x. By the special curve lemma 2.8
the infinite polygon through the an can be smoothly parameterized. Since X is
convex this curve gives a smooth curve c : R→ X and thus c(0) = x ∈ A, since A
is c∞X-closed. �

24.7. Example. The c∞-topology is not trace topology.
Let A ⊆ E be such that the c∞-adherence Adh(A) of A is not the whole c∞-closure
Ā of A. So let a ∈ Ā\Adh(A). Then consider the convex subset K ⊆ E×R defined
by K := {(x, t) ∈ E × R : t ≥ 0 and (t = 0 ⇒ x ∈ A ∪ {a})} which has non-empty
interior E×R+. However, the topology c∞K is not the trace topology of c∞(E×R)
which equals c∞(E)× R by 4.15 .

Note that this situation occurs quite often, see 4.13 and 4.36 where A is even a
linear subspace.

Proof. Consider A = A × {0} ⊆ K. This set is closed in c∞K, since E ∩ K is
closed in c∞K and the only point in (K ∩E) \A is a, which cannot be reached by
a Mackey converging sequence in A, since a /∈ Adh(A).

It is however not the trace of a closed subset in c∞(E)×R. Since such a set has to
contain A and hence Ā 3 a. �
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24.8. Theorem. Smooth maps on subsets with collar.
Let M ⊆ E have a smooth collar, i.e., the boundary ∂M of M is a smooth sub-
manifold of E and there exists a neighborhood U of ∂M and a diffeomorphism
ψ : ∂M × R → U which is the identity on ∂M and such that ψ(M × {t ∈ R :
t ≥ 0}) = M ∩ U . Then every smooth map f : M → F extends to a smooth map
f̃ : M ∪ U → F . Moreover, one can choose a bounded linear extension operator
C∞(M,F )→ C∞(M ∪ U,F ), f 7→ f̃ .

Proof. By 16.8 there is a continuous linear right inverse S to the restriction
map C∞(R,R) → C∞(I,R), where I := {t ∈ R : t ≥ 0}. Now let x ∈ U and
(px, tx) := ψ−1(x). Then f(ψ(px, ·)) : I → F is smooth, since ψ(px, t) ∈ M
for t ≥ 0. Thus, we have a smooth map S(f(ψ(px, ·))) : R → F and we define
f̃(x) := S(f(ψ(px, ·)))(tx). Then f̃(x) = f(x) for all x ∈ M ∩ U , since for such
an x we have tx ≥ 0. Now we extend the definition by f̃(x) = f(x) for x ∈ Mo.
Remains to show that f̃ is smooth (on U). So let s 7→ x(s) be a smooth curve
in U . Then s 7→ (ps, ts) := ψ−1(x(s)) is smooth. Hence, s 7→ (t 7→ f(ψ(ps, t))
is a smooth curve R → C∞(I, F ). Since S is continuous and linear the composite
s 7→ (t 7→ S(fψ(ps, ·))(t)) is a smooth curve R→ C∞(R, F ) and thus the associated
map R2 → F is smooth, and also the composite f̃(xs) of it with s 7→ (s, ts).

The existence of a bounded linear extension operator follows now from 21.2 . �

In particular, the previous theorem applies to the following convex sets:

24.9. Proposition. Convex sets with smooth boundary have a collar.
Let K ⊆ E be a closed convex subset with non-empty interior and smooth boundary
∂K. Then K has a smooth collar as defined in 24.8 .

Proof. Without loss of generality let 0 ∈ Ko.

In order to show that the set U := {x ∈ E : tx /∈ K for some t > 0} is c∞-open let
s 7→ x(s) be a smooth curve R → E and assume that t0x(0) /∈ K for some t0 > 0.
Since K is closed we have that t0x(s) /∈ K for all small |s|.
For x ∈ U let r(x) := sup{t ≥ 0 : tx ∈ Ko} > 0, i.e. r = 1

pKo
as defined in the

proof of 24.1 and r(x)x is the unique intersection point of ∂K ∩ (0,+∞)x. We
claim that r : U → R+ is smooth. So let s 7→ x(s) be a smooth curve in U and
x0 := r(x(0))x(0) ∈ ∂K. Choose a local diffeomorphism ψ : (E, x0)→ (E, 0) which
maps ∂K locally to some closed hyperplane F ⊆ E. Any such hyperplane is the
kernel of a continuous linear functional ` : E → R, hence E ∼= F × R.

We claim that v := ψ′(x0)(x0) /∈ F . If this were not the case, then we consider the
smooth curve c : R→ ∂K defined by c(t) = ψ−1(−tv). Since ψ′(x0) is injective its
derivative is c′(0) = −x0 and c(0) = x0. Since 0 ∈ Ko, we have that x0 + c(t)−c(0)

t ∈
Ko for all small |t|. By convexity c(t) = x0 + t c(t)−c(0)t ∈ Ko for small t > 0, a
contradiction.

So we may assume that `(ψ′(x)(x)) 6= 0 for all x in a neighborhood of x0.

For s small r(x(s)) is given by the implicit equation `(ψ(r(x(s))x(s))) = 0. So let
g : R2 → R be the locally defined smooth map g(t, s) := `(ψ(tx(s))). For t 6= 0
its first partial derivative is ∂1g(t, s) = `(ψ′(tx(s))(x(s))) 6= 0. So by the classical
implicit function theorem the solution s 7→ r(x(s)) is smooth.

Now let Ψ : U×R→ U be the smooth map defined by (x, t) 7→ e−tr(x)x. Restricted
to ∂K × R → U is injective, since tx = t′x′ with x,x′ ∈ ∂K and t, t′ > 0 implies
x = x′ and hence t = t′. Furthermore, it is surjective, since the inverse mapping is
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given by x 7→ (r(x)x, ln(r(x))). Use that r(λx) = 1
λr(x). Since this inverse is also

smooth, we have the required diffeomorphism Ψ. In fact, Ψ(x, t) ∈ K if and only if
e−tr(x) ≤ r(x), i.e. t ≤ 0. �

That 24.8 is far from being best possible shows the

24.10. Proposition. Let K ⊆ Rn be the quadrant K := {x = (x1, . . . , xn) ∈
Rn : x1 ≥ 0, . . . , xn ≥ 0}. Then there exists a bounded linear extension operator
C∞(K,F )→ C∞(Rn, F ) for each convenient vector space F .

This can be used to obtain the same result for submanifolds with convex corners
sitting in smooth finite dimensional manifolds.

Proof. Since K = (R+)n ⊆ Rn and the inclusion is the product of inclusions
ι : R+ ↪→ R we can use the exponential law 23.2.3 to obtain C∞(K,F ) ∼=
C∞((R+)n−1, C∞(R+, F )). By Seeley’s theorem 16.8 we have a bounded lin-
ear extension operator S : C∞(R+, F )→ C∞(R, F ). We now proceed by induction
on n. So we have an extension operator Sn−1 : C∞((R+)n−1, G) → C∞(Rn−1, G)
for the convenient vector space G := C∞(R, F ) by induction hypothesis. The
composite gives up to natural isomorphisms the required extension operator

C∞(K,F ) ∼= C∞((R+)n−1, C∞(R+, F ))−S∗→ C∞((R+)n−1, C∞(R, F ))→

−Sn−1→ C∞(Rn−1, C∞(R, F )) ∼= C∞(Rn, F ). �

25. Real Analytic Mappings on Non-Open Domains

In this section we will consider real analytic mappings defined on the same type of
convex subsets as in the previous section.

25.1. Theorem. Power series in Fréchet spaces. Let E be a Fréchet space and
(F, F ′) be a dual pair. Assume that a Baire vector space topology on E′ exists for
which the point evaluations are continuous. Let fk be k-linear symmetric bounded
functionals from E to F , for each k ∈ N. Assume that for every ` ∈ F ′ and every x
in some open subset W ⊆ E the power series

∑∞
k=0 `(fk(x

k))tk has positive radius of
convergence. Then there exists a 0-neighborhood U in E, such that {fk(x1, . . . , xk) :
k ∈ N, xj ∈ U} is bounded and thus the power series x 7→

∑∞
k=0 fk(x

k) converges
Mackey on some 0-neighborhood in E.

Proof. Choose a fixed but arbitrary ` ∈ F ′. Then ` ◦ fk satisfy the assumptions
of 7.14 for an absorbing subset in a closed cone C with non-empty interior. Since
this cone is also complete metrizable we can proceed with the proof as in 7.14
to obtain a set AK,r ⊆ C whose interior in C is non-void. But this interior has
to contain a non-void open set of E and as in the proof of 7.14 there exists
some ρ` > 0 such that for the ball Uρ`

in E with radius ρ` and center 0 the set
{`(fk(x1, . . . , xk)) : k ∈ N, xj ∈ Uρ`

} is bounded.

Now let similarly to 9.6

AK,r,ρ :=
⋂
k∈N

⋂
x1,...xn∈Uρ

{` ∈ F ′ : |`(fk(x1, . . . , xk))| ≤ Krk}

for K, r, ρ > 0. These sets AK,r,ρ are closed in the Baire topology, since evaluation
at fk(x1, . . . , xk) is assumed to be continuous.

By the first part of the proof the union of these sets is F ′. So by the Baire property,
there exist K, r, ρ > 0 such that the interior U of AK,r,ρ is non-empty. As in the
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proof of 9.6 we choose an `0 ∈ U . Then for every ` ∈ F ′ there exists some ε > 0
such that `ε := ε` ∈ U − `0. So |`(y)| ≤ 1

ε (|`ε(y) + `0(y)| + |`0(y)|) ≤ 2
εKr

n for
every y = fk(x1, . . . , xk) with xi ∈ Uρ. Thus, {fk(x1, . . . , xk) : k ∈ N, xi ∈ Uρ

r
} is

bounded.

On every smaller ball we have therefore that the power series with terms fk con-
verges Mackey. �

Note that if the vector spaces are real and the assumption above hold, then the
conclusion is even true for the complexified terms by 7.14 .

25.2. Theorem. Real analytic maps I → R are germs.
Let f : I := {t ∈ R : t ≥ 0} → R be a map. Suppose t 7→ f(t2) is real analytic
R → R. Then f extends to a real analytic map f̃ : Ĩ → R, where Ĩ is an open
neighborhood of I in R.

Proof. We show first that f is smooth. Consider g(t) := f(t2). Since g : R → R
is assumed to be real analytic it is smooth and clearly even. We claim that there
exists a smooth map h : R→ R with g(t) = h(t2) (this is due to [Whitney, 1943]).
In fact, by h(t2) := g(t) a continuosu map h : {t :∈ R : t ≥ 0} → R is uniquely
determined. Obviously, h|{t∈R:t>0} is smooth. Differentiating for t 6= 0 the defining
equation gives h′(t2) = g′(t)

2t =: g1(t). Since g is smooth and even, g′ is smooth and
odd, so g′(0) = 0. Thus

t 7→ g1(t) =
g′(t)− g′(0)

2t
=

1
2

∫ 1

0

g′′(ts) ds

is smooth. Hence, we may define h′ on {t ∈ R : t ≥ 0} by the equation h′(t2) = g1(t)
with even smooth g1. By induction we obtain continuous extensions of h(n) : {t ∈
R : t > 0} → R to {t ∈ R : t ≥ 0}, and hence h is smooth on {t ∈ R : t ≥ 0} and so
can be extended to a smooth map h : R→ R.

From this we get f(t2) = g(t) = h(t2) for all t. Thus, h : R → R is a smooth
extension of f .

Composing with the exponential map exp : R → R+ shows that f is real analytic
on {t : t > 0}, and has derivatives f (n) which extend by 24.5 continuously to maps
I → R. It is enough to show that an := 1

n!f
(n)(0) are the coefficients of a power

series p with positive radius of convergence and for t ∈ I this map p coincides with
f .

Claim. We show that a smooth map f : I → R, which has a real analytic composite
with t 7→ t2, is the germ of a real analytic mapping.
Consider the real analytic curve c : R → I defined by c(t) = t2. Thus, f ◦ c is
real analytic. By the chain rule the derivative (f ◦ c)(p)(t) is for t 6= 0 a universal
linear combination of terms f (k)(c(t))c(p1)(t) · · · c(pk)(t), where 1 ≤ k ≤ p and
p1 + . . . + pk = p. Taking the limit for t → 0 and using that c(n)(0) = 0 for
all n 6= 2 and c′′(0) = 2 shows that there is a universal constant cp satisfying
(f ◦ c)(2p)(0) = cp · f (p)(0). Take as f(x) = xp to conclude that (2p)! = cp · p!.
Now we use 9.2 to show that the power series

∑∞
k=0

1
k!f

(k)(0)tk converges locally.
So choose a sequence (rk) with rkt

k → 0 for all t > 0. Define a sequence (r̄k) by
r̄2n = r̄2n+1 := rn and let t̄ > 0. Then r̄k t̄

k = rnt
n for 2n = k and r̄k t̄

k = rnt
nt̄

for 2n+ 1 = k, where t := t̄2 > 0, hence (r̄k) satisfies the same assumptions as (rk)
and thus by 9.3 (1⇒ 3) the sequence 1

k! (f ◦ c)
(k)(0)r̄k is bounded. In particular,
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this is true for the subsequence
1

(2p)! (f ◦ c)
(2p)(0)r̄2p = cp

(2p)!f
(p)(0)rp = 1

p!f
(p)(0)rp.

Thus, by 9.3 (1⇐ 3) the power series with coefficients 1
p!f

(p)(0) converges locally
to a real analytic function f̃ .

Remains to show that f̃ = f on J . But since f̃ ◦ c and f ◦ c are both real analytic
near 0, and have the same Taylor series at 0, they have to coincide locally, i.e.
f̃(t2) = f(t2) for small t. �

Note however that the more straight forward attempt of a proof of the first step,
namely to show that f ◦ c is smooth for all c : R→ {t ∈ R : t ≥ 0} by showing that
for such c there is a smooth map h : R → R, satisfying c(t) = h(t)2, is doomed to
fail as the following example shows.

25.3. Example. A smooth function without smooth square root.
Let c : R → {t ∈ R : t ≥ 0} be defined by the general curve lemma 12.2 using
pieces of parabolas cn : t 7→ 2n

2n t
2 + 1

4n . Then there is no smooth square root of c.

Proof. The curve c constructed in 12.2 has the property that there exists a
converging sequence tn such that c(t+ tn) = cn(t) for small t. Assume there were
a smooth map h : R→ R satisfying c(t) = h(t)2 for all t. At points where c(t) 6= 0
we have in turn:

c′(t) = 2h(t)h′(t)

c′′(t) = 2h(t)h′′(t) + 2h′(t)2

2c(t)c′′(t) = 4h(t)3h′′(t) + c′(t)2.

Choosing tn for t in the last equation gives h′′(tn) = 2n, which is unbounded in n.
Thus h cannot be C2. �

25.4. Definition. (Real analytic maps I → F )
Let I ⊆ R be a non-trivial interval. Then a map f : I → F is called real analytic
if and only if the composites ` ◦ f ◦ c : R→ R are real analytic for all real analytic
c : R→ I ⊆ R and all ` ∈ F ′. If I is an open interval then this definition coincides
with 10.3 .

25.5. Lemma. Bornological description of real analyticity.
Let I ⊆ R be a compact interval. A curve c : I → E is real analytic if and only if c
is smooth and the set { 1

k! c
(k)(a) rk : a ∈ I, k ∈ N} is bounded for all sequences (rk)

with rk tk → 0 for all t > 0.

Proof. We use 9.3 . Since both sides can be tested with ` ∈ E′ we may assume
that E = R.

(⇒) By 25.2 we may assume that c : Ĩ → R is real analytic for some open
neighborhood Ĩ of I. Thus, the required boundedness condition follows from 9.3 .

(⇐) By 25.2 we only have to show that f : t 7→ c(t2) is real analytic. For
this we use again 9.3 . So let K ⊆ R be compact. Then the Taylor series of f
is obtained by that of c composed with t2. Thus, the composite f satisfies the
required boundedness condition, and hence is real analytic. �

This characterization of real analyticity can not be weakened by assuming the
boundedness conditions only for single pointed K as the map c(t) := e−1/t2 for
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t 6= 0 and c(0) = 0 shows. It is real analytic on R \ {0} thus the condition is
satisfied at all points there, and at 0 the power series has all coefficients equal to
0, hence the condition is satisfied there as well.

25.6. Corollary. Real analytic maps into inductive limits.
Let Tα : E → Eα be a family of bounded linear maps that generates the bornology
on E. Then a map c : I → F is real analytic if and only if all the composites
Tα ◦ c : I → Fα are real analytic.

Proof. This follows either directly from 25.5 or from 25.2 by using the corre-
sponding statement for maps R→ E, see 9.9 . �

25.7. Definition. (Real analytic maps K → F )
For an arbitrary subset K ⊆ E let us call a map f : E ⊇ K → F real analytic if
and only if λ ◦ f ◦ c : I → R is a real analytic (resp. smooth) for all λ ∈ F ′ and
all real analytic (resp. smooth) maps c : I → K, where I ⊂ R is some compact
non-trivial interval. Note however that it is enough to use all real analytic (resp.
smooth) curves c : R→ K by 25.2 .

With Cω(K,F ) we denote the vector space of all real analytic mapsK → F . And we
topologize this space with the initial structure induced by the cone c∗ : Cω(K,F )→
Cω(R, F ) (for all real analytic c : R→ K) and the cone c∗ : Cω(K,F )→ C∞(R, F )
(for all smooth c : R → K). The space Cω(R, F ) should carry the structure of
11.2 and the space C∞(R, F ) that of 3.6 .

For an open K ⊆ E the definition for Cω(K,F ) given here coincides with that of
10.3 .

25.8. Proposition. Cω(K,F ) is convenient. Let K ⊆ E and F be arbitrary.
Then the space Cω(K,F ) is a convenient vector space and satisfies the S-uniform
boundedness principle 5.22 , where S := {evx : x ∈ K}.

Proof. Since both spaces Cω(R,R) and C∞(R,R) are c∞-complete and satisfy the
uniform boundedness principle for the set of point evaluations the same is true for
Cω(K,F ), by 5.25 . �

25.9. Theorem. Real analytic maps K → F are often germs.
Let K ⊆ E be a convex subset with non-empty interior of a Fréchet space and let
(F, F ′) be a complete dual pair for which a Baire topology on F ′ exists, as required
in 25.1 . Let f : K → F be a real analytic map. Then there exists an open
neighborhood U ⊆ EC of K and a holomorphic map f̃ : U → FC such that f̃ |K = f .

Proof. By 24.5 the map f : K → F is smooth, i.e. the derivatives f (k) exist on
the interior K0 and extend continuously (with respect to the c∞-topology of K)
to the whole of K. So let x ∈ K be arbitrary and consider the power series with
coefficients fk = 1

k!f
(k)(x). This power series has the required properties of 25.1 ,

since for every ` ∈ F ′ and v ∈ Ko − x the series
∑
k `(fk(v

k))tk has positive radius
of convergence. In fact, `(f(x+ tv)) is by assumption a real analytic germ I → R,
by 24.8 hence locally around any point in I it is represented by its converging
Taylor series at that point. Since (x, v − x] ⊆ Ko and f is smooth on this set,
( ddt )

k(`(f(x + tv)) = `(f (k)(x + tv)(vk) for t > 0. Now take the limit for t → 0
to conclude that the Taylor coefficients of t 7→ `(f(x + tv)) at t = 0 are exactly
k!`(fk). Thus, by 25.1 the power series converges locally and hence represents a
holomorphic map in a neighborhood of x. Let y ∈ Ko be an arbitrary point in this
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neighborhood. Then t 7→ `(f(x + t(y − x))) is real analytic I → R and hence the
series converges at y− x towards f(y). So the restriction of the power series to the
interior of K coincides with f .

We have to show that the extensions fx of f : K ∩ Ũx → FC to star shaped
neighborhoods Ũx of x in EC fit together to give an extension f̃ : Ũ → FC. So let
Ũx be such a domain for the extension and let Ux := Ũx ∩ E.

For this we claim that we may assume that Ux has the following additional property:
y ∈ Ux ⇒ [0, 1]y ⊆ Ko ∪ Ux. In fact, let U0 := {y ∈ Ux : [0, 1]y ⊆ Ko ∪ Ux}. Then
U0 is open, since f : (t, s) 7→ ty(s) being smooth, and f(t, 0) ∈ Ko ∪ Ux for
t ∈ [0, 1], implies that a δ > 0 exists such that f(t, s) ∈ Ko ∪ Ux for all |s| < δ
and −δ < t < 1 + δ. The set U0 is star shaped, since y ∈ U0 and s ∈ [0, 1] implies
that t(x+ s(y− x)) ∈ [x, t′y] for some t′ ∈ [0, 1], hence lies in Ko ∪Ux. The set U0

contains x, since [0, 1]x = {x} ∪ [0, 1)x ⊆ {x} ∪Ko. Finally, U0 has the required
property, since z ∈ [0, 1]y for y ∈ U0 implies that [0, 1]z ⊆ [0, 1]y ⊆ Ko ∪ Ux, i.e.
z ∈ U0.

Furthermore, we may assume that for x + iy ∈ Ũx and t ∈ [0, 1] also x + ity ∈ Ũx
(replace Ũx by {x+ iy : x+ ity ∈ Ũx for all t ∈ [0, 1]}).
Now let Ũ1 and Ũ2 be two such domains around x1 and x2, with corresponding
extensions f1 and f2. Let x+ iy ∈ Ũ1∩ Ũ2. Then x ∈ U1∩U2 and [0, 1]x ⊆ Ko∪Ui
for i = 1, 2. If x ∈ Ko we are done, so let x /∈ Ko. Let t0 := inf{t > 0 : tx /∈ Ko}.
Then t0x ∈ Ui for i = 1, 2 and by taking t0 a little smaller we may assume that
x0 := t0x ∈ Ko ∩ U1 ∩ U2. Thus, fi = f on [x0, xi] and the fi are real analytic on
[x0, x] for i = 1, 2. Hence, f1 = f2 on [x0, x] and thus f1 = f2 on [x, x+ iy] by the
1-dimensional uniqueness theorem. �

That the result corresponding to 24.8 is not true for manifolds with real analytic
boundary shows the following

25.10. Example. No real analytic extension exists.
Let I := {t ∈ R : t ≥ 0}, E := Cω(I,R), and let ev : E × R ⊇ E × I → R be the
real analytic map (f, t) 7→ f(t). Then there is no real analytic extension of ev to a
neighborhood of E × I.

Proof. Suppose there is some open set U ⊆ E × R containing {(0, t) : t ≥ 0} and
a Cω-extension ϕ : U → R. Then there exists a c∞-open neighborhood V of 0
and some δ > 0 such that U contains V × (−δ, δ). Since V is absorbing in E, we
have for every f ∈ E that there exists some ε > 0 such that εf ∈ V and hence
1
εϕ(εf, ·) : (−δ, δ)→ R is a real analytic extension of f . This cannot be true, since
there are f ∈ E having a singularity inside (−δ, δ). �

The following theorem generalizes 11.17 .

25.11. Theorem. Mixing of C∞ and Cω.
Let (E,E′) be a complete dual pair, let X ⊆ E, let f : R×X → R be a mapping that
extends for every B locally around every point in R×(X∩EB) to a holomorphic map
C×(EB)C → C, and let c ∈ C∞(R, X). Then c∗ ◦f∨ : R→ Cω(X,R)→ C∞(R,R)
is real analytic.

Proof. Let I ⊆ R be open and relatively compact, let t ∈ R and k ∈ N. Now
choose an open and relatively compact J ⊆ R containing the closure Ī of I. By
1.8 there is a bounded subset B ⊆ E such that c|J : J → EB is a Lipk-curve in the

Banach space EB generated by B. Let XB denote the subset X∩EB of the Banach
space EB . By assumption on f there is a holomorphic extension f : V ×W → C
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of f to an open set V ×W ⊆ C× (EB)C containing the compact set {t}× c(Ī). By
cartesian closedness of the category of holomorphic mappings f∨ : V → H(W,C) is
holomorphic. Now recall that the bornological structure of H(W,C) is induced by
that of C∞(W,C) := C∞(W,R2). Furthermore, c∗ : C∞(W,C) → Lipk(I,C) is a
bounded C-linear map (see tyhe proof of 11.17 ). Thus, c∗ ◦ f∨ : V → Lipk(I,C)
is holomorphic, and hence its restriction to R ∩ V , which has values in Lipk(I,R),
is (even topologically) real analytic by 9.5 . Since t ∈ R was arbitrary we conclude
that c∗ ◦ f∨ : R → Lipk(I,R) is real analytic. But the bornology of C∞(R,R) is
generated by the inclusions into Lipk(I,R), by the uniform boundedness principles
5.26 for C∞(R,R) and 12.9 for Lipk(R,R), and hence c∗ ◦ f∨ : R → C∞(R,R)

is real analytic. �

This can now be used to show cartesian closedness with the same proof as in 11.18
for certain non-open subsets of convenient vector spaces. In particular, the previous
theorem applies to real analytic mappings f : R×X → R, where X ⊆ E is convex
with non-void interior. Since for such a set the intersection XB with EB has the
same property and since EB is a Banach space, the real analytic mapping is the
germ of a holomorphic mapping.

25.12. Theorem. Exponential law for real analytic germs.
Let K and L be two convex subsets with non-empty interior in convenient vector
spaces. A map f : K → Cω(L,F ) is real analytic if and only if the associated
mapping f̂ : K × L→ F is real analytic.

Proof. (⇒) Let c = (c1, c2) : R → K × L be Cα (for α ∈ {∞, ω}) and let ` ∈ F ′.
We have to show that ` ◦ f̂ ◦ c : R → R is Cα. By cartesian closedness of Cα it is
enough to show that the map ` ◦ f̂ ◦ (c1× c2) : R2 → R is Cα. This map however is
associated to `∗ ◦ (c2)∗ ◦ f ◦ c1 : R → K → Cω(L,F ) → Cα(R,R), hence is Cα by
assumption on f and the structure of Cω(L,F ).

(⇐) Let conversely f : K × L → F be real analytic. Then obviously f(x, ·) :
L → F is real analytic, hence f∨ : K → Cω(L,F ) makes sense. Now take an
arbitrary Cα-map c1 : R → K. We have to show that f∨ ◦ c1 : R → Cω(L,F )
is Cα. Since the structure of Cω(L,F ) is generated by Cβ(c1, `) for Cβ-curves
c2 : R → L (for β ∈ {∞, ω}) and ` ∈ F ′, it is by 9.3 enough to show that
Cβ(c2, `) ◦ f∨ ◦ c1 : R→ Cβ(R,R) is Cα. For α = β it is by cartesian closedness of
Cα maps enough to show that the associate map R2 → R is Cα. Since this map is
just ` ◦ f ◦ (c1 × c2), this is clear. In fact, take for γ ≤ α, γ ∈ {∞, ω} an arbitrary
Cγ-curve d = (d1, d2) : R→ R2. Then (c1 × c2) ◦ (d1, d2) = (c1 ◦ d1, c2 ◦ d2) is Cγ ,
and so the composite with ` ◦ f has the same property.

It remains to show the mixing case, where c1 is real analytic and c2 is smooth or
conversely. First the case c1 real analytic, c2 smooth. Then ` ◦ f ◦ (c1 × Id) :
R×L→ R is real analytic, hence extends to some holomorphic map by 25.9 , and
by 25.11 the map

C∞(c2, `) ◦ f∨ ◦ c1 = c∗2 ◦ (` ◦ f ◦ (c1 × Id))∨ : R→ C∞(R,R)

is real analytic. Now the case c1 smooth and c2 real analytic. Then `◦f ◦ (Id×c2) :
K × R → R is real analytic, so by the same reasoning as just before applied to f̃
defined by f̃(x, y) := f(y, x), the map

C∞(c1, `) ◦ (f̃)∨ ◦ c2 = c∗1 ◦ (` ◦ f̃ ◦ (Id×c2))∨ : R→ C∞(R,R)
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is real analytic. By 11.16 the associated mapping

(c∗1 ◦ (` ◦ f̃ ◦ (Id×c2))∨)∼ = Cω(c2, `) ◦ f̃ ◦ c1 : R→ Cω(R,R)

is smooth. �

The following example shows that theorem 25.12 does not extend to arbitrary
domains.

25.13. Example. The exponential law for general domains is false.
Let X ⊆ R2 be the graph of the map h : R → R defined by h(t) := e−t

−2
for

t 6= 0 and h(0) = 0. Let, furthermore, f : R × X → R be the mapping defined by
f(t, s, r) := r

t2+s2 for (t, s) 6= (0, 0) and f(0, 0, r) := 0. Then f : R×X → R is real
analytic, however the associated mapping f∨ : R→ Cω(X,R) is not.

Proof. Obviously, f is real analytic on R3 \ {(0, 0)} × R. If u 7→ (t(u), s(u), r(u))
is real analytic R → R × X, then r(u) = h(s(u)). Suppose s is not constant and
t(0) = s(0) = 0, then we have that r(u) = h(uns0(u)) cannot be real analytic, since
it is not constant but the Taylor series at 0 is identical 0, a contradiction. Thus,
s = 0 and r = h ◦ s = 0, therefore u 7→ f(t(u), s(u), r(u)) = 0 is real analytic.

Remains to show that u 7→ f(t(u), s(u), r(u)) is smooth for all smooth curves
(t, s, r) : R → R × X. Since f(t(u), s(u), r(u)) = h(s(u))

t(u)2+s(u)2 it is enough to show

that ϕ : R2 → R defined by ϕ(t, s) = h(s)
t2+s2 is smooth. This is obviously the case,

since each of its partial derivatives is of the form h(s) multiplied by some rational
function of t and s, hence extends continuously to {(0, 0)}.
Now we show that f∨ : R→ Cω(X,R) is not real analytic. Take the smooth curve
c : u 7→ (u, h(u)) into X and consider c∗◦f∨ : R→ C∞(R,R), which is given by t 7→
(s 7→ f(t, c(s)) = h(s)

t2+s2 ). Suppose it is real analytic into C([−1,+1],R). Then it has
to be locally representable by a converging power series

∑
ant

n ∈ C([−1,+1],R).
So there has to exist a δ > 0 such that

∑
an(s)zn = h(s)

s2

∑∞
k=0(−1)k( zs )

2k converges
for all |z| < δ and |s| < 1. This is impossible, since at z = si there is a pole. �

26. Holomorphic Mappings on Non-Open Domains

In this section we will consider holomorphic maps defined on two types of convex
subsets. First the case where the set is contained in some real part of the vector
space and has non-empty interior there. Recall that for a subset X ⊆ R ⊆ C the
space of germs of holomorphic maps X → C is the complexification of that of germs
of real analytic maps X → R, 11.2 . Thus, we give the following

26.1. Definition. (Holomorphic maps K → F )
LetK ⊆ E be a convex set with non-empty interior in a real convenient vector space.
And let F be a complex convenient vector space. We call a map f : EC ⊇ K → F
holomorphic if and only if f : E ⊇ K → F is real analytic.

26.2. Lemma. Holomorphic maps can be tested by functionals.
Let K ⊆ E be a convex set with non-empty interior in a real convenient vector
space. And let F be a complex convenient vector space. Then a map f : K → F
is holomorphic if and only if the composites ` ◦ f : K → C are holomorphic for all
` ∈ LC(E,C), where LC(E,C) denotes the space of C-linear maps.

Proof. (⇒) Let ` ∈ LC(F,C). Then the real and imaginary part Re `, Im ` ∈
LR(F,R) and since by assumption f : K → F is real analytic so are the composites
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Re ` ◦ f and Im ` ◦ f , hence ` ◦ f : K → R2 is real analytic, i.e. ` ◦ f : K → C is
holomorphic.

(⇐) We have to show that ` ◦ f : K → R is real analytic for every ` ∈ LR(F,R).
So let ˜̀ : F → C be defined by ˜̀(x) = i`(x) + `(ix). Then ˜̀ ∈ LC(F,C), since
i˜̀(x) = −`(x) + i`(ix) = ˜̀(ix). Note that ` = Im ◦˜̀. By assumption, ˜̀◦ f : K → C
is holomorphic, hence its imaginary part ` ◦ f : K → R is real analytic. �

26.3. Theorem. Holomorphic maps K → F are often germs.
Let K ⊆ E be a convex subset with non-empty interior in a real Fréchet space E
and let F be a complex convenient vector space such that F ′ carries a Baire topology
as required in 25.1 . Then a map f : EC ⊇ K → F is holomorphic if and only if
it extends to a holomorphic map f̃ : K̃ → F for some neighborhood K̃ of K in EC.

Proof. Using 25.9 we conclude that f extends to a holomorphic map f̃ : K̃ → FC

for some neighborhood K̃ of K in EC. The map pr : FC → F , given by pr(x, y) =
x+ iy ∈ F for (x, y) ∈ F 2 = F ⊗R C, is C-linear and restricted to F × {0} = F it
is the identity. Thus, pr ◦f̃ : K̃ → FC → F is a holomorphic extension of f .

Conversely, let f̃ : K̃ → F be a holomorphic extension to a neighborhood K̃ of K.
So it is enough to show that the holomorphic map f̃ is real analytic. By 7.19 it
is smooth. So it remains to show that it is real analytic. For this it is enough to
consider a topological real analytic curve in K̃ by 10.4 . Such a curve is extendable
to a holomorphic curve c̃ by 9.5 , hence the composite f̃ ◦ c̃ is holomorphic and its
restriction f̃ ◦ c to R is real analytic. �

26.4. Definition. (Holomorphic maps on complex vector spaces)
Let K ⊆ E be a convex subset with non-empty interior in a complex convenient
vector space. And map f : E ⊇ K → F is called holomorphic iff it is real analytic
and the derivative f ′(x) is C-linear for all x ∈ Ko.

26.5. Theorem. Holomorphic maps are germs.
Let K ⊆ E be a convex subset with non-empty interior in a complex convenient
vector space. Then a map f : E ⊇ K → F into a complex convenient vector space
F is holomorphic if and only if it extends to a holomorphic map defined on some
neighborhood of K in E.

Proof. Since f : K → F is real analytic, it extends by 25.9 to a real analytic map
f̃ : E ⊇ U → F , where we may assume that U is connected with K by straight
line segments. We claim that f̃ is in fact holomorphic. For this it is enough to
show that f ′(x) is C-linear for all x ∈ U . So consider the real analytic mapping
g : U → F given by g(x) := if ′(x)(v) − f ′(x)(iv). Since it is zero on Ko it has to
be zero everywhere by the uniqueness theorem. �

26.6. Remark. (There is no definition for holomorphy analogous to 25.7 )
In order for a map K → F to be holomorphic it is not enough to assume that all
composites f ◦ c for holomorphic c : D→ K are holomorphic, where D is the open
unit disk. Take as K the closed unit disk, then c(D) ∩ ∂K = φ. In fact let z0 ∈ D
then c(z) = (z − z0)n(cn + (z − z0)

∑
k>n ck(z − z0)k−n−1) for z close to z0, which

covers a neighborhood of c(z0). So the boundary values of such a map would be
completely arbitrary.

26.7. Lemma. Holomorphy is a bornological concept.
Let Tα : E → Eα be a family of bounded linear maps that generates the bornology

170 Andreas Kriegl , Univ.Wien, June 4, 2008



26. Holomorphic Mappings on Non-Open Domains 26.8

on E. Then a map c : K → F is holomorphic if and only if all the composites
Tα ◦ c : I → Fα are holomorphic.

Proof. It follows from 25.6 that f is real analytic. And the C-linearity of f ′(x)
can certainly be tested by point separating linear functionals. �

26.8. Theorem. Exponential law for holomorphic maps.
Let K and L be convex subsets with non-empty interior in complex convenient vector
spaces. Then a map f : K × L → F is holomorphic if and only if the associated
map f∨ : K → H(L,F ) is holomorphic.

Proof. This follows immediately from the real analytic result 25.12 , since the
C-linearity of the involved derivatives translates to each other, since we obviously
have f ′(x1, x2)(v1, v2) = evx2((f

∨)′(x1)(v1)) + (f∨(x1))′(x2)(v2) for x1 ∈ K and
x2 ∈ L. �
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52. Appendix: Functional Analysis

The aim of this appendix is the following. This book needs prerequisites from
functional analysis, in particular about locally convex spaces, which are beyond
usual knowledge of non-specialists. We have used as unique reference the book
[Jarchow, 1981]. In this appendix we try to sketch these results and to connect
them to more widespread knowledge in functional analysis: for this we decided to
use [Schaefer, 1971].

52.1. Basic concepts. A locally convex space E is a vector space together
with a Hausdorff topology such that addition E×E → E and scalar multiplication
R × E → E (or C × E → E) are continuous and 0 has a basis of neighborhoods
consisting of (absolutely) convex sets. Equivalently, the topology on E can be
described by a system P of (continuous) seminorms. A seminorm p : E → R
is specified by the following properties: p(x) ≥ 0, p(x + y) ≤ p(x) + p(y), and
p(λx) = |λ|p(x).
A set B in a locally convex space E is called bounded if it is absorbed by each
0-neighborhood, equivalently, if each continuous seminorm is bounded on B. The
family of all bounded subsets is called the bornology of E. The bornologification of
a locally convex space is the finest locally convex topology with the same bounded
sets, which is treated in detail in 4.2 and 4.4 . A locally convex space is called
bornological if it is stable under the bornologification, see also 4.1 . The ultra-
bornologification of a locally convex space is the finest locally convex topology with
the same bounded absolutely convex sets for which EB is a Banach space.

52.2. Result. [Jarchow, 1981, 6.3.2] & [Schaefer, 1971, I.1.3] The Minkowski
functional qA : x 7→ inf{t > 0 : x ∈ t.A} of a convex absorbing set A containing 0
is a convex function.

A subset A in a vector space is called absorbing if
⋃
{rA : r > 0} is the whole space.

52.3. Result. [Jarchow, 1981, 6.4.2.(3)] For an absorbing radial set U in a locally
convex space E the closure is given by {x ∈ E : qU (x) ≤ 1}, where qU is the
Minkowski functional.

52.4. Result. [Jarchow, 1981, 3.3.1] Let X be a set and let F be a Banach space.
Then the space `∞(X,F ) of all bounded mappings X → F is itself a Banach space,
supplied with the supremum norm.

52.5. Result. [Jarchow, 1981, 3.5.6, p66] & [Schaefer, 1971, I.3.6] A Hausdorff
topological vector space E is finite dimensional if and only if it admits a precompact
neighborhood of 0.

A subset K of E is called precompact if finitely many translates of any neighborhood
of 0 cover K.
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52.6. Result. [Jarchow, 1981, 6.7.1, p112] & [Schaefer, 1971, II.4.3] The absolutely
convex hull of a precompact set is precompact.

A set B in a vector space E is called absolutely convex if λx+ µy ∈ B for x, y ∈ B
and |λ|+ |µ| ≤ 1. By EB we denote the linear span of B in E, equipped with the
Minkowski functional qB . This is a normed space.

52.7. Result. [Jarchow, 1981, 4.1.4] & [Horvath, 1966] A basis of neighborhoods
of 0 of the direct sum C(N) is given by the sets of the form {(zk)k ∈ C(N) : |zk| ≤
εk for all k} where εk > 0.

The direct sum
⊕

iEi, also called the coproduct
∐
iEi of locally convex spaces Ei is

the subspace of the cartesian product formed by all points with only finitely many
non-vanishing coordinates supplied with the finest locally convex topology for which
the inclusions Ej →

∐
iEi are continuous. It solves the universal problem for a

coproduct: For continuous linear mappings fi : Ei → F into a locally convex space
there is a unique continuous linear mapping f :

∐
iEi → F with f ◦ inclj = fj

for all j. The bounded sets in
⊕

iEi are exactly those which are contained and
bounded in a finite subsum. If all spaces Ei are equal to E and the index set is Γ,
we write E(Γ) for the direct sum.

52.8. Result. [Jarchow, 1981, 4.6.1, 4.6.2, 6.6.9] & [Schaefer, 1971, II.6.4 and
II.6.5] Let E be the strict inductive limit of a sequence of locally convex vector spaces
En. Then every En carries the trace topology of E, and every bounded subset of E
is contained in some En, i.e., the inductive limit is regular.

Let E be a functor from a small (index) category into the category of all locally
convex spaces with continuous linear mappings as morphisms. The colimit colimE
of the functor E is the unique (up to isomorphism) locally convex space together
with continuous linear mappings li : E(i) → colimE which solves the following
universal problem: Given continuous linear gi : E(i) → F into a locally convex
space F with gj◦E(f) = gi for each morphism f : i→ j in the index category. Then
there exists a unique continuous linear mapping g : colimE → F with g ◦ li = gi
for all i.

i

f

��

E(i)

E(f)

��

li $$I
IIIIIIII
gi

**UUUUUUUUUUUUUUUUUU

colimE
g // F

j E(j)

lj

::uuuuuuuuu
gj

55kkkkkkkkkkkkkkkkkkk

The colimit is given as the locally convex quotient of the direct sum
∐
iE(i)

by the closed linear subspace generated by all elements of the form incli(x) −
(inclj ◦E(f))(x) for all x ∈ E(i) and f : i → j in the index category. Compare
[Jarchow, 1981, p.82 & p.110], but we force here inductive limits to be Hausdorff.
A directed set Γ is a partially ordered set such that for any two elements there
is another one that is larger that the two. The inductive limit is the colimit of a
functor from a directed set (considered as a small category); one writes lim−→j

Ej for
this. A strict inductive limit is the inductive limit of a functor E on the directed
set N such that E(n < n+ 1) : E(n)→ E(n+ 1) is the topological embedding of a
closed linear subspace.

The dual notions (with the arrows between locally convex spaces reversed) are
called the limit limE of the functor E, and the projective limit lim←−j Ej in the case
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of a directed set. It can be described as the linear subset of the cartesian product∏
iE(i) consisting of all (xi)i with E(f)(xi) = xj for all f : i → j in the index

category.

52.9. Result. [Jarchow, 1981, 5.1.4+11.1.6] & [Schaefer, 1971, III.5.1, Cor. 1]
Every separately continuous bilinear mapping on Fréchet spaces is continuous.

A Fréchet space is a complete locally convex space with a metrizable topology,
equivalently, with a countable base of seminorms. See [Jarchow, 1981, 2.8.1] or
[Schaefer, 1971, p.48].

Closed graph and open mapping theorems. These are well known if Ba-
nach spaces or even Fréchet spaces are involved. We need a wider class of situations
where these theorems hold; those involving webbed spaces. Webbed spaces were
introduced for exactly this reason by de Wilde in his thesis, see [de Wilde, 1978].
We do not give their (quite lengthy) definition here, only the results and the per-
manence properties.

52.10. Result. Closed Graph Theorem. [Jarchow, 1981, 5.4.1] Any closed
linear mapping from an inductive limit of Baire locally convex spaces into a webbed
locally convex space is continuous.

52.11. Result. Open Mapping Theorem. [Jarchow, 1981, 5.5.2] Any continu-
ous surjective linear mapping from a webbed locally convex space into an inductive
limit of Baire locally convex spaces vector spaces is open.

52.12. Result. The Fréchet spaces are exactly the webbed spaces with the Baire
property.

This corresponds to [Jarchow, 1981, 5.4.4] by noting that Fréchet spaces are Baire.

52.13. Result. [Jarchow, 1981, 5.3.3] Projective limits and inductive limits of
sequences of webbed spaces are webbed.

52.14. Result. The bornologification of a webbed space is webbed.

This follows from [Jarchow, 1981, 13.3.3 and 5.3.1.(d)] since the bornologification
is coarser that the ultrabornologification, [Jarchow, 1981, 13.3.1].

52.15. Definition. [Jarchow, 1981, 6.8] For a zero neighborhood U in a locally
convex vector space E we denote by Ẽ(U) the completed quotient of E with the
Minkowski functional of U as norm.

52.16. Result. Hahn-Banach Theorem. [Jarchow, 1981, 7.3.3] Let E be a
locally convex vector space and let A ⊂ E be a convex set, and let x ∈ E be not in
the closure of A. Then there exists a continuous linear functional ` with `(x) not
in the closure of `(A).

This is a consequence of the usual Hahn-Banach theorem, [Schaefer, 1971,II.9.2]

52.17. Result. [Jarchow, 1981, 7.2.4] Let x ∈ E be a point in a normed space.
Then there exists a continuous linear functional x′ ∈ E∗ of norm 1 with x′(x) =
‖x‖.

This is another consequence of the usual Hahn-Banach theorem, cf. [Schaefer, 1971,
II.3.2].

Andreas Kriegl , Univ.Wien, June 4, 2008 175



52.26 52. Appendix: Functional Analysis

52.18. Result. Bipolar Theorem. [Jarchow, 1981, 8.2.2] Let E be a locally
convex vector space and let A ⊂ E. Then the bipolar Aoo in E with respect to the
dual pair (E,E∗) is the closed absolutely convex hull of A in E.

For a duality 〈 , 〉 between vector spaces E and F and a set A ⊆ E the polar
of A is Ao := {y ∈ F : |〈x, y〉| ≤ 1 for all x ∈ A}. The weak topology σ(E,F ) is
the locally convex topology on E generated by the seminorms x 7→ |〈x, y〉| for all
y ∈ F .

52.19. Result. [Schaefer, 1971, IV.3.2] A subset of a locally convex vector space
is bounded if and only if every continuous linear functional is bounded on it.

This follows from [Jarchow, 1981, 8.3.4], since the weak topology σ(E,E′) and the
given topology are compatible with the duality, and a subset is bounded for the
weak topology, if and only if every continuous linear functional is bounded on it.

52.20. Result. Alaoğlu-Bourbaki Theorem. [Jarchow, 1981, 8.5.2 & 8.5.1.b]
& [Schaefer, 1971, III.4.3 and II.4.5] An equicontinuous subset K of E′ has compact
closure in the topology of uniform convergence on precompact subsets; On K the
latter topology coincides with the weak topology σ(E′, E).

52.21. Result. [Jarchow, 1981, 8.5.3, p157] & [Schaefer, 1971, III.4.7] Let E be
a separable locally convex vector space. Then each equicontinuous subset of E′ is
metrizable in the weak∗ topology σ(E′, E).

A topological space is called separable if it contains a dense countable subset.

52.22. Result. Banach Dieudonné theorem. [Jarchow, 1981, 9.4.3, p182] &
[Schaefer, 1971, IV.6.3] On the dual of a metrizable locally convex vector space E
the topology of uniform convergence on precompact subsets of E coincides with the
so-called equicontinuous weak∗-topology which is the final topology induced by the
inclusions of the equicontinuous subsets.

52.23. Result. [Jarchow, 1981, 10.1.4] In metrizable locally convex spaces the
convergent sequences coincide with the Mackey-convergent ones.

For Mackey convergence see 1.6 .

52.24. Result. [Jarchow, 1981, 10.4.3, p202] & [Horvath, 1966, p277] In Schwartz
spaces bounded sets are precompact.

A locally convex space E is called Schwartz if each absolutely convex neighborhood
U of 0 in E contains another one V such that the induced mapping E(U) → E(V )

maps U into a precompact set.

52.25. Result. Uniform boundedness principle. [Jarchow, 1981, 11.1.1]
([Schaefer, 1971, IV.5.2] for F = R) Let E be a barrelled locally convex vector
space and F be a locally convex vector space. Then every pointwise bounded set of
continuous linear mappings from E to F is equicontinuous.

Note that each Fréchet space is barrelled, see [Jarchow, 1981, 11.1.5].

A locally convex space is called barrelled if each closed absorbing absolutely convex
set is a 0-neighborhood.

52.26. Result. [Jarchow, 1981, 11.5.1, 13.4.5] & [Schaefer, 1971, IV.5.5] Montel
spaces are reflexive.
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By a Montel space we mean (following [Jarchow, 1981, 11.5]) a locally convex vector
space which is barrelled and in which every bounded set is relatively compact. A
locally convex space E is called reflexive if the canonical embedding of E into the
strong dual of the strong dual of E is a topological isomorphism.

52.27. Result. [Jarchow, 1981, 11.6.2, p231] Fréchet Montel spaces are separable.

52.28. Result. [Jarchow, 1981, 12.5.8, p266] In the strong dual of a Fréchet
Schwartz space every converging sequence is Mackey converging.

The strong dual of a locally convex space E is the dual E∗ of all continuous linear
functionals equipped with the topology of uniform convergence on bounded subsets
of E.

52.29. Result. Fréchet Montel spaces have a bornological strong dual.

Proof. By [5, 7.4.21] a Fréchet Montel space E is reflexive, thus it’s strong dual
E′β is also reflexive by [Jarchow, 1981, 11.4.5.(f)]. So it is barrelled by [Jarchow,
1981, 11.4.2]. By [Jarchow, 1981, 13.4.4] or [Schaefer, 1971, IV.6.6] the strong dual
E′β of a metrizable locally convex vector space E is bornological if and only if it is
barrelled and the result follows. �

52.30. Result. [Jarchow, 1981, 13.5.1] Inductive limits of ultra-bornological spaces
are ultra-bornological.

Similar to the definition of bornological spaces in 4.1 we define ultra-bornological
spaces, see [Jarchow, 1981, 13.1.1]. A bounded completant set B in a locally convex
vector space E is an absolutely convex bounded set B for which the normed space
(EB , qB) is complete. A locally convex vector space E is called ultra-bornological if
the following equivalent conditions are satisfied:

(1) For any locally convex vector space F a linear mapping T : E → F is
continuous if it is bounded on each bounded completant set. It is sufficient
to know this for all Banach spaces F .

(2) A seminorm on E is continuous if it is bounded on each bounded comple-
tant set.

(3) An absolutely convex subset is a 0-neighborhood if it absorbs each boun-
ded completant set.

52.31. Result. [Jarchow, 1981, 13.1.2] Every ultra-bornological space is an induc-
tive limit of Banach spaces.

In fact, E = lim−→B
EB where B runs through all bounded closed absolutely convex

sets in E. Compare with the corresponding result 4.2 for bornological spaces.

52.32. Nuclear Operators. A linear operator T : E → F between Banach
spaces is called nuclear or trace class if it can be written in the form

T (x) =
∞∑
j=1

λj〈x, xj〉yj ,

where xj ∈ E′, yj ∈ F with ‖xj‖ ≤ 1, ‖yj‖ ≤ 1, and (λj)j ∈ `1. The trace of T is
then given by

tr(T ) =
∞∑
j=1

λj〈yj , xj〉.

Andreas Kriegl , Univ.Wien, June 4, 2008 177



52.37 52. Appendix: Functional Analysis

The operator T is called strongly nuclear if (λj)j ∈ s is rapidly decreasing.

52.33. Result. [Jarchow, 1981, 20.2.6] The dual of the Banach space of all trace
class operators on a Hilbert space consists of all bounded operators. The duality is
given by 〈T,B〉 = tr(TB) = tr(BT ).

52.34. Result. [Jarchow, 1981, 21.1.7] Countable inductive limits of strongly nu-
clear spaces are again strongly nuclear. Products and subspaces of strongly nuclear
spaces are strongly nuclear.

A locally convex space E is called nuclear (or strongly nuclear) if each absolutely
convex 0-neighborhood U contains another one V such that the induced mapping
Ẽ(V ) → Ẽ(U) is a nuclear operator (or strongly nuclear operator). A locally convex
space is (strongly) nuclear if and only if its completion is it, see [Jarchow, 1981,
21.1.2]. Obviously, a nuclear space is a Schwartz space 52.24 since a nuclear op-
erator is compact. Since nuclear operators factor over Hilbert spaces, see [Jarchow,
1981, 19.7.5], each nuclear space admits a basis of seminorms consisting of Hilbert
norms, see [Schaefer, 1971, III.7.3].

52.35. Grothendieck-Pietsch criterion. Consider a directed set P of non-
negative real valued sequences p = (pn) with the property that for each n ∈ N there
exists a p ∈ P with pn > 0. It defines a complete locally convex space (called Köthe
sequence space)

Λ(P) := {x = (xn)n ∈ KN : p(x) :=
∑
n

pn|xn| <∞ for all p ∈ P}

with the specified seminorms.

Result. [Jarchow, 1981, 21.8.2] & [Treves, 1967, p. 530] The space Λ(P) is nuclear
if and only if for each p ∈ P there is a q ∈ P with(

pn
qn

)
n

∈ `1.

The space Λ(P) is strongly nuclear if and only if for each p ∈ P there is a q ∈ P
with (

pn
qn

)
n

∈
⋂
r>0

`r.

52.36. Result. [Jarchow, 1981, 21.8.3.b] H(Dk,C) is strongly nuclear for all k.

Proof. This is an immediate consequence of the Grothendieck-Pietsch criterion
52.35 by considering the power series expansions in the polycylinder Dk at 0. The

set P consists of r(n1, . . . , nk) := rn1+···+nk for all 0 < r < 1. �

52.37. Silva spaces. A locally convex vector space which is an inductive limit
of a sequence of Banach spaces with compact connecting mappings is called a Silva
space. A Silva space is ultra-bornological, webbed, complete, and its strong dual is
a Fréchet space. The inductive limit describing the Silva space is regular. A Silva
space is Baire if and only if it is finite dimensional. The dual space of a nuclear
Silva space is nuclear.

Proof. Let E be a Silva space. That E is ultra-bornological and webbed follows
from the permanence properties of ultra-bornological spaces 52.30 and of webbed
spaces [5, 5.3.3]. The inductive limit describing E is regular and E is complete by
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[Floret, 1971, 7.4 and 7.5]. The dual E′ is a Fréchet space since E has a countable
base of bounded sets as a regular inductive limit of Banach spaces. If E is nuclear
then the dual is also nuclear by [Jarchow, 1981, 21.5.3].

If E has the Baire property, then it is metrizable by [5, 5.3.3]. But a metrizable
Silva space is finite dimensional by [Floret, 1971, 7.7]. �
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53. Appendix: Projective Resolutions of Identity
on Banach spaces

One of the main tools for getting results for non-separable Banach spaces is that of
projective resolutions of identity. The aim is to construct transfinite sequences of
complemented subspaces with separable increment and finally reaching the whole
space. This works for Banach spaces with enough projections onto closed subspaces.
We will give an account on this, following [Orihuela, Valdivia, 1989]. The results in
this appendix are used for the construction of smooth partitions of unity in theorem
16.18 and for obtaining smooth realcompactness in example 19.7

53.1. Definition. Let E be a Banach space, A ⊆ E and B ⊆ E′ Q-linear
subspaces. Then (A,B) is called norming pair if the following two conditions are
satisfied:

∀x ∈ A : ‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
∀x∗ ∈ B : ‖x∗‖ = sup{|〈x, x∗〉| : x ∈ A, ‖x‖ ≤ 1}.

53.2. Proposition. Let (A,B) be a norming pair on a Banach space E. Then

(1) (Ā, B̄) is a norming pair.
(2) Let A0 ⊆ A, B0 ⊆ B, ω ≤ |A0| ≤ λ, and ω ≤ |B0| ≤ λ for some cardinal

number λ.
Then there exists a norming pair (Ã, B̃) with A0 ⊆ Ã ⊆ A, B0 ⊆ B̃ ⊆ B,
|Ã| ≤ λ and |B̃| ≤ λ.

(3)

x ∈ A, y ∈ Bo ⇒ ‖x‖ ≤ ‖x+ y‖, in particular A ∩Bo = {0}
x∗ ∈ Ao, y∗ ∈ B ⇒ ‖y∗‖ ≤ ‖y∗ + x∗‖, in particular Ao ∩B = {0}.

Proof. ( 1 ) Let x ∈ Ā and ε > 0. Thus there is some a ∈ A with ‖x− a‖ ≤ ε and
we get

‖x‖ ≤ ‖x− a‖+ ‖a‖ ≤ ε+ sup{|〈a, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
≤ ε+ sup{|〈a− x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}

+ sup{|〈x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
≤ ε+ ‖a− x‖+ sup{|〈x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
≤ 2ε+ ‖x‖,

and for ε→ 0 we get the first condition of a norming pair. The second one is shown
analogously.

( 2 ) For every x ∈ A and y∗ ∈ B choose a countable sets ψ(x) ⊆ B and ϕ(y∗) ⊆ A
such that

‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ ψ(x)} and ‖y∗‖ = sup{|〈y, y∗〉 : y ∈ ϕ(y∗)}
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By recursion on n we construct subsets An ⊆ A and Bn ⊆ B with |An| ≤ λ and
|Bn| ≤ λ:

Bn+1 := 〈Bn〉Q ∪ {ψ(x) : x ∈ 〈An〉Q}
An+1 := 〈An〉Q ∪ {ϕ(x∗) : x∗ ∈ 〈Bn〉Q}.

Finally let Ã :=
⋃
n∈N An and B̃ :=

⋃
n∈N Bn. Then (Ã, B̃) is the required norming

pair. In fact for x ∈ An we have that

‖x‖ = sup{|〈x, x∗〉| : x ∈ ψ(x)} ≤ sup{|〈x, x∗〉| : x ∈ Bn+1} ≤ ‖x‖

Note that ϕ(B̃) :=
⋃
b∈B̃ ϕ(b) ⊆ Ã.

( 3 ) We have

‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
= sup{|〈x+ y, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
≤ sup{|〈x+ y, x∗〉| : ‖x∗‖ ≤ 1} = ‖x+ y‖

and analogously for the second inequality. �

53.3. Proposition. Let (A,B) be a norming pair on a Banach space E consisting
of closed subspaces. It is called conjugate pair if one of the following equivalent
conditions is satisfied.

(1) There is a projection P : E → E with image A, kernel Bo and ‖P‖ = 1;
(2) E = A+Bo;

(3) {0} = Ao ∩B σ(E′,E)
;

(4) The canonical mapping A ↪→ E ∼= (E′, σ(E′, E))′ → (B, σ(B,E))′ is onto.

Proof. We have the following commuting diagram:

Bo � p

ker δ

  A
AA

AA
AA

A

{0} � o

  @
@@

@@
@@

?�

OO

E // // //

δ

%% %%

(E′, σ(E′, E))′

����

E′

A
?�

OO

//
δ|A
// (B, σ(B,E))′ B

?�

OO

( 1 )⇒( 2 ) is obvious.

( 2 )⇔( 3 ) follows immediately from duality.

( 2 )⇒( 4 ) Let z ∈ (B, σ(B,E))′. By Hahn-Banach there is some x ∈ E with
x|B = z. Let x = a+ b with a ∈ A and b ∈ Bo. Then a|B = x|B = z.

( 4 )⇒( 1 ) By ( 4 ) the mapping δ : A ↪→ E ∼= (E′, σ(E′, E))′ → (B, σ(B,E))′ is
bijective, since A ∩ Bo = {0}, and hence we may define P (x) := δ−1(x|B). Then
P is the required norm 1 projection, since δ : x 7→ x|B has norm ≤ 1 and δA has
norm 1 since (A,B) is norming. �

53.4. Corollary. Let E be a reflexive Banach space. Then any norming pair
(A,B) of closed subspaces is a conjugate pair.

Proof. In fact we then have

Ao ∩B σ(E′,E)
= Ao ∩B ‖ ‖

= Ao ∩B = {0},
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since the dual of (E′, σ(E′, E)) is E and equals E′′ the dual of (E′, ‖ ‖). By
[Jarchow, 1981, 8.2.5] convex subsets as B have the same closure in these two
topologies. �

53.5. Definition. A projective generator ϕ for a Banach space E is a mapping
ϕ : E′ → 2E for which

(1) ϕ(x∗) is a countable subset of {x ∈ E : ‖x‖ ≤ 1} for all x∗ ∈ E′;
(2) ‖x∗‖ = sup{|〈x, x∗〉| : x ∈ ϕ(x∗)};
(3) If (A,B) is norming, with ϕ(B) :=

⋃
b∈B ϕ(b) ⊆ A, then (Ā, B̄) is a

conjugate pair.

Note that the first two conditions can be always obtained.

We say that the projection P defined by 53.3 for (Ā, B̄) is based on the norming
pair (A,B), i.e. P (E) = Ā and ker(P ) = Bo = B̄o.

53.6. Corollary. Every reflexive Banach space has a projective generator ϕ.

Proof. Just choose any ϕ satisfying 53.5.1 and 53.5.2 . Then 53.5.3 is by
53.2.1 and 53.4 automatically satisfied. �

53.7. Theorem. Let ϕ be a projective generator for a Banach space E. Let
A0 ⊆ E and B0 ⊆ E′ be infinite sets of cardinality at most λ.

Then there exists a norm 1 projection P based on a norming pair (A,B) with
A0 ⊆ A, B0 ⊆ B, |A| ≤ λ, |B| ≤ λ and ϕ(B) ⊆ A.

Proof. By 53.2.3 there is a norming pair (A,B) with

A0 ⊆ A, B0 ⊆ B, |A| ≤ λ, |B| ≤ λ.

Note that in the proof of 53.2.3 we used some map ϕ, and we may take the
projective generator for it. Thus we have also ϕ(B) ⊆ A. By condition 53.5.3 of
the projective generator we thus get that the projection based on (A,B) has the
required properties. �

53.8. Proposition. Every WCD Banach space has a projective generator.

A Banach space E is called WCD (weakly compactly determined) if and only if there
exists a sequence Kn of weak∗-compact subsets of E′′ such that for every

∀x ∈ E ∀y ∈ E′′ \ E ∃n : x ∈ Kn and y /∈ Kn.

Every WCG Banach space is WCD:
In fact let K be weakly compact (and absolutely convex) such that

⋃
n∈N K is

dense in E. Note that (E, σ(E,E′)) embeds canonically into (E′′, σ(E′′, E′)). Let
Kn,m := nK + 1

m{x ∈ E′′ : ‖x‖ ≤ 1}. Then Kn,m is weak∗-compact, and for
any x ∈ E and y ∈ E′′ \ E there exists an m > 1/dist(y,E) and an n with
dist(x, nK) < 1

m . Hence x ∈ Kn,m and y /∈ E + 1/m {x ∈ E′′ : ‖x‖ ≤ 1} ⊇ Kn,m.
The most important advantage of WCD over WCG Banach spaces are, that they
are hereditary with respect to subspaces.
For any finite sequence n = (n1, . . . , nk) let

Cn1,...,nk
:= E ∩Kn1 ∩ · · · ∩Knk

σ(E′′,E′)
.
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Then these sets are weak∗-compact (since they are contained in Knk
) and if E is

not reflexive, then for every x ∈ E there is a sequence n : N→ N such that

x ∈
∞⋂
k=1

Cn1,...,nk
⊆ E.

In fact choose a surjective sequence n : N → {k : x ∈ Kk}. Then x ∈ Cn1,...,nk

for all k, hence x ∈
⋂∞
k=1 Cn1,...,nk

. If y ∈ E′′ \ E, then there is some k, such that
y /∈ Knk

and hence y /∈ Cn1,...,nk
⊆ Knk

.

Proof of 53.8 . Because of 53.6 we may assume that E is not reflexive. For
every x∗ ∈ E′ we choose a countable set ϕ(x∗) ⊆ {x ∈ E : ‖x‖ ≤ 1} such that

‖x∗‖ = sup{|〈x, x∗〉 : x ∈ ϕ(x∗)} and

sup{|〈x, x∗〉| : x ∈ Cn1,...,nk
} = sup{|〈x, x∗〉| : x ∈ Cn1,...,nk

∩ 〈ϕ(x∗)〉}
for all finite sequences (n1, . . . , nk). We claim that ϕ is a projective generator:
Let (A,B) be a norming pair with ϕ(B) ⊆ A. We use 53.3.3 to show that (Ā, B̄)

is norming. Assume there is some 0 6= y∗ ∈ Ao ∩ B σ(E′,E)
. Thus we can choose

x0 ∈ E with |y∗(x0)| = 1 and a net (y∗i )i in B that converges to y∗ in the Mackey
topology µ(E′, E) (of uniform convergence on weakly compact subsets of E). In fact
this topology on E′ has the same dual E as σ(E′, E) by the Mackey-Arens theorem
[Jarchow, 1981, 8.5.5], and hence the same closure of convex sets by [Jarchow, 1981,
8.2.5]. As before we choose a surjective mapping n : N→ {k : x0 ∈ Kk}. Then

x0 ∈ C :=
∞⋂
k=1

Cn1,...,nk
⊆ E.

and C is weakly compact, hence we find an i0 such that

sup{|y∗i0(x)− y
∗(x)| : x ∈ C} < 1

2

and in particular we have

|y∗i0(x0)| ≥ |y∗(x0)| − |y∗i0(x0)− y∗(x0)| > 1− 1
2 = 1

2 .

Since the sets forming the intersection are decreasing, Cn1 is σ(E′′, E′)-compact
and

W := {x∗∗ ∈ E′′ : |x∗∗(y∗i0 − y
∗)| < 1

2}
is a σ(E′′, E′)-open neighborhood of C there is some k ∈ N such that Cn1,...,nk

⊆W ,
i.e.

sup{|y∗i0(x)− y
∗(x)| : x ∈ Cn1,...,nk

} ≤ 1
2 .

By the definition of ϕ there is some y0 ∈ Cn1,...,nk
∩ 〈ϕ(y∗i0)〉 with |y∗i0(y0)| > 1− 1

2 ,
thus

|y∗(y0)| ≥ |y∗i0(y0)| − |y
∗
i0(y0)− y

∗(y0)| > 1
2 −

1
2 = 0.

Thus y∗(y0) 6= 0 and y0 ∈ 〈ϕ(B)〉 ⊆ A, a contradiction. �

Note that if P ∈ L(E) is a norm-1 projection with closed image A and kernel Bo,
then P ∗ ∈ L(E′) is a norm-1 projection with image P ∗(E) = kerP o = Boo = B
and kernel kerP ∗ = P (E)o = Ao. However not all norm-1 projections onto B can
be obtained in this way. Hence we consider the dual of proposition 53.3 :

53.9. Proposition. Let (A,B) be a norming pair on a Banach space E consisting
of closed subspaces. It is called dual conjugate pair if one of the following equivalent
conditions is satisfied.

(1) There is a norm-1 projection P : E′ → E′ with image B, kernel Ao;
(2) E′ = B ⊕Ao;
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(3) {0} = Bo ∩Aσ(E′′,E′)
;

(4) The canonical mapping B ↪→ E′ −( )|A→ A′ is onto.

Proof. This follows by applying 53.3 to the norming pair (B,A) ⊆ (E′, E′′). �

The dual of definition 53.5 is

53.10. Definition. A dual projective generator ψ for a Banach space E′ is a
mapping ψ : E → 2E

′
for which

(1) ψ(x) is a countable subset of {x∗ ∈ E′ : ‖x∗‖ ≤ 1} for all x ∈ E;
(2) ‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ ψ(x)};
(3) If (A,B) is norming, with ψ(A) :=

⋃
a∈A ψ(a) ⊆ B, then (Ā, B̄) satisfies

the condition of 53.9 .

Note that the first two conditions can be always obtained.

From 53.7 we get:

53.11. Theorem. Let ψ be a dual projective generator for a Banach space E. Let
A0 ⊆ E and B0 ⊆ E′ be infinite sets of cardinality at most λ.
Then there exists a norm 1 projection P in E′ with A0 ⊆ P ∗(E′′), B0 ⊆ P (E′),
|P ∗(E′′)| ≤ λ, |P (E′)| ≤ λ.

53.12. Proposition. A Banach space E is Asplund if and only if there exists a
dual projective generator on E.

Note that if P is a norm-1 projection, then so is P ∗. But not all norm-1 projections
on the dual are of this form.

Proof. (⇐) Let ψ be a dual projective generator for E. Let A0 be a separable
subspace of E. By 53.11 there is a separable subspace A of E and a norm-1
projection P of E′ such that A0 ⊇ A, P (E′) is separable and isomorphic with A′

via the restriction map. Hence A′ is separable and also A′0. By [Stegall, 1975] E is
Asplund.

(⇒) Consider the ‖ ‖-weak∗ upper semi-continuous mapping φ : X → 2{x
∗:‖x∗‖≤1}

given by
φ(x) := {x∗ ∈ E′ : ‖x∗‖ ≤ 1, 〈x, x∗〉 = ‖x‖}.

By the Jayne-Rogers selection theorem [Jayne, Rogers, 1985], see also [Deville,
Godefroy, Zizler, 1993, section I.4] there is a map f : E → {x∗ ∈ E′ : ‖x∗‖ ≤ 1}
with f(x) ∈ φ(x) for all x ∈ E and continuous fn : E → {x∗ : ‖x∗‖ ≤ 1} ⊆ E′ with
fn(x)→ f(x) in E′ for each x ∈ E. One then shows that

ψ(x) := {f(x), f1(x), . . . }
defines a dual projective generator, see [Orihuela, Valdivia, 1989]. �

53.13. Definition. Projective Resolution of Identity. Let a “long sequence”
of continuous projections Pα ∈ L(E,E) on a Banach space E for all ordinal numbers
ω ≤ α ≤ densE be given. Recall that dens(E) is the density of E (a cardinal
number, which we identify with the smallest ordinal of same cardinality). Let
Eα := Pα(E) and let Rα := (Pα+1 − Pα)/(‖Pα+1 − Pα‖) or 0, if Pα+1 = Pα. Then
we consider the following properties:

(1) PαPβ = Pβ = PβPα for all β ≤ α.
(2) PdensE = IdE .
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(3) densPαE ≤ α for all α.
(4) ‖Pα‖ = 1 for all α.
(5)

⋃
β<α Pβ+1E = PαE, or equivalently

⋃
β<αEβ = Eα for every limit ordi-

nal α ≤ densE.
(6) For every limit ordinal α ≤ densE we have Pα(x) = limβ>α Pβ(x), i.e.

α 7→ Pα(x) is continuous.
(7) Eα+1/Eα is separable for all ω ≤ α < densE.
(8) (Rα(x))α ∈ c0([ω,densE]) for all x ∈ E.
(9) Pα(x) ∈ 〈Pω(x) ∪ {Rβ(x) : ω ≤ β < α}〉.

The family (Pα)α is called projective resolution of identity (PRI ) if it satisfies ( 1 ),
( 2 ), ( 3 ), ( 4 ) and ( 5 ).

It is called separable projective resolution of identity (SPRI ) if it satisfies ( 1 ),
( 2 ), ( 3 ), ( 7 ), ( 8 ) and ( 9 ). These are the only properties used in 53.20 and
they follow for WCD Banach spaces and for duals of Asplund spaces by 53.15 . For
C(K) with Valdivia compact K this is not clear, see 53.18 and 53.19 . However,
we still have 53.21 and in 16.18 we don’t use ( 7 ), but only ( 8 ) and ( 9 ) which
hold also for PRI, see below.

Remark. Note that from ( 1 ) we obtain that P 2
α = Pα and hence ‖Pα‖ ≥ 1, and

Eα := Pα(E) is the closed subspace {x : Pα(x) = x}.
Moreover, PαPβ = Pβ = PβPα for β ≤ α is equivalent to P 2

α = Pα, Pβ(E) ⊆ Pα(E)
and kerPβ ⊇ kerPα.
(⇒) Pβx = PαPβx ∈ Pα(E) and Pαx = 0 implies that Pβx = PβPαx.
(⇐) For x ∈ E there is some y ∈ E with Pβx = Pαy, hence PαPβx = PαPαy =
Pαy = Pβx. And Pβ(1− Pα)x = 0, since (1− Pα)x ∈ kerPα ⊆ kerPβ .

Note that Eα+1/Eα ∼= (Pα+1 − Pα)(E), since Eα → Eα+1 has Pα|Eα+1 as right
inverse, and so Eα+1/Eα ∼= ker(Pα|Eα+1) = (1− Pα)Pα+1(E) = (Pα+1 − Pα)(E).

( 5 ) ⇐ ( 9 ), since for x ∈ Eα we have x = Pα(x) and Eω ∪ {Rβ(x) : β < α} ⊆ Eα
for all α.

( 3 ) ⇐ ( 5 ) & ( 7 ) By transfinite induction we get that for successor ordinals
α = β + 1 we have dens(Eα) = dens(Eβ) + dens(Eα/Eβ) = dens(Eβ) ≤ β ≤ α,
since dens(Eα/Eβ) ≤ ω. For limit ordinals it follows from ( 5 ), since dens(Eα) =
dens(

⋃
β<αEβ) = sup{dens(Eβ) : β < α} ≤ sup{β : β < α} = α.

( 6 ) ⇐ ( 4 ) & ( 1 ) & ( 5 ) For every limit ordinal 0 < α ≤ densE and for all
x ∈ E the net (Pβ(x))β<α converges to Pα(x).
Let first x ∈ Pα(E) and ε > 0. By ( 5 ) there exists a γ < α and an xγ ∈ Pγ(E)
with ‖x − xγ‖ < ε. Hence for γ ≤ β < α we have by ( 1 ) that Pβ(xγ) = Pα(xγ)
and so

‖Pα(x)− Pβ(x)‖ = ‖Pα(x− xγ)|+ ‖Pα(xγ)− Pβ(xγ)| − Pβ(xγ − x)‖
≤ (‖Pα‖+ ‖Pβ‖) ‖x− xγ‖ < 2 ε.

If x ∈ E is arbitrary, then Pα(x) ∈ Pα(E), hence by ( 1 )

Pβ(x) = Pβ(Pα(x))→ Pα(Pα(x)) = Pα(x) for β ↗ α. �

( 8 ) ⇐ ( 1 ) & ( 6 ) Let ε > 0. Then the set {β : β < α, ‖Rβ(x)‖ ≥ ε} is finite,
since otherwise there would be an increasing sequence (βn) such that ‖Rβn

(x)‖ ≥ ε
and since ‖Pα+1 − Pα‖ = ‖(1 − Pα)Pα+1‖ ≥ 1 also ‖(Pβn+1 − Pβn)(x)‖ ≥ ε. Let
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β∞ := supn βn. Then β∞ ≤ α is a limit ordinal and Pβ∞(x) = limβ<β∞ Pβ(x)
according to ( 6 ), a contradiction.

( 9 ) ⇐ ( 6 ) We prove by transfinite induction that Pα(x) is in the closure of the
linear span of {Rβ(x) : ω ≤ β < α} ∪ Pω(x).
For α = ω this is obviously true. Let now α = β + 1 and assume Pβ(x) is in
the closure of the linear span of {Rγ(x) : ω ≤ γ < β} ∪ Pω(x). Since Pα(x) =
Pβ(x) + ‖Pα − Pβ‖Rβ(x) we get that Pα(x) is in the closure of the linear span of
{Rγ(x) : ω ≤ γ < α} ∪ Pω(x).
Let now α be a limit ordinal and let Pβ(x) be in the closure of the linear span
of {Rγ(x) : ω ≤ γ < α} ∪ Pω(x) for all β < α. Then by ( 6 ) we get that
Pα(x) = limβ<α Pβ(x) is in this closure as well.

Proposition. Suppose all complemented subspaces of a Banach space E have PRI
then E has a SPRI.

Proof. We proceed by induction on µ := densE. For µ = ω nothing is to be
shown. Now let (Pα)0≤α≤µ be a PRI of E. For every α < µ we have α+1 < µ and
so µα := dens((Pα+1 − Pα)(E)) ≤ dens(Pα+1(E)) ≤ α < µ, hence there is a SPRI
(Pαβ )0≤β<µα of (Pα+1 − Pα)(E). Now consider

Pα,β := Pα + Pαβ (Pα+1 − Pα) = (Pα + Pαβ (1− Pα))Pα+1

for ω ≤ α < µ and ω ≤ β ≤ µα with the lexicographical ordering. This is a
well-ordering and since the cardinality of µ2 is µ and µα < µ it corresponds to the
ordinal segment [ω, µ). In fact for any limit ordinal α > ω we have

|[ω, α)| =
∑

ω≤β<α

1 ≤
∑

ω≤β<α

|[ω, µα)| ≤ |[ω, α)|2 ≤ |[ω, α)|.

Obviously the Pα,β are projections that satisfy ( 1 ) and ( 3 ).
( 1 ) For Pα,β with the same α this follows from ( 1 ) for Pαβ : Rα(E)→ Rα(E): In
fact

Pα,β Pα,β′ :=
(
Pα + Pαβ (Pα+1 − Pα)

)(
Pα + Pαβ′(Pα+1 − Pα)

)
= P 2

α + Pαβ (Pα+1 − Pα)Pα + PαP
α
β′(Pα+1 − Pα)

+ Pαβ (Pα+1 − Pα)Pαβ′(Pα+1 − Pα)

= P 2
α + 0 + 0 + Pαmin{β,β′}(Pα+1 − Pα)

For different α this follows, since Pα1,βE ⊆ Pα1+1E ⊆ Pα2 and

PαE ⊆ Pα,β ⊆ Pα+1

kerPα ⊇ kerPα,β = ker(Pα + Pαβ (1− Pα))Pα+1 ⊇ kerPα+1

( 3 ) The density of Pα,βE is less or equal to α+ 1.
And clearly they satisfy ( 7 ) as well, since Rα,β = Rαβ (Pα+1 − Pα).
( 9 ) Since this is true for the Pα and the P βα it follows for Pα,β as well.
In fact Pα,β(x) belongs to the closure of the linear span of Pα(x) and the Rα,β′ =
Rαβ′(Pα+1−Pα)(x) for β′ < β by the property of the Pαβ . Furthermore Pα(x) belongs
to the closure of the linear span of Rα′(x) for α′ < α and Pω(x) by the property of
the Pα and Rα′(x) belongs to the closure of the linear span of all Rα

′

β (Rα′x) for all
β < densRα′E.
( 8 ) For x in the linear span of all Rα,βE we obviously have that (Rα,β(x))α,β ∈ c0.
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In fact for x :=
∑n
i=1 λ

iRαi,βi(xi), we have that Rαi,βi(x) = λiRαi,βi(xi) and
Rα,β(x) = 0 for all (α, β) /∈ {(α1, β1), . . . , (αn, βn)}.

RαRβ = (Pα+1 − Pα)(Pβ+1 − Pβ) = (1− Pα)Pα+1Pβ+1(1− Pβ) = 0,

if α+1 ≤ β or β+1 ≤ α, since the factors commute. For general x we find by ( 9 )
a point x̃ in the linear span of the Rα,βx with ‖x− x̃‖ < ε. Then

{(α, β) : ‖Rα,β(x)‖ ≥ ε} ⊆ {(α1, β1), . . . , (αn, βn)}.

Note however that we don’t have ‖Pα,β‖ = 1. �

53.14. Theorem. Let E be a Banach space with projective generator ϕ. Then E
admits a PRI (Pα)α, where each Pα is based on a norming pair (Aα, Bα) with

(1) |Aα| ≤ α, |Bα| ≤ α for all α;
(2) Aβ ⊆ Aα and Bβ ⊆ Bα for all β ≤ α;
(3)

⋃
ω≤β<αAβ = Aα for all limit ordinals α;

(4)
⋃
ω≤β<αBβ = Bα for all limit ordinals α;

Proof. Choose a dense subset {xα : α < densE}. We construct by transfinite
recursion for every ordinal α ≤ densE a norming pair (Aα, Bα) with

Aα ⊇ {xβ : β < α}, |Aα| ≤ α, |Bα| ≤ α, ϕ(Bα) ⊆ Aα
Aβ ⊆ Aα and Bβ ⊆ Aα for β ≤ α.

For the ordinal ω let A0 := {xα : α < ω} and let B0 be a countable subset of E′

such that
‖x‖ = sup{|〈x, x∗〉 : x∗ ∈ B0} for all x ∈ A0.

By 53.7 there is a norming pair (Aω, Bω) with |Aω|, |Bω| ≤ ω, Aω ⊇ A0, Bω ⊇ B0

and ϕ(Bω) ⊆ Aω.

If α is a successor ordinal, i.e. α = β + 1, then let A0 := Aβ ∪ {xβ} and B0 := Bβ .
Again by 53.7 we get a norming pair (Aα, Bα), such that

A0 ⊆ Aα, B0 ⊆ Bα ⊆ E′, |Aα| ≤ α, |Bα| ≤ α, ϕ(Bα) ⊆ Aα

If α is a limit ordinal, we set

Aα :=
⋃
β<α

Aβ

Bα :=
⋃
β<α

Bβ ⊆ E′.

Then obviously (Aα, Bα) is a norming pair with ϕ(Bα) ⊆ Aα.

Now using the property of the projective generator ϕ we have that there are norm-1
projections Pα ∈ L(E) with Pα(E) = Aα and kerPα = (Bα)o = (Bα)o. Hence

53.13.1 PαPβ = Pβ = PβPα for β ≤ α

53.13.3 densPαE ≤ α, densP ∗α(E′)σ ≤ α,

53.13.5 Pα(E) = Aα =
⋃
β<α

PβE

53.13.4 ‖Pα‖ = 1

188 Andreas Kriegl , Univ.Wien, June 4, 2008



53. Appendix: Projective Resolutions of Identity on Banach spaces53.18

and since {xα : α < densE} is dense in E we also have 53.13.2 . Furthermore we
have that Bα is weak∗-dense in P ∗αE

′. �

53.15. Corollary. WCD and duals of Asplund spaces have SPRI. �

53.16. Definition. A compact set K is called Valdivia compact if there exists
some set Γ with K ⊆ RΓ and {x ∈ K : carr(x) is countable} being dense in K.

53.17. Lemma. For a Valdivia compact set K ⊆ RΓ we consider the set E :=
{x ∈ RΓ : carr(x) is countable}. Let µ be the density number of K ∩E. Then there
exists an increasing long sequence of subsets Γα ⊆ Γ for ω ≤ α ≤ µ satisfying:

(i) |Γα| ≤ α;
(ii)

⋃
β<α Γβ = Γα for limit ordinals α;

(iii) Γµ =
⋃
cup{carr(x) : x ∈ K};

and such that Kα := QΓα
(K) ⊆ K, where QΓ′ : RΓ → RΓ′ ↪→ RΓ, i.e.

QΓ′(x)γ :=

{
xγ for γ ∈ Γ′

0 for γ /∈ Γ \ Γ′
.

Thus Kα ⊆ K is a retract via QΓα
.

Note that for any Valdivia compact set K ⊆ RΓ we may always replace Γ by⋃
{carr(x) : x ∈ K} =

⋃
{carr(x) : x ∈ K ∩ E}, and then (iii) says Γµ = Γ.

Proof. The proof is based on the following claim: Let ∆ ⊆ Γ be a infinite subset.
Then there exists some subset ∆̃ with ∆ ⊆ ∆̃ ⊆ Γ and |∆| = |∆̃| and Q∆̃(K) ⊆ K.
By induction we construct a sequence ∆ =: ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆k ⊆ · · · ⊆ Γ with
|∆k| = |∆0| and Q∆k

({x ∈ K ∩ E : carr(x) ⊆ ∆k+1}) being dense in Q∆k
(K):

(k+1) Since K ∩E is dense in K, we have that Q∆k
(K ∩E) is dense in Q∆k

(K) ⊆
R∆k × {0} ⊆ RΓ. And since the topology of R∆k has a basis of cardinality |∆k|,
there is a subset D ⊆ K ∩ E with |D| ≤ |∆k| and Q∆k

(D) dense in Q∆k
(K). Let

∆k+1 := ∆k ∪
⋃
x∈D carr(x) then ∆k+1 ⊇ ∆k and |∆k+1| = |∆k|. Furthermore

Q∆k
({x ∈ K ∩ E : carr(x) ⊆ ∆k+1}) ⊇ Q∆k

(D) is dense in Q∆k
(K).

Now ∆̃ :=
⋃
k ∆k is the required set. In order to show that Q∆̃(K) ⊆ K let x ∈ K

be arbitrary. Since Q∆k
(x) is contained in the closure of Q∆k

({xk ∈ K ∩ E :
carr(xk) ⊆ ∆k+1}) and hence in the closed set Q∆k

({xk ∈ K : carr(xk) ⊆ Γ̃}).
Thus there is an xk ∈ K with carr(xk) ⊆ Γ̃ and such that x agrees with xk on ∆k.
Thus K 3 xk → Q∆̃(x), since every finite subset of ∆̃ is contained in some ∆k and
outside ∆̃ all xk and Q∆̃(x) are zero. Since K is closed we get Q∆̃(x) ∈ K.

Without loss of generality we may assume that µ > ω. Let {xα : ω ≤ α < µ} be a
dense subset of K ∩ E. Let Γω := carr(xω). By transfinite induction we define

Γα :=

{
(Γβ ∪ carr(xβ))∼ for α = β + 1,⋃
β<α Γβ for limit ordinals α.

Then the Γα satisfy all the requirements. �

53.18. Corollary. Let K be Valdivia compact. Then C(K) has a PRI.
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Proof. We choose Γα as in 53.17 and set Kα := QΓα(K). Let Qα := QΓα |K .
Then Qα is a continuous retraction.

Kα � r

incl
%%J

JJJJJJJJ
IdKα // Kα

K

Qα

99 99tttttttttt

C(Kα) C(Kα)Idoo
lL

Q∗αzzuuuuuuuu

����
C(K)

incl∗

ddddIIIIIIIII

Eα_?
oo

We have dens(C(RΓα)) = |α|, since we have a base of the topology of this space of
that cardinality. Hence dens(C(Kα)) ≤ |α|. Let Eα := (Qα)∗(C(Kα)). Then Eα is
a closed subspace of C(K) and 53.13.3 holds. Furthermore Pα := Qα ◦ incl∗Kα

is
a norm-1 projection from C(K) to Eα. The inclusion Γα ⊆ Γβ for α ≤ β implies
53.13.1 . To see 53.13.6 and 53.13.5 let ε > 0 and choose a finite covering of
Kα by sets

Uj := {x ∈ RΓα : |xγ − xjγ | < δj for all γ ∈ ∆j},
where xj ∈ RΓα , δj > 0 and ∆j ⊆ Γα is finite and such that for x′, x′′ ∈ Uj ∩K
we have |f(x′)− f(x′′)| < ε. Now choose α0 < α such that Γα0 ⊇ ∆j for all of the
finitely many j. Since the Uj cover Kα, we have x ∈ Kα ∩Uj for some j and hence
Qβ(x) ∈ Kα ∩ Uj for all α0 ≤ β < α. Hence |f(x)− f(Qβ(x))| < ε for all x ∈ Kα

and so ‖Pα(f)− Pβ(f)‖ = ‖(1− Pβ)Pα(f)‖ ≤ ε. Thus we have shown that E has
a PRI (Pα)α, with all Eα ∼= C(Kα) and dens(Kα) ≤ |Γα| ≤ α. �

53.19. Remark. The space C([0, α]) has a PRI given by

Pβ(f)(µ) :=

{
f(µ) for µ ≤ β
f(β) for µ ≥ β

.

However, there is no PRI on the hyperplane E := {f ∈ C([0, ω1]) : f(ω1) = 0} of
the space C[0, ω1]. And, in particular, C[0, ω1] is not WCD.

Proof. Assume {Pα : ω ≤ α ≤ ω1} is a PRI on E. Put α0 := ω0. We may find
β0 < ω1 with

Pα0E ⊆ Eβ0 := {f ∈ E : f(α) = 0 for α > β0},
because for each f in dense countable subset D ⊆ Pα0E we find a βf with f(α) = 0
for α ≥ βf . Since Eβ0 is separable, there is an α0 < α1 < ω1 such that

Eβ0 ⊆ Pα1E,

in fact D ⊆ Eβ0 is dense and hence for each f ∈ D and n ∈ N there exists an
αf,n < ω1 and f̃ ∈ Pαf,n

E such that ‖f − f̃‖ ≤ 1/n. Then α1 := sup{αf,n : n ∈
N, f ∈ D} fulfills the requirements.

Now we proceed by induction. Let α∞ := supn αn and β∞ := supn βn. Then

Pα∞E =
⋃
n

PαnE = Fβ∞ := {f ∈ E : f(α) = 0 for α ≥ β∞}.

But Fβ∞ is not the image of a norm-1 projection: Suppose P were a norm-1 pro-
jection on Fβ∞ . Let π : E → C(X) be the restriction map, where X := [0, β∞].
It is left inverse to the inclusion ι given by f 7→ f̃ with f̃(γ) = 0 for γ ≥ β∞.
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Let P̃ := π ◦ P ◦ ι ∈ L(C(X)). Then P̃ is a norm-1 projection with image
Cβ∞(X) := {f ∈ C[0, β∞] : f(β∞) = 0}. Then C(X) = ker(P̃ ) ⊕ Cβ∞(X).
We pick 0 6= f0 ∈ ker(P̃ ). Since f0 /∈ P̃ (C(X)) = Cβ∞(X) = ker(evβ∞), we
have f0(β∞) 6= 0, and without loss of generality we may assume that f0(β∞) = 1.
For f ∈ C(X) we have that f − P̃ (f) ∈ ker P̃ and hence there is a λf ∈ R
with f − P̃ (f) = λf f0. In fact evaluating at β∞ gives f(β∞) − 0 = λf 1, hence
P̃ (f) = f − f(β∞) f0. Since β∞ is a limit point, there is for each ε > 0 a xε < β∞
with f0(xε) > 1 − ε. Now choose fε ∈ C(X) with ‖fε‖ = 1 = −fε(β∞) = fε(xε).
Then

‖Pfε‖∞ = ‖fε − fε(β∞) f0‖∞
≥ |fε(xε)− fε(β∞) f0(xε)|
≥ 1 + 1(1− ε) = 2− ε.

Hence P̃ ≥ 2, a contradiction.

Note however that every separable subspace is contained in a 1-complemented sep-
arable subspace. �

53.20. Theorem. [Biström, 1993, 3.16] If E is a realcompact (i.e. non-measurab-
le) Banach space admitting a SPRI, then there is a non-measurable set Γ and a
injective continuous linear operator T : E → c0(Γ).

Proof. We proof by transfinite induction that for every ordinal α with α ≤ µ :=
dens(E) there is a non-measurable set Γα and an injective linear operator Tα :
Eα := Pα(E)→ c0(Γα) with ‖Tα‖ ≤ 1.
Note that if E is separable, then there are x∗n ∈ E′ with ‖x∗n‖ ≤ 1, and which are
σ(E′, E) dense in the unit-ball of E′. Then T : E → c0(N), defined by T (x)n :=
1
nx

∗
n(x), satisfies the requirements: It is obviously a continuous linear mapping into

c0, and it remains to show that it is injective. So let x 6= 0. By Hahn-Banach
there is a x∗ ∈ E′ with x∗(x) = ‖x‖ and ‖x∗‖ ≤ 1. Hence there is some n with
|(x∗n − x∗)(x)| < ‖x‖ and hence x∗n(x) 6= 0.

In particular we have Tω0 : Eω0 → c0(Γω0).

For successor ordinals α + 1 we have Eα+1
∼= Eα × (Eα+1/Eα) = Eα × (Pα+1 −

Pα)(E). Let Rα := (Pα+1 − Pα)/‖Pα+1 − Pα‖, let F := (Pα+1 − Pα)(E) and let
T : F → c0 be the continuous injection for the, by 53.13.7 , separable space F with
‖T‖ ≤ 1. Then we define Γα+1 := Γα t N and Tα+1 : Eα+1 → c0(Γα+1) by

Tα+1(x)γ :=

{
Tα(Pα(x)

‖Pα‖ )γ for γ ∈ Gα
T (Rα(x))γ for γ ∈ N

.

Now let α be a limit ordinal. We set

Γα := Γω t
⊔

ω≤β<α

Γβ+1,

and define Tα : Eα := Pα(E)→ c0(Γα) by

Tα(x)γ :=

{
Tω(Pω(x)

‖Pω‖ ) for γ ∈ Γω
Tβ+1(Rβ(x))γ for γ ∈ Γβ+1

We show first that Tα(x) ∈ c0(Γα) for all x ∈ E. So let ε > 0. Then the set
{β : ‖Rβ(x)‖ ≥ ε, β < α} is finite by 53.13.8 .
Obviously Tα is linear and ‖Tα‖ ≤ 1. It is also injective: In fact let Tα(x) = 0
for some x ∈ Eα. Then Rβ(x) = 0 for all β < α and Pω(x) = 0, hence by
x = Pα(x) = 0.
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As card(E) is non-measurable, also the smaller cardinal dens(E) is non-measur-
able. Thus the union Γα of non-measurable sets over a non-measurable index set
is non-measurable. �

53.21. Corollary. The WCD Banach spaces and the duals of Asplund spaces
continuously and linearly inject into some c0(Γ). The same is true for C(K), where
K is Valdivia compact.

For WCG spaces this is due to [Amir, Lindenstrauss, 1968] and for C(K) with K
Valdivia compact it is due to [Argyros, Mercourakis, Negrepontis, 1988.]

Proof. For WCD and duals of Asplund spaces this follows using 53.15 . For
Valdivia compact spaces K one proceeds by induction on dens(K) and uses the
PRI constructed in 53.18 . The continuous linear injection C(K)→ c0(Γ) is then
given as in 53.20 for α := dens(K), where Tβ exists for β < α, since Eβ ∼= C(Kβ)
with Kβ Valdivia compact and dens(Kβ) ≤ β < α. �

53.22. Theorem. [Bartle, Graves, 1952] Let T : E → F be a bounded linear
surjective mapping between Banach spaces. Then there exists a continuous mapping
S : F → E with T ◦ S = Id.

Proof. By the open mapping theorem there is a constant M0 > 0 such that for all
‖y‖ ≤ 1 there exists an x ∈ T−1(y) with ‖y‖ ≤ M0. In fact there is an M0 such
that B1/M0 ⊆ T (B1) or equivalently B1 ⊆ T (BM0). Let (fγ)γ∈Γ be a continuous
partition of unity on oF := {y ∈ F : ‖y‖ ≤ 1} with diam(supp(fγ)) ≤ 1/2. Choose
xγ ∈ T−1(carr(fγ)) with ‖xγ‖ ≤M0 and for ‖y‖ ≤ 1 set

S0y :=
∑
γ∈Γ

fγ(y)xγ and recursively

Sn+1y := Sny +
1
an
Sn(an(y − TSny)),

where an := 22n

.

By induction we show that the continuous mappings Sn : {y : ‖y‖ ≤ 1} → E satisfy
‖y − TSny‖ ≤ 1/an and ‖Sny‖ ≤Mn := M0 ·

∏n−1
k=0(1 + 1/ak).

(n = 0) Obviously ‖S0y‖ ≤
∑
γ fγ(y)‖xγ‖ ≤M0 and

‖y − TS0y‖ =
∥∥∥∑
γ

fγ(y)(y − Txγ)
∥∥∥ ≤ ∑

γ∈Γy

fγ(y) ‖y − Txγ‖ ≤
1
2

= a0,

where Γy := {γ ∈ Γ : fγ(y) 6= 0}.
(n + 1) For ‖y‖ ≤ 1 and yn := an(y − TSny) we have ‖yn‖ ≤ 1 by induction
hypothesis. Then

‖Sn+1y‖ ≤ ‖Sny‖+
1
an
‖Snyn‖ ≤Mn +

1
an
Mn = Mn+1.

Furthermore

‖y − TSn+1y‖ = ‖y − TSny −
1
an
TSn(an(y − TSny))‖

≤ 1
an
‖yn − TSnyn‖ ≤

1
an
· 1
an

=
1

an+1
.

Now (Sn) is Cauchy with respect to uniform convergence on {y : ‖y‖ ≤ 1}. In fact

‖Sn+1y − Sny‖ ≤
1
an
‖Sn(an(y − TSny))‖ ≤

Mn

an
≤ M∞

an
,
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whereM∞ := limnMn. Thus S := limn Sn is continuous and ‖y−TSy‖ = limn ‖y−
TSny‖ = 0, i.e. TSy = y. Now S : F → E defined by S(y) := ‖y‖S( y

‖y‖ ) and
S(0) := 0 is the claimed continuous section. �
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S∞, 92
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mathcal Sn, group of permutations, 68

∆ Laplace-operator, 8

`∗, adjoint mapping, 20

f̌ , 11

ĝ, 12

D, 10

Lipk-curve, 20

πU,V , 64

f∗, 12

n-times (continuously) Silva differentiable
in the enlarged sense, 92

n + 1-times continuously Silva
differentiable, 92

mathcal B−)differentiableatx∈ U , 86

(Fréchet-)differentiable at x ∈ U , 86

kE, 46

sE, 46
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distinct coordinates, 140

C∞, 39

C∞(U, F ), 39

mathbb R,E), 37

Cc(X), 57

E′, space of bounded linear functionals on
E, 20

E ⊗β F , 65

E∗, space of continuous linear functionals,
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EB, 22, 174

Eborn, 43

L(E, F ), 42

mathbb R), 26

L(E1, ..., En; F ), 60

M-convergence condition, 48

M-convergent net, 23

M-converging sequence, 44

mathcal Z,ξ), 26

mathcal F−evaluating, 96

mathfrak m−evaluating, 96

mathfrak m−smallzerosets, 119

ℵ0, 54

δ, 26

`1(X), 58

`∞(X, F ), 31

Ê, 26

µ-converging, 29

µ-converging sequence, 44

ω-isolating, 117

ω1, first uncountable ordinal number, 56

4∗, 71

c∞-completion, 55

c∞-open set, 29

c∞-topology, 29

c0-ext, 125

c0(X), 57

d, 42

dn
v , 35

dp
v, 75

k-jet extension, 79

k-jets, 79

mathcal A−bounding, 130

1-homogeneous mapping, 43

1-isolating, 117

Dunford-Pettis property, 114

Frölicher space, 150

Fréchet, 175

Fundamental theorem of calculus, 27

Köthe sequence space, 178

Kelley-fication, 46

Leibniz formula, 61

Lipschitz condition, 20

Mackey adherence of order α, 56

Mackey adherence, 56, 58

Mackey complete space, 26

Andreas Kriegl , Univ.Wien, June 4, 2008 197



Index

Mackey convergent sequence, 23

Mackey’s countability condition, 148

Mackey-Cauchy net, 25

Mackey-closure topology, 30

Minkowski functional, 22, 173
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Riemann integral, 26

Riemann sums, 26

SPRI , 186
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Silva space, 178

Valdivia compact space, 189

Vandermonde’s determinant, 36

WCD, 183

n-th derivative, 71

absolutely convex, 174

absolutely convex Lipschitz bound, 28

absorbing, 173

absorbs, 43

alt, 68

alternating tensor, 68

alternator, 68

analytic subsets, 152

approximation of unity, 36

arc-generated vector space, 47

barrelled locally convex space, 176

bipolarsUoo, 26

bornivorous, 43

bornivorous set, 44

bornological embedding, 55

bornological isomorphism, 20

bornological locally convex space, 173

bornological map, 29

bornological tensor product, 65

bornological vector space, 43

bornologification, 43

bornologification of a locally convex space,
173

bornologification of a locally convex
topology, 24

bornology of a locally convex space, 20, 173

bornology on a set, 31

bounded, 173

bounded algebra, 76

bounded completant set, 177

bounded linear mapping, 20

bounded map, 29

bounded modules, 76

co-commutative, 157

co-idempotent, 157

colim, 67

colimit, 174

commutative algebra, 68

comp, the composition, 40

completely regular space, 54

completion of a locally convex space, 26

convenient co-algebras, 156

convolution, 36

coproduct, 174

definite integral, 27

density, 32

derivative of a curve, 20

differentiable curve, 20

differentiation operator, 42

direct sum, 174

directed set, 174

directional derivatives, 35

dual conjugate pair, 184

dual space E′ of all bounded linear
functionals on E, 20

dual space E∗ of all continuous linear
functionals on E, 20

equicontinuous sets, 26

extension property, 55

exterior algebra, 68

falls fast, 28

fast converging sequence, 28

fibered composition of jets, 80

finite type polynomial, 73

first uncountable ordinal number ω1, 56

generating set of functions for the
Frölicher space, 150

graded-commutative algebra, 68

inductive limit, 174

infinite polygon, 28

infinitely flat at 0, 73

lim, 67

limit, 174

locally Lipschitzian curve, 20

locally convex space, 173

mean value theorem, 21

mesh, 26

monomial of degree p, 72

norming pair, 181

nuclear locally convex space, 178

nuclear operator, 177

polar of a set, 176

polars Uo, 26

polynomial, 72

precompact, 173

product rule, 61

projective generator, 183

projective limit, 174

projective resolution of identity, 186

radial subset, 43

reflexive locally convex space, 177

scalar valued extension property, 134

scalarly true property, 22

seminorm, 173

separable, 176

separable projective resolution of identity,
186

sequential adherence, 49

smooth curve, 20

smooth mapping, 39

smooth mapping between Frölicher spaces,
150

smooth structure, 150

smoothly realcompact, 96

space of all bounded n-linear mappings, 60

space of all bounded linear mappings, 42

space of all smooth mappings, 39

strict inductive limit, 174

strong dual of a locally convex space, 177

strongly nuclear locally convex space, 178
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strongly nuclear operator, 178

super-reflexive Banach space, 118

sym, 68

symmetric algebra, 68

symmetrizer, 68

tensor algebra, 68

trace class operator, 177

trace of an operator, 177

truncated composition, 79

ultra-bornological locally convex vector
space, 177

ultrabornologification of a locally convex
space, 173

unidirectional iterated derivative, 75

mathcal S−boundednessprinciple, 78

uniformly convex norm, 118

vector valued extension property, 135

weak topology for a dual pair, 176

weakly compactly determined, 183

weakly realcompact locally convex space,
111

c∞-complete space, 30

anti-derivative, 30

conjugate pair, 182

convenient vector space, 30

locally complete space, 30

adjoint mapping `∗, 20

algebraic tensor product, 62

Boman’s theorem, 35

bornologically compact set, 75

bornologically compact subset, 49

boundary value problem of second order, 8

Cartesian closedness, 39

cbs, 91

chain rule, 42

chain-rule, 11, 15

compactly generated space, 6, 13

compactly-continuous map, 13

mathcal B−)differentiable, 87

continuously Silva differentiable, 92

convenient vector spaces, 19

convex bornological space, 91

derivative, 15

Diff(X), 15

difference quotient, 24

differential equation, 5

differentiation under the integral sign, 10

directional derivative, 86

dual mapping `∗, 20

Dunford-Pettis property, 65

equation of heat-conduction, 8

equivalent category, 13

Euler-Lagrange partial differential
equation, 14

evaluation map ev, 12

flow, 14

Fourier-series, 9

Gâteaux differentiable, 87

gas-equation, 14
Green-function, 10
Green-operator, 10
group of diffeomorphisms, 15

insertion map ins, 12
integral equation, 7
interpolation polynomial P m

(t0,...,tm)
, 141

inverse function theorem, 16

Kelley space, 6, 13

Lagrange function, 13
Laplace-operator, 8
linear differential equation of order n, 8
linear differential equation with constant

coefficients, 8
linear partial differential equation with

non-constant coefficients, 10
Linearization, 62
Lipk

ext(A, E), space of functions with
locally bounded difference quotients,
142

locally p-times differentiable between
normed spaces at a point, 92

Mackey convergent net, 23

non-linear partial differential equation, 10

optimization problem, 13
ordinary differential equation, 5
ordinary differential equation of order 1, 5

partial differential equation, 8
partial linear differential equation with

constant coefficients, 8
point evaluation, 11
Polyp(E, F ), 72
projective tensor product, 63

radial set, 44

Schrödinger equation, 9
Schrödinger-operator, 9
Silva differentiable, 91
Silva differentiable at x ∈ E, 91
Silva differentiable in the enlarged sense, 92
space of continuous linear mappings, 64
space of continuous multi-linear mappings,

64
special curve lemma, 28

uniform boundedness principle, 74

vector field, 15
vibrating string, 9

wave-equation, 9
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