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The main aim of this chapter is to discuss the abundance or scarcity of smooth
functions on a convenient vector space: E.g. existence of bump functions and parti-
tions of unity. This question is intimately related to differentiability of seminorms
and norms, and in many examples these are, if at all, only finitely often differen-
tiable. So we start this chapter with a short (but complete) account of finite order
differentiability, based on Lipschitz conditions on higher derivatives, since with this
notion we can get as close as possible to exponential laws. A more comprehensive
exposition of finite order Lipschitz differentiability can be found in the monograph
[Frolicher, Kriegl, 1988].

Then we treat differentiability of seminorms and convex functions, and we have
tried to collect all relevant information from the literature. We give full proofs of
all what will be needed later on or is of central interest. We also collect related
results, mainly on ‘generic differentiability’, i.e. differentiability on a dense Gg-set.

If enough smooth bump functions exist on a convenient vector space, we call it
‘smoothly regular’. Although the smooth (i.e. bounded) linear functionals separate
points on any convenient vector space, stronger separation properties depend very
much on the geometry. In particular, we show that ¢! and C[0,1] are not even
C'-regular. We also treat more general ‘smooth spaces’ here since most results do
not depend on a linear structure, and since we will later apply them to manifolds.

In many problems like E. Borel’s theorem that any power series appears
as Taylor series of a smooth function, or the existence of smooth functions with
given carrier , one uses in finite dimensions the existence of smooth functions
with globally bounded derivatives. These do not exist in infinite dimensions in
general; even for bump functions this need not be true globally. Extreme cases
are Hilbert spaces where there are smooth bump functions with globally bounded
derivatives, and ¢y which does not even admit C?-bump functions with globally
bounded derivatives.

In the final section of this chapter a space which admits smooth partitions of unity
subordinated to any open cover is called smoothly paracompact. Fortunately, a
wide class of convenient vector spaces has this property, among them all spaces of
smooth sections of finite dimensional vector bundles which we shall need later as
modeling spaces for manifolds of mappings. The theorem of [Toruticzyk,
1973] characterizes smoothly paracompact metrizable spaces, and we will give a
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CHAPTER III
12.3 PArTITIONS OF UNITY

full proof. It is the only tool for investigating whether non-separable spaces are
smoothly paracompact and we give its main applications.

12. Differentiability of Finite Order

12.1. Definition. A mapping f: E O U — F, where E and F are convenient
vector spaces, and U C E is ¢>-open, is called Lip® if focisa Lip*-curve (see

) for each ¢ € C>*(R,U).

This is equivalent to the property that foc is Lip* on ¢~1 (U) foreach c € C* (R, E).
This can be seen by reparameterization.

12.2. General curve lemma. Let E be a convenient vector space, and let ¢, €
C®(R, E) be a sequence of curves which converges fast to 0, i.e., for each k € N
the sequence n¥c, is bounded. Let s, > 0 be reals with Zn Sp < 00.

Then there exists a smooth curve ¢ € C*(R, E) and a converging sequence of reals
ty, such that c(t + t,,) = cn(t) for |t| < sp, for alln.

Proof. Let r,, : Zk<n(k2 +2s;

) an 1= [oF 2l Tet h: R — [0, 1] be smooth
with h(t) = 1 for ¢ > 0 and h(t)

(

()

n

= for t < 71 and put h,(t) := h(n?(s, +
) 0f0r|t\7n2—|—snandh (t) = 1for |t| < sp,
(t)| < n*.H;, where H; := max{|h()| : t € R}.

t)).h(n?(s,—t)). Then we have h,,

and for the derivatives we have |h;
Thus, in the sum

)= ha(t—tn).cn(t — tn)

at most one summand is non-zero for each ¢t € R, and ¢ is a smooth curve since for
each ¢ € E' we have

(foc) Z fa(t),  where fo(t+t,) == hu(t)Llcn(t)),

n?.sup £ (1)] = n -sup{lfé’“)(sﬁn)\ sl <+

k
<n? Y ()n2 Hysup {[(¢o ea) ) (3)] : |s| < 2 + 0}
7=0

(i n? T2 H; ).Sup{(éocn)(i)(sﬂ |s] <max( +5,) and i < k},

7=0

which is uniformly bounded with respect to n, since ¢, converges to 0 fast. O

12.3. Corollary. Let ¢, : R — E be polynomials of bounded degree with values in
a convenient vector space E. If for each £ € E' the sequence n — sup{|(€ o c,)(t) :
[t| < 1} converges to 0 fast, then the sequence ¢, converges to 0 fast in C*° (R, E),
so the conclusion of holds.

Proof. The structure on C*®°(R, E) is the initial one with respect to the cone
l,: C°(R,E) - C*(R,R) for all £ € E', by . So we only have to show the
result for £ = R. On the finite dimensional space of all polynomials of degree at
most d the expression in the assumption is a norm, and the inclusion into C*° (R, R)
is bounded. O
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12. DIFFERENTIABILITY OF FINITE ORDER 12.4

12.4. Difference quotients. For a curve ¢ : R — E with values in a vector
space E the difference quotient §*c of order k is given recursively by
8% :=¢,
(Sk_lc(tm e ,tkfl) — (Sk_lc(tl, o ,tk)
k ;
to — tg
for pairwise different ¢;. The constant factor k in the definition of §* is chosen in
such a way that 6* approximates the k-th derivative. By induction, one can easily

see that k
She(to, ... ty) = k! Zc(ti) H ﬁ

i=0 0<j<k
J#i
We shall mainly need the equidistant difference quotient Sk ¢ of order k, which is
given by

SFe(to, ... ty) =

k
5§qc(t;v) =Rt t+v,... t+kv) = Z (t +iv) H %
=0 0<j<k
JFi

Lemma. For a convenient vector space E and a curve ¢ : R — FE the following
conditions are equivalent:

(1) ¢ is Lip*~t.

(2) The dzﬁerence quotient 6%c of order k is bounded on bounded sets.

(3) Loc is continuous for each £ € E', and the equidistant difference quotient
6% .c of order k is bounded on bounded sets in R x (R\ {0}).

Proof. All statements can be tested by composing with bounded linear functionals
¢ € E’, so we may assume that £ = R.

() = () Let I C R be a bounded interval. Then there is some K > 0 such that
|05 c(x;v)| < K for all z € I and kv € I. Let t; € I be pairwise different points.
We claim that |§%c(to, ..., )] < K. Since §¥c is symmetric we may assume that
to < t; < --- < tx, and since it is continuous (c is continuous) we may assume that
all fi:tt‘[’) are of the form % for n;, N € N. Put v := %, then 6*c(tg, ..., t) =
§kc(to, to+mn1v, ..., to+nyv) is a convex combination of 6§qc(t0 +rovjv) for 0 <r <
max; n; — k. This follows by recursively inserting intermediate points of the form
to + mv, and using

5k(t0 + mov, ... ,tom’u, ..t + mk+1’0) =
mi — Mo

= 7616(150 + mgov, ..., to + mkv)
Mp41 — Mo
m —m;
+ Mlsk(tl +myv, ..., to + M)
M1 — Mo

which itself may be proved by induction on k.

() = () We have to show that ¢ is & times differentiable and that §'c(*) is
bounded on bounded sets. We use induction, &k = 0 is clear.

Let T # S be two subsets of R of cardinality j + 1. Then there exist enumerations
T = {tg,...,t;} and S = {sg,...,s;} such that t; # s; for ¢ < j; then we have

J
dc(to, ... t;) —dc(so,...,55) —%Zt —5:)07 e(to, ... ti, 55, .. 85).
i=0
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12.5 12. DIFFERENTIABILITY OF FINITE ORDER

For the enumerations we put the elements of TN S at the end in T and at the
beginning in S. Using the recursive definition of /!¢ and symmetry the right
hand side becomes a telescoping sum.

Since 6*c is bounded we see from the last equation that all /¢ are also bounded,
in particular this is true for §2c. Then

ct+s)—ct) clt+s)—c?)

s s/

= 55 52t t 4 5, + 8)
shows that the difference quotient of ¢ forms a Mackey Cauchy net, and hence the
limit ¢/(¢) exists.
Using the easily checked formula
j _

=24

i—1
t—tl (5Ct0,...7t )7
=0 [=0

induction on j and differentiability of ¢ one shows that

J
(Sjcl(to,..., :$Z J+1 t07 . atjati)v

where 67 c(ty, ..., t;,¢;) := limy_y, 87T e(to, ..., tj,t). The right hand side of
is bounded, so ¢ is Lip"~2 by induction on k.
() = () For a differentiable function f : R — R and tg < --- < t; there exist
s; with t; < s; < t;41 such that

5jf(t0, cee ,t) = (Sj_lf/(So, ey Sj_l).
Let p be the interpolation polynomlal

ZZ,Ht—tl ) 87 f(to, .-, t;).

=0 =0
Since f and p agree on all t;, by Rolle’s theorem the first derivatives of f and p
agree on some intermediate points s;. So p’ is the interpolation polynomial for
f' at these points s;. Comparing the coefficient of highest order of p’ and of the
interpolation polynomial @ for f’ at the points s; follows.

Applying recursively for f = ¢(#=2) ¢#=3) ¢ shows that 6¥c is bounded on
bounded sets, and () follows.

() = () is obvious. -

12.5. Let rg, ..., be the unique rational solution of the linear equation
i 1 forj=1
= 0 for 7 =0,2,3,...,k.

Lemma. If f : R2 — R is Lip® for k > 1 and I is a compact interval then there
exists M such that for all t,v € I we have
k

Zlof(t,s)v =Y rif(t,iv)

=0

< M|’U|k+1.

Proof. We consider first the case 0 ¢ I so that v stays away from 0. For this it
suffices to show that the derivative 2 5zlof(t, s) is locally bounded. If it is unbounded
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12. DIFFERENTIABILITY OF FINITE ORDER 12.6

near some point Zo, there are x,, with |, —z| < 2% such that %|of(xn, s) > n.2™.
We apply the general curve lemma to the curves ¢, : R — R? given by ¢, (t) :=
(Zn, 5 ) and to s, := 5= in order to obtain a smooth curve ¢ : R — R? and scalars
t, — 0 with ¢(t + t,) = ¢, (t) for [t| < s,. Then (f oc)'(t,) = 2%%|0f(xn,s) >n,
which contradicts that f is Lip'.

Now we treat the case 0 € I. If the assertion does not hold there are z,,v, €
I, such that ’% of (Tn,8).vp — Zf:o rif (T, iv,)| > n.2"FH) |y, [P We may
assume I, — Too, and by the case 0 ¢ I we may assume that v, — 0, even with
|2n — Too| < 5= and |v,| < 5. We apply the general curve lemma to the
curves ¢, : R — R? given by ¢, (t) := (2, 5=) and to s, := 5= to obtain a smooth
curve ¢ : R — R? and scalars t,, — 0 with c(t +t,,) = c,(t) for |t| < s,,. Then we
have

k

(foc) (tn)2" vy — Z ri(foc)(ty +i2"vy,)

=0

k

= |(F 0 ca) 00200 = Y rilf 0 ca)(i2"02)
1=0 .

%% of (xn, 8)2" vy — me(xn,ivn)

=0

> n(Qn‘UnDk—H.

This contradicts the next claim for g = f o c.

Claim. If g: R — R is Lipk for £k > 1 and I is a compact interval then there is
M > 0 such that for ¢,v € I we have |¢'(¢).v — Zf:o rig(t + w)‘ < M|v|F+L,

Consider g;(v) := ¢'(t).v — Zf:o r;g(t + iv). Then the derivatives up to order k at

v = 0 of g vanish by the choice of the r;. Since ¢®) is locally Lipschitzian there

exists an M such that |gt(k) (v)| < M|v| for all t,v € I, which we may integrate in
|1)‘k+1

turn to obtain |g:(v)| < M G- O

12.6. Lemma. Let f : R? — R be Lip"™". Then t — L |of(t,s) is Lip*.

Proof. Suppose that g : t — %|0f(t,s) is not Lip®. Then by lemma the
equidistant difference quotient 6":(;" g is not locally bounded at some point which we
may assume to be 0. Then there are z,, and v,, with |z,| <1/4" and 0 < v,, < 1/4"
such that

|5§(jlg(xn; Up)| > n.2"(k+2)

We apply the general curve lemma to the curves ¢, : R — R? given by

en(t) = en(z% +xy,) = (2% + Ty — Un, 2%) and to s, := % in order to obtain a

smooth curve ¢ : R — R? and scalars t,, — 0 with c(t +t,) = ¢, (t) for 0 < ¢ < s,,.

Put fo(t,s) := Zf:o r; f(t,is) for r; as in , put fi(t,s) := g(t)s, finally put
fo:= fi—fo. Then fo in Lip*T, so foocis LipFT!, hence the equidistant difference
quotient 6%5F2(fo o ¢)(xp; 2"vy) is bounded.
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12.7 12. DIFFERENTIABILITY OF FINITE ORDER

By lemma there exists M > 0 such that |fa(t,s)] < M|s|**2 for all t,s €
[—(k+ 1),k + 1], so we get

|5k+2( faoc)(xn; 2"v,)| = |5k+2( fa0¢,)(0;2"0,)]

= W‘5k+2(f2 0 en)(Tn; V)

k+2 .
(k+2)! i [f2((i = Dvn 4z, iv,)| T2
B ol &¥2 Tl = ]
i (k+2)
(k+2)!
< - -
= 2 (k+2) Z H]#i |Z _]|

This is bounded, and so for fi = fo + f2 the expression |052(f1 0 ¢)(zn; 2 vy,)| is
also bounded, with respect to n. However, on the other hand we get

SEF2(f1 0 ¢) (a1 2"0n) = OEF2(f1 0 €0)(052"0,)

= s 0eq - (f1 0 €)(Tn;vn)

_ (k42)! Zfl Zilvn‘i’xnv“}n) H 1

— on(k+2) (k+2) i—j
0<j<k+2
J#i
k+2 .. .
_ (k+2)! Z 9((1 = Doy + zn)ive H 1
— on(k+2) (k+2) i—7J
i=0 Un 0<j<k+2
J#i
k+1
_(E42)! g(lvn + xn) 1
— on(k+2) Z (k+1) H -7
=0 Un 0<j<k+1
71
= an(irfz) 5k+1g(xn§ 'Un)a
which in absolute value is larger than (k 4 2)n by , a contradiction. O

12.7. Lemma. LetU C E be open in a normed space. Then, a mapping f : U — F
into a convenient vector space is Lip° if and only if f is Lipschitz on compact subsets
K of U, i.e. {fL) {C) cx £y € K} is bounded.

lz—yll

A mapping f : U — F into a Banach space is Lip® if and only if f is locally
Lipschitz, i.e., for each z € U there exists a ball B, around z such that {% :
x #y € B,} is bounded.

Proof. (=) If F is Banach and f is Lip® but not locally Lipschitz near z € U,
there are points x,, # y, in U with ||z, — z|| < 1/4™ and ||y, — 2| < 1/4", such that
1/ (yn) = f(xn)|| = 12" ||y, — zn]|. Now we apply the general curve lemma

with s, 1= 2".||y, — x| and ¢, (t) =2, — 2+ tm to get a smooth curve ¢

with ¢(t 4+ t,) — z = ¢, (¢t) for 0 < ¢ < s,,. Then i”(foc)(t +85) = (foe)tn)|l =
it 1) — Flan)l = n.
If F is convenient, f is £ip’ but not Lipschitz on a compact K, there exist £ € F’

such that £ o f is not Lipschitz on K. By the first part of the proof, ¢ o f is locally
Lipschitz, a contradiction.

(<) This is obvious, since the composition of Lipschitz mappings is again Lipschitz.
O
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12. DIFFERENTIABILITY OF FINITE ORDER 12.10

12.8. Theorem. Let f : E D U — F be a mapping, where E and F are convenient
vector spaces, and U C E is c®-open. Then the following assertions are equivalent
for each k > 0:

(1) f is LipFT.
(2) The directional derivative

(dvf)(z) := %|t=0(f(33 + tv))
exists for x € U and v € E and defines a Lip*-mapping U x B — F.

Note that this result gives a different (more algebraic) proof of Boman’s theorem

and [3.14],

Proof. () = () Clearly, t — f(z + tv) is Lip"™, and so the directional
derivative exists and is the Mackey-limit of the difference quotients, by lemma
. In order to show that df : (x,v) — d,f(x) is Lip" we take a smooth curve
(x,v) : R — U x E and £ € F’, and we consider g(t,s) := z(t) +s.v(t), g : R? — E.
Then fo fog:R? — R is Lip!, so by lemma the curve

Frs 0(df (2(2), 0(8))) = £ (Z10F(a(t:5))) = Z10(f(g(t,5)))
is of class Eipk.
(2]) = (1) If c € C*(R,U) then

fle(t)) = f(e(0)
t

— df(c(0),¢(0)) =
= [ (ar(e(0) + stef®) = o)), 2272) — dfe(0). < 0))) ds

0

converges to 0 for ¢ — 0 since g : (t,s) — df(c(0) + s(c(t) — ¢(0)), C(t);c(o)) -

df (¢(0),¢(0)) is Lip”, thus by lemma g is locally Lipschitz, so the set of all

W is locally bounded, and finally ¢ — fol g(t, s)ds is locally Lipschitz.

Thus, f o c is differentiable with derivative (f o ¢)'(0) = df (¢(0), ¢/ (0)).

Since df is Lip* and (¢, ') is smooth we get that (f o ¢) is Lip”, hence f o ¢ is
LipFtL. O

12.9. Corollary. Chain rule. The composition of Eipk-mappings s again Lip*,
and the usual formula for the derivative of the composite holds.

Proof. We have to compose f o g with a smooth curve ¢, but then go ¢ is a Lip"-
curve, thus it is sufficient to show that the composition of a Lip* curve ¢ : R — U C
E with a Lip"-mapping f : U — F is again Lip®, and that (foc)'(t) = df (c(t), ¢ (t)).

This follows by induction on k for k£ > 1 in the same way as we proved theorem
’ 12.8.2 ‘ = ’ 12.8.1 ‘, using theorem itself. (]

12.10. Definition and Proposition. Let F' be a convenient vector space. The
space [,ipk(R, F) of all [,ipk—curves in F is again a convenient vector space with
the following equivalent structures:

(1) The initial structure with respect to the k + 2 linear mappings (for 0 <
j<k+1)cw dc from [,ipk(R, F) into the space of all F-valued maps
in j+ 1 pairwise different real variables (to, ..., t;) which are bounded on
bounded subsets, with the c>-complete locally convex topology of uniform
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12.12 12. DIFFERENTIABILITY OF FINITE ORDER

convergence on bounded subsets. In fact, the mappings 8° and 6*1 are
sufficient.

(2) The initial structure with respect to the k + 2 linear mappings (for 0 <
j<k+1)cr égqc from [,ipk(R, F) into the space of all maps from
R x (R\ {0}) into F which are bounded on bounded subsets, with the
c>-complete locally convex topology of uniform convergence on bounded
subsets. In fact, the mappings 58q and 5’;;‘1 are sufficient.

(3) The initial structure with respect to the derivatives of order j < k con-
sidered as linear mappings into the space of Lip°-curves, with the locally
convex topology of uniform convergence of the curve on bounded subsets of
R and of the difference quotient on bounded subsets of {(t,s) € R? : t # s}.

The convenient vector space Lip® (R, F') satisfies the uniform boundedness principle
with respect to the point evaluations.

Proof. All three structures describe closed embeddings into finite products of

spaces, which in () and () are obviously ¢*°-complete. For () this follows,
since by () the structure on Lip’(R, E) is convenient.
All structures satisfy the uniform boundedness principle for the point evaluations

by , and since spaces of all bounded mappings on some (bounded) set satisfy
this principle. This can be seen by composing with ¢, for all £ € E’, since Banach

spaces do this by .

By applying this uniform boundedness principle one sees that all these structures
are indeed equivalent. O

12.11. Definition and Proposition. Let E and F be convenient vector spaces
and U C E be c*-open. The space Eipk(U, F) of all L’ipk-mappz'ngs from U to F
is again a convenient vector space with the following equivalent structures:

(1) The initial structure with respect to the linear mappings ¢* : Lip*(U, F) —
LipF (R, F) for all c € C™(R, F).

(2) The initial structure with respect to the linear mappings ¢* : Lip® (U, F) —
Lip* (R, F) for all ¢ € Lip*(R, F).

This space satisfies the uniform boundedness principle with respect to the evaluations
evy : LipP (U, F) = F forallz € U.

Proof. The structure () is convenient since by it is a closed subspace
of the product space which is convenient by |12.10 | The structure in () is
convenient since it is closed by . The uniform boundedness principle for the

point evaluations now follows from ‘ 5.25 ‘ and ‘ 12.10 ‘, and this in turn gives us the
equivalence of the two structures. O

12.12. Remark. We want to call the attention of the reader to the fact that
there is no general exponential law for Lip*-mappings. In fact, if f € Lip®(R, Lip" (R, F))
then (2)P(2)7f"(t,s) exists if max(p, ) < k. This describes a smaller space than
Lip" (R%, F), which is not invariantly describable.

However, some partial results still hold, namely for convenient vector spaces E, F,
and G, and for ¢*-open sets U C E, V C F we have

Lip"(U, L(F,G)) = L(F, Lip" (U, G)),
Lip*(U, £ip' (v, @)) = £ip (V, Lip" (U, G)),

12 Andreas Kriegl , Univ.Wien, October 2, 2008



12. DIFFERENTIABILITY OF FINITE ORDER 12.13

see [Frolicher, Kriegl, 1988, 4.4.5, 4.5.1, 4.5.2]. For a mapping f : U x F — G which
is linear in F we have: f € Lip®(U x F,G) if and only if f¥ e Lip"(U, L(E, F)),
see [Frolicher, Kriegl, 1988, 4.3.5]. The last property fails if we weaken Lipschitz to
continuous, see the following example.

12.13. Smolyanov’s Example. Let f : 2 — R be defined by f := Zk21 k%fk,
where fi(z) = @(k(kzy — 1)) - [[;o ¢(jz;) and ¢ : R — [0,1] is smooth with
©(0) =1 and ¢(t) = 0 for || > 1. We shall show that

(1) f: 0% — R is Fréchet differentiable.
(2) f': 02 — (£2) is not continuous.
(3) f': 2 x £ — R is continuous.

Proof. Let A:={x € (?: |kxy| < § for all k}. This is a closed subset of ¢2.

() Remark that for € ¢? at most one fi(z) can be unequal to 0. In fact
fr(z) # 0 implies that |kz), — 1] < & < %, and hence kxj, > 3 and thus f;(z) =0
for j > k.

For x ¢ A there exists a k > 0 with |kz;| > + and the set of points satisfying this
condition is open. It follows that ¢(kzy) = 0 and hence f =3, j%fj is smooth
on this open set.

On the other hand let z € A. Then |kzj, — 1| > 3 > 1 and hence @(k(kzj, —1)) =0
for all k and thus f(x) = 0. Let v € £ be such that f(z+v) # 0. Then there exists
a unique k such that fi(z +v) #0 and therefore [j(z; + v;)| < § for j < k and
|k(zp +vg) — 1\ < v < 1. Since [kzy| < % We conclude |kvy| 2 1— \k(zk—kvk) 1|—

kel > 1— 1 — 1 = 1. Hence | (@ + 0)| = [ fula +0)| £ 25 < (2lun])? < 4[]
Thus W < 4Hv|| — 0 for ||v|| — 0, i.e. f is Fréchet differentiable at x

with derivative 0.

() If fact take a € R with ¢/(a) # 0. Then f'(tef)(e¥) = L1 fi(tek) =
4 Lok*t—k)=¢' (k(kt—1)) =¢/(a) if t =t := 1 (£ + 1), which goes to 0 for
k — oo. However f’(0)(e*) = 0 since 0 € A.

() We have to show that f'(2™)(v"™) — f'(z)(v) for (x",v") — (z,v). Forz ¢ A

this is obviously satisfied, since then there exists a k with |kzi| > i and hence
f=>< j%fj locally around .

If z € A then f'(x) = 0 and thus it remains to consider the case, where z" ¢ A.
Let € > 0 be given. Locally around z™ at most one summand f; does not vanish:
If 2™ ¢ A then there is some k with |kx*| > 1/4 which we may choose minimal.
Thus |j2?| < 1/4 for all j < k, so |j(jz? —1)| > 35 /4 and hence f; = 0 locally since
the first factor vanishes. For j > k we get f; = 0 locally since the second factor
vanishes. Thus we can evaluate the derivative:

7)) = | )| < 120 (ko 37 1),

i<k

Since v € £2 we find a K such that (> ke, il H1/2 < e Lhus we conclude
from [[v" —vl]2 — 0 that 07| < o= for j = Kj and large n. For the finitely many
small n we can increase K such that for these n and j > K; also [v}] < m
Furthermore there is a constant Ky > 1 such that [[v" || < [[0"|2 < K for all n.

Now choose N > K7 so large that N? > 1||¢/||o K2 K§. Obviously >,y =5 fn is
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12.13 12. DIFFERENTIABILITY OF FINITE ORDER

smooth. So it remains to consider those n for which the non-vanishing term has
index k > N. For those terms we have

@M = | A @] < 1l (1681 + 5 3 d101)
j<k

1 , 1 .
<[kl oo + 1€ ooz D a5 1+ 15 D dlof ¢l

J<K1 Ki1<j<k
§5+||<P|\ooﬁ||v ||oo+ﬁ Z je<etet+e=3e
Ki1<j<k
This shows the continuity. O
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12. DIFFERENTIABILITY OF FINITE ORDER 13.2

13. Differentiability of Seminorms

A desired separation property is that the smooth functions generate the topology.
Since a locally convex topology is generated by the continuous seminorms it is
natural to look for smooth seminorms. Note that every seminorm p: E — R on a
vector space E factors over E, := E/ker p and gives a norm on this space. Hence, it
can be extended to a norm p : Ep — R on the completion E‘p of the space [, which
is normed by this factorization. If F is a locally convex space and p is continuous,
then the canonical quotient mapping F — E, is continuous. Thus, smoothness of
p off 0 implies smoothness of p on its carrier, and so the case where F is a Banach

space is of central importance.

Obviously, every seminorm is a convex function, and hence we can generalize our
treatment slightly by considering convex functions instead. The question of their
differentiability properties is exactly the topic of this section.

Note that since the smooth functions depend only on the bornology and not on
the locally convex topology the same is true for the initial topology induced by all
smooth functions. Hence, it is appropriate to make the following

Convention. In this chapter the locally convex topology on all convenient vector
spaces is assumed to be the bornological one.

13.1. Remark. It can be easily seen that for a function f : E — R on a vector
space E the following statements are equivalent (see for example [Frolicher, Kriegl,
1988, p. 199)):

(1) The function f is convex, ie. f(> i Aix;) < S0y X f(z;) for Ay >0
with >0 A =1,

(2) The set Uy :={(z,t) € E xR : f(z) < t} is convex;

(3) The set Ay :={(x,t) € E xR : f(z) <t} is convex.

Moreover, for any translation invariant topology on E (and hence in particular for
the locally convex topology or the ¢*-topology on a convenient vector space) and
any convex function f: E — R the following statements are equivalent:

(1) The function f is continuous;

(2) The set Uy is open in E x R;

(3) The set fer :={x € E: f(x) < t} is open in E for all t € R, i.e. f is
upper semi-continuous.

Moreover the following statements are equivalent:

(1) The function f is lower semicontinuous, i.e. the set fs; := {z € E :
f(z) >t} is open in E for all t € R;
(2) The set Ay is closed in E x R.

13.2. Result. Convex Lipschitz functions. Let f : E — R be a convex function
on a convenient vector space E. Then the following statements are equivalent:

(1) It is Lip’;

(2) It is continuous for the bornological locally convex topology;

2)
(3) It is continuous for the ¢ -topology;
(4) It is bounded on Mackey converging sequences;

If f is a seminorm, then these further are equivalent to

(5) It is bounded on bounded sets.
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13.4 13. DIFFERENTIABILITY OF SEMINORMS

If E is normed this further is equivalent to

(6) It is locally bounded.

The proof is due to [Aronszajn, 1976] for Banach spaces and [Frolicher, Kriegl,
1988, p. 200], for convenient vector spaces.

13.3. Basic definitions. Let f : F O U — F be a mapping defined on a ¢>*-open
subset of a convenient vector space E with values in another one F. Let z € U
and v € E. Then the (one sided) directional derivative of f at z in direction v is

defined as
f(@)() = du f(2) = lim fletiv) - fa)
Obviously, if f'(x)(v) exists, then so does f'(z)(sv) for s > 0 and equals s f'(z)(v).

Even if f/'(z)(v) exists for all v € E the mapping v — f’(x)(v) may not be linear
in general, and if it is linear it will not be bounded in general. Hence, f is called
Gateauz-differentiable at x, if the directional derivatives f'(z)(v) exist for allv € E
and v — f'(z)(v) is a bounded linear mapping from E — F.

Even for Gateaux-differentiable mappings the difference quotient need
not converge uniformly for v in bounded sets (or even in compact sets). Hence, one
defines f to be Fréchet-differentiable at x if f is Gateaux-differentiable at x and
w — f'(z)(v) — 0 uniformly for v in any bounded set. For a Banach
space E this is equivalent to the existence of a bounded linear mapping denoted
f'(z) : E — F such that

f(z+tv)—f(x)
t

o S 1@~ P
v—0 [[ll

If f: E DU — F is Gateaux-differentiable and the derivative f’ : £ D U —

L(E,F) is continuous, then f is Fréchet-differentiable, and we will call such a

function C!. In fact, the fundamental theorem applied to t — f(x + tv) gives us

fz+v) - fz) = / f(@ + to)(v)dt,
and hence

flz+sv) = f(z)

S

— ' @)(w) = / 1 (£t ts0)— £(@)) () di —0,

which converges to 0 for s — 0 uniformly for v in any bounded set, since f'(z +
tsv) — f'(x) uniformly on bounded sets for s — 0 and uniformly for ¢ € [0, 1] and
v in any bounded set, since f’ is assumed to be continuous.

Recall furthermore that a mapping f: F O U — F on a Banach space E is called
Lipschitz if
{M cxy, w0 € U,z # xg} is bounded in F.
|1 — 2]
It is called Hélder of order 0 < p < 1 if
{M cxy, w0 € U, xq # xg} is bounded in F.
w1 — @2/

13.4. Lemma. Gateaux-differentiability of convex functions. Fvery conver
function ¢ : E — R has one sided directional derivatives. The derivative ¢'(x)
is sublinear and locally bounded (or continuous at 0) if q is locally bounded (or
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13. DIFFERENTIABILITY OF SEMINORMS 13.5

continuous). In particular, such a locally bounded function is Gdteaux-differentiable
at x if and only if ¢'(x) is an odd function, i.e. ¢'(x)(—v) = —¢'(z)(v).

If E is not normed, then locally bounded-ness should mean bounded on bornologi-
cally compact sets.

Proof. For 0 < t < t' we have by convexity that
t
q(z +tv) =q((1- N

q(dtﬂ@;)*q(ﬂﬁ) < q(w+t’tlj)fq(r).

t t t
Jo+ 5 @+ ') < (1= 5)q(@) + 5 alz+ 1),
Hence Thus, the difference quotient is monotone
falling for ¢ — 0. It is also bounded from below, since for # < 0 < t we have

) @+ 1))

) q(z +tv),

q(x):q(t_t, (x+tv)+(1-
< el rto)+(1-

(x4t v)—q(z) _ ale+tv)—q(z)
t’ — t

t—t

. Thus, the one sided derivative

, e q@ +tv) —g(z)
q@ﬂ@-—ggg———j———*

and hence 4

exists.

As a derivative ¢/(x) automatically satisfies ¢’ (z)(tv) = t ¢’ (x)(v) for all ¢ > 0. The

q(z+tv)—g(z)

S . Hence

derivative ¢'(x) is convex as limit of the convex functions v —
it is sublinear.

The convexity of g implies that
q(x) — qlz —v) < ¢ (2)(v) < q(z +v) — q(2).
Therefore, the local boundedness of ¢ at = implies that of ¢'(z) at 0. Let £ := f'(z),

then subadditivity and odd-ness implies £(a) < ¢(a + b) + £(=b) = £(a + b) — £(b)
and hence the converse triangle inequality. U

q(m+tvt)*Q(w) < @) +tq(@)—q(=)

< 7 = ¢(v), hence
¢ (x)(v) < q(v), and furthermore ¢'(z)(z) = limy o w = limp g g(x) =

q(x). Hence we have
¢ ()| == sup{|¢’(z)(v)] : q(v) < 1} = sup{q'(z)(v) : g(v) < 1} = 1.

Remark. If g is a seminorm, then

Convention. Let ¢ # 0 be a seminorm and let ¢(z) = 0. Then there exists a
v € E with ¢(v) # 0, and we have g(z +tv) = [t] ¢(v), hence ¢'(z)(£v) = ¢(v). So g
is not Gateaux differentiable at x. Therefore, we call a seminorm smooth for some
differentiability class, if and only if it is smooth on its carrier {x : g(z) > 0}.

13.5. Differentiability properties of convex functions f can be translated in
geometric properties of A;:

Lemma. Differentiability of convex functions. Let f : E — R be a contin-
uous convex function on a Banach space E, and let xo € E. Then the following
statements are equivalent:

(1) The function f is Gdteauz differentiable at xq;
(2) There exists a unique { € E' with

£(v) < f(zo +v) = f(zo) for allv € E;
(3) There exists a unique affine hyperplane tangent to Ay through (xo, f(xo)).
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13.5 13. DIFFERENTIABILITY OF SEMINORMS

(4) The Minkowski functional of (some translate of) Ay is Gateaux differen-
tiable at (xo, f(x0)).

Moreover, for a sublinear function f and f(xg) # 0 the following statements are
equivalent:

(5) The function f is Gateaux (Fréchet) differentiable at xo;
(6) The point xq (strongly) exposes the polar of the set {x : f(x) < 1}.

In particular, the following statements are equivalent for a convex function f:

(7) The function f is Gateaur (Fréchet) differentiable at xo;

(8) The Minkowski functional of (some translate of ) Ay is Gateaux (Fréchet)
differentiable at the point (xo, f(xo));

(9) The point (zo, f(x0)) (strongly) exposes the polar of some translate of A;.

An element z* € E* is said to expose a subset K C E if there exists a unique
point ko € K with z*(ko) = sup{z*(k) : k € K}, i.e. * takes it supremum on K
on a unique point kg. It is said to strongly expose K, if satisfies in addition that
x*(x,) — x*(ko) implies x,, — ko.

By an affine hyperplane H tangent to a convex set K at a point x € K we mean
that € H and K lies on one side of H.

Proof. Let f be a convex function. By the proof of we have f/(z¢)(v) <
f(zo +v) — f(xp). For any £ € E' with £(v) < f(xo+v) — f(zg) for all v € E we
have ((v) = H(tv) < M for all ¢ > 0, and hence £ < f'(zo).

() = () Let f be continuous and Gateaux-differentiable at xq, so f’(xg) is
linear (and continous) and thus minimal among all sub-linear mappings. By what
we said before f’(x¢) is the unique linear functional satisfying (2).

() = () By what we said before the unique ¢ in (2) satisfied ¢ < f'(x).
So f'(zg) — € > 0. If this is not identical zero, then there exists a y € E* with
0 # p < f'(xp) — £ by Hahn-Banach. Thus ¢ + p satisfies (2) also, a contradiction
to the uniqueness of £.

() & () Any hyperplane tangent to Ay at (zo, f(xo)) is described by a func-
tional 0 # (¢,s) € E' x R such that £(z) + st > £(xo) + s f(xo) for all t > f(z).
Note that the scalar s cannot be 0, since this would imply that ¢(z) > ¢(z¢) for
all z. It has to be positive, since otherwise the left side would go to —oo for
f(z) <t — +oo. Without loss of generality we may thus assume that s = 1, so the
hyperplane uniquely determines the linear functional £ with £(z—xq) > f(xo)— f(2)
for all z or, by replacing ¢ by —¢ and x by x¢ + v, we have a unique ¢ with
L(v) < f(zg+v) — f(xg) for all v € E.

() & () A sublinear functional p > 0 is Gateaux-differentiable at zp with
p(xo) # 0 if and only if there is a unique affine hyperplane tangent to {z : p(z) <
p(zo)} at xo:

By () = () p is differentiable at zo iff there exists a unique ¢ € E’ with
L(v) < p(xo + v) — p(xp) for all v, or, equivalently, £(x — z¢) < p(x) — p(zo) for
all . Thus £(z) < £(x) for all p(z) < p(zg). Conversely let 0 # ¢ € E’ satisfy
this condition and z be arbitary. Since {x : p(z) < p(xg)} is absorbing, £(z¢) > 0
and we may replace £ by ’g((;”g;& If p(z) = 0 then p(rz) = 0 < p(xg) for all r
and hence ¢(rz) < £(x) for all r, i.e. £(z) = 0 and hence £(z — x9) = —(x0) =

—p(x0) = p(x) — p(xo). Otherwise we may consider z’ := ’;(%)x which satisfies

18 Andreas Kriegl , Univ.Wien, October 2, 2008



13. DIFFERENTIABILITY OF SEMINORMS 13.6

p(z') = p(x) and hence £(zg) > {(2') = p(wo)é(m) so £(z — mg) = £(x) — €(xg) <
(p(x) = p(0)) 222} = p(w) — p(wo).

We translate Ay such that it becomes absorbing (e.g. by —(0, f(0) + 1)). The
sublinear Minkowski functional p of this translated set Ay is by what we just
showed Géteaux-differentiable at (xq, f(zo)) with p(zo, f(z¢)) = 1 iff there exists
a unique affine hyperplane tangent to {(z,t) : p(z,t) < p(zo, f(z0))} = f(z0) Ay in
(xo, f(x0)), since Ay is closed. Since f(zo) # 0 this is equivalent with ()

() & (@) We show this for Gateaux-differentiability. We have to show that
there is a unique tangent hyperplane to xo € K := {z : f(x) < 1} if and only if
xo exposes K° := {{ € E* : {(x) < 1forall z € K}. Let us assume 0 € K and
0 # x¢ € OK. Then a tangent hyperplane to K at xg is uniquely determined by
a linear functional ¢ € E* with ¢(z9) = 1 and ¢(z) < 1 for all z € K. This is
equivalent to £ € K° and ¢(xo) = 1, since by Hahn-Banach there exists an ¢ € K°
with £(z¢) = 1. From this the result follows.

This shows also () = () & (@) for Gateaux-differentiability, since {(z,?) :
pag(@,t) <1} = Ay

In order to show the statements for Fréchet-differentiability one has to show that
£ = f'(x) is a Fréchet derivative if and only if x¢ is a strongly exposing point. This
is left to the reader, see also | 13.19 | for a more general result. O

13.6. Lemma. Duality for convex functions. [Moreau, 1965].
Let { , ):GxF — R be a dual pairing.

(1) For f: F — RU {400}, f # 400 one defines the dual function
f7:G—=RU{+o00}, [f*(2):=sup{(z,y)— f(y):y € F}.

(2) The dual function f* is conver and lower semi-continuous with respect to
the weak topology. Since a function g is lower semi-continuous if and only
if for all a € R the set {x : g(x) > a} is open, equivalently the convex set
{z : g(x) < a} is closed, this is for convex functions the same for every
topology which is compatible with the duality.

) [i<fe= fi>f5

) [*<g e g <f.

) [ = fif and only if [ is lower semi-continuous and convex.

) Suppose z € G satisfies f(x +v) > f(x) + (z,v) for all v (in particular,
this is true if z = f'(x)). Then f(x) + f*(2) = (2, x).

) 17 fi(y) = f(y — ) for all y, then f{() = (z,a) + f*(2) for all 2.

) If fi(y) = f(y) +a for ally, then f(2) = f*(2) — a for all z.

) If fu(y) = F(y) + (by) for ally, then f7(2) = [*(= — b) for all 2.

) IfE=F =R and f >0 with f(0) =0, then f*(s) = sup{ts—f(t) : ¢ > 0}
fort>0.

(11) If v : R — RT is convex and @ — 0, then v*(t) > 0 fort > 0.

(12) Let (F, Q) be a Banach space and its dual. Ify > 0 is convezr and y(0) = 0,

and 1(y) = 2(lyl), then £*() = v*(|1]])

(13) A convezx function f on a Banach space is Fréchet differentiable at a with

deriative b = f'(a) if and only if there exists a convex non-negative
function v, with v(0) = 0 and lim;_,q @ =0, such that

fla+h) < f(a) + (f'(a), h) +~([[R])-
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Proof. () Since f # o0, there is some y for which (z,y) — f(y) is finite, hence
f*(z) > —c0.

() The function z +— (z,y) — f(y) is continuous and linear, and hence the
supremum f*(z) is lower semi-continuous and convex. One would like to show
that f* is not constant +oc: This is not true. In fact, take f(t) = —t? then
f*(s) = sup{st — f(t) : t € R} = sup{st+t%:t € R} = +oo. More generally,
f* # 400 & f lies above some affine hyperplane, see ()

(3] It f1 < fa then (z,y) — fi(y) = (z,9) — fa(y), and hence fi(2) > f5(2).
() One has

() Since (f*)* is convex and lower semi-continuous, this is true for f provided
f = (f*)*. Conversely, let g(b) = —a and g(z) = +o0o otherwise. Then ¢g*(y) =
sup{(z,y) —g(2) : 2 € G} = (b,y) +a. Hence, a+ (b, )< f< f*(b) < —a. If fis
convex and lower semi-continuous, then Ay is closed and convex and hence f is the
supremum of all continuous linear functionals a + (b, ) below it by Hahn-Banach,
and this is exactly the case if f*(b) < —a. Hence, f**(y) = sup{(z,y) — f*(2) : z €
G} > (b,y) + a and thus f = f**.

(6]) Let f(a+y) > f(a) +(b.y). Then f*(b) = sup{(b.y) — f(y) : y € F} =
?Ep{;b,c;cz—)v} — fla4+v):v e F} <sup{(b,a) + (b,v) — f(a) — (b,v) : v € F} =

(7] Let fi(y) = f(y — a). Then

f1(z) =sup{(z,y) — fly —a):y € F'}
=sup{(z,y +a) — f(y) 1y € F} = (z,a) + f*(2).

(8)) Let fi(y) = f(y) + a. Then
fi(z) =sup{(z,9) = fly) —a:y € F} = [*(2) —a

(9) Let fi(y) = f(y) + (b,y). Then
f1(z) =sup{(z,y) — f(y) — (b,y) :y € F}
=sup{(z —b,y) — f(y) :y € F} = f*(2 = D).

(10) Let E = F = R and f > 0 with f(0) = 0, and let s > 0. Using that
st— f(t) <0 for ¢t <0 and that s0 — f(0) = 0 we obtain

f*(s) =sup{st— f(t): t € R} =sup{st— f(t): ¢t > 0}.

() Let v > 0 with limg\ o @ =0, and let s > 0. Then there are ¢t with s > @,
and hence

v*(s) = sup{st —y(t) : t > 0} = sup{t(s — @) 1t >0} >0.
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(12]) Let f(y) = v(lyll)- Then
F*(2) = sup{(z,9) —(lyll) : y € F}
= sup{t(z,y) —(t) : [lyll = 1, > 0}
= sup{sup{t(z,y) —(t) : lyll = 1}, > 0}
= sup{t]|2|| — (1) : t > 0}
= *(lI2Il)-

(13) If f(a+h) < f(a) + (b, h) +~(||h]) for all , then we have for t > 0
flat+th) - f(a) (IRl
t t
hence f’(a)(h) < (b, h). Since h +— f'(a)(h) is sub-linear and the linear functionals
are minimal among the sublinear ones, we have equality. By convexity we have

fla+th)— f(a
@t 2T > ) = @),
So f is Fréchet-differentiable at a with derivative f’(a)(h) = (b, h), since the re-

mainder is bounded by (||h]|) which satisfies % — 0 for ||h]| — 0.

<{b,h) +

Conversely, assume that f is Fréchet-differentiable at a with derivative b. Then

|f(a+h) = fla) = (b, 1)
5]

— 0 for h — 0,

and by convexity

g(h) == fla+h) = fa) = (b,h) = 0.
Let v(t) := sup{g(u) : |Jul| = |t|}. Since g is convex v is convex, and obviously
~(t) € [0, +0c0], v(0) = 0 and @ — 0 for t — 0. This is the required function. O

13.7. Proposition. Continuity of the Fréchet derivative. [Asplund, 1968].
The differential ' of any continuous convex function f on a Banach space is con-
tinuous on the set of all points where f is Fréchet differentiable. In general, it is
however neither uniformly continuous nor bounded, see .

Proof. Let f/(z)(h) denote the one sided derivative. From convexity we conclude
that f(z +v) > f(x) + f'(z)(v). Suppose z,, — x are points where f is Fréchet
differentiable. Then we obtain f'(x,,)(v) < f(x, +v) — f(x,) which is bounded in
n. Hence, the f'(x,) form a bounded sequence. We get

f@) = (f'(@n), ) = [7(f'(2n)) since f(y) + f*(2) = (z,9)
= (f'(zn),2) + f2n) = (f'(2n), 2n) since f*(f'(2)) + f(2) = f'(2)(2)
> (f'(wn),x = an) + f(2) + (f'(2), 20 — @) since f(z+ h) = f(x) + f(x)(h)

(
(f'(zn) = f'(@), 2 — 2n) + f(2).
Since z, — x and f’(z,,) is bounded, both sides converge to f(x), hence

Tim (f (@), 2) = £*(F (@) = F(2).
Since f is convex and Fréchet-differentiable at a := x with derivative b := f'(x),
there exists by a vy with
f(h) < f(a) + (b, h —a) +~(|h — al)-

By duality we obtain using
[ (2) =2 (z,a) = f(a) + (2 = bl]).
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If we apply this to z := f'(z,,) we obtain
(1 (@n)) = (f'(@n) ) = fla) + (1 (zn) = f/(2)]])-

Hence
VS (@n) = f @) < £ (@n)) = (' (@a), 2) + f(2),
and since the right side converges to 0, we have that v*(||f'(z,) — f'(z)]]) — 0.

Then ||f'(z,) — f'(z)]] — 0 where we use that v is convex, v(0) = 0, and (¢) > 0
for ¢ > 0, thus -y is strictly monotone increasing. O

13.8. Asplund spaces and generic Fréchet differentiability. From
it follows easily that a convex function f : R — R is differentiable at all except
countably many points. This has been generalized by [Rademacher, 1919] to: Ev-
ery Lipschitz mapping from an open subset of R™ to R is differentiable almost
everywhere. Recall that a locally bounded convex function is locally Lipschitz, see

[132]

Proposition. For a Banach space E the following statements are equivalent:

(1) Ewery continuous convex function f : E — R is Fréchet-differentiable on
a dense Gg-subset of E;

(2) Every continuous convex function f : E — R is Fréchet-differentiable on
a dense subset of E;

(3) Ewery locally Lipschitz function f : E — R is Fréchet-differentiable on a

dense subset of E;

(4) Ewery equivalent norm is Fréchet-differentiable at least at one point;

(5) E has no equivalent rough norm;

(6) Every (closed) separable subspace has a separable dual;

(7) The dual E* has the Radon-Nikodym property;

(8) Ewvery linear mapping E — LY(X,Q, u) which is integral is nuclear;

(9) Ewery closed convex bounded subset of E* is the closed convex hull of its

extremal points;

(10) Ewvery bounded subset of E* is dentable.

A Banach space satisfying these equivalent conditions is called Asplund space.
Every Banach space with a Fréchet differentiable bump function is Asplund, [Eke-
land, Lebourg, 1976, p. 203]. It is an open question whether the converse is true.
Every WCG-Banach-space (i.e. a Banach space for which a weakly compact subset
K exists, whose linear hull is the whole space) is Asplund, [John, Zizler, 1976].
The Asplund property is inherited by subspaces, quotients, and short eract se-
quences, [Stegall, 1981].

About the proof. () [Asplund, 1968]: If a convex function is Fréchet differen-
tiable on a dense subset then it is so on a dense Gg-subset, i.e. a dense countable
intersection of open subsets.

() is in fact a local property, since in [Borwein, Fitzpatrick, Kenderov, 1991] it
is mentioned that for a Lipschitz function f : E — R with Lipschitz constant L
defined on a convex open set U the function

f(z) = inf{f(y) + Lz —y| : y € U}
is a Lipschitz extension with constant L, and it is convex if f is.

() = () is due to [Preiss, 1990], Every locally Lipschitz function on an Asplund
space is Fréchet differentiable at points of a dense subset.
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13. DIFFERENTIABILITY OF SEMINORMS 13.9

() = () follows from the fact that continuous convex functions are locally
Lipschitz, see .
() & () is mentioned in [Preiss, 1990] without any proof or reference.

() & () is due to [Stegall, 1975]. A subset D of a Banach space is called
dentable, if and only if for every x € D there exists an € > 0 such that = is not in

the closed convex hull of {y € D : ||y — z| > e}.

() & () is due to [John, Zizler, 1978]. A norm p is called rough, see also

, if and only if there exists an € > 0 such that arbitrary close to each x € X
there are points x; and u with |lu|| = 1 such that |p’(x2)(u) — p'(z1)(uw)| > e. The
usual norms on C[0,1] and on ¢! are rough by ‘ 13.12 ‘ and ‘ 13.13 ‘ A norm is not
rough if and only if the dual ball is w*-dentable. The unit ball is dentable if and
only if the dual norm is not rough.

() & (@) is due to [Stegall, 1975].

() & () is due to [Stegall, 1978]. A closed bounded convex subset K of
a Banach space E is said to have the Radon-Nikodym property if for any finite
measure space (2,3, u) every u-continuous countably additive function m : ¥ — E

of finite variation with average range {% :S €%, u(S) > 0} contained in K is
representable by a Bochner integrable function, i.e. there exists a Borel-measurable
essentially separably valued function f : Q@ — E with m(S) = [ ¢ [ dp. This function
f is then called the Radon-Nikodym derivative of m. A Banach space is said to
have the Radon-Nikodym property if every closed bounded convex subset has it.
See also [Diestel, 1975]. A subset K is a Radon-Nikodym set if and only if every
closed convex subset of K is the closed convex hull of its strongly exposed points.

() & () can be found in [Stegall, 1975] and is due to [Grothendieck, 1955]. A
linear mapping F — F is called integral if and only if it has a factorization

E F P
| |
C(K) LY(K, )

for some Radon-measure p on a compact space K.
A linear mapping E — F is called nuclear if and only if there are x}, € E* and
Yn € F such that Y ||z} || |yn|| <ccand T'= )" 2} @ yn.

() & (@) is due to [Stegall, 1981, p.516]. O

13.9. Results on generic Gateaux differentiability of Lipschitz functions.

(1) [Mazur, 1933] & [Asplund, 1968] A Banach space E with the property that
every continuous convex function f: E — R is Gateauz-differentiable on
a dense Gg-subset is called weakly Asplund. Separable Banach spaces are
weakly Asplund.

(2) In [Zivkov, 1983] it is mentioned that there are Lipschitz functions on R,
which fail to be differentiable on a dense Ggs-subset.

(3) A Lipschitz function on a separable Banach space is “almost everywhere”
Gateauz-differentiable, [Aronszajn, 1976].

(4) [Preiss, 1990] If the norm on a Banach space is B-differentiable then every
Lipschitz function is B-differentiable on a dense set. A function f : E D
U — F is called B-differentiable at x € U for some family B of bounded
subsets, if there exists a continuous linear mapping (denoted f'(x)) in

Andreas Kriegl , Univ.Wien, October 2, 2008 23



13.11 13. DIFFERENTIABILITY OF SEMINORMS

L(E,F) such that for every B € B one has M - f(z)(v) =0
for t — 0 uniformly for v € B.

(5) [Kenderov, 1974], see [Zivkov, 1983]. Ewvery locally Lipschitzian function
on a separable Banach space which has one sided directional derivatives for
each direction in a dense subset is Gateaux differentiable on a non-meager
subset.

(6) [Zivkov, 1983]. For every space with Fréchet differentiable norm any lo-
cally Lipschitzian function which has directional derivatives for a dense
set of directions is generically Gateaux differentiable.

(7) There exists a Lipschitz Gateaux differentiable function f : L'[0,1] — R
which is nowhere Fréchet differentiable, [Sova, 1966a], see also [Gieraltow-
ska-Kedzierska, Van Vleck, 1991]. Hence, this is an ezample of a weakly
Asplund but not Asplund space.

Further references on generic differentiability are: [Phelps, 1989], [Preiss, 1984],
and [Zhivkov, 1987].

13.10. Lemma. Smoothness of 2n-norm. For n € N the 2n-norm is smooth
on L*\ {0}.

Proof. Since t +— t1/2" is smooth on R it is enough to show that x + (||z] 2, )"
is smooth. Let p := 2n. Since (z1,...,%,) — @1 - - &, is a n-linear contraction
from LP x ... x LP — L' by the Hélder-inequality ( f:1% =1)and [: L' =R
is a linear contraction the mapping  — (z,...,z) — [ 2" is smooth. Note that
since we have a real Banach space and p = 2n is even we can drop the absolute

value in the formula of the norm. O

13.11. Derivative of the 1-norm. Let z € ¢! and j € N be such that z; = 0.
Let e; be the characteristic function of {j}. Then ||z + te;|[1 = ||z|1 + |¢| since
the supports of x and e; are disjoint. Hence, the directional derivative of the norm
p: v |jv]1 is given by p'(x)(e;) = 1 and p'(x)(—e;) = 1, and p is not differentiable
at x. More generally we have:

Lemma. [Mazur, 1933, p.79]. Let I be some set, and let p be the 1-NORM given
by llzlli = p(x) = X, erlzy| for x € (1(T). Then p'(z)(h) = 3, _olhy| +
Z%#O h, signz..

The basic idea behind this result is, that the unit sphere of the 1-norm is a hyper-
octahedra, and the points on the faces are those, for which no coordinate vanishes.

Proof. Without loss of generality we may assume that p(z) = 1 = p(h), since for
7> 0and s > 0 we have p/(rz)(sh) = &|,_op(rz+tsh) = L|,_orp(z+t(£h)) =
rp'(x)(3h) = sp'(x)(h).
We have [z + hy| — [zy] = |lz)] + hy signa,| — 24| = |oy] + by signzy — |o,] =
hy signz, and is equal to |h,| if 2, = 0. Summing up these (in)equalities we
obtain

p(z+h) —p(z) - Z |yl = Z hy signzy > 0.

=0 z~7#0

For € > 0 choose a finite set F* C I', such that }__sp |hy[ < 5. Now choose ¢ so
small that

||+t hy signz, > 0 for all v € F with x., # 0.
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13. DIFFERENTIABILITY OF SEMINORMS 13.12

We claim that

gz +th) —q(x) .
" - Z |hy| — Z hysignz, < e.
z~,=0 T~ #0

Let first v be such that ., = 0. Then w = |h,|, hence these terms cancel
with — Zw.Y:O |h"Y|
Let now x., # 0. For |z,| + t hy signz, > 0 (hence in particular for v € F with
x # 0) we have

|2y +thy| — |2, | _ |2y | +thy signa,y — |z, |

t t

Thus, these terms sum up to the corresponding sum Zv h. sign x., .

= h,, signz,.

It remains to consider v with x, # 0 and |z| +t h, signz, < 0. Then v ¢ F' and
|2y + thy| — |z,
t

—|zy| — thy signa, — || — thy signaz,
t

—h, signzy, =
< —2h, signx.,

and since Zﬁ 7 |hy| < § these remaining terms sum up to something smaller than
E. g

Remark. The 1-norm is rough. This result shows that the 1-norm is Gateaux-
differentiable exactly at those points, where all coordinates are non-zero. Thus, if
I" is uncountable, the 1-norm is nowhere Gateaux-differentiable.

In contrast to what is claimed in [Mazur, 1933, p.79], the 1-norm is nowhere Fréchet
differentiable. In fact, take 0 # 2 € ¢1(I'). For v with z, # 0 and ¢ > 0 we have
that

plo 1 (—signzy ) — p(a) — 19/ (a) (—sign zy ) =
= |zy — t signa,| — @y +t = ||zy]| —t| = |2y |+t =11,

provided t > 2 |2|, since then ||z,|—t| = t—|z,| > |2,|. Obviously, for every t > 0
there are 7y satisfying this required condition; either ., = 0 then we have a corner,
or z, # 0 then it gets arbitrarily small. Thus, the directional difference quotient
does not converge uniformly on the unit-sphere.

The set of points = in ¢! where at least for one n the coordinate x, vanishes is
dense, and one has

+1 fort>0

+tet) = + It], h (x4te)(e") = :
p(z+te”) =p(x) + |t], hence p'(z +te")(e") {_1 for t <0

Hence the derivative of p is uniformly discontinuous, i.e., in every non-empty open
set there are points xq,z2 for which there exists an h € ¢! with ||h|| = 1 and

P'(21)(h) = p'(z2)(h)| = 2.

13.12. Derivative of the co-norm. On ¢y the norm is not differentiable at points
x, where the norm is attained in at least two points. In fact let |z(a)| = ||z|| = |z(b)|
and let h := signz(a)e,. Then p(z + th) = |(z + th)(a)| = ||z|| + ¢ for t > 0 and
p(z +th) = |(z + th)(b)| = ||z| for t < 0. Thus, ¢t — p(x + th) is not differentiable
at 0 and thus p not at z.

If the norm of z is attained at a single coordinate a, then p is differentiable at x.
In fact p(z +th) = |(x + th)(a)| = |sign(w(a) o] + th(a) sign(z(a))| = ||lz] +
th(a)sign(z(a))| = ||| + th(a) sign(z(a)) for [¢][[n]| < [lz]| — sup{lz(t)| : ¢ # a}.
Hence the directional difference-quotient converges uniformly for A in the unit-ball.
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13.12 13. DIFFERENTIABILITY OF SEMINORMS

Let z € C0,1] be such that ||z|e = |2z(a)] = |2(b)| for a # b. Choose a y with
y(s) between 0 and z(s) for all s and y(a) = z(a) but y(b) = 0. For t > 0 we have
(@ +£5)($)] < [2(0) + ty(@)] = (1+1) []oo and hence [z + tylloc = (1+2) 2]
For —1 <t < 0 we have [(x+ty)(s)| < |z(a)| and |[(x+ty)(b)|| = ||x(a)|| and hence
|z + tylloo = ||#]|lco- Thus the directional derivative is given by p'(z)(y) = ||#]l
and p'(x)(—y) = 0. More precisely we have the following results.

Lemma. [Banach, 1932, p. 168]. Let T be a compact metric space. Let x €
C(T,R) \ {0} and h € C(T,R). By p we denote the 0co-NORM ||z]|cc = p(z) :=
sup{|z(t)| : t € T}. Then p'(x)(h) = sup{h(t) signz(t) : |z(t)| = p(x).

The idea here is, that the unit-ball is a hyper-cube, and the points on the faces are
exactly those for which the supremum is attained only in one point.

Proof. Without loss of generality we may assume that p(z) = 1 = p(h), since for
r>0and s > 0 we have p/(rz)(sh) = &|,_op(rz+tsh) = L] i_orp(z+t(£h)) =
rp'(x)(Th) = sp'(x)(h).
Let A := {t € T : |z(t)] = p(z)}. For given ¢ > 0 we find by the uniform
continuity of # and h a &; such that |z(t) — 2(t')| < % and |h(t) — h(t')| < € for
dist(¢,t') < 61. Then {t : dist(t, A) > 1} is closed, hence compact. Therefore
= ||#]|co — sup{|x(t)]| : dist(¢, A) > 61} > 0.
Now we claim that for 0 < ¢ < min{d, 1} we have
ECEIDEN
For all s € A we have
p(z+th) > |(z+th)(s)| = ||z(s)| signa(s) + t h(s) signz(s)?|
= ||z(s)| + t h(s) signa(s)| = p(x) + t h(s) signa(s)
for 0 <t <1, since |h(s)| < p(h) = p(z). Hence
p(x +th) —p(x)
t
This shows the left inequality.

—sup{h(r) signz(r) :r € A} <e.

> sup{h(t) signz(t) : t € A}.

Let s be a point where the supremum p(z+¢ h) is attained. From the left inequality
it follows that

p(x +th) > p(x) +t sup{h(r) signz(r) : r € A}, and hence
[z(s)| = [(z +th)(s)| — t|h(s)| = p(z +th) —tp(h)
>plx)—t (p(h) —sup{h(r) signz(r) : r € A})
> p(x) = & = supf{e(r)]| : dist(r, A) > &1}.

Therefore dist(s, A) < ¢, and thus there exists an a € A with dist(s,a) < é; and
consequently |z(s) — z(a)| < 3 and |h(s) — h(a)| < e. In particular, signz(s) =
signz(a) # 0. So we get

plx+th) —px) _ [(x +th)(s)| — p(x) Hx )|+ th(s) signx(s |—
t t t
|z(s)| + th(s) signz(s) — p(x)

= , < h(s) signz(a)

< |h(s) — h(a)| + h(a) signz(a)
< e+ sup{h(r) signz(r) : r € A}.
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13. DIFFERENTIABILITY OF SEMINORMS 13.14

This proves the claim which finally implies

, . plz+th) —p(x)
P (x)(v) = lim "

= sup{h(r) signz(r) : r € A}. O

Remark. The oco-norm is rough. This result shows that the points where the
oo-norm is Géateaux-differentiable are exactly those & where the supremum p(z) is
attained in a single point a. The Gateaux-derivative is then given by p'(z)(h) =
h(a) signz(a). In general, this is however not the Fréchet derivative:

Let x # 0. Without loss we may assume (that p(z) = 1 and) that there is a unique
point a, where |z(a)| = p(x). Moreover, we may assume z(a) > 0. Let a,, — a be
such that 0 < z(a,) < z(a) and let 0 < §,, := x(a) — z(an) < x(a). Now choose
Sp = 20, — 0 and h,, € C[0,1] with p(h,) < 1, hy(a) = 0 and h,(a,) := 1 and
p(x + sphyn) = (4 sphn)(an) = z(an) + 2(z(a) — z(ay,)) = 2z(a) — z(ay,). For this
choose (z + sphy)(t) < (x4 sphyn)(ay) locally, ie.. hp(t) < 14 (x(an) — x(t))/sn

and 0 far away from z. Then p'(z)(h,) = 0 by | 13.12| and

p(x + s hy) — p(x 2z(a) — x(a,) — x(a
( ) =P iy — 2200) = {a) — x(a)
Sn Sn
On 1
= — = — O
26, 2 »
Thus the limit is not uniform and p is not Fréchet differentiable at x.

The set of vectors « € C[0, 1] which attain their norm at least at two points a and
b is dense, and one has for appropriately chosen h with h(a) = —z(a), h(b) = x(b)
that

+1 fort>0

p(xz +th) = (1+max{t,—t})p(x), hence p'(z +th)(h) = {—1 fort <0’

Therefore, the derivative of the norm is uniformly discontinuous, i.e., in every non-
empty open set there are points x1,zo for which there exists an h € C[0, 1] with
[h]l = 1 and [p’(z1)(h) — p(z2)(h)] = 2.

13.13. Results on the differentiability of p-norms. [Bonic, Frampton, 1966,
p.887].

For 1 < p < 0o not an even integer the function t — |t|P is differentiable of order
n if n < p, and the highest derivative (t+— p(p—1)...(p —n+ 1) [t|P~") satisfies
a Holder-condition with modulus p — n, one can show that the p-norm has exactly
these differentiability properties, i.e.

(1) It is (p—1)-times differentiable with Lipschitzian highest derivative if p is
an integer.

(2) It is [p]-times differentiable with highest derivative being Hélderian of or-
der p — [p], otherwise.

(3) The norm has no higher Holder-differentiability properties.

That the norm on LP is C' for 1 < p < co was already shown by [Mazur, 1933].

13.14. Proposition. Smooth norms on a Banach space. A norm on a
Banach space is of class C™ on E \ {0} if and only if its unit sphere is a C™-
submanifold of E.

Proof. Let p : E — R be a smooth norm. Since p/(z)(z) = |i—op(z + tz) =
%\tzo(l + t)p(x) = p(x), we see that p(x) = 1 is a regular equation and hence the
unit sphere S := p~1(1) is a smooth submanifold (of codimension 1), see | 27.11 |.
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13.15 13. DIFFERENTIABILITY OF SEMINORMS

Explicitly, this can be shown as follows: For a € S let ® : ker(p/(a)) x RT — Et :=
{z € E : p'(a)(z) > 0} be given by (v,t) — tp(“atr”v). This is well-defined, since
pla +v) > pla) + p'(a)(v) = p(a) = 0 for v € ker(p'(a)). Note that ®(v,t) =y
implies that ¢t = p(y) and v € ker(p’(a)) is such that a + v = py for some p # 0,
ie. pp'(a)(y) =p'(a)(a+v) = p'(a)(a) = p(a) = 1 and hence v = m Yy — a.
Thus ® is a diffeomorphism that maps ker(p’(a)) x {1} onto SN E™.

Conversely, let g € E'\ {0} and a := p(wmoo). Then « is in the unit sphere, hence
there exists locally around a a diffeomorphism ® : £ O U — ®(U) C E which maps
SNU — FN®U) for some closed linear subspace FF C U. Let A: F — R be a
continuous linear functional with A(a) = 1 and A < p. Note that b := ®’(a)(a) # F,
since otherwise t +— ®~1(tb) is in S, but then A\(®~1(th)) < 0 and hence 0 =
A _oA(®@71(th)) = A(®'(a)~'b) = A(a) = 1 gives a contradiction. Choose p € E’
with pu|p = 0 and p(b) = 1. We have to show that z — p(x) is C™ locally around
g, or equivalently that this is true for g :  — ﬁ. Then g(x) is solution of
the implicit equation ¢(z, g(z)) = 0, where ¢ : E x R — F is given by (z,9) —
flg - x) with f := po ®. This solution is C™ by the implicit function theorem,
since dap(x0,9(w0)) = f'(9(x0)z0)(w0) = p(z0) f'(a)(a) = p(zo) u(b) = p(x) # O,
because f is a regular equation at a. O

Although this proof uses the implicit function theorem on Banach spaces we can
do without as the following theorem shows:

13.15. Theorem. Characterization of smooth seminorms. Let E be a
convenient vector space.

(1) Let p : E — R be a convex function which is smooth on a neighborhood of
p~1(1), and assume that U := {x € E : p(x) < 1} is not empty. Then U is open,
and its boundary OU equals {x : p(x) = 1}, a smooth splitting submanifold of E.

(2) If U is a convex absorbing open subset of E whose boundary is a smooth sub-
manifold of E then the Minkowski functional py is a smooth sublinear mapping,
and U ={z € E: py(z) < 1}.

Proof. () The set U is obviously convex and open by and . Let
M = {z : p(x) = 1}. We claim that M = 0U. Let o € U and x; € M. Since

t — p(xy + t(xg — x1)) is convex it is strictly decreasing in a neighborhood of 0.
Hence, there are points x close to z1 with p(z) < p(z1) and such with p(z) > 1,
i.e. z belongs to OU. Conversely, let © € OU. Since U is open we have p(z1) > 1.
Suppose p(z1) > 1, then p(z) > 1 locally around z7, a contradiction to z; € dU.

Now we show that M is a smooth splitting submanifold of E, i.e. every point has
a neighborhood, in which M is up to a diffeomorphism a complemented subspace.
Let 21 € M = 9U. We consider the convex mapping ¢t — p(zg + t(x1 — p)). It
is locally around 1 differentiable, and its value at 0 is strictly less than that at 1.
Thus, p'(x1)(z1 — xo) > p(x1) — p(zo) > 0, and hence we may replace zo by some
point on the segment from xg to x; closer to z1, such that p/(zg)(xz1 — zo) > 0.
Without loss of generality we may assume that g = 0. Let U :={ax € E : p'(0)z >
0 and p'(x1)x > 0} and V := (U —z1) Nkerp/(z1) C kerp/(z1). A smooth mapping
from the open set U C E to the open set V x R C kerp’(x1) x (p(0), +00) is given
%. This mapping is a diffeomorphism,
since for (y,r) € ker p’(z1) X R the inverse image is given as t(y+ 1) where ¢ can be
calculated from r = p(t (y+x1)). Since t — p(t (y+=1)) is a diffeomorphism between
the intervals (0, +00) — (p(0),4+00) this ¢ is uniquely determined. Furthermore, ¢

depends smoothly on (y,r): Let s — (y(s),7(s)) be a smooth curve, then ¢(s) is

by z — (tx — x1,p(x)), where t :=
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13. DIFFERENTIABILITY OF SEMINORMS 13.17

given by the implicit equation p(t (y(s) + x1)) = r(s), and by the 2-dimensional
implicit function theorem the solution s +— t(s) is smooth.

() By general principles py is a sublinear mapping, and U = {z : py(z) < 1} since
U is open. Thus it remains to show that py is smooth on its open carrier. So let ¢ be
a smooth curve in the carrier. By assumption, there is a diffeomorphism v, locally
defined on E near an intersection point a of the ray through ¢(0) with the boundary
OU = {z : p(z) = 1}, such that OU corresponds to a closed linear subspace F' C E.
Since U is convex there is a bounded linear functional A € E’ with A(a) = 1 and
UC {x € E: Xz) <1} by the theorem of Hahn-Banach. Then A\(T,(0U)) = 0
since any smooth curve in U through a stays inside {x : A(z) < 1}. Furthermore,
b: & |iv(ta) ¢ F, since otherwise ¢ — v1(tb) € OU but £ [1 A\ (v (th)) = A(a) = 1.

Put f := 1/pyoc: R — R. Then f is a solution of the implicit equation (A o
dv=1(0) o v)(f(t)e(t)) = 0 which has a unique smooth solution by the implicit
function theorem in dimension 2 since

Fsls=r(A o dv™H(0) o v)(sc(t)) = Adv ™ (0)du(f (t)e(t))e(t) # 0

for ¢ near 0, since for t = 0 we get A(c(0)) = ﬁ. So py is smooth on its carrier. [

13.16. The space ¢o(I"). For an arbitrary set I' the space ¢(T") is the closure
of all functions on I" with finite support in the Banach space ¢>°(T") of globally
bounded functions on I' with the supremum norm. The supremum norm on ¢o(T")

is not differentiable on its carrier, see | 13.12|. Nevertheless, it was shown in [Bonic,
Frampton, 1965] that cq is C*°-regular.

Proposition. Smooth norm on ¢y. Due to Kuiper according to [Bonic, Framp-
ton, 1966]. There exists an equivalent norm on co(I') which is smooth off 0.

Proof. To prove this let h : R — R be an unbounded symmetric smooth convex
function vanishing near 0. Let f : ¢o(I') — R be given by f(z) := > . h(z).
Locally on ¢o(I") the function f is just a finite sum, hence f is smooth. In fact let
h(t) =0 for |t| < . For x € ¢o(T') the set F' := {v : |z, > 6/2} is finite, and for
ly — 2| < & we have that f(y) = >_ cp h(ys)-

The set U := {x : f(x) < 1} is open, and bounded: Let h(t) > 1 for [{| > A and
f(z) <1, then h(z,) < 1 and thus |z,| < A for all v. The set U is also absolutely
convex: Since h is convex, so is f and hence U. Since h is symmetric, so is f and
hence U.

The boundary OU = f~1(1) is a splitting submanifold of co(I") by the implicit
function theorem on Banach spaces, since df (x)z # 0 for € OU. In fact df (z)(z) =
>, W (zy)zy > 0 and at least for one v we have h(z,) > 0 and thus h'(z,) # 0.

So by [13.14| the Minkowski functional py is smooth off 0. Obviously, it is an
equivalent norm. O

13.17. Proposition. Inheritance properties for differentiable norms.

(1) The product of two spaces with C™-norm has again a C™-norm given
by |[(x1,22)| == /l@1]]2 + ||z2]?. More generally, the ¢*-sum of C™-
normable Banach spaces is C™-normable.

(2) A subspace of a space with a C™-norm has a C™-norm.

(3) [Godefroy, Pelant, et. al., 1988]. If ¢o(I') — E — F is a short ezact
sequence of Banach spaces, and F has a C*-norm, then E has a C*-norm.

See also | 14.12.1| and | 16.19|.

Andreas Kriegl , Univ.Wien, October 2, 2008 29




13.17 13. DIFFERENTIABILITY OF SEMINORMS

(4) For a compact space K let K' be the set of all accumulation points of K.
The operation K — K’ has the following properties:

(a) ACB=ACB
(b) (AuB) =A"UB
c) (Ax B) =(A"x BYU(A x B)

(
(@  ({opu{l:neN}) ={0}
(e) K' =0« K discrete.

5) If K is compact and K@) = ( then C(K) has an equivalent C*-norm
(5) If p q )

see also .
Proof. () and () are obvious.

() (a) is obvious, since if {z} is open in B and = € A, then it is also open in A
in the trace topology, hence AN (B\ B’) C A\ A’ and hence A’ = A\ (A\ A") C
(ANAN(B\B'))=AnB C B

(b) By monotonicity we have ‘2’. Conversely let x € A’ U B’, wlo.g x € A,
suppose = ¢ (AU B)’, then {x} is open in AU B and hence {z} = {z} N A would
be open in A, i.e. z ¢ A’, a contradiction.

(c) is obvious, since {(z,y)} is open in A x B < {z} is open in A and {y} is open
in B.

(d) and (e) are trivial.

For () a construction is used similar to that of Kuiper’s smooth norm for cy.
Let 7 : E — F be the quotient mapping and || || the quotient norm on F. The
dual sequence ¢1(A) « E* « F* splits (just define T : ¢*(A) — E* by selection
of z; :=T(e,) € E* with ||z} | = 1 and x|, a) = eva using Hahn Banach). Note
that for every x € E and € > 0 the set {a: |2k (2)| > ||7(z)|| + €} is finite. In fact,
by definition of the quotient norm || (z)|| := sup{||z + y|| : y € co(I")} there is a
y € ¢o(T) such that ||z + y|| < ||7(z)]| +¢/2. The set Ty := {a : |ya| > €/2} is
finite. For all other o we have

lze (@) < [zg(z + ) + 2o W) < llzallllz + yll + lyal <
<1(lm(2)l +/2) + /2 = [|m(2)[| +&.
Furthermore, we have
2]l < 2|7 (z)]| + sup{|zg (z)] - o}
In fact,
l[z]| = sup{[(z", )| : [|lz"[| < 1}
< sup{[(T(A) +y" om x)| : [AllL < 1, [ly™|| <2}
= sup{|z,(z)] : a} + 2|7 (z)],
since z* = T(\) + 2" — T()\), where A := 2*[,(r) and hence [[A[l; < [lz*|| < 1,
and |T(A)(z)| < [Allx sup{|z ()] - a} < [[z]| hence [T(A)[| < [[All1, and y* o7 =
2* —T(A). Let | || denote a norm on F which is smooth and is larger than the
quotient norm. Analogously to we define

f(z) = h@|x(@))) TT i),
acA

where h : R — [0,1] is smooth, even, 1 for [t| < 1, 0 for |t > 2 and concave
on {t : h(t) > 1/2}. Then f is smooth, since if w(x) > 1/2 then the first factor
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13. DIFFERENTIABILITY OF SEMINORMS 13.18

vanishes locally, and if ||7(z)|] < 1 we have that Ty := {a : |2}i(2)] > 1 — ¢}
is finite, where ¢ := (1 — ||7(2)|)/2, for |ly — z|| < € also |z}(y) — ) (z)| < e
and hence |z5(y)] < 1 —e+e =1 for all @ ¢ T'y. So the product is locally
finite. The set {z : f(z) > 3} is open, bounded and absolutely convex and has
a smooth boundary {z : f(z) = 3}. It is symmetric since f is symmetric. It is
bounded, since f(x) > 1/2 implies h(4||7(z)||) > 1/2 and h(z}(z)) > 1/2 for all
a. Thus 4||7(z)|| < 2 and |z} (z)| < 2 and thus ||z|| < 2-1/2 4+ 2 = 3. For the
convexity note that z; > 0, y; > 0,0 < ¢ <1, [[,z; > 1/2, [[,4 > 1/2 imply
[L;(tzi+(1—t)y;) > 1/2, since log is concave. Since all factors of f have to be > 1/2
and h is concave on this set, convexity follows. Since one factor of f(z) =[], fa(z)
has to be unequal to 1, the derivative f'(x)(z) < 0, since f/ (x)(z) < 0 for all a by
concavity and f!(z)(z) < 0 for all x with f,(z) < 1. So its Minkowski-functional
is an equivalent smooth norm on F.

Statement () follows from () First recall that K’ is the set of accumulation
points of K, i.e. those points z for which every neighborhood meets K\ {z}, i.e. {z}
is not open. Thus K \ K’ is discrete. For successor ordinals & = 3 + 1 one defines
K@ .= (K®)" and for limit ordinals « as Np<a K®) . For a compact space K the
equality K“) = () implies K™ = () for some n € w, since K is closed. Now one
shows this by induction. Let E := {f € C(K) : f|x = 0}. By the Tietze-Urysohn
theorem one has a short exact sequence co(K \ K') 2 E — C(K) — C(K'). The
equality E = ¢o(K \ Kp) can be seen as follows:

Let f € C(K) with f|xs = 0. Suppose there is some € > 0 such that {x : |f(z)| > ¢}
is not finite. Then there is some accumulation point x., of this set and hence
|f(2oo)| > € but 200 € K’ and so f(zo) = 0. Conversely let f € co(K \ K') and
define f by f|K/ := 0 and f|K\K/ = f. Then f is continuous on K \ K’, since
K\ K’ is discrete. For z € K’ we have that f(z) = 0 and for each & > 0 the set
{y : |f(y)| > ¢} is finite, hence its complement is a neighborhood of z, and f is
continuous at x. So the result follows by induction. O

13.18. Results.

(1) We do not know whether the quotient of a C™-normable space is again
C™-normable. Compare however with [Fitzpatrick, 1980].
(2) The statement | 13.17.5 | is quite sharp, since by [Haydon, 1990] there is a

compact space K with K“) = {co} but without a Gaiteauz-differentiable
norm.

(3) [Talagrand, 1986] proved that for every ordinal number vy, the compact and
scattered space [0,~] with the order topology is C*-normable.

(4) It was shown by [Torunczyk, 1981] that two Banach spaces are home-
omorphic if and only if their density number is the same. Hence, one
can view Banach spaces as exotic (differentiable or linear) structures on
Hilbert spaces. If two Banach spaces are even C'-diffeomorphic then the
differential (at 0) gives a continuous linear homeomorphism. It was for
some time unknown if also uniformly homeomorphic (or at least Lips-
chitz homeomorphic) Banach spaces are already linearly homeomorphic.
By [Enflo, 1970] a Banach space which is uniformly homeomorphic to a
Hilbert space is linearly homeomorphic to it. A counter-example to the
general statement was given by [Aharoni, Lindenstrauss, 1978], and an-
other one is due to [Ciesielski, Pol, 1984]: There exists a short exact
sequence co(I'1) — C(K) — co(T'2) where C(K) cannot be continuously
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13.19 13. DIFFERENTIABILITY OF SEMINORMS

injected into some co(T) but is Lipschitz equivalent to co(T'). For these
and similar questions see [Tzafriri, 1980].

(5) A space all of whose closed subspaces are complemented is a Hilbert space,
[Lindenstrauss, Tzafriri, 1971].

(6) [Enflo, Lindenstrauss, Pisier, 1975] There exists a Banach space E not
isomorphic to a Hilbert space and a short exzact sequence {2 — E — (2.

(7) [Bonic, Reis, 1966]. If the norm of a Banach space and its dual norm are
C? then the space is a Hilbert space.

(8) [Deville, Godefroy, Zizler, 1990]. This yields also an example that exis-

tence of smooth norms is not a three-space property, cf. | 14.12|.

Notes. () Note that K \ K’ is discrete, open and dense in K. So we get

for every n € N by induction a space K,, with K # () and KM = ¢ In
fact (A x B)™ =, ,_, A x BU). Next consider the 1-point compactification
K of the locally compact space | |,y Kpn. Then K., = {oo} U| ],y Ky In
fact every neighborhood of {co} contains all but finitely many of the K, thus
we have D. The obvious relation is clear. Hence Kég) = {oo} Ul li>, Kﬁi). And

K = MNhew K = {00} # 0. The space of [Haydon, 1990] is the one-point
compactification of a locally compact space L given as follows: L :=| |, <y WIS L€
the space of functions wy; — wy, which are defined on some countable ordinal. It is
ordered by restriction, i.e. s X ¢ :< doms C domt and t|qom s = S

() The order topology on X := [0,7] has the sets {z : < a} and {z : z > a}
as basis. In particular open intervals (a,b) := {z : a < x < b} are open. It is
compact, since every subset has a greatest lower bound. In fact let & on X be a
covering. Consider S := {x € X : [inf X, x) is covered by finitely many U € U}.
Let s :=sup S. Note that 2 € S implies that [inf X, z] is covered by finitely many
sets in U. We have that s,, € S, since there is an U € U with s, € U. Then there
is an z with so € (2, Soo] C U, hence [inf X, z] is covered by finitely many sets in
U since there is an s € S with x < s, so [inf X, so] = [inf X, 2] U (2, so0] is covered
by finitely many sets, i.e. so € 5.

The space X is scattered, i.e. X(®) = () for some ordinal . For this we have to show
that every closed non-empty subset K C X has open points. For every subset K
of X there is a minimum min K € K, hence [inf X, min K + 1) N K = {min K} is
open in K.

7] = N, the one-point

For v equal to the first infinite ordinal w we have [0,
1) 2 ¢o x R and the result

compactification of the discrete space N. Thus C([0,~
follows in this case from | 13.16 |

() For splitting short exact sequences the result analogous to | 13.17.3 | is by
13.17.1 | obviously true. By () there are non-splitting exact sequences 0 — F' —
E — E/F — 0 for every Banach space which is not Hilbertizable.

() By (@) there is a sort exact sequence with hilbertizable ends, but with middle
term E not hilbertizable. So neither the sequence nor the dualized sequence splits.
If E and E’ would have a C?-norm then E would be hilbertizable by ()

13.19. Proposition. Let E be a Banach space, x| = 1. Then the following
statements are equivalent:

(1) The norm is Fréchet differentiable at x;
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13. DIFFERENTIABILITY OF SEMINORMS 13.20

(2) The following two equivalent conditions hold:

Nz Al 4 [l = Rl = 2]

lim =0,
h—0 7]
th —th|| —2
}ir% e + thi + HfUt | =2l = 0 uniformly in ||h]| < 1;

@) lynll =1 Izl =1, yp(2) = 1, z5(2) = 1 =y — 25 — 0.

Proof. ():>() This is obvious, since for the derivative ¢ of the norm at x we
have limy, o LZERI=llI=IER —  apq adding these equations gives ()

[
() = () Since 4(h) := limy o w always exists, and since
lz + thil + llo — thil = 2|z _ lla+thl] = flzfl | llo+t(=R)] - =]
t t t

> I(h) +1(—h) >0

we have £(—h) = £(h), thus ¢ is linear. Moreover w — {(£h) > 0, so the
limit is uniform for ||A|| < 1.

() = () By () we have that for e > 0 there exists a d such that ||z + h|| +
|z — h|| <2+ ellh| for all ||h|| < 4. For ||yk|| =1 and ||z%|| = 1 we have

Yn(x +h) + zp(x = h) <z + bl + [z = Al|.
Since yX(x) — 1 and 2z} (z) — 1 we get for large n that
(Y = 20)(h) <2 =y (z) — 2, (2) + el|hl] < 2¢6,
hence ||y} — 2| < 2e, i.e. 25—yt — 0.
() = () Otherwise, there exists an ¢ > 0 and 0 # h,, — 0, such that
[+ hnll + [l = hnll = 2+ &l hn -
Now choose ||y%]| =1 and ||z|| = 1 with
Valw o+ hn) 2 o+ ol = ] and 25 (@~ h) >l — Aol = ]
Then y} (z) = v} (z + hy) — ¥ (hy) — 1 and similarly 2} (z) — 1. Furthermore

2
Yn(@ +h) + 2 (2 = hn) 224 (e = ) Al
hence
(W = 2n)(hn) 2 24 (e = —) [hall = (yn + 20)(2) 2 (€ = =) lln],

thus [jy; — 2| > & — 2, a contradiction. O

13.20. Proposition. Fréchet differentiable norms via locally uniformly
rotund duals. [Lovaglia, 1955] If the dual norm of a Banach space E is locally
uniformly rotund on E' then the norm is Fréchet differentiable on E.

A norm is called locally uniformly rotund if ||x,| — ||z and ||z 4+ z,| — 2|z||
implies x,, — z. This is equivalent to 2(||z|? + ||lz.]|*) — ||z + 2»]|* — 0 implies
T, — x, since

2(lz )1 + 2llzal®) = llo + 2l = 2ll2l® + 2llnll* = (2] + lzal)* = (2l = [lzall)*.

Proof. We use [13.19], so let 2] = 1, [ly3| = 1, I3l = 1, 3(s) — 1, 25(z) — 1.
Let ||z*|| = 1 with 2*(z) = 1. Then 2 > ||z* + y}|| > (z* + y;;)(x) — 2. Since
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13.22 13. DIFFERENTIABILITY OF SEMINORMS

I Iz is locally uniformly rotund we get y% — z and similarly z — =z, hence
Yn — 2z — 0. U

13.21. Remarks on locally uniformly rotund spaces. By [Kadec, 1959]
and [Kadec, 1961] every separable Banach space is isomorphic to a locally uniformly
rotund Banach space. By [Day, 1955] the space £>°(T") is not isomorphic to a locally
uniformly rotund Banach space. Every Banach space admitting a continuous linear
injection into some c¢o(I") is locally uniformly rotund renormable, see [Troyanski,
1971]. By every WCG-Banach space has such an injection, which is due
to [Amir, Lindenstrauss, 1968]. By [Troyanski, 1968] every Banach space with
unconditional basis (see [Jarchow, 1981, 14.7]) is isomorphic to a locally uniformly
rotund Banach space.

In particular, it follows from these results that every reflexive Banach space has an
equivalent Fréchet differentiable norm. In particular LP has a Fréchet differentiable
norm for 1 < p < oo and in fact the p-norm is itself Fréchet differentiable, see

[13.13)

13.22. Proposition. If E’ is separable then E admits an equivalent norm, whose
dual norm is locally uniform rotund.

Proof. Let E’ be separable. Then there exists a bounded linear operator T : E —
¢% such that T*((£?)") is dense in E’ (and obviously T* is weak*-continuous):
Take a dense subset {z] : i € N} C E' of {a* € E' : ||z*|| < 1} with |z}| < 1.
Define T : E — (2 by

21

ie. T*(e;) =27 a}.
Note that the canonical norm on ¢? is locally uniformly rotund. We now claim that
E’ has a dual locally uniform rotund norm. For z* € E’ and n € N we define

* . * * ok 1 * *
275 = inf{fla" = Ty (1" + ~ |l : " € (¢%)'} and

oo

1
2 loo = ol In-
n=1
We claim that || || is the required norm.
So we show first, that it is an equivalent norm. For ||z*|| = 1 we have ||z*|,

min{1/(2y/nl|T*),1/2}. In fact if [ly*|| > 1/(2[T*[]) then [la* —T*y*||*+ 7 [|y*||?
1/(2n?|T*|1?) and if [|ly*|| < 1/(2|T*|]) then [|a* —T*y*|| > ||l=[| - |T*y*|| > 1-3
1. Furthermore if we take y := 0 then we see that [|z*||, < ||lz||. Thus || ||, and
|| |l are equivalent norms, and hence also || ||so-

VIV

Note first, that a dual norm is the supremum of the weak* (lower semi-)continuous
functions z* +— |z*(z)| for ||z]] < 1. Conversely the unit ball B has to be weak*
closed in E’ since the norm is assumed to be weak* lower semi-continuous and B
is convex. Let B, be its polar in E. By the bipolar-theorem (B,)° = B, and thus
the dual of the Minkowski functional of B, is the given norm.

Next we show that the infimum defining || ||, is in fact a minimum, i.e. for each n
and z* there exists a y* with [|z*[|5 = ||z =T*y* |2+ L|ly*||2. Since f, : y* > ||lz*—
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13. DIFFERENTIABILITY OF SEMINORMS 13.22

T*y*||* + L]ly*||? is weak* lower semi-continuous and satisfies limy« o f2(y*) =
+00, hence it attains its minimum on some large (weak*-compact) ball.

We have that ||z, — 0 for n — co.
In fact since the image of T* is dense in E’, there is for every ¢ > 0 a y* with
|z* — T*y*|| < e, and so for large n we have [|z*||2 < |lz* — T*y*||? + L||y[? < 2.

Let us next show that || || is a dual norm. For this it is enough to show that | ||,
is a dual norm, i.e. is weak® lower semi-continuous. So let ] be a net converging
weak® to z*. Then we may choose y; with ||z} |2 = ||z} — T*y;[|* + ||y |>. Then
{x} : i} is bounded, and hence also ||y}||?>. Let thus y* be a weak* cluster point
of the (y}). Without loss of generality we may assume that y — y*. Since the
original norms are weak® lower semicontinuous we have

2715 < ™ =Ty |2+ —ly"[|* < lminf(||l27 =Ty |* + —[ly7[|*) = liminf [l27]5.

So || ||n is weak™ lower semicontinuous.

Here we use that a function f : E — R is lower semicontinuous if and only if
Too = lim; 2; = f(2so) < liminf; f(x;).

(=) otherwise for some subnet (which we again denote by z;) we have f(rs) >
lim; f(z;) and this contradicts the fact that f~1((a,00)) has to be a neighborhood
of T for 2a := f(xoo) + lim; f(a).

(=) otherwise there exists some zo and an a < f(zs) such that in every neigh-
borhood U of z there is some xy with f(xy) < a. Hence limy xy = o and

liminfy f(zy) < limsupy f(zy) < a < f(Too)-

Let us finally show that | ||o is locally uniform rotund.
So let 2,27 € E’ with

2l 1% + llz51%) = lla™ + 25112 — 0,
or equivalently
[25llo0 = l2"[lco and [[27 + 27 ]loo — 2[|2" ||oo-
Thus also
[25lln = ll2*[ln and [|2* + 2 [ln — 2[|2%(|n
and equivalently
2l 17 + N25117) = llz* + 2517 — 0.
Now we may choose y* and y; such that
1 1
lz* (13 = lla* — T*y*||* + ﬁl\y*ll2 and [l ||3 = [la] — T*y;|* + EH@/}‘IIQ-
We calculate as follows:
22”17 + 5 117) = lla* + 271 >
> 2(||a* — Ty || + Elly*l\2 + [l = Ty; |1 + ﬁlly}‘\l2
* * * * * 1 * *
=l + ) =T "+ y)I* = —lly” + w51
* * ok 1 * * * ok 1 *
> 2l = Ty 1* + —lly" 1 + laf = T 1 + —lly;1I*
* * * * * * 1 * *
=l =T @) + ll5 = T"WHIN* = ~lly” + v 11”
> (lla” = T*y"|| = |25 = T*y;1)*+

1
+ =l + 20511 = lly” +¥71%) = 0,
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13.23 13. DIFFERENTIABILITY OF SEMINORMS

hence
lz5 = Ty || — lla* = T*y*[| and 2(|ly"[1* + ly; %) — lly" + 71> — 0.
Since || || is locally uniformly rotund on (¢2)* we get that y¥ — y*. Hence
imsup o* — 5] < msup(le” = 77| + 175" = 35)] + 15 = T"55])
= 2]z = Ty < 2[|27 -

Since ||z*[|,, — 0 for n — oo we get z} — z*. O

13.23. Proposition. [Leach, Whitfield, 1972]. For the norm || | = p on a
Banach space E the following statements are equivalent:

(1) The norm is rough, i.e. p’ is uniformly discontinuous, see| 13.8.5|.
(2) There exists an € > 0 such that for all x € E with ||z|| = 1 and all y,

zh e B with ||lykll = 1 = ||z22|| and lim, v’ (x) = 1 = lim,, 2% (x) we have:

ol > e

limsup ||y — 2
n

(3) There exists an € > 0 such that for all x € E with ||z|| = 1 we have that

o Nz bl = Al - 2
im sup 2 &
h—0 171

(4) There exists an € > 0 such that for every x € E with ||z|| =1 and § > 0
there is an h € E with ||h|| < 1 and ||x+th|| > ||x|| +elt| =6 for all |t| < 1.

Note that we always have

[ + Bl + [lz = Al = 2|z

0<
(EA]

<2,

hence ¢ in () satisfies € < 2. For ¢* and C]0,1] the best choice is ¢ = 2, see
[13.11] and [ 13.12].

Proof. ()é() is due to [Cudia, 1964]. Let € > 0 such that for all ||z| =1
there are 0 # h, — 0 with ||z + hy|| + ||z — hyn|| — 2 > €|hy||. Now choose y,
z, € B' with |lyill =1 = ||zn]l", y5(x + hy) = [+ o || and 27 (2 — hn) = ||z — ha||.
Then lim,, y}(x) = ||z|| = 1 and also lim,, 2 (z) = 1. Moreover,

Yn (@ +hn) + 2 (€ — b)) > 2 + €| P |
and hence
(W = 20)(hn) 2 2 = yp(2) — 25(2) + el[hnl| = el[hnl],
thus () is satisfied.

():>() By () we have an & > 0 such that for all ||| = 1 there are y and
zh with |Jyt]| = 1 = ||}, im, v (x) = 1 = lim, 25 (z) and h,, with ||h,| =1 and
(yr —22)(hp) > €. Let 0 < d < e/2 and t > 0. Then

52 52
yr(x) >1— v and z)(z)>1-— T for large n.
Thus
62
o thall > i+ th) > 1= &ty ()
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13. DIFFERENTIABILITY OF SEMINORMS 13.24

and hence
62
tp' (@ + tha)(hn) 2 ||z + thal |z = tyn () = - =

52
P (@ + thy)(hn) > yp(hn) — i

52

and similarly — p'(z — thy,)(hy) > —25(hy) — y
If we choose 0 < t < § such that §2/(2t) < & we get

52
P (@ + the)(hn) = p'(@ = tha)(hn) 2 (5, = 23) (hn) = 57 > € =6 > 5

():>() Using the uniform discontinuity assumption of p’ we get z; € E with
p(z; —x) < n/4 and u € E with p(u) = 1 such that (p'(z2) — p'(x1))(u) > €. Let
e (9 (1) + 9 (22))(0)/(2p(2)) and v = u — .

Since p/(21)(u) < p'(22)(u) —e we get (p'(x1) +p'(22))(u))/2 < p'(22)(u) — /2 <
p(u) — /2 < 1 and (p/(a2) + p/(z)(u)/2 > p'(2) W re > o2 > i
|(p/(x1) + P/ (22))(1)/2] < 1,80 0 <p(v) <2. For 0 <t <p(x)and s:=1—tp we
get

t t
SC+t’U:S’I'+tU:S(SC+*u):S<(ZL’2+*U)+(’JZ*CE2)).
s s
Thus 0 < s < 2 and

pla+0) = s(plwa + 1u) — plo — 72))

> s (plez) + </ (z2)u —n/4)  since ply +w) 2 p(y) + ' (y) ()
> sp(x) +tp'(w2)(u) —sn/2 since p(z) < p(x2) + p(r — 2)
=p(x) + (/2) (p'(x2) — p'(x1))(u) — s7/2
> p(z) +te/2 — .
If —p(xz) <t < 0 we proceed with the role of x; and x5 exchanged and obtain
p(x +tv) > sp(x) +tp' (1) (w) — sn/2
= p(x) + (=t/2) (p'(x2) — p'(x1))(u) — s1/2
p(z) +tle/2 —n
Thus
p(x +tv) > p(x) +|t|e/2 —n

():>() By () there exists an € > 0 such that for every € E with ||z =1
and § > 0 there is an h € E with ||h]| < 1 and ||z + th| > ||z|]| + |t| — ¢ for all

[t| < 1. If we put t :== 1/n we have

n(||z + hn/n| + | — hn/n|| —2) > e —1/n > ¢/2 for large n. O

13.24. Results on the non-existence of C'-norms on certain spaces.

(1) [Restrepo, 1964] and [Restrepo, 1965]. A separable Banach space has an
equivalent C'-norm if and only if E* is separable. This will be proved in

[16.11]
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14.2 13. DIFFERENTIABILITY OF SEMINORMS

(2) [Kadec, 1965]. More generally, if for a Banach space dens E < dens E*
then no C'-norm exists. This will be proved by showing the existence of a
rough norm in and then using . The density number dens X
of a topological space X is the minimum of the cardinalities of all dense
subsets of X.

(3) [Haydon, 1990]. There exists a compact space K, such that K1) = {x},
in particular K1Y = @, but C(K) has no equivalent Gditeaux differen-

tiable norm, see also | 13.18.2|.

One can interpret these results by saying that in these spaces every convex body
necessarily has corners.

14. Smooth Bump Functions

In this section we return to the original question whether the smooth functions
generate the topology. Since we will use the results given here also for manifolds,
and since the existence of charts is of no help here, we consider fairly general non-
linear spaces. This allows us at the same time to treat all considered differentiability
classes in a unified way.

14.1. Convention. We consider a Hausdorff topological space X with a subalge-
bra § C C(X,R), whose elements will be called the smooth or S-functions on X.
We assume that for functions h € C*°(R,R) (at least for those being constant off
some compact set, in some cases) one has h,(S) C S, and that f € S provided it is
locally in S, i.e., there exists an open covering U such that for every U € U there
exists an fy € S with f = fy on U. In particular, we will use for S the classes of
C*- and of Lip"-mappings on ¢*-open subsets X of convenient vector spaces with
the ¢*-topology and the class of C™-mappings on open subsets of Banach spaces,
as well as subclasses formed by boundedness conditions on the derivatives or their
difference quotients.

Under these assumptions on S one has that % € S provided f € § with f(z) >0
for all # € X: Just choose everywhere positive h, € C*(R,R) with h,(t) = 1 for
t> L. Then h,o f € S and % = hy o f on the open set {z : f(z) > L}. Hence,
1

7 E€S.

For a (convenient) vector space F' the carrier carr(f) of a mapping f : X — F

is the set {x € X : f(z) # 0}. The zero set of f is the set where f vanishes,
{z € X : f(z) = 0}. The support of f support(f) is the closure of carr(f) in X.

We say that X is smoothly regular (with respect to S) or S-regular if for any
neighborhood U of a point = there exists a smooth function f € S such that
f(x) =1 and carr(f) C U. Such a function f is called a bump function.

14.2. Proposition. Bump functions and regularity. [Bonic, Frampton, 1966].
A Hausdorff space is S-reqular if and only if its topology is initial with respect to
S.

Proof. The initial topology with respect to S has as a subbasis the sets f~1(I),
where f € § and I is an open interval in R. Let x € U, with U open for the initial
topology. Then there exist finitely many open intervals I, ..., I, and f1,..., f, € S
with = € N, f; '(I;). Without loss of generality we may assume that I, = {t :
|fi(z) —t] < &;} for certain &; > 0. Let h € C*°(R,R) be chosen such that h(0) =1
and h(t) = 0 for |t| > 1. Set f(z) := []_, h(%f)) Then f is the required bump
function. O
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14.3. Corollary. Smooth regularity is inherited by products and sub-
spaces. Let X; be topological spaces and S; C C(X;,R). On a space X we con-
sider the initial topology with respect to mappings f; : X — X;, and we assume that
S C C(X,R) is given such that f7(S;) C S for all i. If each X; is S;-regular, then
X is S-regular. O

Note however that the ¢*°-topology on a locally convex subspace is not the trace
of the c¢*°-topology in general, see ‘4.33‘ and ‘4.36.5 ‘ However, for c¢*°-closed

subspaces this is true, see .

14.4. Proposition. [Bonic, Frampton, 1966]. Every Banach space with S-norm
is S-regular.

More general, a convenient vector space is smoothly regular if its c¢>°-topology is
generated by seminorms which are smooth on their respective carriers. For example,
nuclear Fréchet spaces have this property.

Proof. Namely, g o p is a smooth bump function with carrier contained in {x :
p(z) < 1} if g is a suitably chosen real function, i.e., g(t) = 1 for t < 0 and g(t) =0
for t > 1.

Nuclear spaces have a basis of Hilbert-seminorms , and on Fréchet spaces the

c*°-topology coincides with the locally convex one |4.11.1 |, hence nuclear Fréchet
spaces are c*°-regular. O

14.5. Open problem. Has every non-separable S-regular Banach space an equiv-
alent S-norm? Compare with | 16.11|.

A partial answer is given in:

14.6. Proposition. Let E be a C°-regular Banach space. Then there exists
a smooth function h : E — Ry, which is positively homogeneous and smooth on

E\ {0}.

Proof. Let f: E\{0} — {t € R: ¢ > 0} be a smooth function, such that carr(f) is
bounded in E and f(x) > 1 for x near 0. Let U := {z : f(tx) # 0 for some ¢ > 1}.
Then there exists a smooth function M f : E'\ {0} — R with (M f)'(z)(x) < 0 for
x €U, lim,_, f(x) = 400 and carr M f C U.

The idea is to construct out of the smooth function f > 0 another smooth function
Mf with (M f) (z)(z) = —f(x) <0, ie (Mf) (tx)(tx) = —f(tx) and hence

d t
%Mf(tx) = (Mf) (tx)(x) = —@ for t # 0.
Since we want bounded support for M f, we get
o0 >~ d > f(tx)
M =—|\Mft =— — M f(tx)dt = ——2dt
fla) == [Mste)]” == [~ Garsena= [ L ar
and we take this as a definition of M f. Since the support of f is bounded, we may
replace the integral locally by le for some large NV, hence M f is smooth on E'\ {0}
and (M f)'(z)(x) = —f(z).
Since f(z) > € for all ||z|| < J, we have that

N
Mf(z) > /1 Lt dt > log(N)e

for all ||z] < %, ie. limg, o Mf(x) = +o0.
Furthermore carr(M f) C U, since f(tx) =0 forallt > 1 and z ¢ U.
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Now consider M?f := M(Mf) : E\ {0} — R. Since (M f) (z)(z) < 0, we have
(M2 ) (2)(z) = [7(MF) (tz)(z)dt < 0 and it is < 0 if for some t > 1 we have
(M f) (tx)(z) <0, in particular this is the case if M2 f(x) > 0.

Thus U, := {z : M?f(x) > e} is radial set with smooth boundary, and the
Minkowski-functional is smooth on E'\ {0}. Moreover U, & E via x +— ey U

14.7. Lemma. Existence of smooth bump functions.
For a class S on a Banach space E in the sense of the following statements
are equivalent:

(1) E is not S-regular;

(2) For every f € S, every 0 < r1 < 19 and € > 0 there exists an x with
ri < lzf| < v and |f(x) — fO)] <e;

(3) For every f € S with f(0) = 0 there exists an x with 1 < ||z|| < 2 and
|f(@)] < lz|

Proof. () = () Assume that there exists an f and 0 < r; < rg and e > 0
such that |f(x) — f(0)] > ¢ for all r; < ||z|| < 7. Let h: R — R be a smooth bump
function on R. Let g(x) := h(L f(ry ) — £(0)). Then g is of the corresponding class,
9(0) = h(0) = 1, and for all z with 1 < [|lz[| < 72 we have |f(r12) — f(0)| > €, and
hence g(z) = 0. By redefining g on {z : [[z| > {2} as 0, we obtain the required
bump function.

() = () Take r1 =1 and 79 = 2 and € = 1.

() = () Assume a bump function g exists, i.e., g(0) = 1 and g(z) = 0 for all
|z]| > 1. Take f :=2—g. Then f(0) =0 and f(z) = 2 for ||z|| > 1, a contradiction

to ((3]). O

14.8. Proposition. Boundary values for smooth mappings. [Bonic, Framp-
ton, 1966] Let E and F be convenient vector spaces, let F' be S-reqular but E
not S-reqular. Let U C E be ¢™-open and f € C(U,F) with f*(S) C S. Then

f(OU) D f(U). Hence, f =0 on OU implies f =0 on U.

Proof. Since f(U) C f(U) it is enough to show that f(U) C f(0U). Suppose
f(z) ¢ f(OU) for some z € U. Choose a smooth h on F' such that h(f(z)) =1 and
h = 0 on a neighborhood of f(OU). Let g = ho f on U and 0 outside. Then g is a

smooth bump function on E, a contradiction. O

14.9. Theorem. C'-regular spaces admit no rough norm. [Leach, Whitfield,
1972]. Let E be a Banach space whose normp = || || has uniformly discontinuous
directional derivative. If f is Fréchet differentiable with f(0) = 0 then there exists
an z € E with 1 < ||z]| < 2 and f(z) < ||z].

By this result implies that on a Banach space with rough norm there exists
no Fréchet differentiable bump function. In particular, C([0,1]) and ¢! are not
C'-regular by ‘ 13.11 ‘ and ‘ 13.12, which is due to [Kurzweil, 1954].

Proof. We try to reach the exterior of the unit ball by a recursively defined sequence
zn in{z: f(x) < p(z)} starting at 0 with large step-length < 1 in directions, where
p’ is large. Given z,, we consider the set

(1) fly) < ply),
M, =SyeE: (2)ply—z,) <1and
(3) p(y) — p(zn) > (¢/8) p(y — xn)
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Since x,, € M,,, this set is not empty and hence M,, := sup{p(y—x,) : y € M, } <1
is well-defined and it is possible to choose x,,+1 € M,, with

(4) p($n+1 - wn) > Mn/2

We claim that p(x,) > 1 for some n, since then z := x,, for the minimal n satisfies
the conclusion of the theorem:

Otherwise p(z,,) is bounded by 1 and increasing by (), hence a Cauchy-sequence.
By () we then get that (z,,) is a Cauchy-sequence. So let z be its limit. If z =0
then M,, = {0} and hence f(y) > p(y) for all |y| < 1. Thus f is not differentiable.
Then p(z) < 1 and f(z) < p(z). Since f is Fréchet-differentiable at z there exists a
0 > 0 such that

fz+u) = f(z) = f'(2)(u) < ep(u)/8 for all p(u) < 0.

Without loss of generality let § < 1 and § < 2p(z). By |13.23.4| there exists a v
such that p(v) < 2 and p(z + tv) > p(z) +€[t|/2 — €6/8 for all |t| < p(z). Now let
t := —sign(f'(2)(v)) §/2. Then

)
p(z +tv) > p(z) +€0/8 > f(2) +ep(tv)/8 > f(z + tv),
p(z+tv—2z) =|tlpv) < § <1,

(

[eo] o] [=]

(1))
(2))
(13) p(z+tv) —p(z) >ed/8 > ep(tv)/8.

Since f and p are continuous the z + tv satisfy ()—() for large n and hence
M, > p(z +tv —z,). From p(z +tv — z) > €6/8 we get M,, > /8 and so
P(Tnt1 — xn) > €6/16 by () contradicts the convergence of x,,. O

14.10. Proposition. Let E be a Banach-space with dens E < dens E’. Then there
is an equivalent rough norm on E.

Proof. The idea is to describe the unit ball of a rough norm as intersection of hyper
planes {z € F : z*(z) < 1} for certain functionals z* € E’. The fewer functionals
we use the more ‘corners’ the unit ball will have, but we have to use sufficiently
many in order that this ball is bounded and hence that its Minkowski-functional is
an equivalent norm. We call a set X large, if and only if | X| > dens(E) and small
otherwise. For x € F and € > 0 let B.(z) := {y € E : ||z — y|| < ¢}. Now we
choose using Zorn’s lemma a subset D C E’ maximal with respect to the following
conditions:

(1) 0 € D;
(2) 2* € D= —z* € D;
(3) oy €D, 2" 24" = ot~y > 1.

Note that D is then also maximal with respect to () alone, since otherwise, we
could add a point z* with ||z* —y*|| > 1 for all y* € D and also add the point —z*,
and obtain a larger set satisfying all three conditions.

Claim. Do :=J,,cy 2D is dense in E’, and hence [Dso| > dens(E’):
Assume indirectly, that there is some z* € E' and n € N with By /,(2*) N Do =
. Then Bi(nz*) N D = @ and hence we may add z* to D, contradicting the

maximality.

Without loss of generality we may assume that D is at least countable. Then |D| =

|Uyen D] > dens(E’) > dens(E), i.e. D is large. Since D = J,,.y D N B, (0), we
find some n such that DNB,,(0) is large. Let y* € E’ be arbitrary and w* := 4n1+2 y*.

For every z* € D there is a z* € 3D such that [|z* + w* — 2*|| < & (otherwise
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we could add 2(z* + w*) to D). Thus we may define a mapping D — D by
x* — 2. This mapping is injective, since ||z} +w* —2*|| < 1 for j € {1,2} implies
[l — 25]| < 1 and hence 2} = x3. If we restrict it to the large set D N B, (0) it
has image in $D N By, 12(w*), since ||z* — w*|| < [|z* + 2* — w*[| + [|2*| < 5 +n.

Hence also MD N Byu(y*) = ﬁ%D N Byq1/2(w*) is large.

In particular for y* := 0 and 1/4 replaced by 1 we get that A := mD N B1(0)

is large. Now let
U= {a: € E:3A4; C Asmall,Vz* € A\ A : ¥ (x) < 1}.

Since A is symmetric, the set U is absolutely convex (use that the union of two
small exception sets is small). It is a O-neighborhood, since {z : ||z| < 1} C U
(z*(x) < ||lz*|| - ||lz|| = ||=]| £ 1 for * € A). It is bounded, since for z € F we may
find by Hahn-Banach an z* € E’ with «*(z) = ||z|| and ||z*|| = 1. For all y* in the
large set AN By 4(32*) we have y*(z) = (y* — 22%)(z) + 2% (2) > 3| — 1|z|| >
1||z||. For [|z|| > 2 we thus get ¢ U. Now let o be the Minkowski-functional
generated by U and ¢* the dual norm on E’. Let A C E be a small dense subset.
Then {z* € A: o*(x*) > 1} is small, since o*(z*) > 1 for 2* € A implies that there
exists an x € A with z*(z) > o(x), but this is J,cn{z* € A: 2*(z) > o(z) + L},
and each of these sets is small by construction of o(x). Since A is small so is the
union over all x € A. Thus 4 := {z* € A: o(z*) <1} is large.

Now let € := m, let x € E, and let 0 < n < e. We may choose two different

xf € Ay for i € {1,2} with a7 (z) > o(z) — n*/2. This is possible, since this is true
for all but a small set of * € A. Thus o*(a] — x3) > ||z — 23| > 2e, and hence
there is an h € E with o(h) =1 and (27 — 23)(h) > 2¢. Let now ¢ > 0. Then

2
o(x+th) > xj(x +th) = 2] (z) + txi(h) > o(x) — % + tzi(h),
2
o(x —th) > x5(x — th) > o(x) — 5~ tzs(h).
Furthermore o(z) > o(x + th) — to’(x + th)(h) implies
th) — 2
o'+ thy(n) > CEXI =) ey
t 2t
7
—o'(x —th)(h) > —z3(h) — pre
Adding the last two inequalities gives
2
n

o' (xz + th)(h) — o' (xz — th)(h) > (x5 — x7)(h) — 5>
since (x5 — z7)(h) > 2¢ and we choose t < n such that ? <e. O

14.11. Results. Spaces which are not smoothly regular. For Banach spaces
one has the following results:

(1) [Bonic, Frampton, 1965]. By no Fréchet-differentiable bump func-

tion exists on C[0,1] and on (*. Hence, most infinite dimensional C*-
algebras are not reqular for 1-times Fréchet-differentiable functions, in
particular those for which a mormal operator exists whose spectrum con-
tains an open interval.

(2) [Leduc, 1970]. Ifdens E < dens E* then no Ct-bump function exists. This

follows from ’ 14.10 |, [ 14.9|, and ’ 14.7‘, See also .
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3)

[John, Zizler, 1978]. A norm is called strongly rough if and only if there
exists an € > 0 such that for every x with ||x|| = 1 there exists a unit
vector y with limsup, g w > e. The usual norm on (*(T)
is strongly rough, if T is uncountable. There is however an equivalent
non-rough norm on £*(T') with no point of Gateaux-differentiability. If a
Banach space has Gateaux differentiable bump functions then it does not
admit a strongly rough norm.

[Day, 1955]. On (}(T') with uncountable T there is no Gateauz differen-
tiable continuous bump function.

[Bonic, Frampton, 1965]. E < 7, dimE = oo: If p = 2n+ 1 then E is
not DP-reqular. If p ¢ N then E is not S-reqular, where S denotes the
CWl_functions whose highest derivative satisfies a Holder like condition of
order p — [p] but with o( ) instead of O( ).

14.12. Results.

(1)

(2)
3)

[Deville, Godefroy, Zizler, 1990]. If ¢o(T') — E — F is a short exact
sequence of Banach spaces and F has C*-bump functions then also E has

them. Compare with | 16.19|.

[Meshkov, 1978] If a Banach space E and its dual E* admit C?-bump func-
tions, then E is isomorphic to a Hilbert space. Compare with|13.18.7|.

Smooth bump functions are not inherited by short exact sequences.

Notes. () As in | 13.17.3 | one chooses z; € E* with 2} |.,r) = ev,. Let g be a

smooth bump function on E/F and h € C*(R,[0,1]) with compact support and
equal to 1 near 0. Then f(z) := g(z + F) [[,cr h(z}(x)) is the required bump

function.

() Use the example mentioned in , and apply ()

Open problems. Is the product of C*°-regular convenient vector spaces again
C*>-regular? Beware of the topology on the product!

Is every quotient of any S-regular space again S-regular?
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15. Functions with Globally Bounded Derivatives

In many problems (like Borel’s theorem , or the existence of smooth functions

with given carrier ) one uses in finite dimensions the existence of smooth
functions with bounded derivatives. In infinite dimensions C*-functions have lo-
cally bounded k-th derivatives, but even for bump functions this need not be true
globally.

15.1. Definitions. For normed spaces we use the following notation: C% :=
{feC*:|f®(z)| < Bforallz € E} and Cf := Jp.,CF. For general conve-
nient vector spaces we may still define Cp° as those smooth functions f : U — F
for which the image d* f(U) of each derivative is bounded in the space LE (E, F)
of bounded symmetric multilinear mappings.

Let £ip’;( denote the space of C*-functions with global Lipschitz-constant K for
the k-th derivatives and Eipglobal = Uxso Liph.. Note that C% = C*¥ 0 Liph—t.

15.2. Lemma. Completeness of C". Let f; be C"-functions on some Banach

space such that fj(k) converges uniformly on bounded sets to some function f* for
each k <n. Then f := f° is C™, and f® = f* for all k < n.

Proof. It is enough to show this for n = 1. Since f/ — f! uniformly, we have that
f1 is continuous, and hence fol f1(z +th)(h) dt makes sense and

fn(:c+h)—fn(x):/0 f{l(m+th)(h)dt—>/0 fHx +th)(h)dt

for  and h fixed. Since f,, — f pointwise, this limit has to be f(z + h) — f(z).
Thus we have
[f(z+h) = flz) = f(
17l

@WHﬁMuﬁﬁg+m)f%mmMﬂ

SAHf@+M%ﬁ%@Wﬁ

which goes to 0 for h — 0 and fixed z, since f! is continuous. Thus, f is differen-
tiable and f’ = fL. O

15.3. Proposition. When are closed sets zero-sets of smooth functions.
[Wells, 1973]. Let E be a separable Banach space and n € N. Then E has a
Cy-bump function if and only if every closed subset of E is the zero-set of a C™-
function.

Forn = oo and E a convenient vector space we still have (=), provided all L*(E;R)
satisfy the SECOND COUNTABILITY CONDITION OF MACKEY, i.e. for every countable
family of bounded sets By, there exist ti, > 0 such that | J,, ti By is bounded.

Proof. (=) Suppose first that E has a C}’-bump function. Let A C E be closed and
U := E\ A be the open complement. For every = € U there exists an f, € CJ'(E)
with fz(z) = 1 and carr(f,) € U. The family of carriers of the f, is an open
covering of U. Since F is separable, those points in a countable dense subset that
lie in U are dense in the metrizable space U. Thus, U is Lindelof, and consequently
we can find a sequence of points z, such that for the corresponding functions

fn = fz, the carriers still cover U. Now choose constants t, > 0 such that
to - sup{|fP(2)|| : z € B} < 5= for all j < n. Then f := 3 t, f, converges

uniformly in all derivatives, hence represents by a C"-function on E that
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vanishes on A. Since the carriers of the f, cover U, it is strictly positive on U, and
hence the required function has as 0-set exactly A.

(<) Consider a vector a # 0, and let A := E\J,cn{z : |z — 5=a] < 52z} Since
A is closed there exists by assumption a C"-function f : E — R with f~1(0) = A
(without loss of generality we may assume f(E) C [0,1]). By continuity of the
derivatives we may assume that f(™ is bounded on some neighborhood U of 0.
Choose n so large that D := {z : |z — 5kal| < 5~} C U, and let g :== f on AUD
and 0 on £\ D. Then f € C™ and f (") is bounded. Up to affine transformations
this is the required bump function. O

15.4. Borel’s theorem. [Wells, 1973]. Suppose a Banach space E has Cg°-
bump functions. Then every formal power series with coefficients in L?ym(E;F)
for another Banach space F' is the Taylor-series of a smooth mapping E — F.

Moreover, if G is a second Banach space, and if for some open set U C G we are
given by € C°(U, Lk, (E,F)), then there is a smooth f € C*®(E x U, F) with

Sym

d*(f( ,y)(0) = br(y) for ally € U and k € N. In particular, smooth curves can
be lifted along the mapping C*(E,F) — [], L%, ..(E; F).

sym

Proof. Let p € Cp°(E,R) be a Cg°-bump function, which equals 1 locally at 0.
We shall use the notation by (x, %) := by (y)(x*). Define
1
ful(z,y) = Hbu(@,y) p(@)
and 1
flay) =) %fk(tk $T,Y)
k>0
with appropriately chosen ¢t > 0. Then fr € C®(E x U, F) and fi has carrier
inside of carr(p) x U, i.e. inside {x : ||| < 1} x U. For the derivatives of b, we
have o , o
O Obk(w,y) (&, m) =k (k= 1) ... (k — ) (d'b(y) () (2", €).
Hence, for ||z|| <1 this derivative is bounded by

sym

(k); sup bk (W) L(r Lk (B:G))»
yeU

where (k); := k(k—1)...(k —j). Using the product rule we see that for j > k the
derivative 8595 fx, of fy is globally bounded by

J su =D\ : <t |l -
g@ Pl (@)l @ € B} (k) sup [d'bi(y)] < oc.

The partial derivatives of f would be

o o
OO ful.y) = Y (005 i (ti. ).
k k

We now choose the t;, > 1 such that these series converge uniformly. This is the
case if,

1 o
WSUP{Ha{a%fk(%y)H rxeEyelU} <
k

1 o 1
J At .
§ tl,z_(j+i) Sup{||8182fk(m7y)” HEAS an € U} S 2k—(j+i)’

and thus if
ty > 2.sup{||]04 fi (2, y)| 70 cw € By € U,j +i < k}.
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Since we have & f1(0,y)(€) = 5 (k)b (y) (0873, €9) p(0) = &7 bi(y), we conclude
the desired result & f(0,y) = bx(y). O

Remarks on Borel’s theorem.

(1) [Colombeau, 1979]. Let E be a strict inductive limit of a non-trivial
sequence of Fréchet spaces F,. Then Borel’s theorem is wrong for f :
R — E. The idea is to choose b, = f(™ (0) € Ept1 \ Ey, and to use that
locally every smooth curve has to have values in some E,,.

(2) [Colombeau, 1979]. Let E = RY. Then Borel’s theorem is wrong for
f+E — R In fact, let b, : E x ... x E — R be given by b, :=
pr,®--- @ pr,. Assume f € C°(E,R) exists with f("(0) = b,,. Let f,
be the restriction of f to the n-th factor R in E. Then f, € C>°(R,R)
and fT(L") (0) = 1. Since f': R® — (R") = R®™ is continuous, the image
of B := {z : |z,| < 1forall n} in RM is bounded, hence contained in
some RV~1. Since fy is not constant on the interval (—1,1) there exists
some |ty| < 1 with fi(¢tn) # 0. For zn :=(0,...,0,¢xn,0,...) we obtain

Flan)(y) = fr(n)un) + Y aiys,
i#N
a contradiction to f'(x,) € RV~1,

(3) [Colombeau, 1979] showed that Borel’s theorem is true for mappings f :
E — F, where E has a basis of Hilbert-seminorms and for any countable
family of 0-neighborhoods U, there exist ¢,, > 0 such that ﬂff:l t, Uy, is
a 0-neighborhood.

(4) If theorem would be true for G =[], L% (E; F) and by, = pry, then

the quotient mapping C®(E,F) — G = [[, L% ..(E; F) would admit a

sym
smooth and hence a linear section. This is well know to be wrong even

forE:F:R,see.

15.5. Proposition. Hilbert spaces have C;°-bump functions. [Wells, 1973]
If the norm is given by the n-th root of a homogeneous polynomial b of even degree
n, then x — p(b(z™)) is a Cp°-bump function, where p : R — R is smooth with
pt) =1 fort <0 and p(t) =0 fort > 1.

Proof. As before in the proof of we see that the j-th derivative of x — b(z")
is bounded by (n); on the closed unit ball. Hence, by the chain-rule and the
global boundedness of all derivatives of p separately, the composite has bounded
derivatives on the unit ball, and since it is zero outside, even everywhere. Obviously,

p(b(0)) = p(0) = 1. 0
In [Bonic, Frampton, 1966] it is shown that LP is Lipgj,p,,-smooth for all n if p is
an even integer and is Eipggblil—smooth otherwise. This follows from the fact (see

loc. cit., p. 140) that d®+1||z||” = 0 for even integers p and

p! _
|21l + il = d 2l < 2l

otherwise, cf. | 13.13|.

15.6. Estimates for the remainder in the Taylor-expansion. The Taylor
formula of order k of a C¥*+1-function is given by
1 j PO e k1
fla+1) =3 @) + [ D s i e,
. O .

=0
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which can easily be seen by repeated partial integration of fo (x + th)(h)dt =
fx+h) = f(z).
For a C% function we have

1
o+ 1) = f@) = @)W < [ Q=01+ 1P de < B

If we take the Taylor formula of f up to order 0 instead, we obtain

flz+h) / f(x+th)(
and usage of f'(z fo h) dt gives
/ LS £ th) — f(@)]| 1
\ﬂx+m—f@%JW@WH§A LN i < o

so it is in fact enough to assume f € C' with f’ satisfying a Lipschitz-condition
with constant B.

For a C% function we have

1

S (@)(h?)] <

[f(@+h) = f(z) = f{@)(h) = 3

1 2
1—-1¢ 1
< [ S5O e+ P e < B i,
o 2! 3!
If we take the Taylor formula of f up to order 1 instead, we obtain
1
f@+m:f@H¢ﬁﬂm+/(P%M%%HMM%%
0

and using 3 f”(z) fo t) f"(z)(h?) dt we get

1

|[f(@+h) = f(z) = f(@)(h) = 3" (@) ()] <

L e m - @l ;
< [a-or i I dt < B P,

Hence, it is in fact enough to assume f € C? with f” satisfying a Lipschitz-condition
with constant B.

Let f € C% be flat of order k at 0. Applying ||f(h) - fO)] = | fol h)(h)dt|| <
sup{[|f'(th)l| : ¢ € [0,1]}|[Al] to fO( )(ha,....h ) glVGS using Hf(k)(l’)H < B
inductively

IFE=D (@) < B ||

1 1
B
152 @) < [ 1)< B [t ol = 5 el
0 0

|7

j B
1@ < =,

15.7. Lemma. Eipélobal-functions on R". [Wells, 1973]. Let n := 2V and
E = R" with the co-norm. Suppose f € Lip},(E,R) with f(0) =0 and f(z) > 1
for ||z|| > 1. Then M > 2N.
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The idea behind the proof is to construct recursively a sequence of points xj :=
> j<k0jh; of norm B2l starting at 29 = 0, such that the increment along the
segment is as small as possible. In order to evaluate this increment one uses the

Taylor-formula and chooses the direction hy such that the derivative at xj, vanishes.

Proof. Let A be the set of all edges of a hyper-cube, i.e.
A:={x:z; = £1 for all i except one iy and |z;,| < 1}.

Then A is symmetric. Let x € E be arbitrary. We want to find h € A with
f'(z)(h) = 0. By permuting the coordinates we may assume that i — |f’(z)(e’)]
is monotone decreasing. For 2 < i < n we choose recursively h; € {+1} such that
2222 hj f'(z)(e;) is an alternating sum. Then |Z;:2 (@) (eh;| < |f(z)(e")].
Finally, we choose [|h1]| <1 such that f’(z)(h) = 0.

Now we choose inductively h; € 3; A and o; € {£1} such that f’(x;)(h;) = 0 for
z = ) ;.;05h; and x; has at least 2N=% coordinates equal to 4. For the last
statement we have that ;4 = z; + 0; h; and at least 2N—i coordinates of z; are
ﬁ'. Among those coordinates all but at most 1 of the h; are :t%. Now let o; be
the sign which occurs more often and hence at least 2V~%/2 times. Then those

2N=(+1) many coordinates of ;41 are L.

N
Thus ||2;|| = & for i < N, since at least one coordinate has this value. Furthermore
we have

N-1

L= [flen) = F@o)l < > [ (wr) = f(mn) = f'(2x) (ha)]
k=0
Y M M 1
<3 g Iml <N g

hence M > 2N. O

15.8. Corollary. ¢y is not llipélobal-regular. [Wells, 1973]. The space ¢y is not
Eipélobal—smooth.

Proof. Suppose there exists an f € Eipélobal with f(0) =1 and f(z) = 0 for all
||lz|| > 1. Then the previous lemma applied to 1 — f restricted to finite dimensional
subspaces shows that the Lipschitz constant M of the derivative has to be greater
or equal to N for all N, a contradiction. O

This shows even that there exist no differentiable bump functions on ¢g(A) which
have uniformly continuous derivative. Since otherwise there would exist an NV € N
such that

1f(z+h) = f(2) = f'(2)h] < /O I/ (@ +th) = f'(@)] k] dt < %IIhH,

for ||h]| < % Hence, the estimation in the proof of would give 1 < N%% = %,
a contradiction.

15.9. Positive results on Eipélobal-functions. [Wells, 1973].

(1) Ewery closed subset of a Hilbert space is the zero-set of a L’ip;lobal—function.

(2) For every two closed subsets of a Hilbert space which have distance d > 0
there exists a ﬁip}l/dz -function which has value 0 on one set and 1 on the
other.
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(3) Whitney’s extension theorem is true for Lip}]lobal-functions on closed sub-
sets of Hilbert spaces.
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16. Smooth Partitions of Unity and Smooth Normality

16.1. Definitions. We say that a Hausdorff space X is smoothly normal with
respect to a subalgebra S C C(X,R) or S-normal, if for two disjoint closed subsets
Ap and A; of X there exists a function f: X — R in § with f|A; = for i =0, 1.
If an algebra S is specified, then by a smooth function we will mean an element of
S. Otherwise it is a C'"*°-function.

A S-partition of unity on a space X is a set F of smooth functions f : X — R
which satisfy the following conditions:

(1) For all f € F and x € X one has f(z) > 0.
(2) The set {carr(f) : f € F} of all carriers is a locally finite covering of X.
(3) The sum >, » f(z) equals 1 for all x € X.

Since a family of open sets is locally finite if and only if the family of the closures
is locally finite, the foregoing condition () is equivalent to:

(’) The set {supp(f) : f € F} of all supports is a locally finite covering of X.

The partition of unity is called subordinated to an open covering U of X, if for
every f € F there exists an U € U with carr(f) C U.

We say that X is smoothly paracompact with respect to S or S-paracompact if every
open cover Y admits a S-partition F of unity subordinated to it. This implies that
X is S-normal.

The partition of unity can then even be chosen in such a way that for every f € F
there exists a U € U with supp(f) C U. This is seen as follows. Since the family of
carriers is a locally finite open refinement of U, the topology of X is paracompact.
So we may find a finer open cover {U : U € U} such that the closure of U is
contained in U for all U € U, see [Bourbaki, 1966, 1X.4.3]. The partition of unity
subordinated to this finer cover has the support property for the original one.

Lemma. Let S be an algebra which is closed under sums of locally finite families
of functions. If F is an S-partition of unity subordinated to an open covering U,
then we may find an S-partition of unity (fv)vey with carr(fy) C U.

Proof. For every f € F we choose a Uy € U with carr(f) € Uy. For U € U put
Fu={f:Up=U}andlet fu =3 iz fES. O

16.2. Proposition. Characterization of smooth normality. Let X be a
Hausdorff space with S C C(X,R) as in Consider the following statements:

(1) X is S-normal;

(2) For any two closed disjoint subsets A; C X there is a function f € S with
f|A0 =0and0 ¢ f(Al),

(3) Ewvery locally finite open covering admits S-partitions of unity subordinated
to it.

(4) For any two disjoint zero-sets Ay and Ay of continuous functions there
exists a function g € S with gla, = j for j = 0,1 and g(X) C [0,1];

(5) For any continuous function f : X — R there exists a function g € S with
£710) C g1 0) C SR (1))

(6) The set S is dense in the algebra of continuous functions with respect to
the topology of uniform convergence;

(7) The set of all bounded functions in S is dense in the algebra of continuous
bounded functions on X with respect to the supremum norm;
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(8) The bounded functions in S separate points in the Stone-Cech-compactifi-
cation X of X.

The statements )-) are equivalent, and )-) are equivalent as well. If

X s metrizable all statements are equivalent.

If every open set is the carrier set of a smooth function then X is S-normal. If X
is S-normal, then it is S-reqular.

A space is S-paracompact if and only if it is paracompact and S-normal.

Proof. () = () By assumption, there is a smooth function fo with fy|4; =0
and 0 ¢ fy(Ap), and again by assumption, there is a smooth function f; with
filAo =0and 0 ¢ fi({z : fo(x) = 0}). The function f = foﬁifl has the required
properties.

() = () is obvious.

() = () Let Ap and A; be two disjoint closed subset. Then i := {X \ A1, X \
Ap} admits a S-partition of unity F subordinated to it, and

Z{fef:carrng\Ao}
is the required bump function.

() = () Let U be a locally finite covering of X. The space X is S-normal, so
its topology is also normal, and therefore for every U € U there exists an open set
Vi such that Viy C U and {Viy : U € U} is still an open cover. By assumption,
there exist smooth functions gy € S such that Vi C carr(gy) C U, cf. . The
function g := >, gu is well defined, positive, and smooth since U is locally finite,
and {fy :=gu/g: U € U} is the required partition of unity.

(5]) = () Let A; := f;l(aj) for j = 0,1. By replacing f; by (f; — a;j)? we
may assume that f; > 0 and A; = fJfl(O). Then (f1 + f2)(z) > 0 for all x € X,
since A1 N Az = (. Thus, f := f()]‘c:fl is a continuous function in C(X,[0,1]) with
fla, =jfor j=0,1.

Now we reason as in (() = ()) By () there exists a go € S with Ay C
F7H0) S g '(0) € FTHR\{1}) = X\ f71(1) € X\ Ay By replacing go by g§ we
may assume that gg > 0.

Applying the same argument to the zero-sets A; and g, 1(0) we obtain a g1 € §
with 4; C g7 (0) € X \ g5 '(0). Thus, (go + ¢1)(x) > 0, and hence g := R ES
satisfies g[a, = j for j = 0,1 and g(X) C [0,1].

() = (@) Let f be continuous. Without loss of generality we may assume f > 0
(decompose f = fi — f_). Let € > 0. Then choose g € S with image in [0, 1], and

gr(z) = 0 for all x with f(z) < ke, and gx(x) = 1 for all z with f(z) > (k+1)e.
Let k be the largest integer less or equal to @ Then g;(z) =1 for all j < k, and
gj(x) = 0 for all j > k. Hence, the sum g :=¢ >, . gr € S is locally finite, and
[f(z) = g(z)] < 2e.

(@) = () This is obvious, since for any given bounded continuous f and for
any € > 0, by (@) there exists g € S with |f(z) — g(x)| < € for all z € X, hence
If = 9glls <€ and [|glloc < [[flloc +[If = glloc < 00.

() & () This follows from the Stone-Weierstrafl theorem, since obviously the
bounded functions in § form a subalgebra in C,(X) = C(6X). Hence, it is dense
if and only if it separates points in the compact space SX.
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() = () By cutting off f at 0 and at 1, we may assume that f is bounded.

By () there exists a bounded go € S with ||f — gollc < 3. Let h € C*(R,R)

be such that h(t) =0 < ¢t < % Then g := hogy € S, and f(z) = 0 = go(x) <

go(@)| < [f(@)] + [If = golloe < 1% = g(x) = h(go(x)) = 0 and also f(z) =1 =
2

go(@) 2 f(z) = If = golloc > 1~ 5 =3 = g(x) #0.
If X is metrizable and A C X is closed, then dist( ,A) : z +— sup{dist(z,a) : a €
A} is a continuous function with f~1(0) = A. Thus, () and () are equivalent.

Let every open subset be the carrier of a smooth mapping, and let Ay and A; be
closed disjoint subsets of X. By assumption, there is a smooth function f with
carr(f) = X \ Ag.

Obviously, every S-normal space is S-regular. Take as second closed set in () a
single point. If we take instead the other closed set as single point, then we have
what has been called small zero-sets in .

That a space is S-paracompact if and only if it is paracompact and S-normal can
be shown as in the proof that a paracompact space admits continuous partitions of
unity, see [Engelking, 1989, 5.1.9]. O

In [Kriegl, Michor, Schachermayer, 1989] it is remarked that in an uncountable
product of real lines there are open subsets, which are not carrier sets of continuous
functions.

Corollary. Denseness of smooth functions. Let X be S-paracompact, let F
be a convenient vector space, and let U C X x F be open such that for all x € X
the set 1;1(U) C F is convexr and non-empty, where 1, : F — X x F is given by
y +— (x,y). Then there exists an f € S whose graph is contained in U.

Under the following assumption this result is due to [Bonic, Frampton, 1966]: For
U:={(z,y) : ply — g(z)) < &(x)}, where g : X — F, e : X — RT are continuous
and p is a continuous seminorm on F'.

Proof. For every x € X let y, be chosen such that (z,y,) € U. Next choose open
neighborhoods U, of x such that U, x {y,} C U. Since X is S-paracompact there
exists a S-partition of unity F subordinated to the covering {U, : * € X}. In
particular, for every ¢ € F there exists an x, € X with carrp C U,_,. Now define
f= Z@ej_- Yz, ¢- Then f € S and for every x € X we have

f@) = yu, 0@) = Y wa, ol@) €151 (U),
peF TEcarr @

since 1 1(U) is convex, contains y,  for x € carr(p) C U, , and ¢(x) > 0 with

L=, 0(1) = 2 sccar o P(2)- 0

16.3. Lemma. Lip>-functions on R" . [Wells, 1973]. Let B € N and A := {z €
RN :2; <0 for alli and ||z| < 1}. Suppose that f € C3(RYN,R) with f|a =0 and
f(x) > 1 for all x with dist(x, A) > 1. Then N < B? + 36 B*.

Proof. Suppose N > B2+36 B*. We may assume that f is symmetric by replacing
f with & — % > o f(o*x), where o runs through all permutations, and o* just

permutes the coordinates. Consider points 27 € RN for j = 0,..., B? of the form
j 1 11 1
l‘] = (E""’§7_§7""_§707"'70)'
j B2—j >36 B4
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Then ||z7]| = 1, 2° € A and d(zB°,A) > 1. Since f is symmetric and 7 :=
2(29 + 27%1) has vanishing j, B? 4+ 1,..., N coordinates, we have for the partial
derivatives 0; f(y’) = O f(y’) for k = B> +1,...,N. Thus
N .
; 1 : IF" @I _ I @O _ 1
. 2 _ J\|2 < 2 _
o) = 2 > ot < Mt = Wt < o

since from f|4 = 0 we conclude that f(0) = f/(0) = f”(0) = f"”(0) and hence
IFD R < BIlR]>~ for j <3, see[15.6].

From |f(z + h) — f(z) — f'(z)(h) — /" (x)(h*)| < Bg; ||h]|* we conclude that

[f(@+h) = fla—h)| < |f(x+h) = f(z) = f(2)(h) — 5" (2)(h?)]
+1f(@ = h) = f(2) + f'(@)(h) — 5" (2)(h?)]
+ 2/ () (h)]
< 5 BIIhIP +2/f'(x)(h)]-

If we apply this to z = 3/ and h = %ej, where e; denotes the j-th unit vector, then

we obtain ) ) )
= )
M) = 16201 < 538 5 + 20,1 )5 < 3o

Summing up yields 1 < [f(zB)] = |f(2B") — f(2°)] < 2 <1, a contradiction. [

16.4. Corollary. (? is not Eipélob-normal . [Wells, 1973]. Let Ag := {z € ¢?:
z; <0 forall j and ||z|| < 1} and Ay := {x € ¢* : d(x, A) > 1} and f € C3({*|R)
with fla; =j for j =0,1. Then B is not bounded.

Proof. By the preceding lemma a bound B of f() must satisfy for f restricted to
RY, that N < B? 4 36B*. This is not for all N possible. O

16.5. Corollary. Whitney’s extension theorem is false on (2. [Wells, 1973].
Let E := Rx 2 = (2 gnd 7 : E — R be the projection onto the first factor.
For subsets A C (? consider the cone CA := {(t,ta) : t > 0,a € A} C E. Let

A = C(Ap U Ay) with Ay and Ay as in . Let a jet (f7) on A be defined by
fi =0 on the cone CA; and fi(z)(v',...,v?) = W9 (n(x))(x(vY),... ,7(v?)) for
all z in the cone of CAg, where h € C*(R,R) is infinite flat at 0 but with h(t) #0
for all t # 0. This jet has no C3-prolongation to E.

Proof. Suppose that such a prolongation f exists. Then f®) would be bounded
locally around 0, hence f,(z) :=1— ﬁ f(a,az) would be a C%, function on ¢? for

small a, which is 1 on A; and vanishes on Ag. This is a contradiction to .

So it remains to show that the following condition of Whitney is satisfied:

k—j
|76 = 3= 375 @) = )7 = ollle = yl1*7) for 432y — a.
0

Let f := 0 and fo( ) :=hU)(n(x))o(m x...x7). Then both are smooth on R@¢2,
and thus Whitney’s condltlon is Satlsﬁed on each cone separately. It remains to
show this when z is in one cone and y in the other and both tend to 0. Thus,
we have to replace f at some places by f1 and at others by fo. Since h is infinite
flat at 0 we have | fJ(2)]| = o(]|z||") for every n. Furthermore for z; € C'A; for
i =0,1 we have that ||z — x¢|| > sin(arctan 2 — arctan 1) max{||zo||, ||z1]||}. Thus,
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we may replace fg (y) by fI(y) and vice versa. So the condition is reduced to the
case, where y and z are in the same cone C 4;. O

16.6. Lemma. Smoothly regular strict inductive limits. Let E be the strict
inductive limit of a sequence of C°*°-normal convenient vector spaces E, such that
E,, — E,4+1 1s closed and has the extension property for smooth functions. Then
E is C*°-regular.

Proof. Let U beopenin F and 0 € U. Then U,, := UNE,, is open in E,,. We choose
inductively a sequence of functions f, € C*°(E,,R) such that supp(f,) C Uy,
fn(0) =1, and fp|Fn_1 = fn_1. If f is already constructed, we may choose by
C®°-normality a smooth g : E,, ;1 — R with supp(g) € Up+1 and glsupp(s,) = 1. By

assumption, f, extends to a function /f; € C*(E,+1,R). The function f,, 41 := g-fn
has the required properties.

Now we define f : E — R by f|E, := f, for all n. It is smooth since any
¢ € C®(R,E) locally factors to a smooth curve into some E,, by since a
strict inductive limit is regular by , so f o c is smooth. Finally, f(0) = 1,

and if f(x) # 0 then z € E, for some n, and we have f,(z) = f(z) # 0, thus
zeU, CU. O

For counter-examples for the extension property see ’21.7‘ and ’21.11 ‘ However,
for complemented subspaces the extension property obviously holds.

16.7. Proposition. C° is C*®-regular. The space C°(R™,R) of smooth func-
tions on R™ with compact support satisfies the assumptions of .

Let K, := {z € R™ : |z| < n}. Then C°(R™,R) is the strict inductive limit of the
closed subspaces O (R™,R) := {f : supp(f) C K}, which carry the topology of
uniform convergence in all partial derivatives separately. They are nuclear Fréchet
spaces and hence separable, see . Thus they are C'°*°-normal by below.

In order to show the extension property for smooth functions we proof more general
that for certain sets A the subspace {f € C*°(E,R) : f|4 = 0} is a complemented
subspace of C*°(E,R). The first result in this direction is:

16.8. Lemma. [Seeley, 1964] The subspace {f € C=*(R,R) : f(t) =0 fort < 0}
of the Fréchet space C*°(R,R) is a direct summand.

Proof. We claim that the following map is a bounded linear mapping being left
inverse to the inclusion: s(g)(t) := g(t) — > ey axh(—t2%)g(—t2%) for ¢ > 0 and
s(g)(t) =0 for t <0. Where h : R — R is a smooth function with compact support
satisfying h(¢t) = 1 for ¢ € [—1,1] and (ax) is a solution of the infinite system of
linear equations Y, . ar(—2%)" = 1 (n € N) (the series is assumed to converge
absolutely). The existence of such a solution is shown in [Seeley, 1964] by taking
the limit of solutions of the finite subsystems. Let us first show that s(g) is smooth.
For ¢t > 0 the series is locally around ¢ finite, since —t2* lies outside the support of
h for k sufficiently large. Its derivative (sg)(™ (t) is

S0 = 3 (<2597 S RO (12 2
keN j=0
and this converges for t — 0 towards g(™) (0)=>_ren ar(—2%)"g(™ (0) = 0. Thus s(g)
is infinitely flat at 0 and hence smooth on R. It remains to show that g — s(g) is a
bounded linear mapping. By the uniform boundedness principle it is enough
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to show that g — (sg)(t) is bounded. For ¢ < 0 this map is 0 and hence bounded.
For ¢ > 0 it is a finite linear combination of evaluations and thus bounded. g

Now the general result:

16.9. Proposition. Let E be a convenient vector space, and let p be a smooth
seminorm on E. Let A := {x : p(x) > 1}. Then the closed subspace {f : f|a = 0}
in C*°(E,R) is complemented.

Proof. Let g € C*°(E,R) be a smooth reparameterization of p with support in

E\ A equal to 1 near p~(0). By lemma |[16.8], there is a bounded projection
P:C®[R,R) — CF 0l (R,R). The following mappings are smooth in turn by the

properties of the cartesian closed smooth calculus, see :
ExR> (x,t) — f(e',2) €R
Eszr f(el Jz) e C®(R,R)
E>xz— P(f(el )z)) € CZ (R, R)
E xR > (x,7)— P(f(el )z))(r)eR

carp 3 (L) ) - P (1 525) (o)) € R
So we get, the desired bounded Tinear projection
P:C™(ER) = {f € CX(B,R): fla =0},
(P(N)(a) = o(x) F(x) + (1 - (@) P 25 (n(p(a)). O

16.10. Theorem. Smoothly paracompact Lindelof. [Wells, 1973]. If X is
Lindelof and S-regular, then X is S-paracompact. In particular, all nuclear Fréchet
spaces and strict inductive limits of sequences of such spaces are C*°-paracompact.
Furthermore, nuclear SILVA SPACES, see , are C°°-paracompact.

The first part was proved by [Bonic, Frampton, 1966] under stronger assumptions.
The importance of the proof presented here lies in the fact that we need not assume
that S is local and that % € S for f € §. The only things used are that S is an
algebra and for each g € S there exists an h: R — [0, 1] with hog € S and h(t) =0
for t <0 and h(t) =1 for ¢t > 1. In particular, this applies to S = l:ipglobaLl and X
a separable Banach space.

Proof. Let U be an open covering of X.

Claim. There exists a sequence of functions g, € S(X, [0, 1]) such that {carr g, :
n € N} is a locally finite family subordinated to & and {g,'(1) : n € N} is a
covering of X.

For every = € X there exists a neighborhood U € U (since U is a covering) and
hence an h, € S(X,[0,2]) with h,(z) = 2 and carr(h,) C U (since X is S-regular).
Since X is Lindel6f we find a sequence z,, such that {z : h,(z) > 1: n € N} is
a covering of X (we denote h,, := h,,). Now choose an h € C*(R,[0,1]) with
h(t)=0for t <0 and h(t) =1 for t > 1. Set

gn() == h(n (hp(z) — 1)+ 1) H h(n(1—h;(z))+1).

j<n
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Note that
0 for hy(zx) <1-— 1
h(n(hy(z) —1)+1) = n
(n (hnfe) = 1) +1) {1 for hp(z) > 1
0 for hj(z)>1+ 21
h(n (1 —h; 1) = J n
(n(1 = hyw) + 1) {1 =

Then g, € S(X,[0,1]) and carr g, C carr h,,. Thus, the family {carr g, : n € N} is
subordinated to U.

The family {g, (1) : n € N} covers X since for each x € X there exists a minimal
n with h,(xz) > 1, and thus g,(z) = 1.

If we could divide in S, then f, := ¢,/>_ ;95 would be the required partition of
unity (and we do not need the last claim in this strong from).

Instead we proceed as follows. The family {carrg, : n € N} is locally finite: Let
n be such that h,(z) > 1, and take k > n so large that 14+ + < hy,(z), and let
Uy :=={y : hy(y) > 1+ £}, which is a neighborhood of z. For m > k and y € U,
we have that h,(y) > 1+ + > 1+ L hence the (n+ 1)-st factor of g,, vanishes at
y,le. {jrcarrg;NU, # 0} C{1,...,m—1}.

Now define f,, := gn [[;.,,(1 — g;) € S. Then carr f,, C carr g,, hence {carr f, :
n € N} is a locally finite family subordinated to ¢. By induction, one shows that
ngn fi=1- ngn(l —g;)- In fact ngn fi =TIt Zj<n fi = 9n Hj<n(1 -
9;) +1 -1, —g;) =1+ (9. — 1) [[,,,(1 — g;). For every x € U there exists
an n with g,(z) = 1, hence fi(z) = 0 for k > n and 3372, fi(z) = 30, fi(z) =
1- ngn(l —gi(@)) =1

Let us consider a nuclear Silva space. By | 52.37 | its dual is a nuclear Fréchet space.

By on the strong dual of a nuclear Fréchet space the ¢>-topology coincides
with the locally convex one. Hence, it is C'"*°-regular since it is nuclear, so it has
a base of (smooth) Hilbert seminorms. A Silva space is an inductive limit of a
sequence of Banach spaces with compact connecting mappings (see )7 and
we may assume that the Banach spaces are separable by replacing them by the
closures of the images of the connecting mappings, so the topology of the inductive
limit is Lindelof. Therefore, by the first assertion we conclude that the space is
C*°-paracompact.

In order to obtain the statement on nuclear Fréchet spaces we note that these are
separable, see | 52.27 |, and thus Lindelof. A strict inductive limit of a sequence of

nuclear Fréchet spaces is C'°°-regular by , and it is also Lindelof for its ¢*°-
topology, since this is the inductive limit of topological spaces (not locally convex
spaces). O

Remark. In particular, every separable Hilbert space has Eipélobal—partitions of
unity, thus there is such a Eipélobal—par‘cition of functions ¢ subordinated to ¢2\ Ag
and /2 \ Ay, with Ag and A; mentioned in . Hence, f =) p € C?
satisfies f|a;, = j for j = 0,1. However, f ¢ Eipélobal. The reason behind this is

carr pNAo=0
that Eipélobal is not a sheaf.

Open problem. Classically, one proves the existence of continuous partitions
of unity from the paracompactness of the space. So the question arises whether
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theorem | 16.10| can be strengthened to: If the initial topology with respect to S
is paracompact, do there exist S-partitions of unity? Or equivalently: Is every
paracompact S-reqular space S-paracompact?

16.11. Theorem. Smoothness of separable Banach spaces. Let E be a
separable Banach space. Then the following conditions are equivalent.

(1) E has a C'-norm;
as ump functions, i.e., E is C'-reqular;
(2) E has C*-bump f E is C'-regul
(3) The C*-functions separate closed sets, i.e., E is C'-normal;
as C*-partitions of unity, i.e., E is C*-paracompact;
4) E has Cl-partiti ity, i.e., B is C1 t
(5) E has no rough norm, i.e. E is Asplund;
(6) E' is separable.

Proof. The implications () = () and () = () = () are obviously
true. The implication () = () is . () = () holds by . ()
= (@) follows from since E is separable. (@) = () is together
with [ 13.20 | O

A more general result is:

16.12. Result. [John, Zizler, 1976] Let E be a WCG Banach space. Then the
following statements are equivalent:

(1) E is C'-normable;

(2) E is C'-regular;

(3) E is C'-paracompact;

(4) E has norm, whose dual norm is LUR;

(5) E has shrinking MarkuSevi¢ basis, i.e. vectors x; € E and xzf € E' with
x}(x;) = 4, ; and the span of the x; is dense in E and the span of x} i
dense in E'.

16.13. Results.

(1) [Godefroy, Pelant, et. al., 1983] ([Vanderwerff, 1992]) Let E’ is WCG
Banach space (or even WCD, see ) Then E is C'-regular.

(2) [Vanderwerft, 1992] Let K be compact with K1) = (). Then C(K) is
C'-paracompact. Compare with|13.18.2| and | 13.17.5|.

(3) [Godefroy, Troyanski, et. al., 1983] Let E be a subspace of a WCG Banach
space. If E is C*-reqular then it is C*-paracompact. This will be proved

in[ 16.18]

(4) [MacLaughlin, 1992] Let E’ be a WCG Banach space. If E is C*-reqular
then it is C*-paracompact.

16.14. Lemma. Smooth functions on ¢o(I"). [Torudczyk, 1973]. The norm-
topology of ¢o(T') has a basis which is a countable union of locally finite families of
carriers of smooth functions, each of which depends locally only on finitely many
coordinates.

Proof. The open balls B, := {z : ||z||cc < r} are carriers of such functions: In

fact, similarly to we choose a h € C*(R,R) with & = 1 locally around 0
and carr h = (—1,1), and define f(z) := [[,cp h(zy). Let

Z/{n,r,q = {BT +Q1€71 + - +Qne'yn : {717' .. 7771} g F}
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where n € N, r € Q, ¢ € Q™ with |¢;| > 2r for 1 < ¢ < n. This is the required
countable family.

Claim. The union |J Uy r.q is a basis for the topology.

n,r,q
Let € ¢o(I") and € > 0. Choose 0 < r < § such that r # |z, | for all v (note that
|z,| > /4 only for finitely many ). Let {y1,...,v} = {7 : |z4| > r}. For ¢; with
lgi — 2+,| < r and |g;| > 2r we have

T — Zqie% € B,
i
and hence

n
x € Br—l—Zqie% Cax+ By C{y: |y — 2|l < e}
i=1

Claim. Each family U, , 4 is locally finite.

For given 2 € co(I'), let {v1,...,%m} := {7 : |z4] > 5} and assume there exists a
y € (x+Bg)N (B, + 311, qiep,) # 0. For y € x + Br we have |y,| < r for all v ¢

{7,...,%m} and for y € B, +>""" | gi eg, we have |y,| > r for all y € {f1,...,0,}.
Hence, {f1,.-.,00} C{71,..-,Ym} and U, , 4 is locally finite. O

16.15. Theorem, Smoothly paracompact metrizable spaces . [Toruriczyk,
1973]. Let X be a metrizable smooth space. Then the following are equivalent:

(1) X is S-paracompact, i.e. admits S-partitions of unity.

(2) X is S-normal.

(3) The topology of X has a basis which is a countable union of locally finite
families of carriers of smooth functions.

(4) There is a homeomorphic embedding i : X — co(A) for some A (with
image in the unit ball) such that ev, o i is smooth for all a € A.

Proof. () = () Let U, be the cover formed by all open balls of radius 1/n.
By () there exists a partition of unity subordinated to it. The carriers of these
smooth functions form a locally finite refinement V,,. The union of all V,, is clearly
a base of the topology since that of all U, is one.

() = () Let A; and As be two disjoint closed subsets of X. Let furthermore
Uy, be a locally finite family of carriers of smooth functions such that J, Uy, is a
basis. Let Wi := | J{U € U, : UN A; = 0}. This is the carrier of the smooth locally
finite sum of the carrying functions of the U’s. The family {W} :i € {0,1},n € N}
forms a countable cover of X. By the argument used in the proof of we
may shrink the W} to a locally finite cover of X. Then W' = [J, W is a carrier

containing A, and avoiding A;. Now use | 16.2.2 |.

() = () is lemma , since metrizable spaces are paracompact.

() = () Let U,, be a locally finite family of carriers of smooth functions such
that U := |J,, U, is a basis. For every U € U, let fy : X — [0, 1] be a smooth
function with carrier U. We define a mapping i : X — co(U), by i(z) = (fu(z))veu-
It is continuous at xy € X, since for n € N there exists a neighborhood V of xg
which meets only finitely many sets U € Uy, U, and so [|i(z) — i(zo)|| < +
for those € V with |fu(z) — fu(zo)] < % for all U € U<, Ur meeting V.
The mapping i is even an embedding, since for o € U € U and x ¢ U we have
lli(z) —i(zo)ll = fu(wo) > 0.
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() = () By | 16.14 | the Banach space ¢o(A) has a basis which is a countable

union of locally finite families of carriers of smooth functions, all of which depend
locally only on finitely many coordinates. The pullbacks of all these functions via
1 are smooth on X, and their carriers furnish the required basis. O

16.16. Corollary. Hilbert spaces are C*°-paracompact. [Toruriczyk, 1973].
Every space ¢o(T) (for arbitrary index setT') and every Hilbert space (not necessarily
separable) is C° -paracompact.

Proof. The assertion for ¢o(T") is immediate from |16.15|. For a Hilbert space
£2(T") we use the embedding i : £2(T") — ¢o(T' U {*}) given by

i(2) Ty foryel
AR =
T el fory =+

This is an embedding: From ||z" — z||cc — 0 we conclude by Hoélder’s inequality

that (y, 2" —z) — 0 for all y € ¢? and hence ||z, — 2||* = ||z, ||* +||z]|* — 2(z, x,) —
2[|z))* = 2||=[|* = 0.

16.17. Corollary. A countable product of S-paracompact metrizable spaces is
again S-paracompact.

Proof. By theorem we have certain embeddings i, : X,, — ¢o(A,) with
images contained in the unit balls. We consider the embedding ¢ : [], X,, —
co(L, An) given by i(x)q = ~in(zy) for a € A, which has the required properties
for theorem . It is an embedding, since i(z") — i(z) if and only if 2} — xy,
for all k& (all but finitely many coordinates are small anyhow). O

16.18. Corollary. [Godefroy, Troyanski, et. al., 1983]
Let E be a Banach space with a separable projective resolution of identity, see

58.13|. If E is C*-regular, then it is C*-paracompact.

Proof. By there exists a linear, injective, norm 1 operator T': E — ¢(I'1)

for some I'; and by | 53.13 | projections P, for w < o < densFE. Let I's := {A :
A C [w,dens F), finite}. For A € I'y choose a dense sequence (r4), in the unit
sphere of P,(E) ® @, ca(Pat1 — Pa)(E) and let y2 € E’ be such that [|y5|| =1

and y5 (z2) = 1. For n € N let 75 : x + z — y2(x)x%. Choose a smooth function

h € C*(E,[0,1]) with h(z) = 0 for ||z|| < 1 and h(z) = 1 for ||z| > 2. Let
Ry = (Pat1 = Pa) /|| Pag1 — Pal|-
Now define an embedding as follows: Let I' := N® x 'y UN x [w,dens E) UN U Ty
and let u : E — ¢o(I") be given by

Wlmﬂ h(mza ) [loea MIRoz) for v = (m,n,l,A) € N3 x Ty,

) 3= h(mR,x) for v = (m,a) € N x [w,dens E),
uemhy = 3 h(%) for y =m €N,
T(z)a fory=aely.

Let us first show that u is well-defined and continuous. We do this only for the
coordinates in the first row (for the others it is easier, the third has locally even
finite support).

Let 9 € F and 0 < ¢ < 1. Choose ng with 1/2" < e. Then |u(z),| < € for all
xz € X and all « = (m,n,l,A) with m+n +1 > ng.

For the remaining coordinates we proceed as follows: We first choose § < 1/ng. By
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53.13.8 | there is a finite set Ag € I'y such that ||[Rozo|| < §/2 for all o ¢ Ag. For
those o and ||z — x| < §/2 we get

Bl < | Ba(a)l + | Bala — o)l < 5 + 5 =4
hence u(z), = 0 for all v = (m,n,l,A) with m +n+1 < ng and AN (jw,dens E \
Ag) # 0.
For the remaining finitely many coordinates v = (m,n,l, A) with m+n+1I < ny and
A C Ay we may choose a §; > 0 such that |u(z), —u(zo),| < € for all ||z —xzo]| < 1.
Thus for ||z —zo|| < min{d/2, 1} we have |u(z), —u(zo),| < 2¢ for all v € N3 x I’
and |u(xo),| > € only for o = (m,n,l,A) with m +n+1 < ng and A C A,.
Since T' is injective, so is u. In order to show that u is an embedding let zo., 2, € E
with u(zp) — u(zs). Then z, is bounded, since for ng > ||z| implies that
hMZoo/no) = 0 and from h(z,/ng) — h(ze/no) we conclude that ||z, /ne| < 2 for
large p.
Now we show that for any ¢ > 0 there is a finite e-net for {z, : p € N}: For this
we choose mgy > 2/e. By there is a finite set Ag € A(2so) := U upla <
dens E : ||Ro(7o0)|| > €} and an ng := n € N such that |mon5°(zs)|| < 1 and
hence h(mom5°(2s)) = 0. In fact by there is a finite linear combination
of vectors R, (%o ), which has distance less than € from o, let § := min{||R, ()| :

for those a} > 0. Since the y2° are dense in the unit sphere of P, & Daca, Lo
we may choose an n such that ||7e — [|zeo||75°] < ﬁ and hence
A A A
HTr'ILO(‘TOO)” = ||x00 - yno(xoo)xno‘l
< oo = lsllzn® || + sl |20 =y (20°)an
A A A
# 2 [loelofe = o) 180
1 1 1
<— 40+ —=—
— 2my 2mg mo

Next choose lp := 1 € N such that lpdy > 2 and hence ||lgRaZoo| > 2 for all @ € Ay.
Then

h(momaa,) H h(lo Rap) — h(momal s H h(lp Raoo)
acAg a€lg
and h(loRazp) = h(loRazoo) =1 for a € Ay
Hence
h(moﬂﬁooxp) — h(moﬂ'ﬁ]"xoo) =0,

and so [|T50z,|| < 2/mg < € for all large p. Thus d(z,, Rz5°) < ¢, hence {z, : p €
N} has a finite e-net, since its projection onto the one dimensional subspace R:cﬁof’
is bounded.

Thus {%c,xp : p € N} is relatively compact, and hence u restricted to its closure
is a homeomorphism onto the image. So x, — T.

Now the result follows from | 16.15 |. d
16.19. Corollary. [Deville, Godefroy, Zizler, 1990]. Let ¢o(T') — E — F be a

short exact sequence of Banach spaces and assume F admits CP-partitions of unity.
Then E admits CP-partitions of unity.

Proof. Without loss of generality we may assume that the norm of E restricted
to ¢o(T") is the supremum norm. Furthermore there is a linear continuous splitting
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T :¢4(T) — E' by |13.17.3 | and a continuous splitting S : F — E by | 53.22 | with
S(0) = 0. We put T := T'(ey) for all v € T'. For n € N let F,, be a CP-partition

of unity on F with diam(carr(f)) < 1/n for all f € F,. Let F := ||, F, and let
Iy := {A CT': Aisfinite}. For any f € F choose 5 € S(carr(f)) and for any
A € T'5 choose a dense sequence {yﬁm : m € N} 3 0in the linear subspace generated
by {z;+ey:7 € A}. Let £4,, € E be such that (7, (y5,,) = €7, - [y £l = 1.
Let W%m : E — E be given by 7rfA’m(x) =z — é%m(x) yﬁm. Let h : E — R be
C? with h(z) = 0 for ||z|| <1 and h(x) =1 for ||z|| > 2. Let g : R — [-1,1] be
C? with g(t) = 0 for [t| < 1 and injective on {¢ : |t| > 1}. Now define a mapping

u: E — ¢o(T"), where
D= (FxTyxNYU(FxT)U(FxN)UUNUN

by
u(@)s = gz F@) AT @) [T o T @ — )
yEA

for ¥ = (f, A, j,m) € F,, x Ty x N?, and by

35 [(&) g(nTy(x —ay)) for 5 =(f,7) € Fu xT
2n1+j f@)h(j(x —xy5)) fory=(f,j)eF,xN

u(x)s = 5 f(2) fory=feF, CF
5 h(nx) fory=neN
3= h(z/n) fory=mn e N.

We first claim that u is well-defined and continuous. Every coordinate z — u(x),
is continuous, so it remains to show that for every € > 0 locally in x the set
of coordinates 7, where |u(z),| > ¢ is finite. We do this for the first type of
coordinates. For this we may fix n, m and j (since the factors are bounded by 1).
Since F,, is a partition of unity, locally f(&) # 0 for only finitely many f € F,,, so we
may also fix f € F,,. For such an f the set Ag := {y: [T} (z—af)| > m(z—zs)+ =}
is finite by the proof of . Since ||& — x¢|| = ||7(x — xf)|| < 1/n be have
g(nTy(x —xy)) =0 for v ¢ Ag.

Thus only for those A contained in the finite set A, we have that the corresponding
coordinate does not vanish.

Next we show that w is injective. Let z #y € E.

If & # ¢, then there is some n and a f € F,, such that f(&) # 0 = f(§). Thus this

is detected by the 4th row.

If & = g then ST = Sg and since  — Sz, y — Sy € co(T") there is a v € I with
T’y(x —8%) = (v — S&)y # (y — S?Q)v =T,(y — S9).

We will make use of the following method repeatedly:

For every n there is a f, € F, with f,(£) # 0 and hence || — &y,| < 1/n.
Since S is continuous we get x5, = S(&y,) — S(&) and thus lim, T, (z — zy,) =
lim, Ty (x — S(&y,)) = Ty(x — S(&)).

So we get

T, (e — 25,) = T (e — S(@)) # Ty (y — $()) = i T (y — ,).
If all coordinates for u(z) and u(y) in the second row would be equal, then

g(nTy(x —wy)) = g(nTy(y — xy))
since f, (&) # 0, and hence ||Ty(z — xf) — Ty (y — xf)|| < 2/n, a contradiction.
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Now let us show that u is a homeomorphism onto its image. We have to show
2 — x provided u(zy) — u(x).

We consider first the case, where x = Sz. As before we choose f, € F, with
fu(&) # 0 and get zy, = S(&y,) — S(&) =x. Let ¢ > 0 and j > 3/e. Choose an n
such that ||z, —z|| < 1/j. Then h(j (x4, — x)) = 0. From the coordinates in the
third and fourth row we conclude

f@R) h(G (2r —xyp,)) = f@) (G (x —xp,))  and  f(2x) = f(2) # 0.
Hence
hj (zx —xy,)) = h(j (x —y,)) = 0.
Thus ||zx — x5,]| < 2/j for all large k. But then

3
lzn =2l < llzw = zpll + g, —2ll < 5 <e,

ile. xp — x.

Now the case, where © # S&. We show first that {x) : k € N} is bounded. Pick
n > ||z||. From the coordinates in the last row we get that limy h(zr/n) = 0, i.e.
|lzx|l < 2n for all large k.

We claim that for j € N there is an n € N and an f € F,, with f(&) # 0, a finite
set A CI'with [ A g(nT,(z —xy)) # 0 and an m € N with A(j w%m(x)) =0.
From 0 # (z — SZ) € ¢o(I') we deduce that there is a finite set A C T" with
T,(x — St&) = (x — S&)y # 0 for all v € A and dist(x — SZ, (e, : v € A)) < 1/(3y),
ie. [(z—S%),| <1/(3j) for all v ¢ A. As before we choose f,, € F,, with f,(&) # 0
and get xy, = S(&y,) — S(&) and

Im T, (z —xy,) = (x — S&)y # 0 for v € A.
Thus g(n (T (z — xy,))) # 0 for all large n and v € A. Furthermore, dist(x, s, +
(ey vy € A)) =dist(x — zy,,(ey 1 v € A)) < 1/(2j). Since {yﬁym :m € N} is
dense in (zy, + ey : v € A) there is an m such that ||z — y?mmH < 1/(2j). Since
||7r)%\;”m|| < 2 we get

175 m @ < Nl =yl + 11— €8, (@) 155,
11

1 N A A 1
<5t 165, mll 12 =y mll 155l < YT

hence h(j Wﬁym(az)) =0.
We claim that for every € > 0 there is a finite e-net of {x, : k € N}. Let ¢ > 0.
We choose j > 4/¢ and we pick n € N, f € F,,, A CT finite, and m € N satisfying

the previous claim. From u(zy) — wu(z) we deduce from the coordinates in the first
row, that

F@R) h(impn (@) 1] 9(n Ty (e —25)) —
YEA

— F@ R 8 (@) [] 9Ty (@ —2p)) for k — oo
yEA

and since by the coordinates in the fourth row f(2r) — f(&) # 0 we obtain from
the coordinates in the second row, that

g(nTy(xr —xy)) = g(nTy(x —xy)) #0 for vy € A.

Hence
(i 75 (@) = h(j 75 (2)) = 0.
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Therefore

1 €
2k = £ (@x) Yl = 7 7m (@) | < 5 < foralllarge k.

Thus there is a finite dimensional subspace in E spanned by yﬁn and finitely many
xy, such that all x; have distance < /4 from it. Since {xj : k € N} are bounded,
the compactness of the finite dimensional balls implies that {zj : k € N} has an
e-net, hence {zy : k € N} is relatively compact, and since u is injective we have
limy, xp, = .

Now the result follows from | 16.15 |. O

Remark. In general, the existence of C'*°-partitions of unity is not inherited by the
middle term of short exact sequences: Take a short exact sequence of Banach spaces
with Hilbert ends and non-Hilbertizable F in the middle, as in . If both E
and E* admitted C2-partitions of unity, then they would admit C?-bump functions,
hence FE was isomorphic to a Hilbert space by [Meshkov, 1978], a contradiction.

16.20. Results on C(K). Let K be compact. Then for the Banach space C(K)
we have:

(1) [Deville, Godefroy, Zizler, 1990]. If K) = () then C(K) is C*°-paracom-
pact.

(2) [Vanderwerff, 1992] If K1) =) then C(K) is C"-paracompact.

(3) [Haydon, 1990] In contrast to ) there exists a compact space K with
K®1) = L}, but such that C(K) has no Gateauz-differentiable norm.
Nevertheless C(K) is C*-regular by [Haydon, 1991]. Compare with .

(4) [Namioka, Phelps, 1975]. If there exists an ordinal number o with K(®) =
() then the Banach space C(K) is Asplund (and conversely), hence it does

not admit a rough norm, by ,

(5) [Ciesielski, Pol, 1984] There exists a compact K with K®) = §. Conse-
quently, there is a short exact sequence co(T'1) — C(K) — ¢o(T'2), and the
space C(K) is Lipschitz homeomorphic to some co(T'). However, there is
no continuous linear injection of C(K) into some co(T).

Notes. () Applying theorem | 16.19 | recursively we get the result as in|13.17.5|.

16.21. Some radial subsets are diffeomorphic to the whole space.
We are now going to show that certain subsets of convenient vector spaces are
diffeomorphic to the whole space. So if these subsets form a base of the ¢*°-topology
of the modeling space of a manifold, then we may choose charts defined on the whole
modeling space. The basic idea is to ‘blow up’ subsets U C FE along all rays starting
at a common center. Without loss of generality assume that the center is 0. In
order for this technique to work, we need a positive function p : U — R, which
should give a diffeomorphism f : U — E, defined by f(x) := ﬁx. For this we
need that p is smooth, and since the restriction of f to U N Rtz — Rz has to
be a diffeomorphism as well, and since the image set is connected, we need that
the domain U NR*x is connected as well, i.e., U has to be radial. Let U, := {t >
0:tx € U}, and let f, : U, — R be given by f(tr) = -t~z =: f,(t)z. Since

p(tx)
up to diffeomorphisms this is just the restriction of the diffeomorphism f, we need

that 0 < fL(t) = %p(im) = p(m);(tt’;,)(zm)(x) for all z € U and 0 < ¢t < 1. This

means that p(y) > p'(y)(y) for all y € U, which is quite a restrictive condition,
and so we want to construct out of an arbitrary smooth function p : U — R, which
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tends to 0 towards the boundary, a new smooth function p satisfying the additional
assumption.

Theorem. Let U C E be ¢®-open with 0 € U and let p : U — RT be smooth, such
that for all x ¢ U with tx € U for 0 <t < 1 we have p(tx) — 0 fort /1. Then
starU :={x €U :te € U for allt € [0,1]} is diffeomorphic to E.

Proof. First remark that starU is ¢*-open. In fact, let ¢ : R — E be smooth
with ¢(0) € starU. Then ¢ : R? — E, defined by ¢(t,s) := tc(s) is smooth and
maps [0,1] x {0} into U. Since U is ¢>-open and R? carries the ¢>°-topology there
exists a neighborhood of [0,1] x {0}, which is mapped into U, and in particular
there exists some € > 0 such that c(s) € star U for all |s| < e. Thus ¢~ !(star U)
is open, i.e., star U is ¢>-open. Note that p satisfies on star U the same boundary
condition as on U. So we may assume without loss of generality that U is radial.
Furthermore, we may assume that p = 1 locally around 0 and 0 < p < 1 everywhere,
by composing with some function which is constantly 1 locally around [p(0), +00).

Now we are going to replace p by a new function p, and we consider first the

case, where E = R. We want that p satisfies p/'(¢)t < p(¢) (which says that the

tangent to p at t intersects the p-axis in the positive part) and that p(t) < p(¢),

i.e., logop <logop, and since we will choose p(0) = 1 = p(0) it is sufficient to have

%./ = (logop)’ < (logop)’ = % or equivalently % < pf;%i;t for t > 0. In order

to obtain this we choose a smooth function h : R — R which satisfies h(t) < 1,

and h(t) < ¢ for all ¢, and h(t) = t for ¢t near 0, and we take p as solution of the
following ordinary differential equation
~ /

o= 20 (212

p(t)

t
Note that for ¢ near 0, we have %h (p;gt) = %, and hence locally a unique

smooth solution p exists. In fact, we can solve the equation explicitly, since
(logop)(t) = 2W = L. p (p mt), and hence j(s) = exp( [ 1 - h(Z2) dt), which

) with 5(0) = 1.

plt) Tt p(t) 0t p(t)
is smooth on the same interval as p is.

Note that if p is replaced by ps : t — p(ts), then the corresponding solution pj
satisfies py = ps. In fact,
0s) (¢ o' (st 1 stp/(st 1 tp (st 1. rt(ps)'(t
(log o)/ (1) = (ps)' (1) _ sp'(st) _ 1 stp'(st) ,7h(s p'(s )) _ 7h( (ps)'( ))_
ps(t) pst) 1 p(st) t\ ps(t)

- Pt
For arbitrary E and x € E let p, : U, — RT be given by p,(t) := p(tz), and let
p: U — RT be given by p(z) := p,(1), where p, is the solution of the differential
equation above with p, in place of p.

Let us now show that p is smooth. Since U is ¢*°-open, it is enough to consider

a smooth curve z : R — U and show that ¢t — p(2(t)) = pa))(1) is smooth.

This is the case, since (¢,5) — Lh (p“”“)(s)s) = 1p (M) is smooth,
s Pa(t)(8) s p(sz(t))

since p(t, s) 1= £E2WE2®) gatisfies o(t,0) = 0, and hence Lh(ep(t,s)) = @ =

"(s () (x(t)) oot
sx(t))(x(t
W 10C&Hy.

From ps, (t) = p(tsz) = p.(ts) we conclude that ps,(t) = pz(ts), and hence p(sz) =
p(s). Thus, 7(2)(x) = Llmplts) = Slmpe(t) = 7,(1) < pu(1) = f(2). This
shows that we may assume without loss of generality that p : U — (0, 1] satisfies
the additional assumption p'(z)(z) < p(x).

64 Andreas Kriegl , Univ.Wien, October 2, 2008



16. SMOOTH PARTITIONS OF UNITY AND SMOOTH NORMALITY 16.21

Note that f, : ¢t — ﬁ is bijective from U, := {t > 0 : tx € U} to R*, since 0
is mapped to 0, the derivative is positive, and % — oo if either p(tx) — 0 or
t — oo since p(tz) < 1.

It remains to show that the bijection x +— %x is a diffeomorphism. Obviously,

its inverse is of the form y +— o(y)y for some ¢ : E — R*. They are inverse
to each other so ma(y)y = y, e, o(y) = p(o(y)y) for y # 0. This is
an implicit equation for o. Note that o(y) = 1 for y near 0, since p has this
property. In order to show smoothness, let ¢ — y(¢) be a smooth curve in FE.
Then it suffices to show that the implicit equation (o o y)(t) = p((o o y)(t) - y(t))
satisfies the assumptions of the 2-dimensional implicit function theorem, i.e., 0 #
2(o—plo-y(t) =1—p'(c-y(t))(y(t)), which is true, since multiplied with o >0
it equals o — p'(o - y(t)) (o - y(t)) < o — p(o - y(t)) = 0. O
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B.(z), e-ball centered at x, 41

Cp°, space of smooth functions with
bounded derivatives, 44

Cg, space of C*-functions with k-th
derivative bounded by B, 44

C’f, space of C*-functions with k-th
derivative bounded, 44

oo-norm I'B30D T'B30D, 26

K', set of accumulation points of K, 30

S-functions, 38

S-normal space, 50

S-paracompact space, 50

S-partition of unity, 50

S-regular space, 38

co(T), space of 0-sequences, 29

Asplund space, 22

Fréchet-differentiable, 16

Gateauz-differentiable, 16

Holder mapping, 16

Lipschitz mapping, 16

Radon-Nikodym property of a bounded

convex subset of a Banach space, 23

WCG-Banach-space, 22

bump function, 38

carrier of a mapping, 38

density number densX of a topological
space, 38

dentable subset, 23

difference quotient, 7

directional derivative, 16

dual of a convex function, 19

equidistant difference quotient, 7

expose a subset, 18

integral mapping, 23

locally uniformly rotund norm, 33

nuclear mapping, 23

rough norm, 23

scattered topological space, 32

smooth functions of class S, 38

smooth seminorm, 17

smoothly normal space, 50

smoothly paracompact space, 50

smoothly regular space, 38

strongly expose a subset, 18

strongly rough norm, 43

subordinated partition of unity, 50

support of a mapping, 38

tangent hyperplane, 18

Index

weakly Asplund space, 23
zero set of a mapping, 38
1-norm I'B30D T'B30Dq, 2/

General curve lemma, 6

Lip*-mapping, 6

Lip%., space of C*-functions with global
Lipschitz-constant K for the k-th
derivatives, 44

Lip’;lobal, space of Ck-functions with global
Lipschitz k-th derivatives, 44

second countability condition of Mackey, 44
Silva space, 55
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