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This is the script for my lecture course during the summer semester 2016. It
can be downloaded at http://www.mat.univie.ac.at/∼kriegl/Skripten/2016SS.pdf
Many of the proofs are taken from Meise and Vogt’s book [MV92] and I will give
detailed references to it, but also to Jarchow’s book [Jar81].
As prerequiste the user is assumed to be familiar with basic functional analysis
(for Banach spaces) and the basics of locally convex theory as presented in lecture
courses on higher functional analysis. I will refer to my script [Kri14] for these
results.
The main focus is on Fréchet spaces and additional topological properties for them.
Leading examples of Fréchet spaces will be the Köthe sequences spaces and in
particular the power series spaces with the space s of rapidly decreasing sequences
as most relevant member. We will have to consider several of these properties also
for general locally convex spaces, in particular, since the strong dual of Fréchet
spaces is rarely Fréchet.
Our discussion will start with properties of locally convex spaces which are pre-
served by the formation of inductive or projective limits. And we will then consider
what is inherited by the strong dual. Then we consider how properties of con-
tinuous linear maps translate into properties of the adjoint mappings using short
exact sequences. And we will introduce topological properties which garantee the
splitting of such sequences. These and further properties will also play a role in
determining situations where continuous linear mappings are locally bounded and
for characterizing the subspaces and the quotients of s.
I will put online a detailed list of the treated sections at the end of the semester
under http://www.mat.univie.ac.at/∼kriegl/LVA-2016-SS.html.
Obviously the attentive reader will find misprints and even errors. Thus I kindly
ask to inform me about such - future generations of students will appreciate the
corrections.

Andreas Kriegl, Vienna in February 2016
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1. Basics on Fréchet spaces

In this section we describe ((reduced) projective) limits of locally convex spaces,
recall some basic facts on Fréchet spaces and introduce Köthe sequence spaces λp(A)
and in particular power series spaces λpr(A) as important examples.

1.1 Locally convex spaces
(See [Kri14, 1.4.4], [Jar81, 6.5 p.108], [MV92, 22 p.230]).
Let us recall that a locally convex space E is a linear space over the field
K ∈ {R,C} together with a compatible topology (i.e. addition E×E → E and scalar
multiplication K × E → E are continuous) and which has a 0-neighborhood basis
consisting of (absolutely) convex sets. Equivalently, the topology can be described
by a set P of seminorms (i.e. subadditiv and positive homogeneous functions p :
E → R). The correspondance is given by using the unit-balls {x : p(x) ≤ 1} of the
seminorms as 0-neighborhood subbasis and conversely considering the Minkowski-
functionals pU (see 1.3 ) for U in a 0-neighborhood basis consisting of absolutely
convex sets.

As usual we will require the topology to be Hausdorff or, equivalently, that the
seminorms separate points, i.e.

⋂
p∈P p

−1(0) = {0}. We will abbreviate these
spaces by lcs.

1.2 Limits of lcs (See [MV92, 24 p.257], [Jar81, 2.6 p.37]).
Let F : (J,�) → lcs be a functor from a partially ordered set (or even a small
category) into the category of locally convex spaces, i.e. for every (object) j ∈ J we
are given an lcs F(j) and for every (morphism) j � j′ a continuous linear mapping
F(j � j′) : F(j)→ F(j′) satisfying F(j′ � j′′) ◦ F(j � j′) = F(j � j′ � j′′).

Then the (inverse) limit of F is the lcs

limF :=
{
x = (xj)j∈J ∈

∏
j∈J
F(j) : F(j � j′)(xj) = xj′ for all j � j′

}
with the topology induced from the product topology, i.e. the initial topology in-
duced by the projections prj : limF ⊆

∏
j∈J F(j)→ F (j) for j ∈ J .

We call the limit a projective limit (and we write lim←−F instead of limF), iff
(J,�) is directed, i.e. ∀j1, j2 ∈ J ∃j ∈ J : j � j1, j2.

If J ′ ⊆ J is initial in J , i.e. ∀j ∈ J ∃j′ ∈ J : j′ � j, then limF|J ∼= limF : In
fact, the isomorphism is given by restricting the canonical projection

∏
j∈J F(j)→∏

j′∈J′ F(j′) to the subspaces formed by the projective limits, see [Kri08, 3.13].

A projective limit is called reduced, iff all projections prj : lim←−F → F(j) have
dense image. By replacing F(j) with the closure F̄(j) of the image of prj(lim←−F)
in F(j) we get that lim←−F equals lim←−F̄ , which is a reduced projective limit. Note
that F̄(j � j′) is then a well defined continuous linear mapping with dense image.
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1.5

As closed subspace in the product the limit of complete lcs is complete. Recall,
that an lcs E is complete iff every Cauchy-net (i.e. x : (I,�) → E satisfying
∀p ∈ P ∀ε > 0 ∃i ∈ I ∀i′, i′′ � i: p(xi′ − xi′′) < ε) converges in E.

1.3 Complete lcs as limits of Banach spaces
(See [MV92, 24.5 p.260],[Kri14, 3.3.4]).
For absolutely convex A ⊆ E the Minkowski-functional pA is defined by

pA(x) := inf
{
λ > 0 : x ∈ λA

}
.

Note that {x : pA(x) < ∞} is the linear span 〈A〉vs =
⋃
n∈N nA of A, which

coincides with E iff A is absorbing. The Minkowski-functional is a seminorm on
this subspace with kernel

⋂
λ>0 λA. If A is bounded (in each direction), then this

kernel is {0}. By EA we denote the resulting quotient space of 〈A〉vs, normed by
the norm induced by pA. If p is a seminorm on E and A := {x : p(x) < 1} its unit
ball, then we write Ep instead of EA = E/ ker(p). If A is absorbing we denote the
canonical quotient map ιA : E � EA and if A is bounded we denote the canonical
inclusion ιA : EA� E.

Every lcs E is a dense subspace of a (projective) limit of Banach spaces: For every
seminorm p we consider the completion Ẽp of the space Ep := E/ ker p, normed by
the uniquely determined seminorm p̃ : Ep → R with p = p̃◦pr : E → Ep → R. Then
E embedds topologically into

∏
pEp ↪→

∏
p Ẽp and in fact has dense image in the

(projective) limit (see [Kri08, 3.46]) where the connecting mappings ιpp′ : Ep → Ep′

for p ≥ p′ (and hence ker p ⊆ ker p′) are given by x + ker p 7→ x + ker p′: In fact,
let y ∈ lim←−p Ẽp and U =

∏
p Up be a neighborhood of y in

∏
p Ẽp, i.e. Up = Ẽp

for all but finitely many p1, . . . , pn. Choose a p0 � p1, . . . , pn and a neighborhood
W of yp0 in Ẽp0 such that ιp0

pi (W ) ⊆ Upi for 1 ≤ i ≤ n. Let x ∈ E be such that
ιp0(x) ∈W . Then ιpi(x) = ιp0

pi (ιp0(x)) ⊆ Upi for 1 ≤ i ≤ n, i.e. ι(x) ∈ U .

Thus, if E is complete, then it coincides with this limit. The limit is a (reduced)
projective one, since the set of seminorms of E can be assumed to be directed, i.e.
for each two seminorms p1 and p2 we may assume that max{p1, p2} is a seminorm
as well.

1.4 Lemma. Metrizable lcs
(See [Kri14, 3.5.2], [MV92, 25.1 p.276], [Jar81, 2.8.1 p.40]).
Let E be an lcs.

1. E has a countable 0-neighborhood basis.
⇔ 2. E has a countable basis of seminorms.
⇔ 3. The topology of E can be described by a translation invariant metric.

Proof. ( 3 ⇒ 1 ) The set {x : d(x, 0) < 1
n} form a countable 0-neighborhood basis.

( 1 ⇒ 2 ) Take the Minkowski functionals of the 0-neighborhoods in the basis.
( 2 ⇒ 3 ) Embed E ↪→

∏
n∈NEpn , a product of normed spaces. Then d(x, y) :=∑

n
1

2n
‖xn−yn‖

1+‖xn−yn‖ gives the required metric.

1.5 Definition. Fréchet spaces
(See [Kri14, 2.2.1], [Jar81, 6.5.3 p.109], [MV92, 25.1 p.276]).
A Fréchet space ((F) for short) is a locally convex space, which satisfies the
equivalent conditions of 1.4 and is (sequentially) complete (equivalently, the trans-
lation invariant metric of 1.4.3 is complete).
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1.8

Fréchet spaces are Baire spaces, hence the closed graph theorem (cf. [Kri14,
4.3.1], [MV92, 24.31 p.270], [Jar81, 5.4.1 p.92]) and the open mapping theorem
(cf. [Kri14, 4.3.5], [MV92, 24.30 p.270], [Jar81, 5.5.2 p.95]) hold for linear maps
between Fréchet spaces.

1.6 Remark. Equivalence of bases of seminorms.
Two sets P and P ′ of seminorms on a vector space E describe the same locally con-
vex space, iff each seminorm of one set is dominated by finitely many seminorms of
the other set (i.e. ∀p′ ∈ P ′ ∃n ∈ N ∃p1, . . . , pn ∈ P: p′ ≤

∑n
i=1 pi, and conversely).

Thus for Fréchet spaces we may assume that we have an increasing sequence of
seminorms pn as basis: In fact, we may replace a given countable set {pn : n ∈ N}
of seminorms by {p′n :=

∑
i≤n pi : n ∈ N}.

1.7 Lemma. Stability of Fréchet spaces (See [MV92, 25.3 p.277]).
Closed subspaces of Fréchet spaces are Fréchet and quotients of Fréchet spaces by
closed subspaces are Fréchet. Limits of countable many Fréchet spaces are Fréchet.
The Fréchet spaces are exactly the (projective) limits of sequences of Banach spaces.

Proof. The trace of the countable 0-neighborhoodbasis (or countable many semi-
norms) is a 0-neighborhoodbasis (are the generating seminorms) of the subspace.
The quotient seminorms q̃(x+ F ) := inf{y ∈ F : q(x+ y)} are a basis of semi-
norms on the quotient, see [Kri14, 3.3.3]. And since Cauchy-sequences can be lifted
along the quotient mapping (see [Kri14, 3.5.3]) the quotient is (sequentially-)com-
plete as well.
We obviously get a countable basis of seminorms for the product of countable many
Fréchet spaces, and since limits of complete spaces are complete, such a limit is a
Fréchet space.

1.8 Examples of Fréchet spaces.

1. `p, c0: Every Banach space (in particular, `p for 1 ≤ p ≤ ∞ and c0) is a
Fréchet space.

2. KNKNKN: The space KN of all sequences is a Fréchet space with respect to the
product topology, i.e. the pointwise(=coordinatewise) convergence. It is the
limit of Kn for n ∈ N, in fact Epn = Kn, when E := KN and pn(x) :=∑
i<n |xi|.

3. C(X): Let C(X,K) be the space of continuous functions on a topological
space X supplied with the topology of uniform convergence on the compact
subsets K ⊆ X, i.e. induced by the seminorms pK : f 7→ ‖f |K‖∞. In
order for C(X,K) to be complete we need, that a function, with continuous
restrictions on all compact subsets, is continuous. This is the case, when X is
a Kelley-space (i.e. carries the final topology with respect to its compact
subsets). Then C(X,K) = lim←−K C(K,K), since C(X,K)pK = C(X,K)/{f :
f |K = 0} = C(K,K). If X has a countable basis for the compact sets, then
C(X,K) is metrizable.

4. H(U): If U ⊆ Cn is open, then the space H(U) of holomorphic functions
on U is a closed subspace of C(U,C), hence Fréchet.

5. C∞(X): Let X be an open subset of some Rn or a smooth finite dimensional
paracompact connected manifold. Then the space C∞(X,K) of smooth func-
tions on X is a Fréchet space with the topology of uniform convergence of
each derivative separately on compact subsets (contained in some chart).
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1.11

6. S: The space S of rapidly decreasing functions on Rn is a Fréchet
space, where the seminorms are given by sup{(1 + ‖x‖)j‖f (k)(x)‖ : x ∈ Rn}
for j, k ∈ N.

7. CW(U): Spaces of weighted continuous functions. Let X be a Kelley-
space and W a (countable) set of non-negative upper semi-continuous
(i.e. w−1([α,∞)) is closed for all α ∈ R) functions w : X → R. Then
CW(U,K) := {f ∈ C(U,K) : w · f is bounded for each w ∈ W}, cf. [Sch12,
4.3 p.76]. A particular case is 3 , where W = {χK : K ⊆ U is compact}, cf.
[Sch12, 4.4 p.76].

8. HW(U): Spaces of weighted holomorphic functions. Let U ⊆ C be open
andW be as in 7 . Then HW(U) := H(U,C)∩CW(U,C). [Sch12, 4.3 p.76]

9. C(M)(U): Let U ⊆ Rn be open and Mk be a sequence of positive real
numbers. The space of Denjoy-Carleman functions on U of Beurling
type is

C(M)(U,K) :=
{
f ∈ C∞(U,K) :‖f‖K,ρ := sup

{‖f (j)(x)‖
j!Mj ρj

: j ∈ N, x ∈ K
}
<∞

for all compact K ⊆ U and ρ > 0
}
.

1.9 Definition. Köthe sequence spaces
(See [MV92, 27 p.307], [Jar81, 1.7.E p.27]).
Let A be a set of R-valued sequences, which satisfies ∀n ∈ N ∃a ∈ A: an 6= 0.
Then for 1 ≤ q ≤ ∞ the Köthe sequence space λq(A) is defined as

λq(A) :=
{
x ∈ KN : ∀a ∈ A : a · x ∈ `q

}
with the seminorms given by x 7→ ‖x‖a := ‖a · x‖`q . Moreover,

c0(A) :=
{
x ∈ λ∞(A) : ∀a ∈ A : x · a ∈ c0

}
as subspace of λ∞(A).

1.10 Remark.

1. We may (and will always) assume that all a ∈ A are R+ : {t ∈ R;T ≥ 0}-
valued, since obviously λp(A) = λp(|A|), where |A| := {j 7→ |aj | : a ∈ A}.

2. We may (and will always) assume that A is directed, i.e.

∀a, b ∈ A ∃c ∈ A ∀n ∈ N : cn ≥ max{an, bn} :

Otherwise, let Ã := {
∑
a∈ã a : ã ⊆ A finite}. Then Ã ⊇ A is directed and

‖x‖ã := ‖
∑
a∈ã a · x‖`p ≤

∑
a∈ã ‖a · x‖`p =:

∑
a∈ã ‖x‖a. Now apply 1.6 .

3. If A is countable, we may replace A by an increasing sequence {ãn : n ∈ N}:
In fact, let A = {an : n ∈ N} and ãn :=

∑
k≤n ak. Then ‖an · x‖p ≤

‖ãn · x‖p = ‖
∑
k≤n ak · x‖p ≤

∑
k≤n ‖ak · x‖p, cf. 1.6 .

1.11 Lemma. Köthe sequence spaces as limits (See [MV92, 27.2 p.307]).
The Köthe sequence space λq(A) is isomorphic to limF , where the functor F on
(A,≥) is given by F(a) := `q and F(a ≥ a′) : F(a) → F(a′) is given by x 7→ a′

a x,
where

a′

a
: n 7→

{
a′n
an

for an 6= 0,
0 for an = 0 (and hence a′n = 0).
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1.13

In particular, if A is countable, then λq(A) and c0(A) are Fréchet spaces (See
[MV92, 27.1 p.307]).

Proof. The isomorphism is given by λq(A) 3 x 7→ (a · x)a∈A with inverse mapping
limF 3 y 7→ x := ( 1

a(n)n y
a(n)
n )n∈N, where the a(n) ∈ A are choosen such that

a(n)n > 0.
( � ) Let y = (ya)a∈A ∈ limF ⊆

∏
a∈A `

q be given. For b ∈ A and n ∈ N let
c(n) ≥ max{a(n), b}. Then yb = b

c(n)y
c(n) and ya(n) = a(n)

c(n) y
c(n), thus (since

c(n)n ≥ a(n)n > 0):

ybn = bn
c(n)n

yc(n)
n = bn

c(n)n
c(n)n
a(n)n

ya(n)
n = bn

a(n)n
ya(n)
n = (b · x)n.

1.12 Convention. Calculating with ∞.
Put ∞ ≥ x ∀x, 0 +∞ := ∞, 0 · ∞ := 0 and extend + and · by monotonicity and
commutativity to mappings [0,∞]× [0,∞]→ [0,∞]. Then

∞ ≥ x+∞ ≥ 0 +∞ =∞⇒ ∀x ≥ 0 : x+∞ =∞,

∀0 < x, y <∞ : x · ∞ ≥ x · y
x

= y ⇒ ∀x > 0 : x · ∞ =∞,

and then + and · are associative and distributiv.

Let 1/0 :=∞, 1/∞ := 0 and x/y := x · 1
y . Then

x/0 := x · 1
0

= x · ∞ :=

{
0 for x = 0
∞ for 0 < x ≤ ∞

and x/∞ := x · 1
∞

= x · 0 = 0.

1.13 Remark. Köthe sequence spaces as reduced projective limits.
Let E = λp(A) (resp. E = c0(A)) and ` = `p (resp. ` = c0). For a = (ak)k ∈ A the
mapping x 7→ a · x, E → ` and hence x 7→ ‖a · x‖`p =: ‖x‖a has kernel

ker ‖ ‖a = {x ∈ E : x|Na = 0}, where Na := carr a := {k : ak 6= 0}.

By assumption on Köthe sequence spaces N =
⋃
a∈ANa. Define the Banach spaces

`p(a) := {x ∈ RNa : ‖a · x‖`p <∞} ∼= `p(carr a) := {x ∈ `p : carrx ⊆ carr a}
c0(a) := {x ∈ `∞(a) ⊆ RNa ⊆ RN : lim a · x = 0}

Obviously, the coproduct R(Na) is dense in `p(a) for p <∞ and hence also R(N) ⊆ E,
since R(N) ⊆ E/ ker ‖ ‖a ⊆ `p(a). ⇒ Ea := (E/ ker ‖ ‖a)∼ ∼= `p(a) for 1 ≤ p < ∞
(resp. Ea ∼= c0(a)). By completeness E = lim←−aEa.

Ea ∼= `p(a) ·a
∼=
//

|carr a′

����

`p(carr a)

· a′a

��

� � // `p

· a′a

��

E = λp(A)

|carr a′ '' ''

|carr a
77 77

Ea′ ∼= `p(a′) ·a′
∼=
// `p(carr a′) �

� // `p
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1.15

For p = ∞ however, we only get c0(a) ⊆ Ea ⊆ `∞(a) and not necessarily Ea =
`∞(a), e.g. for E := s, see . Nevertheless

lim←−
a

Ea = λ∞(A) =
⋂
a

`∞(a) = lim←−
a

`∞(a),

but the projective limit on the right side is not reduced!

1.14 Definition. Power series space (See [MV92, 29 p.337]).
A particular case of Köthe sequence spaces is, when A = Aα,r := {j 7→ etαj : t < r}
for some r ∈ R and a fixed sequence (αj)j increasing monotone towards +∞. Then
λqr(α) := λq(Aα,r) is called power series space (of finite type if r < +∞ and of
infinite type if r = +∞). Note that for r <∞ the mapping Φ : λqr(α)→ λq0(α),
x 7→ (er αjxj)j is an isomorphism, since ‖Φx‖t = ‖x‖t+r, see 1.26.1 .

1.15 Examples of Köthe sequence spaces (See [MV92, 29.4 p.339]).

1. If A is a singleton, then λp(A) ∼= `p and c0(A) ∼= c0.
2. Let A := {en : n ∈ N}, where en are the standard unit vectors in RN. Then
λ∞(A) = λp(A) = c0(A) = RN for all p ∈ [1,∞]. Note that we can equally
take {χF = max{ek : k ∈ F} : F ⊆ N is finite} instead of A.

3. Let A = RN be the set of all real sequences (ak)k. Then λ∞(A) = K(N) :=∐
j∈NK (cf. [Kri14, 3.6.1]): Suppose there is an x ∈ λ∞(A) with carr(x)

being not finite. Now define a ∈ A as ak := k/|xk|, which should be (say) 1 if
xk = 0. Then |(a·x)k| = k for all k ∈ carrx, hence is not bounded. A basis of
seminorms on the coproduct is given by x 7→

∑
k |ak xk| ≤ 2 sup{|2kak xk| :

k ∈ N}, with ak ∈ R. This space is not Fréchet!
4. Let A be the set of all polynomials. Then s := λ∞(A) is the space of

fast falling sequences. We get the same space if we use the subset
{n 7→ nk : k ∈ N} ⊆ A or better {n 7→ (1 + n)k : k ∈ N} instead of A, since
this sequence is increasing. Note that we should put 00 := 1 (otherwise,
the first set will not satisfy the requirements for a Köthe sequence space)
but then the set is not linearly ordered (since 00 > 0k for k > 0). Let
p : x 7→

∑
k≤d ak x

k. Then ‖ ‖p ≤
∑
k≤d ak‖ ‖k.

Moreover, ‖n 7→ (1 + n)kxn‖`1 ≤ ‖n 7→ (1 + n)k+2xn‖`∞ ·
∑
n

1
(1+n)2 , hence

s = λp(A) = c0(A) for all 1 ≤ p ≤ ∞.
The space s is the power series space λ∞(α) for α(n) := ln(1 + n).

5. If A = {n 7→ rn : r > 0} = {n 7→ es n : s ∈ R} then λ∞(A) = λ1(A) = H(C),
the space of entire functions. It is the power series space λ∞(α) for
α(n) := n (See [MV92, 29.4.2 p.340]).

x 7→
(
z 7→

∞∑
n=0

xnz
n
)

In fact, the power series
∑
n anz

n converges for all |z| < R iff {anrn : n ∈ N}
is bounded (equivalently, absolutely summable) for all r < R.

6. If A = {n 7→ rn : 0 < r < 1} = {n 7→ es n : s < 0} then λ∞(A) = λ1(A) =
H(D), the space of holomorphic functions on the unit disk [MV92,
29.4.3 p.340].

x 7→
(
z 7→

∞∑
n=0

xnz
n
)

It is the power series space λ0(α) for α(n) := n (See [MV92, 29.4.2 p.340])
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1.16

7. For 1 ≤ p <∞ and 1
q + 1

p = 1 we have λ1(`p) = (`q, σ(`q, `p) as lcs:
(⊇) By the Hölder inequality ‖x‖λ1

y = ‖x · y‖`1 ≤ ‖x‖`q · ‖y‖`p < ∞ for all
y ∈ `p and x ∈ `q.
(⊆) Let x ∈ KN be such that ‖x ·y‖1 <∞ for all y ∈ `p. Then the linear map
y 7→ x · y, `p → `1 has closed graph and thus is continuous. Consequently,
y 7→

∑
n xn · yn is a continuous linear functional, hence x ∈ (`p)∗ = `q (see

[Kri14, 5.3.1]).
λ1(`∞) = (`1, σ(`1, `∞)): For (⊆) choose y = 1.
λ1(c0) = (`1, σ(`1, c0)): Suppose x ∈ λ1(c0) \ `1, choose k 7→ nk strictly
increasing with

∑nk+1
j=nk+1 |xj | ≥ k and yj := 1

k for nn < j ≤ nk+1. Then
‖x · y‖`1 ≥

∑
k 1 =∞.

1.16 Proposition. Function spaces isomorphic to s
(See [MV92, 29.5 p.340]).
The following spaces are isomorphic to s: C∞2π(R), S(R), C∞[a,b](R), and C∞([a, b]).

Proof. (1)C∞2π(R) ∼= s via Fourier-coefficients f 7→
(

1
2π
∫ π
−π f(t) e−ikt dt

)
k∈Z

,

cf. [Kri07b, 5.4.5] and 1.26.3 : Let ck(f) := 1
2π
∫ π
−π f(t) e−ikt dt. Then ck(f ′) =

ik ck(f) by [Kri07b, 5.4.4 p.101] or [Kri06, 9.3.5], f ∈ L1 ⇒ (ck(f))k∈Z ∈ c0 and
c ∈ `1 ⇒

∑
k ck expk converges absolute in C by Riemann-Lebesgue [Kri07b, 5.4.1

p.95], [Kri06, 9.3.6]. Note, that that s is taken with index set Z instead of N, but
see 1.26.3 .

(2) S(R) ∼= s (See [MV92, 29.5.2 p.341]):
Let ρ(t) := e−t

2 and consider the Hilbert space completion L2
ρ(R) of the space of

polynomials with respect to the inner product 〈f |g〉ρ :=
∫
R
f(t)g(t) ρ(t) dt. Ob-

viously L2
ρ(R) ∼= L2(R) via f 7→ √ρ f . Gram-Schmidt orthonormalization applied

to the monomials t 7→ tn gives an orthonormal basis ( 1√
2nn!

√
π
Hn)n∈N, where Hn

are the Hermite polynomials (cf. [Kri07b, 6.3.9 p.118]), which can also be
obtained recursively H0 := 1, Hn+1(t) := 2tHn(t)− 2nHn−1(t):
From the recursion we get H ′n = 2nHn−1 by induction. In fact H ′0 = 0, H1(t) = 2t,
H ′1 = 2H0, and hence

H ′n+1 =
(
2 id Hn − 2nHn−1

)′ = 2Hn + 2 id H ′n − 2nH ′n−1

= 2Hn + 4n id Hn−1 − 4n(n− 1)Hn−2

= 2Hn + 2n · (2 id Hn−1 − 2(n− 1)Hn−2) = 2(n+ 1)Hn

Moreover, Hn = (−1)n ρ
(n)

ρ since

Hn+1 = 2 id Hn −H ′n = 2 id (−1)n ρ
(n)

ρ
−
(

(−1)n ρ
(n)

ρ

)′
= (−1)n

(
2 id ρ(n)

ρ
− ρ ρ(n+1) − (−2 id ρ) ρ(n)

ρ2

)
= (−1)n+1 ρ

(n+1)

ρ
.

By induction we get for m ≥ n:

〈Hm+1|Hn〉ρ =
∫
ρHm+1Hn =

∫
ρ (2 id Hm −H ′m)Hn =

∫
(−ρ′Hm − ρH ′m)Hn

=
∫
ρHmH

′
n −

∫
(ρHmHn)′ = 2n

∫
ρHmHn−1 = 0.
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Finally,
∫
ρ =
√
π and again by induction

‖Hn‖2ρ =
∫
ρH2

n = (−1)n
∫
Hn ρ

(n) =part.int.======= (−1)n−1
∫
H ′n ρ

(n−1)

=
∫

2nHn−1 (−1)n−1ρ(n−1) = 2n ‖Hn−1‖2ρ

= 2n
√
π 2n−1(n− 1)! = 2n n!

√
π.

Thus the corresponding Hermite functions hn :=
√
ρ√

2n n!
√
π
Hn form an ortho-

normal basis of L2(R). For A± : S → S, defined by f 7→ id ·f ∓ f ′, we have:

A−(hn) := h′n + id hn =
(√ρHn)′ − id √ρHn√

2n n!
√
π

= 1√
2n n!

√
π

√
ρH ′n = 2n√

2n n!
√
π

√
ρHn−1

=
√

2n√
2n−1 (n− 1)!

√
π

√
ρHn−1 =

√
2nhn−1

⇒ Am+f =onb===
∞∑
n=0
〈Am+f |hn〉hn =part.int.=======

∞∑
n=0
〈f |Am−hn〉hn

=
∑
n≥m

2m/2
√
n(n− 1) . . . (n−m+ 1) 〈f |hn−m〉hn

=onb==⇒ |〈Am+f |hn+m〉|2 = 2m(n+m)(n+m− 1) . . . (n+ 1)|〈f |hn〉|2

⇒
∞∑
n=0

nm|〈f |hn〉|2 ≤ 2−m
∞∑
n=0
|〈Am+f |hn+m〉|2 ≤ 2−m‖Am+f‖2L2(R) <∞,

hence S → s, f 7→ (〈f |hn〉)n≥0 is continuous and obviously injective.
It is also onto: Let a ∈ s. Then

∑
n anhn converges in S, since

− h′k + id ·hk = A1
+(hk) =

∑
n≥1

21/2√n 〈hk|hn−1〉hn =
√

2(k + 1)hk+1

⇒ h′n =
√
n

2
hn−1 −

√
n+ 1

2
hn+1 and id ·hn =

√
n

2
hn−1 +

√
n+ 1

2
hn+1.

(3) C∞[a,b](R) :=
{
f ∈ C∞(R) : f(x) = 0 ∀x /∈ [a, b]

} ∼= s

(See [MV92, 29.5.3 p.342]):
W.l.o.g. −a = b = π/2.
Φ : S(R)→ C∞[−π/2,π/2](R), Φ(f)(t) := f(tan(t))∀|t| < π/2 is an iso, since

Φ(f)(p) =
p∑
j=1

g̃j,p
cosj+p

f (j) ◦ tan with g̃j,p ∈ C∞2π(R,R)

| tan(t)kf (j)(tan(t))| ≤ sup
x∈R
|xkf (j)(x)| =: Ck,j <∞ ∀|t| < π/2

Since tan(x) ∼ 1
cos(x)

for x near ±π/2 we get |Φ(f)(p)(t)| → 0 for t→ ±π/2.

And the inverse mapping is given by f 7→ f ◦ arctan using analogous arguments:
arctan′(s) = 1

1+s2 ⇒ arctan(n)(s) = qn(s)
(1+s2)n with deg(qn) ≤ n− 1. Thus

tk Φ−1(f)(p)(t) =
p∑
j=1

tk gj,p(t)
(1 + t2)n

f (j)(arctan(t)) with deg(gj,p) ≤ n− 1,
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and

tn+k−1f (j)(arctan(t)) = tan
(
±(π/2− s)

)n+k−1
f (j)

(
±(π/2− s)

)
= (± cot(s))n+k−1f (j)

(
±(π/2− s)

)
=
(
±s cos(s)

sin(s)

)n+k−1
f (j)(±(π/2− s))

sn+k−1 → 0 for s↘ 0.

Now the result follows since S(R) ∼= s by 2 .

(4) C∞([a, b]) ∼= s (See [MV92, 29.5.4 p.343]):
W.l.o.g. −a = b = 1.

Φ : f 7→ f ◦ cos, C∞([−1, 1])→ C∞2π,even
∼= s

is continuous and injective. It is also onto, since

f := g ◦ arccos ∈ C([−1, 1]) ∩ C∞(]−1, 1[), f ′ = − g′

sin
◦ arccos, and g′

sin
∈ C∞2π,even.

Note that via Fourier-coefficents C∞2π,even = {f ∈ C∞2π : f(x) = f(−x)} = {f ∈
C∞2π : cn(f) = c−n(f)} ∼= s, via

(
x 7→

∑
n≥0 an cos(nx)

)
← (an)n. Thus s →

C∞([−1, 1]) is given by a 7→
∑
n∈N an cos(n arccos t) =

∑
n∈N an Tn, where Tn :

t 7→ cos(n arccos t) are the Tschebyscheff(=Chebyshev) polynomials.

1.17 Definition. Schauder-basis and absolute basis.
A sequence (ej)j∈N is called Schauder-basis in [MV92, Def. in 24.27 p.322] (or
called topological basis in [Jar81, 14.2 p.292]) of the lcs E, if

∀x ∈ E ∃! ξ = (ξj(x))j ∈ KN : x =
∑
j

ξj(x) ej .

The mappings x 7→ ξj(x) are then linear.
Obviously, the standard basis (ej)j∈N is a Schauder-basis in λp(A) for any A:∥∥∥a · (x− n∑

j=0
xj ej

)∥∥∥
`p

=
∥∥∥∑
j>n

aj xj ej

∥∥∥
`p

=
(∑
j>n

|aj xj |p
)1/p

→ 0.

A Schauder-basis is called absolute basis (See [MV92, Def. in 24.27 p.322],
[Jar81, 14.7.6 p.314]), iff

∀p ∃p′ ∃C > 0 ∀x :
∑
j

|ξj(x)| p(ej) ≤ C p′(x)

The standard basis is an absolute basis in λp(A) iff λp(A) = λ1(A):

∀a∃a′ ∃C > 0 ∀x :
∑
j

|xj | ‖ej · a‖`p︸ ︷︷ ︸
=|aj |

≤ C ‖x · a′‖`p ,

i.e. ‖x · a‖`p ≤ ‖x · a‖`1 ≤ C ‖x · a′‖`p .

1.18 Lemma on (F) with Schauder-basis (See [MV92, 28.10 p.331]).
Let F be a Fréchet-space with Schauder-basis (ej)j and corresponding coefficient
functionals ξj. Then

∀p ∃p′ ∃C ∀x : sup
k∈N

p
(∑
j≤k

ξj(x)ej
)
≤ C p′(x).
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Proof. Let (‖ ‖n)n be an increasing basis of seminorms of F . We consider
new seminorms p̃n(x) := supk∈N

∥∥∑k
j=1 ξj(x) ej

∥∥
n
. Obviously, ‖ ‖n ≤ p̃n since∑

j≤k ξj(x)ej converges to x, thus the metrizable locally convex topology τ in-
duced by the seminorms p̃n is finer than the given one. In order to apply the
open mapping theorem it is enough to show completeness of τ : Let (xm)m be a
Cauchy-sequence for τ . We have∣∣ξk(xm

′
)− ξk(xm

′′
)
∣∣ ‖ek‖n ≤ ∥∥∥ k∑

j=1
ξj(xm

′
− xm

′′
) ej
∥∥∥
n

+
∥∥∥k−1∑
j=1

ξj(xm
′
− xm

′′
) ej
∥∥∥
n

≤ 2 p̃n(xm
′
− xm

′′
).

Since ∀k ∃n : ‖ek‖n > 0 the sequence (ξk(xm))m is Cauchy in K, let x∞k be its limit.
Since (xm)m is Cauchy, we have

∀n∀ε > 0 ∃m∀m′,m′′ ≥ m ∀k :

ε ≥ p̃n(xm
′
− xm

′′
) ≥

∥∥∥ k∑
j=1

ξj(xm
′
) ej −

k∑
j=1

ξj(xm
′′
) ej
∥∥∥
n
.

With m′′ →∞ we obtain∥∥∥ k∑
j=1

ξj(xm
′
) ej −

k∑
j=1

x∞j ej

∥∥∥
n
≤ ε.

Thus

∀k, p :
∥∥∥ k+p∑
j=k+1

x∞j ej

∥∥∥
n
≤ 2ε+

∥∥∥ k+p∑
j=k+1

ξj(xm) ej
∥∥∥
n
.

Since
∑
j ξj(xm) ej converges in E, the sequence

∑
j x
∞
j ej is Cauchy, hence con-

verges to some x∞ :=
∑∞
j=0 x

∞
j ej ∈ E with ξj(x∞) = x∞j , since (ej) is a Schauder-

basis. By the inequality above, we have that xm′ → x∞ with respect to τ .

1.19 Corollary. Schauder-bases in (F) have continuous coefficients
(See [MV92, 28.11 p.332]).
Let F be a Fréchet-space with Schauder-basis (ej)j and corresponding coefficient
functionals ξj. Then ∀p ∃p′ ∃C > 0 ∀x∀j : |ξj(x)| p(ej) ≤ C p′(x).

In [Jar81, 14.2 p.292] a Schauder-basis is defined as a topologogical basis for which
the coefficient functionals are continuous.

1.20 H(DR)H(DR)H(DR) has (zk)k∈N as absolute basis (See [MV92, 27.27 p.323]).
Let DR := {z ∈ C : |z| < R} be the disk with radius 0 < R ≤ ∞. Taylor
development f(z) =

∑
k
f(k)(0)
k! zk shows that (z 7→ zk)k∈N is a Schauder-basis of

H(DR). This is even an absolute basis: ‖f‖r := sup{|f(z)| : |z| ≤ r} for r < R is a
basis of seminorms and ∀f ∈ H(DR) ∀r < r′ < R :∑

j

∣∣∣f (j)(0)
j!

∣∣∣ ‖zj‖r =[Kri11, 3.30]===========
∑
j

∣∣∣ 1
2πi

∫
|z|=r′

f(z)
zj+1 dz

∣∣∣ rj =
∞∑
j=0

( r
r′

)j
‖f‖r′ .

1.21 The Fréchet spaces with absolute basis are the spaces λ1(A)
(See [MV92, 27.26 p.323], [Jar81, 14.7.8 p.314]).
For Fréchet space E we have: ∃A countable: E ∼= λ1(A)⇔ E has an absolute basis.

Proof. (⇒) The standard basis (ej)j∈N is obviously an absolute basis of λ1(A).
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(⇐) (See [MV92, 27.25 p.322]) Let (ej)j be an absolute basis of E and consider
the Köthe matrix A := (j 7→ ‖ej‖p)p∈N. Then ξ : E → KN, x 7→ (ξj(x))j is linear.
(ej)j absolute basis ⇒

∀p ∃p′ ∃C ∀x :
∑
j

|ξj(x)| ‖ej‖p ≤ C‖x‖p′

⇒ ξ(x) ∈ λ1(A) and ξ : E → λ1(A) continuous and injective.
Claim: ξ is onto λ1(A):

y = (yj)j ∈ λ1(A)⇒
∥∥∥ n+k∑
j=n+1

yjej

∥∥∥
p
≤

n+k∑
j=n+1

|yj | ‖ej‖p

=y ∈ λ
1(A)=======⇒ n 7→

∑
j≤n yjej Cauchy in E ⇒ converges to x :=

∑
j yjej with ξ(x) = y,

i.e. ξ onto. =open map.thm.===========⇒ ξ is isomorphism.

1.22 Dual space of λp(A) (See [MV92, 27.11 p.313]).
Let λ := λp(A) with 1 ≤ p <∞ or λ := c0(A). Then

x∗ 7→ (x∗(ej))j∈N, λ∗ → λ1(λ) :=
{
y ∈ KN : ∀x ∈ λ :

∑
j

|xjyj | <∞
}

is linear and injective. If A is countable it is even bijective.

Proof.
(�) y ∈ λ∗:

∀x ∈ λ : x =
∞∑
j=0

xjej ⇒ y(x) = y
( ∞∑
j=0

xj ej

)
=
∞∑
j=0

xj y(ej)︸ ︷︷ ︸
=:yj

.

‖ε‖∞ ≤ 1⇒ ε · x ∈ λ, hence
∑
j

xj yj converges absolutely.

(�) y ∈ λ1(λ) ⇒ yn := χ{1,...,n} · y ∈ λ∗ and

lim
n→∞

yn(x) = lim
n→∞

∑
j≤n

xjyj =
∞∑
j=0

xjyj =: y(x) ∀x ∈ λ

Un := {x ∈ λ : |yn(x)| ≤ 1} ⇒ U :=
⋂
n∈N Un is barrel (see 2.1 ), y ∈ Uo, λ

barrelled by 2.3 ⇒ U 0-nbhd, hence y ∈ λ∗.

Counter-example.
Let A = c0. By 1.15.7 we have λ := λ1(A) = (`1, σ(`1, A)), and hence λ∗ = A =
c0, whereas λ1(λ) = λ1(`1) = `∞.

1.23 Minkowski-functionals on polars in the dual.
For any subset A ⊆ E we have the polar

Ao := {x∗ ∈ E∗ : |x∗(x)| ≤ 1 ∀x ∈ A}.

The Minkowski-functional pAo (on the linear span of Ao) is given by

pAo(x∗) := inf
{
λ > 0 : x∗ ∈ λAo

}
= inf

{
λ > 0 :

∣∣∣∣x∗λ (x)
∣∣∣∣ ≤ 1 ∀x ∈ A

}
= inf

{
λ > 0 : |x∗(x)| ≤ λ ∀x ∈ A

}
= sup

{
|x∗(x)| : x ∈ A

}
= ‖x∗|A‖∞.
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In the particular case, where A = U ⊆ E is a 0-neighborhood, the polar Uo is
bounded in the strong dual E∗. In fact, the strong topology is that of uniform
convergence on the bounded sets B ⊆ U , i.e. given by the seminorms ‖ |B‖∞.
Since B is bounded, it is contained in K · U for some K > 0, hence ‖x∗|B‖∞ :=
sup{|x∗(x)| : x ∈ B} ≤ sup{|x∗(K u)| : u ∈ U} ≤ K sup{|x∗(x)| : x ∈ U}, which is
at most K for x∗ ∈ Uo.

1.24 Minkowski-functionals for polars of 0-nbhds in λp(A)
(See [MV92, 27.12 p.313]).
Let λ := λp(A) for 1 ≤ p < ∞ or λ := c0(A). For a ∈ A let Ua := {x ∈ λ :
‖a · x‖`p < 1} and ‖ ‖∗a := p(Ua)o = ‖ |Ua‖∞ with unit-ball (Ua)o. Then

‖y‖∗a =
∥∥∥y
a

∥∥∥
`q

for 1
p

+ 1
q

= 1 or q = 1 in case λ = c0(A).

Proof. Let first 1 < p < ∞ and y ∈ λ∗. We assume first, that carr y ⊆ carr a.
Then

‖y‖∗a =
1.23

===== ‖y|Ua‖∞ = sup
x∈Ua

|y(x)| =
1.22

===== sup
x∈Ua

∣∣∣∑
j∈N

xjyj

∣∣∣ = sup
x∈Ua

∣∣∣ ∑
j∈carr a

xjyj

∣∣∣
= sup

{∣∣∣ ∑
j∈carr a

xjaj ·
yj
aj

∣∣∣ :
∥∥(xjaj)j∈carr a

∥∥
`p
≤ 1
}

=`
q = (`p)∗=========

∥∥∥y
a

∥∥∥
`q
,

and for carr y 6⊆ carr a we get ∞ on both sides.
Analogous for λ = λ1(A) and λ = c0(A).

1.25 Theorem. Equality of λp(A) for various p (See [MV92, 27.16 p.315]).

1. ∃ 1 ≤ p 6= p′ ≤ ∞: λp(A) = λp
′(A) as lcs;

⇔ 2. ∀ 1 ≤ p 6= p′ ≤ ∞: λp(A) = λp
′(A) as lcs;

⇔ 3. ∀a ∈ A ∃a′ ∈ A: a
a′ ∈ `

1.

If A is countable, then it is enough to assume equality in 1 and 2 only as sets.

Proof. If A is countable, and p < p′ ⇒ λp(A) → λp
′(A) continuous injective

=open map.thm.===========⇒ λp(A) = λp
′(A) as Fréchet spaces in 1 and 2 .

( 3 ⇒ 2 ) Since λp(A)→ λp
′(A) injects continuously for 1 ≤ p ≤ p′ ≤ ∞, we have

to show that λ∞(A) injects continuously in λ1(A). Let a ∈ A. ∃a′ satisfying 3 .
⇒

∀x ∈ λ∞(A) : ‖x‖λ
1(A)
a :=

∑
j

|xjaj | =
∑
j

∣∣∣xja′j aja′j
∣∣∣ ≤ ‖x‖λ∞(A)

a′

∥∥∥ a
a′

∥∥∥
`1
.

( 2 ⇒ 1 ) is trivial.

( 1 ⇒ 3 ) For p′ =∞ we get λ∞(A) = c0(A), since `p ⊆ c0 ⊆ `∞.

⇒ ∀a ∃a′ ≥ a ∃C > 0 : ‖ ‖λ
p(A)
a ≤ C ‖ ‖λ

p′ (A)
a′

=[Kri14, 1.3.3,1.3.7]===============⇒ ∀a ∃a′ ≥ a ∃C > 0 : Up
′

a′ := {x : ‖x‖λ
p′

a′ ≤ 1} ⊆ C Upa

=
1.24

====⇒ ∀y
(
∈ 〈(Upa )o〉lin.sp

)
: ‖y‖∗a′,p′ ≤ C‖y‖∗a,p.
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1/q + 1/p := 1; 1/q′ + 1/p′ := 1. ∀η ∈ `q, ‖η‖`q ≤ 1

=
Hölder, 1.22
==========⇒η · a ∈ (Upa )o ⊆ C (Up

′

a′ )
o, since ‖a · x‖`p ≤ 1 ∀x ∈ Upa .

=
1.24

====⇒
(∑

j

|ηj |q
′(aj
a′j

)q′)1/q′

= ‖η · a|
Up
′
a′
‖∞ ≤ C

=ξ := ηq
′

======⇒ sup
{∑

j

|ξj |
(aj
a′j

)q′ : ξ ∈ `q/q
′
, ‖ξ‖`q/q′ = (‖η‖`q )q

′
≤ 1
}
≤ Cq

′

t := q
q−q′ , i.e. 1

t + q′

q = 1, (`q/q′)∗ = `t

=
1.15.7

======⇒
( a
a′

)q′
∈ `t and

∑
j

(aj
a′j

)q′t
=
(∥∥∥∥( aa′)q

′∥∥∥∥
`t

)t
≤ Cq

′t.

⇒ ∃d := q′t ≥ 1 ∀a ∃a′
∑
j(aj/a′j)d <∞. W.l.o.g. d ∈ N. Let a(0) = a and choose

a(1), a(2), . . . , a(d) recursively with
∑
j(a

(k)
j /a

(k+1)
j )d <∞ for 0 ≤ k < d.

=Hölder inductive=============⇒
∑
j

a
(0)
j

a
(d)
j

=
∑
j

d−1∏
k=0

a
(k)
j

a
(k+1)
j

<∞.

1.26 Proposition. Equalities for power series spaces
(See [MV92, Aufgabe 1+2 p.323]).

1. Let 0 < α = (αn)n ↗∞, R ∈ [0,∞), p ∈ [1,∞]. Then λpR(α) ∼= λp0(α).

2. Let R ∈ {0,∞}. Then λ1
R(α) = λ1

R(β) ⇔ ∃C ≥ 1: 1
Cα ≤ β ≤ Cα.

3. sup
{α2j+1

αj

}
< ∞ ⇒ λpR(α) × λpR(α) ∼= λpR(α) for R ∈ {0,+∞} and p ∈

[1,∞]. In particular, s× s ∼= s and s(Z) ∼= s(N).

4. λ1
∞(α) = λp∞(α) ∀p ∈ [1,∞] ⇔ ∃r < 1:

∑
j r

αj <∞ ⇔ sup
{ ln j
αj

: j
}
<∞.

5. λ1
0(α) = λp0(α) ∀p ∈ [1,∞] ⇔ ∀r < 1:

∑
j r

αj <∞ ⇔ limj→∞
ln j
αj

= 0.

Proof. 1 ϕ : λpR(α) → λp0(α), x 7→ (eRαjxj)j∈N is an isomorphism, since
erαjeRαjxj = e(R+r)αjxj for r < 0 (⇔ R+ r < R).

2 (⇐) 1
Cα ≤ β ≤ Cα ⇒ ‖(e 1

C r αjxj)j‖`p ≤ ‖(er βjxj)j‖`p ≤ ‖(eC r αjxj)j‖`p and
{ 1
C r : r < R} = {r : r < R} = {C r : r < R} for R = 0 and similarly for R =∞.

(⇒) Let γj := max{αj , βj} for R = ∞, resp. γj := min{αj , βj} for R = 0. Then
λ1
R(γ) ⊆ λ1

R(α) ∩ λ1
R(β) and the inclusion is continuous, since |xjerαj | ≤ |xjerγj |

for all 0 < r < R = +∞ resp. all r < R = 0. Moreover, λ1
R(γ) = λ1

R(α) ∩ λ1
R(β),

since x ∈ λ1
R(α) ∩ λ1

R(β) ⇒ ∀r < R :

∞ >
∑
j

|xjerαj |+
∑
j

|xjerβj | ≥
∑

j,αj=γj

|xjerαj |+
∑

j,βj=γj

|xjerβj | ≥
∑
j

|xjerγj |.
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By the open-mapping theorem λ1
R(α) = λ1

R(γ) = λ1
R(β) as Fréchet spaces.

=
1.24

====⇒ ∀r ∃s > r ∃C > 0 : ‖ ‖λ
1
R(α)
r ≤ C ‖ ‖λ

1
R(β)
s

=[Kri14, 1.3.3,1.3.7]===============⇒ ∀r ∃s > r ∃C > 0 : Uβs ⊆ C Uαr
⇒ ∀y

(
∈ 〈(Uαr )o〉lin.sp

)
: ‖y‖∗s,β ≤ C‖y‖∗r,α

⇒ ar ∈ (Uαr )o ⊆ C (Uβs )o, since ∀x ∈ Uαr : 1 ≥ ‖x‖r := ‖ar · x‖`1

⇒C ≥ ‖ar‖∗s,β =
1.24

===== sup
{aj,r
bj,s

= er αj−s βj : j
}

⇒ sup{r αj − s βj : j} ≤ lnC

⇒


αj
βj
≤ 1

r

(
lnC
βj

+ s
)
≤ C ′ in case r > 0,

αj
βj
≥ 1
−r

(
− lnC

βj
+ (−s)

)
≥ C ′ > 0 in case r < 0.

3 Let Φ : λpR(α)→ λpR(α)× λpR(α) be given by

Φ(x) := (xeven, xodd) := ((x2n)n∈N, (x2n+1)n∈N).
(r > 0) Then ‖xσ‖r = ‖j 7→ eαjrx2j+σ‖`p ≤ ‖j 7→ eα2j+σrx2j+σ‖`p ≤ ‖x‖r and

‖x‖r = ‖j 7→ eαjrxj‖`p = ‖j 7→ eα2jrx2j‖`p + ‖j 7→ eα2j+1rx2j+1‖`p

≤ ‖j 7→ eαjr
′
x2j‖`p + ‖j 7→ eαjr

′′
x2j+1‖`p = ‖xeven‖r′ + ‖xodd‖r′′ ,

where R > r′ > r sup α2j
αj

and R > r′′ > r sup α2j+1
αj

> r sup α2j
αj

.

4 λ1
∞(α) = λp∞(α) ⇐

1.25
====⇒ ∀r ∃s(> r) :

∑
j(er−s)αj =

∑
j
aj,r
aj,s

<∞ ⇔
⇔ ∃q = er−s < 1 :

∑
j q

αj <∞ ⇔ ∃δ > 0 : δ ln j ≤ αj :
(⇐) qαj ≤ e(r−s)δ ln j = jδ(r−s) ≤ j−2, provided s > r + 2

δ .
(⇒) ln j

αj
unbounded ⇒ ∀n ∃jn : ln jn

αjn
≥ n, w.l.o.g. jn+1 ≥ 2jn ≥ 8. Then for

q = e−x with x > 0 we have∑
j

qαj =
∑
n

jn∑
j=jn−1+1

e−xαj ≥
∑
n

(jn − jn−1)︸ ︷︷ ︸
≥jn/2

e−xαjn

≥
∑
n

eln( jn2 )− xn ln(jn) ≥
∑
n≥2x

1,

since ln( jn2 ) ≥ ln(jx/nn ), or equivalently j1−x/n
n ≥ 41/2 = 2.

5 λ1
0(α) = λp0(α) ⇐

1.25
====⇒ ∀r < 0∃ (r <)s < 0 :

∑
j(er−s)αj =

∑
j
aj,r
aj,s

< ∞ ⇔
∀q = er−s < 1 :

∑
j q

αj <∞ ⇔ limj→∞
ln j
αj

= 0:
(⇐) limj→∞

ln j
αj

= 0 ⇒ ∀x ∃N ∀j ≥ N : ln j
αj

< x
2 ⇒∑

j≥N

e−xαj ≤
∑
j≥N

e−x
2
x ln j =

∑
j≥N

1
j2 <∞

(⇒) limj→∞
ln j
αj
6= 0 ⇒ ∃δ > 0 ∀n ∃jn : ln jn

αjn
≥ δ, w.l.o.g. jn+1 ≥ 2jn ≥ 8. Then

for q := e−x with x := δ
2 we have∑

j

qαj =
∑
n

jn∑
j=jn−1+1

e−xαj ≥
∑
n

(jn − jn−1)︸ ︷︷ ︸
≥jn/2

e−xαjn ≥
∑
n

eln( jn2 )− xδ ln(jn) ≥
∑
n

1,
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since ln( jn2 ) ≥ ln(j1/2
n ), or equivalently j1−1/2

n ≥ 41/2 = 2.
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2. Colimit closed (coreflective) subcategories

In this section we describe ((reduced) inductive) colimits of locally convex spaces.
And we consider the classes of (ultra-)bornological and (infra-)barrelled spaces, all
of which are invariant under the formation of colimits. We give descriptions of
Köthe sequence spaces as colimits of Banach spaces.

Barrelled and bornological spaces

2.1 Definition. Bornological and barrelled spaces.
An lcs is bornological (cf. [Kri14, 2.1.7], [MV92, 24.9 p.262], [Jar81, 13.1
p.272]) if bounded linear mappings (i.e. being bounded on bounded sets) on it
are continuous, or equivalently, every bornivorous (i.e. absorbing each bounded
set) absolutely convex subset is a 0-neighborhood (See [MV92, 24.10 p.263]).

An lcs is ultrabornological (See [Kri14, 5.4.20], [MV92, 24.14 p.264], [Jar81,
13.1 p.272]) if all linear maps on it, which are bounded on the Banach-disks (i.e.
absolutely convex bounded sets B for which EB is complete), are continuous, or
equivalently, every absolutely convex subset, which absorbs all Banach-disks, is a
0-neighborhood.

An lcs is called barrelled (german: tonnelliert) (See [Kri14, 4.2.1], [Jar81,
11.1 p.219], [MV92, Def. in 23.19 p.252]) if every barrel (german: Tonne) (i.e.
closed absolutely-convex absorbing subset) is a 0-neighborhood, equivalently, the
uniform boundedness theorem holds (cf. [Kri14, 4.2.2]).

An lcs is called infra-barrelled (german: quasi-tonneliert, infra-tonne-
liert ) (See [Kri14, 5.4.20], [Jar81, 11.1 p.219], [MV92, Def. in 23.19 p.252]) if
every bornivorous barrel is a 0-neighborhood, equivalently, E embeds topolog-
ically into the bidual (See [Kri14, 5.4.20]).

Since obviously “bornivorous⇒absorbs Banach disks” and barrels absorb Banach-
disks by the Banach-Mackey-Theorem (See [Kri07b, 7.4.18]) we have the following
implications (See [MV92, 24.12 p.263], [MV92, 24.15 p.264]):

bornivorous barrel
px '/

infra-barrelled

barrel
&.

bornivorous
ow

barrelled
19

bornological
fn

absorbs Banach-disks ultrabornological

em 08

For sequentially complete or at least locally-complete lcs (i.e. the Banach-disks
form a basis for the bornology) the implications from left to right can clearly be
inverted (See [MV92, 23.20 p.252],[MV92, 23.21 p.253]).

2.2 Lemma. (See [Kri14, 2.1.6], [Jar81, 10.1.4 p.197]).
In any metrizable lcs every convergent sequence is Mackey-convergent.
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2.4 Barrelled and bornological spaces

A sequence (xn)n∈N in an lcs is called Mackey convergent towards x∞ iff there
exists a sequence λn →∞ in R with {λn(xn − x∞) : n ∈ N} being bounded.

Proof. Let (pk)k∈N be a basis of seminorms. Since for each k the sequence µ(k)
n :=

pk(xn− x∞)→ 0 for n→∞ we find another sequence 0 6= µ∞n → 0 with {µkn/µ∞n :
n ∈ N} bounded for each k (See [Kri14, 2.1.6]). Then λn := 1/µ∞k has the required
property.

2.3 Corollary (See [MV92, 23.23 p.253], [Kri14, 4.1.11], [Kri14, 4.2.4] ).
Fréchet spaces are ultrabornological, hence bornological, barrelled and infrabarrelled.

Proof. Metrizable lcs are bornological (See [Kri14, 2.1.7], [MV92, 24.13 p.264]),
since any bounded linear mapping f on them is (sequentially) continuous: Let xn →
x∞, then by 2.2 there are λn →∞ with n 7→ f(λn(xn−x∞)) = λn(f(xn)−f(x∞))
bounded, hence f(xn)→ f(x∞). Completeness implies now that the space is even
ultrabornological.

2.4 Colimits.
Let F : J → lcs be a functor from a partially ordered set (J,�)op = (J,≺) or even
from a small category J into that of locally convex spaces. The colimit colimF
of F (See [Kri08, 3.25]) is then given as quotient of the coproduct (direct sum,
cf. [Kri14, 3.6.1])∐

j

F(j) :=
{
x ∈

∏
j

F(j) : xj = 0 for all but finitely many j
}

with the final locally convex structure with respect to the inclusions Ej ↪→
∐
j F(j)

(whose continuous seminorms are those which restricted to each summand F(j)
are seminorms of F(j)), where we factor out the congruence relation generated
x(j) ∼ (F(f)(x))(j′) for every j ≺ j′ (morphism f : j → j′ in J ), where x(j)

denotes the point with j-th coordinate x ∈ F(j) and all other coordinates equal to
0. Since the topology on this quotient need not be Hausdorff, one has to factor out
the closure of {0} in addition, i.e. the intersection of the kernels of all its seminorms.
In the particular case, where J op = (J,�) is directed, the first (not necessarily
Hausdorff) quotient is given by

⊔
j F(j)/ ∼, where x1 ∈ F(j1) is equivalent to

x2 ∈ F(j2) iff for some j � j1, j2: F(j1 ≺ j)(x1) = F(j2 ≺ j)(x2). In this case the
colimit is also called inductive limit (See [Jar81, 4.5 p.82]) and denoted lim−→F .

An inductive limits is called reduced, iff all ιj : F(j) → lim−→F are injective.
By replacing F(j) with the image F̃(j) of ιj in lim−→F supplied with its quotient
structure, we get that lim−→F equals lim−→F̃ , which is a reduced inductive limit (See
[Jar81, 4.5.2 p.82]). Note for this that F̃(j ≺ j′) is then a well defined injective
continuous linear mapping.
An even more restricted situation is, when J = (N,≤), i.e. we have an inductive
limit of a sequence of spaces (the steps of the limit). The inductive limit of a
sequence of Fréchet-spaces (a so-called (LF)-space) is almost never a Fréchet space
(See [Kri14, 4.1.13]): Strict inductive limits of sequences (i.e. En is a closed
topological subspace in En+1 for each n), which are not finally constant, can not
be Baire spaces and hence are not Fréchet; And, more generally, by [Jar81, 12.4.4
p.259] a metrizable space with a countable base of bornology has to be normed, in
particular this is valid for (locally) complete (LB)-spaces (See [Flo73, 5.5 p.73]),
i.e. inductive limits of a sequence of Banach spaces. Even more generally, if all Fn
and F∞ := lim−→n

Fn (hence F∞ =
⋃
n∈N ιn(Fn)) are Fréchet, then by Grothendieck’s
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Barrelled and bornological spaces 2.6

factorization theorem 2.6 F∞ ⊆ ιn(Fn) for some n.
Furthermore, it is not true in general that (LB)-spaces are complete and regular
(See [Mak63, Beispiel 2]), i.e. bounded sets are contained and bounded in some
step, or, stronger, converging sequences (resp. compact subsets) are converging
(resp. compact) in some step.

2.5 Stability under colimits.
Colimits of bornological spaces Ej are again bornological (See [Jar81, 13.1.5 p.273],
[MV92, 24.16 p.264]), since bounded linear mappings on colimj Ej are bounded
mappings on each Ej and hence continuous on Ej , and by the universal property
of the limit also continuous on colimj Ej .

By definition any bornological space E is the inductive limit of the spaces EB ,
where B runs through the bounded (closed) absolutely convex subsets. Thus the
bornological spaces are exactly the colimits of normed spaces.

The same argument works for ultrabornological instead of bornological, since the
continuous images f(B) of Banach disks B are again Banach disks: EB → Ff(B) is
a quotient mapping, since

pf(B)(f(x)) = inf
{
λ > 0 : f(x) ∈ λ · f(B) = f(λB), i.e. ∃b ∈ B : f(x− λ b) = 0

}
= inf

{
λ > 0 : ∃b ∈ B ∃z ∈ ker f : λ b− x = z

}
= inf

{
λ > 0 : ∃z ∈ ker f ∃b ∈ B : x+ z = λ b

}
= inf

{
inf
{
λ > 0 : ∃b ∈ B : x+ z = λ b

}
: z ∈ ker f

}
= inf

{
pB(x+ z) : z ∈ ker f

}
= p̃B(f(x))

is the quotient norm (See [Kri14, 4.3.6]).

Furthermore, (infra-)barrelled spaces are stable under colimits (See [Jar81, 11.3.1.c
p.223]): For quotients this follows since inverse images of barrels are barrels and of
bornivorous sets are bornivorous. For coproducts it can be found in [Jar81, 8.8.10
p.168]

2.6 Grothendiecks factorization theorem (See [MV92, 24.33 p.271]).
Let F be an lcs, let E and En for n ∈ N be Fréchet spaces, fn ∈ L(En, F ) and
f ∈ L(E,F ) continuous linear mappings. If f(E) ⊆

⋃
n∈N fn(En) then there exists

an m ∈ N with f(E) ⊆ fm(Em). If, in addition, fm is injective, then there exists
an f̃ ∈ L(E,Em) with f = fm ◦ f̃ .

E
f //

f̃

�� %%

⋃
n fn(En) �

� // F

∃Em ∃fm
// fm(Em)
?�

OO

Proof. Let Gn := {(x, y) ∈ E × En : f(x) = fn(y)} = graph(f−1
n ◦ f) be the

pull-back of f and fn, a closed linear subspace of the Fréchet space E ×En. Then
pr1(Gn) = {x ∈ E : ∃y : f(x) = fn(y)} = f−1(fn(En)) and hence

⋃
n pr1(Gn) =

f−1(
⋃
n fn(En)) = E. By the theorem of Baire (see [Kri14, 4.1.11]), there exists

an m such that pr1(Gm) is not meagre, hence by the open mapping theorem (see
[Kri14, 4.3.6]) pr1 : Gm → E is onto, i.e. f(E) = f(f−1(fm(Em))) ⊆ fm(Em).
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2.10 Barrelled and bornological spaces

If, in addition, fm is injective, then f̃ := f−1
m ◦ f : E → Em is a well-defined linear

mapping with closed graph Gm, hence is continuous by the closed graph theorem
(see [Kri14, 4.3.1]).

2.7 Lemma (See [MV92, 24.34 p.272]).
Let an lcs E carry the final structure with respect to countable many continuous
linear mappings fn : En → E for Fréchet spaces En with

⋃
n fn(En) = E.

Then E is the (reduced) inductive limit of a sequence of Fréchet spaces.

Proof. We construct a strictly increasing sequence (nk)k in N with
⋃
j≤nk fj(Ej) ⊆

fnk+1(Enk+1). For the Fréchet space F :=
∐
j≤nk Ej consider the continuous linear

map f : (xj)j≤nk 7→
∑
j≤nk fj(xj), F → E. By 2.6 there exists an nk+1 such that⋃

j≤nk fj(Ej) = f(F ) ⊆ fnk+1(Enk+1). Let Ẽk := Enk/ ker fnk �→ fnk(Enk) ↪→ E.
The mapping Ej → Ẽk+1 for j ≤ nk has closed graph, hence is continuous by the
closed graph theorem, and thus also Ẽk → Ẽk+1. The inductive limit structure on
E of the increasing sequence of Fréchet spaces Ẽk is finer than the given one since
Ẽk � E is continuous. Because of fj(Ej) ⊆ Ẽnk for j ≤ nk it is also coarser.

2.8 Corollary. All representations of an (LF) space are equivalent
(See [MV92, 24.35 p.273]).
Let E be the reduced inductive limit of two sequences of Fréchet spaces (E(i)

n )n∈N
for i ∈ {0, 1}. Then ∀n ∈ N ∃k ∈ N : E(0)

n embeds continuously into E
(1)
k (and

similarly E(1)
n into E(0)

k ).

2.9 Elements in λ∞(A) (See [MV92, 27.4 p.308]).

1. b ∈ λ∞(A) ⇔ ∀a ∈ A∃Ca > 0: |bj | ≤ infa∈A Ca/aj.
2. If A is countable, then ∃b ∈ λ∞(A)∀j : bj > 0.
3. If A is countable, then ∀b ∈ λ∞(A) ∃b′ ∈ λ∞(A) ∀j : 0 6= b′j ≥ |bj |.

Proof. ( 1 ) b ∈ λ∞(A) ⇔ ∀a: b · a bounded (by Ca > 0), i.e. ∀j: |bj | ≤ Ca/aj ⇔
∀j: |bj | ≤ infa Ca/aj .

( 2 ) Let A := {a(k) : k ∈ N} with k 7→ a(k) increasing. For each k ∈ N choose
Ck > kmax{1, a(k)

0 , . . . , a
(k)
k }. ⇒ Ck/a

(k)
j ≥ k for all k ≥ j. ⇒ bj := infk Ck/a(k)

j =
mink Ck/a(k)

j > 0 and b ∈ λ∞(A).

( 3 ) By ( 2 ) there is a b′ ∈ λ∞(A) with b′j > 0 forall j. For b ∈ λ∞(A) also
b′′ : j 7→ max{|bj |, b′j} is in λ∞(A) and satisfies b′′ ≥ |b| and ∀j : b′′j ≥ b′j > 0.

2.10 Bounded sets in λp(A) (See [MV92, 27.5,27.6 p.309]).
For 1 ≤ p ≤ ∞ the sets Bpb := {x : ‖x/b‖`p ≤ 1} for b ∈ λ∞(A) form a basis of the
bornology of λp(A) if p =∞ or if A is countable.
The sets Bob := B∞b ∩ c0(A) for b ∈ λ∞(A) form a basis of the bornology of c0(A).

Proof. b ∈ λ∞(A) ⇒ Bpb ⊆ λp(A) bounded, since x ∈ Bpb ⇒ carrx ⊆ carr b and
∀a ∈ A: ‖x‖a = ‖x · a‖`p = ‖x · 1

b · b · a‖`p ≤ ‖x/b‖`p · ‖b · a‖∞ ≤ 1 · ‖b · a‖∞.
Conversely, letB ⊆ λ∞(A) be bounded, i.e. ∀a ∈ A ∃Ca > 0 ∀x ∈ B: ‖x·a‖`∞ ≤ Ca.
Let bj := inf{Caaj : a ∈ A}, which is <∞, since aj > 0 for some a. Then b ∈ λ∞(A),
since |bj aj | ≤ Ca for all a ∈ A and j ∈ N. Furthermore, since |xj aj

Ca
| ≤ 1 for all

a ∈ A and j ∈ N, we get |xj 1
bj
| = supa∈A |xj

aj
Ca
| ≤ 1, i.e. ‖x · 1

b‖`∞ ≤ 1 for all
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Barrelled and bornological spaces 2.12

x ∈ B.
Since c0(A) is a subspace of λ∞(A), this works for c0(A) as well.
Now for 1 ≤ p <∞ and A = {a(k) : k ∈ N} countable: Let B ⊆ λp(A) be bounded,

i.e. ∀k ∃Ck > 0 ∀x ∈ B : ‖x‖k ≤ Ck =
2.9.1

=====⇒ b := infk 2k+1Ck/a
(k) ∈ λ∞(A).

1
bj

= sup
k

a
(k)
j

2k+1Ck
≤
∑
k

a
(k)
j

2k+1Ck
⇒

‖x/b‖`p ≤
∥∥∥∑
k

xa(k)

2k+1Ck

∥∥∥
`p
≤
∑
k

‖xa(k)‖`p
2k+1Ck

≤
∑
k

‖x‖k
2k+1Ck

≤
∑
k

1
2k+1 = 1

⇒ x ∈ Bpb , i.e. B ⊆ Bpb .

2.11 Counter-example.
Let A := `p for 1 ≤ p <∞. Then λ∞(A) := {x ∈ KN : ∀y ∈ `p : ‖x · y‖`∞ <∞} is
the linear space `∞:
(⊇) x ∈ `∞, y ∈ `p ⊆ `∞ ⇒ ‖x · y‖`∞ ≤ ‖x‖`∞ · ‖y‖`∞ .
(⊆) Suppose x ∈ λ∞(A) is unbounded ⇒ ∃jn (W.l.o.g. strictly increasing) with
|xjn | ≥ n 2n.

yj :=

{
2−n for j = jn

0 otherwise
.

Then ‖y‖`p ≤ ‖y‖`1 =
∑
n

1
2n <∞, but ‖x · y‖`∞ ≥ |xjn yjn | ≥ n, i.e. x /∈ λ∞(A).

Note that λr(A) = `∞ as linear spaces for all p ≤ r ≤ ∞:
`∞ ⊆ λp(A) ⊆ λr(A) ⊆ λ∞(A) = `∞, since ‖x · y‖`p ≤ ‖x‖`∞ · ‖y‖`p .
Now let s0 := 0 and recursively sn+1 := sn + n and put

x
(n)
j :=

{
1 for sn ≤ j < sn+1

0 otherwise

and B := {x(n) : n ∈ N}. Then B is bounded in λp(A), since

‖x(n) · y‖`p =
(sn+1−1∑
j=sn

|yj |p
)1/p

≤ ‖y‖`p .

However, there is no b ∈ λ∞(A) = `∞ such that ‖x · 1
b‖`p ≤ 1 for all x ∈ B:

In fact, let β := ‖b‖`∞ <∞ then∥∥∥x(n) · 1
b

∥∥∥
`p
≥ ‖x(n)‖`p

1
β

= n1/p

β
→∞.

2.12 λp(A) as colimit of (uncountable many) `p’s for countable A
(See [MV92, 27.7 p.309]).
There exists a basis B for the bornology of λp(A) with λp(A)B ∼= `p for all B ∈ B.

∀b ∈ λ∞(A) : `p(carr b)−·b∼=→ 〈B
p
b 〉 = (λp(A))Bpb ⊆ λ

p(A)

Proof. 2.9.3 ⇒ ∀b ∈ λ∞(A) ∃b′ ∈ λ∞(A) ∀j: 0 6= b′j ≥ |bj | ⇒ Bpb ⊆ Bpb′ and
λp(A)Bp

b′
∼= `p.
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3. Limit closed (reflective) subcategories

In the following sections we consider classes of locally convex spaces which are
invariant under the formation of limits, i.e. various completeness conditions, semi-
reflexivity, Montel spaces, Schwartz spaces, and nuclear spaces. And we characterize
those Köthe sequence spaces having these properties.

Completeness, compactness and (DN)

In this section we consider various completness conditions. And we discuss (pre-)com-
pact subsets and operators, since they are relevant for the classes to follow. We
introduce the property (DN) which allows to differentiate between power series
spaces of finite and of infinite type.

3.1 Completeness.
For lcs E we consider the following completeness conditions:

• E is called complete iff evevry Cauchy net (or Cauchy filter) converges.
• E is called quasi complete iff every closed bounded subset is complete.
• E is called sequentially complete iff Cauchy sequences converge.
• E is called locally complete (or Mackey-complete) iff EB is a Banach

space for every closed absolutely convex bounded subset B ⊆ E.

One obviously has the implications:
complete⇒ quasi-complete⇒ sequentially complete⇒ locally complete.

For metrizable spaces all 4 conditions are equivalent (See [Kri14, 2.2.2]). Each
of these completeness properties is inherited by closed subspaces ([Kri14, 3.1.4]),
products ([Kri14, 3.2.1]), and coproducts ([Kri14, 3.6.1]) (See [Jar81, 3.2.5 p.59],
[Jar81, 3.2.6 p.59], [Jar81, 6.6.7 p.111]).
The completion (i.e. reflector) of any lcs E is given by the space of all linear func-
tionals on E∗, whose restrictions to equicontinuous subsets are σ(E∗, E)-continuous,
supplied with the topology of uniform convergence on the equicontinuous subsets,
see [Kri14, 5.5.7].

3.2 Precompact sets.
A subset K ⊆ E in an lcs is called precompact iff

∀U ∃F ⊆ E finite : K ⊆ F + U =
⋃
y∈F

(y + U).

This is exactly the case, when K is relatively compact in the completion of E
(See [Kri07a, 6.2]). The precompact subsets of a product of lcs’s are those whose
projections to the factors are precompact; The precompact subsets of a coproduct
of lcs’s are those whose projections to the summands are precompact and are almost
always {0} (See [Kri07a, 6.3]).
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3.8 Completeness, compactness and (DN)

3.3 Mackey-Arens Theorem
(See [Kri14, 5.4.15], [Jar81, 8.5.5 p.158], [MV92, 23.8 p.247]).
The finest topology compatible with a dual pairing (E,F ) is the Mackey-topology
µ(E,F ), i.e. the topology of uniform convergence on σ(F,E)-compact absolutely
convex subsets of F .

3.4 Alaŏglu-Bourbaki Theorem
(See [Kri14, 5.4.12], [Jar81, 8.5.2 p.157], [MV92, 23.5 p.245]).
Each equicontinuous set is relatively compact with respect to τpc(E∗, E), the topol-
ogy of uniform convergence on precompact subsets, or equivalently, with respect to
σ(E∗, E).

Proof of the equivalence (See [Jar81, 8.5.1.b p.156]). Let U ⊆ E be a 0-
neighborhood, x∗ ∈ Uo, and A ⊆ E be precompact, i.e. x∗ + Ao a typical neigh-
borhood of x∗ with respect to τpc(E∗, E). Thus there is a finite set F ⊆ E with
3A ⊆ F+U , hence (x∗+F o)∩Uo ⊆ x∗+Ao, since for all y∗ ∈ U0 with y∗−x∗ ∈ F o
and a ∈ A exist y ∈ F and u ∈ U with 3a = y + u and hence∣∣(y∗ − x∗)(a)

∣∣ = 1
3

∣∣∣(y∗ − x∗)(y + u)
∣∣∣ ≤ 1

3

(∣∣(y∗ − x∗)(y)
∣∣+
∣∣y∗(u)

∣∣+
∣∣x∗(u)

∣∣)
≤ 1

3
(1 + 1 + 1) = 1, i.e. y∗ − x∗ ∈ Ao.

3.5 Proposition (See [Jar81, 8.5.3 p.157]).
E separable ⇒ equicontinuous subsets are σ(E∗, E)-metrizable.

Proof. Let D := {xj : j ∈ N} ⊆ E be dense and let E0 be the linear span of
D. Then σ(E∗, E0) is Hausdorff. Let W be a 0-nbhd. for σ(E∗, E0), i.e. ∃yi =∑∞
j=1 λ

i
jxj ∈ E0 with λij = 0 for almost all j, say j ≤ m, and {y1, . . . , yn}o ⊆ W .

For max{
∑
j |λij | : i} < λ ∈ Q we have 1

λ · {x1, . . . , xm}o ⊆ {y1, . . . , yn}o ⊆ W .
Thus σ(E∗, E0) is metrizable and coincides with σ(E∗, E) on equicontinuous sets:
In fact, E0 ⊆ E ⇒ σ(E∗, E) → σ(E∗, E0) is continuous. Conversely, let U be a
0-nbhd in E, x∗ ∈ Uo, ε > 0, and xi ∈ E. Choose x̃i ∈ E0 with x̃i − xi ∈ ε

3U . For
y∗ ∈ Uo ∩ (x∗ + ε

3{x̃1, . . . , x̃k}o) we have:

|(y∗ − x∗)(xi)| ≤ |y∗(xi − x̃i)|+ |x∗(xi − x̃i)|+ |(y∗ − x∗)(x̃i)| ≤ 3ε
3
,

i.e. y∗ ∈ Uo ∩ (x∗ + ε{x1, . . . , xk}o).

3.6 Lemma. Compact subsets of Fréchet spaces
(See [Kri07b, 6.4.3 p.119], [Jar81, 10.1.1 p.196]).
A subset of a Fréchet space is precompact (equivalently, relatively compact) if and
only if it is contained in the closed convex hull of some 0-sequence.

3.7 Definition. Compact operator.
A linear operator between Banach spaces is called (weakly) compact if the image
of the unit ball is (weakly) relatively compact.
A linear operator between Hilbert spaces is compact iff it can be approximated by
finite dimensional operators with respect to the operator norm, see [Kri07b, 6.4.8].

3.8 Lemma. Orthogonal representation of compact operators
(See [Kri07a, 5.3], [Jar81, 20.1.2 p.452]).
An operator T between Hilbert spaces is compact iff there are orthonormal sequences
en and fn and λn → 0 such that Tx =

∑
n λn〈en, x〉fn.
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Completeness, compactness and (DN) 3.10

Proof. (⇐) If T has such a representation, then the finite sums define finite
dimensional operators which converge to T .
(⇒) Since any compact T : E → F induces a compact injective operator T :
(kerT )⊥ → T (E) with dense image, we may assume that T is injective. Now we
consider the positive compact operator T ∗T . Its eigenvalues are all non-zero, since
T ∗Tx = 0 implies ‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 = 0. By [Kri07b, 6.5.4] there is
an orthonormal sequences of Eigen-vectors en with Eigen-value 0 6= λ2

n → 0 such
that T ∗Tx =

∑
n λ

2
n〈en, x〉en. Let fn := 1

λn
Ten. Then a simple direct calculation

shows that the fn are orthonormal. Note that x =
∑
n〈en, x〉en. Otherwise the

compact positive operator T ∗T restricted to the orthogonal complement {ek : k}⊥
would have a unit Eigen-vector e with positive Eigen-value λ. Which is impossible
by definition of the ek. So we obtain Tx =

∑
n〈en, x〉λnfn.

Another way to prove this is to use the polar decomposition T = U |T |, see [Kri14,
7.24], where U is a partial isometry and |T | a positive and also compact operator.
The spectral theorem for |T | gives an orthonormal family en and λ ∈ c0, such
that Tx =

∑
k λk〈ek, x〉ek. Applying U to this equation, shows that we may take

fk := Uek.

3.9 Corollary (See [Kri07a, 5.4], [Jar81, 20.1.3 p.453]).
An operator T between Hilbert spaces is compact iff 〈Ten, fn〉 → 0 holds for all
orthonormal sequences en and fn.

Proof. (⇒) Since |〈Ten, fn〉 ≤ ‖Ten‖ · ‖fn‖ = ‖Ten‖ it is enough to show that
Ten → 0. Since en converges weakly to 0 (in fact 〈x, en〉 is even quadratic sum-
mable) we conclude that Ten converges to 0 weakly. Since en is contained in the
unit-ball and T is compact, every subsequence of Ten has a subsequence, which is
convergent. And the limit has to be 0, since this is true for the weak topology. But
from this it easily follows that Ten → 0.
(⇐) Given ε > 0 we choose maximal orthonormal sequences (ei)i∈I and (fi)i∈I such
that |〈Tei, fi〉| ≥ ε. By assumption I must be finite. We consider the orthonormal
projections P :=

∑
i∈I ei ⊗ ei and Q :=

∑
i∈I fi ⊗ fi. For the composition with

the ortho-projections on the complement we obtain (1−Q)T (1− P ) = T − (TP +
QT −QTP ) =: T − S. Hence S is a finite dimensional operator and we claim that
‖T−S‖ ≤ ε. Suppose this were not true. Then there is an x with ‖(T−S)x‖ > ε ‖x‖
and hence an y such that |〈T (1−P )x, (1−Q)y〉| = |〈(T −S)x, y〉| > ε ‖x‖ ‖y‖. Let
e0 := (1−P )x and f0 := (1−Q)y. Obviously e0, f0 6= 0 and hence we may assume
without loss of generality that ‖e0‖ = 1 = ‖f0‖ and hence ‖x‖ ≥ 1 and ‖y‖ ≥ 1.
Since e0 ∈ (1−P )(E) ⊆ P (E)⊥ = {ei : i ∈ I}⊥ and f0 ∈ (1−Q)(F ) ⊆ {fi : i ∈ I}⊥
we get a contradiction to the maximality of I.

3.10 Compact diagonal operators between `p’s (See [MV92, 27.8 p.309]).
Let ` := `p with 1 ≤ p <∞ or c0 ⊆ ` ⊆ `∞ invariant under multiplication with `∞.
Let D : `→ ` be a diagonal-operator with coeffcients d ∈ `∞.

(1) D is compact
⇔ (2) d ∈ c0
⇔ (3) D is weakly-compact in case ` = `1.

Proof. ( 1 ⇒ 2 ) Let

Tε : `→ `, Tε(x)j :=

{
xj/dj for |dj | ≥ ε,
0 elsewhere.
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3.12 Completeness, compactness and (DN)

⇒ Pε := D ◦ Tε is a compact projection ⇒ Pε(`) = ker(1− Pε) = {x ∈ ` : carrx ⊆
{j : |dj | ≥ ε}} is finite dimensional (by [Kri14, 3.4.5]) ⇒ {j : |dj | ≥ ε} is finite.

( 2 ⇒ 1 ) Pn : x 7→ x · χ{1,...,n} ⇒ ‖D − D ◦ Pn‖ ≤ sup{|dj | : j > n} → 0, since
d ∈ c0, i.e. D is compact as limit of fin.dim. operators.

( 1 ⇒ 3 ) is trivial

( 3 ⇒ 2 ) Pε := D ◦ Tε is weakly-compact. Suppose {j : |dj | ≥ ε} infinite ⇒
Pε(`) ∼= `1 and the closed unit disk in `1 is weakly compact ⇒ `1 reflexive (see
3.17 ), a contradiction.

3.11 Approximation numbers for diagonal operators on `2.
Let D : `2 → `2 be a diagonal-operator with coefficients d ∈ `∞ with |di| ↘ 0. Then
its approximation numbers are

an(D) := inf
{
‖D − T‖ : dimT (`2) ≤ n

}
= dn.

Proof (See [MV92, Aufgabe 16.(3) p.392]). Note that ‖D‖ = ‖d‖`∞ = sup{|di| :
i ∈ N} since ‖D(x)‖ = ‖d · x‖`2 ≤ ‖d‖`∞ · ‖x‖`2 and D(e(k)) = dk e

(k).

Thus an(D) ≤ ‖Dn‖ = sup{|dk| : k ≥ n}, where Dn is the diagonal operator with
entries d ·χ[n,∞) with dim((D−Dn)(`2)) = n. Conversely, let dimT (`2) ≤ n. Then
∃y =

∑n
i=0 yiei with ‖y‖`2 = 1 and T (y) = 0. Thus ‖D − T‖`2 ≥ ‖(D − T )y‖`2 =

‖Dy‖`2 = (
∑n
i=0 |diyi|2)1/2 ≥ min{|di| : i ≤ n} ‖y‖`2 = |dn|.

3.12 Proposition. Equality λr(α) = λr(β) (See [MV92, 29.1 p.338]).
For r ∈ {0,+∞} let λr := λ2

r.

(1) λr(α) ∼= λr(β);
⇔ (2) λr(α) = λr(β) as lcs;
⇔ (3) λr(α) = λr(β) as sets;
⇔ (4) ∃C > 0 ∃n0 ∈ N ∀n ≥ n0: 1

Cαn ≤ βn ≤ Cαn.

Proof. (4⇒ 3) is obvious.

(3 ⇒ 2) apply the closed graph theorem using that convergence in λr implies
coordinatewise convergence.

(2⇒ 1) is obvious.

(1⇒ 4) Let Λαs := λr(α)s := λr(α)/ ker ‖ ‖s for s < r.

A : λr(α)→ λr(β) iso, B := A−1 ⇒
⇒∀t < r ∃s < r ∃C > 0 : ‖Ax‖t ≤ C‖x‖s,
∀s < s′ < r ∃t < t′ < r ∃D > 0 : ‖By‖s′ ≤ D‖y‖t′

⇒∃Ã ∈ L(Λαs , Λ
β
t ), B̃ ∈ L(Λβt′ , Λ

α
s′) : ιt

′

t = Ã ◦ ιs
′

s ◦ B̃ : Λβt′ → Λαs′ → Λαs → Λβt

⇒ιs
′

s compact by 3.10 and an(ιt
′

t ) = e(t−t′)βn , an(ιs
′

s ) = e(s−s′)αn by 3.11 .

Obviously an(ιt
′

t ) ≤ ‖Ã‖an(ιs
′

s )‖B̃‖ cf. 4.168

⇒βn ≤ Cαn +D for C := s′ − s
t′ − t

, D := log(‖Ã‖‖B̃‖)
t′ − t
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λr(β) B //

}}}}

λr(α) A //

## ##{{{{

λr(β)

!! !!
Λβt′

B̃ //

ιt
′
t

88Λαs′
ιs
′
s // Λβs

Ã // Λβt

3.13 Definition. Dominating norm (DN).
Let ‖ ‖k be a monotone increasing basis of seminorms for the Fréchet space E.
Then E is said to have property (DN) iff

∃q ∀p ∃p′ ∃C ∀x : ‖x‖2p ≤ C‖x‖q‖x‖p′

It follows that ‖ ‖q is a norm, a so-called dominating norm.

3.14 Inheritance properties of (DN) (See [MV92, 29.2 p.339]).

1. (DN) is topological invariant.
2. (DN) is inherited by closed subspaces.
3. λ∞(α) has (DN).

Proof. ( 1 ) and ( 2 ) are obvious.

( 3 ) For t0 < t1 < t2 let p := t2−t0
t2−t1 , q := t2−t0

t1−t0 , fk := (et0αk |xk|)2/p and gk :=
(et2αk |xk|)2/q =Hölder=====⇒ (‖x‖t1)2 = ‖f g‖1 ≤ ‖x‖2/pt0 ‖x‖

2/q
t2 ⇒ (‖x‖k)2 ≤ ‖x‖0‖x‖2k.

3.15 Corollary (See [MV92, 29.3 p.339]).
λ0(α) 6∼= λ∞(β) for all α, β ↗∞.

Proof. By 3.14 λ∞(β) has (DN). Indirectly, suppose λ0(α) has (DN), i.e.

∃τ < 0 ∀t < 0 ∃T < 0 ∃C > 0 : ‖x‖2t ≤ C‖x‖τ‖x‖T .
x := ej ⇒ e2tαj ≤ C eταj+Tαj ≤ C eταj ⇒ 2t ≤ 1

αj
ln(C) + τ , limj αj = +∞ ⇒

t ≤ τ , a contradiction.

Reflexive spaces

3.16 Definition. Reflexive spaces.
An lcs is called semi-reflexive iff the canonical mapping δ : E → E∗∗ is onto.
An lcs is called reflexive iff the canonical mapping δ : E → E∗∗ is an isomorphism
of lcs (See [MV92, Def. nach 23.17 p.251], [Kri14, 5.4.21], [Jar81, 11.4 p.227]).
Reflexive spaces are stable under products, coproduct and regular reduced inductive
limits. Semi-reflexive space are in addition stable under closed subspaces (See
[Jar81, 11.4.5 p.228]).

3.17 Characterizing semi-reflexivity
(See [MV92, 23.18 p.251], [Kri14, 5.4.22], [Jar81, 11.4.1 p.227]).
An lcs is semi-reflexive iff every bounded subset is relatively weakly compact.
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3.24 Reflexive spaces

Corollary (See [Jar81, 11.4.6 p.229]).
Semi-reflexive spaces are quasi-complete.

Proof. Let (xi) be a Cauchy-net in a closed bounded B ⊆ E. Then (xi) is Cauchy
for the weak topology and since B is weakly compact (xi) converges weakly to some
x∞. Let U be a closed absolutely convex 0-neighborhood. Thus xi−xi′ ∈ U finally,
and since U is also weakly-closed ([Kri14, 5.4.8]) xi − x∞ ∈ U finally.

3.18 Characterizing reflexivity
(See [MV92, 23.22 p.253], [Kri14, 5.4.23]), [Jar81, 11.4.2 p.228].
An lcs is reflexive iff it is semi-reflexive and (infra-)barrelled.

3.19 Corollary. Characterizing reflexive Fréchet spaces
(See [MV92, 23.24 p.253]).
A Fréchet space is reflexive iff every bounded subset is weakly relatively compact.

Proof. Since every (F) space is (infra-)barrelled by 2.3 the result follows from
3.18 .

3.20 λp(A) ist reflexive for 1 < p <∞ (See [MV92, 27.3 p.307]).

Proof. `p reflexive =
1.13 , 3.16

=========⇒ λp reflexive.

Montel spaces

3.21 Definition. Montel spaces.
An lcs is called semi-Montel space (See [MV92, Def. in 24.23 p.267], [Kri07a,
4.47,4.48 p.104]) iff all its bounded subsets are relatively compact.
An lcs is called Montel space (denoted (M) for short) (See [MV92, Def. in 24.23
p.267], [Kri07a, 4.47,4.48 p.104]) iff it is semi-Montel and infra-barrelled.

3.22 Montel spaces are reflexiv
(See [MV92, 24.24 p.267], [Jar81, 11.5.1 p.230]).
(Semi-)Montel spaces E are (semi-)reflexive and their σ(E,E∗)-convergent sequences
are convergent.

Proof. By definition bounded sets in semi-Montel spaces E are relatively compact
hence also relatively compact for the weak topology. Thus E is semi-reflexive by
3.17 . Since Montel spaces are infra-barrelled by definition, they are reflexive and

barrelled by 3.18 . Weakly convergent sequences are bounded, hence are relatively
compact for semi-Montel spaces, so the weak topology coincides with the given one
on this closure.

3.23 Inheritance properties of Montel spaces (See [Jar81, 11.5.4 p.230]).
Obviously closed subspaces, products and coproducts of semi-Montel spaces are
semi-Montel. Since barrelledness is inherited by products and coproducts (see 2.5 )
the same is true for the Montel property. The only normable (Semi-)Montel spaces
are the finite dimensional ones, see [Kri14, 3.4.5].

3.24 Proposition (See [Jar81, 9.3.7 p.179]).
γ(E∗, E) = τc(E∗, Ẽ), where γ(E∗, E) is the finest locally convex topology on
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E∗ = Ẽ∗ into which all polars Uo for 0-nbhds U in E (or the completion Ẽ) with
their compact topology continuously embed and τc(E∗, Ẽ) is the topology of uniform
convergence on compact subsets of the completion Ẽ.

Proof. Since for 0-nbhds U in E (or Ẽ) the polar Uo is σ(E∗, Ẽ) compact and
even τpc(E∗, Ẽ) = τc(E∗, Ẽ) compact by 3.4 , we have γ ≥ τc(E∗, Ẽ) ≥ σ(E∗, Ẽ).
By Grothendieck’s completion result (See [Kri14, 5.5.7]) Ẽ = (E∗, γ)∗, hence γ
is compatible with the duality (E∗, Ẽ), i.e. coincides with the topology of uniform
convergence on the closed equicontinuous subsets in (E∗, γ)∗ = Ẽ (see [Kri14,
5.4.11]). Let C be set of these subsets. All of them are compact for τpc(Ẽ, (E∗, γ))
by 3.4 . The identity (Ẽ, τpc(Ẽ, (E∗, γ))) → Ẽ is continuous, since Ẽ carries
the topology of uniform convergence on the equicontinuous subsets (polars Uo) in
Ẽ∗ = E∗ and polars Uo are γ-compact by definition. Thus the sets in C are compact
in Ẽ. Hence τc(E∗, Ẽ) ≥ γ.

3.25 Proposition (See [Jar81, 11.5.2 p.230]).
Semi-Montel ⇔ quasi-complete and equicontinuous subsets are relatively β(E∗, E)-
compact.

Proof. (⇒) semi-Montel ⇒ quasi-complete, β(E∗, E) = τpc(E∗, E) ⇒ equicontin-
uous sets are relatively β(E∗, E)-compact by the Alaŏglu-Bourbaki Theorem 3.4 .

(⇐) By 3.24 and assumption we have τc(E∗, Ẽ) = γ(E∗, E) ≥ β(E∗, E). Let ◦
(resp. •) denote the polarization with respect to the duality (E,E∗) (resp. (Ẽ, E∗))
then for each bounded B ⊆ E there exists a compact K ⊆ Ẽ with K• ⊆ B◦

and hence (K•)• ⊇ (B◦)• ⊇ B. Since the closed absolutely convex hull (K•)• of
(pre)compact sets K is precompact (see the proof of [Kri07b, 6.4.3]) also B is
precompact and by quasi-completeness relatively compact.

3.26 Proposition (See [Jar81, 11.5.4.f p.230]).
Duals of (M)-spaces are (M).

Proof. E∗ semi-Montel: B ⊆ E∗ bounded ⇒ B equicontinuous by the uniform
boundedness theorem, since E is barrelled by 3.22 ⇒ B relatively compact for
τpc(E∗, E) = β(E∗, E) by the Alaŏglu-Bourbaki Theorem 3.4 . Since duals of
reflexive spaces are reflexive they are (infra-)barrelled.

3.27 Proposition (See [Jar81, 11.6.2 p.231]).
A Fréchet space is Montel ((FM) for short) iff it is separable and σ(E∗, E)-convergent
sequences are β(E∗, E)-convergent.

Proof. (⇒) E (FM) ⇒ E∗ (M), by 3.26 ⇒ σ(E∗, E)-convergent sequences are
convergent, by 3.22 .
{Un : n ∈ N} abs.convex, closed 0-nbhd. basis. We show that EUn is separable,
otherwise ∃ε > 0 ∃A1 ⊆ U1 uncountable with qU1(x−x′) ≥ ε for all x 6= x′ ∈ A1. U2
is absorbing ⇒ ∃k2: A1 ∩ k2U2 uncountable ⇒ . . .⇒ ∃kn, An: An ⊂ An−1 ∩ knUn
uncountable. Choose xn ∈ An \An+1. Then B := {xn : n ∈ N} is bounded ⇒ B is
relatively compact ⇒ ∃ converging subsequence (xni)i, a contradiction.

(⇐) U 0-nbhd =
3.5

===⇒ Uo is σ(E∗, E)-metrizable⇒ (Uo, σ(E∗, E))→ (E∗, β(E∗, E))
is continuous ⇒ Uo is β(E∗, E)-compact ⇒ E semi-Montel, by 3.25 .
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3.28 Theorem of Dieudonné-Gommes characterizing Montel for λp(A)
(See [MV92, 27.9 p.310]).
Let A = {a(n) : n ∈ N} be countable. Then

(1) ∃ 1 ≤ p ≤ ∞: λp(A) (M).

⇔ (2) ∀ 1 ≤ p ≤ ∞: λp(A) (M).

⇔ (3) λ∞(A) = c0(A).

⇔ (4) λ1(A) is reflexiv.

⇔ (5) ∀ 1 ≤ p ≤ ∞: not ∃ normed ∞-dim. top.-lin. subspace in λp(A).

⇔ (6) ∀ infinite J ⊆ N ∀n ∃k: infj∈J a(n)
j /a

(k)
j = 0.

Proof. ( 4 ⇒ 3 ) b ∈ λ∞(A) =
2.9.3

=====⇒ W.l.o.g. bj > 0 for all j =
2.10

====⇒ B := {x :

‖x/b‖`1 ≤ 1} is bounded in E := λ1(A) =
3.17

====⇒ B is weakly relatively compact in E
⇒ ∀k : ιk ◦ ιB : EB � E � Ek weakly compact. Define (for ` := `1)

R : `→ EB , x 7→ b · x,

S : Ek → `, [x] 7→ x · a(k), and

D : `→ `, x 7→ b · a(k) · x.

R and S are isometries (by 2.12 and 1.13 ), D = S ◦ ιk ◦ ιB ◦R : `1 → `1 weakly
compact ⇒ lim b · a(k) = 0, by 3.10.3 , i.e. b ∈ c0(A).

( 3 ⇒ 2 ) By 3.18 and 2.3 we have to show that bounded sets B in λp(A) are
relatively compact. W.l.o.g. B = Bpb with b ∈ λ∞(A) by 2.10 . λ∞(A) = c0(A) ⇒
D from above (with ` := `p for p <∞ and ` := c0 for p =∞) is compact by 3.10
⇒ ∀k : ιk ◦ ιB compact ⇒ B relatively compact (cf. the proof of 3.31 ).

( 2 ⇒ 4 ) By 3.22 Montel spaces are reflexive.

( 1 ⇒ 3 ) As in ( 4 ⇒ 3 ) let b ∈ λ∞(A) with bj > 0 for all j. Then the bounded
set B := {x : ‖x/b‖`p ≤ 1} is relatively compact in E := λp(A) by ( 1 ). ⇒
∀k : ιk ◦ ιB : EB � E � Ek, x 7→ [x], is compact, where ` := `p for p < ∞
and ` := S(Ek) ⊆ `∞ for p = ∞. R and S are isometries (by 2.12 and 1.13 ),
D = S ◦ ιk ◦ ιB ◦R is compact ⇒ lim b · a(k) = 0 by 3.10 , i.e. b ∈ c0(A).

( 2 ⇒ 1 ) trivial.

( 2 ⇒ 5 ) since normed Montel spaces are finite dimensional by 3.23 and 4.171 .

( 5 ⇒ 6 ) Suppose J ⊆ N, ∃n ∀m ≥ n: infj∈J a(n)
j /a

(m)
j > 0. ⇒ On E0 := {x ∈

λp(A) : carrx ⊆ J} the topology induced by ‖ ‖n coincides with that of λp(A) ⇒
E0 finite dimensional by ( 5 ) ⇒ J finite.

( 6 ⇒ 3 ) Indirect, suppose ∃b ∈ λ∞(A) \ c0(A) ⇒ ∀k ∃Ck > 0 ∀j: |bj |a(k)
j ≤ Ck

and ∃n ∃ infinite J ⊆ N ∃ε > 0 ∀j ∈ J : |bj |a(n)
j ≥ ε. ⇒ ∀j ∈ J : a(k)

j ≤ Ck/|bj | ≤
Cka

(n)
j /ε, i.e. inf{a(n)

j /a
(k)
j : j ∈ J} ≥ ε/Ck, a contradiction.
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Schwartz spaces

3.29 Definition. Schwartz spaces.
An lcs E is called Schwartz space ((S) for short)(See [MV92, Def. in 24.16
p.265], [Kri07a, 6.4],[Jar81, 10.4 p.201]) iff for each absolutely convex 0-neighborhood
U there exists a 0-neighborhood V ⊆ U such that ιVU : EV → EU is precompact,
i.e. for each ε > 0 exists a finite subset F = {x1, . . . , xn} ⊆ V with V ⊆ F + εU =⋃
j(xj + εU).

3.30 Lemma (See [MV92, 24.17 p.265], [Kri07a, 6.7], [Jar81, 17.1.7 p.370]).
An lcs is Schwartz iff for every continuous linear T : E → F into a normed space
F there exists a 0-neighborhood in E with precompact image in F .

Proof. (⇐) For absolutely convex 0-neighborhoods U consider ιU : E → EU . By
assumption there exists a 0-neighborhood V such that ιU (V ) ⊆ EU is precompact.

(⇒) The set U := T−1({x ∈ F : ‖x‖ < 1}) is an ab-
solutely convex 0-neighborhood, hence there exists a V
such that ιVU : EV → EU is precompact, so the image
T (V ) = T̃ (ιVU (ιV (V ))) is precompact, where T̃ is the con-
tinuous factorization of T over ιU : E → EU .

E
T //

ιU !! !!
ιV
����

F

EV
ιVU

// // EU

T̃

OO

3.31 Quasi-complete Schwartz implies semi-Montel
(See [MV92, 24.19 p.265], [Jar81, 10.4.3 p.202]).
A Schwartz space is semi-Montel iff it is quasi-complete. (See [Kri07a, 6.6])

Proof. (⇐) Let B ⊆ E be bounded. For every U exists by definition a V with
EV → EU precompact. In particular, ιU (B) is precompact in EU (since V absorbs
B) and hence relatively compact in the completion ẼU , see 3.2 . Since Ẽ is com-
plete it is closed in

∏
U ẼU and hence B ⊆

∏
U ιU (B) is by Tychonoffs theorem

relativelv compact in Ẽ, i.e. B ⊆ E is precompact. For the converse use 3.25 .

3.32 Inheritance properties of Schwartz spaces
(See [Kri07a, 6.21], [Jar81, 21.1.7 p.481], resp. [Jar81, 21.2.3 p.483]).
Closed subspaces, products, quotients, and countable coproducts of Schwartz spaces
are Schwartz. This will be shown jointly for nuclear spaces in 3.73 .

3.33 Proposition. (See [Jar81, 10.4.1 p.201], [MV92, 24.22 p.267]).
An lcs E is Schwartz ⇔ ∀U ∃V ⊆ U : Uo ⊆ E∗V o compact, i.e. E∗Uo → E∗V o is a
compact operator.

Proof. Let U and V be absolutely convex 0-nbhds with V ⊆ U .

Uo ⊆ E∗V o = (EV )∗ is (pre)compact;
⇔ (ιVU )∗ = ιU

o

V o is τpc((EU )∗, EU )-β((EV )∗, EV ))-continuous;
(⇐) Uo is τpc((EU )∗, EU )-compact by the Alaoğlu-Bourbaki theorem 3.4 ,
hence its image in (EV )∗ is β((EV )∗, EV )-compact.
(⇒) Since (ιVU )∗ is σ((EU )∗, EU )-σ((EV )∗, EV )-continuous and on Uo the
topologies τpc((EU )∗, EU ) and σ((EU )∗, EU ) coincide by 3.4 and similarly
on its image (ιVU )∗(Uo) the topologies β((EV )∗, EV ) and σ((EV )∗, EV ) coin-
cide by assumption.

⇔ ∃A ⊆ EU precompact: (ιVU )∗(A•) ⊆ ιV (V )o, i.e. (ιU )∗(A•) ⊆ V o, where •
denotes the polar with respect to (E∗Uo , EU );
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⇔ ∃A ⊆ EU precompact: ιU (V ) ⊆ (A•)•, see [Jar81, 8.6.2.b p.161];
⇔ ιU (V ) ⊆ EU precompact, by the bipolar theorem.

3.34 Proposition (See [Jar81, 11.6.3 p.232]).
A Fréchet space is Schwartz space ((FS) for short) iff it is separable and σ(E∗, E)-
convergent sequences are equicontinuously convergent, i.e. uniformly convergent on
some 0-neighborhood V , or, with other words, convergent in the normed space E∗V o .

Proof. (⇒) (FS) ⇒ (M) ⇒ separable, by 3.31 , 2.3 , and 3.27 .
Let (un) be σ(E∗, E)-convergent ⇒ U := {un : n ∈ N}o ⊆ E is a barrel, hence a
0-nbhd ⇒ ∃V 0-nbhd. with ({un : n ∈ N}o)o compact in E∗V o = (EV )∗, by 3.33
⇒ un converges equicontinuously.

(⇐) Let U 0-nbhd. and U ⊇ Uk ⊇ Uk+1 be a 0-nbhd. basis. By 3.33 we have
to show ∃k : Uo ⊆ E∗Uok

is compact. Since Uo is σ(E∗, E)-metrizable, by 3.5 , it
suffices to show that there exists some k such that σ(E∗, E)-converging sequences
in Uo converge in Fk := E∗Uok

. Otherwise, ∀k ∃(ukn)n convergent in Uo (towards
0) but not convergent in Fk for n → ∞. Let B0 ⊇ B1 ⊇ . . . be a countable 0-
nbhd. basis for the metrizable topology σ(E∗, E) on Uo. Let mn := min{m : uki ∈
Bn ∀k ≤ n∀i > m}, then u1

mn+1, . . . , u
1
mn+1

; . . . ;unmn+1, . . . , u
n
mn+1

∈ Bn. These
blocks together give a weak 0-sequence (un) in Uo, not convergent in Fk, (i.e. not
equicontinuously convergent), since (ukn)n>mk is a subsequence, a contradiction.

3.35 Theorem. Characterizing Schwartz for λp(A)
(See [MV92, 27.10 p.312]).
Let A = {a(k) : k ∈ N} be countable.

(1) ∃ 1 ≤ p ≤ ∞: λp(A) (S)
⇔ (2) ∀ 1 ≤ p ≤ ∞: λp(A) (S)
⇔ (3) ∀k ∃m ≥ k: limj→∞ a

(k)
j /a

(m)
j = 0.

Proof. Let E = λp(A) for 1 ≤ p ≤ ∞, Ek ∼= `p(ak) for 1 ≤ p < ∞ (cf. 1.13 ),
w.l.o.g. carr ak = N. For m ≥ k define

D : x 7→ x · ak/am, `p → `p

Am : x 7→ x · am, Em → `p

Am is isometry and D = Ak ◦ ιkm ◦A−1
m . If p =∞ replace `p by ` := Am(Em).

( 1 ⇒ 3 ) ⇒ ∀k ∃m ≥ k: ιkm : Em → Ek compact ⇒ D = Ak ◦ ιkm ◦ A−1
m compact

=
3.10

====⇒ lim a(k)/a(m) = 0.

( 3 ⇒ 2 ) Let 1 ≤ p ≤ ∞. ∀k ∃m ≥ k satisfying ( 3 ) =
3.10

====⇒ D = Ak ◦ ιkm ◦ A−1
m

compact ⇒ ιkm compact ⇒ ( 2 ).

( 2 ⇒ 1 ) trivial.

3.36 Example of (FM), but not Schwartz (See [MV92, 27.21 p.319]).

A := {a(k) : k ∈ N} with a(k)
i,j :=

{
(ki)k for j < k

kj for j ≥ k
⇒ λp(A) is (F), (M), not (S)

Proof. m > k, j > m ⇒ a
(k)
i,j /a

(m)
i,j = (k/m)j =

3.35
====⇒ λp(A) not Schwartz.
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Let I ⊆ N2, n fixed. ∀k ≥ n: inf(i,j)∈I a
(n)
i,j /a

(k)
i,j =: εk > 0.

Claim: I is finite:
k := n+ 1, j ≥ n+ 1 ⇒

εn+1 ≤ a(n)
i,j /a

(n+1)
i,j =

(
n

n+ 1

)j
⇒ ∃j0: I ⊆ N× {1, . . . , j0}. Let 1 ≤ j ≤ j0, k > max{j, n}, (i, j) ∈ I ⇒

εk ≤


a

(n)
i,j /a

(k)
i,j = (ni)n

(ki)k = nn

kk
in−k for j < n(< k)

a
(n)
i,j /a

(k)
i,j = nj

(ki)k for (k >)j ≥ n

⇒ I ∩ (N× {j}) is finite.

=
3.28.6

======⇒ λp(A) Montel (for all 1 ≤ p ≤ ∞).

Tensor products

In this section we introduce the projective tensor product as universal solution for
linearizing bilinear continuous maps and the injective tensor product as subspace
of te space of all bounded linear (or bilinear) operators. of locally convex spaces
in order to define nuclearity. Nuclear spaces are then deinied as those locally
convex spaces, where these to tensor product functors coincide. And we use these
tensor products to obtain descriptions for various types of vector valued summable
sequences.

3.37 Definition. Projective tensor product (See [Kri07a, 3.3 p.53]).
The algebraic tensor product E ⊗ F of two linear spaces E and F is the
universal solution for turning bilinear mappings into linear ones, i.e. there exists a
bilinear mapping ⊗ : E × F → E ⊗ F such that

E × F ⊗ //

∀f bilinear %%

E ⊗ F

∃!f̃ linear
��

∀G
The linear space E ⊗ F can be obtained as subspace of L(E,F ;K)∗ (the dual of
the bilinear forms) generated by the image of ⊗ : E × F → E ⊗ F ⊆ L(E,F ;K)∗
given by (x, y) 7→ ev(x,y) (See [Kri07a, 3.1 p.50]).
For locally convex spaces the solution of the corresponding universal problem for
(bi)linear continuous mappings is called projective tensor product E ⊗π F ,
it is the linear spaces E ⊗ F supplied with the finest locally convex topology for
which ⊗ : E × F → E ⊗ F is continuous. This topology exists since the union of
locally convex topologies is locally convex and E×F → E⊗F is continuous for the
weak topology on E ⊗ F generated by those linear functionals which correspond
to continuous bi-linear functionals on E × F . It has the universal property, since
the inverse image of a locally convex topology under a linear mapping T̃ is again a
locally convex topology, such that ⊗ is continuous, provided the associated bilinear
mapping T is continuous.
The space E ⊗π F is Hausdorff, since the set E∗ × F ∗ separates points in E ⊗ F :
Let 0 6= z =

∑
k xk ⊗ yk be given. By replacing linear dependent xk by the

corresponding linear combinations and using bilinearity of ⊗, we may assume that
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the xk are linearly independent. Now choose x∗ ∈ E∗ and y∗ ∈ F ∗ be such that
x∗(xk) = δ1,k and y∗(y1) = 1. Then (x∗ ⊗ y∗)(z) = 1 6= 0.
We denote the space of continuous linear mappings from E to F by L(E,F ),
and the space of continuous multi-linear mappings by L(E1, . . . , En;F ).
The completion of E ⊗π F will be denoted E⊗̂πF .

Since a bilinear mapping is continuous iff it is so at 0, a 0-neighborhood basis in
E⊗πF is given by all those absolutely convex sets, for which the inverse image under
⊗ is a 0-neighborhood in E×F . A basis is thus given by the absolutely convex hulls
denoted U ⊗ V of the images of U × V under ⊗, where U resp. V runs through a
0-neighborhood basis of E resp. F . We only have to show that these sets U ⊗V are
absorbing (see [Jar81, 6.5.3 p.108]). So let z =

∑
k≤K xk⊗yk ∈ E⊗F be arbitrary.

Then there are ak > 0 and bk > 0 such that xk ∈ akU and yk ∈ bkV and hence
z =

∑
k ak bk

xk
ak
⊗ yk

bk
∈ (
∑
k ak bk) · 〈U ⊗ V 〉abs.conv.. Consequently, the Minkowski-

functionals pU⊗V form a base of the seminorms of E⊗π F and we will denote them
by πU,V . In terms of the Minkowski-functionals pU and pV of U and V we obtain
that z ∈ (

∑
k pU (xk) pV (yk))U ⊗ V for any z =

∑
k xk ⊗ yk since xk ∈ pU (xk) · U

for closed U , and thus pU⊗V (z) ≤ inf
{∑

k pU (xk) pV (yk) : z =
∑
k xk ⊗ yk

}
. We

now show the converse:

3.38 Proposition. Seminorms of the projective tensor product
(See [Kri07a, 3.4 p.53], [Jar81, 15.1.1 p.324]).

pU⊗V (z) = inf
{∑

k

pU (xk) · pV (yk) : z =
∑
k

xk ⊗ yk
}
.

Proof. Let z ∈ λ · (U ⊗ V ) with λ > 0. Then z = λ
∑
λk (uk ⊗ vk) with uk ∈

U , vk ∈ V and
∑
k |λk| = 1. Hence z =

∑
xk ⊗ vk, where xk = λλkuk, and∑

k pU (xk)·pV (vk) ≤
∑
λ|λk| = λ. Taking the infimum of all λ shows that pU⊗V (z)

is greater or equal to the infimum on the right side.

3.39 Theorem. Compact subsets of the projective tensor product
(See [Kri07a, 3.21 p.61] and [Jar81, 15.6.3 p.336]).

Compact subsets of the completed projective tensor product E⊗̂πF for metrizable
spaces E and F are contained in the closed absolutely convex hull of a tensor product
of precompact sets in E and F .

Proof. Every compact set K in the Fréchet space E⊗̂πF is contained in the closed
absolutely convex hull of a 0-sequence (zk)k in E⊗̂πF by 3.6 . For this 0-sequence
we can choose kn strictly increasing, such that zk ∈ Un ⊗ Vn for all k ≥ kn, where
(Un)n and (Vn)n are countable 0-neighborhood bases of the topology of E and F .
For kn ≤ k < kn+1 we can choose finite (disjoint) sets Nk ⊆ N and

∑
j∈Nk |λj | = 1,

xj ∈ Un and yj ∈ Vn such that zk =
∑
j∈Nk λj xj ⊗ yj . Let A := {xj : j ∈

⊔
kNk}

and B := {yj : j ∈
⊔
kNk}. These are formed by two sequences converging to 0,

and hence are precompact. Furthermore, each z ∈ K can be written as

z =
∞∑
k=0

µkzk =
∑
k

∑
j∈Nk

µkλj xj ⊗ yj

with
∑
k |µk| ≤ 1 and hence

∑
k

∑
j∈Nk |µkλj | =

∑
k |µk|

∑
j∈Nk |λj | ≤ 1. From

this it easily follows that the series on the right hand side converges (even Mackey)
and hence z is contained in the closed absolutely convex hull of A⊗B.
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3.40 Corollary. Elements of the completed tensor product as limits
(See [Kri07a, 3.22 p.61], [Jar81, 15.6.4 p.337]).
For metrizable E and F every z ∈ E⊗̂πF has a representation of the form z =∑
n λn xn ⊗ yn, where λ ∈ `1 and x and y are bounded (or even 0-)sequences.

Since for every λ ∈ `1 there exists a ρ ∈ c0 and µ ∈ `1 with λn = ρ2
nµn it is enough

to find bounded sequences xn and yn.

Proof. In the previous proof we have just shown that z =
∑
j µkjλj xj ⊗ yj .

3.41 Definition. Summable vector valued sequences.
For lcs F we consider the following spaces of (somehow summable) series in F :

• `1{F} := `1(N, F ) :=
{
f ∈ FN : ∀p SN of F : p̃(f) :=

∑∞
j=0 p(fj) < ∞

}
,

the space of absolutely summable sequences in F (called absolutely
Cauchy sequences in [Jar81, 15.7.5 p.341]).
Recall the Reordering Theorem of Riemann [Kri05, 2.5.18].
• `1〈F 〉, the space of unconditionally Cauchy summable sequences

(xj)j∈N in F (see [Jar81, 14.6.1 p.305]), i.e. for which the net F 7→
∑
j∈F xj ,

where F runs through the finite subsets of N ordered by inclusion, is Cauchy:
(⇐) Let σ be a permutation of N. For any U we find a finite F0 ⊆ N such that∑
k∈F2

xk−
∑
k∈F1

xk ∈ U for all finite F1, F2 ⊇ F0. Let n0 := maxσ−1(F0),
hence σ−1(F0) ⊆ {n : n ≤ n0}. Then, for all n2 ≥ n1 > n0, we have

n2∑
n=n1

xσ(n) =
∑
n≤n2

xσ(n) −
∑
n<n1

xσ(n) =
∑
k∈F2

xk −
∑
k∈F1

xk ∈ U, where

F2 := σ({n : n ≤ n2}) ⊇ F1 := σ({n : n < n1}) ⊇ σ({n : n ≤ n0}) ⊇ F0.

(⇒) Otherwise, ∃U ∀F finite∃F ′ finite : F ′ ∩ F = ∅ and
∑
n∈F ′ xn /∈ 2U

(∃F1, F2 ⊇ F : 4U 63
∑
n∈F2

xn −
∑
n∈F1

xn =
∑
n∈F2\F1

xn −
∑
n∈F1\F2

xn,
now take F ′ := F2 \ F1 or F ′ := F1 \ F2). Since

∑
n xn is Cauchy, there is

some n0 such that
∑n2
n=n1

xn ∈ U for all n2 ≥ n1 ≥ n0. Let F0 := {n ∈
N : n ≤ n0} and F ′0 a corresponding set. We construct nk, Fk, and F ′k 6= ∅
recursively as nk+1 := maxF ′k, Fk+1 := {n : n ≤ nk+1} ⊇ F ′k ∪ Fk. Let
F ′′k := Fk+1 \ (Fk t F ′k). Then∑
n∈F ′′k

xn =
∑

n∈Fk+1

xn −
∑
n∈Fk

xn −
∑
n∈F ′k

xn =
∑

n∈Fk+1\Fk

xn −
∑
n∈F ′k

xn,

where Fk+1 \ Fk = {n : nk < n ≤ nk+1} with nk+1 ≥ nk ≥ n0, so∑
n∈Fk+1\Fk xn ∈ U , wheras

∑
n∈F ′k

xn /∈ 2U , hence
∑
n∈F ′′k

xn /∈ U . The
elements in the sequence F0, F

′
0, F

′′
0 , F

′
1, F

′′
1 , . . . define a permutation σ of N

for which
∑
n xσ(n) is not Cauchy.

• `1[F ] := L(c0, F ), the space of scalarly absolutely summable se-
quences in F (See [Kri07a, 4.9] and [Jar81, 19.4.3 p.427]): Since the
standard unit vectors ek generate a dense subspace in c0 every f ∈ L(c0, F )
is uniquely determined by its values fk := f(ek). Moreover, f is contin-
uous=bounded iff {(y∗ ◦ f)(x) =

∑
j∈N xj y

∗(fj) : x ∈ c0, ‖x‖∞ ≤ 1} is
bounded for each y∗ ∈ F ∗, i.e. {(xj y∗(fj))j : x ∈ c0, ‖x‖∞ ≤ 1} is bounded
in `1, i.e. (y∗(fj))j ∈ λ1(c0) = `1 by 1.15.7 , i.e. (fj)j is scalarly absolutely
summable.

This can be extended 1 < q <∞:

andreas.kriegl@univie.ac.at c© July 1, 2016 35



3.43 Tensor products

• `q{F} := `q(N, F ) :=
{
f ∈ FN : ∀p : p̃(f) :=

(∑∞
j=0 p(fj)q

)1/q
< ∞

}
,

the space of absolutely q-summable sequences in F (See [Jar81, 19.4
p.425]).
• `q[F ] = L(`p, F ), the space of scalarly absolutely q-summable se-

quences in F , where 1
p + 1

q = 1 (See [Jar81, 19.4.1 p.426] and [Jar81,
19.4.3 p.427]): Since the standard unit vectors ek generate a dense subspace
in `p every f ∈ L(`p, F ) is uniquely determined by its values fk := f(ek).
Moreover, f is continuous=bounded iff {(y∗ ◦ f)(x) =

∑
j∈N xj y

∗(fj) : x ∈
`p, ‖x‖p ≤ 1} is bounded for each y∗ ∈ F ∗, i.e. {(xj y∗(fj))j : x ∈ `p, ‖x‖p ≤
1} is bounded in `1, i.e. (y∗(fj))j ∈ λ1(`p) = `q by 1.15.7 , i.e. (fj)j is
scalarly absolutely q-summable.

3.42 Lemma. Description of `1{F} as tensor product
(See [Kri07a, 4.12], [Jar81, 15.7.6 p.341]).
For lcs F we have a dense topological embedding `1 ⊗π F ↪→→ `1(N, F ).
Thus `1⊗̂πF ∼= `1(N, F ) for complete F , where ⊗̂π denotes the completion of the
projective tensor product.

Proof. We first show that the natural mapping `1c ⊗π F → `1c(N, F ), x ⊗ y 7→
(xjy)j∈N, is an isomorphism, where `1c is the dense subspace in `1 of finite sequences
and `1c(N, F ) the analogous subspace in `1(N, F ). Since Rk ⊗π F ∼= F k we have a
bijection. Let z =

∑
k x

(k) ⊗ y(k) ∈ `1c ⊗ F and p be a seminorm of F . For the
corresponding norm p̃ of `1c(N, F ) we have

p̃(z) :=
∑
j

p(zj) =
∑
j

p

(∑
k

x
(k)
j y(k)

)
≤
∑
j

∑
k

|x(k)
j | p(y

(k)) ≤

≤
∑
k

∑
j

|x(k)
j | p(y

(k)) =
∑
k

‖x(k)‖`1 · p(y(k)),

Taking the infimum of the right side over all representations of z shows that p̃ ≤ pπ,
where pπ is projective tensor norm formed from ‖ ‖`1 and p, see 3.38 .
Conversely each z = (zj)j ∈ `1c(N, F ) can be written as image of the finite sum∑
j ej ⊗ zj , where ej denotes the standard unit vector in `1. Thus we have for the

tensor norm pπ that

pπ(z) ≤
∑
j

‖ej‖`1 · p(zj) =
∑
j

p(zj) = p̃(z)

which shows the converse relation.
Now, since `1c(N, F ) is dense in `1(N, F ) and the latter space is complete for com-
plete F (as can be shown analogously to the case `1(N,R)), we have the desired
isomorphism:

`1(N, F ) = \`1c(N, F ) ∼= `1c⊗̂πF ∼= `1⊗̂πF.
Here we used that the dense emnbedding `1c ↪→ `1 induces a dense embedding
`1c ⊗π F ↪→ `1 ⊗π F , see [Kri07a, 3.19,3.20] or [Jar81, 15.2.3,15.2.4 p.327].

3.43 Lemma. The seminorms of `1[F ] (See [Kri07a, 4.32], [Jar81, 19.4.3a
p.427]).
The structure on `q[F ] induced from L((`q)∗, F ) for 1 < q <∞ (resp. from L(c0, F )
for q = 1) is given by the seminorms

p̃(f) := sup
{( ∞∑

n=1
|y∗(fn)|q

)1/q
: |y∗| ≤ p

}
,
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where p runs through all continuous seminorms of F .

Proof. Let p be a continuous seminorm on F and V := {y ∈ F : p(y) ≤ 1}. As
in 3.45 we use that p(y) = sup{|y∗(y)| : y∗ ∈ V o}. Thus we can calculate the
seminorm p∞ on L((`q)∗, F ) associated to p as follows, where B denotes the closed
unit-ball in ` := (`q)∗ (resp. c0 for q = 1) and ι : `q[F ] → L(`, F ), ι(f)(λ) :=∑
k fkλk, the canonical bijection:

p̃(f) := p∞(ι(f)) := sup{p(ι(f)(λ)) : λ ∈ B}

= sup
{∣∣∣y∗( ∞∑

k=1

fkλk

)∣∣∣ : λ ∈ B, y∗ ∈ V o
}

≤ sup
{
‖λ‖(`q)∗︸ ︷︷ ︸
≤1

‖(y∗(fk))k‖`q : λ ∈ B, y∗ ∈ V o
}

≤ sup
{( ∞∑

k=1

|y∗(fk)|q
)1/q

: |y∗| ≤ p
}

Conversely, let f ∈ `q[F ] and |y∗| ≤ p. Then for ε > 0 there exists an n such that(∑
k>n |y∗(fk)|q

)1/q
< ε. Let λk y∗(fk) := |y∗(fk)| for k ≤ n and λk = 0 otherwise.

Then λ ∈ B and
∞∑
k=1

|y∗(fk)|q =
∑
k≤n

(λk y∗(fk))q+
∑
k>n

|y∗(fk)|q ≤
∞∑
k=0

(λk y∗(fk))q+εq ≤ p∞(ι(f))q+εq.

Hence we have also the converse relation.

3.44 Definition. Injective tensor product
(See [Kri07a, 4.21 p.93], [Jar81, 16.1 p.344]).
We consider the bilinear mapping

E × F → L(E∗, F ), given by (x, y) 7→
(
x∗ 7→ x∗(x)y

)
.

It is well-defined, since evx : E∗ → R is bounded. In fact evx : E∗ → R is even
continuous for the weak topology σ(E∗, E) and hence also for the topology β(E∗, E)
of uniform convergence on bounded sets. This induces a linear map

E ⊗ F → L(E∗, F ), given by x⊗ y 7→ (x∗ 7→ x∗(x)y).

We claim that this mapping is injective. In fact take
∑
i xi ⊗ yi ∈ E ⊗ F with xi

linearly independent. By Hahn-Banach we can find continuous linear functionals
x∗i with x∗i (xj) = δi,j . Assume that the image of

∑
i xi ⊗ yi is 0 in L(E∗, F ). Since

it has value yi on x∗i , we have that yi = 0 for all i and hence
∑
i xi ⊗ yi = 0.

We define the injective tensor product (also called ε-tensor product in
[Tre67]) E⊗εF to be the algebraic tensor product with the locally convex topology
induced by the injective inclusion into L(E∗, F ), where L(E∗, F ) is supplied with
the topology of uniform convergence on equicontinuous subsets of E∗. Since this
topology on L(E∗, F ) is obviously Hausdorff, the same is true for E ⊗ε F .

Note that, since F topologically embeds into the space (F ∗)′ of bounded (with
respect to the equicontinous subsets of E∗) linear functionals on E∗ by [Kri14,
5.4.11], the structure of E⊗ε F is also initial with respect to E⊗F → L(E∗, F )→
L(E∗, (F ∗)′) ∼= L(E∗, F ∗;R), x ⊗ y 7→

(
(x∗, y∗) 7→ x∗(x) · y∗(y)

)
, which gives a

more symmetric form and consequently E ⊗ε F ∼= F ⊗ε E. Since the seminorms of
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L(E∗, F ∗;R) are given by suprema on Uo×V o, where U and V are 0-neighborhoods,
we have for the corresponding seminorm εU,V on E ⊗ε F :

εU,V

(∑
k

xk ⊗ yk
)

:= sup
{∣∣∣∑

k

x∗(xk) y∗(yk)
∣∣∣ : x∗ ∈ Uo, y∗ ∈ V o

}

3.45 Corollary. Seminorms of the injective tensor product
(See [Kri07a, 4.22 p.94], [Jar81, 16.1 p.344]).

A defining family of seminorms on E ⊗ε F is given by

εU,V :
∑
i

xi ⊗ yi 7→ sup
{∣∣∣∑

i

x∗(xi) y∗(yi)
∣∣∣ : x∗ ∈ Uo, y∗ ∈ V o

}
,

where U and V run through the 0-neighborhoods of E and F . The injective tensor
product E ⊗ε F is metrizable (resp. normable) if E and F are.

Let us show next, that the canonical bilinear mapping E × F → L(E∗, F ) is con-
tinuous, which implies that the identity E ⊗π F → E ⊗ε F is continuous:
In fact, take an equicontinuous set E ⊆ E∗, i.e. E is contained in the polar Uo of
a 0-neighborhood U , and take furthermore an absolutely convex 0-neighborhood
V ⊆ F . Then U × V is mapped into the typical 0-nbhd. {T : T (E) ⊆ V }, since
(x⊗ y)(x∗) = x∗(x) y ∈ {λ : |λ| ≤ 1} · V ⊆ V for x∗ ∈ E ⊆ Uo.

3.46 Corollary (See [Kri07a, 4.23 p.94], [Jar81, 16.1.3 p.345]).
E ⊗π F → E ⊗ε F is continuous.

Proof. In the diagram
E ⊗π F // E ⊗ε F

_�

��
E × F

⊗

OO

// L(E∗, F )
continuity of the bilinear map at the bottom implies continuity of the top arrow.

3.47 Definition (See [Kri07a, 4.24 p.94], [Jar81, 16.1.4 p.345]).
An lcs E is called nuclear ((N) for short) iff E ⊗π F = E ⊗ε F for all lcs F .

3.48 Corollary (See [Kri07a, 4.26]).
The space E′ ⊗ε F embeds into L(E,F ).

Proof. In fact, since obviously E′ ⊗ε F ∼= F ⊗ε E′, it embeds into L(F ∗, E′) ∼=
L(E, (F ∗)′) via x∗ ⊗ y 7→ (x 7→ (y∗ 7→ x∗(x) y∗(y))). This embedding factors over
the embedding δ∗ : L(E,F ) ↪→ L(E, (F ∗)′), by x∗ ⊗ y 7→ (x 7→ x∗(x)y). Hence this
map E′ ⊗ε F → L(E,F ) is an embedding.

E′ ⊗ε F �
� //
� s

&&

L(E, (F ∗)′) x∗ ⊗ y � //
�

((

(
x 7→ (y∗ 7→ x∗(x) y∗(y))

)

L(E,F )
?�
δ∗

OO

(x 7→ x∗(x)y)
_
δ∗

OO

3.49 Lemma. Completeness of `1〈F 〉
(See [Kri07a, 4.33], [Jar81, 16.5.1 p.358]).
The subspace `1〈F 〉 of `1[F ] is closed. For complete F both spaces are complete.

Hence we will always consider the initial structure on `1〈F 〉 induced from `1[F ].
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Proof. In order to show that `1〈F 〉 is closed in `1[F ], take x = (xk)k ∈ `1[F ] in the
closure of `1〈F 〉. We have to show that the net K 7→

∑
k∈K xk is Cauchy, where K

runs through the finite subsets of N. So let p be a seminorm of F and ε > 0. By
the assumption we can find a y ∈ `1〈F 〉 with p̃(x− y) ≤ ε. Thus the net

∑
k∈K yk

is Cauchy in F , i.e. there is a finite K0 ⊆ N such that p
(∑

k∈K2
yk−

∑
k∈K1

yk
)
≤ ε

for all K1,K2 ⊇ K0. Hence for K0 ⊆ K1 ⊂ K2 we have:

p
(∑
k∈K2

xk −
∑
k∈K1

xk

)
= p
(∑
k∈K2\K1

xk

)
≤ p
(∑
k∈K2\K1

(xk − yk)
)

+ p
(∑
k∈K2\K1

yk

)
≤ sup

{∣∣∣y∗(∑
k∈K2\K1

(xk − yk)
)∣∣∣ : |y∗| ≤ p

}
+ p
(∑
k∈K2\K1

yk

)

≤ sup
{ ∞∑
k=0

|y∗(xk − yk)| : |y∗| ≤ p
}

+ p
(∑
k∈K2\K1

yk

)

=
3.43

===== p̃(x− y) + p
(∑
k∈K2

yk −
∑
k∈K1

yk

)
≤ ε+ ε,

which shows that K 7→
∑
k∈K xk is a Cauchy-net.

Since `1[F ] ∼= L(c0, F ), it is complete for complete F .

3.50 Theorem. Description of `1〈F 〉 as tensor product
(See [Kri07a, 4.34], [Jar81, 16.5.2 p.359]).
For lcs F we have a dense topological embedding `1 ⊗ε F ↪→→ `1〈F 〉.
Thus `1⊗̂εF ∼= `1〈F 〉 for complete F , where ⊗̂ε denotes the completion of the
injective tensor product.

Proof. By 3.48 we have that `1 ⊗ε F ∼= c′0 ⊗ε F embeds into L(c0, F ), the space
of scalarly absolutely summable sequences. Obviously λ⊗ y ∈ `1 ⊗ F is contained
in `1{F} ⊆ `1〈F 〉. We show that `1c ⊗ F = K(N) ⊗ F ∼= F (N) is dense in `1〈F 〉
with respect to the structure inherited from `1[F ]. So let x ∈ `1〈F 〉 and consider
xn := x|[0,...,n−1] ∈ Fn ⊆ F (N) ⊆ `1[F ]. We claim that xn → x in `1[F ]: Let p be a
continuous seminorm on F . Since K 7→

∑
k∈K xk is Cauchy, we have for K = R:

p̃(x− xn) =
3.43

===== sup
{∑
k≥n

|y∗(xk)| : |y∗| ≤ p
}

= sup
{ m∑
k=n

|y∗(xk)| : |y∗| ≤ p, m ≥ n
}

= sup
{∣∣∣ ∑
m≥k≥n
y∗(xk)>0

y∗(xk)
∣∣∣+
∣∣∣ ∑
m≥k≥n
y∗(xk)<0

y∗(xk)
∣∣∣ : |y∗| ≤ p, m ≥ n

}

≤ sup
{∣∣∣y∗(∑

m≥k≥n
y∗(xk)>0

xk

)∣∣∣ : |y∗| ≤ p, m ≥ n
}

+ sup
{∣∣∣y∗(∑

m≥k≥n
y∗(xk)<0

xk

)∣∣∣ : . . .
}

≤ 2 sup
{
p
(∑
k∈K′

xk

)
: K ′ finite, K ′ ∩ [0, n− 1] = ∅

}
≤ 2ε

for n sufficiently large. In the complex case we have to make a more involved
estimation for

∑
k>n |y∗(xk)|. Let P := {z ∈ C : <z > 0 and − <z < =z ≤ <z}.

For every z 6= 0 there is a unique j ∈ {0, 1, 2, 3} with ij z ∈ P . Then |z| ≤ 2<(ij z) ≤
2|z|. Thus we can split the sum into 4 parts corresponding to j ∈ {0, 1, 2, 3}, where
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ijy∗(xk) ∈ P . For each subsum we have∑
m≥k≥n

ij y∗(xk)∈P

|y∗(xk)| =
∑

m≥k≥n
ij y∗(xk)∈P

2<(ij y∗(xk)) = 2<
(
ij y∗

( ∑
m≥k≥n

ij y∗(xk)∈P

xk

))

≤ 2
∣∣∣y∗( ∑

m≥k≥n
ij y∗(xk)∈P

xk

)∣∣∣ ≤ 2 p
( ∑
m≥k≥n

ij y∗(xk)∈P

xk

)
≤ 2 ε

Thus we have p̃(x− xn) ≤ 8 ε.

Since `1〈F 〉 is complete for complete F by 3.49 , the result follows.

Operator ideals

In order to give several equivalent descriptions of nuclear spaces in terms of the
connecting morphism in their projective representation, we introduce the ideals of
approximable, of nuclear, and of summing operators between Banach spaces and
prove the most relevant relations between them.
In this section all lcs are assumed to be Banach spaces!

3.51 Definition. Several operator ideals.
For 1 ≤ p <∞ define the following classes of operators between Banach spaces:

• Ap, the class of p-approximable operators (See [Kri07a, Def. before
5.26 p.128]), i.e. those for which the approximation numbers (an(T )) ∈ `p,
see 3.11 . WARNING: This class is denoted Sp (for Schatten-class) in
[Jar81, 19.8 p.440] and [MV92, 16.6 p.143]!
• Np, the class of p-nuclear operators, i.e. those which have a representa-

tion of the form T =
∑∞
n=0 x

∗
n ⊗ yn with (x∗n) ∈ `p{E∗} and (yn) ∈ `q{F},

where 1
p + 1

q = 1, see [Kri07a, 5.9].
• Sp, the class of p-summing operators, i.e. those with T∗(`p[E]) ⊆ `p{F},

see [Kri07a, 5.18]. These classes are denotes Pp in [Jar81, 19.5 p.428].

In the case p = 1 we suppress the “1-” from these definitions. In particular, T is a
nuclear operator, iff there exists aj ∈ E∗ and bj ∈ F with

∑
j ‖aj‖ ‖bj‖ <∞ and

T (x) =
∑
j∈N

aj(x) bj for all x.

All these classes are operator ideals, since for A,B ∈ L they are closed under
T 7→ A ◦ T ◦B. For approximable this follows from an+m(R ◦ S) ≤ an(R) · am(S),
see 3.53 below, for the others from S∗(`p{E}) ⊆ `p({F}) and S∗(`p[E]) ⊆ `p[F ]
(since `q(N, ) and L(`, ) are obviously functorial).

3.52 Lemma (See [Jar81, 17.3.3 p.377]).
The space N1(E,F ) of nuclear operators is the image of E∗⊗̂πF in L(E,F ).

Proof. By 3.40 the elements of E∗⊗̂πF are those of the from
∑
n λnx

∗
n⊗yn with

x∗, y bounded sequences and λ ∈ `1.

3.53 Proposition (See [Kri07a, 5.29], [Jar81, 19.10.1 p.445]).
Let 0 < p, q, r <∞ with 1

r = 1
p + 1

q .
Then Aq ◦ Ap ⊆ Ar. In particular, we will use A2 ◦ A2 ⊆ A1 and (A1)n ⊆ A1/n.
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Proof. We have an+m(S ◦ T ) ≤ an(S) am(T ):
In fact, let R := S0 ◦T + (S−S0) ◦T0 for n- resp. m-dimensional S0 resp. T0, then
an+m(S ◦ T ) ≤ ‖S ◦ T −R‖ = ‖(S − S0) ◦ (T − T0)‖ ≤ ‖S − S0‖ · ‖T − T0‖.

Using the Hölder inequality for r
p + r

q = 1 we obtain:(∑
n

an(S ◦ T )r
)1/r

≤ 21/r
(∑

n

a2n(S ◦ T )r
)1/r

≤ 21/r
(∑

n

an(S)r · an(T )r
)1/r

≤ 21/r
(∑

n

an(S)p
)1/p

·
(∑

n

an(T )q
)1/q

3.54 Proposition (See [Kri07a, 5.30], [Jar81, 20.2.3 p.454]).
An linear operator T : E → F between Hilbert spaces is p-approximable provided
(〈Ten, fn〉)n ∈ `p for all orthonormal sequences en and fn.

It can be shown that the converse is valid as well, see [Jar81, 20.2.3 p.454].

Proof. By 3.9 we conclude that T is compact and hence admits by 3.8 a
representation Tx =

∑
n λn〈en, x〉fn with λn → 0 and orthonormal sequences

en and fn. Since λn = 〈Ten, fn〉 we have that (λn)n ∈ `p. By applying a
permutation and putting signs to fn we may assume that 0 < λn+1 ≤ λn Let
Tn(x) :=

∑
k<n λk〈ek, x〉fk. Then

an(T ) ≤ ‖T − Tn‖ = sup
{∥∥∥∑

k≥n

λk〈ek, x〉fk
∥∥∥ : ‖x‖ ≤ 1

}
= sup

{(∑
k≥n

λ2
k|〈ek, x〉|2

)1/2
: ‖x‖ ≤ 1

}
≤ λn,

hence T ∈ Ap.

3.55 Auerbach’s Lemma (See [Kri07a, 5.26], [Jar81, 14.1.7 p.291]).
Let E be a finite dimensional Banach space. Then there are unit vectors xi ∈ E
and x∗i ∈ E∗ with x∗i (xj) = δi,j for 1 ≤ i, j ≤ dimE.

Proof. Let e1, . . . , en be an algebraic basis of E. For the weakly compact unit ball
K of E∗ we consider the continuous map f : Kn → K, (x∗1, . . . , x∗n) 7→ |det(x∗j (ei))|.
Let (x∗1, . . . , x∗n) be a point where it attains its maximum. Since the ei are linearly
independent this maximum is positive. Hence there is a unique solution with xj ∈ E
of the equations ∑

j

x∗j (ei)xj = ei for 1 ≤ i ≤ n.

Applying any x∗k to this equation, yields the equations∑
j

x∗j (ei)x∗k(xj) = x∗k(ei) for 1 ≤ i ≤ n.

whose unique solution is x∗j (xi) = δi,j .

f(x∗1, . . . , x∗n) ·
∣∣det(y∗j (xi))

∣∣ =
∣∣∣det(x∗j (ei)) · det(y∗j (xi))

∣∣∣
=
∣∣∣det

(∑
k

x∗k(ei) y∗j (xk)
)∣∣∣ =

∣∣det(y∗j (ei))
∣∣

= f(y∗1 , . . . , y∗n) ≤ f(x∗1, . . . , x∗n) for all y∗i ∈ K.
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Thus |det(y∗j (xi))| ≤ 1. Choosing y∗j = x∗j for all j 6= k shows that |y∗k(xk)| ≤ 1
and hence ‖xk‖ ≤ 1. From 1 = x∗j (xj) ≤ ‖x∗j‖ ‖xj‖ we conclude that ‖xj‖ = 1 =
‖x∗j‖.

3.56 Lemma. (See [Kri07a, 5.27], [Jar81, 19.8.4 p.441]).
Let T ∈ L(E,F ) be such that dimT (E) = k < ∞. Then T can be written as
T =

∑k
j=1 λj x

∗
j ⊗ yj with ‖x∗j‖ ≤ 1 and ‖yj‖ ≤ 1 and 0 < λj ≤ ‖T‖.

Proof. We may assume that T is onto. By 3.55 we have a biorthogonal sequence
yj and y∗j for F . Let λj := ‖T ∗y∗j ‖. Then 0 < λj ≤ ‖T ∗‖ = ‖T‖ and x∗j :=
1
λj
T ∗y∗j ∈ oE∗. So we have Tx =

∑
j y
∗
j (Tx) yj =

∑
j λj x

∗
j (x) yj .

3.57 Corollary (See [Kri07a, 5.28], [Jar81, 19.8.6 p.442]).
We have A1 ⊆ N1.

Proof. See [Jar81, 19.8.5 p.442]. Let T ∈ A1(E,F ). We have to show that it can
be written as T =

∑
n λn x

∗
n ⊗ yn with x∗n ∈ oE∗, yn ∈ oF and λ ∈ `1.

Let ε > 0. Choose Tn with dimTn(E) ≤ 2n and ‖T − Tn‖ ≤ (1 + ε) a2n(T ). Let
Dn := Tn+1 − Tn. Then dn := dimDn(E) ≤ 3 · 2n and since an(T ) → 0 we have
‖T −Tn‖ → 0, hence T =

∑∞
n=0Dn. By 3.56 we have T =

∑∞
n=0

∑dn
j=1 λn,j x

∗
n,j⊗

yn,j , with x∗n,j ∈ oE∗, yn,j ∈ oF and 0 ≤ λn,j ≤ ‖Dn‖. We estimate as follows∑
n

dn∑
j=1

λn,j ≤
∑
n

dn ‖Dn‖ ≤ 3
∑
n

2n(‖Tn+1 − T‖+ ‖Tn − T‖)

≤ 3 ·
∑
n

2n(1 + ε)
(
a2n+1(T ) + a2n(T )

)
≤ 3 ·

∑
n

2n+1(1 + ε) a2n(T ) ≤ 22 3 (1 + ε)
∑
n

2n−1 a2n(T )

≤ 22 3 (1 + ε)
∑
n

an(T ) (since an(T ) is decreasing)

to conclude that (λn,j)n,j ∈ `1.

3.58 Lemma (See [MV92, 28.14 p.334], [Jar81, 21.6.1 p.496]).
Diagonal operators on `p (for 1 ≤ p <∞) are nuclear iff they have `1 coefficients.

Cf. 3.10 and 3.11 .

Proof. (⇐) obvious, since D =
∑
n dn evn⊗en with ‖en‖`p = 1 = ‖ evn ‖`q

(⇒) Let a(n) ∈ `q = (`p)∗, b(n) ∈ `p with
∑
n ‖a(n)‖`q · ‖b(n)‖`p < ∞ and D(x) =∑

n a
(n)(x) b(n) for all x ∈ `p. With x := ek we get dk = D(ek)k =

∑
n a

(n)
k · b(n)

k

and hence ‖d‖`1 =
∑
k |dk| ≤

∑
k,n |a

(n)
k | · |b

(n)
k | ≤

∑
n ‖a(n)‖`q · ‖b(n)‖`p < ∞ by

the Hölder-inequality.

We will apply this to the connecting mappings ιkn : λk → λn for the Köthe-sequence
spaces λ = λp(A) with 1 ≤ p ≤ ∞. Only the case p = ∞ needs special attention
(see 1.13 ): Let the diagonal operator D := ιkn : λk → λn be nuclear. Then
D|c0 : c0 ↪→ λk → λn ↪→ `∞ is nuclear, so a(n) ∈ `1 = (c0)∗ and b(n) ∈ `∞ and
hence the same proof as above for p = 1 shows that the diagonal d of D is absolutely
summable.

3.59 Proposition. Factorization property of N
(See [Kri07a, 5.6 p.119], [Jar81, 17.3.2 p.377]).
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A map T : E → F between Banach spaces is nuclear iff there are continuous linear
operators S : E → `∞ and R : `1 → F such that T factors as diagonal operator
D : `∞ → `1 with diagonal d ∈ `1, i.e.

E
T //

S

��

F

`∞
D
// `1

R

OO

Proof. (⇒) Let T be represented by
∑
k dk x

∗
k⊗yk with ‖x∗k‖E∗ ≤ 1, ‖yk‖F ≤ 1 and

d ∈ `1. Then S(x) := (x∗k(x))k and R((µk)k) :=
∑
k µk yk define linear operators

S : E → `∞ and R : `1 → F of norm ≤ 1 and T = R ◦D ◦ S, where D : `∞ → `1

denotes the diagonal operator, with diagonal (dk)k.

(⇐) Since the nuclear operators form an ideal, it is enough to show that such
diagonal operators D : (µk)k 7→ (dkµk)k, D : `∞ → `1 are nuclear, which is clear
since they can be represented by

∑
k dkx

∗
k ⊗ yk, where x∗k := ek ∈ `1 ⊆ (`∞)∗ and

yk := ek ∈ `1.

3.60 Lemma. N ⊆ K (See [Kri07a, 5.7], [Jar81, 17.3.4 p.379]).
Every nuclear operator is compact.

Proof. Let T be a nuclear mapping. Since the compact mappings form an ideal,
we may assume by 3.59 that T is a diagonal-operator `∞ → `1 with absolutely
summable diagonal (λk)k. Such an operator is compact, since the finite sub-sums∑
k≤n λk ek⊗ek define finite dimensional operators, which converge to T uniformly

on the unit-ball of `∞.

3.61 Lemma (See [Kri07a, 5.19], [Jar81, 19.5.1 p.428]).
Every p-summing operator induces a continuous linear map from `p[E] → `p{F}.
Thus we may consider the space Sp(E,F ) of p-summing operators as normed sub-
space of the space L(`p[E], `p{F}).

Here we consider the space `p{F} supplied with the norm

‖(yk)k‖π :=
(∑

k

‖yk‖pF
)1/p

.

As in 3.42 one can show that `p{F} is complete (see [Jar81, 19.4.1 p.426]). For
p > 1 it is however not isomorphic to `p⊗̂πF . Otherwise we would obtain for
E = `p, that `p⊗̂π`p = `p{`p} = `p(N× N), which is not the case..

On `p[E] we consider the operator norm of L(`q, E) (see 3.43 ):

‖(xk)k‖ε := sup
{(∑

k

|x∗(xk)|p
)1/p

: x∗ ∈ E∗, ‖x∗‖ ≤ 1
}
.

It is obvious, that the inclusion `p{E} → `p[E] is a contraction (i.e. has norm ≤ 1).

Proof. Let T : E → F be a p-summing operator. We will apply the closed graph
theorem to T∗ : `p[E] → `p{E}, (xn)∞n=1 7→ (T (xn))∞n=1, so consider x(k) → x in
`p[E] with T∗(x(k)) → y in `p{F}. Since obviously ‖T∗(z)‖ε ≤ ‖T‖ · ‖z‖ε with
respect to the operator norms ‖ ‖ε, we get ‖y − T∗(x)‖ε ≤ ‖y − T∗(x(k))‖ε +
‖T∗(x(k)−x)‖ε ≤ ‖y−T∗(x(k))‖π + ‖T‖ ‖x(k)−x‖ε → 0, and hence T∗(x) = y.
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3.62 Corollary (See [Kri07a, 5.20], [Jar81, 19.5.2 p.428]).
An operator T : E → F is p-summing iff there exists a R > 0 such that

‖(Tx(k))k‖π :=
(∑

k

‖Tx(k)‖p
)1/p

≤ R· sup
‖x∗‖≤1

(∑
k

|x∗(x(k))|p
)1/p

=: R·‖(x(k))k‖ε.

for all finite sequences (x(k))k. The smallest such R is the norm of T∗ : `p[E] →
`p{F}, and is also denoted ‖T‖Sp . Consequently, N1 ⊆ S1.

Proof.
(⇒) By 3.61 we have that T∗ is continuous, and hence the required property holds
with R := ‖T∗‖ and all (even the infinite) sequences in `p[E].

(⇐) For x = (x(k))k ∈ `p[E] we have ‖(Tx(k))k‖π = supm
(∑m

k=1 ‖Tx(k)‖p
)1/p ≤

R · ‖(x(k))k≤m‖ε ≤ R · ‖(x(k))k‖ε <∞ and hence (Tx(k))k ∈ `p{F}.

(N1 ⊆ S1) by 3.59 , since any diagonal operator D : `∞ → `1 with diagonal d ∈ `1
is 1-summing:

m∑
k=1

‖Dx(k)‖`1 =
∑
k

∑
j

|dj x(k)
j | =

∑
j

|dj |
∑
k

|x(k)
j | ≤ ‖d‖`1 sup

j

∑
k

| evj(x(k))|

≤ ‖d‖`1 sup
{∑

k

|x∗(x(k))| : x∗ ∈ (`∞)∗, ‖x∗‖ ≤ 1
}
.

3.63 Proposition (See [Kri07a, 5.21], [Jar81, 19.5.4 p.430]).
For p ≤ q we have Sp ⊆ Sq.

Also Np ⊆ Nq can be shown under the same assumption, see [Jar81, 19.7.5 p.437].

Proof. Let T ∈ Sp and let r ≥ 0 be given by 1
r + 1

q = 1
p . Let λk := ‖Txk‖q/r.

Then ‖Txk‖ = λ
r/q
k and hence ‖T (λkxk)‖p = ‖λkT (xk)‖p = λpk · ‖Txk‖p =

‖Txk‖p(
q
r+1) = ‖Txk‖q and so the Hölder’s inequality (cf. the proof of 3.53 )

shows that(∑
k

‖Txk‖q
)1/p

=
(∑

k

‖T (λkxk)‖p
)1/p

=
∥∥(T (λkxk))k

∥∥
π

≤ ‖T‖Sp ·
∥∥(λkxk)k

∥∥
ε

= ‖T‖Sp · sup
‖x∗‖≤1

(∑
k

|x∗(λpk xk)|p
)1/p

≤ ‖T‖Sp ·
(∑

k

λrk

)1/r
· sup
‖x∗‖≤1

(∑
k

|x∗(xk)|q
)1/q

≤ ‖T‖Sp ·
(∑

k

‖Txk‖q
)1/r

· sup
‖x∗‖≤1

(∑
k

|x∗(xk)|q
)1/q

Dividing by
(∑

k ‖Txk‖q
)1/r

=
(∑

k ‖Txk‖q
)1/p−1/q

gives(∑
k

‖Txk‖q
)1/q

≤ ‖T‖Sp · sup
‖x∗‖≤1

(
|x∗(xk)|q

)1/q
.

Thus T ∈ Sq by 3.62 .

3.64 Lemma. Summing via measures
(See [Kri07a, 5.22], [Jar81, 19.6.1 p.431]).
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An operator T is p-summing iff there exists some probability measure µ on the
compact unit ball oE∗ and an M > 0 such that

‖Tx‖ ≤M ·
(∫

oE∗
|x∗(x)|p dµ(x∗)

)1/p
.

Proof. Note that the right hand side is nothing else but M · ‖δ(x)‖p, where
δ : E � C(oE∗).
(⇐) If µ is a probability measure (i.e. µ(oE∗) = 1) with that property, then∑
k

‖Txk‖p ≤Mp

∫
oE∗

∑
k

|x∗(xk)|p dµ(x∗) ≤Mp · sup
{∑

k

|x∗(xk)|p : x∗ ∈ oE∗
}
.

So T ∈ Sp by 3.62 .
(⇒) Let T ∈ Sp(E,F ). For every finite sequence x = (x1, . . . , xm) in E let fx ∈
C(oE∗) be defined by

fx(x∗) := ‖T‖pSp ·
∑
i

|x∗(xi)|p −
∑
i

‖Txi‖p =
∑
i

(
‖T‖pSp · |x

∗(xi)|p − ‖Txi‖p
)
.

The set B := {fx : x ∈ E(N)} is convex in C(oE∗). In fact let x and y be two
finite sequences in E and λ + µ = 1 with λ ≥ 0 and µ ≥ 0. Let z be the sequence
obtained by appending µ1/py to λ1/px. Then

(λfx + µfy)(x∗) =
∑
i

λ
(
‖T‖pSp |x

∗(xi)|p − ‖Txi‖p
)

+

+
∑
j

µ
(
‖T‖pSp |x

∗(yj)|p − ‖Tyj‖p
)

=
∑
i

(‖T‖pSp)|x∗(λ1/pxi)|p − ‖T (λ1/pxi)‖p+

+
∑
j

(‖T‖pSp)|x∗(µ1/pyj)|p − ‖T (µ1/pyj)‖p

=
∑
k

(‖T‖pSp)|x∗(zk)|p − ‖T (zk)‖p = fz(x∗).

By 3.62 we have that supx∗∈oE∗ fx(x∗) ≥ 0. Thus the open set A := {f ∈
C(oE∗) : supx∗∈oE∗ f(x) < 0} is disjoint from B. So by the consequence [Kri07b,
7.2.1] of Hahn-Banach there exists a regular Borel measure µ on oE∗ and a constant
α such that 〈µ, f〉 < α ≤ 〈µ, g〉 for all f ∈ A and g ∈ B. Since 0 ∈ B we have α ≤ 0.
Since A contains the constant negative functions we have α = 0 and µ(oE∗) > 0.
Without loss of generality we may assume ‖µ‖ = 1. Hence for every x ∈ E we have

0 ≤ 〈µ, fx〉 =
∫
oE∗

(
‖T‖pSp |x

∗(x)|p − ‖Tx‖p
)
dµ(x∗)

and thus ‖Tx‖p ≤ ‖T‖pSp ·
∫
oE∗
|x∗(x)|p dµ(x∗).

3.65 Theorem. Factorization of absolutely 2-summing operators
(See [Kri07a, 5.24], [Jar81, 19.6.4 p.433]).
The operators T in S2 are characterized by the existence of a compact space K and
a measure µ on K such that we have the following factorization:

E
T //

��

F

C(K) �
� i // L2(µ)

OO

andreas.kriegl@univie.ac.at c© July 1, 2016 45



3.67 Operator ideals

Proof. (⇐) It is enough to show that the canonical mapping ι : C(K)→ L2(µ) is
absolutely 2-summing. So let δx be the point measure at x. Then for finitely many
fk ∈ C(K) we have∑

k

‖ι(fk)‖2`2 =
∫
K

∑
k

|fk(x)|2 dµ(x) =
∫
K

∑
k

|δx(fk)|2 dµ(x)

≤ µ(K) · sup
{∑

k

|ν(fk)|2 : ν ∈ C(K)∗, ‖ν‖ ≤ 1
}
,

hence the natural mapping ι belongs to S2 by 3.62 .

(⇒) By 3.64 there is some probability measure µ ∈M(oE∗) such that

‖Tx‖ ≤M ·
(∫

oE∗
|x∗(x)|2 dµ(x∗)

)1/2
.

The map δ : E → C(oE∗), x 7→ evx, is isometric. Now consider the diagram

E
T //

_�

δ

��

S ## ##

F

H

R

<<

� q

""

1
// H

R

OO

C(oE∗) ι // L2(µ)

P

OO

where H denotes the closure of the image of ι◦δ in L2(µ). The operator T factorizes
via a continuous linear operator R : H → F , since ‖Tx‖ ≤M · ‖ι(δ(x))‖`2 for some
M > 0. Using the ortho-projection P : L2(µ) → H we get the factorization
R ◦ P ◦ (ι ◦ δ) = R ◦ ι ◦ δ = R ◦ S = T .

3.66 Proposition (See [Kri07a, 5.31], [Jar81, 20.5.1 p.467]).
For Hilbert spaces we have S2 ⊆ A2.

Proof.

For orthonormal families ek and fk and T ∈ S2 we have by 3.61(∑
k

‖Tek‖2
)1/2

≤ ‖T‖S2 · sup
‖x‖≤1

(∑
k

|〈x, ek〉|2
)1/2

≤ ‖T‖S2 .

And by the Cauchy-Schwarz inequality |〈Tek, fk〉| ≤ ‖Tek‖ · ‖fk‖ = ‖Tek‖ we get∑
k |〈Tek, fk〉|2 ≤

∑
k ‖Tek‖2 < ‖T‖2S2

<∞, hence T ∈ A2 by 3.54 .

3.67 Overview. One has the following inclusions for 1 < p < q <∞:

A1
� �

3.57
//

_�

obvious
��

N1
� �

3.62
////

_�

[Jar81, 19.7.5 p.437]
��

S1� _

3.63
��

Ap
_�

obvious
��

Np
_�

[Jar81, 19.7.5 p.437]
��

� � [Jar81, 19.7.8 p.438] // Sp� _
3.63
��

Aq Nq �
� [Jar81, 19.7.8 p.438] // Sq
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For Hilbert spaces one has the following results for 1 < p <∞:

A1
[Jar81, 20.2.5 p.456]

� _

��

N1
� � //
_�

��

S1

[Jar81, 20.5.1 p.467]

A2
[Jar81, 20.5.1 p.467]

� _

��

Np
[Jar81, 20.5.1 p.467]

[Jar81, 20.5.1 p.467]

Sp
� _

��
A∞ N∞ �

� // S∞

Nuclear spaces

In this section we characterize nuclear spaces in several ways and we prove their
inheritance properties We show that the nuclear (Fréchet) spaces are exactly the
(closed) subspaces of products of (countable many) copies of s.

3.68 Definition.
A linear mapping T : E → F between lcs is called nuclear operator (See [Jar81,
17.3 p.376], [Kri07a, 5.6]) iff there exist {an : n ∈ N} ⊆ E∗ equicontinuous, B a
Banach disk, bn ∈ B, and λ ∈ `1 with

Tx =
∞∑
n=1

λn an(x) bn for all x ∈ E.

This is exactly the case, iff there is an absolutely convex 0-neighborhood U ⊆ E and
a Banach disk B ⊆ F , such that T factors over a nuclear mapping T̃ : ÊU → FB ,
i.e.

E
T //

��

F

ẼU
T̃

// FB

OO

The nuclear mappings form an ideal: For composition from the left side with some
R replace bn by R(bn), and from the right side replace an by an ◦R = R∗(an) (Note
that an ∈ Uo ⇒ R∗(an) ∈ (R−1(U))o).

3.69 Proposition (See [Jar81, 17.3.8 p.380]).
Let T : E → F be nuclear and G any lcs. Then T ⊗ G : E ⊗ε G → F ⊗π G is
continuous.

Note, that as for any bifunctor we denote with T ⊗G the morphism T ⊗ idG.

Proof. We may represent T =
∑
n λn an ⊗ bn with an ∈ Uo for some 0-nbhd.

U and bn ∈ B, a Banach-disk. Let V ⊆ F and W ⊆ G be 0-nbhds and let
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ρ := sup{qV (b) : b ∈ B}. For w =
∑k
j=1 xj ⊗ zj ∈ E ⊗G we get

(T ⊗G)(w) =
k∑
j=1

T (xj)⊗ zj =
∑
j,n

λn an(xj) bn ⊗ zj

=
∑
n

λn bn ⊗
∑
j

an(xj) zj and hence

πV,W

(
(T ⊗G)(w)

)
= πV,W

( ∞∑
n=1

λn bn ⊗
( k∑
j=1

an(xj)zj
))

≤
∞∑
n=1
|λn| qV (bn) sup

{∣∣∣ k∑
j=1

an(xj)z∗(zj)
∣∣∣ : z∗ ∈W o

}

≤ ρ
∞∑
n=1
|λn| sup

{∣∣∣ k∑
j=1

x∗(xj)z∗(zj)
∣∣∣ : x∗ ∈ Uo, z∗ ∈W o

}
≤ ρ ‖λ‖`1 εU,W (w).

3.70 Theorem. Characterizing nuclear spaces in multiple ways
(See [Kri07a, 6.17], [Jar81, 21.2.1 p.482]).
Let 1 ≤ p <∞. Then

1. E is nuclear;
⇔ 2. E ⊗π F = E ⊗ε F for every Banach space F ;
⇔ 3. E ⊗π `1 = E ⊗ε `1;
⇔ 4. `1{E} = `1〈E〉 topologically;
⇔ 5. `1{E} = `1[E] topologically;
⇔ 6. The connecting maps of the projective representation can be chosen abso-

lutely summing (or Sp);
⇔ 7. The connecting maps of the projective representation can be chosen nuclear

(or Np);
⇔ 8. The connecting maps of the projective representation can be chosen 1-approximable

(or Ap);
⇔ 9. Every continuous linear map into a Banach space is nuclear.

Proof. We give the proof for 1 ≤ p ≤ 2 only. For the general case one needs in
addition that Sp ◦ Sq ⊆ Sr (see [Jar81, 19.10.3 p.446]) and N1 ⊆ Np ⊆ Sp (see
[Jar81, 19.7.5 p.437] and [Jar81, 19.7.8 p.438]).

( 1 ⇒ 2 ⇒ 3 ) and ( 5 ⇒ 4 ⇒ 3 ) are obvious by 3.42 and 3.50 .

( 3 ⇒ 6 ) From ( 3 ) we obtain that `1〈Ẽ〉 ∼= `1{Ẽ}. Thus for every U ⊆ E there
exists a V ⊆ E and a δ > 0 such that πU ≤ δ εV , where

πU
(
(xk)k

)
:=
∑
k

pU (xk)

is the semi-norm associated to U on `1⊗̂πE ∼= `1{E}, see 3.42 , and where

εV ((xk)k) := sup
{∑

k

|y∗(xk)| : y∗ ∈ V o
}

is the semi-norm associated to U on L(c0, F ) = `1[E] and hence on the subspace
`1〈E〉 ∼= `1⊗̂εE, see 3.50 . From this it follows by 3.62 that the connecting map
is absolutely summing.
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( 6 ⇒ 5 ) For every U we can find by assumption a V such that the connecting
map ιVU : EV → EU is absolutely summing. Hence if (xk)k ∈ `1[E], then the images
are in `1[ẼV ] and hence in `1{ẼU}. Moreover, by 3.62

πU
(
(xk)k

)
:=

n∑
k=1

pU (xk) =
n∑
k=1

∥∥ιVU (ιV (xk))
∥∥
U
≤

≤ ‖ιVU‖S1 · sup
{∑

k

|x∗(xk)| : x∗ ∈ V o
}

=: ‖ιVU‖S1 · εV ((xk)k),

Since U was arbitrary we have ( 5 ).

( 7 ⇒ 1 ) By assumption for every U there exists a U ′ such that the connecting
map ιU

′

U is nuclear. By 3.69 we have that ιU ′U ⊗ F̃V : ẼU ′ ⊗ε F̃V → ẼU ⊗π F̃V is
continuous. Thus πU,V ≤ c · εU ′,V for some c > 0, i.e. E⊗ε F = E⊗π F . Recall the
corresponding norms on EU ⊗π EV and on EU ⊗ε EV :

πU,V (z) := inf
{∑

k

pU (xk) pV (yk) : z =
∑
k

xk ⊗ yk
}

and

εU ′,V

(∑
k

xk ⊗ yk
)

:= sup
{∣∣∣∑

k

x∗(xk) y∗(yk)
∣∣∣ : x∗ ∈ (U ′)o, y∗ ∈ V o

}
( 6 ⇔ 7 ⇔ 8 ) Now let us show that for all mentioned ideals it is the same to
assume that the connecting mappings belong to them.
In fact, we have A1 ⊆ N1 ⊆ S1 ⊆ Sp ⊆ S2 for 1 ≤ p ≤ 2 by 3.57 , 3.62 , 3.63 .
The composite of three S2 maps belongs to A2, since the following diagram shows
that it factors over a map between Hilbert spaces (see 3.65 ) of class S2 ⊆ A2 (by
3.66 ):

E3
S2 //

##

E2
S2 // E1

S2 //

##

E0

L2(µ3)

;;

S2⊆A2 // L2(µ1)

;;

Since (A2)2 ⊆ A1 by 3.53 we have that (S2)6 ⊆ A1. Now choose for a given
seminorm p successively p6 ≥ p5 ≥ · · · ≥ p1 ≥ p such that the connecting maps all
belong to S2. Then the connecting mapping Ẽp6 → Ẽp belongs to A1.

( 7 ⇔ 9 ) Recall that a map T : E → F with values in a Banach
space is called nuclear (see 3.68 and 3.59 ), iff it factors over
a nuclear map T1 : E1 → F on some Banach space E1. In fact,
for E1 we may choose ẼU for some 0-neighborhood U . Now we
can proceed as for the corresponding result 3.30 for compact
mappings and Schwartz spaces.

E
T //

ιV
�� ιU !!

F

ẼV
ιVU

// ẼU

T̃

OO

3.71 Characterizing nuclear (F) spaces via summable sequences
(See [Kri07a, 6.18], [Jar81, 21.2.4 p.483]).
A Fréchet space is nuclear iff `1{E} = `1[E] (or `1{E} = `1〈E〉) holds algebraically.

Proof. Since `1{E} and `1〈E〉 are Fréchet spaces it follows from the closed graph
theorem that the identity is a homeomorphism.

3.72 Corollary. Nuclear spaces have a basis of Hilbert seminorms
(See [MV92, 28.1 p.325], [Kri07a, 6.19.1]).
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Proof. By what we have shown in the proof of ( 6 ⇒ 8 ) in 3.70 using 3.65
every natural mapping E → Ep factors over some Hilbert-space H. Taking the
norm q of the Hilbert-space, we get a continuous seminorm E → H −q→ R, which
dominates p.

3.73 Inheritance properties for nuclear and Schwartz spaces
(See [Kri07a, 6.21], [Jar81, 21.2.3 p.500], [Jar81, 21.1.7 p.481]).
Both the nuclear and the Schwartz spaces are stable with respect to:

1. products, (See [MV92, 28.7 p.328], [Kri07a, 6.21], [Jar81, 21.1.3 p.479],
[Jar81, 21.1.4 p.480])

2. subspaces, (See [MV92, 28.6 p.328], [Kri07a, 6.21], [Jar81, 21.1.5 p.481],
[Jar81, 21.1.6 p.481])

3. countable coproducts, (See [MV92, 28.7 p.328], [Kri07a, 6.21], [Jar81,
21.1.3 p.479], [Jar81, 21.1.4 p.480])

4. quotients, (See [MV92, 28.6 p.328], [Kri07a, 6.21], [Jar81, 21.1.5 p.481],
[Jar81, 21.1.6 p.481])

5. completions, (See [Jar81, 21.1.2 p.481])
6. projective tensor products, (See [Jar81, 15.6.5 p.337])

Proof.

( 1 ) A typical seminorm on E :=
∏
iEi is of the form p : x 7→ maxi∈A pi(xi), where

A is finite and pi are seminorms on Ei. Obviously Ẽp =
∏
i∈A (̂Ei)pi . For every pi

we can find a seminorm qi ≥ pi such that the canonical mapping (̂Ei)qi → (̂Ei)pi
is precompact/nuclear. Then the canonical mapping

∏
i∈A (̂Ei)qi →

∏
i∈A (̂Ei)pi is

precompact/nuclear, in fact a finite product
∏
i∈A Ti can be written as

∑
i∈A inji ◦Ti◦

pri and hence belongs to the considered ideal. Thus we may use q := maxi∈A qi as
the required seminorm.

( 2 ) First for Schwartz spaces. Let E be a subspace of F . The seminorms on E are
the restrictions of seminorms p on F . Let q ≥ p be a seminorm such that Fq → Fp
is precompact. Since Ep|E → Fp is an embedding (ker p|E = ker p∩E) we have the
diagram:

Eq|E
//

_�

��

Ep|E
_�

��
Fq // Fp

Since the bottom arrow is precompact, the same is true for the top arrow.

Now for nuclear spaces. The corresponding proof will not work for nuclear map-
pings, but for absolutely summing mappings, since the ideal S1 is obviously injec-
tive, i.e. if T : E → F1 ↪→ F belongs to S1 and F1 is a closed subspace of F , then
T : E → F1 belongs to S1, since `1{F1} = `1{F} ∩ FN1 .

( 3 ) First for Schwartz spaces. Recall that a basis of seminorms on a countable co-
product E =

∐
k Ek is given by supk pk, where the pk run through the seminorms of

Ek and supk pk : (xk)k 7→ supk pk(xk). By assumption we can find seminorms qk ≥
pk such that the connecting map Tk : (Ek)qk → (Ek)pk is precompact. Furthermore
we may assume that its norm is less than 1

2k , by replacing qk with 2k‖Tk‖qk.
Now the following diagram shows that we get a natural bijection

∐
k(Ek)pk ∼=
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(
∐
k Ek)supk pk which is an isometry if we supply

∐
k(Ek)pk with the norm (xk)k 7→

sup{pk(xk) : k}, and analogously for the qk.

ker(supk pk)
_�

��

∐
k ker(pk)
_�

��∐
k Ek

supk pk ''

����

∐
k Ek

`
k pkww

����

R
∐
k R

supoo

(
∐
k Ek)supk pk

oo ∼= //

77

∐
k(Ek)pk

gg

Up to these isometries the connecting map is nothing else but

T :=
∐
k

Tk :
∐
k

(Ek)qk →
∐
k

(Ek)pk .

Since the finite subsums
∐
k≤n Tk converge uniformly to

∐
k Tk on the unit-ball with

respect to p = supk pk and are precompact operators by the result on products,
hence so is the infinite sum.

Now for nuclear spaces. We proceed as before using that the connecting mappings
Tk can be chosen of the form Tk =

∑
j(λk)j(x∗k)j⊗(yk)j with λk ∈ `1 and sequences

x∗k ∈ o((Ek)qk)o and yk ∈ o((Ek)pk). By replacing qk by ‖λk‖1 2kqk, we have that
(λ1, λ2, . . . ) ∈ `1 and hence the connecting mapping T admits the representation∑
k,j(λk)j(x∗k)j ⊗ (yk)j , where (x∗k)j can be extended to the corresponding space,

since (Ek)qk embeds isometrically into it.

( 4 ) First for Schwartz spaces. Let F := E/N , where N is a closed subspace and
let π : E → F denote the quotient mapping. Let p̃ be a seminorm on F . By
assumption there exists a seminorm q on E with q ≥ p̃◦π and such that Eq → Fp̃◦π
is precompact. Let q̃ be the corresponding quotient semi-norm on F , see [Kri07b,
4.3.3]. Then q ≥ q̃ ◦ π ≥ p̃ ◦ π. Now the following diagram shows that we get a
natural isometry Ep̃◦π ∼= Ep̃ and similarly for q̃.

kerπ �
� // ker(p̃ ◦ π)

_�

��

π−1(ker p̃) // // ker p̃
_�

��
N �
� // E

π // //

����

p̃◦π

''

F
p̃

xx

����

R

Ep̃◦π

p̃◦π
77

// ∼= // // Fp̃

p̃

ee

Another argumentation for the same result would be an application of the isomorphy-
theorem F/ ker p̃ ∼= (E/N)/(ker(p̃ ◦ π)/N) ∼= E/ ker(p̃ ◦ π).
Hence we have the diagram:

Fq̃ // Fp̃

Eq // //

== ==

Eq̃◦π // //

∼=

OO

Ep̃◦π.

∼=

OO

Note that connecting morphisms are always quotient
maps, since the projections E → Eq are. So the di-
agonal arrow is open, since it is up to the vertical
isomorphism the connecting map Eq → Eq̃◦π. Hence
the image of the unit ball in Eq is a 0-nbhd in Fq̃
whose image is precompact in Ep̃◦π ∼= Fp̃.
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Now in order that this proof works also for nuclear spaces, we can use the following:
It is enough to consider the situation, where E � E1 → F is nuclear, E � E1 is a
quotient map and E a Hilbert space (by 3.72 ). But then the sequence E2 � E �
E1 splits, where E2 is the kernel of the quotient map E � E1, and hence E1 → F
can be written as E1 ↪→ E � E1 → F and thus is nuclear.

( 5 ) Use that Ẽq = ˜̃Eq̃,
where q̃ denotes the unique
extension of q to a seminorm
on Ẽ.

ker q
_�

��

E ∩ ker q̃ �
� // ker q̃

_� ��
E

����

� � // //

q ))

Ẽ

q̃uu

����
R

Eq
� � // //

q
66

Ẽq̃

q̃
hh

( 6 ) First for Schwartz spaces. Recall that the typical 0-neighborhoods of E ⊗π F
are the absolutely convex hulls U1 ⊗ U2 of {u1 ⊗ u2 : u1 ∈ U1, u2 ∈ U2}, where
the Ui are absolutely convex 0-neighborhoods in Ei. By assumption there are 0-
neighborhoods Vi ⊆ Ui in Ei such that for every 0 < ε ≤ 1 there is a finite set Bi
such that Vi ⊆ Bi + εUi. Taking intersection with Ui shows that Vi ⊆ (Bi + εUi)∩
Ui ⊆ (Bi∩2Ui+εUi). In fact b+ε u ∈ Ui implies that b ∈ Ui−ε u ⊆ Ui−Ui ⊆ 2Ui.
Thus we may assume that Bi ⊆ 2Ui. Now we have that

V1 ⊗ V2 ⊆ B1 ⊗B2 + εB1 ⊗ U2 + εU1 ⊗B2 + ε2 U1 ⊗ U2

⊆ B1 ⊗B2 + (2ε+ 2ε+ ε2)U1 ⊗ U2.

So let V := 1
5 V1 ⊗ V2 ⊆ 1

4+ε V1 ⊗ V2 and B := 1
4+ε B1 ⊗ B2. Then V ⊆ B + εU .

Since B is the absolutely convex hull of a finite set, it is precompact, hence we can
find a finite set B0 such that B ⊆ B0 + εU , and so V ⊆ B0 + 2εU .
For nuclear spaces E and F we take an arbitrary lcs G and calculate as follows:

(E ⊗π F )⊗ε G
E nucl.∼= (E ⊗ε F )⊗ε G ∼= E ⊗ε (F ⊗ε G)
F nucl.∼= E ⊗ε (F ⊗π G)

E nucl.∼= E ⊗π (F ⊗π G) ∼= (E ⊗π F )⊗π G.

3.74 Nuclearity of λp(A) (See [MV92, 28.16 p.335]).
Let A = {a(k) : k ∈ N} be countable. Then

1. ∃p ∈ [1,∞]: λp(A) (N);
⇔ 2. ∀p ∈ [1,∞]: λp(A) (N);
⇔ 3. c0(A) (N);
⇔ 4. ∃p, q : 1 ≤ p < q ≤ ∞ und λp(A) = λq(A);
⇔ 5. ∀p, q : 1 ≤ p < q ≤ ∞ ⇒ λp(A) = λq(A);
⇔ 6. ∀k ∃m ≥ k: ‖a(k)/a(m)‖1 <∞.

Proof. ( 2 ⇒ 3 ) λ∞(A) (N) ⇒ λ∞(A) is (S) by 3.60 and hence (M) by 3.31
⇒ λ∞(A) = c0(A) by 3.28 .

( 1 ⇒ 6 ) and ( 3 ⇒ 6 ) follows for p < ∞ from 3.58 for the diagonal operators
D ∼= ιmk on `p resp. c0, hence also for λ∞(A) = c0(A).

( 6 ⇒ 2 ) follows from 3.58 for p <∞. By 3.59 the diagonal operator `∞ → `1

with diagonal d = a(k)/a(m) ∈ `1 is nuclear and hence its composite λm ↪→ `∞ →
`1 → `∞ is nuclear and thus absolutely summming, and so also the connecting
homomorphism λm → λk is absolutely summing.
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( 2 ⇒ 1 ) obvious.

( 4 ⇔ 5 ⇔ 6 ) follows from 1.25

One can show the following:

3.75 Theorem of Dynin-Mityagin
(See [MV92, 28.12 p.332], [Jar81, 21.10.1 p.510]).
For nuclear Fréchet spaces ((NF) for short) each Schauder-basis is absolute (recall
1.17 ).

3.76 Corollary (See [MV92, 28.13 p.334]).
Each (NF) space with Schauder-basis (ej)j is isomorphic to λ1(A), where

A := {j 7→ ‖ej‖k : k ∈ N}.

Proof. This is a direct consequence of 3.75 and 1.21 .

It was open for a long time whether all (NF) spaces have a Schauder-basis. The
first counter-example was given in [MZ74], see [Jar81, 21.10.9 p.516] for a sim-
pler counter-example. Rather recently it was shown in [DV00] that the complete
ultra-bornological nuclear space Cω(R,R) of real-analytic functions does not have
a Schauder-basis.

3.77 Theorem of Grothendieck-Pietsch
(See [MV92, 28.15 p.334] ([Jar81, 21.6.2 p.497])).
A nuclearity criterium for (F) with Schauder-basis (ej)j∈N is:

∀k ∃m ≥ k :
∑
j

‖ej‖k
‖ej‖m

<∞.

Proof. (⇒) Let E be (NF) with a Schauder-basis (ej)j . Then E ∼= λ1({a(k) :
k ∈ N}) with a

(k)
j := ‖ej‖k by 3.76 and thus the claimed condition is satisfied by

3.74 .

(⇐) For any continuous seminorm p choose p′ with
∑
j
p(ej)
p′(ej) <∞. By 1.19 there

exists a p′′ and C > 0 such that

∀x∀j : |ξj(x)| p′(ej) ≤ C p′′(x),

where ξj are the coefficient functionals. Then ξj factors (for p′(ej) 6= 0) over
ιp′′ : E � Ep′′ to a ξ̃j ∈ (Ep′′)∗. Thus D : Ep′′ → Ep, x 7→

∑∞
j=0 ξ̃j(x) ιp(ej), is a

nuclear mapping, since
∞∑
j=0
‖ξ̃j‖ ‖ιp(ej)‖ =

∞∑
j=0

sup{|ξj(x)| : p′′(x) ≤ 1} p(ej) ≤ C
∞∑
j=0

p(ej)
p′(ej)

<∞.

Thus the connecting mapping ιp′′p is nuclear, since it equals D:

(D ◦ ιp′′)(x) =
∞∑
j=0

ξ̃j
(
ιp′′(x)

)
ιp(ej) =

∞∑
j=0

ξj(x) ιp(ej)

= ιp

( ∞∑
j=0

ξj(x) ej
)

= (ιp
′′

p ◦ ιp′′)(x).
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3.78 Nuclearity of power series spaces λR(α)
(See [MV92, 29.6 p.344], [Jar81, 21.6.3 p.497]).

1. λ∞(α) is nuclear ⇔ supn
log(n)
αn

<∞.

2. λ0(α) is nuclear ⇔ limn
log(n)
αn

= 0.

Proof. ( 1 ) λ∞(α) nuclear⇐
3.74

====⇒ ∃t > 0 : C :=
∑
n e
−tαn <∞

(⇒) ⇒ ne−tαn ≤
n∑
j=1

e−tαj ≤ C ⇒ log(n)
αn

≤ log(C)
αn

+ t ≤ log(C)
α0

+ t =: D.

(⇐) sup
n

log(n)
αn

≤ D ⇒ e−Dαn ≤ 1
n
⇒
∑
n

e−2Dαn <∞

( 2 )

λ0(α) is nuclear⇐
3.74

====⇒ ∀t > 0 :
∑
n

e−tαn <∞, now proceed as in ( 1 ).

Example (See [Jar81, 21.6.4 p.498]).
s = λ∞(log(n)) is nuclear and hence also the function spaces in 1.16 ;
λ0(log(n)) is not nuclear, but Schwartz by 3.35 .

3.79 Lemma (See [MV92, 29.7 p.344]).
Let E be (N), p a continuous Hilbert SN, and U := {x : p(x) ≤ 1} its unit-ball.
Then there exists a fast-falling ONB (en)n∈N of E∗Uo , i.e.

∀k ∃V : {nken : n ∈ N} ⊆ V o.

Proof.

E (N) =
3.70.8 , 3.53

===========⇒ ∀k > 0 ∃pk ≥ p, cont. Hilbert SN : ιpkp ∈ A1/k(Epk , Ep)

As in 3.33 : (Ep)∗ ∼= E∗Uo , (Epk)∗ ∼= E∗Uok with Uk := {x : pk(x) ≤ 1}

=
3.54

====⇒ ιk := (ιpkp )∗ : E∗Uo � E∗Uok , ιk ∈ A1/k(E∗Uo , E∗Uok )

y = ιk(y) =
∑
j

a
(k)
j 〈y, e

(k)
j 〉f

(k)
j with

(e(k)
j )j ON in E∗Uo , (f (k)

j )j ON in E∗Uok ,

(a(k)
j )j ↓, C1/k :=

∑
j

(a(k)
j )1/k <∞.

⇒ m(a(k)
m )1/k ≤

m∑
j=1

(a(k)
j )1/k ≤ C1/k, d.h. a(k)

m ≤ C/mk

und (e(k)
j )j ONB in E∗Uo , da ιk inj.

Let (ẽn)n be the diagonal-enumeration of (e(j)
i )i,j , drop recursively those which

are linearly dependent on ealier ones, and apply Gram-Schmidt to obtain an ONB
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(en)n in E∗Uo . Let n ≥ (2k)2.

∀j <
√
n− k :

∑
i≤j+k

i = 1
2

(j + k)(j + k + 1) < n+
√
n

2
≤ n

⇒ ∀j <
√
n− k : en ⊥ e(k)

j , since then ẽn lies on a diagonal below (j, k)

⇒ jn :=
⌈√

n− k
⌉
≥
√
n

2
(since k ≤

√
n

2
) and ∀j < jn : en ⊥ e(k)

j

⇒
∞∑
j=jn

〈en, e(k)
j 〉 e

(k)
j = en = ιk(en) =

∞∑
j=jn

a
(k)
j 〈en, e

(k)
j 〉 f

(k)
j

⇒ ‖en‖2Uok =
∞∑
j=jn

|a(k)
j 〈en, e

(k)
j 〉|

2 ≤ |a(k)
jn
|2
∞∑
j=jn

|〈en, e(k)
j 〉|

2 ≤

≤ C2

(jn)2k ‖en‖
2
Uo ≤

(2kC)2

nk
=: Ck

nk
for all large n

⇒ (en)n fast falling in E∗.

3.80 Theorem of Komura-Komura
(See [MV92, 29.8 p.346], [Jar81, 21.7.1 p.500]).
Let E be an lcs: E is (N) ⇔ ∃I: E ↪→ sI :=

∏
i∈I s.

Proof. (⇒)

E (N)⇒ ∃(pi)i∈I basis of Hilbert SN, let Ui := {x : pi(x) ≤ 1}

=
3.79

====⇒ ∀i ∃(ein)n fast falling ONB in E∗Uoi

⇒ ∀k ∃Vk : {nkein : n} ⊆ (Vk)o, i.e. ∀x ∈ Vk : sup
n
|nkein(x)| ≤ 1

⇒ fi : E → s, x 7→ (ein(x))n, is continuous
⇒ f := (fi)i∈I : E → sI is continuous.

∀x ∈ E : evx = διi(x) is continuous on the Hilbert space E∗Uoi = (EUi)∗

=[Kri07b, 6.2.9]============⇒ ∃x∗ ∈ E∗Uoi ∀y
∗ ∈ E∗Uoi : 〈x∗, y∗〉 = evx(y∗) = y∗(x)

⇒ ‖fi(x)‖20 :=
∑
n

|ein(x)|2 =
∑
n

|〈x∗, ein〉|2 = ‖x∗‖2E∗
Uo
i

= ‖ evx ‖2 = pi(x)2

⇒ f is an embedding onto f(E) ⊆ sI .

(⇐) s (N), E ↪→ sI =
3.73.1 , 3.73.2

============⇒ E (N).

3.81 Nuclear Fréchet spaces (See [MV92, 29.9 p.346], [Jar81, 21.7.3 p.502]).
E is (NF) ⇔ E is isomorphic to a closed linear subspace of sN.

Proof. (⇐) sN is (NF) by 3.78 and 3.73.1 , thus also E by 3.73.2 .
(⇒) For the (NF) space E exists a countable basis P of Hilbert SN and by the
proof of 3.80 E embedds into sP .

3.82 Remark.
Note that we have the following implications under the assumption on the bottom

andreas.kriegl@univie.ac.at c© July 1, 2016 55



3.82 Nuclear spaces

of the arrow:

nuclear =
3.60

====⇒ Schwartz =
3.31

====⇒
q.-compl.

s.-Montel =
3.22

====⇒ s.-reflexive =
3.17

====⇒ q.-complete.

The converse does not hold even for Fréchet spaces:

nuclear 6⇐=
3.78

===== Schwartz 6⇐=
3.36

===== Montel 6⇐=`
2

== reflexive 6⇐=c0, `1

===== complete.
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4. Duality

Spaces of (linear) functions

In this section we discuss how the hom-functor behaves on (co-)limits.

Let X be a set and B be a bornology on X, i.e. a set of subsets of X containing all
single pointed subsets and with any two sets a set containing their union. For lcs F
let `∞(X,F ) be the linear space of all mappings f : X → F , which are bounded on
each B ∈ B. For continuous seminorms p of F and B ∈ B let pB be the seminorm
on `∞(X,F ) definied by pB(f) := sup p(f(B)). These seminorms describe the
Hausdorff topology of uniform convergence on the sets B ∈ B. Obviously, `∞(B,F )
is as complete as F is for each B ∈ B and hence the same is true for the projective
limit `∞(X,F ) ∼= lim←−B∈B `

∞(B,F ), see [Kri07a, 2.28]. Note that the lcs `∞(X,F )
will not change, iff we add all subsets of sets in B to B.

The space L(E,F ) of bounded linear mappings E → F between lcs (or even from
a convex bornological space into an lcs) is closed in `∞(E,F ), where B are the
bounded subsets of E, and hence has the same completeness properties as F . In
particular, E′ is always complete with respect to β(E′, E). Note that a convex
bornological space (cbs for short) is a linear space together with a bornology,
which is closed under formation of absolutely convex hulls and multiplication with
(say) 2. We will always assume that cbs are separated, i.e. {0} is the only bounded
linear subspace. The von Neumann bornology of all bounded sets of an lcs E
describes a cbs bE and conversely to any cbs F we may associate the finest locally
convex topology tF for which the sets in the given bornology are bounded, i.e.
with the corresponding bornivorous absolutely convex subsets a 0-nbhd basis. See
[Gac04] for more on this concept.

For the space L(E,F ) of continuous linear mappings and for the particular case E∗
these completeness inheritance properties are not valid. However, if E is bornolog-
ical then L(E,F ) = L(E,F ) and E∗ = E′.

More generally the question arrises, whether L( , F ) (or in particular ( )∗) trans-
forms inductive limits into projective ones. By the universal property algebraically
the dual of a colimit is the limit of the duals: The continuous linear mappings
on a colimit E := colimj Ej correspond uniquely to the families of morphisms
fj : Ej → F with (ιjj′)∗(fj) = fj′ ◦ ιjj′ = fj for all j ≺ j′, i.e. which are
compatible with respect to the connecting morphisms ιjj′ : Ej → Ej′ . These
are the elements in the limit of the L(Ej , F ) with connecting mappings (ιjj′)∗ =
L(ιjj′ , F ) : L(Ej′ , F ) → L(Ej , F ). However, this linear (continuous) bijection
L(colimj Ej , F ) → limj L(Ej , F ) is not to be expected an homeomorphism, since
for a typical 0-nbhd. Bo in E∗ = L(E,K) with B ⊆ E bounded, we would have
to find 0-nbhds. Boj in E∗j with Bo ⊇ E∗ ∩

∏
j∈J B

o
j and such that Boj = E∗j

for almost all j. This is possible, if E is a regular inductive limit (i.e. colimj Ej
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4.2 Spaces of (linear) functions

formed in cbs), since then B = ιj(Bj) with Bj ⊆ Ej bounded for some j and hence
Bo ⊇ ((ιj)∗)−1(Boj ), but not in general.
Note, that the representation E = lim−→B

EB of a bornological space is such a regular
inductive limit.
Note furthermore, that if ( )∗ is supplied with the bornology of equicontinuous sets,
then (colimj Ej)∗ = limj E

∗
j in cbs: In fact, let Uo be a typical bounded set in E∗,

i.e. U ⊆ E := colimEj a 0-nbhd. Then each Uj := (ιj)−1(U) ⊆ Ej is a 0-nbhd
and the image of Uo in limj E

∗
j ⊆

∏
j E
∗
j is contained in the bounded set

∏
j(Uj)o,

since |(ιj)∗(u∗)(uj)| = |u∗(ιj(uj))| ≤ 1 for u∗ ∈ U and uj ∈ Uj .
We want to consider inheritance with respect to L or L. If E 6= {0}, then F is
a topological direct summand in L(E,F ) and in L(E,F ): In fact, let 0 6= x ∈ E
and x∗ ∈ E∗ with x∗(x) = 1. Then ι : K → E, λ 7→ λ · x has x∗ : E → K as
left-inverse, and hence L(x∗, F ) : F ∼= L(K, F )→ L(E,F ) has L(ι, F ) : L(E,F )→
L(K, F ) ∼= F as left-inverse and the same works for L. And similary, F ∗ = L(F,K)
is a topological direct summand in L(F,E), via L(F, ι) with left-inverse L(F, x∗)
and the same way F ′ = L(F,K) is a topological direct summand in L(F,E). Thus
in order to show some topological property for L(E,F ) it is reasonable to assume
the property for F and for E∗. Consequently a first step in answering this question
is to consider inheritance with respect to ( )∗.

Completeness of dual spaces

In this section we consider completeness conditions for the (strong) dual and we
introduce the classes of infra-c0-barrelled and of c0-barrelled space in this connec-
tion.

Recall the Banach Steinhaus Theorem [Kri07b, 5.2.6], by which L(E,F ) is sequen-
tially complete if E is barrelled and F is sequentially complete:
Let (fn)n be a Cauchy-sequence in L(E,F ). Then (fn)n∈N is Cauchy pointwise,
hence pointwise convergent to some function f∞ : E → F , which is continuous by
the Banach Steinhaus Theorem. For each bounded B ⊆ E and closed absolutely
convex 0-nbhd U ⊆ F there exists an n with (fn′ − fn′′)(B) ⊆ U for n′, n′′ ≥ n.
Taking for each x ∈ B the pointwise limit for n′′ → ∞ yields (fn′ − f∞)(x) ∈ U .
Thus fn → f∞ in L(E,F ).

4.1 Example of a non-complete dual space.
Let F be a barrelled non-complete space (in [Val71] even normed bornological bar-
relled spaces are constructed, which are not ultra-bornological and hence not even
locally complete). Let E := (F ∗, σ(F ∗, F )). Thus F = E∗ and by the barrelledness
of F the σ(F ∗, F )-bounded subsets are the equicontinuous ones. Hence the topol-
ogy β(E∗, E) coincides with the topology of uniform convergence on equicontinuous
sets and hence with the given non-complete topology of F .

If E is infra-barrelled, then the dual E∗ is at least locally complete: In fact, under
this assumption the β(E∗, E)-bounded sets are equicontinuous and E∗Uo = (EU )∗
is complete as dual of a normed space. In order to improve this result, we need the
following characterization:

4.2 Proposition (See [Jar81, 10.2.4 p.198], [Woz13, 2.39 p.21]).
For any lcs E we have:

1. E is locally complete;
⇔ 2. The absolutely convex hull of every Mackey-0-sequence is relatively compact;
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⇔ 3. The absolutely convex hull of every σ(E,E∗)-0-sequence is relatively compact
in (E, σ(E,E∗)).

Proof. ( 1 ⇒ 3 ) Let xn → 0 in σ(E,E∗). Then {xn : n ∈ N} is (weakly-)bounded
and by locally completeness bounded in some closed Banach disk B. Thus T : `1 →
E, λ 7→

∑∞
n=0 λnxn, is well-defined and maps the unit ball o`1 onto

A0 :=
{ ∞∑
n=0

λnxn : ‖λ‖`1 ≤ 1
}
⊆ B.

It is σ(`1, c0)-σ(E,E∗)-continuous, since x∗ ◦T = (x∗(xn))n∈N ∈ c0 ⊆ (`1)∗ for each
x∗ ∈ E∗. Since o`1 is σ(`1, c0)-compact, its image A0 is σ(E,E∗)-compact, abso-
lute convex, and contains the xn. Hence their absolutely convex hull is relatively
compact for σ(E,E∗).

( 3 ⇒ 2 ) Let xn be a Mackey-0-sequence. By 3 the σ(E,E∗)-closure C of the
absolutely convex hull of {xn : n ∈ N} is σ(E,E∗)-compact and hence σ(E,E∗)-
complete. Since closed absolutely convex sets in E are σ(E,E∗)-closed, C is even
complete in E by the next lemma 4.3 . Since {xn : n ∈ N} ∪ {0} is compact, its
closed absolutely convex hull is precompact (by the proof of [Kri07b, 6.4.3]) and
thus compact by completeness of C.
( 2 ⇒ 1 ) Suppose there is a closed absolutely convex bounded set B, such that EB
is not complete. Choose x̃ ∈ ẼB \ EB and iteratively construct a sequence (xi)i∈N
in EB such that ∥∥∥x̃− n∑

i=1
xi

∥∥∥
B
≤ 1

3n+2

and hence x̃ =
∑∞
i=1 xi. Now let yn := 2nxn ∈ EB and observe that

‖yn‖B ≤ 2n
(∥∥∥x̃− n∑

i=1
xi

∥∥∥
B

+
∥∥∥x̃− n−1∑

i=1
xi

∥∥∥
B

)
≤
(

2
3

)n+1

→ 0.

Hence x̃ =
∑∞
n=1 2−nyn is in the closure of the absolutely convex hull of the

(Mackey-)0-sequence (yn) in the Banach space ẼB . Consider the initial topol-
ogy τ ′ with respect to the inclusion ι : EB � E. Since B is closed in E, it is closed
for τ ′, thus (EB , ‖ ‖B) has a basis of τ ′-closed sets. By the lemma 4.4 below the
extension ι̃ : ẼB � Ẽ is injective. Since ι̃(x̃) =

∑∞
n=1 2−nyn is in the (by 2 )

compact closure of the absolutely convex hull of {yn : n ∈ N} ⊆ B in E, we get
x̃ ∈ E ∩B ⊆ EB , a contradiction.

4.3 Lemma (See [Jar81, 3.2.4 p.59]).
Let τ ≥ τ ′ be two lc-topologies on a vector space E and assume that (E, τ) has a
0-nbhd basis U consisting of τ ′-closed subsets.
If (xi)i is τ -Cauchy net in E, which converges to x∞ with respect to τ ′, then it does
so with respect to τ .
Thus, if a subset of E is (sequentially) complete for τ ′, then it is also for τ .

Proof. Cf. the proof of the corollary to 3.17 : Let (xi)i be a τ -Cauchy net,
which is τ ′-convergent to x∞, and let U ∈ U . Thus there exists an i such that
xi′ − xi′′ ∈ U for all i′, i′′ � i. For fixed i′, the net i′′ 7→ xi′ − xi′′ ∈ U is τ -Cauchy
and τ ′-convergent to xi′ − x∞. Since U is τ ′-closed we get xi′ − x∞ ∈ U , i.e. (xi)i
is τ -convergent to x∞.

4.4 Lemma (See [Jar81, 3.4.5 p.63]).
Let (E, τ) be an lcs, T ∈ L(E,F ) be injective and τ ′ ≤ τ be the initial topology
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on E with respect to T . If (E, τ) has a 0-nbhd-basis of τ ′-closed subsets then the
extension T̃ : Ẽ → F̃ to the completions is injective.

Proof. Let x̃ ∈ ker T̃ ⊆ Ẽ. Thus there exists a net (xi)i in E convergent to x̃ in
Ẽ and hence T (xi) = T̃ (xi)→ T̃ (x̃) = 0. Thus xi → 0 with respect to τ ′ and then
x̃ = τ - limi→∞ xi = 0 by 4.3 .

4.5 Proposition (See [Jar81, 12.1.4 p.250], [Woz13, 2.64 p.30]).
The dual E∗ of an lcs E is locally complete iff (E,µ(E,E∗)) is infra-c0-barrelled,
i.e. every 0-sequence in (E∗, β(E∗, E)) is equicontinuous.
Thus for infra-c0-barrelled spaces the dual is barrelled iff it is infra-barrelled, and it
is ultra-bornological iff it is bornological.

Furthermore, an lcs E is called c0-barrelled iff every 0-sequence in (E∗, σ(E∗, E))
is equicontinuous, see [Jar81, 12.1 p.249].

Proof. (⇒) Let x∗n → 0 in (E∗, β(E∗, E)) and hence in (E∗, σ(E∗, E)). So their
closed absolutely convex hull K is σ(E∗, E)-compact by 4.2 ( 1 ⇒ 3 ). Thus Ko

is a 0-nbhd of µ(E,E∗) and x∗n ∈ K ⊆ (Ko)o.

(⇐) By 4.2 ( 2 ⇒ 1 ) it is enough to show that for any Mackey-0-sequence (x∗n)
in E∗ its absolutely convex hull A is relatively compact w.r.t. β(E∗, E). Any such
sequence is equicontinuous (by the infra-c0-barrelledness), hence A is relatively
compact for σ(E∗, E) and thus the closure of A is complete. Since β(E∗, E) has
a 0-nbhd basis of σ(E∗, E)-closed sets (Bo), it is also β(E∗, E)-complete by 4.3 .
Since {x∗n : n ∈ N} ∪ {0} is β(E∗, E)-compact, we get that the closed absolutely
convex hull of the sequence is precompact and hence compact w.r.t β(E∗, E)..

4.6 Proposition (See [Jar81, 11.2.4 p.222]).
E infra-barrelled ⇒ E∗ is quasi-complete.

Proof. Let B ⊆ E∗β be bounded. Since E is infra-barrelled, B is equicontinuous, i.e.
B ⊆ Uo for some 0-neighborhood. The polar Uo is σ(E∗, E)-compact by 3.4 , hence
σ(E∗, E)-complete and therefore also β(E∗, E)-complete by 4.3 , since β(E∗, E)
has a basis of σ(E∗, E)-closed subsets (Bo).

Barrelledness and bornologicity of dual spaces

In this section we give conditions that garantee barrelledness or ultra-bornologicity
of the strong dual. For this we show that the (appropriate) duality functor preserves
reduced projective limits and products. We introduce the classes of (infra-)countably-
barrelled spaces and discuss their relationship to the other barrelledness conditions.

If order to show that E∗ is bornological, we have to represent E∗ as inductive
limit of normed spaces. So it is reasonable to assume that E is representable as
projective limit of normed spaces. Because of E∗ = Ẽ∗ (at least bornologically)
it is no big restriction to assume that E is complete and hence E = lim←−U ẼU , a
reduced projective limit of Banach spaces. Remains to check, whether

E∗ = (lim←−
U

ẼU )∗ =?= lim−→
U

(EU )∗.
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For any functor F we have a natural morphism F(limXi) → limF(Xi) by the
universal property of the right side.

Xi
Xα // Xj F(Xi)

F(Xα) // F(Xj)

limk F(Xk)

pri
aa

prj
==

limkXk

pri

TT

prj

JJ

F(limkXk)

F(pri)

TT

F(prj)

JJ

!

OO

4.7 Lemma. Reduced projective limits (See [Kri07a, 3.25]).

Let lim←−iXi be a reduced projective
limit, and fi : Xi → Yi be con-
tinuous linear mappings with dense
image which intertwine with all con-
necting mappings. Then the canoni-
cal mapping lim←−i fi has dense image.

Xi
fi

// // Yi

lim←−iXi

pri

eeee

pri′

yyyy

lim←−i fi// // lim←−i Yi pri′

$$

pri

::

Xi′
fi′ // //

OOOO

Yi′

OO

Proof. Let z ∈ lim←−i Yi be given. Take an arbitrary 0-neighborhood pr−1
i (2Ui).

Since fi has dense image we may find an xi ∈ Xi with fi(xi) − pri(z) ∈ Ui. Since
the first limit is reduced we can find an x ∈ E with pri(x) − xi ∈ f−1

i (Ui). But
then

pri
(

lim←−
i

fi(x)− z
)

= (fi ◦ pri)(x)− fi(xi) + fi(xi)− pri(z) ∈ 2Ui,

i.e. lim←−i fi has dense image.

4.8 Lemma. The dual of products (See [Kri07a, 3.26]).
The functor ( )∗ : lcs → cbsop preserves products, where E∗ is considered with the
bornology of equicontinuous sets.

Here cbs denotes the category of convex bornological spaces with those linear map-
pings, which map bounded sets to bounded sets, as morphisms.

Proof. By the general argument above we have a mapping
∐
iE
∗
i → (

∏
iEi)∗,

where
∐
iE
∗
i denotes the coproduct in cbs and hence the product in cbsop. Since∏

iEi obviously separates points in
∐
iE
∗
i this mapping is injective. Let us show

that it is a bornological quotient map, i.e. bounded sets in the image are im-
ages of bounded sets. This implies that it is a bornological isomorphism. So let
(
∏
i Ui)o be a typical bounded:=equicontinuous subset of (

∏
iEi)∗, i.e. the Ui are

0-neighborhoods of Ei and Ui = Ei for all i /∈ J , where J is a finite subset of I.
Let T ∈ (

∏
i Ui)o. Then T (x) = 0 for all x = (xi)i with xj = 0 for all j ∈ J (use

that every multiple of such an x belongs to
∏
i Ui). Let Ti := T ◦ inji ∈ Uoi ⊆ E∗i

for all i. Then T =
∑
j∈J Tj ∈

∐
j∈J U

o
j and

∐
j∈J U

o
j is bounded in

∐
iE
∗
i .

4.9 Lemma. The dual of reduced projective limits (See [Kri07a, 3.27]).
The functor ( )∗ : lcs→ cbsop preserves reduced projective limits, where E∗ is again
considered with the bornology of equicontinuous sets.

Proof. So let E := lim←−iEi be a reduced projective limit. As in the proof of 4.8
we have a natural mapping lim−→i

E∗i → (lim←−Ei)
∗. Since all projections pri : E � Ei
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have dense image the dual cone pr∗i : E∗i � E∗ consists of injective mappings only.
Let x∗ ∈ E∗ be given. Then there has to exist an i and a 0-neighborhood Ui ⊆ Ei
with x∗(pr−1

i (Ui)) ⊆ D := {λ ∈ K : |λ| ≤ 1}. In particular x∗(ker pri |E) = 0 and
hence there exists a linear x∗i : pri(E) → R with x∗ = x∗i ◦ pri = pr∗i (x∗i ). Since
x∗i (Ui ∩ pri(E)) = x∗(pr−1

i (Ui)) ⊆ D we may extend x∗i to a continuous functional
in Uoi ⊆ (Ei)∗ on the closure Ei of pri(E). Thus the union of all images pr∗i ((Ei)∗)
is E∗. Moreover the same argument shows that every bounded:=equicontinuous set
(pr−1

i (Ui))o is the image of the bounded set Uoi under pr∗i . From this it is clear that
(lim←−iEi)

∗ is the injective limit in cbs, since any family of bounded linear mappings
Ti : E∗i → F that commute with the connecting morphisms can be extended to a
bounded linear mapping T : E∗ =

⋃
i pr∗i (E∗i )→ F .

In particular, Ẽ = lim←−U ẼU is a reduced projective limit, so (Ẽ)∗ = lim−→U
(EU )∗ =

lim−→U
E∗Uo as convex bornological space (with respect to the equicontinuous bornol-

ogy). But this does not imply that it is true for the strong topology and this
topology on (Ẽ)∗ need not be bornological.

What about infra-barrelledness of E∗?
Let V ⊆ E∗ be a bornivorous barrel, so V absorbs every bounded set in E∗ and,
in particular, the polars Uo of (closed absolutely convex) 0-nbhds U in E. From
K · V ⊇ Uo we conclude, that Vo ⊆ K · (Uo)o = K · U , i.e. Vo is bounded, and
thus (Vo)o is a 0-neighborhood, but not necessarily (contained in) V , since β(E∗, E)
need not be compatible with duality (E∗, E).

4.10 Proposition (See [Tre67, p373], [Kri07a, 4.47]).
The strong dual of any semi-reflexive space is barrelled.

An lcs E is sometimes called distinguished iff E∗ barrelled, see [Jar81, 13.4.5
p.280].

Proof. Let V be a barrel in E∗β . Since E is semi-reflexive the strong topology
is compatible with the duality, and hence V is also closed for the weak-topology
σ(E∗, E) by [Kri07b, 7.4.8]. We show that the polar Vo is a bounded subset of E
(which implies that V = (Vo)o is a 0-neighborhood in E∗β). For this it is enough to
show that Vo is bounded in σ(E,E∗): Since V is assumed to be absorbing, we find
for every x∗ ∈ E∗ a λ > 0 with x∗ ∈ λV . Thus |x∗(Vo)| ≤ λ.

4.11 Proposition (See [MV92, 24.23 p.267], [Woz13, 3.52 p.56]).
The strong dual of any complete Schwartz space is ultra-bornological.

Proof. Let E be a complete Schwartz space. By 3.31 it is semi-Montel, hence
β(E∗, E) = τc(E∗, E) = τpc(E∗, E), by completeness. By the theorem 3.4 of
Alaoǧlu-Bourbaki Uo is σ(E∗, E)-compact (and even τpc(E∗, E)-compact) for all
0-nbhds U and therefore by [Kri07b, 7.4.17] is a Banach disk. The inclusions ιUo :
E∗Uo � (E∗, τc(E∗, E)) are bounded=continuous and therefore η ≥ τc(E∗, E) ≥
σ(E∗, E), where η denotes the ultra-bornological final locally convex topology on
E∗ generated by these mappings.

To see the converse τc(E∗, E) ≥ η, we choose 0-nbhds V ⊆ U such that Uo is
compact in E∗V o (by 3.33 ). By continuity of ιV o : E∗V o � (E∗, η) the polar
Uo is compact in (E∗, η) and therefore id : (Uo, η) → (Uo, σ(E∗, E)) is a homeo-
morphism, i.e. σ(E∗, E) = η on Uo, and, since γ(E∗, E) is the finest such locally
convex topology, γ(E∗, E) ≥ η and γ(E∗, E) = τc(E∗, Ẽ) = τc(E∗, E) by 3.24
and completeness.
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4.12 Definition (See [Jar81, 12.2 p.251]).
An lcs E is called (infra-)countably-barrelled (or (quasi-)ℵ0-barrelled)
iff every countable intersection of closed absolutely convex 0-nbhds is a 0-nbhd
provided it is (bornivorous) absorbing.

By the following proposition we get:
(infra-)barrelled ⇒ (infra-)countably-barrelled ⇒ (infra-)c0-barrelled,

4.13 Proposition (See [Jar81, 12.2.1 p.252]).
Let E be an lcs. Then

1. E is (infra-)countably-barrelled;
⇔ 2. For any lcs F every (β)σ-bounded sequence in L(E,F ) is equicontinuous;
⇔ 3. For any Banach space F every (β)σ-bounded sequence in L(E,F ) is equicon-

tinuous.

Here β denotes the topology of uniform convergence on each bounded set and σ that
of pointwise convergence.

Proof. ( 1 ⇒ 2 ) Let Tn ∈ L(E,F ) be a sequence as considered in 2 . Let V be
a closed absolutely convex 0-nbhd in F . For every finite (resp. bounded) set B ⊆ E
there exists a ρ > 0 such that

⋃
n∈N Tn(B) ⊆ ρV . Thus U :=

⋂
n∈N T

−1
n (V ) is an

absorbing (resp. bornivorous) absolutely convex set, hence a 0-nbhd by 1 . Since
Tn(U) ⊆ V for all n, we get that {Tn : n ∈ N} is equicontinuous.

( 2 ⇒ 3 ) is trivial.

( 3 ⇒ 1 ) Let U =
⋂
n∈N Un be absorbing (resp. bornivorous) with Un absolutely

convex closed 0-nbhds. Let F := {x ∈ EN : x is finally constant}. The subset
V := F ∩

∏
n∈N Un is absolutely convex and absorbing (since U absorbs the finite

set {xj : j ∈ N} for x ∈ F ) in F . Let Tn : E → F be given by x 7→ (xi)i∈N
with xi := x for i ≤ n and xi := 0 for i > n. Then Tn(

⋂
i≤n Ui) ⊆ V and hence

T̃n = ιV ◦Tn : E → F � F̃V is continuous. Since U is absorbing (resp. bornivorous),
the set {T̃n : n ∈ N} is σ(resp. β)-bounded (B ⊆ λU ⇒ Tn(B) ⊆ λV ), hence
equicontinuous by 3 , so there exists a 0-nbhd W ⊆ E with 2 T̃n(W ) ⊆ ιV (V ) ∩
FV = ιV (V ) for all n. Thus ∀w ∈W ∃v ∈ V : 2Tn(w)−v ∈ ker pV =

⋂
λ>0 λV ⊆ V

and, in particular, 2w = 2(prn(Tn(w))) ∈ prn(v) + prn(V ) ⊆ 2Un, i.e. W ⊆ Un for
all n ∈ N, hence W ⊆ U and we are done.

4.14 Lemma (See [Jar81, 12.2.2 p.252]).
Every locally complete infra-countably-barrelled lcs is countably-barrelled.
Every locally complete infra-c0-barrelled lcs is c0-barrelled.

Proof. Let V =
⋂
n∈N Vn be absorbing as required in the definition 4.12 . So V is a

barrel, hence absorbs Banach-disks by the Banach-Mackey-Theorem (See [Kri07b,
7.4.18]). Since in locally complete lcs every closed bounded absolutely convex
set is a Banach-disk, V is even bornivorous, hence a 0-nbhd by infra-countably-
barrelledness.

The same proof works for (infra-)c0-barrelledness with Vn := {x∗n}o for a given
0-sequence x∗n in E∗σ, cf. the proof of 1 ⇒ 2 in 4.13 .

Remark.
We have shown the following implications, where the dotted ones are valid under

andreas.kriegl@univie.ac.at c© July 1, 2016 63



4.16 Barrelledness and bornologicity of dual spaces

the assumption of c∞-completeness:

ulta-bornological

'/

go

��
barrelled

'/

go

��

bornological

��
countably-barrelled

'/

go

��

infra-barrelled

��
c0-barrelled

'/

go
infra-countably-barrelled

��
infra-c0-barrelled

Duals of Fréchet spaces

In this section we describe the property (DF), which the strong duals of Fréchet
spaces have, and which garantees in turn that their strong dual is Fréchet.

4.15 Lemma (See [MV92, 25.6 p.279], [Jar81, 12.2.4 p.253]).
Let E be metrizable. Then E∗ is countably-barrelled.

Proof. Let (Un)n be a 0-nbhd-basis of E. Then Uon ⊆ E∗ is bounded. Let Vn be
closed absolutely convex 0-nbhds in E∗ and V∞ :=

⋂
n∈N Vn be bornivorous.

Recursively we will find ρi > 0 and Bi ⊆ E bounded such that

Boi ⊆ Vi and ρiU
o
i ⊆

1
2i+2V∞ ∩B

o
j for all i, j ≤ n.

For (n = 0) take a bounded set B0 ⊆ E such that Bo0 ⊆ V0 and find a ρ0 > 0
with ρ0U

o
0 ⊆ 1

4V∞ ∩B
o
0 . For the induction step choose ρnUon ⊆ 1

2n+2V∞ ∩
⋂
i<nB

o
i .

The set K :=
∑
i≤n ρiU

o
i is absolutely convex, σ(E∗, E)-compact, and contained in∑

i≤n
1

2i+2V∞ ⊆ 1
2Vn. Let V ′ ⊆ 1

2Vn be a σ(E∗, E)-closed absolutely convex 0-nbhd
in E∗. Then Bn := (V ′ + K)o is bounded and Bon = V ′ + K ⊆ Vn by the bipolar
theorem.
Thus W :=

⋂
nB

o
n ⊆ E∗ satisfies W = (Wo)o and absorbs each Uoi , hence Wo is

bounded and thus (Wo)o = W ⊆ V is a 0-nbhd. in E∗. This shows infra-countably-
barrelledness. Since E∗ is complete, countably-barrelledness follows by 4.14 .

4.16 Proposition (See [MV92, 25.12 p.281], [Jar81, 13,4, p.280]).
Let E be a metrizable lcs. Then

1. E∗ is ultra-bornological;
⇔ 2. E∗ is bornological;
⇔ 3. E∗ is barrelled;
⇔ 4. E∗ is infra-barrelled.

We will give an example (of a non-distinguished λ1(A)) in 4.25 for which these
equivalent conditions are not satisfied.
In [Jar81, 13.4.2 p.279] it is shown that for metrizable E the bornologification
β(E∗, E)born of β(E∗, E) is β(E∗, E∗∗).
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Proof. ( 1 ⇒ 2 ⇒ 4 ) are obvious.

( 4 ⇒ 3 ) and ( 2 ⇒ 1 ) since E∗ = E′ is complete.

( 3 ⇒ 2 ) Let V be absolutely convex and bornivorous in E∗. Thus for every
bounded=equicontinuous set Uon (where the Un from a 0-nbhd basis in E) there
exists a λn > 0 with V ⊇ 2λnUon. Let U be the absolutely convex hull of

⋃
n∈N λnU

o
n.

Then U ⊆ 1
2V . The absolutely convex hull Ak of

⋃
j≤n λjU

o
j is σ(E∗, E)-compact

(by exercise 34 to [Kri07a]), hence closed in β(E∗, E) ≥ σ(E∗, E).
We claim that Ū ⊆ V : Let x∗0 ∈ E∗ \ V ⊆ E∗ \ 2U . Since An is closed there exists
a 0-nbhd Vn ⊆ E∗ with (x∗0 + Vn) ∩ 2An = ∅. Let W :=

⋂
n∈N(Vn + An). Let

k ∈ N. Then Uok ⊆ 1
λk
An for all n ≥ k. Choose µk ≥ 1/λk with Uok ⊆ µkVn for

all n < k. Thus Uok ⊆ µk(Vn + An) for all n, i.e. Uok ⊆ µkW , i.e. W is bornivorous
and hence a 0-nbhd in E∗ by 4.15 . We claim that (x∗0 + W ) ∩ An = ∅ for all n
and hence x∗0 /∈ Ū , since otherwise ∅ 6= (x∗0 +W ) ∩An ⊆ (x∗0 + Vn +An) ∩An, i.e.
∃v ∈ Vn, ∃a, a′ ∈ An: a = x∗0 + v + a′. Hence x∗0 + v = a − a′ ∈ 2An and thus
(x∗0 + Vn) ∩ 2An 6= ∅, a contradiction.
So the barrel Ū ⊆ V . Since E∗ is assumed to be barrelled, we are done.

4.17 Definition. (DF)-spaces (See [Jar81, 12.4.1 p.257], [MV92, 25.6 p.279]).
An lcs E is called (DF)-space, iff it has a countable base of the bounded sets
and is infra-countably-barrelled (see 4.12 ), i.e. every bornivorous subsets which is
the intersection of countable many closed absolutely convex 0-neighborhoods is a
0-neighborhood.
An lcs E is called (df)-space iff it has a countable base of its bornology and is
infra-c0-barrelled.

4.18 Proposition.

1. The dual of any Fréchet space is a complete (DF) space
(See [MV92, 25.7 p.280], [Jar81, 12.4.5 p.260]).

2. The dual of any (DF) space is a Fréchet space
(See [MV92, 25.9 p.280], [Jar81, 12.4.1 p.257]).

In [Jar81, 12.4.1 p.257] it is shown that: E∗ is Fréchet ⇔ (E,µ(E,E∗)) is (df).

Proof. ( 1 ) This is 4.15 , since for the bornological space E the dual E∗ = E′ is
complete, and a countable basis of the bornology is given by the family Uon, where
{Un : n ∈ N} is a 0-nbhd basis of E.

( 2 ) By assumption a (DF)-space E has a countable base {Bn : n ∈ N} of bornology
and hence (E∗, β(E∗, E)) a countable 0-nbhd basis {Bon : n ∈ N}, so is metrizable.
Let (x∗n)n be Cauchy in E∗. Then x∗n converges pointwise to some linear x∗∞ : E →
K. Let Vn := {x∗n}o and V∞ :=

⋂
n∈N Vn. Since (x∗n)n is Cauchy, it is bounded,

thus contained in λkB
o
k for some λk > 0. Hence Bk ⊆ λk{x∗n}o = λkVn and so

Bk ⊆ λkV∞, i.e. V∞ is bornivorous and hence a 0-nbhd since E is infra-countably-
barrelled. Furthermore, x∗n ∈ (Vn)o ⊆ (V∞)o, hence x∗∞ ∈ (V∞)o ⊆ E∗. And since
(by 4.3 ) the Cauchy-sequence x∗n converges to x∗∞ uniformly on Bk for any k ∈ N,
we get that x∗n → x∗∞ in E∗.

4.19 Corollary (See [MV92, 25.10 p.51]).
The bidual of any Fréchet space is a Fréchet space.
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4.21 Duals of Fréchet spaces

Duals of Köthe sequence spaces

In this section we describe the duals of Köthe sequence spaces and characterize
reflexivity (and the Montel property) of λ∞(A) (and of c0(A)). We also give an
example of a Köthe sequence space, whose strong dual fails to be (infra-)barrelled.

4.20 Seminorms of λp(A)∗ (See [MV92, 27.13 p.314]).
Let A be countable, λ := λp(A) for 1 ≤ p <∞ or λ := c0(A) for p =∞. Then the
Minkowski-functionals (Bpb )o for Bpb := {x : ‖x/b‖`p ≤ 1} (see 2.10 ) are given by

‖y‖b := ‖y · b‖`q , for b ∈ λ∞(A) and 1
p

+ 1
q

= 1,

and are a basis of the seminorms of

λ∗ ∼=
{
y ∈ KN : ∀b ∈ λ∞(A) : ‖y‖b <∞

}
=
{
y ∈ KN : ∃a ∈ A : ‖y‖∗a <∞

}
,

where ‖ ‖∗a is the Minkowski-functional of
{
x ∈ λ : ‖x‖a ≤ 1

}o (see 1.24 ).

Proof. By 1.22 we have λ∗ ∼= λ1(λ) via
(
x 7→

∑∞
j=0 xj yj

)
← y.

By 2.10 the sets Bpb := {x : ‖x/b‖`p ≤ 1} (resp. Bob : B∞b ∩ c0(A)) for b ∈ λ∞(A)
(w.l.o.g. ∀j : bj > 0) form a basis of the bornology on λp(A) (resp. c0(A)). Let
y ∈ λ1(λ) ∼= λ∗ and 1

q + 1
p := 1, then by 1.23 the Minkowski-functional p(Bpb )o is

given by

sup
x∈Bpb

|y(x)| = sup
x∈Bpb

∣∣∣ ∞∑
j=0

xjyj

∣∣∣ = sup
{∣∣∣∑

j

xj
bj
bjyj

∣∣∣ : ‖x/b‖`p ≤ 1
}

= ‖y · b‖`q =: ‖y‖b.

λ∗ ∼=
{
y ∈ KN : ∀b ∈ λ∞(A) : ‖y‖b <∞

}
, since y ∈ KN acts as bounded(=continuous)

linear functional ⇔ ∀b ∈ λ∞(A) : ‖y‖b <∞.
λ∗ ∼=

{
y ∈ KN : ∃a ∈ A : ‖y‖∗a < ∞

}
, since λ∗ =

⋃
a∈A λ

∗
(Ua)o , where Ua := {x ∈

λ : ‖x‖a < 1}, and ‖ ‖∗a is the Minkowski-functional for (Ua)o by 1.24 .

4.21 c0(A)∗∗ ∼= λ∞(A) (See [MV92, 27.14 p.314]).

Proof. By 4.20 the family (‖ ‖b)b∈λ∞(A) is a basis of seminorms for c0(A)∗ and

c0(A)∗ ∼=
{
y ∈ KN : ‖y‖b :=

∑
j∈N

|yjbj | <∞ ∀b ∈ λ∞(A)
}
.⇒

(⊇) ∀b ∈ λ∞(A): y 7→
∑
j∈N yjbj is in c0(A)∗∗.

(⊆) Let x ∈ c0(A)∗∗: ∀y ∈ c0(A)∗: y =
∑
j yj ej . ⇒

x(y) = x
(∑

j

yjej

)
=
∑
j

yj x(ej)︸ ︷︷ ︸
=:xj

=
∑
j

yjxj .

The family (Uoa )a∈A is a basis of the bornology for c0(A)∗ (see 4.18.1 ). ⇒

∀a ∈ A :∞ > sup
y∈Uoa

|x(y)| =
1.24

===== sup
{∑

j

∣∣∣yj
aj
ajxj

∣∣∣ :
∑
j

∣∣∣yj
aj

∣∣∣ ≤ 1
}

= sup
j
|xjaj |,

i.e. x ∈ λ∞(A).
Thus c0(A)∗∗ = λ∞(A) as linear spaces and, by the closed graph theorem, also as
lcs.
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Duals of Köthe sequence spaces 4.23

4.22 Reflexivity of λ∞(A) (See [MV92, 27.15 p.315]).
Let A be countable. Then

1. c0(A) = λ∞(A);
⇔ 2. c0(A) is (M);
⇔ 3. c0(A) is reflexiv;
⇔ 4. λ∞(A) is reflexiv.

Proof. ( 1 ⇒ 2 ⇒ 3 ) by 3.28 and 3.22 .
( 3 ⇒ 4 ) by 4.21 λ∞(A) = c0(A)∗∗ and duals of reflexive spaces are reflexiv by
4.26 .

( 4 ⇒ 1 ) c0(A) ⊆ λ∞(A) closed =
3.17 , see also 3.16

=================⇒ c0(A) semi-reflexive⇒ c0(A) =
c0(A)∗∗ = λ∞(A), by 4.21 .

For 1 < p < ∞ the space λp(A) is reflexive by 3.20 and thus distinguished by
4.10 . What about λ1(A)?

4.23 Distinguishedness of λ1(A) (See [MV92, 27.17 p.316]).
Let A = {a(k) : k ∈ N} be countable and R+ := {t ∈ R : t > 0}.
Then λ1(A) is distinguished ⇔

⇔ ∀D : N→ R+ ∃D′ : N→ R+ ∀C > 0 ∀n ∃n′ ∀j :

min
{
Ca

(n)
j , sup

k∈N

a
(k)
j

D′k

}
≤ max

{a(k)
j

Dk
: k ≤ n′

}
.

Proof. Since E := λ1(A) is Fréchet, E∗ has a countable basis {Uon : n ∈ N} of its
bornology. Hence a basis of the bornivorous disks is given by the absolutely convex
hulls of

⋃
k εk U

o
k with ε : N→ R+. Thus E∗ is bornological iff

(1) ∀ε : N→ R+ ∃b ∈ λ∞(A) : (B1
b )o ⊆

〈⋃
k

εkU
o
k

〉
abs.conv.

(by 2.10 ).

(⇒) Let D : N → R+, εk := 1/Dk ⇒ ∃b ∈ λ∞(A) as in 1 =
2.9

===⇒ ∃D′ : N → R+:
w.l.o.g. b : j 7→ infkD′k/a

(k)
j . Let C > 0, n ∈ N and ξ : j 7→ min{Ca(n)

j , 1/bj} ⇒
ξ ∈ (B1

b )o = {y ∈ λ∗ : ‖y · b‖`∞ ≤ 1} by 4.20 ⇒ ∃n′ ∀k ≤ n′ ∃ξk ∈ εkUok ∃λk ∈ R:∑
k≤n′ |λk| ≤ 1 and ξ =

∑
k≤n′ λk ξ

k by 1 . By 1.24 Uoa = {y : ‖ya‖∞ = ‖y‖∗a ≤
1}.

⇒ ∀j : min
{
Ca

(n)
j , sup

k
a

(k)
j /D′k

}
= ξj ≤

∑
k≤n′
|λkξkj | ≤ max

k≤n′
|ξkj | ≤ max

k≤n′
a

(k)
j /Dk.

(⇐) Let ε : N → R+, Dk := 2k/εk ⇒ ∃D′ : N → R+ as above. Let b : j 7→

infkD′k/a
(k)
j =

2.9
===⇒ b ∈ λ∞(A) =

2.10
====⇒ B1

b bounded. Let ξ ∈ (B1
b )o =

4.20
====⇒ |ξj | ≤ 1

bj
=

supk a
(k)
j /D′k and ∃a ∈ A : ξ ∈ E∗(Ua)o ⇒ ∃C > 0 ∃n: |ξj | ≤ min{Ca(n)

j , 1/bj} ≤
maxk≤n′ a(k)

j /Dk for some n′ by assumption. ⇒ ∀j ∃kj ≤ n′: |ξj | ≤ a
(kj)
j /Dkj . Let

ξk : j 7→

{
ξj for k = kj

0 otherwise
.
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=
1.24

====⇒ 2kξk ∈ 2k 1
Dk
Uok = εkU

o
k for k ≤ n′ ⇒

ξ =
n′∑
k=1

ξk =
n′∑
k=1

1
2k

2kξk ∈
〈⋃
k

εkU
o
k

〉
abs.conv.

Since ξ ∈ (B1
b )o is arbitrary we are done.

4.24 None-distinguishedness of λ1(A) (See [MV92, 27.18 p.318]).
Let A = {a(k) : k ∈ N}, where the a(k) : N2 → R+ satisfy the following conditions:

1. ∀i ≥ k ∀j: a(k)
i,j = a

(0)
i,j .

2. ∀m : limj→∞ a
(m)
m,j/a

(m+1)
m,j = 0.

Then λ1(A) is not distinguished.

Proof. Suppose λ1(A) is distinguished =
4.23

====⇒ ∀k : Dk := 1, C := 2, n := 0

∃D′ : N→ R+ ∃n′ ∀i, j : min{2a(0)
i,j , sup

k
a

(k)
i,j /D

′
k} ≤ max

k≤n′
a

(k)
i,j

For i := n′ we get 2a(0)
n′,j > a

(0)
n′,j = maxk≤n′ a(k)

n′,j by ( 1 ) and hence

∀j : a(n′+1)
n′,j /D′n′+1 ≤ sup

k
a

(k)
n′,j/D

′
k ≤ max

k≤n′
a

(k)
n′,j = a

(0)
n′,j = a

(n′)
n′,j ,

a contradiction to ( 2 ) for m := n′.

4.25 Example (See [MV92, 27.19 p.318]).
Let a(k)

i,j := ji for k ≤ i und a(k)
i,j := jk for k > i and A := {a(k) : k ∈ N}.

Then λ1(A) is not distinguished, so (λ1(A))∗ is (DF) but not infra-barrelled.

Semi-reflexivity and stronger conditions on dual spaces

4.26 Proposition (See [Jar81, 11.4.5 p.228]).
E reflexive ⇒ E∗ reflexive.

Proof. By assumption δE : E → E∗∗ is an isomorphism. Thus also (δE)∗ :
(E∗∗)∗ → E∗. We claim that idE∗ = (δE)∗ ◦ δE∗ : E∗ → (E∗)∗∗ = (E∗∗)∗ −∼=→ E∗:

((δE)∗ ◦ δE∗)(x∗)(x) = (δE)∗(δE∗(x∗))(x) = δE∗(x∗)(δE(x)) = δE(x)(x∗) = x∗(x).

So δE∗ = ((δE)∗)−1 = ((δE)−1)∗ is an isomorphism.

4.27 Proposition (See [Jar81, 11.5.4 p.230]).
E Montel ⇒ E∗ Montel.

Proof. Let E be Montel and B ⊆ E∗ bounded. Thus B is equicontinuous (since
E is infra-barrelled by definition) and therefore relatively compact with respect
to τpc(E∗, E) by the Alaŏglu-Bourbaki Theorem 3.4 . Since E is semi-Montel
τpc(E∗, E) = β(E∗, E), so E∗ is semi-Montel.

Since E is reflexive by 3.22 , the dual E∗ is reflexive by 4.26 and hence is
(infra-)barrelled by 4.10 . Together this shows that E∗ is Montel.
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4.28 Proposition. Schwartz versus quasi-normable spaces
(See [Kri07a, 6.5], [Jar81, 10.7.3 p.215]).
An lcs is Schwartz iff it is quasi-normable and every bounded set is precompact.

An lcs E is called quasi-normable (see [Jar81, 10.7.1 p.214]) iff
∀U ∃V ∀ε > 0 ∃B bounded : V ⊆ B + εU.

Note that any normed space is quasi-normable. In fact we may take V = B := U .

Proof. In the proof of 3.31 we have shown that each bounded set in a Schwartz
space is precompact.
By definition an lcs E is Schwartz iff

∀U ∃V ∀ε > 0 ∃M finite : V ⊆M + εU.

Thus every Schwartz space is quasi-normable. And if every bounded set B is
precompact, then there is a finite set M ⊆ E such that B ⊆M + εU , and we have
the converse implication.

4.29 Counter-example.
Note that E := RX is Schwartz and even nuclear for all sets X by 3.73.1 .
However, if X is uncountable then the dual E∗ = R(X) is not quasi-normable (hence
neither Schwartz nor nuclear).
Suppose E∗ were quasi-normable. Recall that the typical seminorms on R(X) are
given by f 7→

∑
x cx|fx| with cx ≥ 0, see [Kri07b, 4.6.1]. Thus for the seminorm

with cx := 1 for all x there exist another seminorm given by some corresponding
cx > 0 such that for all ε > 0 there is some bounded set Bε with

(1)
{
f :
∑
x

cx|fx| ≤ 1
}
⊆ Bε + ε ·

{
f : ‖f‖`1 :=

∑
x

|fx| ≤ 1
}
.

For some δ > 0 the set I := {x : cx ≤ 1
δ } has to be (uncountably) infinite. Now

choose ε = δ
2 . Then Bε is contained in a finite subsum, so there is some x ∈ I

with prx(Bε) = {0}. Since δ · ex is an element of the left hand side of 1 , there
has to exist a b ∈ Bε and an f with ‖f‖`1 ≤ 1 with δ · ex = b + ε · f and hence
prx(b) ≥ δ − δ

2 > 0, a contradiction.

4.30 Proposition (See [Jar81, 10.7.1 p.214]).
Any lcs E is quasi-normable iff ∀U ∃V ⊆ U : (Uo, β(E∗, E)) ↪→ E∗V o is a topological
embedding.

Proof. This inclusion is continuous (and then an embedding, since E∗V o � E∗β is
continuous) iff ∀λ > 0 ∃B bounded closed absolutely convex with Uo ∩Bo ⊆ λV o.
(⇐) (B + U)o ⊆ Uo ∩Bo ⊆ λV o ⇒ V ⊆ λ((B + U)o)o = λB + U ⊆ λB + 2λU .
(⇒) V ⊆ B + λU ⇒ 2V o ⊇ 2(B + λU)o ⊇ Bo ∩ (λU)o ⇒ 2λV o ⊇ Uo ∩ λBo.

4.31 Proposition (See [Jar81, 12.3.1 p.254]).
Let (An)n∈N be an absorbent (bornivorous) sequence of subsets in E and U a 0-nbhd
basis consisting of absolutely convex sets.
Then the absolutely convex hulls of

⋃
k≥1Ak ∩Uk with Uk ∈ U (resp. the absolutely

convex sets
⋂
k≥0(Ak+Uk)) form a basis for the finest locally convex topology, which

coincides with the given one on each Ak.

By an absorbing (resp. bornivorous) sequence (An)n∈N in an lcs E we under-
stand a sequence of absolutely convex subsets An ⊆ E with A0 := {0}, 2An ⊆ An+1,
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and such that each finite (resp. bounded) subsets of E is absorbed by (and hence
contained in) An for some n (See [Jar81, 12.3 p.253]).

Proof. It is easy to see, that these absolutely convex hulls form a basis for a locally
convex topology τA, which is finer than the given one and which coincides with the
given one on each An: In fact τA → E is continuous (Uk := U and use E =

⋃
k Ak)

and An → τA is continuous (An ∩
⋃
k Ak ∩ Uk ⊇ An ∩An ∩ Uk).

Let now τ be another topology with that property and V be an absolutely convex
0-nbhd for τ . Thus for each n there is a 0-nbhd Un with An ∩ Un ⊆ V , hence the
absolutely convex hull of

⋃
nAn ∩ Un is contained in V , i.e. τA ≥ τ .

Remains to show that the two bases are equivalent:
(⊇) Let V :=

⋂
k≥0(Ak + Uk). Choose Vk with ((Vk)o)o ⊆ Uk and U ′k ⊆

⋂
i<k Vi.

Since Am ⊆ Ak for all k ≥ m, we get Am ∩U ′m ⊆
⋂
k≥mAk ∩

⋂
k<m Vk ⊆

⋂
k

(
Ak +

((Vk)o)o
)
⊆ V , thus V contains the absolutely convex hull of

⋃
mAm ∩ U ′m.

(⊆) Let now U be the absolutely convex hull of
⋃
m≥1Am ∩Um. Let kn := 2n+ 1.

Then An+1 ⊆ 2−nAkn and there exists Vn with Vn ⊆ 2−nUkn and 2((Vn+1)o)o ⊆ Vn.
We claim that V :=

⋂
n≥0(An+Vn+2) ⊆ U : Let x ∈ V , i.e. x = yn+vn with yn ∈ An

(thus y0 = 0) and vn ∈ Vn+2. Thus x = vn +
∑n
i=1 xi, where xi := yi − yi−1. So

xi ∈ Ai+Ai−1 ⊆ Ai+1 and xi = vi−1−vi ∈ Vi+1−Vi+2 ⊆ Vi. Hence xi ∈ Ai+1∩Vi
for all 1 ≤ i ≤ n. By the properties of A := (An)n we have x ∈ An for some n,
hence x− yn = vn ∈ 2An ∩ Vn+2 ⊆ An+2 ∩ Vn+1, thus

x =
n∑
i=1

xi + vn ∈
n∑
i=1

Ai+1 ∩ Vi +An+2 ∩ Vn+1 ⊆
n+1∑
i=1

2−i · (Aki ∩ Uki) ⊆ U.

4.32 Proposition (See [Jar81, 12.3.5 p.255]).
Let E be (quasi-)countably-barrelled and (An)n∈N an absorbent (bornivorous) se-
quence of subsets in E. Let 0 < ρn ↗ ∞. Then an absolutely convex set U is a
0-nbhd in E iff U ∩ ρnAn is a 0-nbhd in ρnAn for each n.

Proof. (⇐) Let U be absolutely convex and U ∩ ρnAn a 0-nbhd in ρnAn for
each n. So let Un be absolutely convex 0-nbhds in E with Un ∩ ρnAn ⊆ U . Thus
V :=

⋂
n U ∩ ρnAn + Un is an intersection of countably many closed absolutely

convex 0-nbhds. Let B ⊆ E be finite (resp. bounded). Thus B ⊆ ρAm for some
ρ > 0 and m ∈ N. Since ρn ↗ ∞ we may assume that B ⊆ ρmAm. Choose σ ≥ 1
with B ⊆ σUk for all k ≤ m. Then

B ⊆ σ(Um ∩ ρmAm) ⊆ σ(U ∩ ρmAm) ⊆ σ(U ∩ ρkAk) for all k ≥ m.

ThusB ⊆ σ((U∩ρkAk)+Uk) for all k, and henceB ⊆ σV . Since E is (quasi-)countably-
barrelled, V is a 0-nbhd. Thus it suffices to show V ⊆ 3U : Let x ∈ V . Take m with
x ∈ ρmAm. Then V ⊆ (U ∩ ρmAm) + Um ⊆ (U ∩ ρmAm) + 2Um, i.e. x = y + z
with y ∈ U ∩ ρmAm and z ∈ 2Um. So x− y = z ∈ (ρmAm + U ∩ ρmAm) ∩ 2Um ⊆
2(ρmAm ∩ Um) ⊆ 2U and hence x ∈ 3U .

4.33 Corollary (See [Jar81, 12.3.6 p.256]).
Let E be (quasi-)countably-barrelled. Then for every absorbent (bornivorous) se-
quence (An)n∈N of subsets in E the induced locally convex topology is the given
one.

Proof. Obviously the final topology induced by the An ↪→ E coincides on nAn
with the given one. So every 0-nbhd U for this locally convex topology is a 0-nbhd
for the original topology by 4.32 .
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4.34 Lemma (See [Kri07a, 3.46], [Jar81, 12.4.7 p.260]).
Every (DF) space is quasi-normable.

Proof. Let {Bn : n ∈ N} be a basis of the bornology and U = (Uo)o a 0-nbhd.
Consider the equicontiuous sets Ak := k Uo ∩Bok = ( 1

kU ∪Bk)o.
We claim that A :=

⋃
k∈NAk is equicontinuous: ∀k ∃nk ≥ k : Bk ⊆ nk U . Thus

Bk ∩ 1
nk
U = Bk ∩

( ⋂
n≤nk

1
nU
)
∩
( ⋂
n>nk

Bn

)
⊆ Bk ∩

(⋂
n∈N

1
nU ∪Bn

)
⊆

⊆ Bk ∩
⋂
n

(An)o = Bk ∩Ao ⊆ Ao,

So the absolutely convex hull of
⋃
k∈N

1
nk
U ∩ Bk ⊆ Ao, thus Ao is a 0-nbhd in the

(DF)-space E by 4.31 and 4.33 , and hence A ⊆ E∗ is equicontinuous.
We claim that Uo with the topology induced from β(E∗, E) continuously embeds
into E∗V o for V := Ao: For the typical 0-nbhd 1

k V
o in E∗V o we have that the

β(E∗, E)-0-nbhd Uo ∩ 1
k B

o
k in Uo satisfies

Uo ∩ 1
k
Bok = 1

k
Ak ⊆

1
k
A ⊆ 1

k
V o.

Thus E is quasi-normable by 4.30 .

4.35 Proposition (See [Jar81, 11.6.1 p.231]).
A Fréchet space is Montel iff E∗ is Schwartz.

Proof. (⇒) We use 3.33 , so for every 0-nbhd Bo ⊆ E∗ we have to find a 0-nbhd
Co with Boo ⊆ E∗∗Coo being compact. Since E is reflexive by 3.22 , this means that
for closed bounded B ⊆ E we have to find such a C with B in EC compact. Since
E is Montel, B is compact and hence contained in the closed absolutely convex hull
of a 0-sequence (xn) in E by 3.6 . Since E is metrizable we find λn → ∞ with
(the closed absolutely convex hull C of) {λnxn : n ∈ N} bounded by [Kri14, 2.1.6].
Then xn → 0 in EC (since pC(xn) ≤ 1

λn
) and thus its closed absolutely convex hull

in the Banach space EC is (pre)compact and contains B.

(⇐) Since E is Fréchet, the dual E∗ is complete, hence semi-Montel by 3.31 .
Thus every bounded=equicontinuous subset of E∗ is relatively compact. Hence
β(E∗, E) = τpc(E∗, E) = γ(E∗, E) by 3.24 . Since β(E∗, E) ≥ µ(E∗, E) always
and (E∗γ)∗ = Ẽ = E by [Kri07b, 5.5.7] we have β(E∗, E) = µ(E∗, E). The Fréchet
space E is reflexiv, since every continuous linear functional on (E∗, β(E∗, E)) =
(E∗, µ(E∗, E)) belongs to E by definition of µ(E∗, E). By 3.18 and 4.26 E∗ is
(infra-)barrelled, hence Montel by 3.31 and thus also E ∼= (E∗)∗ by 4.27 .

4.36 Lemma. Schwartzification (See [Jar81, 10.4.4 p.203]).
The topology τS of uniform convergence on E-0-sequences is the finest Schwartz
topology coarser than the given one.

A sequence x∗n ∈ E∗ is said to be an E-0-sequence, iff there exists some equicon-
tinuous set Uo with x∗n → 0 in E∗Uo , i.e. x∗n is Mackey-convergent to 0 with respect
to the bornology of equicontinuous sets (E stands for equicontinuous).
We will also write ES for the Schwartzification (E, τS) of E. Note, that the
topology τS is denoted Tc0 and ES is denoted E0 in [Jar81, 10.4.3 p.203].

Proof.
(E ≥ τS) since E-0-sequences are equicontinuous.
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τS is Schwartz by 3.33 , since for every polar Ao of an E-0-sequence x∗n there exist
λn → ∞ such that y∗n := λnx

∗
n is still a 0-sequence in E∗Uo and hence (Ao)o (the

σ = β compact closure of the absolutely convex hull of {x∗n : n ∈ N}) is compact in
E∗(Bo)o , where B := {y∗n : n ∈ N}.

Now let τ ′ ≤ E be a Schwartz topology and U be a closed absolutely convex 0-
nbhd with respect to τ ′. Then by 3.33 there exists a (τ ′-)0-nbhd V ⊆ U with
Uo ⊆ E∗V o compact and hence contained in the closed convex hull of a 0-sequence
in E∗V o . Since V is also a 0-nbhd in E, this sequence is an E-0-sequence and hence
U = (Uo)o (since U is also E-closed) is a τS-0-nbhd.

4.37 Proposition. Universal Schwartz space
(See [Kri07a, 6.26], [Jar81, 10.5.1 p.204]).
The Schwartz spaces are exactly the subspaces of products of the Schwartzification
of c0, or of its completion [(c0)S = (`∞, µ(`∞, `1)).

The first statement is sometimes also called Schur’s lemma, see [Jar81, p.218].
There is however no universal (FS)-space, see [Jar81, 10.9 p.218].

Proof. In fact by 4.36 Schwartz spaces have a basis of 0-neighborhoods given by
the polars V := {x∗n : m ∈ N}o of E-0-sequences (x∗n)n∈N in E∗. Since pV (x) =
sup{|x∗n(x)| : n ∈ N}, the map T : x 7→ (x∗n(x))n∈N defines a continuous linear
map from E → c0 and factors over ιV : E � EV as T = T̃ ◦ ιV with an isometric
mapping T̃ : EV ↪→ c0. Since (ιV )V : E ↪→

∏
V EV is an embedding, we get an

embedding E ↪→
∏
V c0.

It is easy to see that T̃ : (EV )S → (c0)S is continuous: Let S ∈ L(E,F ) and y∗n → 0
in (FV )∗ ∼= F ∗V o . Then S−1({y∗n : n ∈ N}o

)
= {S∗(y∗n) : n ∈ N}o and S∗(y∗n) → 0

in E∗S∗(V o) ⊆ E
∗
(S−1V )o , i.e. S ∈ L(ES , FS).

It is an embedding, since T̃ ∗ : `1 → (EV )∗ = E∗V o is a quotient map between
Banach spaces, hence every 0-sequence in the image is the image of a 0-sequence in
the domain.
Remains to show that E embeds into the reduced projective system of the (EV )S :
Obviously E = ES → lim←−V (EV )S is continuous.
Conversely, let V := {x∗n : n ∈ N}o
with x∗n → 0 in (EV ′)∗ for some V ′

and A := {x∗n : n ∈ N} ∪ {0} ⊆
(EV ′)∗. Since ι∗V ′(A)o = ι−1

V ′ (Ao), we
have EV ′ ⊇ Ao = ιV ′(ι−1

V ′ (Ao)) =
ιV ′(ι∗V ′(A)o) = ιV ′(V ), a 0-nbhd in
(EV ′)S with ιV

′

V (Ao) = ιV
′

V (ιV ′(V )) =
ιV (V ), thus ιV ′V : (EV ′)S → EV is con-
tinuous and hence also ιV from E ⊆
lim←−V (EV )S into EV .

E� _

��

M m

ιV "" ""

" �

ιV ′

�� ��

lim←−V EV

����

&&
lim←−V (EV )S

����xx

idoo

EV (EV ′)Soo EV ′

ιV
′

V

gggg
ooidoooo

Thus the identity from (the subspace E of) lim←−V (EV )S → lim←−V EV is continuous.

That ](c0)S = (`∞, µ(`∞, `1)) can be found in [Jar81, 10.5.3 p.206].

4.38 Proposition. Nuclearification (See [Jar81, 21.9.1 p.508]).
The finest nuclear locally convex topology coarser than the given one is the topology
τN of uniform convergence on E-nuclear sequences.

A sequence x∗n in E∗ is called E-nuclear (cf. 3.79 ), iff for each k ∈ N there is a
0-nbhd Uk such that (nkx∗n)n∈N is a 0-sequence (or `p for 0 < p <∞) in E∗Uok

(See
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[Jar81, 21.7.1 p.500]).
We will also write EN for the nuclearification (E, τN ) of E.

Proof. (E ≥ τN ) since E-nuclear-sequences are equicontinuous (take k := 0).

(τN is nuclear)
By definition the polars of E-0-sequences (an)n∈N form a 0-nbhd basis for EN . So
let such an U := {an : n ∈ N}o be given and put V := {n2an : n ∈ N}o ⊆ U .
The mapping S : `1 → E∗Uo defined by x = (xn)n∈N 7→

∑
n xn an

is obviously well-defined continuous linear and it is onto, since any
x∗ ∈ E∗Uo is in C Uo for some C > 0 hence of the form x∗ =

∑
n xn an

with (xn)n∈N ∈ C o`1.
Similarly we have T : `1 → E∗V o defined by x 7→

∑
n n

2 xn an.

`1
D
//

S
����

`1

T

��
E∗Uo

// ι // E∗V o

Let D : `1 → `1 be the (by 3.58 ) nuclear diagonal mapping (xn)n∈N 7→ ( 1
n2xn)

and ι = (ιVU )∗ : E∗Uo � E∗V o the natural inclusion. Thus ι ◦ S = T ◦D is nuclear
and thereby S∗ ◦ ι∗ is nuclear by 4.45 below and in particular absolutely summing
by 3.62 . The adjoint S∗ of a quotient mapping S between Banach spaces is a
topological embedding (use (E/F )∗ ∼= F o), thus ι∗ = (ιVU )∗∗ is absolutely summing
and hence also its restriction ẼV → ẼU , i.e. (E, τN ) is nuclear by 3.70 .

Now let τ ′ ≤ E be some nuclear topology and let U be a closed absolutely convex
τ ′-0-nbhd, which we may assume to be the unit-ball of a Hilbert seminorm by 3.72 .
By 3.79 there exists a fast-falling ONB (en)n∈N of E∗Uo , i.e. ∀k ∃V : {nken : n ∈
N} ⊆ V o. Let ρ := ‖( 1

n )n∈N‖`2 and an := ρn en. Then Uo ⊆ ({an : n ∈ N}o)o: For
x∗ ∈ Uo define (xn)n ∈ o`1 by xn := 〈x∗,en〉

ρ n . Then〈∑
n

xnan, ek

〉
=
〈∑

n

〈x∗, en〉 en, ek
〉

=
∑
n

〈x∗, en〉 〈en, ek〉 = 〈x∗, ek〉,

i.e. x∗ =
∑
n xn an ∈ ({an : n ∈ N}o)o.

Since the sets V from above are also 0-nbhds in E, the sequence (an)n∈N is an
E-nuclear-sequence and hence U = (Uo)o ⊇ {an : n ∈ N}o is a τN -0-nbhd.

4.39 Proposition (See [Jar81, 12.5.8 p.265], [Woz13, 4.42 p.85]).
An lcs is the dual of an (FM)-space iff it is (S) and a complete (DF)-space.
It is then even ultra-bornological.

Proof. (⇒) Let F = E∗ with E an (FM)-space. Then F is a complete (DF)-space
by 4.18.1 and is (S) by 4.35 . It is then even barrelled by 3.22 and 4.10 and
hence ultra-bornological by 4.16 .

(⇐) By 4.18.2 the dual E := F ∗ of the (DF)-space F is (F) and it is (M):
Let B ⊆ E be bounded. Since E is metrizable it is enough to show that every
countable subset of B is relatively compact. W.l.o.g. let B = {bn : n ∈ N} and
consider Bo =

⋂
n∈N(bn)o, a countable intersection of closed 0-nbhds in F . This

set Bo is bornivorous, hence a 0-nbhd in F by the infra-countably-barrelledness of
the (DF) space F : In fact, let A ⊆ F be bounded. Then Ao is a 0-nbhd in E and
hence absorbs the bounded set B. Thus Bo absorbs A. Since F is Schwartz, there
is a E-0-sequence (y∗n) in F ∗ with Bo ⊇ {y∗n : n ∈ N}o by 4.36 and hence B is
contained in the (compact) closed absolutely convex hull of {y∗n : n ∈ N}. Thus
E = F ∗ is semi-Montel and as (F) space even Montel.

Since E = F ∗ is a Montel space, β(F ∗∗, F ∗) = τc(F ∗∗, F ∗). Hence

β∗(F, F ∗) = β(F ∗∗, F ∗)|F = τc(F ∗∗, F ∗)|F = τS ,
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where β∗(F, F ∗) denotes the topology of uniform convergence on bounded sets in
F ∗β and τS is the topology on F of uniform convergence on E-0-sequences:
To see the last inequality, observe that E-0-sequences are relatively β(F ∗, F )-compact
by 3.6 , hence τS ≤ τc(F ∗∗, F ∗)|F . To show the converse, note that by 3.6 for ev-
ery relatively compact set A in the Fréchet space F ∗, there is a 0-sequence (an)n∈N
in the F ∗ (which is also an E-0-sequence by 2.2 ) such that A is contained in the
closed absolutely convex hull of the an, and therefore {an : n ∈ N}o ⊆ Ao.

Since F is complete and Schwartz, it is semi-reflexive by 3.31 and 3.22 and, by
what we have just shown, it carries the topology τS = β∗(F, F ∗), which is quasi-
barrelled (A ⊆ F ∗β is bounded ⇔ Ao is a bornivorous barrel). Thus F is reflexive,
hence F = F ∗∗ = E∗.

4.40 Proposition (See [Flo71, 5.4 p.164]).
Each locally complete (LF)-space is regular.

An (LF)-space is the reduced inductive limit of a sequence of Fréchet spaces and
similarly an (LB)-space is the reduced inductive limit of a sequence of Banach
spaces.

Proof. Let B be bounded closed and absolutely convex, thus EB is a Banach space
by local completeness. By Grothendieck’s factorization theorem 2.6 EB � E
factors over some ιn : En� E = lim−→k

Ek to a continuous linear mapping EB → En,
hence B is bounded in En.

4.41 Raikov’s completeness theorem
(See [Rai59], [Flo71, 4.1 p.162], [Sch12, 2.11 p.36]).
Let E be an lcs and (An)n∈N be an absorbent sequence of subsets of E satisfying:

1. The lcs E carries the final locally convex topology with respect to (An)n∈N.
2. Every Cauchy-net in any An is convergent in E.

Then E is complete.

Proof. Let (xj)j∈J be a Cauchy net in E and U be a 0-nbhd basis of absolutely
convex sets. We claim the following:

∃n0 ∈ N ∀U ∈ U ∀j ∈ J ∃i � j : xi ∈ U +An0 .

Otherwise, ∀n ∃Un ∃jn ∀j′ � jn : xj′ /∈ Un + An. Put V :=
⋂
n(Un+1 + An). Let

x ∈ (Um + Am−1) ∩ Am−1 and n ≥ m, then x = x′ + u with x, x′ ∈ Am−1 and
u ∈ Um, thus u = x − x′ ∈ 2Am−1 ⊆ An, i.e. x = 0 + x ∈ Un+1 + An. Therefore
V ∩ Am =

⋂
n<m(Un+1 + An) ∩ Am is a 0-nbhd in Am, hence a 0-nbhd in E by

1 . Since (xj)j∈J is Cauchy, there exists j ∈ J such that xj′ − xj′′ ∈ V for all
j′, j′′ � j. Since (An)n∈N is absorbing there exists an n with xj′′ ∈ An−1 and hence
xj′ ∈ xj′′ + V ⊆ An−1 + V ⊆ An−1 + (Un + An−1) ⊆ Un + An for all j′ � j, a
contradiction.
Now consider the net x̃ : J×U → An0 ⊆ E, which assigns to each (j, U) an element
x̃j,U := xi−u ∈ An0 with i � j and u ∈ U . This net is Cauchy and hence converges
to some x∞ in E by 2 , since for U ∈ U there exist W ∈ U with 3W ⊆ U and
j ∈ J such that xi′ − xi′′ ∈W for all i′, i′′ � j. So

x̃j′,U ′ − x̃j′′,U ′′ = (xi′ − u′)− (xi′′ − u′′) = (xi′ − xi′′)− u′ + u′′ ∈ 3W ⊆ U
for all (j′, U ′), (j′′, U ′′) � (j,W ) and hence u′ ∈ U ′ ⊆W , u′′ ∈ U ′′ ⊆W , i′ � j′ � j,
and i′′ � j′′ � j.
It follows that (xj)j∈J converges to x∞: For any U ∈ U there exist W ∈ U with
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3W ⊆ U and j ∈ J with xj′ − xi′ ∈ W for all i′ � j′ � j and x̃j′,U ′ − x∞ ∈ W for
all (j′, U ′) � (j,W ), and thus xj′−x∞ = xj′−xi′+u′+ x̃j′,U ′−x∞ ∈ 3W ⊆ U .

4.42 Proposition
(See [Sch12, 2.14 p.38], [Flo71], [Rai59], cf. [Jar81, 12.5.2 p.263]).
An (LB)-space is complete if and only if it is quasi-complete.

Proof. (⇐) Let (E, τ) = lim−→n
(En, τn) denote an (LB)-space, and let Bn := oEn

be the closed unit ball of the Banach space (En, τn). We will apply 4.41 for
An := 2nBn.
Since, for each n ∈ N, we may assume Bn to be continuously injected into Bn+1,
the sequence (An)n∈N is an absorbing sequence.

To prove 1 , let V ⊆ E be an absolutely convex set such that V ∩ An is a
0-neighborhood of (An, τ |An) for each n ∈ N and thus also a 0-neighborhood
of (An, τn|An). Since An is a closed 0-neighborhood of (En, τn), we see that V ∩An
and hence V ∩ En ⊇ V ∩ An are also 0-neighborhoods of (En, τn). This holds
for all n ∈ N, which means that V has to be a 0-neighborhood of the inductive
limit (E, τ).

Remains to show condition 2 , i.e. that each τ -Cauchy net contained in some An
converges in E. But this is clear by the quasi-completeness of E since the sets An
and hence their Cauchy nets are bounded. .

Let E = lim−→n
En be a reduced inductive limit with compact connecting mappings

Tn : En � En+1, i.e. which map some absolutely convex 0-nbhd Un ⊆ En to
a relative compact subsets of Tn(Un) ⊆ En+1 � E. Let Bn be the (compact)
closure of the bounded set Tn(Un) ⊆ E. Thus Tn factors over the normed space EB
generated by B and this space is complete by 4.3 (for τ := pB and τ ′ := E|B), since
B is compact and hence complete. Thus we can rewrite E as reduced projective
limit of a sequence of Banach spaces with compact connecting homomorphisms.

4.43 Proposition (See [Flo71, 7.5,7.6 p.170], [Sch12, 2.8 p.33]).
Let E = lim−→n

En a reduced inductive limit of a sequence of Banach spaces with
compact connecting homomorphisms En → En+1. Then the limit is complete and
regular.

Proof. In view of 4.40 it is enough to show completeness using 4.41 : Let
An := 2n oEn where w.l.o.g. oEn ⊆ oEn+1. Obviously (An)n∈N is an absorbing
sequence. Ad 1 : Let U ⊆ E be absolutely convex with U ∩An a 0-nbhd for each
n and hence also in the (finer) topology induced from En on An. Since An is a
0-nbhd in En, also U ∩ An is one and hence also U ∩ En ⊇ U ∩ An. Thus U is
0-nbhd for the inductive topology of E.
Remains to show 2 : So let (xj)j∈J be a Cauchy-net in An. Since An is compact
in En+1, the sequence xj has an accumulation point x∞ in En+1 and hence also in
E. But as Cauchy-net it has to converge to x∞.

4.44 Proposition
(See [Jar81, 12.5.9 p.266], [Woz13, 4.30 p.75], [MV92, 25.20 p.57]).
Let F be an lcs. Then

1. F is the dual of an (FS)-space;
⇔ 2. F is a bornological (DF)-space where each bounded set is relative compact

in FA for some bounded Banach-disk A;
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⇔ 3. F is an inductive limit of a sequence of Banach-spaces with compact con-
necting mappings;

⇔ 4. F is a complete (DF)-space, is (S), and every 0-sequence is Mackey-convergent.

A space satisfying these equivalent conditions is also called Silva-space.

Proof. ( 1 ⇒ 2 ) Let F = E∗ with E a (FS)-space. By 4.39 F is ultra-
bornological (DF). By 3.33 ∀U ⊆ E ∃V ⊆ U : Uo ⊆ FV o is compact. Since
the polars of 0-nbhds are basis of the bounded sets in F (by infra-barrelledness of
E) the condition on the bounded sets in 2 is satisfied.

( 2 ⇒ 3 ) Let {Bn : n ∈ N} be a countable basis of the bornology of F . By
assumption we recursively find bounded Banach-disks An ⊇ An−1 with

⋃
k<n(Ak ∪

Bk) relative compact in FAn . Obviously
⋃
n∈N FAn = F , the identity FAn−1 → FAn

is a compact operator and the identity lim−→n
FAn → F is continuous. Conversely,

let B ⊆ F be bounded, so there exists an k ∈ N with B ⊆ Bk, thus B is bounded in
FAk+1 and hence also in lim−→n

FAn . Therefore the identity F → lim−→n
FAn is bounded

and since F is bornological it is continuous.
( 3 ⇒ 4 ) Let F = lim−→n

Fn with Fn → Fn+1 being compact between Banach spaces,
hence it is ultra-bornological, complete and regular by 4.43 . In particular, F has
a countable basis of bornology formed by the multiples of the unit-balls of the Fn
and thus is (DF) and (M). Moreover, every 0-sequence is bounded, hence relatively
compact in some Fn and thus Mackey-convergent. In view of 4.28 it remains to
show quasi-normability as characterized in 4.30 : For every bounded=compact set
Uo in the (FM)-space F ∗ (by 4.18.1 and 4.27 ) there exists a (Mackey-)0-sequence
x∗n → 0 such that Uo is contained in its closed absolutely convex hull. Let λn →∞
be such that {λnx∗n : n ∈ N} is bounded in F ∗ and thus contained in some V o since
F is barrelled. Then x∗n → 0 in F ∗V o and hence Uo is compact in F ∗V o and thus
homeomorphic to its image in (F ∗, β(F ∗, F )).

( 4 ⇒ 1 ) By 4.39 F = E∗ for some (FM)-space E. By 3.34 the (FM) space E
is (S) iff it is separable (which is automatically satisfied by 3.27 ) and σ(E∗, E)-
convergent sequences are β(E∗, E)-convergent by 3.27 , hence equicontinuously=Mackey
convergent by 4 .

4.45 Lemma (See [Jar81, 17.3.6 p.379]).
Let T : E → F be nuclear between Banach spaces. Then T ∗ : F ∗ → E∗ is nuclear.

Proof. By assumption T =
∑
n x
∗
n ⊗ yn with

∑
n ‖x∗n‖ ‖yn‖ <∞. Thus

T ∗(y∗)(x) = y∗(T (x)) = y∗
(∑

n

x∗n(x) yn
)

=
∑
n

x∗n(x) y∗(yn)

=
∑
n

evyn(y∗)x∗n(x) =
(∑

n

evyn(y∗)x∗n
)

(x) =
(∑

n

evyn ⊗x∗n
)

(y∗)(x),

i.e. T ∗ =
∑
n evyn ⊗x∗n with∑

n

‖ evyn ‖ ‖x∗n‖ =
∑
n

‖yn‖ ‖x∗n‖ <∞.

4.46 Proposition (See [Jar81, 21.5.1 p.491]).
The dual E∗ of an lcs E is nuclear iff ∀B ∃B′ : ιBB′ : ẼB → ẼB′ is nuclear

An lcs E satisfying these equivalent conditions is (sometimes) called co-nuclear,
see [Jar81, 21.5 p.491].
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Proof. A typical 0-nbhd in E∗β is Bo for some bounded (absolutely convex and
closed) B ⊆ E.

(⇐) By assumption there is some bounded B′ ⊇ B such that ẼB → ẼB′ is nuclear.
Then its dual mapping (EB′)∗ → (EB)∗ is nuclear by 4.45 . Now note that (E∗)Bo
is isometrically embedded into (EB)∗: The inclusion EB → E induces a morphism
E∗ → (EB)∗, which factors over (E∗)Bo via an embedding, since ‖x∗‖(EB)∗ =
sup{|x∗(x)| : pB(x) ≤ 1} = sup{|x∗(x)| : x ∈ B = (Bo)o} = pBo(x∗). So the
connecting morphism from (E∗)(B′)o → (E∗)Bo is absolutely summing as restriction
of the (by 3.62 ) absolutely summing map (EB′)∗ → (EB)∗, i.e. E∗β is nuclear by
3.70 .

(⇒) Let E∗ be nuclear, so for each closed absolutely convex bounded B there
is another one B′, such that (E∗)(B′)o → (E∗)Bo is nuclear. Hence the adjoint
E∗∗Boo = ((E∗)Bo)∗ → ((E∗)(B′)o)∗ = E∗∗(B′)oo is nuclear and thus the restriction to
ẼB → ẼB′ (since B = E ∩Boo) is absolutely summing and a composition of 6 such
maps is nuclear, see the proof of ( 6 ⇒ 7 ) in 3.70 .

4.47 Lemma (See [Jar81, 12.5.1,12.5.2 p.263]).
For (DF)-spaces E and their Schwartzification ES := (E, τS) we have

β(E∗, E) = η(E∗, E) = η(E∗, ES) = γ(E∗, ES) = τc(E∗, ẼS) = β(E∗, ẼS).

In particular, β(E∗, E) = β(E∗, Ẽ) provided E is (DF).

The (DF) condition can be weakend to (df) in this lemma using the same proof,
but with the sharpening mentioned in 4.18 instead of Proposition 4.18 .

Proof. Note, that obviously E → ES → (E, σ(E,E∗)) are continuous, hence
E∗ = (ES)∗. We always have:

β(E∗, E) ≤ η(E∗, E) ≤ η(E∗, ES) =(S)=== γ(E∗, ES) =
3.24

===== τc(E∗, ẼS) =(s.-M)===== β(E∗, ẼS)

The first ≤ holds, since (E, η(E∗, E)) := lim−→U
E∗Uo and E∗Uo � E∗β is continuous.

The second one holds, since id : E �→ ES is continuous, so the injective limit
η(E∗, E) has more steps than η(E∗, ES).
The first equality holds since ES is (S): In fact, E∗Uo � (E∗, σ(E∗, E)) is continuous,
so id : η(E∗, E) := lim−→U

E∗Uo �→ γ(E∗, E) (recall 3.24 ) is continuous. Conversely,
let E be Schwartz, i.e. for every 0-nbhd U there exists a 0-nbhd V with Uo ⊆ E∗V o
compact by 3.33 , and hence the induced (compact) topology from E∗V o on Uo

coincides with the restriction of σ(E∗, E), and the inclusion from Uo with this
topology into E∗V o is continuous. Thus γ(E∗, E)�→ η(E∗, E) is continuous.
The last equality holds, since ẼS is a complete Schwarz space, hence semi-Montel
by 3.31 , thus the closed bounded subsets coincide with the compact ones.

(β(E∗, E) ≥ η(E∗, ES)) Since E is (DF), E∗β is (F), by 4.18 . Let x∗n → 0 in E∗β ,
then x∗n is Mackey-convergent by 2.2 , so there exists a sequence λn → ∞ with
λ2
nx
∗
n → 0 in E∗β . Since the (DF)-space E is infra-c0-barrelled, λ2

nx
∗
n ∈ Uo for some

0-nbhd U ⊆ E. Thus λnx∗n is an E-0-sequence and hence W := {λnx∗n : n ∈ N}o
is a 0-nbhd for τS (see 4.36 ). Since x∗n → 0 in E∗W o and hence in lim−→W

E∗W o =:
η(E∗, ES), the inclusion β(E∗, E)→ η(E∗, ES) is (sequentially-)continuous.

The particular case follows, since by the universal property E → ES ↪→ ẼS factors
over E ↪→ Ẽ. Thus β(E∗, E) ≤ β(E∗, Ẽ) ≤ β(E∗, ẼS).
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4.48 Proposition (See [Jar81, 21.5.3 p.491]).
For metrizable and for (DF)-spaces nuclearity and co-nuclearity are equivalent.

Proof. (nuclear (F )⇒ co-nuclear) Let pn be an increasing sequence of seminorms
defining the topology of E such that the connecting morphisms Tn : Epn+1 → Epn
are nuclear, and hence admit representations Tn =

∑
k λn,kx

∗
n,k ⊗ yn,k with x∗n,k ∈

o(Epn+1)∗, yn,k ∈ o(Epn) and λn :=
∑
k |λn,k| < ∞. Now let B ⊆ E be a closed

bounded disk, σn := sup{pn+1(b) : b ∈ B}, let ρn := max{σn, λn σn}, and set
C :=

{
x ∈ E : qC(x) :=

∑
n
pn(x)
2nρn ≤ 1

}
. For x ∈ B we have pn(x) ≤ pn+1(x) ≤ σn,

hence
∑
n
pn(x)
2nρn ≤

∑
n

σn
2nσn = 1, i.e. B ⊆ C. Furthermore C is bounded since

pn(C) ≤ 2nρn. The connecting morphism EB → EC is absolutely summable, since
for arbitrary finitely many xi ∈ EB ⊆ E we have∑
i

pn(xi) =
∑
i

pn(Tn(xi)) ≤
∑
i

∑
k

pn
(
λn,k x

∗
n,k(xi) yn,k

)
≤
∑
k

|λn,k|
∑
i

|x∗n,k(xi)| ≤ λn sup
x∗∈Uon+1

∑
i

|x∗(xi)|

≤ λn sup
x∗∈σnBo

∑
i

|x∗(xi)| ≤ λnσn sup
x∗∈Bo

∑
i

|x∗(xi)| ≤ ρn sup
x∗∈Bo

∑
i

|x∗(xi)|.

Thus
∑
i qC(xi) =

∑
n,i

1
2n

pn(xi)
ρn

≤ sup
{∑

i |x∗(xi)| : x∗ ∈ Bo
}

and hence the
identity EB → EC is absolutely summing by 3.62 . Since S6

1 ⊆ A1 ⊆ N we may
assume that it is even nuclear, and hence E is co-nuclear.

(nuclear (DF )⇒ co-nuclear) By 4.47 E∗β = Ẽ∗β , so we may assume that E is a com-
plete nuclear (DF). That Ẽ is (DF) can be seen as follows: By 4.47 we have
β(E∗, Ẽ) = β(E∗, E) and hence is metrizable and Ẽ has a basis of its bornology
formed by closures of bounded sets in E, since for every bounded B̃ ⊆ Ẽ we find
a bounded set B ⊆ E such that the 0-nbhds Bo ⊆ B̃o and hence B̃ ⊆ ((B̃)o)o ⊆
(Bo)o = B

Ẽ . That Ẽ is quasi-c0-barrelled is obvious (recall [Kri07b, 4.10.3]).
Let {Bn : n ∈ N} be a basis of the bornology consisting of closed absolutely convex
sets with Bn+1 ⊇ 2Bn. Put En := EBn . Since E is complete (S) hence semi-(M)
and thus semi-reflexive, EB ∼= ((E∗)Bo)∗ via x 7→ δ(x)|(E∗)Bo :
This mapping is onto, for let λ : (E∗)Bo → K
be continuous and linear, and x ∈ E be such
that δx := δ(x) = λ ◦ ιBo ∈ E∗∗, i.e. δx(Bo) =
{δx(x∗) = x∗(x) : x∗ ∈ Bo} is bounded by
C := ‖λ‖ and thus x ∈ C (Bo)o = C B ⊆ EB .
It is also injective, for let x ∈ EB be such that
δ(x)|(E∗)Bo = 0, hence 0 = δ(x) ◦ (ιB)∗ = δx :
E∗ → K, hence x = 0.

E∗

(ιB)∗��
ιBo

xxxx

E

(E∗)Bo �
� //

λ &&

(EB)∗

δx
��

EB

OOιB

OO

K

We claim that `1{E} = cbs- lim−→ `1{En}, i.e. every bounded S ⊆ `1{E} is contained
and bounded in `1{En} for some n (recall 3.41 ):
Suppose indirectly, that for each n we find x(n) ∈ S with πn(x(n)) :=

∑∞
k=0 ‖x

(n)
k ‖n >

2n. So there exists a finite set Fn ⊆ N with
∑
k∈Fn ‖x

(n)
k ‖n > 2n. Choose a(n)

k ∈ Bon
with

∑
k∈Fn |a

(n)
k (x(n)

k )| > 2n. Then

∀n, r ∈ N∀k ∈ Fn+r : 2r pBon(a(n+r)
k ) ≤ pBon+r

(a(n+r)
k ) ≤ 1.
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Thus the sequence (ak)k formed by all these finite subsequences (a(n)
k )k∈Fn for n ∈ N

converges to 0 in E∗ and hence forms an equicontinuous set A ⊆ E∗ by the (df)-
property. Thus Ao is a 0-nbhd in E and its Minkowski functional pAo : x 7→
sup{|a(x)| : a ∈ A} is a continuous seminorm on E. Hence πAo : (xk)k∈N 7→∑
k pAo(xk) is a continuous seminorm on `1{E}. Thus πAo(S) has to be bounded,

in contradiction to
πAo(x(n)) =

∑
k

sup
a∈A
|a(x(n)

k )| ≥
∑
k∈Fn

|a(n)
k (x(n)

k )| > 2n.

The canonical map `1[En] → `1[E] is continuous and `1[E] = `1{E} by 3.70 , so
the image of S := o `1[En] is bounded in `1{E} and, by what we have just shown,
even bounded in `1{En′} for some n′ ≥ n, i.e. the connecting mapping En → En′

is absolutely summing, hence E is co-nuclear by 4.46 .

(nuclear (F )⇐ co-nuclear) By assumption and 4.18.1 E∗ is a nuclear (DF)-space.
Hence by the second part E∗∗ is nuclear and so is E as a subspace by 3.73.2 .

(nuclear (DF )⇐ co-nuclear) By assumption and 4.18.2 E∗ is a nuclear Fréchet space.
Hence by the first part E∗∗ is nuclear. In order to apply 3.73.2 it remains to show
that δ : E → E∗∗ is an embedding, i.e. E is infra-barrelled: The bounded=pre-
compact (since E∗ is (S)) sets in E∗ are contained in the bipolar of some 0-sequence
in E∗ by 3.6 and, since E is (df) and hence quasi-c0-barrelled, the 0-sequences
are equicontinuous, hence the topology of E (which is that of uniform convergence
on equicontinuous sets) coincides with that induced from E∗∗.

This proof works also for (df) instead of (DF), however the last argument shows,
that (co-)nuclear (df) spaces are infra-barrelled and in particular (DF) spaces.

4.49 Proposition (See [Kri07a, 6.31], [Jar81, 21.5.5 p.493]).
Every strict inductive limit of a sequence of nuclear Fréchet spaces is co-nuclear.

Proof. Since strict inductive limits are regular this is immediate by 4.46 .

4.50 Theorem. Density of finite dimensional operators
(See [Kri07a, 4.44], [Jar81, 18.1.1 p.398]).
Let E be a locally convex space and B be a bornology on E. We consider on the
function spaces L(E, ) the topology of uniform convergence on all sets in B, and
hence denote them by LB. Then

1. E∗ ⊗ F is dense in LB(E,F ) for every locally convex space F ;
⇔ 2. E∗ ⊗ F is dense in LB(E,F ) for every Banach space F ;
⇔ 3. E∗ ⊗ E is dense in LB(E,E);
⇔ 4. idE is a limit in LB(E,E) of a net in E∗ ⊗ E.

Proof. ( 1 ⇒ 2 ) is trivial.
( 2 ⇒ 1 ) A typical 0-neighborhood in LB(E,F ) is given by NB,V := {T : T (B) ⊆
V } with B ∈ B and V a 0-neighborhood in F . Let ιV : F � FV be the canonical
surjection. Since FV is a normed space ιV ◦ T : E → F � FV ↪→ F̃V can be
uniformly approximated on B with respect to pV : FV → K by finite dimensional
operators E → F̃V by 2 . Since FV is dense with respect to pV in F̃V we may
assume that the finite operators belong to L(E,FV ). Taking inverse images of the
vector components, we may even assume that they belong to L(E,F ).
( 1 ⇒ 3 ) and ( 3 ⇒ 4 ) are trivial.
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( 4 ⇒ 1 ) Let Ti be a net of finite dimensional operators converging to idE , then
the net T ◦ Ti of finite dimensional operators converges to T ◦ id = T .

Let E be complete and assume that the equivalent statements of 4.50 are true
for some bornology B. And w.l.o.g. let B ∈ B be absolutely convex. Since the
identity on E can be approximated uniformly on B by finite dimensional operators,
we conclude that the inclusion EB → E can be approximated by finite dimensional
operators EB → E uniformly on the unit ball of EB . Hence it has to have relatively
compact image on the unit ball by the following lemma 4.51 , i.e. B has to be
relatively compact.

4.51 Lemma.
The set K(E,F ) of compact operators from a normed space E into a complete
space F is closed in L(E,F ).

Proof. To see this use that F = lim←−V F̃V ⊆
∏
V F̃V , hence a subset K of F

is relatively compact iff ιV (K) is relatively compact in F̃V for all V . Now let
Ti ∈ K(E,F ) converge to T ∈ L(E,F ) = L(E,F ). Then the ιV ◦ Ti ∈ K(E, F̃V )
converge to ιV ◦ T in L(E, F̃V ). Since F̃V is a Banach spaces it can be shown as in
[Kri07b, 6.4.8] that ιV ◦ T ∈ K(E, F̃V ). Hence ιV (T (oE)) is relatively compact in
F̃V and thus T (oE) is relatively compact in F .

4.52 Definition.
A complete lcs is said to satisfy the approximation property iff the equivalent
statements in 4.50 are true for the bornology B = cp of all relatively compact
subsets of E. A non-complete space E is said to have the approximation property,
iff its completion Ẽ has it. Note that the finite dimensional operators may be taken
in L(E,E) in this situation.

4.53 Remark (See [Kri07a, 4.63], [Jar81, 18.5.8 p.414]).
For a long time it was unclear if there are spaces without the approximation prop-
erty at all. It was known that, if such a Banach space exists, then there has to be a
subspace of c0 failing this property. It was [Enf73] who found a subspace of c0 with-
out this property. In [Sza78] it was shown that L(`2, `2) ∼= L(`2, (`2)∗) ∼= (`2⊗̂π`2)∗
doesn’t have the approximation property. In contrast `2⊗π`2 has the approximation
property, since by [Jar81, 18.2.9 p.403] every completed projective tensor product
of Fréchet spaces with the approximation property has it. Note however, that for
Banach spaces one can show that if E∗ has the approximation property then so does
E, see [Jar81, 18.3.5 p.407]. Due to [H.77] is the existence of a Fréchet-Montel
space without the approximation property, see [Jar81, p416].

4.54 Lemma. “Kelley-fication” of the completion (See [Kri07a, 4.76]).
The bijection (E∗γ)∗γ �→ Ẽ given by Grothendiecks completeness theorem is contin-
uous, both spaces have the same compact subsets and (E∗γ)∗γ carries the final locally
convex topology with respect to these subsets. If Ẽ is compactly generated, and hence
in particular if E is metrizable, then we have equality.

Proof. Recall that by Grothendiecks completeness theorem [Kri07b, 7.5.7] we
have a bijection Ẽ �→ Lequi(E∗γ ,K) into the space of linear functionals, which
are continuous on each equicontinuous set Uo ⊆ E∗ with its compact topology
σ(E∗, E)|Uo , supplied with the topology of uniform convergence on each equicon-
tinuous set. Whereas (E∗γ)∗γ is the same space, but with the final locally convex
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topology induced by the inclusions of W o with their compact topology σ(W o, E∗)
for all 0-nbhds W ⊆ E∗ with respect to γ(E∗, E) = τc(E∗, Ẽ) by 3.24 .

In order to show that (E∗γ)∗γ → Ẽ is continuous, denote with τ̃ the topology of
Ẽ, let the polars be with respect to the duality (Ẽ, E∗), and consider W o for a
0-nbhd W ⊆ E∗γ . Since γ(E∗, E) = τc(E∗, Ẽ) there exists a compact set K ⊆ Ẽ
with W ⊇ Ko. By [Kri07b, 6.4.2] the closed absolutely convex hull (Ko)o of K
is precompact and hence compact in Ẽ and hence the same is true for the closed
subset Wo ⊆ (Ko)o. So on Wo the (compact) topology of τ̃ coincides with that of
σ(Wo, E

∗), and hence (W o, σ(W o, E∗))� (Ẽ, τ̃) is continuous.
Conversely, let now K ⊆ Ẽ be compact. Then Ko is a 0-nbhd in (E∗, τc(E∗, Ẽ)) =
E∗γ and thus the inclusion of the (compact) equicontinuous set ((Ko)o, σ((E∗γ)∗, E∗))�
(E∗γ)∗γ is continuous. Since the inclusion (K, τ̃) � σ(Ẽ, E∗) is continuous, we get
that K is compact in (E∗γ)∗γ and (E∗γ)∗γ carries the final locally convex topology with
respect to the compact sets.

4.55 Proposition. Approximation property versus ε-product
(See [Kri07a, 4.68], [Jar81, 18.1.8 p.400]).
A complete space E has the approximation property iff F ⊗ε E is dense in the
so-called ε-product F εE := Lequi(F ∗γ , E) for every locally convex space F .

Note that the topology of F ⊗ε E is by definition 3.44 initial with respect to the
inclusion F ⊗ E ↪→ Lequi(F ∗, E) and has in fact values in L((F ∗, σ(F ∗, F )), E) ⊆
L(F ∗γ , E).

Proof. Note that F ⊗ E is mapped into L(F ∗γ , E), since for y ∈ F we have
δ(y) ∈ (F ∗γ )∗ by [Kri14, 5.5.7].
(⇐) Consider the following commuting diagram:
By assumption for F := E∗γ the inclined arrow
on the left hand side has dense image. The ar-
row on the right hand side is an embedding, since
(E∗γ)∗γ → Ẽ = E is a continuous bijection and the
equi-continuous subsets in (E∗γ)∗γ are exactly the
relatively compact subsets of Ẽ = E by 4.54 .

E∗γ ⊗ E //

�� ��

Lcp(E,E)
p P

��
Lequi((E∗γ)∗γ , E)

(⇒) Let T ∈ L(F ∗γ , E) and let a 0-neighborhood NV o,U in this space be given. Since
T is continuous on the compact space (V o, σ(F ∗, F )), we have that K := T (V o)
is compact in E. By assumption E∗ ⊗ E is dense in Lcp(E,E). Hence there
exists a finite dimensional operator S ∈ L(E,E) with (idE −S)(K) ⊆ U . Then
S ◦ T : F ∗γ → E → E is finite dimensional and since (F ∗γ )∗ = F̃ by [Kri14, 5.5.7] it
belongs to F̃ ⊗E and (T −S ◦T )(V o) = (id−S)(K) ⊆ U . Thus T −S ◦T ∈ NV o,U .
Hence F̃ ⊗ε E is dense in Lequi(F ∗γ , E) and, since F ⊗ E is dense in F̃ ⊗ε E, it is
also dense in Lequi(F ∗γ , E).

4.56 Proposition (See [Jar81, J18.2.1 p.401]).
Let E be the reduced projective limit of spaces Ej with the approximation property.
Then E has the approximation property.

Proof. We may assume that all Ej and E is complete (since taking completions
commutes with reduced projective limits, see [Jar81, 3.4.6 p.63]). Let K ⊆ E
be compact and U ⊆ E a 0-nbhd, w.l.o.g. of the form ι−1

k (Uk) for some k ∈ J and
0-nbhd Uk ⊆ Ek. By reducedness Fk := ιk(E) is dense in Ek hence has the approxi-
mation property. So there are ai ∈ E∗k and xi ∈ E such that (idFk −S)(ιk(K)) ⊆ Uk
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for S :=
∑n
i=1 ai ⊗ ιk(xi). Thus (idE −S̃)(K) ⊆ U for the finite dimensional oper-

ator S̃ :=
∑n
i=1 ι

∗
k(ai)⊗ xi.

4.57 Proposition. Consequences of nuclearity
(See [Kri07a, 6.19.2], [Jar81, 21.2.2 p.483]).
Each nuclear space has the approximation property.

Proof. Since by E is a reduced projective limit of Hilbert-spaces, it satisfies the
approximation property, by 4.56 and since Hilbert spaces have the approximation
property: Let (ei)i∈I be an orthonormal basis. Then the net of ortho-projections
PJ : x 7→

∑
i∈J〈x, ei〉ei with finite J ⊆ I converges pointwise to id and is equicon-

tinuous, since ‖pJ(x)‖`2 =
(∑

i∈J |〈xi, ei〉|2
)1/2 ≤ ‖x‖`2 . So it converges for the

topology τpc = τc.

4.58 Lemma (See [Kri07a, 4.70]).
For complete spaces E and F we have F εE ∼= E εF .

Proof. We only have to show bijectivity, since F εE = Lequi(F ∗γ , E) ⊆ L(F ∗, E)
embeds into the space L(F ∗, E∗′) ∼= L(F ∗, E∗;K). To every continuous T : F ∗γ → E
we associate the continuous T ∗ : E∗γ → (F ∗γ )∗γ (in fact every equi-continuous set Uo
of E∗ is mapped to T ∗(Uo) = {x∗◦T : x∗ ∈ Uo} ⊆ {y∗ : y∗ ∈ (T−1(U))o}, the polar
of a 0-neighborhood in F ∗γ ). And by Grothendieck’s completion result (See [Kri14,
5.5.7]) we are done since by the lemma 4.54 the identity (F ∗γ )∗γ → Lequi(F ∗γ ,K) =
F̃ is continuous.

Let us consider E∗⊗̂εF now. If F is complete and satisfies the approximation
property, then E∗γ⊗̂εF ∼= Lequi((E∗γ)∗γ , F ) by 4.55 .

4.59 Proposition (See [Kri07a, 4.73]).
If E and F are complete, E is Montel and F (or E) satisfies the approximation
property, then

E⊗̂εF ∼= E εF := Lequi(E∗γ , F ) ∼= Lb(E∗β , F ),

In more detail, for complete spaces E and F we have under the indicated assump-
tions the following identities:

E⊗̂εF =F app.prop.========== E εF = Lequi(E∗γ , F ) =E semi-Montel=============

= Lequi(E∗β , F ) =E infra-barreled============= Lb(E∗β , F ) =
E∗β bornological
============= L(E∗β , F )

Proof. In the first statement the first isomorphism follows from the definition
3.44 of E⊗εF ⊆ Lequi(E∗γ , F ) ↪→ L(E∗, F ) and the approximation property (that

it hold also if E instead of F satisfies the approximation property follows from
4.58 ). And the second one follows, since Montel spaces are barrelled by 3.22 and
3.18 and since E∗γ = τc(E∗, Ẽ) = β(E∗, E) by 3.24 and E being semi-Montel.

Note that the strong dual of a semi-reflexive space is barreled 4.10 . If E is in
addition metrizable, then E∗ is bornological by 4.16 , and hence we have

Lb(E∗β , F ) = L(E∗, F ).
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4.60 Proposition (See [Kri07a, 4.74]).
For complete spaces E∗β and F we have under the indicated assumptions the follow-
ing identities:

E∗β⊗̂εF =F app.prop.========== E∗β ε F := Lequi((E∗β)∗γ , F ) =E Montel========

= Lb((E∗β)∗β , F ) =E reflexive========= Lb(E,F ) =E bornological============ L(E,F ),

Proof. This follows, since the strong dual E∗β of a Montel space E is Montel
by 4.27 . Note that a Montel-space E is reflexive by 3.22 , i.e. (E∗β)∗β = E.
Furthermore E∗β = E′β is complete, provided E is bornological.

4.61 Theorem (See [Kri07a, 6.32], [Jar81, 21.5.9 p.496]).
Let E and F be Fréchet spaces with E nuclear.
Then we have the following isomorphisms:

1. E⊗̂πF ∼= E⊗̂εF ∼= L(E∗, F );
2. E∗⊗̂πF ∼= E∗⊗̂εF ∼= L(E,F );
3. E∗⊗̂πF ∗ ∼= E∗⊗̂εF ∗ ∼= L(E,F ∗) ∼= (E⊗̂πF )∗;

Proof. ( 1 ) Recall that we have shown in 4.59 that for complete spaces we have
E⊗̂εF ∼= L(E∗β , F ) provided E satisfies the approximation property, is Montel and
E∗β is bornological. These conditions are satisfied if E is a nuclear Fréchet space by
4.57 , 3.60 , 3.31 , and 4.39 .

( 2 ) Recall that we have shown in 4.60 that for complete spaces E∗β and F we
have E∗β⊗̂εF ∼= L(E,F ) provided E∗β satisfies the approximation property and E is
Montel and bornological. This is all satisfied if E is a nuclear Fréchet space, since
then E∗β is nuclear by 4.48 .

( 3 ) the same argument as in ( 2 ) applies and hence E∗⊗̂εF ∗ ∼= L(E,F ∗). In
general we have L(E,F ∗) = L(E,F ′) ∼= L(E,F ;K) = L(E,F ;K) ∼= (E⊗̂πF )∗,
since E and F are Fréchet.

4.62 Proposition (See [Jar81, 16.4.1 p.353], [Jar81, 21.8.9 p.507]).
Let B be a bornology on E 6= {0} 6= F .
Then LB(E,F ) is Schwartz/nuclear iff E∗B := LB(E,K) and F are Schwartz/nuclear.

Proof. (⇒) is obvious by 3.73.2 , since F and E∗B can be considered as (comple-
mented) subspaces.
(⇐) First one shows that a 0-neighborhood basis in LB(E,F ) is given by the sets
N := N{xn},{y∗n}o := {T : |T (xn)(y∗m)| ≤ 1 ∀n,m}, where xn is Mackey-convergent
to 0 in E with respect to B and y∗n is Mackey convergent to 0 in F ∗ with respect
to the bornology of equicontinuous sets, in fact the polars of these sequences form
bases by 4.36 . Without loss of generality we may replace xn by λnxn and y∗n
by µny

∗
n with λ and µ in c0. The functionals `j,k : LB(E,F ) → K given by

T 7→ y∗j (T (xk)) form an equicontinuous family, since N is mapped into {λ ∈ K :
|λ| ≤ 1}. Thus λkµj`j,k are Mackey-convergent to 0 with respect to the bornology of
equicontinuous subsets. Hence its polar (which is a subset of N) is a neighborhood
in the Schwartzification τS of LB(E,F ).

The proof for nuclearity is analogous using that by 4.38 the nuclearification is
given by the topology of uniform convergence on E-nuclear sequences x∗n ∈ E∗.
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4.63 Corollary (See [Kri07a, 6.21 p.142]).
The ε-tensor product of Schwartz spaces is Schwartz.

Proof. This follows from 4.62 since E ⊗ε F ⊆ E εF ⊆ L(E∗γ , F ) and (E∗γ)∗γ = Ẽ
is Schwartz.

Dual morphisms

4.64 Definition. Short exact sequences.
If T ∈ L(E,F ) is an embedding then T ∗ ∈ L(F ∗, E∗) is onto by Hahn-Banach.
If T ∈ L(E,F ) is onto (or at has at least dense image) then T ∗ ∈ L(F ∗, E∗)
is injective. In order ot treat both cases simultaneoulsy we can consider short
sequences of continuous linear mappinngs

0→ E → F → G→ 0.
A sequence · · · → En−1 −Tn−1→ En −Tn→ En+1 → . . . is called (algebraically)
exact iff kerTn = img Tn−1 := Tn−1(En−1) for all n. It is called topologically
exact iff Tn−1 induces an isomorphism En−1/ kerTn−1 → kerTn of lcs for all n.
Thus a short sequence 0 → E −S→ F −Q→ G → 0 is algebraically exact iff S is
injective, img(S) = ker(Q), and Q is onto. It is topologically exact iff in addition
S is a topological embedding and Q is a quotient mapping.
Every injective mapping (embedding) S : E → F with closed image gives rise to
the short (topologically) exact sequence 0→ E−S→ F � F/ imgS → 0. And every
surjective (quotient) mapping Q : F → G gives rise to the short (topologically)
exact sequence 0→ kerQ ↪→ F −Q→ G→ 0.

4.65 Remark.
Let E = limj Ej be a limit. Then E can be identified with the closed subspace
of
∏
j∈J Ej formed by all x = (xj)j∈J with F(f)(xj) = xj′ for all f : j → j′.

We get a short exact sequence 0 → E ↪→
∏
j Ej � (

∏
j Ej)/E → 0. We can

give an explicite description of the linear space (
∏
j Ej)/E, namely the subspace of∏

f :j→j′ Ej′ formed by the image of the mapping Q :
∏
j Ej →

∏
f :j→j′ Ej′ which

given by prf :j→j′ ◦Q := F(f) ◦ prj −pr′j . Even for projective limits of a sequence
it however not clear, whether Q is onto or is a quotient map onto its image.

4.66 Lemma.
Every short exact sequence of (F) spaces is topologically exact.

Proof. Let T : E → F be a continuous linear mapping between Fréchet spaces.
By the open mapping theorem we get: If T is onto, then it is open hence a quotient
mapping. If T is injective with closed image, then it is an homeomorphism onto its
image, hence an embedding.

4.67 Lemma (See [MV92, 26.4 p.291]).
Let 0→ E −S→ F −Q→ G→ 0 be topologically exact.
Then the dual sequence 0← E∗ ←S

∗
− F ∗ ←Q

∗
−G∗ ← 0 is algebraically exact.

Proof. (S embedding ⇒ S∗ onto) by Hahn-Banach.
(Q onto ⇒ Q∗ injective) obviously.
(kerQ = imgS and Q quotient mapping ⇒ kerS∗ = imgQ∗) For y∗ ∈ F ∗ we have:
y∗ ∈ kerS∗ ⇔ y∗ ◦S = 0⇔ y∗|imgS = 0⇔ y∗|kerQ = 0⇔ ∃z∗ ∈ G∗ : y∗ = z∗ ◦Q =
Q∗(z∗) ⇔ y∗ ∈ imgQ∗.
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Now the question arises, whether the dual of a topological short exact sequence is
also topologically exact. Since the topology on the dual space is generated by the
polars of bounded sets and (for infra-barrelled spaces) the bornology is generated
by the polars of 0-nbhds, we need to determine how polars behave under adjoint
mappings:

4.68 Lemma (See [Jar81, 6.8.2.a p.161]).
Let T : E → F be continous linear and A ⊆ E. Then

1. (T ∗)−1(Ao) = T (A)o.
2. Ao ∩ img T ∗ = T ∗(T (A)o).

Proof. ( 1 ) (T ∗)−1(Ao) = {y∗ : ∀a ∈ A : |y∗(T (a))| = |T ∗(y∗)(a)| ≤ 1} = {y∗ :
∀b ∈ T (A) : |y∗(b)| ≤ 1} = T (A)o.

( 2 ) T ∗(T (A)o) =
1

=== T ∗((T ∗)−1(Ao)) = Ao ∩ img T ∗

4.69 Definition. Special cbs-morphisms.
Among the various structures on the dual space E∗ of an lcs E the bornology
formed by the equicontinuous subsets is most closely related to (the topology of)
E. It will thus be essential, to consider properties of morphisms between convex
bornological spaces.
A bounded linear mapping T between separated convex bornological spaces is called
a (bornological) embedding (or cbs-embedding) iff T−1(B) is bounded for
each bounded B. Any cbs-embedding is automatically injective, since its kernel
is a bounded linear subspace hence 0. It is called (bornological) quotient
mapping (or cbs-quotient mapping) iff each bounded B has a bounded lift B′,
i.e. T (B′) = B. It is enough to assume T (B′) ⊇ B, since then we may replace B′
by B′ ∩T−1(B). Any cbs-quotient mapping is automatically onto, since each point
is bounded, hence the inverse image is non-empty.
Let us denote the functors b( ) : lcs → cbs given by assigning the von Neuman
bornology and t( ) : cbs → lcs given by assigning the topology formed by the
bornivorous absolutely convex subsets. These functors are adjoint to each other,
i.e. lcs(tE,F ) ∼= cbs(E, bF ), see [Kri07a, 3.15]. The bornological locally convex
spaces are exactly the fixpoints under t( ) ◦ b( ), i.e. the image of t( ).

4.70 Lemma.
If T : E → F is an lcs-embedding, then T : bE → bF is a cbs-embedding.

Proof. Let B ⊆ E be such that T (B) ⊆ bF is bounded. Let U be a 0-nbhd in E.
By assumption there is a 0-nbhd V in F with U = T−1(V ). Since T (B) ⊆ λV for
some λ > 0 we have B = T−1(T (B)) ⊆ T−1(λV ) = λU by injectivity of T . Thus
B is bounded in bE.

The converse is not true: Let F be a bornological lcs and E a (closed) lcs-subspace
which is not bornological, e.g. 4.81 . Then its bornologification Eborn has the
same bounded sets as E, is cbs-embedded in F , but does not carry the lcs-subspace
structure.

4.71 Lemma.
If T : E → F is a cbs-quotient mapping, then T : tE → tF is an lcs-quotient
mapping.

Proof. We show that T : tE → tF is an open mapping. Let U be an absolutely
convex 0-nbhd in tE. Then T (U) is absolutely convex and bornivorous, since any
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bounded B ⊆ F is image of some bounded A ⊆ E, thus A ⊆ λU for some λ > 0
and hence B = T (A) ⊆ λT (U). Hence T (U) is a 0-nbhd in tF .

The converse is not true, as the example 4.80 (based on 3.36 and 4.79 ) shows:
A Köthe sequence space λp(A) which is (FM), but has `p as quotient, hence the
bounded unit-ball cannot be lifted, since otherwise it would be compact.

Definition. External duality functors.
Consider duality as functor ( )∗ : lcs → cbs, which maps lcs E to the dual formed
by the continuous linear functionals together with the bornology of equicontinuous
sets, and the duality ( )′ : cbs→ lcs, which maps cbs E to the dual formed by the
bounded linear functionals together with the topology of uniform convergence on
the bounded sets of E.
These two dualities form a pair of adjoint functors, since

lcs(E,F ′) ∼= cbs(F,E∗) = cbsop(E∗, F ),
see [Kri07a, 3.16].
By what we have already mentioned (see [Kri07b, 7.4.11]) the canonical mapping
E ↪→ (E∗)′ is an lcs-embedding. And also E∗β ↪→ (bE)′ is an embedding by definition
of β(E∗, E).

4.72 Proposition (See [Kri07a, 3.18]).

1. The duality ( )′ : cbs→ lcs carries cbs-quotient mappings to lcs-embeddings.
2. The duality ( )∗ : lcs→ cbs carries lcs-quotient mappings to cbs-embeddings.
3. Let T : E → F be continuous and linear. Then T is an lcs-embedding iff T ∗

is a cbs-quotient mapping for the equicontinuous bornologies.
4. Furthermore, T is a dense lcs-embedding iff T ∗ is a cbs-isomorphism.

Proof. 1 Since cbs quotient mappings T : E → F are onto, we conclude that
T ∗ : F ′ → E′ is injective. Since T ∗(T (B)o) = T ∗((T ∗)−1(Bo)) = Bo ∩ T ∗(F ′), by
4.68.2 , and since the sets T (B)o form a 0-neighborhood basis of F ′, we are done.

2 Let U be an absolutely convex 0-nbhd in E. Since T : E → F is an lcs-
quotient mapping V := T (U) is an absolutely convex 0-nbhd in F and by 4.68.1
(T ∗)−1(Uo) = T (U)o = V o, thus T ∗ is a cbs-embedding.

3 (⇒) Let T : E ↪→ F be an lcs-embedding and U a 0-nbhd in E. Let pU be
the Minkowski-functional of U and p̃ an extension to F , i.e. p̃ ◦ T = pU , and let
V := {y ∈ F : p̃(y) ≤ 1}. Remains to show that Uo ⊆ T ∗(V o). So let x∗ ∈ Uo, i.e.
|x∗| ≤ p. By Hahn-Banach there exists an y∗ ∈ F ∗ with T ∗(y∗) = y∗ ◦ T = x∗ and
|y∗| ≤ p̃, hence y∗ ∈ V o.

3 (⇐) If T ∗ : F ∗ → E∗ is a cbs-quotient map, then (T ∗)∗ : (F ∗)′ → (E∗)′ is a
topological embedding by 1 and using the embedding E ↪→ (E∗)′ = L((E∗, E),K)
of [Kri07b, 7.4.11] and the commutative diagram

E
� � //

T

��

L(E∗,K)

L(T∗,K)
��

(E∗)′

(T∗)∗

��
F �
� // L(F ∗,K) (F ∗)′

shows that T is an embedding as well.
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4 If T is a dense lcs-embedding, then T ∗ is injective and by 3 a cbs-quotient
mapping, hence a cbs-isomorphism. Conversely, if T ∗ is a cbs-isomorphism, then
T is an lcs-embedding by 3 and since the continuous linear functionals separate
points from closed linear subspaces, T has dense image by the injectivity of T ∗.

4.73 Remark.
Surjectivity of linear operators D, means solvability of inhomogeneous equations
D(u) = s for arbitrary s with respect to u.
For example, by the Malgrange-Ehrenpreis Theorem (see [Kri07b, 8.3.1]) every
linear partial differential operator (PDO) D := P ( 1

i ∂) with constant coefficients
C∞(Rn)→ C∞(Rn) is onto. This can be shown, by considering the formal adjoint
operator Dt := P t( 1

i ∂) : D → D and its adjoint D̃ := (Dt)∗ on the space of
distributionsD∗ (see [Kri07b, 4.9]), proving the existence of a fundamental solution
ε ∈ D∗ (i.e. D̃(ε) = δ) via Fourier transform (see [Kri07b, 8.3.1]), and obtaining
the solution of D(u) = s as u := ε ? s (see [Kri07b, 4.7.7]). Here P is a polynomial
z 7→

∑
|k|≤m ak z

k and P t is the polynomial z 7→
∑
|k|≤m(−1)|k|akzk.

In [DGC71] it is shown that every linear partial differential operator Cω(R2) →
Cω(R2) is onto, where Cω(Rn) denotes the space of real-analytic scalar valued
functions on Rn. In contrast, the PDO ( ∂

∂x )2 + ( ∂∂y )2 : Cω(R3) → Cω(R3) is not
onto.

4.74 Surjectivity criterium (See [MV92, 26.1 p.289]).
Let T : E → F be continuous linear between Fréchet spaces. Then

1. T is onto;
⇔ 2. T is an lcs-quotient mapping;
⇔ 3. T ∗ : F ∗ → E∗ is a cbs-embedding,

i.e. B equicontinuous ⇒ (T ∗)−1(B) equicontinuous.
⇔ 4. T ∗ : b(F ∗β )→ b(E∗β) is a cbs-embedding,

i.e. w.r.t. the von Neumann bornologies.

Proof. ( 1 ⇒ 2 ) by the open mapping theorem.

( 2 ⇒ 3 ) is 4.72

( 3 ⇔ 4 ) since E and F are Fréchet (hence quasi-barrelled) the β-bounded sets are
exactly the equicontinuous ones.

( 3 ⇒ 1 ) Let U be an absolutely convex 0-nbhd⇒ Uo equicontinuous =
3

==⇒ T (U)o =
(T ∗)−1(Uo) (by 4.68.1 ) is equicontinuous⇒ T (U) = (T (U)o)o 0-nbhd =F not meager==========⇒
T (E) not meager (and hence T is onto by [Kri14, 4.3.6]): Suppose T (E) ⊆⋃
nAn with An closed. Then E =

⋃
n T
−1(An) with T−1(An) closed, hence ∃n:

int(T−1(An)) 6= ∅. Let x ∈ int(T−1(An)) and U be a 0-nbhd with x+U ⊆ T−1(An).
Then T (x) + T (U) ⊆ An and also T (x) + T (U) ⊆ An, i.e. the interior of An is not
empty.

4.75 Lemma of Baernstein (See [MV92, 26.26 p.303]).
Let T : E → F continuous linear between (DF) spaces, E be (M).
Then T : E → F is an lcs-embedding iff T : bE → bF is an cbs-embedding.

Proof.
(⇒) is 4.70 .
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(⇐) By 4.18.2 E∗ and F ∗ are Fréchet and T ∗ ∈ L(F ∗, E∗). By 3.22 E is
reflexive. Since T ∗∗ = T : E∗∗ = E → F ↪→ F ∗∗ it follows that T ∗ is onto by
4.74 . Let U be an absolutely convex closed 0-nbhd in E. Thus Uo is bounded

and hence compact in the (M)-space E∗. By 3.6 this can be lifted to a compact
set K ⊆ F ∗ which has to be contained in the closed absolutely convex hull of a 0-
sequence (y∗n) in the (F)-space F ∗. Let V :=

⋂
n Vn with absolutely convex 0-nbhds

Vn := {y∗n}o. The set V is bornivorous, since y∗n → 0, and hence a 0-nbhd, since as
(DF)-space F is quasi-countably-barrelled. Since K ⊆ 〈{y∗n : n ∈ N}〉abs.conv. ⊆ V o,
we get T ∗(V o) ⊇ T ∗(K) = Uo and hence U = (Uo)o ⊇ (T ∗(V o))o = T−1(V ), i.e.
T (U) is a 0-nbhd in the trace topology on img T .

4.76 Theorem of Eidelheit (See [MV92, 26.27 p.305]).
Let E be (F) and (x∗k)k∈N linearly independent in E∗. Then
∀y ∈ RN ∃x ∈ E ∀k ∈ N : x∗k(x) = yk ⇔ ∀U : dim

(
E∗Uo ∩

〈
{x∗k : k ∈ N}

〉
lin.sp

)
<∞.

Proof. By assumption T := (x∗k)k∈N : E → KN is continuous linear. Its adjoint
T ∗ : K(N) = (KN)∗ → E∗ is given by T ∗(y) =

∑
k x
∗
k ⊗ yk, since

T ∗(y)(x) = y(T (x)) =
∑
k

yk x
∗
k(x) =

(∑
k

x∗k ⊗ yk
)

(x).

Hence T ∗ is bijective onto 〈{x∗k : k ∈ N}〉lin.sp. (since the x∗k are linearly indepen-
dent).
By 4.74 T is onto iff (T ∗)−1(B) is bounded in K(N) for each bounded B ⊆ E∗, i.e.
for each 0-nbhd U the set T (U)o = (T ∗)−1(Uo) =

{
y ∈ K(N) :

∑
k x
∗
k ⊗ yk ∈ Uo

}
has to be bounded and hence has to be contained in some finite subsum KN . Since
T ∗ is injective, it induces a linear isomorphism〈

T (U)o
〉

lin.sp. =
⋃
λ>0

λ · T (U)o ∼=
⋃
λ>0

λ · T ∗(T (U)o) =
4.68.2

=======
⋃
λ>0

λ · Uo ∩ img T ∗

= E∗Uo ∩
〈
{x∗k : k ∈ N}

〉
lin.sp..

(⇒) Since T (U)o has to be contained in some KN , we have that dim
(
E∗Uo ∩

〈
{x∗k :

k ∈ N}
〉

lin.sp.

)
<∞ for each U .

(⇐) The condition implies that the closed absolutely convex set A := (T ∗)−1(Uo) =
T (U)o is contained in a finite dimensional linear subspaceKN and contains no R+·x∗
for x∗ 6= 0, since otherwise T ∗(x∗)|U = 0 and hence T ∗(x∗) = 0, thus x∗ = 0. This
implies that A is bounded, otherwise choose an ∈ A ⊆ KN with 1 ≤ ‖an‖ → ∞
and let a∞ ∈ A be an accumulation point of 1

‖an‖an ∈ A. Then λ a∞ ∈ A for all
λ > 0 since A 3 λ

‖an‖an → λ a∞ for ‖an‖ ≥ λ.

4.77 Corollary. (F) spaces with KN as quotient (See [MV92, 26.28 p.305]).
Let E be (F) and not Banach. Then KN is a topological quotient of E.

Proof. Let (Un) be a falling 0-nbhd basis of E. Since E is not Banach, we may
assume that ∃x∗k ∈ E∗Uok \E

∗
Uok−1

. Then (x∗k)k is linear independent and the mapping
Q := (x∗k)k∈N : E → KN satisfies the assumptions of 4.76 hence is onto.

4.78 Borels theorem (See [MV92, 26.29 p.305]).
∀y ∈ KN ∃f ∈ C∞([−1, 1],K) ∀k ∈ N : f (k)(0) = yk.

Proof. Let ‖f‖k := maxj≤k ‖f (j)‖∞ and Uk := {f : ‖f‖k ≤ 1}. Consider x∗k :
E := C∞([−1, 1],K)→ K given by x∗k(f) := f (k)(0). Obviously (x∗k)k∈N is linearly
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independent (on monomials). For finite sequences ξ the functional
∑
j ξjx

∗
j ∈ E∗(Uk)o

iff ξj = 0 for all j > k (Choose f with small derivatives of order < j but high one
of order j). Thus (x∗k)k∈N is onto by 4.76 .

4.79 λp(A) with quotient `p (See [MV92, 27.22 p.320]).
Let A = {a(k) ∈ RN×N+ : k ∈ N} with a(1)

i,j ≥ 1 and a(k)
i,k = a

(k)
1,k.

Then λp(A) has `p as quotient for 1 ≤ p <∞ and c0(A) has c0 as quotient.

Proof. Q : λp(A)→ `p defined by Q(x) :=
(∑

j xi,j/2j
)
i

is continuous and linear,
since

∑
i

∣∣∑
j xi,j/2j

∣∣p ≤∑i

(
‖(xi,j)j‖`p · ‖( 1

2j )j‖`q
)p ≤ ‖x‖p`p · 1 ≤ ‖x · a(1)‖p`p .

Claim: Q is onto (we will use 4.74 ): Q∗ : `q → λp(A)∗, y ∈ `q, x ∈ λp(A):

(Q∗y)(x) = y(Qx) =
∑
i

yi
∑
j

xi,j/2j =
∑
i,j

yi
2j
xi,j ⇒ Q∗(y) = (yi/2j)i,j .

For k ∈ N and Uk := {x : ‖x‖k ≤ 1} we have:

(Q∗)−1(Uok ) =
4.68.1

======= Q(Uk)o =
1.24

=====
{
y ∈ `q : |y(Qx)| =

∣∣∣∑
i,j

xi,jyi/2j
∣∣∣ ≤ ‖x‖k}.

Let y ∈ (Q∗)−1(Uok ) ⊆ `q, ξ ∈ `p, x : (i, j) 7→ ξiδj,k. Then

|y(ξ)| =
∣∣∣∑
i

ξiyi

∣∣∣ = 2k
∣∣∣∑
i

ξiyi/2k
∣∣∣ = 2k

∣∣∣∑
i,j

xi,jyi/2j
∣∣∣

≤ 2k‖x‖k = 2k
(∑

i

|ξia(k)
i,k |

p
)1/p

= 2ka(k)
1,k‖ξ‖`p

⇒ ‖y‖`q ≤ 2ka(k)
1,k, i.e. (Q∗)−1(Uok ) is bounded =

4.74
====⇒ Q is a quotient mapping.

For c0(A) the proof is analogous.

4.80 Counter-example for cbs-quotient mapping (See [MV92, 27.23 p.321]).
Let A be as in 3.36 , 1 ≤ p <∞, Q : λp(A)� `p a quotient mapping as in 4.79 .
Then Q is not a bornological quotient mapping.

Proof. The unit ball in `p is not compact and λp(A) is Montel, hence a bounded
lift would be compact.

4.81 Counter-example for inheritance of reflexivity and bornologicity
(See [MV92, 27.24 p.321]).
There is a reflexive (even (S)) ultra-bornological (DF) space with a closed not infra-
barrelled and hence not reflexive subspace.

Proof. Let λp(A) with 1 ≤ p < ∞ be the (FM) space of 3.36 . By 3.22 it is
reflexive and by 4.27 its dual E := λp(A)∗ is Montel (by 4.35 even (S)), hence
reflexive and bornological by 4.16 , and (DF) by 4.18.1 . Let Q : λp(A) � `p be
the quotient mapping as in 4.79 and consider the closed subspace F := img(Q∗) =
ker(Q)o in λp(A)∗, using 4.67 . Let W be the unit ball in `p, then U := Q−1(W )
is a 0-nbhd with Q(U) = W . By 4.68.2 we have Q∗(W o) = Q∗(Q(U)o) = Uo ∩
imgQ∗ = Uo ∩ F , hence Q∗(W o) is absolutely convex and closed in F . It is a
bornivorous barrel, since each bounded set B in F has bounded inverse (Q∗)−1(B)
in `q by 4.74 and hence is absorbed by the unit-ball W o. Infra-barrelledness of F
would imply that Q∗(W o) is a 0-nbhd in F and is bounded as image of the unit-ball.
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Since E is Montel it would be even relatively compact in F . Thus F would be finite
dimensional, which is a contradiction to the injectivity of Q∗.

4.82 Surjectivity of dense mappings (See [MV92, 26.2 p.289]).
Let T : E → F be continuous linear with dense image between (F) spaces.
Then T is onto ⇔ ∀U : Uo ∩ img(T ∗) is a Banach-disk .

Proof. By 4.68.2 Ao ∩ img(T ∗) = T ∗(T (A)o).

(⇒) U 0-nbhd ⇒ T (U) 0-nbhd =[Kri14, 5.4.12]+[Kri14, 5.4.17]========================⇒ T (U)o Banach-disk.
T (E) dense ⇒ T ∗ injective ⇒ E∗T∗(T (U)o)

∼= F ∗T (U)o Banach, i.e. Uo ∩ img T ∗ is a
Banach-disk.
(⇐) U 0-nbhd ⇒ B := Uo ∩ img T ∗ Banach-disk, (E∗)B → (E∗, σ(E∗, E)) bd. Let
(Vn)n be a 0-nbhd-basis in F ⇒ F ∗ =

⋃
n V

o
n ⇒ (E∗)B ⊆ img T ∗ =

⋃
n T
∗(V on ).

V on is σ(F ∗, F )-cp ⇒ T ∗(V on ) is σ(E∗, E)-cp ⇒ T ∗(V on )∩ (E∗)B is closed in (E∗)B .
=[Kri14, 4.1.11]===========⇒ ∃m: ∃x in the interior of T ∗(V om) ∩ (E∗)B ⇒ −x as well ⇒ 0 as well
⇒ ∃ε > 0: εB ⊆ T ∗(V om) =T

∗ inj====⇒ (T ∗)−1(B) ⊆ 1
εV

o
m ⇒ (T ∗)−1(B) bd.

=
4.74

====⇒ T surjective.

4.83 Theorem on closed image (See [MV92, 26.3 p.290], [Kri14, 9.11]).
Let T : E → F be continuous linear between (F) spaces. Then

1. img(T ) is closed;
⇔ 2. img(T ) = ker(T ∗)o;
⇔ 3. Uo ∩ img(T ∗) is a Banach-disk for each 0-nbhd U ;
⇔ 4. Uo ∩ img(T ∗) is (σ(E∗, E) or) β(E∗, E) closed for each U ;
⇔ 5. img(T ∗) is closed;
⇔ 6. img(T ∗) = ker(T )o;
⇔ 7. T : E/ ker(T )→ img(T ) is a homeomorphism.

Proof. ( 1 ⇔ 2 ) img T = ker(T ∗)o by [Kri14, 5.4.3].

( 1 ⇒ 7 ) T : E/ ker(T )→ img(T ) bijective continuous linear. Homeomorphism⇔
img T closed.
( 7 ⇒ 6 ) img T ∼= E/ kerT . img(T ∗) ⊆ ker(T )o is obvious. Conversely, x∗ ∈
ker(T )o ⇒ ∃y∗ ∈ (img T )∗ ∼= (E/ kerT )∗, y∗ ◦ T = x∗ ⇒ ∃z∗ ∈ F ∗ : z∗|img T = y∗,
i.e. T ∗(z∗) = z∗ ◦ T = y∗ ◦ T = x∗.

( 6 ⇒ 5 ) Obvious, since ker(T )o is closed.

( 5 ⇒ 4 ) img(T ∗) and Uo are closed ⇒ Uo ∩ img(T ∗) is β(E∗, E)-closed.

( 4 ⇒ 3 ) B := Uo ∩ T ∗(F ∗) closed, E∗ = E′ complete ⇒ (E∗)B complete, see
[Kri07a, 2.27].

( 3 ⇒ 1 ) Let T0 : E → T (E)( ι
↪→ F ) =[Kri14, 5.1.5]==========⇒ ι∗ is onto ⇒ img(T ∗0 ) = img(T ∗)

=
4.82 , 3

=======⇒ T0 surj ⇒ T (E) = T0(E) = T (E), i.e. img T is closed.

( 4 :β(E∗, E)-closed⇒σ(E∗, E)-closed). By ( 4 ⇒ 3 ⇒ 1 ⇒ 6 ) we have Uo∩img(T ∗) =
Uo ∩ ker(T )o, which is σ(E∗, E)-closed.

4.84 Exactness for dual sequence (See [MV92, 26.4 p.291]).
Let E −S→ F −Q→ G be a short sequence in (F). Then
0→ E → F → G→ 0 is exact ⇔ 0← E∗ ← F ∗ ← G∗ ← 0 is algebraically exact.
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Proof. (⇒) This is 4.67 .

(⇐) img(Q∗) = ker(S∗) and img(S∗) = E∗ ⇒ img(Q∗) and img(S∗) are closed ⇒
img(Q) and img(S) are closed by 4.83 .
Since img(T ∗)o = {x : y∗(Tx) = T ∗(y∗)(x) = 0 ∀y∗} = ker(T ), we get

ker(S) = img(S∗)o = (E∗)o = 0

img(S) = img(S) =[Kri07b, 7.4.3]============= ker(S∗)o = img(Q∗)o = ker(Q)

img(Q) = img(Q) = (img(Q)o)o =[Kri07b, 7.4.3]============= ker(Q∗)o = {0}o = G.

4.85 Corollary. Duals of subspaces and quotient spaces of (F) spaces
(See [MV92, 26.5 p.292], [Kri14, 5.4.4]).
Let F ↪→ E be an embedding in (F) and let 0 → (F/E)∗ → F ∗ → E∗ → 0 be
topologically exact. Then E∗ ∼= F ∗/Eo and (F/E)∗ ∼= Eo.

Proof.

(F/E)∗ �
� //

��

����

F ∗ // //

"" ""

E∗

Eo
-

;;

F ∗/Eo
OO

OOOO

By [Kri14, 5.4.4] the vertical arrows in this di-
agram are continuous bijections. The left one
is an iso, since (F/E)∗ → F ∗ is assumed to
be an embedding and the right one is an iso,
since F ∗ → E∗ is assumed to be a quotient map-
ping.

4.86 Definition. The canonical resolution.
Let E∞ = lim←−nEn be a reduced projective limit of a sequence of Fréchet spaces
with connecting morphisms fk+1

k : Ek+1 → Ek. Then the short sequence

0→ E∞ −ι→
∏
k

Ek −π→
∏
k

Ek → 0,

where π
(
(xk)k∈N

)
:=
(
xk − fk+1

k (xk+1)
)
k∈N,

is called canonical resolution of the projective limit.

If E is a Fréchet space with basis of seminorms ‖ ‖k for k ∈ N, then E is isomorphic
to the reduced projective limit formed by the Banach spaces Ek := ẼUk , where
Uk := {x ∈ E : ‖x‖k ≤ 1} and the corresponding short exact sequence is called the
canonical resolution of the Fréchet space.

4.87 Exactness of the canonical resolutions (See [MV92, 26.15 p.299]).
The canonical resolution of any reduced projective limit of a sequence of (F) spaces
is exact. In particular, the canonical resolution of any Fréchet space is exact.

Proof. Let E = lim←−nEn with (F) spaces En, i.e. E = {x ∈
∏
k Ek : xk =

fk+1
k (xk+1) for all k} which is the kernel of the mapping π :

∏
k Ek →

∏
k Ek

given by π(x) = (xk − fk+1
k (xk+1))k∈N. Let ι : E ↪→

∏
k∈NEk be the inclusion.

Obviously
∐
k E
∗
k
∼= (
∏
k Ek)∗, via (x∗k)k∈N 7→ ((xk)k∈N 7→

∑
k x
∗
k(xk)). Using this
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4.88 Dual morphisms

identification the adjoint mappings are given by:

ι∗(x∗)(x) := x∗(ι(x)) =
∑
k

x∗k(ιk(x)) =
(∑

k

x∗k ◦ ιk
)

(x) ⇒

ι∗ : (x∗k)k∈N 7→
∑
k

x∗k ◦ ιk

π∗(y∗)
(
(xk)k∈N

)
:= y∗

(
π
(
(xk)k∈N

))
=
∑
k

y∗k
(
xk − fk+1

k (xk+1)
)

=
∑
k

(
y∗k − y∗k−1 ◦ fkk−1

)(
(xk)k∈N

)
⇒

π∗ : (y∗k)k∈N 7→ (y∗k − y∗k−1 ◦ fkk−1)k∈N, where y∗−1 := 0.

Since ι is an embedding, ι∗ is onto by Hahn-Banach. The adjoint π∗ is injective,
since y∗k − y∗k−1f

k
k−1 = 0 for all k recursively gives y∗k = 0 for all k.

Obviously 0 = 0∗ = (π ◦ ι)∗ = ι∗ ◦ π∗. So let x∗ ∈
∐
k E
∗
k with ι∗(x∗) = 0. Remains

to find y∗ ∈
∐
k E
∗
k with x∗ = π∗(y∗), i.e.

x∗k = y∗k − y∗k−1 ◦ fkk−1 for all k ∈ N.

Recursively we get y∗−1 := 0 and y∗k :=
∑
j≤k x

∗
j ◦ fkj :

y∗k = x∗k + y∗k−1 ◦ fkk−1 = x∗k +
( ∑
j≤k−1

x∗j ◦ fk−1
j

)
◦ fkk−1 =

∑
j≤k

x∗j ◦ fkj .

Since x∗ ∈
∐
k E
∗
k there exists an n ∈ N with x∗j = 0 for all j ≥ n. For m ≥ n we

thus have

0 = ι∗(x∗) =
∑
k

x∗k ◦ ιk =
∑
k<n

x∗k ◦ (fmk ◦ ιm) =
(∑
k≤m

x∗k ◦ fmk
)
◦ ιm = y∗m ◦ ιm.

Since ιm has dense image we get y∗m = 0 for all m ≥ n, i.e. y∗ ∈
∐
k E
∗
k .

Thus the dual sequence is exact and by 4.84 the canonical resolution itself is
exact.

4.88 Proposition (See [Bon91]+[MV92, 26.14 p.298]).
Let E be a Fréchet space with increasing sequence of seminorms ‖ ‖k. And let ‖ ‖∗k
be the Minkowski functional of the polar of Uk := {x : ‖x‖k ≤ 1}, i.e. ‖x∗‖∗k =
sup{|x∗(x)| : x ∈ Uk}. Then

1. E is quasi-normable, i.e. ∀U ∃U ′ ∀ε > 0 ∃B bd : U ′ ⊆ B + εU .
⇔ 2. ∀p ∃p′ > p ∀q > p′ ∀ε > 0 ∃ε′ > 0 : ‖ ‖∗p′ ≤ ε′ ‖ ‖∗q + ε ‖ ‖∗p;
⇔ 3. ∀p ∃p′ > p ∀q > p′ ∀ε > 0 ∃ε′ > 0 : ε′ Uoq ∩ Uop ⊆ εUop′ .
⇔ 4. ∀p ∃p′ > p ∀q > p′ ∀ε > 0 ∃ε′ > 0 : Up′ ⊆ ε′ Uq + εUp;
⇔ 5. Every 0-sequence in E∗β is Mackey-convergent.
⇔ 6. F ∗born = lim−→n

E∗Uon is sequentially retractive.

We need and prove only the equivalence of the first 4 conditions.

Proof.
( 1 ⇒ 2 ) By 1 : ∀p ∃p′ > p ∀ε > 0 ∃B bd : Up′ ⊆ B + εUp. By the boundedness
of B: ∀q > p′ ∃ε′ > 0 : B ⊆ ε′ Uq. Thus

‖y‖∗p′ = sup
{
|y(x)| : x ∈ Up′

}
≤ sup

{
|y(x1 + x2)| : x1 ∈ ε′Uq, x2 ∈ εUp

}
≤ sup

{
|y(x1)| : x1 ∈ ε′Uq

}
+ sup

{
|y(x2)| : x2 ∈ εUp

}
= ε′ ‖y‖∗q + ε ‖y‖∗p.
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Dual morphisms 4.89

( 2 ⇒ 3 ) For given α > 0 let ε := α
2 and we have an ε′ > 0 with

‖y‖∗p′ ≤ ε′ ‖y‖∗q + ε ‖y‖∗p.

Put α′ := α
2ε′ and let y ∈ α′Uoq ∩ Uop . Then ‖y‖∗q ≤ α′ and ‖y‖∗p ≤ 1, hence

‖y‖∗p′ ≤ ε′ · α′ + ε · 1 = α, i.e. y ∈ αUop′ .

( 3 ⇒ 4 ) Let ε′ Uoq ∩ Uop ⊆ εUoq′ . Since ( 1
ε′Uq + Up)o ⊆ ε′ Uoq ∩ Uop we get by

polarization and bipolar theorem

Uq′ ⊆ (Uoq′)o ⊆ ε
(( 1

ε′Uq+Up
)o)

o
= ε 1

ε′Uq + Up ⊆ ε
(
Uq+ 1

ε′Uq+Up
)

= ε′′ Uq+εUp

with ε′′ := ε (1 + 1
ε′ ).

( 4 ⇒ 1 ) [Bon91] W.l.o.g. let U := U0 and by assumption 4 (p+ 1 = p′)

∀p ∀q ∀ε > 0 ∃ε′ > 0 : Up+1 ⊆ ε′Uq + εUp.

⇒ ∃ ε′1 > 0: U1 ⊆ ε′1U2 + ε
2U0

⇒ ∃ ε̄′2 > 0: U2 ⊆ ε̄′2U3 + ε
22ε′1

U1, i.e. ε′1U2 ⊆ ε′2U3 + ε
22U1 with ε′2 := ε′1ε̄

′
2. ⇒ . . .

⇒ ∃ ε′k: ε′k−1Uk ⊆ ε′kUk+1 + ε
2kUk−1.

Let z ∈ U1. Then z = ε′1u2 + ε
2v1 with u2 ∈ U2 and v1 ∈ U0 and ε′k−1uk =

ε′kuk+1 + ε
2k vk with uk+1 ∈ Uk+1 and vk ∈ Uk−1 ⊆ U0. ⇒ ∃x :=

∑∞
k=1

ε
2k vk ∈ εU0,

since F is Fréchet. The set B :=
⋂
k(ε′k + ε)Uk is bounded and z − x ∈ B, since

z − x =
(
z −

k∑
j=1

ε

2j
vj

)
−

∞∑
j=k+1

ε

2j
vj = ε′kuk+1 −

∞∑
j=k+1

ε

2j
vj

∈ ε′kUk+1 + ε

2k
Uk ⊆ (ε′k + ε)Uk.

4.89 Canonical resolution and quasi-normability (See [MV92, 26.16 p.299]).
Let E be (F) and π the quotient mapping of the canonical resolution of E.
If π∗ is an embedding, then E is quasi-normable.

Proof. Indirectly assume E is not quasi-normable. (Ek)∗ ∼= E∗Uok
and the dual

norm ‖ ‖k on (Ek)∗ is just ‖ ‖∗k. =
4.88

====⇒

(1) ∃m ∀k > m ∃k′ > k ∃εk > 0 ∀S > 0 ∃y ∈ E∗m : ‖y‖k > S‖y‖k′ + εk‖y‖m.

By assumption (π∗)−1 : img(π∗) →
∐
k E
∗
k is continuous and p : η 7→

∑
k
k
εk
‖ηk‖k

a continuous seminorm on
∐
k E
∗
k .

⇒ ∃p̃ SN of
∐
k E
∗
k : p((π∗)−1(η)) ≤ p̃(η) for all η ∈ img(π∗) = ker(ι∗).

⇒ ∃Dk ≥ 0: p̃(η) ≤
∑
kDk‖ηk‖k.

1 ⇒ ∀k > max{m,Dm} ∃k′ > k ∃εk > 0 for S := Dk′εk/k ∃y ∈ E∗m with

‖y‖k > S‖y‖k′ + εk‖y‖m
Let η ∈ ker(ι∗) be given by ηm := y, ηk′ := −y ∈ E∗m ⊆ E∗k′ and ηj = 0 otherwise.

=
Proof of 4.87
===========⇒ (π∗)−1(η) = (

∑
j≤k ηj)k. Since m < k < k′ we have:

k

εk
‖y‖k ≤ p

((∑
j≤k

ηj

)
k

)
≤ p
(
(π∗)−1(η)

)
≤ p̃(η) ≤ Dm‖y‖m +Dk′‖y‖k′

⇒ ‖y‖k ≤ Dm
εk
k
‖y‖m +Dk′

εk
k
‖y‖k′ ≤ εk‖y‖m + S‖y‖k′ ,

a contradiction.
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4.91 Dual morphisms

4.90 Sequences of bounded subsets in (F) spaces (See [MV92, 26.6 p.292]).
Let E be metrizable. Then

1. Bn ⊆ E bounded ⇒ ∃δn > 0:
⋃
n∈N δnBn bounded.

2. ∀ B bounded ∃ C ⊇ B bounded: EC ⊇ B → E is an embedding.

Proof. Let (Un) be a 0-nbhd basis of E.
( 1 ) ∀j, n ∃λj,n > 0: Bj ⊆ λj,nUn. Let λn := max{λj,n : j ≤ n} ⇒ ∀j ≤ n :
λj,n ≤ λn ⇒ ∀j ∃αj ≥ 1 ∀n: λj,n ≤ αjλn ⇒ ∀j, n: Bj ⊆ λj,nUn ⊆ αjλnUn ⇒ ∀j:
Bj ⊆ αj

⋂
n λnUn and B :=

⋂
n λnUn is bounded. Thus

⋃
j

1
αj
Bj ⊆ B is bounded.

( 2 ) W.l.o.g. B absolute convex. ∃λn > 0 : B ⊆ λnUn ⇒ B ⊆ C :=
⋂
n nλnUn

and C is bounded and EC ⊇ B → E continuous. In order to show the converse, let
x ∈ B and ε > 0. ∃m: ε > 2

m , ∃k: Uk ⊆
⋂
n<m εnλnUn ⇒

2B ∩ Uk ⊆
( ⋂
n≥m

εnλnUn

)
∩
⋂
n<m

εnλnUn = ε
⋂
n

nλnUn = εC

⇒ B ∩ (x+ Uk) = x+ (B − x) ∩ Uk ⊆ x+ 2B ∩ Uk ⊆ x+ εC

⇒ B ∩ (x+ Uk) ⊆ B ∩ (x+ εC).

4.91 Theorem. Dual of surjective mappings (See [MV92, 26.7 p.293]).
Let Q : F � G be continuous linear between (F) and onto. Then
Q is a cbs-quotient mapping ⇔ Q∗ is an lcs-embedding.

Proof. (⇒) This is 4.72.1

(⇐) B ⊆ G bd ⇒ Bo 0-nbhd ⇒ Q∗(Bo) 0-nbhd in img(Q∗) ⊆ F ∗ ⇒ ∃M ⊆ F bd.
Mo ∩ img(Q∗) ⊆ Q∗(Bo) =Q

∗ inj=====⇒

Q(M)o =
4.68.1

======= (Q∗)−1(Mo) = (Q∗)−1(Mo ∩ img(Q∗)) ⊆ Bo

⇒B ⊆ (Bo)o ⊆ (Q(M)o)o = Q(M)

=
4.90.2 for Q(M)

==============⇒∃B′ ⊆ G bd. : Q(M) = Q(M)
GB′

⇒ ∀B ⊆ G bd. ∃M ⊆ F bd. ∃B′ ⊆ G bd. ∀ε > 0 : B ⊆ Q(M) + εB′. =recursion=======⇒
∀B0 ⊆ G bd. ∀n ∃Mn ⊆ F bd. ∃Bn ⊆ G bd. ∀ε > 0: Bn ⊆ Q(Mn) + εBn+1.

=
4.90.1

======⇒ ∃M,B bd. ∃λn > 0: Mn ⊆ λnM , Bn ⊆ λnB. W.l.o.g. M closed and
λ0 = 1

2 . ⇒ Take ε0 := 1 and εn ≤ 1 such that εnλn ≤ 1/2n+1.
∀b0 ∈ B0 ∀n ∃mn ∈Mn ∃bn+1 ∈ Bn+1: bn = Q(mn) + εn+1bn+1. ⇒

b0 = Q
(∑
j≤k

ε0 · · · εjmj

)
+ ε0 · · · εk+1bk+1

ε0 · · · εjmj ∈ e0 · · · εjMj ⊆ εjλjM ⊆
1

2j+1M

ε0 · · · εk+1bk+1 ∈ e0 · · · εk+1Bk+1 ⊆ εk+1λk+1B ⊆
1

2k+2B

⇒ ∃m :=
∞∑
j=0

ε0 · · · εjmj ∈M and Q(m) =
∞∑
j=0

ε0 · · · εj(bj − εj+1bj+1) = b0,

i.e. B0 ⊆ Q(M).
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Dual morphisms 4.95

4.92 Proposition. (See [MV92, 26.11 p.295]).
Let 0→ E −S→ F −Q→ G→ 0 be exact between (F).
Q a cbs-quotient mapping ⇒ S∗ is an lcs-quotient mapping.

Proof. Let (Un)n and (Vn)n 0-nbhd-bases of F and G.

Claim. ∀n ∃m ∀B ⊆ Vm bd ∃M ⊆ Un bd: Q(M) = B:
Indirect: ∃n ∀m ∃Bm ⊆ Vm bd ∀M ⊆ F bd Q(M) = B ⇒M 6⊆ Un.
⇒ B :=

⋃
2mBm ⊆ G bd (in fact: 2Vn+1 ⊆ Vn, ⇒

⋃
m≥n 2mBm ⊆ 2nVn) ⇒

∃M ⊆ F bd: Q(M) = B ⇒ ∃ε > 0: εM ⊆ Un, ∃m: ε2m ≥ 1 ⇒ Q(εM) = εB ⊇
ε2mBm ⊇ Bm. ⇒ M0 := εM ∩Q−1(Bm) ⊆ Un, Q(M0) = Bm, a contradiction.

Claim. ∀B ⊆ G bd ∃M ⊆ F bd ∀n ∃k: Q(M ∩ Un) ⊇ B ∩ Vk:
∀n ∃mn ∀B ⊆ G bd ∃Mn ⊆ Un: Q(Mn) = Bn := B ∩ Vmn .
Put M := 〈

⋃
nMn〉abs.conv. ⇒ M ⊆ F bd, since

⋃
k≥nMk ⊆

⋃
k≥n Uk = Un.

Q(M ∩ Un) ⊇ Q(Mn) = Bn = B ∩ Vmn
Claim. ∀L ⊆ F bd ∃D ⊆ E bd ∀n ∃m: (L+ Um) ∩ E ⊆ D + Un
(See [MV92, 26.10 p.295]):
Let L ⊆ F bd, B := Q(L) ⇒ ∃M ⊆ F bd ∀n ∃k: Q(M ∩ Un) ⊇ B ∩ Vk.
Put D := (L+M) ∩ E ⊆ E bd. ∀n ∃n̄ ≥ n: 2Un̄ ⊆ Un ∃k: Q(M ∩ Un̄) ⊇ B ∩ Vk.
Q continuous ⇒ ∃m ≥ n̄: Q(Um) ⊆ Vk.
Let x ∈ (L + Um) ∩ E. ⇒ ∃l ∈ L ∃u ∈ Um: x = l − u, Q(l) − Q(u) = Q(x) = 0.
Q(l) = Q(u) ∈ B ∩Q(Um) ⊆ B ∩ Vk ⊆ Q(M ∩ Un̄) ⇒
∃ξ ∈M ∩ Un̄: Q(ξ) = Q(l) = Q(u) ⇒

x = (l − ξ) + (ξ − u) ∈ (L+M) ∩ E + Un̄ + Um ⊆ (L+M) ∩ E + 2Un̄ ⊆ D + Un

Claim. S∗ is a quotient mapping (See [MV92, 26.9 p.295]):
∀L ⊆ F bd ∃D ⊆ E bd ∀n ∃m: (L+ Um) ∩ E ⊆ D + Un.
Let y ∈ Do. ⇒ ∃n: y ∈ Uon ⇒ y ∈ Do ∩Uon ⊆ 2(D+Un)o ⇒ y ∈ 2((L+Um)∩E)o

=Hahn Banach==========⇒ ∃ỹ ∈ 2(L+ Um)o ⊆ 2Lo: ỹ ◦ S = y, i.e. S∗(Lo) ⊇ 1
2D

o.

4.93 Theorem. Exactness of dualized sequence (See [MV92, 26.12 p.296]).
Let 0→ E → F −Q→ G→ 0 be exact between (F) spaces. Then
0 ← E∗ ← F ∗ ← G∗ ← 0 is topologically exact ⇔ Q is bornological quotient
mapping.

Proof. 4.84 , 4.91 , 4.92 ⇒

4.94 Lifting compact sets along quotient mappings in (F)
(See [MV92, 26.21 p.302]).
Let Q : E → F be continuous linear surjective between (F) spaces.
Then Q is a cbs-quotient mapping for the bornologies of relatively compact subsets.

Proof. K ⊆ F compact =
3.6

===⇒ ∃xn → 0, K ⊆ 〈{xn : n ∈ N}〉 (!)⇒ ∃zn → 0 in E with

Q(zn) = xn =
3.6

===⇒ L := 〈{zn : n ∈ N}〉 cp, Q(L) ⊆ K.

4.95 Theorem. Dual of sequences in (F) with (M) quotient (See [MV92,
26.22 p.303]).
Let 0→ E → F → G be a sequence in (F) and let G be (M). Then
0→ E → F → G→ 0 is exact ⇔ 0← E∗ ← F ∗ ← G∗ ← 0 is topologically exact.
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4.97 Dual morphisms

Proof. G (M) ⇒ bounded sets are relatively compact, hence have bounded lifts
along Q by 4.94 . Thus Q is a cbs-quotient mapping, hence the dual sequence is
topologically exact by 4.93 . The converse follows from 4.84 .

4.96 Exactness for quasi-normable spaces (See [MV92, 26.13 p.296]).
Let 0→ E → F −Q→ G→ 0 be exact in (F) and let E quasi-normable.
Then Q is a cbs-quotient mapping.

Proof. (Wn)n 0-nbhd-basis of F . =
4.88.4

======⇒ ∃nk, Uk := Wnk , Vk := Uk ∩ E:

(1) ∀k ∀ε > 0 ∃ε′ > 0 : Vk ⊆ ε′ Vk+1 + ε Vk−1.

Let B ⊆ G bd. =Q open=====⇒ ∀k ∃Ck: B ⊆ CkQ(Uk). Put C ′k := Ck + Ck+1. We use
recursion to construct

(2) ∀k ≥ 2 ∃εk > 0 : Vk ⊆ εkVk+1 + 1
2kDk

Vk−1 with Dk := C ′k +Dk−1εk−1.

In fact, put D1 := 0, and in the induction step let ε := 1/(2kDk) and take εk := ε′

as in 1 .
For ‖ ‖k := pUk let M := {x ∈ F : ∀k ≥ 2 : ‖x‖k ≤ Ck +Dkεk +C ′k + 1}. Then M
is bounded.

Claim: Q(M) ⊇ B.
Let ξ ∈ B ⊆ CkQ(Uk) = Q(Ck Uk) ⇒ ∃xk ∈ Ck Uk, Q(xk) = ξ. Put yk :=
xk − xk+1. ⇒ Q(yk) = Q(xk − xk+1) = ξ − ξ = 0, i.e. yk ∈ E = ker(Q) and

yk = xk − xk+1 ∈ Ck Uk + Ck+1 Uk+1 ⊆ (Ck + Ck+1)Uk = C ′k Uk

⇒ ∀k : yk ∈ C ′k Uk ∩ E = C ′k Vk.

We use induction to construct vk ∈ DkεkVk+1 and uk ∈ 2−kVk−1 such that

yk + vk−1 = vk + uk.

Let v0 := 0 and vk−1 already be given. Then yk + vk−1 ∈ (C ′k + εk−1Dk−1)Vk =

DkVk =
2

==⇒ ∃vk ∈ DkεkVk+1, uk ∈ 2−kVk−1: yk + vk−1 = vk + uk.

⇒ ∃bk := vk−1 −
∑
j≥k uj ∈ E, since

∑
j>k ‖uj‖k ≤

∑
j>k ‖uj‖j−1 ≤

∑
j>k

1
2j =

1
2k .

‖bk‖k =
∥∥vk−1 − uk︸ ︷︷ ︸

=vk−yk

−
∑
j>k

uj
∥∥
k
≤ ‖vk‖k + ‖yk‖k + 1

2k
≤ Dkεk + C ′k + 1.

Let x := x2 + b2. Since bk+1 − bk = vk − vk−1 + uk = yk = xk − xk+1, we have
‖x‖k = ‖xk + bk‖k ≤ ‖xk‖k + ‖bk‖k ≤ Ck + (Dkεk + C ′k + 1) ⇒ x ∈ M and
Q(x) = Q(x2) +Q(b2) = ξ + 0.

4.97 Theorem. Dual sequences and quasi-normability (See [MV92, 26.17
p.300]).
Let E be (F). Then

1. E is q-normable
⇔ 2. If Q : F � G is an lcs-quotient mapping in (F) with kernel E, then Q is a

cbs-quotient mapping.
⇔ 3. If 0 → E → F → G → 0 is exact in (F), then 0 ← E∗ ← F ∗ ← G∗ ← 0 is

topologically exact.
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Dual morphisms 4.102

Proof. ( 1 ⇒ 2 ) by 4.96 .
( 2 ⇒ 3 ) by 4.93 .
( 3 ⇒ 1 ) 4.89 for the canonical resolution of 4.87 .

4.98 Corollary. Quasi-normable (F) are distinguished
(See [MV92, 26.18 p.301]).
q-normable (F) ⇒ distinguished.

Proof. =
4.97

====⇒ dual of canonical resolution of 4.87 is topological exact. ⇒ E∗ is
quotient of countable coproduct of Banach spaces, hence bornological by 2.5 .

4.99 Dual sequences for Schwartz spaces (See [MV92, 26.24 p.303]).
Let 0→ E → F → G→ 0 be exact in (F) and let one of these 3 spaces be in (S).
Then the dual sequence is topologically exact.

Proof. Closed subspaces and quotients of (FS) are (FS) by 3.73 , hence (M) and
quasi-normable. Thus 4.97 and 4.95 yield the result.

4.100 Corollary (See [MV92, 26.25 p.303]).
Let F be (FS) and E ⊆ F be closed. Then E∗ ∼= F ∗/Eo and (F/E)∗ ∼= Eo.

Proof. 4.99 , 4.85 ⇒

4.101 Example (See [MV92, 27.19 p.318]).
Let A = {a(k) : k ∈ N} as in 4.25 . Then the Fréchet space λ1(A) is not distin-
guished, not quasi-normable and (λ1(A))∗ is (DF) but not infra-barrelled.

Proof. In 4.25 we have shown that λ1(A) is not distinguished and hence (λ1(A))∗

is (DF) but not infra-barrelled. By 4.98 λ1(A) is not quasi-normable.

4.102 Quasi-normability of λp(A) (See [MV92, 27.20 p.318]).
For A = {a(n) : n ∈ N} let E := λp(A) with 1 ≤ p <∞ oder E := c0(A). Then

1. E is q-normable
⇔ 2. ∀p ∃p′ ∀ε > 0 ∀q ∃ε′ > 0 ∀j : 1/a(p′)

j ≤ ε′/a(q)
j + ε/a

(p)
j .

⇔ 3. ∀p ∃p′ ∀J ⊆ N: infj∈J a(p)
j /a

(p′)
j > 0 ⇒ ∀q ≥ p′: infj∈J : a(p)

j /a
(q)
j > 0.

Proof. E = λp(A) (For E = c0(A) analogously)

( 1 ⇒ 2 ) Up := {x ∈ λp(A) : ‖x‖p ≤ 1}. =
4.88

====⇒

∀p ∃p′ > p ∀ε > 0 ∀q ∈ N ∃ε′ > 0 ∀y ∈ E∗ : ‖y‖Uo
p′
≤ ε′‖y‖Uoq + ε‖y‖Uop

( 2 ) is obvious for j with a
(p)
j = 0. Otherwise a(p)

j 6= 0 =
1.24

====⇒ ej ∈ 〈Uop 〉 and

1/a(p′)
j = ‖ej‖Uo

p′
≤ ε′‖ej‖Uoq + ε‖ej‖Uop = ε′/a

(q)
j + ε/a

(p)
j .

( 2 ⇒ 3 ) ∀p ∃p′ satisfying ( 2 ). I ⊆ N with infj∈I a(p)
j /a

(p′)
j =: η > 0. Put

ε := η/2. For q ≥ p′ ∃ε′ > 0 satisfying a
(p)
j /a

(p′)
j ≤ ε′a

(p)
j /a

(q)
j + ε for all j ⇒

a
(p)
j /a

(q)
j ≥ (a(p)

j /a
(p′)
j − ε)/ε′ ≥ η

2ε′ .
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( 3 ⇒ 1 ) ∀p ∃p′ > p satisfying ( 3 ). Let ε > 0, q ∈ N. Put I := {j : a(p)
j /a

(p′)
j ≥ ε}

=
( 3 )
===⇒ ∀q ≥ p′ ∃ε′ > 0: infj∈I a(p)

j /a
(q)
j ≥ 1

ε′ .

Claim: Up′ ⊆ ε′Uq + εUp (=
4.88.4

======⇒ λp(A) q-normable):
Let x ∈ Up′ and z := x − y with yj := xj for j ∈ I and 0 otherwise. ∀j ∈ I:
a

(p′)
j ≥ a(p)

j ≥ a
(q)
j /ε′ ⇒

‖y‖q =
∥∥∥y · a(p′) · 1

a(p′) · a
(q)
∥∥∥
`p
≤ ‖x‖p′ ε′ ≤ ε′

∀j /∈ I: a(p)
j < εa

(p′)
j ⇒

‖z‖p =
∥∥∥z · a(p′) · 1

a(p′) · a
(p)
∥∥∥
`p
≤ ‖x‖p′ ε ≤ ε

⇒ x = y + z ∈ ε′Uq + εUp.
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Splitting sequences

In this section we describe situations, where short exact sequences split and refor-
mulate this in terms of the derived functor Ext of the Hom-functor. For sequences
with a power series space as kernel the characterizing property on the quotient is
(DN). And for sequences with a power series space of infinite (resp. finite) type
as quotient the characterizing property on the kernel is (Ω) (resp. (Ω)). We show
that the spaces in (DN) are exactly the subspaces of generalized power series spaces
λ∞∞(a) of infinite type. And the spaces in (Ω) are exactly the quotients of gener-
alized power series spaces λ1

∞(a) of infinity type. We give some applications to
extensions of non-linear mappings and introduce universal linearizer for that.

4.103 Continuously solving PDE’s.
In the early fifties of the 20th century L. Schwartz posed the problem of determining
when a linear partial differential operator P (∂) has a (continuous linear) right
inverse. Grothendieck has shown that for n ≥ 2 no elliptic operator has such an
inverse on C∞(U) for U ⊆ Rn. By [Vog84, Theorem 3.3 p.365] the same holds
more generally for hypoelliptic operators. This is in contrast to that fact, that
hyperbolic PDO’s have continuous linear right inverses on C∞(Rn).
A partial differential operator D defined on an open subset U ⊆ Rn is called
hypoelliptic if for every distribution u defined on an open subset V ⊆ U such
that Du is C∞ is itself C∞. The Laplacian ∆ is elliptic and thus hypoelliptic. The
heat equation operator D(u) := ∂

dtu−∆(u) is hypoelliptic (even parabolic) but not
elliptic. The wave equation operator D(u) := ( ∂dt )

2u − ∆(u) is not hypoelliptic,
it is hyperbolic; i.e. the Cauchy problem is uniquely solvable in a neighborhood of
each point p for any initial data given on a non-characteristic hypersurface passing
through p.

4.106 Continuously extending functions or jets.
The exact sequence{

f ∈ C∞([−1, 1]) : f is ∞-flat at 0
}
↪→ C∞([−1, 1])� RN

of Borel’s theorem 4.78 is not splitting. Otherwise, there would be an embedding
RN ↪→ C∞([−1, 1]) and the ∞-norm on C∞([−1, 1]) would induce a seminorm on
RN with kernel {0}. But each seminorm x 7→ maxi≤n |xi| of the usual basis of
seminorms for the product RN has an infinite dimensional kernel {x ∈ RN : xi =
0 for all i ≤ n}.
For subsets ι : A ⊆ Rn let us consider the property, that the restriction operator
ι∗ : C∞(A,R)� C∞(Rn,R) has a continuous linear right inverse.
By [See64] Rt≥0 ⊆ R has this property and by [Tid79, Satz 4.5 p.308] for each
r > 1 the set A := {x ∈ Rn : 0 ≤ x1 ≤ 1, x2

2 + · · ·+ x2
n ≤ x2r

1 } ⊆ Rn has it.
Whereas, by [Tid79, Beispiel 2 p.301] the set A := {(x, y) : x ≥ 0, |y| ≤ ϕ(x)} does
not have it, when ϕ ∈ C∞(R,R) is ∞-flat at 0.

4.107 Proposition.
The functor L( , F ) : lcsop → lcs is left exact,
i.e. if 0← E+ ←Q− E ←S− E− is topologically exact, then

0→ L(E+, F )−Q
∗
→ L(E,F )−S

∗
→ L(E−, F )

is also exact, i.e. L( , F ) is a left exact functor.

Proof. (Q∗ is injective) Let 0 = Q∗(ϕ) = ϕ ◦Q. Then ϕ = 0, since Q is onto.

andreas.kriegl@univie.ac.at c© July 1, 2016 99



4.110 Splitting sequences

(ker(S∗) = img(Q∗)) Let 0 = S∗(ϕ) = ϕ ◦ S, i.e. ϕ vanishes on img(S) = ker(Q)
and hence factors to a ϕ̃ : E+ → F with ϕ = ϕ̃◦Q = Q∗(ϕ̃). The converse inclusion
is obvious by Q ◦ S = 0.

The functor L( , F ) is not exact (i.e. maps short exact sequences to such sequences)
in general, since exactness at L(E−, F ) would mean that for closed embeddings
S : E− ↪→ E the adjoint S∗ : L(E,F ) → L(E−, F ) is onto, i.e. every morphism
ϕ : E− → F must have an extension to E.

4.108 Definition. Injective spaces and extension of maps.
An (F) space E is called injective Fréchet space iff for every
embedding S : H ↪→ G of (F) spaces every T ∈ L(H,E) has an
extension T̃ ∈ H(G,E), i.e. T̃ ◦ S = T .
Thus the Fréchet spaces F for which L( , F ) preserves exactness
of all short exact sequences in (F) are exactly the injective ones.
By Hahn-Banach K is an injective (Fréchet) space.

H �
� S //

T   

G

T̃
��
E

More generally, for every set X the Banach space `∞(X) of bounded functions on X
is an injective Fréchet space: Let S : H ↪→ G be an embedding and T : H → `∞(X)
be continuous, i.e. p := ‖ ‖`∞ ◦ T is a continuous seminorm on H and hence has
an extension to a continuous seminorm p̃ on G. Now Tx := evx ◦T ∈ H∗ for each
x ∈ X and |Tx(y)| ≤ ‖T (y)‖∞ = p(y) for all y ∈ H. By Hahn Banach we find
T̃x ∈ G∗ with |T̃x(z)| ≤ p̃(z) for all z ∈ G. Thus T̃ : G → `∞(X) defined by
T̃ (z)(x) := T̃x(z) for each z ∈ G and x ∈ X is a continuous linear extension of T ,
since ‖T̃ (z)‖∞ = sup{|T̃x(z)| : x ∈ X} ≤ p̃(z) <∞ for all z ∈ G.

Every Fréchet space F is subspace of an injective Fréchet space: We can embed F
into a countable product of Banach spaces and every Banach space G can be embed-
ded into the space of bounded linear functionals on G∗ and thus into `∞(oG∗). Since
a countable product of injective Fréchet spaces is obviously an injective Fréchet
space we are done.

4.109 Proposition.
The functor L(E, ) : lcs→ lcs is also left exact.

Proof. Let 0→ F− −S→ F −Q→ F+ be topologically exact and consider

0→ L(E,F−)−S∗→ L(E,F )−Q∗→ L(E,F+).

It is exact at L(E,F−), since S∗ is obviously injective.

It is exact at L(E,F ), since ϕ ∈ L(E,F ) is in ker(Q∗) ⇔ 0 = Q∗(ϕ) = Q ◦ ϕ
⇔ img(ϕ) ⊆ ker(Q) = img(S) ⇔ ϕ factors to a morphism ϕ̃ : E → F− over the
embedding S : F− ↪→ F ⇔ ϕ ∈ img(S∗).

The functor L(E, ) is not exact in general, since exactness at L(E,F+) would mean
that for quotient mappins p : F � F+ the adjoint p∗ : L(E,F )→ L(E,F+) is onto,
i.e. every morphism ϕ : E → F+ can be lifted along p : F � F+ to a morphism
ϕ̃ : E → F .

4.110 Remark. Projective spaces and lifting of maps.

An (F) space E is called projective Fréchet space iff for every
quotient mapping Q : G � H of (F) spaces every T ∈ L(E,H)
has a lift T̃ ∈ L(E,G), i.e. Q ◦ T̃ = T .

H G
Qoooo

E

T

``

T̃

OO
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Obviously every finite dimensional space is projective, since all linear mappings
on it are continuous. It was shown in [Gej78] that there are no other projective
Fréchet spaces.

4.111 Theorem. Splitting sequences (See [Vog87, 1.8 p.171]).
Let E and F be (F). Then

1. Let 0→ F → G→ H → 0 be exact in (F).
Then 0→ L(E,F )→ L(E,G)→ L(E,H)→ 0 is exact.

⇔ 2. Let 0→ F → G→ H → 0 be exact in (F).
Then any T ∈ L(E,H) lifts along G� H.

⇔ 3. Let 0→ F → G→ E → 0 be exact in (F).
Then G→ E has a right inverse.

⇔ 4. Let 0→ F → G→ E → 0 be exact in (F). Then it splits,
i.e. is isomorphic to the sequence 0→ F −inj1→ F ⊕ E −pr2→ E → 0

⇔ 5. Let 0→ F → G→ E → 0 be exact in (F).
Then F → G has a left inverse.,

⇔ 6. Let 0→ H → G→ E → 0 be exact in (F).
Then any T ∈ L(H,F ) extends along H � G.

⇔ 7. Let 0→ H → G→ E → 0 be exact in (F).
Then 0→ L(E,F )→ L(G,F )→ L(H,F )→ 0 is exact.

Proof. ( 1 ⇔ 2 ) Since L(E, ) is left exact by 4.109 , 1 holds iff L(E,G) →
L(E,H) is onto, i.e. any T ∈ L(E,H) has a lift T̃ ∈ L(E,G).

( 2 ⇒ 3 ) By 2 the identity idE : E → E has a lift ĩdE : E → G along G→ E.

( 3 ⇒ 4 ) Let id = Q ◦ S : E → G→ E. The isomorphism F ⊕ E → G is given by
(y, x) 7→ (y, S(x)) with inverse G→ F ⊕ E, z 7→ (z − S(Q(z)), Q(z)).

( 4 ⇒ 2 ) Consider the pull-back

0 // F �
� // G // // H // 0

0 // F �
� inj1// G×H E

pr1

OO

pr2 // // E

T

OO

// 0

0 // F �
� inj1 // F ⊕ E

pr2 // //

∼= Φ

OO

E //

inj2

hh 0

The bottom row is again an exact
sequence, hence splits by 4 , and
thus gives a lifting

T̃ := pr1 ◦Φ ◦ inj2,
where Φ is the isomorphism.

( 7 ⇔ 6 ⇔ 5 ⇔ 4 ) is obtained by dualizing the arguments of ( 1 ⇔ 2 ⇔ 3 ⇔ 4 ).

4.112 Remark. Exactness of tensor-functors.
The algebraic tensor product functor ⊗ F is exact, since short exact sequences
of linear spaces are splitting and applying the functor ⊗ F to the splitting gives
splitting exact sequences.
The injective tensor product functor ⊗εF preserves embeddings S, since we have by
definition natural embeddings E⊗εF ↪→ L(E∗, F ) and L(E∗, ) obviously preserves
embeddings S : F1 ↪→ F2, in fact

(S∗)−1(NB,V ) = {T : (S ◦ T )(B) ⊆ V } = {T : T (B) ⊆ S−1(V )} =: NB,S−1(V ).

It does not preserve quotient mappings, see [Kri07a, 4.29].
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The projective tensor product functor ⊗πF preserves quotient mappings Q : E1 →
E2, since the image of U⊗V ⊆ E1⊗πV under the linear map Q⊗F is the absolutely
convex hull of the image (⊗ ◦ (Q × F ))(U1 × V ) = ⊗(Q(U1) × V ) and hence is a
0-neighborhood in E2 ⊗π F .
The completion functor ( )∼ preserves short topologically exact sequences 0→ E ↪→
F � G→ 0, since Ẽ can be obtained as closure of E in F̃ . Thus E = Ẽ ∩F , since
y ∈ Ẽ∩F = E

F̃∩F ⇒∃xi ∈ E : xi → y ∈ F ⇒ 0 = Q(xi) = Q̃(xi)→ Q̃(y) = Q(y),
i.e. y ∈ kerQ = E. Therefore, the mapping G ∼= F/E = F/(Ẽ∩F )→ F̃ /Ẽ induced
from F ↪→ F̃ is injective. It is an embeddings, since for every continuous seminorm
q in G, we can extend p := q ◦ Q to a continuous seminorm p̃ in F̃ which has to
vanish on the closure Ẽ of E in F̃ hence factors to a continuous seminorm q̃ on
F̃ /Ẽ, which induces q on F/E. Since F ↪→ F̃ has dense image and F̃ � F̃ /Ẽ is
onto the embedding F/E ↪→ F̃ /Ẽ has dense image, and since F̃ /Ẽ is a Fréchet
space, it is the completion G̃ of G.

In order to describe the obstruction to exactness of the functor L we need injective
resolutions:

4.113 Proposition. Injective Resolution.
For every Fréchet space F there exists an injective resolution, i.e. a long exact
sequence 0→ F → I0 → I1 → I2 → · · · , where Ik is an injective Fréchet space for
each k ∈ N.

Proof. Let I0 be an injective Fréchet space into which F embeds by 4.108 .
Recursively, we may embed Ik/ img(Ik−1) (where I−1 := F ) into an injective
Fréchet space Ik+1 and take as connecting map the composite of the quotient map
Ik � Ik/ img(Ik−1) and this embedding Ik/ img(Ik−1) ↪→ Ik+1.

Using injective resolutions we can construct the derived functors using homological
algebra:

4.114 Theorem. Derived functors.
There are functors Extk : lcsop × lcs → vs for k ∈ Z (called the right-derived
functors of L) and natural transformations δ such that:

1. Extk(E,F ) = 0 for k < 0.
2. Ext0 ∼= L.
3. Extk(E,F ) = 0 for all k > 0 if F is injective.
4. For every short exact sequence 0 → E− → E → E+ → 0 there is a long

exact sequence

· · · → Extk(E+, F )→ Extk(E,F )→ Extk(E−, F )−δ→ Extk+1(E+, F )→ · · · .

For every short exact sequence 0 → F− → F → F+ → 0 there is a long
exact sequence

· · · → Extk(E,F−)→ Extk(E,F )→ Extk(E,F+)−δ→ Extk+1(E,F−)→ · · · .

For fixed F the functor Ext∗R( , F ) together with the natural transformation δ is up
to isomorphisms uniquely determined by 1 - 4 . And similarly for each fixed E.

Proof.
( 1 ) By 4.113 there is an injective resolution I of F :

0→ F → I0 → I1 → I2 → · · ·
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Applying L(E, ) to I (only!) gives a cochain complex

0→ L(E, I0)→ L(E, I1)→ L(E, I2)→ · · ·

and we define Extk(E,F ) := Hk(L(E, I)).

By [KriSS, 9.19] and [KriSS, 8.23] the linear spaces Extk(E,F ) are independent
on the injective resolution of F .

( 2 ) By definition Ext0
R(E,F ) is just the kernel of L(E, I0)→ L(E, I1) and by left

exactness in 4.109 the sequence 0 → L(E,F ) → L(E, I0) → L(E, I1) → · · · is
exact, hence this kernel is isomorphic to L(E,F ).

( 3 ) If F is injective then I0 := F and Ik := 0 for k > 0 gives an injective resolution.
Hence L(E, Ik) = 0 and thus also Extk(E,F ) = Hk(L(E, I)) = 0 for k > 0.

( 4 ) Let 0 ← E+ ← E ← E− ← 0 be short exact and I be an injective resolution
of F . Since Ik is injective we have short exact sequences

0→ L(E+, Ik)→ L(E, Ik)→ L(E−, Ik)→ 0

and this gives a short exact sequence of cochain complexes since L is a bifunctor:

0→ L(E+, I)→ L(E, I)→ L(E−, I)→ 0

By [KriSS, 7.30] we get a long exact sequence in (co)homology:

· · · → Extk(E+, F )→ Extk(E,F )→ Extk(E−, F )−δ→ Extk+1(E+, F )→ · · · .

Let 0 → F− → F → F+ → 0 be short exact and I− and I+ be corresponding
injective resolutions of F− and F+. We construct an injective resolution I of E and
an exact sequence of resolutions with

0 // E− //

��

E //

��

E+ //

��

0

0 // I− // I // I+ // 0

Take Ik := I−k ⊕ I
+
k and put

dk := (d̃−k , d
+
k ◦ pr2) : Ik → I−k+1 ⊕ I

+
k+1,

where d̃−k is an extension of d−k : I−k →
I−k+1 along I−k ↪→ Ik.
This makes I into a chain complex and
inj1 : I− → I and pr2 : I → I+ into chain
mappings.

I−k−1

d′k−1

��

//
inj1

// Ik−1

dk−1

��

pr2
// //

||

I+
k−1

d′′k−1

��
I−k

d−k
��

// // Ik

dk

��

pr2
// //

d̃−k

||

I+
k

d+
k

��
I−k+1

//
inj1

// Ik+1 pr2
// //

pr1rr
I+
k+1

Since I ′k is injective, the sequences 0 → I−k → Ik → I+
k → 0 split and hence also

0 → L(E, I ′k) → L(E, Ik) → L(E, I ′′k ) → 0 splits and, in particular, is exact. By
[KriSS, 7.30] we get a long exact sequence in (co)homology:

· · · → Extk(E,F−)→ Extk(E,F )→ Extk(E,F+)−δ→ Extk+1(E,F−)→ · · · .

(Uniqueness) We proceed by induction on k. For k ≤ 0 we have uniqueness by
1 and 2 . So we assume that we have two sequences of functors Ext∗, which are

naturally isomorphic till order k, and we have natural connecting morphisms. Then
a diagram chase starting at a short exact sequence 0 → F− → F → F+ → 0 with
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injective F shows that they are also isomorphic in order k + 1 on (E,F−):

. . . // 0 // Extk(E,F+)
∼= //

∼=
��

Extk+1(E,F−) //

∼=
��

0 // . . .

. . . // 0 // ExtkR(E,F+)
∼= // Extk+1

R (E,F−) // 0 // . . .

4.115 Proposition.
The statement Ext1(E,F ) = 0 is equivalent to the equivalent conditions of 4.111 .

Proof. (⇒ 4.111.1 ) By 4.114.4 we have the exact sequence

0→ L(E,F )→ L(E,G)→ L(E,H)→ Ext1(E,F )︸ ︷︷ ︸
=0

→ · · ·

(⇐ 4.111.1 ) Choose an injective I into which F embeds by 4.108 and consider
the short exact sequence 0 → F ↪→ I � I/F → 0. Hence 0 → L(E,F ) →
L(E, I)→ L(E, I/F )→ 0 is exact and in particular L(E, I)→ L(E, I/F ) is onto.
Investigating the long exact sequence

0→ L(E,F )→ L(E, I)� L(E, I/F )
0
� Ext1(E,F )→ Ext1(E, I)︸ ︷︷ ︸

=0

→ · · ·

using 4.114.3 , gives Ext1(E,F ) = 0.

For an additive description of (DN) and later of (Ω) similar to 4.88.2 for quasi-
normed spaces, we need the following:

4.119. Lemma.
Let a, b > 0 and α, β ≥ 0. Then inf{raα+ 1

rb
β : r > 0} = a+b

a (ab )
b
a+bα

b
a+b β

a
a+b

Proof. Let f(r) := raα+ 1
rb
β =

(
ra+bα+ β

)
r−b. Then f ′(r) = aα ra−1− b 1

rb+1 β

and hence f ′(r) = 0 ⇔ ra+bα = b
a β. Thus

f(r) ≥
(
b

a
β + β

)(
bβ

aα

)− b
a+b

= α
b
a+b β1− b

a+b

(
1 + b

a

)(a
b

)− b
a+b

= α
b
a+b β

a
a+b

a+ b

a

(a
b

) b
a+b

.

Note that f(r) → +∞ for r ↘ 0 if α > 0 and for r ↗ +∞ if β > 0, hence the
infimum is attained if α, β > 0. Otherwise f(r) → 0 for r → 0 or r → +∞, hence
the statement is valid in this case as well.

4.123 Theorem. Characterization of the property (DN).
Let E be a Fréchet space with an increasing basis of semi-norms ‖ ‖k corresponding
closed unit balls Uk and polars Bk := (Uk)o.

1. E is (DN) (see 3.13 ), i.e.
∃q ∀p ∃p′ ∃C > 0 : ‖ ‖2p ≤ C ‖ ‖q · ‖ ‖p′ ;

⇔ 2. ∃q ∀p ∃p′ ∃C > 0 ∀r > 0 : ‖ ‖p ≤ r‖ ‖q + C
r ‖ ‖p′ ;

⇔ 3. ∃q ∀p ∃p′ ∃C > 0 ∀r > 0 : Uop ⊆ r Uoq + C
r U

o
p′ ;

⇔ 4. ∃q ∀ 0 < δ < 1 ∀p ∃p′ ∃C > 0 : ‖ ‖p ≤ C‖ ‖1−δq · ‖ ‖δp′ ;
⇔ 5. ∃q ∃d > 0 ∀p ∃p′ ∃C > 0 : ‖ ‖1+d

p ≤ C‖ ‖dq · ‖ ‖p′ ;

104 andreas.kriegl@univie.ac.at c© July 1, 2016



Splitting sequences 4.123

⇔ 6. There exists a log-convex basis of semi-norms ||| |||p on E, i.e.
∀p : ||| |||2p ≤ ||| |||p−1 · ||| |||p+1.

Note that in all these conditions we may assume w.l.o.g. that q < p < p′, since for
p′′ ≥ p′ we have ‖ ‖p′′ ≥ ‖ ‖p′ and for p ≤ q we may take p′ = p and C = 1.
Note furthermore, that for ‖ ‖p′ ≥ ‖ ‖q only δ near 0 (and hence d = 1−δ

δ near ∞)
are relevant, since for δ < δ′ (and ‖y‖q 6= 0) we get

‖y‖1−δq ‖y‖δp′ = ‖y‖q
(‖y‖p′
‖y‖q︸ ︷︷ ︸
≥1

)δ
≤ ‖y‖q

(‖y‖p′
‖y‖q

)δ′
= ‖y‖1−δ

′

q ‖y‖δ
′

p′

Proof.
( 1 ⇔ 2 ) the minimum of r 7→ r‖x‖q + C

r ‖x‖p′ is 2
√
C‖x‖q‖x‖p′ by 4.119 .

Hence the inequality in 6 for all r > 0 is equivalent to ‖ ‖2p ≤ 4C‖ ‖q‖ ‖p′ .

( 2 ⇔ 3 ) From ‖ ‖p ≤ r‖ ‖q + C
r ‖ ‖p′ we get

1
rUq ∩

r
CUp′ ⊆ 2Up and hence Uop ⊆ 2

(
r Uoq + C

r U
o
p′

)
.

Conversely,
Uop ⊆ r Uoq + C

r U
o
p′

implies that any u ∈ Uop can be written as u = r v+ C
r u
′ with v ∈ Uoq , u′ ∈ Uop′ , i.e.

|u(x)| ≤ r|v(x)|+ C
r |u
′(x)| ≤ r‖x‖q + C

r ‖x‖p′

for all x ∈ E. Hence 2 holds, since ‖x‖q = supu∈Uq |u(x)|.

( 1 ⇒ 6 ) Define a new basis of semi norms ||| |||k recursively by: ||| |||0 := ‖ ‖q;
∃p′0 ∃C0 ≥ 1: ||| |||20 ≤ ||| |||0 · C0 ‖ ‖p′0 = ||| |||0 · ||| |||1, where ||| |||1 := C0‖ ‖p′0 ;
∃p′k ∃Ck ≥ 1: ||| |||2k ≤ ||| |||0 · Ck ‖ ‖p′k ≤ ||| |||k−1 · ||| |||k+1, with ||| |||k+1 := Ck ‖ ‖p′k .

( 6 ⇒ 1 ) From ||| |||2k ≤ ||| |||k−1 ||| |||k+1 we obtain that all ||| |||k are norms and
using |||x|||k/|||x|||k−1 ≤ |||x|||k+1/|||x|||k for all x 6= 0, we get for all k ∈ N the
inequality

|||x|||k
|||x|||0

=
k∏
j=1

|||x|||j
|||x|||j−1

≤
2k∏

j=k+1

|||x|||j
|||x|||j−1

=
|||x|||2k
|||x|||k

, i.e. |||x|||2k ≤ |||x|||0|||x|||2k.

( 1 ⇒ 4 ) Put p0 := p and apply 1 iteratively to get pν+1 ≥ pν and a Cν with

‖ ‖2pν ≤ Cν ‖ ‖q ‖ ‖pν+1 .

Let 0 < δ < 1 and m ∈ N with 1
m+1 < δ. Since ‖ ‖q is a norm, we have(

‖ ‖p
‖ ‖q

)m
≤
m−1∏
ν=0

‖ ‖pν
‖ ‖q

≤
m−1∏
ν=0

Cν
‖ ‖pν+1

‖ ‖pν
≤

(
m−1∏
ν=0

Cν

)
‖ ‖pm
‖ ‖p

.

If we put C :=
(∏m−1

ν=0 Cν

) 1
m+1 , we get

‖ ‖p ≤ C‖ ‖
1− 1

m+1
q ‖ ‖

1
m+1
pm = C ‖ ‖q ·

(
‖ ‖pm
‖ ‖q

)1/(m+1)

≤ C ‖ ‖q ·
(
‖ ‖pm
‖ ‖q

)δ
( 4 ⇒ 5 ) This follows directly with d := 1−δ

δ .
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( 5 ⇒ 1 ) We have ∀p ∃p′, Cp : ‖x‖1+d
p ≤ Cp ‖x‖dq ‖x‖p′ and ∀p′ ∃p′′, Cp′ :

‖x‖1+d
p′ ≤ Cp′ ‖x‖dq ‖x‖p′′ . Thus for d′ = 2d+ d2 > 2d we get

‖x‖1+d′
p = ‖x‖(1+d)2

p ≤ C1+d
p ‖x‖d(1+d)

q Cp′ ‖x‖dq ‖x‖p′′ = Cp′ C
1+d
p ‖x‖d

′

q ‖x‖p′′

So we get 5 for some d ≥ 1 by induction and thus also for d = 1.

4.124 Definition. Generalized power series spaces (See [Vog85, p.256]).
For a set J and a : J → {t ∈ R : t ≥ 1} we consider the following generalized
power series spaces of infinite type:

λ∞∞(a) :=
{
f ∈ KJ : ‖f‖k := sup

t∈J
|f(t)| a(t)k <∞ for all k ∈ N

}
,

λ1
∞(a) :=

{
f ∈ KJ : ‖f‖k :=

∑
t∈J
|f(t)| a(t)k <∞ for all ∈ N

}
.

These Fréchet spaces λp∞(a) are usally denoted Λp(J, a) for p ∈ {1,∞} and for
p = 1 the index is often dropped.

4.125 Lemma (cf. [Vog77a, 2.4. Corollary p.115] ).
For each a ∈ RJ≥1 the space λ∞∞(a) has property (DN).

Proof. By definition ‖f‖k := ‖f · ak‖`∞ . Thus
‖f‖2p = ‖f · ap‖2`∞ = ‖f2 · a2p‖`∞ ≤ ‖f‖`∞ · ‖f · a2p‖`∞ = ‖f‖0 · ‖f‖2p

Thus λ∞∞(a) satisfies condition 4.123.1 for q := 0, p′ := 2p, and C := 1.

4.126 Lemma (See [Vog85, Example (3) p.256]).
Let I be a set and a : N× I → N be given by a(n, i) := n+ 1.
Then `∞(I)⊗̂s ∼= λ∞∞(a) and `1(I)⊗̂s ∼= λ1

∞(a).

Proof. By 3.48 E′ ⊗ε F ↪→ L(E,F ). Since c0(I) is Banach with dual c0(I)∗ =
`1(I) and `1(I)∗ = `∞(I) we get embeddings

`1(I)⊗ε s ↪→ L(c0(I), s) and `∞(I)⊗ε s ↪→ L(`1(I), s).
Let Pk : s → s be defined by Pk(x)n := xn for n < k and 0 otherwise. Then
Pk → id and for T ∈ L(`1(I), s) we have Pk ◦ T → T with Pk ◦ T ∈ `1(I)∗ ⊗ s. So
`∞(I)⊗̂s ∼= L(`1(I), s) and analogously `1(I)⊗̂s ∼= L(c0(I), s).
Furthermore, L(`1(I), E) ∼= `∞(I, E) and L(c0(I), E) ∼= `1(I, E): In fact, T ∈
L(`1(I), E) is uniquely determined by xi := T (ei) ∈ E for i ∈ I. Since T is
bounded, {xi : i ∈ I} ⊆ E has to be bounded. And conversely a bounded family
{xi : i ∈ I} ⊆ E defines a continuous linear operator T : `1(I) → E, (yi)i∈I 7→∑
i yix

i ∈ E. And the same arguments work also for the second isomorphism.
Finally note, that `∞(I, s) ∼= λ∞∞(a) and `1(I, s) ∼= λ1

∞(a): In fact, the seminorm
‖ ‖k : x 7→ sup{|(n + 1)kxn| : n ∈ N} of s induces the seminorm of `∞(I, s) by
taking the `∞-Norm of (‖xi‖k)i∈I and corresponds to the seminorm ‖ ‖k of λ∞∞(a).
Replacing the supremum by the 1-Norm, gives the second isomorphism.

4.127 Proposition (See [Vog82, 1.1 p.540], [Vog85, Lemma 1.3 p.258], [Vog87,
4.3 p.185], and [Vog77a, Satz 1.5 p.111]).
Let F and G be Fréchet spaces and assume that G has property (DN).
Then any exact sequence

0→ λ∞∞(a)→ F
Q−→ G→ 0

with a ∈ RJ≥1 splits.
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Proof. W.l.o.g. let E := λ∞∞(a) ↪→ F be the inclusion of a subspace. We have to
prove that it is complemented, i.e. there exists a left inverse φ : F → E to it.
Let evj ∈ E∗ be given by evj(x) := x(j) for x ∈ E. Since |a(j)k evj(x)| =
|a(j)kx(j)| ≤ ‖x‖k the set

{
a(j)k evj : j ∈ J

}
is equicontinuous for each k ∈ N.

By Hahn-Banach we can extend evj to ẽvkj ∈ F ∗ for each k ∈ N such that{
a(j)k ẽvkj : j ∈ J

}
is equicontinuous, thus contained in Uok for a suitable neigh-

bourhood Uk of 0 ∈ F . We can assume that Uk+1 ⊆ Uk for all k ∈ N.
Thus
gkj := ẽvk+1

j − ẽvkj ∈ 1
a(j)k

(
1
a(j) U

o
k+1 +Uok

)
∩Eo ⊆ 2

a(j)k U
o
k+1∩Eo =: 1

a(j)kBk ⊆ E
o.

Since Q∗ : G∗ ∼= (F/E)∗ ∼= Eo ⊆ F ∗ as cbs for the equicontinuous subsets by
[Kri07b, 7.4.4] and 4.72.2 and since G has property (DN), there exists a bounded
set B ⊆ Eo, which satisfies the conditions of 4.123.3 for a fixed fundamental
system of bounded sets Bk in Eo. W.l.o.g. (by enlargeing Bk+1) we can assume
that

∀k ∈ N∀r > 0 : Bk ⊆ rB + 2−k−2

r
Bk+1

In particular, for r := a(j)2−k−1 we get by multiplication with 2a(j)−k

(1) 2a(j)−kBk ⊆ a(j)−k+12−kB + a(j)−k−1Bk+1.

We now choose for fixed j recursively bkj with bkj ∈ a(j)−kBk ⊆ Eo:
Put b0j := 0. If bkj ∈ a(j)−kBk is already chosen, we have gkj + bkj ∈ 2a(j)−kBk.
Hence by ( 1 ) there exists a bk+1

j ∈ a(j)−k−1Bk+1 such that

gkj + bkj − bk+1
j ∈ 2−ka(j)−k+1B.

If we put
φkj := ẽvkj − bkj ∈ F ∗,

we get for k ≥ 1:
φk+1
j − φkj = gkj − bk+1

j + bkj ∈ 2−ka(j)−k+1B ⊆ 2−kB.
Hence

∃φj := lim
k→∞

φkj ∈ F ∗.

Since φn+1
j = ẽvn+1

j − bn+1
j ∈ 2a(j)−nUon+1 we have for k > n:

a(j)nφkj = a(j)nφn+1
j + a(j)n

k−1∑
ν=n+1

(φν+1
j − φνj ) ∈ 2Uon+1 + 2−nB.

Thus a(j)nφj ∈ 2Uon+1 + 2−nB, i.e.
{
a(j)nφj : j ∈ J

}
is equicontinuous in F ∗.

Therefore x → (φj(x))j∈J defines a continuous linear left inverse to E ↪→ F , since
for x ∈ E we have

φj(x) = lim
k→∞

φkj (x) = lim
k→∞

ẽvkj (x)− bkj (x) = evj(x)− 0 = x(j).

In fact, it can be shown that the condition (DN) yields even a characterization:

4.128 Theorem [Vog87, 4.3 p.185].
Let supn

αn+1
αn

<∞, r ≤ +∞, and E a Fréchet space. Then

1. E is (DN);
⇔ 2. Ext1(E, λ∞r (α)) = 0, i.e. any ses 0→ λ∞r (α)→ G→ E → 0 splits;
⇔ 3. If Q : G� H is a quotient mapping with kernel λ∞r (α)

then Q∗ : L(E,G)→ L(E,H) is onto;
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⇔ 4. If S : H ↪→ G is a closed embedding with quotient E
then S∗ : L(G,λ∞r )→ L(H,λ∞r ) is onto.

Proof. ( 1 ⇒ 2 ) for r = +∞ is 4.127 .

( 1 ⇐ 2 ) is shown in [Vog87, 4.3 p.185].

( 2 ⇔ 3 ⇔ 4 ) is 4.111 and 4.115 .

4.129 Corollary [See64].
The restriction incl∗ : C∞(R,R) � C∞(R≥0,R) has a continuous linear right
inverse.

Proof. We show first that the restriction map C∞[−2,2](R) � C∞([−1.1]) has
a continuous linear right inverse: By 1.16.4 C∞([−1, 1]) ∼= s and by 1.16.3
C∞[−2,2](R) ∼= s. Moreover the kernel of the restriction map is the subspace{

f ∈ C∞(R) : f(t) = 0 ∀|t| ≥ 2 and f(t) = 0 ∀|t| ≤ 1
}

=

= C∞[−2,−1](R)⊕ C∞[1,2](R) ∼= s⊕ s ∼= s :

In fact s ∼= s× s via (xk)k∈N 7→ ((x2k)k∈N, (x2k+1)k∈N): This mapping is obviously
linear and injective. It is continuous, since |(k + 1)qx2k| ≤ |(2k + 1)qx2k| and
|(k + 1)qx2k+1| ≤ |(2k + 2)qx2k+1|. It is onto s× s, since given y, z ∈ s the inverse
image is given by x2k := yk and x2k+1 := zk with

|(n+ 1)qxn| =

{
|(2k + 1)qyk| ≤ |2q(k + 1)qyk| for n = 2k,
|(2k + 2)qzk| ≤ |2q(k + 1)qzk| for n = 2k + 1.

Thus we have a short exact sequence s ↪→ s� s, which splits by 4.127 since s is
a power series space of infinite type by 1.15.4 and hence has property (DN) by
3.14.3 .

Using translation it suffices to consider the restriction map C∞(R)→ C∞(R≥−1).
We choose a function ϕ ∈ C∞(R, [0, 1]) with ϕ(t) = 0 for all t ≥ 0 and ϕ(t) = 1 for
all t ≤ − 1

2 and decompose f ∈ C∞(R≥−1) as f = (1−ϕ) ·f +ϕ ·f . Since (1−ϕ) ·f
is 0 on [−1,− 1

2 ] we can extend it by 0 to f̃0 ∈ C∞(R). By what we have shown
before the restriction of ϕ · f to [−1, 1] has an extension f̃1 ∈ C∞[−2,2](R) ⊆ C∞(R).
Then f̃2 : t 7→ ϕ(t− 1

2 ) · f̃1(t) is an extension of ϕ · f restricted to [−1,+∞), since
ϕ(t − 1

2 ) = 1 for all t with ϕ(t) 6= 0 and ϕ(t − 1
2 ) = 0 = ϕ(t) for all t ≥ 1

2 . Thus
f̃ := f̃0 + f̃2 is the desired extension of f , and it depends continuously and linearly
on f , since all intermediate steps do so.

More generally, it is shown in [Tid79, Folgerung 2.4 p.296] for compact K ⊆ Rn:
C∞(Rn)� E(K) has a continuous linear right inverse ⇔ E(K) (DN) ⇔ E(K) ∼= s.
Here E(K) ∼= C∞(Rn)/{f ∈ C∞(Rn) : f |K = 0} denotes the Fréchet space of
Whitney jets on K.
Another application is:

4.130 Proposition. [Vog87, 7.1 p.193].
Let D := P (∂) be an elliptic linear PDO with constant coefficients on Rn with n ≥ 2
and U ⊆ Rn open and E a Fréchet space. Then
D∗ : L(E,C∞(U))→ L(E,C∞(U)) is onto ⇔ Ext1(E, kerD) = 0 ⇔ E is (DN).

4.131 Corollary (See [Vog83, 6.1. Satz p.197], [Vog85, 2.6 p.260] ).
A Fréchet space F is (DN) ⇔ ∃J ∃a ∈ RJ≥1: F ↪→ λ∞∞(a).
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Proof.
(⇒) Let J :=

⋃
k Bk for some basis of equicontinuous sets Bk ⊆ F ∗. Then F can

be embedded into (`∞(J))N in a natural way.

By Borel’s theorem 0 → C∞[−1,0](R) × C∞[0,1](R) ↪→ C∞[−1,1] � R
N → 0 is exact and

C∞[a,b](R) ∼= s by 1.16.3 . Moreover s ∼= s× s via (xk)k∈N 7→ ((x2k)k∈N, (x2k+1)k∈N)
by what we have shown in 4.129 . By tensoring this exact sequence of nuclear (F)
spaces with `∞(J) (i.e. applying L(( )∗, `∞(J)) with the injective (F) space `∞(J))
we get the (using 4.99 ) exact sequence of (F) spaces:

0→ s⊗̂`∞(J)→ s⊗̂`∞(J)→ RN⊗̂`∞(J)→ 0.

Since s⊗̂`∞(J) ∼= λ∞∞(a) by 4.126 , where a : N×J → N is given by (n, j) 7→ n+1,
and RN⊗̂`∞(J) ∼= (R(N))∗⊗̂`∞(J) ∼= L(R(N), `∞(J)) ∼= `∞(J)N, this sequence is

0→ λ∞∞(a)→ λ∞∞(a) Q−→ (`∞(J))N → 0.

Since F embeds into (`∞(J))N we may consider the pullback(=preimage) Q−1(F )
of F under Q, and get the short exact sequence

0→ λ∞∞(a)→ Q−1(F )→ F → 0.

By 4.127 the sequence splits if F has property (DN). We therefore get the
embedding F ↪→ Q−1(F ) ⊆ λ∞∞(a).

0 // s⊗̂`∞(J) �
� // s⊗̂`∞(J)

Q // // RN⊗̂`∞(J) // 0

0 // λ∞∞(a) �
� // λ∞∞(a)

Q // // (`∞(J))N // 0

0 // λ∞∞(a)
(2) // Q−1(F ) // //

?�

OO

F
?�

(1)

OO

//

(3)
ss

0

(⇐) Since λ∞∞(a) has property (DN) by 4.125 , the converse follows from 3.14.2 .

Now we consider the dual situation.

4.132 Lemma. Characterization of the property (Ω).
Let ‖ ‖k be an increasing basis of seminorms of a Fréchet space E, denote with
Uk := {x ∈ E : ‖x‖k ≤ 1} the corresponding unit-balls and ‖ ‖−k the Minkowski
functionals of Uok , i.e. ‖y‖−k := ‖y‖∗k := sup{|y(x)| : x ∈ Uk} = sup

{ |y(x)|
‖x‖k : x ∈ E

}
for y ∈ E∗ (cf. property (DN) in 4.123 ).

1. ∀p ∃p′ ∀k ∃C > 0 ∃ 0 < δ < 1 : ‖ ‖−p′ ≤ C (‖ ‖−p)1−δ · (‖ ‖−k)δ;

⇔ 2. ∀p ∃p′ ∀k ∃C > 0 ∃d > 0 : ‖ ‖1+d
−p′ ≤ C ‖ ‖−k · ‖ ‖d−p

[Vog83, p.194]. [VW80, Korollar 2.2 p.232]. [Vog85, p.255].

⇔ 3. ∀p ∃p′ ∀k ∃k′ ∃C > 0 ∀r > 0 : ‖ ‖−p′ ≤ C rk
′‖ ‖−k + 1

r‖ ‖−p
[VW80, Korollar 2.1 p.232];

⇔ 4. ∀p ∃p′ ∀k ∃k′ ∃C > 0 ∀r > 0 : Up′ ⊆ C rk
′
Uk + 1

r Up
[VW80, Definition 1.1 p.225];
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A Fréchet space E is said to be (Ω) iff these equivalent conditions are satisfied.
Note that we may assume that p′ > p and it suffices that k > p′ and d ∈ N, since
q ≥ p′ ⇔ ‖ ‖q ≥ ‖ ‖′p ⇔ Up′ ⊇ Uq ⇔ ‖ ‖−p′ ≥ ‖ ‖−q thus 1 holds for each p′′ > p′

as well and 2 holds for each d′ > d as well.

Proof.
( 1 ⇔ 2 ) δ = d

d+1 .

( 2 ⇔ 3 ) since the infimum of r 7→ αrk
′ + β 1

r is Ck′ k
′+1
√
αβk′ by 4.119 .

( 3 ⇒ 4 ) Let ‖ ‖−p′ ≤ Crk
′‖ ‖−k + 1

r‖ ‖−p. Then
1

2Crk′
Uok ∩

r

2
Uop ⊆ Uop′

and by taking polars

Up′ ⊆ ((Up′)o)o ⊆
( 1

2Crk′
Uok ∩

r

2
Uop

)
o
⊆ 3Crk

′
Uk + 2

r
Up.

( 3 ⇐ 4 ) Let Up′ ⊆ C rk
′
Uk + 1

rUp. Then every x ∈ Up′ can be written as as
x = Crna+ 1

r b with a ∈ Uk and b ∈ Up. Thus for x∗ ∈ E∗ we get

|x∗(x)| ≤ Crk
′
‖x∗‖−k + 1

r
‖x∗‖−p

and taking the sup over x ∈ Up′ gives 3 .

4.133 Inheritance properties of (Ω)
(See [VW80, Satz 2.5 p.236], [MV92, 29.11 p.347]).

1. (Ω) is a topological invariant.
2. (Ω) is inherited by quotients.
3. λqr(α) has (Ω) for all r ≤ ∞ and 1 ≤ q <∞.
4. λ1

∞(a) has (Ω) for all a ∈ RJ≥1.

Proof. ( 1 ) is obvious in view of 4.132.4 .

( 2 ) Let F ↪→ E be a closed subspace, π : E → E/F the canonical quotient
mapping, p a seminorm on E, and p̃ the corresponding norm on the quotient. Then
p̃<1 = π(p<1) thus applying π to 4.132.4 for the open unit balls of E gives the
same for E/F .

( 3 ) For λqr(α) let 1
q + 1

q′ = 1 and a(j) := eαj . Then

‖y‖−k · ‖y‖d−p =
∥∥∥ y
ak

∥∥∥
`q′
·
∥∥∥ y
ap

∥∥∥d
`q′

=
∥∥∥ y
ak

∥∥∥
`q′
·
∥∥∥( y
ap

)d∥∥∥
`q′/d

≥
∥∥∥ y
ak
·
( y
ap

)d∥∥∥
`1/(1/q′+d/q′)

=
∥∥∥ y1+d

ak+p d

∥∥∥
`q′/(1+d)

=
∥∥∥ y

a(k+p d)/(1+d)

∥∥∥1+d

`q′
= ‖y‖1+d

−p′ ,

where k > p′ > p and d is the solution of p′ = k+p d
1+d , i.e. d = k−p′

p′−p .

( 4 ) follows by the same arguments as in 3 but for uncountable index sets J .

4.134 Theorem
(See [Vog77b, Theorem 2.3], [Vog85, Lemma 1.3 p.258], and [Vog87, 4.1 p.183]).
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Let E and F be Fréchet spaces and assume that E has property (Ω).
Then any exact sequence

0→ E → F
Q−→ λ1

∞(a)→ 0
with a ∈ RJ≥1 splits.

Proof. We assume that E = kerQ is a subspace of F . Using 4.132.4 we find an
decreasing 0-nbhd basis in E of absolutely convex sets Uk and νk such that

(1) Uk−1 ⊆ rνk−1Uk + 1
r
Uk−2 for all r ≥ 2 and k ≥ 2.

Let (Wk)k∈N be a corresponding decreasing 0-nbhd basis in F with Wk ∩ E = Uk
and let ej denote the j-th unit vector in λ1

∞(a). For the canonical norms

‖x‖k :=
∑
j

a(j)k|xj |

we have ‖ej‖k = a(j)k. By the open mapping theorem, Q(Wk) ⊆ λ1
∞(a) is open.

Hence, for every k there exists an nk ∈ N and a Ck ≥ 1 with
ej

a(j)nk
∈
{
x : ‖x‖nk ≤ 1

}
⊆ CkQ(Wk).

Thus there are dkj ∈ Cka(j)nkWk ∩Q−1(ek) ⊆ F . We may assume that

nk+1 ≥ (1 + νk−1)nk ≥ nk and Ck+1 ≥ 2kνk−1 (3Ck)1+νk−1 ≥ Ck
for all k ∈ N. Thus

dkj − dk−1
j ∈

(
Cka(j)nkWk + Ck−1a(j)nk−1Wk−1

)
∩ kerQ ⊆ 2Cka(j)nkUk−1

We claim that there are akj ∈ Ck+1a(j)nk+1 Uk with

Rkj := dkj − akj ∈ Cka(j)nkWk + Ck+1a(j)nk+1 Uk ⊆ 2Ck+1a(j)nk+1 Wk.

Let a0
j := 0 and assume ak−1

j is already constructed. Then

dkj − dk−1
j + ak−1

j ∈ 2Cka(j)nkUk−1 + Cka(j)nkUk−1 ⊆ 3Cka(j)nk︸ ︷︷ ︸
=:ρ≥1

Uk−1.

Multiplying 1 for r := ρ 2k with ρ gives the existence of

akj ∈ ρ rνk−1 Uk = (3Cka(j)nk)1+νk−1 2k νk−1 Uk ⊆ Ck+1a(j)nk+1 Uk

with
Rkj −Rk−1

j = (dkj − dk−1
j + ak−1

j )− akj ∈
ρ

r
Uk−2 = 2−kUk−2

Thus
∃ Rj := lim

l→∞
Rlj = Rkj +

∑
l>k

(Rlj −Rl−1
j ) ∈ 2Ck+1a(j)nk+1 Wk +

∑
l>k

2−l Ul−2 ⊆

⊆
(

2Ck+1a(j)nk+1 + 2−k
)
Wk−1 ⊆

(
1 + 2Ck+1

)
a(j)nk+1 Wk−1 ⊆ F.

So we can define
R(x) :=

∑
j

xjRj ∈ F for all x = (xj)j∈N ∈ λ1
∞(a),

since
R(x) =

∑
j

a(j)nk+1 xj
Rj

a(j)nk+1
∈ ‖x‖nk+1(1 + 2Ck+1)Wk−1.

Thus, for each k > 0,
pWk−1(R(x)) ≤ (1 + 2Ck+1) ‖x‖nk+1 ,
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i.e. R ∈ L(λ1
∞(a), F ) and, since

Q(Rj) = lim
k→∞

Q(Rkj ) = lim
k→∞

Q(dkj − akj ) = ej − 0,

we get Q ◦R = id.

In fact, it has be shown that the condition (Ω) gives even a characterization:

4.135 Proposition [Vog87, 4.1 p.183].
Let supn

αn+1
αn

<∞ and F be a Fréchet space. Then

1. F is (Ω);

⇔ 2. Ext1(λ1
∞(α), F ) = 0, i.e. any ses 0→ F → G→ λ1

∞(α)→ 0 splits.

⇔ 3. If Q : G� H is a quotient mapping with kernel F
then Q∗ : L(λ1

∞(α), G)→ L(λ1
∞(α), H) is onto;

⇔ 4. If S : H ↪→ G is a closed embedding with quotient λ1
∞(α)

then S∗ : L(G,F )→ L(H,F ) is onto.

Proof. ( 1 ⇒ 2 ) is 4.134 .

( 1 ⇐ 2 ) is shown in [Vog87, 4.1 p.183].

( 2 ⇔ 3 ⇔ 4 ) is 4.111 and 4.115 .

And similar to 4.131 one obtains:

4.136 Corollary [Vog85, 3.2 p.263].
A Fréchet space F is (Ω) ⇔ F is a quotient of λ1

∞(a) for some a ∈ RJ≥1.

Proof.
(⇒) We have the canonical resolution

0→ E →
∏
k

Ek →
∏
k

Ek → 0.

Let F := {x = (xk)k ∈
∏
k Ek : ‖x‖ :=

∑
‖xk‖k < ∞}, a Banach space which

contains each Ek as direct summand (and let Fk be a complement of Ek in F ).
Let {xi : i ∈ I} be a (w.l.o.g. infi-
nite) dense subset in F and 0 →
K ↪→ `1(I) � F → 0 be the
resulting exact sequence. Taking
the tensor product with the ses
0 → s → s → KN → 0 gives by
4.112 a diagram with exact rows

and columns (since all factors are
Fréchet and always one of them is
nuclear). This gives a right exact
diagonal sequence
(`1(I)⊗̂s)⊕(K⊗̂s)→ `1(I)⊗̂s−Q→ FN → 0
and let N denote the kernel of Q.

0 0 0

0 // F ⊗̂s //

OO

F ⊗̂s //

OO

FN //

OO

0

0 // `1(I)⊗̂s //

OO

`1(I)⊗̂s //

OO

`1(I)N //

OO

0

0 // K⊗̂s //

OO

K⊗̂s //

OO

KN //

OO

0

0

OO

0

OO

0

OO
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Taking the direct sum of the canonical
resolution of E with 0 → 0 →

∏
k Fk →∏

k Fk → 0 gives the exact sequence:

0→ E → FN → FN → 0
and by 4.133.2 also every quotient of
λ1
∞(a). Now take the pullback H to ob-

tain the diagram on the right side.
Its second row splits by 4.134 (i.e. H ∼=
E⊕(`1(I)⊗̂s)) and taking the pullback G
of its two columns gives:

0 0

0 // E // FN //

OO

FN //

OO

0

0 // E // H //

OO

`1(I)⊗̂s //

OO

0

N

OO

N

OO

0

OO

0

OO

0 0

0 // N // E ⊕ (`1(I)⊗̂s) //

OO

FN //

OO

0

0 // N // G //

OO

`1(I)⊗̂s //

OO

0

N

OO

N

OO

0

OO

0

OO

Since N is the quotient of
(`1(I)⊗̂s)⊕ (K⊗̂s) ∼= (`1(I)⊕K)⊗̂s
and hence of `1(I t K)⊗̂s ∼= λ1

∞(a)
by 4.126 we have that N has
property (Ω). Therefore the second
row splits and the first column
shows that E is a quotient of
G ∼= N ⊕ (`1(I)⊗̂s). Thus E is also
a quotient of (`1(I)⊕K ⊕ `1(I))⊗̂s.
Since K also contains a dense
subset of cardinality ≤ |I| it is
a quotient of `1(I) and since
`1(I)3 ∼= `1(I t I t I) ∼= `1(I) we
conclude that E is a quotient of
`1(I)⊗̂s.

For power series spaces λ1
0(α) of finite type one needs the stronger condition (Ω):

4.137 Proposition. [Vog87, 4.2 p.184].
Let limn→∞

αn+1
αn

= 1 and E be a Fréchet space. Then

1. E has (Ω), i.e. ∀p ∃p′ ∀k ∀d > 0 ∃C > 0 : ‖ ‖1+d
−p′ ≤ C ‖ ‖−k · ‖ ‖d−p (cf.

4.132.2 );
⇔ 2. Ext1(λ1

0(α), E) = 0, i.e. any ses 0→ E → G→ λ1
0(α)→ 0 splits.

If all involved Fréchet spaces have a basis of Hilbert seminorms then 4.127 and
4.134 can be generalized to

4.138 Splitting theorem (See [MV92, 30.1 p.357], [Vog87, 5.1 p.186]).
Let 0→ E → G→ F → 0 be a short exact sequence of (F) spaces having a basis of
Hilbert seminorms.
If E is (Ω) and F is (DN), then the sequence splits.

4.139 Universal linearizer.
These results can also be used for lifting problems of non-linear functions:
Let F(U,E) be a class of functions from some set U (e.g. an open subset of some
Kn) into lcs E from a certain class.
The corresponding free space (or universal linearizer)
λ(U) should be an lcs in this class with the following uni-
versal property:
There exists a δ ∈ F(U, λ(U)), such for every f ∈ F(U,E)
there exists a unique f̃ ∈ L(λ(U), E) with f̃ ◦ δ = f .

U
δ //

∀f∈F ""

λ(U)

f̃∈L∃!
��

∀ E
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Let us try to find λ(U): For E := K we need a bijection δ∗ : λ(U)∗ → F(U) :=
F(U,K). Thus, if we have some reflexive lc-topology on F(U) then λ(U) =
F(U)∗ and δ∗ should be the inverse of δF(U) : F(U) → F(U)∗∗, i.e. f(t) =
δ∗(δF(U)(f))(t) = δF(U)(f)(δ(t)) = δ(t)(f) for all f ∈ F(U) and all t ∈ U . So
δ : U → λ(U) := F(U)∗ is the usual evaluation map.
We need that δ : U → F(U)∗, x 7→ (f 7→ f(x)) belongs to F . Often it is the case,
that switching variables gives a bijection F(U,E′) ∼= L(E,F(U)). For E := F(U),
the map δ : U → E∗ ↪→ E′ corresponds to id ∈ L(E,E), hence belongs to F(U,E′)
and, since it has values in E∗, it usually belongs even to F(U,E∗).
Let now E be arbitrary. In order that δ∗ : L(λ(U), E)→ F(U,E), T 7→ T ◦δ, makes
sense, we need that f ∈ F , T ∈ L ⇒ T ◦ f ∈ F , which is not a big limitation.
Is δ∗ injective? So let T ∈ L(λ(U), E) be such that f := T ◦ δ = 0, hence 0 =
x∗ ◦ T ◦ δ = δ∗(x∗ ◦ T ) : U → K for all x∗ ∈ E∗. Since δ∗ : λ(E)∗ → F(U) is the
inverse of δ : F(U)→ F(U)∗∗ it follows that x∗ ◦ T = 0, and consequently T = 0.
Note, that we can deduce that the image of δ : U → λ(U) generates a dense linear
subspace, since every continuous linear functional T on λ(U) which vanishes on the
image of δ, i.e. δ∗(T ) = 0, has to be 0.
Is δ∗ onto? So let f ∈ F(U,E) and consider f∗ : E∗ → F(U), x∗ 7→ x∗ ◦ f . This
is well-defined by the assumption above. In order to show that it is bounded, we
consider the associated mapping f̃∗ : U → (E∗)′, which is just f : U → E ↪→ (E∗)′
and belongs to F . So f∗ is bounded and hence f∗∗ : λ(U) = F(U)′ → (E∗)′ is
continuous. Since f∗∗ ◦ δ = δ ◦ f : U → E → (E∗)′ its values on the image of δ lie
in E and, since this image generates a dense subspace, f∗∗ is the required inverse
image for complete E.

Thus we have shown:

Proposition.
Let F(U,E) be function spaces with the following properties:

1. f ∈ F , T ∈ L ⇒ T ◦ f ∈ F .
2. If ι : G ↪→ E is a closed embedding, then f ∈ F(U,G) ⇔ ι ◦ f ∈ F(U,E).
3. F(U,E′) ∼= L(E,F(U)) by switch of variables.
4. F(U) carries a reflexive lc-topology.

Let λ(U) := F(U)∗ then δ∗ : L(λ(U), E) ∼= F(U,E) is a linear bijection for each
complete lcs E with complete dual E∗.

Examples.
( 1 ) T ∈ L, f ∈ F ⇒ T ◦ f ∈ F :
For `∞, C∞ (See [KM97, 2.11 p.24]), H ([KN85, 2.6 p.283]), and Cω ([KM90,
1.9 p.10]) this is easily checked.

( 2 ) ι ◦ f ∈ F ⇒ f ∈ F :
For `∞, C∞, H, and Cω this is obvious since these mappings can be tested by the
continuous linear functionals.
( 3 ) F(U,E′) ∼= L(E,F(U)):
For C∞ see [FK88, 4.4.5], for H see [KN85, 2.14 p.288], for Cω see [KM90, 6.3.3
p.37], and for `∞ see [Kri07a, 4.7.4].

( 4 ) F(U) reflexive:
C∞(U) is nuclear (F) and has (Ω), but not (DN) (∼= sN).
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H(U) is nuclear (F) and a power series space, it has always (Ω) and only for U ∼= C
(DN).
Cω(U) is complete ultrabornological (N) and its dual is complete nuclear (LF).
`∞: For bornological spaces X one has `∞(X) = (`1(X))∗ by [FK88, 5.1.25] and
`1(X) = (c0(X))∗ by [FK88, 5.1.19], where
`1(X) := {f ∈ RX : carr(f) is bounded and ‖f‖1 <∞} and
c0(X) := {f ∈ RX : carr(f) countable and ∀B ∀ε > 0 : {x : |f(x)| > ε} finite.}.

However, λ(X) = `1(X) for F := `∞ by [Kri07a, 4.7.4].
In many situations one can show better density conditions for the image of δ (like
Mackey-denseness) and hence gets the universal property for spaces E being less
complete (like Mackey-complete).
For U ⊆ Rn is open, it has been show in [FK88, 5.1.8] that λ(U) = C∞(U,R)∗ is
universal for C∞-mappings into Mackey-complete spaces. For open U ⊆ Cn, it has
been shown in [Sie95] that λ(U) = H(U)∗ is universal forH-mappings into Mackey-
complete spaces. The free convenient vector space for real-analytic mappings has
been considered in [KM90] and for sequentially complete spaces in [BD01]. In
[FK88, 5.1.24] it is shown that λ(X) = `1(X) is universal for `∞-mappings into
Mackey-complete spaces.

4.140 Parameter dependance of PDO solutions.
Particular cases for surjective PDO’s D := P (∂) : G(W ) � G(W ) have been con-
sidered and (F-)parameter dependence of the solutions discussed: Let Ei := G(Wi)
and D : E1 � E2 be onto. Is D∗ : F(U,E1)→ F(U,E2) onto? Using the universal
linearizer λ(U) for the function space F(U, ), this question is reduced to the sur-
jectivity of D∗ : L(λ(U), E1)→ L(λ(U), E2). Using the suggested isomorphism one
obtains under appropriate conditions the following descriptions for the extension of
D : G(W1)→ G(W2):

F(U,G(W1)) ∼=

D∗

��

L(F(U)∗,G(W1))∼=

D∗

��

F(U)⊗̂G(W1)∼=

F(U)⊗D
��

L(G(W1)∗,F(U))∼=

D∗∗

��

G(W1,F(U))

D̃

��
F(U,G(W2)) ∼=L(F(U)∗,G(W2))∼=F(U)⊗̂G(W2)∼=L(G(W2)∗,F(U))∼= G(W2,F(U))

[BD98, Corollary 39 p.34] If D : Cω(R)� Cω(R) onto then one can find solutions
depending holomorphically on a parameter in C. By [BD01, Proposition 9 p.501]
for every elliptic surjective linear PDO D := P (∂) : Cω(U)→ Cω(U) with constant
coefficients and open U ⊆ Rn the extension D ⊗ E : Cω(U,E) → Cω(U,E) is
surjective if E is (F) or the strong dual of a (F)-space with (DN).
In contrast, by [BD01, Theorem 8 p.501] for every elliptic surjective linear PDO
D := P (∂) : Cω(R2)→ Cω(R2) with constant coefficients the extension D⊗H(D̄) :
Cω(R2, H(D̄))→ Cω(R2, H(D̄)) is not surjective.
[BD01, Theorem 6 p.499] and [BD98, Theorem 38 p.33]: For open sets Ui ⊆ Rni
let T : Cω(U1)→ Cω(U2) be a continuous linear surjective mapping. Then T ⊗E :
Cω(U1, E) → Cω(U2, E) is onto provided E is (F)+(DN) or (E is complete+(LB)
and E∗ is (Ω)) or E is a (F)-quojection, i.e. every quotient with a continuous norm
is a Banach space.
For (sequentially) complete lcs E and open U ⊆ Rn one has a linear bijection
Cω(U,E) ∼= Cω(U)εE = L(Cω(U)∗β , E) ∼= L((E∗, τc), Cω(U)) by [BD01, Theorem
2 p.496]
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Locally bounded linear mappings

In this section, we describe situations where continuous linear mappings are even
locally bounded. If the domain space is a power series space of finite type, then
the characterizing property for the range space is (DN). And if the range space is
such a power series space, then the characterizing property of the domain space
is (Ω). For power series spaces of infinite type, the characterizing properties for
the other involved space are (LB∞) and (LB∞). We give applications to vector
valued real-analytic mappings and mention applications to holomorphic functions
on Fréchet spaces.

4.141 Definition and Remark. Locally bounded operators.
A linear map T : E → F between lcs is called locally bounded if there exists a
0-nbhd U with T (U) bounded. We will denote by LB(E,F ) the space of all locally
bounded linear maps from E to F .
We have LB(E,F ) ⊆ L(E,F ): Let U ⊆ E be a 0-nbhd with T (U) bounded and
V ⊆ F be an arbitrary 0-nbhd. Then ∃C > 0: T (U) ⊆ C V and hence 1

C U ⊆
T−1(V ), i.e. T is continuous.
We are interested in pairs (E,F ) for which LB = L.
If E or F is a normed space, then LB(E,F ) = L(E,F ): Let T ∈ L(E,F ). If E
is normed, than T (U) is bounded for the unit ball U := oE. If F is normed, than
U := T−1(oF ) is a 0-nbhd with T (U) ⊆ oF bounded.
Note that idE ∈ LB(E,E)⇔ E is normable, since U = id(U) is a bounded 0-nbhd.
If Q : E � E1 is a quotient mapping and S : F1 ↪→ F and is an embedding
then LB(E,F ) = L(E,F ) ⇒ LB(E1, F1) = L(E1, F1): For T ∈ L(E1, F1) we have
that S ◦ T ◦ Q ∈ L(E,F ) = LB(E,F ), hence there exists a 0-nbhd U ⊆ E with
S(T (Q(U))) ⊆ F bounded. Since Q is open, the set U1 := Q(U) ⊆ E1 is a 0-nbhd
and since S is an embedding T (U1) = T (Q(U)) is bounded.
Let LB(E,F ) = L(E,F ). If there is an embedding E ↪→ F , then E is normed,
since then LB(E,E) = L(E,E). And if there is a quotient mapping E � F , then
F is normed, since then LB(F, F ) = L(F, F ).
If E is a Fréchet space and LB(E,KN) = L(E,KN), then E is normable: If E is
not normable, then there exists a quotient mapping Q ∈ L(E,RN) by 4.77 , hence
KN would have to normable but is not.

4.142 Proposition [BD98, Theorem 16 p.22], [BD01, Theorem 2 p.496].
The bijection δ∗ : L(Cω(U)∗, E) → Cω(U,E) from 4.139 for open U ⊆ Rn and
Fréchet spaces E maps LB(Cω(U)∗, E) onto Cωt (U,E), the space of topologically
real-analytic mappings, i.e. mappings which are locally representable by a convergent
power series.

L(Cω(U)∗, E) // δ
∗
// // Cω(U,E)

LB(Cω(U)∗, E)
?�

OO

// // // Cωt (U,E)
?�

OO

Sketch of proof. It is easy to see that f ∈ Cωt (R, E) is locally Cω into some EB
and by 4.90.1 even globally, hence corresponds to an element in L(Cω(R)∗, EB) =
LB(Cω(R)∗, EB) ⊆ LB(Cω(R)∗, E).
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Conversely, T ∈ LB(Cω(R)∗, E) ⇒ ∃B : T ∈ LB(Cω(R)∗, EB). Thus δ∗(T ) ∈
Cω(R, EB) ⊆ Cωt (R, E), by a Baire argument, see [KM90, 1.6 p.8].

Thus, in order to get Cω(R, E) = Cωt (R, E) we have determine whether L = LB?

4.143 Definition.
Let E and F be (F) with increasing bases of seminorms (‖ ‖k)k∈N and (‖ ‖n)n∈N.
For linear T : E → F consider

‖T‖k,n := sup
‖x‖k≤1

‖Tx‖n ∈ [0,+∞].

Note that ‖T‖k+1,n ≤ ‖T‖k,n ≤ ‖T‖k,n+1 and
T ∈ L(E,F )⇔ ∀n ∈ N ∃kn ∈ N : ‖T‖kn,n <∞(1)

T ∈ LB(E,F )⇔ ∃k′ ∈ N ∀n ∈ N : ‖T‖k′,n <∞(2)

Proof.
( 1 ) T ∈ L(E,F ) ⇔ ∀n ∈ N ∃kn ∈ N ∃C > 0 : ‖T (x)‖n ≤ C‖x‖kn .
( 2 ) T ∈ LB(E,F ) ⇔ ∃k′ ∈ N ∀n ∈ N ∃C > 0 ∀x : ‖x‖k′ ≤ 1⇒ ‖T (x)‖n ≤ C.

4.144 Lemma. Characterizing L = LB (See [Vog83, 1.1 p.183]).
Let E and F be (F) with increasing bases of seminorms (‖ ‖k)k∈N and (‖ ‖n)n∈N.
Then

1. L(E,F ) = LB(E,F );
⇔ 2. ∀k ∈ NN ∃k′ ∀n ∃n′ ∃C > 0 ∀T ∈ L(E,F ) : ‖T‖k′,n ≤ C maxm≤n′ ‖T‖km,m.

W.l.o.g. k ↗∞, since validity of 2 for k implies it for any k ≤ k.

Proof. For k ∈ NN consider

Gk :=
{
T ∈ L(E,F ) : ‖T‖kn,n <∞ for all n ∈ N

}
,

a Fréchet space with respect to the seminorms ‖ ‖kn,n for n ∈ N.
For each k′ ∈ N let

Hk′ :=
{
T ∈ L(E,F ) : ‖T‖k′,n <∞ for all n ∈ N

}
,

a Fréchet spaces with respect to the seminorms ‖ ‖k′,n for n ∈ N.
Since {x : ‖x‖k′+1 ≤ 1} ⊆ {x : ‖x‖k′ ≤ 1} we have ‖T‖k′+1,n ≤ ‖T‖k′,n and thus
continuous inclusions Hk′ ⊆ Hk′+1. By 4.143.1 L(E,F ) =

⋃
kGk and by 4.143.2

LB(E,F ) =
⋃
k′ Hk′ .

( 1 ⇒ 2 ) By 1 we have Gk ⊆ L(E,F ) = LB(E,F ) =
⋃
k′ Hk′ Since the inclu-

sions Gk ⊆ L(E,F ) and Hk′ ⊆ L(E,F ) are continuous (for B ⊆ C Uk′ we have
sup{‖T (x)‖n : x ∈ B} ≤ C ‖T‖k′,n) we can apply Grothendieck’s Factorization
Theorem 2.6 to obtain a k′ ∈ N such that Gk ⊆ Hk′ and the inclusion is continu-
ous, i.e.

∀n ∈ N ∃n′ ∈ N ∃C > 0 : ‖T‖k′,n ≤ C max
m≤n′

‖T‖km,m.

1 ⇐ 2 ) Let T ∈ L(E,F ). By 4.143.1 ∃k ∈ NN : T ∈ Gk and by 2 :

∃k′ ∀n ∃n′ ∃C > 0 : ‖T‖k′,n ≤ C max
m≤n′

‖T‖km,m.

Hence
‖T‖k′,n <∞ for all n,

i.e. T ∈ Hk′ ⊆ LB(E,F ).
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4.145 Lemma (See [Vog83, 1.3 p.184]).
Let B = {b(k) : k ∈ N} be a Köthe matrix and F a Fréchet space with increasing
basis of seminorms ‖ ‖k. Then

1. L(λ1(B), F ) = LB(λ1(B), F );
⇔ 2. ∀k ∈ NN ∃k′ ∀n ∃n′ ∃C > 0 ∀j ∀y ∈ F : ‖y‖n

b
(k′)
j

≤ C maxm≤n′ ‖y‖m
b

(km)
j

.

W.l.o.g. k ↗∞.

Proof.
( 1 ⇒ 2 ) follows from 4.144 for T := prj ⊗y with y ∈ F and prj(x) := xj for
x ∈ λ1(B) =: E, since

‖T‖k,n = sup
{
‖Tx‖n : ‖x‖k ≤ 1

}
= sup

{
|xj | ‖y‖n : ‖x · b(k)‖`1 ≤ 1

}
= ‖y‖n

b
(k)
j

.

( 1 ⇐ 2 ) Since ej is an (absolute) Schauder-basis of E := λ1(B) by 1.21 every
T ∈ L(E,F ) is of the form

T (x) = T
(∑

j

prj(x) ej
)

=
∑
j

prj(x) yj , where yj := T (ej),

‖T (x)‖n ≤
∑
j∈N

b
(k′)
j |prj(x)| · sup

j∈N

‖yj‖n
b
(k′)
j

= ‖x‖k′ · sup
j∈N

‖yj‖n
b
(k′)
j

,

and ∀m ∃km ∃Cm > 0 : ‖yj‖m = ‖T (ej)‖m ≤ Cm‖ej‖km = Cm b
(km)
j .

By 2 we have ∃k′ ∀n ∃n′ ∃C > 0:

‖T‖k′,n ≤ sup
j∈N

‖yj‖n
b
(k′)
j

≤ sup
j∈N

(
C max

m≤n′
‖yj‖m
b
(km)
j

)
≤ C max

m≤n′
Cm <∞,

i.e. T ∈ LB(E,F ) by 4.143.2 .

4.146 Theorem (See [Vog83, 2.1 p.186]).
Let β := (βj)j∈N be a shift-stable sequence, i.e. supn

βn+1
βn

< ∞, and F a
Fréchet space with increasing basis of seminorms ‖ ‖k. Then

1. L(λ1
0(β), F ) = LB(λ1

0(β), F );
⇔ 2. F has property (DN) (See 4.123 ).

( 1 ⇐ 2 ) is valid without the assumption on β.

The shift-stability is equivalent to λpr(β) ∼= K⊕λpr(β), via Φ : x 7→ (x0, S(x)), where
S(x)j := xj+1.

Proof. By 1.26.1 we may replace λ1
0(β) by the isomorphic space λ1

1(β). Let
0 < ρk ↗ 1 for k → ∞, i.e. b

(k)
j := eρkβj describes the Köthe-matrix B for

λ1
1(β) := λ(B).

( 1 ⇐ 2 ) Let k ∈ NN. By 4.123.5 the property (DN) means:

∃q ∃d > 0 ∀p ∃p′ ≥ q ∃C ≥ 1 : ‖ ‖1+d
p ≤ C ‖ ‖dq ‖ ‖p′ .

(Note, that because of 4.131 , it would be enough to consider F = λ∞∞(a) and
hence q = 0, d = 1, p′ = 2p, and C = 1 by 4.125 .)
Now choose a k′ > kq such that

d >
1− ρk′
ρk′ − ρkq

(
↘ 0 for k′ →∞

)
.

118 andreas.kriegl@univie.ac.at c© July 1, 2016



Locally bounded linear mappings 4.147

Let y ∈ F and j ∈ N be fixed.
If

‖y‖q < e(ρkq−ρk′ )βj‖y‖p,
then

‖y‖1+d
p ≤ C ‖y‖dq ‖y‖p′ ≤ C ed(ρkq−ρk′ )βj ‖y‖dp ‖y‖p′ .

By hypothesis d(ρkq − ρk′) ≤ ρk′ − 1 ≤ ρk′ − ρkp′ , so we get

‖y‖p ≤ C e
(ρk′−ρkp′ )βj ‖y‖p′ .

Otherwise,
‖y‖p ≤ e(ρk′−ρkq )βj ‖y‖q.

In any case
‖y‖p
eρk′βj

≤ max
{ ‖y‖q
eρkqβj

, C
‖y‖p′
e
ρk
p′
βj

}
≤ C max

m≤p′
‖y‖m
eρkmβj

and 4.145.2 gives 2 .

( 1 ⇒ 2 ) By 4.145.2 for the sequence k := id ∈ NN we have

∃k′ ∀n ∃n′ ∃C > 0 ∀y ∈ F ∀j : ‖y‖n e−ρk′βj ≤ C max
m≤n′

‖y‖m e−ρmβj .

W.l.o.g. n′ ≥ max{n, k′ + 1} and thus

‖y‖n e−ρk′βj ≤ C max
m≤n′

‖y‖m e−ρmβj ≤ C max
{
‖y‖k′ , ‖y‖n′ e−ρk′+1βj

}
, since

‖y‖m e−ρmβj ≤

{
‖y‖k′ · 1 for m ≤ k′,
‖y‖n′ e−ρk′+1βj for k′ < m ≤ n′.

Let b := supn
βn+1
βn

<∞ and take y ∈ F . If there exists a j ∈ N such that

‖y‖n e−ρk′βj+1 ≤ C‖y‖k′ < ‖y‖n e−ρk′βj (↘ 0 for j →∞),

then

‖y‖n ≤ eρk′βj C max
{
‖y‖k′ , ‖y‖n′ e−ρk′+1βj

}
= C ‖y‖n′ e(ρk′−ρk′+1)βj

≤ C‖y‖n′ e
−ρk′βj+1

ρ
k′+1−ρk′
b ρ
k′ ≤ C‖y‖n′

(
C
‖y‖k′
‖y‖n

)d
,

where d := ρk′+1−ρk′
b ρk′

, i.e. ‖y‖1+d
n ≤ C1+d ‖y‖n′ ‖y‖dk′ .

If no such j exists, then e−ρk′β0 ‖y‖n ≤ C‖y‖k′ and we get

‖y‖1+d
n ≤ ‖y‖n′ ‖y‖dn ≤ ‖y‖n′ (C eρk′β0)d ‖y‖dk′ .

Hence in both cases

‖y‖1+d
n ≤ C ′ ‖y‖n′ ‖y‖dk′ with C ′ := Cd max{C, eρk′β0d},

which is equivalent to (DN) by 4.123.5 with q := k′, p := n, and p′ := n′.

4.147 Proposition (See [Vog83, 1.4 p.185]).
Let A = {a(k) ∈ RJ+ : k ∈ N} be a Köthe matrix, E a Fréchet space with decreasing
0-nbhd basis {Uk : k ∈ N} and Minkowski-functionals ‖ ‖−k of the polars Uok . Then

1. L(E, λ∞(A)) = LB(E, λ∞(A));

⇔ 2. ∀k ∈ NN ∃k′ ∀n ∃n′ ∃C > 0 ∀j ∀x∗ : a(n)
j ‖x∗‖−k′ ≤ C maxm≤n′ a(m)

j ‖x∗‖−km .
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Proof. This proof is similar to the proof of 4.145 .
( 1 ⇒ 2 ) follows from 4.144 for T := x∗ ⊗ ej with j ∈ N and x∗ ∈ E∗.

( 1 ⇐ 2 ) Let T ∈ L(E, λ∞(A)) and put x∗j := prj ◦T ∈ E∗. Then

‖T (x)‖n ≤ sup
j
|a(n)
j x∗j (x)| ≤ ‖x‖k′ sup

j∈N
a

(n)
j ‖x

∗
j‖−k′

≤ ‖x‖k′ C max
m≤n′

(
sup
j∈N

a
(m)
j ‖x∗j‖−km︸ ︷︷ ︸

=:‖T‖km,m

)
,

by 2 . This implies
‖T‖k′,n ≤ C max

m≤n′
‖T‖km,m,

i.e. T ∈ LB(E, λ∞(A)) by 4.144 .

4.148 Theorem. [Vog83, 4.2 Satz p.190].
Let (αj)j∈N be a shift-stable sequence and E a Fréchet space. Then

1. L(E, λ∞0 (α)) = LB(E, λ∞0 (α));

⇔ 2. E has property (Ω) (see 4.137 ).

( 1 ⇐ 2 ) is valid without the assumption on α.

Proof. By 1.26.1 we may replace λ∞0 (α) by the isomorphic space λ∞1 (α). Let
0 < ρk ↗ 1 for k → ∞, i.e. a

(k)
j := eρkαj describes the Köthe-matrix A for

λ∞1 (α) := λ∞(A). W.l.o.g. we may assume that limk→∞
1−ρk

ρk−ρk−1
= 0, e.g. take

ρk := 1 − 1
k! . Let {Uk : k ∈ N} be an increasing 0-nbhd basis of E and ‖ ‖−k the

Minkowski-functional of Uok ⊆ E∗.

( 1 ⇐ 2 ) Let k ∈ NN be given. For p := k0 choose p′ according to (Ω), i.e.

∀n ∀d > 0 ∃C ≥ 1 : ‖ ‖1+d
−p′ ≤ C ‖ ‖−n · ‖ ‖

d
−p

For every n ∈ N let n′ ≥ p with ρn′ > ρn and d > 0 with d(ρn − ρ0) ≤ ρn′ − ρn.
Thus there exists a C ≥ 1 such that

‖ ‖1+d
−p′ ≤ C ‖ ‖−kn′ · ‖ ‖

d
−k0

.

For x∗ ∈ E∗ and j ∈ N either eρnαj‖x∗‖−p′ < eρ0αj‖x∗‖−k0 or

‖x∗‖1+d
−p′ ≤ C ‖x

∗‖−kn′ · ‖x
∗‖d−k0

≤ C ‖x∗‖−kn′ e
d(ρn−ρ0)αj ‖x∗‖d−p′ ,

i.e. ‖x∗‖−p′ ≤ C e(ρn′−ρn)αj ‖x∗‖−kn′ .
In both cases we have 4.147.2

eρnαj‖x∗‖−p′ ≤ max
{
eρ0αj‖x∗‖−k0 , C e

ρn′αj‖x∗‖−kn′
}
≤ C max

m≤n′
eρmαj‖x∗‖−km ,

with k′ := p′, hence L = LB by 4.147 .

( 1 ⇒ 2 ) Let p ∈ N and consider the sequence k : n 7→ p+ n. By 4.147.2

∃p′ ∀n ∃n′ ∃Cn ≥ 1 ∀x∗ ∈ E∗ ∀j :
eρnαj ‖x∗‖−p′ ≤ Cn max

m≤n′
eρmαj‖x∗‖−km

≤ Cn max
{
eρn−1αj‖x∗‖−p, eαj‖x∗‖−kn

}
,
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since

eρmαj‖x∗‖−km ≤

{
eρn−1αj‖x∗‖−k0 for m < n,

eαj‖x∗‖−kn for n ≤ m ≤ n′.
Let x∗ ∈ E∗. If there exists a j ∈ N such that
e(ρn−ρn−1)αj−1‖x∗‖−p′ ≤ Cn‖x∗‖−p < e(ρn−ρn−1)αj‖x∗‖−p′ (↗ 0 for j →∞),

then, since dn := supj
(1−ρn)αj

(ρn−ρn−1)αj−1
,

‖x∗‖−p′ ≤ e−ρnαj Cn max
{
eρn−1αj‖x∗‖−p, eαj‖x∗‖−kn

}
= Cn e

(1−ρn)αj‖x∗‖−kn

≤ Cn e(ρn−ρn−1)αj−1dn‖x∗‖−kn ≤ Cn
(
Cn
‖x∗‖−p
‖x∗‖−p′

)dn
‖x∗‖−kn ,

i.e. ‖x∗‖1+dn
−p′ ≤ C1+dn

n ‖x∗‖−kn ‖x∗‖
dn
−p.

If no such j exists, then Cn‖x∗‖−p < e(ρn−ρn−1)α0‖x∗‖−p′ . Hence

‖x∗‖−p′ ≤ e−ρnαj Cn max
{
eρn−1αj‖x∗‖−p, eαj‖x∗‖−kn

}
= Cn e

(1−ρn)α0‖x∗‖−kn
and thus we obtain in both cases

‖x∗‖1+dn
−p′ ≤ C

′
n ‖x∗‖−kn · ‖x∗‖

dn
−p, where C ′n := Cn max{Cdnn , e(1−ρn)α0}.

Since kn → +∞ and dn → 0, condition

(Ω) ∀p ∃p′ ∀k ∀d > 0 ∃C ≥ 1 : ‖ ‖1+d
−p′ ≤ C ‖ ‖−k · ‖ ‖

d
−p

follows.

For power series spaces λp∞(α) of infinite type one needs new (smaller) classes:

4.149 Theorem. [Vog83, 3.2 Satz p.188].
Let (βj)j∈N be a shift-stable sequence and F be a Fréchet space with increasing basis
of seminorms ‖ ‖k. Then

1. L(λ1
∞(β), F ) = LB(λ1

∞(β), F );
⇔ 2. F has property (LB∞), i.e.

∀ρ ∈ RN+ ∃k′ ∀n ∃n′ ∃C > 0 ∀y ∃m ∈ [n, n′] : ‖y‖1+ρm
n ≤ C ‖y‖ρmk′ ‖y‖m.

( 1 ⇐ 2 ) is valid without the assumption on β.

Similary as in 4.123 we may assume k′ ≤ n ≤ n′ and ρ↗∞:

‖y‖n
‖y‖m

≤ C
(
‖y‖k′
‖y‖n

)ρm
≤ C

(
‖y‖k′
‖y‖n

)ρ′m
for each ρ′ ≤ ρ.

Obviously (use 4.123.5 and ρ := constd) one has: (LB∞) ⇒ (DN).
In fact, recall:
(DN) ∃k′ ∃d > 0 ∀n ∃n′ ∃C > 0 : ‖ ‖1+d

n ≤ C ‖ ‖dk′ ‖ ‖n′ ;

Proof.
( 1 ⇐ 2 ) Let k ∈ NN with k ↗ +∞ be arbitrary. By 2 we have for ρ := k

∃k′ ∀n ∃n′ ≥ k′ ∃C > 0 ∀y ∃m ∈ [n, n′] : ‖y‖1+km
n ≤ C ‖y‖kmk′ ‖y‖m.

Put k′′ := kk′ + 1. For given j either

‖y‖n e−k
′′βj ≤ ‖y‖k′ e−kk′βj

or
‖y‖1+km

n ≤ C ‖y‖kmk′ ‖y‖m ≤ C e
(kk′−k

′′)βjkm ‖y‖kmn ‖y‖m
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and hence
‖y‖n e−k

′′βj︸ ︷︷ ︸
≤1

≤ ‖y‖n ≤ C ‖y‖m e(kk′−k
′′)βjkm = C ‖y‖m e−kmβj .

In any case we have

‖y‖n e−k
′′βj ≤ C max

m≤n′
‖y‖m e−kmβj ,

i.e. condition 4.145.2 is satisfied.

( 1 ⇒ 2 ) Let ρ ∈ RN+ with ρ↗ +∞ and let

‖ξ‖k :=
∑
j∈N

|ξj |eσkβj with σk := ρ2
k

the basis of seminorms on λ1
∞(β). By 4.145.2 for k := id we have

∃k′ ∀n ∃n′ ∃C ≥ 1 ∀y ∈ F ∀j : ‖y‖ne−σk′βj ≤ C max
m≤n′

‖y‖me−σmβj .

We pick a j0, such that for j ≥ j0 we have
1 > Ce(σk′−σk′+1)βj (↘ 0 for j →∞).

Thus
‖y‖n e−σk′βj ≤ C max

{
‖y‖m e−σmβj : m ∈ [0, k′] ∪ [n+ 1, n′]

}
,

since for k′ < m ≤ n we have
C ‖y‖m e−σmβj ≤ C ‖y‖n e−σk′+1βj < ‖y‖n e−σk′βj .

Let y ∈ F . Then either
‖y‖n ≤ Ceσk′βj0‖y‖k′

or there exists a j ≥ j0 with
‖y‖ne−σk′βj+1 ≤ C‖y‖k′ < ‖y‖ne−σk′βj (↘ 0 for j →∞)

and, since then for m ≤ k′

C ‖y‖m e−σmβj ≤ C ‖y‖k′ < ‖y‖n e−σk′βj ,
the maximum is attained for some m with k′ < n < m ≤ n′, i.e.

‖y‖n ≤ C ‖y‖me(σk′−σm)βj ≤ C ‖y‖m e
−σk′βj+1

σm−σk′
b σ
k′ ≤ C ‖y‖m

(
C
‖y‖k′
‖y‖n

)σm−σk′
b σ
k′ ,

where b := supj
βj+1
βj

<∞. Thus

‖y‖1+dm
n ≤ C ′n′ ‖y‖

dm
k′ ‖y‖m with dm := σm − σk′

b σk′
and C ′n′ := C

1+
σ
n′−σk′
b σ
k′ .

Hence in both cases

‖y‖1+dm
n ≤ C ′′n′ ‖y‖

dm
k′ ‖y‖m, where C ′′n′ := max

{
(C eσk′βj0 )

σ
n′−σk′
b σ
k′ , C ′n′

}
.

For n ∈ N choose n̄ ≥ n such that dm := ρ2
m−σk′
b σk′

≥ ρm for all m ≥ n̄. By what we
have just shown

∃n̄′ ∃C ′′n̄′ > 0 ∀y ∃m ∈ [n̄, n̄′] : ‖y‖1+ρm
n ≤ ‖y‖1+ρm

n̄ ≤ C ′′n̄′ ‖y‖
ρm
k′ ‖y‖m,

i.e. 2 is satisfied (with n′ := n̄′ and C ′ := C ′′n̄′).

4.150 Theorem (See [Vog83, Satz 5.2 p.193]).
Let α = (αj)j∈N be a shift-stable sequence and E a Fréchet space with decreasing
0-nbhd basis {Uk : k ∈ N} and Minkowski-functionals ‖ ‖−k of the polars Uok . Then

1. L(E, λ∞∞(α)) = LB(E, λ∞∞(α));
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⇔ 2. E has the property (LB∞), i.e.

∀ρ ∈ RN+, ρ↗∞ ∀p ∃p′ ∀n ∃n′ ∃C ∀x∗ ∃m ∈ [n, n′] : ‖x∗‖1+ρm
−p′ ≤ C ‖x

∗‖ρm−p ‖x∗‖−m.

( 1 ⇐ 2 ) is valid without the assumption on α and more generally for λ∞∞(α) re-
placed by λ∞∞(a) with arbitrary a ∈ RJ≥1.

Similary as in 4.132 we may assume that p ≤ p′ ≤ n.
Obviously (use 4.137.1 and 4.132.2 ) one has: (Ω) ⇒ (LB∞) ⇒ (Ω).
In fact, recall:

∀p ∃p′ ∀n ∀d > 0 ∃C > 0 : ‖ ‖1+d
−p′ ≤ C ‖ ‖

d
−p ‖ ‖−n.(Ω)

∀p ∃p′ ∀n ∃C > 0 ∃d > 0 : ‖ ‖1+d
−p′ ≤ C ‖ ‖

d
−p ‖ ‖−n.(Ω)

Proof.
( 1 ⇐ 2 ) We will verify condition 4.147.2 :

∀k ∈ NN ∃k′ ∀n ∃n′ ∃C > 0 ∀j ∀x∗ : a(n)
j ‖x

∗‖−k′ ≤ C max
m≤n′

a
(m)
j ‖x∗‖−km ,

where a(n)
j := enαj . So let w.l.o.g. k ↗∞ be given. The property (LB∞) does not

depend on the specific basis of seminorms of E so we may assume that it holds for
the seminorms ||| |||n := ‖ ‖kn , i.e.

∀ρ ∈ RN+ ∀p ∃p′ ∀n̄ ∃n̄′ ∃C ≥ 1 ∀x∗ ∃m ∈ [n̄, n̄′] : |||x∗|||1+ρm
−p′ ≤ C |||x

∗|||ρm−p |||x
∗|||−m.

Now we choose ρ ↗ ∞ such that limm→∞
ρm
m = 0 and take p := 0 and obtain a

corresponding p′. To given n ∈ N we next choose n̄ > n such that nρm ≤ m − n
for all m ≥ n̄. For each x∗ ∈ E∗ and j either

enαj |||x∗|||−p′ ≤ |||x
∗|||−0 ≤ C e

0αj |||x∗|||−0

or

|||x∗|||1+ρm
−p′ ≤ C |||x

∗|||ρm−0 |||x
∗|||−m < C

(
enαj |||x∗|||−p′

)ρm |||x∗|||−m
= C enαjρm |||x∗|||ρm−p′ |||x

∗|||−m ≤ C e
(m−n)αj |||x∗|||ρm−p′ |||x

∗|||−m

holds. Let k′ := kp′ , n′ := n̄′ then we have in both cases 4.147.2 :

enαj‖x∗‖−k′ = enαj |||x∗|||−p′ ≤ C max
m≤n̄′

emαj |||x∗|||−m = C max
m≤n′

emαj‖x∗‖−km .

( 1 ⇒ 2 ) Let ρ↗∞ and p ∈ N.
By 4.147.2 for k : m 7→ p+m and a

(n)
j := eρn αj we get:

∃p′ > p ∀n ∃n′ ∃C ≥ 1 ∀x∗ ∀j : eρnαj‖x∗‖−p′ ≤ C max
m≤n′

eρmαj‖x∗‖−km .

For fixed p′ and n > p′ − p choose j0 such that for all j ≥ j0
C < e(ρn−ρn−1)αj

(
↗∞ for j →∞

)
holds. Then

eρnαj‖x∗‖−p′ ≤ C max
{
eρmαj ‖x∗‖−km : m ∈ [0, p′ − p] ∪ [n, n′]

}
,

since for p′ − p < m ≤ n− 1

eρnαj ‖x∗‖−p′ > C eρn−1αj ‖x∗‖−p′ ≥ C eρmαj ‖x∗‖−(p+m) = C eρmαj ‖x∗‖−km .

For x∗ ∈ E∗, either

C ‖x∗‖−k0 = C ‖x∗‖−p ≤ e(ρn−ρp′−p)αj0 ‖x∗‖−p′ ,
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and, since then for m ≤ p′ − p

C eρmαj0 ‖x∗‖−km ≤ C eρp′−p αj0 ‖x∗‖−k0 < eρn αj0 ‖x∗‖−p′ ,

we get
∃m ∈ [n, n′] : eρnαj0 ‖x∗‖−p′ ≤ C eρmαj0 ‖x∗‖−km ,

and hence for any d > 0

‖x∗‖1+d
−p′ ≤

(
C e(ρm−ρn)αj0 ‖x∗‖−km

)
‖x∗‖d−p′ ≤ C e(ρn′−ρn)αj0 ‖x∗‖−km ‖x∗‖d−p.

Otherwise, there exists a j ≥ j0 with

e(ρn−ρp′−p)αj−1‖x∗‖−p′ < C‖x∗‖−p ≤ e(ρn−ρp′−p)αj‖x∗‖−p′
(
↗∞ for j →∞

)
and, since for m ≤ p′ = p

C eρmαj ‖x∗‖−km ≤ C eρp′−p αj ‖x∗‖−k0 < eρn αj ‖x∗‖−p′ ,

we also get

∃m ∈ [n, n′] : ‖x∗‖−p′ ≤ C e(ρm−ρn)αj ‖x∗‖−km

≤ C e
(ρn−ρp′−p)αj−1 b

ρm−ρn
ρn−ρp′−p ‖x∗‖−km

< C
(
C
‖x∗‖−p
‖x∗‖−p′

)d
‖x∗‖−km ,

where d := b ρm−ρn
ρn−ρp′−p

with b := supj
αj
αj−1

, i.e.

‖x∗‖1+d
−p′ ≤ C

1+d ‖x∗‖−km ‖x∗‖d−p,

For given n we may now choose the n from above such that n > max{p′−p, n} and
b

ρn−ρp′−p
≤ 1 and thus d ≤

(
b

ρn−ρp′−p

)
ρm ≤ ρm. Hence, in both cases we have for

C ′ := C max{e(ρn′−ρn)αj0 , Cd} and n′ := n′ + p the condition 2 :

∃p′ ∀n ∃n′ ∃C > 0 ∃m ∈ [n, n′] : ‖ ‖1+ρm
−p′ ≤ C ‖ ‖−m ‖ ‖

ρm
−p .

4.151 Corollary (See [Vog83, 6.2. Satz p.198]).
Let E and F be Fréchet spaces. If E has property (LB∞) and F property (DN),
then

L(E,F ) = LB(E,F ).

Proof. By 4.131 there exists an a : M → R≥1 such that F embeds as closed
subspace into λ∞∞(a). By 4.150 for λ∞∞(a) we have

L(E, λ∞∞(a)) = LB(E, λ∞∞(a)).

Thus, by 4.141 ,
L(E,F ) = LB(E,F )

as well.

An application of these results is:

Proposition [BD98, Thm. 18 p.23], [BD01, Theorem 3 p.497].
Let F be (F). Then

1. F is (DN);
⇔ 2. Cω(U,F ) = Cωt (U,F ) ∀(∃ ∅ 6=)U ⊆ Rn open.
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Locally bounded linear mappings 4.155

Proof. For sake of simplicity we consider only the case U = R treated in [BD98,
Thm. 18 p.23]. By 4.142 : 2 ⇔ L(Cω(R)∗, F ) = LB(Cω(R)∗, F ).
(⇐) By [BD98, Proposition 5 p.17] there exists a quotient map q : Cω(R)∗ � H(D)
(since Cωper(R) ∼= H(D)) thus L(H(D), F ) = LB(H(D), F ).
(⇒) Let T ∈ L(Cω(R)∗, F ). Since Cω(R)∗ = lim−→n

En with En ∼= H(D) by [BD98,
Proposition 3 p.16] and H(D) = λ0(id) by 1.15.6 , there exists for every n ∈ N a
0-nbhd Un ⊆ En with T (Un) bounded by 4.146 . By 4.90.1 there are δn > 0 such
that

⋃
n δnT (Un) is bounded. Thus T is bounded on the absolutely convex hull U∞

(which is a 0-nbhd in lim−→) of
⋃
n δnUn.

Similarly, the following can be shown:

4.152 Proposition [BD01, Theorem 5 p.498] (See [BD98, Theorem 21 p.24]).
Let F be a complete (LB). Then

1. F ∗ is (Ω);
⇔ 2. Cω(U,F ) = Cωt (U,F ) ∀(∃ ∅ 6=)U ⊆ Rn open.

These results have been generalized to

4.153 Proposition [HH03, Theorem B p.286].
Let F be a Fréchet space having property (LB∞) then Cω(U,F ) = Cωt (U,F ) for
every open set U in a Fréchet space E.

4.154 Proposition [HH03, Theorem A p.286].
Let F be a Fréchet space.

1. F is (DN);
⇔ 2. Cω(U,F ) = Cωt (U,F ) ∀U ⊆ E open, where E is (F)+(N)+(Ω̃);
⇔ 3. Cω(U,F ) = Cωt (U,F ) ∀U ⊆ E open, where E is (F)+(S)+(Ω̃) and has an

absolute basis.

A Fréchet space E is said to have property (Ω̃) iff
∀p ∃p′ ∃d > 0 ∀k ∃C > 0 : ‖ ‖1+d

−p′ ≤ C‖ ‖−k‖ ‖
d
−p.

This property has been used in [DMV84, Theorem 9 p.54] to characterize (NF)
spaces in which not every bounded set is uniformly polar. One has the implications:
(Ω) ⇒ (Ω̃) ⇒ (LB∞) ⇒ (Ω).

Another application is:

4.155 Proposition [MV86, 2.3 p.150] and [MV86, 3.4 p.157].
Let E be a Fréchet space. If every entire function f : E → C is of uniformly
bounded type (i.e. there is some 0-nbhd, where the function is bounded on each
multiple) then E satisfies (LB∞).

A nuclear Fréchet space E has (Ω) iff every holomorphic functions on polycylindri-
cal U ⊆ E (i.e. finite intersection of sets of the form {x : |x∗(x)| < 1} for x∗ ∈ E∗)
is of uniformly bounded type (i.e. is bounded on each q-bounded subset, which has
positive q-distance to the complement, for some seminorm q for which U is open)
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4.158 Locally bounded linear mappings

The subspaces and the quotients of s

Note: Quotient and subspaces of s via (N) and Ext1 = 0 ([Vog84, 2.4 p.362] and
[Vog84, 2.3 p.361]) [Vog84, 2.5 p.363] Quotient and subspaces of s [MV92, 31
p.369],
nuclear-(DN) are the subspaces of s [MV92, 31.5 p.372],
nuclear-(Ω) are the quotients of s [MV92, 31.6 p.373],
nuclear-(DN ∩Ω) are the direct summand of s [MV92, 31.7 p.375]

4.156 Definition. Vector-valued sequence space s.
Let E be an lcs. Then

s(N, F ) :=
{
x ∈ FN : {(1 + n)kxk : n ∈ N} is bounded in F for each k

}
.

Supplied with the norms pk(x) := sup{(1 + n)kp(xn) : n ∈ N} for k ∈ N and
seminorms p of F it is an lcs and Fréchet if F is Fréchet.

4.157 Proposition. Universal linearizer for s.
Let F be an lcs. Then L(s∗, F ) ∼= s(N, F ) via T 7→ (T (prn))n∈N.

Proof. Let T ∈ L(s∗, F ) and xn := T (prn). For k ∈ N and seminorms p of F we
have

pk
(
(xn)n∈N

)
:= sup

{
(1 + n)kp(xn) : n ∈ N

}
= sup

{
p
(
T
(
(1 + n)k prn

))
: n ∈ N

}
≤ sup

{
p(T (x∗)) : x∗ ∈ Uok

}
,

since for the standard seminorms (given by ‖x‖k := supn(1 + n)k|xn|, see 1.15.4 )
on s = c0(A) the polar of the corresponding 0-nbhd Uk is by 1.24

Uok :=
{
x∗ ∈ s∗ : ‖x∗‖Uok ≤ 1

}
=
{
y ∈ KN :

∑
n

|yn|(1 + n)−k ≤ 1
}
3 (1 + n)k prn .

Thus L(s∗, F )→ s(N, F ), T 7→ (T (prn))n∈N, is welldefined, linear, and continuous.
It is bijective, since for x = (xn)n∈N ∈ s(N, F ) the only possible inverse image
T ∈ L(s∗, F ) is given by

x∗
(

: x 7→ x∗(x) = x∗
(∑

n

prn(x) en
)

=
∑
n

x∗(en) prn(x)
)
7→

7→ T (x∗) = T
(∑

n

x∗(en) prn
)

:=
∑
n

x∗(en)T (prn) =
∑
n

x∗(en)xn.

This definition for T makes sense, since any x∗ ∈ S∗ is contained in some Uok , i.e.∑
n |x∗(en)|(1 + n)−k ≤ 1 and {(1 + n)k xn : n ∈ N} is bounded.

Moreover, the so defined T is continuous, since

(p ◦ T )(x∗) = p
(∑

n

x∗(en)xn
)
≤
∑
n

|x∗(en)|
(1 + n)k

(1 + n)kp(xn)

≤
∑
n

|x∗(en)|
(1 + n)k

· sup
n

(1 + n)kp(xn) ≤ ‖x∗‖Uok pk(x).

This shows at the same time, that the inverse s(N, F ) → L(s∗, F ), (xn)n∈N 7→ T ,
is continuous as well.

4.158 s(N, s) ∼= s (See [MV92, 31.1 p.369]).
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The subspaces and the quotients of s 4.160

Proof. Any x = (xn)n∈N ∈ sN is in s(N, s) iff ∀k : {(1 + i)kxi : i ∈ N} is bounded
in s, i.e. ∀k ∀l : {(1 + j)l(1 + i)kxi,j : i, j ∈ N} is bounded in K. Take the bijection
N ∼= N × N, n ↔ (i, j) given by the usual diagonal procedure. Then n is smaller
than the number (m+1)(m+2)

2 of lattice points in the triangle with vertices (0, 0),
(m, 0), and (0,m), where m := i+ j. And on the other hand i, j ≤ n. Thus

(1 + j)l(1 + i)k ≤ (1 + n)k+l

and (1 + n)k ≤
(

(1+m)(2+m)
2

)k
≤ (1 + i+ j)2k ≤ (1 + i)2k(1 + j)2k.

So the seminorms of s(N, s) and s can be dominated by each other under this
bijection.

4.159 s→ s→ sN (See [MV92, 31.3 p.370]).
There is a short exact sequence

0→ s ↪→ s� sN → 0.

Proof. By 4.78 (see the proof of 4.131 ) we have the short exact sequence

0 → s ↪→ s
Q
� KN → 0. By 4.99 the dual sequence 0 → K(N) Q

∗

→ s∗ → s∗ → 0 is
topologically exact and by 4.107 the functor L( , s) is left exact. So we obtain

0 // s⊗̂s // //

4.61
s⊗̂s

Q⊗s // // KN⊗̂s
4.61

// 0

0 // L(s∗, s) // //

4.157
L(s∗, s)

Q∗∗ // L(K(N), s)

0 // s(N, s) // //

4.158
s(N, s) // L(K, s)N

0 // s // // s // // sN // 0
In order to see that these isomorphic sequences are short exact we use that any
z ∈ KN⊗̂πs can be represented by 3.40 as z =

∑
n λnxn ⊗ yn with λ ∈ `1, {xn :

n ∈ N} bounded in KN and {yn : n ∈ N} bounded in s. Since KN is (FM) we find a
set {x̃n : n ∈ N} bounded in s with Q(x̃n) = xn. Then z̃ :=

∑
n λn x̃n ⊗ yn ∈ s⊗̂πs

with (Q⊗̂s)(z̃) = z. Since all these tensor products are Fréchet, the top row is a
topologically exact sequence and hence also the bottom row.

4.160 Characterizing the subspaces of s (See [MV92, 31.5 p.372]).
∃ι : E ↪→ s ⇔ E is (N)+(F)+(DN).

Proof. (⇒) By 1.15.4 s ∼= λ∞(α) with α(n) := ln(n+ 1), by 3.78.1 and 4.125
λ∞(α) is (N) and (DN), and by 3.73.2 and 3.14 E is (N) and (DN).

(⇐) By 4.159 there is an exact sequence 0 → s → s → sN → 0 and by 3.81
there is an embedding E ↪→ sN. So the pullback gives another short exact sequence
(where α(n) := ln(n+ 1))

s
� � // s // // sN

λ∞∞(α)

1.15.4
// // s×sN E

� ?

OO

// // E
� ?

OO

3 Suu

which splits by 4.127 . Thus E ↪→ s×sN E ↪→ s.
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4.163 The subspaces and the quotients of s

4.161 Characterizing the quotients of s (See [MV92, 31.6 p.373]).
∃π : s� E ⇔ E is (N)+(F)+(Ω).

Proof.
(⇒) s ∼= λ∞(α) has (N) and (Ω) by 3.78.1 and 4.133.4 . Thus E has (N) and
(Ω) by 3.73.4 and 4.133.2 .

(⇐) By 3.81 there is an embedding E ↪→ sN.
Then Q := sN/E is (NF), and thus there exists a
short exact sequence 0 → s −j2→ Q̃ −p2→ Q → 0
as in the proof of 4.160 with Q̃ ↪→ s and hence
Q̃ has (DN) by 3.14.2 .
Let H := {(x, y) ∈ sN× Q̃ : p1(x) = p2(x)} be the
pullback. Then the diagram on the right side has
exact rows and columns and by 4.138 H ∼= E×Q̃
since E is (Ω).

0 0

0 // E �
� // sN // //

OO

Q //

OO

0

0 // E // H //

OO

Q̃ //

OO

0

s

OO

s

OO

0
OO

0
OO

Take the left column as top row and proceed anal-
ogously with the sequence from 4.159 as right
column to obtain another diagram with exact rows
and columns. Again by 4.138 (or by 4.127 )
G ∼= s× s.
Thus we have quotient mappings

s ∼= s× s ∼= G� H ∼= E × Q̃� E.

0 0

0 // s // H //

OO

sN //

OO

0

0 // s // G //

OO

s //

OO

0

s

OO

s

OO

0
OO

0
OO

4.162 Characterizing the complemented subspaces of s (See [MV92, 31.7
p.375]).
∃ι : E ⊕

↪→ s ⇔ E (N)+(F)+(DN)+(Ω).

Here ⊕↪→ denotes an embedding as direct summand (i.e. having a left inverse).

Proof.
(⇒) follows from 4.160 and 4.161 .

(⇐) Proceed as in the proof of 4.161 , where H ∼= E × Q̃ ↪→ s × s ∼= s, hence is
(DN). By 4.138 not only the bottom row but also the left column in the second
diagram split, i.e. s ∼= s× s ∼= G ∼= H × s ∼= E × Q̃× s. Hence E ⊕

↪→ s.

4.163 s
⊕
↪→ E

⊕
↪→ s ⇒ E ∼= s (See [MV92, 31.2 p.370]).

Proof.
∃E0 : E ∼= E0 × s and ∃E1 : s ∼= E × E1 ⇒
⇒ s ∼= E × E1 ∼= E0 × s× E1 ∼= E0 × E2 with E2 := s× E1

=
4.158

=====⇒ s ∼= s(N, s) ∼= s(N, E0)× s(N, E2)
s(N, E0) ∼= E0 × s(N, E0)⇒
⇒ s ∼= s(N, E0)× s(N, E2) ∼= E0 × s(N, E0)× s(N, E2) ∼= E0 × s ∼= E
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Index

Ao. . . polar of A, 11
E⊗̂πF . . . completed projective tensor prod-

uct, 34
E ⊗ F . . . algebraic tensor product, 33
E ⊗π F . . . projective tensor product, 33
E ⊗ε F . . . injective tensor product, 37
EA. . . (quotient) space generated by A ⊆ E,

2
EN . . . nuclearification of E, 73
ES . . . Schwartzification of E, 71
Ep∼= E/ ker p, 2
H(C). . . space of entire functions, 6
H(D). . . space of holomorphic functions on

the unit disk, 6
Lequi. . . space of bounded linear functionals

with topology of uniform convergence
on equicontinuous sets, 80

U⊗V . . . absolutely convex hull of ⊗(U×V ),
34

β∗(F, F ∗). . . topology of uniform convergence
on bounded sets in F ∗β , 74

`1c , 36
η(E∗, E), 77
γ(E∗, E), 28
ιA : EA � E. . . canonical injection, 2
ιA : E � EA. . . canonical projection, 2
λq(A). . . Köthe sequence space, 4
λpr(α). . . power series space, 6
λp∞(a). . . generalized power series space, 106
⊗̂ε. . . completed injective tensor product, 39
E-0-sequence, 71
E-nuclear sequence, 72
LB(E,F ). . . space of locally bounded linear

maps, 116
πU,V . . . seminorms of projective tensor prod-

uct, 34
lim. . . limit of lcs, 1
τN . . . topology of uniform convergence on E-

nuclear sequences, 72
τS . . . topology of uniform convergence on E-

0-sequences, 71
τc(E∗, E). . . topology of uniform convergence

on compact subsets, 29
τpc(E∗, E). . . topology of uniform convergence

on precompact subsets, 29
ε-product, 81
ε-tensor product, 37
εU,V . . . seminorm of injective tensor prod-

uct, 38
lim←−. . . projective limit of lcs, 1
c0-barrelled, 60

c0(A), 4
p-approximable operators, 40
p-nuclear operators, 40
p-summing operators, 40
s. . . space of fast falling sequences, 6
bE. . . cbs given by von Neumann bornology,

57
tF . . . lcs given by bornivorous absolutely con-

vex subsets, 57
(LB∞)-space, 123
(LB∞)-space, 121
(Ω)-space, 110
(Ω̃)-space, 125
(Ω)-space, 113
(DF)-space, 65
(DN)-space, 27
(F)-space, 2
(FM)-space, 29
(FS)-space, 32
(LB)-space, 18, 74
(LF)-space, 18, 74
(M)-space, 28
(N)-space, 38
(NF)-space, 53
(S)-space, 31
(algebraically) exact sequence, 84
(bornological) embedding, 85
(bornological) quotient mapping, 85
(df)-space, 65
(infra-)countably-barrelled, 63
(inverse) limit of lcs, 1
(quasi-)ℵ0-barrelled, 63
(weakly) compact operator, 24

absolute basis, 9
absolutely q-summable sequences, 36
absolutely Cauchy sequences, 35
absolutely summable sequences, 35
absorbing sequence, 69
algebraic tensor product, 33
approximation numbers, 26
approximation property, 80

Banach-disks, 17
barrel, 17
barrelled space, 17
Beurling type, 4
bornivorous, 17
bornivorous barrel, 17
bornivorous sequence, 69
bornological space, 17

andreas.kriegl@univie.ac.at c© July 1, 2016 131



bornology, 57
bounded linear mappings, 17

canonical resolution of a Fréchet space, 91
canonical resolution of a projective limit, 91
Cauchy-net, 2
cbs. . . separated convex bornological space,

57
closed graph theorem, 3
co-nuclear space, 76
colimit, 18
compact operators, 80
complete, 2, 23
completion of the projective tensor product,

34
convex bornological space, 57
coproduct, 18

Denjoy-Carleman functions, 4
direct sum, 18
distinguished, 62
dominating norm, 27

finite type power series space, 6
Fourier-coefficients, 7
Fréchet space, 2

generalized power series spaces of infinite type,
106

Hermite functions, 8
Hermite polynomials, 7
hypoelliptic PDO, 99

inductive limit, 18
infinite type power series space, 6
infra-c0-barrelled, 60
infra-barrelled space, 17
infra-tonneliert (german), 17
injective Fréchet space, 100
injective tensor product, 37

Köthe sequence space, 4
Kelley-space, 3

lcs. . . separated locally convex space, 1
left exact functor, 99
locally bounded linear map, 116
locally complete, 23
locally convex space, 1
locally-complete, 17

Mackey convergent, 18
Mackey-complete, 23
Minkowski-functional, 1, 2
Montel space, 28

nuclear operator, 47
nuclear space, 38
nuclearification, 73

open mapping theorem, 3

polar set, 11
power series space, 6
precompact, 23
probability measure µ, 45

projective Fréchet space, 100
projective limit, 1
projective tensor product, 33

quasi complete, 23
quasi-normable space, 69
quasi-tonneliert (german), 17
quotient seminorms, 3

rapidly decreasing functions, 4
reduced inductive limit, 18
reduced projective limit, 1
reflexive, 27
regular inductive limit, 19
right-derived functors, 102

scalarly absolutely q-summable sequences, 36
scalarly absolutely summable sequences, 35
Schauder-basis, 9
Schwartz space, 31
Schwartzification, 71
semi-Montel space, 28
semi-reflexive, 27
seminorms, 1
separated convex bonrological space, 57
sequentially complete, 23
shift-stable sequence, 118
Silva, 76
space of continuous linear mappings, 34
space of continuous multi-linear mappings,

34
steps of an inductive limit, 18
Strict inductive limits, 18
strong topology, 12

Tonne (german), 17
tonnelliert (german), 17
topological basis, 9
topologically exactsequence, 84
Tschebyscheff(=Chebyshev) polynomials, 9

ultrabornological space, 17
unconditionally Cauchy summable sequences,

35
universal linearizer, 113
upper semi-continuous, 4
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