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This is the script for my lecture course during the summer semester 2016. It
can be downloaded at http://www.mat.univie.ac.at/~kriegl/Skripten/2016SS.pdf
Many of the proofs are taken from Meise and Vogt’s book [MV92] and I will give
detailed references to it, but also to Jarchow’s book [Jar81].

As prerequiste the user is assumed to be familiar with basic functional analysis
(for Banach spaces) and the basics of locally convex theory as presented in lecture
courses on higher functional analysis. I will refer to my script [Kril4] for these
results.

The main focus is on Fréchet spaces and additional topological properties for them.
Leading examples of Fréchet spaces will be the Kothe sequences spaces and in
particular the power series spaces with the space s of rapidly decreasing sequences
as most relevant member. We will have to consider several of these properties also
for general locally convex spaces, in particular, since the strong dual of Fréchet
spaces is rarely Fréchet.

Our discussion will start with properties of locally convex spaces which are pre-
served by the formation of inductive or projective limits. And we will then consider
what is inherited by the strong dual. Then we consider how properties of con-
tinuous linear maps translate into properties of the adjoint mappings using short
exact sequences. And we will introduce topological properties which garantee the
splitting of such sequences. These and further properties will also play a role in
determining situations where continuous linear mappings are locally bounded and
for characterizing the subspaces and the quotients of s.

I will put online a detailed list of the treated sections at the end of the semester
under http://www.mat.univie.ac.at/~kriegl/LVA-2016-SS.html.

Obviously the attentive reader will find misprints and even errors. Thus I kindly
ask to inform me about such - future generations of students will appreciate the
corrections.

Andreas Kriegl, Vienna in February 2016
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1. Basics on Fréchet spaces

In this section we describe ((reduced) projective) limits of locally convex spaces,
recall some basic facts on Fréchet spaces and introduce Koéthe sequence spaces AP (A)
and in particular power series spaces AP(A) as important examples.

1.1 Locally convex spaces

(See [Krild, 1.4.4], [Jar81, 6.5 p.108], [MV92, 22 p.230]).

Let us recall that a LOCALLY CONVEX SPACE FE is a linear space over the field
K € {R, C} together with a compatible topology (i.e. addition Ex E — E and scalar
multiplication K x E — E are continuous) and which has a 0-neighborhood basis
consisting of (absolutely) convex sets. Equivalently, the topology can be described
by a set P of SEMINORMS (i.e. subadditiv and positive homogeneous functions p :
E — R). The correspondance is given by using the unit-balls {z : p(x) < 1} of the
seminorms as 0-neighborhood subbasis and conversely considering the MINKOWSKI-
FUNCTIONALS py (see ) for U in a 0-neighborhood basis consisting of absolutely
convex sets.

As usual we will require the topology to be Hausdorff or, equivalently, that the
seminorms separate points, i.e. [,cp p~1(0) = {0}. We will abbreviate these
spaces by LCS.

1.2 Limits of lcs (See [MV92, 24 p.257], [Jar81, 2.6 p.37]).

Let F : (J,>) — lcs be a functor from a partially ordered set (or even a small
category) into the category of locally convex spaces, i.e. for every (object) j € J we
are given an les F(j) and for every (morphism) j > j' a continuous linear mapping
FG = ) : FG) = F() satisfying F(G' - )0 F(j = ') = F( = ' = §").

Then the (INVERSE) LIMIT of F is the lcs

lim F i= {z = (2;);e0 € [[ FG): F(G = §)(w5) =y for all j - '}
jeJ
with the topology induced from the product topology, i.e. the initial topology in-
duced by the projections pr; : im F C [, ; F(j) — F(j) for j € J.

We call the limit a PROJECTIVE LIMIT (and we write lim 7 instead of lim F), iff
(J,>) is directed, i.e. Vji1,50 € J3j € J : j > 41, Jo-

If J* C Jis initial in J, ie. Vj € J 35’ € J : 5/ = j, then lim F|; & lim F: In
fact, the isomorphism is given by restricting the canonical projection [] jed F() —
[1:c;r F(i') to the subspaces formed by the projective limits, see [Kri08, 3.13].

A projective limit is called REDUCED, iff all projections pr; : yln]: — F(j) have
dense image. By replacing F(j) with :che closure F(j) of the image of periLn F)
in F <],) we get that @f equals @f , which is a reduced projective limit. Note
that F(j > j') is then a well defined continuous linear mapping with dense image.
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1.5

As closed subspace in the product the limit of complete lcs is complete. Recall,
that an les E is COMPLETE iff every CAUCHY-NET (i.e. = : (I,>) — E satisfying
VpePVe>03ielVii" i play —xi) <e) converges in E.

1.3 Complete Ics as limits of Banach spaces
(See [MV92, 24.5 p.260],[Kril4, 3.3.4]).
For absolutely convex A C F the MINKOWSKI-FUNCTIONAL p4 is defined by

pa(z) :=inf{\ >0:2 € XA}

Note that {z : pa(x) < oo} is the linear span (A)vs = U,cnyn A of A, which
coincides with F iff A is absorbing. The Minkowski-functional is a seminorm on
this subspace with kernel (1,4 A A. If A is bounded (in each direction), then this
kernel is {0}. By E4 we denote the resulting quotient space of (A)ys, normed by
the norm induced by p4. If p is a seminorm on E and A := {x : p(x) < 1} its unit
ball, then we write E, instead of E4 = E/ker(p). If A is absorbing we denote the
canonical quotient map ¢4 : E - E4 and if A is bounded we denote the canonical
inclusion ¢4 : E4 — E.

Every les E is a dense subspace of a (projective) limit of Banach spaces: For every
seminorm p we consider the completion Ep of the space E, := E/ker p, normed by
the uniquely determined seminorm p : F, — R with p = popr: ¥ — E, — R. Then
E embedds topologically into [[, E, = [], E, and in fact has dense image in the
(projective) limit (see [Kri08, 3.46]) where the connecting mappings Lg/ tE, — Ey
for p > p’ (and hence kerp C kerp’) are given by = + kerp — x + kerp’: In fact,
let y € @p Ep and U = Hp Up be a neighborhood of y in Hp E’p, ie. Uy, = Ep
for all but finitely many p1,...,p,. Choose a pg > p1,...,p, and a neighborhood
W of yp, in Epo such that L%?(W) C Up, for 1 <i<mn. Let z € E be such that
tpo(x) € W. Then t,(x) = 12 (1p,(2)) C Uy, for 1 <i <, ie. o(x) €U.

Thus, if E is complete, then it coincides with this limit. The limit is a (reduced)
projective one, since the set of seminorms of FE can be assumed to be directed, i.e.

for each two seminorms p; and py we may assume that max{p;,p2} is a seminorm
as well.

1.4 Lemma. Metrizable lcs
(See [Krild, 3.5.2], [MV92, 25.1 p.276], [Jar81, 2.8.1 p.40]).
Let E be an lcs.

1. E has a countable 0-neighborhood basis.

& 2. E has a countable basis of seminorms.

& 3. The topology of E can be described by a translation invariant metric.

Proof. (:>) The set {z : d(x,0) < 1} form a countable O-neighborhood basis.
(:) Take the Minkowski functionals of the 0-neighborhoods in the basis.

(:>) Embed E < [],cn Ep,., a product of normed spaces. Then d(z,y) :=
> %% gives the required metric. O

1.5 Definition. Fréchet spaces

(See [Kril4, 2.2.1], [Jar81, 6.5.3 p.109], [M'V92, 25.1 p.276]).

A FRECHET SPACE ((F) for short) is a locally convex space, which satisfies the
equivalent conditions of and is (sequentially) complete (equivalently, the trans-

lation invariant metric of is complete).
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1.8

Fréchet spaces are Baire spaces, hence the CLOSED GRAPH THEOREM (cf. [Kril4,
4.3.1], [MV92, 24.31 p.270], [Jar81, 5.4.1 p.92]) and the OPEN MAPPING THEOREM
(cf. [Kril4, 4.3.5], [MV92, 24.30 p.270], [Jar81, 5.5.2 p.95]) hold for linear maps
between Fréchet spaces.

1.6 Remark. Equivalence of bases of seminorms.

Two sets P and P’ of seminorms on a vector space E describe the same locally con-
vex space, iff each seminorm of one set is dominated by finitely many seminorms of
the other set (i.e. Vp' € P’ In € N 3py,...,p, € P: p' <37 | p;, and conversely).

Thus for Fréchet spaces we may assume that we have an increasing sequence of
seminorms p, as basis: In fact, we may replace a given countable set {p, : n € N}
of seminorms by {p], := >, pi : n € N},

1.7 Lemma. Stability of Fréchet spaces (See [MV92, 25.3 p.277]).

Closed subspaces of Fréchet spaces are Fréchet and quotients of Fréchet spaces by
closed subspaces are Fréchet. Limits of countable many Fréchet spaces are Fréchet.
The Fréchet spaces are exactly the (projective) limits of sequences of Banach spaces.

Proof. The trace of the countable 0-neighborhoodbasis (or countable many semi-
norms) is a 0-neighborhoodbasis (are the generating seminorms) of the subspace.

The QUOTIENT SEMINORMS G(z + F') := inf{y € F : q¢(x + y)} are a basis of semi-
norms on the quotient, see [Kril4, 3.3.3]. And since Cauchy-sequences can be lifted
along the quotient mapping (see [Kril4, 3.5.3]) the quotient is (sequentially-)com-
plete as well.

We obviously get a countable basis of seminorms for the product of countable many
Fréchet spaces, and since limits of complete spaces are complete, such a limit is a
Fréchet space. O

1.8 Examples of Fréchet spaces.

1. £P, ¢co: Every Banach space (in particular, /2 for 1 < p < oo and ¢p) is a
Fréchet space.

2. KN: The space KV of all sequences is a Fréchet space with respect to the
product topology, i.e. the pointwise(=coordinatewise) convergence. It is the
limit of K® for n € N, in fact E, = K", when F := KN and p,(z) =
Dicn |Til-

3. C(X): Let C(X,K) be the space of continuous functions on a topological
space X supplied with the topology of uniform convergence on the compact
subsets K C X, i.e. induced by the seminorms px : f — | f|klloo- In
order for C'(X,K) to be complete we need, that a function, with continuous
restrictions on all compact subsets, is continuous. This is the case, when X is
a KELLEY-SPACE (i.e. carries the final topology with respect to its compact
subsets). Then C(X,K) = lim  C(K,K), since C(X,K),, = C(X,K)/{f :
flx =0} = C(K,K). If X has a countable basis for the compact sets, then
C(X,K) is metrizable.

4. H(U): If U C C™ is open, then the space H(U) of holomorphic functions
on U is a closed subspace of C(U, C), hence Fréchet.

5. C*°(X): Let X be an open subset of some R” or a smooth finite dimensional
paracompact connected manifold. Then the space C*° (X, K) of smooth func-
tions on X is a Fréchet space with the topology of uniform convergence of
each derivative separately on compact subsets (contained in some chart).
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6. S: The space S of RAPIDLY DECREASING FUNCTIONS on R"™ is a Fréchet
space, where the seminorms are given by sup{ (1 + ||z||)?||f*) ()| : z € R™}
for 5,k € N.

7. Cw(U): Spaces of weighted continuous functions. Let X be a Kelley-
space and W a (countable) set of non-negative UPPER SEMI-CONTINUOUS
(i.e. w™ (o, 00)) is closed for all @ € R) functions w : X — R. Then
Cw(U,K) :={f € C(U,K) : w- f is bounded for each w € W}, cf. [Sch12,
4.3 p.76]. A particular case is , where W = {xx : K C U is compact}, cf.
[Sch12, 4.4 p.76].

8. Hy(U): Spaces of weighted holomorphic functions. Let U C C be open
and W be as in[7]. Then Hyw (U) := H(U,C)NCyw(U,C). [Sch12, 4.3 p.76]

9. CM)(U): Let U C R"™ be open and M;, be a sequence of positive real
numbers. The space of DENJOY-CARLEMAN FUNCTIONS on U of BEURLING
TYPE is

)
(M) — S . . £ (@)l s
CMD(U,K) - {fe(} CASHTIPTE sup{ij! v .jEN,ﬂ:EK}<oo

for all compact K C U and p > O}.

1.9 Definition. Kothe sequence spaces
(See [MV92, 27 p.307], [Jar81, 1.7.E p.27]).
Let A be a set of R-valued sequences, which satisfies Vn € N Ja € A: a,, # 0.

Then for 1 < g < co the KOTHE SEQUENCE SPACE A\9(A) is defined as
N(A):={zeK :VacA:a-z €}
with the seminorms given by = — ||z||q := ||a - z||¢s. Moreover,
co(A) ={z €eX®(A):Vac A:z-acc}
as subspace of A>*°(A).

1.10 Remark.

1. We may (and will always) assume that all a € A are Ry : {t € R;T > 0}-
valued, since obviously AP(A) = AP(|A|), where |A| := {j — |a;| : a € A}.

2. We may (and will always) assume that A is directed, i.e.

Va,b€ AJce AVn € N: ¢, > max{an,b,} :

Otherwise, let A := {D acaa : @ C Afinite}. Then A D A is directed and
llz]la := || ZaG& a-xllep < ZaG& lla-z|ew =: Zaeii 2]l Now apply ~

3. If A is countable, we may replace A by an increasing sequence {a, : n € N}:
In fact, let A = {a, : n € N} and @, := >, ., ar. Then [[a, - zf, <

lan - zllp = 1| Cpen ak - @llp < Xpey lak - @llp, of. [1.6]

1.11 Lemma. Kothe sequence spaces as limits (See [MV92, 27.2 p.307)).
The Kdthe sequence space N1(A) is isomorphic to lim F, where the functor F on
(A, >) is given by F(a) := 9 and F(a > d') : F(a) = F(a') is given by x +— %x,
where )
! an
a { for an #0,
0 fora, =0 (and hence a,, =0).
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In particular, if A is countable, then A1(A) and co(A) are Fréchet spaces (See
[MV92, 27.1 p.307]).

Proof. The isomorphism is given by A?(A4) 3 z — (a - x)4ec4 with inverse mapping
IimF 35y — o := (a(i)n yz("))neN, where the a(n) € A are choosen such that
a(n), > 0.

() Let y = (¥*)aca € ImF C [],c4¢? be given. For b € A and n € N let
c(n) > max{a(n),b}. Then y* = C(l;l)yc(") and y*(") = %yc("), thus (since
e(n)p > a(n), > 0):

b b, ¢(n) b
b _ _7n en) 0 ngen) — _“n aln) _ (p.

1.12 Convention. Calculating with oo.
Put co > zVz, 0+ 0o := 00, 0- 00 := 0 and extend + and - by monotonicity and
commutativity to mappings [0, 0o] x [0, 00] — [0, 0c]. Then

o>r+o0o>0+c0=00=Ver>0:x4+ 00 =00,

V0<x,y<oo:a:~oc>2x~g:yéVz>0:xooo:oo,
x

and then + and - are associative and distributiv.

Let 1/0 := 00, 1/oo:=0and z/y :=z - % Then

1 0 f =0 1
z/0:=x--=x 00:= o and /oo :=x-— =12-0=0.
0 oo for0<z<o0 00

1.13 Remark. Kothe sequence spaces as reduced projective limits.
Let E = MP(A) (resp. E = cy(A)) and £ = ¢P (resp. £ = ¢p). For a = (ay)i € A the
mapping = + a -z, E — £ and hence x ~ ||a - 2|/ =: ||z||o has kernel

ker||-|lo = {z € E : z|n, = 0}, where N, := carra := {k : ax, # 0}.
By assumption on Kéthe sequence spaces N = J, .4 Na. Define the Banach spaces
(a) :={x € RN : |la- z|jep» < 00} = ¢P(carra) := {x € 7 : carrz C carra}
co(a) == {z € £*(a) CRYe CRY : lima -z = 0}

Obviously, the coproduct R(Ve) is dense in 0P (a) for p < oo and hence also RM C E,
since RN C E/ker |||, C ¢P(a). = E, := (E/ker|||la)~ = ¢P(a) for 1 < p < o0
(resp. E, 2 ¢p(a)). By completeness E = lim E,.

E, 2 (P(a) —= (P(carr a) "> (P

o
7|carr a

E = \(A) Jearr ot

k V
’

Eu = (P(a') ——— (P(carra’) (P

) i‘:\
e i“

andreas.kriegl@univie.ac.at © July 1, 2016 5



1.15

For p = oo however, we only get co(a) C E, C £>°(a) and not necessarily F, =
{>*(a), e.g. for E := s, see . Nevertheless

lim B, = A*(4) = () £*(a) = lim £>(a),

a

but the projective limit on the right side is not reduced!

1.14 Definition. Power series space (See [MV92, 29 p.337]).

A particular case of Kéthe sequence spaces is, when A = A, , := {j > e'* 1t < r}
for some r € R and a fixed sequence (¢;); increasing monotone towards +oco. Then
A(a) := N(Aq,r) is called POWER SERIES SPACE (of FINITE TYPE if r < 400 and of
INFINITE TYPE if r = +00). Note that for < co the mapping @ : A1 (o) — M\ (a),

x — ("% x;); is an isomorphism, since ||Pz|; = ||z||¢4r, see | 1.26.1].

1.15 Examples of Kothe sequence spaces (See [MV92, 29.4 p.339)]).

1. If A is a singleton, then A\P(A) = ¢P and co(A) = co.

2. Let A := {e, : n € N}, where e,, are the standard unit vectors in RY. Then

A®(A) = AP(A) = co(A) = RY for all p € [1,00]. Note that we can equally
take {xr = max{e; : k € F'} : ' C N is finite} instead of A.

Let A = RY be the set of all real sequences (ag)g. Then A®(A4) = KM .=
[Hjen K (cf. [Krild, 3.6.1]): Suppose there is an z € A*°(A) with carr(z)
being not finite. Now define a € A as ay := k/|zi|, which should be (say) 1 if
xp = 0. Then |(a-z)x| = k for all k € carr x, hence is not bounded. A basis of
seminorms on the coproduct is given by z +— >, |ax x| < 2sup{|2¥ay, vk :
k € N}, with a, € R. This space is not Fréchet!

Let A be the set of all polynomials. Then s := A*°(A) is the SPACE OF
FAST FALLING SEQUENCES. We get the same space if we use the subset
{n+n*:k € N} C Aor better {n+ (1 +n)¥:k € N} instead of A, since
this sequence is increasing. Note that we should put 0° := 1 (otherwise,
the first set will not satisfy the requirements for a Kéthe sequence space)
but then the set is not linearly ordered (since 0° > 0* for k > 0). Let
pia Ypeqar®. Then [y < ey arll .

Moreover, [|n + (1 +n)kz,|o < ||n = (1+n)F 22,0 - >
s=AP(A) =co(A) forall 1 < p < 0.

The space s is the power series space Ay () for a(n) := In(1 + n).
HFA={n—7r":r>0}={nre":s € R} then \>*(A) = \}(4) = H(C),
the SPACE OF ENTIRE FUNCTIONS. It is the power series space Ao («) for
a(n) :==n (See [MV92, 29.4.2 p.340]).

o0
n=0

In fact, the power series ) a,2" converges for all |z| < R iff {a,,r" : n € N}
is bounded (equivalently, absolutely summable) for all » < R.
FA={n—r":0<r<1}={n—e":s<0}then \°(4A) = \(A4) =
H(D), the SPACE OF HOLOMORPHIC FUNCTIONS ON THE UNIT DISK [MV92,
29.4.3 p.340].

1
n m, hence

o0
n=0

It is the power series space Ag(a) for a(n) :=n (See [MV92, 29.4.2 p.340])
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7. For 1 < p < oo and % + % =1 we have A1(fP) = (¢4, 0(¢%,(P) as Ics:
(D) By the Holder inequality ||$H?;\1 = |lz-yller < [|xllea - [|yller < o0 for all
y € P and x € (9.
(C) Let = € KN be such that ||z-y||; < oo for all y € £P. Then the linear map
y > -y, P — ¢! has closed graph and thus is continuous. Consequently,
Y — Y. Tn - Yn is a continuous linear functional, hence = € (/7)* = £ (see
[Krild, 5.3.1)).
AL(£%°) = (41, 0(¢4, £°°)): For (C) choose y = 1.
M(co) = (€, 0(0,¢co)): Suppose z € Al(co) \ £, choose k — ny strictly
increasing with Z;Liﬁk_s_l lz;| > k and y; := 4 for n, < j < njpq1. Then
[z - yller = 32 1 =00

1.16 Proposition. Function spaces isomorphic to s
(See [MV92, 29.5 p.340]).
The following spaces are isomorphic to s: CS2(R), S(R), Chanl (R), and C*([a,b]).

Proof. (1) C$2(R) 2 s via FOURIER-COEFFICIENTS f (% T f@t) e dt)}C .
S

cf. [Kri07b, 5.4.5) and |1.26.3 | Let cx(f) := 5= [7_f(t) e~ dt. Then ci(f') =
ik cp(f) by [Kri07b, 5.4. 4 p. 101] or [Kr106 9.3.5], f € L' = (ci(f))rez € co and
cecltl = > ok Ck exp,c converges absolute in C' by Rlemann Lebesgue [Kri07b, 5.4.1
p.95], [Kri06, 9.3.6]. Note, that that s is taken with index set Z instead of N, but

see | 1.26.3 |
(2) S(R) =2 s (See [MV92, 29.5.2 p.341]):
Let p(t) := e~*" and consider the Hilbert space completion L2(R) of the space of

polynomials with respect to the inner product (f|g), := [, f(t)g(t) p(t)dt. Ob-
viously Lf,(R) =~ L*(R) via f — /p f. Gram-Schmidt orthonormalization applied
to the monomials ¢t — t" gives an orthonormal basis (\/ﬁHn)neN, where H,,

are the HERMITE POLYNOMIALS (cf. [KriO7b, 6.3.9 p.118]), which can also be
obtained recursively Ho := 1, Hy11(t) := 2t H,(t) — 2n Hy,—1(¢):

From the recursion we get H/, = 2n H,,_1 by induction. In fact H) = 0, H1(t) = 2t,
H{ = 2H,, and hence

H, = (2id H,—2nH, 1) =2H,+2id H, —2n H),_,
=2H,+4nid H,—1 —4n(n — 1) H,_»
—2H, +2n-(2id Hy_1 —2(n—1)H,_5) =2(n+1) H,

.
Moreover, Hy, = (—1)"#~ since

!’

(n) ()
Hpyr = 2id H, — H, = 2id (-1 )”pp - ((—1) ; )

(n) (n+1) _ (n) (n+1)
=(—1)"<2idp——pp 21‘1” ) e

By induction we get for m > n:
(Hpy1|Hp)p = /pHm+1 H, = /,0(2 id Hy, — H;n) H, = /(*pl Hy, — pH;n) H,

:/pHmHL—/(pHmHn)’:Qn/pHmHn,l:0.
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Finally, [ p = /7 and again by induction

n n rt.int. n— n—
||Hn||i:/pH,%:<fl> /an“pa (-1) I/H;p( y

= [0ty (1Y = 2n
=2n/72" H(n—1)! = 2" n! /7.

Thus the corresponding HERMITE FUNCTIONS h,, := \/% H,, form an ortho-
"n
normal basis of L?(R). For Ay : & — 8, defined by f — id-f F f/, we have:

A (hy) = ), +id h, = VH)’ id /pH,
NG

1 2n
- pH. = —"_ JpH,_
2"71'\/7?\//3 \/2"71!\/?\/5 '

\/2n 1[ \/E \/5an1 = \/%hnfl

- ATf onb Z<ATf|hn> . part.int. Z<f|AThn>h

n=0 n=0
= 2l 1) (D) (flha) b

n>m

L2 (AP f )2 = 27 (0 4+ m) (0 +m — 1) (n+ 1)|(f]hn)[?

- Zn’”|(f|hn)|2 <27 WAL fnam) | < 27 AL f |2 ) < o0,
n=0 n=0

hence § = s, f — ({f|hn))n>0 is continuous and obviously injective.
It is also onto: Let a € s. Then )" a,h, converges in S, since

— By +id by = AL (he) =Y 2Y2V/n (bl b)) by = v/2(k + 1) hyepr

n>1

1 1
== \/Zhn_1 - ,/%hnﬂ and id -y =\ [ Sho o+ ,/%hnﬂ.

(3) Ciry (R) == {f €C>R): f(x) =0Vx ¢ [a,b]} = s
(See [MV92, 29.5.3 p.342]):
Wlog —a=0b=m/2.

P : S(R) = O 9 5 /9(R), @(f)(8) := f(tan(t)) V|t| < /2 is an iso, since

p ~
3j, ; S .
B(f)P) = cos]ﬁ f9 o tan with g;, € C2(R, R)
i=1

|tan(t)* ) (tan(t))| < sug |z £ (2)] =: Ok; < 0o V|t| < 7/2
e

Since tan(x) ~ for x near +7/2 we get |B(f) P (t)| = 0 for t — 4 /2.

cos(x)

And the inverse mapping is given by f — f oarctan using analogous arguments:

arctan’(s) = 7z = arctan(™)(s) = d’ﬁiign with deg(g,) <n — 1. Thus
LT
tf ()P (¢ Z i _::2 7 (arctan(t)) with deg(g;,) <n — 1,
J:1
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and
" HR=1 70 (arctan(t)) = tan(j:(w/2 - s))n+k_1f(j) (:t(?T/Q - s))

— (£ cot(s))nHE=1 ) <j:(7r/2 - 5))
_ <:|:scos(s)>n+k1 fO (£(r/2 - 5))

sin(s) sntk—1

— 0 for s \ 0.

Now the result follows since S(R) = s by .

(4) C*>°([a,b]) =2 s (See [MV92, 29.5.4 p.343]):
W.lo.g. —a=b=1.

&: f focos, C*([-1,1]) — Con oven =8

is continuous and injective. It is also onto, since

/ /

f=goarccos € C([-1,1)) N C>®(]-1,1]), f' = —g_— o arccos, and g— € C37 even-
sin sin :

Note that via Fourier-coefficents C%3 .., = {f € O3 : f(z) = f(-2)} = {f €
C52 : en(f) = con(f)} = s, via (z = Y, ~gancos(nz)) = (an)n. Thus s —
C>([-1,1]) is given by a — > .y ancos(narccost) = > _yan Ty, where T, :
t — cos(narccost) are the TSCHEBYSCHEFF(=CHEBYSHEV) POLYNOMIALS. O

1.17 Definition. Schauder-basis and absolute basis.
A sequence (e;);en is called SCHAUDER-BASIS in [MV92, Def. in 24.27 p.322] (or
called TOPOLOGICAL BASIS in [Jar81, 14.2 p.292]) of the lcs E, if

Vee EE = (&(); e KN ix = ij(x) €.

The mappings « — §;(«) are then linear.
Obviously, the standard basis (e;);en is a Schauder-basis in A\?(A) for any A:

i 1/p
o (o= Zwes)],, = [Ewae, = (Zlasmr) ™ o
j=0 j>n ji>n

A Schauder-basis is called ABSOLUTE BASIS (See [MV92, Def. in 24.27 p.322],
[Jar81, 14.7.6 p.314]), iff

Vp 3p' AC >0V Y [&(x)| ples) < Cpl(x)

J

The standard basis is an absolute basis in A?(A) iff AP(A) = A\(A):

Va3a'3C > 0V : Z lz;] [lej - aller < C - d| e,
; ——

J
=la;|

Le. |z alle <|z-allp <Cllz-a||e.

1.18 Lemma on (F) with Schauder-basis (See [MV92, 28.10 p.331]).
Let F be a Fréchet-space with Schauder-basis (e;); and corresponding coefficient
functionals ;. Then

Vp3p' ICVx : sup p(Z .Sj(x)ej> < Cp'(z).

keN i<k
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Proof. Let (||-||n)» be an increasing basis of seminorms of F. We consider
new seminorms pp(x) = supkeNHZ?:l &i(x) ean. Obviously, |-l < pn since
> i<k &j(x)e; converges to x, thus the metrizable locally convex topology 7 in-
duced by the seminorms p,, is finer than the given one. In order to apply the
open mapping theorem it is enough to show completeness of 7: Let (2™),, be a
Cauchy-sequence for 7. We have

k
[€e(@™) = &™) llewlln < |3 €™ = a™)e
j=1

k-1
’7 1"
JrHij(xm —a™ )e;
n =

n

’

< 2pa(a™ — ™).

Since Yk 3n : ||ex||n > 0 the sequence (§x(z™))m is Cauchy in K, let 2° be its limit.
Since (z™), is Cauchy, we have

YnVe > 03mvVm/,m” > mVk :
k k
e > ﬁn(m'm — ™ ) > HZé—j(lﬂn )ej _ Zgj(xm )eJHn
J=1 J=1

With m” — oo we obtain

k k
Hij(xm ye; — ijoo ean <e.
i=1 =1

Thus
k+p k+p
Vk,p: H Z 37 e n§2€—|—H Z &™) e
j=k+1 j=k+1

Since > y &;(x™)e; converges in E, the sequence ) ;257 ¢j is Cauchy, hence con-
e € E with £;(2°°) = 25°, since (e;) is a Schauder-
basis. By the inequality above, we have that ™ — x°° with respect to 7. O

verges to some x> 1= 377 &

1.19 Corollary. Schauder-bases in (F) have continuous coefficients

(See MV92, 28.11 p.332)).

Let F be a Fréchet-space with Schauder-basis (e;); and corresponding coefficient
functionals ;. Then Vp3p' 3C > 0V Vj : |€;(x)|ple;) < Cp'(z). O

In [Jar81, 14.2 p.292] a Schauder-basis is defined as a topologogical basis for which
the coefficient functionals are continuous.

1.20 H(Dg) has (z¥)yen as absolute basis (See [MV92, 27.27 p.323]).
Let D := {z € C : |z|] < R} be the disk with radius 0 < R < oco. Taylor

development f(z) = >, %zk shows that (z + 2¥)pen is a Schauder-basis of
H(Dgr). This is even an absolute basis: || f]l, := sup{|f(2)| : |2| <r} forr < Ris a
basis of seminorms and Vf € H(Dg) Vr <r’' < R:

f(j)(()) ji IKrill, 3.30] 1 f(2)
zj:‘ i ‘Hz |, === ZJ:’M e 2L dz

o =3 (5 1l

=0

1.21 The Fréchet spaces with absolute basis are the spaces A(A)
(See [MV92, 27.26 p.323], [Jar81, 14.7.8 p.314]).
For Fréchet space E we have: 3A countable: E =2 \'(A) < E has an absolute basis.

Proof. (=) The standard basis (e;);jen is obviously an absolute basis of A\ (A4).
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(<) (See [MV92, 27.25 p.322]) Let (e;); be an absolute basis of E and consider
the Kéthe matrix A := (j = |lejlp)pen. Then & : B — KN, x> (£;(x)); is linear.
(ej); absolute basis =

vp 3p A0 Vo Y 1€ (@) lesllp < Cllaly
J
= £(x) € AY(A) and € : E — A (A) continuous and injective.
Claim: ¢ is onto A\!(A):

n+k
y= () € N () = | > wel| < 32 willlesl
j=n+1 Jj=n-+1

AL(A
y:% n— Zj§n y;je; Cauchy in E = converges to x := Zj y;e; with &(z) = v,

open map.thm.

i.e. & onto. £ is isomorphism. O

1.22 Dual space of AP(A) (See [MV92, 27.11 p.313]).
Let X := XP(A) with 1 <p < oo or X\ :=c¢y(A). Then

* = (2%(e))) jen, A= AN = {y ceKN:VzeX: Z lz;y;] < oo}
J

is linear and injective. If A is countable it is even bijective.

Proof.
(—) y et
Ve e A: x—ije]:> y(x (ijej)zz%- yle;) .
j=0 = Jj=0 T;-/
=y

llelloo <1 =€e-2 €A, hence Z x;y; converges absolutely.
J

(=) y e AM(AN) = y" == X{1,.n} -y € A" and

nlgr;@y = nhrr;o;mjyj Zx]y] = y(z)Vr € A
i<n
Uy ={z € X: [y"(x)| < 1} = U = ),enUn is barrel (see ), y e U° A
barrelled by = U 0-nbhd, hence y € \*. O

Counter-example.
Let A = cg. By |1.15.7| we have X := A(A4) = ({1, 0(¢%, A)), and hence \* = A =
co, whereas A\1(\) = AL(01) = £

1.23 Minkowski-functionals on polars in the dual.
For any subset A C E we have the POLAR
A% :={z" € B : |z"(x)| < 1Vz € A}

The Minkowski-functional p4. (on the linear span of A°) is given by

*

7(33)

- inf{A >0 |z*(z)| < AVz € A} - sup{|x*(x)\ Lz € A} = l|2*] allso.

pao(z”) := inf{)\ >0:2%¢€ /\Ao} = inf{/\ >0:

glVa:eA}
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In the particular case, where A = U C E is a 0-neighborhood, the polar U? is
bounded in the strong dual E*. In fact, the STRONG TOPOLOGY is that of uniform
convergence on the bounded sets B C U, i.e. given by the seminorms ||_|p||co-
Since B is bounded, it is contained in K - U for some K > 0, hence ||2*|p|loc =
sup{|z*(z)| : ¢ € B} < sup{|z*(K u)| : u € U} < K sup{|z*(x)| : € U}, which is
at most K for x* € U°.

1.24 Minkowski-functionals for polars of 0-nbhds in AP(A)

(See [MV92, 27.12 p.313]).

Let X := AP(A) for 1 < p < oo or A :=co(A). Foraec AletU, == {x € \:
lla-z|ew <1} and |||} = pw,)e = l|-|lv, loc with unit-ball (Uy)°. Then

1 1
||yHZ:HyH for —+—=1o0rqg=11in case A = ¢p(A).
allea P q

Proof. Let first 1 < p < oo and y € A*. We assume first, that carry C carra.
Then

N

lylls == llglv. o« = sup ly(w)] == sup \Zx]yj\ = sup| 3wy
zeU, €U,
jEcarra
vi o=@ |y
= sup{’ Z zjaj - J‘ : H(xjaj)j@arraugp < 1} = ||Z|| ,

L a; allea

JE€carra
and for carry & carra we get oo on both sides.
Analogous for A = A (A4) and X = ¢o(A). O

1.25 Theorem. Equality of AP(A) for various p (See [MV92, 27.16 p.315]).

1. 31<p#p <oo: AW(A) = N'(A) as les;
S 2. V1<p#£p <oco: N(A) =N (A) as les;
& 3. VaceAdd € A: & et

If A is countable, then it is enough to assume equality in and only as sets.

Proof. If A is countable, and p < p’ = M(A) — AP’ (A) continuous injective
Spen mapthon, AP(A) = X' (A) as Fréchet spaces in | 1| and .

(:>) Since AP(A) — X' (A) injects continuously for 1 < p < p/ < oo, we have
to show that A\*°(A) injects continuously in \'(A). Let a € A. Ja’ satisfying .

=
Vo € A(A) s 2l —Z\r;aJI—Z]%

(:>) is trivial.
(:>) For p' = 0o we get A (A) = ¢o(A), since €7 C ¢o C £°°.
=Va3d >a3C>0: | |XW <o W

:>[Kril4’ L3515 Ya3a' > a3C >0 Uf,/ = {z: ||x||ff <1} CcCou?

o * *
g Vy(e <(U5) >1in.sp) : ||y||a/,p’ < C”yHa,p'
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1/qg+1/p:=1;1/¢ +1/p :=1. Vn e 9, |n|le <1

Hijlder,-l.22 ’
%n ~a € (UP)° C C(UP)°, since ||a- x|l < 1Vz € UL.

g(z| J|q 7 /) :||T7G\U5,'||oo§0

EZMP{D@ ) e g = (lllen)” <1} < C7

u\‘u

.7 | A N« _ pt
t:= q_qq,,l.e. ?+%717 (éq/q )y =4

(g) "t and Z (%) (H )t <cdt,

= 3d:=q¢'t > 1Va 3 Zj(aj/ag)d < o00. Wlo.g. d € N. Let al® = a and choose

aM,a? ... al recursively with Zj(a§k)/a§k+1))d <oofor0<k<d.
Hélder inducti (0) "
older 1nductive
== Z SN i <
J j k=0@ j

1.26 Proposition. Equalities for power series spaces
(See [MV92, Aufgabe 142 p.323]).

1. Let 0 < a = (ap)n /00, R€[0,00), p €[1,00]. Then A\p(a) = N5(a).

2. Let R € {0,00}. Then Ag(a) = AR(8) & 3IC > 1: La < B < Ca.

3. sup{az—;’l} < oo = My(a) x My(a) =2 My(a) for R € {0,400} and p €
[1,00]. In particular, s X s = s and s(Z) = s(N).

4. AL (o) =2 (a) Vp € [1,00] & Ir < 1: DT <00 & sup{lg—jj 1} < o0

5. Agla) = Af(@) Vp € [1,00] & Vr < 1: 37, 1% < 0o & limj o 1;%] =0

Proof. o My(a) = M(a), z — (efzj)jen is an isomorphism, since
erdieReig, = e(+M% g, for r < 0 (& R+7r < R).

(€) a < B < Ca=|l(eeay)jlle < 1€ %25)jller < (€77 a)jller and
{ir:r<R}={r:r <R} ={Cr:r <R} for R=0 and similarly for R = occ.
(=) Let v; := max{a;, 3;} for R = oo, resp. 7; := min{e;, §;} for R = 0. Then
AL(7) € Ah(e) N AL(B) and the inclusion is continuous, since |z;e™| < |z;e"|
for all 0 < r < R = +oo resp. all r < R = 0. Moreover, A\h(vy) = AkL(a) N AL(B),
since x € AL(a) NAL(B) = Vr < R:

00 > Z |z;e" | + Z |z e > Z |z;e" | + Z |z e ) > Z |z;e™].
J J Vi

j7aj =7; J:B]

andreas.kriegl@univie.ac.at © July 1, 2016 13



1.26

By the open-mapping theorem Ak (o) = AL () = AL (B) as Fréchet spaces.

1.24
Vr3s>r3C>0: ”7”;};(&) <C ||7||;\}?(B)

[Kril4, 1.3.3,1.3.7] Vrds>r 30 >0: Usﬁ C CUS

= Yy (€ ((U) hinsp) = 1925 < Cllylly o
= a, € (U2)° C C(UP)°, since Ve € U* : 1 > ||z, = ||lar - ||
sup{aj’r — erai—sh ]}
bj s
=sup{ra; —sp; :j} <InC

=C 2 [lar|5,

%gr(lnchs)gC’ in case r > 0,
:> J

ay 1 (_InC _ / i
szﬂ( ﬁj—i—(s))zC’ > (0 in caser < 0.

Let @ : A (a) — A (a) x A% () be given by

B(x) = (2", 2°0%) i= ((T2n)nen, (T2n41)nen)-
(r>0) Then [|z7[|, = [|j = €™ xaj10ller < [|j = €747 w2510 [ler < ||2[| and
lellr =115 = e @jller = 15 = €™ xajller + |7 = ™25 a1 |er

2
5T

< Nlg = e wagller + 1 = €7 g flen = @ o + (|22,

where R > r’ > r sup = andR>r”>rsup% > 7 sup =L,
.7 J J

AL (@) = A2 (
<:>E|q:er’s<l.zjqo‘f <00 30>0:0lnj <aj:

() g < elr=)0Ini = jo(r=s) < §=2 provided s > r + Z.

(=) 12—]] unbounded = Vn 3j, : % > n, wlo.g. jut1 > 24, > 8. Then for
q = e 7 with x > 0 we have

VrEIs>r )20 (er)M =30, < oo &

](lg

Jn

an] = Z Z et > ; (]n - jn71> e " %in

n j=jn-1+1 )
" >.7n/2

>Z In(2)— nlnjn)> Zl

n>2x

since ln(%) > In(j 33/") or equivalently jo~*/™ > 41/2 = 2

.
AO = N(a) == Vr < 03(r <)s < 0: 3 (" %)% = Zjﬁ < o0&
Vg=e€e""°"<1: anf<oo<:>limjﬁoo¥:0'

(< )llmjﬂmﬁ—f—O:>Vm3NVj>N lnj<

=
S Yo S G <o
j>N

jzN jzN

N8

(=) imj_ 00 aj #0= 3§ >0Vn 3j, : v” >0, wlo.g. jn+1 > 2j, > 8. Then

for ¢ := e™* with x : 2 we have

anj _ Z Z eTT > Z e 1 T, > z:eln(M —Z In(jn) > Zl

1
n ] Jn 1+ >]n/2
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since In(&) > 1n(j71/2)7 or equivalently jo~'/? > 41/2 = 2. O
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2. Colimit closed (coreflective) subcategories

In this section we describe ((reduced) inductive) colimits of locally convex spaces.
And we consider the classes of (ultra-)bornological and (infra-)barrelled spaces, all
of which are invariant under the formation of colimits. We give descriptions of
Kothe sequence spaces as colimits of Banach spaces.

Barrelled and bornological spaces

2.1 Definition. Bornological and barrelled spaces.

An lcs is BORNOLOGICAL (cf. [Krild, 2.1.7], [MV92, 24.9 p.262], [Jar81, 13.1
p.272]) if BOUNDED LINEAR MAPPINGS (i.e. being bounded on bounded sets) on it
are continuous, or equivalently, every BORNIVOROUS (i.e. absorbing each bounded
set) absolutely convex subset is a 0-neighborhood (See [MV92, 24.10 p.263]).

An lcs is ULTRABORNOLOGICAL (See [Kril4, 5.4.20], [MV92, 24.14 p.264], [Jar81,
13.1 p.272]) if all linear maps on it, which are bounded on the BANACH-DISKS (i.e.
absolutely convex bounded sets B for which Fp is complete), are continuous, or
equivalently, every absolutely convex subset, which absorbs all Banach-disks, is a
0-neighborhood.

An lcs is called BARRELLED (german: TONNELLIERT) (See [Kril4, 4.2.1], [Jar81,
11.1 p.219], [MV92, Def. in 23.19 p.252]) if every BARREL (german: TONNE) (i.e.
closed absolutely-convex absorbing subset) is a 0-neighborhood, equivalently, the
uniform boundedness theorem holds (cf. [Kril4, 4.2.2]).

An lcs is called INFRA-BARRELLED (german: QUASI-TONNELIERT, INFRA-TONNE-
LIERT ) (See [Kril4, 5.4.20], [Jar81, 11.1 p.219], [MV92, Def. in 23.19 p.252]) if
every BORNIVOROUS BARREL is a 0-neighborhood, equivalently, ¥ embeds topolog-
ically into the bidual (See [Kril4, 5.4.20]).

Since obviously “bornivorous=-absorbs Banach disks” and barrels absorb Banach-
disks by the Banach-Mackey-Theorem (See [Kri07b, 7.4.18]) we have the following
implications (See [MV92, 24.12 p.263], [MV92, 24.15 p.264]):

bornivorous barrel infra-barrelled
/ \
barrel bornivorous barrelled bornological
absorbs Banach-disks ultrabornological

For sequentially complete or at least LOCALLY-COMPLETE lcs (i.e. the Banach-disks
form a basis for the bornology) the implications from left to right can clearly be
inverted (See [MV92, 23.20 p.252],[MV92, 23.21 p.253]).

2.2 Lemma. (See [Kril4, 2.1.6], [Jar81, 10.1.4 p.197]).
In any metrizable lcs every convergent sequence is Mackey-convergent.
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A sequence (2, )nen in an les is called MACKEY CONVERGENT towards o iff there
exists a sequence A, — oo in R with {\, (2, — ) : n € N} being bounded.

Proof. Let (pg)ren be a basis of seminorms. Since for each k the sequence u%’” =

Pi(Tpn — Too) — 0 for n — oo we find another sequence 0 # uS° — 0 with {uf /uS°
n € N} bounded for each k (See [Kril4, 2.1.6]). Then A, := 1/ug° has the required
property. O

2.3 Corollary (See [MV92, 23.23 p.253], [Krild, 4.1.11], [Kril4, 1.2.1] ).
Fréchet spaces are ultrabornological, hence bornological, barrelled and infrabarrelled.

Proof. Metrizable les are bornological (See [Kril4, 2.1.7], [MV92, 24.13 p.264)),
since any bounded linear mapping f on them is (sequentially) continuous: Let z,, —
Zoo, then bythere are A, — co withn — f(A, (2, —2x)) = A (f(zn)— f(20))
bounded, hence f(x,) = f(2s). Completeness implies now that the space is even
ultrabornological. O

2.4 Colimits.

Let F : J — les be a functor from a partially ordered set (J, )P = (J, <) or even
from a small category J into that of locally convex spaces. The COLIMIT colim F
of F (See [Kri08, 3.25]) is then given as quotient of the COPRODUCT (DIRECT SUM,
cf. [Kril4, 3.6.1])

H.F(j) = {x € H]:(j) :x; = 0 for all but finitely many j}
J J

with the final locally convex structure with respect to the inclusions E; — [ iF ()
(whose continuous seminorms are those which restricted to each summand F(j)
are seminorms of F(j)), where we factor out the congruence relation generated
29~ (F(f)(2)U) for every j < j/ (morphism f : j — j/ in J), where ()
denotes the point with j-th coordinate x € F(j) and all other coordinates equal to
0. Since the topology on this quotient need not be Hausdorff, one has to factor out
the closure of {0} in addition, i.e. the intersection of the kernels of all its seminorms.

In the particular case, where J°P = (J,>) is directed, the first (not necessarily
Hausdorff) quotient is given by | |; F(j)/ ~, where z1 € F(j1) is equivalent to
x9 € F(j2) iff for some j > j1,72: F(j1 < j§)(x1) = F(j2 < 7)(x2). In this case the
colimit is also called INDUCTIVE LIMIT (See [Jar81, 4.5 p.82]) and denoted limg 7.

An inductive limits is called REDUCED, iff all ¢; : F(j) — lig]: are injective.
By replacing F(j) with the image .7:'(]) of ¢; in li_ng]: supplied with its quotient
structure, we get that @f equals %nf , which is a reduced inductive limit (See

[Jar81, 4.5.2 p.82]). Note for this that F(j < j/) is then a well defined injective
continuous linear mapping.

An even more restricted situation is, when J = (N, <), i.e. we have an inductive
limit of a sequence of spaces (the STEPS of the limit). The inductive limit of a
sequence of Fréchet-spaces (a so-called (LF)-SPACE) is almost never a Fréchet space
(See [Kril4, 4.1.13]): STRICT INDUCTIVE LIMITS of sequences (i.e. E, is a closed
topological subspace in F,,;1 for each n), which are not finally constant, can not
be Baire spaces and hence are not Fréchet; And, more generally, by [Jar81, 12.4.4
p-259] a metrizable space with a countable base of bornology has to be normed, in
particular this is valid for (locally) complete (LB)-SPACES (See [Flo73, 5.5 p.73]),
i.e. inductive limits of a sequence of Banach spaces. Even more generally, if all F,
and Fl 1= h_n}n F,, (hence Foo = (J,,cp tn(Fn)) are Fréchet, then by Grothendieck’s
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factorization theorem Fy C i1n(F,) for some n.

Furthermore, it is not true in general that (LB)-spaces are complete and REGULAR
(See [Mak63, Beispiel 2]), i.e. bounded sets are contained and bounded in some
step, or, stronger, converging sequences (resp. compact subsets) are converging
(resp. compact) in some step.

2.5 Stability under colimits.

Colimits of bornological spaces E; are again bornological (See [Jar81, 13.1.5 p.273],
[MV92, 24.16 p.264]), since bounded linear mappings on colim; E; are bounded
mappings on each E; and hence continuous on Ej;, and by the universal property

of the limit also continuous on colim; ;.

By definition any bornological space E is the inductive limit of the spaces Ep,
where B runs through the bounded (closed) absolutely convex subsets. Thus the
bornological spaces are exactly the colimits of normed spaces.

The same argument works for ultrabornological instead of bornological, since the
continuous images f(B) of Banach disks B are again Banach disks: Ep — Fy(p) is
a quotient mapping, since

pr)(f(x)) =inf{A>0: f(z) € A- f(B) = f(AB), i.e. b€ B: f(z — Ab) =0}
:inf{)\>0:3b€BE|zEkerf:)\b—x:z}
:inf{)\>0:326kerf3b€B:x+z=)\b}
—inf{inf{A>0:3b € Bix+z=Ab}:z€kerf}
—inf{pp(+2) : 2 € ker £} = P (f())

is the quotient norm (See [Krild, 4.3.6]).

Furthermore, (infra-)barrelled spaces are stable under colimits (See [Jar81, 11.3.1.c
p.223]): For quotients this follows since inverse images of barrels are barrels and of
bornivorous sets are bornivorous. For coproducts it can be found in [Jar81, 8.8.10
p.168]

2.6 Grothendiecks factorization theorem (See [MV92, 24.33 p.271]).

Let F be an lcs, let E and E,, for n € N be Fréchet spaces, fn, € L(E,,F) and
J € L(E, F) continuous linear mappings. If f(E) C U, cn fn(En) then there exists
an m € N with f(E) C fn.(En). If, in addition, f,, is injective, then there exists
an f € L(E, Ep,) with f = fmo f.

Y IEN

ElElm W fm (Em)

Proof. Let G, := {(z,y) € E x E,, : f(x) = fu(y)} = graph(f, ! o f) be the
pull-back of f and f,, a closed linear subspace of the Fréchet space E x E,. Then
pri(Gn) ={z € E: 3y : f(z) = fuly)} = fﬁl(fn(En)) and hence Un pry(Gn) =
YU, fn(E,)) = E. By the theorem of Baire (see [Kril4, 4.1.11]), there exists
an m such that pry(G,,) is not meagre, hence by the open mapping theorem (see
[Kril4, 4.3.6]) pr; : Gy, — E is onto, i.e. f(E) = f(f 1 (fim(Em))) C fi(Em).
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2.10 BARRELLED AND BORNOLOGICAL SPACES

If, in addition, f,, is injective, then f := falof: E— E, is a well-defined linear
mapping with closed graph G,,, hence is continuous by the closed graph theorem
(see [Krild, 4.3.1]). O

2.7 Lemma (See [MV92, 24.34 p.272]).

Let an lcs E carry the final structure with respect to countable many continuous
linear mappings fn : E, — E for Fréchet spaces E,, with \J,, fn(En) = E.

Then E is the (reduced) inductive limit of a sequence of Fréchet spaces.

Proof. We construct a strictly increasing sequence (ny ), in Nwith U, ,,, f;(£;) C
frwpr (Enyy, ). For the Fréchet space I := [[,.,, E; consider the continuous linear
map f 1 (2;)j<n, = 2j<n, fi(z;), F— E. By there exists an nyy1 such that
Ujgnk fj(Ej) = f(F) - fnk+1(Enk+1)' Let Ey := Enk/kerfnk — fnk(Enk) — E.
The mapping E; — Ek+1 for 7 < ny has closed graph, hence is continuous by the
closed graph theorem, and thus also Ek — E~’k+1. The inductive limit structure on

E of the increasing sequence of Fréchet spaces E, is finer than the given one since
E}, — E is continuous. Because of f;(E;) C E,, for j < ny it is also coarser. [

Jj<n

2.8 Corollary. All representations of an (LF) space are equivalent
(See [MV92, 24.35 p.273)).

Let E be the reduced inductive limit of two sequences of Fréchet spaces (E,(f))neN
for i € {0,1}. Then ¥n € N 3k € N : EY) embeds continuously into E,(Cl) (and
similarly Ey(Ll) into E,io)). O

2.9 Elements in A®°(A) (See [MV92, 27.4 p.308]).

1. be AX*®(A) & Va € A3C, > 0: |bj| <infoca Co/ay.
2. If A is countable, then 3b € A>*°(A)Vj : b; > 0.
3. If A is countable, then Vb € \*°(A) b € X>(A) Vj : 0 # b, > |b;].

Proof. () be X*(A) & Va: b-a bounded (by C, > 0), ie. Vj: |bj| < Cp/a; &
V] |b]| < il’lfa Ca/aj.

() Let A := {a™ : k € N} with k — a®) increasing. For each k € N choose
Oy, > kmax{1,a$",....a”}. = Cp/al?) > kforall k > j. = b; := inf, Cp/al”) =
ming Ck/aék) >0and be A*(A).

() By () there is a b’ € A*°(A) with b; > 0 forall j. For b € A*(A) also
b i j = max{|b;],b;} is in A>°(A) and satisfies b > [b| and Vj : b7 >0, >0. O

2.10 Bounded sets in AP(A) (See [MV92, 27.5,27.6 p.309]).

For 1 <p < oo the sets By := {x: ||x/b|ler <1} for b€ A°(A) form a basis of the
bornology of NP(A) if p= oo or if A is countable.

The sets By := By° Nco(A) for b € A>°(A) form a basis of the bornology of co(A).

Proof. b € A*(A) = B} C A\P(A) bounded, since z € B} = carrxz C carrb and
Vo€ A lolla =z aller = o+ 35 alle < J2/Bler - 10 alloo <1+ - allo.

Conversely, let B C A*°(A) be bounded, i.e. Va € A3C, > 0Vx € B: ||z-aljso < C,.
Let b; :== inf{% ta € A}, which is < oo, since a; > 0 for some a. Then b € A*°(A4),
since |bj a;| < C, for all @ € A and j € N. Furthermore, since |z; g—i| < 1 for all
a € Aand j € N, we get |z; %| = Supgeq |75 - < 1, de [z gl < 1 for all
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T € B.
Since ¢(A) is a subspace of A>°(A), this works for ¢y(A) as well.

Now for 1 < p < oo and A = {a®) : k € N} countable: Let B C A\P(A) be bounded,
2.9.1
ie. VEIC, > 0Vz € B: ||z|r < Ck b= infy, 2Ft1Cy /aF) € X2 (A).
o o

bj Sup 2k+10k — Z 2k+10k

[[za™]|¢» [E41F3 1
Z 2k+10k — Z 2k+1ck < Z ok+1 1
k k

)
$(l
e/l < |32 g |,

=z € By, 1.e.B§Bi’. O

2.11 Counter-example.

Let A:= (P for 1 <p < oo. Then A*(A) :={z € KN :Vy € P : ||z - y||p < 00} is
the linear space £°:

(D) z et ye = o ylo < 2o -yl

(C) Suppose © € A*°(A) is unbounded = Fj,, (W.l.o.g. strictly increasing) with

27" for j = j,
yj = X .

0 otherwise
Then [lyller < |yl = 32, 5 < 00, but ||z yllew > |25, yj,| > 1, ie. z ¢ AP°(A).
Note that A"(A) = £°° as linear spaces for all p < r < co:
020 CAP(A) C A" (A) CA®(A) = £, since [ - yller < |zl - [[yler-
Now let sg := 0 and recursively s,+1 := s, +n and put
(n) . 1 for Sp < ,7 < Sp+1

0 otherwise

and B := {z(™ : n € N}. Then B is bounded in \P(A), since
i 1/p
le™ e = (D i) " < lyler-
J=sn
However, there is no b € A°(A) = (> such that ||z - |l < 1 for all z € B:
In fact, let 5 :=||b||g== < 0o then

1
(. 1
H‘T b

[, 1 ?
ZP2||x”||ng:——>oo.

2.12 AP(A) as colimit of (uncountable many) ¢P’s for countable A
(See [MV92, 27.7 p.309)).
There exists a basis B for the bornology of AP(A) with A\P(A)p = (P for all B € B.

Wb € A(A) : £P(carrb) =L+ (BY) = (AP(A)) gy C NP(A)

Proof. = Vb € A®(A) 3’ € A®(A) Vj: 0 # b, > |bj| = BY C Bl and
N (A) g, =~ . O
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3. Limit closed (reflective) subcategories

In the following sections we consider classes of locally convex spaces which are
invariant under the formation of limits, i.e. various completeness conditions, semi-
reflexivity, Montel spaces, Schwartz spaces, and nuclear spaces. And we characterize
those Kéthe sequence spaces having these properties.

Completeness, compactness and (DN)

In this section we consider various completness conditions. And we discuss (pre-)com-
pact subsets and operators, since they are relevant for the classes to follow. We
introduce the property (DN) which allows to differentiate between power series
spaces of finite and of infinite type.

3.1 Completeness.
For lcs E we consider the following completeness conditions:

E is called cOMPLETE iff evevry Cauchy net (or Cauchy filter) converges.

FE is called QUASI COMPLETE iff every closed bounded subset is complete.
F is called SEQUENTIALLY COMPLETE iff Cauchy sequences converge.

E is called LOCALLY COMPLETE (or MACKEY-COMPLETE) iff Ep is a Banach
space for every closed absolutely convex bounded subset B C E.

One obviously has the implications:
complete = quasi-complete = sequentially complete = locally complete.

For metrizable spaces all 4 conditions are equivalent (See [Kril4, 2.2.2]). Each
of these completeness properties is inherited by closed subspaces ([Krild, 3.1.4]),
products ([Kril4, 3.2.1]), and coproducts ([Kril4, 3.6.1]) (See [Jar81, 3.2.5 p.59],
[Jar81, 3.2.6 p.59], [Jar81, 6.6.7 p.111]).

The completion (i.e. reflector) of any lcs FE is given by the space of all linear func-
tionals on E*, whose restrictions to equicontinuous subsets are o( E*, E)-continuous,
supplied with the topology of uniform convergence on the equicontinuous subsets,
see [Kril4, 5.5.7].

3.2 Precompact sets.
A subset K C E in an lcs is called PRECOMPACT iff

YUIF C E finite: K C F+U = | J(y+U).
yeF

This is exactly the case, when K is relatively compact in the completion of F
(See [Kri0T7a, 6.2]). The precompact subsets of a product of les’s are those whose
projections to the factors are precompact; The precompact subsets of a coproduct
of lcs’s are those whose projections to the summands are precompact and are almost
always {0} (See [Kri07a, 6.3]).
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3.3 Mackey-Arens Theorem

(See [Krild, 5.1.15], [Jar81, 8.5.5 p.158], [MV92, 23.8 p.247]).

The finest topology compatible with a dual pairing (E, F) is the Mackey-topology
w(E,F), i.e. the topology of uniform convergence on o(F,E)-compact absolutely
convex subsets of F.

3.4 Alaoglu-Bourbaki Theorem

(See [Krild, 5.4.12], [Jar81, 8.5.2 p.157], [MV92, 23.5 p.245)).

FEach equicontinuous set is relatively compact with respect to 7,.(E*, E), the topol-
ogy of uniform convergence on precompact subsets, or equivalently, with respect to

o(E*, E).

Proof of the equivalence (See [Jar81, 8.5.1.b p.156]). Let U C E be a 0-
neighborhood, z* € U°, and A C F be precompact, i.e. z* + A° a typical neigh-
borhood of z* with respect to 7,c(E*, E). Thus there is a finite set ' C E with
3A C F+U, hence (z*+ F°)NU° C x*+ A°, since for all y* € U with y* —2* € F°
and a € A exist y € F and v € U with 3a = y 4+ u and hence

"~ )@ = 5|~ )+ w)] < 5 (167 - )@+ @]+ =)
S%(1+1+1):1, ie.y"—z" €A% O

3.5 Proposition (See [Jar81, 8.5.3 p.157]).
E separable = equicontinuous subsets are o(E*, E)-metrizable.

Proof. Let D := {z; : j € N} C E be dense and let Ey be the linear span of
D. Then o(E*, Ey) is Hausdorff. Let W be a 0-nbhd. for o(E*, Ey), i.e. Jy; =
Z;’;l )\;xj € Ey with )\j = 0 for almost all j, say j < m, and {y1,...,yn}° C W.
For max{}";|Xi| : i} < XA € Q we have § - {1,...,2m}° C {y1,...,yn}> C W.
Thus o(E*, Ey) is metrizable and coincides with o(E*, E) on equicontinuous sets:
In fact, Eg C F = o(E*,E) — o(E*, Ep) is continuous. Conversely, let U be a
0-nbhd in £, z* € U°, ¢ > 0, and x; € E. Choose ¥; € Ey with &; —2; € §U. For
y*eU°N(z* + 5{Z1,...,Tx}°) we have:

(Y™ = a™)(@)| < |y" (2 — )| + |2 (2 — ) + [(y" —27)(T:)] < 3;

ile.y*eUnN (z* +e{z1,...,21}°). -

3.6 Lemma. Compact subsets of Fréchet spaces

(See [Kri07b, 6.4.3 p.119], [Jar81, 10.1.1 p.196]).

A subset of a Fréchet space is precompact (equivalently, relatively compact) if and
only if it is contained in the closed convex hull of some 0-sequence.

3.7 Definition. Compact operator.
A linear operator between Banach spaces is called (WEAKLY) COMPACT if the image
of the unit ball is (weakly) relatively compact.

A linear operator between Hilbert spaces is compact iff it can be approximated by
finite dimensional operators with respect to the operator norm, see [Kri07b, 6.4.8].

3.8 Lemma. Orthogonal representation of compact operators

(See [Kri07a, 5.3], [Jar81, 20.1.2 p.452]).

An operator T between Hilbert spaces is compact iff there are orthonormal sequences
en and fn and A, — 0 such that Tx =) Ap(en, ) fn.
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Proof. (<) If T has such a representation, then the finite sums define finite
dimensional operators which converge to 7.

(=) Since any compact T : E — F induces a compact injective operator T :

(ker T)t — T(E) with dense image, we may assume that 7" is injective. Now we
consider the positive compact operator T*T'. Its eigenvalues are all non-zero, since
T*Tx = 0 implies | Tz||? = (T'z,Tx) = (T*Tx,z) = 0. By [Kri07b, 6.5.4] there is
an orthonormal sequences of Eigen-vectors e, with Eigen-value 0 # A2 — 0 such
that T*Txz = > A2 (e,,z)e,. Let f, := ﬁTen. Then a simple direct calculation
shows that the f,, are orthonormal. Note that z = ) (e,,z)e,. Otherwise the
compact positive operator T*T restricted to the orthogonal complement {ej : k}+
would have a unit Eigen-vector e with positive Eigen-value A. Which is impossible
by definition of the e,. So we obtain Tz = " (en, )\ frn-

Another way to prove this is to use the polar decomposition T' = U |T|, see [Kril4,
7.24], where U is a partial isometry and |T'| a positive and also compact operator.
The spectral theorem for |T'| gives an orthonormal family e, and A € ¢y, such
that T = >, A\i(ex, x)er. Applying U to this equation, shows that we may take
fk = Uek. O]

3.9 Corollary (See [Kri07a, 5.1], [Jar81, 20.1.3 p.453]).
An operator T between Hilbert spaces is compact iff (Tep, frn) — 0 holds for all
orthonormal sequences e, and fy,.

Proof. (=) Since |(Ten, fn) < [|Ten| - ||fnll = || Texn| it is enough to show that
Te, — 0. Since e, converges weakly to 0 (in fact (x,e,) is even quadratic sum-
mable) we conclude that Te, converges to 0 weakly. Since e,, is contained in the
unit-ball and T is compact, every subsequence of T'e,, has a subsequence, which is
convergent. And the limit has to be 0, since this is true for the weak topology. But
from this it easily follows that Te,, — 0.

(<) Given € > 0 we choose maximal orthonormal sequences (e;);er and (f;);er such
that |(Te;, f;}| > €. By assumption I must be finite. We consider the orthonormal
projections P := ), ;e; ®e; and Q := Y ., fi ® fi. For the composition with
the ortho-projections on the complement we obtain (1 - Q)T'(1—P) =T — (TP +
QT — QTP)=:T — S. Hence S is a finite dimensional operator and we claim that
IT—S|| <e. Suppose this were not true. Then there is an x with ||(T—S)z| > € ||z]|
and hence an y such that [(T'(1 — P)xz, (1 - Q)y)| = |{(T — S)x,y)| > ||z ||ly|l. Let
eo := (1= P)z and fy := (1 —Q)y. Obviously ey, fo # 0 and hence we may assume
without loss of generality that ||eg]| = 1 = ||fo]| and hence ||z] > 1 and ||y|| > 1.
Sinceeg € (1-P)(E) C P(E)t ={e;:ie I}t and fo€ (1-Q)(F) C{f;:i eI}t
we get a contradiction to the maximality of I. O

3.10 Compact diagonal operators between £P’s (See [MV92, 27.8 p.309]).
Let £ := 0P with 1 < p < 00 or cg C £ C £ invariant under multiplication with £°°.
Let D : ¢ — { be a diagonal-operator with coeffcients d € £°°.

(1) D is compact
< (2) dec
& (3) D is weakly-compact in case { = {1,

Proof. (:>) Let

. f 1>
T 00, To(x), = {xg/dj or |d;] > e,

0 elsewhere.
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= P.:= Do T, is a compact projection = P.(¢{) =ker(l — P.) ={x € £: carrz C
{j :|d;| > €}} is finite dimensional (by [Kril4, 3.4.5]) = {j : |d;| > £} is finite.

(:) P,:x =z -x,.n = [|D—Do P, <sup{|d;|: j > n} — 0, since
d € cg, i.e. D is compact as limit of fin.dim. operators.

(é) is trivial

(:>) P. := D o T, is weakly-compact. Suppose {j : |d;| > €} infinite =
(¢) = ¢! and the closed unit disk in ¢! is weakly compact = ¢! reflexive (see
3.17]), a contradiction. O

o0

3.11 Approximation numbers for diagonal operators on £2.
Let D : €2 — (2 be a diagonal-operator with coefficients d € £>° with |d;| \, 0. Then
its APPROXIMATION NUMBERS are

an(D) = inf{||D —T| : dimT(¢?) < n} =d,.

Proof (See [MV92, Aufgabe 16.(3) p.392]). Note that || D|| = ||d|lee = sup{|d;| :
i € N} since ||D(z)|| = ||d - x|z < ||d|le= - |||z and D(e®)) = dj, ).

Thus a,(D) < ||Dy,|| = sup{|d| : ¥ > n}, where D,, is the diagonal operator with
entries d - X[n,00) With dim((D — D,,)(¢?)) = n. Conversely, let dimT'(¢%) < n. Then
Sy = Sy yies with [yl = 1 and T(y) = 0. Thus |D — Tl > (D — Tyl =
IDylle = (327 Idigsl)/? > min{|di| : i < n} |yl = |dul. H

3.12 Proposition. Equality A.(a) = A.(8) (See [MV92, 29.1 p.338]).
Forr € {0,400} let A, := N2

(1) Ar(a) = An(B);
< (2) Ar(@) = A (B) as les;
< (3) Ar(@) = A\ (B) as sets;
< (4) 3C >0 3Ing € NVn > ng: %an < Bn < Ca,.

Proof. (4 = 3) is obvious.

(3 = 2) apply the closed graph theorem using that convergence in A, implies
coordinatewise convergence.

(2 = 1) is obvious.
(1 = 4) Let A := A(a)s := Ap(e0)/ ker ||||s for s < r.
A\ (o) = A\ (B) iso, B:= A7 =
=Vt<rds<r3C>0:|Az|: < C|z|s,
Vs<s' <r3t<t' <r3D>0:|Byls <Dyl
=3A e LAY AD), Be L(AD,A%) i = Ao o B: A} — A% — A% — AP
=® compact by and a, (f') = 10, (15) = el )on by .
Obviously a,, () ) < | Aflan ()| B]| cf.

s s log([|AJlll BII)
=p, < Cay,, + D for C = m, D = W
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)

A (B) —Z= M) =2 0 (8
"B/ / .~ \ 48 \

A8 > A2, A AP
Lt

3.13 Definition. Dominating norm (DN).
Let ||-||x be a monotone increasing basis of seminorms for the Fréchet space E.
Then FE is said to have property (DN) iff

g Vp 3’ 3C Yz« ||zl < Cllallgllzlly

It follows that ||-||4 is a norm, a so-called dominating norm.

3.14 Inheritance properties of (DN) (See [MV92, 29.2 p.339]).

1. (DN) is topological invariant.
2. (DN) is inherited by closed subspaces.
3. Aoo(@) has (DN).

Proof. () and () are obvious.

() For tg < t1 < tg let p := i;:i‘l’, q = Z‘:ig, fe == (et |z1)?/P and g =

Hold 2 2
(et20v g )21 FEE (falli,)? = 1f gl < 2771212 = (l2lle)? < llzllollall2s-

3.15 Corollary (See [MV92, 29.3 p.339]).
Ao(@) Z Aso(B) for all o, B 7 o0.

Proof. By Aoo(B) has (DN). Indirectly, suppose Ag(a) has (DN), i.e.
37 <0Vt < 03T <03C > 0: ||z)|? < Clz|l.|z|r

zi=e; = e < Cem T < Ce™ = 2t < LIn(C) + 7, limj a; = 00 =
"]
t < 7, a contradiction. O

Reflexive spaces

3.16 Definition. Reflexive spaces.

An lcs is called SEMI-REFLEXIVE iff the canonical mapping ¢ : E — E** is onto.
An lcs is called REFLEXIVE iff the canonical mapping 6 : £ — E** is an isomorphism
of les (See [MV92, Def. nach 23.17 p.251], [Kril4, 5.4.21], [Jar81, 11.4 p.227]).

Reflexive spaces are stable under products, coproduct and regular reduced inductive
limits. Semi-reflexive space are in addition stable under closed subspaces (See
[Jar81, 11.4.5 p.228]).

3.17 Characterizing semi-reflexivity
(See [MV92, 23.18 p.251], [Krild, 5.4.22], [Jar81, 11.4.1 p.227]).
An lcs is semi-reflexive iff every bounded subset is relatively weakly compact.
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Corollary (See [Jar81, 11.4.6 p.229]).
Semi-reflexive spaces are quasi-complete.

Proof. Let (z;) be a Cauchy-net in a closed bounded B C E. Then (z;) is Cauchy
for the weak topology and since B is weakly compact (z;) converges weakly to some
ZToo- Let U be a closed absolutely convex 0-neighborhood. Thus z; —x; € U finally,
and since U is also weakly-closed ([Kril4, 5.4.8]) x; — 2o € U finally. O

3.18 Characterizing reflexivity
(See [MV92, 23.22 p.253], [Kril4, 5.4.23]), [Jar81, 11.4.2 p.228].
An les is reflexive iff it is semi-reflexive and (infra-)barrelled.

3.19 Corollary. Characterizing reflexive Fréchet spaces
(See [MV92, 23.24 p.253)).
A Fréchet space is reflexive iff every bounded subset is weakly relatively compact.

Proof. Since every (F) space is (infra-)barrelled by the result follows from

[3.18] 0

3.20 AP(A) ist reflexive for 1 < p < oo (See [MV92, 27.3 p.307]).

)]

Proof. /P reflexive AP reflexive. O

Montel spaces

3.21 Definition. Montel spaces.
An Ics is called SEMI-MONTEL SPACE (See [MV92, Def. in 24.23 p.267], [Kri07a,
4.47,4.48 p.104]) iff all its bounded subsets are relatively compact.

An Ics is called MONTEL SPACE (denoted (M) for short) (See [MV92, Def. in 24.23
p.267], [KriOTa, 4.47,4.48 p.104]) iff it is semi-Montel and infra-barrelled.

3.22 Montel spaces are reflexiv

(See [MV92, 24.24 p.267], [Jar81, 11.5.1 p.230]).

(Semi- ) Montel spaces E are (semi-)reflexive and their o(E, E*)-convergent sequences
are convergent.

Proof. By definition bounded sets in semi-Montel spaces F are relatively compact
hence also relatively compact for the weak topology. Thus E is semi-reflexive by
. Since Montel spaces are infra-barrelled by definition, they are reflexive and
barrelled by . Weakly convergent sequences are bounded, hence are relatively
compact for semi-Montel spaces, so the weak topology coincides with the given one
on this closure. O

3.23 Inheritance properties of Montel spaces (See [Jar81, 11.5.4 p.230]).
Obviously closed subspaces, products and coproducts of semi-Montel spaces are
semi-Montel. Since barrelledness is inherited by products and coproducts (see )
the same is true for the Montel property. The only normable (Semi-)Montel spaces
are the finite dimensional ones, see [Kril4, 3.4.5].

3.24 Proposition (See [Jar81, 9.3.7 p.179]).
v(E*,E) = 1.(E*,F), where v(E*, E) is the finest locally convexr topology on
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E* = E* into which all polars U°® for 0-nbhds U in E (or the completion E) with
their compact topology continuously embed and 7.(E*, E) is the topology of uniform
convergence on compact subsets of the completion E.

Proof. Since for O-nbhds U in E (or E) the polar U° is o(E*, E) compact and
even Ty (E*, E) = 7.(E*, E) compact by , we have v > 7.(E*, E) > o(E*, E).
By Grothendieck’s completion result (See [Kril4, 5.5.7]) E = (E*,~)*, hence v
is compatible with the duality (E*, E), i.e. coincides with the topology of uniform
convergence on the closed equicontinuous subsets in (E*,7)* = E (see [Kril4,
5.4.11]). Let C be set of these subsets. All of them are compact for Ty (E, (E*,7))
by . The identity (E,m,c(E,(E*,7))) — E is continuous, since E carries
the topology of uniform convergence on the equicontinuous subsets (polars U°) in

E* = E* and polars U? are y-compact by definition. Thus the sets in C are compact
in E. Hence 7.(E*, E) > ~. O

3.25 Proposition (See [Jar81, 11.5.2 p.230]).
Semi-Montel < quasi-complete and equicontinuous subsets are relatively 5(E*, E)-
compact.

Proof. (=) semi-Montel = quasi-complete, S(E*, E) = mc(E*, E) = equicontin-
uous sets are relatively S(E*, E)-compact by the Aladglu-Bourbaki Theorem .

(<) By and assumption we have 7.(E*, E) = y(E*, E) > B(E*,E). Let o
(resp. ) denote the polarization with respect to the duality (E, E*) (resp. (E, E*))
then for each bounded B C F there exists a compact K C E with K*® C B°
and hence (K*)s DO (B°)e 2 B. Since the closed absolutely convex hull (K*®), of
(pre)compact sets K is precompact (see the proof of [Kri07b, 6.4.3]) also B is
precompact and by quasi-completeness relatively compact. O

3.26 Proposition (See [Jar81, 11.5.4.f p.230]).
Duals of (M)-spaces are (M).

Proof. E* semi-Montel: B C E* bounded = B equicontinuous by the uniform
boundedness theorem, since E is barrelled by = B relatively compact for

Tpc(E*, E) = B(E*, E) by the Aladglu-Bourbaki Theorem . Since duals of
reflexive spaces are reflexive they are (infra-)barrelled. O

3.27 Proposition (See [Jar81, 11.6.2 p.231]).
A Fréchet space is Montel ((FM) for short) iff it is separable and o(E*, E)-convergent
sequences are B(E*, E)-convergent.

Proof. (=) E (FM) = E* (M), by = o(E*, E)-convergent sequences are
convergent, by .

{Un : n € N} abs.convex, closed 0-nbhd. basis. We show that Ey, is separable,
otherwise 3¢ > 03A4; C U; uncountable with ¢y, (z—2') > e forall x # o’ € Ay. Us
is absorbing = Jks: Ay N kyUs uncountable = ... = Jk,, A,: A, C A1 Nk U,
uncountable. Choose z,, € A, \ Apt+1. Then B := {x,, : n € N} is bounded = B is
relatively compact = 3 converging subsequence (z,,);, a contradiction.

3.5
(<) U 0-nbhd U°is o(E*, E)-metrizable = (U°,0(E*, E)) — (E*, 3(E*, F))
is continuous = U° is B(E*, E)-compact = E semi-Montel, by . O
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3.28 Theorem of Dieudonné-Gommes characterizing Montel for AP(A)
(See [MV92, 27.9 p.310)).
Let A = {a™ :n € N} be countable. Then

(1) 31 < p < 0o: A(A) (M).
& (2) V1< p< oo A(A) (M)
< (3) A>(4) = co(A4)
& (4) A(A) is refleziv.
& (5) V1< p < oo: not 3 normed co-dim. top.-lin. subspace in \P(A)
& (6) Y infinite J C N ¥n 3k: infje;a(™ /o) =0

Proof. (4]=[3]) b € A>(4) W.lo.g. b; > 0 for all j B:={z:

3.17
||z/bllr < 1} is bounded in E := A\(A) B is weakly relatively compact in E
= Vk: 018 Eg — E — Ej, weakly compact. Define (for £ := (')
R:{—FEg, z—b-x,
S:E,— 0, [z]—x-a®, and

D:l—?l, z—b-a® .z

R and S are isometries (by and [1.13]), D= S0, 0B 0o R: £ — (' weakly

compact = limb - a®) =0, by |3.10.3 ], i.e. b € co(A).
(:>) By and we have to show that bounded sets B in AP(A) are

relatively compact. W.lo.g. B = BY with b € \>(A) by [2.10]. \>*(A) = ¢(A4) =
D from above (with £ := ¢ for p < oo and ¢ := ¢y for p = 00) is compact by
= Vk : 1), 018 compact = B relatively compact (cf. the proof of )

(:>) By Montel spaces are reflexive.

(1]=[3]) Asin (4]=]3]) let b € A\>(A) with b; > 0 for all j. Then the bounded
set B := {z : [|z/bller < 1} is relatively compact in E := A(A) by () =
Vk 1,08 1 Ep — E — Ej, x — [z], is compact, where ¢ := (P for p < oo
and ¢ := S(Ey) C £ for p = co. R and S are isometries (by ’2.12‘ and ’ 1.13 ‘),
D = Sou, 018 0R is compact = limb-a*) =0 by , ie. beco(A).

(:) trivial.

(:>) since normed Montel spaces are finite dimensional by ’ 3.23 ‘ and ’ 4.171 ‘

(#@) Suppose J C N, In Vm > n: infjc; agn)/agm) >0. = On Ey :={x €
AP(A) : carrz C J} the topology induced by |||, coincides with that of \P(A) =
E, finite dimensional by () = J finite.

(@:) Indirect, suppose 3b € A*®(A) \ co(A) = Vk 3C, > 0 Vj: |bj|a§-k) < Oy
and 3n 3 infinite J C N 3e > 0Vj € J: [b;|al"” > e. = Vje J: ol < C/ly| <
Cka§")/5, ie. inf{aE")/agk) :j € J} > ¢/Cy, a contradiction. O
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Schwartz spaces

3.29 Definition. Schwartz spaces.

An les E is called SCHWARTZ SPACE ((S) for short)(See [MV92, Def. in 24.16
p-265], [Kri07a, 6.4],[Jar81, 10.4 p.201]) iff for each absolutely convex 0-neighborhood
U there exists a 0-neighborhood V C U such that L‘J : By — Ey is precompact,
i.e. for each € > 0 exists a finite subset F'={z1,...,2,} CV with V C F+¢eU =

Uj(l‘j +el).

3.30 Lemma (See [MV92, 24.17 p.265], [Kri07a, 6.7], [Jar81, 17.1.7 p.370]).
An les is Schwartz iff for every continuous linear T : E — F into a normed space
F there exists a 0-neighborhood in E with precompact image in F.

Proof. (<) For absolutely convex 0-neighborhoods U consider ¢y : E — Ey. By
assumption there exists a 0-neighborhood V such that ¢iy(V) C Ey is precompact.
(=) The set U := T '({z € F : ||z < 1}) is an ab- T
E——>F
solutely convex 0-neighborhood, hence there exists a V A
such that LE : By — Ey is precompact, so the image Lvi k\ T

T(V) = T(};(ty(V))) is precompact, where T is the con-

tinuous factorization of T over vy : E — Ey. O By v Eu

U

3.31 Quasi-complete Schwartz implies semi-Montel
(See [MV92, 24.19 p.265], [Jar81, 10.4.3 p.202]).
A Schwartz space is semi-Montel iff it is quasi-complete. (See [KriO7a, 6.6])

Proof. (<) Let B C E be bounded. For every U exists by definition a V' with
Ey — Ey precompact. In particular, 1y (B) is precompact in Ey (since V' absorbs
B) and hence relatively compact in the completion EE, see . Since E is com-
plete it is closed in [, Ey and hence B C HUW is by Tychonoffs theorem
relativelv compact in E, i.e. B C E is precompact. For the converse use . O

3.32 Inheritance properties of Schwartz spaces

(See [Kri07a, 6.21], [Jar81, 21.1.7 p.481], resp. [Jar81, 21.2.3 p.483]).

Closed subspaces, products, quotients, and countable coproducts of Schwartz spaces
are Schwartz. This will be shown jointly for nuclear spaces in .

3.33 Proposition. (See [Jar81, 10.4.1 p.201], [MV92, 24.22 p.267]).
An les E is Schwartz < YU IV C U : U° C Ey,., compact, i.e. Efjo — Ef. 5 a
compact operator.

Proof. Let U and V be absolutely convex 0-nbhds with V' C U.

U° C Efo = (BEv)* is (pre)compact;

& () = is me((Er)*, Ev)-B((Ev)*, Ev))-continuous;
(<) U° is 7pe((Ey)*, Ey)-compact by the Alaoglu-Bourbaki theorem ,
hence its image in (Ev)* is S((Ev)*, By )-compact.
(=) Since ()* is o((Ev)*, Ev)-0((Ev)*, Ey)-continuous and on U° the
topologies Tpc((Ey)*, Ey) and o((Ey)*, Ey) coincide by and similarly
on its image (1};)*(U°) the topologies 8((Ev)*, Ev) and o((Ev)*, Ey) coin-
cide by assumption.

& JA C Ey precompact: (1)7)*(A®) C wy (V)2 ie. (y)*(A®) C V°, where o
denotes the polar with respect to (Ef., Evu);
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< 3JA C Ey precompact: 1y (V) C (A®),, see [Jar81, 8.6.2.b p.161];
< 1y (V) C Ey precompact, by the bipolar theorem. O

3.34 Proposition (See [Jar81, 11.6.3 p.232]).

A Fréchet space is Schwartz space ((FS) for short) iff it is separable and o(E*, E)-
convergent sequences are equicontinuously convergent, i.e. uniformly convergent on
some 0-neighborhood V', or, with other words, convergent in the normed space Ey;,.

Proof. (=) (FS) = (M) = separable, by ’ 3.31 ‘, ’2.3 ‘, and ’ 3.27 ‘

Let (un) be o(E*, E)-convergent = U := {u, : n € N}, C E is a barrel, hence a
0-nbhd = 3V 0-nbhd. with ({u, : n € N},)° compact in Ef, = (Ey)*, by
= u, converges equicontinuously.

(<) Let U 0-nbhd. and U D Uy, D Ug41 be a 0-nbhd. basis. By we have
to show 3k : U° C E,*J;; is compact. Since U° is o(FE*, E)-metrizable, by , it
suffices to show that there exists some k such that U(E* E)-converging sequences
in U? converge in Fy := Epjo. Otherwise, VE 3(uk),, convergent in U (towards

0) but not convergent in Fy, for n — oco. Let By 2 By 2 ... be a countable 0-
nbhd. basis for the metrlzable topology U(E ,E)on U°. Let m,, = min{m : u¥ €
B, Yk < nVi > m}, then um RT3 u? € B,. These

mn+1,...,umn+1,... -
blocks together give a weak 0O-sequence (u,) in U°, not convergent in Fj, (i.e. not
equicontinuously convergent), since (uf),,~m, is a subsequence, a contradiction. []

3.35 Theorem. Characterizing Schwartz for A\P(A)
(See [MV92, 27.10 p.312)).
Let A = {a® : k € N} be countable.

(1) 31 < p<oor AP(A) (S)
& (2) V1< p<oo: AP(A) (S)
& (3) Yk 3m > ks limy e al /al™ = 0.

Proof. Let E = XP(A) for 1 < p < o0, B = P(ay) for 1 < p < oo (cf. ),
w.l.o.g. carrax = N. For m > k define

D:xzw—x- ag/ay, £ —1F

A=z -y, E,—/F
Am is 150metry and D = Ay o:F o AL TIf p = oo replace (P by £ := A, (E,,).
:> = Vk Im > k: * : E,, — E) compact = D = A 01F o Al compact

lim a(®) /a(™) = 0.

3.10

(:>) Let 1 < p < oo. Vk Im > k satisfying () ——= D = A0k 0 AL
compact = Lfn compact = ()

(:>) trivial. O

3.36 Example of (FM), but not Schwartz (See [MV92, 27.21 p.319]).

A= {a® : k € N} with al*) := {;’j’)k ;Z:j ;Z = X(A) is (F), (M), not (S)

Proof. m >k, j >m = a / (m) = (k/m)’ g AP(A) not Schwartz.
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Let I C N?, n fixed. Vk > n: inf(; jyer agz)/az(-’kj) =:g, > 0.
Claim: [ is finite:
k=n+1l,7>2n+1=

J
(n) ; (n+1) _ n
Ent1 < a; ; /am = (n 1)

= Jjo: ICNx{1,...,jo} Let 1 <j < jo, k> max{j,n}, (i,j) €l =

a(n‘)/al(‘,kj) = )L _ ntin—k  for j < n(< k)

1,3 (ki)F — &k
ek <
n k nd .
ag’j)/ag,j) = GiF for (k>)j>n

= IN(N x {j}) is finite.

AP(A) Montel (for all 1 < p < o00). O

Tensor products

In this section we introduce the projective tensor product as universal solution for
linearizing bilinear continuous maps and the injective tensor product as subspace
of te space of all bounded linear (or bilinear) operators. of locally convex spaces
in order to define nuclearity. Nuclear spaces are then deinied as those locally
convex spaces, where these to tensor product functors coincide. And we use these
tensor products to obtain descriptions for various types of vector valued summable
sequences.

3.37 Definition. Projective tensor product (See [Kri07a, 3.3 p.53]).

The ALGEBRAIC TENSOR PRODUCT E ® F' of two linear spaces F and F is the
universal solution for turning bilinear mappings into linear ones, i.e. there exists a
bilinear mapping ® : £ X F' - E ® F' such that

ExF-2sEoF

. 3!f linear
Vf bilinear v

VG

The linear space E ® F can be obtained as subspace of L(E, F;K)* (the dual of
the bilinear forms) generated by the image of ® : Ex F - E® F C L(E, F;K)*
given by (z,y) = ev(, ) (See [Kri07a, 3.1 p.50]).

For locally convex spaces the solution of the corresponding universal problem for
(bi)linear continuous mappings is called PROJECTIVE TENSOR PRODUCT E ®, F,
it is the linear spaces E ® F supplied with the finest locally convex topology for
which ® : F x F — F ® F is continuous. This topology exists since the union of
locally convex topologies is locally convex and E x F' — E® F' is continuous for the
weak topology on F ® F' generated by those linear functionals which correspond
to continuous bi-linear functionals on £ x F. It has the universal property, since
the inverse image of a locally convex topology under a linear mapping 7" is again a
locally convex topology, such that ® is continuous, provided the associated bilinear
mapping 7' is continuous.

The space E ®, F' is Hausdorff, since the set E* x F* separates points in £ ® F":
Let 0 # z = >, or ® yr be given. By replacing linear dependent zj;, by the
corresponding linear combinations and using bilinearity of ®, we may assume that
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the zj, are linearly independent. Now choose z* € E* and y* € F* be such that
x*(x) = 01, and y*(y1) = 1. Then (z* @ y*)(z) =1 #0.

We denote the SPACE OF CONTINUOUS LINEAR MAPPINGS from E to F by L(E, F),
and the SPACE OF CONTINUOUS MULTI-LINEAR MAPPINGS by L(F1,...,E,; F).

The COMPLETION of FE ®, F will be denoted E®,. F.

Since a bilinear mapping is continuous iff it is so at 0, a 0-neighborhood basis in
E®, F is given by all those absolutely convex sets, for which the inverse image under
® is a 0-neighborhood in ' x F'. A basis is thus given by the absolutely convex hulls
denoted U ® V of the images of U x V under ®, where U resp. V runs through a
0-neighborhood basis of E resp. F. We only have to show that these sets U® V are
absorbing (see [Jar81, 6.5.3 p.108]). Solet z = >, - 2x @y, € E®F be arbitrary.
Then there are a; > 0 and b, > 0 such that z, € a,U and y;, € biV and hence
z=3 pakbriE @ € (320, arby) - (U®V)abs.cony.- Consequently, the Minkowski-
functionals pygy form a base of the seminorms of E ®, F' and we will denote them
by my,v. In terms of the Minkowski-functionals py and py of U and V' we obtain
that z € (3, pu(ar) pv(yr)) U @ V for any z = >, 2 ® y since zi, € py(ay) - U
for closed U, and thus pygy(z) < inf{>, pu(zr) pv(ye) : 2 = >, ox @ yr}. We
now show the converse:

3.38 Proposition. Seminorms of the projective tensor product
(See [Kri07a, 3.4 p.53], [Jar81, 15.1.1 p.324]).

puav(z) = {3 pu(@n) oy () 2 =D ok @b
k k

Proof. Let z € A- (U® V) with A > 0. Then z = A Mg (ugp ® vx) with uy, €
U, v, € Vand ), |A\x| = 1. Hence z = ) xp ® vy, where x;, = A\,uy, and
Yoppulxr) pv(ve) < - AAk| = A Taking the infimum of all A shows that prgy (2)
is greater or equal to the infimum on the right side. O

3.39 Theorem. Compact subsets of the projective tensor product
(See [Kri07a, 3.21 p.61] and [Jar81, 15.6.3 p.336]).

Compact subsets of the completed projective tensor product E&.F for metrizable
spaces E and F' are contained in the closed absolutely convex hull of a tensor product
of precompact sets in E and F.

Proof. Every compact set K in the Fréchet space E®,F is contained in the closed
absolutely convex hull of a O-sequence (zj)x in E®,F by . For this 0-sequence
we can choose k,, strictly increasing, such that z; € U, ® V,, for all k > k,,, where
(Upn)n and (V,),, are countable 0-neighborhood bases of the topology of E and F.
For k, < k < ky41 we can choose finite (disjoint) sets Ny € Nand 3,y [Aj[ =1,
zj € Uy and y; € Vy such that 2z, = 37,y Aja; ®y;. Let A= {x;:j € |, N}
and B := {y; : j € L], Nr}. These are formed by two sequences converging to 0,
and hence are precompact. Furthermore, each z € K can be written as

2= pkzk = > k)T Oy,
k=0

k JEN}

with 37, [ < 1 and hence 25 > 7c n, [edj| = 204 [kl X jen, M) < 1. From
this it easily follows that the series on the right hand side converges (even Mackey)
and hence z is contained in the closed absolutely convex hull of A ® B. O
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3.40 Corollary. Elements of the completed tensor product as limits

(See [Kri07a, 3.22 p.61], [Jar81, 15.6.4 p.337]).

For metrizable E and F every z € EQ,F has a representation of the form z =
>0 An Tn @ Y, where X € €1 and x and y are bounded (or even 0-)sequences.

Since for every A € ¢! there exists a p € ¢ and u € ¢! with \,, = p2 p,, it is enough
to find bounded sequences x,, and y,,.

Proof. In the previous proof we have just shown that z = Zj M A @yy. O

3.41 Definition. Summable vector valued sequences.
For lcs F' we consider the following spaces of (somehow summable) series in F":

o M{F} == "(N,F) := {f € FN : ¥p SN of F : p(f) := X272 p(f;) < oo},
the space of ABSOLUTELY SUMMABLE SEQUENCES in F’ (called ABSOLUTELY
CAUCHY SEQUENCES in [Jar81, 15.7.5 p.341]).

Recall the Reordering Theorem of Riemann [Kri05, 2.5.18].

e (1{F), the space of UNCONDITIONALLY CAUCHY SUMMABLE SEQUENCES
(zj)jen in I (see [Jar81, 14.6.1 p.305]), i.e. for which the net ' — 3, x;,
where F' runs through the finite subsets of N ordered by inclusion, is Cauchy:
(<) Let o be a permutation of N. For any U we find a finite Fy C N such that
Zker T *ZkeFl x), € U for all finite Fy, Fy O Fy. Let ng := max o~ (Fp),
hence o~ 1(Fp) C {n : n < ng}. Then, for all ny > ny > ng, we have

no
Z Lo(n) = Z Lo(n) — Z To(n) = Z T — Z x, € U, where

n=nj n<na n<ng kEF> keF,
Fr=c({n:n<ng}) DF:=c({n:n<ni}) D2o({n:n<ngp}) 2 Fp.

(=) Otherwise, 3UVF finite IF” finite : F' NF = () and ), _p 2, & 2U
(3R, R D F:4U F Zner Tn — ZneFl Tn = ZnEFQ\Fl Tn — ZneFl\Fz Ly
now take F’ := F, \ Fy or F' := F} \ F3). Since ) x, is Cauchy, there is
some ng such that Zzzznl xn, € U for all ng > ny > ng. Let Fy := {n €
N:n < ng} and Fjj a corresponding set. We construct ng, Fy, and F}, # ()
recursively as ngy1 = maxFy, Fyp1 = {n :n < ngp1} O F} U Fj. Let
F,g/ = Fia1 \ (Fk [ Fé) Then

DRI DI o P o R SR A o

nekr)! n€Fy 1 neFy, ner] n€F,11\Fk nerFy

where Fiy1 \ Fr = {n : npx < n < ngy1} with nger > ng > np, so
ZneFHl\Fk T, € U, wheras ZneF,g x, ¢ 2U, hence Znng 2, ¢ U. The
elements in the sequence Fy, Fjj, F}/, F{, F{',... define a permutation ¢ of N
for which ) 24(,) is not Cauchy.

o (M[F] := L(co, F), the space of SCALARLY ABSOLUTELY SUMMABLE SE-
QUENCES in F (See [KriO7a, 4.9] and [Jar81, 19.4.3 p.427]): Since the
standard unit vectors ey, generate a dense subspace in ¢g every f € L(co, F)
is uniquely determined by its values f := f(ex). Moreover, f is contin-
uous=bounded iff {(y* o f)(z) = > ;cnz;¥"(f;) + @ € co,|[7]lc < 1} is
bounded for each y* € F*, i.e. {(z;y*(f;)); : « € co, ||z]s < 1} is bounded

in /', ie. (y*(f;)); € M(co) = €* by | 1.15.7], i.e. (f;); is scalarly absolutely

summable.

This can be extended 1 < ¢ < oo:
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o« ({F} = N F) = {f € FY v« 5(f) = (SZ0n(f)9)7* < oo},
the space of ABSOLUTELY ¢-SUMMABLE SEQUENCES in F' (See [Jar81, 19.4
p.425]).

e (1[F] = L({P, F), the space of SCALARLY ABSOLUTELY ¢-SUMMABLE SE-
QUENCES in F, where %+ % = 1 (See [Jar81, 19.4.1 p.426] and [Jar81,
19.4.3 p.427]): Since the standard unit vectors ey, generate a dense subspace
in /P every f € L(¢P, F) is uniquely determined by its values fi := f(eg).
Moreover, f is continuous=bounded iff {(y* o f)(z) = >  ;cn 2y (fj) 12 €
2P ||z||, < 1} is bounded for each y* € F*, ie. {(z; y*(f;)); : @ € P, ||z|, <
1} is bounded in £, ie. (y*(f;)); € A'(€P) = ¢4 by , ie. (f;); is

scalarly absolutely g-summable.

3.42 Lemma. Description of ¢1{F} as tensor product

(See [Kri07a, 4.12], [Jar81, 15.7.6 p.341]).

For les F we have a dense topological embedding ¢* @, F —» (1(N, F).

Thus (*&,F = (1(N, F) for complete F, where @, denotes the completion of the
projective tensor product.

Proof. We first show that the natural mapping (. @, F — (N, F), @y
(x;y)jen, is an isomorphism, where L is the dense subspace in ¢! of finite sequences
and £1(N, F) the analogous subspace in /!(N, F'). Since R* @, F = F* we have a
bijection. Let z = >, z®) @y ¢ 1 @ F and p be a seminorm of F. For the
corresponding norm p of £1(N, F) we have

B(z) =D _p(z) =D _p (Z 73 y“”) <3N 1 p ™) <
J i k ik
<SS P ™) = 3 12 0 - py™),
kK J k

Taking the infimum of the right side over all representations of z shows that p < p™,
where p™ is projective tensor norm formed from ||_||,» and p, see .
Conversely each z = (z;); € (L(N,F) can be written as image of the finite sum
> ;€ ® zj, where e; denotes the standard unit vector in ¢*. Thus we have for the
tensor norm p”™ that

) <Y el () = Y () = ()

which shows the converse relation.

Now, since /1(N, F') is dense in ¢} (N, F) and the latter space is complete for com-
plete ' (as can be shown analogously to the case /}(N,R)), we have the desired
isomorphism:

(M(N,F) = LN, F) 2 (l&, F = (*'&, F.
Here we used that the dense emnbedding ¢! < ¢! induces a dense embedding
Ul @, F ('@, F, see [Kri07a, 3.19,3.20] or [Jar81, 15.2.3,15.2.4 p.327]. O

3.43 Lemma. The seminorms of ¢'[F] (See [Kri07a, 4.32], [Jar81, 19.4.3a
p.427]).

The structure on L4[F] induced from L((£1)*, F) for 1 < q¢ < oo (resp. from L(co, F')
for q = 1) is given by the seminorms

Bf) = sup{(i ) <),
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where p runs through all continuous seminorms of F.

Proof. Let p be a continuous seminorm on F and V := {y € F : p(y) < 1}. As
in we use that p(y) = sup{|y*(y)| : y* € V°}. Thus we can calculate the
seminorm po, on L((¢7)*, F') associated to p as follows, where B denotes the closed
unit-ball in ¢ := (£9)* (resp. ¢ for ¢ = 1) and ¢ : V[F] — L({, F), «(f)(N\) =
>k fr Ak, the canonical bijection:

B(f) = P (t(f)) == sup{p(e(f)(N)) : A € B}
= sup{’y* (Z fk)\k>’ :ANe Byt e Vo}
k=1

(v (fe)klles : A € B,y* € VO}

< sup{ | Alleoy

<1
<sp{ (Sl (o) sl <0}
k=1

Conversely, let f E Eq[ ] and |y*| < p. Then for € > 0 there exists an n such that

(Xian |y*(fk)|q) <e. Let Mg y*(fx) := |y*(fx)| for E < n and Ay, = 0 otherwise.
Then A € B and

ST =D ey (F) D Iy (F)l? <Yk y™ (1) 1467 < poo(u(f)) I +e".
k=1 k=0

k<n k>n

Hence we have also the converse relation. O

3.44 Definition. Injective tensor product
(See [Kri0T7a, 4.21 p.93], [Jar81, 16.1 p.344]).
We consider the bilinear mapping

E x F — L(E*, F), given by (z,y) — (2 — 2" (2)y).

It is well-defined, since ev, : E* — R is bounded. In fact ev, : E* — R is even
continuous for the weak topology o(E*, F') and hence also for the topology S(E*, E)
of uniform convergence on bounded sets. This induces a linear map

E®F — L(E*,F), given by @ y — (¥ — z*(z)y).

We claim that this mapping is injective. In fact take >, z; ® y; € E ® F with x;
linearly independent. By Hahn-Banach we can find continuous linear functionals
xf with 27 (x;) = 0; ;. Assume that the image of ). z; ® y; is 0 in L(E*, F'). Since
it has value y; on z, we have that y; = 0 for all ¢ and hence ZZ x; @1y; = 0.

We define the INJECTIVE TENSOR PRODUCT (also called e-TENSOR PRODUCT in
[Tre67]) E®. F to be the algebraic tensor product with the locally convex topology
induced by the injective inclusion into L(E*, F'), where L(E*, F') is supplied with
the topology of uniform convergence on equicontinuous subsets of E*. Since this
topology on L(E*, F) is obviously Hausdorff, the same is true for £ ®. F.

Note that, since F' topologically embeds into the space (F*)' of bounded (with
respect to the equicontinous subsets of E*) linear functionals on E* by [Kril4,
5.4.11], the structure of F ®, F is also initial with respect to E® F' — L(E*, F) —
L(E*,(F*)) = L(E*,F5R), 2@y — ((&*,y*) — x*(z) - y*(y)), which gives a
more symmetric form and consequently F ®. F' = F ®. E. Since the seminorms of
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L(E*, F*;R) are given by suprema on U° xV°, where U and V are 0-neighborhoods,
we have for the corresponding seminorm ey on F ®, F:

5U,V<Z Tk ®Z/k) = Sup{‘z (k) y ()| 12" €U%y" € Vo}
k k

3.45 Corollary. Seminorms of the injective tensor product
(See [Kri07a, 4.22 p.94], [Jar81, 16.1 p.344]).

A defining family of seminorms on E ®. F is given by
Euv in QY > SUP{‘Zx*(xi)y*(yi) cxteU%y" e VO},

where U and V' run through the 0-neighborhoods of E and F. The injective tensor
product E ®@. F is metrizable (resp. normable) if E and F' are. O

Let us show next, that the canonical bilinear mapping F x F — L(E*, F) is con-
tinuous, which implies that the identity £ ®, FF — E ®. F' is continuous:

In fact, take an equicontinuous set £ C E*, i.e. £ is contained in the polar U° of
a 0-neighborhood U, and take furthermore an absolutely convex 0-neighborhood
V C F. Then U x V is mapped into the typical O-nbhd. {T : T'(£) C V}, since
(z@y)(a*)=z*(x)ye{A: |\ <1} .- VOV fora* €& CU°.

3.46 Corollary (See [Kri0O7a, 4.23 p.94], [Jar81, 16.1.3 p.345)).
EFE®, F— FE®,.F is continuous.

Proof. In the diagram
E®; F >FE®. F

o]
E x F— L(E*,F)

continuity of the bilinear map at the bottom implies continuity of the top arrow. [

3.47 Definition (See [Kri07a, 4.24 p.94], [Jar81, 16.1.4 p.345]).
An lcs F is called NUCLEAR ((N) for short) iff £ ®, F = E®. F for all lcs F'.

3.48 Corollary (See [Kri0O7a, 1.20]).
The space E' ®@. F embeds into L(E, F).

Proof. In fact, since obviously E' ®. F =2 F ®. F’, it embeds into L(F*, E’) =
LE,(F))viaz*®@y — (x — (y* — 2*(2) y*(y))). This embedding factors over
the embedding 6, : L(E, F) — L(E, (F*)"), by 2* ® y — (x — 2*(z)y). Hence this
map E' ®. F — L(E, F) is an embedding.

E' . F — L(E, (F")') @yt (x> (y* = 2" (2) y*(y)))
= jfh \ I(S*
L(E.F) (o0 o (x)y) O

3.49 Lemma. Completeness of £!(F)
(See [Kri07a, 4.33], [Jar81, 16.5.1 p.358]).
The subspace (*(F) of £*[F) is closed. For complete F both spaces are complete.

Hence we will always consider the initial structure on ¢!(F) induced from ¢*[F].
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Proof. In order to show that ¢} (F) is closed in ¢}[F], take x = (z)x € ¢}[F] in the
closure of /! (F). We have to show that the net K — >_, - @ is Cauchy, where K
runs through the finite subsets of N.  So let p be a seminorm of F' and € > 0. By
the assumption we can find a y € ¢'(F) with p(z —y) < e. Thus the net Y, . yx
is Cauchy in F, i.e. there is a finite Ky C N such that ;D(X:keK2 Yk — ZkeKl yk) <e
for all K1, Ko O Ky. Hence for Ky C K; C K5 we have:

p( Z Tk kélxk) :p( Z xk) Sp( Z (zk *yk)) er(z yk)

keKs kEKz\Kl keKz\Kl kEKz\Kl
< sup{ y( > (@ - yk))‘ | Sp} +p( > yk)
keK2\ K, keK\ K,

oo

< sup{z " (ke —yw)| = [y < p} +p( > yk)
k=0 ke K>\ K,

N

p(xfy)er(Z Yk — Z yk) <e+te,
keK> kEK,

which shows that K — °, _ . x) is a Cauchy-net.

Since (}[F] = L(co, F'), it is complete for complete F'. O

3.50 Theorem. Description of £} (F) as tensor product

(See [Kri0T7a, 4.34], [Jar81, 16.5.2 p.359]).

For les F we have a dense topological embedding (* ®. F —» (1(F).

Thus (*®.F =~ (H{F) for complete F, where ®. denotes the completion of the
injective tensor product.

Proof. By we have that ¢! ®. F = ¢, ®. F embeds into L(cg, F), the space
of scalarly absolutely summable sequences. Obviously A ® y € ¢! ® F is contained
in (Y{F} C (*(F). We show that (! ® F = K™ @ F = FO is dense in ¢! (F)
with respect to the structure inherited from ¢}[F]. So let x € ¢}(F) and consider
" =2l m-1) € F" C F®) C ('[F). We claim that 2™ — x in ('[F]: Let p be a
continuous seminorm on F. Since K — ;- 7} is Cauchy, we have for K = R:

X n . . S \
po — ") = swp{ 3 Iy (@)l : |y’ <p} =swp{ " Iy (@)l : |y’ <p, m > n}
k=n

k>n

=sup{| Yy @o)|+| X v @] Iyl <pom >}

m>k>n m>k>n
y* (@)>0 y* (21)<0
< sup{ y*(z xk)‘ Syt < p, mZn} —l—sup{‘y*(z xk>‘ : }
m>k>n m>k>n
y* (z1)>0 y" (21)<0
<2 sup{p( Z xk> : K’ finite, K' N [0,n — 1] = @} < 2¢
keK'

for n sufficiently large. In the complex case we have to make a more involved
estimation for . _ |y*(2x)|. Let P:={z€ C: Rz > 0and — RNz < Iz < RNz}.
For every z # 0 there is a unique j € {0,1,2,3} with i/ 2 € P. Then |z| < 2R(i’ 2) <
2|z|. Thus we can split the sum into 4 parts corresponding to j € {0, 1,2, 3}, where
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ily*(x)) € P. For each subsum we have

S wadl= Y My @) =2R(y (Y w))

m>k>n m>k>n m>k>n
i y*(zr)EP i y*(xi)EP i y*(xr)EP
<2 y*( Z xk)‘SQZ?( Z wk)SQE
m>k>n m>k>n
i y* (zk)EP il y* (zk)EP

Thus we have p(z — z™) < 8e¢.
Since ¢! (F) is complete for complete F by , the result follows. O

Operator ideals

In order to give several equivalent descriptions of nuclear spaces in terms of the
connecting morphism in their projective representation, we introduce the ideals of
approximable, of nuclear, and of summing operators between Banach spaces and
prove the most relevant relations between them.

In this section all Ics are assumed to be Banach spaces!

3.51 Definition. Several operator ideals.
For 1 < p < oo define the following classes of operators between Banach spaces:

o A, the class of p-APPROXIMABLE OPERATORS (See [KriO7a, Def. before
5.26 p.128]), i.e. those for which the approximation numbers (a, (7)) € ¢P,
see [3.11]. WARNING: This class is denoted S, (for Schatten-class) in
[Jar81, 19.8 p.440] and [M'V92, 16.6 p.143]!

e N, the class of p-NUCLEAR OPERATORS, i.e. those which have a representa-
tion of the form T' = "> jz¥ ® y,, with (z7) € (P{E*} and (y,) € (1{F},
where % + % =1, see [Kri0O7a, 5.9].

o S, the class of p-SUMMING OPERATORS, i.e. those with T (¢P[E]) C ¢P{F},
see [Kri0O7a, 5.18]. These classes are denotes P, in [Jar81, 19.5 p.428].

In the case p = 1 we suppress the “1-” from these definitions. In particular, T is a
nuclear operator, iff there exists a; € E* and b; € I with . [|a;|| [[b;[| < oo and

T(z) = Zaj(x) b; for all .
JEN
All these classes are operator ideals, since for A, B € L they are closed under
T — AoT o B. For approximable this follows from ap+m (R0 .S) < an(R) - am(S),
see below, for the others from S,(¢P{E}) C ¢P({F}) and S.(¢P[E]) C (P[F]
(since £9(N, _) and L(¢, ) are obviously functorial).

3.52 Lemma (See [Jar81, 17.3.3 p.377]).
The space N1(E, F) of nuclear operators is the image of E*@,F in L(E,F).

Proof. By the elements of E*®, F are those of the from Yo AnZh @y, with
x*, y bounded sequences and \ € /1. O

3.53 Proposition (See [Kri07a, 5.29], [Jar81, 19.10.1 p.445]).
Let 0 < p,q,r < o0 with%:%—&—%,
Then Aqo A, C A,. In particular, we will use Ay o Ay € Ay and (A1)" C Ay jp,.
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Proof. We have a,1m(SoT) < an(S) anm(T):
In fact, let R := SgoT + (S — Sp) o Ty for n- resp. m-dimensional Sy resp. Tp, then
anym(SoT) <|[|SoT — R[| = [[(S = So) o (T = To)| < [IS — Soll - |T" = Tol-

T

Using the Holder inequality for i g = 1 we obtain:

(Z an(S o T)T>1/T < ot/ (Z (S o T)T)W < ot/ (Z a,(S)" - an(T)T)l/r
<ol (Z an(S)p>1/p ' (Z an(T)q) 1/q 0

3.54 Proposition (See [Kri0O7a, 5.30], [Jar81, 20.2.3 p.454]).
An linear operator T : E — F between Hilbert spaces is p-approximable provided
((Ten, fu))n € LP for all orthonormal sequences e, and f,.

It can be shown that the converse is valid as well, see [Jar81, 20.2.3 p.454].

Proof. By we conclude that T is compact and hence admits by a
representation Tx = Zn Anlen,x) fr, with A, — 0 and orthonormal sequences
e, and f,. Since A\, = (Te,, fn) we have that (\,), € (. By applying a
permutation and putting signs to f, we may assume that 0 < A,41 < A, Let
Tn(x) = Zk<n /\k<€ka .Z‘>fk Then

an(T) < ||T =T, || = Sup{HZ)\k<ek,x>ka el <1}
sup{ (3 Mltew ) el < 1} <

k>n
hence T € A,. O

3.55 Auerbach’s Lemma (See [Kri07a, 5.20], [Jar81, 14.1.7 p.291]).
Let E be a finite dimensional Banach space. Then there are unit vectors x; € E
and x} € E* with x}(x;) = 0;; for 1 <i,j < dimE.

Proof. Let ey, ..., e, be an algebraic basis of E. For the weakly compact unit ball
K of E* we consider the continuous map f : K" — K, (27,...,25,) — [det(x](e;))]-
Let (z7,...,2}) be a point where it attains its maximum. Since the e; are hnearly
independent this maximum is positive. Hence there is a unique solution with z; € £
of the equations

Zm z;=¢; for1 <i<n.

Applying any z to this equatlon, yields the equations

ij(ei) xp(z;) = ap(e;) for 1 <i < n.
whose unique solution is % (x;) = d; ;
F@se ) - |det(y; (2))] = ’det 3 (es)) - det(y; (22))|
_ ’det(z a:k(ei)yj(zk))‘ = |det(y? (e;))]
k

=flyf, ..., y5) < f(z7,...,z}) for all yf € K.
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Thus | det(y;(z;))] < 1. Choosing y; = x for all j # k shows that [y (zx)] < 1
1

and hence [|zgx|| < 1. From 1 = z7(z;) < ||x | [|z;|| we conclude that ||z;|| =1 =
5 1]- O
3.56 Lemma. (See [Kri07a, 5.27], [Jar81, 19.8.4 p.441]).

Let T € L(E,F) be such that dlmT(E) k < oo. Then T can be written as
T = 25:1 Aj x5 @ y; with ||xJ*H <1 and |ly;|| <1 and 0 < X; <||T].

Proof. We may assume that T is onto. By we have a biorthogonal sequence
y; and yi for F. Let \; := ||[T*y;|. Then 0 < \; < [|T¥] = [|T]| and z} :=
/\%T*y}‘ € oE”. So we have Tw = 3, y*(Tx)y; = 32, Aj 25 (x) y; - O

3.57 Corollary (See [KriO7a, 5.28], [Jar81, 19.8.6 p.442]).
We have Ay C N;.

Proof. See [Jar81, 19.8.5 p.442]. Let T' € A, (E, F'). We have to show that it can
be written as T = Y. A\, 2}, ® y, with 2 € 0E*, y,, € oF and X € (1.

Let € > 0. Choose T;, with dim 7, (F) < 2™ and |T — T,,|| < (1 +¢€) azn(T). Let
D, :=Tyy1 —T,. Then d,, := dim D,(F) < 3-2" and since a,(T) — 0 we have
|T—T,|| = 0, hence T =5/ D,. By we have T =" Z?ll n,j T ;@

Yn,j, With @, ;. € oE*, y, j € oF and 0 < A, j < [[Dy|. We estimate as follows

ZZMﬁinW<QyW%JﬂHW -7

n j=1
<33 2"(1+¢)(agn (T) + azn (1))
<3 i 2" (1 + ) agn (T) < 223(1 +¢) Z 2" Y agn (T)
<223(1+¢) Z an(T)  (since an(T) is decreasing)

to conclude that (A, ;)n,; € £1. O

3.58 Lemma (See [M'V92, 28.14 p.334], [Jar81, 21.6.1 p.496]).
Diagonal operators on /P (for 1 < p < o) are nuclear iff they have £ coefficients.

Cf. [3.10] and [3.11]

Proof. (<) obvious, since D =" d, ev, ®e, with |le,|lsr =1 = [ evy, ||ea

(=) Let a™ € ¢4 = (¢P)*, b™ € 7 with 3, [|a™||ea - [[b™]|e» < 00 and D(z) =
>, a™(z)b™ for all x € (7. With x = e; we get d, = D(ex)r = (") b(”)
wﬂmwww:ZWMSZMWW%WSZAWWwWWm<mw
the Holder-inequality. O

We will apply this to the connecting mappings % : A\, — A, for the Kéthe-sequence
spaces A = AP(A) with 1 < p < co. Only the case p = co needs special attention
(see ): Let the diagonal operator D := (£ : X\, — A, be nuclear. Then
Dl : co = A\ = A = £ is nuclear, so a(”) € El = (co)* and b™ € £ and
hence the same proof as above for p = 1 shows that the diagonal d of D is absolutely
summable.

3.59 Proposition. Factorization property of N
(See [KriO7a, 5.6 p.119], [Jar81, 17.3.2 p.377]).
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A map T : E — F between Banach spaces is nuclear iff there are continuous linear
operators S : E — > and R : {' — F such that T factors as diagonal operator
D : £>° — {1 with diagonal d € (1, i.e.

T

EF——-F
A
S R
\
> > (1
D

Proof. (=) Let T be represented by ), di, 2} @y with ||z} ||+ < 1, |lyx||r < 1and
d € ¢*. Then S(z) := (z}(z))r and R((pk)k) := > ftk Y define linear operators
S:E—>/*and R:¢' - Fofnorm <1land T = Ro Do S, where D : {>* — (!
denotes the diagonal operator, with diagonal (dg)g.

(<) Since the nuclear operators form an ideal, it is enough to show that such
diagonal operators D : (u)x + (dgpr)r, D : £%° — £1 are nuclear, which is clear
since they can be represented by >, dpz} @ yi, where z} := e; € ¢* C (£>°)* and
Y ‘= e € o0, O]

3.60 Lemma. N C K (See [Kri0T7a, 5.7], [Jar81, 17.3.4 p.379]).
Every nuclear operator is compact.

Proof. Let T be a nuclear mapping. Since the compact mappings form an ideal,
we may assume by that T is a diagonal-operator /> — (! with absolutely
summable diagonal (A\g)x. Such an operator is compact, since the finite sub-sums
Y k<n Mk €k @ ey, define finite dimensional operators, which converge to T uniformly
on the unit-ball of £°°. O

3.61 Lemma (See [KriO7a, 5.19], [Jar81, 19.5.1 p.428)).

Every p-summing operator induces a continuous linear map from (P[E| — (P{F}.
Thus we may consider the space Sp(E, F) of p-summing operators as normed sub-
space of the space L(P[E], (P{F}).

Here we consider the space P{F'} supplied with the norm

el = (3 hweliz)
k

As in one can show that ¢P{F} is complete (see [Jar81, 19.4.1 p.426]). For
p > 1 it is however not isomorphic to ?&,F. Otherwise we would obtain for
E = (P, that (P&, (P = (P{{P} = (P(N x N), which is not the case..

On (P[E] we consider the operator norm of L(£9, E) (see | 3.43 ):
1/p
l@lle = sup{ (3 le*@o)l?) " :a* € B, a*] < 1.
k

It is obvious, that the inclusion /P{E} — ¢P[E] is a contraction (i.e. has norm < 1).

Proof. Let T : E — F be a p-summing operator. We will apply the closed graph
theorem to T, : P[E] — P{E}, (2,)%%, — (T(z,))22,, so consider z(*) — z in
¢P[E] with T,(z™®)) — y in 2{F}. Since obviously ||T.(2)|| < ||T|| - ||z]lc with
respect to the operator norms ||_[|c, we get ||y — Tu(2)|lc < |ly — Tu(z™)||. +
IT.(2® = )]l < ly - Tu(@®) | + 7] o) — 2. — 0, and hence Ti(z) = . O
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3.62 Corollary (See [Kri0O7a, 5.20], [Jar81, 19.5.2 p.428]).
An operator T : E — F' is p-summing iff there exists a R > 0 such that

(T2 ) = (ZIITOU(’“)H’”) <R swp (Z|x ) = R||(™)]-..

llz*l<1

for all finite sequences (x®))y,.. The smallest such R is the norm of Ty : (P[E] —
(P{F}, and is also denoted ||T||s,. Consequently, Ny C Si.

Proof.
(=) By we have that T, is continuous, and hence the required property holds
with R := ||T,| and all (even the infinite) sequences in ¢*[E].

(«) For z = (M), € ([E] we have (Tz®)y]|x = sup,, (X, [|Ta®[#)/* <
R-[(z®)gemle < R [[(2®)]l- < 0o and hence (Tz*)), € (P{F}.

(N1 C S1) by , since any diagonal operator D : > — ¢! with diagonal d € ¢!

is 1-summing;:

“ k k
STIDz® e =35y 2 =3 1d) S 12 < dllp sup Y Jev;(29))
k=1 kg j k J ok
< lldlles sup{ Y (@) : 2" € (=), o <1} O
k

3.63 Proposition (See [Kri0O7a, 5.21], [Jar81, 19.5.4 p.430]).
For p < q we have S, C S,.

Also NV, C N, can be shown under the same assumption, see [Jar81, 19.7.5 p.437].

Proof. Let T € S, and let r > 0 be given by % + % = %. Let Ay := || Txgl|?/".
Then ||Tzi| = /\Z/q and hence ||T(A\pzi)||P = [[MT(zp)]|P = A - |Tai||P =

TP+ = || Tk and so the Hélder’s inequality (cf. the proof of )
shows that

(ZHTkaq)l/p:(ZHT(Akxk)Hp) = (T Arzi)k || .
k k
<ITls, el = 1Tls, s (Sl ) )"

llz*]I<

<ITls, - (X 4) - s OOEER] DR
k

z*||<1

<l - (S ITeel?) " swp (Zm w0’
k

le=li<1
1/r 1/p—1/q
Dividing by (zk ||T;z:k||q) - (zk ||T1:k||‘1> gives
1/q .
(Do ITal?) " < Tls, - sup (Ja* (i)]?)
. o= l<1
Thus T' € S, by . O

3.64 Lemma. Summing via measures
(See [Kri07a, 5.22], [Jar81, 19.6.1 p.431]).

1/q
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An operator T is p-summing iff there exists some PROBABILITY MEASURE p on the
compact unit ball oE* and an M > 0 such that

.l AP W\ 1P
el < ([ @pdue) "
Proof. Note that the right hand side is nothing else but M - ||6(z)||,, where
§: E— C(oE™*).
(<) If p is a probability measure (i.e. u(oE*) = 1) with that property, then

Z (|Tzg P < Mp/ Z |z* (ag) P du(z™) < MP - sup{z |z* (zg)|P : 2™ € oE*}.
k 0B g k
So T € S, by .

(=) Let T € S,(E, F). For every finite sequence z = (z1,...,%,) in E let f, €
C(oE*) be defined by

Jaa) = T, - 30 e ) ZHTW—Z(HTHP @ (@) = | T |?).

The set B := {f, : © € EM} is convex in C(oE*). In fact let = and y be two
finite sequences in £ and A + g =1 with A > 0 and g > 0. Let z be the sequence
obtained by appending ul/py to A/Pz. Then

(\fo + pfy) (& ZA(HTHS @ (@) [P = |[Tai]”) +
+Z (713, 12 () = T 117
=3 HTIIZP @ (NV2) P — TP+
+ 2 UITUS, ) (6 Py [P = TG Py |1
= 0TI )la” Gl = TGP = J-().

By we have that sup,.c,p- fo(2*) > 0. Thus the open set A = {f €
C(0E™) : sup,«c,p- f(x) < 0} is disjoint from B. So by the consequence [Kri07b,
7.2.1] of Hahn-Banach there exists a regular Borel measure p on oE* and a constant
a such that (p, f) < a < (u,g) forall f € Aand g € B. Since 0 € B we have a < 0.
Since A contains the constant negative functions we have o« = 0 and p(oE*) > 0.

Without loss of generality we may assume ||p|| = 1. Hence for every « € E we have
0< ufo) = [ (ITIE,la" @ = 17l”) duta)
oE

and thus ||Tz||P < ||T||§p e 2 (@) [P dp(a). O
3.65 Theorem. Factorization of absolutely 2-summing operators

(See [Kri07a, 5.24], [Jar81, 19.6.4 p.433]).

The operators T in Sy are characterized by the existence of a compact space K and
a measure p on K such that we have the following factorization:

E—T>F

A

C<VK> s L2 (p)
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Proof. (<) It is enough to show that the canonical mapping ¢ : C(K) — £%(u) is
absolutely 2-summing. So let d, be the point measure at x. Then for finitely many
fr € C(K) we have

S Il = / S (o) dute) = / S 820 )
< u(K) -sup{ 3" ()2 v € C(K), v < 1,
k

hence the natural mapping ¢ belongs to So by .
(=) By there is some probability measure p € M(oE*) such that

el <ar ([ e @R du)

oE

The map § : E — C(oE*), x — ev,, is isometric. Now consider the diagram

E T F
" K
5 . R
A
5 H— >H
1 A
\ i
C(oE*) ———— L*(n)

where H denotes the closure of the image of 10§ in £2(1). The operator T factorizes
via a continuous linear operator R : H — F, since ||[Tz|| < M - ||t(6(x))]|¢2 for some
M > 0. Using the ortho-projection P : £2(u) — H we get the factorization
RoPo(tod)=Rorod=RoS=T. O

3.66 Proposition (See [Kri0O7a, 5.31], [Jar81, 20.5.1 p.467]).
For Hilbert spaces we have So C As.

Proof.
For orthonormal families e, and fi and T € Sy we have by

1/2 1/2
(S ITenl?) ™ <l - sup (3 Hwen) ) <7 s,
& llzll<1 M7

And by the Cauchy-Schwarz inequality [(Teg, fx)| < [|Tex| - || fxll = || Tex| we get
S [(Tew, )2 < 3 [ Ter ]| < T3, < o0, hence T € A; by [3.54], O

3.67 Overview. One has the following inclusions for 1 < p < ¢ < co:

3.57 3.62
A1 C Nl ¢ 81
obvious'l [Jar81, 19.7.5 p.437] [3.63
Jar81, 19.7.8 p.438
A, N, € [Jar p.438] .
obvious'l [Jar81, 19.7.5 p.437]/l £
A, N, € [Jar81, 19.7.8 p.438] s,
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For Hilbert spaces one has the following results for 1 < p < co:

[Jar81, 20.2.5 p.456]

Ay

Ni € S1

[Jar81, 20.5.1 p.467]

J [Jar81, 20.5.1 p.467] 1 [Jar81, 20.5.1 p.467]

2 P P
l" [Jar81, 20.5.1 p.467] £

Nuclear spaces

In this section we characterize nuclear spaces in several ways and we prove their
inheritance properties We show that the nuclear (Fréchet) spaces are exactly the
(closed) subspaces of products of (countable many) copies of s.

3.68 Definition.

A linear mapping T': E — F between lcs is called NUCLEAR OPERATOR (See [Jar81,
17.3 p.376], [Kri07a, 5.6]) iff there exist {a, : n € N} C E* equicontinuous, B a
Banach disk, b, € B, and A € ¢! with

TZC—Z/\ an(x) by, for all z € E.

This is exactly the case, iff there is an absolutely convex 0-neighborhood U C FE and
a Banach disk B C F', such that T factors over a nuclear mapping T : Ey — Fp,

ie.
FE——-F
>Fp

T

The nuclear mappings form an ideal: For composition from the left side with some
R replace b, by R(b,,), and from the right side replace a,, by a, o R = R*(a,) (Note
that a, € U° = R*(a,) € (R7Y(U))).

3.69 Proposition (See [Jar81, 17.3.8 p.380]).
Let T : E — F be nuclear and G any lcs. Then TR G : E®. G - F ®,; G is
continuous.

Note, that as for any bifunctor we denote with T'® G the morphism 7' ® id¢.

Proof. We may represent ' = A, a, ® b, with a,, € U° for some 0-nbhd.
U and b, € B, a Banach-disk. Let V C F and W C G be 0-nbhds and let
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3.70 NUCLEAR SPACES

p :=sup{qy (b) : b € B}. For w = Zk, r;®z; € E®G we get

(T ® G)(w ZTxJ )® 2z = Z)\nan(acj)bn@)zj

Jin

= Z Anbn @ Z an(x;) zj and hence
n

J

TV,W ((T® G)(U])) = 7TVVV(iO: )\nb ® (zk: an ‘rJ ZJ))
n=1 Jj=1
i IAnlqv (bn Sup{‘zk:an ‘ = Wo}
n=1 j=1

<p Z |An] sup{‘Zx*(mj)z*(zj)‘ rxtelU% 2" e WO}
n=1 7j=1
< plMle evw (w). O

3.70 Theorem. Characterizing nuclear spaces in multiple ways
(See [Kri07a, 6.17], [Jar81, 21.2.1 p.482]).
Let 1 <p < oo. Then
1. E is nuclear;
. E®, F=FE®.F for every Banach space F;
CE@ 0 =FE® 0
. MY E} = (1{E) topologically;
. 1Y E} = (1[E] topologically;
. The connecting maps of the projective representation can be chosen abso-
lutely summing (or Sp);

tee e
o G W

3

. The connecting maps of the projective representation can be chosen nuclear

(or Np);

< 8. The connecting maps of the projective representation can be chosen 1-approximable

(or Ap);

< 9. Every continuous linear map into a Banach space is nuclear.

Proof. We give the proof for 1 < p < 2 only. For the general case one needs in
addition that S, 0 §; C S, (see [Jar81, 19.10.3 p.446]) and N7 C N, C S, (see
[Jar81, 19.7.5 p.437] and [Jar81, 19.7.8 p.438]).

(:>:>) and (:>:>) are obvious by ’ 3.42 ‘ and ’ 3.50 ‘

(:@) From () we obtain that ¢'(FE) = ¢(*{E}. Thus for every U C E there
exists a V C F and a § > 0 such that 7y < d ey, where

=> pular)
k
is the semi-norm associated to U on (1&,E = (1 {E}, see , and where

ev (@) = sup{ D" Iy (@)l s y" € V°}
k

is the semi-norm associated to U on L(cy, F) = ¢'[E] and hence on the subspace

(ME) = ('@, see | 3.50|. From this it follows by that the connecting map

is absolutely summing.
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(@:) For every U we can find by assumption a V such that the connecting
map LE : By — Ey is absolutely summing. Hence if (z)5 € ¢![E], then the images
are in ('[Ey] and hence in ¢*{Ey}. Moreover, by

=2 pulae) = 3 v @)y <
k=1 k=1
< et lls, - sup{ D o @e)| - € Vo =t s, - v (@ee),
k

Since U was arbitrary we have ()

(:) By assumption for every U there exists a U’ such that the connecting

map Lg/ is nuclear. By we have that Lg/ ® FV : EU/ R FV — EU R FV is
continuous. Thus 7y < c-eyr v for some ¢ > 0, i.e. E®Q. F' = E®; F. Recall the
corresponding norms on Fy ®, Ey and on Ey ®. Ey:

Ty (z) == lnf{ZPU ) pv(yr) : 2 = Zxk ®yk} and
Eur,v (Zxk ®yk) = sup{‘Zx Tk) ‘ e (U)°,y* € VO}

(@ & & ) Now let us show that for all mentioned ideals it is the same to
assume that the connecting mappings belong to them.

In fact, we have 41 CN; C 8§ C S, C S, 13.63 ‘
The composite of three So maps belongs to As, since the following diagram shows
that it factors over a map between Hilbert spaces (see ) of class So C Ay (by

[3.66]):
\/ \/

5,CA:
L2(p3) e > L%(p1)

Since (As)? C A; by we have that (S2)% C A;. Now choose for a given
seminorm p successively pg > ps > --- > p1 > p such that the connecting maps all
belong to So. Then the connecting mapping E — E belongs to Aj.

(@@) Recall that a map T : E — F with values in a Banach T

E——F

space is called nuclear (see and ), iff it factors over \ T
Ly
Ltu

a nuclear map T : E1 — F on some Banach space F;. In fact,
for 4 we may choose Ey for some 0-neighborhood U. Now we - -

: Ey —— Ey
can proceed as for the corresponding result for compact o
mappings and Schwartz spaces. 0

3.71 Characterizing nuclear (F) spaces via summable sequences
(See [KriOT7a, 6.18], [Jar81, 21.2.4 p.483)).
A Fréchet space is nuclear iff (*{ E} = (*[E] (or (*{E} = (*(E)) holds algebraically.

Proof. Since /*{E} and ¢! (E) are Fréchet spaces it follows from the closed graph
theorem that the identity is a homeomorphism. O

3.72 Corollary. Nuclear spaces have a basis of Hilbert seminorms
(See [MV92, 28.1 p.325], [KriO7a, 6.19.1]).
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Proof. By what we have shown in the proof of (@:) in ’3.70‘ using ’3.65‘
every natural mapping F — F, factors over some Hilbert-space H. Taking the
norm ¢ of the Hilbert-space, we get a continuous seminorm £ — H —+ R, which
dominates p. O

3.73 Inheritance properties for nuclear and Schwartz spaces
(See [Kri07a, 6.21], [Jar81, 21.2.3 p.500], [Jar81, 21.1.7 p.481]).
Both the nuclear and the Schwartz spaces are stable with respect to:

1. products, (See [MV92, 28.7 p.328], [Kri07a, 6.21], [Jar81, 21.1.3 p.479],
[Jar81, 21.1.4 p.480])

2. subspaces, (See [MV92, 28.6 p.328|, [Kri07a, (.21], [Jar81, 21.1.5 p.481],
[Jar81, 21.1.6 p.481])

3. countable coproducts, (See [MV92, 28.7 p.328], [Kri07a, 6.21], [Jar81,
91.1.3 p.479], [Jar81, 21.1.4 p.480])

4. quotients, (See [M'V92, 28.6 p.328|, [KriO7a, 6.21], [Jar81, 21.1.5 p.481],
[Jar81, 21.1.6 p.481])

5. completions, (See [Jar81, 21.1.2 p.481])
6. projective tensor products, (See [Jar81, 15.6.5 p.337])

Proof.
() A typical seminorm on E := [ [, E; is of the form p : £ — max;c 4 p;(z;), where

A is finite and p; are seminorms on E;. Obviously E; =[I,ca (Ei)p,. For every p;

—_~

we can find a seminorm ¢; > p; such that the canonical mapping (E;),, — (E;)p,

7
——

is precompact /nuclear. Then the canonical mapping [[;c4 (Ei)g, — [Lica (Ei)p, is
precompact /nuclear, in fact a finite product [[,. 4 T can be written as ), , inj; oT;o0
pr; and hence belongs to the considered ideal. Thus we may use ¢ := max;ca ¢; as
the required seminorm.

() First for Schwartz spaces. Let E be a subspace of F. The seminorms on E are
the restrictions of seminorms p on F'. Let ¢ > p be a seminorm such that Fy, — F,
is precompact. Since E,|, — F}, is an embedding (ker p|p = ker pN E) we have the
diagram:

Eqlp > Lplg

I

Fy > Fp
Since the bottom arrow is precompact, the same is true for the top arrow.

Now for nuclear spaces. The corresponding proof will not work for nuclear map-
pings, but for absolutely summing mappings, since the ideal S; is obviously injec-
tive, i.e. if T': E — F} — F belongs to §; and Fj is a closed subspace of F', then
T : E — F belongs to Sy, since (1{F} = (1 {F}n FN.

() First for Schwartz spaces. Recall that a basis of seminorms on a countable co-
product E = [[,, E} is given by sup,, pi, where the pj run through the seminorms of
Ey and supy, pi, : (zk)k — supy, pr(xk). By assumption we can find seminorms g >
pi such that the connecting map Ty, : (Ex)q, — (Ek)p, is precompact. Furthermore
we may assume that its norm is less than %, by replacing g with 2%|T%qx.

Now the following diagram shows that we get a natural bijection [[,(Ex)p, =
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(L1 Ex)supy, p. which is an isometry if we supply ][, (E%)p, with the norm (zx)x —
sup{px(zr) : k}, and analogously for the gy.

ker(supy, pr) L1, ker(px)

1 1

Hk E}, Hk E,

Supy, Pk /
\ sup Hkpk

R%Hk[@

/

(Hk Ek)sup;C Pk = Hk(Ek)pl«

Up to these isometries the connecting map is nothing else but
=17 : [[(Ea = [[(Er)p.-
k k k

Since the finite subsums [ [, ., T converge uniformly to [ [, 7} on the unit-ball with
respect to p = sup, pr and are precompact operators by the result on products,
hence so is the infinite sum.

Now for nuclear spaces. We proceed as before using that the connecting mappings
T); can be chosen of the form Tj, = 3, (A\x);(27); ® (v ); with A, € ¢* and sequences
2} € 0o((Ey)g,)° and yy € o((Ek)p,)- By replacing gx by || Ax|l1 2%k, we have that
(A1,A2,...) € ¢! and hence the connecting mapping 7' admits the representation
2k (Ak)i(23); ® (yk);, where (z}); can be extended to the corresponding space,
since (Ef)q, embeds isometrically into it.

() First for Schwartz spaces. Let F := E/N, where N is a closed subspace and
let m# : E — F denote the quotient mapping. Let p be a seminorm on F. By
assumption there exists a seminorm ¢ on F with ¢ > pom and such that E; — Fpor
is precompact. Let ¢ be the corresponding quotient semi-norm on F', see [Kri07b,
1.3.3]. Then ¢ > Gom > pom. Now the following diagram shows that we get a
natural isometry Fsor = Ep and similarly for §.

ker 7 €. ker(p o ) 71 (ker p) —s= ker p

NC FE ul F
N\ /
R
EaR S
p~07jr.__‘- . ﬁ
Eﬁm?“‘ = > F;

Another argumentation for the same result would be an application of the isomorphy-
theorem F/kerp = (E/N)/(ker(pon)/N) = E/ker(po ).

Hence we have the diagram: Note that connecting morphisms are always quotient
maps, since the projections £ — E, are. So the di-

1 P 1 S S 3 h 1
agonal arrow is open, since 1t is up to the vertica

/ :T :T isomorphism the connecting map F; — Egor. Hence
the image of the unit ball in F; is a 0-nbhd in Fj
E, Egor Epor- whose image is precompact in Ejor = Fj.
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Now in order that this proof works also for nuclear spaces, we can use the following;:
It is enough to consider the situation, where £ — E; — F is nuclear, F — FEj is a
quotient map and E a Hilbert space (by ) But then the sequence Fy — E —»
FEy splits, where Fs is the kernel of the quotient map E — F4, and hence F; — F
can be written as ] — E — E; — F and thus is nuclear.

() Use that E; = £y ker  =—— E Nker § & ker g
where ¢ denotes the unique
extension of ¢ to a seminorm

R Vv
EC E
on F. x /
q
q ,."7R‘- q

E, ¢ - E‘q

(@) First for Schwartz spaces. Recall that the typical 0-neighborhoods of F ®, F
are the absolutely convex hulls Uy ® Us of {u1 @ us : uy € Uy, us € Us}, where
the U; are absolutely convex 0-neighborhoods in F;. By assumption there are 0-
neighborhoods V; C U; in E; such that for every 0 < € < 1 there is a finite set B;
such that V; C B; + ¢ U;. Taking intersection with U; shows that V; C (B; +eU;) N
U; C (B;N2U;+eU;). In fact b+eu € U; implies that b € U; —eu C U, —U; C 2U;.
Thus we may assume that B; C 2U;. Now we have that

ViaVaCB @By +eB i @Uy+eU, @ By +e2U, @Us
CBI®By+ (26 +2e+e*) U @ Us.

Solet Vi=$Vi@V, C g=Vi®@Voand B:= 1= B; ® By. Then V C B+¢U.
Since B is the absolutely convex hull of a finite set, it is precompact, hence we can

find a finite set By such that B C By +eU, and so V C By + 2eU.

For nuclear spaces E and F' we take an arbitrary lcs G and calculate as follows:

FE nucl.
(E@r F)e.G = (E®:F)2.G=2E®. (F&.:Gq)
F nuc FE nucl.

1.
E®.(F®,G) ¥ F®,(F,G)2(E®,F)®,.G. O

3.74 Nuclearity of AP(A) (See [MV92, 28.16 p.335]).
Let A = {a™® : k € N} be countable. Then
1. Ip € [1,00]: AP(A) (N);
& 2. Vp e [1,00]: NP(A) (N);
< 3. co(A) (N);
S 4. 3p,q:1<p<qg<oound AP(A) = N(A);
5. Vp,q:1<p<qg<oo= MNA) =N(A);
< 6. Yk3Im > k: ||[a® /a™||; < 0.

Proof. (2]=[3)) A®(A) (N) = A>(A) is (S) by and hence (M) by
= A*(A) = ¢o(A) by [3.28]
(:@) and (:@) follows for p < oo from for the diagonal operators

D =7 on fP resp. cg, hence also for A (A) = ¢o(4).

(@:>) follows from for p < c0. By the diagonal operator £ — ¢!

with diagonal d = a(®) /a(™) € ¢! is nuclear and hence its composite \,, < £ —
¢! — £* is nuclear and thus absolutely summming, and so also the connecting
homomorphism \,, — Ax is absolutely summing.
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(:) obvious.
((:)(:)@) follows from O

One can show the following:

3.75 Theorem of Dynin-Mityagin
(See [MV92, 28.12 p.332], [Jars1, 21.10.1 p.510)).
For nuclear Fréchet spaces ((NF) for short) each Schauder-basis is absolute (recall

£.17).

3.76 Corollary (See [MV92, 28.13 p.334]).
Each (NF) space with Schauder-basis (e;); is isomorphic to \'(A), where

A:={j—|ejlr: ke N}

Proof. This is a direct consequence of and . O

It was open for a long time whether all (NF) spaces have a Schauder-basis. The
first counter-example was given in [MZ74], see [Jar81, 21.10.9 p.516] for a sim-
pler counter-example. Rather recently it was shown in [DV00] that the complete
ultra-bornological nuclear space C¥(R,R) of real-analytic functions does not have
a Schauder-basis.

3.77 Theorem of Grothendieck-Pietsch
(See [MV92, 28.15 p.334] ([Jar81, 21.6.2 p.497])).
A nuclearity criterium for (F) with Schauder-basis (€;);en is:

Yk 3m > k : Z leslls _

lesllm

Proof. (=) Let E be (NF) with a Schauder-basis (e;);. Then E = \'({a®
(K)o ) . e
k € N}) with a;" := [le;|[x by and thus the claimed condition is satisfied by

[5.11)

(«) For any continuous seminorm p choose p’ with 3, ;’ (ee] )) < 0. By there
exists a p” and C' > 0 such that

Vv« 1€ ()| P (e;) < Cp(x),
where ¢; are the coefficient functionals. Then §; factors (for p'(e;) # 0) over

:E = Epr toaé; € (Ey)*. Thus D : E//—>Ep,a:l—>zj 0&i (@) 1p(ey), is a
nuclear mapping, since

ST HE I lep(enl =D sup{l&; (@)]  p” () < 1} p(ey) Z
j=0 7=0 :O ]

Thus the connecting mapping Lg” is nuclear, since it equals D

(Do) (@) = &1 () ples) =D &(@) 1p(ey)
=0 =0

=bp<§:€j(a?)€j> =y o)), O
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3.78 Nuclearity of power series spaces Agr(a)
(See [MV92, 29.6 p.344], [Jar81, 21.6.3 p.497]).

log(n)
“a, < 0.

1. Aoo(@) is nuclear < sup,

2. Xo(«) is nuclear & lim,, % =0.

3.74
Proof. ((1]) A (@) nuclear FH>0:C:=), e <oo

- 1 1 1
(:>) = ne to, < Z —toy <C= Og(n) < Og(C) 1t < Og(C) +t=D
i=1 Qp Qp %))
(<) log(n) <D= e DPon <« = 26—2Dan < 00
n an n

[3.74]
Ao(a) is nuclear - vVt >0: g e ' < 00, now proceed as in () O
n

Example (See [Jar81, 21.6.4 p.498)]).
s = Ao (log(n)) is nuclear and hence also the function spaces in ;

Ao(log(n)) is not nuclear, but Schwartz by .

3.79 Lemma (See [M'V92, 29.7 p.344]).
Let E be (N), p a continuous Hilbert SN, and U := {x : p(z) < 1} its unit-ball.
Then there exists a fast-falling ONB (en)nen of Efro, t.e.

VEIV : {nFe, :n e N} C V°.
Proof.

3.70.8 || 3.53
) ESYEED Vk > 03py > p, cont. Hilbert SN : ib* € Ay /1 (E,p, , Ep)
Asin[3.33] (E,)" = Ef, (Bp,)" = By with Uy = {2 : pp(z) < 1}

E (N

Uy o= (B9): Efo E(*}o g € Al/k(E?]oyEka;;)

y =y Za(k) (y,e gk) (k) with

k)) ON in Ef., (f(k)) ON in Ep,,
(a"); 4 CV* =3 (af)F < .
J
m(a)) 1/'€<Z N1k < ok dh. a® < C/mP
j=1
und (e;-k))j ONB in Ejj,, da v inj.

Let (€,)n be the diagonal-enumeration of (egj ))m, drop recursively those which
are linearly dependent on ealier ones, and apply Gram-Schmidt to obtain an ONB
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(en)n in Efr.. Let n > (2k)2.

n++/n
2

Vi<vn—k: sz G+E)(G+k+1)<
1<j+k

:>V]<f_k en Le

<n

§ ), since then &, lies on a diagonal below (4, k)

:[\f—k]2%(sincekﬁ?)ande<jn.enJ_e()

= Z en, e J (k) _ Z o™ (e, e jk) f(k)

J=Jn J=Jn
o0
k k k
= llenlFy = Y 105 (en, i) < a2 Z [(en,ef)? <
J=Jn J=Jn
C2 9 (kac)Q
< Gy lenllge < F

= (en)n fast falling in E*. O

=: C—: for all large n
n

3.80 Theorem of Komura-Komura
(See [MV92, 29.8 p.346], [Jar81, 21.7.1 p.500]).
Let E be an lcs: E is (N) < 31: E < s’ =],/ s.

Proof. (=)
E (N) = 3(pi)ier basis of Hilbert SN, let U; := {z : p;(z) < 1}

3.79 ,
270] Vi 3(ey,)n fast falling ONB in Efj.
= Vk 3V, : {nFel :n} C (V4)°, i.e. Vo € Vs sup |nPel (z)] < 1

= fi: E—s, x> (€ (z)),, is continuous
= f:= (fi)ier : E — s’ is continuous.
Vo € E: evy = 0,,(z) is continuous on the Hilbert space Ero = (Ey,)”

Kri07b, 6.2.¢
[KriO7b, ¢ )] Jo* € E[*]:’ vy* c E[*]LO . <$*,y*> :evx(y*) :y*(x)

= 1fi@)5 =D len @) =D (2", &,)* = |z

= f is an embedding onto f(E) C s’.

3.73.1 || 3.73.2
[s7s1][sms2] ). -

2. = lleve|? = pila)?

7

(<) s (N), E < s!

3.81 Nuclear Fréchet spaces (See [MV92, 29.9 p.346], [Jar81, 21.7.3 p.502]).
E is (NF) & E is isomorphic to a closed linear subspace of s".

Proof. (<) s is (NF) by ’ 3.78‘ , thus also F by [3.73.2 |.
(=) For the (NF) space E exists a countable basis P of Hilbert SN and by the

proof of E embedds into s”. O

3.82 Remark.
Note that we have the following implications under the assumption on the bottom
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of the arrow:
[3.60 ] [3.31] [3.22] [3.17]
nuclear g Schwartz % s.-Montel g s.-reflexive g q.-complete.
q.-compl.

The converse does not hold even for Fréchet spaces:

[3.78] [3.36] 2 o
nuclear #&#<——= Schwartz #——= Montel fé reflexive === complete.
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4. Duality

Spaces of (linear) functions
In this section we discuss how the hom-functor behaves on (co-)limits.

Let X be a set and B be a BORNOLOGY on X, i.e. a set of subsets of X containing all
single pointed subsets and with any two sets a set containing their union. For lcs F
let £>°(X, F') be the linear space of all mappings f : X — F, which are bounded on
each B € B. For continuous seminorms p of F and B € B let p? be the seminorm
on (X, F) definied by p?(f) := supp(f(B)). These seminorms describe the
Hausdorff topology of uniform convergence on the sets B € B. Obviously, {>°(B, F)
is as complete as F' is for each B € B and hence the same is true for the projective
limit £°(X, F') & Wm (> (B, F), see [Kri0Ta, 2.28]. Note that the lcs £>°(X, F)
will not change, iff we add all subsets of sets in B to B.

The space L(E, F) of bounded linear mappings E — F' between lcs (or even from
a convex bornological space into an lIcs) is closed in ¢>°(E, F'), where B are the
bounded subsets of E, and hence has the same completeness properties as F. In
particular, E’ is always complete with respect to S(E’, E). Note that a CONVEX
BORNOLOGICAL SPACE (cbs for short) is a linear space together with a bornology,
which is closed under formation of absolutely convex hulls and multiplication with
(say) 2. We will always assume that cbs are SEPARATED, i.e. {0} is the only bounded
linear subspace. The von Neumann bornology of all bounded sets of an lcs F
describes a cbs *E and conversely to any cbs I we may associate the finest locally
convex topology 'F for which the sets in the given bornology are bounded, i.e.
with the corresponding bornivorous absolutely convex subsets a 0-nbhd basis. See
[Gac04] for more on this concept.

For the space L(F, F) of continuous linear mappings and for the particular case E*
these completeness inheritance properties are not valid. However, if E is bornolog-
ical then L(E,F) = L(E,F) and E* = E'.

More generally the question arrises, whether £(_, F) (or in particular (_)*) trans-
forms inductive limits into projective ones. By the universal property algebraically
the dual of a colimit is the limit of the duals: The continuous linear mappings
on a colimit F := colim; F/; correspond uniquely to the families of morphisms
fj + E; — F with (L;,)*(f]) = fy o L;, = f; for all .j < j', i.e. which are
compatible with respect to the connecting morphisms L;., i E; — Ej. These

are the elements in the limit of the L£(E};, F') with connecting mappings (Lg,)* =

L(, F) + L(Ej, F) — L(E;, F). However, this linear (continuous) bijection
L(colim; E;, F) — lim; L(E}, F') is not to be expected an homeomorphism, since
for a typical 0-nbhd. B® in E* = L(E,K) with B C E bounded, we would have
to find 0-nbhds. BJ(»’ in Ej* with B° O E* N HjeJ B]Q and such that B;? = EJ*
for almost all j. This is possible, if E is a regular inductive limit (i.e. colim; E;
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formed in cbs), since then B = /(B;) with B; C E; bounded for some j and hence
B° D ((Lj)*)*l(B;?), but not in general.

Note, that the representation £ = hﬂ B E'p of a bornological space is such a regular
inductive limit.

Note furthermore, that if (_)* is supplied with the bornology of equicontinuous sets,
then (colim; £;)* = lim; EY in cbs: In fact, let U be a typical bounded set in £*,
ie. U C E := colim E; a 0-nbhd. Then each U; := (1;)"(U) C E; is a 0-nbhd
and the image of U? in lim; EF C [[; £ is contained in the bounded set [],(U;)°,
since |(¢;)* (w*)(u;)| = |u*(¢;(u;))] <1 for u* € U and u; € Uj.

We want to consider inheritance with respect to L or L. If E # {0}, then F is
a topological direct summand in L(F, F) and in L(E, F): In fact, let 0 # z € E
and z* € E* with 2*(x) = 1. Then ¢t : K - E, A = A-x has 2* : £ — K as
left-inverse, and hence L(z*, F) : F 2 L(K, F) — L(E,F) has L(:,F) : L(E,F) —
L(K,F) 2 F as left-inverse and the same works for £. And similary, F* = L(F,K)
is a topological direct summand in L(F, E), via L(F,t) with left-inverse L(F,z*)
and the same way F’ = L(F,K) is a topological direct summand in L(F, E). Thus
in order to show some topological property for L(E, F) it is reasonable to assume
the property for F' and for £*. Consequently a first step in answering this question
is to consider inheritance with respect to (_)*.

Completeness of dual spaces

In this section we consider completeness conditions for the (strong) dual and we
introduce the classes of infra-co-barrelled and of cy-barrelled space in this connec-
tion.

Recall the Banach Steinhaus Theorem [KriO7b, 5.2.6], by which L(E, F') is sequen-
tially complete if E is barrelled and F' is sequentially complete:

Let (fn)n be a Cauchy-sequence in L(E,F'). Then (f,)nen is Cauchy pointwise,
hence pointwise convergent to some function f., : £ — F, which is continuous by
the Banach Steinhaus Theorem. For each bounded B C F and closed absolutely
convex 0-nbhd U C F there exists an n with (f,, — fn)(B) C U for n',n” > n.
Taking for each = € B the pointwise limit for n” — oo yields (f,y — feo)(x) € U.
Thus f, = feo in L(E, F).

4.1 Example of a non-complete dual space.

Let F be a barrelled non-complete space (in [Val71] even normed bornological bar-
relled spaces are constructed, which are not ultra-bornological and hence not even
locally complete). Let E := (F*,0(F*, F)). Thus F = E* and by the barrelledness
of F the o(F*, F')-bounded subsets are the equicontinuous ones. Hence the topol-
ogy B(E*, E) coincides with the topology of uniform convergence on equicontinuous
sets and hence with the given non-complete topology of F'.

If F is infra-barrelled, then the dual E* is at least locally complete: In fact, under
this assumption the S(E*, E)-bounded sets are equicontinuous and Ef, = (Ey)*
is complete as dual of a normed space. In order to improve this result, we need the
following characterization:

4.2 Proposition (See [Jar81, 10.2.4 p.198], [Woz13, 2.39 p.21]).
For any lcs E we have:

1. E is locally complete;
< 2. The absolutely convex hull of every Mackey-0-sequence is relatively compact;
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< 3. The absolutely convex hull of every o(E, E*)-0-sequence is relatively compact
in (E,0(E,E*)).

Proof. (:>) Let ,, = 0in o(E, E*). Then {z,, : n € N} is (weakly-)bounded
and by locally completeness bounded in some closed Banach disk B. Thus 7" : /! —
E, A= 30 Anp, is well-defined and maps the unit ball of' onto

Ay = {f: Ann © [I\]er < 1} C B.
n=0

It is o(¢1, cp)-o(E, E*)-continuous, since 2*oT = (z*(xy))nen € ¢ C (£1)* for each
x* € E*. Since of* is o(¢}, co)-compact, its image Ag is o(E, E*)-compact, abso-
lute convex, and contains the x,,. Hence their absolutely convex hull is relatively
compact for o(E, E*).

(:) Let z, be a Mackey-0-sequence. By the o(E, E*)-closure C of the
absolutely convex hull of {z,, : n € N} is o(E, E*)-compact and hence o(F, E*)-
complete. Since closed absolutely convex sets in E are o(F, E*)-closed, C is even
complete in E by the next lemma . Since {z, : n € N} U {0} is compact, its
closed absolutely convex hull is precompact (by the proof of [Kri07b, 6.4.3]) and
thus compact by completeness of C.

(:) Suppose there is a closed absolutely convex bounded set B, such that Ep

is not complete. Choose & € Ep \ Ep and iteratively construct a sequence (x;);ey
in Ep such that
n
o3

< 1
B—3n+2

and hence & = 221 z;. Now let y, := 2"x,, € Ep and observe that

n n—1 2 n+1
bt <7 (- L + - X, ) < (5) o

Hence & = Y22 ™y, is in the closure of the absolutely convex hull of the
(Mackey-)0-sequence (y,) in the Banach space Ep. Consider the initial topol-
ogy 7' with respect to the inclusion ¢ : Eg ~— E. Since B is closed in FE, it is closed
for 7/, thus (Ep, ||-||p) has a basis of 7/-closed sets. By the lemma below the
extension 7 : Eg — E is injective. Since i() = > 27"y, is in the (by )
compact closure of the absolutely convex hull of {y, : n € N} C B in E, we get
T € EN B C Ep, a contradiction. O

4.3 Lemma (See [Jar81, 3.2.4 p.59]).

Let 7 > 7' be two le-topologies on a vector space E and assume that (E,T) has a
0-nbhd basis U consisting of T'-closed subsets.

If (z;); is T-Cauchy net in E, which converges to o, with respect to 7', then it does
so with respect to T.

Thus, if a subset of E is (sequentially) complete for 7/, then it is also for T.

Proof. Cf. the proof of the corollary to : Let (z;); be a T-Cauchy net,
which is 7/-convergent to T, and let U € U. Thus there exists an 4 such that
xz; — xin € U for all #/,i"” = 1. For fixed ¢', the net i/ — z;; — x;» € U is 7-Cauchy
and 7/-convergent to Ty — Tso. Since U is 7/-closed we get z; — 200 € U, i.e. (x;);
is T-convergent to .. [

4.4 Lemma (See [Jar81, 3.4.5 p.63]).
Let (E,7) be an lcs, T € L(E,F) be injective and 7" < 7 be the initial topology
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on E with respect to T. If (E,T) has a 0-nbhd-basis of 7'-closed subsets then the
extension T : E — F to the completions is injective.

Proof. Let # € ker T C E. Thus there exists a net (z;); in E convergent to # in
E and hence T'(z;) = T'(z;) — T(Z) = 0. Thus z; — 0 with respect to 7/ and then

T =7-lim;_, x; =0 by . O

4.5 Proposition (See [Jar81, 12.1.4 p.250], [Woz13, 2.64 p.30]).

The dual E* of an lcs E is locally complete iff (E, u(E, E*)) is INFRA-Co-BARRELLED,
i.e. every 0-sequence in (E*, B(E*, E)) is equicontinuous.

Thus for infra-co-barrelled spaces the dual is barrelled iff it is infra-barrelled, and it
s ultra-bornological iff it is bornological.

Furthermore, an les E is called ¢p-BARRELLED iff every O-sequence in (E*,0(E*, E))
is equicontinuous, see [Jar81, 12.1 p.249].

Proof. (=) Let z}; — 0 in (E*,5(E*, E)) and hence in (E*,o(E*, E)). So their

closed absolutely convex hull K is o(E*, E)-compact by (:>) Thus K,
is a 0-nbhd of u(F, E*) and 2}, € K C (K,)°.

(<) By (:>) it is enough to show that for any Mackey-0-sequence (z7)
in E* its absolutely convex hull A is relatively compact w.r.t. S(E*, E). Any such
sequence is equicontinuous (by the infra-cp-barrelledness), hence A is relatively
compact for o(E*, E) and thus the closure of A is complete. Since S(E*, E) has
a 0-nbhd basis of o(E*, E)-closed sets (B°), it is also S(E*, E)-complete by .
Since {z} : n € N} U {0} is B(E*, E)-compact, we get that the closed absolutely
convex hull of the sequence is precompact and hence compact w.r.t 5(E*, E).. O

4.6 Proposition (See [Jar81, 11.2.4 p.222]).
E infra-barrelled = E* is quasi-complete.

Proof. Let B C E; be bounded. Since F is infra-barrelled, B is equicontinuous, i.e.
B C U° for some 0-neighborhood. The polar U? is o(E*, E)-compact by , hence

o(E*, E)-complete and therefore also 5(E*, E)-complete by , since B(E*, E)
has a basis of o(E*, F)-closed subsets (B°). O

Barrelledness and bornologicity of dual spaces

In this section we give conditions that garantee barrelledness or ultra-bornologicity
of the strong dual. For this we show that the (appropriate) duality functor preserves
reduced projective limits and products. We introduce the classes of (infra-)countably-
barrelled spaces and discuss their relationship to the other barrelledness conditions.

If order to show that E* is bornological, we have to represent E* as inductive
limit of normed spaces. So it is reasonable to assume that E is representable as
projective limit of normed spaces. Because of E* = E* (at least bornologically)
it is no big restriction to assume that E is complete and hence F = l'mU Ey, a
reduced projective limit of Banach spaces. Remains to check, whether

B = QiFmEU)* ;I%(EU)*.
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For any functor F we have a natural morphism F(lim X;) — lim F(X;) by the
universal property of the right side.

F(Xi
\ / F(pr;)

hmk Xk f(limk Xk)

F(Xa)

4.7 Lemma. Reduced projective limits (See [Kri07a, 3.25]).

Let @11 X; be a reduced projective X; Y;
limit, and f; : X; — Y; be con- fi

tinuous linear mappings with dense pr; lim fi pr;
tmage which intertwine with all con- @1 X o hm Y;

necting mappings. Then the canoni- jry %
cal mapping 1'&11, fi has dense image. X, far ;

Proof. Let z € @Z Y; be given. Take an arbitrary 0-neighborhood pr;1(2 U,).
Since f; has dense image we may find an z; € X; with f;(x;) — pr;(2) € U;. Since
the first limit is reduced we can find an « € E with pr;(z) — 2; € f;'(U;). But
then

pr, (lim fi(2) - 2) = (fy 0 pri)() = filws) + filws) - pri(2) € 20,
ie. @1% fi has dense image. O

4.8 Lemma. The dual of products (See [Kri07a, 3.20]).
The functor (_)* : les — cbs®P preserves products, where E* is considered with the
bornology of equicontinuous sets.

Here cbs denotes the category of convex bornological spaces with those linear map-
pings, which map bounded sets to bounded sets, as morphisms.

Proof. By the general argument above we have a mapping [[, £ — ([[; £i)*,
where []; E denotes the coproduct in cbs and hence the product in ¢bs’”. Since
[, E: obviously separates points in [[, E} this mapping is injective. Let us show
that it is a bornological quotient map, i.e. bounded sets in the image are im-
ages of bounded sets. This implies that it is a bornological isomorphism. So let
(I, Ui)° be a typical bounded:=equicontinuous subset of (][, E;)*, i.e. the U; are
O-neighborhoods of E; and U; = E; for all i ¢ J, where J is a finite subset of I.
Let T € ([[, Ui)°. Then T'(x) = 0 for all = (x;); with 2; = 0 for all j € J (use
that every multiple of such an x belongs to [[, U;). Let T, :=Toinj, € U? C Ef
for all i. Then T'= 3", ;T € [[;c,; U7 and [];.; Uy is bounded in [, E}. O

4.9 Lemma. The dual of reduced projective limits (See [Kri07a, 3.27]).
The functor (0)* : les — cbs®F preserves reduced projective limits, where E* is again
considered with the bornology of equicontinuous sets.

Proof. So let £ := @Z FE; be a reduced projective limit. As in the proof of
we have a natural mapping hgql Ef — (@1 E;)*. Since all projections pr; : E — E;
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have dense image the dual cone pr} : Ef — E* consists of injective mappings only.
Let z* € E* be given. Then there has to exist an ¢ and a 0-neighborhood U; C E;
with *(pr; 1 (U;)) € D := {\ € K: |[\| < 1}. In particular z*(kerpr, |g) = 0 and
hence there exists a linear z7 : pr,(E) — R with z* = z} o pr; = prf(z}). Since
x¥(U; Npr;(E)) = 2*(pr; 1(U;)) € D we may extend x} to a continuous functional
in U2 C (E;)* on the closure E; of pr;(E). Thus the union of all images prf((E;)*)
is E*. Moreover the same argument shows that every bounded:=equicontinuous set
(pr; ' (U;))? is the image of the bounded set U under pr. From this it is clear that
(l&nl E;)* is the injective limit in cbs, since any family of bounded linear mappings
T; : B} — F that commute with the connecting morphisms can be extended to a
bounded linear mapping T : E* = |J, pr} (E}) — F. O

In particular, £ = @U Ey is a reduced projective limit, so (E)* = @U(EU)* =
li U Ef;. as convex bornological space (with respect to the equicontinuous bornol-
ogy). But this does not imply that it is true for the strong topology and this

topology on (E)* need not be bornological.

What about infra-barrelledness of E*?

Let V C E* be a bornivorous barrel, so V' absorbs every bounded set in £* and,
in particular, the polars U° of (closed absolutely convex) 0-nbhds U in E. From
K -V D U° we conclude, that V,, C K - (U°), = K - U, i.e. V, is bounded, and
thus (V) is a 0-neighborhood, but not necessarily (contained in) V', since S(E*, E)
need not be compatible with duality (E*, E).

4.10 Proposition (See [Tre67, p373], [Kri07a, 1.47]).
The strong dual of any semi-reflexive space is barrelled.

An lcs E is sometimes called DISTINGUISHED iff E* barrelled, see [Jar81, 13.4.5
p-280].

Proof. Let V' be a barrel in E. Since E is semi-reflexive the strong topology
is compatible with the duality, and hence V is also closed for the weak-topology
o(E*, E) by [Kri07b, 7.4.8]. We show that the polar V, is a bounded subset of E
(which implies that V' = (V;)? is a O-neighborhood in E%). For this it is enough to
show that V,, is bounded in o(E, E*): Since V is assumed to be absorbing, we find
for every z* € E* a A > 0 with * € AV. Thus |z*(V,)| < A. O

4.11 Proposition (See [MV92, 24.23 p.267], [Woz13, 3.52 p.56]).
The strong dual of any complete Schwartz space is ultra-bornological.

Proof. Let E be a complete Schwartz space. By it is semi-Montel, hence
B(E*,E) = 1.(E*,E) = Tpc(E*, E), by completeness. By the theorem of
Alaoglu-Bourbaki U is o(E*, E)-compact (and even 7,.(E*, E)-compact) for all
0-nbhds U and therefore by [Kri07b, 7.4.17] is a Banach disk. The inclusions ¢y :
Ef. — (E*,7.(E*, E)) are bounded=continuous and therefore n > 7.(E*, E) >
o(E*, E), where n denotes the ultra-bornological final locally convex topology on
E* generated by these mappings.

To see the converse 7.(E*, E) > 1, we choose 0-nbhds V' C U such that U° is
compact in FEj, (by ) By continuity of tyo : Ej. — (E*,n) the polar
U° is compact in (E*,n) and therefore id : (U°,n) — (U°,0(E*, E)) is a homeo-
morphism, i.e. o(E*, E) = n on U°, and, since v(E*, F) is the finest such locally

convex topology, v(E*, E) > n and v(E*, E) = 1.(E*,E) = 1.(E*, E) by
and completeness. O
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4.12 Definition (See [Jar81, 12.2 p.251]).

An lecs E is called (INFRA-)COUNTABLY-BARRELLED (or (QUASI-)Ro-BARRELLED)
iff every countable intersection of closed absolutely convex 0-nbhds is a 0-nbhd
provided it is (bornivorous) absorbing.

By the following proposition we get:
(infra-)barrelled = (infra-)countably-barrelled = (infra-)co-barrelled,

4.13 Proposition (See [Jar81, 12.2.1 p.252]).
Let E be an lcs. Then

1. E is (infra-)countably-barrelled;
< 2. For any les F every (B )o-bounded sequence in L(E, F) is equicontinuous;

< 3. For any Banach space F' every (8 )o-bounded sequence in L(E, F') is equicon-
tinuous.

Here 8 denotes the topology of uniform convergence on each bounded set and o that
of pointwise convergence.

Proof. ( = ) Let T,, € L(E, F) be a sequence as considered in . Let V be
a closed absolutely convex 0-nbhd in F'. For every finite (resp. bounded) set B C E
there exists a p > 0 such that |J,,c Tn(B) C pV. Thus U := (), o5 T, ' (V) is an
absorbing (resp. bornivorous) absolutely convex set, hence a 0-nbhd by . Since
T,.(U) CV for all n, we get that {7}, : n € N} is equicontinuous.

(2]=[3)) is trivial.

( = ) Let U = (1,,cy Un be absorbing (resp. bornivorous) with U,, absolutely
convex closed O-nbhds. Let F := {# € EN : x is finally constant}. The subset
V' i= FN]],enUn is absolutely convex and absorbing (since U absorbs the finite
set {z; : j € N} for x € F)in F. Let T,, : E — F be given by = — (z;)iex
with z; ;== « for i < n and x; := 0 for ¢ > n. Then T,(,.,,U;) € V and hence
T, = wyol, : E— F — I/TT/ is continuous. Since U is absorbing (resp. bornivorous),
the set {T}, : n € N} is o(resp. B)-bounded (B C AU = T, (B) € AV), hence
equicontinuous by , so there exists a 0-nbhd W C E with 27, (W) C 1ty (V) N
Fy =w (V) foralln. ThusVw € W v € V : 2T, (w) —v € kerpy =[50 AV CV
and, in particular, 2w = 2(pr,, (T, (w))) € pr, (v) + pr,,(V) C 2U,, i.e. W C U, for
all n € N, hence W C U and we are done. O

4.14 Lemma (See [Jar81, 12.2.2 p.252]).
Every locally complete infra-countably-barrelled lcs is countably-barrelled.
Every locally complete infra-co-barrelled lcs is cq-barrelled.

Proof. Let V' =,y Vi be absorbing as required in the definition . SoVisa
barrel, hence absorbs Banach-disks by the Banach-Mackey-Theorem (See [Kri07b,
7.4.18]). Since in locally complete lcs every closed bounded absolutely convex
set is a Banach-disk, V' is even bornivorous, hence a 0-nbhd by infra-countably-
barrelledness.

The same proof works for (infra-)cp-barrelledness with V,, := {z}}, for a given
0-sequence z; in E%, cf. the proof of :> in . O
Remark.

We have shown the following implications, where the dotted ones are valid under
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the assumption of ¢>°-completeness:

ulta-bornological

barr ~““bornological

countably-barrelled o “infra-barrelled

co-barrelled ‘.iﬁ'ffEI#'CouIltably—barrelled

- “infra-co-barrelled

Duals of Fréchet spaces

In this section we describe the property (DF), which the strong duals of Fréchet
spaces have, and which garantees in turn that their strong dual is Fréchet.

4.15 Lemma (See [MV92, 25.6 p.279], [Jar81, 12.2.4 p.253)]).
Let E be metrizable. Then E* is countably-barrelled.

Proof. Let (U,), be a 0-nbhd-basis of E. Then US C E* is bounded. Let V,, be
closed absolutely convex 0-nbhds in E* and V, := ﬂnEN V,, be bornivorous.

Recursively we will find p; > 0 and B; C E bounded such that
1
o (e}

BY C Vi and p;U C >z
For (n = 0) take a bounded set By C E such that By C Vp and find a pg > 0
with poU§ C %Voo N Bg. For the induction step choose p, Uy C Q,L%VOO N ﬂi<n By.
The set K := Zign piU? is absolutely convex, o(E*, E')-compact, and contained in
Zign ﬁVw - %Vn. Let V' C %Vn be a o(E*, E)-closed absolutely convex 0-nbhd
in E*. Then B,, := (V' + K), is bounded and B? = V' 4+ K C V,, by the bipolar
theorem.
Thus W := ), B, C E* satisfies W = (W,)° and absorbs each U?, hence W, is
bounded and thus (W,)° = W C V is a 0-nbhd. in E*. This shows infra-countably-
barrelledness. Since E* is complete, countably-barrelledness follows by . O

Voo ﬂB}’ for all i, < n.

4.16 Proposition (See [MV92, 25.12 p.281], [Jar81, 13,4, p.280]).
Let E be a metrizable lcs. Then

1. E* is ultra-bornological;
& 2. E* is bornological;
& 3. E* is barrelled;
< 4. E* is infra-barrelled.

We will give an example (of a non-distinguished A!(A)) in for which these
equivalent conditions are not satisfied.

In [Jar81, 13.4.2 p.279] it is shown that for metrizable E the bornologification
B(E*, E)porn of B(E*, E) is B(E*, E*™).
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Proof. (1]=[2]=[4)) are obvious.
( = ) and ( = ) since E* = E’ is complete.

( = ) Let V' be absolutely convex and bornivorous in E*. Thus for every
bounded=equicontinuous set U2 (where the U, from a 0-nbhd basis in F) there
exists a A\, > 0 with V' D 2A,U?. Let U be the absolutely convex hull of UnEN UL
Then U C 1V. The absolutely convex hull Ay of Uj<n A;U7 is o(E™, E')-compact
(by exercise 34 to [Kri07a]), hence closed in 8(E*, E) > o(E*, E).

We claim that U C V: Let xy € E*\'V C E*\2U. Since A, is closed there exists
a 0-nbhd V, C E* with (25 + V,)) N 24, = 0. Let W i= (), cn(Ve + Ap). Let
k € N. Then Up C iAn for all n > k. Choose uy > 1/, with U? C u,V,, for
all n < k. Thus U C pi(V,, + Ay) for all n, i.e. U C p,W, i.e. W is bornivorous
and hence a 0-nbhd in E* by [4.15]. We claim that (z3 + W) N A, = 0 for all n
and hence z ¢ U, since otherwise ) # (x5 +W)N A, C (xf 4+ V, + A,) N A, ie.
v € Vo, Ja,a’ € Ay a =xf+v+a. Hence zf +v = a —a € 24, and thus
(xg 4+ Vi) N2A4,, # 0, a contradiction.

So the barrel U C V. Since E* is assumed to be barrelled, we are done. O

4.17 Definition. (DF)-spaces (See [Jar81, 12.4.1 p.257], [M'V92, 25.6 p.279)).
An les E is called (DF)-SPACE, iff it has a countable base of the bounded sets
and is infra-countably-barrelled (see ), i.e. every bornivorous subsets which is

the intersection of countable many closed absolutely convex 0-neighborhoods is a
0-neighborhood.

An lcs E is called (df)-spACE iff it has a countable base of its bornology and is
infra-co-barrelled.

4.18 Proposition.

1. The dual of any Fréchet space is a complete (DF') space
(See [MV92, 25.7 p.280], [Jar81, 12.4.5 p.260]).

2. The dual of any (DF) space is a Fréchet space
(See [MV92, 25.9 p.280], [Jar81, 12.4.1 p.257]).

In [Jar81, 12.4.1 p.257] it is shown that: E* is Fréchet < (E, u(E, E*)) is (df).

Proof. () This is , since for the bornological space E the dual E* = E’ is
complete, and a countable basis of the bornology is given by the family U, where
{U, : n € N} is a 0-nbhd basis of E.

() By assumption a (DF)-space F has a countable base {B,, : n € N} of bornology
and hence (E*, B(E*, E)) a countable 0-nbhd basis { B2 : n € N}, so is metrizable.
Let (x}),, be Cauchy in E*. Then x} converges pointwise to some linear =% : E —
K. Let V;, := {z},}, and Vo := [, V- Since (2},), is Cauchy, it is bounded,
thus contained in A\ B}, for some A\, > 0. Hence By C Ag{z}}o = AV, and so
B C MV, i.e. V is bornivorous and hence a 0-nbhd since F is infra-countably-
barrelled. Furthermore, z € (V,,)° C (V)?, hence 2% € (V& )? C E*. And since
(by ) the Cauchy-sequence z} converges to z¥, uniformly on By for any k € N,
we get that =) — x% in E*. O

4.19 Corollary (See [MV92, 25.10 p.51)).
The bidual of any Fréchet space is a Fréchet space. O
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Duals of Kothe sequence spaces

In this section we describe the duals of Koéthe sequence spaces and characterize
reflexivity (and the Montel property) of A>*°(A4) (and of ¢y(A)). We also give an
example of a Kothe sequence space, whose strong dual fails to be (infra-)barrelled.

4.20 Seminorms of AP(A)* (See [MV92, 27.13 p.314]).
Let A be countable, A :== NP(A) for 1 < p < oo or A :=cg(A) for p=o0. Then the

Minkowski-functionals (BY)® for BY := {z : ||z/b|l» < 1} (see | 2.10]) are given by
1 1
Iyl =l bl for b€ A=(4) and 5+ + =1,
and are a basis of the seminorms of

A {y e KN : Wb e A®(A) : ||yl < oo} - {y eKN:JaeA: |yl < oo},
where ||||% is the Minkowski-functional of {z € X : ||z|ls < 1}0 (see )

Proof. By we have \* 2 X' () via (z = 372 25 y;) < v.

By the sets BY := {z : ||z/blle» < 1} (resp. By : B Nco(A)) for b € A (A)
(wlo.g. ¥j : b; > 0) form a basis of the bornology on AP(A) (resp. co(A)). Let

y.E )xlb()\) >~ \* and % + % := 1, then by the Minkowski-functional p(Brye is
given by

sup [y(@)] = sup |>" 95| = sup{ |30 205 ¢ lle/bller < 1} = lly-blles = 1yl
zEDB =0 j J

zeB}

M2 {ye KN :Vbe A*(A): |lylls < oo}, since y € KN acts as bounded(=continuous)
linear functional < Vb € A*(A) : ||y|lp < oc.

M{yeKV:3ae A:|ylli < oo}, since A* = J,c 4 A(v.yos Where Uq := {z €
A |lzlla < 1}, and ||||# is the Minkowski-functional for (U,)° by [ 1.24]. O

4.21 ¢o(A)** 2 A°°(A) (Sce [MV92, 27.14 p.314)).

Proof. By the family (||_[|s)sere(4) is a basis of seminorms for co(A)* and

co(A)" = {y €KY : Iyl i= D lysbsl < oo Wb € A=(4)}. =
jeEN
(2) Vb € A°(A): y > > enysbj 1 in co(A)™.
() Let z € co(A)™: Vy € co(A)": y=3_,yj¢€5. =
2(y) = 2(Y wies) = Zy] ZW;
j =:$J

The family (U2)q4ca is a basis of the bornology for co(A)* (see [4.18.1 )

1.24 ,
Va € A: oo > sup |z(y)| sup{Z‘y—Jajmj‘ ‘ < 1} sup |zja;/,
yeUs —la; j
ie. x € A*(A).
Thus co(A)** = A>°(A) as linear spaces and, by the closed graph theorem, also as
lcs. O
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4.22 Reflexivity of A>°(A) (See [MV92, 27.15 p.315]).
Let A be countable. Then
1. ¢o(A) = A>®(A);
< 2. co(A) is (M);
< 3. co(A) is reflexiv;
& 4. A>®(A) is reflexiv.

Proof. (:>:>) by and .

(:>) by A®(A) = ¢o(A)** and duals of reflexive spaces are reflexiv by

[4.26]
. , see also | 3.
(@1=[1]) co(A) € A2 (A) closed =L o(A) semi-reflexive = co(A) =

co(A)™ = A*(A), by [4.21] O
For 1 < p < oo the space AP(A) is reflexive by and thus distinguished by

. What about A!(A)?

4.23 Distinguishedness of A'(A) (See [MV92, 27.17 p.316)).
Let A = {a™® : k € N} be countable and Ry :={t € R: ¢ > 0}.
Then \(A) is distinguished <

& VD:N—= R, 3D :N— R, VC > 0Vn In' Vj:
- ok a®
. ‘n J < J . < !/ .
mm{Ca] ,sup o) } < max{—D kE<n }

i
keN k k

Proof. Since E := A (A) is Fréchet, E* has a countable basis {U2 : n € N} of its
bornology. Hence a basis of the bornivorous disks is given by the absolutely convex
hulls of |, ex UP with e : N = R. Thus E* is bornological iff

(1)  Ve:N— R, 3beA¥(A): (BL)° C <UskU,§> ) (by [2.10)).
k; abs.conv.
2.9
(=)Let D:N —= Ry, e :=1/Dy, = 3b € A*(A) as in D' : N — R;:
w.lo.g. b:j— infy Dfﬁ/agk). Let C >0, n e Nand £ : j — min{Ca§n),1/bj} =
ceBH ={ye |y bllee <1} by = In' Vk < n' Ik € UL 3N, € R:
Yken Ml € Tand €=, A" by [1] By Ug ={y: Izl = llyllz <
1}.
= Vj: min{Caﬁ-n),sipaﬁ-k)/DL} =& <) gl < gg;l&fl < gg;aﬁk)/l?k.

k<n’

(<) Let ¢ : N — Ry, Dy := 2F/e;, = 3D’ : N — R, as above. Let b: j —
2.9 2.10 4.20

infy, Dk/a;k) be A>*(A) B} bounded. Let & € (B})° &5 < bij =

supy, agk)/DL and Ja € A: { € By ), = 3C >0 3In: |§] < min{Cagn)J/bj} <

maxj<n aglk)/D;C for some n’ by assumption. = Vj 3k; < n': |§;| < a§-kj)/ij. Let

fk:jl—>{£j for k = k;

0 otherwise
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1.24
2Fek € 2P 5-Up = ey UR for k <n' =

/
n

=Y =% 2%2’@5’“ c <U6kU,§>
k=1 k

abs.conv.
k=1

Since ¢ € (B})° is arbitrary we are done. O

4.24 None-distinguishedness of A'(A) (See [MV92, 27.18 p.318)).
Let A= {a®) : k € N}, where the a'®) : N2 — R, satisfy the following conditions:

1. Vi>kVj: a(k) al?

’LJ

2. Vm : hmjﬂooa /a(m+1)

Then A\Y(A) is not distinguished.

4.23
Proof. Suppose /\1(A) is distinguished Vk:Dp:=1,C:=2,n:=0

ID": N — Ry In’ Vi, j : mln{2a( ) supa /D’} < maxa(?

k<n’
For i := n’ we get 2a! ’). > a( ,) = MaXg<p/ a(]f)- by () and hence
( +1 (k) © _ @)
Vj:a,, /D;L < supa . /D' < MAX a, ;= Gy = Ay 55
a contradiction to () for m :=n/. O

4.25 Example (See [MV92, 27.19 p.318]).
Let GE? =3 for k <i und ag? = 4% fork > i and A := {a(k’) : k € N}
Then AY(A) is not distinguished, so (A\(A))* is (DF) but not infra-barrelled.

Semi-reflexivity and stronger conditions on dual spaces

4.26 Proposition (See [Jar81, 11.4.5 p.228]).
E reflexive = E* reflexive.

Proof. By assumption dg : F — E** is an isomorphism. Thus also (0g)*

(E™)* = B*. We claim that idg. = (0)* 00n- : B* — (B*)™ = (E**)* —= E*;
((0p)" 0 dp+)(x")(x) = (6r)* (0~ (27))(z) = 0p-(27)(0p(2)) = dp(x)(z") = ™ (x).
So g« = ((0g)*)~t = ((6g)~1)* is an isomorphism. O

4.27 Proposition (See [Jar81, 11.5.4 p.230]).
E Montel = E* Montel.

Proof. Let E be Montel and B C E* bounded. Thus B is equicontinuous (since
E is infra-barrelled by definition) and therefore relatively compact with respect

to Tpe(E*, E) by the Aladglu-Bourbaki Theorem . Since E is semi-Montel
Tpe(E*, E) = B(E*, E), so E* is semi-Montel.

Since FE is reflexive by , the dual E* is reflexive by and hence is
(infra-)barrelled by . Together this shows that E* is Montel. O
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4.28 Proposition. Schwartz versus quasi-normable spaces
(See [Kri07a, 6.5], [Jar81, 10.7.3 p.215)).
An les is Schwartz iff it is quasi-normable and every bounded set is precompact.

An les E is called QUASI-NORMABLE (see [Jar81, 10.7.1 p.214]) iff
VYU 3V Ve > 0dB bounded : V C B +¢U.

Note that any normed space is quasi-normable. In fact we may take V =B :=U.

Proof. In the proof of we have shown that each bounded set in a Schwartz
space is precompact.
By definition an lcs F is Schwartz iff

YU 3V Ve > 03M finite: V. C M + € U.

Thus every Schwartz space is quasi-normable. And if every bounded set B is
precompact, then there is a finite set M C FE such that B C M + ¢ U, and we have
the converse implication. O

4.29 Counter-example.
Note that E := RX is Schwartz and even nuclear for all sets X by | 3.73.1|.

However, if X is uncountable then the dual E* = R(X) is not quasi-normable (hence
neither Schwartz nor nuclear).

Suppose E* were quasi-normable. Recall that the typical seminorms on R(*X) are
given by f > cu|fz| with ¢; > 0, see [Kri07b, 4.6.1]. Thus for the seminorm

with ¢; := 1 for all x there exist another seminorm given by some corresponding
¢z > 0 such that for all € > 0 there is some bounded set B, with

&) {f: Yl <1} cBote {ilfla =Y Ifl <1}

x

For some & > 0 the set I := {z : ¢, < 3} has to be (uncountably) infinite. Now

choose ¢ = g. Then B, is contained in a finite subsum, so there is some = € [

with pr,(B:) = {0}. Since § - e, is an element of the left hand side of , there
has to exist a b € B, and an f with ||f|la < 1 with 6 - e, = b+ e - f and hence
pr,(b) > 6 — § > 0, a contradiction.

4.30 Proposition (See [Jar81, 10.7.1 p.214]).
Any les E is quasi-normable iff VU 3V C U : (U°, B(E*, E)) — E}. is a topological
embedding.

Proof. This inclusion is continuous (and then an embedding, since E,, — E} is
continuous) iff YA > 0 3B bounded closed absolutely convex with U° N B° C AV°.
(<) (B4+U)CUNB°CAVe =V CA(B4+U)?),=AB+UCAB+2)U.

(=) VCB+A =2V°22(B+AU)° 2 B°N(AU)° = 2\V° D U°NAB°. O

4.31 Proposition (See [Jar81, 12.3.1 p.254]).

Let (An)nen be an absorbent (bornivorous) sequence of subsets in E andU a 0-nbhd
basis consisting of absolutely conver sets.

Then the absolutely convex hulls of | J,~, Ax N Uy with Uy, € U (resp. the absolutely
convex sets (o (Ar+Ux)) form a basis for the finest locally convex topology, which
coincides with the given one on each Ay,.

By an ABSORBING (resp. BORNIVOROUS) sequence (A, )nen in an les E we under-
stand a sequence of absolutely convex subsets A,, C E with Ay := {0}, 24,, C A,41,

andreas.kriegl@univie.ac.at © July 1, 2016 69



4.33 SEMI-REFLEXIVITY AND STRONGER CONDITIONS ON DUAL SPACES

and such that each finite (resp. bounded) subsets of E is absorbed by (and hence
contained in) A,, for some n (See [Jar81, 12.3 p.253]).

Proof. It is easy to see, that these absolutely convex hulls form a basis for a locally
convex topology 7, which is finer than the given one and which coincides with the
given one on each A,: In fact 7* — E is continuous (U := U and use E = Uk Ax)
and A, — 74 is continuous (A4, N U A NUL 2 A, N A, N UR).

Let now 7 be another topology with that property and V' be an absolutely convex
0-nbhd for 7. Thus for each n there is a 0-nbhd U,, with A,, "U,, C V, hence the
absolutely convex hull of | J,, A, N U, is contained in V, i.e. A>T,

Remains to show that the two bases are equivalent:
(2) Let V := y>o(Ar + Uk). Choose Vi with ((Vi)?)o € U and U, € (), Vi-
Since A,, C Ay for all k > m, we get Ay, VU, S (s Ak N e Ve € ﬂk(Ak +
((Vk)?)o) C V, thus V contains the absolutely convex hull of {J,, An, N U},
(S) Let now U be the absolutely convex hull of (J,,~; Am N Up,. Let &y, :=2n 4+ 1.
Then A, 1, C 27" A}, and there exists V;, with V,, € 27Uy, and 2((V;i11)%)o C Vi,
We claim that V := (1, <, (An+Viy2) CU: Letz € V, ie. x = y,+v, withy, € A,
(thus yo = 0) and v, € Vyi9. Thus z = v, + >oi @i, where z; := y; — y;i—1. So
r; € Aj+A;_1 C A,;_,_l and r; =v;_1—v; € Vie1 —Viya C V. Hence z; € Ai+1ﬁVi
for all 1 <4 < n. By the properties of A := (4,,), we have z € A,, for some n,
hence © — y,, = v, € 24, N V10 C Apyo N Vg, thus

n n n+1
T = sz + v, € ZAi+1 ﬂ%+An+2mVn+1 C 227i . (Akl ﬂUkl) cU. O

i=1 =1 i=1

4.32 Proposition (See [Jar81, 12.3.5 p.255]).

Let E be (quasi-)countably-barrelled and (An)neny an absorbent (bornivorous) se-
quence of subsets in E. Let 0 < p, / oo. Then an absolutely convex set U is a
0-nbhd in E iff U N pp Ay, is a 0-nbhd in p, A, for each n.

Proof. (<) Let U be absolutely convex and U N p, A, a 0-nbhd in p,A,, for
each n. So let U, be absolutely convex 0-nbhds in E with U, N p, A, C U. Thus
V =, UNpnA,+U, is an intersection of countably many closed absolutely
convex 0-nbhds. Let B C E be finite (resp. bounded). Thus B C pA,, for some
p > 0 and m € N. Since p, / oo we may assume that B C p,, A,,. Choose o > 1
with B C oU,, for all £k < m. Then

B Co(Upm NpmAm) Co(UNpmAn) Co(UNpgAg) for all k > m.

Thus B C o((UNprAg)+Uyg) for all k, and hence B C oV Since F is (quasi-)countably-
barrelled, V is a 0-nbhd. Thus it suffices to show V' C 3U: Let x € V. Take m with
z € pmAm. Then V. C (UN ppAm) +Um C (UN pmAm) +2Up, ie. z =y + 2
with y € U N ppAy, and z € 2U,,. So 2 —y = 2z € (pmAm + U N pAn) N 20U, C
2(pmAm NU,,) C 2U and hence z € 3U. O

4.33 Corollary (See [Jar81, 12.3.6 p.256]).

Let E be (quasi-)countably-barrelled. Then for every absorbent (bornivorous) se-
quence (Ap)nen of subsets in E the induced locally convex topology is the given
one.

Proof. Obviously the final topology induced by the A, < FE coincides on nA,
with the given one. So every 0-nbhd U for this locally convex topology is a 0-nbhd

for the original topology by . O
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4.34 Lemma (See [KriO7a, 3.46], [Jar81, 12.4.7 p.260]).
Every (DF) space is quasi-normable.

Proof. Let {B,, : n € N} be a basis of the bornology and U = (U?), a 0-nbhd.
Consider the equicontiuous sets Ay, := kU° N By = (+U U By)°.
We claim that A := UkeN Ay is equicontinuous: Vk dng > k : By C ng U. Thus

ByN LU = Bin (ngk w)n (Qk By) C Bin (QN;UU B,)c

g Bk N ﬂ(An)o = Bk N Ao g A07

So the absolutely convex hull of UkeN n%U N B, C A,, thus A, is a 0-nbhd in the
(DF)-space E by and , and hence A C E* is equicontinuous.

We claim that U° with the topology induced from S(E*, E) continuously embeds
into Ej, for V := A,: For the typical 0-nbhd %VO in By, we have that the
B(E*, E)-0-nbhd U° N 1 BY in U° satisfies

1 1 1 1
B =ZA.C-AC-V°.
EF TR TR Tk

Thus FE is quasi-normable by . O

4.35 Proposition (See [Jar81, 11.6.1 p.231]).
A Fréchet space is Montel iff E* is Schwartz.

Uu°n

Proof. (=) We use , so for every 0-nbhd B° C E* we have to find a 0-nbhd
C° with B°° C Ef;. being compact. Since E is reflexive by , this means that
for closed bounded B C E we have to find such a C with B in Ec compact. Since
E is Montel, B is compact and hence contained in the closed absolutely convex hull
of a 0-sequence (z,) in E by . Since E is metrizable we find )\, — oo with
(the closed absolutely convex hull C' of) {A,x, : n € N} bounded by [Kril4, 2.1.6].
Then z, — 0 in E¢ (since pc(x,) < %n) and thus its closed absolutely convex hull

in the Banach space E¢ is (pre)compact and contains B.

(<) Since E is Fréchet, the dual E* is complete, hence semi-Montel by .
Thus every bounded=equicontinuous subset of E* is relatively compact. Hence
B(E*,E) = 1pe(E*,E) = v(E*,E) by [3.24] Since S(E*, E) > u(E*, E) always
and (EZ)*" = E = E by [Kri07b, 5.5.7] we have (E*, E) = u(E*, E). The Fréchet
space E is reflexiv, since every continuous linear functional on (E*,3(E*, E)) =
(E*, u(E*, E)) belongs to E by definition of u(E*, E). By ’ 3.18 | and ’4.26‘ E* is

(infra-)barrelled, hence Montel by and thus also E = (E*)* by [4.27 . O

4.36 Lemma. Schwartzification (See [Jar81, 10.4.4 p.203]).
The topology Ts of uniform convergence on £-0-sequences is the finest Schwartz
topology coarser than the given one.

A sequence z} € E* is said to be an £-0-SEQUENCE, iff there exists some equicon-
tinuous set U® with =}, — 0 in Ej,, i.e. =}, is Mackey-convergent to 0 with respect
to the bornology of equicontinuous sets (€ stands for equicontinuous).

We will also write Eg for the SCHWARTZIFICATION (E,7g) of E. Note, that the
topology s is denoted T, and Eg is denoted Ey in [Jar81, 10.4.3 p.203].

Proof.
(E > 7g) since £-0-sequences are equicontinuous.

andreas.kriegl@univie.ac.at © July 1, 2016 71



4.38 SEMI-REFLEXIVITY AND STRONGER CONDITIONS ON DUAL SPACES

Tg is Schwartz by , since for every polar A, of an £-0-sequence z, there exist
An — 00 such that ¢ := A\,z% is still a 0-sequence in Ej5, and hence (4,)° (the
o = [ compact closure of the absolutely convex hull of {z : n € N}) is compact in
Elp yo, where B :={y; : n € N}.

Now let 7 < FE be a Schwartz topology and U be a closed absolutely convex 0-
nbhd with respect to 7. Then by there exists a (7/-)0-nbhd V' C U with
U° C EY,, compact and hence contained in the closed convex hull of a 0-sequence
in Ej,. Since V is also a 0-nbhd in E, this sequence is an £-0-sequence and hence
U = (U°), (since U is also E-closed) is a 7g-0-nbhd. O

4.37 Proposition. Universal Schwartz space

(See [Kri07a, 6.26], [Jar81, 10.5.1 p.204]).

The Schwartz spaces are ea@_cily the subspaces of products of the Schwartzification
of co, or of its completion (co)s = (£, u(£>, £1)).

The first statement is sometimes also called Schur’s lemma, see [Jar81, p.218].
There is however no universal (F'S)-space, see [Jar81, 10.9 p.218].

Proof. In fact by Schwartz spaces have a basis of 0-neighborhoods given by
the polars V := {z} : m € N}, of £-0-sequences (z})nen in E*. Since py(z) =
sup{|zX(z)| : n € N}, the map T :  — (2(z))nen defines a continuous linear
map from E — ¢ and factors over vy : E — Ey as T = T o1y with an isometric
mapping T : By < ¢p. Since (tv)y : E < [ Ev is an embedding, we get an
embedding E < [],, co.

It is easy to see that T : (Ey)s — (co)g is continuous: Let S € £(FE, F) and 3 — 0
in (Fv)* = Fj,. Then S ({y} : n € N},) = {S*(y) : n € N}, and S*(y;;) — 0
in E5. o) € EE‘S,IV)O, ie. é’ € L(Eg, Fs).

It is an embedding, since T* : {1 — (Ey)* = EY,, is a quotient map between
Banach spaces, hence every 0-sequence in the image is the image of a O-sequence in
the domain.

Remains to show that E embeds into the reduced projective system of the (Ey)g:
Obviously E = Eg — yLnV (Ev)g is continuous.

Conversely, let V := {z} : n € N},
with 2} — 0 in (Ey/)* for some V’
and A = {z} : n € N} U{0} C _
(Ey:)*. Since i}, (A)y = 137 (Ay), We i E o
have EV/ ;) AO = LV/(L;/,I(AO)) = &V V=
w (L3 (A)o) = v (V), a 0-nbhd in i

(EV’)S with Lg (AO) = Lg (LV/(V)) = >

v (V), thus L“fl : (By+)s — Evy is con- Ey <— (Ev)
tinuous and hence also ¢y from E C
@V(EV)S into Ey . Y

Thus the identity from (the subspace E of) Jim,, (Bv)s — im  Ey is continuous.
That (co/_\)/g = (£, (€, ¢1)) can be found in [Jar81, 10.5.3 p.206]. O

4.38 Proposition. Nuclearification (See [Jar81, 21.9.1 p.508]).
The finest nuclear locally convex topology coarser than the given one is the topology
T~ of uniform convergence on E-nuclear sequences.

A sequence z7 in E* is called E-NUCLEAR (cf. ), iff for each k € N there is a
0-nbhd Uy, such that (n*z}),en is a O-sequence (or P for 0 < p < co) in Epo (See
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[Jar81, 21.7.1 p.500]).
We will also write Fy for the NUCLEARIFICATION (E, 7y) of E.

Proof. (E > 7y) since E-nuclear-sequences are equicontinuous (take k := 0).

(Tn is nuclear)

By definition the polars of £-0-sequences (ap,)nen form a 0-nbhd basis for En. So
let such an U := {a, : n € N}, be given and put V := {n%a,, : n € N}, CU.

The mapping S : ¢! — Ej, defined by z = (z)new — D, Tn an

. . . . .. " A ——
is obviously well-defined continuous linear and it is onto, since any D

z* € Ef, isin C U for some C' > 0 hence of the form z* ="z, a, is Tl
with (z,,)nen € Cof*.

Similarly we have T': £* — EY,, defined by z + >" n?z, a,. El, > E},
Let D : (' — (' be the (by |3.58)) nuclear diagonal mapping (z,)nen = (=)

and ¢ = (1}))* : B}y, — Ej, the natural inclusion. Thus to S = T o D is nuclear

and thereby S*o.* is nuclear by below and in particular absolutely summing
by . The adjoint S* of a quotient mapping S between Banach spaces is a
topological embedding (use (E/F)* & F°), thus * = (1};)** is absolutely summing
and hence also its restriction Ey — Ey, i.e. (E,7y) is nuclear by .

Now let 7/ < E be some nuclear topology and let U be a closed absolutely convex
7/-0-nbhd, which we may assume to be the unit-ball of a Hilbert seminorm by .
By there exists a fast-falling ONB (e, )nen of Ejyo, ie. VE IV : {nFe, :n €
N} C Ve. Let p:=(£)nenll2 and ay, := pne,. Then U° C ({a, : n € N},)°: For

x* € U° define (x,), € of! by z, := % Then

<Z Lnln, ek> = <Z<x*a en) €n, ek> = Z<x*a en> <en7 6k> = <$*, ek>7
ie.x* =3 xpan € ({a, : n € N},)°.

Since the sets V' from above are also 0-nbhds in E, the sequence (ay,)nen is an
E-nuclear-sequence and hence U = (U?), 2 {a, : n € N}, is a 7n-0-nbhd. O

4.39 Proposition (See [Jar81, 12.5.8 p.265], [Woz13, 4.42 p.85]).
An les is the dual of an (FM)-space iff it is (S) and a complete (DF)-space.
It is then even ultra-bornological.

Proof. (=) Let F = E* with E an (FM)-space. Then F is a complete (DF)-space
by [4.18.1| and is (S) by . It is then even barrelled by ’3.22‘ and ’4.10‘ and
hence ultra-bornological by .

(<) By the dual E := F* of the (DF)-space F is (F) and it is (M):
Let B C F be bounded. Since E is metrizable it is enough to show that every
countable subset of B is relatively compact. W.lo.g. let B = {b, : n € N} and
consider B, = (1,,cn(bn)o, a countable intersection of closed 0-nbhds in F'. This
set B, is bornivorous, hence a 0-nbhd in F' by the infra-countably-barrelledness of
the (DF) space F: In fact, let A C F be bounded. Then A° is a 0-nbhd in E and
hence absorbs the bounded set B. Thus B, absorbs A. Since F' is Schwartz, there
is a &-0-sequence (y;) in F* with B, 2 {y: : n € N}, by and hence B is
contained in the (compact) closed absolutely convex hull of {y* : n € N}. Thus
E = F* is semi-Montel and as (F) space even Montel.

Since E = F™* is a Montel space, S(F**, F*) = 7.(F"**, F*). Hence
BE(EF") = B FY)|p = 7o(F™ F7) [P = 75,
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where §*(F, F*) denotes the topology of uniform convergence on bounded sets in

Fj and 7 is the topology on [ of uniform convergence on £-0-sequences:

To see the last inequality, observe that £-0-sequences are relatively 5(F*, F')-compact
by , hence 7 < 7.(F**, F*)|r. To show the converse, note that by for ev-

ery relatively compact set A in the Fréchet space F*, there is a O-sequence (@, )nen

in the F* (which is also an £-0-sequence by ) such that A is contained in the

closed absolutely convex hull of the a,,, and therefore {a,, : n € N}° C A°.

Since F' is complete and Schwartz, it is semi-reflexive by ’ 3.31 ‘ and ’3.22 ‘ and, by
what we have just shown, it carries the topology ¢ = S*(F, F*), which is quasi-
barrelled (A C F is bounded < A, is a bornivorous barrel). Thus F' is reflexive,
hence F' = F** = E*. O

4.40 Proposition (See [Flo71, 5.4 p.164]).
FEach locally complete (LF)-space is regular.

An (LF)-SPACE is the reduced inductive limit of a sequence of Fréchet spaces and
similarly an (LB)-SPACE is the reduced inductive limit of a sequence of Banach
spaces.

Proof. Let B be bounded closed and absolutely convex, thus Ep is a Banach space
by local completeness. By Grothendieck’s factorization theorem FEp — E
factors over some " : E,, — FE = liﬂk FE) to a continuous linear mapping Fg — E,,
hence B is bounded in F,,. O

4.41 Raikov’s completeness theorem
(See [Rai59)], [Flo71, 4.1 p.162], [Sch12, 2.11 p.36]).
Let E be an lcs and (Ap)nen be an absorbent sequence of subsets of E satisfying:

1. The lcs E carries the final locally convex topology with respect to (An)nen.
2. Every Cauchy-net in any A, is convergent in E.

Then E is complete.

Proof. Let (z;);ecs be a Cauchy net in E and U be a 0-nbhd basis of absolutely
convex sets. We claim the following:

dngeNVU eUVjeJIi-jaz, €U+ Ay,

Otherwise, Vn 3U, 35, V5" > jn : x50 ¢ Up + Ayp. Put V := (), (Upg1 + Ay). Let
x € (Un+ Am—1) N A1 and n > m, then z = 2/ + u with z,2' € A,,,_; and
u € Up, thusu =2 —2' € 24,1 C Ay, ie. 2 =0+ 2 € Upyq + A,. Therefore
VNnAn = NpemUnt1 + An) N Ay, is a 0-nbhd in A,,, hence a 0-nbhd in E by

. Since (x;);jes is Cauchy, there exists j € J such that xjy — z;» € V for all
j',3" = j. Since (A, )nen is absorbing there exists an n with z;» € A,,_; and hence
zjp €xjr+V CA 1+ V CA 1+ U+ A4,-1) CU,+ A, forall j/ >4, a

contradiction.
Now consider the net & : J xU — A,, C E, which assigns to each (j,U) an element
Zju =x;—u € Ayp, with 4 > j and u € U. This net is Cauchy and hence converges
to some z, in E by , since for U € U there exist W € U with 3W C U and
j € J such that x; — x € W for all /,4"” > j. So

j’,‘j/)U/ — j’,‘j//)U// = (]]i/ — ul) — (],',L‘// — u”) = (:L‘Z-/ — ,’I,‘i//) — ’LL/ + ’U,H € 3W g U
forall (/,U"), (5”,U") = (4,W) and hence v’ €e U' C W, " € U" CW,i = j = j,
and i = j" = j.
It follows that (x;);cs converges to zo: For any U € U there exist W € U with
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3W CU and j € J withzjy —xy € Wiorall i/ = j' = jand Zj v — 20 € W for
all (7,U") = (j,W), and thus xjy — e = Ty — Ty +0 +Zjr 1y —Too € 3SW CU. O

4.42 Proposition
(See [Sch12, 2.14 p.38], [Flo71], [Rai59], cf. [Jar81, 12.5.2 p.263]).
An (LB)-space is complete if and only if it is quasi-complete.

Proof. (<) Let (E,7) = mn(E,L,T7L) denote an (LB)-space, and let B,, := oE,

be the closed unit ball of the Banach space (E,,7,). We will apply for
A, =2"B,.

Since, for each n € N, we may assume B,, to be continuously injected into By, y1,
the sequence (A, )nen is an absorbing sequence.

To prove 7 let V. C FE be an absolutely convex set such that V N A, is a
0-neighborhood of (An, 7|, ) for each n € N and thus also a 0-neighborhood
of (An, Tnl,, ). Since A, is a closed 0-neighborhood of (E,,, 7,,), we see that VN A,
and hence VN E, D V N A, are also 0-neighborhoods of (E,,7,). This holds
for all n € N, which means that V' has to be a 0-neighborhood of the inductive
limit (E, 7).

Remains to show condition , i.e. that each 7-Cauchy net contained in some A,
converges in £. But this is clear by the quasi-completeness of E since the sets A,
and hence their Cauchy nets are bounded. . O

Let E =1i . FE,, be a reduced inductive limit with compact connecting mappings
T, : B, — E,1, i.e. which map some absolutely convex 0-nbhd U, C E, to
a relative compact subsets of T,,(U,) C E,11 — E. Let B, be the (compact)
closure of the bounded set T}, (U,,) C E. Thus T, factors over the normed space Ep
generated by B and this space is complete by (for 7 := pp and 7’ := E|p), since
B is compact and hence complete. Thus we can rewrite E as reduced projective
limit of a sequence of Banach spaces with compact connecting homomorphisms.

4.43 Proposition (See [Flo71, 7.5,7.6 p.170], [Sch12, 2.8 p.33)]).

Let F = 1i . E, a reduced inductive limit of a sequence of Banach spaces with
compact connecting homomorphisms E, — E,11. Then the limit is complete and
reqular.

Proof. In view of it is enough to show completeness using : Let
A, := 2" oE,, where w.l.0.g. oE, C 0FE,+1. Obviously (A,)nen is an absorbing
sequence. Ad : Let U C E be absolutely convex with U N A,, a 0-nbhd for each
n and hence also in the (finer) topology induced from E,, on A,. Since A, is a
0-nbhd in E,, also U N A,, is one and hence also UN E, D UN A,. Thus U is
0-nbhd for the inductive topology of E.

Remains to show : So let (z;);es be a Cauchy-net in A,,. Since A,, is compact
in Ey41, the sequence z; has an accumulation point 2, in F,41 and hence also in
E. But as Cauchy-net it has to converge to z. O

4.44 Proposition
(See [Jar81, 12.5.9 p.266], [Woz13, 4.30 p.75], [MV92, 25.20 p.57]).
Let F be an lcs. Then

1. F is the dual of an (FS)-space;

< 2. F is a bornological (DF)-space where each bounded set is relative compact
in F'a for some bounded Banach-disk A;
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< 3. F is an inductive limit of a sequence of Banach-spaces with compact con-
necting mappings;
< 4. F is a complete (DF)-space, is (S), and every 0-sequence is Mackey-convergent.

A space satisfying these equivalent conditions is also called SILVA-space.

Proof. (:>) Let FF = E* with E a (FS)-space. By F is ultra-
bornological (DF). By YU C E JV C U: U° C Fy. is compact. Since
the polars of 0-nbhds are basis of the bounded sets in F' (by infra-barrelledness of
E) the condition on the bounded sets in |2 | is satisfied.

(:>) Let {B,, : n € N} be a countable basis of the bornology of F. By
assumption we recursively find bounded Banach-disks A,, 2 A,,_; with (J, en(AxU
By) relative compact in Fy,,. Obviously |J,,cy Fa, = F, the identity Fa, | — Fa,
is a compact operator and the identity li . Fy, — F is continuous. Conversely,
let B C F be bounded, so there exists an k € N with B C By, thus B is bounded in
Fa, ., and hence also in hm Fy, . Therefore the identity £ — hm F4,, is bounded
and since F' is bornological it is continuous.

: ) Let F = hgnn F,, with F,, — F, 11 being compact between Banach spaces,

hence it is ultra-bornological, complete and regular by . In particular, F' has
a countable basis of bornology formed by the multiples of the unit-balls of the F,
and thus is (DF) and (M). Moreover, every 0-sequence is bounded, hence relatively
compact in some F,, and thus Mackey-convergent. In view of it remains to
show quasi-normability as characterized in : For every bounded=compact set
U° in the (FM)-space F* (by ’ 4.18.1 ‘and ’ 4.27 ‘) there exists a (Mackey-)0-sequence
xy, — 0 such that U° is contained in its closed absolutely convex hull. Let A,, = oo
be such that {A\,z} : n € N} is bounded in F* and thus contained in some V° since
F is barrelled. Then x5 — 0 in Fy,, and hence U° is compact in Fy,, and thus
homeomorphic to its image in (F*, B(F*, F)).

(:>) By F = E* for some (FM)-space E. By the (FM) space E
is (S) iff it is separable (which is automatically satisfied by [3.27]) and o(E*, E)-
convergent sequences are 3(E*, F)-convergent by , hence equicontinuously=Mackey

convergent by . O

4.45 Lemma (See [Jar81, 17.3.6 p.379)]).
Let T : E — F be nuclear between Banach spaces. Then T : F* — E* is nuclear.

n—1

Proof. By assumption 7' = )"z ® y,, with > ||} ||yn|| < co. Thus
T (y") (@) =y (T(x) = y (Zx v ) = wn(@) v (
=Y ey () wn(@) = (X vy (5 2 ) (2) = (Y evy, @a7) (57) (@),

ie. T* =% ev, Q) with

Yo levy, il =" lyall il < co. O
n n

4.46 Proposition (See [Jar81, 21.5.1 p.491]).
The dual E* of an les E is nuclear iff VB 3B’ : 1B, . Ep — Ep/ is nuclear

An lcs F satisfying these equivalent conditions is (sometimes) called CO-NUCLEAR,
see [Jar81, 21.5 p.491].
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Proof. A typical 0-nbhd in Ej is B® for some bounded (absolutely convex and
closed) BC E.

(<) By assumption there is some bounded B’ 2 B such that E; — E; is nuclear.
Then its dual mapping (Ep/)* — (Eg)* is nuclear by [4.45]. Now note that (E*) g
is isometrically embedded into (Eg)*: The inclusion Ep — E induces a morphism
E* — (Ep)*, which factors over (E*)p. via an embedding, since ||2*[|(g,)- =
sup{|z*(x)| : pp(x) < 1} = sup{|z*(z)| : * € B = (B°),} = ppe(z*). So the
connecting morphism from (E*) gy — (£*) o is absolutely summing as restriction
of the (by ) absolutely summing map (Ep/)* — (Eg)*, i.e. E} is nuclear by

[3.70]

(=) Let E* be nuclear, so for each closed absolutely convex bounded B there
is another one B’, such that (E*)pyo — (E*)po is nuclear. Hence the adjoint
Efeo = ((E")po)" = ((E")(8)2)" = E{B0. is nuclear and thus the restriction to

Ep — Ep (since B = EN B°°) is absolutely summing and a composition of 6 such

maps is nuclear, see the proof of (@é) in ) O

4.47 Lemma (See [Jar81, 12.5.1,12.5.2 p.263]).
For (DF)-spaces E and their Schwartzification Es := (E,7s) we have

B(E*,E) =n(E*, E) = n(E*, Es) = 7(E*, Es) = 7(E*, Es) = B(E", Es).
In particular, B(E*,E) = §(E*, E) provided E is (DF).

The (DF) condition can be weakend to (df) in this lemma using the same proof,
but with the sharpening mentioned in instead of Proposition .

Proof. Note, that obviously E — Eg — (E,o(E,E*)) are continuous, hence
E* = (Eg)*. We always have:

24 — —
B(E",E) < n(E",E) < n(B", Es) < 1(E", Bs) == r(E", E5) =2 §(E", Es)
The first < holds, since (E,n(E*, E)) := lim,  Ep, and Ef, — Ej is continuous.
The second one holds, since id : E »» Eg is continuous, so the injective limit
n(E*, E) has more steps than n(E*, Eg).
The first equality holds since Eg is (S): In fact, Ef;, — (E*,o(E*, E)) is continuous,
soid: n(E* E) := lim, . Efjo —» Y(E*, E) (recall |3.24)) is continuous. Conversely,
let E' be Schwartz, i.e. for every 0-nbhd U there exists a 0-nbhd V with U° C EY,.
compact by , and hence the induced (compact) topology from E3,., on U°
coincides with the restriction of o(E*, E), and the inclusion from U° with this
topology into EY, is continuous. Thus v(E*, E) —» n(E*, E) is continuous.

The last equality holds, since ]:JTg is a complete Schwarz space, hence semi-Montel
by , thus the closed bounded subsets coincide with the compact ones.

(B(E*,E) > n(E*, Es)) Since E is (DF), E% is (F), by [4.18] Let z, — 0 in E},
then z} is Mackey-convergent by , so there exists a sequence A\, — oo with
Anxy — 0in Ej. Since the (DF)-space E is infra-co-barrelled, A} z}, € U° for some
0-nbhd U C E. Thus A,z} is an £-O-sequence and hence W := {\,z} : n € N},
is a 0-nbhd for 7g (see ) Since 7, — 0 in Ejy, and hence in lim -y, =:
n(E*, Eg), the inclusion S(E*, E) — n(E*, Eg) is (sequentially-)continuous.

The particular case follows, since by the universal property £ — Eg — E\:q factors
over E — E. Thus S(E*,FE) < 8(E*,E) < B(E*, Eg). O
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4.48 Proposition (See [Jar81, 21.5.3 p.491]).
For metrizable and for (DF)-spaces nuclearity and co-nuclearity are equivalent.

Proof. (nuclear @ co-nuclear) Let p, be an increasing sequence of seminorms
defining the topology of E such that the connecting morphisms T, : E,, , — E,,
are nuclear, and hence admit representations Ty, = D, Ay kT, ) @ Ynk With 7, ; €
o(Ep,.,)*, Ynk € 0(Ep,) and A, := >, |Ap x| < 0o. Now let B C E be a closed
bounded disk, o, := sup{p,+1(b) : b € B}, let p, := max{o,, A\, o,}, and set

C .= {x €eE:qe(x):=), g’;sl) < 1} For x € B we have p,,(z) < ppt1(z) < op,
hence >, g’j;(pi) <>. QS;n =1, i.e. B C C. Furthermore C is bounded since

pn(C) < 2"p,,. The connecting morphism Ep — E¢ is absolutely summable, since
for arbitrary finitely many x; € Ep C E we have

an(mz an xz <Zzpn ’I’Lk}xnk xz)yn k)
i
<Z|)\nk|2|xnk ) < A sup Z|x (23)]
z* n+1 7
<\, sup Z|x (z;)] < Apop sup Z|z )| < pn sup Z|x ;)|

r*€o, B° T*E€B° T r*eB°

Thus Y, qo(z:) = >, 2171 p"(x) < sup{>_, [#*(x;)| : 2 € B°} and hence the

identity Ep — FE¢ is absolutely summing by . Since SY C A; C N we may
assume that it is even nuclear, and hence E is co-nuclear.

(nuclear (28) co-nuclear) By Ej = E’;, so we may assume that E is a com-
plete nuclear (DF). That E is (DF) can be seen as follows: By we have
B(E*,E) = B(E*, E) and hence is metrizable and E has a basis of its bornology
formed by closures of bounded sets in E, since for every bounded B C E we find
a bounded set B C E such that the 0-nbhds B° C B° and hence B C ((B)")O C
(B, = B”. That E is quasi-co-barrelled is obvious (recall [Kri07b, 4.10.3]).

Let {B,, : n € N} be a basis of the bornology consisting of closed absolutely convex
sets with B,y1 2 2B,,. Put E, := Ep_. Since E is complete (S) hence semi-(M)
and thus semi-reflexive, Ep = ((E*)po)* via &+ 6(z)|(g+) 0

This mapping is onto, for let A : (E*)go — K

be continuous and linear, and =z € E be such E* E
that d, := d(x) = Aoipo € E*, ie. 0,(B°) = Lpo \L - BI
{0z(z*) = z*(x) : z* € B°} is bounded by =) ‘

C = ||A|| and thus z € C' (B°), = C B C Ep. (E*)po ¢ (EB)” Ep
It is also injective, for let * € Ep be such that \ J{&z
§(x)|(p+)po = 0, hence 0 = §(z) o (LP)* = 4, : A K

E* — K, hence z = 0.

We claim that (1 {E} = cbs- 1i_n>1€1{En}, i.e. every bounded S C ({E} is contained

and bounded in (*{E,} for some n (recall |3.41 |):

Suppose indirectly, that for each n we find x(" € S with 7, (z(™) := 372, Hx(n) | >
2". So there exists a finite set £, C Nwith >, Hx(") ln > 2™. Choose a; € By,

with >, p |a§€n)( ,(Cn )| > 2". Then

Vn,r € NVk € Foqr : 2" ppo (a,(cnﬂ)) <pse,, (a,(C”JrT)) <1.

78 andreas.kriegl@univie.ac.at © July 1, 2016



SEMI-REFLEXIVITY AND STRONGER CONDITIONS ON DUAL SPACES 4.50

Thus the sequence (ay, )i formed by all these finite subsequences (a,(cn));ge r,forn eN

converges to 0 in E* and hence forms an equicontinuous set A C E* by the (df)-
property. Thus A, is a 0-nbhd in E and its Minkowski functional pa, : = —
sup{|a(x)| : a € A} is a continuous seminorm on E. Hence 74, : (Zp)ken —
> 1 pa, (zg) is a continuous seminorm on ¢*{E}. Thus 74, (5) has to be bounded,
in contradiction to

(") Zsup|a |> Z lay, n) \>2”

keF,

The canonical map ¢'[E,] — ¢*[E] is continuous and ¢*[E] = (*{E} by , S0
the image of S := 0/![E,] is bounded in /*{E} and, by what we have just shown,
even bounded in (*{E,} for some n’ > n, i.e. the connecting mapping E,, — E,
is absolutely summing, hence E is co-nuclear by .

(nuclear @ co-nuclear) By assumption and [4.18.1 | E* is a nuclear (DF)-space.
Hence by the second part E** is nuclear and so is E as a subspace by | 3.73.2 |.

(nuclear (Dé?) co-nuclear) By assumption and E* is a nuclear Fréchet space.
Hence by the first part £** is nuclear. In order to apply it remains to show
that § : E — E** is an embedding, i.e. F is infra-barrelled: The bounded=pre-
compact (since E* is (S)) sets in E* are contained in the bipolar of some 0-sequence
in E* by and, since E is (df) and hence quasi-co-barrelled, the 0-sequences
are equicontinuous, hence the topology of E (which is that of uniform convergence
on equicontinuous sets) coincides with that induced from E**. O

This proof works also for (df) instead of (DF), however the last argument shows,
that (co-)nuclear (df) spaces are infra-barrelled and in particular (DF) spaces.

4.49 Proposition (See [Kri07a, 6.31], [Jar81, 21.5.5 p.493]).
Every strict inductive limit of a sequence of nuclear Fréchet spaces is co-nuclear.

Proof. Since strict inductive limits are regular this is immediate by . O

4.50 Theorem. Density of finite dimensional operators

(See [Kri07a, 4.44], [Jar81, 18.1.1 p.398]).

Let E be a locally convez space and B be a bornology on E. We consider on the
function spaces L(E,_) the topology of uniform convergence on all sets in B, and
hence denote them by Lg. Then

1. E*® F is dense in Lg(E, F) for every locally convex space F';
< 2. E*®F is dense in Lg(E, F) for every Banach space F';
< 3. E*Q®FE is dense in Lg(E,E);
< 4. idg is a imit in Lg(E,E) of a net in E* ® E.

Proof. (:>) is trivial.

(2]={1]) A typical 0-neighborhood in Ls(E, F) is given by Ng v := {T : T(B) C
V} with B € B and V a 0-neighborhood in F. Let ¢ty : F — Fy be the canonical
surjection. Since Fy is a normed space ty o1 : F — F —» Fy — Fy can be
uniformly approximated on B with respect to py : Fy — K by finite dimensional
operators E — Fy by . Since Fy is dense with respect to py in Fyy we may
assume that the finite operators belong to L(E, Fy/). Taking inverse images of the
vector components, we may even assume that they belong to L(E, F).

(:‘) and (é) are trivial.
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(:) Let T; be a net of finite dimensional operators converging to idg, then
the net T o T; of finite dimensional operators converges to T oid =T O]

Let E be complete and assume that the equivalent statements of are true
for some bornology B. And w.l.o.g. let B € B be absolutely convex. Since the
identity on F can be approximated uniformly on B by finite dimensional operators,
we conclude that the inclusion Fg — E can be approximated by finite dimensional
operators EF'g — E uniformly on the unit ball of Ez. Hence it has to have relatively
compact image on the unit ball by the following lemma , i.e. B has to be
relatively compact.

4.51 Lemma.
The set K(E, F) of COMPACT OPERATORS from a normed space E into a complete
space F is closed in L(E, F).

Proof. To see this use that ' = mvf‘; - HVZ?'\‘//, hence a subset K of F

is relatively compact iff vy (K) is relatively compact in Fy for all V. Now let
T, € K(E, F) converge to T € L(E,F) = L(E, F). Then the 1y o T; € K(E, Fy)
converge to vy o T in L(FE, ﬁ/) Since PT/ is a Banach spaces it can be shown as in
[Kri07b, 6.1.8] that vy o T € K(E, Fy). Hence 1y (T (0E)) is relatively compact in

Fy and thus T'(oF) is relatively compact in F. O

4.52 Definition.

A complete Ics is said to satisfy the APPROXIMATION PROPERTY iff the equivalent
statements in are true for the bornology B = cp of all relatively compact
subsets of E. A non-complete space F is said to have the approzimation property,

iff its completion E has it. Note that the finite dimensional operators may be taken
in L(E, E) in this situation.

4.53 Remark (See [KriO7a, 4.63], [Jar81, 18.5.8 p.414]).

For a long time it was unclear if there are spaces without the approximation prop-
erty at all. It was known that, if such a Banach space exists, then there has to be a
subspace of ¢y failing this property. It was [Enf73] who found a subspace of ¢y with-
out this property. In [Sza78] it was shown that L(¢2,¢?) =2 L({?, (£2)*) = ((2@,0?)*
doesn’t have the approximation property. In contrast £2®,¢2 has the approximation
property, since by [Jar81, 18.2.9 p.403] every completed projective tensor product
of Fréchet spaces with the approximation property has it. Note however, that for
Banach spaces one can show that if E* has the approximation property then so does
E, see [Jar81, 18.3.5 p.407]. Due to [H.77] is the existence of a Fréchet-Montel
space without the approximation property, see [Jar81, p416].

4.54 Lemma. “Kelley-fication” of the completion (See [Kri07a, 4.76]).
The bijection (Ef’y‘)fy —» E given by Grothendiecks completeness theorem is contin-
uous, both spaces have the same compact subsets and (Ei;)fy carries the final locally
convez topology with respect to these subsets. If E is compactly generated, and hence
in particular if E is metrizable, then we have equality.

Proof. Recall that by Grothendiecks completeness theorem [KriO7b, 7.5.7] we
have a bijection E —» £equi(E;,K) into the space of linear functionals, which
are continuous on each equicontinuous set U° C E* with its compact topology
o(E*, E)|y., supplied with the topology of uniform convergence on each equicon-
tinuous set. Whereas (Ef;)f; is the same space, but with the final locally convex
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topology induced by the inclusions of W with their compact topology J(W", E*)
for all 0-nbhds W C E* with respect to v(E*, E) = 7.(E*, E) by

In order to show that (EX)* — F is continuous, denote with 7 the topology of
E, let the polars be with respect to the duality (E~,E*)7 and consider W° for a
0-nbhd W C EZ. Since v(E*, E) = 7.(E*, E) there exists a compact set K C F
with W D K°. By [Kri07b, 6.4.2] the closed absolutely convex hull (K°), of K
is precompact and hence compact in E and hence the same is true for the closed
subset W, C (K°),. So on W, the (compact) topology of 7 coincides with that of
o(W,, E*), and hence (W°,a(W°, E*)) — (E,7) is continuous.

Conversely, let now K C E be compact. Then K° is a 0-nbhd in (E*, T(E*, E)) =
E% and thus the inclusion of the (compact) equicontinuous set ((K°)°, o ((£3)*, £¥))
(E3)% is continuous. Since the inclusion (K, 7) — o(E, E*) is continuous, we get
that K is compact in (E*) and (E;): carries the final locally convex topology with
respect to the compact sets. O

4.55 Proposition. Approximation property versus e-product

(See [Kri07a, 4.68], [Jar81, 18.1.8 p.400]).

A complete space E has the approximation property iff F ®. E is dense in the
so-called e-PRODUCT Fe FE := Eeqm-(F;‘, E) for every locally convex space F'.

Note that the topology of F' ®. F is by definition initial with respect to the
inclusion F' ® E < Lequi(F™*, ) and has in fact values in L((F*,o(F*, F)),E) C
L(F*, E).

Proof. Note that ' ® F is mapped into L(F}, E), since for y € F' we have
5(y) € (F2)* by [Krild, 5.5.7].

(<) Consider the following commuting diagram:

By assumption for F' := EJ the inclined arrow

on the left hand side has dense image. The ar- E:QFE ——> L., (E,E)
row on the right hand side is an embedding, since

(E3)5 — E = E is a continuous bijection and the \ /
equi-continuous subsets in (E:)i; are exactly the

1§ ((EZ)
relatively compact subsets of E = E by . Lequil

(=) Let T' € L(F3, E) and let a 0-neighborhood Ny 17 in this space be given. Since
T is continuous on the compact space (V°, o(F*, F)), we have that K := T(V?°)
is compact in E. By assumption E* ® E is dense in L., (E,E). Hence there
exists a finite dimensional operator S € L(E,E) with (idg —S)(K) € U. Then
SoT: Fy — FE — E is finite dimensional and since (F)* = F by [Kril4, 5.5.7] it
belongs to F® E and (T —SoT)(V°) = (id —=S)(K) C U. Thus T—SoT € Nyo i/
Hence F @, E is dense in L‘equi(F;,E) and, since F ® F is dense in F ®. E, it is
also dense in Eequi(Fj/‘, E). O

4.56 Proposition (See [Jar81, J18.2.1 p.401]).
Let E be the reduced projective limit of spaces E; with the approzimation property.
Then E has the approximation property.

Proof. We may assume that all E; and E is complete (since taking completions
commutes with reduced projective limits, see [Jar81, 3.4.6 p.63]). Let K C E
be compact and U C E a 0-nbhd, w.l.o.g. of the form L;l(Uk) for some k € J and
0-nbhd Uy, C Ej. By reducedness Fy, := 1 (F) is dense in E} hence has the approxi-
mation property. So there are a;, € Ej and x; € E such that (idp, —5)(x(K)) C Uy
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for S := 31" | a; ® tx(2;). Thus (idg —S)(K) C U for the finite dimensional oper-
ator S =31 i (a;) @ @4 O

4.57 Proposition. Consequences of nuclearity
(See [Kri07a, 6.19.2], [Jar81, 21.2.2 p.483]).
Each nuclear space has the approximation property.

Proof. Since by FE is a reduced projective limit of Hilbert-spaces, it satisfies the
approximation property, by and since Hilbert spaces have the approximation
property: Let (e;);er be an orthonormal basis. Then the net of ortho-projections
Py ), {x,e)e; with finite J C I converges pointwise to id and is equicon-
tinuous, since ||ps(x)|lee = (X, [(xi,€)]?) V2 < |z|lez. So it converges for the
topology Tpe = Tc. O

4.58 Lemma (See [Kri0O7a, 4.70]).
For complete spaces E and F we have Fe E = EcF.

Proof. We only have to show bijectivity, since F'e £ = Legui(F3, E) C L(F*, E)
embeds into the space L(F*, E*') = L(F*, E*;KK). To every continuous 7" : Fy — F
we associate the continuous 7% : EX — (FJ)3 (in fact every equi-continuous set U°
of E* is mapped to T*(U°) = {z*oT : x* € U°} C {y* : y* € (T~1(U))°}, the polar
of a 0-neighborhood in F7}). And by Grothendieck’s completion result (See [Kril4,
5.5.7]) we are done since by the lemma the identity (F)3 — Lequi(Fy,K) =
F is continuous. O

Let us consider E*®.F now. If F is complete and satisfies the approximation
property, then EX®.F 2 Lequi((EZ)%, F) by .

4.59 Proposition (See [Kri07a, 1.73]).
If E and F are complete, E is Montel and F (or E) satisfies the approzimation
property, then

E®.F = EeF := Lequi(EL, F) = Ly(Ej, F),

In more detail, for complete spaces E and F we have under the indicated assump-
tions the following identities:

BG F L2 g p £, (B, F) ZiemiMontel

E infra-barreled E} bornological
) == Ls( e

= Lequi(Ej, F E5, F) L(ES, F)

Proof. In the first statement the first isomorphism follows from the definition
of E®c F C Lequi(ES, F) — L(E*, F) and the approximation property (that
it hold also if E instead of F' satisfies the approximation property follows from

). And the second one follows, since Montel spaces are barrelled by and
and since B = 7.(E", E) = B(E*,E) by and E being semi-Montel.

Note that the strong dual of a semi-reflexive space is barreled . If Fisin
addition metrizable, then E* is bornological by [4.16 |, and hence we have

Ly(E5, F) = L(E*,F). O
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4.60 Proposition (See [Kri0O7a, 4.74]).
For complete spaces E} and F we have under the indicated assumptions the follow-
ing identities:

‘A F app. R % E Montel
E;@.F =222 B e F 1= Lequi((E});, F) ==

N % E reflexive E bornological
= Lo((Ep)p, F) 2522 £4(B, F) 22200 (5, F),

Proof. This follows, since the strong dual E} of a Montel space E is Montel

by . Note that a Montel-space E is reflexive by , ie. (Ej)s = E.

Furthermore £} = E’ﬂ is complete, provided E' is bornological. O

4.61 Theorem (See [Kri07a, (.32], [Jar81, 21.5.9 p.496]).
Let E and F be Fréchet spaces with E nuclear.
Then we have the following isomorphisms:

1. EQ.F = E®.F = L(E*,F);

2. E*®.F 2 E*®.F = L(E, F);

3. B*®@ . F* 2 F*&.F* =2 L(E, F*) 2 (E&,F)*;

Proof. () Recall that we have shown in that for complete spaces we have
EQ.F = L(E;7 F) provided E satisfies the approximation property, is Montel and
E7% is bornological. These conditions are satisfied if £ is a nuclear Fréchet space by

[4.57],[3.60],[3.31], and [4.39].

)

() Recall that we have shown in that for complete spaces Ef and F we
have E;@EF = L(E, F) provided E} satisfies the approximation property and E is
Montel and bornological. This is all satisfied if E is a nuclear Fréchet space, since

then E7 is nuclear by .

() the same argument as in () applies and hence E*®.F* = L(E,F*). In
general we have L(E,F*) = L(E,F') = L(E,F;K) = L(E,F;K) & (EQ.F)*,
since E and F' are Fréchet. O

4.62 Proposition (See [Jar81, 16.4.1 p.353], [Jar81, 21.8.9 p.507]).
Let B be a bornology on E # {0} # F.
Then Lp(E, F) is Schwartz/nuclear iff E}; := Lg(E,K) and F are Schwartz/nuclear.

Proof. (=) is obvious by |3.73.2|, since F' and E}; can be considered as (comple-
mented) subspaces.

(<) First one shows that a O-neighborhood basis in Lg(E, F') is given by the sets
N = Ngg 3 qyzye = AT |T(x0)(yy)| < 1Vn,m}, where x, is Mackey-convergent
to 0 in E with respect to B and y;; is Mackey convergent to 0 in F'* with respect
to the bornology of equicontinuous sets, in fact the polars of these sequences form
bases by . Without loss of generality we may replace z,, by Az, and y
by uny) with A and g in ¢o. The functionals ¢;5 : Lg(E,F) — K given by
T + y;(T(wg)) form an equicontinuous family, since N is mapped into {\ € K :
|A| < 1}. Thus Mgl are Mackey-convergent to 0 with respect to the bornology of
equicontinuous subsets. Hence its polar (which is a subset of N) is a neighborhood
in the Schwartzification 75 of Lg(E, F).

The proof for nuclearity is analogous using that by the nuclearification is
given by the topology of uniform convergence on £-nuclear sequences x;, € E*. [
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4.63 Corollary (See [Kri07a, 6.21 p.142]).
The e-tensor product of Schwartz spaces is Schwartz.

Proof. This follows from since £ ®. ' C Ee F C L(EZ, F) and (E3): = E
is Schwartz.

Dual morphisms

4.64 Definition. Short exact sequences.

If T € L(E,F) is an embedding then T* € L(F*, E*) is onto by Hahn-Banach.
If T € L(E,F) is onto (or at has at least dense image) then T* € L(F*  E*)
is injective. In order ot treat both cases simultaneoulsy we can consider short
sequences of continuous linear mappinngs

0—-F—F—>G-—O0.

A sequence -+ — Ep_1 —2=1 E, Loy B,y — ... is called (ALGEBRAICALLY)
ExAcT iff ker T,, = imgT,,_1 := T;,—1(E,—1) for all n. It is called TOPOLOGICALLY
EXACT iff T,,_; induces an isomorphism F,,_1/kerT,,_1 — kerT,, of lcs for all n.
Thus a short sequence 0 — E -5 F -9 G — 0 is algebraically exact iff S is
injective, img(S) = ker(Q), and @ is onto. It is topologically exact iff in addition
S is a topological embedding and @ is a quotient mapping.

Every injective mapping (embedding) S : E — F with closed image gives rise to
the short (topologically) exact sequence 0 — E -2+ F — F/img S — 0. And every
surjective (quotient) mapping @ : F — G gives rise to the short (topologically)
exact sequence 0 — ker Q — F <G 0.

4.65 Remark.

Let £ = lim; E; be a limit. Then E can be identified with the closed subspace
of [[;c; E; formed by all x = (z;);es with F(f)(z;) = xj for all f:j — j"
We get a short exact sequence 0 — E < [[; E; — ([[; Ej)/E — 0. We can
give an explicite description of the linear space ([, £;)/E, namely the subspace of
[1;;_; Ej formed by the image of the mapping @ : [[,; E; — [[;.;_,;» £ which
given by pry.;_,; oQ = F(f) o pr; — pr;. Even for projective limits of a sequence
it however not clear, whether @ is onto or is a quotient map onto its image.

4.66 Lemma.
Every short exact sequence of (F) spaces is topologically exact.

Proof. Let T : E — F be a continuous linear mapping between Fréchet spaces.
By the open mapping theorem we get: If T" is onto, then it is open hence a quotient
mapping. If T is injective with closed image, then it is an homeomorphism onto its
image, hence an embedding. O

4.67 Lemma (See [MV92, 26.4 p.291]).
Let0 — E S5 F -9 G — 0 be topologically exact.
Then the dual sequence 0 < E* B L G0 s algebraically exact.

Proof. (S embedding = S* onto) by Hahn-Banach.

(Q onto = Q* injective) obviously.

(ker @ = img S and @ quotient mapping = ker S* = img Q*) For y* € F* we have:
Yy ekerS* €y oS =0 Y imgs =0 Y kg =0 F2* € GF 1 y* = 2" 0Q) =
Q*(z*) & y* € imgQ*. O
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Now the question arises, whether the dual of a topological short exact sequence is
also topologically exact. Since the topology on the dual space is generated by the
polars of bounded sets and (for infra-barrelled spaces) the bornology is generated
by the polars of 0-nbhds, we need to determine how polars behave under adjoint
mappings:

4.68 Lemma (See [Jar81, 6.8.2.a p.161]).

Let T : E — F be continous linear and A C E. Then
1. (T*)~Y(A%) = T(A)°.
2. A°NimgT* =T*(T(A)°).

Proof. (1)) (T*)71(A%) = {y" : Va € A : [y"(T(a))| = [T*(y")(a)| < 1} = {y" :
Vb eT(A): [y (b)|] <1} = T(A)°.

(2) T*(1(4))

4.69 Definition. Special cbs-morphisms.

Among the various structures on the dual space E* of an lcs E the bornology
formed by the equicontinuous subsets is most closely related to (the topology of)
E. It will thus be essential, to consider properties of morphisms between convex
bornological spaces.

T*((T*)"1(A%)) = A° N img T* O

A bounded linear mapping T between separated convex bornological spaces is called
a (BORNOLOGICAL) EMBEDDING (or CBS-EMBEDDING) iff T71(B) is bounded for
each bounded B. Any cbs-embedding is automatically injective, since its kernel
is a bounded linear subspace hence 0. It is called (BORNOLOGICAL) QUOTIENT
MAPPING (or CBS-QUOTIENT MAPPING) iff each bounded B has a bounded lift B,
i.e. T(B’) = B. Tt is enough to assume T(B’) 2 B, since then we may replace B’
by B'NT~(B). Any cbs-quotient mapping is automatically onto, since each point
is bounded, hence the inverse image is non-empty.

Let us denote the functors (_) : lcs — cbs given by assigning the von Neuman
bornology and *(_) : ¢bs — lcs given by assigning the topology formed by the
bornivorous absolutely convex subsets. These functors are adjoint to each other,
ie. les(E,F) = cbs(E,"F), see [Kri07a, 3.15]. The bornological locally convex
spaces are exactly the fixpoints under (_) o *(_), i.e. the image of *(_).

4.70 Lemma.
IfT: E — F is an lcs-embedding, then T : °E — *F is a cbs-embedding.

Proof. Let B C E be such that T(B) C °F is bounded. Let U be a 0-nbhd in E.
By assumption there is a 0-nbhd V in F with U = T~ (V). Since T(B) C AV for
some A > 0 we have B = T~Y(T(B)) C T~Y(\V) = AU by injectivity of T. Thus
B is bounded in *E. O

The converse is not true: Let F' be a bornological lcs and E a (closed) les-subspace
which is not bornological, e.g. . Then its bornologification Ejop has the
same bounded sets as F, is cbs-embedded in F', but does not carry the lcs-subspace
structure.

4.71 Lemma.
If T : E — F is a cbs-quotient mapping, then T : 'E — 'F is an lcs-quotient
mapping.

Proof. We show that T': *E — 'F is an open mapping. Let U be an absolutely
convex 0-nbhd in E. Then T'(U) is absolutely convex and bornivorous, since any
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bounded B C F is image of some bounded A C FE, thus A C AU for some A > 0
and hence B =T(A) C AXT'(U). Hence T(U) is a 0-nbhd in *F. O

The converse is not true, as the example (based on and ) shows:
A Kothe sequence space AP(A) which is (FM), but has ¢? as quotient, hence the

bounded unit-ball cannot be lifted, since otherwise it would be compact.

Definition. External duality functors.

Consider duality as functor (_)* : les — cbs, which maps lcs E to the dual formed
by the continuous linear functionals together with the bornology of equicontinuous
sets, and the duality ()" : ¢bs — lcs, which maps cbs E to the dual formed by the
bounded linear functionals together with the topology of uniform convergence on
the bounded sets of E.

These two dualities form a pair of adjoint functors, since
les(B, F') = cbs(F, B*) = cbs™ (B, F),
see [Kri07a, 3.16].
By what we have already mentioned (see [Kri07b, 7.4.11]) the canonical mapping

E — (E*)"is an lcs-embedding. And also Ef; — (*E)’ is an embedding by definition
of B(E*, E).

4.72 Proposition (See [Kri07a, 3.18]).

1. The duality ()" : cbs — lcs carries cbs-quotient mappings to lcs-embeddings.
2. The duality (_)* : les — cbs carries les-quotient mappings to cbs-embeddings.

3. LetT : E — F be continuous and linear. Then T is an Ics-embedding iff T*
s a cbs-quotient mapping for the equicontinuous bornologies.

4. Furthermore, T is a dense lcs-embedding iff T* is a cbs-isomorphism.

Proof. Since cbs quotient mappings T : E — F are onto, we conclude that
T* : F' — E' is injective. Since T*(T(B)°) = T*((T*)~1(B°)) = B°n T*(F'), by
, and since the sets T'(B)° form a 0-neighborhood basis of F’, we are done.
Let U be an absolutely convex 0-nbhd in F. Since T : E — F is an lcs-
quotient mapping V' := T'(U) is an absolutely convex 0-nbhd in F' and by
(T*)~1(U°) =T(U)° = Ve, thus T* is a cbs-embedding.

(=) Let T : E — F be an lcs-embedding and U a 0-nbhd in E. Let py be
the Minkowski-functional of U and p an extension to F, i.e. po T = py, and let
V:={y € F:p(y) <1}. Remains to show that U° C T*(V°). So let z* € U?, i.e.
|z*| < p. By Hahn-Banach there exists an y* € F* with T*(y*) = y* o T = 2™ and
ly*| < p, hence y* € V°.

(<) f T* : F* — E* is a cbs-quotient map, then (T%)* : (F*) — (E*) is a

topological embedding by |1 |and using the embedding FE < (E*)" = L((E*,£),K)
of [Kri07b, 7.4.11] and the commutative diagram

EC s L(E* K) =—— (E*
T\L iL(T*,K) i(T*)*
FC s L(F* K) = (F*)'

shows that T is an embedding as well.
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If T is a dense lcs-embedding, then T™ is injective and by a cbs-quotient
mapping, hence a cbs-isomorphism. Conversely, if T* is a cbs-isomorphism, then
T is an lcs-embedding by and since the continuous linear functionals separate
points from closed linear subspaces, T has dense image by the injectivity of 7%. [

4.73 Remark.

Surjectivity of linear operators D, means solvability of inhomogeneous equations
D(u) = s for arbitrary s with respect to u.

For example, by the Malgrange-Ehrenpreis Theorem (see [Kri07b, 8.3.1]) every
linear partial differential operator (PDO) D := P(19) with constant coefficients
C*(R™) — C*°(R™) is onto. This can be shown, by considering the formal adjoint
operator D' := PY(19) : D — D and its adjoint D := (D')* on the space of
distributions D* (see [Kri07b, 4.9]), proving the existence of a fundamental solution
e € D* (i.e. D(g) = §) via Fourier transform (see [Kri07b, .3.1]), and obtaining
the solution of D(u) = s as u:= ex s (see [Kri07b, 4.7.7]). Here P is a polynomial
2 3 <m Ok 2% and P! is the polynomial z Z‘k‘gm(—l)wakzk.

In [DGCT1] it is shown that every linear partial differential operator C*(R?) —
C¥(R?) is onto, where C*(R") denotes the space of real-analytic scalar valued
functions on R™. In contrast, the PDO (2)2 + (6%)2 : C¥(R?) — C*(RR3) is not
onto.

4.74 Surjectivity criterium (See [MV92, 26.1 p.289]).
Let T : E — F be continuous linear between Fréchet spaces. Then
1. T is onto;
& 2. T is an les-quotient mapping;
< 3. T*: F* — E* is a cbs-embedding,
i.e. B equicontinuous = (T*)~1(B) equicontinuous.
<4, T b(F;) — b(E;) is a cbs-embedding,
i.e. w.r.t. the von Neumann bornologies.

Proof. (=>) by the open mapping theorem.

(=) i

(@) since E and F are Fréchet (hence quasi-barrelled) the 8-bounded sets are
exactly the equicontinuous ones.

(:>) Let U be an absolutely convex 0-nbhd = U° equicontinuous TU) =
(T*)~1(U°) (by ) is equicontinuous = T'(U) = (T'(U)°), 0-nbhd £ Dot merger
T(E) not meager (and hence T is onto by [Kril4, 4.3.6]): Suppose T(E) C
U,, An with A,, closed. Then E = |J, T~'(4,) with T~'(A,) closed, hence 3n:
int(T-1(A,)) # 0. Let x € int(T~1(A,)) and U be a 0-nbhd with x+U C T~1(A,,).
Then T'(x) +T(U) C Ay, and also T'(z) + T(U) C A,, i.e. the interior of A, is not
empty. O

4.75 Lemma of Baernstein (See [MV92, 26.26 p.303]).
Let T : E — F continuous linear between (DF) spaces, E be (M).
Then T : E — F is an lcs-embedding iff T : °E — *F is an cbs-embedding.

Proof.

(=) is [470].
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(<) By |4.18.2| E* and F* are Fréchet and T* € L(F*,E*). By E is
reflexive. Since T** =T : E* = F — F — F** it follows that T is onto by

. Let U be an absolutely convex closed 0-nbhd in E. Thus U? is bounded

and hence compact in the (M)-space E*. By this can be lifted to a compact
set K C F* which has to be contained in the closed absolutely convex hull of a 0-
sequence (y;) in the (F)-space F*. Let V := [, V;, with absolutely convex 0-nbhds
Vi :={y’}o. The set V is bornivorous, since y — 0, and hence a 0-nbhd, since as
(DF)-space F is quasi-countably-barrelled. Since K C ({y* : n € N})aps.conv. € V°,
we get T*(V°) D T*(K) = U° and hence U = (U°), 2 (T*(V°)), = T~Y(V), i.e.
T(U) is a 0-nbhd in the trace topology on imgT. O

4.76 Theorem of Eidelheit (See [MV92, 26.27 p.305]).
Let E be (F) and (z})ken linearly independent in E*. Then
Vy € RN 3z € EVk € N: a}(2) = yp < YU : dim(Ej. N ({z} : k € N})

lin,sp) < 0.

Proof. By assumption 7' := (2})ren : £ — K" is continuous linear. Its adjoint
T : K™ = (KN)* — E* is given by T*(y) = 3., ¥} ® yx, since

T*(y)(2) = y(T(@) = S pai(e) = (3 ai @ ) (@),
k k

Hence T™* is bijective onto ({z} : k € N}insp. (since the x} are linearly indepen-
dent).

By T is onto iff (T*)~(B) is bounded in K™ for each bounded B C E*, i.e.
for each 0-nbhd U the set T(U)° = (T*)~}(U°) = {y e KM : 3, 2} @ yx € U°}
has to be bounded and hence has to be contained in some finite subsum K. Since
T* is injective, it induces a linear isomorphism

-4.68.2
(TU) ) ey, = U A TU) = [ JX-THTU)) == |J A U’ Nimg T
A>0 A>0 A>0

=Ej. N {{z} : keN})

lin.sp.”

(=) Since T(U)° has to be contained in some K", we have that dim(Ef, N ({z} :
k € N}) < oo for each U.

(<) The condition implies that the closed absolutely convex set A := (T*)~1(U?)
T(U)? is contained in a finite dimensional linear subspace K" and contains no R -z
for x* # 0, since otherwise T*(z*)|y = 0 and hence T*(z*) = 0, thus «* = 0. This

implies that A is bounded, otherwise choose a,, € A C KV with 1 < ||a,| — oo
1

and let as € A be an accumulation point of Tan@n € A. Then Aay € A for all

A >0 since A> man — Aaoo for |lay] > A 0

lin.sp.)

*

4.77 Corollary. (F) spaces with K as quotient (See [MV92, 26.28 p.305]).
Let E be (F) and not Banach. Then KY is a topological quotient of E.

Proof. Let (U,) be a falling 0-nbhd basis of E. Since E is not Banach, we may
assume that 3z} € E[*f;? \E(*in_l' Then (z7) is linear independent and the mapping

Q := (2})ken : E — KY satisfies the assumptions of hence is onto. O

4.78 Borels theorem (See [MV92, 26.29 p.305]).
vy e KN 3f € C=([-1,1],K) Vk € N: f(B)(0) = .

Proof. Let | f|lx := maxj<y ||| and Uy, := {f : ||f]lx < 1}. Consider z} :
E = C>®([-1,1],K) — K given by x}(f) := f*)(0). Obviously (z})rey is linearly
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independent (on monomials). For finite sequences £ the functional ) j §ixj € E{Uk)o
iff & = 0 for all j > k (Choose f with small derivatives of order < j but high one

of order j). Thus (z})ken is onto by . O

4.79 AP(A) with quotient £P (See [MV92, 27.22 p.320]).
Let A= {a® e RN : k € N} with ag}j) >1 and a(-fclc) = aglz.

K2

Then AP(A) has €7 as quotient for 1 < p < oo and co(A) has ¢y as quotient.

Proof. @ : \?(A) — (P defined by Q(z) := (Zj xi,j/2j) _is continuous and linear,
since 37,1575 @i /277 < 30 (@i g)slle, - 1(37)5llea)” < NlllB - 1 < - aD[F,.
Claim: @ is onto (we will use ): Q4T — XNP(A)*, y el x € \P(A):
(Q7y)(z) = y(Qr) = Zyizxi,j/QJ =29 = @) = Wi/ 2)i;-
i J i

For k € N and Uy, := {z : ||z||x < 1} we have:

4.68.1

(@)D === QUi == {y € ¢+ y(@o)| = | wisus/?| < ol }.

Let y € (Q*)"H(UP) C (2, ¢ € lP, x: (i,5) — &6, Then
ly(§)] = ‘Zé}yz = 2k‘Zfiyi/2k‘ = 21@‘2%]_%/2]"
i i 4.7

k) p\ /P k
< P all = 23 lesalP) " = 2l
%

4.74
= |lylles < 2’“@5127 ie. (Q*)~1(Up) is bounded Q is a quotient mapping.
For ¢o(A) the proof is analogous. O

4.80 Counter-example for cbs-quotient mapping (See [M'V92, 27.23 p.321)).
Let A be as in , 1<p<oo, Q:IN(A) —» P a quotient mapping as in .

Then @ is not a bornological quotient mapping.

Proof. The unit ball in #? is not compact and AP(A) is Montel, hence a bounded
lift would be compact. [

4.81 Counter-example for inheritance of reflexivity and bornologicity
(See [MV92, 27.24 p.321]).

There is a reflexive (even (S)) ultra-bornological (DF') space with a closed not infra-
barrelled and hence not reflexive subspace.

Proof. Let \’(A) with 1 < p < oo be the (FM) space of [3.36 ] By |3.22] it is

reflexive and by its dual E := AP(A)* is Montel (by even (S)), hence
reflexive and bornological by , and (DF) by . Let @ : AP(A) — (P be
the quotient mapping as in and consider the closed subspace F' := img(Q*) =
ker(Q)? in A\’(A)*, using [4.67] Let W be the unit ball in £7, then U := Q= (W)
is a 0-nbhd with Q(U) = W. By we have Q*(W°) = Q*(Q(U)°) = U° N
img@* = U°N F, hence Q*(W?) is absolutely convex and closed in F. It is a
bornivorous barrel, since each bounded set B in F has bounded inverse (Q*)~(B)

in ¢7 by and hence is absorbed by the unit-ball W°. Infra-barrelledness of F
would imply that @*(W?°) is a 0-nbhd in F' and is bounded as image of the unit-ball.
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Since E is Montel it would be even relatively compact in F. Thus F would be finite
dimensional, which is a contradiction to the injectivity of @Q*. O

4.82 Surjectivity of dense mappings (See [MV92, 26.2 p.289)).
Let T : E — F be continuous linear with dense image between (F) spaces.
Then T is onto < VYU : U° Nimg(T™*) is a Banach-disk .

Proof. By [4.68.2] A° Nimg(T*) = T*(T(A)°).

(=) U 0-nbhd = T(U) 0-nbhd St 2l AL 0 L0, 7r7)e Banach-disk.
T(FE) dense = T* injective = E**(T(U)o) o F}(U)o Banach, i.e. U° NimgT™* is a
Banach-disk.

(<) U 0-nbhd = B := U°Nimg T* Banach-disk, (E*)p — (E*,0(E*, E)) bd. Let
(Vi)n be a 0-nbhd-basis in F' = F* =], V¢ = (E*)p CimgT* =, T*(V;?).

Veis o(F*, F)-cp = T*(V,0) is o(E*, E)-cp = T*(V,?) N (E*)p is closed in (E*)p.
[Kril4, 4.1.11]

Im: Jz in the interior of T*(V2) N (E*)p = —x as well = 0 as well
= 3> 0: eB CTH(V2) —= (T*)"Y(B) € 1V2 = (T*)~}(B) bd.

T surjective. O

4.83 Theorem on closed image (See [MV92, 26.3 p.290], [Kril4, 9.11]).
Let T : E — F be continuous linear between (F) spaces. Then
1. img(T) is closed;

< 2. img(T) = ker(T*)°;

< 3. U° Nimg(T*) is a Banach-disk for each 0-nbhd U ;

< 4. U°Nimg(T*) is (o(E*, E) or) B(E*, E) closed for each U;

< 5. img(T™) is closed;

< 6. img(T™*) = ker(T)°;

< 7. T:E/ker(T) — img(T) is a homeomorphism.

Proof. ((:)) imgT = ker(7%)° by [Kril4, 5.4.3].

(:>) T : E/ker(T) — img(T) bijective continuous linear. Homeomorphism <
img T closed.

(:>@) imgT = E/kerT. img(T*) C ker(T)° is obvious. Conversely, z* €
ker(T)° = Jy* € (imgT)* = (E/kerT)*, y* o T = 2* = 32* € F* : 2% |imgr = Y™,
ie. T*(2z*) =z2*oT =y*o T = x*.

(@:) Obvious, since ker(7)° is closed.

:>) img(T*) and U? are closed = U° Nimg(T™*) is S(E*, F)-closed.

(
(:>) B := U°NT*(F*) closed, E* = E’ complete = (E*)p complete, see
[Kri07a, 2.27].

(3=]1) Let Ty : E = T(E)(<> F)

Ty surj = T(E) = To(E) = T(E), i.e. imgT is closed.

(:ﬂ(E*, E)-closed=c(E*, E)-closed). By (:>:>:>@) we have U°Nimg(T™*) =
U° Nker(T)°, which is o(E*, E)-closed. O

[é—ﬂlf~:_!=)]> v is onto = img(7y) = img(T™)

4.84 Exactness for dual sequence (See [MV92, 26.4 p.291]).
Let E S5 F -9 @ be a short sequence in (F). Then
0—+F—=F—G—0iseract & 04+ E* < F* < G* < 0 is algebraically exact.
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Proof. (=) This is [ 4.67].
(<) img(Q*) = ker(S*) and img(S*) = E* = img(Q*) and img(S*) are closed =

img(Q) and img(S) are closed by .
Since img(T*), = {z : y*(Tx) = T*(y*)(x) = 0 Vy*} = ker(T), we get

o= (E%)o =0
[Kri07b

S ker(S7), = img(Q")o = ker(Q)
B (@) = {0} = G. O

ker(S) = img(S
img(S) = img(S)
img(Q) = img(Q) = (img(Q)°),

4.85 Corollary. Duals of subspaces and quotient spaces of (F) spaces
(See [MV92, 26.5 p.292], [Kril4, 5.4.4]).

Let F — FE be an embedding in (F) and let 0 — (F/E)* — F* — E* — 0 be
topologically exact. Then E* = F*/E° and (F/E)* = E°.

Proof.
By [Kril4, 5.4.4] the vertical arrows in this di-

(F /E )* < F agram are continuous bijections. The left one
is an iso, since (F/E)* — F* is assumed to

/ \ be an embedding and the right one is an iso,
F*E° since F* — E* is assumed to be a quotient map-

ping. O

4.86 Definition. The canonical resolution.
Let Fo = lgln FE,, be a reduced projective limit of a sequence of Fréchet spaces

with connecting morphisms f,f“ : Ex41 — E). Then the short sequence
0= B == [[ BEx = [ Ex — 0,

where ”((l’k)keN) = (zk - f;f“(“ﬂ))kel\w
is called CANONICAL RESOLUTION of the projective limit.

If E is a Fréchet space with basis of seminorms ||_||;, for k& € N, then F is isomorphic
to the reduced projective limit formed by the Banach spaces Ey := Ep,, where
Ui :={z € E: ||z||x <1} and the corresponding short exact sequence is called the
CANONICAL RESOLUTION of the Fréchet space.

4.87 Exactness of the canonical resolutions (See [MV92, 26.15 p.299)).
The canonical resolution of any reduced projective limit of a sequence of (F) spaces
is exact. In particular, the canonical resolution of any Fréchet space is exact.

Proof. Let E = lim FE, with (F) spaces E,, ie. E = {x € [[,Er : 2 =
,erl(xk_H) for all £} which is the kernel of the mapping = : [[, Ex — [, Ex
given by 7(z) = (zx — fi ™ (xh41))ken. Let ¢ : E < [I1cn Ex be the inclusion.

Obviously [, E; = (I, Ex)*, via (z3)rken = (Tr)ken — Y ) (xx)). Using this
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identification the adjoint mappings are given by:

V(@) () = ot (@) = Y ak(w(@) = (Y wiow) @) =
k k

(X)) ken in oLk
k

@) (@ken) = v (W((mk)keN)) - Z?/Z (1 — fzfﬂ(wkﬂ))
k
= Z(y}i ~Yp-1° f;f_l) ((zr)ken) =

™ (yp)ken — Yk — Yi_1 © fr_1)ken, where y*; = 0.

Since ¢ is an embedding, ¢* is onto by Hahn-Banach. The adjoint 7* is injective,
since yi — yy_1 f,’jf1 = 0 for all k recursively gives y;; = 0 for all k.

Obviously 0 = 0" = (mo¢)* = *on*. So let z* € [[, E} with ¢*(2*) = 0. Remains
to find y* € [[, E} with 2* = 7n*(y*), i.e.
TE=yr—yi_q0 f,f_l for all £ € N.
Recursively we get y*; := 0 and y}, := ngk z; o ff:
vi = vt i o S =ait (X wjo i) o sl =Y a0 fF.
J<k-1 J<k

Since z* € Hk L} there exists an n € N with x; =0 for all j > n. For m > n we
thus have

OZL*(w*):ZxZOLk = szo(f;:bOLm) = (Z mZof,T) Ol = Yo O L.
k k<n k<m
Since ¢, has dense image we get y;, = 0 for all m > n, ie. y* € [[, E.

Thus the dual sequence is exact and by the canonical resolution itself is
exact. O

4.88 Proposition (See [Bon91]4+[MV92, 26.14 p.298]).
Let E be a Fréchet space with increasing sequence of seminorms ||_||. And let ||_||}
be the Minkowski functional of the polar of Uy == {z : ||z||x < 1}, de ||z¥|} =
sup{|z*(z)| : © € Ug}. Then
1. E is quasi-normable, i.e. YU U’ Ve > 03B bd: U' C B+¢cU.

2. VpIp' >pVg>p' Ve>03" >0: |5 <&y +ell-llys

3. VpIp' >pVg>p'Ve>03 >0:£'UNUy Cely,.

S 4. VpI >pVg>p'Ve>03 >0:Uy Ce'Uy+eUpy;

< 5. Bvery 0-sequence in Ej is Mackey-convergent.

& 6. Fy = hﬂn E[*Jﬁ is sequentially retractive.
We need and prove only the equivalence of the first 4 conditions.

Proof.
(1=[2]) By[1]: ¥p3p' > p Ve > 03B bd : U, C B+ £U,. By the boundedness
of B: Vg >p' 3’ >0: B Ce'U,. Thus

lylly = sup{ly(@)| : @ € Uy } < sup{ly(z1 +22)| s 21 € €Uy, 22 € 2 Uy}
<sup{|y(z1)| : x1 € €'V, } +sup{ly(w2)| : 22 € Uy} = €' ||yl + € Iyl
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(:) For given o > 0 let € := § and we have an &’ > 0 with

A

* / * *
1yl < " lyllg + e lyll-
Put o := 3% and let y € «'U7 NUy. Then [jy[[; < o' and [jy[|; < 1, hence

lyllyy <e-a' +e-1=aq, ie ycaly.

(3]={4) Let U2 N UG C eUS. Since (LU, + U,)° C €U NUS we get by
polarization and bipolar theorem

Uy € (Ug)o © 5(($Uq+Up)o>o =eU+UpCe (Uq"'éUQ"'Up) =e"UgtelUp
with e” == (14 2).

(:>) [Bon91] W.lo.g. let U := Uy and by assumption 4| (p+ 1 =p')

VpVgqVe > 03" > 0:Uppy CE'Uy+ U,
= 36/1 >0: U; C EllUQ + %UO
= 3&:/2 >0: Uy C §I2U3 + ﬁUl’ i.e. €/1U2 - €’2U3 + 2%U1 with 6/2 = 835’2. = ...
= 362: E;c—lUk - ‘Echk-‘rl + %Uk—l-
Let z € U;. Then z = gjuy + Svy with ug € U and v1 € Up and &)_ up =
E;ﬂuk+1 + Q%Uk with Ug+1 € Uk+1 and vg € U1 C Uy. = dx := Z;ozl 2%7% € ely,
since F is Fréchet. The set B := (), (&}, + ) Uy is bounded and z — = € B, since

k

oo oo
( € ) € , 5
z—x= z—g —v; ) — E —U; = U4l — E —v;
2]] 12JJ kWk+1 2JJ

Jj=1 Jj=k+ Jj=k+1

€
€ e Ukt + Q—kUk C (e, +e)Up. O

4.89 Canonical resolution and quasi-normability (See [M'V92, 26.16 p.299)).
Let E be (F) and 7 the quotient mapping of the canonical resolution of E.
If ™ is an embedding, then E is quasi-normable.

Proof. Indirectly assume E is not quasi-normable. (Ej)* = E(*]E and the dual

N
norm ||_||x on (Ex)* is just ||-|3- g
(1) TImVk>mIK >k3Iep, >0VS >0y € EL :ylle > Sllyller + exllyllm.

1

By assumption (7*)~" : img(7*) — [[, E; is continuous and p : n — ), £||77ka

a continuous seminorm on [[, Ej.
= 3p SN of [, E}: p((m*)~1(n)) < p(n) for all n € img(r*) = ker(s*).
= 3D; > 0: p(n) < > Dicllmwe|lx-

= Vk > max{m, D,,} 3k’ > k Je, > 0 for S := Dyey/k Iy € E

lylle > Sllyller + xllyllm

* with

m

Let n € ker(¢c*) be given by n,, 1=y, nw = —y € E}, C E}, and n; = 0 otherwise.

Proof of

(7)"t(n) = (3" <k Mj)k- Since m < k < k' we have:
k o1 )
ol < p((;k ni) ) < (") 7' ) < 5(n) < Dullyllm + Dirllyll

€k €k
= Mylle < D= llyllm + D ==llylle < ellyllm + Sllylle,

a contradiction. O
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4.90 Sequences of bounded subsets in (F) spaces (See [MV92, 26.6 p.292]).
Let E be metrizable. Then

1. B, C E bounded = 36, > 0: |, cr 0nBn bounded.
2. V B bounded 3 C 2 B bounded: Ec 2 B — E is an embedding.

Proof. Let (U,) be a 0-nbhd basis of E.

() Vi,n 3N, > 00 B C A\jnU,. Let A, := max{);, : j <n} =Vj <n:
)\j,n <\, = V] Elaj > 1 Vn: )\j,n < aj>\n = Vjﬂ’LZ Bj - Aijn - aj)\nUn = V]
B; C a;), MUy, and B := (), \,Uy, is bounded. Thus (J L B; C B is bounded.

J o

() W.lLo.g. B absolute convex. I\, > 0: B C \,U, = B C C := (), n\U,
and C' is bounded and Ec O B — E continuous. In order to show the converse, let
xEBand€>0.3m:€>%,3kz:Uk§ﬂ en Uy, =

n<m

280U, € ([ endalln) N () endaln = [ nAuUy = 2C

n>m n<m
=BN@x+Uy)=c+B-2)NU, Cax+2BNU, Cax+eC
=BN@x+Uy) CBN(x+eC). O

4.91 Theorem. Dual of surjective mappings (See [M'V92, 26.7 p.293]).
Let Q : F' - G be continuous linear between (F) and onto. Then
Q is a cbs-quotient mapping < Q* is an lcs-embedding.

Proof. (=) This is|4.72.1

(<) B C G bd = B° 0-nbhd = Q*(B°) 0-nbhd in img(Q*) C F* = IM C F bd.
Q™ inj

Me N img(Q*) C Q*(B°) £
Q(M)° (Q)H(M?) = (@)1 (M° Nimg(Q")) C B°
=B C (B°), C (Q(M)°), = Q(M)

4.90.2 | for Q(M - G
[1902]0r Q0D 5 - 1 . - QM) = QD)°”

= VBCGbd 3M C Fbd. 3B' CGbd Ve >0: B CQ(M)+eB. ==,
VBy C G bd. ¥n 3M, C F bd. 3B, C G bd. Ve > 0: B, C Q(M,) + By 1.

4.90.1
dM,B bd. 3N, > 0: M, C \,M, B, C \,B. W.lo.g. M closed and
Ao = % = Take ¢ := 1 and &, < 1 such that g, A, < 1/2"+1,
Vby € By Vn Im,, € M,, 3b,41 € Byt1: by, = Q(mn) + ent1bpnt1. =

by = Q(ZEO .- ~5jmj> + &g €k+1bk+1
i<k

M

o Ejmy 660”'6ij er)\ng YES]

€0 Ek+1brt1 € €0 Ept1Bry1 C e 1B C WB

oo

= dm = ZEO Cr g5y € M and Q(m) = Z{fo . 'Ej(bj - €j+1bj+1) = b(),
j=0 3=0

i.e. By C Q(M). O
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4.92 Proposition. (See [MV92, 26.11 p.295]).
Let 0 — E -5 F 95 G — 0 be exact between (F).
Q@ a cbs-quotient mapping = S* is an lcs-quotient mapping.

Proof. Let (Uy,), and (V,,),, 0-nbhd-bases of F' and G.

Claim. Vn 3m YB C V,, bd 3M C U, bd: Q(M) = B:

Indirect: In VYm 3B, CV,, bdVM C Fbd Q(M)=B= M ¢ U,.

= B := J2"B,, C G bd (in fact: 2V,yy C Vi, = U, -, 2B, C 2'V,) =
IM CFbd: QM)=B=3>0: eM CU,, Im: 2™ > 1= Q(eM) =eB D
€2™B,, O By = My :=eM NQY(B,,) CU,, Q(My) = B,,, a contradiction.

Claim. VB C G bd M C F bd Vn 3k: Q(M NU,) 2 BNVj:

VYn Im, VB C G bd IM,, CU,: Q(M,) =B, :=BNV,, .

Put M := (U, Mn)abs.conv- = M C F bd, since Uys,, Mk € Ups, Ur = Un.
QMNU,) 2Q(M,)=DB,=BnV,,, - -

Claim. VLC Fbd3dD C EbdVn Im: (L+U,)NECD+U,

(See [MV92, 26.10 p.295]):

Let L C F bd, B:= Q(L) = 3M C F bd ¥n 3k: Q(M NU,) 2 BN V.

Put D := (L+M)NEC E bd. ¥n 31 > n: 2U; C U, Fk: QM N Uz) 2 BN Vi
Q continuous = Im > n: Q(U,,) C Vi.

Let c € (L+Un)NE. =3€Ll ueUy z=1—u, Q1) —Qu) = Qx) = 0.
Q) =Q(u) e BNQU,) CBNV, CQMNUz) =

A eMnUsz: Q) =Q(1) =Qu) =

r=(1-+El-uw)e L+MNE+U+U,, C(L+M)NE+2U; CD+U,

Claim. S* is a quotient mapping (See [MV92, 26.9 p.295]):

VL C F bd 3D C E bd Y 3m: (L +Up) N E C D+ U,.

Letye D°. = 3ntyec U2 =yeD°NUSC2(D+U,)° =ye2((L+U,)NE)°
Hahn Banach, 35 € 2(L + U, )° C 2L°: §o S =y, Le. S*(L°) D 1De. O

4.93 Theorem. Exactness of dualized sequence (See [MV92, 26.12 p.296]).
Let 0 — E — F =95 G — 0 be ezact between (F) spaces. Then

0 « E* « F* + G* < 0 is topologically eract < @Q 1is bornological quotient
mapping.

Proof. ‘ 4.84

4.91

4.92| = O

) U

4.94 Lifting compact sets along quotient mappings in (F)

(See [MV92, 26.21 p.302)).

Let Q : E — F be continuous linear surjective between (F) spaces.

Then Q is a cbs-quotient mapping for the bornologies of relatively compact subsets.

3.6
Proof. K C F compact Az, = 0, K C ({z, : n € N}) 9 Jz, — 0 in E with

Q(zn) = xy L:={z,:neN})cp, QL) CK. O

4.95 Theorem. Dual of sequences in (F) with (M) quotient (See [MV92,
26.22 p.303)).

Let 0  E — F — G be a sequence in (F) and let G be (M). Then
0—-F—=F—G—0iseract & 04+ E* < F* < G* < 0 is topologically exact.
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Proof. G (M) = bounded sets are relatively compact, hence have bounded lifts
along @ by . Thus @ is a cbs-quotient mapping, hence the dual sequence is

topologically exact by . The converse follows from . O

4.96 Exactness for quasi-normable spaces (See [MV92, 26.13 p.296)).
Let 0 — E — F 95 G — 0 be exact in (F) and let E quasi-normable.
Then Q is a cbs-quotient mapping.

4.88.4
Proof. (W,), 0-nbhd-basis of F. Ing, Up :=W,,, Vi, =UyNE:
(1) VkVe>03e >0:Vp, Ce'Viyr +eViq.

Let B C G bd. Z2% vk 30, B C O, Q(Uy). Put Cl := Cj + Chyr. We use
recursion to construct

1
(2) Vk>2de, >0:V, C EkaJrl + ka,1 with Dy, := C]/c + Dp_16k_1.

In fact, put D; := 0, and in the induction step let ¢ := 1/(2¥Dy) and take ¢y, := ¢’

as in .
For ||_||x := pu, let M :={x € F :Vk > 2: ||z||x < Cy + Dyey + C}, + 1}. Then M
is bounded.

Claim: Q(M) 2 B.
Let £ € B C C,Q(Ux) = Q(CUy) = Fap € CpUy, Qax) = £ Put y :
Ty — a1 = Qyr) = Qzr — Tp41) = — € =0, ie. yp € E=ker(Q) and

Yk = x — Tpy1 € Cr Up + Crg1 Up1 € (Cr + Cryr) Uy = CL Uy,
= Vk:yg GC,ICUkﬂEZC,/ﬂVk.

We use induction to construct vy, € DypepViq1 and uy € 27%V,_; such that
Yk + Vk—1 = Vg + Uk

Let vg := 0 and vg_; already be given. Then yy + vg—1 € (C}, + ex—1Dk—1)Vi =
2
DV, Juy, € DkEka_H, U € Q_kvk_ll Yk + Vp—1 = Vg + Ug.

= Jbg = vp—1 — ZjZk uj € E, since Zj>k llujlle < Zj>}<; [ujlli—1 < Zj>k 2% =
o
1
bkl = ||vk—1 — uk — Z%Hk < okl + lyklle + o5 < Drex + Cp + 1.
—— 2
o >k
=Vk—Yk
Let @ := a9 + by. Since bgy1 — by = vk — Vg—1 + Uk = Yk = Tk — Tk4+1, We have
||l‘||k = ||33k + bk”k < ||$k||k + ||bk||k < Cy + (Dk5k + Cllg + 1) = x € M and
Q(z) = Q(r2) + Q(b2) = £ + 0. O

4.97 Theorem. Dual sequences and quasi-normability (See [M'V92, 26.17
p-300]).
Let E be (F). Then

1. E is g-normable
2. IfQ : F - G is an les-quotient mapping in (F) with kernel E, then Q is a
cbs-quotient mapping.

3. If0 > E—F — G —0isexact in (F), then 0 + E* + F* + G* «+ 0 is
topologically exact.
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Proof. (:>) by .
(2]=[3) by [4.93]
(:>) for the canonical resolution of . O

4.98 Corollary. Quasi-normable (F) are distinguished
(See [MV92, 26.18 p.301]).
g-normable (F) = distinguished.

4.97
Proof. dual of canonical resolution of is topological exact. = E* is
quotient of countable coproduct of Banach spaces, hence bornological by . O

4.99 Dual sequences for Schwartz spaces (See [MV92, 26.24 p.303]).
Let 0 » E — F — G — 0 be exact in (F) and let one of these 3 spaces be in (S).
Then the dual sequence is topologically exact.

Proof. Closed subspaces and quotients of (FS) are (FS) by [3.73], hence (M) and

quasi-normable. Thus and yield the result. O

4.100 Corollary (See [MV92, 26.25 p.303]).
Let F be (FS) and E C F be closed. Then E* = F*/E° and (F/E)* = E°.

Proof. , = O

4.101 Example (See [MV92, 27.19 p.318]).
Let A = {a® : k € N} as in . Then the Fréchet space A\'(A) is not distin-
guished, not quasi-normable and (\*(A))* is (DF) but not infra-barrelled.

Proof. In we have shown that A!(A) is not distinguished and hence (A!(A))*
is (DF) but not infra-barrelled. By AL(A) is not quasi-normable. O

4.102 Quasi-normability of AP(A) (See [MV92, 27.20 p.318)).
For A={a™ :n € N} let E := \P(A) with 1 < p < 0o oder E := co(A). Then

1. E is g-normable
2. VpIp' Ve>0Vq I >0V5: 1/a§-p/) < 5’/a§-q> —I—E/a;-p).
&3, Vp I/ VJ CN: infjesal? /') >0 = Vg > p' infes 0 /al? > 0.

Proof. E = A(A) (For E = ¢y(A) analogously)
(=12 Uy = o € 2(4) ¢ [y < 1.
¥p3p' > p¥e>0¥g € N3 > 0%y € B : lylluy, < 'lvllu +<lyllog
() is obvious for j with a;p) = 0. Otherwise ag.p) £0 ¢; € (U9) and
=ty <l e~ 1
(ﬁ) Vp Jp’ satisfying () I C N with infje; a§_p)/a§_p’) —p >0, Put

g :=n/2. For ¢ > p/ 3’ > 0 satisfying a§p)/a§p,) < 5’a§p)/a§-q) + ¢ for all j =
a§P)/a§_Q) > (GE_P)/GS_P') o 6)/6/ >

n
2e’”
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(:>) Vp Jp’ > p satisfying () Lete >0,geN. Put I :={j: a§p)/a§pl) >e}

(3)
Vq > p' 3’ > 0: infjejagp)/ag‘q) > %

4.88.4
Claim: U, C ¢'U, +¢U, ( AP(A) g-normable):
Let x € Uy and z := z — y with y; := x; for j € I and 0 otherwise. Vj € I:
agp) > a‘;p) > ag-q)/z-:’ =

/ 1
lylly = [y a® - =5 0@ < lally & <&
RN () (")
Vigl: a;’ <eaj’ =
/ 1
—ly. q®). . q® ,
lelly = [}z a®) - o5 -0 < lallye < e

=>c=y+z€cU;+el,.
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Splitting sequences

In this section we describe situations, where short exact sequences split and refor-
mulate this in terms of the derived functor Ext of the Hom-functor. For sequences
with a power series space as kernel the characterizing property on the quotient is
(DN). And for sequences with a power series space of infinite (resp. finite) type

as quotient the characterizing property on the kernel is (§2) (resp. (£2)). We show
that the spaces in (DN) are exactly the subspaces of generalized power series spaces
A2 (a) of infinite type. And the spaces in ({2) are exactly the quotients of gener-
alized power series spaces AL (a) of infinity type. We give some applications to
extensions of non-linear mappings and introduce universal linearizer for that.

4.103 Continuously solving PDE’s.

In the early fifties of the 20*" century L. Schwartz posed the problem of determining
when a linear partial differential operator P(9) has a (continuous linear) right
inverse. Grothendieck has shown that for n > 2 no elliptic operator has such an
inverse on C*°(U) for U C R™. By [Vog84, Theorem 3.3 p.365] the same holds
more generally for hypoelliptic operators. This is in contrast to that fact, that
hyperbolic PDO’s have continuous linear right inverses on C'*°(R").

A partial differential operator D defined on an open subset U C R™ is called
HYPOELLIPTIC if for every distribution v defined on an open subset V' C U such
that Du is C'° is itself C'*°. The Laplacian A is elliptic and thus hypoelliptic. The
heat equation operator D(u) := %u — A(u) is hypoelliptic (even parabolic) but not
elliptic. The wave equation operator D(u) := (%)2u — A(u) is not hypoelliptic,
it is hyperbolic; i.e. the Cauchy problem is uniquely solvable in a neighborhood of
each point p for any initial data given on a non-characteristic hypersurface passing

through p.

4.106 Continuously extending functions or jets.
The exact sequence

{feC=(-1,1]): f is co-flat at 0} — C>([-1,1]) -» R"

of Borel’s theorem is not splitting. Otherwise, there would be an embedding
RY < 0°°([-1,1]) and the co-norm on C*°([—1,1]) would induce a seminorm on
RY with kernel {0}. But each seminorm x — max;<, |z;| of the usual basis of

seminorms for the product RY has an infinite dimensional kernel {z € RY : z; =
0 for all i < n}.

For subsets ¢ : A C R™ let us consider the property, that the restriction operator
¥ C®(A,R) - C°(R™,R) has a continuous linear right inverse.

By [See64] R;>¢ C R has this property and by [Tid79, Satz 4.5 p.308] for each
r>1theset A:c={z eR":0<z; < 1,23+ -+ 22 <23"} CR" has it.
Whereas, by [Tid79, Beispiel 2 p.301] the set A := {(z,y) : x > 0,|y| < p(x)} does
not have it, when ¢ € C*(R, R) is co-flat at 0.

4.107 Proposition.
The functor L(_, F) : les® — lcs is left exact,
i.e. if 0+ ET L ES_E s topologically exact, then

0— L(ET, F) -9 L(E,F) 5= L(E~,F)
is also ezact, i.e. L(_, F') is a LEFT EXACT FUNCTOR.

Proof. (Q* is injective) Let 0 = Q*(p) = ¢ 0 Q. Then ¢ = 0, since Q is onto.
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(ker(S*) = img(Q*)) Let 0 = S*(¢) = ¢ 0 S, i.e. ¢ vanishes on img(S) = ker(Q)
and hence factors to a ¢ : ET — F with ¢ = goQ = Q*(p). The converse inclusion
is obvious by @ o S = 0. O

The functor £(_, F) is not exact (i.e. maps short exact sequences to such sequences)
in general, since exactness at L(E~, F') would mean that for closed embeddings
S : E- < F the adjoint S* : L(E,F) — L(E,F) is onto, i.e. every morphism
¢ : E~ — F must have an extension to E.

4.108 Definition. Injective spaces and extension of maps.
An (F) space F is called INJECTIVE FRECHET SPACE iff for every

embedding S : H — G of (F) spaces every T € L(H, E) has an g S

extension T € H(G, E), ie. ToS =T.
Thus the Fréchet spaces F for which £(_, F) preserves exactness \7\ VT

of all short exact sequences in (F) are exactly the injective ones. E
By Hahn-Banach K is an injective (Fréchet) space.

More generally, for every set X the Banach space ¢>°(X) of bounded functions on X
is an injective Fréchet space: Let S : H < G be an embedding and T : H — {>°(X)
be continuous, i.e. p := ||_||¢= o T is a continuous seminorm on H and hence has
an extension to a continuous seminorm p on G. Now T, := ev, ol € H* for each
z € X and |T,(y)| < |IT(y)]lo = p(y) for all y € H. By Hahn Banach we find
T, € G* with |T,(2)| < p(z) for all z € G. Thus T : G — £°(X) defined by
T(z)(x) := Tp(2) for each z € G and = € X is a continuous linear extension of T,
since [|T(2) |0 = sup{|Tw(2)| : © € X} < j(2) < oo for all z € G.

Every Fréchet space F' is subspace of an injective Fréchet space: We can embed F
into a countable product of Banach spaces and every Banach space G can be embed-
ded into the space of bounded linear functionals on G* and thus into £*°(0G™*). Since

a countable product of injective Fréchet spaces is obviously an injective Fréchet
space we are done.

4.109 Proposition.
The functor L(E,_) : les — les is also left exact.

Proof. Let 0 — F~ -2+ F —% F+ be topologically exact and consider
0— L(E,F~) 2= L(E,F) %< L(E, F*).
It is exact at L(E, F~), since S, is obviously injective.
It is exact at L(E,F), since ¢ € L(E,F) is in ker(Qx) & 0 = Q.(p) = Qop

< img(y) C ker(Q) = img(S) < ¢ factors to a morphism ¢ : E — F~ over the
embedding S : F~ — F < ¢ € img(S.). O

The functor L(E, _) is not exact in general, since exactness at L(E, F'™) would mean
that for quotient mappins p : F' — F* the adjoint p, : L(E, F) — L(E, F*) is onto,
i.e. every morphism ¢ : F — F* can be lifted along p : FF — F* to a morphism
p:E—F.

4.110 Remark. Projective spaces and lifting of maps.

An (F) space E is called PROJECTIVE FRECHET SPACE iff for every H £ ¢

quotient mapping @ : G - H of (F) spaces every T € L(E, H) A

has a lift T € L(FE,G),ie. Qo T =T. T T
E
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Obviously every finite dimensional space is projective, since all linear mappings
on it are continuous. It was shown in [Gej78] that there are no other projective
Fréchet spaces.

4.111 Theorem. Splitting sequences (See [Vog87, 1.8 p.171)).
Let E and F be (F). Then

1. Let 0 - F - G — H — 0 be ezact in (F).
Then 0 — L(E,F) — L(E,G) — L(E,H) — 0 is exact.

< 2. Let0—-F — G — H — 0 be exact in (F).

Then any T € L(E, H) lifts along G - H.

< 3. Let0 - F - G — E — 0 be exact in (F).
Then G — E has a right inverse.

< 4. Let 0 = F — G — E — 0 be exact in (F). Then it splits,
i.e. is isomorphic to the sequence 0 — F -8y Fa E P2y | 4

<5 Let0— F — G — E — 0 be exact in (F).
Then F' — G has a left inverse.,

< 6. Let 0 > H— G — E — 0 be exact in (F).
Then any T € L(H, F) extends along H — G.

& 7. Let 0 > H— G — E — 0 be exact in (F).
Then 0 — L(E,F) = L(G,F) — L(H,F) — 0 is exact.

Proof. (<:>) Since L(E, ) is left exact by |4.109]|, holds iff L(E,G) —
L(E,H) is onto, i.e. any T € L(E, H) has a lift T € L(E,G).
) By | 2| the identity idg : £ — FE has a lift 1dE FE — G along G — E.

(2
( ) Letid=QoS: EF— G — E. The isomorphism F & E — G is given by
(y, ) — (y,S(x)) with inverse G - F® E, z — (2 — S(Q(2)), Q(2)).

( )

={2]

H

Consider the pull-back

C
0 F G i 0 The bottom row is again an exact
H inj Tprl o TT sequence, hence splits by , and
0—>FC . 5>GxgE—2>F——>0 thus gives a lifting
A ~
H ~"p H T := pry o® o inj,,

inj,

OHFC—>F€BE*»E*>O

(@@@@) is obtained by dualizing the arguments of (@@@)
O

where @ is the isomorphism.

4.112 Remark. Exactness of tensor-functors.
The algebraic tensor product functor - ® F' is exact, since short exact sequences

of linear spaces are splitting and applying the functor - ® F' to the splitting gives
splitting exact sequences.

The injective tensor product functor _®. F preserves embeddings S, since we have by
definition natural embeddings F®. F — L(E*, F) and L(E*, _) obviously preserves
embeddings S : F; — Fb, in fact

(87 (Npy) ={T: (SoT)(B) SV} ={T:T(B) C ST (V)} = Np,s-1(v)-

It does not preserve quotient mappings, see [KriO7a, 4.29].
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The projective tensor product functor _®, F preserves quotient mappings @ : F; —
FE5, since the image of URQV C F1®,V under the linear map Q® F' is the absolutely
convex hull of the image (® o (Q x F))(Uy x V) = ®@(Q(U1) x V) and hence is a
0-neighborhood in Fy ®, F.

The completion functor (-)~ preserves short topologically exact sequences 0 — E —
F — G — 0, since F can be obtained as closure of E in F. Thus E = F N F, since
Y EEOF:EFﬂFéEI:Ei €E:z;»yeF=0=Q(x)=Q)— Q) =Qy),
i.e. y € ker Q = E. Therefore, the mapping G = F/E = F/(ENF) — F/E induced
from F < F is injective. It is an embeddings, since for every continuous seminorm
¢ in G, we can extend p := ¢ o Q to a continuous seminorm p in F which has to
vanish on the closure E of E in F hence factors to a continuous seminorm § on
F/E, which induces ¢ on F/E. Since F < F has dense image and F — F/E is
onto the embedding F/E < F/E has dense image, and since F/E is a Fréchet
space, it is the completion G of G.

In order to describe the obstruction to exactness of the functor £ we need injective
resolutions:

4.113 Proposition. Injective Resolution.

For every Fréchet space F there exists an injective resolution, i.e. a long exact
sequence 0 — F — Iy — Iy — I, — -+ -, where I, is an injective Fréchet space for
each k € N.

Proof. Let Iy be an injective Fréchet space into which F' embeds by .
Recursively, we may embed Ij/img(I;_1) (where I_; := F) into an injective
Fréchet space Ij+1 and take as connecting map the composite of the quotient map
I, — Ij./img(I—1) and this embedding I}/ img(Ix—1) < Ijy1. O

Using injective resolutions we can construct the derived functors using homological
algebra:

4.114 Theorem. Derived functors.
There are functors Ext® : lcs®? x les — vs for k € Z (called the RIGHT-DERIVED
FUNCTORS of L) and natural transformations § such that:

1. Ext®(E,F) =0 for k <0.

2. Ext’ = L.

3. Extk(E,F) =0 for all k > 0 if F is injective.

4

. For every short exact sequence 0 - E~ — E — E* — 0 there is a long
exact sequence

. > ExtF(E*, F) - ExtF(E, F) - Ext®(E~, F) = Ext*" (E*, F) — ...

For every short exact sequence 0 — F~ — F — F* — 0 there is a long
exact sequence

- = Bxt®(E,F7) = Ext*(E, F) - Ext*(E, F*) <4 Ext* Y (B, F) —» .- .
For fized F the functor Exty(-, F) together with the natural transformation 0 is up
to isomorphisms uniquely determined by -. And similarly for each fized E.

Proof.
() By | 4.113 | there is an injective resolution I of F:

O0=>F—=Iy—=1 I, — -
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Applying L(E,_) to I (only!) gives a cochain complex
0— ,C(E, I()) — ﬁ(E, Il) — ﬁ(E7IQ) — e
and we define Ext®(E, F) :== H*(L(E, I)).

By [KriSS, 9.19] and [KriSS, 8.23] the lincar spaces Ext”(E, F') are independent
on the injective resolution of F'.

() By definition Ext%(F, F) is just the kernel of £(E, Iy) — L(E, ;) and by left

exactness in [4.109 | the sequence 0 — L(E,F) — L(E,Iy) — L(E, ;) — --- is
exact, hence this kernel is isomorphic to L(E, F').

() If F is injective then Iy := F and I}, := 0 for k£ > 0 gives an injective resolution.
Hence £(E, I;;) = 0 and thus also Ext®(FE, F) = H*(L(E,I)) =0 for k > 0.

() Let 0 «— E* <~ E < E~ < 0 be short exact and I be an injective resolution
of F. Since I} is injective we have short exact sequences

0— L(EY I}) — L(E,I) = L(E~,I;) =0
and this gives a short exact sequence of cochain complexes since £ is a bifunctor:
0— L(ET,I)— L(E,I)— L(E-,I)=0
By [KriSS, 7.30] we get a long exact sequence in (co)homology:
oo > ExtF(E*, F) - ExtF(E, F) - Ext®(E~, F) =% Ext*" (E*, F) — .- .
Let 0 = F~ — F — F* — 0 be short exact and I~ and I be corresponding

injective resolutions of F'~ and F'*. We construct an injective resolution I of E and
an exact sequence of resolutions with

0 E- E Et 0
o,
0——= 1" > 1 >t —0
Take Ij, := I,; @ I}} and put I, W.Ik_l Trz»I’:—l
dy = (dy,, df opry) : Iy — Iy & I, d;_ll e id;'_l
where cz,; is an extension of d : I, — e v .
z N I Iy, I;
I, along I;) < I. - pry
This makes I into a chain complex and d;l e di l af
inj; : I~ — I and pry : [ — I into chain £ pryy
. I* L I I+
mappings. kil Ty Dot 5 g

Since I, is injective, the sequences 0 — I, — I, — I; — 0 split and hence also
0— L(E,I},) — L(E,I) - L(E,I}]) — 0 splits and, in particular, is exact. By
[KriSS, 7.30] we get a long exact sequence in (co)homology:

- = BExt®(E,F~) = Ext*(E, F) - Ext*(E, F*) <5 Ext* " (B, F~) — - -

(Uniqueness) We proceed by induction on k. For k& < 0 we have uniqueness by
and . So we assume that we have two sequences of functors Ext*, which are
naturally isomorphic till order k, and we have natural connecting morphisms. Then
a diagram chase starting at a short exact sequence 0 - F'~ — F — F* — 0 with
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injective F' shows that they are also isomorphic in order £+ 1 on (E, F~):

..4>04>Extk(E,F+)i>Eth+1(E,F_)4>04>...

i -

..HOHR%(E,F*)LR?;%E,F*)*>-0*>-...

O

4.115 Proposition.
The statement Extl(E,F) = 0 is equivalent to the equivalent conditions of | 4.111]|.

Proof. (ﬁ’ 4.111.1 ‘) By ’ 4.114.4 ‘ we have the exact sequence
0— L(E,F)— L(E,G) — L(E,H) — Ext'(E,F) — - -
0
(«=4.111.1|) Choose an injective I into which F' embeds by |4.108 | and consider
the short exact sequence 0 — F — [ — I/F — 0. Hence 0 — L(E,F) —
L(E,I)— L(E,I/F) — 0 is exact and in particular £(E,I) — L(E,I/F) is onto.
Investigating the long exact sequence

0= L(E,F) = L(E,I) — L(E,I/F) % Ext'(E, F) — Ext'(E,I) = ---
————
=0

using |4.114.3 |, gives Ext'(E, F) = 0. O

For an additive description of (DN) and later of (£2) similar to |4.88.2 | for quasi-
normed spaces, we need the following:

4.119. Lemma. . .
Let a,b> 0 and o, 8 > 0. Then inf{r®a + %bﬂ cr >0} = M(%)a 5 ath Jath

a

Proof. Let f(r) :=r%a+ %8 = (r*"Pa+ ) r~". Then f'(r) =aar®' —b i B
and hence f'(r) =0 < r®**a = 2 8. Thus

b BB\ T L, b\ say—as
f(r)Z(aﬂ-i-B) (aa> = @i 1T <1+a> (Z)

b _a_a—+ b (a) aLer

= (ua+b Fa+b - .
a b

Note that f(r) — 4oo for r \( 0 if « > 0 and for r  +oo if § > 0, hence the

infimum is attained if «, 5 > 0. Otherwise f(r) — 0 for r — 0 or r — +00, hence

the statement is valid in this case as well. O

4.123 Theorem. Characterization of the property (DN).
Let E be a Fréchet space with an increasing basis of semi-norms ||-||x corresponding
closed unit balls Uy, and polars By, := (Uy)°.

1. E is (DN) (see , i.e.
g ¥p ' 3C > 0 |15 < Cll-llg - -l
&2 3¢¥p 3/ 30> 0%r >0 |llp < rll-llg + Sll-llys
3. 3qVp I} IC>0Vr>0:Ug CrUg+<SUS;
&4 Vo< <1V¥p I 3C>0: |, <O 115
5. 3¢3d>0Vp I 3C >0 |-l < OG- -l
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& 6. There exists a log-convex basis of semi-norms |||, on E, i.e.
2
Vp -l < W-lllp—y - M-l

Note that in all these conditions we may assume w.l.o.g. that ¢ < p < p’, since for
p’" > p’ we have ||_||p» > ||-||,> and for p < ¢ we may take p’ =p and C' = 1.

Note furthermore, that for ||_[|,» > |||, only & near 0 (and hence d = 1% near o)
are relevant, since for § < ¢’ (and ||y||, # 0) we get

: Iyl Il \
oy~ il = lolla (F52) < lolla (52 ) = Iwlly™ il
Iyl vl

>1

Proof.

( = ) the minimum of r — rl|zlly + £|z|ly is 2/Clz(4[[z[l, by |4.119].

Hence the inequality in @ for all 7 > 0 is equivalent to [|||2 < 4C||_[l¢l-[|p-
(2] [3) From 1l < rll-ly + €1l we get
LU, 0 &0y € 2U, and hence Ug € 2(rUg + CUS ).
Conversely,
U Crug+<Uy,
implies that any u € U can be written as u = rv + Cu’ with v € U7, u' € UJ s 1€
u()] < rlo(e)] + ' (@)] < rllzllg + Sllelly

for all z € E. Hence | 2| holds, since ||z = sup,cy, |u(z)|-

( = @) Define a new basis of semi norms |||, recursively by: [|-[l, := [|-ll¢;
2

Ipo 3C0 = 1: [l -lllg < Hl-lllo - Co ll-llpy = Ml-g - H-llly> where [[-lly == Coll-llpy;
2 .

Ay, 30k = 1 1l < U-lllo - Cr M-l < M-l = M-l ns with -l = Cr ll-llpy -

2 .
(6] = [1) From |2 < llly_y ll-ll, we obtain that all |||, are norms and
using [zl /llzlle—y < M2lllips/Nzlly for all @ # 0, we get for all k& € N the
inequality

k 2k
=l 1l Ml Ml 2
= Le. Izl < llzllo Nl
Il 1:[ [ P A [ PR ] P ; o
( = ) Put po := p and apply iteratively to get p,+1 > p, and a C,, with
||,\|2U < Gy [l-llg -llpy 4

Let 0 < 6 <1 and m € N with < §. Since ||||4 is a norm, we have

m+1
m—1
H || Hpu H C || ||p1/+1 H C ||*Hpm
H || -] [ R Er
q q =0 Pv =0 p

If we put C := (]_[17,":_01 C’V) m, we get

m )
ST 1-llp \ [N
Il < Cllle ™ |15 = - ||q( P <Cllq- 2

-llq
(4] = [5)) This follows directly with d := 152
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( = ) We have Vp 3p',Cp : ||lz||}T" < Cp ||z [|z]lpy and Vp' Ip”,Cpr :
||:1:||11],+d < Cp ||@]|3 |||l Thus for d’ = 2d 4 d* > 2d we get

’ 2 ’
lzllp" = Nellg 0" < G allgF D Gy llzlig lzllyr = Cp CpF Nzl Iz
o we get or some d > y induction and thus also for d = 1.
S 5 | fi d > 1 by inducti d thus also for d =1 O

4.124 Definition. Generalized power series spaces (See [Vog85, p.2506]).
For aset Jand a:J — {t € R:t > 1} we consider the following GENERALIZED
POWER SERIES SPACES OF INFINITE TYPE:

22 () = { K2l = sup (1) a(1)* < oo for all k € N},

AL (a) = {f e If Ik = S If ()] a(t)* < oo for all € N}.
teJ
These Fréchet spaces A2 (a) are usally denoted AP(J,a) for p € {1,00} and for
p = 1 the index is often dropped.

4.125 Lemma (cf. [Vog77a, 2.4. Corollary p.115] ).
For each a € ]R‘él the space A2 (a) has property (DN).

Proof. By definition | f||x := ||f - a*||¢~. Thus
IFIZ = 1f - aPllze = 1112 - a®lle < I Flles - [1F - @®Plle= = [ fllo - [1F]l2
Thus AZ(a) satisfies condition |4.123.1 | for ¢ := 0, p’ := 2p, and C := 1. O

4.126 Lemma (See [Vog85, Example (3) p.256]).
Let I be a set and a : N x I — N be given by a(n,i) :=n + 1.
Then £°(I)&s =2 X2 (a) and (1 (I)&s =2 AL (a).

Proof. By E' ®. F — L(E,F). Since ¢o(I) is Banach with dual ¢y(I)* =
0H(I) and £1(1)* = £>°(I) we get embeddings

NI @ 5 = L(co(I),s) and £2°(1) ®. s — L), s).
Let Py : s — s be defined by Py(z), := x, for n < k and 0 otherwise. Then
P, —id and for T € L(¢*(I), s) we have Py oT — T with P,oT € {}(I)* ® s. So
°(I)&®s = L(£1(I), s) and analogously 1 (I)&s = L(co(I), s).
Furthermore, L£(¢*(I),E) = (*(I,E) and L(co(I), E) = (*(I,E): In fact, T €
L(X(I), E) is uniquely determined by z¢ := T(e;) € E for i € I. Since T is
bounded, {z’ : i € I} C E has to be bounded. And conversely a bounded family
{z' : i € I} C E defines a continuous linear operator T' : (1(I) — E, (y;)ier —
> y;x' € E. And the same arguments work also for the second isomorphism.
Finally note, that £>°(I,s) = A\%(a) and ¢*(I,s) = AL (a): In fact, the seminorm
Il-llx : = sup{|(n + 1)*=z,| : n € N} of s induces the seminorm of ¢>(I,s) by
taking the £>°-Norm of (||z%||x)icr and corresponds to the seminorm ||_||. of AZ(a).
Replacing the supremum by the 1-Norm, gives the second isomorphism. O

4.127 Proposition (See [Vog82, 1.1 p.540], [Vog85, Lemma 1.3 p.258], [Vog87,
4.3 p.185], and [Vog77a, Satz 1.5 p.111]).
Let F and G be Fréchet spaces and assume that G has property (DN).
Then any exact sequence
0—>)\§(a)—>F£>G—>O

with a € R, splits.
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Proof. W.lo.g. let E := AZ(a) — F be the inclusion of a subspace. We have to
prove that it is complemented, i.e. there exists a left inverse ¢ : FF — F to it.

Let ev; € E* be given by ev;(z) := z(j) for # € E. Since |a(j)*ev,(z)| =
la(j)*z(j)] < |||k the set {a(j)*ev;:j € J} is equicontinuous for each k € N.

By Hahn-Banach we can extend ev; to 6v" € F* for each k € N such that

J
{a(j)k&? g€ d } is equicontinuous, thus contained in Uy for a suitable neigh-
bourhood Uy of 0 € F. We can assume that U1 C Uy for all k£ € N.

Thus

k+ o o o __. )
gf 1= &N =67} € b (o Ul +UR)NE® € o35 U NE® = b By € B

Since Q* : G* = (F/E)* =2 E° C F* as cbs for the equicontinuous subsets by
[Kri07b, 7.4.4] and and since G has property (DN), there exists a bounded
set B C E°, which satisfies the conditions of for a fixed fundamental
system of bounded sets By in E°. W.lo.g. (by enlargeing By11) we can assume

that
—k—2

Vke NVr>0: B, CrB+ Bk+1

9—k—1

In particular, for r := a(j) we get by multiplication with 2a(j)~*

1) 2(j) "By, € a(j) 127" B + a(j) " By,
We now choose for fixed j recursively b% with by € a(j) "By C E°:
Put b0 =0. If bk € a(j)~*By is already choeen we have gj + b’C € 2a(7)"*By.
Hence by () there exists a b?“ € a(j)~* !By such that

gf—kbk bk+1€2 a(j) 1B
If we put

ok =&k — bk e P,

we get for k > 1:

PETT — gk = gF — BT b € 27Fa(j) B C27FB.

Hence
J¢; 1= lim ¢§ € F*.

Since ¢+ = vyt — I+t € 2a(j) "US,, we have for k > n:
k-1
a(j)" ¢ = a(i)" ¢ Fa(i)" Y (@7 - ¢f) € 2UR, +27"B.
v=n-+1
Thus a(j)"¢; € 2U;, +27"B, ie. {a e 1 j € J} is equicontinuous in F*.
Therefore © — (¢;(z))jes deﬁnes a continuous linear left inverse to E < F', since
for x € E we have

¢i(x) = kl;rgo¢f( z) = lim evj( )fbk( z) =ev,(z)—0=12(j). O

k— o0
In fact, it can be shown that the condition (DN) yields even a characterization:

4.128 Theorem [Vog87, 4.3 p.185].
Let sup,, % < 00, r < 400, and E a Fréchet space. Then

1. E is (DN);
& 2. Ext'(E,\2(a)) =0, i.e. any ses 0 — A\2(a) — G — E — 0 splits;

< 3. If Q: G — H is a quotient mapping with kernel A\>° ()
then Q. : L(E,G) — L(E, H) is onto;
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< 4. If S: H — G is a closed embedding with quotient E
then S* : LG, \°) — L(H,A2) is onto.

Proof. (:>) for r = 400 is .
(<:) is shown in [Vog87, 4.3 p.185].
(2]e[3]e]4)) is[4.111] and [4.115] O

4.129 Corollary [See64].
The restriction incl® : C®°(R,R) — C*(R>o,R) has a continuous linear right
inverse.

Proof. We show first that the restriction map CZ, (R) - C*°([-1.1]) has

a continuous linear right inverse: By |1.16.4| C*°([-1,1]) = s and by |1.16.3

C’["fQ 9] (R) 2 5. Moreover the kernel of the restriction map is the subspace

=C - (R) & Crg(R) = s@s = s

In fact s & s x s via (z)ken — ((T2r)ken, (Tak+1)ren): This mapping is obviously
linear and injective. It is continuous, since |(k + 1)%xar| < [(2k + 1)%z9;| and
|(k 4+ 1)92or11] < [(2k + 2)%@9k41]. Tt is onto s X s, since given y, z € s the inverse
image is given by xok := yr and Topy1 1= 2 with

(n+ 1)z, | = {<2k+ 1)yl < 290k + 1)ty| for n = 2k,

[(2k + 2)9z| < [29(k + 1)9z| for n =2k + 1.
Thus we have a short exact sequence s < s — s, which splits by [ 4.127 | since s is
a power series space of infinite type by | 1.15.4 | and hence has property (DN) by

[5.103),

Using translation it suffices to consider the restriction map C*(R) - C*(R>_;).

We choose a function ¢ € C*°(R,[0,1]) with ¢(¢t) = 0 for all ¢ > 0 and ¢(t) = 1 for

all t < —% and decompose f € C®(R>_1) as f = (1—¢)- f+¢- f. Since (1—¢)- f
1

is 0 on [—1, —5] we can extend it by 0 to f° € C*(R). By what we have shown

before the restriction of - f to [~1,1] has an extension f!' € Ci2y 9 (R) € C(R).
Then f2 : ¢+ @(t — 1) f1(t) is an extension of ¢ - f restricted to [—1, +o00), since
@(t — 1) =1 for all t with ¢(t) # 0 and ¢(t — ) = 0 = ¢(¢t) for all t > £. Thus
f:= fO+ f2 is the desired extension of f, and it depends continuously and linearly
on f, since all intermediate steps do so. O

More generally, it is shown in [Tid79, Folgerung 2.4 p.296] for compact K C R™:
C>(R™) — &£(K) has a continuous linear right inverse < £(K) (DN) < £(K) = s.
Here E(K) = C°R™)/{f € C®(R") : flk = 0} denotes the Fréchet space of
Whitney jets on K.

Another application is:

4.130 Proposition. [Vog87, 7.1 p.193].

Let D := P(0) be an elliptic linear PDO with constant coefficients on R™ with n > 2
and U C R™ open and E a Fréchet space. Then

D, : L(E,C>(U)) — L(E,C>®(U)) is onto < Ext'(E,ker D) =0 < E is (DN).

4.131 Corollary (See [Vog83, 6.1. Satz p.197], [Vog85, 2.6 p.260] ).
A Fréchet space F' is (DN) < 3J Ja € ]R‘él: F — A\Z(a).
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Proof.
(=) Let J := |, By for some basis of equicontinuous sets By C F*. Then F can

be embedded into (£°(.J))" in a natural way.

By Borel’s theorem 0 — C7°; \(R) x C[%ol (R) = C2y ) ~ RN — 0 is exact and

C[f,b] (R) = s by | 1.16.3 | Moreover s & s X s via (xg)ren — ((T2r)ken, (T2r+1)keN)

by what we have shown in | 4.129 | By tensoring this exact sequence of nuclear (F)
spaces with £°°(J) (i.e. applying £((-)*,¢°°(J)) with the injective (F') space £>°(J))
we get the (using ) exact sequence of (F) spaces:

0 — s@U>®(J) = s&0°°(J) — RN&L>®(J) — 0.

Since s@>°(J) 2 AL (a) by , where a : Nx J — Nis given by (n,j) — n+1,
and RN&(>(J) =2 (RM)*&ee(J) =2 LR ¢20(J)) =2 £2°(J)N, this sequence is

0= A2(a) = A2(a) - ()N = 0.

Since F embeds into (£2°(.J))" we may consider the pullback(=preimage) Q= (F)
of F under @, and get the short exact sequence

0—=A2(a) = Q F)—= F —0.

By |4.127 | the sequence splits if F' has property (DN). We therefore get the
embedding F — Q7 }(F) C AZ(a).

0 —— s&0°°(J) s 500> (J i» RN&>®(J) —=0

*>0

0 —> \2(a) € @
A
f
00— 2%(a) >Q HF) F 0

(«=) Since AZ(a) has property (DN) by | 4.125 |, the converse follows from | 3.14.2 |.

Now we consider the dual situation.

4.132 Lemma. Characterization of the property (£2).
Let |||l be an increasing basis of seminorms of a Fréchet space E, denote with
Uy :=={z € E : ||z||x <1} the corresponding unit-balls and ||-|| - the Minkowski

functionals of U, i.e. |ly||—x == ||ly|; = sup{|y(z)| : z € Up} = sup{ ‘quk z € E}
fory € E* (cf. property (DN) in )
L Wp3p ¥k 3IC > 030 <5< Lt ||y < C ()= - (-’

2. Vp I VEIC >03d>0: || <Ok 1%,
[Vog83, p.194]. [VW&O0, Korollar 2.2 p.232]. [Vog85, p.255].

© 3. ¥p I VK IC >0 > 0: ||| < Cr¥ ||k + L=
[VW80, Korollar 2.1 p.232];

4. Vp I VEIKIC >0V >0:Uy CCr¥ U+ LU,
[VW80, Definition 1.1 p.225|;
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A Fréchet space F is said to be (£2) iff these equivalent conditions are satisfied.

Note that we may assume that p’ > p and it suffices that k > p’ and d € N, since
q2p < |-llg 2 -} & Up 2 Uq < [|-l|-pr = [|-]|-q thus | 1]holds for each p” > p'
as well and holds for each d’ > d as well.

Proof.

(el2) 0= 35
(@) since the infimum of 7 — arf’ + BLis Cp M Bk by .
(3[4 Let || l|-p < CP¥|| ]| —& + 2[|l|-p- Then

1 o T Y
acre k0% < Uy
and by taking polars
o L, T, , 2
Uy C ((Up/) )o € (WUk N iUp)o C 30k U, + ;Up.

(<:) Let Uy, C Crk U, + 1U,. Then every z € U, can be written as as
x=Cr"a + %b with a € Uy and b € U,,. Thus for z* € E* we get

* 4 * 1 *
[ (@) < Cr¥ |k + el
and taking the sup over x € Uy gives . O

4.133 Inheritance properties of (§2)
(See [VWS80, Satz 2.5 p.236], [MV92, 29.11 p.347)).

. (£2) is a topological invariant.

. (2) is inherited by quotients.

. A(a) has (2) for allr < oo and 1 < g < co.
. A_(a) has (2) for all a € Rér

Proof. () is obvious in view of | 4.132.4 |

() Let F — FE be a closed subspace, 7 : F — FE/F the canonical quotient
mapping, p a seminorm on F, and p the corresponding norm on the quotient. Then

Pp<1 = m(p<1) thus applying 7 to |4.132.4 | for the open unit balls of E gives the
same for E/F.

() For A2(«) let % + % =1 and a(j) := e*. Then

N R

Ioll-s oty = 2] - % ! =% H(i)d
2 7 gk llear Nl ap llear ak llea’ ab/ lea'/d
S| 2 (L) :Hﬂ
- ak aP o1/ (1/a’'+d/q") akﬂ’d ga’/(1+d)
[
= | sErrarard |l = Wi

where k > p’ > p and d is the solution of p’ = kﬂf’dd, ie.d= ];f_pp.

() follows by the same arguments as in | 3 | but for uncountable index sets J. [

4.134 Theorem
(See [VogT7Tb, Theorem 2.3], [Vog85, Lemma 1.3 p.258], and [Vog87, 4.1 p.183]).
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Let E and F be Fréchet spaces and assume that E has property (£2).
Then any exact sequence

05 E—F -5 (a) =0
with a € Rél splits.

Proof. We assume that F = ker @) is a subspace of F. Using |4.132.4 | we find an
decreasing 0-nbhd basis in E of absolutely convex sets Uy and vy, such that

1
(1) Up_1 Cr"* U+ ~Ug_g for all r > 2 and k > 2.
r

Let (W)ren be a corresponding decreasing 0-nbhd basis in F' with Wy N E = Uy
and let e; denote the j-th unit vector in AL (a). For the canonical norms

lzllk ==Y a(j)¥|a;]
J
we have ||ej||x = a(j)*. By the open mapping theorem, Q(Wj) C AL (a) is open.
Hence, for every k there exists an ny € N and a Cy > 1 with

G e ool <1} € GLQUTA)

Thus there are dk € Cra(j)™ Wi, NQ (ex) C F. We may assume that

N1 > (14 ve_1)ng > ny and Cyyq > 28751 (3C,) 71 > Oy
for all £ € N. Thus
db— ' e (C’ka( N Wy + Crora()™ = Wi 1) Aker Q C 2Cya ()™ Uy_1

We claim that there are a’? € Cii1a(y)™+1 Uy, with

Rk = dk - a € Cra())™ Wi + Cryra(§)™ " U C 2Ck41a(f)™ + Wi

k—1
J

d dk ! —I—ak le 2Cka(j)™ Ug_1 —l—C’ka( )nkUk 1 € 3Cka(y )nk Up_1.
—_—

=:ip>1

Let a = 0 and assume a; ~ is already constructed. Then

Multiplying for r := p2F with p gives the existence of
a S p’l”uk 1 Uk = (3Cka( )nk)1+yk ! 2]“/'“ ! Uk - C}c+1a(])nk+l Uk

with P
R — Rj™' = (d —dj™" +aj™") —af € “Up > =27 Uy
Thus
IR = lim RY=RE 4+ (R, = R7Y) € 2Ck41a(f)™ " Wi+ 27 U5 C

1>k I>k

(2C’k+1a( )Mt 427 )Wk-_l C (14 2Ck41) a(j)™+ Wiy C F.

So we can define
R(z) := ijRj € F for all x = (7;) ey € A (a),
J

since

R(x) = Y a()"

J

Thus, for each k > 0,

R;
W € |2l (14 2Ck41) Wi

Pwi (B(2)) < (L+2Ck 1) [[#]lny 5
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ie. Re€ LA (a),F) and, since

Q(R;) = lim Q(R}) = lim Q(d} —a¥)=¢; — 0,

k—o0 k—o0

we get Q o R =id.

In fact, it has be shown that the condition ({2) gives even a characterization:

4.135 Proposition [Vog87, 4.1 p.183].

Let sup,, % < oo and F be a Fréchet space. Then

n

1. Fis (2);
& 2. Ext'(\_(a),F) =0, ie any ses 0 = F — G — \._(a) — 0 splits.

< 3. If Q: G — H is a quotient mapping with kernel F'
then Q. : L. (o), G) = LA (), H) is onto;

4. If S: H < G is a closed embedding with quotient 1 ()
then S* : L(G,F) — L(H, F) is onto.

Proof. (ﬁ) is .
(<:) is shown in [Vog87, 4.1 p.183].
(2]el3]e]4)) is[4.111] and [4.115] O

And similar to |4.131 | one obtains:

4.136 Corollary [Vog85, 3.2 p.263].
A Fréchet space F is (£2) < F is a quotient of \L_(a) for some a € Rél.

Proof.
(=) We have the canonical resolution

OHE%HEk%HEkHO.
k k

Let F:= {z = (xx)r € [[; Ex : ||z]| := X ||lzx|lx < oo}, a Banach space which
contains each Ej as direct summand (and let Fj be a complement of Ey, in F).
Let {x; : i € I} be a (w.l.o.g. infi-

nite) dense subset in F and 0 — 0 0 0

K < (*(I) » F — 0 be the

resulting exact sequence. Taking T T T

the tensor product with the ses 00— F®s F&s FN 0
0 — s — s — KN — 0 gives by T T T

4.112| a diagram with exact rows

1\ 1 1\é 17N
and columns (since all factors are 0 > (s —£(I)&s — ()" —0

Fréchet and always one of them is T T T
ngclear). This gives a right exact 0 Kés Kés KN 0
diagonal sequence T T T
(D &s)B(K&s) — 1 (1&s-2s FN -0 ; 0

and let N denote the kernel of Q.
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Taking the direct sum of the canonical 0 0
resolution of £ with 0 — 0 — [[, Fr — T
F ives th t :
[I; £ — 0 gives the exact sequence 0 E s N o 0
0-E—F'—F¥—>o0 H T
and by |4.133.2| also every quotient of 0> B —> H —> (1(I)&s — 0

AL (a). Now take the pullback H to ob-
tain the diagram on the right side. T
Tts second row splits by (ie. H N—N
E®(¢*(I)®s)) and taking the pullback G T
of its two columns gives: 0

0

Since N is the quotient of
(((1)6s) & (K&s) = (0(1) & K)ds
and hence of (1(I U K)®s = \!_(a)
by we have that N has
property (§2). Therefore the second
row splits and the first column
shows that FE is a quotient of
M)s—>0 G=N® (Y (I)&®s). Thus E is also
a quotient of (£2(I)® K @ (*(I))®s

T Since K also contains a dense
]f/’ subset of cardinality < |[I| it is
0

— O

0—=N-—=>=FE® ((HI)®s)

—" —>o
jan)}

0—N

a quotient of ¢1(I) and since
AP =2 rTuTul) = 00) we
conclude that F is a quotient of
H&s. O

o—2Z2—Q—

For power series spaces Aj(c) of finite type one needs the stronger condition (ﬁ)

4.137 Proposition. [Vog87, 4.2 p.184].
Let lim,, .o a{;‘fl =1 and E be a Fréchet space. Then

1. E has (6), ie. Vp dp' Yk Vd > 03C > 0: ||7||1,J;‘/i < Ok - 1%, (cf.

11522

& 2. Ext' (A (), E) =0, i.e. any ses 0 — E — G — \j(a) — 0 splits.
If all involved Fréchet spaces have a basis of Hilbert seminorms then |4.127 | and

4.134 | can be generalized to

4.138 Splitting theorem (See [MV92, 30.1 p.357], [Vog87, 5.1 p.186]).
Let 0 - E — G — F — 0 be a short exact sequence of (F) spaces having a basis of
Hilbert seminorms.

If E is (£2) and F is (DN), then the sequence splits.

4.139 Universal linearizer.

These results can also be used for lifting problems of non-linear functions:

Let F(U, E) be a class of functions from some set U (e.g. an open subset of some
K™) into les E from a certain class.

The corresponding free space (or UNIVERSAL LINEARIZER)
A(U) should be an lcs in this class with the following uni- U——=\{U)

versal property: 9 Fer
There exists a 6 € F(U, A(U)), such for every f € F(U, E) vfeF 'er
there exists a unique f € L(A(U), E) with fod = f. vV E
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Let us try to find A(U): For E := K we need a bijection ¢* : A(U)* — F(U) :=
F(U,K). Thus, if we have some reflexive le-topology on F(U) then ANU) =
F(U)* and ¢* should be the inverse of 6y : F(U) — F(U)™, ie. f(t) =
S (0r@)y(f))(E) = orw)(f)(6(t) = 6(t)(f) for all f € F(U) and all t € U. So
0:U = ANU) := F(U)* is the usual evaluation map.

We need that 6 : U — F(U)*, z — (f — f(x)) belongs to F. Often it is the case,
that switching variables gives a bijection F(U, E') = L(E,F(U)). For E := F(U),
the map § : U — E* — E’ corresponds to id € L(F, E), hence belongs to F(U, E’)
and, since it has values in E*, it usually belongs even to F (U, E*).

Let now E be arbitrary. In order that 6* : LIAN(U), E) = F(U, E), T — T o4, makes
sense, we need that f € F, T € L = T o f € F, which is not a big limitation.

Is 6* injective? So let T € L(A(U), E) be such that f := T o§ = 0, hence 0 =
z*oTod=0"(x"oT):U — K for all z* € E*. Since 0* : \(E)* — F(U) is the
inverse of § : F(U) — F(U)** it follows that 2* o T' = 0, and consequently T' = 0.
Note, that we can deduce that the image of § : U — A\(U) generates a dense linear
subspace, since every continuous linear functional 7" on A(U) which vanishes on the
image of 0, i.e. §*(T) = 0, has to be 0.

Is 6* onto? So let f € F(U, E) and consider f* : E* — F(U), * — a* o f. This
is well-defined by the assumption jbove. In order to show that it is bounded, we
consider the associated mapping f* : U — (E*)’, which is just f : U — E < (E*)’
and belongs to F. So f* is bounded and hence f** : A(U) = F(U)" — (E*)" is
continuous. Since f**od=4do f:U — E — (E*) its values on the image of § lie
in F and, since this image generates a dense subspace, f** is the required inverse
image for complete F.

Thus we have shown:

Proposition.
Let F(U, E) be function spaces with the following properties:

1. feF, TeL=TofeF.

2. If 1 : G — E is a closed embedding, then f € F(U G) < 1o f € F(U,E).
3. F(U,E"Y 2 L(E,F(U)) by switch of variables.

4. F(U) carries a reflexive lc-topology.

Let N(U) := F(U)* then 6* : LINU),E) =2 F(U,E) is a linear bijection for each
complete lcs E with complete dual E*. O

Examples.

(I)rec,feF=TofeF:

For (°°, C (See [KM97, 2.11 p.24]), H ([KN85, 2.6 p.283]), and C* ([KM90,
1.9 p.10]) this is easily checked.

(2) ofeF=feF:

For ¢>°, C*°, H, and C* this is obvious since these mappings can be tested by the
continuous linear functionals.

(3) FW,E) = L(E, FU)):

For C* see [FK88, 4.4.5], for H see [KN85, 2.14 p.288], for C* see [KM90, 6.3.3
p.37], and for £>° see [Kri07a, 4.7.4].

() F(U) reflexive:
C>(U) is nuclear (F) and has (£2), but not (DN) (= s™).
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H(U) is nuclear (F) and a power series space, it has always ({2) and only for U = C
(DN).

C¥(U) is complete ultrabornological (N) and its dual is complete nuclear (LF).
£>°: For bornological spaces X one has ¢*°(X) = (¢}(X))* by [FK88, 5.1.25] and
H(X) = (co(X))* by [FK88, 5.1.19], where

(X)) = {f € R* : carr(f) is bounded and ||f|; < oo} and
co(X) := {f € R¥ : carr(f) countable and VB Ve > 0: {x : |f(x)| > €} finite.}.
However, A(X) = ¢}(X) for F := ¢ by [Kri07a, 4.7.4].

In many situations one can show better density conditions for the image of § (like
Mackey-denseness) and hence gets the universal property for spaces F being less
complete (like Mackey-complete).

For U C R" is open, it has been show in [FK88, 5.1.8] that A(U) = C*°(U,R)* is
universal for C*°-mappings into Mackey-complete spaces. For open U C C", it has
been shown in [Sie95] that A(U) = H(U)* is universal for H-mappings into Mackey-
complete spaces. The free convenient vector space for real-analytic mappings has
been considered in [KM90] and for sequentially complete spaces in [BDO01]. In
[FK88, 5.1.24] it is shown that A(X) = ¢1(X) is universal for />°-mappings into
Mackey-complete spaces.

4.140 Parameter dependance of PDO solutions.

Particular cases for surjective PDO’s D := P(9) : G(W) —» G(W) have been con-
sidered and (F-)parameter dependence of the solutions discussed: Let E; := G(W;)
and D : By - E3 be onto. Is D, : F(U, E1) — F(U, E3) onto? Using the universal
linearizer A(U) for the function space F (U, ), this question is reduced to the sur-
jectivity of Dy : LIANU), E1) = L(A(U), E2). Using the suggested isomorphism one
obtains under appropriate conditions the following descriptions for the extension of
D: Q(Wl) — g(Wg)

F(U.GW1)) =L(F(U)*, (W)= F(U)@G(W1) = L(G(W1)*, F(U)) = G(W1, F(U))

iD* lD* |7wen lw lb

F(U.G(W2)) =L(F(U)*,G(W2)) = F(U)0G(W2) = L(G(W2)*, F(U)) = G(W2, F(U))

IR

IR

[BD98, Corollary 39 p.34] If D : C¥(R) — C“(R) onto then one can find solutions
depending holomorphically on a parameter in C. By [BDO01, Proposition 9 p.501]
for every elliptic surjective linear PDO D := P(9) : C*(U) — C*(U) with constant
coefficients and open U C R™ the extension D @ E : C¥(U,E) — C¥(U,E) is
surjective if E is (F) or the strong dual of a (F)-space with (DN).

In contrast, by [BD01, Theorem 8 p.501] for every elliptic surjective linear PDO
D := P(9) : C*(R?) — C*(R?) with constant coefficients the extension D& H (D) :

C*(R? H(D)) — C*(R?, H(D)) is not surjective.

[BDO1, Theorem 6 p.499] and [BD98, Theorem 38 p.33]: For open sets U; C R™
let T : C¥(Uy) — C¥(Us) be a continuous linear surjective mapping. Then T® F :
C¥(Ur, E) = C*(Us, E) is onto provided E is (F)+(DN) or (E is complete+(LB)

and E* is (£2)) or F is a (F)-quojection, i.e. every quotient with a continuous norm
is a Banach space.

For (sequentially) complete lcs E and open U C R”™ one has a linear bijection
C“(U,E) = C*(U)eE = L(C*(U)}, E) = L((E*,7.),C*(U)) by [BDOL, Theorem
2 p.496]
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Locally bounded linear mappings

In this section, we describe situations where continuous linear mappings are even
locally bounded. If the domain space is a power series space of finite type, then
the characterizing property for the range space is (DN). And if the range space is
such a power series space, then the characterizing property of the domain space
is (£2). For power series spaces of infinite type, the characterizing properties for
the other involved space are (LB ) and (LB*°). We give applications to vector
valued real-analytic mappings and mention applications to holomorphic functions
on Fréchet spaces.

4.141 Definition and Remark. Locally bounded operators.

A linear map T : E — F between Ics is called LOCALLY BOUNDED if there exists a
0-nbhd U with T'(U) bounded. We will denote by LB(E, F') the space of all locally
bounded linear maps from E to F.

We have LB(E,F) C L(E,F): Let U C E be a 0-nbhd with T(U) bounded and

V C F be an arbitrary 0-nbhd. Then 3C' > 0: T(U) C C'V and hence % U C
T~YV), ie. T is continuous.

We are interested in pairs (E, F') for which £B = L.

If E or F is a normed space, then LB(E,F) = L(E,F): Let T € L(E,F). If E
is normed, than T'(U) is bounded for the unit ball U := oFE. If F is normed, than
U :=T70oF) is a 0-nbhd with T(U) C oF bounded.

Note that idg € LB(FE, E) < FE is normable, since U = id(U) is a bounded 0-nbhd.
If Q@ : E - Fp is a quotient mapping and S : F; — F and is an embedding
then LB(E,F) = L(E,F) = LB(Fy,F1) = L(E1,Fy): For T € L(Ey, F}) we have
that SoT o Q € L(E,F) = LB(E, F), hence there exists a 0-nbhd U C E with
S(T(Q(U))) C F bounded. Since @ is open, the set Uy := Q(U) C E; is a 0-nbhd
and since S is an embedding T'(U;) = T(Q(U)) is bounded.

Let LB(E,F) = L(E,F). If there is an embedding F — F', then F is normed,
since then LB(FE,E) = L(E, E). And if there is a quotient mapping E — F', then
F' is normed, since then LB(F, F) = L(F, F).

If E is a Fréchet space and LB(E,KY) = L(E,KY), then F is normable: If E is
not normable, then there exists a quotient mapping Q € L(E,RY) by , hence
KY would have to normable but is not.

4.142 Proposition [BD98, Theorem 16 p.22], [BDO01, Theorem 2 p.496].

The bijection 6* : L(C*(U)*,E) — C¥(U, E) from for open U C R™ and
Fréchet spaces E maps LB(CY(U)*, E) onto C¥ (U, E), the space of topologically
real-analytic mappings, i.e. mappings which are locally representable by a convergent
power series.

C@(U)*, E) = C¥ (U, E)

J

L( 5
LB(C*(U)*, E) = C?(U, E)

Sketch of proof. It is easy to see that f € C¥(R, E) is locally C¥ into some Ep

and by | 4.90.1 | even globally, hence corresponds to an element in L(C¥(R)*, Ep) =
LB(C*(R)F, BEg) C LB(C*(R)*, E).
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Conversely, T € LB(C*(R)*,F) = 3B : T € LB(C*(R)*, Eg). Thus §*(T) €
C¥(R,Ep) C C¢(R, E), by a Baire argument, see [KM90, 1.6 p.8]. O

Thus, in order to get C¥(R, F) = C¥ (R, E) we have determine whether £ = LB?
4.143 Definition.

Let E and F be (F) with increasing bases of seminorms (||-||x)ren and (||-||n)nen-
For linear T': E — F' consider

[Tk = sup [[Tz[ln € [0,+00].
el <1

Note that [|T||g+1,n < [|Tllkn < [|T]lk,n+1 and

(1) TeL(E,F)<VneNdk, e N: [Tk, n < o0
(2) TeLB(E,F)e 3k eNVneN: ||T|k, < oo
Proof.

(1) Te LB F)evneN3k, eN3IC>0:|T(x)|, < C|z,.
(2) T e LB(E,F) & 3 eNVneN3C > 0Vz: |zl <1= ||T(@)|, <C. O

4.144 Lemma. Characterizing £ = LB (See [Vog83, 1.1 p.183]).
Let E and F be (F) with increasing bases of seminorms (||-||x)ren and (||-|n)nen-
Then

1. L(E,F)=LB(E,F);
&2 VEeNY 3K Yn I’ 3C > 0VT € L(E,F) : |T||k n < Cmaxp<ns || Tk, m-
W.lo.g. k /oo, since validity of for k implies it for any k < k.

Proof. For k € NV consider
Gp = {T € L(E,F):|T

knm < 00 forall n € N},

a Fréchet space with respect to the seminorms |||, » for n € N.
For each k' € N let

Hy = {T € L(E,F) : |T|w,n < o0 foralln €N},
a Fréchet spaces with respect to the seminorms ||_|[z, for n € N.
Since {z : [|z|gr4+1 < 1} C{z: ||z|lp < 1} we have [|T||k+1,n < | T|#',n and thus
continuous inclusions Hys C Hy4q. By |4.143.1 | L(E, F) = J,, Gi and by | 4.143.2
LB(E,F)=U, Hy.

(:>) By we have Gy, C L(E,F) = LB(E,F) = J,, Hi Since the inclu-
sions G, C L(E,F) and Hy C L(E,F) are continuous (for B C C'Uy we have
sup{||T'(z)|l» : © € B} < C||T||x,n) we can apply Grothendieck’s Factorization
Theorem to obtain a k' € N such that Gj, C H;, and the inclusion is continu-
ous, i.e.

YneN3In eN3IC>0: ||THk/,n <C m<ax/ ||T||km,m'

[1]<[2) Let T € £(E,F). By 3k € NV : T € Gy and by |2}

W V0 3 3C > 0 [Tl < C max | Tl m-

Hence
| Tk 7 < o0 for all n,

ie. T € Hk/ g EB(E,F)
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4.145 Lemma (See [Vog83, 1.3 p.184]).
Let B = {*) : k € N} be a Kithe matriz and F a Fréchet space with increasing
basis of seminorms ||_||x. Then

1. L\Y(B), F) = LB(\Y(B), F);

&2 VkeNY3IK vnIn' 30 > 0Vj Wy € F: s < Omaxcn il
W.lo.g. k 7 o0.
Proof.

(:>) follows from for T := pr; ®y with y € F and pr;(z) := x; for

xr € A\Y(B) =: E, since

Ylln
I = sup{ Tl - el < 1} = sup oy I s -6 < 1} = L2

j
(<:) Since e; is an (absolute) Schauder-basis of E := A (B) by every
T € L(E, F) is of the form

T(z) = T(Z prj(:c) ej) = Zprj(z) y;, where y; :=T(e;),

T, < S0 | pr ()] - sup ||yj\,|n el - sup Hijn?
I7(@)] ZN oy )] sup ey = el -

and Y1 Fkm 30 > 0 [y5llm = [T()llm < Cmlleslle, = Cr b5,
By | 2| we have 3k’ ¥n 3n’ 3C > 0:

(T < stp 22200 < up (€ mae 19 ) < € a0, < o,
jEN b§- ) T jen\ m<w b;_ m) m<n/

ie. T € LB(E,F) by[4.143.2] O

4.146 Theorem (See [Vog83, 2.1 p.186]).
Let 5 := (Bj)jen be a SHIFT-STABLE SEQUENCE, i.e. supn% < oo, and F a
Fréchet space with increasing basis of seminorms ||-||x. Then

L LOG(B), F) = LBG(B), F);
< 2. F has property (DN) (See |4.123 ).
<:) is valid without the assumption on (.
The shift-stability is equivalent to A\2(5) = K@ A2(p5), via & : x — (x0, S(x)), where

S(if)] = Tj41-

Proof. By |1.26.1| we may replace \j(3) by the isomorphic space A}(3). Let
0 < px /1 for k — oo, ie. b;k) := eP*Pi describes the Kothe-matrix B for

AL(B) = A(B).
(&) Let k € N¥. By the property (DN) means:

3g3d>0Vp3p > q3IC = 1: |y < C I I
(Note, that because of [4.131 |, it would be enough to consider F = A32(a) and

hence ¢ =0,d =1, p’ =2p,and C =1 by |4.125|)

Now choose a k' > k4 such that
1-— Pk’
P! — Pk,

d> (\( 0 for k" — o0).
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Let y € F and j € N be fixed.
If

lyllg < ePra=rr )iy,
then

Iyl < Clylg Iyl < C P55 iy |yl

By hypothesis d(pk, — pr') < prr — 1 < prr — pi,,, 50 we get
lylly < € e =% iy

Otherwise,
lylly < el =PxaBs ||yl

In any case

Iy [ W0l Wl Y g ol

ePr'Bi = ePrali’ " Pr, Bi m<p' ePkmBi

and gives .
(1]=[2]) By for the sequence k :=id € N¥ we have

3K Vn I 3C >0y € FVj: |lyllne P <C max /| €= PP
m<n/’
W.lo.g. n' > max{n,k’ + 1} and thus
ylln €% < € max |yl e=?% < Cmax {|lyllu, [[ylln e~ +1%}, since
m<n/’

ol et < [l 1 dorm <K,
T Nyl e=Pr+18 for k' < m < n'.

Let b := sup,, % < oo and take y € F. If there exists a j € N such that

[Ylln e PPt < Cllyllr < [lylln e % (\, 0 for j — o0),
then
lylln < el Bi O max{||y|\k/, [ e*pwﬂﬁj} = C||lyl|n e(Prr—Prr 11)B;

—prs By DR LT PR N
< Cllyll 770 <mww@ﬁW)7
n

where d i= 2L e[y L < Oy, [y

If no such j exists, then e=?+% ||y||,, < C||y||x and we get

gl < Myl Iyll5 < lyllar (C e %) [yl

Hence in both cases

Iyl < C"llyllar Iyllf with € := CF max{C, v},

which is equivalent to (DN) by |4.123.5 | with ¢ := k', p:=n, and p’ :=n’. O

4.147 Proposition (See [Vog83, 1.4 p.185]).
Let A = {a(k) € ]Ri : k € N} be a Kothe matriz, E a Fréchet space with decreasing
0-nbhd basis {Uy, : k € N} and Minkowski-functionals ||_||— of the polars UZ. Then

1. L(E,A®(A)) = LB(E,A\*(A));
& 2. Vk e N¥ 3K Y 3n’ 3C > 0V Vo~ : a{”||27||_p < Cmaxmen al™ |l2*| i,
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Proof. This proof is similar to the proof of | 4.145 |.
(:>) follows from |4.144 | for T':= 2* ® ¢; with j € N and z* € E*.

(<:) Let '€ L(E,A*°(A)) and put x} := pr; oT € E*. Then
IT(@)ln < sup |ai™ @ ()] < ||z supal™ [laf |-
J jeN
(m) | %
< a]lx 033;(?1615% [E R

—_—————
=T Mo m

by . This implies
1Tl < C 2 [Tk

ie. T € LB(E,A\*(A)) by [4.144]. O

4.148 Theorem. [Vog83, 4.2 Satz p.190].
Let (c)jen be a shift-stable sequence and E a Fréchet space. Then

1. L(E, ) (a)) = LB(E, A& (a));

& 2. E has property (ﬁ) (see )

<:) is valid without the assumption on o

Proof. By |1.26.1| we may replace AJ°(«) by the isomorphic space A{°(a). Let

0 < pr /1 for k — oo, ie. ag.k) ;= ePr% describes the Kothe-matrix A for

A (a) == A*°(A). W.lo.g. we may assume that limy_, pkl—_pp:,l = 0, e.g. take

pr =1 — . Let {Uy : k € N} be an increasing 0-nbhd basis of E and ||_||_ the
Minkowski-functional of U7 C E*.

(&) Let k € NY be given. For p := ko choose p’ according to (ﬁ), ie.
. 1+d d
Y ¥d>03C > 1: |1 < O o,

For every n € N let n’ > p with p, > p, and d > 0 with d(p, — po) < pn' — pPn.
Thus there exists a C' > 1 such that

I < Nl =ry - -1
For z* € E* and j € N either e/ ||x*||_, < e ||z*||_, or
1557 < Clla™ -k, - 12" [k, < Clla™ |-, eCn=P% ||,

i,e, ||1‘*||_p/ S Ce(pn/_Pn)o‘j Hx*”_kn/ .
In both cases we have | 4.147.2

e ||z” || < max{ef ||a*[| gy, C e [la" ]| g, } < C max " ||z" _,,,
m<n’

with & := p/, hence £ = LB by [4.147 .
(:) Let p € N and consider the sequence k : n +— p+n. By

I’ Vn 3In' 3C, > 1Va* € E*Vj:

22 4|y < o max 2 o |,
m<n’

< Cpmax{er 1 2|y, e 2" s, },
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since

ePmi Hx*kam < ePn—1% Hx*||,;€0 for m < n,
e[|z || g, forn <m <n/.
Let z* € E*. If there exists a j € N such that
E(Pn*Pn—l)ajflum*H_p, < Cplla*|—p < 6(pn7pn,1)aj||z*||_p/ (0 for j — o),

— (I—pn)ay
- Sup] (pn_Pn—l)O‘j—l )

o]l < e Co max{ e 1 @ |, e 2" |-, | = Co €170 27|y,

then, since d,, :

o s - ol \é
< Gl ot < O (G 2™ ) [l i,

[l —p
pe. [lz*| 5t < OpF |2 -, ll]|Z,.
If no such j exists, then C,,||2*||—, < e(Prn=Pr=1)20||z*|_,,. Hence
¥ |- < €705 Comax{ e 1 [a"|p, e 0| -, } = Co 1P 2" |,
and thus we obtain in both cases
2550 < G lla™ [, - |22, where G, i= Gy max{Cyr, e(=r)20}).
Since k,, — 400 and d,, — 0, condition

(2) Vp3p' Vk ¥d>03C > 1: ||| <Ol - |12,
follows. O

For power series spaces AP_(«a) of infinite type one needs new (smaller) classes:

4.149 Theorem. [Vog83, 3.2 Satz p.188].
Let (B;) en be a shift-stable sequence and F' be a Fréchet space with increasing basis
of seminorms ||-||x. Then

L LOAG(B), F) = LB\ (), F);
< 2. F has property (LBy,), i.e.
Vp € RY 3K Vn 30’ 3C > 0y Im € [n,n] : |yll5™ < Cllylle |ylim.-

<:) 1s valid without the assumption on (.
Similary as in | 4.123 | we may assume k' < n <n’ and p * co:

pm P
1Yllm 1Yl lylln

Obviously (use |4.123.5 | and p := consty) one has: (LB) = (DN).

In fact, recall:
(DN) 3K 3d >0Vn I 3C > 0|5 < O |-l

Proof.
(&) Let k € NY with & * 400 be arbitrary. By we have for p:=k

3k Vo 3n' >k 3C > 0Vy 3Im e [n,n]: |yl < O llyllEr lyllm.
Put k" := ks + 1. For given j either
lyllne™ % < Jlyllw e

or
m km 1—k" j Pm m
gl < Cllylli Nyl < € e R85 8 iy | |yl
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and hence

lylln &% %, < Nyl < C llyllm e =+ D85Em = C |yl e~
<1

In any case we have

Wl e < C mas [[gflm e,
m<n’

i.e. condition is satisfied.
(:) Let p € RY with p /400 and let
Il =D I&;1e™ with oy = pi
JEN
the basis of seminorms on Al_(3). By for k :=id we have
3K Yn 30 3C > 1Vy € F V) : |Jyllne 7% < C}nngi{/ |yl me=mPi.

We pick a jg, such that for j > jo we have
1> Celow=ow+1)Bi (N, 0 for j — 00).
Thus
ylln e < Cmax{|lyllm e :m € [0,KTU[n+1,n']},
since for k¥’ < m < n we have
Cllyllm e < Cllyllpe+1% < ly[ln e %
Let y € F. Then either
[Ylln < Ce® Pio |yl
or there exists a j > jo with
[yllne=x 51 < Cllyller < [lyllae™" (\ O for j = o0)
and, since then for m < k'
Cllyllm e < Cllyllw < llyllne ",
the maximum is attained for some m with ¥’ <n <m <n/, i.e.
om =

Tm =/

1 —=0m)Pj —0 Bj o Yllxr "W
Hy||n < C ||y||me(ok om)B; < C ”y”me Tk P+ "o, < C ||y||m(C |||y||| ) k y
n

where b := sup; % < 0o. Thus
J

In! !

Om — O o

k! 14
and C, :=C

. i
gl < Co llyll

’

Yllm with dp, :=
Ok’

Hence in both cases

In! "k’
Iyllkte < Co I lylm, where Gl = max{ (C e o) b5 ), 1.

n
2
For n € N choose 7 > n such that d,,, := p’;}%}j’“' > pp for all m > n. By what we
have just shown
oy prony oy 1 m m
3’ 307 > 0y 3m € [, 7] : [yl < lylla ™ < O3 1yll2 [[yllm.

i.e.|2|is satisfied (with n’ :=n’ and C' := CY,). O
4.150 Theorem (See [Vog83, Satz 5.2 p.193]).

Let o = (aj)jen be a shift-stable sequence and E a Fréchet space with decreasing
0-nbhd basis {Uy, : k € N} and Minkowski-functionals ||_||— of the polars UZ. Then

1. L(E, )2 () = LB(E, 2 ());
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< 2. E has the property (LB*), i.e.
VpeRY, p oo Vp3Ip' ¥n I 3C Va* Im € [n,n/] : ||x*||1jz;f)m <Ol 12 |2 | -m-

<:) is valid without the assumption on a and more generally for A2 (a) re-
placed by XX (a) with arbitrary a € R, .

Similary as in | 4.132 | we may assume that p < p’ < n.

Obviously (use [4.137.1] and |[4.132.2]) one has: (£2) = (LB®) = (£2).
In fact, recall:

@) Wp 3 Vn vd > 03C > 0 L < O, 1|
. 1+d d

() ¥p ' V0 3C > 03d > 0 L < O, I -

Proof.

(<:) We will verify condition | 4.147.2 |
vk € N¥ 3%’ vn 30’ 30 > 0¥ Va* : ol ||2*||_p < C max ™ [l*| -,
where ag-n) = e . So let w.l.o.g. k /' 0o be given. The property (LB*>°) does not
depend on the specific basis of seminorms of F so we may assume that it holds for

the seminorms |||, :== ||-||x,., i.e.
— a9= * - = * (1 1+pm * m
Vp e RY Vp 3p’ Vi 37’ 3C > 1 Va* Im € [, 7] : ||z |||_4I;/p < (1P

"l
_m'

Now we choose p oo such that lim,, ”m = 0 and take p := 0 and obtain a
corresponding p’. To given n € N we next choose 7 > n such that np,, <m —n
for all m > n. For each x* € E* and j either

"l < Mlalll—g < C e flz* |
or
1
157 < 127 Ml =, < C (€™ Ml )™ Ml
= C e |27 ™l -, < C e 25l

holds. Let k' := k,/, n/ := 7/ then we have in both cases |4.147.2 |

"zt —p = " 27|, < € max e™|[z"]||_,,, = C max ™ [[z7|| g,
p m<n/’ m m<n/’ m

(1=[2]) Let p o0 and p € N.
By for k:m — p+m and agn) = ePr % we get:

3p' >pVnIn 3IC > 1Vz* Vj: e |z*||_py < C max ePm iz ||~ -
m<n/’ .

For fixed p’ and n > p’ — p choose jg such that for all j > jg
C < elPn=Pn-1)a; (/" oo for j — 00)
holds. Then
e’y < C max{epmo‘j lz*]| —x,, : m € [0,p' — p]U [mn’]},
since for p’ —p<m <n-—1
e |lat|| > CePrt |zt = C e 27| - (pimy = C e [|l2™| -
For x* € E*, either

Clla*|l-ky = Cllz*[|—p < el =Pr=r)%0]|z*||_y,
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and, since then for m < p’ —p
Celmio ||lz¥|| g, < Ceo'=r%o |7 g, < e’ro |27,
we get
Im € [n,n']: eM % |la¥||py < CePmo||z¥|| o,

and hence for any d > 0

||$*||1_-;$1 < (C e(Pm*Pn)ajo ”x*H—km) Hx*”d—p’ < C’e(Pnlfpn)Oéjo ||$*H—km ||$*||(ip
Otherwise, there exists a j > jo with

(P =Py )1 || ¥ < Cla*||—p < P Pr =% || ¥ (/oo for j — o0)
and, since for m < p’ =1p

CePmoi||z*||_g,, < CePr'—2% ||z g, < % |lz*||—p,

we also get
Im € [n,n']: ||2¥]|p < Celtmmrm |la¥|
<O o,
* d
<C (C |||j* ||||_§) lz* || =%,
where d := b% with b := sup; ajil, ie.

l |57 < 2|, )12,

For given n we may now choose the n from above such that n > max{p’ —p,n} and
# < 1 and thus d < (#)pm < pm. Hence, in both cases we have for
n = Pp/—p n~Pp'—p

C" := C max{elPn' =Pn)%0 C?} and n' :=n' + p the condition :

3/ V3’ 3C > 03m € ') [T < o 25 O

4.151 Corollary (See [Vog83, 6.2. Satz p.198]).
Let E and F be Fréchet spaces. If E has property (LB*) and F property (DN),
then

L(E,F) = LB(E,F).

Proof. By |4.131 | there exists an a : M — R>; such that F' embeds as closed
subspace into A% (a). By |4.150 | for A% (a) we have

L(E,AZ(a)) = LB(E, AZ(a))-

Thus, by | 4.141 |,
L(E,F)=LB(E,F)

as well. ]

An application of these results is:

Proposition [BD98, Thm. 18 p.23], [BD01, Theorem 3 p.497].
Let F be (F). Then

1. F is (DN);
& 2. CY(U,F)=C¢(U,F) Y30 #)U C R" open.
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Proof. For sake of simplicity we consider only the case U = R treated in [BD98,

Thm. 18 p.23]. By [4.142]: [2] & £(C¥(R)*, F) = LB(C*(R)*, F).
(+) By [BD98, Proposition 5 p.17] there exists a quotient map ¢ : C*(R)* — H(D)

(since O, (R) = H(D)) thus £L(H (D), F) = LB(H(D), F).

per
(=) Let T € L(C¥(R)*, F). Since C¥(R)* = ligln E, with E,, 2 H(D) by [BD98,
Proposition 3 p.16] and H(D) = A\g(id) by | 1.15.6 |, there exists for every n € N a

0-nbhd U,, C E,, with T(U,) bounded by [4.146 . By [4.90.1| there are §,, > 0 such
that |J,, 0,7(U,) is bounded. Thus T is bounded on the absolutely convex hull Uy
(which is a 0-nbhd in %n) of U, 6nUn. O

Similarly, the following can be shown:

4.152 Proposition [BDO01, Theorem 5 p.498] (See [BD98, Theorem 21 p.24]).
Let F be a complete (LB). Then

1. F* is ();
< 2. CY(U,F)=C¢(UF)VE0 AU CR™ open.

These results have been generalized to

4.153 Proposition [HHO03, Theorem B p.286].
Let F be a Fréchet space having property (LBo) then C¥(U,F) = Cy (U, F) for
every open set U in a Fréchet space E.

4.154 Proposition [HH03, Theorem A p.286].
Let F be a Fréchet space.

1. F is (DN);
& 2. C¥(U,F) = C¢(U,F) YU C E open, where E is (F)+(N)+(22);
& 3. C¥(U,F) = C¥(U,F) YU C E open, where E is (F)+(S)+(2) and has an

absolute basis.

A Fréchet space F is said to have property ({2) iff
VpIp' 3d >0k 3C > 0: ||| < Ol -l -2,

This property has been used in [DMV84, Theorem 9 p.54] to characterize (NF)
spaces in which not every bounded set is uniformly polar. One has the implications:

(2) = (2) = (LBx) = (2).
Another application is:

4.155 Proposition [M'V86, 2.3 p.150] and [M'V86, 3.4 p.157].

Let E be a Fréchet space. If every entire function f : E — C is of uniformly
bounded type (i.e. there is some 0-nbhd, where the function is bounded on each
multiple) then E satisfies (LB ).

A nuclear Fréchet space E has (2) iff every holomorphic functions on polycylindri-
cal U C E (i.e. finite intersection of sets of the form {x : |z*(x)| < 1} for z* € E*)
is of uniformly bounded type (i.e. is bounded on each g-bounded subset, which has
positive g-distance to the complement, for some seminorm q for which U is open)
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The subspaces and the quotients of s

Note: Quotient and subspaces of s via (N) and Ext' = 0 ([Vog84, 2.4 p.362] and
[Vog84, 2.3 p.361]) [Vog84, 2.5 p.363] Quotient and subspaces of s [MV92, 31
p.369],

nuclear-(DN) are the subspaces of s [MV92, 31.5 p.372],

nuclear-(£2) are the quotients of s [MV92, 31.6 p.373],

nuclear-(DN N £2) are the direct summand of s [MV92, 31.7 p.375]

4.156 Definition. Vector-valued sequence space s.
Let F be an lcs. Then

s(N,F) := {ac € FN: {(1 4+ n)kz;, : n € N} is bounded in F for each k:}

Supplied with the norms py(z) := sup{(1 + n)¥p(z,) : n € N} for £ € N and
seminorms p of F' it is an lcs and Fréchet if F' is Fréchet.

4.157 Proposition. Universal linearizer for s.
Let F' be an les. Then L(s*, F) =2 s(N, F') via T — (T(pr,,))nen-

Proof. Let T € L(s*, F) and z,, := T(pr,). For k € N and seminorms p of F' we
have

P () nen) = sup{(l +n)*p(z,) :n € N} = sup{p(T((l + n)* prn)) in € N}
< sup{p(T(a")) 12" € Uy }.

since for the standard seminorms (given by ||z := sup,,(1 + n)¥|z,|, see | 1.15.4 )
on s = ¢g(A) the polar of the corresponding 0-nbhd Uy, is by

Uy = {x* €s iz lpe < 1} = {y e KN : Z|yn|(1 +n)7F < 1} > (1 +n)fpr,.
n

Thus L(s*, F) = s(N, F'), T — (T(pr,,))nen, is welldefined, linear, and continuous.
It is bijective, since for x = (z,)neny € s(N, F') the only possible inverse image
T € L(s*, F) is given by

x* (: x— z¥(x) = 2" (Z pr,,(x) en) = Zx*(en) prn(x)) —
— T(x*) = T(Z x*(en) prn> = Zx*(en) T(pr,) = Zx*(en) T

This definition for 7" makes sense, since any z* € S* is contained in some Up, i.e.
> 2 (en)|(1+n)~% <1 and {(1 +n)*z, : n € N} is bounded.
Moreover, the so defined T is continuous, since

|z (en)

(p o T)(g;*) = p(Z gj*(en) l‘n) < Z (].-I-’I”L)k (1 + n)kp(ﬂfn)

< ; m sup(1+n)*plen) < Jl2”lug pe(a).

This shows at the same time, that the inverse s(N, F) — L(s*, F), (n)neny — T,
is continuous as well. O

4.158 s(N,s) 2 s (See [MV92, 31.1 p.369)).
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Proof. Any z = (,,)nen € s is in s(N, s) iff Vk : {(1+4)*x; : i € N} is bounded
in s, i.e. Vk VI : {(1+4)"(1+4)*z;; : i,j € N} is bounded in K. Take the bijection
N 2 N x N, n < (i,7) given by the usual diagonal procedure. Then n is smaller
(m+1)(m+2)

than the number of lattice points in the triangle with vertices (0, 0),
(m,0), and (0,m), where m := ¢ + j. And on the other hand 4, j < n. Thus
(L+ )L+ < (1 +n)kt
k
and (1+n)* < (W) <A +i+ )% <1 +40)%0+ )%

So the seminorms of s(N,s) and s can be dominated by each other under this
bijection. O

4.159 s — s — sV (See [M'V92, 31.3 p.370)).
There is a short exact sequence

0= s<3s5—>s" 0.

Proof. By (see the proof of |4.131]) we have the short exact sequence

O—>s‘—>s£2»]KN—>O. BythedualsequenceO%K(N)gs*—>s*—>OiS
topologically exact and by | 4.107 | the functor £(_, s) is left exact. So we obtain

Q®s

0 5®s 5®8 KN&s 0
[ R XY

00— L(5*,5) = L(5*,5) —— LIKM s)

J[az57]

H |
0——3s(N,s) s(N, s) L(K,s)N

[EEE |
00— s> > S »5N4>O

In order to see that these isomorphic sequences are short exact we use that any
z € KN&,s can be represented by as z = Y App @y, with A € 01, {z,, :
n € N} bounded in KN and {y,, : n € N} bounded in s. Since K" is (FM) we find a
set {Z,, : n € N} bounded in s with Q(&,) = z,. Then Z:= Y\, &n ® yn € 5Qrs
with (Q%s)(Z) = z. Since all these tensor products are Fréchet, the top row is a
topologically exact sequence and hence also the bottom row. O

4.160 Characterizing the subspaces of s (See [MV92, 31.5 p.372]).
:E— s« Eis (N)+(F)+(DN).

Proof. (=) By [1.15.4 | s 2 Ao (a) with a(n) := In(n + 1), by [3.78.1] and [4.125 |
Aso(@) is (N) and (DN), and by [3.73.2] and [3.14] E is (N) and (DN).

(<) By |4.159 | there is an exact sequence 0 — s — s — s — 0 and by

there is an embedding E < s. So the pullback gives another short exact sequence
(where a(n) :=In(n + 1))

s ¢ s s

N
L1
E

A2 (@) > 8 Xt B ——>

which splits by [4.127 | Thus £ < s Xt E < s. O
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4.161 Characterizing the quotients of s (See [M'V92, 31.6 p.373)).
Ir:s—»E & Eis (N)+(F)+(12).

Proof.
(=) s 2 Ao(@) has (N) and (£2) by ’378 l‘and ’4 1334‘ Thus F has (N) and
) by [3.73.4] and [4.133.2].

(<) By there is an embedding F < s™.
Then @ := SN/E is (NF), and thus there exists a )

short exact sequence 0 — s =25 Q —225 ) — 0
d Q @ 0—FECssN = Q—0

as in the proof of with Q < s and hence H

0

> O

Z

; b
Let H := {(z,y) € s" x Q : p1(z) = p2(x)} be the 0 A
pullback. Then the diagram on the right side has s=——3s
exact rows and columns and by |4.138 | H = Ex(Q A A
since E is (£2). 0 0
Take the left column as top row and proceed anal- 0 0
ogously with the sequence from |4.159 | as right A A
column to obtain another diagram with exact rows 0—> ﬁ — f;f — 5,? —0
and columns. Again by [4.138| (or by |4.127
ond columns. Again by [L138] (or by [2127) LG 1,
Thus we have quotient mappings 2 i

s2sxs2G—-»H2ExQ—E. A A

0 0 O

4.162 Characterizing the complemented subspaces of s (See [MV92, 31.7
p.375]).

2:ES s & E (N)+(F)+(DN)+(Q).

Here <> denotes an embedding as direct summand (i.e. having a left inverse).

Proof.
(=) follows from | 4.160 ] and | 4.161].

(<) Proceed as in the proof of [4.161 |, where H = E x Q < s X s = s, hence is
(DN). By |4.138 | not only the bottom row but also the left column in the second

diagram split, ie. s sx s G2 Hxs~ ExQ X s. HenceEis. [

4163 s 5 E S s = B2 s (See [MV92, 31.2 p.370)).

Proof.
dEy: E2 FEyxsand dF; : s=Z E X By =
=>s2FEFXxFE 2FEyxsx B =2 FEyx Ey with By :=s x E;

[4.158]
g s(N,s) 2 s(N, Ep) x s(N, Es)

s(N, Eo) = Eo x s(N, Eo) =
= 5= (N7E0) X S(N, Eg) =~ By X S(N7E0) X S(N, Eg) X Fyxs=2FE O
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A°...polar of A, 11
E&®,F...completed projective tensor prod-
uct, 34
E ® F...algebraic tensor product, 33
E ®x F...projective tensor product, 33
E ®¢ F'...injective tensor product, 37
A- .. (quotient) space generated by A C F,
2
E...nuclearification of E, 73
s...Schwartzification of E, 71
E,>~ E/kerp, 2
H(C)...space of entire functions, 6
H(DD)...space of holomorphic functions on
the unit disk, 6
Lequi- - - space of bounded linear functionals
with topology of uniform convergence
on equicontinuous sets, 80
U®V...absolutely convex hull of (U x V),
34
B*(F, F*)...topology of uniform convergence
on bounded sets in FE, 74
£, 36
n(E*,E), 77
~(E*, E), 28
A: E4 — E...canonical injection, 2
A E — E4...canonical projection, 2
A9(A)...Kothe sequence space, 4
AP (a)...power series space, 6
AZ,(a). .. generalized power series space, 106
®e. . . completed injective tensor product, 39
£-0-sequence, 71
E-nuclear sequence, 72
LB(E, F)...space of locally bounded linear
maps, 116
Ty,v - . - seminorms of projective tensor prod-
uct, 34
lim. .. limit of lcs, 1
TN . . . topology of uniform convergence on £-
nuclear sequences, 72
Tg...topology of uniform convergence on £-
0-sequences, 71
Te(E*, E)...topology of uniform convergence
on compact subsets, 29
Tpc(E*, E). . . topology of uniform convergence
on precompact subsets, 29
e-product, 81
e-tensor product, 37
€y,v...seminorm of injective tensor prod-
uct, 38
lim. .. projective limit of lcs, 1
co-barrelled, 60

co(A), 4
p-approximable operators, 40
p-nuclear operators, 40
p-summing operators, 40
s...space of fast falling sequences, 6
bE...cbs given by von Neumann bornology,
57
tF...lcs given by bornivorous absolutely con-
vex subsets, 57
LB®°)-space, 123
LB )-space, 121
2)-space, 110
.Q) space, 125

(

(

(

(
(2)-space, 113

(DF)-space, 65

(DN)-space, 27

(F)-space, 2

(FM)-space, 29

(FS)-space, 32

(LB)-space, 18, 74

(LF)-space, 18, 74

(M)-space, 28

(N)-space, 38

(NF)-space, 53

(S)-space, 31

(algebraically) exact sequence, 84
(bornological) embedding, 85
(bornological) quotient mapping, 85
(df)-space, 65
(infra-)countably-barrelled, 63
(inverse) limit of lcs, 1
(quasi-)Ro-barrelled, 63
(weakly) compact operator, 24

absolute basis, 9

absolutely g-summable sequences, 36
absolutely Cauchy sequences, 35
absolutely summable sequences, 35
absorbing sequence, 69

algebraic tensor product, 33
approximation numbers, 26
approximation property, 80

Banach-disks, 17

barrel, 17

barrelled space, 17
Beurling type, 4
bornivorous, 17
bornivorous barrel, 17
bornivorous sequence, 69
bornological space, 17
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bornology, 57
bounded linear mappings, 17

canonical resolution of a Fréchet space, 91

canonical resolution of a projective limit, 91

Cauchy-net, 2

cbs. . .separated convex bornological space,
57

closed graph theorem, 3

co-nuclear space, 76

colimit, 18

compact operators, 80

complete, 2, 23

completion of the projective tensor product,
34

convex bornological space, 57

coproduct, 18

Denjoy-Carleman functions, 4
direct sum, 18

distinguished, 62

dominating norm, 27

finite type power series space, 6
Fourier-coefficients, 7
Fréchet space, 2

generalized power series spaces of infinite type,
106

Hermite functions, 8
Hermite polynomials, 7
hypoelliptic PDO, 99

inductive limit, 18

infinite type power series space, 6
infra-cg-barrelled, 60
infra-barrelled space, 17
infra-tonneliert (german), 17
injective Fréchet space, 100
injective tensor product, 37

Kothe sequence space, 4
Kelley-space, 3

Ics. . . separated locally convex space, 1
left exact functor, 99

locally bounded linear map, 116
locally complete, 23

locally convex space, 1
locally-complete, 17

Mackey convergent, 18
Mackey-complete, 23
Minkowski-functional, 1, 2
Montel space, 28

nuclear operator, 47
nuclear space, 38
nuclearification, 73

open mapping theorem, 3

polar set, 11

power series space, 6
precompact, 23
probability measure g, 45

projective Fréchet space, 100
projective limit, 1
projective tensor product, 33

quasi complete, 23
quasi-normable space, 69
quasi-tonneliert (german), 17
quotient seminorms, 3

rapidly decreasing functions, 4
reduced inductive limit, 18
reduced projective limit, 1
reflexive, 27

regular inductive limit, 19
right-derived functors, 102

scalarly absolutely g-summable sequences, 36

scalarly absolutely summable sequences, 35

Schauder-basis, 9

Schwartz space, 31

Schwartzification, 71

semi-Montel space, 28

semi-reflexive, 27

seminorms, 1

separated convex bonrological space, 57

sequentially complete, 23

shift-stable sequence, 118

Silva, 76

space of continuous linear mappings, 34

space of continuous multi-linear mappings,
34

steps of an inductive limit, 18

Strict inductive limits, 18

strong topology, 12

Tonne (german), 17

tonnelliert (german), 17

topological basis, 9

topologically exactsequence, 84
Tschebyscheff(=Chebyshev) polynomials, 9

ultrabornological space, 17

unconditionally Cauchy summable sequences,
35

universal linearizer, 113

upper semi-continuous, 4
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