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This is the manuscript for the corresponding lecture course given at the University
of Vienna in the Summer Semester 2017. It is originally based on a similiar lecture
courses given in the Summer Semester 1993 and 2006.

I want to use this opportunity to thank all those who attended these lectures
and inspired me with the feedback I got from them. In particular I want to thank
Cornelia Vizman who posed well selected and highly relevant questions after reading
parts of my manuscript. My special thanks go to Konni Rietsch, who not only
strongly influenced the selection of the covered topics but also sacrificed a huge
amount of time during her holidays and lots of energy in order to make sense
out of a preliminary version of these lecture notes. This way she supplied me
with an extensive list of misprints, Germanisms, and imprecise or even incorrect
mathematical formulations.

In the second edition from September 1994 an extensive list of misprints and cor-
rections provided by Eva Adam has been taken gratefully into account.

All the remaining (and newly inserted) faux pas are of course all my own respon-
sibility. And, as always, I explicitly ask the readers not only to pardon them but
also to inform me about anything which sounds weird including possibly missing
definitions and explanations.

These notes have been incorperated into the book [75]. And for the lecture course
2006 I ported its source from AMSTeX to LATEX.

This version for the course in 2017 consists mainly of slightly modified excerpts
from the book [75] and all reference numbers from there are preserved.
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0. Motivation

0.1 Equations on function spaces

It should be unnecessary to convince the reader, that differential calculus is an
important tool in mathematics. But probably some motivation is necessary why
one should extend it to infinite dimensional spaces. This poses no big problem as
long as one stays inside the realm of Banach spaces. However, I will sketch now,
that we are quickly forced to go beyond. One of our main tasks as mathematicians
is, like it or not, to solve equations like

f(u) = 0.
However quite often one has to consider functions f which don’t take (real) numbers
as arguments u but functions. Let us just mention differential equations,
where f is of the following form

f(u)(t) := F (t, u(t), u′(t), . . . , u(n)(t)).
Note that this is not the most general form of a differential equation, consider for
example the function f given by f(u) := u′ − u ◦ u, which is not treated by the
standard theory.

If the arguments t of u are (real) numbers, then this is the general form of an
ordinary differential equation, and in the generic case one can solve this
implicit equation F (t, u(t), u′(t), . . . , u(n)(t)) = 0 with respect to u(n)(t) and obtains
an equation of the form

u(n)(t) = g(t, u(t), u′(t), . . . , u(n−1)(t)).

By substituting u0(t) := u(t), u1(t) := u(1)(t), . . . , un−1(t) := u(n−1)(t) one obtains
a (vector valued) equation

u′0(t) = u1(t)
u′1(t) = u2(t)

...
u′n−2(t) = un−1(t)
u′n−1(t) = g(t, u0(t), . . . , un−1(t))

And if we write u := (u0, . . . , un−1) and
g(t,u) := (u1(t), . . . , un−1(t), g(t, u0(t), . . . , un−1(t))),

we arrive at the ordinary differential equation of order 1
u′(t) = g(t,u(t)).

So we are searching for a solution u of the equation u′ = G(u), where G(u)(t) :=
g(t,u(t)). The general existence and uniqueness results for equations usually de-
pend on some fixed-point theorem and so the domain and the range space have
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0.2 0. Motivation

to be equal or at least to be isomorphic. So we need that u 7→ u′ − G(u) is a
selfmapping. In order to apply it to a function u, we need that u is 1-times differ-
entiable, but in order that the image u′ − G(u) is 1-times differentiable, we need
that u is twice differentiable. Inductively we come to the conclusion that u should
be smooth. So are there spaces of smooth functions, to which we can apply some
fixed point theorem?

0.2 Spaces of continuous and differentiable functions

In [68, 3.2.5] we have shown that the space C(X,R) of continuous real-valued func-
tions on X is a Banach-space with respect to the supremum-norm, provided X is
compact. Recall that the proof goes as follows: If fn is a Cauchy-sequence, then
it converges pointwise (since the point-evaluations evx = δx : C(X,R) → R are
continuous linear functionals), by the triangle inequality the convergence is uni-
form and by elementary analysis (e.g. see [64, 4.2.8]) a uniform limit of continuous
functions is continuous.

If X is not compact, one can nevertheless consider the linear restriction maps
C(X,R)→ C(K,R) for compact subsets K ⊆ X and then use the initial structure
on C(X,R), given by the seminorms f 7→ ‖f |K‖∞, where K runs through some
basis of the compact sets, see [68, 3.2.8]. If X has a countable basis of compact sets,
then we obtain a locally convex space C(X,R) with a countable base of seminorms.
If we try to show completeness, we get as candidate for the limit a function f ,
which is on compact sets the uniform limit of the Cauchy-sequence fn, and hence
is continuous on these sets. If X is Kelley (= compactly generated, i.e. a
set is open if its trace to all compact subsets is open, or equivalently if X carries
the final topology with respect to all the inclusions of compact subsets, see [72,
2.3.1]) then we can conclude that f is continuous and hence C(X,R) is complete.
So under these assumptions (and in particular if X is locally compact) the space
C(X,R) is a Fréchet-space.

Is it really necessary to use countably many seminorms for non-compact X? –
There is no norm which defines an equivalent structure on C(X,R): Otherwise some
seminorm pK := ‖ |K‖∞ must dominate it. However, this is not possible, since pK
is not a norm. In fact, since X is not compact there is some point a ∈ X \K and
hence the function f defined by f |K = 0 and f(a) = 1 is continuous on K ∪ {a}.
By Tietze-Urysohn [72, 1.3.2] it can be extended to a continuous function on X,
which is obviously in the kernel of pK but not zero.
Is there some other reasonable norm turning C(X,R) into a Banach space E? – By
reasonable we mean that at least the point-evaluations should be continuous (i.e.
the topology should be finer than that of pointwise convergence). Then the identity
mapping E → C(X,R) would be continuous by the application in [68, 5.3.8] of the
closed graph theorem. Hence by the open mapping theorem [68, 5.3.5] for Fréchet
spaces the identity would be an isomorphism, and thus E ∼= C(X,R) is not Banach.
Note that this shows that, in a certain sense, the Fréchet structure of C(X,R) is
unique.

Now what can be said about spaces of differentiable functions? – Of course the space
D1(X,R) of differentiable functions on some interval X is contained in C(X,R).
However it is not closed in C(X,R) and hence not complete in the supremum-
norm, since a uniform limit of differentiable functions need not be differentiable
anymore, see the example in [64, 4.2.11]. We need some control on the deriva-
tive. So we consider the space C1(X,R) of continuously differentiable functions
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0. Motivation 0.4

with the initial topology induced by the inclusion in C(X,R) and by the map
d : C1(X,R) → C(X,R) given by f 7→ f ′. If X is compact we can consider in-
stead of the corresponding two seminorms f 7→ ‖f‖∞ and f 7→ ‖f ′‖∞ equally well
their maximum (or sum) and obtain a norm f 7→ max{‖f‖∞, ‖f ′‖∞} on C1(X,R).
Again elementary analysis gives completeness, since for a Cauchy-sequence fn we
have a uniform limit f∞ of fn and a uniform limit f1

∞ of f ′n, and hence (e.g. see
[64, 4.2.11] or [71, 2.40]) f∞ is differentiable with derivative f1

∞. Inductively, we
obtain that for compact intervals X and natural numbers n the spaces Cn(X,R)
can be made canonically into Banach-spaces, see [68, 4.2.5].

0.3 Spaces of smooth functions

What about the space C∞(X,R) of infinite differentiable maps on a compact in-
terval X? – Here we have countably many seminorms f 7→ ‖f (n)‖∞, and as before
we obtain completeness. So we have again a Fréchet space.

Again the question arises: Is it really necessary to use countably many seminorms?
Since X is assumed to be compact we have a continuous norm, the supremum
norm, and we cannot argue as before. So let us assume that there is some norm
on C∞(X,R) defining an equivalent structure. In particular it has to be contin-
uous and hence has to be dominated by the maximum of the suprema of finitely
many derivatives. Let us consider an even higher derivative. Then the supremum
of this derivative must be dominated by the norm. However, this is not possible,
since there exist smooth functions f , for which all derivatives of order less than
n are globally bounded by 1, but which have arbitrarily large n-th derivative at
a given point, say 0. In fact, without loss of generality, we may assume assume
that n is even and let b ≥ 1. Take f(x) := a cos bx with a := 1/bn−1. Then
|f (k)(x)| = bk+1−n ≤ 1 for k < n, but f (n)(0) = ±b cos 0.
Is there some reasonable (nonequivalent) norm which turns C∞(X,R) into a Banach-
space? – Well, the same arguments as before show that any reasonable Fréchet-
structure on C∞(X,R) is identical to the standard one and hence not normable.

0.4 ODE’s

By what we have said in 0.1 the straight forward formulation of a fixed point
equation for a general ordinary differential equation, does not lead to Banach spaces
but to Fréchet spaces. There is however a classical way around this difficulty. The
idea can be seen from the simplest differential equation, namely when G doesn’t
depend on u, i.e. u′(t) = G(t). Then the (initial value) problem can be solved by
integration: u(t) = u(0) +

∫ t
0 G(s) ds and in fact similar methods work in the case

of separated variables, i.e. u′(t) = G1(t)G2(u), since then H2(u) :=
∫ 1
G2(u) du =

c+
∫
G1(t) dt =: H1(t) and hence u(t) = H−1

2 (H1(t)).
In [68, 1.3.2] of [65, 6.2.14] we have seen how to prove an existence and uniqueness
result for differential equations u′(t) = g(t, u(t)) with initial value conditions u(0) =
a. Namely, by integration one transforms it into the integral equation

u(t) = a+
∫ t

0
g(s, u(s)) ds.
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0.4 0. Motivation

Thus one has to find a fixed point u of u = G(u), where G is the integral operator
given by

G(u)(t) := a+
∫ t

0
g(s, u(s)) ds.

As space of possible solutions u one can now take the space C(I,R) for some
interval I around 0. If one takes I sufficiently small then it is easily seen that G
is a contraction provided g is sufficiently smooth, e.g. locally Lipschitz. Hence the
existence of a fixed point follows from Banach’s fixed point theorem [68, 1.2.2] (or
[72, 3.1.7], or [64, 3.4.12]).

A more natural approach was taken in [65, 6.2.10]: The idea there is to solve the
equation 0 = u′−f ◦ u =: (d−f∗)(u) on a space of differentiable functions u. How-
ever, since we cannot expect global existence of u but only on some interval [−a, a]
we transform the u ∈ C1([−a, a],R) into ua ∈ C1([−1, 1],R), via ua(t) = u(ta) and
the differential equation then becomes u′a(t) = au′(ta) = af(u(ta)) = a f(ua(t)), an
implicit equation 0 = g(a, ua), where g : R×C1([−a, a],R)→ C([−a, a]) is given by
g(a, u)(t) = u′(t)− a f(u(t)) = (d− a f∗)(u)(t). In order to apply the implicit func-
tion theorem we need that g is C1 and ∂2g(0, 0) : C1([−1, 1],R)→ C0([−1, 1],R) is
invertible. Since d : C1([−1, 1],R)→ C([−1, 1],R) is linear and continuous we only
have to show that f∗ is C1. Since evx : C([−1, 1],R)→ R is continuous and linear
a possible (directional) derivative (f∗)′(g)(h) should satisfy:

(f∗)′(g)(h)(x) = evx
(
(f∗)′(g)(h)

)
= evx

( d

dt

∣∣∣∣
t=0

f∗(g + t h)
)

= d

dt

∣∣∣∣
t=0

(evx ◦ f∗)(g + t h)(x)

= d

dt

∣∣∣∣
t=0

f(g(x) + t h(x)) = f ′(g(x))(h(x)),

In fact if ` is continuous and linear and c is a differentiable curve then ` ◦ c is
differentiable with derivative `(c′(t)) at t:

lim
s→0

`(c(t+ s))− `(c(t))
s

= lim
s→0

`

(
c(t+ s)− c(t)

s

)
=

= `

(
lim
s→0

c(t+ s)− c(t)
s

)
= `(c′(t)).

So for f∗ to be differentiable we need that f is C1 and then one can show that
f∗ : C([−1, 1],R) → C([−1, 1],R) is in fact C1 with derivative (f∗)′ = (f ′)∗, see
[65, 6.2.10] for the details (in a more general situation). Then ∂2g(0, 0) = d is an iso-
morphism if we replace C1([−1, 1],R) by the closed hyperplane {u ∈ C1([−1, 1],R) :
u(0) = 0} involving the initial condition.

In the particular case of linear differential equation with constant co-
efficients u′ = Au we have seen in [68, 3.5.1] the (global) solution u with initial
condition u(0) = u0 is given by u(t) := etA u0. Furthermore, the solution of a
general initial value problem of a linear differential equation of order n

u(n)(t) +
n−1∑
i=0

ai(t)u(i)(t) = s(t), u(0) = u0, . . . , u
(n−1)(0) = un−1.

is given by an integral operator G : f 7→ u defined by (Gf)(t) := f(t)+
∫ 1

0 g(t, τ) dτ ,
with a certain continuous integral kernel g. We have also seen in [68, 3.5.5] that a
boundary value problem of second order

u′′(t) + a1(t)u′(t) + a0(t)u(t) = s(t), Ra(u) = 0 = Rb(u),
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0. Motivation 0.5

where the boundary conditions are Ra(u) := ra,0 u(a) + ra,1 u
′(a) and Rb(u) :=

rb,0 u(b) + rb,1 u
′(b) is also solved in the generic case by an integral operator

u(t) =
∫ b

a

g(t, τ) f(τ) dτ,

with continuous integral kernel obtained from the solutions of corresponding initial
value problems.

0.5 PDE’s

Now what happens, if the u in the differential equation are functions of several nu-
merical variables. Then the derivatives u(k) are given by the corresponding Jacobi-
matrices of partial derivatives, and our differential equation F (t, u(t), . . . u(n)(t)) =
0 of 0.1 is a partial differential equation, see [68, 4.7.1].

Even if we have a linear partial differential equation with constant
coefficients as in [68, 4.7.2]

F (u)(x) := p(∂)(u)(x) :=
∑
|α|≤n

aα · ∂αu(x) = s(x),

where p is the polynomial p(z) =
∑
|α|≤n aα z

α, we cannot apply the trick from
above for ODE’s. The first problem is, that we no longer have a natural candidate,
with respect to which we could pass to an explicit equation. In some special cases
one can do. An example is the equation of heat-conduction

∂

∂t
u = ∆u,

where u : R × X → R is the heat-distribution at the time t in the point x and
∆ denotes the Laplace-operator given on X = Rn by ∆ :=

∑n
k=1

(
∂
∂xk

)2. So
this is an “ordinary” linear differential equation in an infinite dimensional space of
functions on X. If we want ∆ to be a self-mapping, we need smooth functions. But
if we want to solve the equation as u(t) = et∆u0 we need the functional calculus (i.e.
applicability of the analytic function e 7→ et to the Operator ∆) and hence a Hilbert
space of functions. But then ∆ becomes an unbounded (symmetric) operator. This
we treated in [69, 12.47].

Another example of such a situation is the Schrödinger equation

i}
d

dt
u = S u.

where the Schrödinger-operator is given by S = − }
2

2m∆ + U(x) for some po-
tential U .

A third important equation is the wave-equation ( ∂∂t )
2u = ∆u, see [66, 9.3.1] or

[68, 5.4]. If one makes an Ansatz of separated variables u(t, x) = u1(t)u2(x) one
obtains an Eigen-value equation ∆u(x) = λu(x) for ∆ and after having obtained
the Eigen-functions un : X → R, one is lead to the problem of finding coefficients
ak and bk such that

u(t, x) :=
∑
k

(
ak cos(

√
λk t) + bk sin(

√
λk t)

)
uk(x)

solves the initial conditions
u(0, x) =

∑
k

akuk(x) and ∂1u(0, x) =
∑
k

√
λk bk uk(x)

Andreas Kriegl , Univ.Wien, June 30, 2017 5



0.5 0. Motivation

If we would have an inner-product, for which the uk are orthonormal, then we could
easily calculate the coefficients ak and bk. The space C2π of 2π-periodic functions
is however not a Hilbert space. Otherwise it would be isomorphic to its dual, by
the Riesz Representation theorem [68, 6.2.9]: However for t 6= s we have that
‖ evt− evs ‖ = sup{|f(t)− f(s) : ‖f‖∞ ≤ 1} = 1 if we chose f(t) = 1 and f(s) = 0.
Thus C(X,R)′ is not separable, since otherwise for every t there would be an `t in a
fixed dense countable subset with ‖ evt−`t‖ < 1

2 . Since the t are uncountable there
have to be t 6= s for which `t = `s, a contradiction. Another method to see this is to
use Krein-Milman [68, 7.5.1]: If C(X) were a dual-space, then its unit-ball would
have to be contained in the closed convex hull of its extremal points. A function
f in the unit-ball, which is not everywhere of absolute value 1, is not extremal. In
fact, take a t0 with |f(t0)| < 1 and a function v with support in a neighborhood of
t0. Then f + s v lies in the unit ball for all values of s near 0. Hence we have by
far too few extremal points, since those real-valued functions have to be constant
on connectivity components.

In analogy to the inner product on Rn we can consider the continuous positive
definite hermitian bilinear map (f, g) 7→

∫
X
f(x) g(x) dx. By what we said above,

it cannot yield a complete norm on C(X,R). But we can take the completion of
C(X,R) with respect to this norm and arrive by [68, 4.12.5] at L2(X), a space
not consisting of functions, but equivalence classes thereof. Now for the one-
dimensional wave-equation, i.e. the equation of a vibrating string, we can solve
the Eigenvalue-problem directly (it is given by an ordinary differential equation).
And Fourier-series solves the problem, see [68, 5.4] and [68, 6.3.8].

For general compact oriented manifolds X the Laplace operator will be symmetric
with respect to that inner product, see [67, 49.1]. If it were bounded, then it would
be selfadjoint and one could apply geometry in order to find Eigen-values and Eigen-
vectors by minimizing the angle between x and Tx, or equivalently by maximizing
|〈Tx, x〉|, see [68, 6.5.3]. It is quite obvious that for a selfadjoint bounded operator
the supremum of |〈Tx, x〉| is its norm, and that a point were it is attained is an
Eigen-vector with maximal absolute Eigen-value. So one needs compactness of T in
order to show the existence of such a point. Since Eigen-vectors to different Eigen-
values are orthogonal to each other, one can then proceed recursively, provided the
operator is compact.

Again the idea is that, although the linear differential-operator F is not bounded, its
inverse should be an integral operator G (the Green-operator) with continuous
kernel ε and hence compact. And instead of solving Fu = λu we can equally well
solve 1

λu = Gu, see [67, 49.6].

In order to find the Green operator, we have seen in [68, 4.7.7] that a possible
solution operator G : s 7→ u would be given by convolution of s with a Green-
function ε, i.e. a solution of F (ε) = δ, where δ is the neutral element with respect
to convolution. In fact, since u := ε?s should be a solution of F (u) = s, we conclude
that s = F (u) = F (ε ? s) = F (ε) ? s. However such an element doesn’t exist in
the algebra of smooth functions, and one has to extend the notion of function to
include so called generalized functions or distributions. These are the continuous
linear functionals on the space D of smooth functions with compact support.

As we have seen in [68, 4.8.2] the space D is no longer a Fréchet space, but a strict
inductive limit of the Fréchet spaces C∞K (X) := {f ∈ C∞ : supp f ⊆ K}: If it were
Fréchet, then it would be Baire. However the closed linear subspaces C∞K have
as union D and have empty interior, since non-empty open sets are absorbing. A
contradiction to the Baire-property.

6 Andreas Kriegl , Univ.Wien, June 30, 2017



0. Motivation 0.6

Assume that there is some reasonable Fréchet structure on C∞c . Then by the
same arguments as before the identity from D to C∞c would be continuous, hence
closed, and hence the inverse to the webbed space D would be continuous too, i.e.
a homeomorphism.

By passing to the transposed, we have seen in [68, 4.9.1] that every linear partial dif-
ferential operator F can be extended to a continuous linear map F̃ : D′ → D′, and so
one can consider distributional solutions of such differential equations. In [68, 8.3.1]
we have proven the Malgrange Ehrenpreis theorem on the existence of distributional
fundamental solutions using the generalization of Fourier-series, namely the Fourier-
transform F . The idea is that 1 = F(δ) = F(F (ε)) = F(p(∂)(ε)) = p · F(ε) and
hence ε = F−1(1/p). For this we have to consider the Schwartz-space S of rapidly
decreasing smooth functions, which is a Fréchet space, and its dual S ′. In order
that the poles of 1/p make no trouble we had to show that the Fourier-transform
of smooth functions with compact support and even of distributions with compact
support are entire functions.

If we want to solve linear partial differential equations with non-constant coefficients
or even non-linear partial differential equations, we have to consider not
only the linear theory of D but the non-linear one. See [34] for an approach to this.

0.6 Differentiation and integration commute

Let us consider a much more elementary result. In fact, even in the introductory
courses in analysis one considers infinite dimensional results, but usually disguised.
Recall the result about differentiation under the integral sign. There
one considers a function f of two real variables and takes the integral

∫ 1
0 f(t, s) ds

with respect to one variable, and then one asks the question: Which assumptions
guarantee that the resulting function is differentiable with respect to the remaining
variable t and what is its derivative? Before we try to remember the correct answer
let us reformulate this result without being afraid of infinite dimensions. We are
given the function f : R × I → R, (t, s) 7→ f(t, s). What do we actually mean
by writing down

∫ 1
0 f(t, s) ds? – Well we keep t fixed and consider the function

ft : I → R given by s 7→ f(t, s) and integrate it, i.e.
∫ 1

0 f(t, s) ds :=
∫

(ft), where∫
denotes the integration operator

∫
: C[0, 1] → R, g 7→

∫ 1
0 g(s) ds. But now

we want to vary t, so we have to consider the result as a function t 7→
∫

(ft),
so we have to consider t 7→ ft and we denote this function by f̌ . It is given by
the formula f̌(t)(s) = ft(s) = f(t, s). Then

∫
(ft) = (

∫
◦ f̌)(t). Thus what we

actually are interested in is, whether the composition
∫
◦ f̌ is differentiable and

what its derivative is. This problem is usually solved by the chain-rule, but
the situation here is much easier. In fact, recall that integration is linear and
continuous with respect to the supremum norm (or even the 1-norm) and f̌ is a
curve (into some function space). So it remains to show that f̌ : R → C(I,R)
is differentiable and to find its derivative. Let us assume it is differentiable and
try to determine the derivative. On C(I,R) we have nice functionals, namely
the point evaluations evs : g 7→ g(s). These are continuous and linear and
separate points (they are far from being all continuous linear functionals, see Riesz’s
Representation theorem [68, 7.3.3] and [68, 7.3.4]). Applying what we said before in
0.4 to ` := evs and c := f̌ we obtain evs(f̌ ′(t)) = (evs ◦ f̌)′(t), and (evs ◦ f̌)(t) =

evs(f̌(t)) = f̌(t)(s) = f(t, s). Hence evs(f̌ ′(t)) is nothing else but the first partial
derivative ∂

∂tf(t, s). Conversely, assume that the first partial derivative of f exists
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on R × I and is continuous, then we want to show, that f̌ is differentiable, and
(f̌)′(t)(s) = ∂

∂tf(t, s) = ∂1f(t, s), or in other words (f̌)′ = (∂1f)∨.

For this we first consider the corresponding topological problem: Are the continuous
mappings f : R × I → R exactly the continuous maps f̌ : R → C(I,R)? This has
been solved in the calculus courses. In fact, a mapping f̌ is well-defined iff f(x, )
is continuous for all x and f̌ is continuous iff f( , y) is equi-continuous with respect
to y, i.e.

∀x ∈ R ∀ε > 0 ∃δ > 0 ∀x′ ∈ R ∀y ∈ I : |x′ − x| < δ ⇒ |f(x, y)− f(x′, y)| < ε.

However, these two conditions together are equivalent to the continuity of f , as can
be seen for example in [64, 3.2.8].

Now to the differentiability question. We assume that ∂1f exists and is continuous.
Hence (∂1f)∨ : R→ C(I,R) is continuous. We want to show that f̌ : R→ C(I,R)
is differentiable (say at 0) with (∂1f)∨ (at 0) as derivative. So we have to show that
the mapping t 7→ f̌(t)−f̌(0)

t is continuously extendable to R by defining its value at 0
as (∂1f)∨(0). Or equivalently, by what we have shown for continuous maps before,
that the map

(t, s) 7→

{
f(t,s)−f(0,s)

t for t 6= 0
∂1f(0, s) otherwise

is continuous. This follows immediately from the continuity of ∂1 and that of
∫ 1

0 dr,
since it can be written as

∫ 1
0 ∂1f(r t, s) dr by the fundamental theorem.

So we arrive under this assumption at the conclusion, that
∫ 1

0 f(t, s) ds is differen-
tiable with derivative

d

dt

∫ 1

0
f(t, s) ds =

∫
((f̌)′(t)) =

∫ 1

0

∂

∂t
f(t, s) ds

and we have proved the

Proposition. For a continuous map f : R×I → R the partial derivative ∂1f exists
and is continuous iff f̌ : R → C(I,R) is continuously differentiable. And in this
situation

∫
((f̌)′(t)) = d

dt

∫ 1
0 f(t, s) ds =

∫ 1
0

∂
∂tf(t, s) ds.

And we see, it is much more natural to formulate and prove this result with the
help of the infinite dimensional space C([0, 1],R). But this not only clarifies the
proof, but is of importance for its own sake, as we will see in 0.8 .

0.7 Exponential law for continuous mappings

Let us try to generalize this result. We will write Y X for the function spaces
C(X,Y ) for reasons of cardinality. So the question is whether the continuous map-
pings f : X×Y → Z correspond exactly to the continuous maps f̌ : X → C(Y, Z)?

For this we need a topology on C(X,Y ). If Y is a locally convex space (or a
uniform space) we can use the topology of uniform convergence on compact subsets
of X, given by the seminorms f 7→ sup{q(f(x)) : x ∈ K}, where K ⊆ X runs
through the compact subsets and q through the seminorms of Y , see [68, 3.2.8].
For general Y we consider the compact-open topology, which has as subbasis the
sets NK,U := {f : f(K) ⊆ U} where K runs through (a basis of) the compact
subsets of X and Y through (a basis of) the open subsets of Y , see [72, 2.4.2].
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Let us show first that for locally convex spaces F and topological spaces X the
compact-open topology is the locally convex topology of uniform convergence on
compact subsets:

So let K ⊆ X be compact, V ⊆ F be open, and f ∈ NK,V , i.e. f(K) ⊆ V . Then for
each x ∈ K there exists a seminorm q on F and an ε > 0 such that Vf(x) := {y ∈ F :
q(y − f(x)) < ε} ⊆ V . The sets Ux := {z′ ∈ X : q(f(z′)− f(x)) < ε

2} with x ∈ K
form an open converging, so there are finitely many x1, . . . , xn with K ⊆

⋃n
i=1 Ui,

where Ui := Uxi . Let qi be the seminorm and εi the radius corresponding to xi and
Ki := {z′ ∈ K : qi(f(z′) − f(xi)) ≤ εi

2 }. We claim, that qi(g(x) − f(x)) < εi
2 for

all i and x ∈ Ki implies g ∈ NK,U . In fact, let x ∈ K, then there exists an i with
x ∈ Ui ∩K ⊆ Ki and hence qi(g(x)− f(xi)) ≤ qi(g(x)− f(x)) + qi(f(x)− f(xi)) <
εi
2 + εi

2 = εi, i.e. g(x) ∈ Vf(xi) ⊆ V .

Conversely, let a compactK ⊆ X, a seminorm q on F , an ε > 0, and f ∈ C(X,F ) be
given. Note that g ∈ C(X,F ) is a subset ofW := {(x, y) : x ∈ K ⇒ q(y−f(x)) < ε}
iff q(g(x)− f(x)) < ε for all x ∈ K. For x ∈ K let Ux := {x′ : q(f(x′)− f(x)) < ε

3}
and take finitely many x1, . . . , xn such that the Ui := Uxi cover K. Let Ki := {x ∈
K : q(f(x) − f(xi)) ≤ ε

3} and Vi := {y : q(y − f(xi)) < ε
2} then f(Ki) ⊆ Vi. If

g ∈
⋂
iNKi,Vi then for each x ∈ K there exists an i with x ∈ Ui ∩K ⊆ Ki and thus

q(g(x)− f(x)) ≤ q(g(x)− f(xi)) + q(f(xi)− f(x)) < ε
2 + ε

3 < ε, i.e. g ⊆W .

How is ĝ : X × Y → Z constructed from a continuous g : X → ZY ? Well, one
can consider g × Y : X × Y → ZY × Y and compose it with the evaluation
map ev : ZY × Y → Z. Since the product of continuous maps is continuous, it
remains to show that the evaluation map is continuous in order to obtain that ĝ is
continuous. So let f ∈ ZY and y ∈ Y and let U be a neighborhood of f(y). If Y is
locally compact, we can find a compact neighborhood W ⊆ f−1(U) of y and then
f ∈ NW,U := {g : g(W ) ⊂ U} and ev(NW,U ×W ) ⊆ U .

Conversely let a continuous f : X × Y → Z be given. We consider f∗ := fY :
(X × Y )Y → ZY and compose it from the right with the insertion map ins :
X → (X × Y )Y given by x 7→ (y 7→ (x, y)). Then we arrive at f̌ . Obviously f∗ is
continuous since (f∗)−1NK,U = NK,f−1U . The insertion map is continuous, since
ins−1(NK,U×V ) = U if K ⊆ V and is empty otherwise, so f̌ is continuous. Thus
the only difficult part was the continuity of the evaluation map.

Moreover we have the

Proposition. Let X, Y and Z be topological spaces with Y being locally compact.
Then we have a homeomorphism ZX×Y ∼= (ZY )X , given by f 7→ f̌ , where the
function spaces carry the compact open topology.

Proof. We have already proved that we have a bijection. That this gives a homeo-
morphism follows, since the corresponding subbases NK1×K2,U and NK1,NK2,U

cor-
respond to each other.

In general the compact open topology on ZY will not be locally compact even for
locally compact spaces Y and Z (e.g. C([0, 1],R) is an infinite dimensional and hence
not locally compact Banach space). So in order to get an intrinsic exponential law,
one can modify the notion of continuity and call a mapping f : X → Y between
Hausdorff topological spaces compactly-continuous iff its restriction to every
compact subset K ⊆ X is continuous. Thus f : X × Y → Z is continuous iff
f |K×L : K × L → Z is continuous for all compact subsets K ⊆ X and L ⊆ Y .
By the exponential law for compact sets this is equivalent to f̌ : K → ZL being
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0.8 0. Motivation

continuous. Since ZY carries the initial structure with respect to inkl∗ : ZY → ZL,
this is furthermore equivalent to the continuity of f̌ : K → ZY , and thus to
f̌ : X → ZY being compactly-continuous, but for this we have to denote with ZY

the space of compactly continuous maps from Y → Z.

Instead of the category of compactly continuous maps between Hausdorff topolog-
ical spaces, one can use the equivalent category (see [70, 1.22]) of continuous
mappings between compactly generated spaces. The equivalence between these two
categories is given by the identity functor on one side, and on the other side by
the Kelley-fication, i.e. by replacing the topology by the final topology with respect
to the compact subsets. Note that the identity is compactly continuous in both
directions. However, the natural topology on the products in this category is the
Kelley-fication of the product topology and also on the function spaces one has to
consider the Kelly-fication of the compact open topology, see [72, 2.4].

0.8 Variational calculus

In physics one is not a priori given an equation f(x) = 0, but often some opti-
mization problem, i.e. the search for those x, for which the values f(x) of some
real-valued function (like the Lagrange function in classical mechanics, which is
given by the difference of kinematic energy and the potential) attain an extremum
(i.e. are minimal or maximal), see for example [67, 45]. Again x is often not a
finite dimensional vector but a function and f(x) is given by some integral (like the
action (german: Wirkungsintegral) in classical mechanics)

f(x) :=
∫ 1

0
F (t, x(t), x′(t)) dt.

For finite dimensional vectors x one finds solutions of the problem f(x)→ min by
applying differential calculus and searching for solutions of f ′(x) = 0. In infinite
dimensions one proceeds similarly in the calculus of variations (see [66, 9.4.3]),
by finding those points x, where the directional derivatives f ′(x)(v) vanish for all
directions v. Since the boundary values of x are usually given, the variation v has
to vanish on the boundary {0, 1}. One can calculate the directional derivative by
what we have shown before as follows:

f ′(x)(v) := d

dt

∣∣∣∣
t=0

f(x+ tv)

= d

dt

∣∣∣∣
t=0

∫ 1

0
F
(
s, (x+ tv)(s), (x+ tv)′(s)

)
ds

=
∫ 1

0

∂

∂t

∣∣∣∣
t=0

F
(
s, (x+ tv)(s), (x+ tv)′(s)

)
ds

=
∫ 1

0

(
∂2F (s, x(s), x′(s)) · v(s) + ∂3F (s, x(s), x′(s)) · v′(s)

)
ds

=
∫ 1

0

(
∂2F (s, x(s), x′(s))− d

ds
∂3F (s, x(s), x′(s))

)
· v(s) ds

We have used partial integration and that the variation v has to vanish at the
boundary points 0 and 1. Since f ′(x)(v) has to be 0 for all such v we arrive at the
Euler-Lagrange partial differential equation

∂2F (s, x(s), x′(s)) = d

ds
∂3F (s, x(s), x′(s)),
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0. Motivation 0.9

or with slight abuse of notation:
∂

∂x
F =

(
∂

∂ẋ
F

)·
,

where ( )̇ denotes the derivative with respect to time s.

Warning: Abuse may lead to disaster! In physics for example one has the gas-
equation p · V · t = 1, where p is pressure, V the volume and t the temperature
scaled appropriately. So we obtain the following partial derivatives:

∂p

∂V
= ∂

∂V

1
V t

= − 1
t V 2

∂V

∂t
= ∂

∂t

1
t p

= − 1
p t2

∂t

∂p
= ∂

∂p

1
p V

= − 1
V p2

And hence cancellation yields

1 = ∂p

∂V
· ∂V
∂t
· ∂t
∂p

= (−1)3 1
t V 2 ·

1
p t2
· 1
V p2 = − 1

(pV t)3 = −1.

Try to find the mistake!

0.9 Flows as 1-parameter subgroups of diffeomorphisms

Another situation, where it is natural to consider differentiable curves into function
spaces, occurs, when considering time-independent ordinary differential equations,
i.e. equations of the form u̇ = f(u). For given initial value u(0) = x we can consider
the solution ux and obtain a mapping u : R × X → X given by (t, x) 7→ ux(t).
Obviously u(0, x) = x and by uniqueness we have u(t + s, x) = u(t, u(s, x)), i.e.
u is a flow on X, see [67, 28.3]. Conversely, we can reconstruct the differential
equation by differentiating the flow with respect to t at t = 0, i.e. ∂

∂t |t=0u(t, x) =
f(u(t, x))|t=0 = f(x). It would be more natural to consider the associate mapping
ǔ with values in some space of mappings from X → X, since then the flow property
translates into the assumption that t 7→ ǔ(t) is a group-homomorphism from R into
the group of invertible maps on X. The vector field f can thus be interpreted
as the tangent vector ǔ′(0) at 0 of the curve ǔ. So ǔ should be differentiable into a
group Diff(X) of diffeomorphisms on X where this group should carry some
smooth structure, analogously to classical Lie-groups. In particular the composition
Diff(X) × Diff(X) → Diff(X) map should be differentiable. Since (f, g) 7→ f ◦ g
is linear in the first variable (if we consider the range space X as submanifold
of some Rn), the difficult part is the differentiability in the second variable, i.e.
that of the map f∗ : g 7→ f ◦ g. We have noted at the end of 0.4 that for f∗
to be differentiable we need that f is differentiable since (f∗)′ = (f ′)∗. Thus in
order that the composition map is differentiable, we need that its first variable f is
differentiable, hence Diff should mean at least 1-times differentiable. But then in
order that the derivative of the composition map has 1-time differentiable values
we need that f ′ is 1-times differentiable, i.e. f is twice differentiable. Inductively
we arrive at the smoothness of f , i.e. infinite often differentiability. But as we
have mentioned before, even in the simplest case C∞([0, 1],R) or C∞(S1,R), these
function spaces are not Banach-spaces anymore, but Fréchet-spaces.

More generally, letM andN be finite dimensional manifolds withM being compact.
We would like to idenitfy the space F := C∞(M,N) of smooth maps M → N as
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0.10 0. Motivation

an (infinite dimensional) manifold. In order to find a candidate for its charts the
tangent space TfF should be formed by velocity vectors c′(0) to curves c : R→ F
with c(0) = f ∈ F . As before c′(0)(x) = ∂

∂t |t=0ĉ(t, x) ∈ Tf(x)N , i.e. these velocity
vectors are given by vector fields s̄ ∈ C∞(M,TN) along f (i.e. πN ◦ s̄ = f).

M × TN pr2

%%

pr1

%%

f∗(TN)

f∗(πN )
����

π∗N (f)
//

S3

ff

TN

πn
����

M
f

//
s̄

FF
s
JJ

N

If we supply N with a Riemannian metric, then we have the locally defined ex-
ponential mapping exp : TN → N , which gives a local diffeomorphism (π, exp) :
TN → N ×N along the 0-section 0 : N ↪→ TN . We can use exp to define charts
ϕf centered at f ∈ C∞(M,N) by

ϕf : C∞(M←f∗TN) ∼=
{
s̄ ∈ C∞(M,TN) : πN ◦ s̄ = f

}
→ C∞(M,N),

ϕf (s) := exp ◦ π∗Nf ◦ s = exp ◦ s̄ : M → f∗TN → TN → N,

ϕ−1
f (g)(x) =

(
x, exp−1

f(x)(g(x))
)

=
(

idM , (πN , exp)−1 ◦ (f, g)
)

(x) ∈ f∗TN

Their transition mappings are locally given by

ϕf2
−1 ◦ ϕf1 : s 7→

(
idM , (πN , exp)−1 ◦ (f2, exp ◦ π∗Nf1 ◦ s)

)
= (τ−1

f2
◦ τf1)∗(s),

where τf := id× exp : M × TN ⊇ f∗TN →M ×N
τf (x, Yf(x)) =

(
x, expf(x)(Yf(x))

)
τ−1
f =

(
pr1, (π, exp)−1 ◦ (f × id)

)
: M ×N →M × (N ×N)→ f∗TN ⊆M × TN

is locally a smooth fiber respecting diffeomorphism over M .

For the diffeomorphism group we even need that the composition is smooth in
both variables jointly. This will follow easily from the exponential law.

0.10 Exponential law for differentiable mappings

A similar thing happens when searching for an exponential law for differentiable
functions. If we want a nice correspondence between differentiable functions on a
product and differentiable functions into a function space, we have seen in 0.6 that
a curve c : R→ C(R,R) is C1 if and only if ∂1ĉ : R2 → R exists and is continuous.
If we want a (differentiability-)property which is invariant under base-change in R2,
then also ∂2ĉ : R2 → R should exist and be continuous, and hence c : R→ C(R,R)
should have values in C1(R,R) and d ◦ c : R → C1(R,R) → C(R,R) should be
continuous. Summarizing ĉ : R2 → R is C1 if and only if c : R → C(R,R) is C1

(with derivative c′(t)∧ = ∂1ĉ) and is C0 into C1(R,R) (with (d ◦ c)∧ = ∂2ĉ). So if
we want to use just a single functions space (instead of C0(R,R) and C1(R,R) at
the same time) we should assume c : R → C1(R,R) to be C1. But then c′ : R →
C1(R,R) has to be continuous, and thus d ◦ c′ : R→ C(R,R) has to be continuous,
i.e. (d ◦ c′)∧ = ∂2∂1ĉ : R2 → R should be continuous. Assumed invariance under
base-change yields that ĉ : R2 → R should be C2 and then ĉ : R → C(R,R) has
to be C2, ĉ : R → C1(R,R) has to be C1, and ĉ : R → C2(R,R) has to be C0.
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Inductively we get that the exponential law for differentiable functions can only be
valid for C∞-functions (for details see 3.2 ).

0.11 Continuity of the derivative

Well, as has been discovered around 1900, the derivative should be a linear (more
precisely, an affine) approximation to the function. Assume we have already defined
the concept of derivative f ′(x) ∈ L(E,F ) for functions f : E ⊇ U → F at a given
point x ∈ U . By collecting for all x in the open domain U of f these derivatives
f ′(x), we obtain a mapping x 7→ f ′(x), the derivative f ′ : E ⊇ U → L(E,F )
with values in the space of continuous linear mappings. In order to speak about
continuous differentiable (short: C1) mappings, we need some topology on L(E,F )
and then this amounts to the assumption, that f ′ : U → L(E,F ) is continuous. For
C1-maps we should have a chain-rule, which guarantees that the composite f ◦ g
of C1-maps is again C1 and the derivative should be (f ◦ g)′(x) = f ′(g(x)) ◦ g′(x).
This map is thus given by the following description: For any given x, first calculate
g(x) and then f ′(g(x)) ∈ L(F,G) and g′(x) ∈ L(E,F ), and finally apply the
composition map L(F,G) × L(E,F ) → L(E,G) to obtain f ′(g(x)) ◦ g′(x). Since
f and g are assumed to be C1 the components f ′ ◦ g and g′ are continuous. So it
remains to show the continuity of the composition mapping. Let us consider the
simplified case where G = E = R. Then composition reduces to the evaluation
map ev : F ′ × F → R and we are looking for a topology on F ′ such that this
map is continuous. Assume we have found such a topology. Then there exists
0-neighborhoods V in F ′ and U in F such that ev(V × U) ⊆ [−1, 1]. Since scalar-
multiplication on F ′ should be continuous, we can find for every ` ∈ F ′ a number
K > 0, such that ` ∈ K V . Thus for x ∈ U we have `(x) = ev(K 1

K `, x) =
K ev( 1

K `, x) ∈ K ev(V × U) ⊆ [−K,K]. This shows that U is scalarly bounded,
and hence is bounded by the corollary in [68, 5.2.7]. However, a locally convex
space, which has a bounded 0-neighborhood has to be normed, by Kolmogoroff’s
theorem [68, 2.6.2].

So it seems that there is no reasonable notion of C1, which applies to more than
just functions between Banach spaces. However, we have assumed that continuity
is meant with respect to topologies. In fact, there have been several (more or less
successful) attempts in the past to remedy this situation by considering convergence
structures on L(E,F ). If one defines that a net (or a filter) fα should converge to
f in L(E,F ) iff for nets (or filters) xβ converging to some x in E the net (or filter)
fα(xβ) should converge to f(x), then the evaluation map, and more generally the
composition map becomes continuous. A second way to come around this problem,
is to assume for C1 the continuity of f̂ ′ : U × E → F instead. Then the chain-
rule becomes easy. However this notion is bad, since we cannot prove the inverse
function theorem for C1 even for Banach spaces, see [65, 6.2.1] and [65, 6.3.15].
See [65, 6.1.19] for an example of a differentiable function f on a Hilbert space for
which f̂ ′ is continuous, but f ′ is not. This examples shows in particular that the
exponential law is wrong for continuous functions `2 × `2 → R which are linear in
the second variable if one uses the operator norm on L(`2,R) = (`2)′ ∼= `2.

0.12 Derivatives of higher order

If we want to define higher derivatives - as needed in conditions for local extrema
and the like - we would call a function f by recursion (n + 1)-times differentiable
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0.12 0. Motivation

iff f ′ exists and is n-times differentiable (Dn for short). In order to show that the
composite f ◦ g of two D2-maps is again D2, we have to show that (f ◦ g)′ : x 7→
f ′(g(x)) ◦ g′(x) is again D1. By the chain-rule for D1-mappings, we would obtain
that f ′ ◦ g ∈ D1 and by assumption g′ ∈ D1. So it remains to differentiate the
bilinear composition map. Since it is linear in both entries separately, its partial
derivatives should obviously exist and the derivative also. But recall that it is not
even continuous.
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0.13 Résumé

We have learned a few things from these introductory words:

1. Problems in finite dimensions often have a more natural formulation (and
proof) involving infinite dimensional function-spaces, which are quite often
not Banach spaces, but Fréchet spaces like C(R,R) and C∞(I,R) or even
more general ones like D and D′.

2. Mappings of two variables f : X × Y → Z, should often be considered as
mappings f̌ from X to a space of mappings from Y to Z and properties such
as continuity or differentiability should translate nicely. For differentiability
this can only be true for C∞.

3. It is not clear, how to obtain the basic ingredient to calculus, the chain-rule.
For this the composition map, or at least the evaluation map, should be
smooth, although it is not continuous in the topological setting.

4. There is no reasonable notion of C1 generalizing classical (Fréchet-)calculus
to mappings between spaces beyond Banach spaces.

After having found lots of, at first view devastating, difficulties, let’s look what can
be done easily:

1. It is obvious what differentiability for a curve c into any locally convex
space means, since limits of difference quotients make sens. Hence we have
also the notion of continuous differentiable, of n-times differentiable, and of
smoothness for such curves.

2. Continuous (multi-)linear mappings preserve smoothness of curves, and sat-
isfy the chain-rule.

3. Directional derivatives can be easily defined for mappings f between ar-
bitrary locally convex spaces, since they are just derivatives of the curves
c : t 7→ f(x+ t v) obtained by composing f with an affine line t 7→ x+ t v

4. Candidates for derivatives f ′(x) of mappings f can be obtained by reduction
to 1-dimensional analysis via affine mappings: `(f ′(x)(v)) = d

dt |t=0`(f(x +
t v)).
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This chapter is devoted to calculus of smooth mappings in infinite dimensions. The
leading idea of our approach is to base everything on smooth curves in locally
convex spaces, which is a notion without problems, and a mapping between locally
convex spaces will be called smooth if it maps smooth curves to smooth curves.

We start by looking at the set of smooth curves C∞(R, E) with values in a locally
convex space E, and note that it does not depend on the topology of E, only on
the underlying system of bounded sets, its bornology. This is due to the fact, that
for a smooth curve difference quotients converge to the derivative much better 2.1
than arbitrary converging nets or filters: we may multiply it by some unbounded
sequences of scalars without disturbing convergence (or, even better, boundedness).

Then the basic results are proved, like existence, smoothness, and linearity of deriva-
tives, the chain rule 3.18 , and also the most important feature, the ‘exponential
law’ 3.12 and 3.13 : We have

C∞(E × F,G) ∼= C∞(E,C∞(F,G)),

without any restriction, for a natural structure on C∞(F,G).

Smooth curves have integrals in E if and only if a weak completeness condition
is satisfied: it appeared as bornological completeness, Mackey completeness, or
local completeness in the literature, we call it c∞-complete. This is equivalent to
the condition that weakly smooth curves are smooth 2.14 . All calculus in later
chapters in this book will be done on convenient vector spaces: These are
locally convex vector spaces which are c∞-complete; note that the locally convex
topology on a convenient vector space can vary in some range, only the system of
bounded sets must remain the same.

Linear or more generally multilinear mappings are smooth if and only if they are
bounded 5.5 , and one has corresponding exponential laws 5.2 for them as well.
Furthermore, there is an appropriate tensor product, the bornological tensor prod-
uct 5.7 , satisfying

L(E ⊗β F,G) ∼= L(E,F ;G) ∼= L(E,L(F,G)).
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1.2
Chapter I

Calculus of Smooth Mappings

An important tool for convenient vector spaces are uniform boundedness principles
as given in 5.18 , 5.24 and 5.26 .

It is very natural to consider on E the final topology with respect to all smooth
curves, which we call the c∞-topology, since all smooth mappings are continuous
for it: the vector space E, equipped with this topology is denoted by c∞E, with
lower case c in analogy to kE for the Kelley-fication and in order to avoid any
confusion with any space of smooth functions or sections. The special curve lemma
2.8 shows that the c∞-topology coincides with the usual Mackey closure topology.

The space c∞E is not a topological vector space in general. This is related to the
fact that the evaluation E×E′ → R is jointly continuous only for normable E, but
it is always smooth and hence continuous on c∞(E×E′). The c∞-open subsets are
the natural domains of definitions of locally defined functions. For nice spaces (e.g.
Fréchet and strong duals of Fréchet-Schwartz spaces, see 4.11 ) the c∞-topology
coincides with the given locally convex topology. In general, the c∞-topology is
finer than any locally convex topology with the same bounded sets.

In the last section of this chapter we discuss the structure of spaces of smooth
functions on finite dimensional manifolds and, more generally, of smooth sections
of finite dimensional vector bundles. They will become important in chapter IX as
modeling spaces for manifolds of mappings. Furthermore, we give a short account
of reflexivity of convenient vector spaces and on (various) approximation properties
for them.

1. Smooth Curves

1.1. Notation

Since we want to have unique derivatives all locally convex spaces E will be assumed
Hausdorff. The family of all bounded sets in E plays an important rôle. It is
called the bornology of E. A linear mapping is called bounded, sometimes also
called bornological, if it maps bounded sets to bounded sets. A bounded linear
bijection with bounded inverse is called bornological isomorphism. The space of
all continuous linear functionals on E will be denoted by E∗ and the space of all
bounded linear functionals on E by E′. The adjoint or dual mapping of a linear
mapping `, however, will be always denoted by `∗, because of differentiation.

1.2. Differentiable curves

The concept of a smooth curve with values in a locally convex vector space is easy
and without problems. Let E be a locally convex vector space. A curve c : R→ E
is called differentiable if the derivative c′(t) := lims→0

1
s (c(t+ s)− c(t)) at t exists

for all t. A curve c : R→ E is called smooth or C∞ if all iterated derivatives exist.
It is called Cn for some finite n if its iterated derivatives up to order n exist and
are continuous.

A curve c : R → E is called locally Lipschitzian if every point r ∈ R has a neigh-
borhood U such that the Lipschitz condition is satisfied on U , i.e., the set{

1
t−s

(
c(t)− c(s)

)
: t 6= s; t, s ∈ U

}
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1. Smooth Curves 1.4

is bounded. Note that this implies that the curve satisfies the Lipschitz condition
on each bounded interval, since for (ti) increasing

c(tn)− c(t0)
tn − t0

=
∑ ti+1 − ti

tn − t0
c(ti+1)− c(ti)
ti+1 − ti

is in the absolutely convex hull of a finite union of bounded sets.

A curve c : R → E is called Lipk or C(k+1)− if all derivatives up to order k exist
and are locally Lipschitzian.

1.3. Lemma. Continuous linear mappings are smooth. A continuous linear
mapping ` : E → F between locally convex vector spaces maps Lipk-curves in E to
Lipk-curves in F , for all 0 ≤ k ≤ ∞, and for k > 0 one has (` ◦ c)′(t) = `(c′(t)).

Proof. As a linear map ` commutes with the formation of difference quotients,
hence the image of a Lipschitz curve is Lipschitz since ` is bounded.

As a continuous map it commutes with the formation of the respective limits. Hence
(` ◦ c)′(t) = `(c′(t)).

Now the rest follows by induction.

Note that a differentiable curve is continuous, and that a continuously differentiable
curve is locally Lipschitzian: For ` ∈ E∗ we have

`

(
c(t)− c(s)
t− s

)
= (` ◦ c)(t)− (` ◦ c)(s)

t− s
=
∫ 1

0
(` ◦ c)′(s+ (t− s)r)dr,

which is bounded, since (` ◦ c)′ = ` ◦ c′ is locally bounded. Since boundedness can
be tested by continuous linear functionals (see [68, 5.2.7]) we conclude that c is
locally Lipschitzian.

More general, we have by induction the following implications:
Cn+1 =⇒ Lipn =⇒ Cn,

differentiable =⇒ C.

1.4. The mean value theorem

In classical analysis the basic tool for using the derivative to get statements on
the original curve is the mean value theorem. So we try to generalize it to infinite
dimensions. For this let c : R→ E be a differentiable curve. If E = R the classical
mean value theorem states, that the difference quotient (c(a)− c(b))/(a− b) equals
some intermediate value of c′. Already if E is two dimensional this is no longer
true. Take for example a parameterization of the circle by arclength. However, we
will show that (c(a)− c(b))/(a− b) lies still in the closed convex hull of {c′(r) : r}.
Having weakened the conclusion, we can try to weaken the assumption. And in fact
c may be not differentiable in at most countably many points. Recall however, that
there exist strictly monotone functions f : R→ R, which have vanishing derivative
outside a Cantor set (which is uncountable, but has still measure 0).

Sometimes one uses in one dimensional analysis a generalized version of the mean
value theorem: For an additional differentiable function h with non-vanishing deriv-
ative the quotient (c(a)−c(b))/(h(a)−h(b)) equals some intermediate value of c′/h′.
A version for vector valued c (for real valued h) is that (c(a)− c(b))/(h(a)− h(b))
lies in the closed convex hull of {c′(r)/h′(r) : r}. One can replace the assumption
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1.4 1. Smooth Curves

that h′ vanishes nowhere by the assumption that h′ has constant sign, or, more gen-
erally, that h is monotone. But then we cannot form the quotients, so we should
assume that c′(t) ∈ h′(t) ·A, where A is some closed convex set, and we should be
able to conclude that c(b)− c(a) ∈ (h(b)−h(a)) ·A. This is the version of the mean
value theorem that we are going to prove now. However, we will make use of it only
in the case where h = Id and c is everywhere differentiable in the interior.

Proposition. Mean value theorem. Let c : [a, b] =: I → E be a continuous
curve, which is differentiable except at points in a countable subset D ⊆ I. Let h
be a continuous monotone function h : I → R, which is differentiable on I \D. Let
A be a convex closed subset of E, such that c′(t) ∈ h′(t) ·A for all t /∈ D.

Then c(b)− c(a) ∈ (h(b)− h(a)) ·A.

Proof. Assume that this is not the case. By the theorem of Hahn Banach [68, 7.2.1]
there exists a continuous linear functional ` with `(c(b)−c(a)) /∈ `((h(b)− h(a)) ·A).
But then ` ◦ c and `(A) satisfy the same assumptions as c and A, and hence we
may assume that c is real valued and A is just a closed interval [α, β]. We may
furthermore assume that h is monotonely increasing. Then h′(t) ≥ 0, and h(b) −
h(a) ≥ 0. Thus the assumption says that αh′(t) ≤ c′(t) ≤ βh′(t), and we want to
conclude that α(h(b) − h(a)) ≤ c(b) − c(a) ≤ β(h(b) − h(a)). If we replace c by
c− βh or by αh− c it is enough to show that c′(t) ≤ 0 implies that c(b)− c(a) ≤ 0.
For given ε > 0 we will show that c(b) − c(a) ≤ ε(b − a + 1). For this let J be
the set {t ∈ [a, b] : c(s) − c(a) ≤ ε ((s − a) +

∑
tn<s

2−n) for a ≤ s < t}, where
D =: {tn : n ∈ N}. Obviously, J is a closed interval containing a, say [a, b′]. By
continuity of c we obtain that c(b′) − c(a) ≤ ε ((b′ − a) +

∑
tn<b′

2−n). Suppose
b′ < b. If b′ /∈ D, then there exists a subinterval [b′, b′ + δ] of [a, b] such that for
b′ ≤ s < b′ + δ we have c(s)− c(b′)− c′(b′)(s− b′) ≤ ε(s− b′). Hence we get

c(s)− c(b′) ≤ c′(b′)(s− b′) + ε(s− b′) ≤ ε(s− b′),

and consequently

c(s)− c(a) ≤ c(s)− c(b′) + c(b′)− c(a)

≤ ε(s− b′) + ε
(
b′ − a+

∑
tn<b′

2−n
)
≤ ε
(
s− a+

∑
tn<s

2−n
)
.

On the other hand if b′ ∈ D, i.e., b′ = tm for some m, then by continuity of c we
can find an interval [b′, b′ + δ] contained in [a, b] such that for all b′ ≤ s < b′ + δ we
have

c(s)− c(b′) ≤ ε2−m.

Again we deduce that

c(s)− c(a) ≤ ε2−m + ε
(
b′ − a+

∑
tn<b′

2−n
)
≤ ε
(
s− a+

∑
tn<s

2−n
)
.

So we reach in both cases a contradiction to the maximality of b′.

Warning: One cannot drop the monotonicity assumption. In fact take h(t) := t2,
c(t) := t3 and [a, b] = [−1, 1]. Then c′(t) ∈ h′(t)[−2, 2], but c(1) − c(−1) = 2 /∈
{0} = (h(1)− h(−1))[−2, 2].
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1. Smooth Curves 1.6

1.5. Testing with functionals

Recall that in classical analysis vector valued curves c : R → Rn are often treated
by considering their components ck := prk ◦c, where prk : Rn → R denotes the
canonical projection onto the k-th factor R. Since in general locally convex spaces
do not have appropriate bases, we use all continuous linear functionals instead of
the projections prk. We will say that a property of a curve c : R → E is scalarly
true, if ` ◦ c : R→ E → R has this property for each continuous linear functionals
` on E.

We want to compare scalar differentiability with differentiability. For finite di-
mensional spaces it is a trivial fact that these two notions coincide. For infinite
dimensions we first consider Lip-curves c : R → E. Since by [68, 5.2.7] bound-
edness can be tested by the continuous linear functionals we see, that c is Lip
if and only if ` ◦ c : R → R is Lip for all ` ∈ E∗. Moreover, if for a boun-
ded interval J ⊂ R we take B as the absolutely convex hull of the bounded set
c(J) ∪ { c(t)−c(s)t−s : t 6= s; t, s ∈ J}, then we see that c|J : J → EB is a well defined
Lip-curve into EB , EB the linear span of B in E, equipped with the Minkowski
functional pB(v) := inf{λ > 0 : v ∈ λ · B}. This is a normed space. Thus we have
the following equivalent characterizations of Lip-curves:

(1) locally c factors over a Lip-curve into some EB ;
(2) c is Lip;
(3) ` ◦ c is Lip for all ` ∈ E∗.

For continuous instead of Lipschitz curves we obviously have the analogous impli-
cations (1⇒ 2⇒ 3). However, if we take a non-convergent sequence (xn)n, which
converges weakly to 0 (e.g. take an orthonormal base in a separable Hilbert space),
and consider an infinite polygon c through these points xn, say with c( 1

n ) = xn and
c(0) = 0. Then this curve is obviously not continuous but ` ◦ c is continuous for all
` ∈ E∗.

Furthermore, the “worst” continuous curve - i.e. c : R →
∏
C(R,R) R =: E given

by (c(t))f := f(t) for all t ∈ R and f ∈ C(R,R) - cannot be factored locally as
a continuous curve over some EB . Otherwise, c(tn) would converge into some EB
to c(0), where tn is a given sequence converging to 0, say tn := 1

n . So c(tn) would
converge Mackey to c(0), i.e., there have to be µn → ∞ with {µn(c(tn) − c(0)) :
n ∈ N} bounded in E (e.g. µn := min{ 1

pB(c(tn)−c(0)) , n+1}). Since a set is bounded
in the product if and only if its coordinates are bounded, we conclude that for
all f ∈ C(R,R) the sequence µn(f(tn) − f(0)) has to be bounded. But we can
choose a continuous function f with f(0) = 0 and f(tn) = 1√

µn
and conclude that

µn(f(tn)− f(0)) = √µn is unbounded.

Similarly, one shows that the reverse implications do not hold for differentiable
curves, for C1-curves and for Cn-curves. However, if we put instead some Lip-
schitz condition on the derivatives, there should be some chance, since this is a
bornological concept. In order to obtain this result, we should study convergence
of sequences in EB .

1.6. Lemma. Mackey-convergence. Let B be a bounded and absolutely convex
subset of E and let (xγ)γ∈Γ be a net in EB. Then the following two conditions are
equivalent:

(1) xγ converges to 0 in the normed space EB;
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1.8 1. Smooth Curves

(2) There exists a net µγ → 0 in R, such that xγ ∈ µγ ·B.

In (2) we may assume that µγ ≥ 0 and is decreasing with respect to γ, at least for
large γ. In the particular case of a sequence (or where we have a confinal infinite
countable subset of Γ) we can choose µγ > 0 for all large γ and hence we may
divide.

A net (xγ) for which a bounded absolutely convex B ⊆ E exists, such that xγ
converges to x in EB is called Mackey convergent to x or short M -convergent.

Proof. (⇑) Let xγ = µγ ·bγ with bγ ∈ B and µγ → 0. Then pB(xγ) = |µγ | pB(bγ) ≤
|µγ | → 0, i.e. xγ → 0 in EB .

(⇓) Set µγ := 2 pB(xγ) and bγ := xγ
µγ

if µγ 6= 0 and bγ := 0 otherwise. Then
pB(bγ) = 1

2 or pB(bγ) = 0, so bγ ∈ B. By assumption, µγ → 0 and xγ = µγ bγ .

For the final assertions, choose γ1 such that |µγ | ≤ 1 for γ ≥ γ1, and for those γ we
replace µγ by sup{|µγ′ | : γ′ ≥ γ} ≥ |µγ | ≥ 0 which is decreasing with respect to γ.

If we have a strictly increasing sequence (γn)n∈N which is confinal in Γ, i.e. for every
γ ∈ Γ there exists an n ∈ N with γ ≤ γn, then γ 7→ νγ := 1/min{n : γ ≤ γn} > 0
converges to 0, and we can replace µγ by max{µγ , νγ} > 0.

If Γ is the ordered set of all countable ordinals, then it is not possible to find a net
(µγ)γ∈Γ, which is positive everywhere and converges to 0, since any converging net
is finally constant.

1.7. The difference quotient converges Mackey

Now we show how to describe the quality of convergence of the difference quotient.

Corollary. Let c : R→ E be a Lip1-curve. Then the curve

t 7→ 1
t

(c(t)− c(0)
t

− c′(0)
)

is bounded on bounded subsets of R \ {0}.

Proof. We apply 1.4 to c and obtain:
c(t)− c(0)

t
− c′(0) ∈

〈
c′(r) : 0 < |r| < |t|

〉
closed, convex

− c′(0)

=
〈
c′(r)− c′(0) : 0 < |r| < |t|

〉
closed, convex

=
〈
r
c′(r)− c′(0)

r
: 0 < |r| < |t|

〉
closed, convex

Let a > 0. Since { c
′(r)−c′(0)

r : 0 < |r| < a} is bounded and hence contained in a
closed absolutely convex and bounded set B, we can conclude for |t| ≤ a that

1
t

(
c(t)− c(0)

t
− c′(0)

)
∈
〈r
t

c′(r)− c′(0)
r

: 0 < |r| < |t|
〉

closed, convex
⊆ B.

1.8. Corollary. Smoothness of curves is a bornological concept. For
0 ≤ k < ∞ a curve c in a locally convex vector space E is Lipk if and only if for
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1. Smooth Curves

each bounded open interval J ⊂ R there exists an absolutely convex bounded set
B ⊆ E such that c|J is a Lipk-curve in the normed space EB.

Attention: A smooth curve factors locally into some EB as a Lipk-curve for each
finite k only, in general. Take the “worst” smooth curve c : R →

∏
C∞(R,R) R,

analogously to 1.5 , and, using Borel’s theorem, deduce from c(k)(0) ∈ EB for all
k ∈ N a contradiction.

Proof. (⇑) This follows from lemma 1.3 , since the inclusion EB → E is continu-
ous.

(⇓) For k = 0 this was shown in 1.5 . For k ≥ 1 take a closed absolutely convex
bounded set B ⊆ E containing all derivatives c(i) on J up to order k as well as their
difference quotients on {(t, s) : t 6= s, t, s ∈ J}. We show first that c is differentiable
in EB , say at 0, with derivative c′(0). By the proof of the previous corollary 1.7 we
have that the expression 1

t (
c(t)−c(0)

t − c′(0)) lies in B. So c(t)−c(0)
t − c′(0) converges

to 0 in EB . For the higher order derivatives we can now proceed by induction.

A consequence of this is, that smoothness does not depend on the topology but
only on the bounded sets, i.e. the bornology, and, in particular, it depends only on
the dual (so all topologies with the same dual have the same smooth curves). Since
on L(E,F ) there is essentially only one bornology (by the uniform boundedness
principle, see [68, 5.2.2]) there is only one notion of Lipn-curves into L(E,F ).
Furthermore, the class of Lipn-curves doesn’t change if we pass from a given locally
convex topology to its bornologification, see 4.2 , which by definition is the finest
locally convex topology having the same bounded sets.

Let us now return to scalar differentiability. Corollary 1.7 gives us Lipn-ness
provided we have appropriate candidates for the derivatives.

1.9. Corollary. Scalar testing of curves. Let ck : R → E for k ≤ n be curves
such that ` ◦ c0 is Lipn and (` ◦ c0)(k) = ` ◦ ck for all k ≤ n and all ` ∈ E∗. Then
c0 is Lipn and (c0)(k) = ck.

Proof. For n = 0 this was shown in 1.5 . For n ≥ 1, by 1.7 applied to ` ◦ c0 we
have that

`

(
1
t

(
c0(t)− c0(0)

t
− c1(0)

))
is locally bounded, and hence by [68, 5.2.7] the set{

1
t

(
c0(t)− c0(0)

t
− c1(0)

)
: t ∈ I

}
is bounded. Thus c0(t)−c0(0)

t converges even Mackey to c1(0). Now the general
statement follows by induction.

2. Completeness

Do we really need the knowledge of a candidate for the derivative, as in 1.9 ? In
finite dimensional analysis one often uses the Cauchy condition to prove conver-
gence. Here we will replace the Cauchy condition again by a stronger condition,
which provides information about the quality of being Cauchy:
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A net (xγ)γ∈Γ in E is called Mackey-Cauchy provided that there exist a bounded
(absolutely convex) set B and a net (µγ,γ′)(γ,γ′)∈Γ×Γ in R converging to 0, such that
xγ − xγ′ ∈ µγ,γ′ B. As in 1.6 one shows that for a net xγ in EB this is equivalent
to the condition that xγ is Cauchy in the normed space EB . In particular, every
Mackey-convergent net is Mackey-Cauchy.

2.1. Lemma. The difference quotient is Mackey-Cauchy. Let c : R→ E be
scalarly a Lip1-curve. Then t 7→ c(t)−c(0)

t is a Mackey-Cauchy net for t→ 0.

Proof. For Lip1-curves this is a immediate consequence of 1.7 , but here we only
assume it to be scalarly Lip1. It is enough to show that 1

t−s

(
c(t)−c(0)

t − c(s)−c(0)
s

)
is bounded on bounded subsets in R\{0}. We may test this with continuous linear
functionals, and hence may assume that E = R. Then by the fundamental theorem
of calculus we have

1
t− s

(
c(t)− c(0)

t
− c(s)− c(0)

s

)
=
∫ 1

0

c′(tr)− c′(sr)
t− s

dr

=
∫ 1

0

c′(tr)− c′(sr)
tr − sr

r dr.

Since c′(tr)−c′(sr)
tr−sr is locally bounded by assumption, the same is true for the integral,

and we are done.

2.2. Lemma. Mackey Completeness. For a space E the following conditions
are equivalent:

(1) Every Mackey-Cauchy net converges (Mackey) in E;

(2) Every Mackey-Cauchy sequence converges (Mackey) in E;

(3) For every absolutely convex closed bounded set B the space EB is complete;

(4) For every bounded set B there exists an absolutely convex bounded set B′ ⊇ B
such that EB′ is complete.

A space satisfying the equivalent conditions is called Mackey complete. Note that
any sequentially complete space is Mackey complete.

Proof. ( 1 ) ⇒ ( 2 ), and ( 3 ) ⇒ ( 4 ) are trivial.

( 2 ) ⇒ ( 3 ) Since EB is normed, it is enough to show sequential completeness.
So let (xn) be a Cauchy sequence in EB . Then (xn) is Mackey-Cauchy in E and
hence converges in E to some point x. Since pB(xn − xm) → 0 there exists for
every ε > 0 an N ∈ N such that for all n,m ≥ N we have pB(xn − xm) < ε, and
hence xn − xm ∈ εB. Taking the limit for m → ∞, and using closedness of B we
conclude that xn− x ∈ εB for all n > N . In particular x ∈ EB and xn → x in EB .

( 4 ) ⇒ ( 1 ) Let (xγ)γ∈Γ be a Mackey-Cauchy net in E. So there is some net
µγ,γ′ → 0, such that xγ−xγ′ ∈ µγ,γ′ B for some bounded set B. Let γ0 be arbitrary.
By (4) we may assume that B is absolutely convex and contains xγ0 , and that EB
is complete. For γ ∈ Γ we have that xγ = xγ0 + xγ − xγ0 ∈ xγ0 + µγ,γ0 B ∈ EB ,
and pB(xγ − xγ′) ≤ µγ,γ′ → 0. So (xγ) is a Cauchy net in EB , hence converges in
EB , and thus also in E (even Mackey).
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2.3. Corollary. Scalar testing of differentiable curves. Let E be Mackey
complete and c : R → E be a curve for which ` ◦ c is Lipn for all ` ∈ E∗. Then c
is Lipn.

Proof. For n = 0 this was shown in 1.5 without using any completeness, so let
n ≥ 1. Since we have shown in 2.1 that the difference quotient is a Mackey-Cauchy
net we conclude that the derivative c′ exists, and hence (` ◦ c)′ = ` ◦ c′. So we may
apply the induction hypothesis to conclude that c′ is Lipn−1, and consequently c is
Lipn.

Next we turn to integration. For continuous curves c : [0, 1] → E one can show
completely analogously to 1-dimensional analysis that the Riemann sums R(c,Z, ξ),
defined by

∑
k(tk − tk−1)c(ξk), where 0 = t0 < t1 < · · · < tn = 1 is a partition

Z of [0, 1] and ξk ∈ [tk−1, tk], form a Cauchy net with respect to the partial strict
ordering given by the size of the mesh max{|tk − tk−1| : 0 < k < n}. So under
the assumption of sequential completeness we have a Riemann integral of curves.
A second way to see this is the following reduction to the 1-dimensional case.

2.4. Lemma. Let L(E∗equi,R) be the space of all linear functionals on E∗ which are
bounded on equicontinuous sets, equipped with the complete locally convex topology
of uniform convergence on these sets. There is a natural topological embedding
δ : E → L(E∗equi,R) given by δ(x)(`) := `(x).

Proof. The space L(E∗equi,R) is complete, since this is true for the space of all
bounded mappings (see 2.15 ) in which it is obviously closed.

Let U be a basis of absolutely convex closed 0-neighborhoods in E. Then the family
of polars Uo := {` ∈ E∗ : |`(x)| ≤ 1 for all x ∈ U}, with U ∈ U form a basis for
the equicontinuous sets, and hence the bipolars Uoo := {`∗ ∈ L(E∗equi,R) : |`∗(`)| ≤
1 for all ` ∈ Uo} form a basis of 0-neighborhoods in L(E∗equi,R). By the bipolar
theorem [68, 7.4.7] we have U = δ−1(Uoo) for all U ∈ U . This shows that δ is a
homeomorphism onto its image.

2.5. Lemma. Anti-derivative of continuous curves. Let c : R→ E be a con-
tinuous curve in a locally convex vector space. Then there is a unique differentiable
curve

∫
c : R→ Ê in the completion Ê of E such that (

∫
c)(0) = 0 and (

∫
c)′ = c.

Proof. We show uniqueness first. Let c1 : R→ Ê be a curve with derivative c and
c1(0) = 0. For every ` ∈ E∗ the composite ` ◦ c1 is an anti-derivative of ` ◦ c with
initial value 0, so it is uniquely determined, and since E∗ separates points c1 is also
uniquely determined.

Now we show the existence. By the previous lemma 2.4 we have that Ê is
(isomorphic to) the closure of E in the complete space L(E∗equi,R). We define
(
∫
c)(t) : E∗ → R by ` 7→

∫ t
0 (` ◦ c)(s)ds. It is a bounded linear functional on

E∗equi since for each equicontinuous and hence bounded subset E ⊆ E∗ the set
{(` ◦ c)(s) : ` ∈ E , s ∈ [0, t]} is bounded. So

∫
c : R→ L(E∗equi,R).

Andreas Kriegl , Univ.Wien, June 30, 2017 25



2.7 2. Completeness

Now we show that
∫
c is differentiable with derivative δ ◦ c.(

(
∫
c)(t+ r)− (

∫
c)(r)

t
− (δ ◦ c)(r)

)
(`) =

= 1
t

(∫ t+r

0
(` ◦ c)(s)ds−

∫ r

0
(` ◦ c)(s)ds− t(` ◦ c)(r)

)
=

= 1
t

∫ r+t

r

(
(` ◦ c)(s)− (` ◦ c)(r)

)
ds =

∫ 1

0
`
(
c(r + ts)− c(r)

)
ds.

Let E ⊆ E∗ be equicontinuous, and let ε > 0. Then there exists a neighborhood U
of 0 such that |`(U)| < ε for all ` ∈ E . For sufficiently small t, all s ∈ [0, 1] and fixed
r we have c(r + ts)− c(r) ∈ U . So

∣∣∫ 1
0 `(c(r + ts)− c(r))ds

∣∣ ≤ ε. This shows that
the difference quotient of

∫
c at r converges to δ(c(r)) uniformly on equicontinuous

subsets.

It remains to show that (
∫
c)(t) ∈ Ê. By the mean value theorem 1.4 the difference

quotient 1
t

(
(
∫
c)(t)− (

∫
c)(0)

)
is contained in the closed convex hull in L(E∗equi,R)

of the subset
{
c(s) = (

∫
c)′(s) : 0 < s < t

}
of E. So it lies in Ê.

Definition of the integral. For continuous curves c : R→ E the definite integral∫ b
a
c ∈ Ê is given by

∫ b
a
c = (

∫
c)(b)− (

∫
c)(a).

2.6. Corollary. Basics on the integral. For a continuous curve c : R→ E we
have:

(1) `(
∫ b
a
c) =

∫ b
a

(` ◦ c) for all ` ∈ E∗.

(2)
∫ b
a
c+

∫ d
b
c =

∫ d
a
c.

(3)
∫ b
a

(c ◦ ϕ)ϕ′ =
∫ ϕ(b)
ϕ(a) c for ϕ ∈ C1(R,R).

(4)
∫ b
a
c lies in the closed convex hull in Ê of the set

{(b− a)c(t) : a < t < b} in E.
(5)

∫ b
a

: C(R, E)→ Ê is linear.
(6) (Fundamental theorem of calculus.) For each C1-curve c : R → E we have

c(s)− c(t) =
∫ s
t
c′.

2.7. We are mainly interested in smooth curves and we can test for this by applying
linear functionals if the space is Mackey complete, see 2.3 . So let us try to show
that the integral for such curves lies in E if E is Mackey-complete. For this let
c : [0, 1] → E be a smooth or just a Lip-curve, and take a partition Z1 with mesh
µ(Z1) at most δ. If we have a second partition Z2, then we can take the common
refinement Z ′. Let [a, b] be one interval of the original partition with intermediate
point t, and let a = t0 < t1 < · · · < tn = b be the refinement. Note that |b− a| ≤ δ
and hence |t− tk| ≤ δ. Then we can estimate as follows.

(b− a) c(t)−
∑
k

(tk − tk−1)c(tk) =
∑
k

(tk − tk−1) (c(t)− c(tk)) =
∑
k

µkbk,

where bk := c(t)−c(tk)
δ is contained in the absolutely convex Lipschitz bound

B :=
〈{

c(t)− c(s)
t− s

: t, s ∈ [0, 1]
}〉

abs.conv

of c and µk := (tk−tk−1)δ ≥ 0 and satisfies
∑
k µk = (b−a)δ. Hence we have for the

Riemann sums with respect to the original partition Z1 and the refinement Z ′ that
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R(c,Z1)−R(c,Z ′) lies in δ ·B. So R(c,Z1)−R(c,Z2) ∈ 2δB for any two partitions
Z1 and Z2 of mesh at most δ, i.e. the Riemann sums form a Mackey-Cauchy net with
coefficients µZ1,Z2 := 2 max{µ(Z1), µ(Z2)}. Since continuous linear functionals
` map the Riemann-sums of c to those of ` ◦ c we have `(limµ(Z)→0R(c,Z)) =
limµ(Z)→0R(`◦c,Z) =

∫ b
a

(`◦c), thus limµ(Z)→0R(c,Z) =
∫ b
a
c and we have proved:

Proposition. Integral of Lipschitz curves. Let c : [0, 1] → E be a Lipschitz
curve into a Mackey complete space. Then the Riemann integral exists in E as
(Mackey)-limit of the Riemann sums and coincides with the integral as defined in
2.5 .

2.8. Now we have to discuss the relationship between differentiable curves and
Mackey convergent sequences. Recall that a sequence (xn) converges if and only if
there exists a continuous curve c (e.g. a reparameterization of the infinite polygon)
and tn ↘ 0 with c(tn) = xn. The corresponding result for smooth curves uses the
following notion.

Definition. We say that a sequence xn in a locally convex space E converges fast
to x in E, or falls fast towards x, if for each k ∈ N the sequence nk(xn − x) is
bounded.

Special curve lemma. Let xn be a sequence which converges fast to x in E.
Then the infinite polygon through the xn can be parameterized as a smooth curve
c : R→ E such that c( 1

n ) = xn and c(0) = x.

Proof. Let ϕ : R→ [0, 1] be a smooth function, which is 0 on {t : t ≤ 0} and 1 on
{t : t ≥ 1}. The parameterization c is defined as follows:

c(t) :=


x for t ≤ 0,
xn+1 + ϕ

(
t− 1

n+1
1
n−

1
n+1

)
(xn − xn+1) for 1

n+1 ≤ t ≤
1
n ,

x1 for t ≥ 1

.

Obviously, c is smooth on R \ {0}, and the p-th derivative of c for 1
n+1 ≤ t ≤ 1

n is
given by

c(p)(t) = ϕ(p)

(
t− 1

n+1
1
n −

1
n+1

)
(n(n+ 1))p(xn − xn+1).

Since xn converges fast to x, we have that c(p)(t) → 0 for t → 0, because the first
factor is bounded and the second goes to zero. Hence c is smooth on R, by the
following lemma.

2.9. Lemma. Differentiable extension to an isolated point. Let c : R→ E
be continuous and differentiable on R \ {0}, and assume that the derivative c′ :
R \ {0} → E has a continuous extension to R. Then c is differentiable at 0 and
c′(0) = limt→0 c

′(t).

Proof. Let a := limt→0 c
′(t). By the mean value theorem 1.4 we have c(t)−c(0)

t ∈
〈c′(s) : 0 6= |s| ≤ |t|〉closed, convex. Since c′ is assumed to be continuously extendable
to 0 we have that for any closed convex 0-neighborhood U there exists a δ > 0 such
that c′(t) ∈ a+ U for all 0 < |t| ≤ δ. Hence c(t)−c(0)

t − a ∈ U , i.e. c′(0) = a.

The next result shows that we can pass through certain sequences xn → x even
with given velocities vn → 0.
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2.13 2. Completeness

2.10. Corollary. If xn → x fast and vn → 0 fast in E, then there exist a smoothly
parameterized polygon c : R → E and tn → 0 in R such that c(tn + t) = xn + tvn
for t in a neighborhood of 0 depending on n.

Proof. Consider the sequence yn defined by
y2n := xn + 1

4n(2n+1)vn and y2n+1 := xn − 1
4n(2n+1)vn.

It is easy to show that yn converges fast to x, and the parameterization c of the
polygon through the yn (using a function ϕ which satisfies ϕ(t) = t for t near 1/2)
has the claimed properties, where

tn := 4n+ 1
4n(2n+ 1)

= 1
2

(
1

2n
+ 1

2n+ 1

)
.

As first application 2.10 we can give the following sharpening of 1.3 .

2.11. Corollary. Bounded linear maps. A linear mapping f : E → F between
locally convex vector spaces is bounded (or bornological), i.e. it maps bounded sets
to bounded ones, if and only if it maps smooth curves in E to smooth curves in F .

Proof. As in the proof of 1.3 one shows using 1.7 that a bounded linear map
preserves Lipk-curves. Conversely, assume that a linear map f : E → F carries
smooth curves to (at least) locally bounded curves. Take a bounded set B, and
assume that f(B) is unbounded. Then there is some ` ∈ F ∗ and a sequence
(bn) in B such that |(` ◦ f)(bn)| ≥ nn+1. The sequence (n−nbn) converges fast
to 0, hence lies on some compact part of a smooth curve by 2.8 . Consequently,
(` ◦ f)(n−nbn) = n−n(` ◦ f)(bn) is bounded, a contradiction.

2.12. Definition. The c∞-topology on a locally convex space E is the final topol-
ogy with respect to all smooth curves R→ E. Its open sets will be called c∞-open.
We will treat this topology in more detail in section 4 : In general it describes
neither a topological vector space 4.20 and 4.26 , nor a uniform structure 4.27 .
However, by 4.4 and 4.6 the finest locally convex topology coarser than the
c∞-topology is the bornologification of the locally convex topology.

Let (µn) be a sequence of real numbers converging to ∞. Then a sequence (xn) in
E is called µ-converging to x∞ if the sequence (µn(xn − x∞)) is bounded in E.

2.13. Theorem. c∞-open subsets. Let µn → ∞ be a real valued sequence and
k ∈ N∞. Then a subset U ⊆ E is open for the c∞-topology if it satisfies any of the
following equivalent conditions:

(1) All inverse images under Lipk-curves are open in R;
(2) All inverse images under µ-converging sequences are open in N∞;
(3) The traces to EB are open in EB for all absolutely convex bounded subsets

B ⊆ E.

Note that for closed subsets an equivalent statement reads as follows: A set A is c∞-
closed if and only if for every sequence xn ∈ A, which is µ-converging (respectively
M -converging, resp. fast falling) towards x, the point x belongs to A.

With N∞ we denote the one-point compactification N ∪ {∞} of the discrete space
N and the converging sequences xn → x∞ can be considered as the continuous
mappings on N∞.
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The topology described in ( 2 ) is also called Mackey-closure topology. It is not the
Mackey topology discussed in duality theory.

Proof. ( 1 ) ⇒ ( 2 ) Suppose (xn) is µ-converging to x∞ ∈ U , but xn /∈ U for
infinitely many n. Then we may choose a subsequence again denoted by (xn),
which is fast falling to x∞, hence lies on some compact part of a smooth curve c as
described in 2.8 . Then c( 1

n ) = xn /∈ U but c(0) = x∞ ∈ U . This is a contradiction
to ( 1 ).

( 2 ) ⇒ ( 3 ) A sequence (xn), which converges in EB to x∞ with respect to pB ,
is Mackey convergent, hence has a µ-converging subsequence. Note that EB is
normed, and hence it is enough to consider sequences.

( 3 ) ⇒ ( 1 ) Let c : R → E be Lip. By 1.5 c factors locally as continuous curve
over some EB , hence c−1(U) is open.

Let us show next that the c∞-topology and c∞-completeness are intimately related.

2.14. Theorem. Convenient vector spaces. Let E be a locally convex vector
space. E is said to be c∞-complete or convenient if one of the following equivalent
(completeness) conditions is satisfied:

(1) Any Lipschitz curve in E is locally Riemann integrable in the sense of 2.7 .
(2) For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c′2 = c1 (existence of

an anti-derivative).
(3) E is c∞-closed in any locally convex space it is embedded into.
(4) If c : R → E is a curve such that ` ◦ c : R → R is smooth for all ` ∈ E∗,

then c is smooth.
(5) Any Mackey-Cauchy sequence converges; i.e. E is Mackey complete.
(6) If B is bounded closed absolutely convex, then EB is a Banach space. This

property is called locally complete in [53, p196].
(7) Any continuous linear mapping from a normed space into E has a continuous

extension to the completion of the normed space.

Condition ( 4 ) says that in a convenient vector space one can recognize smooth
curves by investigating compositions with continuous linear functionals. Condition
( 5 ) and ( 6 ) say via 2.2.4 that c∞-completeness is a bornological concept. In
[40] a convenient vector space is always considered with its bornological topology
— an equivalent but not isomorphic category.

Proof.

( 1 )⇒ ( 2 ) A smooth curve is Lipschitz, thus locally Riemann integrable by ( 1 ).
By 2.7 the indefinite Riemann integral equals the “weakly defined” integral of
lemma 2.5 , hence is an anti-derivative.

( 2 ) ⇒ ( 3 ) Let E be a topological linear subspace of F . To show that E is c∞-
closed we use 2.13 . Let xn → x∞ be fast falling, xn ∈ E but x∞ ∈ F . By 2.8
the polygon c through (xn) can be smoothly symmetrically parameterized in F .
Hence c′ is smooth and has values in the vector space generated by {xn : n 6=∞},
which is contained in E. Its anti-derivative c2 is up to an additive constant equal
to c, and by ( 2 ) x1 − x∞ = c(1)− c(0) = c2(1)− c2(0) lies in E. So x∞ ∈ E.
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2.15 2. Completeness

( 3 ) ⇒ ( 5 ) Let F be the completion Ê of E. Any Mackey Cauchy sequence in E
has a limit in F , and since E is by assumption c∞-closed in F the limit lies in E.
Hence, the sequence converges in E.

( 5 ) ⇒ ( 6 ) was shown in 2.2 .

( 6 ) ⇒ ( 7 ) Let f : F → E be a continuous linear mapping on a normed space
F . Since the image of the unit ball is bounded, it is a bounded mapping into
EB for some closed absolutely convex B. But into EB it can be extended to the
completion, since EB is complete.

( 7 ) ⇒ ( 1 ) Let c : R → E be a Lipschitz curve. Then c is locally a continuous
curve into EB for some absolutely convex bounded set B by 1.5 . The inclusion of
EB into E has a continuous extension to the completion of EB , and c is Riemann
integrable in this Banach space, so also in E.

( 5 ) ⇒ ( 4 ) was shown in 2.3 .

( 4 ) ⇒ ( 3 ) Let E be a topological linear subspace of F . We use again 2.13
in order to show that E is c∞-closed in F . So let xn → x∞ ∈ F be fast falling
with xn ∈ E for n 6= ∞. By 2.8 the polygon c through (xn) can be smoothly
symmetrically parameterized in F , and c(t) ∈ E for t 6= 0. We consider c̃(t) := tc(t).
This is a curve in E which is smooth in F , so it is scalarwise smooth in E, thus
smooth in E by ( 4 ). Then x∞ = c̃′(0) ∈ E.

2.15. Theorem. Inheritance of c∞-completeness. The following construc-
tions preserve c∞-completeness: limits, direct sums, strict inductive limits of se-
quences of closed embeddings, as well as formation of `∞(X, ), where X is a set
together with a family B of subsets of X containing the finite ones, which are called
bounded and `∞(X,F ) denotes the space of all functions f : X → F , which are
bounded on all B ∈ B, supplied with the topology of uniform convergence on the
sets in B.

Note that the definition of the topology of uniform convergence as initial topology
shows, that adding all subsets of finite unions of elements in B to B does not change
this topology. Hence, we may always assume that B has this stability property; this
is the concept of a bornology on a set.

Proof. The limit [68, 4.8.1] of a functor F into the category of locally convex
spaces is the c∞-closed linear subspace{

(xα) ∈
∏
F(α) : F(f)xα = xβ for all f : α→ β

}
,

hence is c∞-complete, since the product of c∞-complete factors is obviously c∞-
complete.

Since the coproduct [68, 4.6.1] of spaces Xα is the topological direct sum, and has
as bounded sets those which are contained and bounded in some finite subproduct,
it is c∞-complete if all factors are.

For colimits this is in general not true. For strict inductive limits of sequences of
closed embeddings it is true, since bounded sets are contained and bounded in some
step, see [68, 4.8.1].

For the result on `∞(X,F ) we consider first the case, where X itself is bounded.
Then c∞-completeness can be proved as in [68, 3.2.3] or reduced to this result.
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In fact let F be bounded in `∞(X,F ). Then F(X) is bounded in F and hence
contained in some absolutely convex bounded set B, for which FB is a Banach space.
So we may assume that F := {f ∈ `∞(X,F ) : f(X) ⊆ B}. The space `∞(X,F )F
is just the space `∞(X,FB) with the supremum norm, which is a Banach space by
[68, 3.2.3]. In fact, we have the implications

‖f‖∞ := sup{pB(f(x)) : x ∈ X} < λ⇒ ∀x ∈ X : pB
(
f(x)
λ

)
< 1⇒ f(X)

λ
⊆ B

⇒ ∀x ∈ X : pB
(
f(x)
λ

)
≤ 1⇒ ‖f‖∞ ≤ λ,

i.e.
{λ : ‖f‖∞ < λ} ⊆ {λ : f ∈ λF} ⊆ {λ : ‖f‖∞ ≤ λ}

and hence
inf{λ : ‖f‖∞ < λ}︸ ︷︷ ︸

=‖f‖∞

≥ inf{λ : f ∈ λF}︸ ︷︷ ︸
=pF (f)

≥ inf{λ : ‖f‖∞ ≤ λ}︸ ︷︷ ︸
=‖f‖∞

.

Let now X and B be arbitrary. Then the restriction maps `∞(X,F ) → `∞(B,F )
give an embedding ι of `∞(X,F ) into the product

∏
B∈B `

∞(B,F ). Since this
product is c∞-complete, by what we have shown above, it is enough to show
that this embedding has a closed image. So let fα|B converge to some fB in
`∞(B,F ). Define f(x) := f{x}(x). For any B ∈ B containing x we have that
fB(x) = (limα fα|B)(x) = limα(fα(x)) = limα fα|{x}(x) = f{x}(x) = f(x), and
f(B) is bounded for all B ∈ B, since f |B = fB ∈ `∞(B,F ).

Example. In general, a quotient and an inductive limit of c∞-complete spaces
need not be c∞-complete. In fact, let ED := {x ∈ RN : suppx ⊆ D} for any
subset D ⊆ N of density densD := lim sup{ |D∩[1,n]|

n } = 0. It can be shown that
E :=

⋃
densD=0ED ⊂ RN is the inductive limit of the Fréchet subspaces ED ∼= RD.

It cannot be c∞-complete, since finite sequences are contained in E and are dense
in RN ⊃ E.

3. Smooth Mappings and the Exponential Law

A particular case of the exponential law 0.7 for continuous mappings is the fol-
lowing:

3.1. Lemma. A map f : R2 → R is continuous if and only if the associated
mapping f∨ : R→ C(R,R) is continuous, where C(R,R) carries the usual Fréchet-
topology of uniform convergence on compact subsets of R.

Proof. (⇒) Obviously f∨ has values f∨(t) : s 7→ f(t, s) in C(R,R). It is con-
tinuous, since for t0 ∈ R, compact J ⊆ R and ε > 0 there is a δ > 0 such that
|f(t, s)− f(t0, s)| < ε for all |t− t0| < δ and s ∈ I, i.e. ‖(f∨(t)− f∨(t0))|J‖∞ ≤ ε
for |t− t0| < δ.

(⇐) Let (t0, s0) ∈ R2 and ε > 0 and choose a compact neighborhood J of s0 such
that |f∨(t0)(s)−f∨(t0)(s0)| < ε for all s ∈ J . Since f∨ is assumed to be continuous
there exists a δ > 0 auch that ‖(f∨(t)− f∨(t0))|J‖∞ ≤ ε for |t− t0| < δ, and hence
|f(t, s)− f(t0, s0)| ≤ |f∨(t)(s)− f∨(t0)(s)|+ |f∨(t0)(s)− f∨(t0)(s0)| ≤ 2ε

for all |t− t0| < δ and all s ∈ J .

Andreas Kriegl , Univ.Wien, June 30, 2017 31



3.2 3. Smooth Mappings and the Exponential Law

Now let us start proving the exponential law C∞(U × V, F ) ∼= C∞(U,C∞(V, F ))
first for U = V = F = R as it has been sketched in 0.10 .

3.2. Theorem. Simplest case of exponential law for C∞. Let f : R2 → R be
an arbitrary mapping. Then all iterated partial derivatives exist and are continuous
if and only if the associated mapping f∨ : R→ C∞(R,R) exists as a smooth curve,
where C∞(R,R) is considered as the Fréchet space with the topology of uniform
convergence on compact sets of each derivative separately. Furthermore, we have

(∂1f)∨ = d(f∨) and (∂2f)∨ = d ◦ f∨ = d∗(f∨).

Proof. We have several possibilities to prove this result. Either we show Mackey
convergence of the difference quotients, via the boundedness of 1

t

(
c(t)−c(0)

t − c′(0)
)

,
and then use the trivial exponential law `∞(X×Y,R) ∼= `∞(X, `∞(Y,R)); or we use
exponential law C(R2,R) ∼= C(R, C(R,R)) of 3.1 . We choose the latter method.

(⇐) Let g := f∨ : R→ C∞(R,R) be smooth. Then both curves dg and d ◦ g = d∗g

are smooth (apply 1.3 to the continuous and linear mapping d). The following
easy calculation shows that the partial derivatives of f = g∧ exist and are given by
∂1g
∧ = (dg)∧ and ∂2g

∧ = (d ◦ g)∧:

∂1g
∧(t, s) = (evs ◦g)′(t) = (evs ◦dg)(t) = dg(t)(s) = (dg)∧(t, s)

∂2g
∧(t, s) = g(t)′(s) = d(g(t))(s) = (d ◦ g)(t)(s) = (d ◦ g)∧(t, s).

So one obtains inductively that all iterated derivatives of f exist. They are continu-
ous by 3.1 , since they are associated to smooth curves R→ C∞(R,R)→ C(R,R).

(⇒) First observe that f∨ : R → C∞(R,R) makes sense and that for all t ∈ R we
have

(1) dp(f∨(t)) = (∂p2f)∨(t).

Next we claim that f∨ : R → C∞(R,R) is differentiable, with derivative d(f∨) =
(∂1f)∨, or equivalently that for all a the curve

c : t 7→

{
f∨(t+a)−f∨(a)

t for t 6= 0
(∂1f)∨(a) otherwise

is continuous (at 0) as curve R → C∞(R,R). Without loss of generality we may
assume that a = 0. Since C∞(R,R) carries the initial structure with respect to the
linear mappings dp : C∞(R,R)→ C(R,R) we have to show that dp◦c : R→ C(R,R)
is continuous, or equivalently by the exponential law 3.1 for continuous maps, that
(dp ◦ c)∧ : R2 → R is continuous. For t 6= 0 and s ∈ R we have

(dp ◦ c)∧(t, s) = dp(c(t))(s) = dp
(
f∨(t)− f∨(0)

t

)
(s)

= ∂p2f(t, s)− ∂p2f(0, s)
t

by ( 1 )

=
∫ 1

0
∂1∂

p
2f(t τ, s) dτ by the fundamental theorem.
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For t = 0 we have
(dp ◦ c)∧(0, s) = dp(c(0))(s) = dp((∂1f)∨(0))(s)

= (∂p2 (∂1f))∨(0)(s) by ( 1 )
= ∂p2∂1f(0, s)
= ∂1∂

p
2f(0, s) by the theorem of Schwarz.

So we see that (dp ◦c)∧(t, s) =
∫ 1

0 ∂1∂
p
2f(t τ, s) dτ for all (t, s). This function is con-

tinuous in (t, s), since ∂1∂
p
2f : R2 → R is assumed to be continuous, hence (t, s, τ) 7→

∂1∂
p
2f(t τ, s) is continuous, and therefore also (t, s) 7→ (τ 7→ ∂1∂

p
2f(t τ, s)), R2 →

C([0, 1],R), by 3.1 . Composition with the continuous linear mapping
∫ 1

0 : C([0, 1],R)→
R gives the continuity of (dp ◦ c)∧.

Now we proceed by induction. By the induction hypothesis applied to ∂1f , we
obtain that (∂1f)∨ : R→ C∞(R,R) is n-times differentiable, and so f∨ is (n+ 1)-
times differentiable since d(f∨) = (∂1f)∨.

In order to proceed to more general cases of the exponential law we need a definition
of C∞-maps defined on infinite dimensional spaces. This definition should at least
guarantee the chain rule, and so one could take the weakest notion that satisfies
the chain rule. However, consider the following

3.3. Example. We consider the following 3-fold “singular covering” f : R2 → R2

given in polar coordinates by (r, ϕ) 7→ (r, 3ϕ). In cartesian coordinates we obtain
the following formula for the values of f :

(r cos(3ϕ), r sin(3ϕ)) = r
(

(cosϕ)3 − 3 cosϕ(sinϕ)2, 3 sinϕ(cosϕ)2 − (sinϕ)3
)

=
(
x3 − 3xy2

x2 + y2 ,
3x2y − y3

x2 + y2

)
.

Obviously, the map f is smooth on R2 \{0} and continuous also at 0. It is homoge-
neous of degree 1, and hence the directional derivative is f ′(0)(v) = ∂

∂t |t=0f(tv) =
f(v). However, both components of f are nonlinear with respect to v and thus are
not differentiable at (0, 0).

We claim that f is differentiable along differentiable curves, i.e. (f ◦ c)′(0) exists,
provided c′(0) exists.
Only the case c(0) = 0 is not trivial. Since c is differentiable at 0 the curve c1
defined by

c1(t) :=

{
c(t)
t for t 6= 0
c′(0) for t = 0

is continuous at 0. Hence f(c(t))−f(c(0))
t = f(t c1(t))−0

t = f(c1(t)) converges to
f(c1(0)) = f(c′(0)), since f is continuous.

Furthermore, if f ′(x)(v) denotes the directional derivative, which exists everywhere,
then (f ◦ c)′(t) = f ′(c(t))(c′(t)). Indeed for c(t) 6= 0 this is clear and for c(t) = 0 it
follows from f(c(t+s))−f(c(t))

s = f( c(t+s)−c(t)s )→ f(c′(t)) = f ′(0)(c′(t)).

Each directional derivative f ′( )(v) of the 1-homogeneous mapping f is 0-homogeneous:
In fact, for s 6= 0 we have

f ′(sx)(v) = ∂

∂t

∣∣∣∣
t=0

f(s x+ tv) = s
∂

∂t

∣∣∣∣
t=0

f
(
x+ t

s
v
)

= s f ′(x)
(

1
s
v

)
= f ′(x)(v).

For any s ∈ R we have f ′(s v)(v) = ∂
∂t |t=0f(s v + tv) = ∂

∂t |t=st f(v) = f(v).
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3.4 3. Smooth Mappings and the Exponential Law

Using this homogeneity we show next, that f is also continuously differentiable
along continuously differentiable curves. So we have to show that (f ◦ c)′(t) →
(f ◦ c)′(0) for t → 0. Again only the case c(0) = 0 is interesting. As before we
factor c as c(t) = t c1(t). In the case, where c′(0) = c1(0) 6= 0 we have for t 6= 0
that

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(t c1(t))(c′(t))− f ′(0 · c1(0))(c1(0))
= f ′(c1(t))(c′(t))− f ′(c1(0))(c′(0)),

which converges to 0 for t → 0, since (f ′)∧ is continuous (and even smooth) on
(R2 \ {0})× R2.
In the other case, where c′(0) = c1(0) = 0 we consider first the values of t, for which
c(t) = 0. Then

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(0)(c′(t))− f ′(0)(c′(0))
= f(c′(t))− f(c′(0))→ 0,

since f is continuous. For the remaining values of t, where c(t) 6= 0, we factor
c(t) = ‖c(t)‖ e(t), with e(t) ∈ {x : ‖x‖ = 1}. Then

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(e(t))(c′(t))− 0→ 0,
since f ′(x)(c′(t))→ 0 for t→ 0 uniformly for ‖x‖ = 1, since c′(t)→ 0.

Furthermore, f ◦ c is smooth for all c which are smooth and nowhere infinitely
flat. In fact, a smooth curve c with c(k)(0) = 0 for k < n can be factorized as
c(t) = tncn(t) with smooth cn, by Taylor’s formula with integral remainder. Since
c(n)(0) = n! cn(0), we may assume that n is chosen maximal and hence cn(0) 6= 0.
But then (f ◦ c)(t) = tn · (f ◦ cn)(t), and f ◦ cn is smooth.

The same argument shows also that f ◦ c is real analytic for all real analytic curves
c : R→ R2.

However, let us show that f ◦c is not Lipschitz differentiable even for smooth curves
c. For x 6= 0 we have

(∂2)2f(x, 0) =
(
∂
∂s

)2 |s=0f(x, s) = x
(
∂
∂s

)2 |s=0f(1, 1
xs) =

= 1
x

(
∂
∂s

)2 |s=0f(1, s) =: ax 6= 0.

In fact, f1(s) := pr1(f(1, s)) satisfies (1 + s2) f1(s) = 1 − 3s2, and thus 2 f1(0) +
f ′′1 (0) = −6, i.e. a1 := f ′′1 (0) = −8 6= 0. Now we choose a smooth curve c which
passes for each n in finite time tn through ( 1

n2n+1 , 0) with locally constant velocity
vector (0, 1

nn ), by 2.10 . Then for small t we get
(f ◦ c)′(tn + t) = ∂1f(c(tn + t)) pr1(c′(tn + t))︸ ︷︷ ︸

=0

+∂2f(c(tn + t)) pr2(c′(tn + t))

(f ◦ c)′′(tn) = 0 + (∂2)2f(c(tn)) (pr2(c′(tn)))2 = a
n2n+1

n2n = na,

which is unbounded.

So although preservation of (continuous) differentiability of curves is not enough to
ensure differentiability of a function R2 → R, we now prove that smoothness can
be tested with smooth curves.

3.4. Boman’s theorem. [14] For a mapping f : R2 → R the following assertions
are equivalent:

(1) All iterated partial derivatives exist and are continuous.
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3. Smooth Mappings and the Exponential Law 3.4

(1’) All iterated partial derivatives exist and are locally bounded.
(2) For v ∈ R2 the iterated directional derivatives

dnvf(x) := ( ∂∂t )
n|t=0(f(x+ tv))

exist and are continuous with respect to x.
(3) For v ∈ R2 the iterated directional derivatives

dnvf(x) := ( ∂∂t )
n|t=0(f(x+ tv))

exist and are locally bounded with respect to x.
(4) For all smooth curves c : R→ R2 the composite f ◦ c is smooth.

Proof.

( 1 ) ⇒ ( 4 ) is a direct consequence of the classical chain rule, namely that (f ◦
c)′(t) = ∂1f(c(t)) · x′(t) + ∂2f(c(t)) · y′(t), where c = (x, y).

( 4 ) ⇒ ( 3 ) Obviously, dpvf(x) := ( ddt )
p|t=0f(x + tv) exists, since t 7→ x + tv is

a smooth curve. Suppose dpvf is not locally bounded. So we may find a sequence
xn which converges fast to x, and such that |dpvf(xn)| ≥ 2n2 . Let c be a smooth
curve with c(t + tn) = xn + t

2n v locally for some sequence tn → 0, by 2.8 . Then
(f ◦ c)(p)(tn) = dpvf(xn) 1

2np is unbounded, which is a contradiction.

( 3 ) ⇒ ( 2 ) We prove this by induction on p: Note that

dpvf( + tv)− dpvf( ) = t

∫ 1

0
dp+1
v f( + tτv)dτ → 0

for t → 0 uniformly on bounded sets. Suppose that |dpvf(xn) − dpvf(x)| ≥ ε for
some sequence xn → x. Without loss of generality we may assume that dpvf(xn)−
dpvf(x) ≥ ε. Then by the uniform convergence there exists a δ > 0 such that
dpvf(xn + tv)− dpvf(x+ tv) ≥ ε

2 for |t| ≤ δ. Integration
∫ δ

0 dt yields(
dp−1
v f(xn + δv)− dp−1

v f(xn)
)
−
(
dp−1
v f(x+ δv)− dp−1

v f(x)
)
≥ εδ

2 ,

but by induction hypothesis the left hand side converges towards(
dp−1
v f(x+ δv)− dp−1

v f(x)
)
−
(
dp−1
v f(x+ δv)− dp−1

v f(x)
)

= 0.

( 2 ) ⇒ ( 1 ) Note that for a smooth map g : R2 → R we have by the chain rule

dvg(x+ tv) = d

dt
g(x+ tv) = ∂1g(x+ tv) · v1 + ∂2g(x+ tv) · v2

and by induction that

dpvg(x) =
p∑
i=0

(
p

i

)
∂i1∂

p−i
2 g(x)vi1v

p−i
2 .

Hence, we can calculate the iterated derivatives ∂i1∂
p−i
2 g(x) for 0 ≤ i ≤ p from

p+ 1 many derivatives dpvjg(x) provided the vj are chosen in such a way, that the
Vandermonde’s determinant det((vj1)i(vj2)p−i)ij 6= 0. For this choose v2 = 1 and all
the v1 pairwise distinct, then det((vj1)i(vj2)p−i)ij =

∏
j>k(vj1 − vk1 ) 6= 0.

To complete the proof we use convolution with an approximation of unity. So let
ϕ ∈ C∞(R2,R) have compact support,

∫
R2 ϕ = 1, and ϕ(y) ≥ 0 for all y. Define
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3.6 3. Smooth Mappings and the Exponential Law

ϕε(x) := 1
ε2ϕ( 1

εx), and let

fε(x) := (f ? ϕε)(x) =
∫
R2
f(x− y)ϕε(y) dy =

∫
R2
f(x− εy)ϕ(y)dy.

Since the convolution fε := f ?ϕε of a continuous function f with a smooth function
ϕε with compact support is differentiable with directional derivative dv(f ?ϕε)(x) =
(f ? dvϕε)(x), we obtain that fε is smooth. And since f ? ϕε → f in C(R2,R) for
ε→ 0 and any continuous function f , we conclude dpvfε = dpvf ?ϕε → dpvf uniformly
on compact sets.

By what we said above for smooth g, the iterated partial derivatives of fε are linear
combinations of the derivatives dpvfε for p+1 many vectors v, where the coefficients
depend only on the v’s. So we conclude that the iterated partial derivatives of fε
form a Cauchy sequence in C(R2,R), and hence converge to continuous functions
fα. Thus, all iterated derivatives ∂αf of f exist and are equal to these continuous
functions fα, by the following lemma 3.5 recursively applied to cε(s) := ∂αfε(x+
s v).

( 1 ) ⇔ ( 1’ ) Local boundedness of all iterated partial derivatives is equivalent to
their continuity, since if for a function g : R2 → R the partial derivatives ∂1g and
∂2g exist and are locally bounded then g is continuous:

g(x, y)− g(0, 0) = g(x, y)− g(x, 0) + g(x, 0)− g(0, 0)
= y∂2g(x, r2y) + x∂1g(r1x, 0)

for suitable r1, r2 ∈ [0, 1], which goes to 0 with (x, y).

3.5. Lemma. Let cε : R→ E be C1 into a locally convex space E such that cε → c
and c′ε → c1 uniformly on bounded subsets of R for ε → 0. Then c : R → E is C1

and c′ = c1. With other words, the injection c 7→ (c, c′), C1(R, E) → `∞(R, E)2

has closed image.

Proof. Since C(R, E) is closed in `∞(R, E) the curves c and c1 are continuous,
Remains to show that for fixed s ∈ R the curve

γ : t 7→

{
c(s+t)−c(s)

t for t 6= 0
c1(s) otherwise

is continuous (at 0). The corresponding curve γε for cε can be rewritten as γε(t) =∫ 1
0 c
′
ε(s + τ t) dτ , which converges by assumption for ε → 0 uniformly on compact

sets to the continuous curve t 7→
∫ 1

0 c
1(s + τ t) dτ . Pointwise it converges to γ(t),

hence γ is continuous.

For the vector valued case of the exponential law we need a locally convex structure
on C∞(R, E).

3.6. Definition. Space of curves

Let C∞(R, E) be the locally convex vector space of all smooth curves in E, with
the pointwise vector operations, and with the topology of uniform convergence on
compact sets of each derivative separately. This is the initial topology with respect
to the linear mappings C∞(R, E) −d

k

→ C∞(R, E) → `∞(K,E), where k runs
through N, where K runs through all compact subsets of R, and where `∞(K,E)
carries the topology of uniform convergence, see also 2.15 .
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3. Smooth Mappings and the Exponential Law 3.10

Note that the derivatives dk : C∞(R, E) → C∞(R, E), the point evaluations evt :
C∞(R, E)→ E and the pull backs g∗ : C∞(R, E)→ C∞(R, E) for all g ∈ C∞(R,R)
are continuous and linear. For the later one uses that obviously g∗ : `∞(Y,E) →
`∞(X,E) is continuous for bounded mappings g : X → Y as well as g · ( ) :
`∞(X,E)→ `∞(X,E) for bounded mappings g : X → R.

3.7. Lemma. A space E is c∞-complete if and only if C∞(R, E) is so.

Proof. (⇒) The mapping c 7→ (c(n))n∈N is by definition an embedding of C∞(R, E)
into the c∞-complete product

∏
n∈N `

∞(R, E). Its image is a closed subspace by
lemma 3.5 .

(⇐) Consider the continuous linear mapping const : E → C∞(R, E) given by
x 7→ (t 7→ x). It has as continuous left inverse the evaluation at any point (e.g. ev0 :
C∞(R, E)→ E, c 7→ c(0)). Hence, E can be identified with the closed subspace of
C∞(R, E) given by the constant curves, and is thereby itself c∞-complete.

3.8. Lemma. Curves into limits. A curve into a c∞-closed subspace of a space
is smooth if and only if it is smooth into the total space. In particular, a curve is
smooth into a projective limit if and only if all its components are smooth.

Proof. Since the derivative of a smooth curve is the Mackey limit of the difference
quotient, the c∞-closedness implies that this limit belongs to the subspace. Thus,
we deduce inductively that all derivatives belong to the subspace, and hence the
curve is smooth into the subspace.

The result on projective limits now follows, since obviously a curve is smooth into
a product, if all its components are smooth.

We show now that the bornology, but obviously not the topology, on function spaces
can be tested with the linear functionals on the range space.

3.9. Lemma. Bornology of C∞(R, E). The family
{`∗ : C∞(R, E)→ C∞(R,R) : ` ∈ E∗}

generates the bornology of C∞(R, E). This also holds for E∗ replaced by E′.

A set in C∞(R, E) is bounded if and only if each derivative is uniformly bounded
on compact subsets.

Proof. A set B ⊆ C∞(R, E) is bounded if and only if the sets {dnc(t) : t ∈ I, c ∈ B}
are bounded in E for all n ∈ N and compact subsets I ⊂ R.

This is furthermore equivalent to the condition that the set {`(dnc(t)) = dn(`◦c)(t) :
t ∈ I, c ∈ B} is bounded in R for all ` ∈ E∗ (or even all ` ∈ E′), n ∈ N, and compact
subsets I ⊂ R and in turn equivalent to: `∗(B) = {` ◦ c : c ∈ B} is bounded in
C∞(R,R).

3.10. Proposition. Vector valued simplest exponential law. For a map-
ping f : R2 → E into a locally convex space (which need not be c∞-complete) the
following assertions are equivalent:

(1) f is smooth along smooth curves.
(2) All iterated directional derivatives dpvf exist and are locally bounded.
(3) All iterated partial derivatives ∂αf exist and are locally bounded.
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3.11 3. Smooth Mappings and the Exponential Law

(4) f∨ : R→ C∞(R, E) exists as a smooth curve.

Proof. We prove this result first for c∞-complete spaces E.

We could do this either by carrying over the proofs of 3.2 and 3.4 to the vector
valued situation, or we reduce the vector valued one by linear functionals to the
scalar valued situation. We choose here the second way.

By 2.3 each of the statements ( 1 )-( 4 ) is valid if and only if the corresponding
statement with f replaced by `◦f is valid for all ` ∈ E∗. Only ( 4 ) needs some argu-
ments: In fact, f∨(t) ∈ C∞(R, E) if and only if `∗(f∨(t)) = (` ◦ f)∨(t) ∈ C∞(R,R)
for all ` ∈ E∗ by 2.14 . Since C∞(R, E) is c∞-complete, its bornologically isomor-
phic image in

∏
`∈E∗ C

∞(R,R) is c∞-closed. So f∨ : R → C∞(R, E) is smooth if
and only if `∗ ◦ f∨ = (` ◦ f)∨ : R→ C∞(R,R) is smooth for all ` ∈ E∗.

So the proof is reduced to the scalar valid case, which was proved in 3.2 and 3.4 .

Now the general case. For the existence of certain derivatives we know by 1.9 that
it is enough that we have some candidate in the space, which is the corresponding
derivative of the map considered as map into the c∞-completion (or even some
larger space). Since the derivatives required in ( 1 )-( 4 ) depend linearly on each
other, this is true. In more detail this means:

( 1 ) ⇒ ( 2 ) is obvious.

( 2 ) ⇒ ( 3 ) is the fact that ∂α is a universal linear combination of d|α|v f .

( 3 ) ⇒ ( 1 ) follows from the chain rule which says that (f ◦ c)(p)(t) is a universal
linear combination of ∂i1 . . . ∂iqf(c(t))c(p1)

i1
(t) . . . c(pq)iq

(t) for ij ∈ {1, 2} and
∑
pj =

p, see also 10.4 .

( 3 )⇔ ( 4 ) holds by 1.9 since (∂1f)∨ = d(f∨) and (∂2f)∨ = d◦f∨ = d∗(f∨).

3.11

For the general case of the exponential law we need a notion of smooth mappings
and a locally convex topology on the corresponding function spaces. Of course, it
would be also handy to have a notion of smoothness for locally defined mappings.
Since the idea is to test smoothness with smooth curves, such curves should have
locally values in the domains of definition, and hence these domains should be
c∞-open.

Definition. Smooth mappings and spaces of them. A mapping f : E ⊇
U → F defined on a c∞-open subset U is called smooth (or C∞) if it maps smooth
curves in U to smooth curves in F .

Let C∞(U,F ) denote the locally convex space of all smooth mappings U → F with
pointwise linear structure and the initial topology with respect to all mappings
c∗ : C∞(U,F )→ C∞(R, F ) for c ∈ C∞(R, U).

For U = E = R this coincides with our old definition. Obviously, any composition
of smooth mappings is also smooth.
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3. Smooth Mappings and the Exponential Law 3.13

Lemma. The space C∞(U,F ) is the (inverse) limit of spaces C∞(R, F ), one for
each c ∈ C∞(R, U), where the connecting mappings are pull backs g∗ along repa-
rameterizations g ∈ C∞(R,R).

Note that this limit is the closed linear subspace in the product∏
c∈C∞(R,U)

C∞(R, F )

consisting of all (fc) with fc◦g = fc ◦ g for all c and all g ∈ C∞(R,R).

Proof. The mappings c∗ : C∞(U,F ) → C∞(R, F ) define a continuous linear
embedding C∞(U,F ) → limc C

∞(R, F ), since for the connecting mappings g∗ we
have c∗(f) ◦ g = f ◦ c ◦ g = (c ◦ g)∗(f). It is surjective since for any (fc) ∈
limc C

∞(R, F ) one has fc = f ◦ c where f is defined as x 7→ fconstx(0).

3.12. Theorem. Cartesian closedness. Let Ui ⊆ Ei be c∞-open subsets in
locally convex spaces, which need not be c∞-complete. Then a mapping f : U1 ×
U2 → F is smooth if and only if the canonically associated mapping f∨ : U1 →
C∞(U2, F ) exists and is smooth.

Proof. We have the following implications:

f∨ : U1 → C∞(U2, F ) is smooth.
⇔ f∨ ◦ c1 : R→ C∞(U2, F ) is smooth for all smooth curves c1 in U1, by 3.11 .
⇔ c∗2 ◦ f∨ ◦ c1 : R → C∞(R, F ) is smooth for all smooth curves ci in Ui, by

3.11 and 3.8 .
⇔ f ◦ (c1× c2) = (c∗2 ◦ f∨ ◦ c1)∧ : R2 → F is smooth for all smooth curves ci in

Ui, by 3.10 .
⇔ f : U1 × U2 → F is smooth.

Here the last equivalence is seen as follows: Each curve into U1 ×U2 is of the form
(c1, c2) = (c1 × c2) ◦ ∆, where ∆ is the diagonal mapping. Conversely, f ◦ (c1 ×
c2) : R2 → F is smooth for all smooth curves ci in Ui, since the product and the
composite of smooth mappings is smooth by definition 3.11 (and by 3.4 ).

3.13. Corollary. Consequences of cartesian closedness. Let E, F , G, etc. be
locally convex spaces, and let U , V be c∞-open subsets of such. Then the following
canonical mappings are smooth.

(1) ev : C∞(U,F )× U → F , (f, x) 7→ f(x);
(2) ins : E → C∞(F,E × F ), x 7→ (y 7→ (x, y));
(3) ( )∧ : C∞(U,C∞(V,G))→ C∞(U × V,G);
(4) ( )∨ : C∞(U × V,G)→ C∞(U,C∞(V,G));
(5) comp : C∞(F,G)× C∞(U,F )→ C∞(U,G), (f, g) 7→ f ◦ g;
(6) C∞( , ) : C∞(E2, E1)× C∞(F1, F2)→
→ C∞(C∞(E1, F1), C∞(E2, F2)), (f, g) 7→ (h 7→ g ◦ h ◦ f);

(7)
∏

:
∏
C∞(Ei, Fi)→ C∞(

∏
Ei,
∏
Fi), for any index set.

Proof. ( 1 ) The mapping associated to ev via cartesian closedness is the identity
on C∞(U,F ), which is C∞, thus ev is also C∞.

( 2 ) The mapping associated to ins via cartesian closedness is the identity on E×F ,
hence ins is C∞.
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( 3 ) The mapping associated to ( )∧ via cartesian closedness is the smooth com-
position of evaluations ev ◦(ev× Id) : (f ;x, y) 7→ f(x)(y).

( 4 ) We apply cartesian closedness twice to get the associated mapping (f ;x; y) 7→
f(x, y), which is just a smooth evaluation mapping.

( 5 ) The mapping associated to comp via cartesian closedness is (f, g;x) 7→ f(g(x)),
which is the smooth mapping ev ◦(Id× ev).

( 6 ) The mapping associated to the one in question by applying cartesian closed is
(f, g, h) 7→ g ◦ h ◦ f , which is appart permutation of the variables the C∞-mapping
comp ◦(Id× comp).

( 7 ) Up to a flip of factors the mapping associated via cartesian closedness is the
product of the evaluation mappings C∞(Ei, Fi)× Ei → Fi.

Next we generalize 3.4 to finite dimensions.

3.14. Corollary. [14]. The smooth mappings on open subsets of Rn in the sense
of definition 3.11 are exactly the usual smooth mappings.

Proof. (⇐) is obvious by the usual chain rule.

(⇒) Both conditions are of local nature, so we may assume that the open subset of
Rn is an open box and (by reparametrizing with a diffeomorphism in usual sense)
even Rn itself.

If f : Rn → F is smooth along smooth curves then by cartesian closedness 3.12 ,
for each coordinate the respective associated mapping f∨i : Rn−1 → C∞(R, F )
is smooth along smooth curves. Moreover the first partial derivative ∂if exists
and we have ∂if = (d ◦ f∨i)∧ (c.f. 3.2 ), so all first partial derivatives exist and
are smooth along smooth curves. Inductively, all iterated partial derivatives exist
and are smooth along smooth curves, thus continuous, so f is smooth in the usual
sense.

3.15. Differentiation of an integral

We return to the question of differentiating an integral. So let f : E × R → F be
smooth, and let F̂ be the completion of the locally convex space F . Then we may
form the function f0 : E → F̂ defined by x 7→

∫ 1
0 f(x, t) dt. We claim that it is

smooth, and that the directional derivative is given by dvf0(x) =
∫ 1

0 dv(f( , t))(x) dt.
By cartesian closedness 3.12 the associated mapping f∨ : E → C∞(R, F ) is
smooth, so the mapping f0 :=

∫ 1
0 ◦f

∨ : E → F̂ is smooth since integration is a
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bounded linear operator, and

dvf0(x) = ∂
∂s

∣∣
s=0 f0(x+ sv) = ∂

∂s

∣∣
s=0

(∫ 1

0
◦f∨

)
(x+ sv)

=
∫ 1

0

(
∂
∂s

∣∣
s=0 f

∨(x+ sv)
)

(t) dt =
∫ 1

0
evt
(
∂
∂s

∣∣
s=0 f

∨(x+ sv)
)
dt

=
∫ 1

0

∂
∂s

∣∣
s=0

(
evt
(
f∨(x+ sv)

))
dt =

∫ 1

0

∂
∂s

∣∣
s=0 f(x+ sv, t)dt

=
∫ 1

0
dv(f( , t))(x) dt.

We want to generalize this to functions f defined only on some c∞-open subset U ⊆
E×R, so we have to show that the natural domain U0 := {x ∈ E : {x}× [0, 1] ⊆ U}
of f0 is c∞-open in E. We will do this in lemma 4.15 . From then on the proof
runs exactly the same way as for globally defined functions, since for x0 ∈ U0 there
exists a bounded open interval J ⊇ [0, 1] such that {x0} × J ⊆ U and hence f∨ is
defined on a c∞-neighborhood of x0 and smooth into C∞(J, F )→ C([0, 1], F ). So
we obtain the

Proposition. Let f : E × R ⊇ U → F be smooth with c∞-open U ⊆ E × R. Then
x 7→

∫ 1
0 f(x, t) dt is smooth on the c∞-open set U0 := {x ∈ E : {x} × [0, 1] ⊆ U}

with values in the completion F̂ and dvf0(x) =
∫ 1

0 dv(f( , t))(x) dt for all x ∈ U0
and v ∈ E.

Now we want to define the derivative of a general smooth map and prove the chain
rule for them.

3.16. Corollary. Smoothness of the difference quotient. For a smooth curve
c : R→ E the difference quotient

(t, s) 7→


c(t)− c(s)
t− s

for t 6= s

c′(t) for t = s

is a smooth mapping R2 → E. Cf. 1.7 and 2.1 .

Proof. By 2.5 we have f : (t, s) 7→ c(t)−c(s)
t−s =

∫ 1
0 c
′(s+ r(t− s)) dr, and by 3.15

it is smooth R2 → Ê. The left hand side has values in E, and for t 6= s this is also
true for all iterated directional derivatives. It remains to consider the derivatives
for t = s. The iterated directional derivatives of f in Ê are given by 3.15 as

dp(v,w)f(t, s) = dp(v,w)

∫ 1

0
c′(s+ r(t− s)︸ ︷︷ ︸

rt+(1−r)s

) dr

=
∫ 1

0

(
d
du

)p∣∣∣
u=0

c′(r (t+ u v) + (1− r) (s+ uw)︸ ︷︷ ︸
u (r v+(1−r)w)+(r t+(1−r) s

) dr

=
∫ 1

0
(r v + (1− r)w)p c(p+1)(r t+ (1− r) s) dr

For t = s the later integrand is just
∫ 1

0 (r v + (1 − r)w)p dr · c(p+1)(t) ∈ E. Hence
dp(v,w)f(t, s) ∈ E. By 3.10 the mapping f is smooth into E.
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3.17. Definition. Spaces of linear mappings

Let L(E,F ) denote the space of all bounded (equivalently smooth by 2.11 ) linear
mappings from E to F . It is a closed linear subspace of C∞(E,F ) since f is linear
if and only if for all x, y ∈ E and λ ∈ R we have (evx +λ evy − evx+λy)f = 0. We
equip it with this topology and linear structure.

So a mapping f : U → L(E,F ) is smooth if and only if the composite mapping
U −f→ L(E,F )→ C∞(E,F ) is smooth.

3.18. Theorem. Chain rule. Let E and F be locally convex spaces, and let
U ⊆ E be c∞-open. Then the differentiation operator

d : C∞(U,F )→ C∞(U,L(E,F )),

df(x)v := lim
t→0

f(x+ tv)− f(x)
t

,

exists, is linear and bounded (smooth). Also the chain rule holds:

d(f ◦ g)(x) · v = df(g(x)) · dg(x) · v.

Proof. Since t 7→ x+tv is a smooth curve we know that d∧∧ : C∞(U,F )×U×E →
F exists. We want to show that it is smooth, so let (f, x, v) : R→ C∞(U,F )×U×E
be a smooth curve. Then

d∧∧(f(t), x(t), v(t)) = lim
s→0

f(t)(x(t) + sv(t))− f(t)(x(t))
s

= ∂2h(t, 0),

which is smooth in t, where the smooth mapping h : R2 ⊇ {(t, s) : x(t) + sv(t) ∈
U} → F is given by (t, s) 7→ f∧(t, x(t) + sv(t)). By cartesian closedness 3.12 the
mapping d∧ : C∞(U,F )× U → C∞(E,F ) is smooth.

Now we show that this mapping has values in the subspace L(E,F ): d∧(f, x)
is obviously homogeneous. It is additive, because we may consider the smooth
mapping (t, s) 7→ f(x+ tv + sw) and compute as follows, using 3.14 .

df(x)(v + w) = ∂
∂t

∣∣
0 f(x+ t(v + w))

= ∂
∂t

∣∣
0 f(x+ tv + 0w) + ∂

∂t

∣∣
0 f(x+ 0v + tw) = df(x)v + df(x)w.

So we see that d∧ : C∞(U,F ) × U → L(E,F ) is smooth, and the mapping d :
C∞(U,F )→ C∞(U,L(E,F )) is smooth by 3.12 and obviously linear.

We first prove the chain rule for a smooth curve c instead of g. We have to show
that the curve

t 7→

{
f(c(t))−f(c(0))

t for t 6= 0
df(c(0)) · c′(0) for t = 0

is continuous at 0. It can be rewritten as t 7→
∫ 1

0 df(c(0) + s(c(t)− c(0))) · c1(t) ds,
where c1 is the (by 3.16 ) smooth curve given by

t 7→

{
c(t)−c(0)

t for t 6= 0
c′(0) for t = 0

.

Since h : R2 → E × E given by

(t, s) 7→
(
c(0) + s

(
c(t)− c(0)

)
, c1(t)

)
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is smooth, there exist open neighborhoods I of [0, 1] and J of 0 in R such that
map t 7→

(
s 7→ df

(
c(0) + s(c(t) − c(0))

)
· c1(t)

)
is smooth J → C∞(I, F ), and

hence t 7→
∫ 1

0 df
(
c(0) + s(c(t) − c(0))

)
· c1(t) ds is smooth as in 3.15 , and hence

continuous.

For general g we have

d(f ◦ g)(x)(v) = ∂
∂t

∣∣
0 (f ◦ g)(x+ tv) = (df)

(
g(x+ 0v)

)(
∂
∂t

∣∣
0 (g(x+ tv))

)
= (df)

(
g(x)

)(
dg(x)(v)

)
.

3.19. Lemma. Two locally convex spaces are locally diffeomorphic if and only if
they are linearly diffeomorphic.
Any smooth and 1-homogeneous mapping is linear.

Proof. By the chain rule the derivatives at corresponding points give the linear
diffeomorphisms.

For a 1-homogeneous mapping f one has df(0)v = ∂
∂t

∣∣
0 f(tv) = f(v), and this is

linear in v.

4. The c∞-Topology

4.1. Definition. A locally convex vector space E is called bornological if and only
if the following equivalent conditions are satisfied:

(1) Any bounded linear mapping T : E → F in any locally convex space F is
continuous; It is sufficient to know this for all Banach spaces F .

(2) Every bounded seminorm on E is continuous.
(3) Every absolutely convex bornivorous subset is a 0-neighborhood.

A radial subset U (i.e. [0, 1]U ⊆ U) of a locally convex space E is called bornivorous
if it absorbs each bounded set, i.e. for every bounded B there exists r > 0 such that
rU ⊇ B.

We will make use of the following simple fact: Let A,B ⊆ E be subsets of a
vector space E with A absolutely convex. Then A absorbs B if and only if the
Minkowski-funktional pA is bounded on B.

Proof.

(1 ⇒ 2) Let p be a bounded seminorm. Then the canonical projection T : E →
E/ker p ⊆ \E/ker p is bounded and hence continuous by (1). Thus, p = p̃ ◦ T is
continuous, where p̃ denotes the canonical norm on the completion \E/ker p induced
from p.

(2 ⇒ 3), since the Minkowski-functional p generated by an absolutely convex bor-
nivorous subset is a bounded seminorm.

(3 ⇒ 1) Let T : E → F be bounded linear and V ⊆ F be a absolutely convex
0-neighborhood. Then T−1(V ) is absolutely convex and bornivorous, thus by (3) a
0-neighborhood, i.e. T is continuous.
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4.3 4. The c∞-Topology

4.2. Lemma. Bornologification. The bornologification Eborn of a locally convex
space can be described in the following equivalent ways:

(1) It is the finest locally convex structure having the same bounded sets;
(2) It is the final locally convex structure with respect to the inclusions EB → E,

where B runs through all bounded (closed) absolutely convex subsets.

Moreover, Eborn is bornological. For any locally convex vector space F the contin-
uous linear mappings Eborn → F are exactly the bounded linear mappings E → F .
The continuous seminorms on Eborn are exactly the bounded seminorms of E. An
absolutely convex set is a 0-neighborhood in Eborn if and only if it is bornivorous,
i.e. absorbs bounded sets.

Proof. Let Eborn be the vector space E supplied with the topology described in
(1) and Efin be E supplied with the final locally convex topology described in (2).

(Efin → Eborn is continuous), since all bounded absolutely convex sets B in E
are bounded in Eborn, thus the inclusions EB → Eborn are bounded and hence
continuous since EB is normed. Thus, the final structure on E induced by the
inclusions EB → E is finer than the structure of Eborn.

(Eborn → Efin is continuous). It is obviously bounded, since the construction
the bounded subsets B of Eborn are bounded in E, hence contained in bounded
absolutely convex B ⊆ E and hence bounded in EB → Efin.
Hence, Efin has exactly the same bounded sets as E, and so Eborn is by definition
finer than Efin.

Eborn = Efin is bornological by (1) in 4.1 : Let T : E → F be bounded linear, then
T |EB : EB → E → F is bounded and hence T : Efin → F is continuous.

The remaining statements now follow, since Eborn and E have the same bounded
seminorms, the same bounded linear mappings with values in locally convex spaces
and the same bornivorous absolutely convex subsets. And on the bornological space
Eborn these are by 4.1 exactly the continuous seminorms, the continuous linear
mappings and the absolutely convex 0-neighborhoods.

4.3. Corollary. Bounded seminorms. For a seminorm p and a sequence
µn →∞ the following statements are equivalent:

(1) p is bounded;
(2) p is bounded on compact sets;
(3) p is bounded on M -converging sequences;
(4) p is bounded on µ-converging sequences;
(5) p is bounded on images of bounded intervals under Lipk-curves (for fixed

0 ≤ k ≤ ∞).

The corresponding statement for subsets of E is the following. For a radial subset
U ⊆ E (i.e., [0, 1] · U ⊆ U) the following properties are equivalent:

( 1 ) U is bornivorous.
( 1 ’) For all absolutely convex bounded sets B, the trace U ∩EB is a 0-neighbor-

hood in EB.
( 2 ) U absorbs all compact subsets in E.
( 3 ) U absorbs all Mackey convergent sequences.
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4. The c∞-Topology 4.5

( 3 ’) U absorbs all sequences converging Mackey to 0.
( 4 ) U absorbs all µ-convergent sequences (for a fixed µ).
( 4 ’) U absorbs all sequences which are µ-converging to 0.
( 5 ) U absorbs the images of bounded sets under Lipk-curves (for a fixed 0 ≤ k ≤

∞).

Proof. We prove the statement on radial subsets, for seminorms p it then follows
since p is bounded on a subset A ⊆ E if and only if the radial set U := {x ∈ E :
p(x) ≤ 1} absorbs A (using the equality K · U = {x ∈ E : p(x) ≤ K}).

( 1 ’) ⇔ ( 1 ) ⇒ ( 2 ) ⇒ ( 3 ) ⇒ ( 4 ) ⇒ ( 4 ’), ( 3 ) ⇒ ( 3 ’) ⇒ ( 4 ’), ( 2 ) ⇒
( 5 ), are trivial.

( 5 ) ⇒ ( 4 ’) Suppose that (xn) is µ-converging to 0 but is not absorbed by U .
Then for each m ∈ N there is an nm ∈ N with xnm /∈ mU and by passing to a
subsequence (nmk)k of (nm)m we may assume that k 7→ 1/µnmk is fast falling. The
sequence (xnmk = 1

µnmk
µnmkxnmk )k is then fast falling and lies on some compact

part of a smooth curve by the special curve lemma 2.8 . The set U absorbs this
by ( 5 ), a contradiction to xmmk /∈ mkU with mk ≥ k →∞.

( 4 ’)⇒ ( 1 ) Suppose U does not absorb some bounded B. Hence, there are bn ∈ B
with bn /∈ µ2

nU . However, bn
µn

is µ-convergent to 0, so it is contained in KU for
some K > 0. Equivalently, bn ∈ µnKU ⊆ µ2

nU for all µn ≥ K, which gives a
contradiction.

4.4. Corollary. Bornologification as locally-convex-ification.
The bornologification of E is the finest locally convex topology with one (hence all)
of the following properties:

(1) It has the same bounded sets as E.
(2) It has the same Mackey converging sequences as E.
(3) It has the same µ-converging sequences as E (for some fixed µ).
(4) It has the same Lipk-curves as E (for some fixed 0 ≤ k ≤ ∞).
(5) It has the same bounded linear mappings from E into arbitrary locally convex

spaces.
(6) It has the same continuous linear mappings from normed spaces into E.

Proof. Since the bornologification has the same bounded sets as the original topol-
ogy, the other objects are also the same: they depend only on the bornology – this
would not be true for compact sets, e.g. the bornologification of the topology of
pointwise convergence on the dual of any infinite dimensional Banach space is (by
the unform boundedness theorem) that of uniform convergence on the unit ball,
but the dual unit ball is only compact for the former.

Conversely, we consider a topology τ which has for one of the above mentioned
types the same objects as the original one. Then the identity Eborn → (E, τ) is
bounded and hence continuous by 4.1.1 .

4.5. Lemma. Let E be a bornological locally convex vector space, U ⊆ E a convex
subset. Then U is open for the locally convex topology of E if and only if U is open
for the c∞-topology.
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4.8 4. The c∞-Topology

Furthermore, an absolutely convex subset U of E is a 0-neighborhood for the locally
convex topology if and only if it is so for the c∞-topology.

Proof. (⇒) The c∞-topology is finer than the locally convex topology, cf. 4.2 .

(⇐) Let first U be an absolutely convex 0-neighborhood for the c∞-topology. Hence,
U absorbs Mackey-0-sequences by 2.13 . By 4.1.3 we have to show that U is
bornivorous, in order to obtain that U is a 0-neighborhood for the locally convex
topology. But this follows immediately from 4.3 .

Let now U be convex and c∞-open, let x ∈ U be arbitrary. We consider the c∞-
open absolutely convex set W := (U − x) ∩ (x − U) which is a 0-neighborhood of
the locally convex topology by the argument above. Then x ∈ W + x ⊆ U . So U
is open in the locally convex topology.

4.6. Corollary. The bornologification of a locally convex space E is the finest
locally convex topology coarser than the c∞-topology on E.

4.7. Definition. In 2.12 we defined the c∞-topology on an arbitrary locally
convex space E as the final topology with respect to the smooth curves c : R→ E,
see also 2.13 . Now we will compare the c∞-topology with other refinements of a
given locally convex topology. We first specify those refinements.

Let E be a locally convex vector space.

(i) We denote by kE the Kelley-fication of the locally convex topology of E, i.e.
the vector space E together with the final topology induced by the inclusions of
the subsets being compact for the locally convex topology.

(ii) We denote by sE the vector space E with the final topology induced by the
curves being continuous for the locally convex topology, or equivalently the se-
quences N∞ → E converging in the locally convex topology. The equivalence holds
since the infinite polygon through a converging sequence can be continuously pa-
rameterized by a compact interval.

(iii) We recall that by c∞E we denote the vector space E with its c∞-topology, i.e.
the final topology induced by the smooth curves.

Using that smooth curves are continuous and that converging sequences N∞ → E
have compact images, the following identities are continuous: c∞E → sE → kE →
E.

If the locally convex topology of E coincides with the topology of c∞E, resp. sE,
resp. kE then we call E smoothly generated, resp. sequentially generated, resp.
compactly generated.

4.8. Example. On E = RJ all the refinements of the locally convex topology
described in 4.7 above are different, i.e. c∞E 6= sE 6= kE 6= E, provided the
cardinality of the index set J is at least that of the continuum.

Proof. It is enough to show this for J equipotent to the continuum, since RJ1 is a
direct summand in RJ2 for J1 ⊆ J2.

(c∞E 6= sE) We may take as index set J the set c0 of all real sequences converging
to 0. Define a sequence (xn) in E by (xn)j := jn. Since every j ∈ J is a 0-sequence
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we conclude that the xn converge to 0 in the locally convex topology of the product,
hence also in sE. Assume now that the xn converge towards 0 in c∞E. Then by
4.9 some subsequence converges Mackey to 0. Thus, there exists an unbounded

sequence of reals λn with {λnxn : n ∈ N} bounded. Let j be a 0-sequence with
{jnλn : n ∈ N} unbounded (e.g. (jn)−2 := 1 + max{|λk| : k ≤ n}). Then the j-th
coordinate jnλn of λnxn is not bounded with respect to n, a contradiction.

(sE 6= kE) Consider in E the subset

A :=
{
x ∈ {0, 1}J : xj = 1 for at most countably many j ∈ J

}
.

It is clearly closed with respect to the converging sequences, hence closed in sE.
But it is not closed in kE since it is dense in the compact set {0, 1}J .

(kE 6= E) Consider in E the subsets

An :=
{
x ∈ E : |xj | < n for at most n many j ∈ J

}
.

Each An is closed in E since its complement is the union of the open sets {x ∈ E :
|xj | < n for all j ∈ Jo} where Jo runs through all subsets of J with n+ 1 elements.
We show that the union A :=

⋃
n∈NAn is closed in kE. So let K be a compact

subset of E; then K ⊆
∏

prj(K), and each prj(K) is compact, hence bounded in
R. Since the family ({j ∈ J : prj(K) ⊆ [−n, n]})n∈N covers J , there has to exist an
N ∈ N and infinitely many j ∈ J with prj(K) ⊆ [−N,N ]. Thus K ∩An = ∅ for all
n > N , and hence, A ∩K =

⋃
n≤N An ∩K is closed. Nevertheless, A is not closed

in E, since 0 is in Ā but not in A.

4.9. c1-convergent sequences

By 2.13 every M -convergent sequence gives a continuous mapping N∞ → c∞E
and hence converges in c∞E. Conversely, a sequence converging in c∞E is not
necessarily Mackey convergent, see [39, Proposition 15.a]. However, one has the
following result.

Lemma. A sequence (xn) is convergent to x in the c∞-topology if and only if every
subsequence has a subsequence which is Mackey convergent to x.

Proof. (⇐) is true for any topological convergence: In fact, if xn would not
converge to x, then there would be a neighborhood U of x and a subsequence of xn
which lies outside of U and hence cannot have a subsequence converging to x.

(⇒) It is enough to show that (xn) has a subsequence which converges Mackey to x,
since every subsequence of a c∞-convergent sequence is clearly c∞-convergent to the
same limit. Without loss of generality we may assume that x /∈ A := {xn : n ∈ N}.
Hence, A cannot be c∞-closed, and thus there is a sequence nk ∈ N such that
(xnk) converges Mackey to some point x′ /∈ A. The set {nk : k ∈ N} cannot be
bounded, and hence we may assume that the nk are strictly increasing by passing
to a subsequence. But then (xnk) is a subsequence of (xn) which converges in c∞E
to x and Mackey to x′ hence also in c∞E. Thus x′ = x.

Remark. A consequence of this lemma is, that there is no topology in general
having as convergent sequences exactly the M -convergent ones, since this topology
obviously would have to be coarser than the c∞-topology.
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One can use this lemma also to show that the c∞-topology on a locally convex
vector space gives a so called arc-generated vector space. See [41, 2.3.9,2.3.13] for
a discussion of this.

Let us now describe several important situations where at least some of these topolo-
gies coincide. For the proof we will need the following

4.10. Lemma. [6] For any locally convex space E the following statements are
equivalent:

(1) The sequential closure of any subset is formed by all limits of sequences in
the subset.

(2) For any given double sequence (xn,k) in E with xn,k convergent to some
xk for n → ∞ and k fixed and xk convergent to some x, there are strictly
increasing sequences i 7→ n(i) and i 7→ k(i) with xn(i),k(i) → x for i→∞.

Proof. (1⇒2) Take an a0 ∈ E different from k · (xn+k,k − x) and from k · (xk − x)
for all k and n. Define A := {an,k := xn+k,k − 1

k · a0 : n, k ∈ N}. Then x is in the
sequential closure of A, since xn+k,k − 1

k · a0 converges to xk − 1
k · a0 as n → ∞,

and xk − 1
k · a0 converges to x− 0 = x as k →∞. Hence, by (1) there has to exist

a sequence i 7→ (ni, ki) with ani,ki convergent to x. By passing to a subsequence
we may suppose that i 7→ ki and i 7→ ni are increasing. Assume that i 7→ ki is
bounded, hence finally constant. Then a subsequence xni+ki,ki− 1

ki
·a0 is converging

to xk − 1
k · a0 6= x if i 7→ ni is unbounded, and to xn+k,k − 1

k · a0 6= x if i 7→ ni
is bounded, which both yield a contradiction. Thus, i 7→ ki can be chosen strictly
increasing. But then

xni+ki,ki = ani,ki + 1
ki
a0 → x.

( 1 ) ⇐ ( 2 ) is obvious.

4.11. Theorem. For any bornological vector space E the following implications
hold:

(1) c∞E = E provided the closure of subsets in E is formed by all limits of
sequences in the subset; hence in particular if E is metrizable.

(2) c∞E = E provided E is the strong dual of a Fréchet Schwartz space;
(3) c∞E = kE provided E is the strict inductive limit of a sequence of Fréchet

spaces.
(4) c∞E = sE provided E satisfies the M -convergence condition, i.e. every

sequence converging in the locally convex topology is M-convergent.
(5) sE = E provided E is the strong dual of a Fréchet Montel space;

Proof. ( 1 ) Using the lemma 4.10 above one obtains that the closure and the
sequential closure coincide, hence sE = E. It remains to show that sE → c∞E is
(sequentially) continuous. So suppose a sequence converging to x is given, and let
(xn) be an arbitrary subsequence. Then xn,k := k(xn − x)→ k · 0 = 0 for n→∞,
and hence by lemma 4.10 there are subsequences ki, ni with ki · (xni − x) → 0,
i.e. i 7→ xni is M-convergent to x. Thus, the original sequence converges in c∞E

by 4.9 .

( 3 ) Let E be the strict inductive limit of the Fréchet spaces En. By [68, 4.8.1]
every En carries the trace topology of E, hence is closed in E, and every bounded
subset of E is contained in some En. Thus, every compact subset of E is contained
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as compact subset in some En. Since En is a Fréchet space such a subset is even
compact in c∞En by ( 1 ) and hence compact in c∞E. Thus, the identity kE →
c∞E is continuous.

( 4 ) is valid, since the M-closure topology is the final one induced by the M-
converging sequences.

( 5 ) Let E be the dual of any Fréchet Montel space F . By [75, 52.29] E is
bornological. First we show that kE = sE. Let K ⊆ E = F ′ be compact for
the locally convex topology. Then K is bounded, hence equicontinuous since F is
barrelled by [68, 5.2.2]. Since F is separable by [53, 11.6.2, p231] the set K is
metrizable in the weak topology σ(E,F ) by [75, 52.21]. By [68, 7.4.12] this weak
topology coincides with the topology of uniform convergence on precompact subsets
of F . Since F is a Montel space, this latter topology is the strong one, and even the
bornological one, as remarked at the beginning. Thus, the (metrizable) topology
on K is the initial one induced by the converging sequences. Hence, the identity
kE → sE is continuous, and therefore sE = kE.

It remains to show kE = E. Since F is Montel the locally convex topology of
the strong dual coincides with the topology of uniform convergence on precom-
pact subsets of F . Since F is metrizable this topology coincides with the so-called
equicontinuous weak∗-topology, cf. [75, 52.22], which is the final topology induced
by the inclusions of the equicontinuous subsets. These subsets are by the Alaoğlu-
Bourbaki theorem [68, 7.4.12] relatively compact in the topology of uniform conver-
gence on precompact subsets. Thus, the locally convex topology of E is compactly
generated.

( 2 ) By ( 5 ), and since Fréchet Schwartz spaces are Montel by [75, 52.24], we
have sE = E and it remains to show that c∞E = sE. So let (xn) be a sequence
converging to 0 in E. Then the set {xn : n ∈ N} is relatively compact, and by
[41, 4.4.39] it is relatively compact in some Banach space EB . Hence, at least a
subsequence has to be convergent in EB . Clearly its Mackey limit has to be 0. This
shows that (xn) converges to 0 in c∞E, and hence c∞E = sE. One can even show
that E satisfies the Mackey convergence condition, see [75, 52.28].

4.12. Example

We give now a non-metrizable example to which 4.11.1 applies. Let E denote
the subspace of RJ of all sequences with countable support. Then the closure of
subsets of E is given by all limits of sequences in the subset, but for non-countable
J the space E is not metrizable. This was proved in [7].

4.13. Remark . The conditions 4.11.1 and 4.11.2 are rather disjoint since every
locally convex space, that has a countable basis of its bornology and for which the
sequential adherence of subsets (the set of all limits of sequences in it) is sequentially
closed, is normable as the following proposition shows:

Proposition. Let E be a non-normable bornological locally convex space that has
a countable basis of its bornology. Then there exists a subset of E whose sequential
adherence is not sequentially closed.

Proof. Let {Bk : k ∈ N0} be an increasing basis of the von Neumann bornology
with B0 = {0}. Since E is non-normable we may assume that Bk does not absorb
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Bk+1 for all k. Now choose bn,k ∈ 1
nBk+1 with bn,k /∈ Bk. We consider the

double sequence {bk,0 − bn,k : n, k ≥ 1}. For fixed k the sequence bn,k converges
by construction (in EBk+1) to 0 for n → ∞. Thus, bk,0 − 0 is the limit of the
sequence bk,0 − bn,k for n → ∞, and bk,0 converges to 0 for k → ∞. Suppose
bk(i),0 − bn(i),k(i) converges to 0. So it has to be bounded, thus there must be
an N ∈ N with B1 − {bk(i),0 − bn(i),k(i) : i ∈ N} ⊆ BN . Hence, bn(i),k(i) =
bk(i),0 − (bk(i),0 − bn(i),k(i)) ∈ BN , i.e. k(i) < N . This contradicts 4.10.2 .

4.14. Lemma. Let U be a c∞-open subset of a locally convex space, let µn → ∞
be a sequence of reals, and let f : U → F be a mapping which is bounded on
each µ-converging sequence in U . Then f is bounded on every bornologically
compact subset (i.e. compact in some EB) of U .

Proof. Let K ⊆ EB ∩ U be compact in EB for some bounded absolutely convex
set B. Assume that f(K) is not bounded. By composing with linear functionals
we may assume that F = R. So there is a sequence (xn) in K with |f(xn)| → ∞.
Since K is compact in the normed space EB we may assume that (xn) converges to
x ∈ K. By passing to a subsequence we may even assume that (xn) is µ-converging.
Contradiction.

4.15. Lemma. Let U be c∞-open in E × R and K ⊆ R be compact. Then
U0 := {x ∈ E : {x} ×K ⊆ U} is c∞-open in E.

Proof. Let x : R→ E be a smooth curve in E with x(0) ∈ U0, i.e. (x(0), t) ∈ U for
all t ∈ K. We have to show that x(s) ∈ U0 for all s near 0. So consider the smooth
map x×R : R×R→ E×R. By assumption (x×R)−1(U) is open in c∞(R2) = R2

(by 4.11.1 ). It contains the compact set {0} × K and hence also a W × K for
some neighborhood W of 0 in R. But this amounts in saying that x(W ) ⊆ U0.

4.16. The c∞-topology of a product. Consider the product E × F of two
locally convex vector spaces. Since the projections onto the factors are linear and
continuous, hence smooth, we always have that id : c∞(E × F )→ c∞(E)× c∞(F )
is continuous. We will show in 4.20 that it is not always a homeomorphism.
However, if one of the factors is finite dimensional the product is well behaved:

Corollary. For any locally convex space E the c∞-topology of E×Rn is the product
topology of the c∞-topologies of the two factors, so that we have c∞(E × Rn) =
c∞(E)× Rn.

Proof. This follows recursively from the special case E × R, for which we can
proceed as follows. Take a c∞-open neighborhood U of some point (x, t) ∈ E × R.
Since the inclusion map s 7→ (x, s) from R into E ×R is continuous and affine, the
inverse image of U in R is an open neighborhood of t. Let’s take a smaller compact
neighborhood K of t. Then by the previous lemma 4.15 U0 := {y ∈ E : {y}×K ⊆
U} is a c∞-open neighborhood of x, and hence U0 ×K ⊆ U is a neighborhood of
(x, t) in c∞(E)× R, what was to be shown.

4.17. Lemma. Let U be c∞-open in a locally convex space and x ∈ U . Then the
star stx(U) := {x + v : x + λv ∈ U for all |λ| ≤ 1} with center x in U is again
c∞-open.
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Proof. Let c : R→ E be a smooth curve with c(0) ∈ stx(U). The smooth mapping
f : (t, s) 7→ (1− s)x+ sc(t) maps {0} × {s : |s| ≤ 1} into U . So there exists δ > 0
with f

(
{(t, s) : |t| < δ, |s| ≤ 1}

)
⊆ U . Thus, c(t) ∈ stx(U) for |t| < δ.

4.18. Lemma. The (absolutely) convex hull of a c∞-open set is again c∞-open.

Proof. Let U be c∞-open in a locally convex vector space E.
For each x ∈ U the set

Ux := {x+ t(y − x) : t ∈ [0, 1], y ∈ U} = U ∪
⋃

0<t≤1

(x+ t(U − x))

is c∞-open. The convex hull can be constructed by applying n times the operation
U 7→

⋃
x∈U Ux and taking the union over all n ∈ N, which respects c∞-openness.

The absolutely convex hull can be obtained by forming first {λ : |λ| = 1} · U =⋃
|λ|=1 λU which is c∞-open, and then forming the convex hull.

4.19. Corollary. Let E be a bornological convenient vector space containing a
nonempty c∞-open subset which is either locally compact or metrizable in the c∞-
topology. Then the c∞-topology on E is locally convex. In the first case E is finite
dimensional, in the second case E is a Fréchet space.

Proof. Let U ⊆ E be a c∞-open metrizable subset. We may assume that 0 ∈ U .
Then there exists a countable neighborhood basis of 0 in U consisting of c∞-open
sets. This is also a neighborhood basis of 0 for the c∞-topology of E. We take
the absolutely convex hulls of these open sets, which are again c∞-open by 4.18 ,
and obtain by 4.5 a countable neighborhood basis for the bornologification of the
locally convex topology, so the latter is metrizable and Fréchet, and by 4.11.1 it
equals the c∞-topology.

If U is locally compact in the c∞-topology we may find a c∞-open neighborhood V
of 0 with compact closure V in the c∞-topology. By lemma 4.18 the absolutely
convex hull of V is also c∞-open, and by 4.5 it is also open in the bornologification
Eborn of E. The set V is also compact in Eborn, hence precompact there. So
the absolutely convex hull of V is also precompact by [68, 6.4.3]. Therefore, the
absolutely convex hull of V is a precompact neighborhood of 0 in Eborn, thus E is
finite dimensional by [68, 4.4.5]. So Eborn = c∞(E).

Now we describe classes of spaces where c∞E 6= E or where c∞E is not even a
topological vector space. Finally, we give an example where the c∞-topology is not
completely regular.

4.20. Proposition. Let E and F be bornological locally convex vector spaces. If
there exists a bilinear smooth mapping m : E × F → R that is not continuous with
respect to the locally convex topologies, then c∞(E × F ) is not a topological vector
space and c∞(E × F ) 6= c∞E × c∞F .

We shall show in lemma 5.5 below that multilinear mappings are smooth if and
only if they are bounded.

Proof. Suppose that the addition c∞(E × F ) × c∞(E × F ) → c∞(E × F ) is
continuous with respect to the product topology. Using the continuous inclusions
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c∞E → c∞(E × F ) and c∞F → c∞(E × F ) we can factor the identity as c∞E ×
c∞F → c∞(E×F )×c∞(E×F )−+→ c∞(E×F ) and hence c∞E×c∞F = c∞(E×F ).

In particular, m : c∞E × c∞F = c∞(E × F ) → R is continuous. Thus, for every
ε > 0 there are 0-neighborhoods U and V with respect to the c∞-topology such
that m(U × V ) ⊆ (−ε, ε). Then also m(〈U〉 × 〈V 〉) ⊆ (−ε, ε) where 〈 〉 denotes the
absolutely convex hull. By 4.5 one concludes that m is continuous with respect
to the locally convex topology, a contradiction.

4.21. Corollary. Let E be a non-normable bornological locally convex space. Then
c∞(E × E′) is not a topological vector space.

Proof. By 4.20 it is enough to show that ev : E × E′ → R is not continuous for
the bornological topologies on E and E′; if it were so there was be a neighborhood
U of 0 in E and a neighborhood U ′ of 0 in E′ such that ev(U ×U ′) ⊆ [−1, 1]. Since
U ′ is absorbing, U is scalarwise bounded, hence a bounded neighborhood. Thus,
E is normable.

4.22. Remark. In particular, for a Fréchet Schwartz space E (e.g. RN) and its
dual E′ we have c∞(E×E′) 6= c∞E× c∞E′, since by 4.11 we have c∞E = E and
c∞E′ = E′, so equality would contradict corollary 4.21 .

In order to get a large variety of spaces where the c∞-topology is not a topological
vector space topology the next three technical lemmas will be useful.

4.23. Lemma. Let E be a locally convex vector space. Suppose a double sequence
bn,k in E exists which satisfies the following two conditions:

(b’) For every sequence k 7→ nk the sequence k 7→ bnk,k has no accumulation
point in c∞E.

(b”) For all k the sequence n 7→ bn,k converges to 0 in c∞E.

Suppose furthermore that a double sequence cn,k in E exists that satisfies the fol-
lowing two conditions:

(c’) For every 0-neighborhood U in c∞E there exists some k0 such that cn,k ∈ U
for all k ≥ k0 and all n.

(c”) For all k the sequence n 7→ cn,k has no accumulation point in c∞E.

Then c∞E is not a topological vector space.

Proof. Assume that the addition c∞E × c∞E → c∞E is continuous. In this
proof convergence is meant always with respect to c∞E. We may without loss
of generality assume that cn,k 6= 0 for all n, k, since by (c”) we may delete for
each n all those (finitely many) cn,k which are equal to 0. Then we consider A :=
{bn,k + εn,kcn,k : n, k ∈ N} where the εn,k ∈ {−1, 1} are chosen in such a way that
0 /∈ A.

We first show that A is closed in the sequentially generated topology c∞E: Let
bni,ki + εni,kicni,ki → x, and assume first that (ki) is unbounded. By passing if
necessary to a subsequence we may even assume that i 7→ ki is strictly increasing.
Then cni,ki → 0 by (c’), hence bni,ki → x by the assumption that addition is
continuous, which is a contradiction to (b’). Thus, (ki) is bounded, and we may
assume it to be constant. Now suppose that (ni) is unbounded. Then bni,k → 0 by
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(b”), and hence εni,kcni,k → x, and for a subsequence where ε is constant one has
cni,k → ±x, which is a contradiction to (c”). Thus, ni is bounded as well, and we
may assume it to be constant. Hence, x = bn,k + εn,kcn,k ∈ A.

By the assumed continuity of the addition there exists an open and symmetric
0-neighborhood U in c∞E with U + U ⊆ E \ A. For K sufficiently large and n
arbitrary one has cn,K ∈ U by (c’). For such a fixed K and N sufficiently large
bN,K ∈ U by (b”). Thus, bN,K + εN,KcN,K /∈ A, which is a contradiction.

Let us now show that many spaces have a double sequence cn,k as in the above
lemma.

4.24. Lemma. Let E be an infinite dimensional metrizable locally convex space.
Then a double sequence cn,k subject to the conditions (c’) and (c”) of 4.23 exists.

Proof. If E is normable we choose a sequence (cn) in the unit ball without accu-
mulation point and define cn,k := 1

k cn. If E is not normable we take a countable
increasing family of non-equivalent seminorms pk generating the locally convex
topology, and we choose cn,k with pk(cn,k) = 1

k and pk+1(cn,k) > n.

Next we show that many spaces have a double sequence bn,k as in lemma 4.23 .

4.25. Lemma. Let E be a non-normable bornological locally convex space hav-
ing a countable basis of its bornology. Then a double sequence bn,k subject to the
conditions (b’) and (b”) of 2.11 exists.

Proof. Let Bn (n ∈ N) be absolutely convex sets forming an increasing basis of
the bornology. Since E is not normable the sets Bn can be chosen such that Bn
does not absorb Bn+1. Now choose bn,k ∈ 1

nBk+1 with bn,k /∈ Bk.

Using these there lemmas one obtains the

4.26. Proposition. For the following bornological locally convex spaces the c∞-
topology is not a vector space topology:

(i) Every bornological locally convex space that contains as c∞-closed subspaces
an infinite dimensional Fréchet space and a space which is non-normable in
the bornological topology and having a countable basis of its bornology.

(ii) Every strict inductive limit of a strictly increasing sequence of infinite di-
mensional Fréchet spaces.

(iii) Every product for which at least 2ℵ0 many factors are non-zero.
(iv) Every coproduct for which at least 2ℵ0 many summands are non-zero.

Proof. (i) follows directly from the last 3 lemmas.

(ii) Let E be the strict inductive limit of the spaces En (n ∈ N). Then E contains
the infinite dimensional Fréchet space E1 as subspace. The subspace generated
by points xn ∈ En+1 \ En (n ∈ N) is bornologically isomorphic to R(N), hence its
bornology has a countable basis. Thus, by (i) we are done.

(iii) Such a product E contains the Fréchet space RN as complemented subspace.
We want to show that R(N) is also a subspace of E. For this we may assume that the
index set J is RN and all factors are equal to R. Now consider the linear subspace
E1 of the product generated by the elements xn ∈ E = RJ , where (xn)j := j(n)
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for every j ∈ J = RN. The linear map R(N) → E1 ⊆ E that maps the n-th
unit vector to xn is injective, since for a given finite linear combination

∑
tnx

n =
0 the j-th coordinate for j(n) := sign(tn) equals

∑
|tn|. It is continuous since

R(N) carries the finest locally convex structure. So it remains to show that it is a
bornological embedding. We have to show that any bounded B ⊆ E1 is contained
in a subspace generated by finitely many xn. Otherwise, there would exist a strictly
increasing sequence (nk) and bk =

∑
n≤nk t

k
nx

n ∈ B with tknk 6= 0. Define an index
j recursively by j(n) := n|tkn|−1 · sign

(∑
m<n t

k
mj(m)

)
if n = nk and j(n) := 0 if

n 6= nk for all k. Then the absolute value of the j-th coordinate of bk evaluates as
follows:

|(bk)j | =
∣∣∣ ∑
n≤nk

tknj(n)
∣∣∣ =

∣∣∣ ∑
n<nk

tknj(n) + tknkj(nk)
∣∣∣

=
∣∣∣ ∑
n<nk

tknj(n)
∣∣∣+ |tknkj(nk)| ≥ |tknkj(nk)| = nk.

Hence, the j-th coordinates of {bk : k ∈ N} are unbounded with respect to k ∈ N,
thus B is unbounded.

(iv) We can not apply lemma 4.23 since every double sequence has countable
support and hence is contained in the dual R(A) of a Fréchet Schwartz space RA for
some countable subset A ⊂ J . It is enough to show (iv) for R(J) where J = Nt c0.
Let A := {jn(en + ej) : n ∈ N, j ∈ c0, jn 6= 0 for all n}, where en and ej denote
the unit vectors in the corresponding summand. The set A is c∞-closed, since its
intersection with finite subsums is finite. Suppose there exists a symmetric c∞-open
0-neighborhood U with U + U ⊆ E \ A. Then for each n there exists a jn 6= 0
with jnen ∈ U . We may assume that n 7→ jn converges to 0 and hence defines
an element j ∈ c0. Furthermore, there has to be an N ∈ N with jNej ∈ U , thus
jN (eN + ej) ∈ (U + U) ∩A, in contradiction to U + U ⊆ E \A.

Remark. A nice and simple example where one either uses (i) or (ii) is RN⊕R(N).
The locally convex topology on both factors coincides with their c∞-topology (the
first being a Fréchet (Schwartz) space, cf. (i) of 4.11 , the second as dual of the
first, cf. (ii) of 4.11 ); but the c∞-topology on their product is not even a vector
space topology.

From (ii) it follows also that each space C∞c (M,R) of smooth functions with com-
pact support on a non-compact separable finite dimensional manifold M has the
property, that the c∞-topology is not a vector space topology.

4.27

Although the c∞-topology on a convenient vector space is always functionally sepa-
rated, hence Hausdorff, it is not always completely regular as the following example
shows.

Example. The c∞-topology is not completely regular. The c∞-topology of
RJ is not completely regular if the cardinality of J is at least 2ℵ0 .

Proof. It is enough to show this for an index set J of cardinality 2ℵ0 , since the
corresponding product is a complemented subspace in every product with larger
index set. We prove the theorem by showing that every function f : RJ → R
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which is continuous for the c∞-topology is also continuous with respect to the
locally convex topology. Hence, the completely regular topology associated to the
c∞-topology is the locally convex topology of E. That these two topologies are
different was shown in 4.8 . We use the following theorem of [92]: Let E0 :=
{x ∈ RJ : supp(x) is countable}, and let f : E0 → R be sequentially continuous.
Then there is some countable subset A ⊂ J such that f(x) = f(xA), where in this
proof xA is defined as xA(j) := x(j) for j ∈ A and xA(j) = 0 for j /∈ A. Every
sequence which is converging in the locally convex topology of E0 is contained
in a metrizable complemented subspace RA for some countable A and therefore is
even M-convergent. Thus, this theorem of Mazur remains true if f is assumed to be
continuous for the M-closure topology. This generalization follows also from the fact
that c∞E0 = E0, cf. 4.12 . Now let f : RJ → R be continuous for the c∞-topology.
Then f |E0 : E0 → R is continuous for the c∞-topology, and hence there exists a
countable set A0 ⊂ J such that f(x) = f(xA0) for any x ∈ E0. We want to show
that the same is true for arbitrary x ∈ RJ . In order to show this we consider for
x ∈ RJ the map ϕx : 2J → R defined by ϕx(A) := f(xA)−f(xA∩A0) for any A ⊆ J ,
i.e. A ∈ 2J . For countable A one has xA ∈ E0, hence ϕx(A) = 0. Furthermore,
ϕx is sequentially continuous, where one considers on 2J the product topology of
the discrete factors 2 = {0, 1}: In order to see this, consider a converging sequence
of subsets An → A, i.e. for every j ∈ J one has for the characteristic functions
χAn(j) = χA(j) for n sufficiently large. Then {n(xAn − xA) : n ∈ N} is bounded
in RJ since for fixed j ∈ J the j-th coordinate equals 0 for n sufficiently large.
Thus, xAn converges Mackey to xA, and since f is continuous for the c∞-topology
ϕx(An) → ϕx(A). Now we can apply another theorem of [92]: Any function
f : 2J → R that is sequentially continuous and is zero on all countable subsets of J
is identically 0, provided the cardinality of J is smaller than the first inaccessible
cardinal. Thus, we conclude that 0 = ϕx(J) = f(x)−f(xA0) for all x ∈ RJ . Hence,
f factors over the metrizable space RA0 and is therefore continuous for the locally
convex topology.

In general, the trace of the c∞-topology on a linear subspace is not its c∞-topology.
However, for c∞-closed subspaces this is true:

4.28. Lemma. Closed embedding lemma. Let E be a linear c∞-closed sub-
space of F . Then the trace of the c∞-topology of F on E is the c∞-topology on
E

Proof. Since the inclusion is continuous and hence bounded it is c∞-continuous.
Therefore, it is enough to show that it is closed for the c∞-topologies. So let A ⊆ E
be c∞E-closed. And let xn ∈ A converge Mackey towards x in F . Then x ∈ E,
since E is assumed to be c∞-closed, and hence xn converges Mackey to x in E.
Since A is c∞-closed in E, we have that x ∈ A.

We will give an example in 4.33 below which shows that c∞-closedness of the
subspace is essential for this result. Another example will be given in 4.36 .

4.29. Theorem. The c∞-completion. For any locally convex space E there
exists a unique (up to a bornological isomorphism) convenient vector space Ẽ and
a bounded linear injection i : E → Ẽ with the following universal property:

Each bounded linear mapping ` : E → F into a convenient vector space F
has a unique bounded extension ˜̀ : Ẽ → F such that ˜̀◦ i = `.
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Furthermore, i(E) is dense for the c∞-topology in Ẽ.

Proof. Let Ẽ be the c∞-closure of E in the locally convex completion \Eborn of the
bornologification Eborn of E. This is a linear subspace, since the affine translations
x 7→ x+y are bounded. The inclusion i : E → Ẽ is bounded (but not continuous in
general). By 4.28 the c∞-topology on Ẽ is the trace of the c∞-topology on \Eborn.
Hence, i(E) is dense also for the c∞-topology in Ẽ.

Using the universal property of the locally convex completion the mapping ` has a
unique continuous extension ˆ̀ : \Eborn → F̂ into the locally convex completion of
F , whose restriction to Ẽ has values in F , since F is c∞-closed in F̂ , so it is the
desired ˜̀. Uniqueness follows, since i(E) is dense for the c∞-topology in Ẽ.

4.30. Proposition. The c∞-completion via c∞-dense embeddings. Let E
be c∞-dense and bornologically embedded into a c∞-complete locally convex space
F . If E → F has the extension property for bounded linear functionals, then F is
bornologically isomorphic to the c∞-completion of E.

Example 4.36.6 shows, that the extension property cannot be dropped.

Proof. We have to show that E → F has the universal property for extending
bounded linear maps T into c∞-complete locally convex spaces G. Since we are
only interested in bounded mappings, we may take the bornologification of G and
hence may assume that G is bornological. Consider the following diagram

E �
� //

T

��

F

]λ◦T

��

��

��

∏
G′ R

prλ
""

G
- 

δ
<<

λ // R

The arrow δ, given by δ(x)λ := λ(x), is a bornological embedding, i.e. the image of
a set is bounded if and only if the set is bounded, since B ⊆ G is bounded if and
only if λ(B) ⊆ R is bounded for all λ ∈ G′, i.e. δ(B) ⊆

∏
G′ R is bounded.

By assumption, the dashed arrow on the right hand side exists, hence by the uni-
versal property of the product the dashed vertical arrow (denoted T̃ ) exists. It
remains to show that it has values in the image of δ. Since T̃ is bounded we have

T̃ (F ) = T̃ (Ec
∞

) ⊆ T̃ (E)
c∞

⊆ δ(G)
c∞

= δ(G),

since G is c∞-complete and hence also δ(G), which is thus c∞-closed.

The uniqueness follows, since as a bounded linear map T̃ has to be continuous
for the c∞-topology (since it preserves the smooth curves by 2.11 which in turn
generate the c∞-topology), and E lies dense in F with respect to this topology.

4.31. Proposition. Inductive representation of bornological locally con-
vex spaces. For a locally convex space E the bornologification Eborn is by 4.2 the
colimit of all the normed spaces EB for the absolutely convex bounded sets B. The
colimit of the respective completions ẼB is the linear subspace of the c∞-completion
Ẽ consisting of all limits in Ẽ of Mackey Cauchy sequences in E.
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Proof. Let E(1) be the Mackey adherence of E in the c∞-completion Ẽ, by which
we mean the limits in Ẽ of all sequences in E which converge Mackey in Ẽ. Then
E(1) is a subspace of the locally convex completion \Eborn. For every absolutely
convex bounded set B ⊆ E we have the continuous inclusion EB → Eborn, and
by passing to the c∞-completion we get mappings ιB : ÊB = ẼB → Ẽ. These
mappings commute with the connecting morphisms ÊB → ÊB′ for B ⊆ B′ and
have values in the Mackey adherence of E, since every point in ÊB is the limit of a
sequence in EB , and hence its image is the limit of this Mackey Cauchy sequence
in E. Moreover, E(1) =

⋃
B ιB(ÊB), since any x ∈ E(1) is the Mackey limit of a

sequence (xn) in E. This sequence is a Cauchy-sequence in some EB and hence
converge to some y in ÊB . Then ιB(y) = x, since the mapping ιB : ÊB → E(1) is
continuous.

We claim that the Mackey adherence E(1) together with the mappings ιB : ÊB →
E(1) has the universal property of the colimit lim−→B

ÊB . In fact, let TB : ÊB → F

be linear mappings, which commute with the connecting morphisms ÊB → ÊB′ for
B ⊆ B′. In particular, the TB |EB : EB → F are continuous, hence define a unique
continuous linear mapping T : Eborn = lim−→B

EB → F , which in turn extends to a
continuous linear mapping T̂ : \Eborn ⊇ E(1) → F̂ . Since E(1) =

⋃
B ιB(ÊB) and

T̂ |EB = TB |EB we get T̂ |dEB = TB for all B.

In spite of 4.36.1 we can use the Mackey adherence M-Adh : A 7→ A(1) to describe
the c∞-closure in the following inductive way:

4.32. Proposition. Mackey adherences. For ordinal numbers α the Mackey
adherence A(α) of order α is defined recursively by:

A(α) :=

{
M-Adh(A(β)) if α = β + 1⋃
β<αA

(β) if α is a limit ordinal number.

Then the closure A of A in the c∞-topology coincides with A(ω1), where ω1 denotes
the first uncountable ordinal number, i.e. the set of all countable ordinal numbers.

Proof. Let us first show that A(ω1) is c∞-closed. So take a sequence xn ∈ A(ω1) =⋃
α<ω1

A(α), which converges Mackey to some x. Then there are αn < ω1 with
xn ∈ A(αn). Let α := supn αn. Then α is a again countable and hence less than
ω1. Thus, xn ∈ A(αn) ⊆ A(α), and therefore x ∈ M-Adh(A(α)) = A(α+1) ⊆ A(ω1)

since α+ 1 ≤ ω1.

It remains to show that A(α) is contained in A for all α. We prove this by transfinite
induction. So assume that for all β < α we have A(β) ⊆ A. If α is a limit
ordinal number then A(α) =

⋃
β<αA

(β) ⊆ A. If α = β + 1 then every point in
A(α) = M-Adh(A(β)) is the Mackey-limit of some sequence in A(β) ⊆ A, and since
A is c∞-closed, this limit has to belong to it. So A(α) ⊆ A in all cases.

4.33. Example. The trace of the c∞-topology is not the c∞-topology and the
Mackey-adherence is not the c∞-closure, in general.

Proof. Consider

A :=
{
an,k :=

( 1
nχ{1,...,k},

1
kχ{n}

)
: 1 ≤ n, k ∈ N

}
⊆ E := RN × R(N).
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Let F be the linear subspace of E generated by A. We show that the closure of A
with respect to the c∞-topology of F is strictly smaller than that with respect to
the trace topology of the c∞-topology of E.

The set A is closed in the c∞-topology of F : Assume that a sequence (anj ,kj ) is
M-converging to (x, y). Then the second component of anj ,kj has to be bounded.
Thus, j 7→ nj has to be bounded and may be assumed to have constant value n∞.
If j 7→ kj were unbounded, then (x, y) = ( 1

n∞
χN, 0), which is not an element of F .

Thus, j 7→ kj has to be bounded too and may be assumed to have constant value
k∞. Thus, (x, y) = an∞,k∞ ∈ A.

The set A is not closed in the trace topology since (0,0) is contained in the closure
of A with respect to the c∞-topology of E: For k → ∞ and fixed n the sequence
an,k is M-converging to ( 1

nχN, 0), and 1
nχN is M-converging to 0 for n→∞.

4.34. Example. We consider the space `∞c (X) := {f ∈ `∞(X) : supp f is finite}
as subspace of `∞(X) := `∞(X,R) as defined in 2.15 for a set X together with a
family B of subsets called bounded.
Claim: The c∞-closure of `∞c (X) in `∞(X) equals

c0(X) := {f ∈ `∞(X) : f |B ∈ c0(B) for all B ∈ B},

provided that X is countable.

Proof. The right hand side is just the intersection c0(X) :=
⋂
B∈B ι

−1
B (c0(B)),

where ιB : `∞(X) → `∞(B) denotes the restriction map. We use the notation
c0(X), since in the case where X is bounded this is exactly the space {f ∈ `∞(X) :
{x : |f(x)| ≥ ε} is finite for all ε > 0}. In particular, this applies to the bounded
space N, where c0(N) = c0. Since `∞(X) carries the initial structure with respect
to these maps c0(X) is closed. It remains to show that `∞c (X) is c∞-dense in c0(X).
So take f ∈ c0(X). Let X be countable and {x1, x2, . . . } := {x ∈ X : f(x) 6= 0}.

We consider first the case, where there exists some δ > 0 such that |f(xn)| ≥ δ for
all n. Then we consider the functions fn := f · χx1,...,xn ∈ `∞c (X). We claim that
n(f − fn) is bounded in `∞(X,R). In fact, let B ∈ B. Then {n : xn ∈ B} = {n :
xn ∈ B and |f(xn)| ≥ δ} is finite. Hence, {n(f − fn)(x) : x ∈ B} is finite and thus
bounded, i.e. fn converges Mackey to f .

Now the general case. We set Xn := {x ∈ X : |f(x)| ≥ 1
n} and define fn := f ·χXn .

Then each fn satisfies the assumption of the particular case with δ = 1
n and hence

is a Mackey limit of a sequence in `∞c (X). Furthermore, n(f − fn) is uniformly
bounded by 1, since for x ∈ Xn it is 0 and otherwise |n(f−fn)(x)| = n|f(x)| < 1. So
after forming the Mackey adherence (i.e. adding the limits of all Mackey convergent
sequences contained in the set, see 4.32 for a formal definition) twice, we obtain
c0(X).

Now we want to show that c0(X) is in fact the c∞-completion of `∞c (X).

4.35. Example. c0(X). We claim that c0(X) is the c∞-completion of the subspace
`∞c (X) in `∞(X) formed by the finite sequences.
We may assume that the bounded sets of X are formed by those subsets B, for
which f(B) is bounded for all f ∈ `∞(X): Obviously, any bounded set has this
property, and the space `∞(X) is not changed by adding these sets. Furthermore,
the restriction map ιB : `∞(X)→ `∞(B) is also bounded for such a B, since using
the closed graph theorem [68, 5.3.3] for the c∞-complete space `∞(X) and the
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Banach space `∞(B) we only have to show that evb ◦ιB = ι{b} is bounded for every
b ∈ B, which is obviously the case.

By proposition 4.30 it is enough to show the universal property for bounded
linear functionals. We only have to show that in analogy to Banach-theory the
dual `∞c (X)′ is just

`1(X) := {g : X → R : supp g is bounded and g is absolutely summable}.

In fact, any such g acts even as bounded linear functional on `∞(X,R) by 〈g, f〉 :=∑
x g(x) f(x), since a subset is bounded in `∞(X) if and only if it is uniformly

bounded on all bounded sets B ⊆ X. Conversely, let ` : `∞c (X) → R be bounded
and linear and define g : X → R, by g(x) := `(ex), where ex denotes the function
given by ex(y) := 1 for x = y and 0 otherwise. Obviously `(f) = 〈g, f〉 for all
f ∈ `∞c (X). Suppose indirectly that supp g = {x : `(ex) 6= 0} is not bounded.
Then there exists a sequence xn ∈ supp g and a function f ∈ `∞(X) such that
|f(xn)| ≥ n. In particular, the only bounded subsets of {xn : n ∈ N} are the finite
ones. Hence { n

|g(xn)|exn : n ∈ N} is bounded in `∞c (X), but the image under ` is
not. Furthermore, g has to be absolutely summable since the set of finite subsums
of
∑
x sign(g(x)) ex is uniformly bounded and hence bounded in `∞c (X) and its

image under ` are the subsums of
∑
x |g(x)|.

4.36. Corollary. Counter-examples on c∞-topology. The following state-
ments are false:

(1) The c∞-closure of a subset (or even a linear subspace) is given by the Mackey
adherence, i.e. the set formed by all limits of sequences in this subset which
are Mackey convergent in the total space.

(2) A subset U of E that contains a point x and has the property, that every
sequence which M -converges to x belongs to it finally, is a c∞-neighborhood
of x.

(3) A c∞-dense subspace of a c∞-complete space has this space as c∞-comple-
tion.

(4) If a subspace E is c∞-dense in the total space, then it is also c∞-dense in
each linear subspace lying in between.

(5) The c∞-topology of a linear subspace is the trace of the c∞-topology of the
whole space.

(6) Every bounded linear functional on a linear subspace can be extended to such
a functional on the whole space.

(7) A linear subspace of a bornological locally convex space is bornological.
(8) The c∞-completion preserves embeddings.

Proof. ( 1 ) For this we give an example, where the Mackey adherence of `∞c (X)
is not all of c0(X).
Let X = N × N, and take as bounded sets all sets of the form Bµ := {(n, k) : n ≤
µ(k)}, where µ runs through all functions N → N. Let f : X → R be defined
by f(n, k) := 1

k . Obviously, f ∈ c0(X), since for given j ∈ N and function µ the
set of points (n, k) ∈ Bµ for which f(n, k) = 1

k ≥
1
j is the finite set {(n, k) : k ≤

j and n ≤ µ(k)}.
Assume there is a sequence fn ∈ `∞c (X) Mackey convergent to f . By passing to a
subsequence we may assume that n2(f − fn) is bounded. Now choose µ(k) to be
larger than all of the finitely many n, with fk(n, k) 6= 0. If k2(f − fk) is bounded
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on Bµ, then in particular {k2(f − fk)(µ(k), k) : k ∈ N} has to be bounded, but
k2(f − fk)(µ(k), k) = k2 1

k − 0 = k.

( 2 ) Let A be a set for which ( 1 ) fails, and choose x in the c∞-closure of A but
not in the M -adherence of A. Then U := E \ A satisfies the assumptions of ( 2 ).
In fact, let xn be a sequence which converges Mackey to x, and assume that it is
not finally in U . So we may assume without loss of generality that xn /∈ U for
all n, but then A 3 xn → x would imply that x is in the Mackey adherence of A.
However, U cannot be a c∞-neighborhood of x. In fact, such a neighborhood must
meet A since x is assumed to be in the c∞-closure of A.

( 3 ) Let F be a locally convex vector space whose Mackey adherence in its c∞-
completion E is not all of E, e.g. `∞c (X) ⊆ c0(X) as in ( 1 ). Choose a y ∈ E
that is not contained in the Mackey adherence of F , and let F1 be the subspace
of E generated by F ∪ {y}. We claim that F1 ⊆ E cannot be the c∞-completion
although F1 is obviously c∞-dense in the convenient vector space E. In order to see
this we consider the linear map ` : F1 → R characterized by `(F ) = 0 and `(y) = 1.
Clearly ` is well defined.

` : F1 → R is bornological: For any bounded B ⊆ F1 there exists an N such that
B ⊆ F + [−N,N ]y. Otherwise, bn = xn + tny ∈ B would exist with tn → ∞ and
xn ∈ F . This would imply that bn = tn(xntn + y), and thus −xntn would converge
Mackey to y; a contradiction.

Now assume that a bornological extension ¯̀ to E exists. Then F ⊆ ker(¯̀) and
ker(¯̀) is c∞-closed, which is a contradiction to the c∞-denseness of F in E. So
F1 ⊆ E does not have the universal property of a c∞-completion.

This shows also that ( 6 ) fails.

( 4 ) Furthermore, it follows that F is c∞F1-closed in F1, although F (and hence
F1) is c∞-dense in E.

( 5 ) The trace of the c∞-topology of E to F1 cannot be the c∞-topology of F1,
since for the first one F is obviously dense.

( 7 ) Obviously, the trace topology of the bornological topology on E cannot be
bornological on F1, since otherwise the bounded linear functionals on F1 would be
continuous and hence extendable to E.

( 8 ) Furthermore, the extension of the inclusion ι : F ⊕ R ∼= F1 → E to the
completion is given by (x, t) ∈ E⊕R ∼= F̃ ⊕R = F̃1 7→ x+ ty ∈ E and has as kernel
the linear subspace generated by (y,−1). Hence, the extension of an embedding
to the c∞-completions need not be an embedding anymore, in particular the c∞-
completion functor does not preserve injectivity of morphisms.

5. Uniform Boundedness Principles and Multilinearity

5.1. The category of locally convex spaces and smooth mappings

The category of all smooth mappings between bornological vector spaces is a sub-
category of the category of all smooth mappings between locally convex spaces
which is equivalent to it, since a locally convex space and its bornologification
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4.4 have the same bounded sets and smoothness depends only on the bornol-
ogy by 1.8 . So it is also cartesian closed, but the topology on C∞(E,F ) from
3.11 has to be bornologized. For an example showing the necessity see [74, p.

297] or [41, 5.4.19]: The topology on C∞(R,R(N)) is not bornological, in fact
{c = (cn)n ∈ C∞(R,R(N)) : |c(n)

n (0)| < 1} is absolutely convex, bornivorous but not
a 0-neighborhood.

We will in general, however, work in the category of locally convex spaces and
smooth mappings, so function spaces carry the topology of 3.11 .

The category of bounded (equivalently continuous) linear mappings between bor-
nological vector spaces is in the same way equivalent to the category of all bounded
linear mappings between all locally convex spaces, since a linear mapping is smooth
if and only if it is bounded, by 2.11 . It is closed under formation of colimits and
under quotients (this is an easy consequence of 4.1.1 ). The Mackey-Ulam theo-
rem [53, 13.5.4] tells us that a product of non trivial bornological vector spaces is
bornological if and only if the index set does not admit a Ulam measure, i.e. a non
trivial {0, 1}-valued measure on the whole power set. A cardinal admitting a Ulam
measure has to be strongly inaccessible, so we can restrict set theory to exclude
measurable cardinals.

Let L(E1, . . . , En;F ) denote the space of all bounded n-linear mappings from E1 ×
. . . × En → F with the topology of uniform convergence on bounded sets in E1 ×
. . .× En.

5.2. Proposition. Exponential law for L. There are natural bornological
isomorphisms

L(E1, . . . , En+k;F ) ∼= L(E1, . . . , En;L(En+1, . . . , En+k;F )).

Proof. We proof this for bilinear maps, the general case is completely analogous.
We already know that bilinearity translates into linearity into the space of linear
functions. Remains to prove boundedness. So let B ⊆ L(E1, E2;F ) be given. Then
B is bounded if and only if B(B1 × B2) ⊆ F is bounded for all bounded Bi ⊆ Ei.
This however is equivalent to B∨(B1) is contained and bounded in L(E2, F ) for all
bounded B1 ⊆ E1, i.e. B∨ is contained and bounded in L(E1, L(E2, F )).

Recall that we have already put a structure on L(E,F ) in 3.17 , namely the initial
one with respect to the inclusion in C∞(E,F ). Let us now show that bornologically
these definitions agree:

5.3. Lemma. Structure on L. A subset is bounded in L(E,F ) ⊆ C∞(E,F )
if and only if it is uniformly bounded on bounded subsets of E, i.e. L(E,F ) →
C∞(E,F ) is initial.

Proof. Let B ⊆ L(E,F ) be bounded in C∞(E,F ), and assume that it is not
uniformly bounded on some bounded set B ⊆ E. So there are fn ∈ B, bn ∈ B, and
` ∈ F ∗ with |`(fn(bn))| ≥ nn. Then the sequence n1−nbn converges fast to 0, and
hence lies on some compact part of a smooth curve c by the special curve lemma
2.8 . So B cannot be bounded, since otherwise C∞(`, c) = `∗ ◦ c∗ : C∞(E,F ) →
C∞(R,R) → `∞(R,R) would have bounded image, i.e. {` ◦ fn ◦ c : n ∈ N} would
be uniformly bounded on any compact interval.
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Conversely, let B ⊆ L(E,F ) be uniformly bounded on bounded sets and hence in
particular on compact parts of smooth curves. We have to show that dn ◦ c∗ :
L(E,F ) → C∞(R, F ) → `∞(R, F ) has bounded image. But for f ∈ L(E,F ) we
have by the chain rule 3.18 , recursively applied, that (dn◦c∗)(f)(t) = dn(f◦c)(t) =
f(c(n)(t)), and since c(n) is still a smooth curve we are done.

Let us now generalize this result to multilinear mappings. For this we first charac-
terize bounded multilinear mappings in the following two ways:

5.4. Lemma. A multilinear mapping is bounded if and only if it is bounded on
each sequence which converges Mackey to 0.

Proof. Suppose that f : E1 × . . .× Ek → F is not bounded on some bounded set
B ⊆ E1 × . . . × Ek. By composing with a linear functional we may assume that
F = R. So there are bn ∈ B with λk+1

n := |f(bn)| → ∞. Then |f( 1
λn
bn)| = λn →∞,

but ( 1
λn
bn) is Mackey convergent to 0.

5.5. Lemma. Bounded multilinear mappings are smooth. Let f : E1 ×
. . . × En → F be a multilinear mapping. Then f is bounded if and only if it is
smooth. For the derivative we have the product rule:

df(x1, . . . , xn)(v1, . . . , vn) =
n∑
i=1

f(x1, . . . , xi−1, vi, xi+1, . . . , xn).

In particular, we get for f : E ⊇ U → R, g : E ⊇ U → F and x ∈ U , v ∈ E the
Leibniz formula

(f · g)′(x)(v) = f ′(x)(v) · g(x) + f(x) · g′(x)(v).

Proof. We use induction on n. The case n = 1 is corollary 2.11 . The induction
goes as follows:

f is bounded
⇐⇒ f(B1 × . . . × Bn) = f∨(B1 × . . . × Bn−1)(Bn) is bounded for all bounded

sets Bi in Ei;
⇐⇒ f∨(B1 × . . .×Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 5.3 ;
⇐⇒ f∨ : E1 × . . .× En−1 → C∞(En, F ) is bounded;
⇐⇒ f∨ : E1 × . . .×En−1 → C∞(En, F ) is smooth by the inductive assumption;
⇐⇒ f : E1 × . . .× En → F is smooth by cartesian closedness 3.13 .

The formula for the derivative follows by direct evaluation of the directional differ-
ence quotient.

The particular case follows by application to the scalar multiplication R × F →
F .

Now let us show that also the structures coincide:

5.6. Proposition. Structure on space of multilinear maps. The injection
of L(E1, . . . , En;F )→ C∞(E1 × . . .× En, F ) is a bornological embedding.

Proof. We can show this by induction. In fact, let B ⊆ L(E1, . . . , En;F ). Then

B is bounded
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⇐⇒ B(B1× . . .×Bn) = B∨(B1× . . .×Bn−1)(Bn) is bounded for all bounded Bi
in Ei;

⇐⇒ B∨(B1 × . . .×Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 5.3 ;

⇐⇒ B∨ ⊆ C∞(E1× . . .×En−1, C
∞(En, F )) is bounded by the inductive assump-

tion;

⇐⇒ B ⊆ C∞(E1 × . . .× En, F ) is bounded by cartesian closedness 3.13 .

Algebraic Tensor Product

Remark. The importance of the tensor product is twofold. First it allows lineariz-
ing of multi-linear mappings and secondly it allows to calculate function spaces.

We will consider the spaces of linear and multi-linear mappings between vector
spaces. If we supply all vector spaces E, E1, . . . , En, F with the finest locally con-
vex topology (i.e. the final locally convex topology with respect to the inclusions
of all finite dimensional subspaces - on which the topology is unique) then all lin-
ear mappings are continuous and all multi-linear mappings are bounded (but not
necessarily continuous as the evaluation map ev : E∗×E → K on an infinite dimen-
sional vector space E shows) and hence it is consistent to denote the corresponding
function spaces by L(E,F ) = L(E,F ) and L(E1, . . . En;F ).

In more detail the first feature is:

a3.1 Proposition. Linearization. Given two linear spaces E and F , then there
exists a solution ⊗ : E ×F → E ⊗F – called the algebraic tensor product of
E and F – to the following universal problem:

E × F ⊗ //

T
##

E ⊗ F

T̃

!

{{
G

Here ⊗ : E × F → E ⊗ F and T : E × F → G are bilinear and T̃ is linear.

Proof. In order to find E ⊗F one considers first the case, where G = R. Then we
have that ⊗∗ : (E ⊗ F )∗ → L(E,F ;R) should be an isomorphism. Hence E ⊗ F
could be realized as subspace of (E⊗F )∗∗ ∼= L(E,F ;R)∗. Obviously to each bilinear
functional T : E ×F → R corresponds the linear map evT : L(E,F ;R)∗ → R. The
map ⊗ : E × F → E ⊗ F ⊆ L(E,F ;R)∗ has to be such that evT ◦⊗ = T for all
bilinear functionals T : E × F → R, i.e. ⊗(x, y)(T ) = (evT ◦⊗)(x, y) = T (x, y).
Thus we have proved the existence of T̃ := evT for G = R. But uniqueness can be
true only on the linear subspace generated by the image of ⊗, and hence we denote
this subspace E ⊗ F .

For bilinear mappings T : E×F → G into an arbitrary vector space G, we consider
the following diagram, which has quite some similarities with that used in the
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construction of the c∞-completion in [71, 2.31]:

E × F ⊗ //

T

��

E ⊗ F

(3)
eT

��

� � //

(2)
��

L(E,F ;R)∗

evλ◦T

��

(1)xx∏
G′ R

prλ

&&
G
, �

δ

::

λ // R

The right dashed arrow (1) and δ exist uniquely by the universal property of the
product in the center. The arrow (2) exists uniquely as restriction of (1) to the
subspace E⊗F . Finally (3) exists, since the generating subset ⊗(E×F ) in E⊗F
is mapped to T (E × F ) ⊆ G and since δ is injective.

Note that ⊗ extends to a functor, by defining T ⊗ S via the following diagram:

E1 × F1
⊗ //

T×S
��

E1 ⊗ F1

T⊗S!
��

E2 × F2 ⊗
// E2 ⊗ F2

Furthermore one easily proves the existence of the following natural isomorphisms:

E ⊗ R ∼= E

E ⊗ F ∼= F ⊗ E
(E ⊗ F )⊗G ∼= E ⊗ (F ⊗G)

Note that if both spaces E and F are finite dimensional, then so is L(E,F ;R),
hence also the dual L(E,F ;R)∗ and thus the subspace E ⊗ F is finite dimensional
too (in fact dim(E ⊗ F ) = dimE · dimF , as we will see in [71, 3.30]), and hence
E ⊗ F = (E ⊗ F )∗∗ = L(E,F ;R)∗.
If one factor is infinite dimensional and the other one is not 0, then this is not true.
In fact take F = R, then E ⊗ R ∼= E whereas L(E,R;R)∗ ∼= L(E,L(R,R))∗ ∼=
L(E,R)∗ = E∗∗.

Projective Tensor Product

We turn first to the property of making bilinear continuous mappings into linear
ones. We call the corresponding solution the projective tensor product of E
and F and denote it by E⊗πF . Obviously it can be obtained by taking the algebraic
tensor product and supplying it with the finest locally convex topology such that
E×F → E⊗F is continuous: This topology exists since the union of locally convex
topologies is locally convex and E×F → E⊗F is continuous for the weak topology
on E ⊗F generated by those linear functionals which correspond to continuous bi-
linear functionals on E × F . It has the universal property, since the inverse image
of a locally convex topology under a linear mapping T̃ is again a locally convex
topology, such that ⊗ is continuous, provided the associated bilinear mapping T
is continuous. However, it is not obvious that this topology is separated, and we
prove that now. We will denote the space of continuous linear mappings from
E to F by L(E,F ), and the space of continuous multi-linear mappings
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by L(E1, . . . , En;F ). If all E1, . . . , En are the same space E, we will also write
Ln(E;F ).

a3.3 Lemma. E ⊗π F is Hausdorff provided E and F are.

Proof. It is enough to show that the set E∗ × F ∗ separates points in E ⊗ F .
So let 0 6= z =

∑
k xk ⊗ yk be given. By replacing linear dependent xk by the

corresponding linear combinations and using bilinearity of ⊗, we may assume that
the xk are linearly independent. Now choose x∗ ∈ E∗ and y∗ ∈ F ∗ be such that
x∗(xk) = δ1,k and y∗(y1) = 1. Then (x∗ ⊗ y∗)(z) = 1 6= 0.

Since a bilinear mapping (like ⊗) is continuous iff it is so at 0, a 0-neighborhood
basis in E ⊗π F is given by all those absolutely convex sets, for which the inverse
image under ⊗ is a 0-neighborhood in E×F . A 0-neighborhod basis is thus given by
the absolutely convex hulls, denoted U ⊗V , of the images of U ×V under ⊗, where
U resp. V runs through a 0-neighborhood basis of E resp. F : We only have to show
that these sets U⊗V are absorbing (see [54, 6.5.3]). So let z =

∑
k xk⊗yk ∈ E⊗F

be arbitrary. Then there are ak > 0 and bk > 0 such that xk ∈ akU and yk ∈ bkV
and hence z =

∑
k≤K ak bk

xk
ak
⊗ yk

bk
∈ (
∑
k ak bk) · 〈U ⊗ V 〉abs.conv.. The Minkowski-

functionals pU⊗V of these hulls form a base of the seminorms of E ⊗π F and we
will denote them by πU,V . In terms of the Minkowski-functionals pU and pV of
closed 0-neighborhoods U and V we obtain that z ∈ (

∑
k pU (xk) pV (yk))U ⊗ V

for any z =
∑
k xk ⊗ yk, since xk ∈ pU (xk) · U for closed U , and thus pU⊗V (z) ≤

inf{
∑
k pU (xk) pV (yk) : z =

∑
k xk ⊗ yk}. We now show the converse:

a3.4 Proposition. Seminorms of the projective tensor product.

pU⊗V (z) = inf
{∑

k

pU (xk) · pV (yk) : z =
∑
k

xk ⊗ yk
}
.

Proof. Let z ∈ λ · U ⊗ V with λ > 0. Then z = λ
∑
k λk · uk ⊗ vk with uk ∈

U , vk ∈ V and
∑
k |λk| = 1. Hence z =

∑
xk ⊗ vk, where xk = λλkuk, and∑

k pU (xk) · pV (vk) ≤
∑
λ|λk| = λ. Taking the infimum of all those λ shows that

pU⊗V (z) is greater or equal to the infimum on the right side.

a3.5 Corollary. E ⊗π F is normable (metrizable) provided E and F are.

a3.6 Lemma. The semi-norms of decomposable tensors.

pU⊗V (x⊗ y) = pU (x) · pV (y).

Proof. According to [68, 7.1.8] there are x∗ ∈ E∗ and y∗ ∈ F ∗ such that |x∗| ≤ pU
and |y∗| ≤ pV and x∗(x) = pU (x) and y∗(y) = pV (y). If x⊗ y =

∑
k xk ⊗ yk, then

pU⊗V (x⊗ y) ≤ pU (x) · pV (y) = x∗(x) · y∗(y) = (x∗ ⊗ y∗)(x⊗ y) =

=
∑
k

x∗(xk) · y∗(yk) ≤
∑
k

pU (xk) · pV (yk),

and taking the infimum gives the desired result.

a3.7 Remark. Functorality. Given two continuous linear maps T1 : E1 → F1
and T2 : E2 → F2 we can consider the bilinear continuous map given by composing
T1 × T2 : E1 × E2 → F1 × F2 with ⊗π : F1 × F2 → F1 ⊗π F2. By the universal
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property of E1 × E2 → E1 ⊗π E2 we obtain a continuous linear map denoted by
T1 ⊗π T2 : E1 ⊗π E2 → F1 ⊗π F2.

E1 × E2
⊗π //

T1×T2

��

E1 ⊗π E2

T1⊗πT2

��
F1 × F2 ⊗π

// F1 ⊗π F2

By the uniqueness of the linearization one obtains immediately that ⊗π is a functor.
Because of the uniqueness of universal solutions one sees easily that one has natural
isomorphisms R⊗πE ∼= E, E⊗π F ∼= F ⊗πE and (E⊗π F )⊗πG ∼= E⊗π (F ⊗πG).

a3.14 Example. ⊗π does not preserve embeddings.
In fact consider the isometric embedding `2 → C(K), where K is the closed unit-
ball of (`2)∗ supplied with its compact topology of pointwise convergence, see the
corollary to the Alaoğlu-Bourbaki-theorem in [68, 7.4.12]. This subspace has how-
ever no topological complement, since C(K) has the Dunford-Pettis property
(see [54, 20.7.8 S.472], i.e. x∗n(xn)→ 0 for every two sequences xn → 0 in σ(E,E∗)
and x∗n → 0 in σ(E∗, E∗∗)), but no infinite dimensional reflexive Banach space like
`2 has it (e.g. xn := en, x∗n := en) and hence cannot be a complemented subspace
of C(K), see [54, 20.7 S.472].
Suppose now that `2 ⊗π (`2)∗ → C(K) ⊗π (`2)∗ were an embedding. The duality
mapping ev : `2× (`2)∗ → R yields a continuous linear mapping s : `2⊗π (`2)∗ → R
and would hence have a continuous linear extension s̃ : C(K) ⊗π (`2)∗ → R. The
corresponding bilinear map would give a continuous linear map s̃∨ : C(K) →
(`2)∗∗ ∼= `2, which is a left inverse to the embedding `2 → C(K), a contradiction.

5.7. Bornological tensor product

It is natural to consider the universal problem of linearizing bounded bilinear map-
pings. The solution is given by the bornological tensor product E⊗β F , i.e. the alge-
braic tensor product with the finest locally convex topology such that E×F → E⊗F
is bounded. A 0-neighborhood basis of this topology is given by those absolutely
convex sets, which absorb B1 ⊗ B2 for all bounded B1 ⊆ E1 and B2 ⊆ E2. Note
that this topology is bornological since it is the finest locally convex topology with
given bounded linear mappings on it.

Theorem. The bornological tensor product is the left adjoint functor to the Hom-
functor L(E, ) on the category of bounded linear mappings between locally convex
spaces, and one has the following bornological isomorphisms:

L(E ⊗β F,G) ∼= L(E,F ;G) ∼= L(E,L(F,G))
E ⊗β R ∼= E

E ⊗β F ∼= F ⊗β E
(E ⊗β F )⊗β G ∼= E ⊗β (F ⊗β G)

Furthermore, the bornological tensor product preserves colimits. It neither preserves
embeddings nor countable products.

Proof. We show first that this topology has the universal property for boun-
ded bilinear mappings f : E1 × E2 → F . Let U be an absolutely convex zero
neighborhood in F , and let B1, B2 be bounded sets. Then f(B1×B2) is bounded,
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hence it is absorbed by U . Then f̃−1(U) absorbs ⊗(B1×B2), where f̃ : E1⊗E2 → F

is the canonically associated linear mapping. So f̃−1(U) is in the zero neighborhood
basis of E1 ⊗β E2 described above. Therefore, f̃ is continuous.

An analogous argument for sets of mappings shows that the first isomorphism
L(E ⊗β F,G) ∼= L(E,F ;G) is bornological.

The topology on E1⊗β E2 is finer than the projective tensor product topology, and
so it is Hausdorff. The rest of the positive results is clear.

The counter-example for embeddings given for the projective tensor product works
also, since all spaces involved are Banach.

Since the bornological tensor-product preserves coproducts it cannot preserve prod-
ucts. In fact (R ⊗β R(N))N ∼= (R(N))N whereas RN ⊗β R(N) ∼= (RN ⊗β R)(N) ∼=
(RN)(N).

5.8. Proposition. Projective versus bornological tensor product. If every
bounded bilinear mapping on E × F is continuous then E ⊗π F = E ⊗β F . In
particular, we have E ⊗π F = E ⊗β F for any two metrizable spaces, and for a
normable space F we have Eborn ⊗π F = E ⊗β F .

Proof. Recall that E ⊗π F carries the finest locally convex topology such that
⊗ : E×F → E⊗F is continuous, whereas E⊗β F carries the finest locally convex
topology such that ⊗ : E × F → E ⊗ F is bounded. By assumption the bounded
bilinear map ⊗ : E×F → E⊗β F is continuous, and thus by the universal property
the topology of E ⊗π F is finer than that of E ⊗β F . Since the converse is true in
general, we have equality.

In [68, 3.1.6] it is shown that in metrizable locally convex spaces the convergent
sequences coincide with the Mackey-convergent ones. Now let T : E × F → G be
bounded and bilinear. We have to show that T is continuous. So let (xn, yn) be
a convergent sequence in E × F . Without loss of generality we may assume that
its limit is (0, 0). So there are µn →∞ such that {µn(xn, yn) : n ∈ N} is bounded
and hence also T

(
{µn(xn, yn) : n ∈ N}

)
=
{
µ2
nT (xn, yn) : n ∈ N

}
, i.e. T (xn, yn)

converges even Mackey to 0.

If F is normable and T : Eborn × F → G is bounded bilinear then T∨ : Eborn →
L(F,G) is bounded, and since Eborn is bornological it is even continuous. Clearly,
for normed spaces F the evaluation map ev : L(F,G)× F → G is continuous, and
hence T = ev ◦(T∨ × F ) : Eborn × F → G is continuous. Thus, Eborn ⊗π F =
E ⊗β F .

Note that the bornological tensor product is invariant under bornologification, i.e.
Eborn⊗β Fborn = E⊗β F . So it is no loss of generality to assume that both factors
are bornological. Keep however in mind that the corresponding identity for the
projective tensor product does not hold.

Another possibility to obtain the identity E ⊗π F = E ⊗β F is to assume that
E and F are bornological and every separately continuous bilinear mapping on
E×F is continuous: In fact, every bounded bilinear mapping is obviously separately
bounded, and since E and F are assumed to be bornological, it has to be separately
continuous. We want to find another class beside the Fréchet spaces (see [68, 5.2.8])
which satisfies these assumptions.
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a3.47 Theorem. Continuity versus separately continuity. Let E and F
be two barreled spaces with a countable base of bornology. Then every separately
continuous bilinear map E × F → G is continuous.

Proof. Let An and Bn be a basis of the bornologies of E and F . Let T : E×F → G
be separately continuous. Then T∨ : E → L(F,G) is continuous for the topology
of pointwise convergence on L(F,G). Thus T∨(Ak) is bounded for this topology,
and since F is barreled it is equi-continuous. Thus for every 0-neighborhood W
in G there exists a 0-neighborhood Vk in F with T (Ak × Vk) ⊆ W . By symmetry
there exists a 0-neighborhood Uk in E with T (Uk × Bk) ⊆ W . This implies for
(gDF -spaces) E and F the continuity of T , see [54, 15.6.1 S.335].

a3.48 Corollary. Projective versus bornological tensor product for LB-
spaces. Let E and F be regular inductive limits of sequences of Banach spaces
(e.g. the duals of metrizable spaces with their bornological topology, i.e. the borno-
logification of the strong topology). Then E ⊗π F ∼= E ⊗β F .

Proof. Let T : E × F → G be bounded. Since both spaces are bornological, T
is separately continuous and, since both spaces are barreled and have a countable
base of bornology, it is continuous by a3.47 . This is enough to guarantee the
equality of the two tensor products by 5.8 .

5.9. Corollary. The following mappings are bounded multilinear.

(1) lim : Nat(F ,G) → L(limF , limG), where F and G are two functors on the
same index category, and where Nat(F ,G) denotes the space of all natural
transformations with the structure induced by the embedding into

∏
i L(F(i),G(i)).

(2) colim : Nat(F ,G)→ L(colimF , colimG).
(3)

L : L(E1, F1)× . . .×L(En, Fn)× L(F,E)→
→ L(L(F1, . . . , Fn;F ), L(E1, . . . , En;E))

(T1, . . . , Tn, T ) 7→ (S 7→ T ◦ S ◦ (T1 × . . .× Tn));

(4)
n⊗
β : L(E1, F1)× . . .× L(En, Fn)→ L(E1 ⊗β · · · ⊗β En, F1 ⊗β · · · ⊗β Fn).

(5)
∧n : L(E,F ) → L(

∧n
E,
∧n

F ), where
∧n

E is the linear subspace of all
alternating tensors in

⊗n
β E. It is the universal solution of

L
( n∧

E,F
)
∼= Lnalt(E;F ),

where Lnalt(E;F ) is the space of all bounded n-linear alternating mappings
E×. . .×E → F . This space is a direct summand of Ln(E;F ) := L(E, . . . , E;F ).

(6)
∨n : L(E,F ) → L(

∨n
E,
∨n

F ), where
∨n

E is the linear subspace of all
symmetric tensors in

⊗n
β E. It is the universal solution of

L
( n∨

E,F
)
∼= Lnsym(E;F ),

where Lnsym(E;F ) is the space of all bounded n-linear symmetric mappings
E × . . .× E → F . This space is also a direct summand of Ln(E;F ).
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(7)
⊗

β : L(E,F )→ L(
⊗

β E,
⊗

β F ), where
⊗

β E :=
∐∞
n=0

n⊗
βE is the tensor

algebra of E. Note that it has the universal property of prolonging bounded
linear mappings with values in locally convex spaces, which are algebras with
bounded operations, to continuous algebra homomorphisms:

L(E,F ) ∼= Alg
(⊗

β

E,F
)
.

(8)
∧

: L(E,F ) → L(
∧
E,
∧
F ), where

∧
E :=

∐∞
n=0

∧n
E is the exterior

algebra. It has the universal property of prolonging bounded linear mappings
to continuous algebra homomorphisms into graded-commutative algebras, i.e.
algebras in the sense above, which are as vector spaces a coproduct

∐
n∈NEn

and the multiplication maps Ek × El → Ek+l and for x ∈ Ek and y ∈ El
one has x · y = (−1)kly · x.

(9)
∨

: L(E,F ) → L(
∨
E,
∨
F ) , where

∨
E :=

∐∞
n=0

∨n
E is the symmetric

algebra. It has the universal property of prolonging bounded linear mappings
to continuous algebra homomorphisms into commutative algebras.

Recall that the symmetric product is given as the image of the symmetrizer sym :
E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E defined by

x1 ⊗ · · · ⊗ xn →
1
n!
∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n).

Similarly the wedge product is given as the image of the alternator

alt : E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E

defined by x1 ⊗ · · · ⊗ xn →
1
n!
∑
σ∈Sn

sign(σ)xσ(1) ⊗ · · · ⊗ xσ(n).

Symmetrizer and alternator are bounded projections, so both subspaces are com-
plemented in the tensor product.

Proof. All results follow easily by flipping coordinates until only a composition of
products of evaluation maps remains.

In particular, consider the following diagrams:

( 1 )
Nat(F ,G)× limF //

pri× pri
��

limG

pri
��

L(F(i),G(i))×F(i) ev // G(i)

( 2 )

F(i)
inji // colimF // L(Nat(F ,G), colimG)

F(i)×Nat(F ,G)

id× pri
��

// colimG

F(i)× L(F(i),G(i)) ev // G(i)

inji

OO
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( 3 ) (∏
i L(Ei, Fi)

)
× L(F,E)× L(F1, . . . , Fn;F )×

∏
iEi

∼=
��

// E

L(F,E)× L(F1, . . . , Fn;F )×
∏
i(L(Ei, Fi)× Ei)

id× ev×...×ev
��

L(F,E)× L(F1, . . . , Fn;F )×
∏
i Fi ev

// L(F,E)× F

ev

OO

( 4 )

E1 × . . .× En // L(L(E1, F1), . . . , L(En, Fn);F1 ⊗β · · · ⊗β Fn)

E1 × . . .× En × L(E1, F1)× . . .× L(En, Fn) //

∼=
��

F1 ⊗β · · · ⊗β Fn

L(E1, F1)× E1 × . . .× L(En, Fn)× En
ev×...×ev// F1 × . . .× Fn

OO

( 5 )

L(E,F )

∆
��

// L(
∧n

E,
∧n

F )

L(E,F )× . . .× L(E,F )
Nn

// L(
⊗n

β E,
⊗n

β F )

L(incl,alt)

OO

The projection Ln(E;F )→ Lnalt(E;F ) is given by the alternator

T 7→
(

(v1, . . . , vn) 7→ 1
n!
∑
σ

sign(σ)T (vσ(1), . . . , vσ(n))
)
.

The universal property follows from the diagram:

E × . . .× E ⊗ //

f
((

E ⊗β · · · ⊗β E
alt //

f̃

��

∧n
E

f̃ |Vn Exx
F

( 6 )

L(E,F )

∆
��

// L(
∨n

E,
∨n

F )

L(E,F )× . . .× L(E,F )
Nn
β // L(

⊗n
β E,

⊗n
β F )

L(incl,sym)

OO

The projection Ln(E;F )→ Lnsym(E;F ) symmetrizer

T 7→
(

(v1, . . . , vn) 7→ 1
n!
∑
σ

T (vσ(1), . . . , vσ(n))
)
.
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The universal property follows from the diagram:

E × . . .× E ⊗ //

f
((

E ⊗β · · · ⊗β E
sym //

f̃

��

∨n
E

f̃ |Wn Exx
F

( 7 )

L(E,F )
N

//

(
Nn)n
��

L(
⊗

β E,
⊗

β F )

∏
n L(

⊗n
β E,

⊗n
β F )

Q
n incl∗ // ∏

n L(
⊗n

β E,
∐
k

⊗k
β F )

∼=

OO

The universal property holds, since to T ∈ L(E,F ) we can associate
∑
n µn◦

⊗n
T ,

where µn :
⊗
F → F denotes the n-fold multiplication of the algebra F .

( 8 )

L(E,F )
V

//

(
Vn)n
��

L(
∧
E,
∧
F )

∏
n L(

∧n
E,
∧n

F )
Q
n incl∗ // ∏

n L(
∧n

E,
∐
k

∧k
F )

∼=

OO

( 9 )

L(E,F )
W

//

(
Wn)n
��

L(
∨
E,
∨
F )

∏
n L(

∨n
E,
∨n

F )
Q
n incl∗ // ∏

n L(
∨n

E,
∐
k

∨k
F )

∼=

OO

5.12. Theorem. Taylor formula. Let f : U → F be smooth, where U is c∞-open
in E. Then for each segment [x, x+ y] = {x+ ty : 0 ≤ t ≤ 1} ⊆ U we have

f(x+ y) =
n∑
k=0

1
k!
dkf(x)yk +

∫ 1

0

(1− t)n

n!
dn+1f(x+ ty)yn+1dt,

where yk stands for (y, . . . , y) ∈ Ek.

Proof. Recall that we can form iterated derivatives as follows:

f : E ⊇ U → F

df : E ⊇ U → L(E,F ),
df(x)(v) := ∂

∂t |t=0f(x+ tv)
d(df) : E ⊇ U → L(E,L(E,F )) ∼= L(E,E;F ),

d(df)(x)(v1)(v2) := ∂
∂t1
|t1=0df(x+ t1v1)(v2)

...
d(. . . (d(df)) . . . ) : E ⊇ U → L(E, . . . , L(E,L(E,F )) · · · ) ∼= L(E, . . . , E;F )
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Thus, the iterated derivative dnf(x)(v1, . . . , vn) is given by
∂
∂t1
|t1=0 · · · ∂

∂tn
|tn=0f(x+ t1v1 + · · ·+ tnvn) = ∂1 . . . ∂nf̃(0, . . . , 0),

where f̃(t1, . . . , tn) := f(x+ t1v1 + · · ·+ tnvn). In particular,

dkf(x+ tv)vk = ∂
∂t1
|t1=0 · · · ∂

∂tn
|tn=0f(x+ tv+ t1v+ · · ·+ tnv) = ( dds )k|s=tf(x+sv)

and the claimed Taylor formula is an assertion on the smooth curve t 7→ f(x+ ty).
Using functionals λ we can reduce it to the scalar valued case since ( ddt )

k|t=0λ(f(x+
ty)) = λ(dkf(x)yk).

Another method of proof is induction on n: The first step is 2.6.6 , and the induc-
tion step is partial integration of the remainder integral.

5.11. Proposition. Symmetry of higher derivatives. Let f : E ⊇ U → F
be smooth. The n-th derivative f (n)(x) = dnf(x), considered as an element of
Ln(E;F ), is symmetric, so lies in the space Lnsym(E;F ) ∼= L(

∨n
E;F )

Proof. The result follows from the finite dimensional property, since the iterated
derivative dnf(x)(v1, . . . , vn) is given by

∂
∂t1
|t1=0 · · · ∂

∂tn
|tn=0f(x+ t1v1 + · · ·+ tnvn) = ∂1 . . . ∂nf̃(0, . . . , 0),

where f̃(t1, . . . , tn) := f(x+ t1v1 + · · ·+ tnvn).

5.13. Corollary. The following two subspaces are direct summands:

L(E1, . . . , En;F ) ⊆ C∞(E1 × . . .× En, F ),

Lnsym(E;F ) ∆∗−→ C∞(E,F ).

Note that direct summand is meant in the bornological category, i.e. the embedding
admits a left-inverse in the category of bounded linear mappings, or, equivalently,
with respect to the bornological topologies it is a topological direct summand.

Proof. The projection for L(E,F ) ⊆ C∞(E,F ) is f 7→ df(0). The statement on
Ln follows by induction using the exponential laws 3.13 and 5.2 .

The second embedding is given by 4∗, which is bounded and linear C∞(E × . . .×
E,F ) → C∞(E,F ). Here ∆ : E → E × . . . × E denotes the diagonal mapping
x 7→ (x, . . . , x).

Lksym(E;F )

��

� � // Lk(E;F )
_�

��
C∞(E,F ) C∞(E × . . .× E,F )

∆∗
oo

A bounded linear left inverse C∞(E,F ) → Lksym(E;F ) is given by f 7→ 1
k!d

kf(0),
since each f = ∆∗(f̃) in the image of ∆∗|Lksym(E;F ) is k-homogeneous and so

dkf(0)vk =
(
d
dt

)k
f(tv)|t=0 =

(
( ddt )

ktk
)
|t=0f(v) = k! f(v) = k! f̃(vk) and by the

polarization formula (cf. 7.13 ) 1
k!d

kf(0) = f̃ .

5.15. Definition. A smooth mapping f : E → F is called a polynomial if some
derivative dpf vanishes on E.
The largest p such that dpf 6= 0 is called the degree of the polynomial.
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The mapping f is called a monomial of degree p if it is of the form f(x) = f̃(x, . . . , x)
for some f̃ ∈ Lpsym(E;F ).

5.16. Lemma. Polynomials versus monomials.

(1) The smooth p-homogeneous maps are exactly the monomials of degree p.

(2) The symmetric multilinear mapping representing a monomial is unique.

(3) A smooth mapping is a polynomial of degree ≤ p if and only if its restriction
to each one dimensional subspace is a polynomial of degree ≤ p.

(4) The polynomials are exactly the finite sums of monomials.

Proof. ( 1 ) Every monomial of degree p is clearly smooth and p-homogeneous.
Conversely, if f is smooth and p-homogeneous, then

(dpf)(0)(x, . . . , x) = ( ∂∂t )
p
∣∣
t=0 f(tx) = ( ∂∂t )

p
∣∣
t=0 t

pf(x) = p!f(x).

Thus f is a monomial.

( 2 ) The symmetric multilinear mapping g ∈ Lpsym(E;F ) representing a monomial
f is uniquely determined by the polarization formula 7.13 .

( 3 ) & ( 4 ) Let the restriction of f to each one dimensional subspace be a poly-
nomial of degree ≤ p, i.e., we have `(f(tx)) =

∑p
k=0

tk

k! ( ∂∂t )
k
∣∣
t=0 `(f(tx)) for x ∈ E

and ` ∈ F ′. So f(x) =
∑p
k=0

1
k!d

kf(0 · x)(x, . . . , x) and hence is a finite sum of
monomials.
For the derivatives of a monomial q of degree k we have dq(x)(v) = d

dt |T=0q̃(x +
tv, . . . , x+ tv) = k q̃(v, x, . . . , x) and hence djq(x)(v1, . . . , vj) = k(k− 1) . . . (k− j+
1)q̃(v1, . . . , vj , x, . . . , x) for j ≤ k. Hence, any such finite sum is a polynomial in
the sense of 5.15 .
Finally, any such polynomial has obviously a polynomial as trace on each one di-
mensional subspace.

5.17. Lemma. Spaces of polynomials. The space Polyp(E,F ) of polynomi-
als of degree ≤ p is isomorphic to

⊕
k≤p L(

∨k
E;F ) and is a direct summand in

C∞(E,F ) with a complement given by the smooth functions which are p-flat at 0.

Proof. By 5.16.3 the mapping
⊕

k≤p L(
∨k

E;F ) → C∞(E,F ) given on the
summands by L(

∨k
E;F ) ∼= Lksym(E,F )−∆∗→ C∞(E,F ) has Polyp(E,F ) as image.

A retraction to it is given by
⊕

k≤p
1
k!d

k|0, since 1
k!d

k|0 is by 5.9.6 together with
5.13 a retraction to the inclusion of the summand L(

∨k
E;F ) which is 0 when

composed with the inclusion of the summands L(
∨j

E;F ) for j 6= k by the formula
for q(k)(x) given in the proof of 5.16 .

Remark. The corresponding statement is false for infinitely flat functions. E.g.
the short exact sequence E → C∞(R,R)→ RN does not split, where E denotes the
space of smooth functions which are infinitely flat at 0 and where the projection is
given by the Taylor-coefficients. Otherwise, RN would be a subspace of C∞([0, 1],R)
(compose the section with the restriction map from C∞(R,R)→ C∞([0, 1],R)) and
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5.10 Projective Tensor Product

hence would have the restriction of the supremum norm as continuous norm.

C∞(R,R) // // C∞([0, 1],R)

����
RN

id //

OO

RN

This is however easily seen to be not the case.

5.14. Remark. Recall that for finite dimensional spaces E = Rn a polynomial
into a (locally convex) vector space F is just a finite sum∑

k∈Nn
akx

k,

where ak ∈ F and xk :=
∏n
i=1 x

ki
i . Thus, it is just an element in the algebra gener-

ated by the coordinate projections pri tensorized with F . Since every (continuous)
linear functional on E = Rn is a finite linear combination of coordinate projections,
this algebra is also the algebra generated by E′. For a general locally convex space
E we define the algebra Pf (E) of finite type polynomials to be the subalgebra of
C∞(E,R) ⊆ RE generated by E′.

This is not in general the algebra of polynomials as defined in 5.15 . Take for
example the square of the norm ‖ ‖2 : E → R on some infinite dimensional Hilbert
space E. This is a monomial of degree 2.
But it is not a finite type polynomial. Otherwise, it would be continuous for the
weak topology σ(E,E′). Hence, the unit ball would be a 0-neighborhood for the
weak topology, which is not true, since it is compact for it.

Note that for E = `2 the space
∨2

E′ is not even dense in (
∨2

E)′ = L2
sym(E,R)

and hence Pf (`2) is not dense in Poly(`2,R): Otherwise f := 〈 , 〉 ∈ L2
sym(E,R) ⊆

L2(E,R) ∼= L(E,E′) could be approximated by elements in
∨2

E′ ⊆
⊗2

E′. How-
ever f̌ : `2 → (`2)′ ∼= `2 is the identity and elements in

⊗2
E′ correspond to finite

dimensional operators, so they approximate only compact operators.

5.10. Lemma. Let E be a convenient vector space. Then E′ ↪→ Pf (E) :=
〈E′〉alg ⊆ C∞(E,R) is the free commutative algebra over the vector space E′, i.e.
to every linear mapping f : E′ → A into a commmutative algebra, there exists a
unique algebra homomorphism f̃ : Pf (E)→ A.

Proof. The solution of this universal problem is given by the symmetric alge-
bra

∨
E′ :=

∐∞
k=0

∨k
E′ described in 5.9.9 . In particular we have an algebra

homomorphism ι̃ :
∨
E′ → Pf (E), which is onto, since by definition Pf (E) is gen-

erated by E′. It remains to show that it is injective. So let
∑N
k=1 αk ∈

∨
E′, i.e.

αk ∈
∨k

E′, with ι̃(
∑N
k=1 αk) = 0. Thus all derivatives ι̃(αk) at 0 of this mapping

in Pf (E) ⊆ C∞(E,R) vanish. So it remains to show that
⊗k

β E
′ → L(E, . . . , E;R)

is injective, since then by 5.13 also
∨k

E′ → Pf (E) ⊆ C∞(E,R) is injective.∨k
E′� _

��

// // Lksym(E,R)
� _

��

� � ∆∗ // C∞(E,R)

⊗k
E′ // // Lk(E,R)
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We prove by induction that the mapping E′1 ⊗β · · · ⊗β E′n → L(E1, . . . , En;R),
α 7→ α̃ is injective. For n = 0 and n = 1 this is obvious. So let n ≥ 2 and let
α =

∑
k αk⊗xk, where αk ∈ E′1⊗β · · ·⊗βE′n−1 and xk ∈ E′n. We may assume that

(xk)k is linearly independent and hence may choose xj ∈ En with xk(xj) = δkj and
get 0 = α̃(y1, . . . , yn−1, xj) = α̃j(y1, . . . , yn−1) for all y1, . . . , yn−1. Hence α̃j = 0
and by induction hypothesis αj = 0 for all j and so α = 0.

Note, however, that the injective mapping
∨
E′ → C∞(E,R) is not a bornological

embedding in general:
Otherwise also

∨2
E′ → L2

sym(E,R) would be such an embedding. Take E = `2

and consider B = {zn : n ∈ N} ⊆
∨2

`2 where zn :=
∑n
k=1 ek ⊗ ek. The bilinear

form z̃n ∈ L2
sym(`2,R) associated to zn ist given by z̃n(x, y) =

∑
k≤n ek(x) · ek(y) =∑

k≤n x
k yk. Thus the operator norm of z̃n is

‖z̃n‖ = sup
{∣∣∣∑
k≤n

xk yk
∣∣∣ : ‖x‖2 ≤ 1, ‖y‖2 ≤ 1

}
= 1.

The projective tensor norm of zn is

‖zn‖π = inf
{∑

k

‖ak‖2 ‖bk‖2 : zn =
∑
k

ak ⊗ bk
}
≥ n,

since by Hölders inequality∑
k

‖ak‖2 ‖bk‖2 ≥
∑
k

‖ak · bk‖1 =
∑
k,j

|ajk · b
j
k|

≥
∑
j

∣∣∣∑
k

ajk · b
j
k

∣∣∣ =
∑
j

∣∣∣(∑
k

ak ⊗ bk
)∼

(ej , ej)
∣∣∣

=
∑
j

|z̃n(ej , ej)| =
∑
j≤n

1 = n.

5.18. Theorem. Uniform boundedness principle. If all Ei are convenient
vector spaces, and if F is a locally convex space, then the bornology on the space
L(E1, . . . , En;F ) consists of all pointwise bounded sets.

So a mapping into L(E1, . . . , En;F ) is smooth if and only if all composites with
evaluations at points in E1 × . . .× En are smooth.

Proof. Let us first consider the case n = 1. So let B ⊆ L(E,F ) be a pointwise
bounded subset. By lemma 5.3 we have to show that it is uniformly bounded on
each bounded subset B of E. We may assume that B is closed absolutely convex,
and thus EB is a Banach space, since E is convenient. By the classical uniform
boundedness principle, see [68, 5.2.2], the set B|EB is bounded in L(EB , F ), and
thus B is bounded on B.

The multilinear case follows from the exponential law 5.2 by induction on n: Let
B ⊆ L(E1, . . . , En;F ) be pointwise bounded. Then B(x1, . . . , xn−1, ) is pointwise
bounded in L(En, F ) for all x1, . . . , xn−1. So by the case n = 1 it is bounded in
the locally convex space L(En, F ) and by induction hypothesis B̌ is bounded in
L(E1, . . . , En−1;L(En, F )). By 5.2 B is bounded.

The subspace L(E1, . . . , En;F ) ⊆
∏
E1×...×En F is Mackey-closed: Let Tn converge

to T∞ := (T(x1,...,xn))(x1,...,xn)∈E1×...×En Mackey in
∏
E1×...×En F . Obviously, T∞

is n-linear, since Tn converges to T∞ pointwise. Moreover {Tn − T∞ : n ∈ N} is
pointwise bounded and thus {Tn−Tm : n,m ∈ N} is bounded in L(E1, . . . , En;F ).
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5.20 Projective Tensor Product

Taking the pointwise limit for m → ∞ shows that Tn − T∞ is uniformly bounded
on bounded sets, and hence T∞ ∈ L(E1, . . . , En;F ).

From this the smoothness detection principle follows, since it clearly suffices to
consider curves.

5.19. Theorem. Multilinear mappings on convenient vector spaces. A
multilinear mapping from convenient vector spaces to a locally convex space is boun-
ded if and only if it is separately bounded.

Proof. Let f : E1 × . . . × En → F be n-linear and separately bounded, i.e.
xi 7→ f(x1, . . . , xn) is bounded for each i and all fixed xj for j 6= i. Then f∨ :
E1× . . .×En−1 → L(En, F ) is (n− 1)-linear. By 5.18 the bornology on L(En, F )
consists of the pointwise bounded sets, so f∨ is separately bounded. By induction
on n it is bounded. The bornology on L(En, F ) consists also of the subsets which
are uniformly bounded on bounded sets by lemma 5.3 , so f is bounded.

We will now derive an infinite dimensional version of 3.4 , which gives us minimal
requirements for a mapping to be smooth.

5.20. Theorem. Let E be a convenient vector space. An arbitrary mapping
f : E ⊇ U → F is smooth if and only if all unidirectional iterated derivatives
dpvf(x) = ( ∂∂t )

p|0f(x + tv) exist, x 7→ dpvf(x) is bounded on sequences which are
Mackey converging in U , and v 7→ dpvf(x) is bounded on fast falling sequences.

Proof. A smooth mapping obviously satisfies this requirement. Conversely, from
3.4 we see that f is smooth restricted to each finite dimensional subspace, and

the iterated directional derivatives dv1 . . . dvnf(x) exist and are bounded multilinear
mappings in v1, . . . , vn by 5.4 , since they are universal linear combinations of the
unidirectional iterated derivatives dpvf(x) for v =

∑
i≤n εivi with εi ∈ {0, 1} by

the polarization formula 7.13 . So dnf : U → Ln(E;F ) is bounded on Mackey
converging sequences with respect to the pointwise bornology on Ln(E;F ). By
the uniform boundedness principle 5.18 together with lemma 4.14 the mapping
dnf : U × En → F is bounded on sets which are contained in a product of a
bornologically compact set in U - i.e. a set in U which is contained and
compact in some EB - and a bounded set in En.

Now let c : R→ U be a smooth curve. We have to show that f(c(t))−f(c(0))
t converges

to f ′(c(0))(c′(0)). It suffices to check that

1
t

(
f(c(t))− f(c(0))

t
− f ′(c(0))(c′(0))

)
is locally bounded with respect to t. Integrating along the segment from c(0) to
c(t) we see that this expression equals

1
t

∫ 1

0

(
f ′
(
c(0) + s(c(t)− c(0))

)(c(t)− c(0)
t

)
− f ′(c(0))(c′(0))

)
ds =

=
∫ 1

0
f ′
(
c(0) + s(c(t)− c(0))

)( c(t)−c(0)
t − c′(0)

t

)
ds

+
∫ 1

0

∫ 1

0
f ′′
(
c(0) + rs(c(t)− c(0))

)(
s
c(t)− c(0)

t
, c′(0)

)
dr ds.
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The first integral is bounded since df : U × E → F is bounded on the product of
the bornologically compact set {c(0) + s(c(t)− c(0)) : 0 ≤ s ≤ 1, t near 0} in U and
the bounded set

{
1
t

(
c(t)−c(0)

t − c′(0)
)

: t near 0
}

in E (use 1.6 ).

The second integral is bounded since d2f : U ×E2 → F is bounded on the product
of the bornologically compact set {c(0) + rs(c(t)− c(0)) : 0 ≤ r, s ≤ 1, t near 0} in
U and the bounded set

{(
s c(t)−c(0)

t , c′(0)
)

: 0 ≤ s ≤ 1, t near 0
}

in E2.

Thus f ◦c is differentiable in F with derivative df ◦(c, c′). Since df((x, v)+t(y, w)) =
df(x + ty, v) + t df(x + ty, w) the mapping df : U × E → F satisfies again the
conditions of the last part of the proof, so we may iterate.

5.21. The following result shows that bounded multilinear mappings are the right
ones for uses like homological algebra, where multilinear algebra is essential and
where one wants a kind of ‘continuity’. With continuity itself it does not work.
The same results hold for convenient algebras and modules, one just may take
c∞-completions of the tensor products.

So by a bounded algebra A we mean a (real or complex) algebra which is also
a locally convex vector space, such that the multiplication is a bounded bilinear
mapping. Likewise, we consider bounded modules over bounded algebras, where the
action is bounded bilinear.

Lemma. [Cap, Kriegl, Michor, Vanžura, 1993]. Let A be a bounded algebra, M a
bounded right A-module and N a bounded left A-module.

(1) There are a locally convex vector space M ⊗AN and a bounded bilinear map
b : M ×N →M ⊗A N , (m,n) 7→ m⊗A n such that b(ma, n) = b(m, an) for
all a ∈ A, m ∈M and n ∈ N which has the following universal property: If
E is a locally convex vector space and f : M ×N → E is a bounded bilinear
map such that f(ma, n) = f(m, an) then there is a unique bounded linear
map f̃ : M ⊗A N → E with f̃ ◦ b = f . The space of all such f is denoted by
LA(M,N ;E), a closed linear subspace of L(M,N ;E).

(2) We have a bornological isomorphism
LA(M,N ;E) ∼= L(M ⊗A N,E).

(3) Let B be another bounded algebra such that N is a bounded right B-module
and such that the actions of A and B on N commute. Then M ⊗A N is in
a canonical way a bounded right B-module.

(4) If in addition P is a bounded left B-module then there is a natural bornolo-
gical isomorphism M ⊗A (N ⊗B P ) ∼= (M ⊗A N)⊗B P .

Proof. We construct M ⊗A N as follows: Let M ⊗β N be the algebraic tensor
product of M and N equipped with the (bornological) topology mentioned in 5.7
and let V be the locally convex closure of the subspace generated by all elements of
the form ma⊗n−m⊗an, and define M ⊗AN to be M ⊗AN := (M ⊗βN)/V . As
M ⊗β N has the universal property that bounded bilinear maps from M ×N into
arbitrary locally convex spaces induce bounded and hence continuous linear maps
on M ⊗N , ( 1 ) is clear.

( 2 ) By (1) the bounded linear map b∗ : L(M ⊗A N,E) → LA(M,N ;E) is a
bijection. Thus, it suffices to show that its inverse is bounded, too. From 5.7 we
get a bounded linear map ϕ : L(M,N ;E)→ L(M ⊗β N,E) which is inverse to the
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map induced by the canonical bilinear map. Now let Lann(V )(M ⊗β N,E) be the
closed linear subspace of L(M ⊗β N,E) consisting of all maps which annihilate V .
Restricting ϕ to LA(M,N ;E) we get a bounded linear map ϕ : LA(M,N ;E) →
Lann(V )(M ⊗β N,E).

Let ψ : M ⊗β N → M ⊗A N be the the canonical projection. Then ψ induces a
well defined linear map ψ̂ : Lann(V )(M ⊗β N,E) → L(M ⊗A N,E), and ψ̂ ◦ ϕ is
inverse to b∗. So it suffices to show that ψ̂ is bounded.

This is the case if and only if the associated map Lann(V )(M⊗βN,E)×(M⊗AN)→
E is bounded. This in turn is equivalent to boundedness of the associated map
M ⊗AN → L(Lann(V )(M ⊗β N,E), E) which sends x to the evaluation at x and is
clearly bounded.

( 3 ) Let ρ : Bop → L(N,N) be the right action ofB onN and let Φ : LA(M,N ;M⊗A
N) ∼= L(M ⊗A N,M ⊗A N) be the isomorphism constructed in ( 2 ). We define
the right module structure on M ⊗A N as:

Bop −ρ→ L(N,N)−Id×→ L(M ×N,M ×N)−b∗→
−→ LA(M,N ;M ⊗A N)−Φ→ L(M ⊗A N,M ⊗A N).

This map is obviously bounded and easily seen to be an algebra homomorphism.

( 4 ) Straightforward computations show that both spaces have the following uni-
versal property: For a locally convex vector space E and a trilinear map f : M ×
N × P → E which satisfies f(ma, n, p) = f(m, an, p) and f(m,nb, p) = f(m,n, bp)
there is a unique linear map prolonging f .

5.22. Lemma. Uniform S-boundedness principle. Let E be a locally convex
space, and let S be a point separating set of bounded linear mappings with common
domain E. Then the following conditions are equivalent.

(1) If F is a Banach space (or even a c∞-complete locally convex space) and
f : F → E is a linear mapping with λ ◦ f bounded for all λ ∈ S, then f is
bounded.

(2) If B ⊆ E is absolutely convex such that λ(B) is bounded for all λ ∈ S and
the normed space EB generated by B is complete, then B is bounded in E.

(3) Let (bn) be an unbounded sequence in E with λ(bn) bounded for all λ ∈ S,
then there is some (tn) ∈ `1 such that

∑
tn bn does not converge in E for

the initial locally convex topology induced by S.

Definition. We say that E satisfies the uniform S-boundedness principle if these
equivalent conditions are satisfied.

Proof. ( 1 ) ⇒ ( 3 ) : Suppose that ( 3 ) is not satisfied. So let (bn) be an
unbounded sequence in E such that λ(bn) is bounded for all λ ∈ S, and such that for
all (tn) ∈ `1 the series

∑
tn bn converges in E for the initial locally convex topology

induced by S. We define a linear mapping f : `1 → E by f((tn)n) =
∑
tn bn, i.e.

f(en) = bn. It is easily checked that λ ◦ f is bounded, hence by ( 1 ) the image of
the closed unit ball, which contains all bn, is bounded. Contradiction.

( 3 ) ⇒ ( 2 ): Let B ⊆ E be absolutely convex such that λ(B) is bounded for all
λ ∈ S and that the normed space EB generated by B is complete. Suppose that B
is unbounded. Then B contains an unbounded sequence (bn), so by ( 3 ) there is
some (tn) ∈ `1 such that

∑
tn bn does not converge in E for the initial locally convex
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topology induced by S. But
∑
tn bn is a Cauchy sequence in EB , since

∑m
k=n tnbn ∈

(
∑m
k=n |tn|) ·B, and thus converges even bornologically, a contradiction.

( 2 ) ⇒ ( 1 ): Let F be convenient, and let f : F → E be linear such that λ ◦ f
is bounded for all λ ∈ S. It suffices to show that f(B), the image of an absolutely
convex bounded set B in F with FB complete, is bounded. By assumption, λ(f(B))
is bounded for all λ ∈ S and f : FB → Ef(B) is a quotient mapping of normed
spaces:

q̃B(y) = inf{qB(x) : y = f(x)} = inf{λ : y = f(x), x ∈ λB}
= inf{λ : y ∈ λ f(B)} = qf(B)(y).

Since FB is complete, so is Ef(B) and by ( 2 ) the set f(B) is bounded.

5.23. Lemma. A convenient vector space E satisfies the uniform S-boundedness
principle for each point separating set S of bounded linear mappings on E if and
only if there exists no strictly weaker ultrabornological topology than the bornological
topology of E.

Proof. (⇒) Let τ be an ultrabornological topology on E which is weaker than the
natural bornological topology. Consider S := {Id : E → (E, τ)} and the identity
(E, τ) → E. Since every ultra-bornological space is an inductive limit of Banach
spaces, cf. [75, 52.31], it is enough to show that for each of these Banach spaces F
the mapping F → (E, τ)→ E is continous. By 5.22.1 this is the case.

(⇐) If S is a point separating set of bounded linear mappings, the ultrabornological
topology given by the inductive limit of the spaces EB with B satisfying the as-
sumptions of 5.22.2 equals the natural bornological topology of E. Hence, 5.22.2
is satisfied.

5.24. Theorem. Webbed spaces have the uniform boundedness property.
A locally convex space which is webbed satisfies the uniform S-boundedness principle
for any point separating set S of bounded linear mappings.

Proof. Since the bornologification of a webbed space is webbed, cf. [68, 5.3.3], we
may assume that E is bornological, and hence that every bounded linear mapping
on it is continuous, see 4.1.1 . Now the closed graph principle [68, 5.3.3] applies
to any mapping satisfying the assumptions of 5.22.1 .

5.25. Lemma. Stability of the uniform boundedness principle. Let F be a
set of bounded linear mappings f : E → Ef between locally convex spaces, let Sf be
a point separating set of bounded linear mappings on Ef for every f ∈ F , and let
S :=

⋃
f∈F f

∗(Sf ) = {g ◦ f : f ∈ F , g ∈ Sf}. If F generates the bornology and Ef
satisfies the uniform Sf -boundedness principle for all f ∈ F , then E satisfies the
uniform S-boundedness principle.

Proof. We check the condition 5.22.1 . So assume h : F → E is a linear mapping
for which g ◦ f ◦ h is bounded for all f ∈ F and g ∈ Sf . Then f ◦ h is bounded by
the uniform Sf -boundedness principle for Ef . Consequently, h is bounded since F
generates the bornology of E.
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5.26. Theorem. Smooth uniform boundedness principle. Let E and F be
convenient vector spaces, and let U be c∞-open in E. Then C∞(U,F ) satisfies the
uniform S-boundedness principle where S := {evx : x ∈ U}.

Proof. For U = E = F = R this follows from 5.24 , since C∞(R,R) is a Fréchet
space hence webbed. The general case then follows from 5.25 .

41. Jets and Whitney Topologies

Jet spaces or jet bundles consist of the invariant expressions of Taylor developments
up to a certain order of smooth mappings between manifolds. Their invention goes
back to [Ehresmann, 1951.]

41.1. Jets between convenient vector spaces

Let E and F be convenient vector spaces, and let U ⊆ E and V ⊆ F be c∞-open
subsets. For 0 ≤ k ≤ ∞ the space of k-jets from U to V is defined by

Jk(U, V ) := U × V × Polyk0(E,F ), where Polyk0(E,F ) =
k∏
j=1

Ljsym(E;F ).

We shall use the source and image projections α : Jk(U, V )→ U and β : Jk(U, V )→
V , and we shall consider Jk(U, V ) → U × V as a trivial bundle, with fibers
Jkx (U, V )y := Polyk0(E,F ) for (x, y) ∈ U × V . Moreover, we have obvious pro-
jections πkl : Jk(U, V ) → J l(U, V ) for k > l, given by truncation at order l. For a
smooth mapping f : U → V the k-jet extension is defined by

jkf(x) = jkxf :=
(
x, f(x), df(x), 1

2!
d2f(x), . . . , 1

j!
djf(x), . . .

)
,

the Taylor expansion of f at x of order k. If k <∞ then jkx : C∞(U,F )→ Jk(U,F )
is smooth with a smooth right inverse (x, p0, . . . , pk) 7→

(
u 7→

∑
j≤k pj(u − x)k

)
,

see 5.17 . If k = ∞ then jk need not be surjective for infinite dimensional E, see
15.4 . For later use, we consider now the (truncated) composition

• : Polyk0(F,G)× Polyk0(E,F )→ Polyk0(E,G),
where p•q is the composition p◦q of the polynomials p, q (formal power series in case
k = ∞) without constant terms, and without all terms of order > k. Obviously,
• is polynomial of degree k + 1 for finite k and is real analytic for k = ∞ since
then each component is polynomial. Now let U ⊂ E, V ⊂ F , and W ⊂ G be open
subsets, and consider the fibered product

Jk(U, V )×U Jk(W,U) = { (σ, τ) ∈ Jk(U, V )× Jk(W,U) : α(σ) = β(τ) }

= U × V ×W × Polyk0(E,F )× Polyk0(G,E).
Then the mapping

• : Jk(U, V )×U Jk(W,U)→ Jk(W,V ),
σ • τ = (α(σ), β(σ), σ̄) • (α(τ), β(τ), τ̄) := (α(τ), β(σ), σ̄ • τ̄),

is a real analytic mapping, called the fibered composition of jets.

Let U , W ⊂ E and V ⊂ F be open subsets, and let g : W → U be a smooth
diffeomorphism. We define a mapping g∗ := Jk(g, V ) : Jk(U, V ) → Jk(W,V ) by
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Jk(g, V )(σ) = σ • jkg−1(α(σ))g, which also satisfies Jk(g, V )(jkxf) = jkg−1(α(σ))(f ◦ g).
If g′ : W ′ → W is another diffeomorphism, then clearly Jk(g′, V ) ◦ Jk(g, V ) =
Jk(g ◦ g′, V ), and Jk( , V ) is a contravariant functor acting on diffeomorphisms
between open subsets of E. Since the truncated composition σ̄ 7→ σ̄ • jkg−1(x)g is
linear, the mapping Jkx (g, F ) := Jk(g, F )|Jkx (U,F ) : Jkx (U,F )→ Jkg−1(x)(W,F ) is also
linear.

Now let W ⊂ E, U ⊂ F , and V ⊂ G be c∞-open subsets, and let h : U → V be
a smooth mapping. Then we define h∗ := Jk(W,h) : Jk(W,U) → Jk(W,V ) by
Jk(W,h)σ = jkβ(σ)h•σ, which satisfies Jk(W,h)(jkxf) = jkx(h◦f). Clearly, Jk(W, )
is a covariant functor acting on smooth mappings between c∞-open subsets of
convenient vector spaces. The mapping Jkx (W,h)y : Jkx (W,U)y → Jkx (W,V )h(y) is
linear if and only if h is affine or k = 1 or one of the spaces E,F, and G is 0.

41.3. Jets between manifolds

Now let M and N be smooth manifolds with smooth atlas (Uα, uα) and (Vβ , vβ),
modeled on convenient vector spaces E and F , respectively. Then we may glue the
open subsets Jk(uα(Uα), vβ(Vβ)) of convenient vector spaces via the chart change
mappings

Jk(uα′ ◦ u−1
α , vβ ◦ v−1

β′ ) : Jk(uα′(Uα ∩ Uα′), vβ′(Vβ ∩ Vβ′))→

→ Jk(uα(Uα ∩ Uα′), vβ(Vβ ∩ Vβ′)),

and we obtain a smooth fiber bundle Jk(M,N) → M × N with standard fiber
Polyk0(E,F ). With the identification topology Jk(M,N) is Hausdorff, since it is
a fiber bundle and the usual argument for gluing fiber bundles applies which was
given, e.g., in 28.12 .

Theorem. If M and N are smooth manifolds, modeled on convenient vector spaces
E and F , respectively. Let 0 ≤ k ≤ ∞. Then the following results hold.

(1) (Jk(M,N), (α, β),M ×N,Polyk0(E,F )) is a fiber bundle with standard fiber
Polyk0(E,F ), with the smooth group GLk(E) × GLk(F ) as structure group,
where (γ, χ) ∈ GLk(E) × GLk(F ) acts on σ ∈ Polyk0(E,F ) by (γ, χ).σ =
χ • σ • γ−1.

(2) If f : M → N is a smooth mapping then jkf : M → Jk(M,N) is also
smooth, called the k-jet extension of f . We have α◦jkf = IdM and β◦jkf =
f .

(3) If g : M ′ →M is a diffeomorphism then also the induced mapping Jk(g,N) :
Jk(M,N)→ Jk(M ′, N) is a diffeomorphism.

(4) If h : N → N ′ is a smooth mapping then Jk(M,h) : Jk(M,N)→ Jk(M,N ′)
is also smooth. Thus, Jk(M, ) is a covariant functor from the category of
smooth manifolds and smooth mappings into itself which respects each of the
following classes of mappings: initial mappings, embeddings, closed embed-
dings, splitting embeddings, fiber bundle projections. Furthermore, Jk( , )
is a contra-covariant bifunctor, where we have to restrict in the first variable
to the category of diffeomorphisms.

(5) For k ≥ l, the projections πkl : Jk(M,N) → J l(M,N) are smooth and
natural, i.e., they commute with the mappings from ( 3 ) and ( 4 ).

Andreas Kriegl , Univ.Wien, June 30, 2017 81



41.4 41. Jets and Whitney Topologies

(6) (Jk(M,N), πkl , J l(M,N),
∏k
i=l+1 L

i
sym(E;F )) are fiber bundles for all l ≤

k. For finite k the bundle (Jk(M,N), πkk−1, J
k−1(M,N), Lksym(E,F )) is an

affine bundle. The first jet space J1(M,N)→M ×N is a vector bundle. It
is isomorphic to the bundle (L(TM, TN), (πM , πN ),M ×N), see [75, 29.4]
and [75, 29.5]. Moreover, we have J1

0 (R, N) = TN and J1(M,R)0 = T ∗M .
(7) Truncated composition is a smooth mapping

• : Jk(N,P )×N Jk(M,N)→ Jk(M,P ).

Proof. ( 1 ) is already proved. ( 2 ), ( 3 ), ( 5 ), and ( 7 ) are obvious from 41.1 ,
mainly by the functorial properties of Jk( , ).

( 4 ) It is clear from 41.1 that Jk(M,h) is a smooth mapping. The rest follows by
looking at special chart representations of h and the induced chart representations
for Jk(M,h).

It remains to show ( 6 ), and here we concentrate on the affine bundle. Let a1 +
a ∈ GL(E) ×

∏k
i=2 L

i
sym(F ;F ), σ + σk ∈ Polyk−1

0 (E,F ) × Lksym(E;F ), and b1 +
b ∈ GL(E) ×

∏k
i=2 L

i
sym(E;E), then the only term of degree k containing σk in

(a1 +a)• (σ+σk)• (b1 + b) is a1 ◦σk ◦ bk1 , which depends linearly on σk. To this the
degree k-components of compositions of the lower order terms of σ with the higher
order terms of a and b are added, and these may be quite arbitrary. So an affine
bundle results.

We have J1(M,N) = L(TM, TN) since both bundles have the same transition
functions. Finally,
J1

0 (R, N) = L(T0R, TN) = TN and J1(M,R)0 = L(TM, T0R) = T ∗M.

41.4. Jets of sections of fiber bundles

If (p : E → M,S) is a fiber bundle, let (Uα, uα) be a smooth atlas of M such that
(Uα, ψα : E|Uα → Uα × S) is a fiber bundle atlas. If we glue the smooth manifolds
Jk(Uα, S) via (σ 7→ jk(ψαβ(α(σ), ))) • σ : Jk(Uα ∩ Uβ , S) → Jk(Uα ∩ Uβ , S), we
obtain the smooth manifold Jk(E), which for finite k is the space of all k-jets of
local sections of E.

Theorem. In this situation we have:

(1) Jk(E) is a splitting closed submanifold of Jk(M,E), namely the set of all
σ ∈ Jkx (M,E) with Jk(M,p)(σ) = jk(IdM )(x).

(2) J1(E) of sections is an affine subbundle of the vector bundle J1(M,E) =
L(TM, TE). In fact, we have

J1(E) = {σ ∈ L(TM, TE) : Tp ◦ σ = IdTM }.

(3) For k finite (Jk(E), πkk−1, J
k−1(E)) is an affine bundle.

(4) If p : E →M is a vector bundle, then (Jk(E), α,M) is also a vector bundle.
If φ : E → E′ is a homomorphism of vector bundles covering the identity,
then Jk(ϕ) is of the same kind.

Proof. Locally Jk(E) in Jk(M,E) looks like uα(Uα)×Polyk0(FM , FS) in uα(Uα)×
(uα(Uα)× vβ(Vβ))× Polyk0(FM , FM × FS), where FM and FS are modeling spaces
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of M and S, respectively, and where (Vβ , vβ) is a smooth atlas for S. The rest is
clear.

6. Some Spaces of Smooth Functions

6.1. Proposition. Let M be a smooth finite dimensional paracompact manifold.
Then the space C∞(M,R) of all smooth functions on M is a convenient vector space
in any of the following (bornologically) isomorphic descriptions, and it satisfies the
uniform boundedness principle for the point evaluations.

(1) The initial structure with respect to the cone

C∞(M,R)−c
∗
→ C∞(R,R)

for all c ∈ C∞(R,M).
(2) The initial structure with respect to the cone

C∞(M,R)−(u−1
α )∗→ C∞(Rn,R),

where (Uα, uα) is a smooth atlas with uα(Uα) = Rn.
(3) The initial structure with respect to the cone

C∞(M,R)−j
k

→ C(M ← Jk(M,R))

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth functions on
M , where jk is the jet prolongation, and where all the spaces of continuous
sections are equipped with the compact open topology.

It is easy to see that the cones in ( 2 ) and ( 3 ) induce even the same locally
convex topology which is sometimes called the compact C∞ topology, if C∞(Rn,R)
is equipped with its usual Fréchet topology. From ( 2 ) we see also that with the
bornological topology C∞(M,R) is nuclear by [75, 52.35], and is a Fréchet space if
and only if M is separable.

Proof. For all three descriptions the initial locally convex topology is convenient,
since the spaces are closed linear subspaces in the relevant products of the right
hand sides:
( 1 ) For this structure C∞(M,R) = lim←−c∈C∞(R,M) C

∞(R,R), where the connecting
mappings are given by g∗ for g ∈ C∞(R,R). Obviously, (c∗)c∈C∞(R,M) has values in
this inductive limit and induces the structure of ( 1 ) on C∞(M,R). This mapping
is bijective, since to (fc)c∈C∞(R,R) ∈ lim←−c C

∞(R,R) we can associate f : M → R
given by f(x) = fconstx(0). Then c∗(f) = fc, since constc(t) = c ◦ constt. Moreover
const∗x(f) = constf(x), so we found the inverse.
( 2 ) For this structure C∞(M,R) = lim←−u C

∞(Rn,R), where u run through all
smooth open embeddings Rn → M and where the connecting mappings are given
by g∗ for smooth embeddings g ∈ C∞(Rn,Rn). Obviously, (u∗)u has values in
this inductive limit and induces the structure of ( 2 ) on C∞(M,R), since locally
such u coincide with some (uα)−1 and C∞(Rn,R) carries the initial structure with
resperct to incl∗V : C∞(Rn,R)→ C∞(V,R), where the V form some open covering
of Rn This mapping (u∗)u is bijective, since to (fu)u ∈ lim←−u C

∞(Rn,R) we can
associate f : M → R given by f(x) = fu(t), where u : Rm → M is some smooth
open embedding with u(t) = x. This definition does not depend on the choice of
(u, t) since two such embeddings can be locally reparametrized into each another.
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As before this gives the required invese.
( 3 ) First note for vector bundles p : E → M the compact open topology turns
C(M ← E) into a locally convex space. In fact for a neighborhood subbasis of
this topology it is enough to consider the convex sets NK,U := {σ ∈ C(M ← E) :
σ(K) ⊆ U} for compact subsets K contained in trivializing open subsets V of the
basis and open sets U ⊆ E of the form ψ−1(V ×W ), where ψ : p−1(V )→ V × Rk
is the trivialization and W ⊆ Rk is open and convex in the typical fiber. This
shows also, that the topology is the initial one induced by the restriction maps
incl∗K : C(M ← E) → C(K ← E|K) ∼= C(K,Rk) ⊆ `∞(K,Rk). So it is enough
to show closednes of the image of C∞(M,R) →

∏
k,K C(K,

∏k
j=0 L

j
sym(Rm,Rk))

where the K are assumed to be compact in some chart domain in M . This is
clearly the case.

Thus, the uniform boundedness principle for the point evaluations holds for all
structures since it holds for all right hand sides (for C(M ← Jk(M,R)) we may
reduce to a connected component of M , and we then have a Fréchet space). So the
identity is bibounded between all structures.

6.2. Spaces of smooth functions with compact supports

For a smooth finite dimensional Lindelöf (equivalently, separable metrizable) Haus-
dorff manifold M we denote by C∞c (M,R) the vector space of all smooth functions
with compact supports in M .

Corollary. The following convenient structures on the space C∞c (M,R) are all
isomorphic:

(1) Let C∞K (M,R) be the space of all smooth functions on M with supports
contained in the fixed compact subset K ⊆ M , a closed linear subspace of
C∞(M,R). Let us consider the final convenient vector space structure on
the space C∞c (M,R) induced by the cone

C∞K (M,R) ↪→ C∞c (M,R)
where K runs through a basis for the compact subsets of M . Then the space
C∞c (M,R) is even the strict inductive limit of a sequence of Fréchet spaces
C∞K (M,R).

(2) We equip C∞c (M,R) with the initial structure with respect to the inclusion
C∞c (M,R)→ C∞(M,R) and the cone

C∞c (M,R)−x
∗
→ `∞c (N,R) =

∐
n∈N

Rn = R(N),

where x = (xn)n runs through all sequences in M without accumulation
point.

(3) The initial structure with respect to the cone

C∞c (M,R)−j
k

→ `∞c (M ← Jk(M,R))

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth functions
on M , where jk is the jet prolongation, and where the spaces of continuous
sections with compact support are equipped with the inductive limit topology
with steps CK(M ← Jk(M,R)) ⊆ C(M ← Jk(M,R)).

For M with only finitely many connected components which are all non-compact,
this is also true for
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(4) the convenient vector space structure induced by c∗ : C∞c (M,R)→ C∞c (R,R),
where c : R→M run through the proper smooth curves.

The space C∞c (M,R) satisfies the uniform boundedness principle for the point eval-
uations.

First Proof. We show that in all four descriptions the space C∞c (M,R) is conve-
nient and satisfies the uniform boundedness principle for point evaluations, hence
the identity is bibounded for all structures:

In ( 1 ) we may assume that the basis of compact subsets of M is countable, since
M is Lindelöf, hence has only countable many connected components and these are
metrizable, so the inductive limit is a strict inductive limit of a sequence of Fréchet
spaces, hence C∞c (M,R) is convenient and webbed by [68, 5.3.3] and [68, 5.3.3]
and satisfies the uniform boundedness principle by 5.24 .

In ( 2 )–( 4 ) the space is a closed subspace of the product of C∞(M,R) and spaces
on the right hand side which are strict inductive limits of Fréchet spaces, hence
convenient and satisfy the uniform boundedness principle:
In ( 2 ) closedness follows, since for smoothness of f : M → R follows from the
inclusion into C∞(M,R), and compactness of the support follows because this can
be tested along sequences without accumulation point.
In ( 3 ) closedness follows, since C∞(M,R) is closed in

∏
k C(M ← Jk(M,R)) by

the proof of 6.1 and the support is that of f = f0 ∈ `∞c (M ← J0(M,R)) =
`∞c (M,R).
In ( 4 ) this follows from ( 2 ), since every smooth curve in M coincides locally
with a proper smooth curve and if A ⊆ M is closed and not compact then there
exists some end e ∈ lim←−U π(U) (where π(U) denotes the finite set of (non-compact)
connected components of M \ U for open relative compact U ⊆ M) which is in
the closure of A in the compact topology of the Freudenthal-compactification M ∪
lim←−U π(U) with the sets eK ∪ {e′ ∈ lim←−U π(U) : e′K = eK} for the open relative
compact sets U ⊆ M as neighborhoodbasis of e. See [H.Freudenthal: Über die
Enden topologischer Räume und Gruppen, Math. Zeitschrift 33 (1931) 692-713] und
[Frank Reymond: the end point compactification of manifolds, Pacific J. Math. 10
(1960) 947-963]. Thus for every compact Kn ⊆M there exists a point an ∈ eKn∩A.
Since eKn+1 ⊆ eKn there is a curve in the connected component eKn ⊆ M \ Kn

connecting an with an+1 we may piece these curves smoothly together to obtain a
proper smooth curve c : R→M with c(±n) = an.

Second Proof.

( 1 → 2 ) For this we consider for sequences x = (xn)n without accumulation point
the diagram

C∞(M,R)

x∗

��

C∞K (M,R) �
� ( 1 )

//

x∗

��

? _oo

&&

C∞c (M,R)

( 2 )x∗

��∏
n∈NR Rx

−1(K) � � //? _oo ∐
n∈NR,

where x−1(K) := {n : xn ∈ K} is by assumption finite. Then obviously the identity
on C∞c (M,R) is bounded from the structure ( 1 ) to the structure ( 2 ).
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( 1 → 3 ) We consider the diagram:

C∞(M,R)

jk

��

C∞K (M,R) �
� ( 1 )

//

jk

��

? _oo

**

C∞c (M,R)

( 3 )jk

��
C(M ← Jk(M,R)) CK(M ← Jk(M,R)) �

� //? _oo `∞c (M ← Jk(M,R))

Obviously, the identity on C∞c (M,R) is bounded from the structure ( 1 ) into the
structure ( 3 ).

( 1 → 4 ) follows from the diagram

C∞(M,R)

e∗

��

C∞K (M,R) �
� ( 1 )

//

e∗

��

? _oo

''

C∞c (M,R)

( 2 )e∗

��
C∞(R,R) C∞e−1(K)(R,R) �

� //? _oo C∞c (R,R)

with proper e : R→M .

( 2 → 1 ) Now let B ⊆ C∞c (M,R) be bounded in the structure of ( 2 ). We claim
that B is contained in some C∞Kn(M,R), where Kn form an exhaustion of M by
compact subsets such that Kn is contained in the interior of Kn+1. Otherwise there
would be xn /∈ Kn and fn ∈ B with fn(xn) 6= 0. Then x∗(B) ist not bounded in∐
N
R = lim−→n

Rn, since this limit is regular, but x∗(fn)(n) = fn(xn) 6= 0. Since
C∞c (M,R) → C∞(M,R) is bounded, B is also bounded in C∞Kn(M,R) and hence
in the structure ( 1 ).

( 3 → 1 ) Now let B ⊆ C∞c (M,R) be bounded in the structure of ( 3 ). Then
B = j0(B) is bounded in `∞c (M ← J0(M,R)) = `∞c (M,R) = lim−→K

CK(M,R) and
since this limit is regular there exists a compact K ⊆M such that B ⊆ CK(M,R).
But then also B ⊆ C∞K (M,R). Since jk(B) ⊆ CK(M ← Jk(M,R)) ⊆ `∞c (M ←
Jk(M,R)) is bounded we get that B ⊆ C∞c (M,R) is bounded in the structure ( 3 ).

( 4 → 2 ) Let now M have only finitely many connected components which are all
non-compact and let B ⊆ C∞c (M,R) be bounded for the structure ( 4 ). Since
every smooth curve in M coincides locally with a proper smooth curve the set
B is bounded in C∞(M,R). Suppose there were a sequence x = (xn)n without
accumulation point for which x∗(B) is not bounded in

∐
n∈NR

n. Since evxn(B) is
bounded there are infinitely many n ∈ N for which fn ∈ B exists with fn(xn) 6= 0.
Since we only have finitely many connected components we may assume that all xn
are in the same non-compact connected component. Now we may choose a proper
smooth curve c passing through a subsequence of the xn and hence c∗(B) would
not be bounded in C∞c (R,R).

For the uniform boundedness principle we refer to the first proof.

Remark

Note that the locally convex topologies described in ( 1 ) and ( 3 ) are distinct: The
continuous dual of (C∞c (R,R), ( 1 )) is the space of all distributions (generalized
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functions), whereas the continuous dual of (C∞c (R,R), ( 3 )) are all distributions of
finite order, i.e., globally finite derivatives of continuous functions.

If M is only assumed to be a smooth paracompact Hausdorff manifold, then we
can still consider the structure on C∞c (M,R) given in 1 . It will no longer be an
inductive limit of a sequence of Fréchet spaces but will still satisfy the uniform
boundedness principle for the point-evaluations, by [41, 3.4.4]. since

C∞c (M,R) = lim−→
K

C∞K (M,R) = lim−→
K

⊕
i

C∞K∩Mi
(Mi,R) ∼=

∼=
∐
i

lim−→
K

C∞K∩Mi
(Mi,R) =

∐
i

C∞c (Mi,R),

where the Mi are the connected components and these are Lindelöf.

• 12.13 Smolyanov’s Example.

• 16.21 Some radial subsets are diffeomorphic to the whole space.

• [75, 21.6]– 21.11 Counter-examples for lifting and extension properties.

54. Differentiabilities discussed by Keller [61]

54.1 Remark. (e,g. [65, 6.1.4]) Recall that for Banach spaces E (and F ) a mapping
f : E ⊇ U → F defined on an open subset U of E is called (Fréchet-)differ-
entiable at x ∈ U iff there exists a continuous linear operator ` : E → F , such
that

f(x+ v)− f(x)− `(v)
‖v‖

→ 0 for v → 0.

Existence of ` implies its unicity, and hence it is denoted f ′(x) and called the
(Fréchet-)derivative of f at x.

In order to calculate f ′(x) we may consider the directional derivatives

dvf(x) := lim
t↘0

f(x+ tv)− f(x)
t

.

Note that this is R+-homogeneous with respect to v. If f is Fréchet differentiable
at x with derivative f ′(x), then dvf(x) exists and equals f ′(x)(v), since

f(x+ tv)− f(x)
t

− f ′(x)(v) = f(x+ tv)− f(x)− f ′(x)(tv)
t

= f(x+ tv)− f(x)− `(tv)
‖tv‖

‖v‖ → 0.

The converse direction does not hold, but one has:

54.2 Lemma. (e.g. [65, 6.1.6]) Let E and F be Banach spaces, U ⊆ E be open,
x ∈ U . Then f : E ⊇ U → F is Fréchet differentiable at x iff the following
conditions are satisfied:

1. ∀v ∈ E ∃dvf(x);
2. v 7→ dvf(x) is linear and continuous;

3. f(x+tv)−f(x)
t → dvf(x) for t↘ 0 uniformly for v in the unit-sphere.
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Proof. (⇒) was shown just before this lemma.

(⇐) We claim that v 7→ dvf(x) is the Fréchet derivative of f . So consider an
arbitrary v 6= 0 and put t := ‖v‖, w := 1

t v. Then
f(x+ v)− f(x)− dvf(x)

‖v‖
= f(x+ t w)− f(x)− dtwf(x)

t

= f(x+ t w)− f(x)
t

− dwf(x)→ 0

for t = ‖v‖ → 0 uniformly for ‖w‖ = 1.

Definition. The straight forward generalization of this notion to mappings between
locally convex spaces is the following:

A mapping f : E ⊇ U → F defined on an open subset U of a locally convex space E
is called (B-)differentiable at x ∈ U , iff for all v ∈ E the directional derivative
dvf(x) := limt↘0

f(x+tv)−f(x)
t exists, this convergence is uniformly for v ∈ B, for

any B ∈ B, where B is some given set of bounded subsets of E, and v 7→ dvf(x) is
linear and continuous. In [61] the following particular cases for B are treated:

’s’ the finite subsets (leading to so called simple (or pointwise) convergence).
’k’ the compact subsets. These are in general not stable under formation of

closed convex hulls.
’pk’ the precompact subsets. These are in contrast stable under formation of

closed convex hulls.
’b’ the bounded sets.

It is called continuously (B-)differentiable (C1
B for short), iff it is differen-

tiable at each point x ∈ U and x 7→ (v 7→ f ′(x)(v)) is continuous from U to
LB(E,F ) := {` : E → F |` is linear and continuous}, where we put the topology of
uniform convergence on sets B ∈ B on L(E,F ).

A mapping f : E ⊇ U → F is called Gâteaux differentiable at x ∈ U , iff for
all v ∈ E the directional derivative dvf(x) exists and is linear in v (and most often
it is also required to be continuous).

Moreover, it is sufficient to assume the continuity of the directional derivative to
get differentiability:

54.3 Lemma. Let f : E ⊇ U → F be defined on an open subset U of a
locally convex space E and assume that for all x ∈ U and v ∈ E the direc-
tional derivative dvf(x) exists and x 7→ dvf(x) defines a continuous mapping
f ′ : E ⊇ U → LB(E,F ).

Then f is B-differentiable on U and f ′ is its derivative.

Proof. By 54.2 we only have to show that f(x+tv)−f(x)
t → dvf(x) for t ↘ 0

uniformly for v in B ∈ B. So we consider the difference and get by the fundamental
theorem of calculus:

f(x+ t v)− f(x)
t

− dvf(x) =
∫ 1

0

1
t

d

ds
f(x+ s t v)− dvf(x) ds

=
∫ 1

0

(
dvf(x+ s t v)− dvf(x)

)
(v) ds,
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which converges as required, since dvf : U → LB(E,F ) is assumed to be continuous.

This observation has been used by [61] to compare various differentiability notions
given in the literature.

However, the problem with this type of definition, is to show the chain-rule for C1
B:

Let f : E → F and g : F → G be C1
B. We would like to have that g ◦ f : E → G is

C1
B and its derivative should be (g ◦ f)′(x) = g′(f(x)) ◦ f ′(x). Obviously f ′ : E →
L(E,F ) is continuous and also g′ ◦ f : E → F → L(F,G). Thus we would need
that the composition ◦ : L(F,G)×L(E,F )→ L(E,G) is continuous. We have seen
that even for E = G = R this is only the case, iff F is normed.

For this reason limit structures where used instead of topology by several authors.
The coarsest reasonable structure is that of continuous convergence (denoted c),
i.e. one calls a filter F on L(E,F ) to be convergent to ` ∈ L(E,F ), iff for each
filter E in E converging to some x ∈ E the image filter F(E) converges to `(x) in F .
This definition turns L(E,F ) into a convergence vector space denoted Lc(E,F ).
This is (by definition) the weakest convergence structure on L(E,F ) which makes
ev : L(E,F ) × E → F continuous. Moreover, a mapping f : X → Lc(E,F ) on a
topological space X is continuous, iff the associated mapping f̂ : X × E → F is
continuous.

Using some convergence structure Λ on L(E,F ) (like continuous convergence) one
can define f : E ⊇ U → F to be C1

Λ, iff it is Gâteaux-differentiable and the
derivative f ′ : E ⊇ U → LΛ(E,F ) is continuous. For C1

c mappings one can easily
show the chain-rule. However, in Banach spaces one does not recover classical
Fréchet differentiability (for which the inverse and implicit function theorem can
be shown) but something weaker, see the following example of Smolyanov ( 12.13 ).

According to [61] one has the following implications, where qb denotes the limit
structure of quasi-bounded convergence, which I will not explain here.

C1
qb

6

�

C1
b

�

C1
c

6

C1
pk

�C1
k

�C1
s

The two smaller frames indicate groups of definitions which are equivalent for map-
pings between Fréchet spaces. And the large frame indicates that all definitions are
equivalent for Fréchet-Schwarz spaces.

54.4 Higher Order Differentiability. In order to define differentiability of higher
order we need appropriate spaces of multi-linear mappings in which the higher
derivatives should take values.

For the concepts of CnB the spaces HnB(E,F ) (for hyper-continuity) were defined
recursively in [61] by

H0
B(E,F ) := F

Hn+1
B (E,F ) := LB(E,HnB(E,F ))
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54.7 54. Differentiabilities discussed by Keller [61]

For Cnc he considers Lnc (E,F ) as space of all continuous n-linear mappings E ×
. . .× E → F with the convergence structure c of continuous convergence.

54.5 Definition. Let B be some family of bounded sets on E. A mapping f : E ⊇
U → F is called CnB iff it is n-times Gâteaux differentiable, i.e. all the n-fold iterated
directional derivatives dvn . . . dv1f(x) exist, and (v1, . . . , vn) 7→ dvn . . . dv1f(x) is n-
linear and defines a continuous mapping f (n) : E ⊇ U → HnB(E,F ).

It is called C∞B , if it is CnB for all n ∈ N.

Similarly, let Λ be a convergence structure on Lk(E,F ) for all k ≤ n. Then f is
called CnΛ, iff it is n-times Gâteaux-differentiable and the n-th derivative f (n) : E ⊇
U → LnΛ(E,F ) is continuous. It is called C∞Λ , if it is CnΛ for all n ∈ N.

Again one has the same implications for Cn instead of C1.

Cnqb

6

�

Cnb�

Cnc

6

Cnpk�Cnk�Cns

One gets the following dependencies by using that from the continuity of a higher
derivative with respect to some convergence structure one can deduce continuity of
lower derivatives with respect to certain stronger convergence structures:

C∞qb

6

�

C∞b�

C∞c

6

C∞pk�C∞k�C∞s

Where this time the definitions in the smaller frame are equivalent for all lcs’s, and
for Fréchet spaces all mentioned definitions are equivalent. This has become popular
as “In Fréchet spaces all concepts of smoothness coincide” although strictly speaking
this is not true: Gâteaux-smoothness is strictly weaker, whereas tame-smoothness
and the concepts of C∞∆ and C∞Θ (see [61]) are strictly stronger.

54.6 Remark. In order to compare the concepts of smoothness to be found in [61]
with our smoothness we first have to compare the spaces of (multi-)linear mappings.
For the following results [80] is the appropriate reference.

54.7 Lemma. Let B be some set of bounded subsets of a locally convex space E,
containing the finite subsets and being stable under the formation of finite unions
and subsets.

We denote with LB(E,F ) the space of all bounded linear mappings with the topology
of uniform convergence on each bounded subset B ∈ B. A 0-neighborhood-basis of
this locally convex topology is given by the sets NB,V := {f : f(B) ⊆ V }, where
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B ∈ B and V runs through the 0-neighborhoods in F . Note that LB(E,F ) is the
topological subspace of this space formed by the continuous linear mappings.

A subset F ⊆ LB(E,F ) is bounded, iff it is uniformly bounded on bounded subsets
B ∈ B. In fact, NB,V absorbs F ⇔ ∃k: NB,k V = kNB,V ⊇ F , i.e. F(B) ⊆ k V .

54.8 Corollary. The bornology of LB(E,F ) is that of L(E,F ) provided B is any
of the families mentioned in 4.3 . And if E is c∞-complete then this is true for all
B between s and b.

Proof. By what we said just before, F ⊆ LB(E,F ) is bounded, iff F(B) is bounded
for all B ∈ B, or equivalently, iff F(B) is absorbed by any 0-neighborhood V in F ,
i.e. the absolutely convex set U :=

⋂
f∈F f

−1(V ) absorbs all B. Now we may apply
4.3 and, in the c∞-complete case, 5.18 .

54.9 Corollary. Let B be any of the bornologies in 54.8 . Then the inclusion
HnB(E,F )→ L(E, . . . , E;F ) is well-defined, bounded and linear.

Proof. For n = 0 nothing is to be shown.

For n = 1 we have that H1
B(E,F ) = LB(E,F ) ⊆ LB(E,F )

b∼= L(E,F ) by 54.8 .
By induction we get for n+ 1 the following sequence of bounded mappings:

Hn+1
B (E,F ) ∼= LB(E,HnB(E,F ))→

→ L(E,HnB(E,F ))→
→ L(E,L(E, . . . , E;F )) ∼= L(E, . . . , E;F )

54.10 Theorem. For a mapping f : E ⊇ U → F from a c∞-open subset E of a
lcs E with values in an lcs F the following statements are equivalent:

1. f is C∞;
2. All the iterated directional derivatives dnf(x)(v1, . . . , vn) exist and are boun-

ded on M -converging sequences in U × En;
3. The iterated directional derivatives dnf(x)(v1, . . . , vn) exist and define a

mapping dnf : E ⊇ U → L(E, . . . , E;F ) which is bounded on M -converging
sequences (or bornologically compact subsets of U);

If E is c∞-complete then this is further equivalent to

(4) The iterated unidirectional derivatives dnvf(x) exist and are separately boun-
ded in x and in v on M -converging sequences.

Proof. (4⇒ 3⇒ 1) In the proof of 5.20 we have shown that for c∞-complete lcs
E a mappings satisfying (4) satisfies (3) as well.
Then we showed without using any completeness condition that from (3) the chain
rule for curves c : R→ U follows and hence (1).

(1 ⇒ 3) follows from the chain rule given in 3.18 , since then dnf : E ⊇ U →
L(E, . . . , E;F ) is C∞ and hence continuous on bornologically compact sets K ⊆
EB ⊆ E.

(3 ⇒ 4) and (3 ⇒ 2) are trivial, since bounded subsets of L(E, . . . , E;F ) are
bounded on M -converging sequences.
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(2 ⇒ 3) It was shown in 5.20 that from (2) we conclude that dnf : E ⊇ U →
L(E, . . . , E;F ) exists and is bounded on M -converging sequences with respect to
the pointwise topology on L(E, . . . , E;F ). But by assumption this is even true
for the topology of uniform convergence on M -converging sequences, and this is
induces the same bornology as that of uniform convergence on bounded sets by
54.8 .

54.11 Proposition. Let η be some real sequence converging to ∞ and f : E ⊇
U → F be a mapping from an open subset U of a lcs E with value in an lcs F .
If f ∈ C∞B , where B contains all η-sequences, then f ∈ C∞.
If E is c∞-complete, then f ∈ C∞s implies f ∈ C∞.

Proof. By assumption we have that f is infinite often Gâteaux differentiable and
f (n) : E ⊇ U → HnB(E,F ) is continuous. Since HnB(E,F ) → L(E, . . . , E;F ) is
well-defined and bounded by 54.9 the result follows from 54.10 .

54.12 Theorem. Let f : E ⊇ U → F with U open in an lcs E with c∞(E) = E

and let F an lcs. Then f ∈ C∞ ⇔ f ∈ C∞B , with any B as in 54.11 .

Proof. Because of 54.11 we only have to show (⇒). By 3.18 we have the direc-
tional derivative df : E ⊇ U → L(E,F ) which is C∞ as well. So f is infinitely often
Gâteaux differentiable and it remains to show that dnf : E ⊇ U → L(E, . . . , E;F )
is well-defined and continuous into Hnb (E,F ). Since dnf is smooth, we have that
dnf : c∞(U) = c∞(E)|U → c∞(L(E, . . . , E;F )) → L(E, . . . , E;F )born is contin-
uous, and since c∞E = E, we get that dnf : E ⊇ U → L(E, . . . , E;F )born is
continuous. Since c∞E = E we have that E is bornological, so

H1
B(E,F )born = LB(E,F )born = L(E,F )born = L(E,Fborn)born

and we get HnB(E,F )born = L(E, . . . , E;F )born by induction:
L(E, . . . , E,E;F )born ∼= L(E,L(E, . . . , E;F )born)born

= LB(E,L(E, . . . , E;F )born)born

= LB(E,Hn−1
B (E,F )born)born

= LB(E,Hn−1
B (E,F ))born

= Hn+1
B (E,F )born.

So the derivatives are continuous into HnB(E,F ).

55. Silva-Differentiability

See [24]. The idea here is to use the normed spaces EB with B bounded in E
and Fq := F/q−1(0) for continuous seminorms q on F associated with each locally
convex space, and in fact for E we only need a convex bornological space
(cbs, for short) E (i.e. a vector space together with a bornology which is invariant
under addition, homotheties and formation of convex hulls).

55.1 Definition. Let E and F be cbs’s. A mapping f : E → F is called Silva
differentiable at x ∈ E ⇔ ∀A ⊆ E absolutely convex bounded ∃B ⊆ F
absolutely convex bounded such that f( + x)− f(x) : EA → FB is locally around
0 defined and Fréchet differentiable at 0.
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Equivalently, ∀A ⊆ E absolutely convex bounded with x ∈ A ∃B ⊆ F absolutely
convex bounded such that f : EA → FB is locally around x defined and Fréchet
differentiable at x.

In fact, f( + x) − f(x) = ( − f(x)) ◦ f ◦ ( + x) : EA → FBf(x) has some local
property at 0 provided f : EAx → FB has the same property at x, where Ax :=
〈{x}∪A〉abs.conv. and analogously Bf(x) := 〈{f(x)}∪B〉abs.conv., since +x : EA →
EAx is affine and bounded because

ρA+ x = (1 + ρ)
(

ρ

1 + ρ
Ax + 1

1 + ρ
x

)
⊆ (1 + ρ)Ax.

Conversely, f : EA → FB−f(x) has some local property at x ∈ A provided f( + x) :
EA−x → FB has the same property at 0, since f( ) = ( +f(x))◦ (f( +x)−f(x))◦
( − x).

Note that in this situation the derivatives at x of the restrictions of f : E → F
to locally defined mappings EA → FB fit together to define a bounded linear
mapping f ′(x) : E → F . Thus the definition of Silva-differentiability of f at x
can be rephrased as in [24, 1.1.1]: ∃` : E → F bounded and linear, such that for
r(h) := f(h+ x)− f(x)− ` · h one has:
∀A ⊆ E absolutely convex bounded ∃B ⊆ F absolutely convex bounded such that
∃ε > 0 : r(εA) ⊆ B and pB(r(h))/pA(h)→ 0 for pA(h)→ 0.

55.2 Definition. Let E and F be cbs’s and f : E → F . Then f is called Silva
differentiable iff it is Silva-differentiable at each point x ∈ E. Note that the B
in the definition 55.1 of differentiability at x may depend not only on the given A
but also on x. Thus a Silva differentiable f need not have a locally differentiable
restriction EA → FB for some B.

55.3 Definition. Let E and F be cbs’s and f : E → F . Then f is called M-
continuous at x ∈ E iff ∀A ⊆ E absolutely convex bounded ∃B ⊆ F absolutely
convex bounded such that f( + x) − f(x) : EA → FB is defined locally around 0
and continuous at 0, i.e. ∃ε > 0 with f(εA+ x) ⊆ B and pB(f(h+ x)− f(x))→ 0
for pA(h)→ 0.

Equivalently, ∀A ⊆ E absolutely convex bounded with x ∈ A ∃B ⊆ F absolutely
convex bounded such that f : EA → FB is locally around x defined and continuous
at x.

The mapping f is called M-continuous, iff it is so at every point x ∈ E.

55.4 Definition. Let E and F be cbs’s and f : E → F . Then f is called
continuously Silva differentiable (S1 for short) iff it is Silva differentiable
and f ′ : E → L(E,F ) is M -continuous, where L(E,F ) denotes the cbs of bounded
linear mappings from E to F with the bornology formed by the subsets being
uniformly bounded in F on each bounded subset of E.

55.5 Definition. Let E and F be cbs’s and f : E → F . Then f is called n + 1-
times continuously Silva differentiable (Sn+1 for short) if it is Sn and the
n-th derivative f (n) : E → L(E, . . . , E;F ) is S1, or equivalently, avoiding the higher
derivative, if f is S1 and its derivative f ′ : E → L(E,F ) is Sn.

The mapping f is called S∞ iff f is n-times Silva-differentiable for all n ∈ N.
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55.6 Definition. Let E be a cbs, F an lcs and f : E → F . Then f is called Silva
differentiable in the enlarged sense, iff ∀x ∈ E there exists a bounded
linear ` : E → F such that rx(h) := f(h + x) − f(x) − ` · h is a remainder in the
following sense: For every absolutely convex bounded A ⊆ E and every continuous
seminorm q on F we have

q(rx(h))/pA(h)→ 0 for all h→ 0 in EA.

For complete F this condition is equivalent to EA → E → F → F/Ker(q) being
differentiable between normed spaces since then F is embedded as closed subspace
of
∏
q
\F/Ker(q) and hence the directional derivative of f exists in F .

55.7 Definition. Analogously, for n ∈ N ∪ {∞}, one may define n-times (con-
tinuously) Silva differentiable in the enlarged sense (Sne for short) and
this is for complete (and in case n = ∞ even for c∞-complete) F equivalent to
EB → E → F → F/Ker(q) being n-times (continuously) differentiable between
normed spaces.

Thus for locally convex spaces E and convenient vector spaces F a mapping f :
E → F is S∞e for the von Neumann bornology on E if and only if it is C∞.

55.8 Remark. This definition makes problems with the chain-rule E → F → G
even if the space F in the middle is a locally convex space, since for F → G we only
have properties on FB but the restriction of E → F to EA need not have values in
FB for some B.

55.9 Example. Note that Sn implies Sne (see [24, 1.4.8]), but not conversely even
for f : E → R and n =∞, see [24, 2.5.2].

55.10 Definition. Let p ∈ N∪{∞} and E and F be cbs’s. A mapping f : E → F is
called locally p-times differentiable between normed spaces at a point
x ∈ E iff ∀A ⊆ E absolutely convex bounded ∃ε > 0 ∃B ⊆ F absolutely convex
bounded such that f(εA+x) ⊆ B and f : {z ∈ EA : ‖z‖A < ε}+x→ FB is p-times
differentiable. Note that here in contrast to definitions 55.1 – 55.4 the bounded
set B is locally independent on x and on the order of the derivative.

55.11 Proposition. [24, 1.5.2]. Let E and F be cbs’s and F be polar, i.e. the lcs-
closure of bounded sets is bounded. Then Sp+1 (i.e. p+ 1-times continuously Silva
differentiable) implies locally p-times continuously differentiable between normed
spaces.

Example. There exist scalar valued mappings which are locally C∞ between
normed spaces but are not S∞, see [24, 2.5].

55.12 Corollary. Let f : E → F be smooth and K ⊆ E be bornologically-compact.
Then the image f(K) in F is bornologically compact. Moreover, if K ⊆ EB is
compact we find a bounded absolutely convex set A ⊆ F such that f : EB ⊇ K → FA
is a contraction.

Proof. Since f : E → F is smooth, we have that g := ` ◦ f : EB → R is C∞. In
particular it is continuous, and from continuity of g′ : EB → L(EB ,R) we deduce
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locally Lipschitzness of g, since

|g(y)− g(x)| =
∣∣∣∣∫ 1

0
g′(x+ t(y − x))(y − x) dt

∣∣∣∣
≤
∫ 1

0
|g′(x+ t(y − x))(y − x)| dt

≤ sup
{
‖g′(x+ t(y − x))‖ : t ∈ [0, 1]

}
· ‖y − x‖

Since K ⊆ EB is compact we get a Lipschitz bound of ` ◦ f on K for each ` ∈ E′
(see the paragraph below) and hence { f(x)−f(y)

‖x−y‖B : x, y ∈ K} is bounded in F . Let A
be the absolutely convex hull of this set, then f : EB ⊇ K → FA is a contraction,
and hence continuous and thus f(K) is compact in FA.

A locally Lipschitzian mapping on a normed space is Lipschitzian on each compact
subset: Otherwise we would find xn and yn with |f(xn) − f(yn)|/‖xn − yn‖ un-
bounded. Without loss of generality we may assume that xn → x∞ and yn → y∞.
If x∞ 6= y∞ then by continuity of f we get boundedness of the difference quotient.
And if x∞ = y∞ this contradicts the local Lipschitzness of f at x∞.

55.13 Proposition. [80] Let E and F be convenient vector spaces and f : E → F .
Then f is C∞ ⇔ ∀K ⊆ E, absolutely convex, bornologically compact, ∀x ∈ K
∀n ∈ N (n 6= ∞) ∃J ⊆ F , absolutely convex, bornologically compact such that f :
EK → FJ is Cn locally around x, i.e. f is locally n-times continuously differentiable
between normed spaces for the bornologies of bornologically compact sets.

Proof. (⇐) Let c : R → E be C∞, let I ⊆ R be a bounded open interval, t0 ∈ I
and n ∈ N. Since δc : R2 → E given by δc(t, s) :=

∫ 1
0 c
′(t+r(s−t)) dr is smooth the

image of I × I is bornologically-compact by 55.12 . And inductively we get that
K := δc(I × I) ∪ · · · ∪ δc(n)(I × I) ∪ {c(t0), . . . , c(n)(t0)} is bornologically-compact
and hence compact in some EB .

Thus there exists a sequence xn → 0 in EB such that K is in the closed absolutely
convex hull of {xn : n ∈ N}. The closed convex hull B′ of this sequence is compact
in EB , so K is in the unit-sphere of EB′ with bornologically compact B′.

Now we can deduce recursively that c : I → EB′ is Cn and hence the composite
f ◦ c : I → F is Cn.

(⇒) Let K be bornologically compact and n ∈ N. It suffices to show the existence
of a bornologically compact Kn ⊆ F such that f : EK ⊇ o(EK)→ FKn is Cns , i.e.
x 7→ f (k)(x)(v1, . . . vk), oEK → FKn is continuous for all k ≤ n.

Since these derivatives are smooth EB → F there exists some bornologically com-
pact Kn ⊆ F , such that they are Lipschitz EB ⊇ K → EKn by what we proved in
55.12 . Hence they are continuous K ⊆ EK → EB → EKn .

55.14 Remark. Ulrich Seip defined f to be smooth iff it is smooth along all
smooth mappings c : Rn → U (by Boman [15] n = 1 suffices) and all derivatives
are continuous on compact subsets U×En. This is weaker than C∞c , since continuity
f (n) : U → Lnc (E,F ) is required only on compact subsets of U .
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However, it is not clear, whether all compact subsets are bounding (i.e. all smooth
mappings in the sense of convenient calculus are bounded on them), hence the
smoothness notion of Seip might be strictly stronger.
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This chapter starts with an investigation of holomorphic mappings between infinite
dimensional vector spaces along the same lines as we investigated smooth mappings
in chapter I. This theory is rather easy if we restrict to convenient vector spaces.

The basic tool is the set of all holomorphic mappings from the unit disk D ⊂ C
into a complex convenient vector space E, where all possible definitions of being
holomorphic coincide, see 7.4 . This replaces the set of all smooth curves in the
smooth theory. A mapping between c∞-open sets of complex convenient vector
spaces is then said to be holomorphic if it maps holomorphic curves to holomorphic
curves. This can be tested by many equivalent descriptions (see 7.19 ), the most
important are that f is smooth and df(x) is complex linear for each x (i.e. f satisfies
the Cauchy-Riemann differential equation); or that f is holomorphic along each
affine complex line and is c∞-continuous (generalized Hartog’s theorem). Again
(multi-) linear mappings are holomorphic if and only if they are bounded 7.12 .

The space H(U,F ) of all holomorphic mappings from a c∞-open set U ⊆ E into
a convenient vector space F carries a natural structure of a complex convenient
vector space 7.21 , and satisfies the holomorphic uniform boundedness principle
8.10 . Of course our general aim of cartesian closedness 7.22 , 7.23 is valid also

in this setting: H(U,H(V, F )) ∼= H(U × V, F ).

As in the smooth case we have to pay a price for cartesian closedness: holomorphic
mappings can be expanded into power series, but these converge only on a c∞-open
subset in general, and not on open subsets.

The second part of this chapter is devoted to real analytic mappings in infinite di-
mensions. The ideas are similar as in the case of smooth and holomorphic mappings,
but our wish to obtain cartesian closedness forces us to some modifications: In 9.1
we shall see that for the real analytic mapping f : R2 3 (s, t) 7→ 1

(st)2+1 ∈ R there is
no reasonable topology on Cω(R,R), such that the mapping f∨ : R→ Cω(R,R) is
locally given by its convergent Taylor series, which looks like a counterexample to
cartesian closedness. Recall that smoothness (holomorphy) of curves can be tested
by applying bounded linear functionals (see 2.14 , 7.4 ). The example above shows
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at the same time that this is not true in the real analytic case in general; if E′ carries
a Baire topology then it is true 9.6 .

So we are forced to take as basic tool the space Cω(R, E) of all curves c such that
` ◦ c : R→ R is real analytic for each bounded linear functional, and we call these
the real analytic curves. In order to proceed we have to show that real analyticity of
a curve can be tested with any set of bounded linear functionals which generates the
bornology. This is done in 9.4 with the help of an unusual bornological description
of real analytic functions R→ R 9.3 .

Now a mapping f : U → F is called real analytic if f ◦ c is smooth for smooth c
and is real analytic for real analytic c : R→ U . The second condition alone is not
sufficient, even for f : R2 → R. Then a version of Hartog’s theorem is true: f is real
analytic if and only if it is smooth and real analytic along each affine line 10.4 .
In order to get to the aim of cartesian closedness we need a natural structure of a
convenient vector space on Cω(U,F ). We start with Cω(R,R) which we consider as
real part of the space of germs along R of holomorphic functions. The latter spaces
of holomorphic germs are investigated in detail in section 8 . At this stage of
the theory we can prove the real analytic uniform boundedness theorem 11.6 and
11.12 , but unlike in the smooth and holomorphic case for the general exponential

law 11.18 we still have to investigate mixing of smooth and real analytic variables
in 11.17 . The rest of the development of section 11 then follows more or less
standard (categorical) arguments.

7. Calculus of Holomorphic Mappings

7.1. Basic notions in the complex setting

In this section all locally convex spaces E will be complex ones, which we can view
as real ones ER together with continuous linear mapping J with J2 = − Id (the
complex structure). So all concepts for real locally convex spaces from sections 1
to 5 make sense also for complex locally convex spaces.

A set which is absolutely convex in the real sense need not be absolutely convex
in the complex sense. However, the C-absolutely convex hull of a bounded subset
is still bounded, since there is a neighborhood basis of 0 consisting of C-absolutely
convex sets. So in this section absolutely convex will refer always to the complex
notion. For absolutely convex bounded sets B the real normed spaces EB (see 1.5 )
inherit the complex structure.

In this section all considered locally convex spaces will assumed to be convenient.

A complex linear functional ` on a convex vector space is uniquely determined by
its real part Re ◦`, by `(x) = (Re ◦`)(x) −

√
−1(Re ◦`)(Jx). So for the respective

spaces of bounded linear functionals we have

ER
′ = LR(ER,R) ∼= LC(E,C) =: E?,

where the complex structure on the left hand side is given by λ 7→ λ ◦ J .
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7.2. Definition

Let D be the open unit disk {z ∈ C : |z| < 1}. A mapping c : D→ E into a locally
convex space E is called complex differentiable, if the complex derivative

c′(z) = lim
C3w→0

c(z + w)− c(z)
w

exists for all z ∈ D.

7.3. Lemma (Power series with values in convenient vector spaces). Let
E be convenient and an ∈ E. Then the following statements are equivalent:

(1) {rnan : n ∈ N} is bounded for all |r| < 1.
(2) The power series

∑
n≥0 z

nan is Mackey convergent in E, uniformly on each
compact subset of D, i.e., the Mackey coefficient sequence and the bounded
set can be chosen valid in the whole compact subset.

(3) The power series converges weakly for each z ∈ D.

Proof. ( 1 ) ⇒ ( 2 ) Any compact set is contained in rD for some 0 < r < 1 and
for any r < R < 1 the set {Rnan : n ∈ N} is contained in some absolutely convex
bounded B. So the partial sums of the series form a Mackey Cauchy sequence
uniformly on rD since

1
(r/R)N − (r/R)M+1

M∑
n=N

znan ∈
1

1− (r/R)
B.

( 2 ) ⇒ ( 3 ) is clear.

( 3 ) ⇒ ( 1 ) The summands are weakly bounded, thus bounded.

7.4. Theorem. If E is convenient then the following statements for a curve
c : D→ E are equivalent:

(1) c is complex differentiable.
(2) ` ◦ c : D→ C is holomorphic for all ` ∈ E?

(3) c is continuous and
∫
γ
c = 0 in the completion of E for all closed smooth

(Lip0) curves γ in D.
(4) All c(n)(0) exist and c(z) =

∑∞
n=0

zn

n! c
(n)(0) is Mackey convergent, uniformly

on each compact subset of D.
(5) For each z ∈ D all c(n)(z) exist and c(w) =

∑∞
n=0

(w−z)n
n! c(n)(z) is Mackey

convergent, uniformly for w in each compact set in the largest disk with
center z contained in D.

(6) c(z) dz is a closed smooth (Lip1) 1-form with values in ER.
(7) c is the complex derivative of some complex differentiable curve in E.
(8) c is smooth (Lip1) with complex linear real derivative dc(z) for all z.

A curve c : D→ E satisfying these equivalent conditions will be called a holomorphic
curve.

Proof. Composition with a continuous C-linear functional obviously translates all
statements to one dimensional versions which in turn are all equivalent by complex
analysis.
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Conversely, let ` ◦ c satisfy these equivalent conditions for each continuous linear
` : E → C. Then we get the conditions for c as follows:

( 8 ) By 2.14 c is smooth with real derivative satisfying ` ◦ dc(z) = d(` ◦ c)(z),
hence being complex linear.

( 1 ) For any z ∈ D the difference quotient of ` ◦ c at z extends from C \ {0} to a
holomorphic function C → C and hence is locally Lipschitz. Thus the difference
quotient of c is Lipschitz on U \ {0} for some 0-neighborhood U , hence forms a
Cauchy net, cf. 2.1 . Hence c is complex differentiable at z and by induction the
complex derivatives c(n)(z) exist for all n.

( 3 ) Since c is continuous the integral
∫
γ
c exists in the completioon of E and

satisfies `(
∫
γ
c) =

∫
γ
(` ◦ c) = 0.

( 5 , 4 ) By 7.3 ( 3 ⇒ 2 ) the series
∑
n

(w−z)n
n! c(n)(z) is Mackey convergent, uni-

formly for w in each compact set in the largest disk with center z contained in D.
Moreover, the image of its sum under ` equals `(c(w)), hence its sum is c(w).

( 6 ) `( ∂c∂z̄ ) = ∂(`◦c)
∂z̄ = 0.

( 7 ) The anti-derivative of c is given by z 7→
∫ 1

0 c(tz) z dt.

( 1 ) ⇒ ( 2 ) Suppose that ` is C-linear and only bounded. Let c : D → E be
a complex differentiable curve. Then c1 : z 7→ 1

z

(
c(z)−c(0)

z − c′(0)
)

is a complex

differentiable curve by ( 1 ⇐ 2 ) proved above, hence

(` ◦ c1)(z) = 1
z

(
`(c(z))− `(c(0))

z
− `(c′(0))

)
is locally bounded in z. So ` ◦ c is complex differentiable with derivative ` ◦ c′.

7.5. Remarks

In the holomorphic case the equivalence of 7.4 ( 1 ⇔ 2 ) does not characterize
c∞-completeness as it does in the smooth case. The complex differentiable curves
do not determine the bornology of the space, as do the smooth ones. See [79,
1.4]. For a discussion of the holomorphic analogues of smooth characterizations for
c∞-completeness (see 2.14 ) we refer to [79, pp. 2.16].

7.6. Lemma. Let c : D→ E be a holomorphic curve in a convenient space. Then
locally in D the curve factors to a holomorphic curve into EB for some bounded
absolutely convex set B.

First Proof. By the obvious extension of lemma 1.8 for smooth mappings R2 ⊃
D→ E the curve c factors locally to a Lip1-mapping into some complete EB . Since
it has complex linear derivative, by theorem 7.4 it is holomorphic.

Second direct proof. Let W be a relatively compact neighborhood of some point
in D. Then c(W ) is bounded in E. It suffices to show that for the absolutely convex
closed hull B of c(W ) the Taylor series of c at each z ∈ W converges in EB , i.e.
that c|W : W → EB is holomorphic. This follows from the
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Vector valued Cauchy inequalities. If r > 0 is smaller than the radius of
convergence at z of c then

rk

k! c
(k)(z) ∈ B

where B is the closed absolutely convex hull of { c(w) : |w − z| = r}. (By the
Hahn-Banach theorem this follows directly from the scalar valued case.)

Thus, we get ∑m
k=n(w−zr )k · r

k

k! c
(k)(z) ∈

∑m
k=n(w−zr )k ·B

and so
∑
k
c(k)(z)
k! (w − z)k is convergent in EB for |w − z| < r.

This proof also shows that holomorphic curves with values in complex convenient
vector spaces are topologically and bornologically holomorphic in the sense analo-
gous to 9.4 .

7.7. Lemma. Let E be a regular (i.e. every bounded set is contained and bounded
in some step Eα) inductive limit of complex locally convex spaces Eα ⊆ E, let
c : C ⊇ U → E be a holomorphic mapping, and let W ⊆ C be open and such that
the closure W is compact and contained in U . Then there exists some α, such that
c|W : W → Eα is well defined and holomorphic.

Proof. By lemma 7.6 the restriction of c to W factors to a holomorphic curve
c|W : W → EB for a suitable bounded absolutely convex set B ⊆ E. Since B is
contained and bounded in some Eα one has c|W : W → EB = (Eα)B → Eα is
holomorphic.

7.8. Definition. Let E and F be convenient vector spaces and let U ⊆ E be
c∞-open. A mapping f : U → F is called holomorphic, if it maps holomorphic
curves in U to holomorphic curves in F .

It is remarkable that [35] already gave this definition. Connections to other concepts
of holomorphy are discussed in [79, 2.19].

So by 7.4 f is holomorphic if and only if `◦f ◦c : D→ C is a holomorphic function
for all ` ∈ F ? and holomorphic curve c.

Clearly, any composition of holomorphic mappings is again holomorphic.

For finite dimensions this coincides with the usual notion of holomorphic mappings,
by the finite dimensional Hartogs’ theorem.

7.9. Hartogs’ Theorem. Let E1, E2, and F be convenient vector spaces with U
c∞-open in E1 × E2. Then a mapping f : U → F is holomorphic if and only if it
is separately holomorphic, i.e. f( , y) and f(x, ) are holomorphic.

Proof. If f is holomorphic then f( , y) is holomorphic on the c∞-open set E1 ×
{y} ∩ U = incl−1

y (U), likewise for f(x, ).

If f is separately holomorphic, for any holomorphic curve (c1, c2) : D→ U ⊆ E1×E2
we consider the holomorphic mapping c1 × c2 : D2 → E1 × E2. Since the ck are
smooth by 7.4.8 also c1 × c2 is smooth and thus (c1 × c2)−1(U) is open in C2.
For each λ ∈ F ∗ the mapping λ ◦ f ◦ (c1 × c2) : (c1 × c2)−1(U) → C is separately
holomorphic and so holomorphic by the usual Hartogs’ theorem. By composing
with the diagonal mapping we see that λ ◦ f ◦ (c1, c2) is holomorphic, thus f is
holomorphic.
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7.10. Lemma. Let f : E ⊇ U → F be holomorphic from a c∞-open subset in
a convenient vector space to another convenient vector space. Then the derivative
(df)∧ : U ×E → F is again holomorphic and complex linear in the second variable.

Proof. (z, v, w) 7→ f(v+ zw) is holomorphic. We test with all holomorphic curves
and linear functionals and see that (v, w) 7→ ∂

∂z |z=0f(v + zw) =: df(v)w is again
holomorphic, C-homogeneous in w by 7.4 .

Now w 7→ df(v)w is a holomorphic and C-homogeneous mapping E → F . But
any such mapping is automatically C-linear: Composed with a bounded linear
functional on F and restricted to any two dimensional subspace of E this is a finite
dimensional assertion.

7.11. Remark. In the definition of holomorphy 7.8 one could also have admitted
subsets U which are only open in the final topology with respect to holomorphic
curves. But then there is a counterexample to 7.10 , see [79, 2.5].

7.12. Theorem. A multilinear mapping between convenient vector spaces is holo-
morphic if and only if it is bounded.

This result is false for locally convex spaces being not c∞-complete, see [79, 1.4].

Proof. Since both conditions can be tested in each factor separately by Hartogs’
theorem 7.9 and by 5.19 , and by testing with linear functionals, we may restrict
our attention to linear mappings f : E → C only.

By theorem 7.4.2 a bounded linear mapping is holomorphic. Conversely, suppose
that f : E → C is a holomorphic but unbounded linear functional. So there exists
a sequence (an) in E with |f(an)| > 1 and {2nan} bounded. Consider the power
series

∑∞
n=0(an − an−1)(2z)n. This describes a holomorphic curve c in E, by 7.3

and 7.4.2 . Then f ◦ c is holomorphic and thus has a power series expansion
f(c(z)) =

∑∞
n=0 bnz

n. On the other hand

f(c(z)) =
N∑
n=0

(
f(an)− f(an−1)

)
(2z)n + (2z)Nf

(∑
n>N

(an − an−1)(2z)n−N
)
.

So bn = 2n
(
f(an)− f(an−1)

)
and we get the contradiction

0 = f(0) = f(c(1/2)) =
∞∑
n=0

(
f(an)− f(an−1)

)
= lim
n→∞

f(an).

Parts of the following results 7.13 to 10.2 can be found in [13]. For x in any
vector space E let xk denote the element (x, . . . , x) ∈ Ek.
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7.13. Lemma. Polarization formulas. Let f : E × · · · × E → F be an k-linear
symmetric mapping between vector spaces. Then we have:

f(x1, . . . , xk) = 1
k!

1∑
ε1,...,εk=0

(−1)k−Σεj f
(

(x0 +
∑
εjxj)k

)
.

f(xk) = 1
k!

k∑
j=0

(−1)k−j
(
k
j

)
f
(
(a+ jx)k

)
.

f(xk) = kk

k!

k∑
j=0

(−1)k−j
(
k
j

)
f
(
(a+ j

kx)k
)
.

f(x0
1 + λx1

1, . . . , x
0
k + λx1

k) =
1∑

ε1,...,εk=0
λΣεjf(xε1

1 , . . . , x
εk
k ).

Formula 4 will mainly be used for λ =
√
−1 in the passage to the complexification.

Proof. 1 . (see [93]). By multilinearity and symmetry the right hand side expands
to ∑

j0+···+jk=k

Aj0,...,jk

j0! · · · jk!
f(x0, . . . , x0︸ ︷︷ ︸

j0

, . . . , xk, . . . , xk︸ ︷︷ ︸
jk

),

where the coefficients are given by

Aj0,...,jk =
1∑

ε1,...,εk=0
(−1)k−Σεjεj1

1 · · · ε
jk
k .

The only nonzero coefficient is A0,1,...,1 = 1: If ji = 0 for some i (in particular this
is the case when some ji′ > 1), then the summands with εi = 0 and εi = 1 cancel.

2 . In formula 1 we put x0 = a and all xj = x.

3 . In formula 2 we replace a by ka and pull k out of the k-linear expression
f((ka+ jx)k).

4 is obvious.

7.14. Lemma. Power series on Fréchet spaces. Let E be a real or complex
Fréchet space and let fk be a k-linear symmetric scalar valued bounded functional
on E, for each k ∈ N. Then the following statements are equivalent:

(1)
∑
k fk(xk) converges pointwise on an absorbing subset of E.

(2)
∑
k fk(xk) converges uniformly and absolutely on some neighborhood of 0.

(3) {fk(xk) : k ∈ N, x ∈ U} is bounded for some neighborhood U of 0.
(4) {fk(x1, . . . , xk) : k ∈ N, xj ∈ U} is bounded for some neighborhood U of 0.

If any of these statements are satisfied over the reals, then also for the complexifi-
cation of the functionals fk.

Proof. ( 1 ) ⇒ ( 3 ) The set AK,r := {x ∈ E : |fk(xk)| ≤ Krk for all k} is closed
in E since every bounded multilinear mapping on Fréchet spaces is continuous.
The countable union

⋃
K,r AK,r is E, since the series converges pointwise on an

absorbing subset. Since E is Baire there are K > 0 and r > 0 such that the interior
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U of AK,r is non void. Let x0 ∈ U and let V be an absolutely convex neighborhood
of 0 contained in U − x0

From 7.13.3 we get for all x ∈ V the following estimate using Stirlings formula:

|fk(xk)| ≤ kk

k!

k∑
j=0

(
k
j

)
|fk((x0 + j

kx)k)| ≤ kk

k! 2kKrk ≤ K(2re)k.

Now we replace V by 1
2re V and get the result.

( 3 ) ⇒ ( 4 ) From 7.13.1 we get for all xj ∈ U the estimate:

|fk(x1, . . . , xk)| ≤ 1
k!

1∑
ε1,...,εk=0

∣∣∣fk((∑ εjxj
)k)∣∣∣

= 1
k!

1∑
ε1,...,εk=0

(
∑
εj)k

∣∣∣fk((∑ εjxj∑
εj

)k)∣∣∣ ≤ 1
k!

1∑
ε1,...,εk=0

(
∑
εj)k C

≤ C
k!

k∑
l=0

(
k
l

)
lk ≤ C kk

k!

k∑
l=0

(
k
l

)
≤ C(2e)k.

Now we replace U by 1
2e U and get ( 4 ).

( 4 )⇒ ( 2 ) The series converges on rU uniformly and absolutely for any 0 < r < 1.

( 2 ) ⇒ ( 1 ) is clear.

( 4 , real case), ⇒ ( 4 , complex case), by 7.13.4 for λ :=
√
−1.

7.15. Lemma. Let E be a complex convenient vector space and let fk be a k-linear
symmetric scalar valued bounded functional on E, for each k ∈ N. Then the power
series

∑
k fk(xk) converges uniformly on bounded sets if and only if it converges

pointwise on E and x 7→ f(x) :=
∑∞
k=0 fk(xk) is bounded on bounded sets,

Proof. (⇒) If the power series converges uniformly on the bounded set B, then the
remainder

∑
k≥n fk(xk) converges to 0 uniformly for x ∈ B and hence

∑∞
k=0 fk(xk) =∑

k<n fk(xk) +
∑
k≥n fk(xk) is uniformly bounded on B.

(⇐) Let B be an absolutely convex bounded set in E. For x ∈ 2B we apply the
vector valued Cauchy inequalities from 7.6 to the holomorphic curve z 7→ f(zx)
at z = 0 for r = 1 and get that fk(xk) is contained in the closed absolutely convex
hull of {f(zx) : |z| = 1}. So {fk(xk) : x ∈ 2B, k ∈ N} is bounded and the series
converges uniformly on B.

7.16. Example. We consider the power series
∑
k k(xk)k on the Hilbert space

`2 = {x = (xk) :
∑
k |xk|2 < ∞}. This series converges pointwise everywhere, it

yields a holomorphic function f on `2 by 7.19.5 which however is unbounded on
the unit sphere, so convergence cannot be uniform on the unit sphere.

The function g : C(N)× `2 → C given by g(x, y) :=
∑
k>1 xkf(kx1y) is holomorphic

since it is a finite sum locally along each holomorphic curve by 7.7 , but its Taylor
series at 0 does not converge uniformly on any neighborhood of 0 in the locally
convex topology since it is not locally bounded: A typical neighborhood is of the
form {(x, y) : |xk| ≤ εk for all k, ‖y‖2 ≤ ε} with ε, ε1, · · · > 0 and for any k > 1/ε1
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we may choose z with ‖z‖2 ≤ 1 and |f(z)| ≥ k/εk and then |g(x, y)| = |εkf(kε1y)| ≥
k for x := ε1e1 + εkek and y := z/kε1. This shows that lemma 7.14 is not true
for arbitrary convenient vector spaces.

7.17. Corollary. Let E be a real or complex Fréchet space and let fk be a k-linear
symmetric scalar valued bounded functional on E, for each k ∈ N such that the
power series

∑
fk(xk) converges to f(x) for x near 0 in E. Let

∑
k≥1 akz

k be a
power series in E which converges to a(z) ∈ E for z near 0 in C.

Then the composite ∑
k≥0

∑
n≥0

∑
k1,...,kn∈N
k1+···+kn=k

fn(ak1 , . . . , akn) zk

of the power series converges to f ◦ a near 0.

Proof. By 7.14 there exists a 0-neighborhood U in E such that {fk(x1, . . . , xk) :
k ∈ N, xj ∈ U} is bounded. Since the series for a converges there is r > 0 such that
akr

k ∈ U for all k. For |z| < r
2 we have

f(a(z)) =
∑
n≥0

fn

(∑
k1≥1

ak1z
k1 , . . . ,

∑
kn≥1

aknz
kn
)

=
∑
n≥0

∑
k1≥1

· · ·
∑
kn≥1

fn
(
ak1 , . . . , akn

)
zk1+···+kn

=
∑
k≥0

∑
k≥n≥0

∑
k1,...,kn≥1
k1+···+kn=k

fn(ak1 , . . . , akn) zk,

since the last complex series converges absolutely: the coefficient of zk is a sum of
2k−1 terms which are bounded when multiplied by rk. The second equality follows
from boundedness and multilinearity of all fn.

7.18. Almost continuous functions

In the proof of the next theorem we will need the following notion: A (real valued)
function on a topological space is called almost continuous if removal of a meager
set yields a continuous function on the remainder.

Lemma. [48, p. 221] A pointwise limit of a sequence of almost continuous functions
on a Baire space is almost continuous.

Proof. Let (fk) be a sequence of almost continuous real valued functions on a Baire
space X which converges pointwise to f . Since the complement of a meager set in
a Baire space is dense and hence again Baire we may assume that each function fk
is continuous on X. We denote by Xn the set of all x ∈ X such that there exists
N ∈ N and a neighborhood U of x with |fk(y) − f(y)| < 1

n for all k ≥ N and all
y ∈ U . The set Xn is clearly open.

We claim that each Xn is dense: Let V be a nonempty open subset of X. For
N ∈ N the set VN := {x ∈ V : |fk(x) − f`(x)| ≤ 1

2n for all k, ` ≥ N} is closed
in V and V =

⋃
N VN since the sequence (fk) converges pointwise. Since V is a

Baire space, some VN contains a nonempty open set W . For each y ∈ W we have
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|fk(y) − f`(y)| ≤ 1
2n for all k, ` ≥ N . We take the pointwise limit for ` → ∞ and

see that W ⊆ V ∩Xn.

Since X is Baire, the set
⋂
nXn has a meager complement and obviously the re-

striction of f on this set is continuous.

7.19. Theorem. Let f : E ⊇ U → F be a mapping from a c∞-open subset in
a convenient vector space to another convenient vector space. Then the following
assertions are equivalent:

(1) f is holomorphic.
(2) For all ` ∈ F ? and absolutely convex closed bounded sets B the mapping

` ◦ f : EB → C is holomorphic.
(3) f is holomorphic along all affine complex lines and is c∞-continuous.
(4) f is holomorphic along all affine complex lines and is bounded on bornolog-

ically compact sets (i.e. those compact in some EB).
(5) f is holomorphic along all affine complex lines and at each point z ∈ U the

directional derivative f ′(z) is a bounded linear mapping.
(6) For each z ∈ U the mapping f(z + ) is c∞-locally at 0 a convergent series

of bounded homogeneous complex polynomials.
(7) f is holomorphic along all affine complex lines and in every connected com-

ponent for the c∞-topology there is at least one z ∈ U , where each derivative
f (k)(z) is a bounded multi-linear mapping.

(8) f is smooth and for each z ∈ U the derivative f ′(z) is complex linear.
(9) f is Lip1 in the sense of 12.1 and the derivative is complex linear at every

point.

Proof. ( 1 ) ⇔ ( 2 ) By 7.6 every holomorphic curve factors locally over some
EB and we may test with linear functionals on F by 7.4 .

We prove the equivalence of the remaining statements first for the case where E is
a Banach space and F = C.

( 1 ) ⇒ ( 5 ) Obviously, f is holomorphic along affine lines. By lemma 7.10 the
derivative U ×E → F of f is holomorphic and C-linear in the second variable and
by 7.12 f ′(z) is bounded.

( 5 ) ⇒ ( 6 ) Choose a fixed point z ∈ U . Since f is holomorphic along each affine
complex line through z it is given there by a pointwise convergent power series. By
the classical Hartogs’ theorem f is holomorphic along each finite dimensional linear
subspace and f(z+v) =

∑∞
k=0

f(k)(z)(vk)
k! for all z+v in the open set {z+v : z+λv ∈

U for all |λ| ≤ 1}. We only have to show the boundedness of the symmetric k-linear
mapping f (k)(z). For k = 1 this is true by assumption, i.e. f ′ : E ⊇ U → L(E,F ) is
well defined. Moreover, f ′ satisfies the same assumption ( 5 ) as f , since by 5.18
f ′ ◦ c is C∞ into L(E,F ) for every affine line c : λ 7→ z + λv with real derivative
d(f ′◦c)(λ, µ)(v1) = d2f(z+λv;µv, v1) being C-linear in µ and bounded in v1, hence
f ′ ◦ c is holomorphic by 7.4.8 , and by symmetry (f ′)′(z)(v, v1) is bounded in v as
well, hence (f ′)′(z) is jointly bounded by 5.19 . Thus the general case follows by
induction on k.

( 6 ) ⇒ ( 1 ) follows by using 7.4 , 7.3 , and composing the two locally uniformly
converging power series via 7.17 .
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( 6 ) ⇒ ( 3 ) By lemma 7.14 the series converges uniformly and hence f is con-
tinuous.

( 3 ) ⇒ ( 4 ) is obvious.

( 4 ) ⇒ ( 5 ) By the (1-dimensional) Cauchy integral formula we have

f ′(z)v = 1
2π
√
−1

∫
|λ|=1

f(z + λv)
λ2 dλ.

So f ′(z) is a linear functional which is bounded on compact sets K for which
{z + λv : |λ| ≤ 1, v ∈ K} ⊆ U , thus it is bounded, by lemma 5.4 .

Sublemma. Let E be a Fréchet space and let U ⊆ E be open. Let f : U → C be
holomorphic along affine lines and be also the pointwise limit on U of continuous
polynomials. Then f is holomorphic on U .

Proof. By assumption, and the lemma in 7.18 the function f is almost continuous,
since it is the pointwise limit of continuous polynomials. For each z ∈ U the
(directional) derivative f ′(z) : E → C (as pointwise limit of difference quotients) is
also almost continuous on the open set {v : z+λv ∈ U for |λ| ≤ 1}, thus continuous
on E since it is linear and by the Baire property. By ( 5 ) ⇒ ( 1 ) the function f
is holomorphic on U .

( 6 ) ⇒ ( 7 ) is obvious.

( 7 ) ⇒ ( 1 ) [134]
We treat each connected component of U separately and assume thus that U is
connected. The set U0 := {z ∈ U : f is holomorphic in a neighborhood of z} is
open. Let z0 be a point in U , where each derivative f (k)(z0) is bounded. On
the open star U1 := {z0 + v : z0 + λv ∈ U for all |λ| ≤ 1} the restriction of f is
holomorphic along affine lines and thus f : z 7→

∑∞
k=0

1
k!f

(k)(z0)((z − z0)k) is the
pointwise limit on U1 of continuous polynomials, hence z0 ∈ U0 by the sublemma.
The same argument shows, that with z ∈ U0 the whole star {z + v : z + λv ∈
U for all |λ| ≤ 1} is contained in U0. Since U is in particular polygonally connected,
we have U0 = U .

( 1 ) ⇒ ( 8 ) All derivatives dkf are again holomorphic by 7.10 and thus locally
bounded. So f is smooth by 5.20 .

( 8 ) ⇒ ( 9 ) is trivial.

( 9 ) ⇒ ( 3 ) Obviously, f is c∞-continuous and it is holomorphic along affine lines
by 7.4 .

Now we generalize to arbitrary E and F : If f satisfies any of the statements,
then ` ◦ f |EB satisfies all the (then equivalent) statements for each ` ∈ F ∗ and
absolutely convex closed bounded B ⊆ E. Conversely, by ( 1 )⇔( 2 ) we get that f
is holomorphic, C∞ (by 2.3 ) and its derivative f ′(z) is C-linear (since `(f ′(z)) =
(` ◦ f)′(z)). So we get all statements for f , which is obvious except for ( 6 ) and
( 7 ):

For ( 6 ) we argue as follows. It remains to show that the Taylor series at z converges
pointwise on a c∞-open neighborhood of z. The star {z+v : z+λv ∈ U for all |λ| ≤
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1} with center z in U is again c∞-open by 4.17 and on it the Taylor series of f at
z converges pointwise by 7.3 .

For ( 7 ) we may replace the condition “at least one point” by “for all points”.

7.20. Chain rule. The composition of holomorphic mappings is holomorphic and
the usual formula for the derivative of the composite holds.

Proof. Use 7.19 ( 1 ⇔ 8 ), and the real chain rule 3.18 .

7.21. Definition. For convenient vector spaces E and F and for a c∞-open subset
U ⊆ E we denote by H(U,F ) the space of all holomorphic mappings U → F . It
is a closed linear subspace of C∞(U,F ) by 7.19.8 and we give it the induced
convenient vector space structure.

7.22. Theorem. Cartesian closedness. For convenient vector spaces E1,
E2, and F , and for c∞-open subsets Uj ⊆ Ej a mapping f : U1 × U2 → F is
holomorphic if and only if the canonically associated mapping f∨ : U1 → H(U2, F )
is holomorphic.

Proof. (⇒) Obviously, f∨ has values in H(U2, F ) and is smooth by smooth carte-
sian closedness 3.12 . Since its derivative is canonically associated to the first
partial derivative of f , it is complex linear. So f∨ is holomorphic by 7.19.8 .

(⇐) If conversely f∨ is holomorphic, then it is smooth into H(U2, F ) by 7.19 , thus
also smooth into C∞(U2, F ). Hence f : U1×U2 → F is smooth by smooth cartesian
closedness. The derivative df(x, y) : (v, w) 7→ d(f∨)(x)(v)(y) + d(f∨(x))(y)(w) is
obviously complex linear, so f is holomorphic.

7.23. Corollary. Let E etc. be convenient vector spaces and let U etc. be c∞-open
subsets of such. Then the following canonical mappings are holomorphic.

ev : H(U,F )× U → F, ev(f, x) = f(x)
ins : E → H(F,E × F ), ins(x)(y) = (x, y)
( )∧ : H(U,H(V,G))→ H(U × V,G)
( )∨ : H(U × V,G)→ H(U,H(V,G))
comp : H(F,G)×H(U,F )→ H(U,G)
H( , ) : H(F, F ′)×H(U ′, E)→ H(H(E,F ),H(U ′, F ′))

(f, g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏
H(Ei, Fi)→ H(

∏
Ei,
∏

Fi)

Proof. Just consider the canonically associated holomorphic mappings on multiple
products as in the proof of 3.13 .

In contrast to 7.16 we have:

7.24. Theorem (Holomorphic functions on Fréchet spaces).
Let U ⊆ E be open in a complex Fréchet space E. The following statements on
f : U → C are equivalent:
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(1) f is holomorphic.
(2) f is smooth and is locally given by its uniformly and absolutely converging

Taylor series.
(3) f is locally given by a uniformly and absolutely converging power series.

Proof. ( 1 ) ⇒ ( 2 ) follows from 7.19 ( 1 ⇒ 6 ) and 7.14 ( 1 ⇒ 2 ).

( 2 ) ⇒ ( 3 ) is obvious.

( 3 ) ⇒ ( 1 ) is the chain rule for converging power series 7.17 and 7.4.4 .

8. Spaces of Holomorphic Mappings and Germs

8.1. Spaces of holomorphic functions

For a complex manifold N (always assumed to be separable) let H(N,C) be the
space of all holomorphic functions on N with the topology of uniform convergence
on compact subsets of N .

Let Hb(N,C) denote the Banach space of bounded holomorphic functions on N
equipped with the supremum norm.

For any open subset W of N let Hbc(N ⊇W,C) be the closed subspace of Hb(W,C)
of all holomorphic functions on W which extend to continuous functions on the
closure W .

For a poly-radius r = (r1, . . . , rn) with ri > 0 and for 1 ≤ p ≤ ∞ let `pr denote the
real Banach space

{
x ∈ RNn : ‖(xαrα)α∈Nn‖p <∞

}
.

8.2. Theorem (Structure of H(N,C) for complex manifolds N).
The space H(N,C) of all holomorphic functions on N with the topology of uniform
convergence on compact subsets of N is a (strongly) nuclear Fréchet space and em-
beds bornologically as a closed subspace into C∞(N,R)2 considered with its Fréchet
topology.

Proof. By taking a countable covering of N with compact sets, one obtains a
countable neighborhood basis of 0 in H(N,C). Hence, H(N,C) is metrizable.
That H(N,C) is complete, and hence a Fréchet space, follows since the limit of a
sequence of holomorphic functions with respect to the topology of uniform conver-
gence on compact sets is again holomorphic.

The vector space H(N,C) is a closed subspace of C∞(N,R2) = C∞(N,R)2 since
a function N → C is holomorphic if and only if it is smooth and the derivative at
every point is C-linear. Obviously, the identity from H(N,C) with the subspace
topology to H(N,C) is continuous, hence by the open mapping theorem [68, 5.3.5]
for Fréchet spaces it is an isomorphism.

That H(N,C) is nuclear and unlike C∞(N,R) even strongly nuclear can be shown
as follows. For N equal to the open polycylinder Dn ⊆ Cn this result can be found
in [53, 21.8.3.b]. For an arbitrary N the space H(N,C) carries the initial topology
induced by the linear mappings (u−1)∗ : H(N,C)→ H(u(U),C) for all charts (u, U)
of N , for which we may assume u(U) = Dn, and hence by the stability properties
of strongly nuclear spaces, cf. [53, 21.1.7], H(N,C) is strongly nuclear.

Andreas Kriegl , Univ.Wien, June 30, 2017 109



8.4 8. Spaces of Holomorphic Mappings and Germs

8.3. Spaces of germs of holomorphic functions

For a subset A ⊆ N let H(N⊇A,C) be the space of germs along A of holomorphic
functions W → C for open sets W in N containing A. We equip H(N⊇A,C) with
the locally convex topology induced by the inductive cone H(W,C)→ H(N⊇A,C)
for all W . This is Hausdorff, since iterated derivatives at points in A are continuous
functionals and separate points. In particular, H(N⊇W,C) = H(W,C) for W open
in N . For A1 ⊆ A2 ⊆ N the ”restriction” mappings H(N⊇A2,C)→ H(N⊇A1,C)
are continuous.

The structure of H(S2⊇A,C), where A ⊆ S2 is a subset of the Riemannian sphere,
has been studied by [120], [Sebastião e Silva, 1950b,] [128], [63], and [46].

8.4. Theorem (Structure of H(N⊇K,C) for compact subsets K of complex
manifolds N). The following inductive cones are cofinal to each other.{

H(N⊇K,C)← H(W,C) : W ⊇ K, W open in N
}{

H(N⊇K,C)← Hb(W,C) : W ⊇ K, W open in N
}{

H(N⊇K,C)← Hbc(N⊇W,C) : W ⊇ K, W open in N
}

If K = {z} these inductive cones and the following ones for 1 ≤ p ≤ ∞ are cofinal
to each other. {

H(N⊇{z},C)← `pr ⊗ C : r ∈ Rn+
}

So all their induced inductive limit topologies coincide. Furthermore, the space
H(N⊇K,C) is a Silva space, i.e. a countable inductive limit of Banach spaces, where
the connecting mappings between the steps are compact, i.e. mapping bounded sets
to relatively compact ones. The connecting mappings are even strongly nuclear. In
particular, the limit is regular, i.e. every bounded subset is contained and bounded in
some step, and H(N⊇K,C) is complete and (ultra-)bornological (hence a convenient
vector space), webbed, strongly nuclear and thus reflexive, and its dual is a nuclear
Fréchet space. The space H(N⊇K,C) is smoothly paracompact. It is however not
a Baire space.

Proof. Let K ⊆ V ⊆ V ⊆ W ⊆ N , where W and V are open and V is compact.
Then the obvious mappings

Hbc(N⊇W,C)→ Hb(W,C)→ H(W,C)→ Hbc(N⊇V,C)

are continuous. This implies the first cofinality assertion. For q ≤ p and multiradii
s < r the obvious maps `qr → `pr , `∞r → `1s, and `1r ⊗ C→ Hb({w ∈ Cn : |wi − zi| <
ri},C)→ `∞s ⊗C are continuous, by the Cauchy inequalities from the proof of 7.6 .
So the remaining cofinality assertion follows.

Let us show next that the connecting mapping Hb(W,C) → Hb(V,C) is strongly
nuclear (hence nuclear and compact). Since the restriction mapping from E :=
H(W,C) to Hb(V,C) is continuous, it factors over E →]E(U) for some zero neigh-
borhood U in E. Since E is strongly nuclear by 8.2 , there exists by definition
some larger 0-neighborhood U ′ in E such that the natural mapping ]E(U ′) →]E(U)
is strongly nuclear. So the claimed connecting mapping is strongly nuclear, since
it can be factorized as

Hb(W,C)→ H(W,C) = E →]E(U ′) →]E(U) → Hb(V,C).
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So H(N⊇K,C) is a Silva space. It is strongly nuclear by the permanence properties
of strongly nuclear spaces [53, 21.1.7]. By 16.10 this also shows that H(N⊇K,C)
is smoothly paracompact. The remaining properties follow from [75, 52.37].

Completeness of H(Cn⊇K,C) was shown in [128, théorème II], and for regularity
of the inductive limit H(C⊇K,C) see e.g. [63, Satz 12].

8.5. Lemma. For a closed subset A ⊆ C the spaces H(A ⊆ S2,C) and the space
H∞(S2⊇S2 \A,C) of all germs vanishing at ∞ are strongly dual to each other.

Proof. This is due to [63, Satz 12] and has been generalized by [Grothendieck,
1953, théorème 2 bis], to arbitrary subsets A ⊆ S2.

Compare this also with the modern theory of hyperfunctions, cf. [60].

8.6. Theorem (Structure of H(N⊇A,C) for closed subsets A of complex
manifolds N). The inductive cone{

H(N⊇A,C)← H(W,C) : W ⊇ A, W open in N
}

is regular, i.e. every bounded set is contained and bounded in some step.

The projective cone{
H(N⊇A,C)→ H(N⊇K,C) : K ⊆ A, K compact

}
generates the bornology of H(N⊇A,C).

The space H(N⊇A,C) is Montel (hence quasi-complete and reflexive), and ultra-
bornological (hence a convenient vector space). Furthermore, it is webbed and co-
nuclear.

Proof. Compare also with the proof of the more general theorem [75, 30.6].

We choose a continuous function f : N → R which is positive and proper, i.e. inverse
images of compact sets are compact. Then

(
f−1([n, n + 1])

)
n∈N0

is an exhaustion
of N by compact subsets and

(
Kn := A∩ f−1([n, n+ 1])

)
is a compact exhaustion

of A.

Let B ⊆ H(N⊇A,C) be bounded. Then B|K is also bounded in H(N⊇K,C) for
each compact K ⊆ A. Since the cone{

H(N⊇K,C)← H(W,C) : W ⊇ K, W open in N
}

is regular by 8.4 , there exist open subsets WK of N containing K such that B|K is
contained (so that the extension of each germ is unique) and bounded in H(WK ,C).
In particular, we choose WKn∩Kn+1 ⊆ WKn ∩WKn+1 ∩ f−1((n, n + 2)). Then we
let W be the union of those connected components of

W ′ :=
⋃
n

(
WKn ∩ f−1((n, n+ 1)

))
∪
⋃
n

WKn∩Kn+1

which meet A. Clearly, W is open and contains A. Each f ∈ B has an extension
to W ′: Extend f |Kn uniquely to fn on WKn . The function f |Kn∩Kn+1 has also a
unique extension fn,n+1 on WKn∩Kn+1 , so we have fn|WKn∩Kn+1

= fn,n+1. This
extension of f ∈ B has a unique restriction to W . The set B is bounded in H(W,C)
if it is uniformly bounded on each compact subset K of W . Each K is covered
by finitely many WKn and B|Kn is bounded in H(WKn ,C), so B is bounded as
required. Which shows the first two paragraphs of the theorem.
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The spaceH(N⊇A,C) is ultra-bornological, Montel and in particular quasi-complete,
and conuclear, as regular inductive limit of the nuclear Fréchet spaces H(W,C).

And it is webbed because it is the (ultra-)bornologification of the countable pro-
jective limit of webbed spaces H(N⊇K,C), see [68, 5.3.3] and [68, 5.3.3].

8.7. Lemma. Let A be closed in C. Then the dual generated by the projective
cone {

H(C⊇A,C)→ H(C⊇K,C) : K ⊆ A, K compact
}

is just the topological dual of H(C⊇A,C).

Proof. The induced topology is obviously coarser than the given one. So let λ be a
continuous linear functional on H(C⊇A,C). Then we have λ ∈ H∞(S2⊇S2 \A,C)
by 8.5 . Hence, λ ∈ H∞(U,C) for some open neighborhood U of S2 \ A, so again
by 8.5 λ is a continuous functional on H(S2⊇K,C), where K = S2 \U is compact
and contained in A. So λ is continuous for the induced topology.

Remark. In [90, Proposition 1.9 and Théorèm 1.2] it ws shown that this cone
generates even the topology of H(C⊇A,C). This implies that the bornological
topology on H(C⊇A,C) is complete and nuclear.

8.8. Lemma (Structure of H(N⊇A,C) for smooth closed submanifolds A
of complex manifolds N). The projective cone{

H(N⊇A,C)→ H(N⊇{z},C) : z ∈ A
}

generates the bornology.

Proof. Let B ⊆ H(N⊇A,C) be such that the set B is bounded in H(N⊇{z},C)
for each z ∈ A. By the regularity of the inductive cone H(Cn⊇{0},C)← H(W,C)
we find arbitrary small open neighborhoods Wz such that the set Bz of the germs
at z of all germs in B is contained and bounded in H(Wz,C).

Now choose a tubular neighborhood p : U → A of A in N . We may assume that
all Wz are contained in U , have fibers which are star shaped with respect to the
zero-section and the intersections Wz ∩ A are connected. The union W of all the
Wz is therefore an open subset of U containing A. And it remains to show that the
germs in B extend to W . For this it is enough to show that the extensions of the
germs at z1 and z2 agree on the intersection of Wz1 with Wz2 . So let w be a point
in the intersection. It can be radially connected with the base point p(w), which
itself can be connected by curves in A with z1 and z2. Hence, the extensions of
both germs to p(w) coincide with the original germ, and hence their extensions to
w are equal.

That B is bounded in H(W,C), follows immediately since every compact subset
K ⊆W can be covered by finitely many Wz.

8.9. The following example shows that 8.8 fails to be true for general closed
subsets A ⊆ N .

Example. Let A := { 1
n : n ∈ N} ∪ {0}. Then A is compact in C but the projective

cone
{
H(C⊇A,C)→ H(C⊇{z},C) : z ∈ A

}
does not generate the bornology.
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Proof. Let B ⊆ H(C⊇A,C) be the set of germs of the following locally constant
functions fn : {x+ iy ∈ C : x 6= rn} → C, with fn(x+ iy) equal to 0 for x < rn and
equal to 1 for x > rn, where rn := 2

2n+1 , for n ∈ N. Then B ⊆ H(C⊇A,C) is not
bounded, otherwise, by 8.6 , there would exist a neighborhood W of A such that
the germ of fn extends to a holomorphic mapping on W for all n. Since every fn
is 0 on some neighborhood of 0, these extensions have to be zero on the component
of W containing 0, which is not possible, since fn( 1

n ) = 1.

But on the other hand the set Bz ⊆ H(C⊇{z},C) of germs at z ∈ A of all germs
in B is bounded, since it contains only the germs of the constant functions 0 and
1.

8.10. Theorem (Holomorphic uniform boundedness principle).
Let E and F be complex convenient vector spaces, and let U ⊆ E be a c∞-open
subset. Then H(U,F ) satisfies the uniform boundedness principle for the point
evaluations evx, x ∈ U .

For any closed subset A ⊆ N of a complex manifold N the locally convex space
H(N⊇A,C) satisfies the uniform S-boundedness principle for every point separating
set S of bounded linear functionals.

Proof. By definition 7.21 H(U,F ) carries the structure induced from the embed-
ding into C∞(U,F ) and hence satisfies the uniform boundedness principle 5.26
and 5.25 .

The second part is an immediate consequence of 5.24 and 8.6 .

Direct proof of a particular case of the second part. We prove the theorem
for a closed smooth submanifold A ⊆ C and the set S of all iterated derivatives at
points in A.

Let us suppose first that A is the point 0. We will show that condition 5.22.3
is satisfied. Let (bn) be an unbounded sequence in H(C⊇{0},C) such that each
Taylor coefficient bn,k = 1

k! b
(k)
n (0) is bounded with respect to n:

sup{ |bn,k| : n ∈ N } <∞.

We have to find (tn) ∈ `1 such that
∑
n tn bn is no longer the germ of a holomorphic

function at 0.

Each bn has positive radius of convergence, in particular there is an rn > 0 such
that

sup{ |bn,k rkn| : k ∈ N } <∞.

By theorem 8.4 the space H(C⊇{0},C) is a regular inductive limit of spaces `∞r .
Hence, a subset B is bounded in H(C⊇{0},C) if and only if there exists an r > 0
such that { 1

k!b
(k)(0) rk : b ∈ B, k ∈ N } is bounded. That the sequence (bn) is

unbounded thus means that for all r > 0 there are n and k such that |bn,k| > ( 1
r )k.

We can even choose k > 0 for otherwise the set { bn,krk : n, k ∈ N, k > 0 } is
bounded, so only { bn,0 : n ∈ N } can be unbounded. This contradicts 1 .

Hence, for each m there are km > 0 such that Nm := {n ∈ N : |bn,km | > mkm }
is not empty. We can choose (km) strictly increasing, for if they were bounded,
|bn,km | < C for some C and all n by 1 , but |bnm,km | > mkm →∞ for some nm.
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Since by 1 the set { bn,km : n ∈ N } is bounded, we can choose nm ∈ Nm such that

|bnm,km | ≥ 1
2 |bj,km | for j > nm

|bnm,km | > mkm

We can choose also (nm) strictly increasing, for if they were bounded we would get
|bnm,kmrkm | < C for some r > 0 and C by (2). But ( 1

m )km → 0.

We pass now to the subsequence (bnm) which we denote again by (bm). We put

tm := sign

 1
bm,km

∑
j<m

tj bj,km

 · 1
4m

.

Assume now that b∞ =
∑
m tm bm converges weakly with respect to S to a holomor-

phic germ. Then its Taylor series is b∞(z) =
∑
k≥0 b∞,k z

k, where the coefficients
are given by b∞,k =

∑
m≥0 tm bm,k. But we may compute as follows, using 3 and

4 :

|b∞,km | ≥
∣∣∣∣∑
j≤m

tj bj,km

∣∣∣∣−∑
j>m

|tj bj,km |

=
∣∣∣∣∑
j<m

tj bj,km

∣∣∣∣+ |tm bm,km | (same sign)

−
∑
j>m

|tj bj,km | ≥

≥ 0 + |bm,km | ·

|tm| − 2
∑
j>m

|tj |


= |bm,km | ·

1
3 · 4m

≥ mkm

3 · 4m
.

So |b∞,km |1/km goes to ∞, hence b∞ cannot have a positive radius of convergence,
a contradiction. So the theorem follows for the space H({t},C).

Let us consider now an arbitrary closed smooth submanifold A ⊆ C. By 8.8 the
projective cone

{
H(N⊇A,C) → H(N⊇{z},C) : z ∈ A

}
generates the bornology.

Hence, the result follows from the case where A = {0} by 5.25 .

9. Real Analytic Curves

9.1. As for smoothness and holomorphy we would like to obtain cartesian closedness
for real analytic mappings. Thus, one should have at least the following:

A mapping f : R2 → R is real analytic in the classical sense if and only if f∨ : R→
Cω(R,R) is real analytic in some appropriate sense.

The following example shows that there are some subtleties involved.

Example. The mapping f : R2 3 (s, t) 7→ 1
1+(st)2 ∈ R is real analytic, whereas

there is no reasonable convenient vector space topology on Cω(R,R), such that the
mapping f∨ : R→ Cω(R,R) is locally given by its convergent Taylor series.
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Proof. For a topology on Cω(R,R) to be reasonable we require only that all
evaluations evt : Cω(R,R)→ R are bounded linear functionals. Now suppose that
f∨(s) =

∑∞
k=0 fks

k converges in Cω(R,R) for all small s, where fk ∈ Cω(R,R).
Since the point evaluations are assumed to be continuous f(s, t) = (evt ◦f∨)(s) =∑∞
k=0 fk(t) sk for all t and small s. On the other hand f(s, t) =

∑∞
k=0(−1)k(st)2k

for |st| < 1. Comparing coefficients of the real analytic function evt ◦f∨ for each t

gives fk(t) = (−1)mtk for k = 2m, and 0 otherwise. Moreover, by 9.5 there has
to exist a δ > 0 such that series

∑
fkz

k converges in Cω(R,R)⊗C for each |z| ≤ δ.
But this is not the case for z :=

√
−1 δ, as composing with ev1/δ shows.

There is, however, another notion of real analytic curves:

Example. Let f : R → R be a real analytic function with finite radius of con-
vergence at 0, e.g. f(t) := 1

1+t2 . Now consider the curve c : R → RN defined
by c(t) := (f(k · t))k∈N. Clearly, the composite of c with any continuous linear
functional is real analytic, since these functionals depend only on finitely many
coordinates. But the Taylor series of c at 0 does not converge on any neighborhood
of 0, since the radii of convergence of the coordinate functions go to 0. For an even
more natural example see 11.8 .

9.2. Lemma. For a formal power series
∑
k≥0 akt

k with real coefficients the
following conditions are equivalent.

(1) The series has positive radius of convergence.
(2) The series

∑
akrk converges absolutely for each sequence (rk)k∈N with rk tk →

0 for all t > 0.
(3) The sequence (akrk) is bounded for all (rk) with rk tk → 0 for all t > 0.
(4) For each sequence (rk) satisfying rk > 0, rkr` ≥ rk+`, and rk tk → 0 for all

t > 0 there exists an ε > 0 such that (ak rk εk) is bounded.

This bornological description of real analytic curves will be rather important for
the theory presented here, since condition ( 3 ) and ( 4 ) are linear boundedness
conditions on the coefficients of a formal power series enforcing local convergence.

Proof. ( 1 ) ⇒ ( 2 ) If
∑
k akt

k converges for some t > 0, then {aktk : k ∈ N} is
bounded. Since {rk(2/t)k : k ∈ N} is bounded by assumption, the series

∑
akrk =∑

akt
k rk( 2

t )
k 1

2k converges absolutely.

( 2 ) ⇒ ( 3 ) ⇒ ( 4 ) is clear.

( 4 ) ⇒ ( 1 ) If the radius of convergence is 0, then
∑
k |ak| (

1
n2 )k =∞ for each n.

Thus there are kn ↗∞ with
kn−1∑
k=kn−1

|ak| ( 1
n2 )k ≥ 1.

We put rk := ( 1
n )k for kn−1 ≤ k < kn, then for each m we have∑

k

|ak| rk( 1
m )k =

∑
n

∑
kn−1≤k<kn

|ak| ( 1
nm )k

≥
∑
n≥m

∑
kn−1≤k<kn

|ak| ( 1
n2 )k ≥

∑
n≥m

1 =∞,

Andreas Kriegl , Univ.Wien, June 30, 2017 115



9.4 9. Real Analytic Curves

so {akrk( 2
m )k : k ∈ N} is not bounded, but rk tk, which equals ( tn )k for kn−1 ≤

k < kn, converges to 0 for all t > 0, and the sequence (rk) is subadditive (since
rn−1 ≤ k + l < rn ⇒ rk+l = 1

nk
1
nl
≤ rk rl) as required.

9.3. Theorem (Description of real analytic functions). For a smooth func-
tion c : R→ R the following statements are equivalent.

(1) The function c is real analytic.
(2) For each sequence (rk) with rk tk → 0 for all t > 0, and each compact set K

in R, the set { 1
k! c

(k)(a) rk : a ∈ K, k ∈ N} is bounded.
(3) For each sequence (rk) satisfying rk > 0, rkr` ≥ rk+`, and rk t

k → 0 for
all t > 0, and each compact set K in R, there exists an ε > 0 such that
{ 1
k! c

(k)(a) rk εk : a ∈ K, k ∈ N} is bounded.
(4) For each compact set K ⊂ R there exist constants M,ρ > 0 with the property

that | 1k!c
(k)(a)| < Mρk for all k ∈ N and a ∈ K.

Proof. ( 1 ) ⇒ ( 4 ) Since the Taylor series of c converges at a there are constants
Ma, ρa > 0 satisfying the claimed inequality for fixed a. For a′ with |a′ − a| ≤ 1

2ρa

we obtain by differentiating c : a′ 7→
∑∞
`=0

c(`)(a)
`! (a′ − a)` the estimate∣∣∣∣c(k)(a′)

k!

∣∣∣∣ ≤ 1
k!
∑
`≥k

∣∣∣c(`)(a)
`!

∣∣∣ (`)k |a′ − a|`−k ≤ 1
k!
∑
`≥k

Maρ
`
a (`)k (2ρa)k−`

= Maρ
k
a

k!
∑
`≥k

(`)k
(

1
2

)`−k
= Maρ

k
a

1
k!

(
∂

∂t

)k∣∣∣
t= 1

2

1
1− t

,

hence the condition is satisfied locally with some new constants M ′a, ρ′a incorporat-
ing the estimates for the Taylor coefficients of t 7→ 1

1−t at t := 1/2. Since K is
compact the claim follows.

( 4 ) ⇒ ( 2 ) We have | 1k! c
(k)(a) rk| ≤Mrkρ

k which is bounded since rkρk → 0, as
required.

( 2 ) ⇒ ( 3 ) follows by choosing ε = 1.

( 3 )⇒ ( 1 ) For a ∈ R letK be a compact neighborhood and ak := supa′∈K | 1k! c
(k)(a′)|.

Using ( 4 ⇒ 1 ) in 9.2 . These are the coefficients of a power series with positive
radius ρ of convergence. Hence, the remainder 1

(k+1)!c
(k+1)(a+θ(a′−a))(a′−a)k+1

of the Taylor series of c at a goes to zero for a′inK with |a′ − a| < ρ.

9.4. Corollary. Real analytic curves. For a curve c : R → E in a convenient
vector space E are equivalent:

(1) ` ◦ c : R → R is real analytic for all ` in some family of bounded linear
functionals, which generates the bornology of E.

(2) ` ◦ c : R→ R is real analytic for all ` ∈ E′

A curve satisfying these equivalent conditions will be called real analytic.

Proof. The non-trivial implication is ( 1 ⇒ 2 ). So assume ( 1 ). By the arguments
in 2.3 the curve c is smooth and hence ` ◦ c is smooth for all bounded linear
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9. Real Analytic Curves 9.6

` : E → R and satisfies (` ◦ c)(k)(t) = `(c(k)(t)). In order to show that ` ◦ c is real
analytic, we have to prove boundedness of

`
({ 1

k!
c(k)(a)rk : a ∈ K, k ∈ N

})
=
{ 1
k!

(` ◦ c)(k)(a)rk : a ∈ K, k ∈ N
}

for all compact K ⊂ R and all appropriate rk, by 9.3 . Since ` is bounded it suffices
to show that { 1

k!c
(k)(a)rk : a ∈ K, k ∈ N} is bounded, which follows since its image

under each ` mentioned in ( 1 ) is bounded, again by 9.3 .

9.5. Lemma. Let E be a convenient vector space and let c : R → E be a curve.
Then the following conditions are equivalent.

(1) The curve c is topologically real analytic, i.e. it is locally given by a power
series converging with respect to the locally convex topology.

(2) The curve c is bornologically real analytic, i.e. it factors locally over a topo-
logically real analytic curve into EB for some bounded absolutely convex set
B ⊆ E.

(3) The curve c extends to a holomorphic curve from some open U ⊇ R in C
into the complexification EC.

Proof. ( 1 ) ⇒ ( 3 ) For every t ∈ R one has for some δ > 0 and all |s| < δ

a converging power series representation c(t + s) =
∑∞
k=1 xks

k. For any complex
number z with |z| < δ the series converges for z = s in EC, hence c can be locally
extended to a holomorphic curve into EC. By the 1-dimensional uniqueness theorem
for holomorphic maps, these local extensions fit together to give a holomorphic
extension as required.

( 3 )⇒ ( 2 ) A holomorphic curve factors locally over (EC)B by 7.6 , where B can
be chosen of the form B ×

√
−1B. Hence, the restriction of this factorization to R

is topologically real analytic into EB by 7.4 .

( 2 )⇒ ( 1 ) Let c be bornologically real analytic, i.e. c is locally topologically real
analytic into some EB and hence also into E.

Although topological real analyticity is a strictly stronger than real analyticity, cf.
9.4 , sometimes the converse is true as the following slight generalization of [13,

Lemma 7.1] shows.

9.6. Theorem. Let E be a convenient vector space and assume that a Baire
vector space topology on E∗ exists for which the point evaluations evx for x ∈ E are
continuous. Then any real analytic curve c : R→ E is locally given by its Mackey
convergent Taylor series, and hence is bornologically real analytic and topologically
real analytic for every locally convex topology compatible with the bornology.

Proof. Since c is real analytic, it is smooth and all derivatives exist in E, since E
is convenient, by 2.14.6 .

Let us fix t0 ∈ R, let an := 1
n!c

(n)(t0). It suffices to find some r > 0 for which
{rnan : n ∈ N} is bounded; because then

∑
tnan is Mackey-convergent for |t| < r,

and its limit is c(t0 + t) since we can test this with functionals.

Consider the sets Ar := {λ ∈ E∗ : |λ(an)| ≤ rn+1 for all n}. These Ar are closed in
the Baire topology, since the point evaluations at an are assumed to be continuous.
Since c is real analytic,

⋃
r>0Ar = E∗, and by the Baire property there is an r > 0
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9.9 9. Real Analytic Curves

such that the interior U of Ar is not empty. Let λ0 ∈ U , then for all λ in the open
neighborhood U − λ0 of 0 we have |λ(an)| ≤ |(λ+ λ0)(an)|+ |λ0(an)| ≤ 2rn+1 for
all n. The set U − λ0 is absorbing, thus for every λ ∈ E∗ some multiple ελ is in
U − λ0 and so λ(an) ≤ 2

εr
n+1 as required.

9.7. Theorem. Linear real analytic mappings. Let E and F be convenient
vector spaces. For any linear mapping λ : E → F the following assertions are
equivalent.

(1) λ is bounded.
(2) λ ◦ c : R→ F is real analytic for all real analytic c : R→ E.
(3) λ◦c : R→ F is bornologically real analytic for all bornologically real analytic

curves c : R→ E

(4) λ ◦ c : R → F is real analytic for all bornologically real analytic curves
c : R→ E

This will be generalized in 10.4 to non-linear mappings.

Proof. ( 1 ) ⇒ ( 3 ) ⇒ ( 4 ), and ( 2 ) ⇒ ( 4 ) are obvious.

( 4 ) ⇒ ( 1 ) Let λ satisfy ( 4 ) and suppose that λ is unbounded. By composing
with an ` ∈ E′ we may assume that λ : E → R and there is a bounded sequence
(xk) such that λ(xk) is unbounded. By passing to a subsequence we may suppose
that |λ(xk)| > k2k. Let ak := k−k xk, then (rk ak) is bounded and (rk λ(ak)) is
unbounded for any r > 0. Hence, the curve c(t) :=

∑∞
k=0 t

k ak is given by a Mackey
convergent power series by 7.3 . So λ◦c is real analytic and near 0 we have λ(c(t)) =∑∞
k=0 bk t

k for some bk ∈ R. But λ(c(t)) =
∑N
k=0 λ(ak)tk + tNλ(

∑
k>N akt

k−N )
and t 7→

∑
k>N akt

k−N is still a Mackey converging power series in E. Comparing
coefficients we see that bk = λ(ak) and consequently λ(ak)rk is bounded for some
r > 0, a contradiction.

( 1 )⇒ ( 2 ) Let c : R→ E be real analytic. By theorem 9.3 the set { 1
k! c

(k)(a) rk :
a ∈ K, k ∈ N} is bounded for all compact sets K ⊂ R and for all sequences (rk)
with rk t

k → 0 for all t > 0. Since c is smooth and bounded linear mappings are
smooth by 2.11 , the function λ ◦ c is smooth and (λ ◦ c)(k)(a) = λ(c(k)(a)). By
applying 9.3 we obtain that λ ◦ c is real analytic.

9.8. Corollary. For two convenient vector space structures on a vector space E
the following statements are equivalent:

(1) They have the same bounded sets.
(2) They have the same smooth curves.
(3) They have the same real analytic curves.

Proof. ( 1 ) ⇔ ( 2 ) was shown in 2.11 . The implication ( 1 ) ⇒ ( 3 ) follows
from 9.4 , which shows that real analyticity is a bornological concept, whereas the
implication ( 1 ) ⇐ ( 3 ) follows from 9.7 .

9.9. Corollary. If a cone of linear maps Tα : E → Eα between convenient vector
spaces generates the bornology on E, then a curve c : R → E is Cω resp. C∞

provided all the composites Tα ◦ c : R→ Eα are.
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9. Real Analytic Curves 10.3

Proof. The statement on the smooth curves is shown in 3.8 . That on the real
analytic curves follows again from the bornological condition of 9.3 .

10. Real Analytic Mappings

10.1. Theorem (Real analytic functions on Fréchet spaces). Let U ⊆ E
be open in a real Fréchet space E. The following statements on f : U → R are
equivalent:

(1) f is smooth and is real analytic along topologically real analytic curves.
(2) f is smooth and is real analytic along affine lines.
(3) f is smooth and is locally given by its pointwise converging Taylor series.
(4) f is smooth and is locally given by its uniformly and absolutely converging

Taylor series.
(5) f is locally given by a uniformly and absolutely converging power series.
(6) f extends to a holomorphic mapping f̃ : Ũ → C for an open subset Ũ in the

complexification EC with Ũ ∩ E = U .

Proof. ( 1 ) ⇒ ( 2 ) is obvious. The implication ( 2 ) ⇒ ( 3 ) follows from 7.14 ,
( 1 ) ⇒ ( 2 ), whereas ( 3 ) ⇒ ( 4 ) follows from 7.14 , ( 2 ) ⇒ ( 3 ), and ( 4 ) ⇒
( 5 ) is obvious.

( 5 ) ⇒ ( 6 ) Locally we can extend converging power series into the complexifica-
tion by 7.14 . Then we take the union Ũ of their domains of definition and use
uniqueness to glue f̃ which is holomorphic by 7.24 .

( 6 ) ⇒ ( 1 ) By 7.19 , f is smooth. Any topologically real analytic curve c in E

can locally be extended to a holomorphic curve in EC by 9.5 . The composite of
the extensions is holomorphic and hence f ◦ c is real analytic.

10.2. Bemerkung. The assumptions ‘f is smooth’ cannot be dropped in 10.1.1
even in finite dimensions, as shown by the following example, due to [14].

Example. The mapping f : R2 → R, defined by f(x, y) := xyn+2

x2+y2 is real analytic
along real analytic curves, is n-times continuous differentiable but is not smooth
and hence not real analytic.

Proof. Take a real analytic curve t 7→ (x(t), y(t)) into R2. The components can
be factored as x(t) = tku(t), y(t) = tkv(t) for some k and real analytic curves
u, v with u(0)2 + v(0)2 6= 0. The composite f ◦ (x, y) is then the function t 7→
tk(n+1) uvn+2

u2+v2 (t), which is obviously real analytic near 0. The mapping f is n-times
continuous differentiable, since it is real analytic on R2\{0} and the directional
derivatives of order i are (n + 1 − i)-homogeneous, hence continuously extendable
to R2. But f cannot be (n + 1)-times continuous differentiable, otherwise v 7→
f(v) = 1

(n+1)!f
(n+1)(0)(v, . . . , v) would be and hence f would be a homogeneous

polynomial of degree n+ 1.

10.3. Definition (Real analytic mappings). Let E be a convenient vector
space. Let us denote by Cω(R, E) the space of all real analytic curves.
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Let U ⊆ E be c∞-open, and let F be a second convenient vector space. A mapping
f : U → F will be called real analytic or Cω for short, if f is real analytic along
real analytic curves and is smooth (i.e. is smooth along smooth curves); so f ◦
c ∈ Cω(R, F ) for all c ∈ Cω(R, E) with c(R) ⊆ U and f ◦ c ∈ C∞(R, F ) for all
c ∈ C∞(R, E) with c(R) ⊆ U . Let us denote by Cω(U,F ) the space of all real
analytic mappings from U to F .

10.4. Analogue of Hartogs’ Theorem for real analytic mappings. Let E
and F be convenient vector spaces, let U ⊆ E be c∞-open, and let f : U → F .
Then f is real analytic if and only if f is smooth and λ ◦ f is real analytic along
each affine line in E, for all λ ∈ F ′.

Proof. (⇒) is clear. For the converse we may assume that F = R, by definition
10.3 and 2.3 . Let c : R → U be real analytic. We show that f ◦ c is real

analytic by using theorem 9.3 . So let (rk) be a sequence such that rkr` ≥ rk+`
and rk tk → 0 for all t > 0 and let K ⊂ R be compact. We have to show, that there
is an ε > 0 such that the set { 1

`! (f ◦ c)
(`)(a) rl ( ε2 )` : a ∈ K, ` ∈ N} is bounded.

By theorem 9.3 the set { 1
n!c

(n)(a) rn : n ≥ 1, a ∈ K} is contained in some boun-
ded absolutely convex subset B ⊆ E, such that EB is a Banach space. Clearly, for
the inclusion iB : EB → E the function f ◦ iB is smooth and real analytic along
affine lines. Since EB is a Banach space, by 10.1 ( 2 ⇒ 4 ) f ◦ iB is locally given
by its uniformly and absolutely converging Taylor series. Then for each a ∈ K by
7.14 ( 2 ⇒ 4 ) there is an 1 > ε > 0 such that the set { 1

k!d
kf(c(a))(x1, . . . , xk) :

k ∈ N, xj ∈ εB} is bounded. For each y ∈ 1
2εB termwise differentiation of the

Taylor series of f ◦ ιB gives

dkf(c(a) + y)(x1, . . . , xk) =
∑
`≥k

1
(`− k)!

d`f(c(a))(x1, . . . , xk, y, . . . , y),

so we may assume that {dkf(c(a))(x1, . . . , xk)/k! : k ∈ N, xj ∈ εB, a ∈ K} is
contained in [−C,C] for some C > 0 and some uniform ε > 0.

The Taylor coefficient of f ◦ c at a is given by

(f ◦ c)(`)(a)
`!

=
∑
k≥0

∑
(mn)∈NN0P
nmn=kP
nmn n=`

k!∏
nmn!

dkf(c(a))
k!

(∏
n

( 1
n!c

(n)(a))mn
)
,

where
∏
n

xmnn := (x1, . . . , x1︸ ︷︷ ︸
m1

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn

, . . . ).

Furthermore, we have ∑
(mn)∈NN0P
nmn=kP
nmn n=`

k!∏
nmn!

=
(
`−1
k−1
)

by the following argument: It is the `-th Taylor coefficient at 0 of the function
(
∑
n≥0 t

n − 1)k = ( t
1−t )

k = tk
∑∞
j=0

(−k
j

)
(−t)j , which turns out to be the binomial

coefficient in question.
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By the foregoing considerations we may estimate as follows.
|(f◦c)(`)(a)|

`! rl ( ε2 )` ≤

≤
∑
k≥0

∣∣∣ 1
k!

∑
(mn)∈NN0P
nmn=kP
nmn n=`

k!∏
nmn!

dkf(c(a))
(∏
n

( 1
n!c

(n)(a))mn
)∣∣∣ r` ( ε2 )`

≤
∑
k≥0

∣∣∣ 1
k!

∑
(mn)∈NN0P
nmn=kP
nmn n=`

k!∏
nmn!

dkf(c(a))
(∏
n

( 1
n!c

(n)(a) rn εn)mn
)∣∣∣ 1

2`

≤
∑
k≥0

(
`−1
k−1
)
C 1

2` = 1
2C,

because ∑
(mn)∈NN0P
nmn=kP
nmn n=`

k!∏
nmn!

∏
n

( 1
n!c

(n)(a) εn rn︸ ︷︷ ︸
∈εnB⊆εB

)mn ∈
(
`−1
k−1
)

(εB)k ⊆ (EB)k.

10.5. Corollary. Let E and F be convenient vector spaces, let U ⊆ E be c∞-open,
and let f : U → F . Then f is real analytic if and only if f is smooth and λ ◦ f ◦ c
is real analytic for every periodic (topologically) real analytic curve c : R→ U ⊆ E
and all λ ∈ F ′.

Proof. By 10.4 f is real analytic if and only if f is smooth and λ ◦ f is real
analytic along topologically real analytic curves c : R → E. Let h : R → R be
defined by h(t) = t0 + ε · sin t. Then c ◦ h : R → R → U is a (topologically)
real analytic, periodic function with period 2π, provided c is (topologically) real
analytic. If c(t0) ∈ U we can choose ε > 0 such that h(R) ⊆ c−1(U). Since sin is
locally around 0 invertible, real analyticity of λ ◦ f ◦ c ◦ h implies that λ ◦ f ◦ c is
real analytic near t0. Hence, the proof is completed.

10.6. Corollary. Reduction to Banach spaces. Let E be a convenient vector
space, let U ⊆ E be c∞-open, and let f : U → R be a mapping. Then f is real
analytic if and only if the restriction f : EB ⊇ U ∩ EB → R is real analytic for all
bounded absolutely convex subsets B of E.

So any result valid on Banach spaces can be translated into a result valid on con-
venient vector spaces.

Proof. By theorem 10.4 it suffices to check f along bornologically real analytic
curves. These factor by definition 9.4 locally to real analytic curves into some
EB .

10.7. Corollary. Let U be a c∞-open subset in a convenient vector space E and
let f : U → R be real analytic. Then for every bounded B there is some rB > 0
such that the Taylor series y 7→

∑ 1
k!d

kf(x)(yk) converges to f(x + y) uniformly
and absolutely on rBB.

Proof. Use 10.6 and 10.1.4 .
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10.8. Scalar valued analytic functions on convenient vector spaces E are in general
not germs of holomorphic functions from EC to C:

Example. Let fk : R→ R be real analytic functions with radius of convergence at
zero converging to 0 for k → ∞. Let f : R(N) → R be the mapping defined on the
countable sum R(N) of the reals by f(x0, x1, . . . ) :=

∑∞
k=1 xkfk(x0). Then f is real

analytic, but there is no complex valued holomorphic mapping f̃ on some neigh-
borhood of 0 in C(N) which extends f , and the Taylor series of f is not pointwise
convergent on any c∞-open neighborhood of 0.

Proof. Claim. f is real analytic.
Since the limit R(N) = lim−→n

Rn is regular, every smooth curve (and hence every real
analytic curve) in R(N) is locally smooth (resp. real analytic) into Rn for some n.
Hence, f ◦ c is locally just a finite sum of smooth (resp. real analytic) functions
and is therefore smooth (resp. real analytic).

Claim. f has no holomorphic extension.
Suppose there exists some holomorphic extension f̃ : U → C, where U ⊆ C(N)

is c∞-open neighborhood of 0, and is therefore open in the locally convex Silva
topology by 4.11.2 . Then U is even open in the box-topology [68, 4.6.1], i.e.,
there exist εk > 0 for all k, such that {(zk) ∈ C(N) : |zk| ≤ εk for all k} ⊆ U .
Let U0 be the open disk in C with radius ε0 and let f̃k : U0 → C be defined
by f̃k(z) := f̃(z, 0, . . . , 0, εk, 0, . . . ) 1

εk
, where εk is inserted instead of the variable

xk. Obviously, f̃k is an extension of fk, which is impossible, since the radius of
convergence of fk is less than ε0 for k sufficiently large.

Claim. The Taylor series does not converge.
If the Taylor series would be pointwise convergent on some U , then the previous
arguments for R(N) instead of C(N) would show that the radii of convergence of the
fk were bounded from below.

11. The Real Analytic Exponential Law

11.1. Spaces of germs of real-analytic functions

Let M be a real analytic finite dimensional manifold. If f : M → N is a mapping
between two such manifolds, then f is real analytic if and only if f maps smooth
curves into smooth ones and real analytic curves into real analytic ones, by 10.1 .

For each real analytic manifold M of real dimension m there is a complex manifold
MC of complex dimension m containing M as a real analytic closed submanifold,
whose germ along M is unique ([133, Prop. 1]), and which can be chosen even to
be a Stein manifold, see [45, section 3]. The complex charts are just extensions of
the real analytic charts of an atlas of M into the complexification of the modeling
real vector space.

Real analytic mappings f : M → N are the germs along M of holomorphic map-
pings W → NC for open neighborhoods W of M in MC.

Definition. Let Cω(M,F ) be the space of real analytic functions f : M → F into
a convenient vector space F , and let H(MC⊇M,C) be the space of germs along
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M of holomorphic functions as in 8.3 . Furthermore, for any subset A ⊆ M let
Cω(M⊇A,R) denotes the space of germs of real analytic functions along A, defined
on some neighborhood of A.

We will topologize Cω(M ⊇ A,R) as subspace of H(MC ⊇ A,C), in fact as the real
part of it, as the following lemma shows.

11.2. Lemma. For any subset A of M the complexification of the real vector space
Cω(M⊇A,R) is the complex vector space H(MC ⊇ A,C).

Proof. Let f, g ∈ Cω(M ⊇ A,R). These are germs of real analytic mappings
defined on some open neighborhood of A in M . Inserting complex numbers into
the locally convergent Taylor series in local coordinates shows, that f and g can be
considered as holomorphic mappings from some neighborhood W of A in MC to C,
which have real values if restricted to W∩M . The mapping h := f+

√
−1g : W → C

gives then an element of H(MC ⊇ A,C).

Conversely, let h ∈ H(MC ⊇ A,C). Then h is the germ of a holomorphic function
h̃ : W → C for some open neighborhood W of A in MC. The decomposition of h
into real and imaginary part f = 1

2 (h + h̄) and g = 1
2
√
−1 (h − h̄), which are real

analytic functions if restricted to W ∩M , gives elements of Cω(M ⊇ A,R).

These correspondences are inverse to each other since a holomorphic germ is deter-
mined by its restriction to a germ of mappings M ⊇ A→ C.

11.3. Lemma. For a finite dimensional real analytic manifold M the inclusion
Cω(M,R)→ C∞(M,R) is continuous.

Proof. Consider the following diagram, where W is an open neighborhood of M
in its complexification MC.

Cω(M,R) // inclusion //

11.2direct summand
��

C∞(M,R)

direct summand
��

H(MC ⊇M,C) // inclusion // C∞(M,R2)

H(W,C) �
� inclusion

8.2
//

restriction 8.4

OO

C∞(W,R2)

restriction

OO

11.4. Theorem (Structure of Cω(M ⊇ A,R) for closed subsets A of real
analytic manifolds M). The inductive cone

Cω(M ⊇ A,R)← { Cω(W,R) : A ⊆W ⊆
open

M}

is regular, i.e. every bounded set is contained and bounded in some step.

The projective cone

Cω(M ⊇ A,R)→ { Cω(M ⊇ K,R) : K compact in A}

generates the bornology of Cω(M ⊇ A,R).
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11.7 11. The Real Analytic Exponential Law

If A is even a smooth submanifold, then the following projective cone also generates
the bornology.

Cω(M ⊇ A,R)→ { Cω(M ⊇ {x},R) : x ∈ A}

The space Cω(Rm ⊇ {0},R) is also the regular inductive limit of the spaces `pr(r ∈
Rm+ ) for all 1 ≤ p ≤ ∞, see 8.1 .

For general closed A ⊆ N the space Cω(M ⊇ A,R) is Montel (hence quasi-complete
and reflexive), and ultra-bornological (hence a convenient vector space). It is also
webbed and conuclear. If A is compact then it is even a strongly nuclear Silva space
and its dual is a nuclear Fréchet space and it is smoothly paracompact. It is however
not a Baire space.

Proof. This follows from 8.4 , 8.6 , and 8.8 by passing to the real parts using
11.2 and from the fact that all mentioned properties are inherited by comple-

mented subspaces.

11.5. Corollary. A subset B ⊆ Cω(Rm ⊇ {0},R) is bounded if and only if there
exists an r > 0 such that { f

(α)(0)
α! r|α| : f ∈ B, α ∈ Nm0 } is bounded in R.

Proof. The space Cω(Rm ⊇ {0},R) is the regular inductive limit of the spaces
`∞r for r ∈ Rm+ by 11.4 . Hence, B is bounded if and only if it is contained and
bounded in `∞r for some r ∈ Rm+ , which is the looked for condition.

11.6. Theorem (Special real analytic uniform boundedness principle).
For any closed subset A of a real analytic manifold M , the space Cω(M ⊇ A,R) sat-
isfies the uniform S-boundedness principle for any point separating set S of bounded
linear functionals.

If A has no isolated points and M is 1-dimensional this applies to the set of all
point evaluations evt, t ∈ A.

Proof. Again this follows from 5.24 using now 11.4 . If A has no isolated points
and M is 1-dimensional the point evaluations are separating, by the uniqueness
theorem for holomorphic functions.

Direct proof of a particular case. We show that Cω(R,R) satisfies the uniform
S-boundedness principle for the set S of all point evaluations.

We check property 5.22.2 . Let B ⊆ Cω(R,R) be absolutely convex such that
evt(B) is bounded for all t and such that Cω(R,R)B is complete. We have to show
that B is complete.

By lemma 11.3 the set B satisfies the conditions of 5.22.2 in the space C∞(R,R).
Since C∞(R,R) satisfies the uniform S-boundedness principle, cf. [40], the set B
is bounded in C∞(R,R). Hence, all iterated derivatives at points are bounded on
B, and a fortiori the conditions of 5.22.2 are satisfied for B in H(R,C). By the
particular case of theorem 8.10 the set B is bounded in H(R,C) and hence also
in the direct summand Cω(R,R).

11.7. Theorem. The real analytic curves R → Cω(R,R) correspond exactly to
the real analytic functions R2 → R.
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11. The Real Analytic Exponential Law 11.9

Proof. (⇒) Let f : R → Cω(R,R) be a real analytic curve. Then f : R →
Cω(R ⊇ {t},R) is also real analytic. We use theorems 11.4 and 9.6 to conclude
that f is even a topologically real analytic curve in Cω(R ⊇ {t},R). By lemma
9.5 for every s ∈ R the curve f can be extended to a holomorphic mapping from

an open neighborhood of s in C to the complexification 11.2 H(C ⊇ {t},C) of
Cω(R ⊇ {t},R).

By 8.4 the space H(C ⊇ {t},C) is the regular inductive limit of all spaces H(U,C),
where U runs through some neighborhood basis of t in C. Lemma 7.7 shows that
f is a holomorphic mapping V → H(U,C) for some open neighborhoods U of t and
V of s in C.

By the exponential law 7.22 for holomorphic mappings the canonically associated
mapping f∧ : V × U → C is holomorphic. So its restriction is a real analytic
function R× R→ R near (s, t) which coincides with f∧ for the original f .

(⇐) Let f : R2 → R be a real analytic mapping. Then f(t, ) is real analytic, so
the associated mapping f∨ : R → Cω(R,R) makes sense. It remains to show that
it is real analytic. Since the mappings Cω(R,R) → Cω(R ⊇ K,R) generate the
bornology, by 11.4 , it is by 9.9 enough to show that f∨ : R → Cω(R ⊇ K,R)
is real analytic for each compact K ⊆ R, which may be checked locally near each
s ∈ R.

The real analytic function f : R2 → R extends to a holomorphic function on an open
neighborhood V ×U of {s}×K in C2. By cartesian closedness for the holomorphic
setting the associated mapping f∨ : V → H(U,C) is holomorphic, so its restriction
V ∩ R→ Cω(U ∩ R,R)→ Cω(K,R) is real analytic as required.

11.8. Remark. From 11.7 it follows that the curve c : R→ Cω(R,R) defined in
9.1 is real analytic, but it is not topologically real analytic. In particular, it does

not factor locally to a real analytic curve into some Banach space Cω(R,R)B for a
bounded subset B and it has no holomorphic extension to a mapping defined on a
neighborhood of R in C with values in the complexification H(R,C) of Cω(R,R),
cf. 9.5 .

11.9. Lemma. For a real analytic manifold M , the bornology on Cω(M,R) is
induced by the following cone:
Cω(M,R)−c

∗
→ Cα(R,R) for all α ∈ {∞, ω} and all Cα-curves c : R→M .

Proof. The maps c∗ are bornological, since Cω(M,R) is convenient by 11.4 ,
and by the uniform S-boundedness principle 11.6 for Cω(R,R) and by 5.26 for
C∞(R,R) it suffices to check that evt ◦c∗ = evc(t) is bornological, which is obvious.

Conversely, we consider the identity mapping i from the space E into Cω(M,R),
where E is the vector space Cω(M,R), but with the locally convex structure induced
by the cone.
Claim. The bornology of E is complete.
The spaces Cω(R,R) and C∞(R,R) are convenient by 11.4 and 2.15 , respectively.
So their product ∏

c∈Cω(R,M)

Cω(R,R) ×
∏

c∈C∞(R,M)

C∞(R,R)
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11.14 11. The Real Analytic Exponential Law

is also convenient. By theorem 10.1 ( 1 ⇔ 5 ) the embedding of E into this product
has closed image, hence the bornology of E is complete.

Now we may apply the uniform S-boundedness principle 11.6 for Cω(M,R), since
obviously evp ◦i = ev0 ◦c∗p is bounded, where cp is the constant curve with value p,
for all p ∈M .

11.10. Structure on Cω(U,F ). Let E be a real convenient vector space and let
U be c∞-open in E. We equip the space Cω(U,R) of all real analytic functions (cf.
10.3 ) with the locally convex topology induced by the families of mappings

Cω(U,R)−c
∗
→ Cω(R,R), for all c ∈ Cω(R, U)

Cω(U,R)−c
∗
→ C∞(R,R), for all c ∈ C∞(R, U).

For a finite dimensional vector spaces E this definition gives the same bornology
as the one defined in 11.1 , by lemma 11.9 .

If F is another convenient vector space, we equip the space Cω(U,F ) of all real
analytic mappings (cf. 10.3 ) with the locally convex topology induced by the
family of mappings

Cω(U,F )−λ∗→ Cω(U,R), for all λ ∈ F ′.

Obviously, the injection Cω(U,F )→ C∞(U,F ) is bounded and linear.

11.11. Lemma. Let E and F be convenient vector spaces and let U ⊆ E be
c∞-open. Then Cω(U,F ) is also convenient.

Proof. This follows immediately from the fact that Cω(U,F ) can be considered
as closed subspace of the product of factors Cω(U,R) indexed by all λ ∈ F ′ and
these factors can in turn be considered as closed subspaces of the product of the
factors Cω(R,R) indexed by all c ∈ Cω(R, U) and the factors C∞(R,R) indexed by
all c ∈ C∞(R, U). Since all factors are convenient so are the closed subspaces.

11.12. Theorem (General real analytic uniform boundedness principle).
Let E and F be convenient vector spaces and U ⊆ E be c∞-open. Then Cω(U,F )
satisfies the uniform S-boundedness principle, where S := {evx : x ∈ U}.

Proof. The convenient structure of Cω(U,F ) is induced by the cone of map-
pings c∗ : Cω(U,F ) → Cω(R, F ) (for c ∈ Cω(R, U)) together with the maps c∗ :
Cω(U,F ) → C∞(R, F ) (for c ∈ C∞(R, U)). Both spaces Cω(R, F ) and C∞(R, F )
satisfy the uniform T -boundedness principle, where T := {evt : t ∈ R}, by 11.6
and 5.26 , respectively. Hence, Cω(U,F ) satisfies the uniform S-boundedness prin-
ciple by lemma 5.25 , since evt ◦ c∗ = evc(t).

11.14. Theorem. Let Ei for i = 1, . . . n and F be convenient vector spaces. Then
the bornology on L(E1, . . . , En;F ) (described in 5.1 , see also 5.6 ) is induced by
the embedding L(E1, . . . , En;F )→ Cω(E1 × . . .× En, F ).

Thus, any mapping f into L(E1, . . . , En;F ) is real analytic if and only if the com-
posites evx ◦ f are real analytic for all x ∈ E1 × . . .× En, by 9.9 .

Proof. Let S := {evx : x ∈ E1× . . .×En}. Since Cω(E1× . . .×En, F ) satisfies the
uniform S-boundedness principle 11.12 , the inclusion is bounded. On the other
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11. The Real Analytic Exponential Law 11.17

hand L(E1, . . . , En;F ) also satisfies the uniform S-boundedness principle by 5.18 ,
so the identity from L(E1, . . . , En;F ) with the bornology induced from Cω(E1 ×
. . .× En, F ) into L(E1, . . . , En;F ) is bounded as well.

Since to be real analytic depends only on the bornology by 9.4 and since the conve-
nient vector space L(E1, . . . , En;F ) satisfies the uniform S-boundedness principle,
the second assertion follows also.

The following two results will be generalized in 11.20 . At the moment we will
make use of the following lemma only in case where E = C∞(R,R).

11.15. Lemma. For any convenient vector space E the flip of variables induces
an isomorphism L(E,Cω(R,R)) ∼= Cω(R, L(E,R)) = Cω(R, E′) as vector spaces.

Proof. For c ∈ Cω(R, E′) consider c̃(x) := evx ◦c ∈ Cω(R,R) for x ∈ E. By the
uniform S-boundedness principle 11.6 for S = {evt : t ∈ R} the linear mapping c̃
is bounded, since evt ◦c̃ = c(t) ∈ E′.

If conversely ` ∈ L(E,Cω(R,R)), we consider ˜̀(t) = evt ◦` ∈ E′ = L(E,R) for
t ∈ R. Since the bornology of E′ is generated by S := {evx : x ∈ E}, ˜̀ : R→ E′ is
real analytic, for evx ◦˜̀= `(x) ∈ Cω(R,R), by 11.14 .

11.16. Corollary. We have C∞(R, Cω(R,R)) ∼= Cω(R, C∞(R,R)) as vector
spaces.

Proof. The dual C∞(R,R)′ is the free convenient vector space (see [75, 23.6]) over
R by [75, 23.11], and Cω(R,R) is convenient by 11.4 , so we have

C∞(R, Cω(R,R)) ∼= L(C∞(R,R)′, Cω(R,R))
∼= Cω(R, C∞(R,R)′′) by lemma 11.15
∼= Cω(R, C∞(R,R)),

by reflexivity of C∞(R,R), see [75, 6.5.7].

11.17. Theorem. Let E be a convenient vector space, let U be c∞-open in E,
let f : R × U → R be a real analytic mapping and let c ∈ C∞(R, U). Then
c∗ ◦ f∨ : R→ Cω(U,R)→ C∞(R,R) is real analytic.

This result on the mixing of C∞ and Cω will become quite essential in the proof
of cartesian closedness. It will be generalized in 11.21 , see also 42.15 .

Proof. Let I ⊆ R be open and relatively compact, let t ∈ R and k ∈ N. Now
choose an open and relatively compact J ⊆ R containing the closure Ī of I. There
is a bounded subset B ⊆ E such that c | J : J → EB is a Lipk-curve in the Banach
space EB generated by B, by 1.8 . Let UB denote the open subset U ∩ EB of the
Banach space EB . Since the inclusion EB → E is continuous, f is real analytic as
a function R×UB → R×U → R. Thus, by 10.1 there is a holomorphic extension
f : V ×W → C of f to an open set V ×W ⊆ C × (EB)C containing the compact
set {t} × c(Ī). By cartesian closedness of the category of holomorphic mappings
f∨ : V → H(W,C) is holomorphic. By 8.2 the bornological structure of H(W,C)
is induced by that of C∞(W,C) := C∞(W,R2). And c∗ : C∞(W,C) → Lipk(I,C)
is a bounded C-linear map, by the chain rule 12.9 for Lipk-mappings and by
the uniform boundedness principle 12.10 for the point evaluations on Lipk(I,C).
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11.18 11. The Real Analytic Exponential Law

Thus, c∗ ◦ f∨ : V → Lipk(I,C) is holomorphic, and hence its restriction to R ∩ V ,
which has values in Lipk(I,R), is (even topologically) real analytic by 9.5 . Since
t ∈ R was arbitrary we conclude that c∗ ◦ f∨ : R→ Lipk(I,R) is real analytic. But
the bornology of C∞(R,R) is generated by the inclusions into Lipk(I,R), by the
uniform boundedness principles 5.26 for C∞(R,R) and 12.9 for Lipk(R,R), and
hence c∗ ◦ f∨ : R→ C∞(R,R) is real analytic.

11.18. Theorem. Cartesian closedness. The category of real analytic mappings
between convenient vector spaces is cartesian closed. More precisely, for convenient
vector spaces E, F and G and c∞-open sets U ⊆ E and W ⊆ G a mapping
f : W × U → F is real analytic if and only if f∨ : W → Cω(U,F ) is real analytic.

Proof.Step 1. The theorem is true for W = G = F = R.

(⇐) Let f∨ : R → Cω(U,R) be Cω. We have to show that f : R × U → R is Cω.
We consider a curve c1 : R→ R and a curve c2 : R→ U .

If the ci are C∞, then c∗2 ◦ f∨ : R → Cω(U,R) → C∞(R,R) is Cω by assumption,
hence is C∞, so c∗2 ◦ f∨ ◦ c1 : R → C∞(R,R) is C∞. By cartesian closedness of
smooth mappings, (c∗2 ◦ f∨ ◦ c1)∧ = f ◦ (c1 × c2) : R2 → R is C∞. By composing
with the diagonal mapping ∆ : R→ R2 we obtain that f ◦ (c1, c2) : R→ R is C∞.

If the ci are Cω, then c∗2 ◦ f∨ : R → Cω(U,R) → Cω(R,R) is Cω by assumption,
so c∗2 ◦ f∨ ◦ c1 : R → Cω(R,R) is Cω. By theorem 11.7 the associated map
(c∗2 ◦ f∨ ◦ c1)∧ = f ◦ (c1 × c2) : R2 → R is Cω. So f ◦ (c1, c2) : R→ R is Cω.

(⇒) Let f : R × U → R be Cω. We have to show that f∨ : R → Cω(U,R) is real
analytic. Obviously, f∨ has values in this space. We consider a curve c : R→ U .

If c is C∞, then by theorem 11.17 the associated mapping c∗ ◦f∨ : R→ C∞(R,R)
is Cω.

If c is Cω, then f ◦ (id×c) : R × R → R × U → R is Cω. By theorem 11.7 the
associated mapping (f ◦ (id×c))∨ = c∗ ◦ f∨ : R→ Cω(R,R) is Cω.

Step 2. The theorem is true for F = R.

(⇐) Let f∨ : W → Cω(U,R) be Cω. We have to show that f : W × U → R is Cω.
We consider a curve c1 : R→W and a curve c2 : R→ U .

If the ci are C∞, then c∗2 ◦ f∨ : W → Cω(U,R)→ C∞(R,R) is Cω by assumption,
hence is C∞, so c∗2 ◦ f∨ ◦ c1 : R → C∞(R,R) is C∞. By cartesian closedness of
smooth mappings, the associated mapping (c∗2 ◦ f∨ ◦ c1)∧ = f ◦ (c1 × c2) : R2 → R
is C∞. So f ◦ (c1, c2) : R→ R is C∞.

If the ci are Cω, then f∨ ◦ c1 : R → W → Cω(U,R) is Cω by assumption, so
by step 1 the mapping (f∨ ◦ c1)∧ = f ◦ (c1 × idU ) : R × U → R is Cω. Hence,
f ◦ (c1, c2) = f ◦ (c1 × idU ) ◦ (id, c2) : R→ R is Cω.

(⇒) Let f : W × U → R be Cω. We have to show that f∨ : W → Cω(U,R) is real
analytic. Obviously, f∨ has values in this space. We consider a curve c1 : R→W .

If c1 is C∞, we consider a second curve c2 : R→ U . If c2 is C∞, then f ◦ (c1× c2) :
R × R → W × U → R is C∞. By cartesian closedness the associated mapping
(f ◦ (c1 × c2))∨ = c∗2 ◦ f∨ ◦ c1 : R → C∞(R,R) is C∞. If c2 is Cω, the mapping
f ◦ (idW ×c2) : W ×R→ R and also the flipped one (f ◦ (idW ×c2))∼ : R×W → R
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11. The Real Analytic Exponential Law 11.20

are Cω, hence by theorem 11.17 c∗1 ◦ ((f ◦ (idW ×c2))∼)∨ : R → C∞(R,R) is
Cω. By corollary 11.16 the associated mapping (c∗1 ◦ ((f ◦ (idW ×c2))∼)∨)∼ =
c∗2 ◦ f∨ ◦ c1 : R→ Cω(R,R) is C∞. So for both families describing the structure of
Cω(U,R) we have shown that the composite with f̌ ◦ c1 is C∞, so f∨ ◦ c1 is C∞.

If c1 is Cω, then f ◦ (c1 × idU ) : R × U → W × U → R is Cω. By step 1 the
associated mapping (f ◦ (c1 × idU ))∨ = f∨ ◦ c1 : R→ Cω(U,R) is Cω.

Step 3. The general case.
f : W × U → F is Cω

⇔ λ ◦ f : W × U → R is Cω for all λ ∈ F ′

⇔ (λ ◦ f)∨ = λ∗ ◦ f∨ : W → Cω(U,R) is Cω, by step 2

⇔ f∨ : W → Cω(U,F ) is Cω, by 11.10 and 9.4

11.19. Corollary. Canonical mappings are real analytic. The following
mappings are Cω:

(1) ev : Cω(U,F )× U → F , (f, x) 7→ f(x),
(2) ins : E → Cω(F,E × F ), x 7→ (y 7→ (x, y)),
(3) ( )∧ : Cω(U,Cω(V,G))→ Cω(U × V,G),
(4) ( )∨ : Cω(U × V,G)→ Cω(U,Cω(V,G)),
(5) comp : Cω(F,G)× Cω(U,F )→ Cω(U,G), (f, g) 7→ f ◦ g,
(6) Cω( , ) : Cω(E2, E1)× Cω(F1, F2)→
→ Cω(Cω(E1, F1), Cω(E2, F2)), (f, g) 7→ (h 7→ g ◦ h ◦ f).

Proof. Just consider the canonically associated smooth mappings on multiple
products, as in 3.13 .

11.20. Lemma. Canonical isomorphisms. One has the following natural
isomorphisms:

(1) Cω(W1, C
ω(W2, F )) ∼= Cω(W2, C

ω(W1, F )),
(2) Cω(W1, C

∞(W2, F )) ∼= C∞(W2, C
ω(W1, F )).

(3) Cω(W1, L(E,F )) ∼= L(E,Cω(W1, F )).
(4) Cω(W1, `

∞(X,F )) ∼= `∞(X,Cω(W1, F )).
(5) Cω(W1,Lipk(X,F )) ∼= Lipk(X,Cω(W1, F )).

In ( 4 ) the space X is a `∞-space, i.e. a set together with a bornology induced by
a family of real valued functions on X, cf. [41, 1.2.4]. In ( 5 ) the space X is a
Lipk-space, cf. [41, 1.4.1]. The spaces `∞(X,F ) and Lipk(W,F ) are defined in [41,
3.6.1,4.4.1].

Proof. All isomorphisms, as well as their inverse mappings, are given by the flip
of coordinates: f 7→ f̃ , where f̃(x)(y) := f(y)(x). Furthermore, all occurring
function spaces are convenient and satisfy the uniform S-boundedness theorem,
where S is the set of point evaluations, by 11.11 , 11.14 , 11.12 , and by [41,
3.6.1,4.4.2,3.6.6,4.4.7].

That f̃ has values in the corresponding spaces follows from the equation f̃(x) =
evx ◦ f . One only has to check that f̃ itself is of the corresponding class, since
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11.22 11. The Real Analytic Exponential Law

it follows that f 7→ f̃ is bounded as a consequence of the uniform boundedness
principle:

(evx ◦(̃ ))(f) = evx(f̃) = f̃(x) = evx ◦f = (evx)∗(f).

That f̃ is of the appropriate class in ( 1 ) and ( 2 ) follows by composing with
c1 ∈ Cβ1(R,W1) and Cβ2(λ, c2) : Cα2(W2, F ) → Cβ2(R,R) for all λ ∈ F ′ and
c2 ∈ Cβ2(R,W2), where βk and αk are in {∞, ω} and βk ≤ αk for k ∈ {1, 2}. Then
Cβ2(λ, c2) ◦ f̃ ◦ c1 = (Cβ1(λ, c1) ◦ f ◦ c2)∼ : R → Cβ2(R,R) is Cβ1 by 11.7 and
11.16 , since Cβ1(λ, c1) ◦ f ◦ c2 : R→W2 → Cα1(W1, F )→ Cβ1(R,R) is Cβ2 .

That f̃ is of the appropriate class in ( 3 ) follows, since L(E,F ) is the c∞-closed
subspace of Cω(E,F ) formed by the linear Cω-mappings.

That f̃ is of the appropriate class in ( 4 ) or ( 5 ) follows from ( 3 ), using the free
convenient vector spaces `1(X) or λk(X) over the `∞-space X or the the Lipk-
space X, see [41, 5.1.24or5.2.3], satisfying `∞(X,F ) ∼= L(`1(X), F ) or satisfying
Lipk(X,F ) ∼= L(λk(X), F ). Existence of these free convenient vector spaces can be
proved in a similar way as [75, 23.6].

Definition. By a C∞,ω-mapping f : U × V → F we mean a mapping f for which
f∨ ∈ C∞(U,Cω(V, F )) ∼= Cω(V,C∞(U,F )).

11.21. Theorem. Composition of C∞,ω-mappings. Let f : U × V → F and
g : U1 × V1 → V ⊆ G be C∞,ω, and h : U1 → U be C∞. Then f ◦ (h ◦ pr1, g) :
U1 × V1 → F , (x, y) 7→ f(h(x), g(x, y)) is C∞,ω.

Proof. We have to show that the mapping x 7→ (y 7→ f(h(x), g(x, y))), U1 →
Cω(V1, F ) is C∞. It is well-defined, since f and g are Cω in the second variable. In
order to show that it is C∞ we compose with λ∗ : Cω(V1, F ) → Cω(V1,R), where
λ ∈ F ′ is arbitrary. Thus, it is enough to consider the case F = R. Furthermore,
we compose with c∗ : Cω(V1,R) → Cα(R,R), where c ∈ Cα(R, V1) is arbitrary for
α equal to ω and ∞.

In case α =∞ the composite with c∗ is C∞, since the associated mapping U1×R→
R is f ◦ (h ◦ pr1, g ◦ (id×c)) which is C∞.

Now the case α = ω. Let I ⊆ R be an arbitrary open bounded interval. Then
c∗ ◦ g∨ : U1 → Cω(R, G) is C∞, where G is the convenient vector space containing
V as an c∞-open subset, and has values in {γ : γ(Ī) ⊆ V } ⊆ Cω(R, G). This set is
c∞-open, since it is open for the topology of uniform convergence on compact sets
which is coarser than the bornological topology on C∞(R, G) and hence than the
c∞-topology on Cω(R, G), see 11.10 .

Thus, the composite of (f ◦ (h ◦ pr1, g))∨ with c∗, comp ◦(f∨ ◦ h, c∗ ◦ g∨) is C∞,
since f∨ ◦ h : U1 → U → Cω(V, F ) is C∞, c∗ ◦ g∨ : U1 → Cω(R, G) is C∞ and
comp : Cω(V,R) × {γ ∈ Cω(R, G) : γ(Ī) ⊆ V } → Cω(I,R) is Cω, because it is
associated to ev ◦(id× ev) : Cω(V,R)× {γ ∈ Cω(R, G) : γ(Ī) ⊆ V } × I → V . That
ev : {γ ∈ Cω(R, G) : γ(Ī) ⊆ V } × I → V ⊆ G is Cω follows, since the associated
mapping is the restriction mapping Cω(R, G)→ Cω(I,G).

11.22. Corollary. Let w : W1 →W be Cω, let u : U → U1 be smooth, let v : V →
V1 be Cω, and let f : U1 × V1 → W1 be C∞,ω. Then w ◦ f ◦ (u× v) : U × V → W
is again C∞,ω.
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This is a generalization of theorem 11.17 .

Proof. Use 11.21 twice: First h := u, g := v ◦ pr2, f := f , and then h := id,
f := w ◦ pr1, g := f ◦ (u× v).

11.23. Corollary. Let f : E ⊇ U → F be Cω, let I ⊆ R be open and bounded,
and α be ω or ∞. Then f∗ : Cα(R, E) ⊇ {c : c(Ī) ⊆ U} → Cα(I, F ) is Cω.

Proof. Obviously, f∗(c) := f ◦ c ∈ Cα(I, F ) is well-defined for all c ∈ Cα(R, E)
satisfying c(Ī) ⊆ U .

Furthermore, {c : c(Ī) ⊆ U} ⊆ Cα(R, E) is c∞-open, since it is open for the topol-
ogy of uniform convergence on compact sets which is coarser than the bornological
and hence than the c∞-topology on Cα(R, E).

Finally, the composite of f∗ with any Cβ-curve γ : R→ {c : c(Ī) ⊆ U} ⊆ Cα(R, E)
is a Cβ-curve in Cα(I, F ) for β equal to ω or ∞: For β = α this follows from
cartesian closedness of the Cα-maps since (f∗ ◦γ)∧ = f ◦γ∧. For α 6= β this follows
from 11.22 : For β < α use u := id, v := id, f := γ∧, w := f ; And for α < β flip
the variables in R and I.

11.24. Lemma. Derivatives. The derivative d, where df(x)(v) := d
dt |t=0

f(x+ tv), is bounded and linear d : Cω(U,F )→ Cω(U,L(E,F )).

Proof. The differential df(x)(v) makes sense and is linear in v, because every real
analytic mapping f is smooth. So it remains to show that (f, x, v) 7→ df(x)(v) is
real analytic. For this let f , x, and v depend real analytically (resp. smoothly)
on a real parameter s. Since (t, s) 7→ x(s) + tv(s) is real analytic (resp. smooth)
into U ⊆ E, the mapping r 7→ ((t, s) 7→ f(r)(x(s) + tv(s)) is real analytic into
Cω(R2, F ) (resp. smooth into C∞(R2, F ). Composing with the bounded linear
map ∂

∂t |t=0: Cω(R2, F ) → Cω(R, F ) (resp. : C∞(R2, F ) → C∞(R, F )) shows
that r 7→ (s 7→ d(f(r))(x(s))(v(s)) is real analytic into Cω(R, F ) (resp. smooth
into C∞(R,R)). Considering the associated real analytic (resp. smooth) mapping
on R2 composed with the diagonal map shows that (f, x, v) 7→ df(x)(v) is real
analytic.

The following examples as well as several others can be found in [41, 5.3.6].

11.25. Example. Let T : C∞(R,R)→ C∞(R,R) be given by T (f) = f ′. Then the
continuous linear differential equation x′(t) = T (x(t)) with initial value x(0) = x0
has a unique smooth solution x(t)(s) = x0(t+s) which is however not real analytic.

Note the curious form x′(t) = x(t)′ of this differential equation. Beware of careless
notation!

Proof. A smooth curve x : R→ C∞(R,R) is a solution of the differential equation
x′(t) = T (x(t)) if and only if ∂

∂t x̂(t, s) = ∂
∂s x̂(t, s). Hence, we have d

dt x̂(t, r− t) = 0,
i.e. t 7→ x̂(t, r − t) is constant and hence equal to x̂(0, r) = x0(r). Thus, x̂(t, s) =
x0(t+ s).

Suppose x : R → C∞(R,R) were real analytic. Then the composite with ev0 :
C∞(R,R)→ R were a real analytic function. But this composite is just x0 = ev0◦x,
which is not in general real analytic.

Andreas Kriegl , Univ.Wien, June 30, 2017 131



11.26 11. The Real Analytic Exponential Law

11.26. Example. Let E be either C∞(R,R) or Cω(R,R). Then the mapping
exp∗ : E → E is Cω, has invertible derivative at every point, but the image does
not contain an open neighborhood of exp∗(0).

Proof. The mapping exp∗ is real analytic by 11.23 . Its derivative is given by
(exp∗)′(f)(g) : t 7→ g(t)ef(t) and hence is invertible with g 7→ (t 7→ g(t)e−f(t))
as inverse mapping. Now consider the real analytic curve c : R → E given by
c(t)(s) = 1 − (ts)2. One has c(0) = 1 = exp∗(0), but c(t) is not in the image of
exp∗ for any t 6= 0, since c(t)( 1

t ) = 0 but exp∗(g)(t) = eg(t) > 0 for all g and t.

132 Andreas Kriegl , Univ.Wien, June 30, 2017
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Historical Remarks on Holomorphic and Real Analytic Cal-
culus

The notion of holomorphic mappings used in section 15 was first defined by the
Italian Luigi Fantappié in the papers [35] and [36]:

S.1: “Wenn jeder Funktion y(t) einer Funktionenmenge H eine bestimmte Zahl f
entspricht, d.h. die Zahl f von der Funktion y(t) (unabhängige Veränderliche in
der Menge H) abhängt, werden wir sagen, daß ein Funktional von y(t):

f = F [y(t)]
ist; H heißt das Definitionsfeld des Funktionals F .
[. . . ] gemischtes Funktional [. . . ]

f = F [y1(t1, . . .), . . . , yn(t1, . . .); z1, . . . , zm]”

He also considered the ‘functional transform’ and noticed the relation
f = F [y(t); z] corresponds to y 7→ f(z)

S.4: “Sei jetzt F (y(t)) ein Funktional, das in einem Funktionenbereich H (von an-
alytischen Funktionen) definiert ist, und y0(t) ein Funktion von H, die mit einer
Umgebung (r) oder (r, σ) zu H angehört. Wenn für jede analytische Mannig-
faltigkeit y(t;α1, . . . , αm), die in diese Umgebung eindringt (d.h. eine solche, die
für alle Wertesysteme α1, . . . , αm) eines Bereichs Γ eine Funktion von t der Umge-
bung liefert), der Wert des Funktionals

Ft[y(t;α1, . . . , αm)] = f(α1, . . . , αm)
immer eine Funktion der Parameter α1, . . . , αm ist, die nicht nur in Γ definiert,
sondern dort noch eine analytische Funktion ist, werden wir sagen, daß das Funk-
tional F regulär ist in der betrachteten Umgebung y0(t). Wenn ein Funktional F
regulär ist in einer Umgebung jeder Funktion seines Definitionsbereiches, so heißt
F analytisch.”

The development in the complex case was much faster than in the smooth case
since one did not have to explain the concept of higher derivatives.

The Portuguese José Sebastião e Silva showed that analyticity in the sense of Fan-
tappié coincides with other concepts, in his dissertation [111], published as [112],
and in [113]. An overview over various notions of holomorphicity was given by the
Brasilian Domingos Pisanelli in [103] and [104].
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The main aim of this chapter is to discuss the abundance or scarcity of smooth
functions on a convenient vector space: E.g. existence of bump functions and parti-
tions of unity. This question is intimately related to differentiability of seminorms
and norms, and in many examples these are, if at all, only finitely often differen-
tiable. So we start this chapter with a short (but complete) account of finite order
differentiability, based on Lipschitz conditions on higher derivatives, since with this
notion we can get as close as possible to exponential laws. A more comprehensive
exposition of finite order Lipschitz differentiability can be found in the monograph
[40].

Then we treat differentiability of seminorms and convex functions, and we have
tried to collect all relevant information from the literature. We give full proofs of
all what will be needed later on or is of central interest. We also collect related
results, mainly on ‘generic differentiability’, i.e. differentiability on a dense Gδ-set.

If enough smooth bump functions exist on a convenient vector space, we call it
‘smoothly regular’. Although the smooth (i.e. bounded) linear functionals separate
points on any convenient vector space, stronger separation properties depend very
much on the geometry. In particular, we show that `1 and C[0, 1] are not even
C1-regular. We also treat more general ‘smooth spaces’ here since most results do
not depend on a linear structure, and since we will later apply them to manifolds.

In many problems like E. Borel’s theorem 15.4 that any power series appears
as Taylor series of a smooth function, or the existence of smooth functions with
given carrier 15.3 , one uses in finite dimensions the existence of smooth functions
with globally bounded derivatives. These do not exist in infinite dimensions in
general; even for bump functions this need not be true globally. Extreme cases
are Hilbert spaces where there are smooth bump functions with globally bounded
derivatives, and c0 which does not even admit C2-bump functions with globally
bounded derivatives.

In the final section of this chapter a space which admits smooth partitions of unity
subordinated to any open cover is called smoothly paracompact. Fortunately, a
wide class of convenient vector spaces has this property, among them all spaces of
smooth sections of finite dimensional vector bundles which we shall need later as
modeling spaces for manifolds of mappings. The theorem 16.15 of [121] character-
izes smoothly paracompact metrizable spaces, and we will give a full proof. It is the
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Chapter III

Partitions of Unity

only tool for investigating whether non-separable spaces are smoothly paracompact
and we give its main applications.

12. Differentiability of Finite Order

12.1. Definition

A mapping f : E ⊇ U → F , where E and F are convenient vector spaces, and
U ⊆ E is c∞-open, is called Lipk if f ◦ c is a Lipk-curve (see 1.2 ) for each
c ∈ C∞(R, U).

This is equivalent to the property that f◦c is Lipk on c−1(U) for each c ∈ C∞(R, E).
This can be seen by reparameterization.

12.2. General curve lemma. Let E be a convenient vector space, and let cn ∈
C∞(R, E) be a sequence of curves which converges fast to 0, i.e., for each k ∈ N
the sequence nkcn is bounded. Let sn ≥ 0 be reals with

∑
n sn <∞.

Then there exists a smooth curve c ∈ C∞(R, E) and a converging sequence of reals
tn such that c(t+ tn) = cn(t) for |t| ≤ sn, for all n.

Proof. Let rn :=
∑
k<n( 2

k2 + 2sk) and tn := rn+rn+1
2 . Let h : R → [0, 1] be

smooth with h(t) = 1 for t ≥ 0 and h(t) = 0 for t ≤ −1, and put hn(t) :=
h(n2(sn + t)) · h(n2(sn − t)). Then we have hn(t) = 0 for |t| ≥ 1

n2 + sn and
hn(t) = 1 for |t| ≤ sn, and for the derivatives we have |h(j)

n (t)| ≤ n2j · Hj , where
Hj := max{|h(i)| : t ∈ R, i ≤ j}2. Thus, in the sum

c(t) :=
∑
n

hn(t− tn) · cn(t− tn)

at most one summand is non-zero for each t ∈ R, and c is a smooth curve since for
each ` ∈ E′ we have
(` ◦ c)(t) =

∑
n

fn(t), where fn(t+ tn) := hn(t) · `(cn(t)),

n2· sup
t
|f (k)
n (t)| = n2 · sup

{
|f (k)
n (s+ tn)| : |s| ≤ 1

n2 + sn

}
≤ n2

k∑
j=0

(
k
j

)
n2jHj · sup

{
|(` ◦ cn)(k−j)(s)| : |s| ≤ 1

n2 + sn

}

≤
( k∑
j=0

(
k
j

)
n2j+2Hj

)
· sup

{
|(` ◦ cn)(i)(s)| : |s| ≤ max

n
( 1
n2 + sn) and i ≤ k

}
,

which is uniformly bounded with respect to n, since cn converges to 0 fast.

12.3. Corollary. Let cn : R→ E be polynomials of bounded degree with values in
a convenient vector space E. If for each ` ∈ E′ the sequence n 7→ sup{|(` ◦ cn)(t) :
|t| ≤ 1} converges to 0 fast, then the sequence cn converges to 0 fast in C∞(R, E),
so the conclusion of 12.2 holds.

Proof. The structure on C∞(R, E) is the initial one with respect to the cone
`∗ : C∞(R, E) → C∞(R,R) for all ` ∈ E′, by 3.9 . So we only have to show the
result for E = R. On the finite dimensional space of all polynomials of degree at
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most d the expression in the assumption is a norm, and the inclusion into C∞(R,R)
is bounded.

12.4. Difference quotients

For a curve c : R → E with values in a vector space E the difference quotient δkc
of order k is given recursively by

δ0c := c,

δkc(t0, . . . , tk) := k
δk−1c(t0, . . . , tk−1)− δk−1c(t1, . . . , tk)

t0 − tk
,

for pairwise different ti. The constant factor k in the definition of δk is chosen in
such a way that δk approximates the k-th derivative. By induction, one can easily
see that

δkc(t0, . . . , tk) = k!
k∑
i=0

c(ti)
∏

0≤j≤k
j 6=i

1
ti−tj

and, in particular, δkc is symmetric. We shall mainly need the equidistant difference
quotient δkeqc of order k, which is given by

δkeqc(t; v) := δkc(t, t+ v, . . . , t+ kv) = k!
vk

k∑
i=0

c(t+ iv)
∏

0≤j≤k
j 6=i

1
i−j .

Lemma. For a convenient vector space E and a curve c : R → E the following
conditions are equivalent:

(1) c is Lipk−1.
(2) The difference quotient δkc of order k is bounded on bounded sets.
(3) ` ◦ c is continuous for each ` ∈ E′, and the equidistant difference quotient

δkeqc of order k is bounded on bounded sets in R× (R \ {0}).

The continuity assumption in 3 is necessary, see [41, 1.3.12].

Proof. All statements can be tested by composing with bounded linear functionals
` ∈ E′, so we may assume that E = R and k > 1.

( 3 ) ⇒ ( 2 ) Let I ⊂ R be a bounded interval. Then there is some K > 0 such
that |δkeqc(x; v)| ≤ K for all x ∈ I and kv ∈ I. Let ti ∈ I be pairwise different
points. We claim that |δkc(t0, . . . , tk)| ≤ K. Since δkc is symmetric we may assume
that t0 < t1 < · · · < tk, and since it is continuous (c is continuous) we may
assume that all ti−t0

tk−t0 are of the form ni
N for ni, N ∈ N. Put v := tk−t0

N , then
δkc(t0, . . . , tk) = δkc(t0, t0 + n1v, . . . , t0 + nkv) is a universal convex combination
of δkeqc(t0 + rv; v) for 0 ≤ r ≤ maxi ni − k: This follows by recursively inserting
intermediate points of the form t0 +mv, and using

δk(t0 +m0v, . . . ,
p
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

qt0 +miv , . . . , t0 +mk+1v) =

= mi −m0

mk+1 −m0
δk(t0 +m0v, . . . , t0 +mkv)

+ mk+1 −mi

mk+1 −m0
δk(t1 +m1v, . . . , t0 +mk+1v)
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which itself may be proved by induction on k (see [41, 1.3.9]).

( 2 ) ⇒ ( 1 ) We have to show that c is k times differentiable and that δ1c(k) is
bounded on bounded sets. We use induction, k = 0 is clear.

Let T 6= S be two subsets of R of cardinality j + 1. Then there exist enumerations
T = {t0, . . . , tj} and S = {s0, . . . , sj} such that ti 6= sj for i ≤ j; then we have

δjc(t0, . . . , tj)− δjc(s0, . . . , sj) = 1
j+1

j∑
i=0

(ti − si)δj+1c(t0, . . . , ti, si, . . . , sj).

In fact, for the enumerations we put the elements of T ∩ S at the end in T and at
the beginning in S. Using the recursive definition of δj+1c and its symmetry the
right hand side becomes a telescoping sum, see [41, 1.3.13]

Since δkc is bounded we see from the last equation that all δjc are also bounded,
in particular this is true for δ2c. Then

c(t+ s)− c(t)
s

− c(t+ s′)− c(t)
s′

= s−s′
2 δ2c(t, t+ s, t+ s′)

shows that the difference quotient of c forms a Mackey Cauchy net, and hence the
limit c′(t) exists.

Using the easily checked formula (see [41, 1.3.6])

(7) c(tj) =
j∑
i=0

1
i!

i−1∏
l=0

(tj − tl) δic(t0, . . . , ti),

induction on j and differentiability of c one shows (see [41, 1.3.16.ii]) that

(4) δjc′(t0, . . . , tj) = 1
j + 1

j∑
i=0

δj+1c(t0, . . . , tj , ti),

where δj+1c(t0, . . . , tj , ti) := limt→ti δ
j+1c(t0, . . . , tj , t). The right hand side of 4

is bounded, so c′ is Lipk−2 by induction on k.

( 1 ) ⇒ ( 2 ) For a differentiable function f : R → R and t0 < · · · < tj there exist
si with ti < si < ti+1 such that

(5) δjf(t0, . . . , tj) = δj−1f ′(s0, . . . , sj−1).

In fact, let p be the interpolation polynomial (use 7 to see this, cf. [41, 1.3.7.i])

(6) p(t) :=
j∑
i=0

1
i!

i−1∏
l=0

(t− tl) δif(t0, . . . , ti).

Since f and p agree on all ti, by Rolle’s theorem the first derivatives of f and p
agree on some intermediate points si. So p′ is the interpolation polynomial for
f ′ at these points si. Comparing the coefficient of highest order of p′ and of the
interpolation polynomial 6 for f ′ at the points si 5 follows. (see [41, 1.3.15])

Applying 5 recursively for f = c(k−2), c(k−3), . . . , c shows that δkc is bounded on
bounded sets, and ( 2 ) follows.

( 2 ) ⇒ ( 3 ) is obvious.
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12.5

Let r0, . . . , rk be the unique rational solution of the linear equation
k∑
i=0

ijri =

{
1 for j = 1
0 for j = 0, 2, 3, . . . , k.

Lemma. If f : R2 → R is Lipk for k ≥ 1 and I is a compact interval then there
exists M such that for all t, v ∈ I we have∣∣∣ ∂∂s |0f(t, s) · v −

k∑
i=0

rif(t, iv)
∣∣∣ ≤M |v|k+1.

Proof. We consider first the case 0 /∈ I so that v stays away from 0. For this it
suffices to show that the derivative ∂

∂s |0f(t, s) is locally bounded. If it is unbounded
near some point x∞, there are xn with |xn−x∞| ≤ 1

2n such that ∂
∂s |0f(xn, s) ≥ n·2n.

We apply the general curve lemma 12.2 to the curves cn : R→ R2 given by cn(t) :=
(xn, t

2n ) and to sn := 1
2n in order to obtain a smooth curve c : R→ R2 and scalars

tn → 0 with c(t+ tn) = cn(t) for |t| ≤ sn. Then (f ◦ c)′(tn) = 1
2n

∂
∂s |0f(xn, s) ≥ n,

which contradicts that f is Lip1.

Now we treat the case 0 ∈ I. If the assertion does not hold there are xn, vn ∈
I, such that

∣∣∣ ∂∂s |0f(xn, s) · vn −
∑k
i=0 rif(xn, ivn)

∣∣∣ ≥ n · 2n(k+1)|vn|k+1. We may
assume xn → x∞, and by the case 0 /∈ I we may assume that vn → 0, even with
|xn − x∞| ≤ 1

2n and |vn| ≤ 1
2n . We apply the general curve lemma 12.2 to the

curves cn : R→ R2 given by cn(t) := (xn, t
2n ) and to sn := 1

2n to obtain a smooth
curve c : R → R2 and scalars tn → 0 with c(t + tn) = cn(t) for |t| ≤ sn. Then we
have∣∣∣(f ◦ c)′(tn)2nvn −

k∑
i=0

ri(f ◦ c)(tn + i2nvn)
∣∣∣ =

=
∣∣∣(f ◦ cn)′(0)2nvn −

k∑
i=0

ri(f ◦ cn)(i2nvn)
∣∣∣

=
∣∣∣ 1

2n
∂
∂s |0f(xn, s)2nvn −

k∑
i=0

rif(xn, ivn)
∣∣∣ ≥ n(2n|vn|)k+1.

This contradicts the next claim for g = f ◦ c.

Claim. If g : R → R is Lipk for k ≥ 1 and I is a compact interval then there is
M > 0 such that for t, v ∈ I we have

∣∣∣g′(t) · v −∑k
i=0 rig(t+ iv)

∣∣∣ ≤M |v|k+1.

Consider gt(v) := g′(t) · v−
∑k
i=0 rig(t+ iv). Then the derivatives up to order k at

v = 0 of gt vanish by the choice of the ri. Since g(k) is locally Lipschitzian there
exists an M such that |g(k)

t (v)| ≤ M |v| for all t, v ∈ I, which we may integrate in
turn to obtain |gt(v)| ≤M |v|k+1

(k+1)! .

12.6. Lemma. Let f : R2 → R be Lipk+1. Then t 7→ ∂
∂s |0f(t, s) is Lipk.
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Proof. Suppose that g : t 7→ ∂
∂s |0f(t, s) is not Lipk. Then by lemma 12.4 the

equidistant difference quotient δk+1
eq g is not locally bounded at some point which we

may assume to be 0. Thus there are xn and vn with |xn| ≤ 1/4n and 0 < vn < 1/4n
such that

(1) |δk+1
eq g(xn; vn)| > n · 2n(k+2).

We apply the general curve lemma 12.2 to the curves cn : R → R2 given by
cn(t) := en( t

2n + xn) := ( t
2n + xn − vn, t

2n ) and to sn := k+2
2n in order to obtain a

smooth curve c : R→ R2 and scalars tn → 0 with c(t+ tn) = cn(t) for 0 ≤ t ≤ sn.

Put f0(t, s) :=
∑k
i=0 ri f(t, is) for ri as in 12.5 , put f1(t, s) := g(t)s, finally put

f2 := f1−f0. Then f0 in Lipk+1, so f0◦c is Lipk+1, hence the equidistant difference
quotient δk+2

eq (f0 ◦ c)(xn; 2nvn) is bounded.

By lemma 12.5 there exists M > 0 such that |f2(t, s)| ≤ M |s|k+2 for all t, s ∈
[−(k + 1), k + 1], so we get

|δk+2
eq (f2 ◦ c)(xn; 2nvn)| = |δk+2

eq (f2 ◦ cn)(0; 2nvn)|

= 1
2n(k+2) |δk+2

eq (f2 ◦ en)(xn; vn)|

≤ (k+2)!
2n(k+2)

k+2∑
i=1

|f2((i− 1)vn + xn, ivn)|
|ivn|(k+2)

i(k+2)∏
j 6=i |i− j|

≤ (k+2)!
2n(k+2)

k+2∑
i=1

M
i(k+2)∏
j 6=i |i− j|

.

This is bounded, and so for f1 = f0 + f2 the expression |δk+2
eq (f1 ◦ c)(xn; 2nvn)| is

also bounded, with respect to n. However, on the other hand we get

δk+2
eq (f1 ◦ c)(xn; 2nvn) = δk+2

eq (f1 ◦ cn)(0; 2nvn)

= 1
2n(k+2) δ

k+2
eq (f1 ◦ en)(xn; vn)

= (k+2)!
2n(k+2)

k+2∑
i=0

f1((i− 1)vn + xn, ivn)
v

(k+2)
n

∏
0≤j≤k+2

j 6=i

1
i−j

= (k+2)!
2n(k+2)

k+2∑
i=0

g((i− 1)vn + xn)ivn
v

(k+2)
n

∏
0≤j≤k+2

j 6=i

1
i−j

= (k+2)!
2n(k+2)

k+1∑
l=0

g(lvn + xn)
v

(k+1)
n

∏
0≤j≤k+1

j 6=l

1
l−j

= k+2
2n(k+2) δ

k+1
eq g(xn; vn),

which in absolute value is larger than (k + 2)n by 1 , a contradiction.

12.7. Lemma. Let U ⊆ E be open in a normed space. Then, a mapping f : U → F
into a convenient vector space is Lip0 if and only if f is Lipschitz on compact subsets
K of U , i.e., { f(x)−f(y)

‖x−y‖ : x 6= y ∈ K} is bounded.

A mapping f : U → F into a Banach space is Lip0 if and only if f is locally
Lipschitz, i.e., for each z ∈ U there exists a ball Bz around z such that { f(x)−f(y)

‖x−y‖ :
x 6= y ∈ Bz} is bounded.
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12. Differentiability of Finite Order 12.9

Proof. (⇒) If F is Banach and f is Lip0 but not locally Lipschitz near z ∈ U ,
there are points xn 6= yn in U with ‖xn−z‖ ≤ 1/4n and ‖yn−z‖ ≤ 1/4n, such that
‖f(yn)− f(xn)‖ ≥ n · 2n · ‖yn−xn‖. Now we apply the general curve lemma 12.2
with sn := 2n · ‖yn− xn‖ and cn(t) := xn− z+ t yn−xn

2n‖yn−xn‖ to get a smooth curve c
with c(t+ tn)− z = cn(t) for 0 ≤ t ≤ sn. Then 1

sn
‖(f ◦ c)(tn + sn)− (f ◦ c)(tn)‖ =

1
2n·‖yn−xn‖‖f(yn)− f(xn)‖ ≥ n.

If F is convenient, f is Lip0 but not Lipschitz on a compact K, there exist ` ∈ F ′
such that ` ◦ f is not Lipschitz on K. By the first part of the proof, ` ◦ f is locally
Lipschitz, a contradiction.

(⇐) This is obvious, since the composition of Lipschitz mappings is again Lipschitz.

12.8. Theorem. Let f : E ⊇ U → F be a mapping, where E and F are convenient
vector spaces, and U ⊆ E is c∞-open. Then the following assertions are equivalent
for each k ≥ 0:

(1) f is Lipk+1.
(2) The directional derivative

(dvf)(x) := ∂
∂t |t=0f(x+ tv)

exists for x ∈ U and v ∈ E and defines a Lipk-mapping U × E → F .

Note that this result gives a different (more algebraic) proof of Boman’s theorem
3.4 and 3.14 .

Proof. ( 1 ) ⇒ ( 2 ) Clearly, t 7→ f(x + tv) is Lipk+1, and so the directional
derivative exists and is the Mackey-limit of the difference quotients, by lemma
1.7 . In order to show that df : (x, v) 7→ dvf(x) is Lipk we take a smooth curve

(x, v) : R→ U ×E and ` ∈ F ′, and we consider g(t, s) := x(t)+s ·v(t), g : R2 → E.
Then ` ◦ f ◦ g : R2 → R is Lipk+1, so by lemma 12.6 the curve

t 7→ `(df(x(t), v(t))) = `
(
∂
∂s |0f(g(t, s))

)
= ∂

∂s |0`(f(g(t, s)))

is of class Lipk.

( 2 ) ⇒ ( 1 ) If c ∈ C∞(R, U) then

f(c(t))− f(c(0))
t

− df(c(0), c′(0)) =

=
∫ 1

0

(
df
(
c(0) + s(c(t)− c(0)), c(t)−c(0)

t

)
− df

(
c(0), c′(0)

))
︸ ︷︷ ︸

=:g(t,s)

ds

converges to 0 for t→ 0: In fact, g is Lipk, thus by lemma 12.7 g is locally Lips-
chitz, so the set of all g(t1,s)−g(t2,s)

t1−t2 is locally bounded, and finally t 7→
∫ 1

0 g(t, s)ds
is locally Lipschitz and 0 at t = 0. Thus, f ◦ c is differentiable with derivative
(f ◦ c)′(0) = df(c(0), c′(0)).

Since df is Lipk and (c, c′) is smooth we get that (f ◦ c)′ is Lipk, hence f ◦ c is
Lipk+1.

12.9. Corollary. Chain rule. The composition of Lipk-mappings is again Lipk,
and the usual formula for the derivative of the composite holds.
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12.11 12. Differentiability of Finite Order

Proof. We have to compose f ◦ g with a smooth curve c, but then g ◦ c is a Lipk-
curve, thus it is sufficient to show that the composition of a Lipk curve c : R→ U ⊆
E with a Lipk-mapping f : U → F is again Lipk, and that (f◦c)′(t) = df(c(t), c′(t)).

This follows by induction on k for k ≥ 1 by the proof of theorem 12.8 ( 2 ⇒ 1 ),
where it is enough to assume c to be Lipk+1.

12.10. Definition and Proposition. Let F be a convenient vector space. The
space Lipk(R, F ) of all Lipk-curves in F is again a convenient vector space with
the following equivalent structures:

(1) The initial structure with respect to the k + 2 linear mappings (for 0 ≤ j ≤
k+ 1) c 7→ δjc from Lipk(R, F ) into the space of all F -valued maps in j + 1
pairwise different real variables (t0, . . . , tj) which are bounded on bounded
subsets, with the c∞-complete locally convex topology of uniform convergence
on bounded subsets. In fact, the mappings δ0 and δk+1 are sufficient.

(2) The initial structure with respect to the k + 2 linear mappings (for 0 ≤ j ≤
k+1) c 7→ δjeqc from Lipk(R, F ) into the space of all maps from R×(R\{0})
into F which are bounded on bounded subsets, with the c∞-complete locally
convex topology of uniform convergence on bounded subsets. In fact, the
mappings δ0

eq and δk+1
eq are sufficient.

(3) The initial structure with respect to the derivatives of order j ≤ k considered
as linear mappings into the space of Lip0-curves, with the locally convex
topology of uniform convergence of the curve on bounded subsets of R and
of the difference quotient on bounded subsets of {(t, s) ∈ R2 : t 6= s}.

The convenient vector space Lipk(R, F ) satisfies the uniform boundedness principle
with respect to the point evaluations.

Proof. All three structures describe closed embeddings into finite products of
spaces, which in ( 1 ) and ( 2 ) are obviously c∞-complete. For ( 3 ) this follows,
since by ( 1 ) the structure on Lip0(R, E) is convenient.

All structures satisfy the uniform boundedness principle for the point evaluations
by 5.25 , and since spaces of all bounded mappings on some (bounded) set satisfy
this principle. This can be seen by composing with `∗ for all ` ∈ E′, since Banach
spaces do this by 5.24 .

By applying this uniform boundedness principle one sees that all these structures
are indeed equivalent.

12.11. Definition and Proposition. Let E and F be convenient vector spaces
and U ⊆ E be c∞-open. The space Lipk(U,F ) of all Lipk-mappings from U to F
is again a convenient vector space with the following equivalent structures:

(1) The initial structure with respect to the linear mappings c∗ : Lipk(U,F ) →
Lipk(R, F ) for all c ∈ C∞(R, F ).

(2) The initial structure with respect to the linear mappings c∗ : Lipk(U,F ) →
Lipk(R, F ) for all c ∈ Lipk(R, F ).

This space satisfies the uniform boundedness principle with respect to the evaluations
evx : Lipk(U,F )→ F for all x ∈ U .
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Proof. The structure ( 1 ) is convenient since by 12.1 it is a closed subspace
of the product space which is convenient by 12.10 . The structure in ( 2 ) is
convenient since it is closed by 12.9 . The uniform boundedness principle for the
point evaluations now follows from 5.25 and 12.10 , and this in turn gives us the
equivalence of the two structures.

12.12. Remark

We want to call the attention of the reader to the fact that there is no gen-
eral exponential law for Lipk-mappings. In fact, if f ∈ Lipk(R,Lipk(R, F )) then
( ∂∂t )

p( ∂∂s )qf∧(t, s) exists if max(p, q) ≤ k. This describes a smaller space than
Lipk(R2, F ), which is not invariantly describable.

However, some partial results still hold, namely for convenient vector spaces E, F ,
and G, and for c∞-open sets U ⊆ E, V ⊆ F we have

Lipk(U,L(F,G)) ∼= L(F,Lipk(U,G)),

Lipk(U,Lipl(V,G)) ∼= Lipl(V,Lipk(U,G)),

see [41, 4.4.5,4.5.1,4.5.2]. For a mapping f : U × F → G which is linear in F we
have: f ∈ Lipk(U ×F,G) if and only if f∨ ∈ Lipk(U,L(E,F )), see [41, 4.3.5]. The
last property fails if we weaken Lipschitz to continuous, see the following example.

12.13. Smolyanov’s Example

Let f : `2 → R be defined by f :=
∑
k≥1

1
k2 fk, where fk(x) := ϕ(k(kxk − 1)) ·∏

j<k ϕ(jxj) and ϕ : R → [0, 1] is smooth with ϕ(0) = 1 and ϕ(t) = 0 for |t| ≥ 1
4 .

We shall show that

(1) f : `2 → R is Fréchet differentiable.
(2) f ′ : `2 → (`2)′ is not continuous.
(3) f ′ : `2 × `2 → R is continuous.

Proof. Let A := {x ∈ `2 : |kxk| ≤ 1
4 for all k}. This is a closed subset of `2.

( 1 ) Remark that for x ∈ `2 at most one fk(x) can be unequal to 0. In fact
fk(x) 6= 0 implies that |kxk − 1| ≤ 1

4k ≤
1
4 , and hence kxk ≥ 3

4 and thus fj(x) = 0
for j > k.

For x /∈ A there exists a k > 0 with |kxk| > 1
4 and the set of points satisfying this

condition is open. It follows that ϕ(kxk) = 0 and hence f =
∑
j≤k

1
j2 fj is smooth

on this open set.

On the other hand let x ∈ A. Then |kxk−1| ≥ 3
4 >

1
4 and hence ϕ(k(kxk−1)) = 0

for all k and thus f(x) = 0. Let v ∈ `2 be such that f(x+v) 6= 0. Then there exists
a unique k such that fk(x + v) 6= 0 and therefore |j(xj + vj)| < 1

4 for j < k and
|k(xk+vk)−1| < 1

4k ≤
1
4 . Since |kxk| ≤ 1

4 we conclude |kvk| ≥ 1−|k(xk+vk)−1|−
|kxk| ≥ 1− 1

4 −
1
4 = 1

2 . Hence |f(x+ v)| = 1
k2 |fk(x+ v)| ≤ 1

k2 ≤ (2|vk|)2 ≤ 4‖v‖2.
Thus ‖f(x+v)−0−0‖

‖v‖ ≤ 4‖v‖ → 0 for ‖v‖ → 0, i.e. f is Fréchet differentiable at x
with derivative 0.
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12.13 12. Differentiability of Finite Order

( 2 ) If fact take a ∈ R with ϕ′(a) 6= 0. Then f ′(t ek)(ek) = d
dt

1
k2 fk(t ek) =

d
dt

1
k2ϕ(k2 t− k) = ϕ′(k (k t− 1)) = ϕ′(a) if t = tk := 1

k

(
a
k + 1

)
, which goes to 0 for

k →∞. However f ′(0)(ek) = 0 since 0 ∈ A.

( 3 ) We have to show that f ′(xn)(vn)→ f ′(x)(v) for (xn, vn)→ (x, v). For x /∈ A
this is obviously satisfied, since then there exists a k with |kxk| > 1

4 and hence
f =

∑
j≤k

1
j2 fj locally around x.

If x ∈ A then f ′(x) = 0 and thus it remains to consider the case, where xn /∈ A.
Let ε > 0 be given. Locally around xn at most one summand fk does not vanish:
If xn /∈ A then there is some k with |kxk| > 1/4 which we may choose minimal.
Thus |jxj | ≤ 1/4 for all j < k, so |j(jxj −1)| ≥ 3j/4 and hence fj = 0 locally since
the first factor vanishes. For j > k we get fj = 0 locally since the second factor
vanishes. Thus we can evaluate the derivative:

|f ′(xn)(vn)| =
∣∣∣ 1
k2 f

′
k(xn)(vn)

∣∣∣ ≤ ‖ϕ′‖∞
k2

(
k2|vnk |+

∑
j<k

j|vnj |
)
.

Since v ∈ `2 we find a K1 such that (
∑
j≥K1

|vj |2)1/2 ≤ ε
2‖ϕ′‖∞ . Thus we conclude

from ‖vn−v‖2 → 0 that |vnj | ≤ ε
‖ϕ′‖∞ for j ≥ K1 and large n. For the finitely many

small n we can increase K1 such that for these n and j ≥ K1 also |vnj | ≤ ε
‖ϕ′‖∞ .

Furthermore there is a constant K2 ≥ 1 such that ‖vn‖∞ ≤ ‖vn‖2 ≤ K2 for all n.
Now choose N ≥ K1 so large that N2 ≥ 1

ε‖ϕ
′‖∞K2K

2
1 . Obviously

∑
n<N

1
n2 fn is

smooth. So it remains to consider those n for which the non-vanishing term has
index k ≥ N . For those terms we have

|f ′(xn)(vn)| =
∣∣∣ 1
k2 f

′
k(xn)(vn)

∣∣∣ ≤ ‖ϕ′‖∞(|vnk |+ 1
k2

∑
j<k

j|vnj |
)

≤ |vnk |‖ϕ′‖∞ + ‖ϕ′‖∞
1
k2

∑
j<K1

j|vnj |+
1
k2

∑
K1≤j<k

j|vnj | ‖ϕ′‖∞

≤ ε+ ‖ϕ′‖∞
K2

1
N2 ‖v

n‖∞ + 1
k2

∑
K1≤j<k

j ε ≤ ε+ ε+ ε = 3ε

This shows the continuity.

144 Andreas Kriegl , Univ.Wien, June 30, 2017



12. Differentiability of Finite Order 13.1

13. Differentiability of Seminorms

A desired separation property is that the smooth functions generate the topology.
Since a locally convex topology is generated by the continuous seminorms it is
natural to look for smooth seminorms. Note that every seminorm p : E → R on a
vector space E factors over Ep := E/ ker p and gives a norm on this space. Hence, it
can be extended to a norm p̃ : Ẽp → R on the completion Ẽp of the space Ep which
is normed by this factorization. If E is a locally convex space and p is continuous,
then the canonical quotient mapping E → Ep is continuous. Thus, smoothness of
p̃ off 0 implies smoothness of p on its carrier, and so the case where E is a Banach
space is of central importance.

Obviously, every seminorm is a convex function, and hence we can generalize our
treatment slightly by considering convex functions instead. The question of their
differentiability properties is exactly the topic of this section.

Note that since the smooth functions depend only on the bornology and not on
the locally convex topology the same is true for the initial topology induced by all
smooth functions. Hence, it is appropriate to make the following

Convention. In this chapter the locally convex topology on all convenient vector
spaces is assumed to be the bornological one.

13.1. Remark. It can be easily seen that for a function f : E → R on a vector
space E the following statements are equivalent (see for example [41, p. 199]):

1. The function f is convex,
i.e. f(

∑n
i=1 λi xi) ≤

∑n
i=1 λi f(xi) for λi ≥ 0 with

∑n
i=1 λi = 1;

2. The set Uf := {(x, t) ∈ E × R : f(x) < t} is convex;
3. The set Af := {(x, t) ∈ E × R : f(x) ≤ t} is convex.

Proof. (1⇒2) Let (xi, ti) ∈ Uf and consider (x, t) :=
∑
i ri(xi, ti) with ri ≥ 0 and∑

i ri = 1. Then

f(x) = f
(∑

i

ri xi

)
≤
∑
i

ri f(xi) <
∑
i

ri ti = t,

so (x, f) ∈ Uf .

(2 ⇒3) Let (xi, ti) ∈ Af and ri ≥ 0 with
∑
i ri = 1. For every ε > 0 we have

(xi, ti + ε) ∈ Uf , hence

(0, ε) +
∑
i

ri(xi, ti) =
∑

ri(xi, t+ i+ ε) ∈ Uf ⊆ Af ,

so
∑
i ri(xi, ti) ∈ Af .

(3 ⇒1) Let xi ∈ E and ri ≥ 0 with
∑
i ri = 1. Then (xi, f(xi)) ∈ Af and hence∑

i ri(xi, f(xi)) ∈ Af , i.e. f
(∑

i ri xi

)
≤
∑
i ri f(xi).

Moreover, for any translation invariant topology on E (and hence in particular for
the locally convex topology or the c∞-topology on a convenient vector space) and
any convex function f : E → R the following statements are equivalent:

1. The function f is continuous;
2. The set Uf is open in E × R;
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3. The set f<t := {x ∈ E : f(x) < t} is open in E for all t ∈ R, i.e. f is upper
semi-continuous.

Proof. (1 ⇒2) Let f be continuous. Then f × R is continuous and hence Uf =
(f × R)−1({(t, s) ∈ R2 : t < s}) is open.

(2 ⇒3) {x : f(x) < t} = incl−1
t (Uf ) is open, since inclt : E → E × R, x 7→ (x, t) is

continuous.

(3⇒1) We have to show that f−1({t : r < t < s}) = {x : f(x) < s}∩{x : f(x) > r}
is open. So let V := {x : f(x) > r}. Then V =

⋃
x(2x−{y ∈ E : f(y) < 2 f(x)−r}),

since x with f(x) > r can be written as x = 2x − x and f(x) < 2 f(x) − r and
conversely, for y with f(y) < 2 f(x)− r and z = 2x− y we have

f(z) + f(y) ≥ 2 f
(
z + y

2

)
= 2 f(x) > f(y) + r,

so z ∈ V .

Moreover the following statements are equivalent:

1. The function f is lower semicontinuous, i.e. the set f>t := {x ∈ E : f(x) > t}
is open in E for all t ∈ R;

2. The set Af is closed in E × R.

Proof. (⇓) Let (x0, t0) /∈ Af , i.e. f(x0) > t0. Let t0 < δ < f(x0) then {(x, t) :
f(x) > δ, t < δ} is an open neighborhood of (x0, t0) contained in E × R \Af .

(⇑) f>t = incl−1
t (E × R \Af ).

13.2. Result. Convex Lipschitz functions. Let f : E → R be a convex function
on a convenient vector space E. Then the following statements are equivalent:

(1) It is Lip0;
(2) It is continuous for the bornological locally convex topology;
(3) It is continuous for the c∞-topology;
(4) It is bounded on Mackey converging sequences;

If f is a seminorm, then these further are equivalent to

(5) It is bounded on bounded sets.

If E is normed this further is equivalent to

(6) It is locally bounded.

The proof is due to [4] for Banach spaces and [41, p. 200], for convenient vector
spaces.

13.3. Basic definitions. Let f : E ⊇ U → F be a mapping defined on a c∞-open
subset of a convenient vector space E with values in another one F . Let x ∈ U
and v ∈ E. Then the (one sided) directional derivative of f at x in direction v is
defined as

f ′(x)(v) = dvf(x) := lim
t↘0

f(x+ t v)− f(x)
t

.

Obviously, if f ′(x)(v) exists, then so does f ′(x)(s v) for s > 0 and equals s f ′(x)(v).
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Even if f ′(x)(v) exists for all v ∈ E the mapping v 7→ f ′(x)(v) may not be linear
in general, and if it is linear it will not be bounded in general. Hence, f is called
Gâteaux-differentiable at x, if the directional derivatives f ′(x)(v) exist for all v ∈ E
and v 7→ f ′(x)(v) is a bounded linear mapping from E → F .

Even for Gâteaux-differentiable mappings the difference quotient f(x+t v)−f(x)
t need

not converge uniformly for v in bounded sets (or even in compact sets). Hence, one
defines f to be Fréchet-differentiable at x if f is Gâteaux-differentiable at x and
f(x+t v)−f(x)

t − f ′(x)(v) → 0 uniformly for v in any bounded set. For a Banach
space E this is equivalent to the existence of a bounded linear mapping denoted
f ′(x) : E → F such that

lim
v→0

f(x+ v)− f(x)− f ′(x)(v)
‖v‖

= 0.

If f : E ⊇ U → F is Gâteaux-differentiable and the derivative f ′ : E ⊇ U →
L(E,F ) is continuous, then f is Fréchet-differentiable, and we will call such a
function C1. In fact, the fundamental theorem applied to t 7→ f(x+ t v) gives us

f(x+ v)− f(x) =
∫ 1

0
f ′(x+ t v)(v) dt,

and hence
f(x+ s v)− f(x)

s
− f ′(x)(v) =

∫ 1

0

(
f ′(x+ t s v)− f ′(x)

)
(v) dt→ 0,

which converges to 0 for s → 0 uniformly for v in any bounded set, since f ′(x +
t s v)→ f ′(x) uniformly on bounded sets for s→ 0 and uniformly for t ∈ [0, 1] and
v in any bounded set, since f ′ is assumed to be continuous.

Recall furthermore that a mapping f : E ⊇ U → F on a Banach space E is called
Lipschitz if {f(x1)− f(x2)

‖x1 − x2‖
: x1, x2 ∈ U, x1 6= x2

}
is bounded in F.

It is called Hölder of order 0 < α ≤ 1 if{f(x1)− f(x2)
‖x1 − x2‖α

: x1, x2 ∈ U, x1 6= x2

}
is bounded in F.

13.4. Lemma. Gâteaux-differentiability of convex functions. Every convex
function q : E → R has one sided directional derivatives. The derivative q′(x)
is sublinear and locally bounded (or continuous at 0) if q is locally bounded (or
continuous). In particular, such a locally bounded function is Gâteaux-differentiable
at x if and only if q′(x) is an odd function, i.e. q′(x)(−v) = −q′(x)(v).

If E is not normed, then locally bounded-ness should mean bounded on bornologi-
cally compact sets.

Proof. For 0 < t < t′ we have by convexity that

q(x+ t v) = q
(

(1− t
t′ )x+ t

t′ (x+ t′ v)
)
≤ (1− t

t′ ) q(x) + t
t′ q(x+ t′v).

Hence q(x+t v)−q(x)
t ≤ q(x+t′ v)−q(x)

t′ . Thus, the difference quotient is monotone
falling for t↘ 0. It is also bounded from below, since for t′ < 0 < t we have

q(x) = q
(

t
t−t′ (x+ t′ v) + (1− t

t−t′ ) (x+ t v)
)

≤ t
t−t′ q(x+ t′ v) + (1− t

t−t′ ) q(x+ t v),
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and hence q(x+t′ v)−q(x)
t′ ≤ q(x+t v)−q(x)

t . Thus, the one sided derivative

q′(x)(v) := lim
t↘0

q(x+ t v)− q(x)
t

exists.

As a derivative q′(x) automatically satisfies q′(x)(t v) = t q′(x)(v) for all t ≥ 0. The
derivative q′(x) is convex as limit of the convex functions v 7→ q(x+tv)−q(x)

t . Hence
it is sublinear.

The convexity of q implies that
q(x)− q(x− v) ≤ q′(x)(v) ≤ q(x+ v)− q(x).

Therefore, the local boundedness of q at x implies that of q′(x) at 0. Let ` := f ′(x),
then subadditivity and odd-ness implies `(a) ≤ `(a + b) + `(−b) = `(a + b) − `(b)
and hence the converse triangle inequality.

Remark. If q is a seminorm, then q(x+tv)−q(x)
t ≤ q(x)+t q(v)−q(x)

t = q(v), hence
q′(x)(v) ≤ q(v), and furthermore q′(x)(x) = limt↘0

q(x+t x)−q(x)
t = limt↘0 q(x) =

q(x). Hence we have
‖q′(x)‖ := sup{|q′(x)(v)| : q(v) ≤ 1} = sup{q′(x)(v) : q(v) ≤ 1} = 1.

Convention. Let q 6= 0 be a seminorm and let q(x) = 0. Then there exists a
v ∈ E with q(v) 6= 0, and we have q(x+ tv) = |t| q(v), hence q′(x)(±v) = q(v). So q
is not Gâteaux differentiable at x. Therefore, we call a seminorm smooth for some
differentiability class, if and only if it is smooth on its carrier {x : q(x) > 0}.

13.5

Differentiability properties of convex functions f can be translated in geometric
properties of Af :

Lemma. Differentiability of convex functions. Let f : E → R be a contin-
uous convex function on a Banach space E, and let x0 ∈ E. Then the following
statements are equivalent:

(1) The function f is Gâteaux differentiable at x0;
(2) There exists a unique ` ∈ E′ with

`(v) ≤ f(x0 + v)− f(x0) for all v ∈ E;

(3) There exists a unique affine hyperplane tangent to Af through (x0, f(x0)).
(4) The Minkowski functional of (some translate of) Af is Gâteaux differentiable

at (x0, f(x0)).

Moreover, for a sublinear function f and f(x0) 6= 0 the following statements are
equivalent:

(5) The function f is Gâteaux (Fréchet) differentiable at x0;
(6) The point x0 (strongly) exposes the polar of the set {x : f(x) ≤ 1}.

In particular, the following statements are equivalent for a convex function f :

(7) The function f is Gâteaux (Fréchet) differentiable at x0;
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(8) The Minkowski functional of (some translate of) Af is Gâteaux (Fréchet)
differentiable at the point (x0, f(x0));

(9) The point (x0, f(x0)) (strongly) exposes the polar of some translate of Af .

An element x∗ ∈ E∗ is said to expose a subset K ⊆ E if there exists a unique
point k0 ∈ K with x∗(k0) = sup{x∗(k) : k ∈ K}, i.e. x∗ takes it supremum on K
on a unique point k0. It is said to strongly expose K, if satisfies in addition that
x∗(xn)→ x∗(k0) implies xn → k0.

By an affine hyperplane H tangent to a convex set K at a point x ∈ K we mean
that x ∈ H and K lies on one side of H.

Proof. Let f be a convex function. By the proof of 13.4 we have f ′(x0)(v) ≤
f(x0 + v) − f(x0). For any ` ∈ E′ with `(v) ≤ f(x0 + v) − f(x0) for all v ∈ E we
have `(v) = 1

t `(tv) ≤ f(x0+t v)−f(x0)
t for all t > 0, and hence ` ≤ f ′(x0).

( 1 ) ⇒ ( 2 ) Let f be continuous and Gâteaux-differentiable at x0, so f ′(x0) is
linear (and continous) and thus minimal among all sub-linear mappings. By what
we said before f ′(x0) is the unique linear functional satisfying (2).

( 2 ) ⇒ ( 1 ) By what we said before the unique ` in (2) satisfied ` ≤ f ′(x0).
So f ′(x0) − ` ≥ 0. If this is not identical zero, then there exists a µ ∈ E∗ with
0 6= µ ≤ f ′(x0)− ` by Hahn-Banach. Thus `+ µ satisfies (2) also, a contradiction
to the uniqueness of `.

( 2 ) ⇔ ( 3 ) Any hyperplane tangent to Af at (x0, f(x0)) is described by a func-
tional 0 6= (`, s) ∈ E′ × R such that `(x) + s t ≥ `(x0) + s f(x0) for all t ≥ f(x).
Note that the scalar s cannot be 0, since this would imply that `(x) ≥ `(x0) for
all x. It has to be positive, since otherwise the left side would go to −∞ for
f(x) ≤ t→ +∞. Without loss of generality we may thus assume that s = 1, so the
hyperplane uniquely determines the linear functional ` with `(x−x0) ≥ f(x0)−f(x)
for all x or, by replacing ` by −` and x by x0 + v, we have a unique ` with
`(v) ≤ f(x0 + v)− f(x0) for all v ∈ E.

( 3 ) ⇔ ( 4 ) A sublinear functional p ≥ 0 is Gâteaux-differentiable at x0 with
p(x0) 6= 0 if and only if there is a unique affine hyperplane tangent to {x : p(x) ≤
p(x0)} at x0:
By ( 1 ) ⇔ ( 2 ) p is differentiable at x0 iff there exists a unique ` ∈ E′ with
`(v) ≤ p(x0 + v) − p(x0) for all v, or, equivalently, `(x − x0) ≤ p(x) − p(x0) for
all x. Thus `(x) ≤ `(x0) for all p(x) ≤ p(x0). Conversely let 0 6= ` ∈ E′ satisfy
this condition and x be arbitary. Since {x : p(x) ≤ p(x0)} is absorbing, `(x0) > 0
and we may replace ` by p(x0)

`(x0) `. If p(x) = 0 then p(r x) = 0 ≤ p(x0) for all r
and hence `(r x) ≤ `(x0) for all r, i.e. `(x) = 0 and hence `(x − x0) = −`(x0) =
−p(x0) = p(x) − p(x0). Otherwise we may consider x′ := p(x0)

p(x) x which satisfies
p(x′) = p(x0) and hence `(x0) ≥ `(x′) = p(x0)

p(x) `(x) so `(x − x0) = `(x) − `(x0) ≤
(p(x)− p(x0)) `(x0)

p(x0) = p(x)− p(x0).

We translate Af such that it becomes absorbing (e.g. by −(0, f(0) + 1)). The
sublinear Minkowski functional p of this translated set Af is by what we just
showed Gâteaux-differentiable at (x0, f(x0)) with p(x0, f(x0)) = 1 iff there exists
a unique affine hyperplane tangent to {(x, t) : p(x, t) ≤ p(x0, f(x0))} = f(x0)Af in
(x0, f(x0)), since Af is closed. Since f(x0) 6= 0 this is equivalent with ( 3 ).
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( 5 ) ⇔ ( 6 ) We show this for Gâteaux-differentiability. We have to show that
there is a unique tangent hyperplane to x0 ∈ K := {x : f(x) ≤ 1} if and only if
x0 exposes Ko := {` ∈ E∗ : `(x) ≤ 1 for all x ∈ K}. Let us assume 0 ∈ K and
0 6= x0 ∈ ∂K. Then a tangent hyperplane to K at x0 is uniquely determined by
a linear functional ` ∈ E∗ with `(x0) = 1 and `(x) ≤ 1 for all x ∈ K. This is
equivalent to ` ∈ Ko and `(x0) = 1, since by Hahn-Banach there exists an ` ∈ Ko

with `(x0) = 1. From this the result follows.

This shows also ( 7 ) ⇔ ( 8 ) ⇔ ( 9 ) for Gâteaux-differentiability, since {(x, t) :
pAf (x, t) ≤ 1} = Af .

In order to show the statements for Fréchet-differentiability one has to show that
` = f ′(x) is a Fréchet derivative if and only if x0 is a strongly exposing point. This
is left to the reader, see also 13.19 for a more general result.

13.6. Lemma. Duality for convex functions. The Legendre-Fenchel
transform. [100].
Let 〈 , 〉 : G× F → R be a dual pairing.

(1) For f : F → R ∪ {+∞}, f 6= +∞ one defines the dual function
f∗ : G→ R ∪ {+∞}, f∗(z) := sup{〈z, y〉 − f(y) : y ∈ F}.

(2) The dual function f∗ is convex and lower semi-continuous with respect to
the weak topology. Since a function g is lower semi-continuous if and only
if for all a ∈ R the set {x : g(x) > a} is open, equivalently the convex set
{x : g(x) ≤ a} is closed, this is for convex functions the same for every
topology which is compatible with the duality.

(3) f1 ≤ f2 ⇒ f∗1 ≥ f∗2 .
(4) f∗ ≤ g ⇔ g∗ ≤ f .
(5) f∗∗ = f if and only if f is lower semi-continuous and convex.
(6) Suppose z ∈ G satisfies f(x+ v) ≥ f(x) + 〈z, v〉 for all v (in particular, this

is true if z = f ′(x)). Then f(x) + f∗(z) = 〈z, x〉.
(7) If f1(y) = f(y − a) for all y, then f∗1 (z) = 〈z, a〉+ f∗(z) for all z.
(8) If f1(y) = f(y) + a for all y, then f∗1 (z) = f∗(z)− a for all z.
(9) If f1(y) = f(y) + 〈b, y〉 for all y, then f∗1 (z) = f∗(z − b) for all z.

(10) If E = F = R and f ≥ 0 with f(0) = 0, then f∗(s) = sup{ts− f(t) : t ≥ 0}
for t ≥ 0.

(11) If γ : R→ R+ is convex and γ(t)
t → 0, then γ∗(t) > 0 for t > 0.

(12) Let (F,G) be a Banach space and its dual. If γ ≥ 0 is convex and γ(0) = 0,
and f(y) := γ(‖y‖), then f∗(z) = γ∗(‖z‖).

(13) A convex function f on a Banach space is Fréchet differentiable at a with
derivative b := f ′(a) if and only if there exists a convex non-negative function
γ, with γ(0) = 0 and limt→0

γ(t)
t = 0, such that

f(a+ h) ≤ f(a) + 〈b, h〉+ γ(‖h‖).

Proof. ( 1 ) Since f 6= +∞, there is some y for which 〈z, y〉 − f(y) is finite, hence
f∗(z) > −∞.

( 2 ) The function z 7→ 〈z, y〉 − f(y) is continuous and linear, and hence the
supremum f∗(z) is lower semi-continuous and convex. One would like to show
that f∗ is not constant +∞: This is not true. In fact, take f(t) = −t2 then
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f∗(s) = sup{s t − f(t) : t ∈ R} = sup{s t + t2 : t ∈ R} = +∞. More generally,
f∗ 6= +∞ ⇔ f lies above some affine hyperplane, see ( 5 ).

( 3 ) If f1 ≤ f2 then 〈z, y〉 − f1(y) ≥ 〈z, y〉 − f2(y), and hence f∗1 (z) ≥ f∗2 (z).

( 4 ) One has
∀z : f∗(z) ≤ g(z)⇔ ∀z, y : 〈z, y〉 − f(y) ≤ g(z)

⇔ ∀z, y : 〈z, y〉 − g(z) ≤ f(y)
⇔ ∀y : g∗(y) ≤ f(y).

( 5 ) Since (f∗)∗ is convex and lower semi-continuous, this is true for f provided
f = (f∗)∗. Conversely, let g(b) = −a and g(z) = +∞ otherwise. Then g∗(y) =
sup{〈z, y〉 − g(z) : z ∈ G} = 〈b, y〉+ a. Hence, a+ 〈b, 〉 ≤ f ⇔ f∗(b) ≤ −a. If f is
convex and lower semi-continuous, then Af is closed and convex and hence f is the
supremum of all continuous linear functionals a + 〈b, 〉 below it by Hahn-Banach,
and this is exactly the case if f∗(b) ≤ −a. Hence, f∗∗(y) = sup{〈z, y〉 − f∗(z) : z ∈
G} ≥ 〈b, y〉+ a and thus f = f∗∗.

( 6 ) Let f(a + y) ≥ f(a) + 〈b, y〉. Then f∗(b) = sup{〈b, y〉 − f(y) : y ∈ F} =
sup{〈b, a + v〉 − f(a + v) : v ∈ F} ≤ sup{〈b, a〉 + 〈b, v〉 − f(a) − 〈b, v〉 : v ∈ F} =
〈b, a〉 − f(a).

( 7 ) Let f1(y) = f(y − a). Then
f∗1 (z) = sup{〈z, y〉 − f(y − a) : y ∈ F}

= sup{〈z, y + a〉 − f(y) : y ∈ F} = 〈z, a〉+ f∗(z).

( 8 ) Let f1(y) = f(y) + a. Then
f∗1 (z) = sup{〈z, y〉 − f(y)− a : y ∈ F} = f∗(z)− a.

( 9 ) Let f1(y) = f(y) + 〈b, y〉. Then
f∗1 (z) = sup{〈z, y〉 − f(y)− 〈b, y〉 : y ∈ F}

= sup{〈z − b, y〉 − f(y) : y ∈ F} = f∗(z − b).

( 10 ) Let E = F = R and f ≥ 0 with f(0) = 0, and let s ≥ 0. Using that
s t− f(t) ≤ 0 for t ≤ 0 and that s 0− f(0) = 0 we obtain

f∗(s) = sup{s t− f(t) : t ∈ R} = sup{s t− f(t) : t ≥ 0}.

( 11 ) Let γ ≥ 0 with limt↘0
γ(t)
t = 0, and let s > 0. Then there are t with s > γ(t)

t ,
and hence

γ∗(s) = sup{st− γ(t) : t ≥ 0} = sup{t(s− γ(t)
t

) : t ≥ 0} > 0.

( 12 ) Let f(y) = γ(‖y‖). Then
f∗(z) = sup{〈z, y〉 − γ(‖y‖) : y ∈ F}

= sup{t〈z, y〉 − γ(t) : ‖y‖ = 1, t ≥ 0}
= sup{sup{t〈z, y〉 − γ(t) : ‖y‖ = 1}, t ≥ 0}
= sup{t‖z‖ − γ(t) : t ≥ 0}
= γ∗(‖z‖).
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( 13 ) (⇐) If f(a+ h) ≤ f(a) + 〈b, h〉+ γ(‖h‖) for all h, then we have for t > 0
f(a+ t h)− f(a)

t
≤ 〈b, h〉+ γ(t ‖h‖)

t
,

hence f ′(a)(h) ≤ 〈b, h〉. Since h 7→ f ′(a)(h) is sub-linear and the linear functionals
are minimal among the sublinear ones, we have equality. By convexity we have

f(a+ t h)− f(a)
t

≥ 〈b, h〉 = f ′(a)(h).

So f is Fréchet-differentiable at a with derivative f ′(a)(h) = 〈b, h〉, since the re-
mainder is bounded by γ(‖h‖) which satisfies γ(‖h‖)

‖h‖ → 0 for ‖h‖ → 0.

(⇒) Assume that f is Fréchet-differentiable at a with derivative b. Then
|f(a+ h)− f(a)− 〈b, h〉|

‖h‖
→ 0 for h→ 0,

and by convexity
g(h) := f(a+ h)− f(a)− 〈b, h〉 ≥ 0.

Let γ(t) := sup{g(u) : ‖u‖ = |t|}. Since g is convex γ is convex, and obviously
γ(t) ∈ [0,+∞], γ(0) = 0 and γ(t)

t → 0 for t→ 0. This is the required function.

13.7. Proposition. Continuity of the Fréchet derivative. [5]. The differen-
tial f ′ of any continuous convex function f on a Banach space is continuous on the
set of all points where f is Fréchet differentiable. In general, it is however neither
uniformly continuous nor bounded, see 15.8 .

Proof. Let f ′(x)(h) denote the one sided derivative. From convexity we conclude
that f(x + v) ≥ f(x) + f ′(x)(v). Suppose xn → x are points where f is Fréchet
differentiable. Then we obtain f ′(xn)(v) ≤ f(xn + v)− f(xn) which is bounded in
n. Hence, the f ′(xn) form a bounded sequence. We get
f(x) ≥ 〈f ′(xn), x〉 − f∗(f ′(xn)) since f(y) + f∗(z) ≥ 〈z, y〉

= 〈f ′(xn), x〉+ f(xn)− 〈f ′(xn), xn〉 since f∗(f ′(z)) + f(z) = f ′(z)(z)
≥ 〈f ′(xn), x− xn〉+ f(x) + 〈f ′(x), xn − x〉 since f(x+ h) ≥ f(x) + f ′(x)(h)
= 〈f ′(xn)− f ′(x), x− xn〉+ f(x).

Since xn → x and f ′(xn) is bounded, both sides converge to f(x), hence
lim
n→∞

〈f ′(xn), x〉 − f∗(f ′(xn)) = f(x).

Since f is convex and Fréchet-differentiable at a := x with derivative b := f ′(x),
there exists by 13.6.13 a γ with

f(h) ≤ f(a) + 〈b, h− a〉+ γ(‖h− a‖).

By duality we obtain using 13.6.3
f∗(z) ≥ 〈z, a〉 − f(a) + γ∗(‖z − b‖).

If we apply this to z := f ′(xn) we obtain
f∗(f ′(xn)) ≥ 〈f ′(xn), x〉 − f(x) + γ∗(‖f ′(xn)− f ′(x)‖).

Hence
γ∗(‖f ′(xn)− f ′(x)‖) ≤ f∗(f ′(xn))− 〈f ′(xn), x〉+ f(x),

and since the right side converges to 0, we have that γ∗(‖f ′(xn) − f ′(x)‖) → 0.
Then ‖f ′(xn)− f ′(x)‖ → 0 where we use that γ is convex, γ(0) = 0, and γ(t) > 0
for t > 0, thus γ is strictly monotone increasing.
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13.8. Asplund spaces and generic Fréchet differentiability

From 13.4 it follows easily that a convex function f : R→ R is differentiable at all
except countably many points. This has been generalized by [106] to: Every Lips-
chitz mapping from an open subset of Rn to R is differentiable almost everywhere.
Recall that a locally bounded convex function is locally Lipschitz, see 13.2 .

Proposition. For a Banach space E the following statements are equivalent:

(1) Every continuous convex function f : E → R is Fréchet-differentiable on a
dense Gδ-subset of E;

(2) Every continuous convex function f : E → R is Fréchet-differentiable on a
dense subset of E;

(3) Every locally Lipschitz function f : E → R is Fréchet-differentiable on a
dense subset of E;

(4) Every equivalent norm is Fréchet-differentiable at least at one point;
(5) E has no equivalent rough norm;
(6) Every (closed) separable subspace has a separable dual;
(7) The dual E∗ has the Radon-Nikodym property;
(8) Every linear mapping E → L1(X,Ω, µ) which is integral is nuclear;
(9) Every closed convex bounded subset of E∗ is the closed convex hull of its

extremal points;
(10) Every bounded subset of E∗ is dentable.

A Banach space satisfying these equivalent conditions is called Asplund space.
Every Banach space with a Fréchet differentiable bump function is Asplund, [31, p.
203]. It is an open question whether the converse is true.
Every WCG-Banach-space (i.e. a Banach space for which a weakly compact subset
K exists, whose linear hull is the whole space) is Asplund, [55].
The Asplund property is inherited by subspaces, quotients, and short exact se-
quences, [118].

About the proof. ( 1 ⇔ 2 ) [5]: If a convex function is Fréchet differentiable on
a dense subset then it is so on a dense Gδ-subset, i.e. a dense countable intersection
of open subsets.

( 2 ) is in fact a local property, since in [19] it is mentioned that for a Lipschitz
function f : E → R with Lipschitz constant L defined on a convex open set U the
function

f̃(x) := inf{f(y) + L‖x− y‖ : y ∈ U}
is a Lipschitz extension with constant L, and it is convex if f is.

( 2 ) ⇒ ( 3 ) is due to [105], Every locally Lipschitz function on an Asplund space
is Fréchet differentiable at points of a dense subset.

( 3 ) ⇒ ( 2 ) follows from the fact that continuous convex functions are locally
Lipschitz, see 13.2 .

( 2 ) ⇔ ( 4 ) is mentioned in [105] without any proof or reference.

( 2 ) ⇔ ( 10 ) is due to [116]. A subset D of a Banach space is called dentable, if
and only if for every ε > 0 there exists an x ∈ D such that x is not in the closed
convex hull of {y ∈ D : ‖y − x‖ ≥ ε}.
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( 2 ) ⇔ ( 5 ) is due to [56]. A norm p is called rough, see also 13.23 , if and only
if there exists an ε > 0 such that arbitrary close to each x ∈ X there are points
xi and u with ‖u‖ = 1 such that |p′(x2)(u) − p′(x1)(u)| ≥ ε. The usual norms on
C[0, 1] and on `1 are rough by 13.12 and 13.13 .
A norm is not rough if and only if the dual ball is w∗-dentable. The unit ball is
dentable if and only if the dual norm is not rough.

( 2 ) ⇔ ( 6 ) is due to [116].

( 2 )⇔ ( 7 ) is due to [117]. A closed bounded convex subsetK of a Banach space E
is said to have the Radon-Nikodym property if for any finite measure space (Ω,Σ, µ)
every µ-continuous countably additive function m : Σ → E of finite variation
with average range {m(S)

µ(S) : S ∈ Σ, µ(S) > 0} contained in K is representable
by a Bochner integrable function, i.e. there exists a Borel-measurable essentially
separably valued function f : Ω→ E with m(S) =

∫
S
f dµ. This function f is then

called the Radon-Nikodym derivative of m. A Banach space is said to have the
Radon-Nikodym property if every closed bounded convex subset has it. See also
[29]. A subset K is a Radon-Nikodym set if and only if every closed convex subset
of K is the closed convex hull of its strongly exposed points.

( 7 ) ⇔ ( 8 ) can be found in [116] and is due to [47]. A linear mapping E → F is
called integral if and only if it has a factorization

E //

��

F // F ∗∗

C(K) // L1(K,µ)

OO

for some Radon-measure µ on a compact space K.
A linear mapping E → F is called nuclear if and only if there are x∗n ∈ E∗ and
yn ∈ F such that

∑
n ‖x∗n‖ ‖yn‖ <∞ and T =

∑
n x
∗
n ⊗ yn.

( 2 ) ⇔ ( 9 ) is due to [118, p.516].

13.10. Lemma. Smoothness of 2n-norm. For n ∈ N the 2n-norm is smooth
on L2n \ {0}.

See also 13.13 .

Proof. Since t 7→ t1/2n is smooth on R+ it is enough to show that x 7→ (‖x‖2n)2n

is smooth. Let p := 2n. Since (x1, . . . , xp) 7→ x1 · · · · · xp is a p-linear contraction
from Lp × . . . × Lp → L1 by the Hölder-inequality (

∑p
i=1

1
p = 1) and

∫
: L1 → R

is a linear contraction the mapping x 7→ (x, . . . , x) 7→
∫
x2n is smooth. Note that

since we have a real Banach space and p = 2n is even we can drop the absolute
value in the formula of the norm.

13.11. Derivative of the 1-norm

Let x ∈ `1 and j ∈ N be such that xj = 0. Let ej be the characteristic function
of {j}. Then ‖x + t ej‖1 = ‖x‖1 + |t| since the supports of x and ej are disjoint.
Hence, the directional derivative of the norm p : v 7→ ‖v‖1 is given by p′(x)(ei) = 1
and p′(x)(−ei) = 1, and p is not differentiable at x. More generally we have:
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Lemma. [91, p.79]. Let Γ be some set, and let p be the 1-norm given by ‖x‖1 =
p(x) :=

∑
γ∈Γ |xγ | for x ∈ `1(Γ). Then p′(x)(h) =

∑
xγ=0 |hγ |+

∑
xγ 6=0 hγ signxγ .

The basic idea behind this result is, that the unit sphere of the 1-norm is a hyper-
octahedra, and the points on the faces are those, for which no coordinate vanishes.

Proof. Without loss of generality we may assume that p(x) = 1 = p(h), since for
r > 0 and s ≥ 0 we have p′(r x)(s h) = d

dt |t=0p(r x+ t s h) = d
dt |t=0r p(x+ t ( srh)) =

r p′(x)( srh) = s p′(x)(h).

We have |xγ + hγ | − |xγ | = ||xγ | + hγ signxγ | − |xγ | ≥ |xγ | + hγ signxγ − |xγ | =
hγ signxγ , and is equal to |hγ | if xγ = 0. Summing up these (in)equalities we
obtain

p(x+ h)− p(x)−
∑
xγ=0

|hγ | −
∑
xγ 6=0

hγ signxγ ≥ 0.

For ε > 0 choose a finite set F ⊂ Γ, such that
∑
γ /∈F |hγ | <

ε
2 . Now choose t so

small that
|xγ |+ t hγ signxγ ≥ 0 for all γ ∈ F with xγ 6= 0.

We claim that
p(x+ t h)− p(x)

t
−
∑
xγ=0

|hγ | −
∑
xγ 6=0

hγ signxγ ≤ ε.

Let first γ be such that xγ = 0. Then |xγ+t hγ |−|xγ |
t = |hγ |, hence these terms cancel

with −
∑
xγ=0 |hγ |.

Let now xγ 6= 0. For |xγ | + t hγ signxγ ≥ 0 (hence in particular for γ ∈ F with
xγ 6= 0) we have

|xγ + t hγ | − |xγ |
t

= |xγ |+ t hγ signxγ − |xγ |
t

= hγ signxγ .

Thus, these terms sum up to the corresponding sum
∑
γ hγ signxγ .

It remains to consider γ with xγ 6= 0 and |xγ |+ t hγ signxγ < 0. Then γ /∈ F and
|xγ + t hγ | − |xγ |

t
− hγ signxγ = −|xγ | − t hγ signxγ − |xγ | − t hγ signxγ

t
≤ −2hγ signxγ ,

and since
∑
γ /∈F |hγ | <

ε
2 these remaining terms sum up to something smaller than

ε.

Remark. The 1-norm is rough. This result shows that the 1-norm is Gâteaux-
differentiable exactly at those points, where all coordinates are non-zero. Thus, if
Γ is uncountable, the 1-norm is nowhere Gâteaux-differentiable.

In contrast to what is claimed in [91, p.79], the 1-norm on `1 is nowhere Fréchet
differentiable. In fact, take 0 6= x ∈ `1(N). For γ with xγ 6= 0 and t > 0 we have
that

p(x+ t (− signxγ eγ))− p(x)− t p′(x)(− signxγ eγ) =
= |xγ − t signxγ | − |xγ |+ t =

∣∣|xγ | − t∣∣− |xγ |+ t ≥ t · 1,

provided t ≥ 2 |xγ |, since then
∣∣|xγ |−t∣∣ = t−|xγ | ≥ |xγ |. Obviously, for every t > 0

there are γ satisfying this required condition; either xγ = 0 then we have a corner,
or xγ 6= 0 then it gets arbitrarily small. Thus, the directional difference quotient
does not converge uniformly on the unit-sphere.
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13.12 13. Differentiability of Seminorms

The set of points x in `1 where at least for one n the coordinate xn vanishes is
dense, and one has

p(x+ t en) = p(x) + |t|, hence p′(x+ t en)(en) =

{
+1 for t ≥ 0
−1 for t < 0

.

Hence the derivative of p is uniformly discontinuous, i.e., in every non-empty open
set there are points x1, x2 for which there exists an h ∈ `1 with ‖h‖ = 1 and
|p′(x1)(h)− p′(x2)(h)| ≥ 2.

13.12. Derivative of the∞-norm. On c0 the norm is not Gâteaux-differentiable
at points x, where the norm is attained in at least two points: In fact, let |x(a)| =
‖x‖ = |x(b)| with a 6= b and let h := signx(a) ea. Then p(x+ th) = |(x+ th)(a)| =
‖x‖+ t for t ≥ 0 and p(x+ th) = |(x+ th)(b)| = ‖x‖ for t ≤ 0. Thus, t 7→ p(x+ th)
is not differentiable at 0 and thus p not at x.

If the norm of x is attained at a single coordinate a, then p is Fréchet differentiable at
x with derivative p′(x) : h 7→ h(a) sign(x(a)): In fact, for |t| ‖h‖ ≤ ‖x‖−sup{|x(t)| :
t 6= a} we have p(x + th) = |(x + th)(a)| = | sign(x(a))‖x‖ + th(a) sign(x(a))2| =
|‖x‖+ th(a) sign(x(a))| = p(x) + th(a) sign(x(a)). Hence the directional difference-
quotient converges uniformly for h in the unit-ball.

Let x ∈ C[0, 1] be such that ‖x‖∞ = |x(a)| = |x(b)| for a 6= b. Choose a y with
y(s) between 0 and x(s) for all s and y(a) = x(a) but y(b) = 0. For t ≥ 0 we have
|(x+ t y)(s)| ≤ (1 + t) ‖x‖∞ = |x(a) + t y(a)| and hence ‖x+ t y‖∞ = (1 + t) ‖x‖∞.
For −1 ≤ t ≤ 0 we have |(x + t y)(s)| ≤ |x(s)| ≤ ‖x‖ and |(x + t y)(b)| = |x(b)| =
‖x‖ and hence ‖x + t y‖∞ = ‖x‖∞. Thus the directional derivative is given by
p′(x)(y) = ‖x‖∞ and p′(x)(−y) = 0. More precisely we have the following results.

Lemma. [8, p. 168]. Let T be a compact metric space. Let x ∈ C(T,R) \ {0} and
h ∈ C(T,R). By p we denote the ∞-norm ‖x‖∞ = p(x) := sup{|x(t)| : t ∈ T}.
Then

p′(x)(h) = sup{h(t) signx(t) : |x(t)| = p(x)}.

The idea here is, that the unit-ball is a hyper-cube, and the points on the faces are
exactly those for which the supremum is attained only in one point.

Proof. Without loss of generality we may assume that p(x) = 1 = p(h), since for
r > 0 and s ≥ 0 we have p′(r x)(s h) = d

dt |t=0p(r x+ t s h) = d
dt |t=0r p(x+ t ( srh)) =

r p′(x)( srh) = s p′(x)(h).

Let A := {t ∈ T : |x(t)| = p(x)}. For given ε > 0 we find by the uniform
continuity of x and h a δ1 such that |x(t) − x(t′)| < 1

2 and |h(t) − h(t′)| < ε for
dist(t, t′) < δ1. Then {t : dist(t, A) ≥ δ1} is closed, hence compact. Therefore
δ := ‖x‖∞ − sup{|x(t)| : dist(t, A) ≥ δ1} > 0.

Now we claim that for 0 < 2t < min{δ, 1} we have

0 ≤ p(x+ t h)− p(x)
t

− sup{h(a) signx(a) : a ∈ A} ≤ ε.

For each s ∈ A we have

p(x+ t h) ≥ |(x+ t h)(s)| =
∣∣|x(s)| signx(s) + t h(s) signx(s)2∣∣

=
∣∣p(x) + t h(s) signx(s)

∣∣ = p(x) + t h(s) signx(s)
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13. Differentiability of Seminorms 13.12

for 0 ≤ t ≤ 1, since |h(s)| ≤ p(h) = p(x). Hence
p(x+ t h)− p(x)

t
≥ sup

{
h(a) signx(a) : a ∈ A

}
.

This shows the claimed left inequality.

Now let s be a point where the supremum p(x + t h) is attained. From the just
proved inequality it follows that p(x+ t h) ≥ p(x) + t sup

{
h(a) signx(a) : a ∈ A

}
,

and hence
|x(s)| ≥ |(x+ th)(s)| − t |h(s)| ≥ p(x+ t h)− t p(h)

≥ p(x)− t
(
p(h)− sup

{
h(r) signx(r) : r ∈ A

})
︸ ︷︷ ︸

≤2

> ‖x‖∞ − δ = sup
{
|x(r)| : dist(r,A) ≥ δ1

}
.

Therefore dist(s,A) < δ1, and thus there exists an a ∈ A with dist(s, a) < δ1 and
consequently |x(s) − x(a)| < 1

2 and |h(s) − h(a)| < ε. In particular, signx(s) =
signx(a) 6= 0 and |x(s)| > 1

2 . So we get

p(x+ t h)− p(x)
t

= |(x+ t h)(s)| − p(x)
t

=
∣∣|x(s)|+ t h(s) signx(s)

∣∣− p(x)
t

= |x(s)|+ t h(s) signx(s)− p(x)
t

≤ h(s) signx(s) = h(s) signx(a)

≤ |h(s)− h(a)|+ h(a) signx(a)
< ε+ sup

{
h(a′) signx(a′) : a′ ∈ A

}
.

This proves the claim and thus

p′(x)(v) = lim
t↘0

p(x+ t h)− p(x)
t

= sup
{
h(a) signx(a) : a ∈ A

}
.

Remark. Nowhere Fréchet differentiabilty of the ∞-norm. This result
shows that the points where the∞-norm is Gâteaux-differentiable are exactly those
x where the supremum p(x) is attained in a single point a. The Gâteaux-derivative
is then given by p′(x)(h) = h(a) signx(a). In general, this is however not the
Fréchet derivative:
Let x 6= 0. Without loss we may assume (that p(x) = 1 and) that there is a unique
non-isolated point a, where |x(a)| = p(x). Moreover, we may assume x(a) > 0. Let
an → a be such that 0 < x(an) < x(a) and let 0 < sn

2 := x(a) − x(an) < x(a).
Now choose hn ∈ C(T,R) with p(hn) ≤ 1, hn(a) := 0, and hn(an) := 1. Then
p(x + snhn) ≥ (x + snhn)(an) = x(an) + 2(x(a) − x(an)) = 2x(a) − x(an) and
p′(x)(hn) = hn(a) sign(x(a)) = 0 by the previous lemma. Therefore

p(x+ sn hn)− p(x)
sn

− p′(x)(hn) ≥ 2x(a)− x(an)− x(a)
sn

= 1
2

Thus the limit of the difference quotinent is not uniform, i.e. p is not Fréchet
differentiable at x.

Remark. The ∞-norm is rough. If T has no isolated points, then the set
of vectors x ∈ C(T,R) which attain their norm at least at two points a and b is
dense, and for those x with ‖x‖∞ = 1 and h with h(a) = −x(a), h(b) = x(b), and
|h(t)| ≤ |x(t)| for all t we have

p(x+ t h) = (1 + |t|) p(x), hence p′(x+ t h)(h) =

{
+1 for t ≥ 0
−1 for t < 0

.
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Therefore, the derivative of the norm is uniformly discontinuous, i.e., in every non-
empty open set there are points x1, x2 for which there exists an h ∈ C[0, 1] with
‖h‖ = 1 and |p′(x1)(h)− p′(x2)(h)| ≥ 2.

13.13. Results on the differentiability of p-norms. [17, p.887].
For 1 < p < ∞ the function t 7→ |t|p is differentiable of order n if n < p, and the
highest derivative (t 7→ p (p − 1) . . . (p − n + 1) |t|p−n) satisfies a Hölder-condition
with modulus p−n, one can show that the p-norm has exactly these differentiability
properties, i.e.

(1) It is (p − 1)-times differentiable with Lipschitzian highest derivative if p is
an odd integer.

(2) It is [p]-times differentiable with highest derivative being Hölderian of order
p− [p], if p is not an integer.

(3) The norm has no higher Hölder-differentiability properties.

That the norm on Lp is C1 for 1 < p <∞ was already shown by [91].

13.15. Theorem. Characterization of smooth seminorms. Let E be a
convenient vector space.

(1) Let p : E → R be a continuous convex function which is smooth on a neighbor-
hood of p−1(1), and assume that U := {x ∈ E : p(x) < 1} is not empty. Then U is
open, and its boundary ∂U equals {x : p(x) = 1}, a smooth splitting submanifold of
E.

(2) If U is a convex absorbing open subset of E whose boundary is a smooth sub-
manifold of E then the Minkowski functional pU is a smooth sublinear mapping,
and U = {x ∈ E : pU (x) < 1}.

Proof. ( 1 ) The set U is obviously convex and open by 4.5 and 13.1 . Let
M := {x : p(x) = 1}. We claim that M = ∂U . Let x0 ∈ U and x1 ∈ M . Since
t 7→ p(x1 + t(x0 − x1)) is convex it is strictly decreasing in a neighborhood of 0.
Hence, there are points x close to x1 /∈ U with p(x) < p(x1), i.e. x belongs to ∂U .
Conversely, let x1 ∈ ∂U . Since U is open we have p(x1) ≥ 1. Suppose p(x1) > 1,
then p(x) > 1 locally around x1, a contradiction to x1 ∈ ∂U .

Now we show that M is a smooth splitting submanifold of E, i.e. every point has
a neighborhood, in which M is up to a diffeomorphism a complemented linear
subspace. Let x1 ∈ M = ∂U . We consider again the convex mapping t 7→ p(x1 +
t(x0−x1)). It is locally around 0 differentiable, and its value at 1 is strictly less than
that at 0. Thus, p′(x1)(x1−x0) ≥ p(x1)−p(x0) > 0, and hence we may replace x0 by
some point on the segment from x0 to x1 closer to x1, such that p′(x0)(x1−x0) > 0.
Without loss of generality we may assume that x0 = 0. Let U := {x ∈ E :
p′(0)(x) > 0 and p′(x1)(x) > 0} and V := (U − x1) ∩ ker p′(x1) ⊆ ker p′(x1). A
continuous mapping Ψ from the open set U ⊆ E to the open set V × (p(0),+∞) ⊆
ker p′(x1) × R is given by x 7→ ( 1

tx − x1, p(x)), where t := p′(x1)(x)
p′(x1)(x1) > 0. This

mapping is a bijection U → V ×(p(0),+∞): For (y, r) ∈ ker p′(x1)×(p(0),+∞) the
inverse image is given as t(y+x1) where t can be calculated from r = p(t (y+x1)).
Since t 7→ p(t (y + x1)) is a bijection between the intervals (0,+∞) → (p(0),+∞)
this s is uniquely determined.

We claim that Ψ−1 : V × (p(0),+∞) → U is continuous for the c∞-topologies.
So let (yn, rn) := Ψ(un) → Ψ(u∞) = (y∞, r∞) be M-convergent. Since un =
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13. Differentiability of Seminorms 13.16

tn(yn +x1) with tn being the unique solution of rn = p(tn(yn +x1)) and analogous
for (u∞, y∞, t∞, r∞), it suffices to show that tn → t∞. For an accumulation point
τ ≤ +∞ of the sequence tn we denote the corresponding subsequence again tn.
Then un → τ(y∞ + x1) and rn = p(un) converges to p(τ(y∞ + x1)) but also
to r∞ = p(t∞(y∞ + x1)). Since t 7→ p(t(y∞ + x1)) is strictly increasing we get
τ(y∞ + x1) = t∞(y∞ + x1) and hence τ = t∞.

Thus we may restrict Ψ to a smooth local homeomorphism E ⊇ U ⊇ U1 ∼= V1 ⊆
V × (p(0),+∞) ⊆ ker p′(x1)× R.

Furthermore, Ψ−1 is smooth, since t depends smoothly on (y, r) ∈ V1:
Let s 7→ (y(s), r(s)) be a smooth curve in V1, then t(s) is given by the implicit equa-
tion p(t(s) (y(s) + x1)) = r(s), and by the 2-dimensional implicit function theorem
the solution s 7→ t(s) is smooth since ∂

∂t (p(t (y(s)+x1))−r(s)) = 1
t p
′(u(s))(u(s)) ≥

1
t p
′(0)(u(s)) > 0.

( 2 ) By general principles pU is a sublinear mapping, and U = {x : pU (x) < 1}
since U is open. Thus it remains to show that pU is smooth on its open carrier.
So let c be a smooth curve in the carrier. By assumption, there is a diffeomor-
phism v, locally defined on E near an intersection point a of the ray through
c(0) with the boundary ∂U = {x : pU (x) = 1}, such that ∂U corresponds to
a closed linear subspace F ⊆ E. Since U is convex there is a continuous linear
functional λ ∈ E′ with λ(a) = 1 and Ū ⊆ {x ∈ E : λ(x) ≤ 1} by the theorem
of Hahn-Banach. Then λ(Ta(∂U)) = 0, since any smooth curve in ∂U through
a stays inside {x : λ(x) ≤ 1}. Furthermore, b := ∂

∂t |t=1v(ta) /∈ F , since other-
wise t 7→ v−1(tb) ∈ ∂U and hence ∂

∂t |t=0λ(v−1(tb)) = 0 but ∂
∂t |t=0λ(v−1(tb)) =

λ((v−1)′(0)(b)) = λ((v−1)′(0)(v′(a)(a))) = λ(a) = 1.

It remains to show that f := 1/pU ◦ c : R → R is smooth. Since v(f(t)c(t)) ∈ F
and λ((v−1)′(0)(F )) ⊆ λ(Ta∂U) = 0, we see that f is a solution of the implicit
equation (λ ◦ (v−1)′(0) ◦ v)(f(t)c(t)) = 0, This solution is unique and smooth by
the implicit function theorem in dimension 2:

∂
∂s |s=f(t)

(
λ ◦ (v−1)′(0) ◦ v

)
(s c(t)) =

(
λ ◦ (v−1)′(0) ◦ v′(f(t)c(t))

)
(c(t)) 6= 0

for t near 0, since for t = 0 we have f(0)c(0) = a and hence this partial derivative
equals λ(c(0)) = 1

f(0) . So pU is smooth on its carrier.

13.16. The space c0(Γ)

For an arbitrary set Γ the space c0(Γ) is the closure of all functions on Γ with finite
support in the Banach space `∞(Γ) of globally bounded functions on Γ with the
supremum norm. The supremum norm on c0(Γ) is not differentiable on its carrier,
see 13.12 . Nevertheless, it was shown in [16] that c0 is C∞-regular.

Proposition. Smooth norm on c0. Due to Kuiper according to [17]. There
exists an equivalent norm on c0(Γ) which is smooth off 0.

Proof. To prove this let h : R→ [0,+∞) be an unbounded smooth symmetric con-
vex function vanishing near 0. Let f : c0(Γ)→ R be given by f(x) :=

∑
γ∈Γ h(xγ).

Locally on c0(Γ) the function f is just a finite sum, hence f is smooth: In fact let
h(t) = 0 for |t| ≤ δ. For x ∈ c0(Γ) the set F := {γ : |xγ | ≥ δ/2} is finite, and for
‖y − x‖ < δ/2 we have that f(y) =

∑
γ∈F h(yγ).
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The set U := {x : f(x) < 1} is absolutely convex: Since h is convex and symmetric,
so is f and hence also U .
Furthermore, U is open and bounded: Let h(t) ≥ 1 for |t| ≥ ∆ and f(x) < 1, then
h(xγ) < 1 and thus |xγ | ≤ ∆ for all γ.

The boundary ∂U = f−1(1) is a splitting submanifold of c0(Γ) by 13.15 . So
again by 13.15 the Minkowski functional pU is smooth off 0. Obviously, it is an
equivalent norm since U is open and bounded.

13.17. Proposition. Inheritance properties for differentiable norms.

(1) The product of two spaces with Cn-norm has again a Cn-norm given by
‖(x1, x2)‖ :=

√
‖x1‖2 + ‖x2‖2. More generally, the `2-sum of Cn-normable

Banach spaces is Cn-normable.

(2) A subspace of a space with a Cn-norm has a Cn-norm.

(3) [42]. If c0(Γ)→ E → F is a short exact sequence of Banach spaces, and F
has a Ck-norm, then E has a Ck-norm. See also 14.12.1 and 16.19 .

(4) For a compact space K let K ′ be the set of all accumulation points of K.
The operation K 7→ K ′ has the following properties:

(a) A ⊆ B ⇒ A′ ⊆ B′

(b) (A ∪B)′ = A′ ∪B′

(c) (A×B)′ = (A′ ×B) ∪ (A×B′)

(d)
(
{0} ∪ { 1

n : n ∈ N}
)′ = {0}

(e) K ′ = ∅ ⇔ K discrete.

(5) If K is compact and K(ω) = ∅ then C(K) has an equivalent C∞-norm, see
also 16.20 .

Proof. ( 1 ) and ( 2 ) are obvious.

( 4 ) (a) is obvious, since if {x} is open in B and x ∈ A, then it is also open in A
in the trace topology, hence A ∩ (B \ B′) ⊆ A \ A′ and hence A′ = A \ (A \ A′) ⊆
(A \A ∩ (B \B′)) = A ∩B′ ⊆ B′.

(b) By monotonicity we have ‘⊇’. Conversely let x ∈ A′ ∪ B′, w.l.o.g. x ∈ A′,
suppose x /∈ (A ∪ B)′, then {x} is open in A ∪ B and hence {x} = {x} ∩ A would
be open in A, i.e. x /∈ A′, a contradiction.

(c) is obvious, since {(x, y)} is open in A×B ⇔ {x} is open in A and {y} is open
in B.

(d) and (e) are trivial.

For ( 3 ) a construction is used similar to that of Kuiper’s smooth norm for c0.
Let π : E → F be the quotient mapping and ‖ ‖ the quotient norm on F . The
dual sequence `1(A) ← E∗ ← F ∗ splits (just define T : `1(A) → E∗ by selection
of x∗a := T (ea) ∈ E∗ with ‖x∗a‖ = 1 and x∗a|c0(A) = eva using Hahn Banach). Note
that for every x ∈ E and ε > 0 the set {α : |x∗α(x)| ≥ ‖π(x)‖+ ε} is finite. In fact,
by definition of the quotient norm ‖π(x)‖ := sup{‖x + y‖ : y ∈ c0(Γ)} there is a
y ∈ c0(Γ) such that ‖x + y‖ ≤ ‖π(x)‖ + ε/2. The set Γ0 := {α : |yα| ≥ ε/2} is
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13. Differentiability of Seminorms 13.18

finite. For all other α we have

|x∗α(x)| ≤ |x∗α(x+ y)|+ |x∗α(y)| ≤ ‖x∗α‖ ‖x+ y‖+ |yα| <
< 1 (‖π(x)‖+ ε/2) + ε/2 = ‖π(x)‖+ ε.

Furthermore, we have
‖x‖ ≤ 2‖π(x)‖+ sup{|x∗α(x)| : α}.

In fact,
‖x‖ = sup{|〈x∗, x〉| : ‖x∗‖ ≤ 1}
≤ sup{|〈T (λ) + y∗ ◦ π, x〉| : ‖λ‖1 ≤ 1, ‖y∗‖ ≤ 2}
= sup{|x∗α(x)| : α}+ 2‖π(x)‖,

since x∗ = T (λ) + x∗ − T (λ), where λ := x∗|c0(Γ) and hence ‖λ‖1 ≤ ‖x∗‖ ≤ 1,
and |T (λ)(x)| ≤ ‖λ‖1 sup{|x∗α(x)| : α} ≤ ‖x‖ hence ‖T (λ)‖ ≤ ‖λ‖1, and y∗ ◦ π =
x∗ − T (λ). Let ‖ ‖ denote a norm on F which is smooth and is larger than the
quotient norm. Analogously to 13.16 we define

f(x) := h(4‖π(x)‖)
∏
a∈A

h(x∗a(x)),

where h : R → [0, 1] is smooth, even, 1 for |t| ≤ 1, 0 for |t| ≥ 2 and concave
on {t : h(t) ≥ 1/2}. Then f is smooth, since if π(x) > 1/2 then the first factor
vanishes locally, and if ‖π(x)‖ < 1 we have that Γ0 := {α : |x∗α(x)| ≥ 1 − ε}
is finite, where ε := (1 − ‖π(x)‖)/2, for ‖y − x‖ < ε also |x∗α(y) − x∗α(x)| < ε
and hence |x∗α(y)| < 1 − ε + ε = 1 for all α /∈ Γ0. So the product is locally
finite. The set {x : f(x) > 1

2} is open, bounded and absolutely convex and has
a smooth boundary {x : f(x) = 1

2}. It is symmetric since f is symmetric. It is
bounded, since f(x) > 1/2 implies h(4‖π(x)‖) ≥ 1/2 and h(x∗a(x)) ≥ 1/2 for all
a. Thus 4‖π(x)‖ ≤ 2 and |x∗a(x)| ≤ 2 and thus ‖x‖ ≤ 2 · 1/2 + 2 = 3. For the
convexity note that xi ≥ 0, yi ≥ 0, 0 ≤ t ≤ 1,

∏
i xi ≥ 1/2,

∏
i yi ≥ 1/2 imply∏

i(txi+(1−t)yi) ≥ 1/2, since log is concave. Since all factors of f have to be ≥ 1/2
and h is concave on this set, convexity follows. Since one factor of f(x) =

∏
α fα(x)

has to be unequal to 1, the derivative f ′(x)(x) < 0, since f ′α(x)(x) ≤ 0 for all α by
concavity and f ′α(x)(x) < 0 for all x with fα(x) < 1. So its Minkowski-functional
is an equivalent smooth norm on E.

Statement ( 5 ) follows from ( 3 ). First recall that K ′ is the set of accumulation
points of K, i.e. those points x for which every neighborhood meets K \{x}, i.e. {x}
is not open. Thus K \K ′ is discrete. For successor ordinals α = β + 1 one defines
K(α) := (K(β))′ and for limit ordinals α as

⋂
β<αK

(β). For a compact space K the
equality K(ω) = ∅ implies K(n) = ∅ for some n ∈ ω, since K(n) is closed. Now one
shows ( 5 ) by induction on n. Let E := {f ∈ C(K) : f |K′ = 0}. By the Tietze-
Urysohn theorem one has a short exact sequence c0(K\K ′) ∼= E → C(K)→ C(K ′).
The equality E = c0(K \K0) can be seen as follows:
Let f ∈ C(K) with f |K′ = 0. Suppose there is some ε > 0 such that {x : |f(x)| ≥ ε}
is not finite. Then there is some accumulation point x∞ of this set and hence
|f(x∞)| ≥ ε but x∞ ∈ K ′ and so f(x∞) = 0. Conversely let f ∈ c0(K \K ′) and
define f̃ by f̃ |K′ := 0 and f̃ |K\K′ = f . Then f̃ is continuous on K \ K ′, since
K \K ′ is discrete. For x ∈ K ′ we have that f̃(x) = 0 and for each ε > 0 the set
{y : |f̃(y)| ≥ ε} is finite, hence its complement is a neighborhood of x, and f̃ is
continuous at x. So the result follows by induction.

13.18. Results.

Andreas Kriegl , Univ.Wien, June 30, 2017 161
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(1) We do not know whether the quotient of a Cn-normable space is again Cn-
normable. Compare however with [37].

(2) The statement 13.17.5 is quite sharp, since by [49] there is a compact space
K with K(ω) = {∞} but without a Gâteaux-differentiable norm.

(3) [119, Théorème 4] proved that C([0, γ]) is C1-normable for every ordinal
number γ and the associated compact and scattered space [0, γ] with the order
topology.

(4) It was shown by [122] that two Banach spaces are homeomorphic if and
only if their density number is the same. Hence, one can view Banach
spaces as exotic (differentiable or linear) structures on Hilbert spaces. If
two Banach spaces are even C1-diffeomorphic then the differential (at 0)
gives a linear homeomorphism. It was for some time unknown if also uni-
formly homeomorphic (or at least Lipschitz homeomorphic) Banach spaces
are already linearly homeomorphic. By [32] a Banach space which is uni-
formly homeomorphic to a Hilbert space is linearly homeomorphic to it. A
counter-example to the general statement was given by [2], and another one
is due to [22]: There exists a short exact sequence c0(Γ1)→ C(K)→ c0(Γ2)
where C(K) cannot be continuously linearly injected into some c0(Γ) but is
Lipschitz equivalent to c0(Γ). For these and similar questions see [126].

(5) A Banach space all of whose closed subspaces are complemented is a Hilbert
space, [86].

(6) [33] There exists a Banach space E not linearly homeomorphic to a Hilbert
space and a short exact sequence `2 → E → `2.

(7) [18]. If the norm of a Banach space and its dual norm are C2 then the space
is a Hilbert space.

(8) [28]. This yields also an example that existence of smooth norms is not a
three-space property, cf. 14.12 .

Notes. ( 2 ) Note that K \ K ′ is discrete, open and dense in K. So we get
for every n ∈ N by induction a space Kn with K

(n)
n 6= ∅ and K

(n+1)
n = ∅. In

fact (A × B)(n) =
⋃
i+j=nA

(i) × B(j). Next consider the 1-point compactification
K∞ of the locally compact space

⊔
n∈NKn. Then K ′∞ = {∞} ∪

⊔
n∈NK

′
n. In

fact every neighborhood of {∞} contains all but finitely many of the Kn, thus
we have ⊇. The obvious relation is clear. Hence K(n)

∞ = {∞} ∪
⊔
i≥nK

(i)
n . And

K
(ω)
∞ =

⋂
n<ωK

(n)
∞ = {∞} 6= ∅. The space of [49] is the one-point compactification

of a locally compact space L given as follows: L :=
⊔
α<ω1

ωα1 , i.e. the space of
functions ω1 → ω1, which are defined on some countable ordinal. It is ordered by
restriction, i.e. s � t :⇔ dom s ⊆ dom t and t|dom s = s.

( 3 ) The order topology on X := [0, γ] has the sets {x : x < a} and {x : x > a}
as basis. In particular open intervals (a, b) := {x : a < x < b} are open. It is
compact, since every subset has a greatest lower bound. In fact let U on X be a
covering. Consider S := {x ∈ X : [inf X,x) is covered by finitely many U ∈ U}.
Let s∞ := supS. Note that x ∈ S implies that [inf X,x] is covered by finitely many
sets in U . We have that s∞ ∈ S, since there is an U ∈ U with s∞ ∈ U . Then there
is an x with s∞ ∈ (x, s∞] ⊆ U , hence [inf X,x] is covered by finitely many sets in
U since there is an s ∈ S with x < s, so [inf X, s∞] = [inf X,x] ∪ (x, s∞] is covered
by finitely many sets, i.e. s∞ ∈ S.

The space X is scattered, i.e. X(α) = ∅ for some ordinal α. For this we have to show
that every closed non-empty subset K ⊆ X has open points. For every subset K
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13. Differentiability of Seminorms 13.19

of X there is a minimum minK ∈ K, hence [inf X,minK + 1) ∩K = {minK} is
open in K.

For γ equal to the first infinite ordinal ω we have [0, γ] = N∞, the one-point
compactification of the discrete space N. Thus C([0, γ]) ∼= c0 × R and the result
follows in this case from 13.16 .

( 5 ) For splitting short exact sequences the result analogous to 13.17.3 is by
13.17.1 obviously true. By ( 5 ) there are non-splitting exact sequences 0→ F →
E → E/F → 0 for every Banach space E which is not Hilbertizable.

( 8 ) By ( 6 ) there is a sort exact sequence with hilbertizable ends, but with middle
term E not hilbertizable. So neither the sequence nor the dualized sequence splits.
Assuming the 3-space property provides E and E′ with C2-norms, hence E would
be hilbertizable by ( 7 ).

13.19. Proposition. Let E be a Banach space, ‖x‖ = 1. Then the following
statements are equivalent:

(1) The norm is Fréchet differentiable at x;
(2) limh→0

‖x+h‖+‖x−h‖−2‖x‖
‖h‖ = 0

(or equivalently, limt→0
‖x+th‖+‖x−th‖−2‖x‖

t = 0 uniformly in ‖h‖ ≤ 1.)
(3) ‖y∗n‖ = 1, ‖z∗n‖ = 1, y∗n(x)→ 1, z∗n(x)→ 1 ⇒ y∗n − z∗n → 0.

Proof. ( 1 )⇒( 2 ) This is obvious, since for the derivative ` of the norm at x we
have limh→0

‖x±h‖−‖x‖−l(±h)
‖h‖ = 0 and adding these equations gives ( 2 ).

( 2 )⇒ ( 1 ) Since `(h) := limt↘0
‖x+th‖−‖x‖

t always exists, and since
‖x+ th‖+ ‖x− th‖ − 2‖x‖

t
= ‖x+ th‖ − ‖x‖

t
+ ‖x+ t(−h)‖ − ‖x‖

t
≥ l(h) + l(−h) ≥ 0

we have `(−h) = `(h), thus ` is linear. Moreover ‖x±th‖−‖x‖t − `(±h) ≥ 0, so the
limit is uniform for ‖h‖ ≤ 1.

( 2 )⇒ ( 3 ) By ( 2 ) we have that for ε > 0 there exists a δ such that
‖x+ h‖+ ‖x− h‖ ≤ 2 + ε‖h‖ for all ‖h‖ < δ.

For ‖y∗n‖ = 1 and ‖z∗n‖ = 1 we have
(y∗n − z∗n)(h) + (y∗n + z∗n)(x) = y∗n(x+ h) + z∗n(x− h) ≤ ‖x+ h‖+ ‖x− h‖.

Since y∗n(x)→ 1 and z∗n(x)→ 1 we get for large n that
(y∗n − z∗n)(h) ≤ −y∗n(x)− z∗n(x) + 2 + ε‖h‖ ≤ 2εδ,

hence ‖y∗n − z∗n‖ ≤ 2ε, i.e. z∗n − y∗n → 0.

( 3 )⇒ ( 2 ) Otherwise, there exists an ε > 0 and 0 6= hn → 0, such that
‖x+ hn‖+ ‖x− hn‖ ≥ 2 + ε‖hn‖.

Now choose ‖y∗n‖ = 1 and ‖z∗n‖ = 1 with
y∗n(x+ hn) ≥ ‖x+ hn‖ − 1

n‖hn‖ and z∗n(x− hn) ≥ ‖x− hn‖ − 1
n‖hn‖.

Then y∗n(x) = y∗n(x+hn)−y∗n(hn)→ ‖x‖ = 1 and similarly z∗n(x)→ 1. Furthermore
(y∗n + z∗n)(x) + (y∗n − z∗n)(hn) = y∗n(x+ hn) + z∗n(x− hn) ≥ 2 + (ε− 2

n ) ‖hn‖,
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hence

(y∗n − z∗n)(hn) ≥ −(y∗n + z∗n)(x) + 2 + (ε− 2
n ) ‖hn‖ ≥ (ε− 2

n ) ‖hn‖,

thus ‖y∗n − z∗n‖ ≥ ε− 2
n , a contradiction.

13.20. Proposition. Fréchet differentiable norms via locally uniformly
rotund duals. [87] If the dual norm of a Banach space E is locally uniformly
rotund on E′ then the norm is Fréchet differentiable on E.

A norm is called locally uniformly rotund if ‖xn‖ → ‖x‖ and ‖x + xn‖ → 2‖x‖
implies xn → x. This is equivalent to 2(‖x‖2 + ‖xn‖2) − ‖x + xn‖2 → 0 implies
xn → x, since

2(‖x‖2 + ‖xn‖2)− ‖x+ xn‖2 ≥ 2‖x‖2 + 2‖xn‖2 − (‖x‖+ ‖xn‖)2 = (‖x‖ − ‖xn‖)2.

Proof. We verify 13.19.3 : So let ‖x‖ = 1, ‖y∗n‖ = 1, ‖z∗n‖ = 1, y∗n(x) → 1,
z∗n(x)→ 1. Let ‖x∗‖ = 1 with x∗(x) = 1. Then 2 ≥ ‖x∗ + y∗n‖ ≥ (x∗ + y∗n)(x)→ 2.
Since ‖ ‖E′ is locally uniformly rotund we get y∗n → x∗ and similarly z∗n → x∗,
hence y∗n − z∗n → 0.

13.21. Remarks on locally uniformly rotund spaces

By [57] and [58] every separable Banach space is isomorphic to a locally uniformly
rotund Banach space. By [27] the space `∞(Γ) is not isomorphic to a locally
uniformly rotund Banach space. Every Banach space admitting a continuous linear
injection into some c0(Γ) is locally uniformly rotund renormable, see [125]. By
53.21 every WCG-Banach space has such an injection, which is due to [3]. By

[124] every Banach space with unconditional basis (see [53, 14.7]) is isomorphic to
a locally uniformly rotund Banach space.

In particular, it follows from these results that every reflexive Banach space has an
equivalent Fréchet differentiable norm. In particular Lp has a Fréchet differentiable
norm for 1 < p < ∞ and in fact the p-norm itself is Fréchet differentiable, see
13.13 .

13.22. Proposition. If the dual E′ of a Banach space E is separable, then E
admits an equivalent norm, whose dual norm is locally uniform rotund. Thus E is
C1-normable by 13.20 .

Proof. Let E′ be separable. Then there exists a bounded linear operator T : E →
`2 such that T ∗((`2)′) is dense in E′ (and obviously T ∗ is weak∗-continuous):
Take a dense subset {x∗i : i ∈ N} ⊆ E′ of {x∗ ∈ E′ : ‖x∗‖ ≤ 1} with ‖x∗i ‖ ≤ 1.
Define T : E → `2 by

T (x)i := x∗i (x)
2i

.

Then for the basic unit vector ei ∈ (`2)′ we have

T ∗(ei)(x) = ei(T (x)) = T (x)i = x∗i (x)
2i

,

i.e. T ∗(ei) = 2−i x∗i .
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Note that the canonical norm on `2 is locally uniformly rotund. We now claim that
E′ has a dual locally uniform rotund norm. For x∗ ∈ E′ and n ∈ N we define

‖x∗‖2n := inf
{
‖x∗ − T ∗y∗‖2 + 1

n‖y
∗‖2 : y∗ ∈ (`2)′

}
and

‖x∗‖∞ :=
∞∑
n=1

1
2n
‖x∗‖n.

We claim that ‖ ‖∞ is the required norm.

So we show first, that it is an equivalent norm. For ‖x∗‖ = 1 we have ‖x∗‖n ≥
min{1/(2

√
n‖T ∗‖), 1/2}. In fact if ‖y∗‖ ≥ 1/(2‖T ∗‖) then ‖x∗−T ∗y∗‖2+ 1

n‖y
∗‖2 ≥

1/(2n2‖T ∗‖2) and if ‖y∗‖ ≤ 1/(2‖T ∗‖) then ‖x∗−T ∗y∗‖ ≥ ‖x‖−‖T ∗y∗‖ ≥ 1− 1
2 =

1
2 . Furthermore if we take y := 0 then we see that ‖x∗‖n ≤ ‖x‖. Thus ‖ ‖n and
‖ ‖ are equivalent norms, and hence also ‖ ‖∞.

Note first, that a dual norm is the supremum of the weak∗ (lower semi-)continuous
functions x∗ 7→ |x∗(x)| for ‖x‖ ≤ 1. Conversely the unit ball B has to be weak∗
closed in E′ since the norm is assumed to be weak∗ lower semi-continuous and B
is convex. Let Bo be its polar in E. By the bipolar-theorem (Bo)o = B, and thus
the dual of the Minkowski functional of Bo is the given norm.

Next we show that the infimum defining ‖ ‖n is in fact a minimum, i.e. for each n
and x∗ there exists a y∗ with ‖x∗‖n2 = ‖x∗−T ∗y∗‖2+ 1

n‖y
∗‖2. Since fx : y∗ 7→ ‖x∗−

T ∗y∗‖2 + 1
n‖y

∗‖2 is weak∗ lower semi-continuous and satisfies limy∗→∞ fx(y∗) =
+∞, hence it attains its minimum on some large (weak∗-compact) ball.

We have that ‖x‖n → 0 for n→∞.
In fact since the image of T ∗ is dense in E′, there is for every ε > 0 a y∗ with
‖x∗ − T ∗y∗‖ < ε, and so for large n we have ‖x∗‖2n ≤ ‖x∗ − T ∗y∗‖2 + 1

n‖y‖
2 < ε2.

Let us next show that ‖ ‖∞ is a dual norm. For this it is enough to show that ‖ ‖n
is a dual norm, i.e. is weak∗ lower semi-continuous. So let x∗i be a net converging
weak∗ to x∗. Then we may choose y∗i with ‖x∗i ‖2n = ‖x∗i − T ∗y∗i ‖2 + 1

n‖y
∗
i ‖2. Then

{x∗i : i} is bounded, and hence also ‖y∗i ‖2. Let thus y∗ be a weak∗ cluster point
of the (y∗i ). Without loss of generality we may assume that y∗i → y∗. Since the
original norms are weak∗ lower semicontinuous we have

‖x∗‖2n ≤ ‖x∗ − T ∗y∗‖2 + 1
n‖y

∗‖2 ≤ lim
i

(
‖x∗i − T ∗y∗i ‖2 + 1

n‖y
∗
i ‖2
)

= lim
i
‖x∗i ‖n2 .

So ‖ ‖n is weak∗ lower semicontinuous.
Here we use that a function f : E → R is lower semicontinuous if and only if
x∞ = limi xi ⇒ f(x∞) ≤ limi f(xi).
(⇒) otherwise for some subnet (which we again denote by xi) we have f(x∞) >
limi f(xi) and this contradicts the fact that f−1((a,∞)) has to be a neighborhood
of x∞ for 2a := f(x∞) + limi f(xi).
(⇐) otherwise there exists some x∞ and an a < f(x∞) such that in every neigh-
borhood U of x∞ there is some xU with f(xU ) ≤ a. Hence limU xU = x∞ and
limU f(xU ) ≤ limU f(xU ) ≤ a < f(x∞).

Let us finally show that ‖ ‖∞ is locally uniform rotund.
So let x∗, x∗j ∈ E′ with

2(‖x∗‖2∞ + ‖x∗j‖2∞)− ‖x∗ + x∗j‖2∞ → 0,

or equivalently

‖x∗j‖∞ → ‖x∗‖∞ and ‖x∗ + x∗j‖∞ → 2‖x∗‖∞.
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Thus also
‖x∗j‖n → ‖x∗‖n and ‖x∗ + x∗j‖n → 2‖x∗‖n

and equivalently
2(‖x∗‖2n + ‖x∗j‖2n)− ‖x∗ + x∗j‖2n → 0.

Now we may choose y∗ and y∗j such that

‖x∗‖n2 = ‖x∗ − T ∗y∗‖2 + 1
n‖y

∗‖2 and ‖x∗j‖n2 = ‖x∗j − T ∗y∗j ‖2 + 1
n‖y

∗
j ‖2.

We calculate as follows:
2
(
‖x∗‖2n + ‖x∗j‖2n

)
− ‖x∗ + x∗j‖2 ≥

≥ 2
(
‖x∗ − T ∗y∗‖2 + 1

n‖y
∗‖2 + ‖x∗j − T ∗y∗j ‖2 + 1

n‖y
∗
j ‖2
)

− ‖x∗ + x∗j − T ∗(y∗ + y∗j )‖2 − 1
n‖y

∗ + y∗j ‖2

≥ 2
(
‖x∗ − T ∗y∗‖2 + 1

n‖y
∗‖2 + ‖x∗j − T ∗y∗j ‖2 + 1

n‖y
∗
j ‖2
)

−
(
‖x∗ − T ∗(y∗)‖+ ‖x∗j − T ∗(y∗j )‖

)2 − 1
n‖y

∗ + y∗j ‖2

≥
(
‖x∗ − T ∗y∗‖ − ‖x∗j − T ∗y∗j ‖

)2+
+ 1

n

(
2‖y∗‖2 + 2‖y∗j ‖2 − ‖y∗ + y∗j ‖2

)
≥ 0,

hence
‖x∗j − T ∗y∗j ‖ → ‖x∗ − T ∗y∗‖ and 2(‖y∗‖2 + ‖y∗j ‖2)− ‖y∗ + y∗j ‖2 → 0.

Since ‖ ‖ is locally uniformly rotund on (`2)∗ we get that y∗j → y∗. Hence

lim
j
‖x∗ − x∗j‖ ≤ lim

j

(
‖x∗ − T ∗y∗‖+ ‖T ∗(y∗ − y∗j )‖+ ‖x∗j − T ∗y∗j ‖

)
= 2 ‖x∗ − T ∗y∗‖ ≤ 2‖x∗‖n.

Since ‖x∗‖n → 0 for n→∞ we get x∗j → x∗.

13.23. Proposition. [82]. For the norm ‖ ‖ = p on a Banach space E the
following statements are equivalent:

(1) The norm is rough, i.e. p′ is uniformly discontinuous, see 13.8.5 .
(2) There exists an ε > 0 such that for all x ∈ E with ‖x‖ = 1 and all y∗n,

z∗n ∈ E′ with ‖y∗n‖ = 1 = ‖z∗n‖ and limn y
∗
n(x) = 1 = limn z

∗
n(x) we have:

lim
n
‖y∗n − z∗n‖ ≥ ε;

(3) There exists an ε > 0 such that for all x ∈ E with ‖x‖ = 1 we have that

lim
h→0

‖x+ h‖+ ‖x− h‖ − 2‖x‖
‖h‖

≥ ε;

(4) There exists an ε > 0 such that for every x ∈ E with ‖x‖ = 1 and δ > 0
there is an h ∈ E with ‖h‖ ≤ 1 and ‖x+ th‖ ≥ ‖x‖+ ε|t| − δ for all |t| ≤ 1.

Note that we always have

0 ≤ ‖x+ h‖+ ‖x− h‖ − 2‖x‖
‖h‖

≤ 2,

hence ε in ( 3 ) satisfies ε ≤ 2. For `1 and C[0, 1] the best choice is ε = 2, see
13.11 and 13.12 .

Proof. ( 3 )⇒( 2 ) is due to [26]. Let ε > 0 such that for all ‖x‖ = 1 there are
0 6= hn → 0 with ‖x + hn‖ + ‖x − hn‖ − 2 ≥ ε‖hn‖. Now choose y∗n, z∗n ∈ E′
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with ‖y∗n‖ = 1 = ‖zn‖∗, y∗n(x+ hn) = ‖x+ hn‖ and z∗n(x− hn) = ‖x− hn‖. Then
limn y

∗
n(x) = ‖x‖ = 1 and also limn z

∗
n(x) = 1. Moreover,

y∗n(x+ hn) + z∗n(x− hn) ≥ 2 + ε‖hn‖
and hence

(y∗n − z∗n)(hn) = ‖x+ hn‖+ ‖x− hn‖ ≥ −y∗n(x)− z∗n(x) + 2 + ε‖hn‖ ≥ ε‖hn‖,

thus ( 2 ) is satisfied.

( 2 )⇒( 1 ) By ( 2 ) we have an ε > 0 such that for all ‖x‖ = 1 there are y∗n and
z∗n with ‖y∗n‖ = 1 = ‖z∗n‖, limn y

∗
n(x) = 1 = limn z

∗
n(x) and hn with ‖hn‖ = 1 and

(y∗n − z∗n)(hn) ≥ ε. Let 0 < δ < ε/2 and t > 0. Then

y∗n(x) > 1− δ2

4
and z∗n(x) > 1− δ2

4
for large n.

Thus
‖x+ thn‖ ≥ y∗n(x+ thn) ≥ 1− δ2

4
+ ty∗n(hn)

and hence by convexity of t 7→ p(x+ thn)

t p′(x+ thn)(hn) ≥ ‖x+ thn‖ − ‖x‖ ≥ ty∗n(hn)− δ2

4
⇒

p′(x+ thn)(hn) ≥ y∗n(hn)− δ2

4t

and similarly − p′(x− thn)(hn) ≥ −z∗n(hn)− δ2

4t
If we choose 0 < t < δ such that δ2/(2t) < δ we get

p′(x+ thn)(hn)− p′(x− thn)(hn) ≥ (y∗n − z∗n)(hn)− δ2

2t
> ε− δ > ε

2
.
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( 1 )⇒( 4 ) By the uniform discontinuity assumption of p′ there exists an ε > 0
such that for each x ∈ E and η > 0 there exist xj ∈ E with p(xj − x) ≤ η/4 and
u ∈ E with p(u) = 1 such that

(
p′(x2)− p′(x1)

)
(u) ≥ ε.

Let µ := (p′(x1) + p′(x2))(u)/(2p(x)) and v := u− µx.

Since p′(x1)(u) ≤ p′(x2)(u)− ε we get

(p′(x1) + p′(x2))(u))/2 ≤ p′(x2)(u)− ε/2 ≤ p(u)− ε/2 < 1
and (p′(x1) + p′(x2))(u)/2 ≥ p′(x1)(u) + ε/2 ≥ −p(u) + ε/2 > −1,

i.e. |µ|p(x) = |(p′(x1) + p′(x2))(u)/2| < 1, so 0 < p(v) ≤ p(u) + µp(x) < 2.
For 0 ≤ t ≤ p(x) and s := 1− t µ we get

x+ tv = sx+ tu = s(x+ t
su) = s

(
(x2 + t

su) + (x− x2)
)
.

Thus 0 < s < 2 and

p(x+ tv) ≥ s
(
p(x2 + t

su)− p(x− x2)
)

≥ s
(
p(x2) + t

sp
′(x2)u− η

4

)
since p(y + w) ≥ p(y) + p′(y)(w)

≥ (1− tµ) p(x) + t p′(x2)(u)− s η2 since p(x) ≤ p(x2) + p(x− x2)
= p(x) + t

2 (p′(x2)− p′(x1))(u)− s η2
> p(x) + t ε2 − η.

If −p(x) ≤ t < 0 we proceed with the role of x1 and x2 exchanged and obtain

p(x+ tv) > sp(x) + t p′(x1)(u)− s η2
= p(x) + (− t

2 ) (p′(x2)− p′(x1))(u)− s η2
> p(x) + |t| ε2 − η.

Thus
p(x+ tv) ≥ p(x) + |t| ε/2− η.

( 4 )⇒( 3 ) By ( 4 ) there exists an ε > 0 such that for every x ∈ E with ‖x‖ = 1
and δ > 0 there is an h ∈ E with ‖h‖ ≤ 1 and ‖x + th‖ ≥ ‖x‖ + ε|t| − δ for all
|t| ≤ 1. For n ∈ N choose δ := ε

2n and t := 1
n and obtain

‖x+ hn/n‖+ ‖x− hn/n‖ − 2
‖hn/n‖

≥ 2n
(
‖x‖+ ε

n
− ε

2n
− 1
)

= ε.

13.24. Results on the non-existence of C1-norms on certain spaces.

(1) [108] and [109]. A separable Banach space has an equivalent C1-norm if
and only if E∗ is separable. This will be proved in 16.11 .

(2) [59]. More generally, if for a Banach space densE < densE∗ then no C1-
norm exists. This will be proved by showing the existence of a rough norm in
14.10 and then using 14.9 . The density number densX of a topological

space X is the minimum of the cardinalities of all dense subsets of X.
(3) [49]. There exists a compact space K, such that K(ω1) = {∗}, in particular

K(ω1+1) = ∅, but C(K) has no equivalent Gâteaux differentiable norm, see
also 13.18.2 .

One can interpret the results ( 2 ) and ( 3 ) by saying that in these spaces every
convex body necessarily has corners.
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13. Differentiability of Seminorms 14.3

14. Smooth Bump Functions

In this section we return to the original question whether the smooth functions
generate the topology. Since we will use the results given here also for manifolds,
and since the existence of charts is of no help here, we consider fairly general non-
linear spaces. This allows us at the same time to treat all considered differentiability
classes in a unified way.

14.1. Convention. We consider a Hausdorff topological space X with a subalge-
bra S ⊆ C(X,R), whose elements will be called the smooth or S-functions on X.
We assume that for functions h ∈ C∞(R,R) (at least for those being constant off
some compact set, in some cases) one has h∗(S) ⊆ S, and that f ∈ S provided it is
locally in S, i.e., there exists an open covering U such that for every U ∈ U there
exists an fU ∈ S with f = fU on U . In particular, we will use for S the classes of
C∞- and of Lipk-mappings on c∞-open subsets X of convenient vector spaces with
the c∞-topology and the class of Cn-mappings on open subsets of Banach spaces,
as well as subclasses formed by boundedness conditions on the derivatives or their
difference quotients.

Under these assumptions on S one has that 1
f ∈ S provided f ∈ S with f(x) > 0

for all x ∈ X: Just choose everywhere positive hn ∈ C∞(R,R) with hn(t) = 1
t for

t ≥ 1
n . Then hn ◦ f ∈ S and 1

f = hn ◦ f on the open set {x : f(x) > 1
n}. Hence,

1
f ∈ S.

For a (convenient) vector space F the carrier carr(f) of a mapping f : X → F
is the set {x ∈ X : f(x) 6= 0}. The zero set of f is the set where f vanishes,
{x ∈ X : f(x) = 0}. The support of f support(f) is the closure of carr(f) in X.

We say that X is smoothly regular (with respect to S) or S-regular if for any
neighborhood U of a point x there exists a smooth function f ∈ S such that
f(x) = 1 and carr(f) ⊆ U . Such a function f is called a bump function.

14.2. Proposition. Bump functions and regularity. [17]. A Hausdorff space
is S-regular (i.e. the topology has a basis of carriers of functions in S) if and only
if its topology is initial with respect to S.

Proof. The initial topology with respect to S has as a subbasis the sets f−1(I),
where f ∈ S and I is an open interval in R. Let x0 ∈ U , with U open for
the initial topology. Then there exist finitely many open intervals I1, . . . , In and
f1, . . . , fn ∈ S with x0 ∈

⋂n
i=1 f

−1
i (Ii). Without loss of generality we may assume

that Ii = {t : |fi(x0) − t| < εi} for certain εi > 0. Let h ∈ C∞(R,R) be chosen
such that h(0) = 1 and h(t) = 0 for |t| ≥ 1. Set f(x) :=

∏n
i=1 h( fi(x)

εi
). Then f is

the required bump function. Thus this subbasis is a basis.

14.3. Corollary. Smooth regularity is inherited by products and sub-
spaces. Let Xi be topological spaces and Si ⊆ C(Xi,R). On a space X we con-
sider the initial topology with respect to mappings fi : X → Xi, and we assume that
S ⊆ C(X,R) is given such that f∗i (Si) ⊆ S for all i. If each Xi is Si-regular, then
X is S-regular.

Andreas Kriegl , Univ.Wien, June 30, 2017 169



14.6 14. Smooth Bump Functions

Note however that the c∞-topology on a locally convex subspace is not the trace
of the c∞-topology in general, see 4.33 and 4.36.5 . However, for c∞-closed
subspaces this is true, see 4.28 .

14.4. Proposition. [17]. Every Banach space with S-norm is S-regular.

More general, a convenient vector space is smoothly regular if its c∞-topology is
generated by seminorms which are smooth on their respective carriers. For example,
nuclear Fréchet spaces have this property.

Proof. Namely, g ◦ p is a smooth bump function with carrier contained in {x :
p(x) < 1} if g is a suitably chosen real function, i.e., g(t) = 1 for t ≤ 0 and g(t) = 0
for t ≥ 1.

Nuclear spaces have a basis of Hilbert-seminorms [53, 21.1.7], and on Fréchet
spaces the c∞-topology coincides with the locally convex one 4.11.1 , hence nuclear
Fréchet spaces are c∞-regular.

14.5. Open problem. Has every non-separable S-regular Banach space an equiv-
alent S-norm? Compare with 16.11 .

A partial answer is given in:

14.6. Proposition. Let E be a C∞-regular Banach space. Then there exists
a smooth function h : E → R+, which is positively homogeneous and smooth on
E \ {0}.

Proof. Let f : E \{0} → {t ∈ R : t ≥ 0} be a smooth function, such that carr(f) is
bounded in E and f(x) ≥ 1 for x near 0. Let U := {x : f(tx) 6= 0 for some t ≥ 1}.
Then there exists a smooth function Mf : E \ {0} → R with (Mf)′(x)(x) < 0 for
x ∈ U , limx→0Mf(x) = +∞ and carrMf ⊆ U .
The idea is to construct out of the smooth function f ≥ 0 another smooth function
Mf with (Mf)′(x)(x) = −f(x) ≤ 0, i.e. (Mf)′(tx)(tx) = −f(tx) and hence

d

dt
Mf(tx) = (Mf)′(tx)(x) = −f(tx)

t
for t 6= 0.

Since we want bounded support for Mf , we get

Mf(x) = −
[
Mf(tx)

]∞
t=1

= −
∫ ∞

1

d

dt
Mf(tx) dt =

∫ ∞
1

f(tx)
t

dt,

and we take this as a definition of Mf . Since the support of f is bounded, we may
replace the integral locally by

∫ N
1 for some large N , hence Mf is smooth on E \{0}

and (Mf)′(x)(x) = −f(x).
Since f(x) > ε for all ‖x‖ < δ, we have that

Mf(x) ≥
∫ N

1

1
t
f(tx) dt ≥ log(N)ε

for all ‖x‖ < δ
N , i.e. limx→0Mf(x) = +∞.

Furthermore carr(Mf) ⊆ U , since f(tx) = 0 for all t ≥ 1 and x /∈ U .

Now consider M2f := M(Mf) : E \ {0} → R. Since (Mf)′(x)(x) ≤ 0, we have
(M2f)′(x)(x) =

∫∞
1 (Mf)′(tx)(x) dt ≤ 0 and it is < 0 if for some t ≥ 1 we have

0 > (Mf)′(tx)(x) = − f(tx)
t , in particular this is the case if x ∈ U .
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14. Smooth Bump Functions 14.9

Thus Uε := {x : M2f(x) ≥ ε} is radial set with smooth boundary, and the
Minkowski-functional is smooth on E \ {0}. Moreover Uε ∼= E via x 7→ x

M2f(x) .

14.7. Lemma. Existence of smooth bump functions.
For a class S on a Banach space E in the sense of 14.1 the following statements
are equivalent:

(1) E is not S-regular;

(2) For every f ∈ S, every 0 < r1 < r2 and ε > 0 there exists an x with
r1 ≤ ‖x‖ ≤ r2 and |f(x)− f(0)| < ε;

(3) For every f ∈ S with f(0) = 0 there exists an x with 1 ≤ ‖x‖ ≤ 2 and
|f(x)| ≤ ‖x‖

Proof. ( 1 ) ⇒ ( 2 ) Assume that there exists an f and 0 < r1 < r2 and ε > 0
such that |f(x)−f(0)| ≥ ε for all r1 ≤ ‖x‖ ≤ r2. Let h : R→ R be a smooth bump
function on R. Let g(x) := h

( 1
ε (f(r1 x) − f(0))

)
. Then g is of the corresponding

class, g(0) = h(0) = 1, and for all x with 1 ≤ ‖x‖ ≤ r2
r1

we have |f(r1 x)−f(0)| ≥ ε,
and hence g(x) = 0. By redefining g on {x : ‖x‖ ≥ r2

r1
} as 0, we obtain the required

bump function.

( 2 ) ⇒ ( 3 ) Take r1 = 1 and r2 = 2 and ε = 1.

( 3 ) ⇒ ( 1 ) Assume a bump function g exists, i.e., g(0) = 1 and g(x) = 0 for
all ‖x‖ ≥ 1. Take f := 3(1 − g). Then f(0) = 0 and f(x) = 3 for ‖x‖ ≥ 1, a
contradiction to ( 3 ).

14.8. Proposition. Boundary values for smooth mappings. [17] Let E and
F be convenient vector spaces, let F be S-regular but E not S-regular. Let U ⊆ E
be c∞-open and f ∈ C(U,F ) with f∗(S) ⊆ S. Then f(∂U) ⊇ f(U). Hence, f = 0
on ∂U implies f = 0 on U .

Proof. Since f(U) ⊆ f(U) it is enough to show that f(U) ⊆ f(∂U). Suppose
f(x) /∈ f(∂U) for some x ∈ U . Since F is regular, we find disjoint open neighbor-
hoods V of f(x) and W of f(∂U). Choose a smooth h on F such that h(f(x)) = 1
and h|W = 0. Let g = h ◦ f on U and 0 on f−1(W ) ∪ (E \ U). Then g is a smooth
bump function on E, a contradiction.

14.9. Theorem. C1-regular spaces admit no rough norm. [Leach, Whitfield,
1972]. Let E be a Banach space whose norm p = ‖ ‖ has uniformly discontinuous
directional derivative. If f is Fréchet differentiable with f(0) = 0 then there exists
an x ∈ E with 1 ≤ ‖x‖ < 2 and f(x) ≤ ‖x‖.

By 14.7 this result implies that on a Banach space with rough norm there exists
no Fréchet differentiable bump function. In particular, C([0, 1]) and `1 are not
C1-regular by 13.11 and 13.12 , which is due to [81].

Proof. We try to reach the exterior of the unit ball by a recursively defined sequence
xn in {x : f(x) ≤ p(x)} starting at 0 with large step-length ≤ 1 in directions, where
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14.10 14. Smooth Bump Functions

p′ is large. For this let ε be given by 13.23.4 . Given xn we consider the set

Mn :=

y ∈ E :
(1) f(y) ≤ p(y),
(2) p(y − xn) ≤ 1 and
(3) p(y)− p(xn) ≥ (ε/8) p(y − xn)

 .

Since xn ∈Mn, this set is not empty and henceMn := sup{p(y−xn) : y ∈Mn} ≤ 1
is well-defined and it is possible to choose xn+1 ∈Mn with

(4) p(xn+1 − xn) ≥Mn/2.
We claim that p(xn) ≥ 1 for some n, since then x := xn for the minimal n satisfies
the conclusion of the theorem:
Otherwise p(xn) is bounded by 1 and increasing by ( 3 ), hence a Cauchy-sequence.
By ( 3 ) we then get that (xn) is a Cauchy-sequence. So let x∞ be its limit.
If x∞ = 0, then xn = 0, hence Mn = 0 and Mn = {0}. Thus f(y) > p(y)
for all p(y) ≤ 1 and so f would not be differentiable. So 0 < p(x∞) ≤ 1 and
f(x∞) ≤ p(x∞). Since f is Fréchet-differentiable at x∞ there exists a δ > 0 such
that

f(x∞ + u)− f(x∞)− f ′(x∞)(u) ≤ εp(u)/8 for all p(u) ≤ δ.
Without loss of generality let δ ≤ 1 and δ ≤ 2 p(x∞). By 13.23.4 applied to
x := x∞/p(x∞) and δ := εδ/8p(x∞) there exists a h such that p(h) ≤ 1 and
p(x + th) ≥ p(x) + ε|t| − εδ/8p(x∞) for all t = s/p(x∞) with |s| ≤ p(x∞), i.e.
p(x∞ + sh) ≥ p(x∞) + ε|s| − εδ/8. Now let s := − sign(f ′(x∞)(h)) δ/2. Then
p(sh) ≤ |s| = δ/2 and hence

( 1 ) p(x∞ + sh) > p(x∞) + εδ/8 ≥ f(x∞) + εp(sh)/8 ≥ f(x∞ + sh),

( 2 ) p(x∞ + sh− x∞) < δ ≤ 1,

( 3 ) p(x∞ + sh)− p(x∞) > εδ/8 > εp(sh)/8.

Since f and p are continuous, we have x∞ + sh ∈ Mn for large n and hence
Mn ≥ p(x∞ + s h− xn). From p(x∞ + sh− x∞) > εδ/8 we get Mn > εδ/8 and so
p(xn+1 − xn) > εδ/16 by ( 4 ) contradicts the convergence of xn.

14.10. Proposition. Let E be a Banach-space with densE < densE′. Then there
is an equivalent rough norm on E.

Proof. The idea is to describe the unit ball of a rough norm as intersection of half-
spaces {x ∈ E : x∗(x) ≤ 1} for certain functionals x∗ ∈ E′. The fewer functionals
we use the more ‘corners’ the unit ball will have, but we have to use sufficiently
many in order that this ball is bounded and hence that its Minkowski-functional is
an equivalent norm. We temporarily call a set X large, if and only if |X| > dens(E)
and small otherwise. For x ∈ E and ε > 0 let Bε(x) := {y ∈ E : ‖x − y‖ ≤ ε}.
Now we choose using Zorn’s lemma a subset D ⊆ E′ maximal with respect to the
following conditions:

(1) 0 ∈ D;
(2) x∗ ∈ D ⇒ −x∗ ∈ D;
(3) x∗, y∗ ∈ D, x∗ 6= y∗ ⇒ ‖x∗ − y∗‖ > 1.

Note that D is then also maximal with respect to ( 3 ) alone, since otherwise, we
could add a point x∗ with ‖x∗−y∗‖ > 1 for all y∗ ∈ D and also add the point −x∗,
and obtain a larger set satisfying all three conditions.
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14. Smooth Bump Functions 14.10

Claim. D∞ :=
⋃
n∈N

1
nD is dense in E′, and hence |D∞| ≥ dens(E′):

Assume indirectly, that there is some x∗ ∈ E′ and n ∈ N with B1/n(x∗) ∩ D∞ =
∅. Then B1(nx∗) ∩ D = ∅ and hence we may add x∗ to D, contradicting the
maximality.

Without loss of generality we may assume that D is at least countable. Then |D| =
|
⋃
n∈N

1
nD| ≥ dens(E′) > dens(E), i.e. D is large. Since D =

⋃
n∈ND ∩Bn(0), we

find some n such thatD∩Bn(0) is large. Let y∗ ∈ E′ be arbitrary and w∗ := 1
4n+2y

∗.
For every x∗ ∈ D there is a z∗ ∈ 1

2D such that ‖x∗ + w∗ − z∗‖ ≤ 1
2 (otherwise

we could add 2(x∗ + w∗) to D). Thus we may define a mapping D → 1
2D by

x∗ 7→ z∗. This mapping is injective, since ‖x∗j +w∗− z∗‖ ≤ 1
2 for j ∈ {1, 2} implies

‖x∗1 − x∗2‖ ≤ 1 and hence x∗1 = x∗2. If we restrict it to the large set D ∩ Bn(0) it
has image in 1

2D ∩Bn+1/2(w∗), since ‖z∗ −w∗‖ ≤ ‖z∗ + x∗ −w∗‖+ ‖x∗‖ ≤ 1
2 + n.

Hence also 1
4(2n+1)D ∩B1/4(y∗) = 1

4n+2
( 1

2D ∩Bn+1/2(w∗)
)

is large.

In particular for y∗ := 0 and 1/4 replaced by 1 we get that A := 1
4(2n+1)D ∩B1(0)

is large. Now let

U :=
{
x ∈ E : ∃A0 ⊆ A small,∀x∗ ∈ A \A0 : x∗(x) ≤ 1

}
.

=
{
x ∈ E : {x∗ ∈ A : x∗(x) > 1} is small

}
.

Since A is symmetric, the set U is absolutely convex (use that the union of two
small exception sets is small). It is a 0-neighborhood, since {x : ‖x‖ ≤ 1} ⊆ U
(x∗(x) ≤ ‖x∗‖ · ‖x‖ ≤ ‖x‖ ≤ 1 for x∗ ∈ A). It is bounded, since for x ∈ E we may
find by Hahn-Banach an x∗ ∈ E′ with x∗(x) = ‖x‖ and ‖x∗‖ = 1. For all y∗ in the
large set A∩B1/4( 3

4x
∗) we have y∗(x) = 3

4x
∗(x) +

(
y∗− 3

4x
∗)(x) ≥ 3

4‖x‖−
1
4‖x‖ ≥

1
2‖x‖. For ‖x‖ > 2 we thus get x /∈ U .

Now let σ be the Minkowski-functional generated by U and σ∗ the dual norm on
E′. Let ∆ ⊆ E be a small dense subset. Then

{
x∗ ∈ A : σ∗(x∗) > 1

}
=
⋃
x∈∆

⋃
n∈N

{
x∗ ∈ A : x∗(x) > σ(x) + 1

n

}
,

since σ∗(x∗) := supx
x∗(x)
σ(x) > 1 for x∗ ∈ A implies that there exists an x ∈ ∆ with

x∗(x) > σ(x). So this set is small, since ∆ is small and each set of the union is
small by construction of σ(x) = inf

{
λ > 0 : {x∗ ∈ A : x∗(x) > λ} is small

}
. Thus

A1 := {x∗ ∈ A : σ∗(x∗) ≤ 1} is large.

Now let ε := 1
8(2n+1) , let x ∈ E, and let 0 < η < ε. We may choose two different

x∗i ∈ A1 for i ∈ {1, 2} with x∗i (x) > σ(x) − η2/2 = sup{x∗(x) : σ∗(x∗) ≤ 1} −
η2/2. This is possible, since this is true for all but a small set of x∗ ∈ A. Thus
σ∗(x∗1 − x∗2) ≥ ‖x∗1 − x∗2‖ > 2ε, and hence there is an h ∈ E with σ(h) = 1 and
(x∗1 − x∗2)(h) > 2ε. Let now t > 0. Then

σ(x+ th) ≥ x∗1(x+ th) = x∗1(x) + tx∗1(h) > σ(x)− η2

2
+ tx∗1(h),

σ(x− th) ≥ x∗2(x− th) > σ(x)− η2

2
− tx∗2(h).
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14.12 14. Smooth Bump Functions

Furthermore σ(x) ≥ σ(x+ th)− tσ′(x+ th)(h) implies

σ′(x+ th)(h) ≥ σ(x+ th)− σ(x)
t

> x∗1(h)− η2

2t
,

−σ′(x− th)(h) ≥ −x∗2(h)− η2

2t
.

Adding the last two inequalities gives

σ′(x+ th)(h)− σ′(x− th)(h) ≥ (x∗2 − x∗1)(h)− η2

t
> ε,

since (x∗2 − x∗1)(h) > 2ε and we choose t < η such that η2

t < ε.

14.11. Results. Spaces which are not smoothly regular. For Banach spaces
one has the following results:

(1) [16]. By 14.9 no Fréchet-differentiable bump function exists on C[0, 1] and
on `1. Hence, most infinite dimensional C∗-algebras are not regular for 1-
times Fréchet-differentiable functions, in particular those for which a normal
operator exists whose spectrum contains an open interval, hence have C[0, 1]
as subspace.

(2) [83]. If densE < densE∗ then no C1-bump function exists. This follows
from 14.10 , 14.9 , and 14.7 . See also 13.24.2 .

(3) [56]. A norm is called strongly rough if and only if there exists an ε >
0 such that for every x with ‖x‖ = 1 there exists a unit vector y with
limt↘0

‖x+ty‖+‖x−ty‖−2‖x‖
t ≥ ε. The usual norm on `1(Γ) is strongly rough,

if Γ is uncountable. There is however an equivalent non-rough norm on `1(Γ)
with no point of Gâteaux-differentiability. If a Banach space has Gâteaux
differentiable bump functions then it does not admit a strongly rough norm.

(4) [27]. On `1(Γ) with uncountable Γ there is not even a Gâteaux differentiable
continuous bump function.

(5) [16]. E < `p, dimE = ∞: If p = 2n + 1 then E is not Dp-regular. If
p /∈ N then E is not S-regular, where S denotes the C [p]-functions whose
highest derivative satisfies a Hölder like condition of order p − [p] but with
o( ) instead of O( ).

14.12. Results.

(1) [28]. If c0(Γ) → E → F is a short exact sequence of Banach spaces and F

has Ck-bump functions then also E has them. Compare with 16.19 .
(2) [94] If a Banach space E and its dual E∗ admit C2-bump functions, then E

is linearly homeomorphic to a Hilbert space. Compare with 13.18.7 .
(3) Smooth bump functions are not inherited by short exact sequences. Compare

with 13.18.8 .

Notes. ( 1 ) As in 13.17.3 one chooses x∗a ∈ E∗ with x∗a|c0(Γ) = eva. Let g be a
smooth bump function on E/F and h ∈ C∞(R, [0, 1]) with compact support and
equal to 1 near 0. Then f(x) := g(x + F )

∏
a∈Γ h(x∗a(x)) is the required bump

function.

( 3 ) Use the example mentioned in 13.18.6 , and apply ( 2 ).
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Open problems

Is the product of C∞-regular convenient vector spaces again C∞-regular? Beware
of the topology on the product!

Is every quotient of any S-regular space again S-regular?
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15.3 14. Smooth Bump Functions

15. Functions with Globally Bounded Derivatives

In many problems (like Borel’s theorem 15.4 , or the existence of smooth functions
with given carrier 15.3 ) one uses in finite dimensions the existence of smooth
functions with bounded derivatives. In infinite dimensions Ck-functions have lo-
cally bounded k-th derivatives, but even for bump functions this need not be true
globally.

15.1. Definitions

For normed spaces we use the following notation: CkB := {f ∈ Ck : ‖f (k)(x)‖ ≤
B for all x ∈ E} and Ckb :=

⋃
B>0 C

k
B . For general convenient vector spaces we

may still define C∞b as those smooth functions f : U → F for which the image
dkf(U) of each derivative is bounded in the space Lksym(E,F ) of bounded symmetric
multilinear mappings.

Let LipkK denote the space of Ck-functions with global Lipschitz-constant K for
the k-th derivatives and Lipkglobal :=

⋃
K>0 LipkK . Note that CkK = Ck ∩ Lipk−1

K .

15.2. Lemma. Completeness of Cn. Let fj be Cn-functions on some Banach
space such that f (k)

j converges uniformly on bounded sets to some function fk for
each k ≤ n. Then f := f0 is Cn, and f (k) = fk for all k ≤ n.

Proof. It is enough to show this for n = 1. Since f ′n → f1 uniformly, we have that
f1 is continuous, and hence

∫ 1
0 f

1(x+ t h)(h) dt makes sense and

fn(x+ h)− fn(x) =
∫ 1

0
f ′n(x+ t h)(h) dt→

∫ 1

0
f1(x+ t h)(h) dt

for x and h fixed. Since fn → f pointwise, this limit has to be f(x + h) − f(x).
Thus we have

‖f(x+ h)− f(x)− f1(x)(h)‖
‖h‖

= 1
‖h‖

∥∥∥∫ 1

0
(f1(x+ t h)− f1(x))(h) dt

∥∥∥
≤
∫ 1

0
‖f1(x+ t h)− f1(x))‖ dt

which goes to 0 for h→ 0 and fixed x, since f1 is continuous. Thus, f is differen-
tiable and f ′ = f1.

15.3. Proposition. When are closed sets zero-sets of smooth functions.
[132]. Let E be a separable Banach space and n ∈ N. Then E has a Cnb -bump
function if and only if every closed subset of E is the zero-set of a Cn-function.

For n =∞ and E a convenient vector space we still have (⇒), provided all Lk(E;R)
satisfy the second countability condition of Mackey, i.e. for every countable
family of bounded sets Bk there exist tk > 0 such that

⋃
k tk Bk is bounded.

Proof. (⇒) Suppose first that E has a Cnb -bump function. Let A ⊆ E be closed and
U := E \ A be the open complement. For every x ∈ U there exists an fx ∈ Cnb (E)
with fx(x) = 1 and carr(fx) ⊆ U . The family of carriers of the fx is an open
covering of U . Since E is separable, those points in a countable dense subset that
lie in U are dense in the metrizable space U . Thus, U is Lindelöf, and consequently
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we can find a sequence of points xn such that for the corresponding functions
fn := fxn the carriers still cover U . Now choose constants tn > 0 such that
tn · sup{‖f (j)

n (x)‖ : x ∈ E} ≤ 1
2n−j for all j < n. Then f :=

∑
n tn fn converges

uniformly in all derivatives, hence represents by 15.2 a Cn-function on E that
vanishes on A. Since the carriers of the fn cover U , it is strictly positive on U , and
hence the required function has as 0-set exactly A.

(⇐) Consider a vector a 6= 0, and let A := E \
⋃
n∈N{x : ‖x− 1

2n a‖ <
1

2n+1 }. Since
A is closed there exists by assumption a Cn-function f : E → R with f−1(0) = A
(without loss of generality we may assume f(E) ⊆ [0, 1]). By continuity of the
derivatives we may assume that f (n) is bounded on some neighborhood U of 0.
Choose n so large that D := {x : ‖x − 1

2n a‖ <
1

2n } ⊆ U , and let g := f on A ∪D
and 0 on E \D. Then f ∈ Cn and f (n) is bounded. Up to affine transformations
this is the required bump function.

15.4. Borel’s theorem. [132]. Suppose a Banach space E has C∞b -bump func-
tions. Then every formal power series with coefficients in Lnsym(E;F ) for another
Banach space F is the Taylor-series of a smooth mapping E → F .

Moreover, if G is a second Banach space, and if for some open set U ⊆ G we are
given bk ∈ C∞b (U,Lksym(E,F )), then there is a smooth f ∈ C∞(E × U,F ) with
dk(f( , y))(0) = bk(y) for all y ∈ U and k ∈ N. In particular, smooth curves can be
lifted along the mapping C∞(E,F )→

∏
k L

k
sym(E;F ).

Proof. Let ρ ∈ C∞b (E,R) be a C∞b -bump function, which equals 1 locally at 0.
We shall use the notation bk(x, y) := bk(y)(xk). Define

fk(x, y) := 1
k!
bk(x, y) ρ(x)

and

f(x, y) :=
∑
k≥0

1
tkk
fk(tk · x, y)

with appropriately chosen tk > 0. Then fk ∈ C∞(E × U,F ) and fk has carrier
inside of carr(ρ) × U , i.e. inside {x : ‖x‖ < 1} × U . For the derivatives of bk we
have

∂j1∂
i
2bk(x, y)(ξ, η) = k (k − 1) . . . (k − j) (dibk(y)(η))(xk−j , ξj).

Hence, for ‖x‖ ≤ 1 this derivative is bounded by

(k)j sup
y∈U
‖dibk(y)‖L(F,Lksym(E;G)),

where (k)j := k(k− 1) . . . (k− j). Using the product rule we see that for j ≥ k the
derivative ∂j1∂i2fk of fk is globally bounded by∑

l≤k

(
j

l

)
sup{‖ρ(j−l)(x)‖ : x ∈ E} (k)l sup

y∈U
‖dibk(y)‖ <∞.

The partial derivatives of f would be

∂j1∂
i
2fk(x, y) =

∑
k

tjk
tkk
∂j1∂

i
2fk(tkx, y).
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We now choose the tk ≥ 1 such that these series converge uniformly. This is the
case if,

1
tk−jk

sup{‖∂j1∂i2fk(x, y)‖ : x ∈ E, y ∈ U} ≤

≤ 1
t
k−(j+i)
k

sup{‖∂j1∂i2fk(x, y)‖ : x ∈ E, y ∈ U} ≤ 1
2k−(j+i) ,

and thus if

tk ≥ 2. sup{‖∂j1∂i2fk(x, y)‖
1

k−(j+i) : x ∈ E, y ∈ U, j + i < k}.

Since we have ∂j1fk(0, y)(ξ) = 1
k! (k)jbk(y)(0k−j , ξj) ρ(0) = δjk bk(y), we conclude

the desired result ∂j1f(0, y) = bk(y).

Remarks on Borel’s theorem.

(1) [25]. Let E be a strict inductive limit of a non-trivial sequence of Fréchet
spaces En. Then Borel’s theorem is wrong for f : R → E. The idea is to
choose bn = f (n)(0) ∈ En+1 \En and to use that locally every smooth curve
has to have values in some En.

(2) [25]. Let E = RN. Then Borel’s theorem is wrong for f : E → R. In
fact, let bn : E × . . . × E → R be given by bn := prn⊗ · · · ⊗ prn. Assume
f ∈ C∞(E,R) exists with f (n)(0) = bn. Let fn be the restriction of f to the
n-th factor R in E. Then fn ∈ C∞(R,R) and f

(n)
n (0) = 1. Since f ′ : Rn →

(Rn)′ = R(N) is continuous, the image of B := {x : |xn| ≤ 1 for all n} in
R(N) is bounded, hence contained in some RN−1. Since fN is not constant
on the interval (−1, 1) there exists some |tN | < 1 with f ′N (tN ) 6= 0. For
xN := (0, . . . , 0, tN , 0, . . . ) we obtain

f ′(xN )(y) = f ′N (tN )(yN ) +
∑
i6=N

ai yi,

a contradiction to f ′(xn) ∈ RN−1.
(3) [25] showed that Borel’s theorem is true for mappings f : E → F , where

E has a basis of Hilbert-seminorms and for any countable family of 0-
neighborhoods Un there exist tn > 0 such that

⋂∞
n=1 tn Un is a 0-neighborhood.

(4) If theorem 15.4 would be true for G =
∏
k L

k
sym(E;F ) and bk = prk, then

the quotient mapping C∞(E,F ) → G =
∏
k L

k
sym(E;F ) would admit a

smooth and hence a linear section. This is well know to be wrong even for
E = F = R, see [75, 21.5].

15.5. Proposition. Hilbert spaces have C∞b -bump functions. [132] If the
norm is given by the n-th root of a homogeneous polynomial b of even degree n, then
x 7→ ρ(b(xn)) is a C∞b -bump function, where ρ : R→ R is smooth with ρ(t) = 1 for
t ≤ 0 and ρ(t) = 0 for t ≥ 1.

Proof. As before in the proof of 15.4 we see that the j-th derivative of x 7→ b(xn)
is bounded by (n)j on the closed unit ball. Hence, by the chain-rule and the
global boundedness of all derivatives of ρ separately, the composite has bounded
derivatives on the unit ball, and since it is zero outside, even everywhere. Obviously,
ρ(b(0)) = ρ(0) = 1.
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In [17] it is shown that Lp is Lipnglobal-smooth for all n if p is an even integer and
is Lip[p−1]

global-smooth otherwise. This follows from the fact (see loc. cit., p. 140) that
d(p+1)‖x‖p = 0 for even integers p and∥∥∥dk‖x+ h‖p − dk‖x‖p

∥∥∥ ≤ p!
k!
‖h||p−k

otherwise, cf. 13.13 .

15.6. Estimates for the remainder in the Taylor-expansion. The Taylor
formula of order k of a Ck+1-function is given by

f(x+ h) =
k∑
j=0

1
j!
f (j)(x)(hj) +

∫ 1

0

(1− t)k

k!
f (k+1)(x+ th)(hk+1) dt,

which can easily be seen by repeated partial integration of
∫ 1

0 f
′(x + th)(h) dt =

f(x+ h)− f(x).

For a C2
B function we have

|f(x+ h)− f(x)− f ′(x)(h)| ≤
∫ 1

0
(1− t)‖f (2)(x+ th)‖ ‖h‖2 dt ≤ B 1

2!
‖h‖2.

If we take the Taylor formula of f up to order 0 instead, we obtain

f(x+ h) = f(x) +
∫ 1

0
f ′(x+ th)(h) dt

and usage of f ′(x)(h) =
∫ 1

0 f ′(x)(h) dt gives

|f(x+ h)− f(x)− f ′(x)(h)| ≤
∫ 1

0

‖f ′(x+ th)− f ′(x)‖
‖th‖

‖h‖2 dt ≤ B 1
2!
‖h‖2,

so it is in fact enough to assume f ∈ C1 with f ′ satisfying a Lipschitz-condition
with constant B.

For a C3
B function we have

|f(x+ h)− f(x)− f ′(x)(h)− 1
2
f ′′(x)(h2)| ≤

≤
∫ 1

0

(1− t)2

2!
‖f (3)(x+ th)‖ ‖h‖3 dt ≤ B 1

3!
‖h‖3.

If we take the Taylor formula of f up to order 1 instead, we obtain

f(x+ h) = f(x) + f ′(x)(h) +
∫ 1

0
(1− t) f ′′(x+ th)(h2) dt,

and using 1
2f
′′(x)(h2) =

∫ 1
0 (1− t) f ′′(x)(h2) dt we get

|f(x+ h)− f(x)− f ′(x)(h)− 1
2
f ′′(x)(h2)| ≤

≤
∫ 1

0
(1− t)t ‖f

′′(x+ th)− f ′′(x)‖
‖th‖

‖h‖3 dt ≤ B 1
3!
‖h‖3.

Hence, it is in fact enough to assume f ∈ C2 with f ′′ satisfying a Lipschitz-condition
with constant B.

Andreas Kriegl , Univ.Wien, June 30, 2017 179



15.8 15. Functions with Globally Bounded Derivatives

Let f ∈ CkB be flat of order k at 0. Applying ‖f(h)− f(0)‖ = ‖
∫ 1

0 f
′(th)(h) dt‖ ≤

sup{‖f ′(th)‖ : t ∈ [0, 1]} ‖h‖ to f (j)( )(h1, . . . , hj) gives using ‖f (k)(x)‖ ≤ B induc-
tively

‖f (k−1)(x)‖ ≤ B · ‖x‖

‖f (k−2)(x)‖ ≤
∫ 1

0
‖f (k−1)(tx)(x, . . . )‖ dt ≤ B

∫ 1

0
t dt ‖x‖2 = B

2
‖x‖2

...

‖f (j)(x)‖ ≤ B

(k − j)!
‖x‖k−j .

15.7. Lemma. Lip1
global-functions on Rn. [132]. Let n := 2N and E = Rn with

the ∞-norm. Suppose f ∈ Lip1
M (E,R) with f(0) = 0 and f(x) ≥ 1 for ‖x‖ ≥ 1.

Then M ≥ 2N .

The idea behind the proof is to construct recursively a sequence of points xk :=∑
j<k σjhj of norm k

N (starting at x0 = 0), such that the increment along the
segment is as small as possible. In order to evaluate this increment one uses the
Taylor-formula and chooses the direction hk such that the derivative at xk vanishes.

Proof. Let A be the set of all edges of the unit-sphere, i.e.

A :=
{
x : xi = ±1 for all i except one i0 and |xi0 | ≤ 1

}
.

Then A is symmetric. Let x ∈ E be arbitrary. We want to find h ∈ A with
f ′(x)(h) = 0. By permuting the coordinates we may assume that i 7→ |f ′(x)(ei)|
is monotone increasing. For 1 ≤ i < n we choose recursively hi ∈ {±1} such that∑
j≤i h

j f ′(x)(ej) is an alternating sum. Then |
∑
j≤i f

′(x)(ej)hj | ≤ |f ′(x)(ei)|.
Finally, we may choose |hn| ≤ 1 such that f ′(x)(h) =

∑n
j=1 h

j f ′(x)(ej) = 0.

Now we choose inductively hi ∈ 1
N A and σi ∈ {±1} such that f ′(xi)(hi) = 0 for

xi :=
∑
j<i σjhj and xi having at least 2N−i coordinates equal to i

N : By induction
hypothesis at least 2N−i coordinates of xi are i

N . Among those coordinates all but
at most 1 of the hi are ± 1

N . Now let σi be the sign which occurs more often and
hence at least 2N−i/2 times. Then those 2N−(i+1) many coordinates of xi+1 :=
xi + σi hi are i+1

N .

In particular, ‖xi‖ = i
N for i ≤ N , since at least one coordinate has this value.

Furthermore we have by 15.6

1 ≤
∣∣f(xN )− f(x0)

∣∣ ≤ N−1∑
k=0

∣∣∣f(xk+1)− f(xk)− f ′(xk)(hk)
∣∣∣

≤
N−1∑
k=0

M

2
‖hk‖2 ≤ N

M

2
1
N2 ,

hence M ≥ 2N .

15.8. Corollary. c0 is not Lip1
global-regular. [132]. There is no differentiable

bump function on c0 with uniformly continuous derivative.
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Proof. Suppose there exists an f ∈ Lip1
global with f(0) = 1 and f(x) = 0 for all

‖x‖ ≥ 1. Then the previous lemma applied to 1 − f restricted to N -dimensional
subspaces shows that the Lipschitz constant M of the derivative has to be greater
or equal to N for all N , a contradiction.

This shows even that there exists no differentiable bump function on c0(A) with
uniformly continuous derivative: Otherwise there would exist an N ∈ N such that

|f(x+ h)− f(x)− f ′(x)h| ≤
∫ 1

0
‖f ′(x+ t h)− f ′(x)‖ ‖h‖ dt ≤ 1

2‖h‖,

for all ‖h‖ ≤ 1
N . Hence, the estimation in the proof of 15.7 would give 1 ≤

N 1
2

1
N = 1

2 , a contradiction.

15.9. Positive results on Lip1
global-functions. [132].

(1) Every closed subset of a Hilbert space is the zero-set of a Lip1
global-function.

(2) For every two closed subsets of a Hilbert space which have distance d > 0
there exists a Lip1

4/d2 -function which has value 0 on one set and 1 on the
other.

(3) Whitney’s extension theorem is true for Lip1
global-functions on closed subsets

of Hilbert spaces.
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16. Smooth Partitions of Unity and Smooth Normality

16.1. Definitions

We say that a Hausdorff space X is smoothly normal with respect to a subalgebra
S ⊆ C(X,R) or S-normal, if for two disjoint closed subsets A0 and A1 of X there
exists a function f : X → R in S with f |Ai = i for i = 0 and i = 1. If an algebra
S is specified, then by a smooth function we will mean an element of S. Otherwise
it is a C∞-function.

A S-partition of unity on a space X is a set F of smooth functions f : X → R
which satisfy the following conditions:

(1) For all f ∈ F and x ∈ X one has f(x) ≥ 0.
(2) The set {carr(f) : f ∈ F} of all carriers is a locally finite covering of X.
(3) The sum

∑
f∈F f(x) equals 1 for all x ∈ X.

Since a family of open sets is locally finite if and only if the family of the closures
is locally finite, the foregoing condition ( 2 ) is equivalent to:

( 2 ’) The set {supp(f) : f ∈ F} of all supports is a locally finite covering of X.

The partition of unity is called subordinated to an open covering U of X, if for
every f ∈ F there exists an U ∈ U with carr(f) ⊆ U .

We say that X is smoothly paracompact with respect to S or S-paracompact if every
open cover U admits a S-partition F of unity subordinated to it.

For smoothly paracompact spaces the partition of unity can then even be chosen
in such a way that for every f ∈ F there exists a U ∈ U with supp(f) ⊆ U . This is
seen as follows. Since the family of carriers is a locally finite open refinement of U ,
the topology of X is paracompact. So we may find a finer open cover {Ũ : U ∈ U}
such that the closure of Ũ is contained in U for all U ∈ U , see [20, IX.4.3]. The
partition of unity subordinated to this finer cover has the support property for the
original one.

Lemma. Let S be an algebra which is closed under sums of locally finite families
of functions. If F is an S-partition of unity subordinated to an open covering U ,
then we may find an S-partition of unity (fU )U∈U with carr(fU ) ⊆ U .

Proof. For every f ∈ F we choose a Uf ∈ U with carr(f) ∈ Uf . For U ∈ U put
FU := {f : Uf = U} and let fU :=

∑
f∈FU f ∈ S.

16.2. Proposition. Characterization of smooth normality. Let X be a
Hausdorff space with S ⊆ C(X,R) as in 14.1 Consider the following statements:

(1) X is S-normal;
(2) For any two closed disjoint subsets Ai ⊆ X there is a function f ∈ S with

f |A0 = 0 and 0 /∈ f(A1);
(3) Every locally finite open covering admits S-partitions of unity subordinated

to it.
(4) For any two disjoint zero-sets A0 and A1 of continuous functions there exists

a function g ∈ S with g|Aj = j for j ∈ {0, 1} and g(X) ⊆ [0, 1];
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(5) For any continuous function f : X → R there exists a function g ∈ S with
f−1(0) ⊆ g−1(0) ⊆ f−1(R \ {1}).

(6) The set S is dense in the algebra of continuous functions with respect to the
topology of uniform convergence;

(7) The set of all bounded functions in S is dense in the algebra of continuous
bounded functions on X with respect to the supremum norm;

(8) The bounded functions in S separate points in the Stone-Čech-compactifica-
tion βX of X.

The statements ( 1 )-( 3 ) are equivalent, and the weaker statements ( 4 )-( 8 ) are
equivalent as well.
If X is metrizable all statements are equivalent.
If every open set is the carrier set of a smooth function then X is S-normal.
If X is S-normal, then it is S-regular.
The space X is S-paracompact if and only if it is paracompact and S-normal.

Proof.
( 1 ) ⇒ ( 2 ) is obvious.

( 2 )⇒( 1 ). By assumption, there is a smooth function f0 with f0|A1 = 0 and
0 /∈ f0(A0), and again by assumption, there is a smooth function f1 with f1|A0 = 0
and 0 /∈ f1({x : f0(x) = 0}). The function f = f1

f0+f1
has the required properties.

( 3 ) ⇒ ( 1 ) Let A0 and A1 be two disjoint closed subset. Then U := {X \A1, X \
A0} admits an S-partition of unity F subordinated to it, and∑

{f ∈ F : carr f ⊆ X \A0}

is the required bump function.

( 1 ) ⇒ ( 3 ) Let U be a locally finite covering of X. Since X is S-normal, its
topology is also normal and therefore for every U ∈ U there exists an open set
VU such that VU ⊆ U and {VU : U ∈ U} is still an open cover. By assumption,
there exist smooth functions gU ∈ S such that VU ⊆ carr(gU ) ⊆ U , cf. 16.1 . The
function g :=

∑
U gU is well defined, positive, and smooth since U is locally finite,

and {fU := gU/g : U ∈ U} is the required partition of unity.

( 4 ) ⇒ ( 5 ) is obvious.

( 5 ) ⇒ ( 4 ) Let Aj := f−1
j (aj) for j ∈ {0, 1} with continuous functions fj . By

replacing fj by (fj − aj)2 we may assume that fj ≥ 0 and Aj = f−1
j (0). Then

(f1 + f2)(x) > 0 for all x ∈ X, since A1 ∩A2 = ∅. Thus, f := f0
f0+f1

is a function in
C(X, [0, 1]) with f |Aj = j for j ∈ {0, 1}. Now we reason as in ( 2 ⇒ 1 ): By ( 5 )
there exists a g0 ∈ S with A0 ⊆ f−1(0) ⊆ g−1

0 (0) ⊆ f−1(R \ {1}) = X \ f−1(1) ⊆
X \A1. By replacing g0 by g2

0 we may assume that g0 ≥ 0.
Applying the same argument to the zero-sets A1 and g−1

0 (0) we obtain a g1 ∈ S
with A1 ⊆ g−1

1 (0) ⊆ X \ g−1
0 (0). Thus, (g0 + g1)(x) > 0, and hence g := g0

g0+g1
∈ S

satisfies g|Aj = j for j ∈ {0, 1} and g(X) ⊆ [0, 1].

( 4 )⇒ ( 6 ) Let f be continuous. Without loss of generality we may assume f ≥ 0
(decompose f = f+− f−). Let ε > 0. Then choose gk ∈ S with image in [0, 1], and
gk(x) = 0 for all x with f(x) ≤ k ε, and gk(x) = 1 for all x with f(x) ≥ (k + 1) ε.
Let k be the largest integer less or equal to f(x)

ε . Then gj(x) = 1 for all j < k, and
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gj(x) = 0 for all j > k. Hence, the sum g := ε
∑
k∈N gk ∈ S is locally finite, and

|f(x)− g(x)| < 2 ε.

( 6 )⇒ ( 7 ) This is obvious, since any function approximating a bounded function
uniformly is itself bounded.

( 7 ) ⇔ ( 8 ) This follows from the Stone-Weierstraß theorem, since obviously the
bounded functions in S form a subalgebra in Cb(X) = C(βX). Hence, it is dense
if and only if it separates points in the compact space βX.

( 7 ) ⇒ ( 5 ) By cutting off f at 0 and at 1, we may assume that f is bounded.
By ( 7 ) there exists a bounded g0 ∈ S with ‖f − g0‖∞ < 1

2 . Let h ∈ C∞(R,R)
be such that h(t) = 0 ⇔ t ≤ 1

2 . Then g := h ◦ g0 ∈ S, and f(x) = 0 ⇒ g0(x) ≤
|g0(x)| ≤ |f(x)| + ‖f − g0‖∞ ≤ 1

2 ⇒ g(x) = h(g0(x)) = 0 and also f(x) = 1 ⇒
g0(x) ≥ f(x)− ‖f − g0‖∞ > 1− 1

2 = 1
2 ⇒ g(x) 6= 0.

If X is metrizable and A ⊆ X is closed, then dist( , A) : x 7→ sup{dist(x, a) : a ∈ A}
is a continuous function with f−1(0) = A. Thus, ( 1 ) and ( 4 ) are equivalent.

Let every open subset be the carrier of a smooth mapping, and let A0 and A1 be
closed disjoint subsets of X. By assumption, there is a smooth function f with
carr(f) = X \A0, hence ( 2 ) is valid, i.e. X is S-normal.

Obviously, every S-normal space is S-regular: Take as second closed set in ( 2 ) a
single point. If we take instead the other closed set as single point, then we have
small zero-sets in the sense of [75, 19.8].

That a space is S-paracompact if and only if it is paracompact and S-normal
follows since ( 1 ⇔ 3 ) and by paracompactness every open covering has a locally
finite refinement.

In [78] it is remarked that in an uncountable product of real lines there are open
subsets, which are not carrier sets of continuous functions.

Corollary. Denseness of smooth functions. Let X be S-paracompact, let F
be a convenient vector space, and let U ⊆ X × F be open such that for all x ∈ X
the set ι−1

x (U) ⊆ F is convex and non-empty, where ιx : F → X × F is given by
y 7→ (x, y). Then there exists an f ∈ S whose graph is contained in U .

Under the following assumption this result is due to [Bonic, Frampton, 1966]: For
U := {(x, y) : p(y − g(x)) < ε(x)}, where g : X → F , ε : X → R+ are continuous
and p is a continuous seminorm on F .

Proof. For every x ∈ X let yx be chosen such that (x, yx) ∈ U . Next choose open
neighborhoods Ux of x such that Ux × {yx} ⊆ U . Since X is S-paracompact there
exists a S-partition of unity F subordinated to the covering {Ux : x ∈ X}. In
particular, for every ϕ ∈ F there exists an xϕ ∈ X with carrϕ ⊆ Uxϕ . Now define
f :=

∑
ϕ∈F yxϕ ϕ. Then f ∈ S and for every x ∈ X we have

f(x) =
∑
ϕ∈F

yxϕ ϕ(x) =
∑

x∈carrϕ
yxϕ ϕ(x) ∈ ι−1

x (U),

since ι−1
x (U) is convex, contains yxϕ for x ∈ carr(ϕ) ⊆ Uxϕ , and ϕ(x) ≥ 0 with

1 =
∑
ϕ ϕ(x) =

∑
x∈carrϕ ϕ(x).
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16.3. Lemma. Lip2-functions on Rn . [132]. Let B ∈ N and A := {x ∈ RN :
xi ≤ 0 for all i and ‖x‖2 ≤ 1}. Suppose that f ∈ C3

B(RN ,R) with f |A = 0 and
f(x) ≥ 1 for all x with dist(x,A) ≥ 1. Then N < B2 + 36B4.

Proof. Suppose N ≥ B2+36B4. Since A is invariant under permutation of coordi-
nates, we may assume that f is symmetric by replacing f with x 7→ 1

N !
∑
σ f(σ∗x),

where σ runs through all permutations, and σ∗ just permutes the coordinates.
Consider the points xj ∈ RN for j = 0, . . . , B2 of the form

xj =
(

1
B , . . . ,

1
B︸ ︷︷ ︸

j

,− 1
B , . . . ,−

1
B︸ ︷︷ ︸

B2−j

, 0, . . . , 0︸ ︷︷ ︸
N−B2

)
.

Then ‖xj‖2 = 1, x0 ∈ A and d(xB2 , A) ≥ 1. Since f is symmetric and yj :=
1
2 (xj + xj+1) has equal (vanishing) coordinates with indices j, B2 + 1, . . . , N , we
have for the partial derivatives ∂jf(yj) = ∂kf(yj) for all k ∈ {B2 +1, . . . , N}. Thus

|∂jf(yj)|2 = 1
N −B2

N∑
k=B2+1

|∂kf(yj)|2 ≤
‖f ′(yj)‖22

36B4 = ‖f
′(yj)‖2

36B4 ≤ 1
36B2 ,

since from f |A = 0 we conclude that f(0) = f ′(0) = f ′′(0) = f ′′′(0) and hence
‖f (j)(y)‖ ≤ B ‖y‖3−j2 for j ≤ 3, see 15.6 .

From
∣∣f(x+ h)− f(x)− f ′(x)(h)− 1

2f
′′(x)(h2)

∣∣ ≤ B 1
3! ‖h‖

3 we conclude that∣∣f(x+ h)− f(x− h)
∣∣ ≤ ∣∣f(x+ h)− f(x)− f ′(x)(h)− 1

2f
′′(x)(h2)

∣∣
+
∣∣f(x− h)− f(x) + f ′(x)(h)− 1

2f
′′(x)(h2)

∣∣
+ 2|f ′(x)(h)|
≤ 2

3! B‖h‖
3
2 + 2|f ′(x)(h)|.

If we apply this to x = yj and h = 1
B ej , where ej denotes the j-th unit vector, then

we obtain
|f(xj+1)− f(xj)| ≤

2
3!
B

1
B3 + 2|∂jf(yj)|

1
B
≤ 2

3B2 .

Summing up yields 1 ≤ |f(xB2)| = |f(xB2)− f(x0)| ≤ 2
3 < 1, a contradiction.

16.4. Corollary. `2 is not Lip2
glob-normal . [132]. Let A0 := {x ∈ `2 : xj ≤

0 for all j and ‖x‖2 ≤ 1} and A1 := {x ∈ `2 : d(x,A) ≥ 1} and f ∈ C3(`2,R) with
f |Aj = j for j ∈ {0, 1}. Then f (3) is not bounded.

Proof. By the preceding lemma a bound B of f (3) must satisfy for f restricted to
RN , that N < B2 + 36B4. This is not for all N possible.

16.5. Corollary. Whitney’s extension theorem is false on `2. [132]. Let
E := R× `2 ∼= `2 and π : E → R be the projection onto the first factor. For subsets
A ⊆ `2 consider the cone CA := {(t, ta) : t ≥ 0, a ∈ A} ⊆ E. Let A := C(A0 ∪ A1)
with A0 and A1 as in 16.4 . Let a jet (f j) on A be defined by f j = 0 on the cone
CA1 and f j(x)(v1, . . . , vj) = h(j)(π(x))(π(v1), . . . , π(vj)) for all x in the cone of
CA0, where h ∈ C∞(R,R) is infinite flat at 0 but with h(t) 6= 0 for all t 6= 0. This
jet has no C3-prolongation to E.

Proof. Suppose that such a prolongation f exists. Then f (3) would be bounded
locally around 0, hence fa(x) := 1− 1

h(a) f(a, ax) would be a C3
B function on `2 for

small a, which is 1 on A1 and vanishes on A0. This is a contradiction to 16.4 .
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So it remains to show that the following condition of Whitney [75, 22.2] is satisfied:∥∥∥f j(y)−
k−j∑
i=0

1
i!
f j+i(x)(y − x)j

∥∥∥ = o(‖x− y‖k−j) for A 3 x, y → a.

Let f j1 := 0 and f j0 (x) := h(j)(π(x))◦(π× . . .×π). Then both are smooth on R⊕`2,
and thus Whitney’s condition is satisfied on each cone separately. It remains to
show this when x is in one cone and y in the other and both tend to 0. Thus,
we have to replace f at some places by f1 and at others by f0. Since h is infinite
flat at 0 we have ‖f j0 (z)‖ = o(‖z‖n) for every n. Furthermore for xi ∈ CAi for
i ∈ {0, 1} we have that ‖x1 − x0‖ ≥ sin(arctan 2− arctan 1) max{‖x0‖, ‖x1‖} since
arctan 2 − arctan 1 is the angle between the rays through the xi and the whole
expression is the distance from the larger point to the ray through the smaller one.
Thus, we may replace f j0 (y) by f j1 (y) and vice versa. So the condition is reduced
to the case, where y and z are in the same cone CAi.

16.6. Lemma. Smoothly regular strict inductive limits. Let E be the strict
inductive limit of a sequence of C∞-normal convenient vector spaces En such that
En ↪→ En+1 is closed and has the extension property for smooth functions. Then
E is C∞-regular.

Proof. Let U be open in E and 0 ∈ U . Then Un := U∩En is open in En. We choose
inductively a sequence of functions fn ∈ C∞(En,R) such that supp(fn) ⊆ Un,
fn(0) = 1, and fn|En−1 = fn−1. If fn is already constructed, we may choose by
C∞-normality a smooth g : En+1 → R with supp(g) ⊆ Un+1 and g|supp(fn) = 1. By
assumption, fn extends to a function f̃n ∈ C∞(En+1,R). The function fn+1 := g·f̃n
has the required properties.

Now we define f : E → R by f |En := fn for all n. It is smooth since any
c ∈ C∞(R, E) locally factors to a smooth curve into some En by 1.8 since a strict
inductive limit is regular by [68, 4.8.1], so f ◦ c is smooth. Finally, f(0) = 1,
and if f(x) 6= 0 then x ∈ En for some n, and we have fn(x) = f(x) 6= 0, thus
x ∈ Un ⊆ U .

For counter-examples for the extension property see [75, 21.7] and 21.11 . However,
for complemented subspaces the extension property obviously holds.

16.7. Proposition. C∞c is C∞-regular. The space C∞c (Rm,R) of smooth func-
tions on Rm with compact support satisfies the assumptions of 16.6 .

Let Kn := {x ∈ Rm : ‖x‖ ≤ n}. Then C∞c (Rm,R) is the strict inductive limit of the
closed subspaces C∞Kn(Rm,R) := {f : supp(f) ⊆ Kn}, which carry the topology of
uniform convergence in all partial derivatives separately. They are nuclear Fréchet
spaces and hence separable, see [53, 11.6.2, p231]. Thus they are C∞-normal by
16.10 below.

In order to show the extension property for smooth functions we prove more gen-
erally that for certain sets A the subspace {f ∈ C∞(E,R) : f |A = 0} is a comple-
mented subspace of C∞(E,R). The first result in this direction is:

16.8. Lemma. [114] The subspace C∞(−∞,0](R,R) := {f ∈ C∞(R,R) : f(t) =
0 for t ≤ 0} of the Fréchet space C∞(R,R) is a direct summand.
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Proof. We claim that the following map is a bounded linear mapping being left
inverse to the inclusion: s(g)(t) := g(t) −

∑
k∈N akh(−t2k)g(−t2k) for t > 0 and

s(g)(t) = 0 for t ≤ 0. Where h : R→ R is a smooth function with compact support
satisfying h(t) = 1 for t ∈ [−1, 1] and (ak) is a solution of the infinite system of
linear equations

∑
k∈N ak(−2k)n = 1 (n ∈ N) (the series is assumed to converge

absolutely). The existence of such a solution is shown in [114] by taking the limit
of solutions of the finite subsystems. Let us first show that s(g) is smooth. For
t > 0 the series is locally around t finite, since −t2k lies outside the support of h
for k sufficiently large. Its derivative (sg)(n)(t) is

g(n)(t)−
∑
k∈N

ak(−2k)n
n∑
j=0

(
n

j

)
h(j)(−t2k)g(n−j)(−t2k)

and this converges for t→ 0 towards g(n)(0)−
∑
k∈N ak(−2k)ng(n)(0) = 0. Thus s(g)

is infinitely flat at 0 and hence smooth on R. It remains to show that g 7→ s(g) is a
bounded linear mapping. By the uniform boundedness principle 5.26 it is enough
to show that g 7→ (sg)(t) is bounded. For t ≤ 0 this map is 0 and hence bounded.
For t > 0 it is a finite linear combination of evaluations and thus bounded.

Now the general result:

16.9. Proposition. Let E be a convenient vector space, and let p be a smooth
seminorm on E. Let A := {x : p(x) ≥ 1}. Then the closed subspace {f : f |A = 0}
in C∞(E,R) is complemented.

Proof. Let g ∈ C∞(E,R) be a smooth reparameterization of p with support in
E \ A equal to 1 near p−1(0). By lemma 16.8 , there is a bounded projection
P : C∞(R,R)→ C∞[0,+∞)(R,R). The following mappings are smooth in turn by the
properties of the cartesian closed smooth calculus, see 3.12 :

E × R 3 (x, t) 7→ f(etx) ∈ R

E 3 x 7→ f(e( )x) ∈ C∞(R,R)

E 3 x 7→ P
(
f(e( )x)

)
∈ C∞[0,+∞)(R,R)

E × R 3 (x, r) 7→ P
(
f(e( )x)

)
(r) ∈ R

carr p 3 x 7→
(

x
p(x) , ln(p(x))

)
7→ P

(
f(e( ) x

p(x) )
)(

ln(p(x))
)
∈ R.

So we get the desired bounded linear projection
P̄ : C∞(E,R)→ {f ∈ C∞(E,R) : f |A = 0},

(P̄ (f))(x) := g(x) f(x) + (1− g(x))P
(
f(e( ) x

p(x) )
)(

ln(p(x))
)
,

in fact, x ∈ A ⇒ g(x) = 0, ln(p(x)) ≥ 0 ⇒ P
(
f(e( ) x

p(x) )
)(

ln(p(x))
)

= 0 and
f |A = 0 ⇒ ∀t ≥ 0 : f(et x

p(x) ) = 0 ⇒ P
(
f(e( ) x

p(x) )
)(

ln(p(x))
)

= f
(
eln(p(x)) x

p(x)
)

=
f(x).

16.10. Theorem. Smoothly paracompact Lindelöf. [132]. If X is Lindelöf
and S-regular, then X is S-paracompact. In particular, all nuclear Fréchet spaces
and strict inductive limits of sequences of such spaces with the extension property
for smooth functions are C∞-paracompact. Furthermore, nuclear Silva spaces, see
[75, 52.37], are C∞-paracompact.
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The first part was proved by [17] under stronger assumptions. The importance of
the proof presented here lies in the fact that we need not assume that S is local
and that 1

f ∈ S for f ∈ S. The only things used are that S is an algebra and for
each g ∈ S there exists an h : R→ [0, 1] with h ◦ g ∈ S and h(t) = 0 for t ≤ 0 and
h(t) = 1 for t ≥ 1. In particular, this applies to S = Lippglobal and X a separable
Banach space.

Proof. Let U be an open covering of X.

Claim. There exists a sequence of functions gn ∈ S(X, [0, 1]) such that {carr gn :
n ∈ N} is a locally finite family subordinated to U and {g−1

n (1) : n ∈ N} is a
covering of X.

For every x ∈ X there exists a neighborhood U ∈ U (since U is a covering) and
hence an hx ∈ S(X, [0, 2]) with hx(x) = 2 and carr(hx) ⊆ U (since X is S-regular).
Since X is Lindelöf we find a sequence xn such that {x : hn(x) > 1 : n ∈ N} is
a covering of X (we denote hn := hxn). Now choose an h ∈ C∞(R, [0, 1]) with
h(t) = 0 for t ≤ 0 and h(t) = 1 for t ≥ 1. Set

gn(x) := h(n (hn(x)− 1) + 1)
∏
j<n

h(n (1− hj(x)) + 1).

Note that

h(n (hn(x)− 1) + 1) =

{
0 for hn(x) ≤ 1− 1

n

1 for hn(x) ≥ 1

h(n (1− hj(x)) + 1) =

{
0 for hj(x) ≥ 1 + 1

n

1 for hj(x) ≤ 1

Then gn ∈ S(X, [0, 1]) and carr gn ⊆ carrhn. Thus, the family {carr gn : n ∈ N} is
subordinated to U .

The family {g−1
n (1) : n ∈ N} covers X since for each x ∈ X there exists a minimal

n with hn(x) ≥ 1, and thus gn(x) = 1.

If we could divide in S, then fn := gn/
∑
j gj would be the required partition of

unity (and we do not need the last claim in this strong from).

Instead we proceed as follows. The family {carr gn : n ∈ N} is locally finite: Let
m be such that hm(x) > 1, and take k > m so large that 1 + 1

k < hm(x), and let
Ux := {y : hm(y) > 1 + 1

k}, which is a neighborhood of x. For n ≥ k and y ∈ Ux
we have that hm(y) > 1 + 1

k ≥ 1 + 1
n , hence the (m+ 1)-st factor of gn vanishes at

y, i.e. {n : carr gn ∩ Ux 6= ∅} ⊆ {1, . . . , k − 1}.

Now define fn := gn
∏
j<n(1 − gj) ∈ S. Then carr fn ⊆ carr gn, hence {carr fn :

n ∈ N} is a locally finite family subordinated to U . By induction, one shows that∑
j≤n fj = 1 −

∏
j≤n(1 − gj): In fact

∑
j≤n fj = fn +

∑
j<n fj = gn

∏
j<n(1 −

gj) + 1−
∏
j<n(1− gj) = 1 + (gn − 1)

∏
j<n(1− gj). For every x ∈ X there exists

an n with gn(x) = 1, hence fk(x) = 0 for k > n and
∑∞
j=0 fj(x) =

∑
j≤n fj(x) =

1−
∏
j≤n(1− gj(x)) = 1.

Let us consider a nuclear Silva space. Since each Silva space is the strong dual of
a Fréchet Schwarz space its c∞-topology coincides with the locally convex one by
4.11.2 . Nuclearity implies that there exists a base of (smooth) Hilbert seminorms.

Thus we have C∞-regularity.
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A Silva space is an inductive limit of a sequence of Banach spaces with compact
connecting mappings (see [75, 52.37]), and we may assume that the Banach spaces
are separable by replacing them by the closures of the images of the connecting
mappings, so the topology of the inductive limit is Lindelöf. Therefore, by the first
assertion we conclude that the space is C∞-paracompact.

In order to obtain the statement on nuclear Fréchet spaces we note that these are
separable, see [53, 11.6.2, p231], and thus Lindelöf.

A strict inductive limit of a sequence of nuclear Fréchet spaces with the extension
property for smooth functions is C∞-regular by 16.6 , and it is also Lindelöf for
its c∞-topology, since this is the inductive topological (not locally convex) limit of
the steps.

Remark. In particular, every separable Hilbert space has Lip2
global-partitions

of unity by 15.5 , thus there is such a Lip2
global-partition of functions ϕ subor-

dinated to `2 \ A0 and `2 \ A1, with A0 and A1 mentioned in 16.4 . Hence,
f :=

∑
carrϕ∩A0=∅ ϕ ∈ C2 satisfies f |Aj = j for j = 0, 1. However, f /∈ Lip2

global.
The reason behind this is that Lip2

global is not a sheaf.

Open problem. Classically, one proves the existence of continuous partitions
of unity from the paracompactness of the space. So the question arises whether
theorem 16.10 can be strengthened to: If the initial topology with respect to S
is paracompact, do there exist S-partitions of unity? Or equivalently: Is every
paracompact S-regular space S-paracompact?

16.11. Theorem. Smoothness of separable Banach spaces. Let E be a
separable Banach space. Then the following conditions are equivalent.

(1) E has a C1-norm;
(2) E has C1-bump functions, i.e., E is C1-regular;
(3) The C1-functions separate closed sets, i.e., E is C1-normal;
(4) E has C1-partitions of unity, i.e., E is C1-paracompact;
(5) E has no rough norm, i.e. E is Asplund;
(6) E′ is separable.

Proof. The implications ( 1 ) ⇒ ( 2 ) and ( 4 ) ⇒ ( 3 ) ⇒ ( 2 ) are obviously
true. The implication ( 2 ) ⇒ ( 4 ) is 16.10 . ( 2 ) ⇒ ( 5 ) holds by 14.9 . ( 5 )
⇒ ( 6 ) follows from 14.10 since E is separable. ( 6 ) ⇒ ( 1 ) is 13.22 together
with 13.20 .

A more general result is:

16.12. Result. [55] Let E be a WCG Banach space. Then the following statements
are equivalent:

(1) E is C1-normable;
(2) E is C1-regular;
(3) E is C1-paracompact;
(4) E has norm, whose dual norm is LUR;
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(5) E has a shrinking Markuševič basis, i.e. vectors xi ∈ E and x∗i ∈ E′ with
x∗i (xj) = δi,j and the span of the xi is dense in E and the span of x∗i is
dense in E′.

16.13. Results.

(1) [42] ([129]) Let E′ be a WCG Banach space (or even WCD, see [75, 53.8]).
Then E is C1-regular.

(2) [129] Let K be compact with K(ω1) = ∅. Then C(K) is C1-paracompact.
Compare with 13.18.2 and 13.17.5 .

(3) [43] Let E be a subspace of a WCG Banach space. If E is Ck-regular then
it is Ck-paracompact. This will be shown in 16.18 .

(4) [88] Let E′ be a WCG Banach space. If E is Ck-regular then it is Ck-
paracompact.

16.14. Lemma. Smooth functions on c0(Γ). [121]. The norm-topology of
c0(Γ) has a basis which is a countable union of locally finite families of carriers of
smooth functions, each of which depends locally only on finitely many coordinates.

Proof. The open balls Br := {x : ‖x‖∞ < r} are carriers of such functions: In
fact, similarly to 13.16 we choose a h ∈ C∞(R,R) with h = 1 locally around 0
and carrh = (−1, 1), and define f(x) :=

∏
γ∈Γ h(xγ).

Let

Un,r,q :=
{
Br +

n∑
i=1

qieγi : {γ1, . . . , γn} ⊆ Γ
}

where n ∈ N, r ∈ Q, q ∈ Qn with |qi| > 3r/2 for 1 ≤ i ≤ n. This is the required
countable family.

Claim. The union
⋃
n,r,q Un,r,q is a basis for the topology.

Let x ∈ c0(Γ) and ε > 0. Choose ε
4 ≤ r <

ε
2 such that r 6= |xγ | for all γ (note that

|xγ | ≥ ε/4 only for finitely many γ). Let {γ1, . . . , γn} := {γ : |xγ | ≥ r}. Choose
qi ∈ Q with |qi − xγi | < r and |qi| > 3r/2. Then

x−
n∑
i=1

qi eγi ∈ Br,

and hence

x ∈ Br +
n∑
i=1

qieγi ⊆ x+B2r ⊆ {y : ‖y − x‖∞ < ε}.

Claim. Each family Un,r,q is locally finite.

For given x ∈ c0(Γ), let {γ1, . . . , γm} := {γ : |xγ | > r
4} and assume there exists a

y ∈ (x+B r
4
)∩ (Br +

∑n
i=1 qieβi) 6= ∅. For y ∈ x+B r

4
we have |yγ | < r

2 for all γ /∈
{γ1, . . . , γm} and for y ∈ Br +

∑n
i=1 qi eβi we have |yγ | > r

2 for all γ ∈ {β1, . . . , βn}.
Hence, {β1, . . . , βn} ⊆ {γ1, . . . , γm} and Un,r,q is locally finite.

16.15. Theorem, Smoothly paracompact metrizable spaces . [121]. Let X
be a metrizable smooth space. Then the following are equivalent:

(1) X is S-paracompact, i.e. admits S-partitions of unity.
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(2) X is S-normal.

(3) The topology of X has a basis which is a countable union of locally finite
families of carriers of smooth functions.

(4) There is a homeomorphic embedding i : X → c0(A) for some A (with image
in the unit ball) such that eva ◦ i is smooth for all a ∈ A.

Proof. ( 1 ) ⇒ ( 3 ) Let Un be the cover formed by all open balls of radius 1/n.
By ( 1 ) there exists a partition of unity subordinated to it. The carriers of these
smooth functions form a locally finite refinement Vn. The union of all Vn is clearly
a base of the topology since that of all Un is one.

( 3 ) ⇒ ( 2 ) Let A0 and A1 be two disjoint closed subsets of X. Let furthermore
Un be a locally finite family of carriers of smooth functions such that

⋃
n Un is a

basis. Let W i
n :=

⋃
{U ∈ Un : U ∩Ai = ∅}. This is the carrier of the smooth locally

finite sum of the carrying functions of the U ’s. The family {W i
n : i ∈ {0, 1}, n ∈ N}

forms a countable cover of X: ∀x ∈ X ∃i ∈ {0, 1} : x /∈ Ai, hence ∃n ∃U ∈ Un :
x ∈ U ⊆ X \ Ai, i.e. x ∈ U ⊆ W i

n. By the argument used in the proof of 16.10
we may shrink the W i

n to obtain a locally finite cover {W̃ i
n : i ∈ {0, 1}, n ∈ N} of

X consisting of carriers. Then
⋃
n W̃

0
n is a carrier containing A1 and avoiding A0.

Now use 16.2.2 .

( 2 ) ⇒ ( 1 ) is lemma 16.2 , since metrizable spaces are paracompact.

( 3 ) ⇒ ( 4 ) Let Un be a locally finite family of carriers of smooth functions such
that U :=

⋃
n Un is a basis. For every U ∈ Un let fU : X → [0, 1

n ] be a smooth func-
tion with carrier U . We define a mapping ι : X → c0(U), by ι(x) := (fU (x))U∈U . It
is continuous at x0 ∈ X, since for n ∈ N there exists a neighborhood V of x0 which
meets only finitely many sets U ∈

⋃
k≤2n Uk, and so ‖ι(x)−ι(x0)‖ ≤ 1

n for all x ∈ V
with |fU (x) − fU (x0)| < 1

n for those U : For all x ∈ V ∩ U with U ∈ Uk we either
have k ≤ 2n and hence |fU (x)− fU (x0)| < 1

n or k > 2n and thus ‖fU‖∞ ≤ 1
k <

1
2n .

The mapping i is even an embedding, since for x0 ∈ U ∈ U and x /∈ U we have
‖ι(x)− ι(x0)‖ ≥ fU (x0) > 0, thus ι−1({t : ‖t− ι(x0)‖ < fU (x0)}) ⊆ U .

( 4 ) ⇒ ( 3 ) By 16.14 the Banach space c0(A) has a basis which is a countable
union of locally finite families of carriers of smooth functions, all of which depend
locally only on finitely many coordinates. The pullbacks of all these functions via
ι are smooth on X, and their carriers furnish the required basis.

16.16. Corollary. Hilbert spaces are C∞-paracompact. [121]. Every space
c0(Γ) (for arbitrary index set Γ) and every Hilbert space (not necessarily separable)
is C∞-paracompact.

Proof. The assertion for c0(Γ) is immediate from 16.15.4 . For the Hilbert space
`2(Γ) we use the embedding ι : `2(Γ)→ c0(Γ ∪ {∗}) given by

ι(x)γ =

{
xγ for γ ∈ Γ
‖x‖22 for γ = ∗

This is an embedding: From ‖xn−x‖∞ → 0 and boundedness of ‖xn‖2 we conclude
by Cauchy-Schwarz inequality that 〈y, xn − x〉 → 0 for all y ∈ `2 and hence ‖xn −
x‖22 = ‖xn‖22 + ‖x‖22 − 2〈x, xn〉 → 2‖x‖22 − 2‖x‖22 = 0.
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16.17. Corollary. A countable product of S-paracompact metrizable spaces is
again S-paracompact.

Proof. By theorem 16.15 we have appropriate embeddings ιn : Xn → c0(An)
with images contained in the unit balls. We consider the embedding ι :

∏
nXn →

c0(
⊔
nAn) given by ι(x)a = 1

n ιn(xn) for a ∈ An which has the required properties
for theorem 16.15 . It is an embedding, since ι(xn)→ ι(x) if and only if xnk → xk
for all k (all but finitely many coordinates are small anyhow).

53.13. Definition. Projective Resolution of Identity. Let a “long sequence”
of continuous projections Pα ∈ L(E,E) on a Banach space E for all ordinal numbers
ω ≤ α ≤ densE be given. Recall that dens(E) is the density of E (a cardinal
number, which we identify with the smallest ordinal of same cardinality). Let
Eα := Pα(E) and let Rα := (Pα+1 − Pα)/(‖Pα+1 − Pα‖) or 0, if Pα+1 = Pα. Then
we consider the following properties:

(1) PαPβ = Pβ = PβPα for all β ≤ α.
(2) PdensE = idE .
(3) densPαE ≤ α for all α.

(4) ‖Pα‖ = 1 for all α.
(5)

⋃
β<α Pβ+1E = PαE, or equivalently

⋃
β<αEβ = Eα for every limit ordinal

α ≤ densE.
(6) For every limit ordinal α ≤ densE we have Pα(x) = limβ<α Pβ(x), i.e.

α 7→ Pα(x) is continuous.

(7) Eα+1/Eα is separable for all ω ≤ α < densE.
(8) (Rα(x))α ∈ c0([ω,densE]) for all x ∈ E.
(9) Pα(x) ∈ 〈Pω(x) ∪ {Rβ(x) : ω ≤ β < α}〉.

The family (Pα)α is called projective resolution of identity (PRI ) if it satisfies ( 1 ),
( 2 ), ( 3 ), ( 4 ) and ( 5 ).

It is called separable projective resolution of identity (SPRI ) if it satisfies ( 1 ),
( 2 ), ( 3 ), ( 7 ), ( 8 ) and ( 9 ). These are the only properties used in 53.20 and
they follow for WCD Banach spaces and for duals of Asplund spaces by 53.15 . For
C(K) with Valdivia compact K this is not clear, see 53.18 and 53.19 . However,
we still have 53.21 and in 16.18 we don’t use ( 7 ), but only ( 8 ) and ( 9 ) which
hold also for PRI, see below.

Remark. Note that from ( 1 ) we obtain that P 2
α = Pα and hence ‖Pα‖ ≥ 1, and

Eα := Pα(E) is the closed subspace {x : Pα(x) = x}.

Moreover, PαPβ = Pβ = PβPα for β ≤ α is equivalent to P 2
α = Pα, Pβ(E) ⊆ Pα(E)

and kerPβ ⊇ kerPα.
(⇒) Pβx = PαPβx ∈ Pα(E) and Pαx = 0 implies that Pβx = PβPαx.
(⇐) For x ∈ E there is some y ∈ E with Pβx = Pαy, hence PαPβx = PαPαy =
Pαy = Pβx. And Pβ(1− Pα)x = 0, since (1− Pα)x ∈ kerPα ⊆ kerPβ .

Note that Eα+1/Eα ∼= Rα(E), since Eα ↪→ Eα+1 has Pα|Eα+1 as right inverse, and
so Eα+1/Eα ∼= ker(Pα|Eα+1) = (1− Pα)Pα+1(E) = (Pα+1 − Pα)(E).
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( 5 ) ⇐ ( 9 ), since for x ∈ Eα we have x = Pα(x) and Eω ∪ {Rβ(x) : β < α} ⊆ Eα
for all α.

( 3 ) ⇐ ( 5 ) & ( 7 ) By transfinite induction we get that for successor ordinals
α = β + 1 we have dens(Eα) = dens(Eβ) + dens(Eα/Eβ) = dens(Eβ) ≤ β ≤ α,
since dens(Eα/Eβ) ≤ ω. For limit ordinals it follows from ( 5 ), since dens(Eα) =
dens(

⋃
β<αEβ) = sup{dens(Eβ) : β < α} ≤ sup{β : β < α} = α.

( 5 ) ⇐ ( 6 ) is trivial.

( 6 ) ⇐ ( 4 ) & ( 1 ) & ( 5 ) For every limit ordinal 0 < α ≤ densE and for all
x ∈ E the net (Pβ(x))β<α converges to Pα(x):
Let first x ∈ Pα(E) and ε > 0. By ( 5 ) there exists a γ < α and an xγ ∈ Pγ(E)
with ‖x− xγ‖ < ε. For γ ≤ β < α we have by ( 1 ) that Pβ(xγ) = Pα(xγ) and so

‖Pα(x)− Pβ(x)‖ = ‖Pα(x− xγ) + (Pα(xγ)− Pβ(xγ)) + Pβ(xγ − x)‖
≤ (‖Pα‖+ ‖Pβ‖) ‖x− xγ‖ < 2 ε.

If x ∈ E is arbitrary, then Pα(x) ∈ Pα(E), hence by ( 1 )
Pβ(x) = Pβ(Pα(x))→ Pα(Pα(x)) = Pα(x) for β ↗ α.

( 8 )⇐ ( 1 ) & ( 6 ) For ε > 0 the set {β : β < α, ‖Rβ(x)‖ ≥ ε} is finite: Otherwise
there would be a strictly increasing sequence (βn) such that ‖Rβn(x)‖ ≥ ε and since
‖Pα+1 − Pα‖ ≥ 1 also ‖(Pβn+1 − Pβn)(x)‖ ≥ ε. Let β∞ := supn βn. Then β∞ ≤ α

is a limit ordinal and Pβ∞(x) = limβ<β∞ Pβ(x) according to ( 6 ), a contradiction.

( 9 ) ⇐ ( 6 ) We prove by transfinite induction that Pα(x) is in the closure of the
linear span of Pω(x) ∪ {Rβ(x) : ω ≤ β < α}:
For α = ω this is obviously true. Let now α = β + 1 and assume Pβ(x) is in
the closure of the linear span of Pω(x) ∪ {Rγ(x) : ω ≤ γ < β}. Since Pα(x) =
Pβ(x) + ‖Pα − Pβ‖Rβ(x) we get that Pα(x) is in the closure of the linear span of
Pω(x) ∪ {Rγ(x) : ω ≤ γ < β} ∪Rβ(x) = Pω(x) ∪ {Rγ(x) : ω ≤ γ < α}.
Let now α be a limit ordinal and let Pβ(x) be in the closure of the linear span
of Pω(x) ∪ {Rγ(x) : ω ≤ γ < α} for all β < α. Then by ( 6 ) we get that
Pα(x) = limβ<α Pβ(x) is in this closure as well.

53.19. Remark. The space C([0, α]) has a PRI given by

Pβ(f)(µ) :=

{
f(µ) for µ ≤ β
f(β) for µ ≥ β

.

However, there is no PRI on the hyperplane E := {f ∈ C([0, ω1]) : f(ω1) = 0} of
the space C[0, ω1]. And, in particular, C[0, ω1] is not WCD.

Proof. Obviously, the given Pβ satisfy the properties ( 1 ), ( 2 ), ( 4 ), ( 6 ),
and ( 7 ), from 53.13 . The remaining property ( 4 ) for a PRI in C([0, α]), i.e.
dens(C([0, β])) ≤ β for all ω ≤ β ≤ α, follows by combining [Engelking, 1989,
Exercise 3.4.H.b(]i.e. dens(C(K,R)) is at most the weight of K for infinite compact
K) and [Engelking, 1989, Theorem 3.1.21(]i.e. the weight of K is at most the
cardinality of K).

Assume {Pα : ω ≤ α ≤ ω1} is some PRI on E. Put α0 := ω0. We may find β0 < ω1
with

Pα0E ⊆ Eβ0 := {f ∈ E : f(α) = 0 for α > β0},
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because for each f in dense countable subset D ⊆ Pα0E we find a βf with f(α) = 0
for α ≥ βf . Since Eβ0 is separable, there is an α0 < α1 < ω1 such that

Eβ0 ⊆ Pα1E,

in fact D ⊆ Eβ0 is dense and hence for each f ∈ D and n ∈ N there exists an
αf,n < ω1 and f̃ ∈ Pαf,nE such that ‖f − f̃‖ ≤ 1/n. Then α1 := sup{αf,n : n ∈
N, f ∈ D} fulfills the requirements.

Now we proceed by induction. Let α∞ := supn αn and β∞ := supn βn. Then

Pα∞E =
⋃
n

PαnE = Fβ∞ := {f ∈ E : f(α) = 0 for α ≥ β∞}.

But Fβ∞ is not the image of a norm-1 projection: Suppose P were a norm-1 pro-
jection on Fβ∞ . Let π : E → C(X) be the restriction map, where X := [0, β∞].
It is left inverse to the inclusion ι given by f 7→ f̃ with f̃(γ) = 0 for γ ≥ β∞.
Let P̃ := π ◦ P ◦ ι ∈ L(C(X)). Then P̃ is a norm-1 projection with image
Cβ∞(X) := {f ∈ C[0, β∞] : f(β∞) = 0}. Then C(X) = ker(P̃ ) ⊕ Cβ∞(X).
We pick 0 6= f0 ∈ ker(P̃ ). Since f0 /∈ P̃ (C(X)) = Cβ∞(X) = ker(evβ∞), we
have f0(β∞) 6= 0, and without loss of generality we may assume that f0(β∞) = 1.
For f ∈ C(X) we have that f − P̃ (f) ∈ ker P̃ and hence there is a λf ∈ R
with f − P̃ (f) = λf f0. In fact evaluating at β∞ gives f(β∞) − 0 = λf 1, hence
P̃ (f) = f − f(β∞) f0. Since β∞ is a limit point, there is for each ε > 0 a xε < β∞
with f0(xε) > 1 − ε. Now choose fε ∈ C(X) with ‖fε‖ = 1 = −fε(β∞) = fε(xε).
Then

‖P̃ fε‖∞ = ‖fε − fε(β∞) f0‖∞
≥ |fε(xε)− fε(β∞) f0(xε)|
≥ 1 + 1(1− ε) = 2− ε.

Hence ‖P̃‖ ≥ 2, a contradiction.

Note however that every separable subspace is contained in a 1-complemented sep-
arable subspace.

53.16. Definition. A compact set K is called Valdivia compact if there exists
some set Γ with K ⊆ RΓ (i.e. K is realcompact) and {x ∈ K : carr(x) is countable}
being dense in K.

53.17. Lemma. For a Valdivia compact set K ⊆ RΓ we consider the set E :=
{x ∈ RΓ : carr(x) is countable}. Let µ be the density number of K ∩E. Then there
exists an increasing long sequence of subsets Γα ⊆ Γ for ω ≤ α ≤ µ satisfying:

(i) |Γα| ≤ α;
(ii)

⋃
β<α Γβ = Γα for limit ordinals α;

(iii) Γµ =
⋃
x∈K carr(x);

and such that Kα := QΓα(K) ⊆ K, where QΓ′ : RΓ
� RΓ′ ↪→ RΓ, i.e.

QΓ′(x)γ :=

{
xγ for γ ∈ Γ′

0 for γ /∈ Γ \ Γ′
.

Thus Kα ⊆ K is a retract via QΓα .

Note that for any Valdivia compact set K ⊆ RΓ we may always replace Γ by⋃
x∈K carr(x) =

⋃
x∈K∩E carr(x), and then (iii) says Γµ = Γ.
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Proof. The proof is based on the following claim: Let ∆ ⊆ Γ be a infinite subset.
Then there exists some subset ∆̃ with ∆ ⊆ ∆̃ ⊆ Γ and |∆| = |∆̃| and Q∆̃(K) ⊆ K.

By induction we construct a sequence ∆ =: ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆k ⊆ · · · ⊆ Γ with
|∆k| = |∆0| and Q∆k

({x ∈ K ∩ E : carr(x) ⊆ ∆k+1}) being dense in Q∆k
(K):

(k+1) Since K ∩E is dense in K, we have that Q∆k
(K ∩E) is dense in Q∆k

(K) ⊆
R∆k × {0} ⊆ RΓ. And since the topology of R∆k has a basis of cardinality |∆k|,
there is a subset D ⊆ K ∩ E with |D| ≤ |∆k| and Q∆k

(D) dense in Q∆k
(K). Let

∆k+1 := ∆k ∪
⋃
x∈D carr(x) then ∆k+1 ⊇ ∆k and |∆k+1| = |∆k|. Furthermore

Q∆k
({x ∈ K ∩ E : carr(x) ⊆ ∆k+1}) ⊇ Q∆k

(D) is dense in Q∆k
(K).

Now ∆̃ :=
⋃
k ∆k is the required set. In order to show that Q∆̃(K) ⊆ K let x ∈ K

be arbitrary. Since Q∆k
(x) is contained in the closure of Q∆k

({xk ∈ K ∩ E :
carr(xk) ⊆ ∆k+1}) and hence in the closed set Q∆k

({xk ∈ K : carr(xk) ⊆ Γ̃}).
Thus there is an xk ∈ K with carr(xk) ⊆ Γ̃ and such that x agrees with xk on ∆k.
Thus K 3 xk → Q∆̃(x), since every finite subset of ∆̃ is contained in some ∆k and
outside ∆̃ all xk and Q∆̃(x) are zero. Since K is closed we get Q∆̃(x) ∈ K.

Without loss of generality we may assume that µ > ω. Let {xα : ω ≤ α < µ} be a
dense subset of K ∩ E. Let Γω := carr(xω). By transfinite induction we define

Γα :=

{
(Γβ ∪ carr(xβ))∼ for α = β + 1,⋃
β<α Γβ for limit ordinals α.

Then the Γα satisfy all the requirements.

53.18. Corollary. Let K be Valdivia compact. Then C(K) has a PRI.

Proof. We choose Γα as in 53.17 and set Kα := QΓα(K). Let Qα := QΓα |K .
Then Qα is a continuous retraction.

Kα � o

inclα   

idKα // Kα C(Kα) C(Kα)idoo
lL

Q∗αzz ����
K

Qα

>> >>

C(K)
incl∗α

dddd

Eα_?oo

We have dens(C(RΓα)) = |α|, since we have a base of the topology of this space of
that cardinality. Hence dens(C(Kα)) ≤ |α|. Let Eα := Q∗α(C(Kα)). Then Eα is
a closed subspace of C(K) and 53.13.3 holds. Furthermore Pα := Qα ◦ incl∗α is a
norm-1 projection from C(K) onto Eα. The inclusion Γα ⊆ Γβ for α ≤ β implies
53.13.1 . To see 53.13.5 let ε > 0 and choose a finite covering of Kα by sets

Uj := {x ∈ RΓα : |xγ − xjγ | < δj for all γ ∈ ∆j},

where xj ∈ RΓα , δj > 0 and ∆j ⊆ Γα is finite and such that for x′, x′′ ∈ Uj ∩K
we have |f(x′)− f(x′′)| < ε. Now choose α0 < α such that Γα0 ⊇ ∆j for all of the
finitely many j. Since the Uj cover Kα, we have x ∈ Kα ∩Uj for some j and hence
Qβ(x) ∈ Kα ∩ Uj for all α0 ≤ β < α. Hence |f(x)− f(Qβ(x))| < ε for all x ∈ Kα

and so ‖Pα(f)− Pβ(f)‖ = ‖(1− Pβ)Pα(f)‖ ≤ ε. Thus we have shown that E has
a PRI (Pα)α, with all Eα ∼= C(Kα) and dens(Kα) ≤ |Γα| ≤ α.

53.15. Result. WCD and duals of Asplund spaces have SPRI.
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A Banach space E is called WCD, weakly countably determined , if and only if there
exists a sequence Kn of weak∗-compact subsets of E′′ such that for every

∀x ∈ E ∀y ∈ E′′ \ E ∃n : x ∈ Kn and y /∈ Kn.

Every WCG Banach space is WCD.

53.20. Theorem. [12, 3.16] If E is a realcompact (i.e. non-measurable) Ba-
nach space admitting a SPRI, then there is a non-measurable set Γ and a injective
continuous linear operator T : E → c0(Γ).

Proof. We proof by transfinite induction that for every ordinal α with α ≤ µ :=
dens(E) there is a non-measurable set Γα and an injective linear operator Tα :
Eα := Pα(E)→ c0(Γα) with ‖Tα‖ ≤ 1.

Note that if E is separable, then there are x∗n ∈ E′ with ‖x∗n‖ ≤ 1, and which are
σ(E′, E) dense in the unit-ball of E′. Then T : E → c0(N), defined by T (x)n :=
1
nx
∗
n(x), satisfies the requirements: It is obviously a continuous linear mapping into

c0, and it remains to show that it is injective. So let x 6= 0. By Hahn-Banach
there is an x∗ ∈ E′ with x∗(x) = ‖x‖ and ‖x∗‖ ≤ 1. Hence there is some n with
|(x∗n − x∗)(x)| < ‖x‖ and hence x∗n(x) 6= 0.
In particular we have Tω : Eω → c0(Γω).

For successor ordinals α + 1 we have Eα+1 ∼= Eα × (Eα+1/Eα) ∼= Eα × Rα(E),
where Rα := (Pα+1 − Pα)/‖Pα+1 − Pα‖. Let T : Rα(E) → c0 be the continuous
injection for the, by 53.13.7 , separable space Rα(E) with ‖T‖ ≤ 1. Then we define
Γα+1 := Γα t N and Tα+1 : Eα+1 → c0(Γα+1) by

Tα+1(x)γ :=

{
Tα(Pα(x)

‖Pα‖ )γ for γ ∈ Γα
T (Rα(x))γ for γ ∈ N

.

Now let α be a limit ordinal. We set Γα := Γω t
⊔
ω≤β<α Γβ+1, and define Tα :

Eα := Pα(E)→ c0(Γα) by

Tα(x)γ :=

{
Tω(Pω(x)

‖Pω‖ ) for γ ∈ Γω
Tβ+1(Rβ(x))γ for γ ∈ Γβ+1

We show first that Tα(x) ∈ c0(Γα) for all x ∈ E. So let ε > 0. Then the set
{β : ‖Rβ(x)‖ ≥ ε, β < α} is finite by 53.13.8 .
Obviously Tα is linear and ‖Tα‖ ≤ 1. It is also injective: In fact let Tα(x) = 0
for some x ∈ Eα. Then Rβ(x) = 0 for all β < α and Pω(x) = 0, hence by
x = Pα(x) = 0.
As card(E) is non-measurable, also the smaller cardinal dens(E) is non-measur-
able. Thus the union Γα of non-measurable sets over a non-measurable index set
is non-measurable.

53.21. Corollary. The WCD Banach spaces and the duals of Asplund spaces
continuously and linearly inject into some c0(Γ). The same is true for C(K), where
K is Valdivia compact.

For WCG spaces this is due to [3] and for C(K) with K Valdivia compact it is due
to [Argyros, Mercourakis, Negrepontis, 1988.]

Proof. For WCD and duals of Asplund spaces this follows using 53.15 . For
Valdivia compact spaces K one proceeds by induction on dens(K) and uses the
PRI constructed in 53.18 . The continuous linear injection C(K)→ c0(Γ) is then
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given as in 53.20 for α := dens(K), where Tβ exists for β < α, since Eβ ∼= C(Kβ)
with Kβ Valdivia compact and dens(Kβ) ≤ β < α.

53.22. Theorem. [9] Let T : E → F be a bounded linear surjective mapping
between Banach spaces. Then there exists a continuous mapping S : F → E with
T ◦ S = id.

Proof. By the open mapping theorem there is a constant M0 > 0 such that for all
‖y‖ ≤ 1 there exists an x ∈ T−1(y) with ‖x‖ ≤ M0. In fact there is an M0 such
that B1/M0 ⊆ T (B1) or equivalently B1 ⊆ T (BM0). Let (fγ)γ∈Γ be a continuous
partition of unity on oF := {y ∈ F : ‖y‖ ≤ 1} with diam(supp(fγ)) ≤ 1/2. Choose
xγ ∈ T−1(carr(fγ)) with ‖xγ‖ ≤M0 and for ‖y‖ ≤ 1 set

S0y :=
∑
γ∈Γ

fγ(y)xγ and recursively

Sn+1y := Sny + 1
an
Sn(an(y − TSny)),

where an := 22n .

By induction we show that the continuous mappings Sn : {y : ‖y‖ ≤ 1} → E satisfy
‖y − TSny‖ ≤ 1/an and ‖Sny‖ ≤Mn := M0 ·

∏n−1
k=0(1 + 1/ak).

(n = 0) Obviously ‖S0y‖ ≤
∑
γ fγ(y)‖xγ‖ ≤M0 and

‖y − TS0y‖ =
∥∥∥∑
γ

fγ(y)(y − Txγ)
∥∥∥ ≤ ∑

γ∈Γy

fγ(y) ‖y − Txγ‖ ≤
1
2

= 1
a 0
,

where Γy := carr fγ .

(n + 1) For ‖y‖ ≤ 1 and yn := an(y − TSny) we have ‖yn‖ ≤ 1 by induction
hypothesis. Then

‖Sn+1y‖ ≤ ‖Sny‖+ 1
an
‖Snyn‖ ≤Mn + 1

an
Mn = Mn+1.

Furthermore
‖y − TSn+1y‖ =

∥∥y − TSny − 1
an
TSn(an(y − TSny))

∥∥
≤ 1

an
‖yn − TSnyn‖ ≤ 1

a2
n

= 1
an+1

.

Now (Sn) is Cauchy with respect to uniform convergence on {y : ‖y‖ ≤ 1}: In fact
‖Sn+1y − Sny‖ ≤ 1

an
‖Sn(an(y − TSny))‖ ≤ Mn

an
≤ M∞

an
,

where M∞ := limnMn. Thus S := limn Sn is continuous and ‖y−TSy‖ = limn ‖y−
TSny‖ = 0, i.e. TSy = y. Now S : F → E defined by S(y) := ‖y‖S( y

‖y‖ ) and
S(0) := 0 is the claimed continuous section.

16.18. Corollary. [43]
Let E be a Banach space with a separable projective resolution of identity, see
53.13 . If E is Ck-regular, then it is Ck-paracompact.

Proof. By 53.20 there exists a linear, injective, norm 1 operator T : E → c0(Γ1)
for some Γ1 and by 53.13 projections Pα for ω ≤ α ≤ densE. Let Γ2 := {∆ :
∆ ⊆ [ω,densE), finite}. For ∆ ∈ Γ2 choose a dense sequence (x∆

n )n in the unit
sphere of Pω(E) ⊕

⊕
α∈∆(Pα+1 − Pα)(E) and let y∆

n ∈ E′ be such that ‖y∆
n ‖ = 1

and y∆
n (x∆

n ) = 1. For n ∈ N let π∆
n : x 7→ x− y∆

n (x)x∆
n . Choose a smooth function

h ∈ C∞(E, [0, 1]) with h(x) = 0 for ‖x‖ ≤ 1 and h(x) = 1 for ‖x‖ ≥ 2. Let
Rα := (Pα+1 − Pα)/‖Pα+1 − Pα‖.
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Now define an embedding as follows: Let Γ := N3 × Γ2 t N× [ω,densE) t N t Γ1
and let u : E → c0(Γ) be given by

u(x)γ :=


1

2n+m+l h(mπ∆
n x)

∏
α∈∆ h(lRαx) for γ = (m,n, l,∆) ∈ N3 × Γ2,

1
2m h(mRαx) for γ = (m,α) ∈ N× [ω,densE),
1
2 h( xm ) for γ = m ∈ N,
T (x)α for γ = α ∈ Γ1.

Let us first show that u is well-defined and continuous. We do this only for the
coordinates in the first row (for the others it is easier, the third has locally even
finite support).
Let x0 ∈ E and 0 < ε < 1. Choose n0 with 1/2n0 < ε. Then |u(x)γ | < ε for all
x ∈ X and all α = (m,n, l,∆) with m+ n+ l ≥ n0.
For the remaining coordinates we proceed as follows: We first choose δ < 1/n0. By
53.13.8 there is a finite set ∆0 ∈ Γ2 such that ‖Rαx0‖ < δ/2 for all α /∈ ∆0. For

those α and ‖x− x0‖ < δ/2 we get

‖Rα(x)‖ ≤ ‖Rα(x0)‖+ ‖Rα(x− x0)‖ < δ

2
+ δ

2
= δ,

hence u(x)γ = 0 for all γ = (m,n, l,∆) with m+ n+ l < n0 and ∆ ∩ ([ω,densE) \
∆0) 6= ∅, i.e. ∆ 6⊆ ∆0.

For the remaining finitely many coordinates γ = (m,n, l,∆) with m+n+l < n0 and
∆ ⊆ ∆0 we may choose a δ1 > 0 such that |u(x)γ−u(x0)γ | < ε for all ‖x−x0‖ < δ1.
Thus for ‖x−x0‖ < min{δ/2, δ1} we have |u(x)γ −u(x0)γ | < 2ε for all γ ∈ N3×Γ2
and |u(x0)γ | ≥ ε only for α = (m,n, l,∆) with m+ n+ l < n0 and ∆ ⊆ ∆0.

Since T is injective, so is u. In order to show that u is an embedding let x∞, xp ∈ E
with u(xp) → u(x∞). Then xp is bounded, since for n0 > ‖x∞‖ implies that
h(x∞/n0) = 0 and from h(xp/n0) → h(x∞/n0) we conclude that ‖xp/n0‖ ≤ 2 for
large p.

Now we show that for any ε > 0 there is a finite ε-net for {xp : p ∈ N}: For this
we choose m0 > 2/ε. By 53.13.8 there is a finite set ∆0 and an n0 := n ∈ N such
that ‖m0π

∆0
n (x∞)‖ ≤ 1 and hence h(m0π

∆0
n (x∞)) = 0: In fact by 53.13.9 there

is a finite set ∆0 of α and a linear combination of vectors Rα(x∞) with α ∈ ∆0,
which has distance less than ε from x∞, let δ0 := min{‖Rα(x)‖ : for those α} > 0.
Since the x∆0

n are dense in the unit sphere of PωE ⊕
⊕

α∈∆0
RαE we may choose

an n such that ‖x∞ − ‖x∞‖x∆0
n ‖ < 1

2m0
and hence

‖π∆0
n (x∞)‖ = ‖x∞ − y∆0

n (x∞)x∆0
n ‖

≤
∥∥∥∥x∞ − ‖x∞‖x∆0

n

∥∥∥∥+ ‖x∞‖
∥∥∥∥x∆0

n − y∆0
n (x∆0

n )x∆0
n

∥∥∥∥
+ ‖y∆0

n ‖
∥∥∥∥‖x∞‖x∆0

n − x∞)
∥∥∥∥ ‖x∆0

n ‖

≤ 1
2m0

+ 0 + 1
2m0

= 1
m0

Next choose l0 := l ∈ N such that l0δ0 ≥ 2 and hence ‖l0Rαx∞‖ ≥ l0δ0 ≥ 2 for all
α ∈ ∆0. Then

h(m0π
∆0
n0
xp)

∏
α∈∆0

h(l0Rαxp)→ h(m0π
∆0
n0
x∞)

∏
α∈∆0

h(l0Rαx∞)

and h(l0Rαxp)→ h(l0Rαx∞) = 1 for α ∈ ∆0
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Hence
h(m0π

∆0
n0
xp)→ h(m0π

∆0
n0
x∞) = 0,

and so ‖π∆0
n0
xp‖ ≤ 2/m0 < ε for all large p. Thus d(xp,Rx∆0

n0
) ≤ ε, hence {xp : p ∈

N} has a finite ε-net, since its projection onto the one dimensional subspace Rx∆0
n0

is bounded.

Thus {x∞, xp : p ∈ N} is relatively compact, and hence u restricted to its closure
is a homeomorphism onto the image. So xp → x∞.

Now the result follows from 16.15 .

16.19. Corollary. [28]. Let c0(Γ)→ E → F be a short exact sequence of Banach
spaces and assume F admits Cp-partitions of unity. Then E admits Cp-partitions
of unity.

Proof. Without loss of generality we may assume that the norm of E restricted
to c0(Γ) is the supremum norm. Furthermore there is a linear continuous splitting
T : `1(Γ) → E′ by 13.17.3 and a continuous splitting S : F → E by 53.22 with
S(0) = 0. We put Tγ := T (eγ) for all γ ∈ Γ. For n ∈ N let Fn be a Cp-partition
of unity on F with diam(carr(f)) ≤ 1/n for all f ∈ Fn. Let F :=

⊔
n Fn and let

Γ2 := {∆ ⊆ Γ : ∆ is finite}. For any f ∈ F choose xf ∈ S(carr(f)) and for any
∆ ∈ Γ2 choose a dense sequence {y∆

f,m : m ∈ N} 3 0 in the linear subspace generated
by {xf + eγ : γ ∈ ∆}. Let `∆f,m ∈ E′ be such that `∆f,m(y∆

f,m) = ‖`∆f,m‖ · ‖y∆
f,m‖ = 1.

Let π∆
f,m : E → E be given by π∆

f,m(x) := x − `∆f,m(x) y∆
f,m. Let h : E → R be

Cp with h(x) = 0 for ‖x‖ ≤ 1 and h(x) = 1 for ‖x‖ ≥ 2. Let g : R → [−1, 1] be
Cp with g(t) = 0 for |t| ≤ 1 and injective on {t : |t| > 1}. Now define a mapping
u : E → c0(Γ̃), where

Γ̃ := (F × Γ2 × N2) t (F × Γ) t (F × N) t t N t N

by

u(x)γ̃ := 1
2n+m+j f(x̂)h(j π∆

f,m(x))
∏
γ∈∆

g(nTγ(x− xf ))

for γ̃ = (f,∆, j,m) ∈ Fn × Γ2 × N2, and by

u(x)γ̃ :=



1
2n f(x̂) g(nTγ(x− xf )) for γ̃ = (f, γ) ∈ Fn × Γ

1
2n+j f(x̂)h(j (x− xf )) for γ̃ = (f, j) ∈ Fn × N
1

2n f(x̂) for γ̃ = f ∈ Fn ⊆ F
1

2n h(nx) for γ̃ = n ∈ N
1

2n h(x/n) for γ̃ = n ∈ N.

We first claim that u is well-defined and continuous. Every coordinate x 7→ u(x)γ
is continuous, so it remains to show that for every ε > 0 locally in x the set
of coordinates γ, where |u(x)γ | > ε is finite. We do this for the first type of
coordinates. For this we may fix n, m and j (since the factors are bounded by 1).
Since Fn is a partition of unity, locally f(x̂) 6= 0 for only finitely many f ∈ Fn, so we
may also fix f ∈ Fn. For such an f the set ∆0 := {γ : |Tγ(x−xf )| ≥ π(x−xf )+ 1

n}
is finite by the proof of 13.17.3 . Since ‖x̂ − xf‖ = ‖π(x − xf )‖ ≤ 1/n be have
g(nTγ(x− xf )) = 0 for γ /∈ ∆0.

Thus only for those ∆ contained in the finite set ∆0, we have that the corresponding
coordinate does not vanish.
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Next we show that u is injective. Let x 6= y ∈ E.
If x̂ 6= ŷ, then there is some n and a f ∈ Fn such that f(x̂) 6= 0 = f(ŷ). Thus this
is detected by the 4th row.
If x̂ = ŷ then Sx̂ = Sŷ and since x− Sx̂, y − Sŷ ∈ c0(Γ) there is a γ ∈ Γ with

Tγ(x− Sx̂) = (x− Sx̂)γ 6= (y − Sŷ)γ = Tγ(y − Sŷ).
We will make use of the following method repeatedly:
For every n there is a fn ∈ Fn with fn(x̂) 6= 0 and hence ‖x̂ − x̂fn‖ ≤ 1/n.
Since S is continuous we get xfn = S(x̂fn) → S(x̂) and thus limn Tγ(x − xfn) =
limn Tγ(x− S(x̂fn)) = Tγ(x− S(x̂)).
So we get

lim
n
Tγ(x− xfn) = Tγ(x− S(x̂)) 6= Tγ(y − S(ŷ)) = lim

n
Tγ(y − xfn).

If all coordinates for u(x) and u(y) in the second and fourth row would be equal,
then

g(nTγ(x− xf )) = g(nTγ(y − xf ))
since fn(x̂) 6= 0 for some n, and hence ‖Tγ(x− xf )− Tγ(y − xf )‖ ≤ 2/n, a contra-
diction.

Now let us show that u is a homeomorphism onto its image. We have to show
xk → x provided u(xk)→ u(x).
We consider first the case, where x = Sx̂. As before we choose fn ∈ Fn with
fn(x̂) 6= 0 and get xfn = S(x̂fn)→ S(x̂) = x. Let ε > 0 and j > 3/ε. Choose an n
such that ‖xfn − x‖ < 1/j. Then h(j (xfn − x)) = 0. From the coordinates in the
third and fourth row we conclude

f(x̂k)h(j (xk − xfn))→ f(x̂)h(j (x− xfn)) and f(x̂k)→ f(x̂) 6= 0.
Hence

h(j (xk − xfn))→ h(j (x− xfn)) = 0.
Thus ‖xk − xfn‖ < 2/j for all large k. But then

‖xk − x‖ ≤ ‖xk − xfn‖+ ‖xfn − x‖ <
3
j
< ε,

i.e. xk → x.
Now the case, where x 6= Sx̂. We show first that {xk : k ∈ N} is bounded. Pick
n > ‖x‖. From the coordinates in the last row we get that limk h(xk/n) = 0, i.e.
‖xk‖ ≤ 2n for all large k.
We claim that for j ∈ N there is an n ∈ N and an f ∈ Fn with f(x̂) 6= 0, a finite
set ∆ ⊆ Γ with

∏
γ∈∆ g(nTγ(x− xf )) 6= 0 and an m ∈ N with h(j π∆

f,m(x)) = 0.
From 0 6= (x − Sx̂) ∈ c0(Γ) we deduce that there is a finite set ∆ ⊆ Γ with
Tγ(x− Sx̂) = (x− Sx̂)γ 6= 0 for all γ ∈ ∆ and dist(x− Sx̂, 〈eγ : γ ∈ ∆〉) < 1/(3j),
i.e. |(x−Sx̂)γ | ≤ 1/(3j) for all γ /∈ ∆. As before we choose fn ∈ Fn with fn(x̂) 6= 0
and get xfn = S(x̂fn)→ S(x̂) and

lim
n
Tγ(x− xfn) = (x− Sx̂)γ 6= 0 for γ ∈ ∆.

Thus g(n (Tγ(x− xfn))) 6= 0 for all large n and γ ∈ ∆. Furthermore, dist(x, xfn +
〈eγ : γ ∈ ∆〉) = dist(x − xfn , 〈eγ : γ ∈ ∆〉) < 1/(2j). Since {y∆

fn,m
: m ∈ N} is

dense in 〈xfn + eγ : γ ∈ ∆〉 there is an m such that ‖x − y∆
fn,m
‖ < 1/(2j). Since

‖π∆
fn,m
‖ ≤ 2 we get

‖π∆
fn,m(x)‖ ≤ ‖x− y∆

fn,m‖+ |1− `∆fn,m(x)| ‖y∆
fn,m‖

≤ 1
2j

+ ‖`∆fn,m‖ ‖x− y
∆
fn,m‖ ‖y

∆
fn,m‖ ≤

1
2j

+ 1
2j

= 1
j
,
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hence h(j π∆
fn,m

(x)) = 0.

We claim that for every ε > 0 there is a finite ε-net of {xk : k ∈ N}. Let ε > 0.
We choose j > 4/ε and we pick n ∈ N, f ∈ Fn, ∆ ⊆ Γ finite, and m ∈ N satisfying
the previous claim. From u(xk)→ u(x) we deduce from the coordinates in the first
row, that

f(x̂k)h(j π∆
f,m(xk))

∏
γ∈∆

g(nTγ(xk − xf ))→

→ f(x̂)h(j π∆
f,m(x))

∏
γ∈∆

g(nTγ(x− xf )) for k →∞

and since by the coordinates in the fourth row f(x̂k) → f(x̂) 6= 0 we obtain from
the coordinates in the second row, that

g(nTγ(xk − xf ))→ g(nTγ(x− xf )) 6= 0 for γ ∈ ∆.
Hence

h(j π∆
f,m(xk))→ h(j π∆

f,m(x)) = 0.
Therefore

‖xk − `∆f,m(xk) y∆
f,n‖ = ‖π∆

f,m(xk)‖ < 1
j
<
ε

4
for all large k.

Thus there is a finite dimensional subspace in E spanned by y∆
f,n and finitely many

xk, such that all xk have distance ≤ ε/4 from it. Since {xk : k ∈ N} are bounded,
the compactness of the finite dimensional balls implies that {xk : k ∈ N} has an
ε-net, hence {xk : k ∈ N} is relatively compact, and since u is injective we have
limk xk = x.

Now the result follows from 16.15 .

Remark. In general, the existence of C∞-partitions of unity is not inherited by
the middle term of short exact sequences: Take a short exact sequence of Banach
spaces with Hilbert ends and non-Hilbertizable E in the middle, as in 13.18.6 . If
both E and E∗ admitted C2-partitions of unity, then they would admit C2-bump
functions, hence E was isomorphic to a Hilbert space by [94], a contradiction.

16.20. Results on C(K). Let K be compact. Then for the Banach space C(K)
we have:

(1) [28]. If K(ω) = ∅ then C(K) is C∞-paracompact.
(2) [129] If K(ω1) = ∅ then C(K) is C1-paracompact.
(3) [49] In contrast to ( 2 ) there exists a compact space K with K(ω1) = {∗},

but such that C(K) has no Gâteaux-differentiable norm. Nevertheless C(K)
is C1-regular by [50]. Compare with 13.18.2 .

(4) [101]. If there exists an ordinal number α with K(α) = ∅ then the Banach
space C(K) is Asplund (and conversely), hence it does not admit a rough
norm, by 13.8 .

(5) [22] There exists a compact K with K(3) = ∅. Consequently, there is a
short exact sequence c0(Γ1) → C(K) → c0(Γ2), and the space C(K) is
Lipschitz homeomorphic to some c0(Γ). However, there is no continuous
linear injection of C(K) into some c0(Γ).

Notes. ( 1 ) Applying theorem 16.19 recursively we get the result as in 13.17.5 .
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16.21. Some radial subsets are diffeomorphic to the whole space

We are now going to show that certain subsets of convenient vector spaces are
diffeomorphic to the whole space. So if these subsets form a base of the c∞-topology
of the modeling space of a manifold, then we may choose charts defined on the whole
modeling space. The basic idea is to ‘blow up’ subsets U ⊆ E along all rays starting
at a common center. Without loss of generality assume that the center is 0. In
order for this technique to work, we need a positive function ρ : U → R, which
should give a diffeomorphism f : U → E, defined by f(x) := 1

ρ(x)x. For this we
need that ρ is smooth, and since the restriction of f to U ∩ R+x → R+x has to
be a diffeomorphism as well, and since the image set is connected, we need that
the domain U ∩ R+x is connected as well, i.e., U has to be radial. Let Ux := {t >
0 : tx ∈ U}, and let fx : Ux → R be given by f(tx) = t

ρ(tx)x =: fx(t)x. Since
up to diffeomorphisms this is just the restriction of the diffeomorphism f , we need
that 0 < f ′x(t) = ∂

∂t
t

ρ(tx) = ρ(tx)−tρ′(tx)(x)
ρ(tx)2 for all x ∈ U and 0 < t ≤ 1. This

means that ρ(y) > ρ′(y)(y) for all y ∈ U , which is quite a restrictive condition,
and so we want to construct out of an arbitrary smooth function ρ : U → R, which
tends to 0 towards the boundary, a new smooth function ρ satisfying the additional
assumption.

Theorem. Let U ⊆ E be c∞-open with 0 ∈ U and let ρ : U → R+ be smooth, such
that for all x /∈ U with tx ∈ U for 0 ≤ t < 1 we have ρ(tx) → 0 for t ↗ 1. Then
starU := {x ∈ U : tx ∈ U for all t ∈ [0, 1]} is diffeomorphic to E.

Proof. By 4.17 starU is c∞-open. Note that ρ satisfies on starU the same
boundary condition as on U . So we may assume without loss of generality that U
is radial. Furthermore, we may assume that ρ = 1 locally around 0 and 0 < ρ ≤ 1
everywhere, by composing with some function which is constantly 1 locally around
[ρ(0),+∞).

Now we are going to replace ρ by a new function ρ̃, and we consider first the
case, where E = R. We want that ρ̃ satisfies ρ̃′(t)t < ρ̃(t) (which says that the
tangent to ρ̃ at t intersects the ρ̃-axis in the positive part) and that ρ̃(t) ≤ ρ(t),
i.e., log ◦ρ̃ ≤ log ◦ρ, and since we will choose ρ̃(0) = 1 = ρ(0) it is sufficient to have
ρ̃′

ρ̃ = (log ◦ρ̃)′ ≤ (log ◦ρ)′ = ρ′

ρ or equivalently ρ̃′(t)t
ρ̃(t) ≤

ρ′(t)t
ρ(t) for t > 0. In order

to obtain this we choose a smooth function h : R → R which satisfies h(t) < 1,
and h(t) ≤ t for all t, and h(t) = t for t near 0, and we take ρ̃ as solution of the
following ordinary differential equation

ρ̃′(t) = ρ̃(t)
t
· h
(
ρ′(t)t
ρ(t)

)
with ρ̃(0) = 1.

Note that for t near 0, we have 1
th
(
ρ′(t)t
ρ(t)

)
= ρ′(t)

ρ(t) , and hence locally a unique
smooth solution ρ̃ exists. In fact, we can solve the equation explicitly, since
(log ◦ρ̃)′(t) = ρ̃′(t)

ρ̃(t) = 1
t · h

(
ρ′(t)t
ρ(t)

)
, and hence ρ̃(s) = exp(

∫ s
0

1
t · h(ρ

′(t)t
ρ(t) ) dt), which

is smooth on the same interval as ρ is.

Note that if ρ is replaced by ρs : t 7→ ρ(ts), then the corresponding solution ρ̃s
satisfies ρ̃s = ρ̃s. In fact,

(log ◦ρ̃s)′(t) = (ρ̃s)′(t)
ρ̃s(t)

= sρ̃′(st)
ρ̃(st)

= 1
t
· stρ̃

′(st)
ρ̃(st)

= 1
t
h
(stρ′(st)
ρ(st)

)
= 1
t
h
( t(ρs)′(t)

ρs(t)

)
.

202 Andreas Kriegl , Univ.Wien, June 30, 2017



16. Smooth Partitions of Unity and Smooth Normality 16.21

For arbitrary E and x ∈ E let ρx : Ux → R+ be given by ρx(t) := ρ(tx), and let
ρ̃ : U → R+ be given by ρ̃(x) := ρ̃x(1), where ρ̃x is the solution of the differential
equation above with ρx in place of ρ.

Let us now show that ρ̃ is smooth. Since U is c∞-open, it is enough to consider
a smooth curve x : R → U and show that t 7→ ρ̃(x(t)) = ρ̃(x(t))(1) is smooth.
This is the case, since (t, s) 7→ 1

sh
(
ρ′x(t)(s)s
ρx(t)(s)

)
= 1

sh
(
ρ′(s x(t))(s x(t))

ρ(s x(t))

)
is smooth,

since ϕ(t, s) := ρ′(s x(t))(s x(t))
ρ(s x(t)) satisfies ϕ(t, 0) = 0, and hence 1

sh(ϕ(t, s)) = ϕ(t,s)
s =

ρ′(s x(t))(x(t))
ρ(s x(t)) locally.

From ρsx(t) = ρ(tsx) = ρx(ts) we conclude that ρ̃sx(t) = ρ̃x(ts), and hence ρ̃(sx) =
ρ̃x(s). Thus, ρ̃′(x)(x) = ∂

∂t |t=1ρ̃(tx) = ∂
∂t |t=1ρ̃x(t) = ρ̃′x(1) < ρ̃x(1) = ρ̃(x). This

shows that we may assume without loss of generality that ρ : U → (0, 1] satisfies
the additional assumption ρ′(x)(x) < ρ(x).

Note that fx : t 7→ t
ρ(tx) is bijective from Ux := {t > 0 : tx ∈ U} to R+, since 0

is mapped to 0, the derivative is positive, and t
ρ(tx) → ∞ if either ρ(tx) → 0 or

t→∞ since ρ(tx) ≤ 1.

It remains to show that the bijection x 7→ 1
ρ(x)x is a diffeomorphism. Obviously,

its inverse is of the form y 7→ σ(y)y for some σ : E → R+. They are inverse
to each other so 1

ρ(σ(y)y)σ(y)y = y, i.e., σ(y) = ρ(σ(y)y) for y 6= 0. This is
an implicit equation for σ. Note that σ(y) = 1 for y near 0, since ρ has this
property. In order to show smoothness, let t 7→ y(t) be a smooth curve in E.
Then it suffices to show that the implicit equation (σ ◦ y)(t) = ρ((σ ◦ y)(t) · y(t))
satisfies the assumptions of the 2-dimensional implicit function theorem, i.e., 0 6=
∂
∂σ (σ−ρ(σ ·y(t))) = 1−ρ′(σ ·y(t))(y(t)), which is true, since multiplied with σ > 0
it equals σ − ρ′(σ · y(t))(σ · y(t)) > σ − ρ(σ · y(t)) = 0.
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This chapter is devoted to the foundations of infinite dimensional manifolds. We
treat here only manifolds described by charts onto c∞-open subsets of convenient
vector spaces.

Note that this limits cartesian closedness of the category of manifolds. For finite
dimensional manifolds M,N,P we will show later that C∞(N,P ) is not locally con-
tractible (not even locally pathwise connected) for the compact-open C∞-topology
if N is not compact, so one has to use a finer structure to make it a manifold
C∞(N,P ), see 42.1 . But then C∞(M,C∞(N,P )) ∼= C∞(M ×N,P ) if and only if
N is compact see 42.14 . Unfortunately, C∞(N,P ) cannot be generalized to infi-
nite dimensional N , since this structure becomes discrete. Let us mention, however,
that there exists a theory of manifolds and vector bundles, where the structure of
charts is replaced by the set of smooth curves supplemented by other requirements,
where one gets a cartesian closed category of manifolds and has the compact-open
C∞-topology on C∞(N,P ) for finite dimensional N , P , see [115], [73], [99].

We start by treating the basic concept of manifolds, existence of smooth bump
functions and smooth partitions of unity. Then we investigate tangent vectors
seen as derivations or kinematically (via curves): these concepts differ, and we
show in 28.4 that even on Hilbert spaces there exist derivations which are not
tangent to any smooth curve. In particular, we have different kinds of tangent
bundles, the most important ones are the kinematic and the operational one. We
treat smooth, real analytic, and holomorphic vector bundles and spaces of sections
of vector bundles, we give them structures of convenient vector spaces; they will
become important as modeling spaces for manifolds of mappings in chapter IX.

Finally, we discuss Weil functors (certain product preserving functors of manifolds)
as generalized tangent bundles. This last section is due to [77].
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27.2
Chapter VI

Infinite Dimensional Manifolds

27. Differentiable Manifolds

27.1. Manifolds

A chart (U, u) on a set M is a bijection u : U → u(U) ⊆ EU from a subset U ⊆M
onto a c∞-open subset of a convenient vector space EU .

For two charts (Uα, uα) and (Uβ , uβ) on M the mapping uαβ := uα ◦ u−1
β :

uβ(Uαβ) → uα(Uαβ) for α, β ∈ A is called the chart changing, where Uαβ :=
Uα ∩ Uβ . A family (Uα, uα)α∈A of charts on M is called an atlas for M , if the Uα
form a cover of M and all chart changings uαβ are defined on c∞-open subsets.

An atlas (Uα, uα)α∈A for M is said to be a C∞-atlas, if all chart changings uαβ :
uβ(Uαβ)→ uα(Uαβ) are smooth. Two C∞-atlases are called C∞-equivalent, if their
union is again a C∞-atlas for M . An equivalence class of C∞-atlases is sometimes
called a C∞-structure on M . The union of all atlases in an equivalence class is
again an atlas, the maximal atlas for this C∞-structure. A C∞-manifold M is a set
together with a C∞-structure on it. The charts of M are then those of the maximal
atlas.

Atlas, structures, and manifolds are called real analytic or holomorphic, if all chart
changings are real analytic or holomorphic, respectively. They are called topologi-
cal, if the chart changings are only continuous in the c∞-topology.

A holomorphic manifold is real analytic, and a real analytic one is smooth. By a
manifold we will henceforth mean a smooth one.

27.2 Smooth mappings and the topology of manifolds

The natural topology on a (smooth) manifold M is the identification topology with
respect to some (smooth) atlas (uα : M ⊇ Uα → uα(Uα) ⊆ Eα), where a subset
W ⊆M is open if and only if uα(Uα∩W ) is c∞-open in Eα for all α. This topology
depends only on the structure and not the specific atlas, since diffeomorphisms are
homeomorphisms for the c∞-topologies. It is also the final topology with respect to
all inverses of chart mappings in one atlas. It is also the final topology with respect
to all smooth curves defined below.

A mapping f : M → N between manifolds is called smooth if for each chart (U, u)
of M and (V, v) of N the domain u(f−1(V )) of the composite v ◦ f ◦ u−1 is open
and v ◦ f ◦ u−1 is smooth on it, equivalently, for each x ∈M and each chart (V, v)
on N with f(x) ∈ V there is a chart (U, u) on M with x ∈ U , f(U) ⊆ V , such that
v ◦ f ◦u−1 is smooth. This is the case if and only if f ◦ c is smooth for each smooth
curve c : R→M . Obviously, the composite of smooth mappings is smooth.

We will denote by C∞(M,N) the space of all C∞-mappings from M to N .

Likewise, we have the spaces Cω(M,N) of real analytic mappings and H(M,N) of
holomorphic mappings between manifolds of the corresponding type. This can be
also tested by composing with the relevant types of curves.

A smooth mapping f : M → N is called a diffeomorphism if f is bijective and
its inverse is also smooth. Two manifolds are called diffeomorphic if there exists
a diffeomorphism between them. Likewise, we have real analytic and holomorphic
diffeomorphisms. The latter ones are also called biholomorphic mappings.
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27. Differentiable Manifolds 27.4

27.3. Products

Let M and N be smooth manifolds described by smooth atlas (Uα, uα)α∈A and
(Vβ , vβ)β∈B , respectively. Then the family

(Uα × Vβ , uα × vβ : Uα × Vβ → Eα × Fβ)(α,β)∈A×B

is a smooth atlas for the cartesian product M ×N . Beware, however, the manifold
topology 27.2 of M × N may be finer than the product topology, see 4.22 . If
M and N are metrizable, then it coincides with the product topology, by 4.19 .
Clearly, the projections

M ←pr1−M ×N −pr2→ N

are also smooth. The product (M×N, pr1,pr2) has the following universal property:

For any smooth manifold P and smooth mappings f : P → M and g : P → N
the mapping (f, g) : P → M × N , (f, g)(x) = (f(x), g(x)), is the unique smooth
mapping with pr1 ◦(f, g) = f , pr2 ◦(f, g) = g.

Clearly, we can form products of finitely many manifolds. The reader may now
wonder why we do not consider infinite products of manifolds. These have charts
which are open for the so called ‘box topology’. But then we get ‘box products’
without the universal property of products. The ‘box products’, however, have the
universal product property for families of mappings such that locally almost all
members are constant.

27.4. Separation properties of the manifold topology

For a (smooth) manifold we will additionally require certain (separation-)properties
for the natural topology. For finite dimensional manifolds these properties are not
inherited from the modelling space Rm, but if one assumes the manifold to be
Hausdorff, then the locally compactness of Rm carries over to the manifold. So its
topology is completely regular and even smoothly regular (see 14.1 ) and paracom-
pactness (or metrizability) of its topology implies then smoothly paracompactness
(see 16.1 ).

For infinite dimensional manifolds the situation is not so simple So let us discuss
the relevant notions of Hausdorff:

(1) M is (topologically) Hausdorff, equivalently the diagonal is closed in the
product topology on M ×M .

(2) The diagonal is closed in the manifold M ×M (Note, that the topology of
M ×M may be finer than the product topology).

(3) The smooth functions in C∞(M,R) separate points in M . Let us call M
smoothly Hausdorff if this property holds.

We have the obvious implications ( 3 )⇒( 1 )⇒( 2 ). We have no counterexamples
for the converse implications.

It is not so clear which separation property should be required for a manifold.
In order to make some decision, from now on we require that manifolds are
smoothly Hausdorff. Each convenient vector space has this property. But we will
have difficulties with permanence of the property ‘smoothly Hausdorff’, in particu-
lar with quotient manifolds, see for example the discussion [75, 27.14] on covering
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27.6 27. Differentiable Manifolds

spaces below. For important examples (manifolds of mappings, diffeomorphism
groups, etc.) we will prove that they are even smoothly paracompact.

The isomorphism type of the modeling convenient vector spaces Eα is constant
on the connected components of the manifold M , since the derivatives of the chart
changings are linear isomorphisms. A manifold M is called pure if this isomorphism
type is constant on the whole of M .

Corollary. If a smooth manifold (which is smoothly Hausdorff) is Lindelöf, and if
all modeling vector spaces are smoothly regular, then it is smoothly paracompact.

If a smooth manifold is metrizable and smoothly normal then it is smoothly para-
compact.

Proof. See 16.10 for the first statement and 16.15 for the second one.

27.5. Lemma. Let M be a smoothly regular manifold. Then for any manifold N
a mapping f : N → M is smooth if and only if g ◦ f : N → R is smooth for all
g ∈ C∞(M,R). This means that (M,C∞(R,M), C∞(M,R)) is a Frölicher space,
see [75, 23.1].

Proof. (⇐) Let (V, v) be a chart of M and let x ∈ f−1(V ). We may choose
(by smooth regularity) a smooth bump function g : M → R with g = 1 in a
neighborhood W ⊆ V of f(x) and g = 0 on a neighborhood of M \ V . Then
f−1(carr(g)) = carr(g ◦ f) is an open neighborhood of x in N contained in f−1(V ).
Hence f is continuous. Moreover, g · (` ◦ v) : V → R for ` ∈ E′ extends by 0 to a
smooth mapping g` on M , hence g` ◦ f is smooth and equals ` ◦ v ◦ f on f−1(W ).
Thus v ◦ f |f−1(W ) is smooth by 2.14.4 since E is convenient, so f is smooth near
x.

27.6. Non-regular manifold

[89] Let 0 6= λ ∈ (`2)∗, let X be {x ∈ `2 : λ(x) ≥ 0} with the Moore topology, i.e. for
x ∈ X we take {y ∈ `2 \ kerλ : ‖y− x‖ < ε} ∪ {x} for ε > 0 as neighborhood-basis.
We set X+ := {x ∈ `2 : λ(x) > 0} ⊆ `2.

Then obviously X is Hausdorff (its topology is finer than that of `2) but not regular:
In fact the closed subspace kerλ \ {0} cannot be separated by open sets from {0}.

It remains to show that X is a C∞-manifold. We use the following diffeomorphisms

(1) S := {x ∈ `2 : ‖x‖ = 1} ∼=C∞ kerλ.
(2) ϕ : `2 \ {0} ∼=C∞ kerλ× R+.
(3) S ∩X+ ∼=C∞ kerλ.
(4) ψ : X+ → kerλ× R+.

( 1 ) This is due to [10].

( 2 ) Let f : S → kerλ be the diffeomorphism of ( 1 ) and define the required
diffeomorphism to be ϕ(x) := (f(x/‖x‖), ‖x‖) with inverse ϕ−1(y, t) := t f−1(y).

( 3 ) Take an a ∈ (kerλ)⊥ with λ(a) = 1, i.e. kerλ = a⊥. Then S ∩ X+ 3 y 7→
µy · y − a ∈ kerλ = a⊥ with µy · y − a ⊥ a, i.e. µy = ‖a‖2/〈y, a〉, is the required
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27. Differentiable Manifolds 27.11

diffeomorphism with inverse mapping a⊥ 3 y 7→ νy · (a + y) ∈ X ∩ X+ with
1 = ‖νy(a+ y)‖2.

( 4 ) Let g : S ∩ X+ → kerλ be the diffeomorphism of ( 3 ) then the desired
diffeomorphism is ψ : x 7→ (g(x/‖x‖), ‖x‖).

We now show that there is a norm-preserving homeomorphism of h : X+∪{0} → `2,
such that h(0) = 0 and h|X+ : X+ → `2 \ {0} is a diffeomorphism. We take

h(x) :=

{
(ϕ−1 ◦ ψ)(x) for x ∈ X+

0 for x = 0
.

(S ∩X+)× R+

3 ×R+

((

S × R+

1 ×R+

xx
X+
� _

��

∼=

OO

kerλ× R+
∼=

ψ−1
oo `2 \ {0}∼=

ϕoo
� _

��

∼=

OO

X+ ∪ {0} `2
hoo

{0}
?�

OO

{0}_?oo
?�

OO

Now we use translates of h as charts `2 → X+ ∪ {x}. The chart changes are
then diffeomorphisms of `2 \ {0} and we thus obtained a smooth atlas for X :=⋃
x∈kerλ(X+ ∪ {x}). The topology described by this atlas is obviously the Moore

topology.

If we use instead of X the union
⋃
x∈D(X+ ∪ {x}), where D ⊆ kerλ is dense and

countable. Then the same results are valid, but X is now even second countable.

Note however that a regular space which is locally metrizable is completely regular.

27.7. Proposition. Let M be a manifold modeled on smoothly regular convenient
vector spaces. Then M admits an atlas of charts defined globally on convenient
vector spaces.

Proof. That a convenient vector space is smoothly regular means that the c∞-
topology has a base of carrier sets of smooth functions, see 14.1 . These functions
satisfy the assumptions of theorem 16.21 , and hence the stars of these sets with
respect to arbitrary points in the sets are diffeomorphic to the whole vector space
and still form a base of the c∞-topology.

27.11. Submanifolds

A subset N of a manifold M is called a submanifold, if for each x ∈ N there is a
chart (U, u) of M such that u(U ∩N) = u(U)∩FU , where FU is a c∞-closed linear
subspace of the convenient model space EU . Then clearly N is itself a manifold
with (U ∩ N, u|U∩N ) as charts, where (U, u) runs through all these submanifold
charts from above.
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27.12 27. Differentiable Manifolds

A submanifold N of M is called a splitting submanifold if there is a cover of N by
submanifold charts (U, u) as above such that the FU ⊂ EU are complemented (i.e.
splitting) linear subspaces. Then every submanifold chart is splitting.

Note that a closed submanifold of a smoothly paracompact manifold is again
smoothly paracompact. Namely, the trace topology is the intrinsic topology on
the submanifold since this is true for closed linear subspaces of convenient vector
spaces, 4.28 .

A mapping f : N → M between manifolds is called initial if it has the following
property:

A mapping g : P → N from a manifold P (R suffices) into N is smooth if
and only if f ◦ g : P →M is smooth.

Clearly, an initial mapping is smooth and injective. The embedding of a submani-
fold is always initial. The notion of initial smooth mappings will play an important
role in this book whereas that of immersions will be used in finite dimensions only.

In a similar way we shall use the (now obvious) notion of initial real analytic map-
pings between real analytic manifolds and also initial holomorphic mappings be-
tween complex manifolds.

If h : R→ R is a function such that hp and hq are smooth for some p, q which are
relatively prime in N, then h itself turns out to be smooth, see [Joris, 1982.] So the
mapping f : t 7→ (tp, tq), R→ R2, is initial, but f is not an immersion at 0.

Smooth mappings f : N → M which admit local smooth retracts are initial. By
this we mean that for each x ∈ N there are an open neighborhood U of f(x) in M
and a smooth mapping rx : U → N such that r ◦ f |f−1(U) = Idf−1U . We shall meet
this class of initial mappings in 43.19 .

21.11. Example. There exists a short exact sequence `2−ι→ E → `2, which does
not split, see 13.18.6 . The square of the norm on the subspace `2 does not extend
to a smooth function on E.

Proof. Assume indirectly that a smooth extension of the square of the norm exists.
Let 2b be the second derivative of this extension at 0, then b(x, y) = 〈x, y〉 for all
x, y ∈ `2, and hence the following diagram commutes

`2
� � ι //

]∼=
��

E

b∨

��
(`2)∗ E∗

ι∗oooo

giving a retraction to ι.

27.12. Example. We now give an example of an initial smooth mapping f with
the following properties:

(1) f is a topological embedding onto a closed subspace and the derivative at
each point is an embedding of a closed linear subspace, i.e. f is an immersion.

(2) The image of f is not a submanifold.
(3) The image of f cannot be described locally by a regular smooth equation.
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This shows that the notion of an embedding is quite subtle in infinite dimensions.

Proof. For this let `2 −ι→ E → `2 be a short exact sequence, which does not split,
see 13.18.6 . Choose a 0 6= λ ∈ E∗ with λ ◦ ι = 0 and choose a v with λ(v) = 1.
Now consider f : `2 → E given by x 7→ ι(x) + ‖x‖2 v.

( 1 ) Since f is polynomial it is smooth. We have (λ◦f)(x) = ‖x‖2, hence g ◦f = ι,
where g : E → E is given by g(y) := y − λ(y) v. Note however that g is not a
diffeomorphism, hence we don’t have automatically a submanifold. Thus f and
also its differential at every point are topological embeddings. Moreover the image
is closed, since f(xn) → y implies ι(xn) = g(f(xn)) → g(y), hence xn → x∞ for
some x∞ and thus f(xn)→ f(x∞) = y. Finally f is initial: Namely, let h : G→ `2

be such that f ◦ h is smooth, then g ◦ f ◦ h = ι ◦ h is smooth. As a closed linear
embedding ι is initial, so h is smooth. Note that λ is an extension of ‖ ‖2 along
f : `2 → E.

( 2 ) Suppose there were a local diffeomorphism Φ around f(0) = 0 and a closed
subspace F < E such that locally Φ maps F onto f(`2). Then Φ factors as follows

`2 �
� f // E

F
� � incl //

ϕ

OO

E

∼= Φ

OO

In fact since Φ(F ) ⊆ f(`2), and f is injective, we have ϕ as mapping, and since f
is initial ϕ is smooth. By using that incl : F → E is initial, we could deduce that
ϕ is a local diffeomorphism. However we only need that ϕ′(0) : F → `2 is a linear
isomorphism. Since f ′(0) ◦ ϕ′(0) = Φ′(0)|F is a closed embedding, we have that
ϕ′(0) is a closed embedding. In order to see that ϕ′(0) is onto, pick v ∈ `2 and
consider the curve t 7→ tv. Then w : t 7→ Φ−1(f(tv)) ∈ F is smooth, and

f ′(0)
(
ϕ′(0)

(
w′(0)

))
= d

dt |t=0(f ◦ ϕ)(w(t))

= d
dt |t=0Φ

(
w(t)

)
= d

dt |t=0f(tv) = f ′(0)(v)

and since f ′(0) = ι is injective, we have ϕ′(0)
(
w′(0)

)
= v.

`2 �
� f // E

R

t7→tv 77

w ''
F

ϕ

OO

� � incl // E

∼= Φ

OO

Now consider the diagram

R

`2 �
� f //

‖ ‖2
??

E

λ

__

F
� � incl //

ϕ′(0)∼=
��

ϕ

OO

E

Φ ∼=

OO

∼=Φ′(0)
��

`2 �
� ι=f ′(0) //

k:=ϕ◦ϕ′(0)−1

;;

E

Φ◦Φ′(0)−1

dd
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i.e.

(λ ◦ Φ ◦ Φ′(0)−1) ◦ ι ◦ ϕ′(0) = λ ◦ Φ ◦ Φ′(0)−1 ◦ f ′(0) ◦ ϕ′(0)
= λ ◦ Φ ◦ Φ′(0)−1 ◦ Φ′(0) ◦ incl
= λ ◦ Φ ◦ incl = λ ◦ f ◦ ϕ = ‖ ‖2 ◦ ϕ.

By composing with ϕ′(0)−1 : `2 → F we get an extension q̃ of q := ‖ ‖2 ◦ k to
E, where the locally defined mapping k := ϕ ◦ ϕ′(0)−1 : `2 → `2 is smooth and
k′(0) = id. Now q̃′′(0) : E × E → R is an extension of q′′(0) : `2 × `2 → R,
(v, w) 7→ 2〈k′(0)v, k′(0)w〉. Hence the associated q̃′′(0)∨ : E → E∗ fits into

`2
k′(0)
∼=
//

]∼=
��

`2 �
� ι // E

q̃′′(0)∨

��
`2 `2

k′(0)∗
∼=oo E∗

ι∗
oo

and in this way we get a linear retraction for ι : `2 → E. This is a contradiction.

( 3 ) Let us show now the even stronger statement that there is no local regular
equation ρ : E  G with f(`2) = ρ−1(0) locally and ker ρ′(0) = ι(`2). Otherwise
we have ρ′(0)(v) 6= 0 and hence there is a µ ∈ G′ with µ(ρ′(0)(v)) = 1. Thus
µ ◦ ρ : E  R is smooth µ ◦ ρ ◦ f = 0 and (µ ◦ ρ)′(0)(v) = 1. Moreover

0 = ( ddt )
2|t=0(µ ◦ ρ ◦ f)(tx)

= d
dt |t=0(µ ◦ ρ)′(f(tx)) · f ′(tx) · x

= (µ ◦ ρ)′′(0)(f ′(0)x, f ′(0)x) + (µ ◦ ρ)′(0) · f ′′(0)(x, x)
= (µ ◦ ρ)′′(0)(ι(x), ι(x)) + 2‖x‖2 (µ ◦ ρ)′(0)︸ ︷︷ ︸

=1

·v,

hence −(µ ◦ ρ)′′(0)/2 is an extension of ‖ ‖2 along ι, which is a contradiction to
21.11 .

27.18. Germs

Let M and N be manifolds, and let A ⊆ M be a closed subset. We consider all
smooth mappings f : Uf → N , where Uf is some open neighborhood of A in M ,
and we put f ∼

A
g if there is some open neighborhood V of A with f | V = g | V .

This is an equivalence relation on the set of functions considered. The equivalence
class of a function f is called the germ of f along A, sometimes denoted by germA f .
As in 8.3 we will denote the space of all these germs by C∞(M ⊇ A,N).

If we consider functions on M , i.e. if N = R, we may add and multiply germs, so
we get the real commutative algebra of germs of smooth functions. If A = {x},
this algebra C∞(M ⊇ {x},R) is sometimes also denoted by C∞x (M,R). We may
consider the inductive locally convex vector space topology with respect to the cone

C∞(M ⊇ {x},R)← C∞(U,R),

where U runs through some neighborhood basis of x consisting of charts, so that
each C∞(U,R) carries a convenient vector space topology by 2.15 .
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27. Differentiable Manifolds 27.21

This inductive topology is Hausdorff only if x is isolated in M , since the restriction
to some one dimensional linear subspace of a modeling space is a projection on a
direct summand which is not Hausdorff, by 27.19 below. Nevertheless, multipli-
cation is a bounded bilinear operation on C∞(M ⊇ {x},R), so the closure of 0 is
an ideal. The quotient by this ideal is thus an algebra with bounded multiplication,
denoted by

Tayx(M,R) := C∞(M ⊇ {x},R)/{0}.

27.19. Lemma. Let M be a smooth manifold modeled on C∞b -regular Banach
spaces (see 15.1 ). Then the closure of 0 in C∞(M ⊇ {x},R) is the ideal of all
germs which are flat at x of infinite order.

Proof. This is a local question, so let x = 0 in a modeling Banach space E. Let f
be a representative in some open neighborhood U of 0 of a flat germ. This means
that all iterated derivatives of f at 0 vanish. Let ρ ∈ C∞b (E, [0, 1]) be 0 on a
neighborhood of 0 and ρ(x) = 1 for ‖x‖ > 1. For fn(x) := f(x)ρ(n.x) we have
germ0(fn) = 0, and it remains to show that n(f −fn) is bounded in C∞(U,R). For
this we fix a derivative dk and choose N such that ‖dk+1f(x)‖ ≤ 1 for ‖x‖ ≤ 1

N .
Then for n ≥ N we have the following estimate:

‖ndk(f − fn)(x)‖ ≤
k∑
l=0

(
k

l

)
n‖dk−lf(x)‖nl‖dl(1− ρ)(nx)‖

≤
k∑
l=0

(
k

l

)
n

∫ 1

0

(1− t)l+1

(l + 1)!
‖dk+1f(tx)‖ dt ‖x‖l+1nl‖dl(1− ρ)(nx)‖

≤

{
0 for ‖nx‖ > 1∑k
l=0
(
k
l

) 1
l!‖d

l(1− ρ)‖∞ for ‖nx‖ ≤ 1.

27.20. Corollary. For any C∞b -regular Banach space E and a ∈ E the canonical
mapping

Taya(E,R)→
∞∏
k=0

Lksym(E,R)

is a bornological isomorphism.

Proof. For every open neighborhood U of a in E we have a continuous linear
mapping C∞(U,R) →

∏∞
k=0 L

k
sym(E,R) into the space of formal power series,

hence also C∞(E ⊇ {a},R) →
∏∞
k=0 L

k
sym(E,R), and finally from Taya(E,R) →∏∞

k=0 L
k
sym(E,R). Since E is Banach, the space of formal power series is a Fréchet

space and since E is C∞b (E,R)-regular the last mapping is injective by 27.19 . By
E. Borel’s theorem 15.4 every bounded subset of the space of formal power series is
the image of a bounded subset of C∞(E,R). Hence this mapping is a bornological
isomorphism and the inductive limit C∞(E ⊇ {a},R) is regular.

27.21. Lemma. If M is smoothly regular then each germ at a point of a smooth
function has a representative which is defined on the whole of M .

If M is smoothly paracompact then the previous statement is true for germs along
closed subsets.
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28. Tangent Vectors

28.1. The tangent spaces of a convenient vector space E

Let a ∈ E. A kinematic tangent vector with foot point a is simply a pair (a,X)
with X ∈ E. Let TaE = E be the space of all kinematic tangent vectors with foot
point a. It consists of all derivatives c′(0) at 0 of smooth curves c : R → E with
c(0) = a, which explains the choice of the name kinematic.

For each open neighborhood U of a in E (a,X) induces a linear mapping Xa :
C∞(U,R)→ R by Xa(f) := df(a)(X), which is continuous for the convenient vector
space topology on C∞(U,R) and satisfies Xa(f · g) = Xa(f) · g(a) + f(a) ·Xa(g), so
it is a continuous derivation over eva. The value Xa(f) depends only on the germ
of f at a.

An operational tangent vector of E with foot point a is a bounded derivation
∂ : C∞(E ⊇ {a},R) → R over eva. Let DaE be the vector space of all these
derivations. Any ∂ ∈ DaE induces a bounded derivation C∞(U,R) → R over eva
for each open neighborhood U of a in E. Moreover any family of bounded deriva-
tions ∂U : C∞(U,R)→ R over eva, which is coherent with respect to the restriction
maps, defines an ∂ ∈ DaE. So the vector space DaE is a closed linear subspace of
the convenient vector space

∏
U L(C∞(U,R),R). We equip DaE with the induced

convenient vector space structure. Note that the spaces DaE are isomorphic for all
a ∈ E.

Taylor expansion induces the dashed arrows in the following diagram.

C∞(E,R)

��

Lksym(E,R)

{0} � t

''

� _

��

C∞(U,R)

��

dk|0
55 55

// // ∏d
k=1 L

k
sym(E,R)

prk
OOOO

{∞-flat} �
� //

� _

��

C∞(E ⊇ {a},R)

)) ))

//

55 55

∏∞
k=1 L

k
sym(E,R)

pr
OOOO

{d-flat}
* 


77

C∞(E ⊇ {a},R)/{0}

OO

Note that all spaces in the right two columns except the top right corner are
algebras, the finite product with truncated multiplication. The mappings are
algebra-homomorphisms. And the spaces in the left column are the respective
kernels. If E is a C∞b (E,R)-regular Banach space, then by 27.20 the vertical
dashed arrow is bibounded and since R is Hausdorff every ∂ ∈ DaE factors over
Taya(E,R) := C∞(E ⊇ {a},R)/{0}. So in this case we can view ∂ as derivation
on the algebra of formal power series.

28.2. Degrees of operational tangent vectors

A derivation ∂ is said to have order at most d, it vanishes on all d-flat germs, i.e.
if it factors over the space

∏d
k=0 L

k
sym(E,R) of polynomials of degree at most d. If

no such d exists, then it will be called of infinite order.
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An operational tangent vector is said to be homogeneous of order d if it factors
over Ldsym(E,R), i.e. it corresponds to a bounded linear functional ` ∈ Ldsym(E,R)′

via ∂(f) = `( f
(d)(0)
d! ). In order that such a functional defines a derivation, we need

exactly that

`
(

Sym
(d−1∑
j=1

Ljsym(E,R)⊗ Ld−jsym(E,R)
))

= {0},

i.e. that ` vanishes on the subspace
j−1∑
i=1

Lisym(E;R) ∨ Lj−isym(E;R)

of decomposable elements of Ljsym(E;R), where Lisym(E;R) ∨ Lj−isym(E;R) denotes
the linear subspace generated by all symmetric products Φ∨Ψ of the corresponding
elements:
In fact, any such ` defines an operational tangent vector ∂j` |a ∈ DaE of order j by

∂j` |a(f) := `( 1
j!d

jf(a)).

Since ` vanishes on decomposable elements we see from the Leibniz rule that ∂j` is
a derivation, and it is obviously of order j. The inverse bijection is given by ∂ 7→
(` : Φ 7→ ∂((Φ ◦ diag)( −a))), since the complete polarization of a homogeneous
polynomial p of degree j is given by 1

j!d
jp(0)(v1, . . . , vj), and since the remainder

of the Taylor expansion is flat of order j − 1 at a.

Obviously every derivation of order at most d is a unique sum of homogeneous
derivations of order j for 1 ≤ j ≤ d. For d > 0 we denote by D

[d]
a E the lin-

ear subspace of DaE of operational tangent vectors of homogeneous order d and
by D

(d)
a E :=

⊕d
j=1D

[j] the subspace of (non homogeneous) operational tangent
vectors of order at most d.

28.3. Examples. Queer operational tangent vectors

Let Y ∈ E′′ be an element in the bidual of E. Then for each a ∈ E we have an
operational tangent vector Ya ∈ DaE, given by Ya(f) := Y (df(a)). So we have a
canonical injection E′′ → DaE.

Let ` : L2(E;R)→ R be a bounded linear functional which vanishes on the subset
E′ ⊗E′. Then for each a ∈ E we have an operational tangent vector ∂[2]

` |a ∈ DaE

given by ∂[2]
` |a(f) := `(d2f(a)), since

`(d2(fg)(a)) = `
(
d2f(a)g(a) + df(a)⊗ dg(a) + dg(a)⊗ df(a) + f(a)d2g(a)

)
= `(d2f(a))g(a) + 0 + f(a)`(d2g(a)).

Let E = (`2)N be a countable product of copies of an infinite dimensional Hilbert
space. A smooth function on E depends locally only on finitely many Hilbert space
variables. Thus, f 7→

∑
n ∂

[kn]
Xn

(f ◦ injn) is a well defined operational tangent vector
in D0E for arbitrary operational tangent vectors Xn of order kn. If (kn) is an
unbounded sequence and if Xn 6= 0 for all n it is not of finite order. But only for
k = 1, 2, 3 we know that nonzero tangent vectors of order k exist, see 28.4 below.

28.4. Lemma. If E is an infinite dimensional Hilbert space, there exist nonzero
operational tangent vectors of order 2, 3.
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Proof. We may assume that E = `2. For k = 2 one knows that the closure of
L(`2,R)∨L(`2,R) in L2

sym(`2,R) consists of all symmetric compact operators, and
the identity is not compact.

For k = 3 we show that for any A in the closure of L(`2,R) ∨ L2
sym(`2,R) the

following condition holds:

(1) A(ei, ej , ek)→ 0 for i, j, k →∞.

Since this condition is invariant under symmetrization it suffices to consider A ∈
`2⊗L(`2, `2), which we may view as a finite dimensional and thus compact operator
`2 → L(`2, `2). Then ‖A(ei)‖ → 0 for i → ∞, since this holds for each continuous
linear functional on `2. The trilinear form A(x, y, z) :=

∑
i xiyizi is in L3

sym(`2,R)
and obviously does not satisfy ( 1 ).

28.5. Proposition. Let E be a convenient vector space with the following two
properties:

(1) The closure of 0 in C∞(E ⊇ {0},R) consists of all flat germs.
(2) The quotient C∞(E ⊇ {0},R)/{∞-flat} with the bornological quotient topol-

ogy embeds as topological linear subspace into the space
∏
k L

k
sym(E;R) of

formal power series.

Then each operational tangent vector on E is of finite order.

Any C∞b -regular Banach space, in particular any Hilbert space has these properties.

Proof. Let ∂ ∈ D0E be an operational tangent vector, so it factors over Tay0(E,R) =
C∞(E ⊇ {0},R)/{0}. By property ( 1 ) this space is C∞(E ⊇ {0},R)/{∞-flat}.
Since ∂ is continuous in the bornological topology, by property ( 2 ) and the the-
orem of Hahn-Banach it extends to a continuous linear functional on the space of
all formal power series and thus depends only on finitely many factors.

A C∞b -regular Banach space E has property ( 1 ) by 27.19 , and it has property
( 2 ) by E. Borel’s theorem 15.4 . Hilbert spaces are C∞b -regular by 15.5 .

6.6. Definition. Another important additional property for convenient vector
spaces E is the approximation property, i.e. the denseness of E′ ⊗ E in L(E,E).
There are at least 3 successively stronger requirements, which have been studied in
[1]:
A convenient vector space E is said to have the bornological approximation property
if E′⊗E is dense in L(E,E) with respect to the bornological topology. It is said to
have the c∞-approximation property if this is true with respect to the c∞-topology
of L(E,E). Finally the Mackey approximation property is the requirement, that
there is some sequence in E′ ⊗ E Mackey converging towards idE .

Note that although the bornological approximation property is the weakest among
these 3 conditions, it is difficult to check directly, since the bornologification of
L(E,E) is hard to describe explicitly.

6.7. Result. [1, 2.2.9] The natural topology on

L(C∞(R,R), C∞(R,R))

of uniform convergence on bounded sets is not bornological.
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6.8. Result. [1, 2.5.5] For any set Γ of non-measurable cardinality the space E
of points in RΓ with countable carrier has the bornological approximation property.

Note. One first shows that for this space E the topology of uniform convergence
on bounded sets is bornological, and the classical approximation property holds for
this topology by [53, 21.2.2], since E is nuclear.

6.10. Lemma. [1, 2.1.21] Let E be a reflexive convenient vector space. Then E
has the bornological (resp. c∞-, resp. Mackey) approximation property if and only
if E′ has it.

Proof. For reflexive convenient vector spaces we have:

L(E′, E′) ∼= L2(E′, E;R) ∼= L(E,E′′) ∼= L(E,E),

and E′′⊗E corresponds to E′⊗E via this isomorphism. So the result follows.

6.11. Lemma. [1, 2.4.3] Let E be the product
∏
k∈NEk of a sequence of convenient

vector spaces Ek. Then E has the Mackey (resp. c∞-) approximation property if
and only if all Ek have it.

Proof. (⇒) follows since one easily checks that these approximation properties are
inherited by direct summands.

(⇐) Let (T kn )n be Mackey convergent to T k in L(Ek, Ek). Then one easily checks
the Mackey convergence of (T kn )k → (T k)n in

∏
k L(Ek, Ek) ⊆ L(E,E). So the

result follows for the Mackey approximation property.

To obtain it also for the c∞-topology, one first notes that by the argument given
in [75, 6.9] it is enough to approximate the identity. Since the c∞-closure can
be obtained as iterated Mackey-adherence by 4.32 this follows now by transfinite
induction.

6.12. Köthe sequence spaces

Recall that a set P ⊆ RN+ of sequences is called a Köthe set if it is directed
upwards with respect to the componentwise partial ordering, see [75, 52.35]. To P
we may associate the set

Λ(P) := {x = (xn)n ∈ RN : (pnxn)n ∈ `1 for all p ∈ P}.

A space Λ(P) is said to be a Köthe sequence space whenever P is a Köthe set.

Lemma. Let P be a Köthe set for which there exists a sequence µ converging
monotonely to +∞ and such that (µnpn)n∈N ∈ P for each p ∈ P. Then the Köthe
sequence space Λ(P) has the Mackey approximation property.

Proof. The sequence
(∑n

j=1 e
′
j⊗ej

)
n∈N

is Mackey convergent in L(Λ(P),Λ(P)) to
idΛ(P), where ej and e′j denote the j-th unit vector in Λ(P) and Λ(P)′ respectively:
Indeed, a subset B ⊆ Λ(P) is bounded if and only if for each p ∈ P there exists
N(p) ∈ R such that ∑

k∈N

pk|xk| ≤ N(p)
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for all x = (xk)k∈N ∈ B. But this implies that{
µn+1

(
idΛ(P)−

n∑
j=1

e′j ⊗ ej
)

: n ∈ N
}
⊆ L(Λ(P),Λ(P))

is bounded. In fact((
id−

n∑
j=1

e′j ⊗ ej
)

(x)
)
k

=

{
0 for k ≤ n,
xk for k > n.

and hence∑
k

pk

∣∣∣∣µn+1

(
(id−

n∑
j=1

e′j⊗ej)(x)
)
k

∣∣∣∣ ≤∑
k>n

pk|µn+1xk| ≤
∑
k

pkµk|xk| ≤ N(µ p)

Let α be an unbounded increasing sequence of positive real numbers and P∞ :=
{(ekαn)n∈N : k ∈ N}. Then the associated Köthe sequence space Λ(P∞) is called a
power series space of infinite type (a Fréchet space by [53, 3.6.2]).

6.13. Corollary. Each power series space of infinite type has the Mackey approx-
imation property.

6.14. Theorem. The following convenient vector spaces have the Mackey approx-
imation property:

(1) The space C∞(M ← F ) of smooth sections of any smooth finite dimensional
vector bundle F −p→M with separable base M , see 6.1 and 30.1 .

(2) The space C∞c (M ← F ) of smooth sections with compact support any smooth
finite dimensional vector bundle F −p→ M with separable base M , see 6.2
and 30.4 .

(3) The Fréchet space of holomorphic functions H(C,C), see 8.2 .

Proof. The space s of rapidly decreasing sequences coincides with the power series
space of infinite type associated to the sequence (log(n))n∈N. So by 6.13 , 6.11
and 6.10 the spaces s, sN and s(N) =

(
(s′)N

)′ have the Mackey approximation
property. Now assertions ( 1 ) and ( 2 ) follow from the isomorphisms C∞c (M ←
F ) = C∞(M ← F ) ∼= s for compact M and C∞(M ← F ) ∼= sN for non-compact M
(see [127] or [1, 1.5.16]) and the isomorphism C∞c (M ← F ) ∼= s(N) for non-compact
M (see [127] or [1, 1.5.16]).

( 3 ) follows since by [53, 2.10.11] the space H(C,C) is isomorphic to the (complex)
power series space of infinite type associated to the sequence (n)n∈N.

28.7. Theorem. Let E be a convenient vector space which has the bornological
approximation property. Then we have DaE ∼= E′′. So if E is in addition reflexive,
each operational tangent vector is a kinematic one.

Proof. We may suppose that a = 0. Let ∂ : C∞(E ⊇ {0},R)→ R be a derivation
at 0, so it is bounded linear and satisfies ∂(f · g) = ∂(f) · g(0) + f(0) · ∂(g). Then
we have ∂(1) = ∂(1 · 1) = 2∂(1), so ∂ is zero on constant functions.

Since E′ = L(E,R) is continuously embedded into C∞(E,R), ∂|E′ is an element
of the bidual E′′. Obviously, ∂ − (∂|E′)0 is a derivation which vanishes on affine
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functions. We have to show that it is zero. We call this difference again ∂. For
f ∈ C∞(U,R) where U is some radial open neighborhood of 0 we have

f(x) = f(0) +
∫ 1

0 df(tx)(x)dt,

thus ∂(f) = ∂(g), where g(x) :=
∫ 1

0 df(tx)(x)dt. By assumption, there is a net
`α ∈ E′ ⊗E ⊂ L(E,E) of bounded linear operators with finite dimensional image,
which converges to IdE in the bornological topology of L(E,E). We consider gα ∈
C∞(U,R), given by gα(x) :=

∫ 1
0 df(tx)(`αx)dt.

Claim. gα → g in C∞(U,R).

We have g(x) = h(x, x) where h ∈ C∞(U×E,R) is just h(x, y) =
∫ 1

0 df(tx)(y)dt. By
cartesian closedness, the associated mapping h∨ : U → E′ ⊂ C∞(E,R)) is smooth.
Since ′ : L(E,E) → L(E′, E′) is bounded linear, the net `′α converges to IdE′ in
L(E′, E′). The mapping (h∨)∗ : L(E′, E′) ⊂ C∞(E′, E′)→ C∞(U,E′) is bounded
linear, thus (h∨)∗(`′α) converges to h∨ in C∞(U,E′). By cartesian closedness, the
net ((h∨)∗(`′α))∧ converges to h in C∞(U × E,R). Since the diagonal mapping
δ : U → U × E is smooth, the mapping δ∗ : C∞(U × E,R) → C∞(U,R) is
continuous and linear, so finally gα = δ∗(((h∨)∗(`′α))∧) converges to δ∗(h) = g.

Claim. ∂(gα) = 0 for all α.

Let `α =
∑n
i=1 ϕi ⊗ xi ∈ E′ ⊗ E ⊂ L(E,E). We have

gα(x) =
∫ 1

0
df(tx)

(∑
i

ϕi(x)xi
)
dt

=
∑
i

ϕi(x)
∫ 1

0
df(tx)(xi)dt =:

∑
i

ϕi(x)hi(x),

∂(gα) = ∂
(∑

i

ϕi · hi
)

=
∑
i

(
∂(ϕi)hi(0) + ϕi(0)∂(hi)

)
= 0.

28.8. Remark

There are no nonzero operational tangent vectors of order 2 on E if and only if
E′ ∨ E′ ⊂ L2

sym(E;R) is dense in the bornological topology. This seems to be
rather near the bornological approximation property, and one may suspect that
theorem 28.7 remains true under this weaker assumption.

28.9. Trivial operational tangent bundle

Let U ⊆ E be an open subset of a convenient vector space E. The operational
tangent bundle DU of U is simply the disjoint union

⊔
a∈U DaE. Then DU is in

bijection to the open subset U×D0E of E×D0(E) via ∂a 7→ (a, ∂◦( −a)∗). We use
this bijection to put a smooth structure on DU . Let now g : E ⊃ U → V ⊂ F be
a smooth mapping, then g∗ : C∞(W,R) → C∞(g−1(W ),R) is bounded and linear
for all open W ⊂ V . The adjoints of these mappings uniquely define a mapping
Dg : DU → DV by (Dg.∂)(f) := ∂(f ◦ g).

Lemma. Dg : DU → DV is smooth.

Andreas Kriegl , Univ.Wien, June 30, 2017 219



28.11 28. Tangent Vectors

Proof. Via the canonical bijections DU ∼= U × D0E and DV ∼= V × D0F the
mapping Dg corresponds to

U ×D0E → V ×D0F

(a, ∂) 7→
(
g(a), ∂ ◦ ( +a)∗ ◦ g∗ ◦ ( −g(a))∗

)
=
(
g(a), ∂ ◦ (g( +a)− g(a))∗

)
.

In order to show that this is smooth, its enough to consider the second component
and we compose it with the embedding D0F ↪→

∏
W30 C

∞(W,R)′. The associated
mapping U ×D0E × C∞(W,R)→ R is given by

(a, ∂, f) 7→ ∂
(
f ◦ (g( + a)− g(a))

)
,

where f ◦ (g( + a)− g(a)) is smooth on the open 0-neighborhood Wa := {y ∈ E :
g(y + a)− g(a) ∈ W} = g−1(g(a) +W )− a in E. Now let a : R→ U be a smooth
curve and I a bounded interval in R. Then there exists an open neighborhood UI,W
of 0 in E such that UI,W ⊆Wa(t) for all t ∈ I. Then the mapping ( 1 ), composed
with a : I → U , factors as

I ×D0E × C∞(W,R)→ C∞(UI,W ,R)′ × C∞(UI,W ,R)→ R,

given by

(t, ∂, f) 7→
(
∂UI,W , f ◦

(
g( +a(t))− g(a(t))

))
7→ ∂UI,W (f ◦ (g( +a(t))− g(a(t))))),

which is smooth by cartesian closedness.

28.10. Trivial operational tangent bundle of order at most q

Let E be a convenient vector space. Recall from 28.2 that D(k)
a E is the space of

all operational tangent vectors of order ≤ k. For an open subset U in a convenient
vector space E and k > 0 we consider the disjoint union

D(k)U :=
⊔
a∈U

D(k)
a E ∼= U ×D(k)

0 E ⊆ E ×D(k)
0 E.

Lemma. For a smooth mapping f : E ⊃ U → V ⊂ F the smooth mapping
Df : DU → DV from 28.9 induces smooth mappings D(k)f : D(k)U → D(k)V .

Proof. We only have to show that Daf maps D(k)
a E into D(k)

f(a)F , because smooth-
ness follows then by restriction.

The pullback f∗ : C∞(V,R)→ C∞(U,R) maps functions which are flat of order k
at f(a) to functions which are flat of the same order at a. Thus, Daf maps the
corresponding annihilator D(k)

a U into the annihilator D(k)
f(a)V .

28.11. Lemma.

(1) The chain rule holds in general: D(f ◦ g) = Df ◦ Dg and D(k)(f ◦ g) =
D(k)f ◦D(k)g.

(2) If g : E → F is a bounded affine mapping then Dxg commutes with the
restriction and the projection to the subspaces of derivations which are ho-
mogeneous of degree k > 1.
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(3) If g : E → F is a bounded affine mapping with linear part ` = g − g(0) :
E → F then Dxg : D[k]

x E → D
[k]
g(x)F is induced by the linear mappings

(Lksym(`;R))∗ : Lksym(E,R)∗ → Lksym(F,R)∗.

(4) If g : E → R is bounded linear we have Dg.Xx = D(1)g.X
[1]
x .

Remark that if g is not affine then in general Dg does not respect the subspaces of
derivations which are homogeneous of degree k > 1:
In fact let g : E → R be a homogeneous polynomial of degree k on which ∂ ∈ D[k]

0 E

does not vanish. Then by ( 4 ) we have that 0 6= ∂(g) = Dg(∂) ∈ R ∼= D
[1]
0 R = D0R.

Proof. ( 1 ) is obvious.

For ( 2 ) let Xx ∈ DxE and f ∈ C∞(F,R). Then we have

(Dg.Xx)[k](f) = (Dg.Xx)( 1
k!d

kf(g(x))( −g(x))k)

= 1
k!Xx(dkf(g(x))(g( )− g(x))k)

(Dg.X [k]
x )(f) = X [k]

x (f ◦ g)

= Xx( 1
k!d

k(f ◦ g)(x)( −x)k)

= 1
k!Xx(dkf(g(x))(`( −x))k).

These expressions are equal.

DxE // //

Dg

��

D
[k]
x E

� � //

Dg

��

DxE

Dg

��
Dg(x)F // // D[k]

g(x)F
� � // DxF

For ( 3 ) we take ϕ ∈ Lksym(E;R)′ which vanishes on all decomposable forms, and
let Xx = ∂kϕ|x ∈ D

[k]
x E be the corresponding homogeneous derivation. Then

(Dg.∂kϕ|x)(f) = ∂kϕ|x(f ◦ g)

= ϕ( 1
k!d

k(f ◦ g)(x))

= ϕ( 1
k!d

kf(g(x)) ◦ `k)

= (Lksym(`;R)∗ϕ)( 1
k!d

kf(g(x)))

= ∂
[k]
Lksym(`;R)∗ϕ|g(x)(f).

D
[k]
x E �

� //

D[k]g

��

LkSym(E,R)′

LkSym(`,R)∗

��
D

[k]
g(x)F

� � // LkSym(F,R)′

( 4 ) is a special case of ( 2 ).
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28.12. The operational and the kinematic tangent bundles

Let M be a manifold with a smooth atlas (M ⊃ Uα −uα→ Eα)α∈A. We consider
the following equivalence relation on the disjoint union⊔

α∈A
D(uα(Uα)) :=

⋃
α∈A

D(uα(Uα))× {α},

(∂, α) ∼ (∂′, β) ⇐⇒ D(uαβ)∂′ = ∂.

We denote the quotient set by DM and call it the operational tangent bundle
of M . Let πM : DM → M be the obvious foot point projection, let DUα =
π−1
M (Uα) ⊂ DM , and let Duα : DUα → D(uα(Uα)) be given by Duα([∂, α]) = ∂.

So Duα([∂′, β]) = D(uαβ)∂′.

The charts (DUα, Duα) form a smooth atlas for DM , since the chart changings are
given by

Duα ◦ (Duβ)−1 = D(uαβ) : D(uβ(Uαβ))→ D(uα(Uαβ)).
This chart changing formula also implies that the smooth structure on DM depends
only on the equivalence class of the smooth atlas for M .

The mapping πM : DM → M is obviously smooth. The natural topology is
automatically Hausdorff: X, Y ∈ DM can be separated by open sets of the form
π−1
M (V ) for V ⊂M , if πM (X) 6= πM (Y ), since M is Hausdorff, and by open subsets

of the form (Tuα)−1(Eα ×W ) for W open in Eα, if πM (X) = πM (Y ) ∈ Uα.

For x ∈ M the set DxM := π−1
M (x) is called the operational tangent space at x or

the fiber over x of the operational tangent bundle. It carries a canonical convenient
vector space structure induced by Dx(uα) := Duα|DxM : Duα(x)Eα ∼= D0(Eα) for
some (equivalently any) α with x ∈ Uα.

Let us construct now the kinematic tangent bundle. We consider the following
equivalence relation on the disjoint union⋃

α∈A
Uα × Eα × {α},

(x, v, α) ∼ (y, w, β) ⇐⇒ x = y and d(uαβ)(uβ(x))w = v

and denote the quotient set by TM , the kinematic tangent bundle of M . Let
πM : TM → M be given by πM ([x, v, α]) = x, let TUα = π−1

M (Uα) ⊂ TM ,
and let Tuα : TUα → uα(Uα) × Eα be given by Tuα([x, v, α]) = (uα(x), v). So
Tuα([x,w, β]) = (uα(x), d(uαβ)(uβ(x))w).

The charts (TUα, Tuα) form a smooth atlas for TM , since the chart changings are
given by

Tuα ◦ (Tuβ)−1 : uβ(Uαβ)× Eβ → uα(Uαβ)× Eα,
(x, v) 7→ (uαβ(x), d(uαβ)(x)v).

This chart changing formula also implies that the smooth structure on TM depends
only on the equivalence class of the smooth atlas for M .

The mapping πM : TM → M is obviously smooth. It is called the (foot point)
projection of M . The natural topology is automatically Hausdorff; this follows
from the bundle property and the proof is the same as for DM above.

For x ∈ M the set TxM := π−1
M (x) is called the kinematic tangent space at x or

the fiber over x of the tangent bundle. It carries a canonical convenient vector
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space structure induced by Tx(uα) := Tuα|TxM : TxM → {x} × Eα ∼= Eα for some
(equivalently any) α with x ∈ Uα.

Note that the kinematic tangent bundle TM embeds as a subbundle into DM ; also
for each k ∈ N the same construction as above gives us tangent bundles D(k)M
which are subbundles of DM .

28.13. Kinematic tangent vectors as velocity vectors

Let us now give an obvious description of TM as the space of all velocity vectors of
curves, which explains the name ‘kinematic tangent bundle’: We put on C∞(R,M)
the equivalence relation : c ∼ e if and only if c(0) = e(0) and in one (equivalently
each) chart (U, u) with c(0) = e(0) ∈ U we have d

dt |0(u ◦ c)(t) = d
dt |0(u ◦ e)(t). We

have the following diagram

C∞(R,M)/ ∼

δ∼=
��

C∞(R,M)oo

ev0

��

δ

vv
TM

πM
// M

where to c ∈ C∞(R,M) we associate the tangent vector δ(c) := [c(0), ∂
∂t

∣∣
0 (uα ◦

c)(t), α]. It factors to a bijection C∞(R,M)/ ∼→ TM , whose inverse associates to
[x, v, α] the equivalence class of t 7→ u−1

α (uα(x) +h(t)v) for h a small function with
h(t) = t near 0.

Since the c∞-topology on R × Eα is the product topology by corollary 4.15 , we
can choose h uniformly for (x, v) in a piece of a smooth curve. Thus, a mapping g :
TM → N into another manifold is smooth if and only if g◦δ : C∞(R,M)→ N maps
‘smooth curves’ to smooth curves, by which we mean C∞(R2,M) to C∞(R, N).

28.14. Lemma. If a smooth manifold M and the squares of its model spaces
are smoothly paracompact, then also the kinematic tangent bundle TM is smoothly
paracompact.

If a smooth manifold M and V ×D0V for any of its model spaces V are smoothly
paracompact, then also the operational tangent bundle DM is smoothly paracom-
pact.

Proof. This is a particular case of [75, 29.7] below.

28.15. Tangent mappings

Let f : M → N be a smooth mapping between manifolds. Then f induces a linear
mapping Dxf : DxM → Df(x)N for each x ∈ M by (Dxf.∂x)(h) = ∂x(h ◦ f) for
h ∈ C∞(N ⊇ {f(x)},R). These give a mapping Df : DM → DN . If (U, u) is a
chart around x and (V, v) is one around f(x), then Dv◦Df ◦(Du)−1 = D(v◦f ◦u−1)
is smooth by lemma 28.9 . So Df : DM → DN is smooth.

By lemma 28.10 , Df restricts to smooth mappings D(k)f : D(k)M → D(k)N
and to Tf : TM → TN . We check the last statement for open subsets M and
N of convenient vector spaces. (Df.Xa)(g) = Xa(g ◦ f) = d(g ◦ f)(a)(X) =
dg(f(a))df(a)X = (df(a)X)f(a)(g).
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If f ∈ C∞(M,E) for a convenient vector space E, then Df : DM → DE =
E ×D0E. We then define the differential of f by df := pr2 ◦Df : DM → D0E. It
restricts to smooth fiberwise linear mappings D(k)M → D

(k)
0 E and df : TM → E.

If f ∈ C∞(M,R), then df : DM → R. Let Id denote the identity function on R,
then (Tf.∂x)(Id) = ∂x(Id ◦f) = ∂x(f), so we have df(∂x) = ∂x(f).

The mapping f 7→ df is bounded linear C∞(M,R)→ C∞(DM,R). That it is linear
and has values in this space is obvious. So by the smooth uniform boundedness
principle 5.26 it is enough to show that f 7→ df.Xx = Xx(f) is bounded for all
Xx ∈ DM , which is true by definition of DM .

28.16. Remark. Operational tangent vectors on a product

From the construction of the tangent bundle in 28.12 it is immediately clear that

TM −T (pr1)→ T (M ×N)−T (pr2)→ TN

is also a product, so that T (M ×N) = TM × TN in a canonical way.

We investigate D0(E×F ) for convenient vector spaces. Since D0 is a functor for 0
preserving maps, we obtain linear sections D0(injk) : D0(Ek) → D0(E1 × E2) and
hence a section D0(inj1)+D0(inj2) : D0(E1)⊕D0(E2)→ D0(E1⊕E2). The comple-
ment of the image is given by the kernel of the linear mapping (D0(pr1), D0(pr2)) :
D0(E1 ⊕ E2)→ D0(E1)⊕D0(E2).

D0(E1)
OoinjD0(E1)

��

D0(injE1 )

��

id // D0(E1)

D0(E1)⊕D0(E2) // D0(E1 ⊕ E2)
D0(prE2 )

��

D0(prE1 )

@@

// D0(E1)⊕D0(E2)

prD0(E1 )^^^^

prD0(E2 )����
D0(E2)
O/

injD0(E2)

^^

D0(injE2 )

@@

// D0(E2)

Lemma. In the case E1 = `2 = E2 this mapping is not injective.

Proof. The space L2(E1 × E2, E1 × E2;R) can be viewed as L2(E1, E1;R) ×
L2(E1, E2;R) × L2(E2, E1;R) × L2(E2, E2;R) and the subspace formed by those
forms whose (2,1) and (1,2) components with respect to this decomposition are
compact considered as operators in L(`2, `2) ∼= L2(`2, `2;R) is a closed subspace.
So, by Hahn-Banach, there is a non-trivial continuous linear functional ` : L2(`2 ×
`2, `2 × `2;R) → R vanishing on this subspace. We claim that the linear mapping
∂ : C∞(`2× `2,R) 3 f 7→ `(f ′′(0, 0)) ∈ R is an operational tangent vector of `2× `2
but not a direct sum of two operational tangent vectors on `2. In fact, the second
derivative of a product h of two functions f and g is given by

d2h(0, 0)(w1, w2) = d2f(0, 0)(w1, w2) g(0, 0)
+ df(0, 0)(w1) dg(0, 0)(w2)
+ df(0, 0)(w2) dg(0, 0)(w1)
+ f(0, 0) d2g(0, 0)(w1, w2).
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Thus ∂ is a derivation since the middle terms give finite dimensional operators in
L2(`2, `2;R). It is not a direct sum of two operational tangent vectors on `2 since
functions f depending only on the j-th factor have as second derivative forms with
nonzero (j,j) entry only. Hence D0(prj)(∂)(f) = ∂(f ◦ prj) = `((f ◦ prj)′′(0)) = 0,
but ∂ 6= 0.

29. Vector Bundles

29.1. Vector bundles

Let p : E →M be a smooth mapping between manifolds. By a vector bundle chart
on (E, p,M) we mean a pair (U,ψ), where U is an open subset in M , and where ψ
is a fiber respecting diffeomorphism as in the following diagram:

E | U := p−1(U)
ψ //

p

&&

U × V

pr1||
U.

Here V is a fixed convenient vector space, called the standard fiber or the typical
fiber, real for the moment.

Two vector bundle charts (U1, ψ1) and (U2, ψ2) are called compatible, if ψ1 ◦ψ−1
2 is

a fiber linear isomorphism, i.e., (ψ1 ◦ ψ−1
2 )(x, v) = (x, ψ1,2(x)v) for some mapping

ψ1,2 : U1,2 := U1 ∩ U2 → GL(V ). The mapping ψ1,2 is then unique and smooth
into L(V, V ), and it is called the transition function between the two vector bundle
charts.

A vector bundle atlas (Uα, ψα)α∈A for p : E → M is a set of pairwise compatible
vector bundle charts (Uα, ψα) such that (Uα)α∈A is an open cover of M . Two vector
bundle atlases are called equivalent, if their union is again a vector bundle atlas.

A (smooth) vector bundle p : E → M consists of manifolds E (the total space), M
(the base), and a smooth mapping p : E → M (the projection) together with an
equivalence class of vector bundle atlas: We must know at least one vector bundle
atlas. The projection p turns out to be a surjective smooth mapping which has the
0-section as global smooth right inverse. Hence it is a final smooth mapping, see
[75, 27.15].

If all mappings mentioned above are real analytic we call p : E →M a real analytic
vector bundle. If all mappings are holomorphic and V is a complex vector space we
speak of a holomorphic vector bundle.

30. Spaces of Sections of Vector Bundles

30.1

Let us fix a vector bundle p : E →M for the moment. On each fiber Ex := p−1(x)
(for x ∈ M) there is a unique structure of a convenient vector space, induced by
any vector bundle chart (Uα, ψα) with x ∈ Uα. So 0x ∈ Ex is a special element,
and 0 : M → E, 0(x) = 0x, is a smooth mapping, the zero section.
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A section u of p : E →M is a smooth mapping u : M → E with p ◦ u = IdM . The
support of the section u is the closure of the set {x ∈ M : u(x) 6= 0x} in M . The
space of all smooth sections of the bundle p : E → M will be denoted by either
C∞(M←E) = C∞(E, p,M) = C∞(E). Also the notation Γ(E → M) = Γ(p) =
Γ(E) is used in the literature. Clearly, it is a vector space with fiber wise addition
and scalar multiplication.

If (Uα, ψα)α∈A is a vector bundle atlas for p : E → M , then any smooth mapping
fα : Uα → V (the standard fiber) defines a local section x 7→ ψ−1

α (x, fα(x)) on Uα.
If (gα)α∈A is a partition of unity subordinated to (Uα), then a global section can be
formed by x 7→

∑
α gα(x) · ψ−1

α (x, fα(x)). So a smooth vector bundle has ”many”
smooth sections if M admits enough smooth partitions of unity.

We equip the space C∞(M←E) with the structure of a convenient vector space
given by the closed embedding

C∞(M←E)→
∏
α

C∞(Uα, V )

s 7→ pr2 ◦ψα ◦ (s | Uα),

where C∞(Uα, V ) carries the natural structure described in [75, 27.17], see also
3.11 . This structure is independent of the choice of the vector bundle atlas,

because C∞(Uα, V )→
∏
β C
∞(Uαβ , V ) is a closed linear embedding for any other

atlas (Uβ)β .

Proposition. The space C∞(M←E) of sections of the vector bundle (E, p,M)
with this structure satisfies the uniform boundedness principle with respect to the
point evaluations evx : C∞(M←E)→ Ex for all x ∈M .

If M is a separable manifold modeled on duals of nuclear Fréchet spaces, and if each
fiber Ex is a nuclear Fréchet space then C∞(M←E) is a nuclear Fréchet space and
thus smoothly paracompact.

Proof. By definition of the structure on C∞(M←E) the uniform boundedness
principle follows from 5.26 via 5.25 .

For the statement about nuclearity note that by 6.1 the spaces C∞(Uα, V ) are
nuclear since we may assume that the Uα form a countable cover of M by charts
which are diffeomorphic to c∞-open subsets of duals of nuclear Fréchet spaces, and
closed subspaces of countable products of nuclear Fréchet spaces are again nuclear
Fréchet. By 16.10 nuclear Fréchet spaces are smoothly paracompact.

30.4. Spaces of smooth sections with compact supports

For a smooth vector bundle p : E →M with finite dimensional second countable
base M and standard fiber V we denote by C∞c (M←E) the vector space of all
smooth sections with compact supports in M .

Lemma. The following structures of a convenient vector space on C∞c (M←E) are
all equivalent:

(1) Let C∞K (M←E) be the space of all smooth sections of E → M with sup-
ports contained in the fixed compact subset K ⊂ M , a closed linear sub-
space of C∞(M←E). Consider the final convenient vector space structure
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on C∞c (M←E) induced by the cone
C∞K (M←E)→ C∞c (M←E)

where K runs through a basis for the compact subsets of M . Then C∞c (M←E)
is even the strict and regular inductive limit of spaces C∞K (M←E) where K
runs through a countable base of compact sets.

(2) Choose a second smooth vector bundle q : E′ → M such that the Whitney
sum is trivial [75, 29.8]: E ⊕ E′ ∼= M × F . Then C∞c (M←E) can be
considered as a closed direct summand of C∞c (M,F ).

The space C∞c (M←E) satisfies the uniform boundedness principle with respect to
the point evaluations. Moreover, if the standard fiber V is a nuclear Fréchet space
and the base M is in addition separable then C∞c (M←E) is smoothly paracompact.

Proof. Since C∞K (M←E) is closed in C∞(M←E) the inductive limit C∞K (M←E)→
C∞c (M←E) is strict. So the limit is regular [68, 4.8.1] and hence C∞c (M←E) is
convenient with the structure in ( 1 ). The direct sum property C∞K (M←E) ⊂
C∞K (M,F ) from [75, 30.3.1] passes through the direct limits, so the equivalence of
statements ( 1 ) and ( 2 ) follows.

We now show that C∞c (M←E) satisfies the uniform boundedness principle for the
point evaluations. Using description ( 2 ) and 5.25 for a direct sum we may assume
that the bundle is trivial, hence we only have to consider C∞c (M,V ) for a convenient
vector space V . Now let F be a Banach space, and let f : F → C∞c (M,V ) be a
linear mapping, such that evx ◦f : F → V is bounded for each x ∈ M . Then by
the uniform boundedness principle [75, 27.17] it is bounded into C∞(M,V ). We
claim that f has values even in C∞K (M,V ) for some K, so it is bounded therein,
and hence in C∞c (M,V ), as required.

If not we can recursively construct the following data: a discrete sequence (xn) in
M , a bounded sequence (yn) in the Banach space F , and linear functionals `n ∈ V ′
such that

|`k(f(yn)(xk))|


= 0 if n < k,

= 1 if n = k,

< 1 if n > k.

Namely, we choose yn ∈ F and xn ∈M such that f(yn)(xn) 6= 0 in V , and xn has
distance 1 to

⋃
m<n supp(f(ym)) (in a complete Riemannian metric, where closed

bounded subsets are compact). By shrinking yn we may get |`m(f(yn)(xm))| < 1
for m < n. Then we choose `n ∈ V ′ such that `n(f(yn)(xn)) = 1.

Then y :=
∑
n

1
2n yn ∈ F , and f(y)(xk) 6= 0 for all k since |`k(f(y)(xk))| > 0. So

f(y) /∈ C∞c (M,V ).

For the last assertion, if the standard fiber V is a nuclear Fréchet space and the base
M is separable then C∞(M←E) is a nuclear Fréchet space by the proposition in
30.1 , so each closed linear subspace C∞K (M←E) is a nuclear Fréchet space, and by
16.10 the countable strict inductive limit C∞c (M←E) is smoothly paracompact.
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In chapter VI we have found that some of the classically equivalent definitions of
tangent vectors differ in infinite dimensions, and accordingly we have different kinds
of tangent bundles and vector fields. Since this is the central topic of any treatment
of calculus on manifolds we investigate in detail Lie brackets for all these notions of
vector fields. Only kinematic vector fields can have local flows, and we show that
the latter are unique if they exist [75, 32.16]. Note also theorem [75, 32.18] that
any bracket expression of length k of kinematic vector fields is given as the k-th
derivative of the corresponding commutator expression of the flows, which is not
well known even in finite dimensions.

We also have different kinds of differential forms, which we treat in a systematic
way, and we investigate how far the usual natural operations of differential forms
generalize. In the end 33.21 the most common type of kinematic differential forms
turns out to be the right ones for calculus on manifolds; for them the theorem of
De Rham is proved.

We also include a version of the Frölicher-Nijenhuis bracket in infinite dimensions.
The Frölicher-Nijenhuis bracket is a natural extension of the Lie bracket for vector
fields to a natural graded Lie bracket for tangent bundle valued differential forms
(later called vector valued). Every treatment of curvature later in [75, 37.3] and
[75, 37.20] is initially based on the Frölicher-Nijenhuis bracket.

32. Vector Fields

32.1. Vector fields

Let M be a smooth manifold. We may define vector fields to be the sections of one
of the tangent bundles TM ↪→ T ′′M ↪→ D(1)M ↪→ D[1,∞)M ↪→ DM defined in
28.12 (see 33.1 for T ′′M).

In particular, a kinematic vector field X on M is just a smooth section of the
kinematic tangent bundle TM → M . The space of all kinematic vector fields will
be denoted by X(M) = C∞(M←TM).
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By an operational vector field X on M we mean a bounded derivation of the
sheaf C∞( ,R), i.e. for the open U ⊆ M we are given bounded derivations XU :
C∞(U,R)→ C∞(U,R) commuting with the restriction mappings.

We shall denote by Der(C∞(M,R)) the space of all operational vector
fields on M . We shall equip Der(C∞(M,R)) with the convenient vector space
structure induced by the closed linear embedding

Der(C∞(M,R)) ↪→
∏
U

L(C∞(U,R), C∞(U,R)).

Convention

In 32.4 below we will show that for a smoothly regular manifold the space of
derivations on the algebra C∞(M,R) of globally defined smooth functions coincides
with the derivations of the sheaf. Thus we shall follow the convention, that either
the manifolds in question are smoothly regular, or that (as defined above) Der means
the space of derivations of the corresponding sheaf also denoted by C∞(M,R).

32.2. Lemma. On any manifold M the operational vector fields correspond exactly
to the smooth sections of the operational tangent bundle. Moreover we have an
isomorphism of convenient vector spaces Der(C∞(M,R)) ∼= C∞(M←DM).

Proof. Every smooth section X ∈ C∞(M←DM) defines an operational vector
field by ∂U (f)(x) := X(x)(germx f) = pr2(Df(X(x))) for f ∈ C∞(U,R) and x ∈ U .
We have that ∂U (f) = pr2 ◦Df ◦ X = df ◦ X ∈ C∞(U,R) by 28.15 . Then ∂U

is obviously a derivation, since df(Xx) = Xx(f) by 28.15 . The linear mapping
∂U : C∞(U,R) → C∞(U,R) is bounded if and only if evx ◦∂U : C∞(U,R) → R is
bounded, by the smooth uniform boundedness principle 5.26 , and this is true by
28.15 , since (evx ◦X)(f) = df(Xx).

Moreover, the mapping

C∞(M←DM)→ Der
(
C∞(M,R)

)
↪→
∏
U

L
(
C∞(U,R), C∞(U,R)

)
given by X 7→ (∂U )U is linear and bounded, since by the uniform boundedness
principle 5.26 this is equivalent to the boundedness of X 7→ ∂U (f)(x) = df(Xx)
for all open U ⊆M , f ∈ C∞(U,R) and x ∈ X.

Now let conversely ∂ be an operational vector field on M . Then the family evx ◦∂U :
C∞(U,R)→ R, where U runs through all open neighborhoods of x, defines a unique
bounded derivation Xx : C∞(M ⊇ {x},R)→ R, i.e. an element of DxM . We have
to show that x 7→ Xx is smooth, which is a local question, so we assume that M is
a c∞-open subset of a convenient vector space E. The mapping

M −X→ DM ∼= M ×D0E ⊆M ×
∏
U

L
(
C∞(U,R),R

)
is smooth if and only if for every neighborhood U of 0 in E the component M →
L(C∞(U,R),R), given by ∂ 7→ Xx(f( − x)) = ∂Ux(f( − x))(x) is smooth, where
Ux := U + x. By the smooth uniform boundedness principle 5.18 this is the case
if and only if its composition with evf is smooth for all f ∈ C∞(U,R). If t 7→ x(t)
is a smooth curve in M ⊆ E, then there is a δ > 0 and an open neighborhood W
of x(0) in M such that W ⊆ U + x(t) for all |t| < δ and hence Xx(t)(f( − x(t))) =
∂W (f( − x(t)))(x(t)), which is by the exponential law smooth in t.
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Moreover, the mapping Der(C∞(M,R))→ C∞(M←DM) given by ∂ 7→ X is linear
and bounded, since by the uniform boundedness principle in proposition 30.1 this
is equivalent to the boundedness of ∂ 7→ Xx ∈ DxM ↪→

∏
U C

∞(U,R)′ for all
x ∈ M , i.e. to that of ∂ 7→ Xx(f) = ∂U (f)(x) for all open neighborhoods U of x
and f ∈ C∞(U,R), which is obviously true.

32.3. Lemma. There is a natural embedding of convenient vector spaces

X(M) = C∞(M←TM) ↪→ C∞(M←DM) ∼= Der(C∞(M,R)).

Proof. Since TM is a closed subbundle of DM this is obviously true.

32.4. Lemma. Let M be a smoothly regular manifold.

Then each bounded derivation X : C∞(M,R) → C∞(M,R) is already an opera-
tional vector field. Moreover, we have an isomorphism

C∞(M←DM) ∼= Der
(
C∞(M,R), C∞(M,R)

)
of convenient vector spaces.

Proof. Let ∂ be a bounded derivation of the algebra C∞(M,R). If f ∈ C∞(M,R)
vanishes on an open subset U ⊂ M then also ∂(f): For x ∈ U we take a bump
function gx,U ∈ C∞(M,R) at x, i.e. gx,U = 1 near x and supp(gx,U ) ⊂ U . Then
∂(f) = ∂((1 − gx,U )f) = ∂(1 − gx,U )f + (1 − gx,U )∂(f), and both summands are
zero near x. So ∂(f) | U = 0.

Now let f ∈ C∞(U,R) for a c∞-open subset U of M . We have to show that we can
define ∂U (f) ∈ C∞(U,R) in a unique manner. For x ∈ U let gx,U ∈ C∞(M,R) be
a bump function as before. Then gx,Uf ∈ C∞(M,R), and ∂(gx,Uf) makes sense.
By the argument above, ∂(gf) near x is independent of the choice of g. So let
∂U (f)(x) := ∂(gx,Uf)(x). It has all the required properties since the topology on
C∞(U,R) is initial with respect to all mappings f 7→ gx,Uf for x ∈ U .

This mapping ∂ 7→ ∂U is bounded, since by the uniform boundedness principles
5.18 and 5.26 this is equivalent with the boundedness of ∂ 7→ ∂U (f)(x) :=
∂(gx,Uf)(x) for all f ∈ C∞(U,R) and all x ∈ U

32.5. The operational Lie bracket

Recall that operational vector fields are the bounded derivations of the sheaf C∞( ,R),
see 32.1 . This is a convenient vector space by 32.2 and 30.1 .

If X, Y are two operational vector fields on M , then the mapping f 7→ X(Y (f))−
Y (X(f)) is also a bounded derivation of the sheaf C∞( ,R), as a simple computa-
tion shows. We denote it by [X,Y ] ∈ Der(C∞( ,R)) ∼= C∞(M←DM).

The R-bilinear mapping

[ , ] : C∞(M←DM)× C∞(M←DM)→ C∞(M←DM)

is called the Lie bracket. Note also that C∞(M←DM) is a module over the algebra
C∞(M,R) by pointwise multiplication (f,X) 7→ fX, which is bounded.
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Theorem. The Lie bracket [ , ] : C∞(M←DM)×C∞(M←DM)→ C∞(M←DM)
has the following properties:

[X,Y ] = −[Y,X],
[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]], the Jacobi identity,
[fX, Y ] = f [X,Y ]− (Y f)X,
[X, fY ] = f [X,Y ] + (Xf)Y.

The form of the Jacobi identity we have chosen says that ad(X) = [X, ] is a
derivation for the Lie algebra (C∞(M←DM), [ , ]).

Proof. All these properties can be checked easily for the commutator [X,Y ] =
X ◦ Y − Y ◦X in the space of bounded derivations of the algebra C∞(U,R).

32.8. Theorem. The Lie bracket restricts to the following mappings between
splitting subspaces

[ , ] : C∞(M←D(k)M)× C∞(M←D(`)M)→ C∞(M←D(k+`)M).

The spaces X(M) = C∞(M←TM) and C∞(M←D[1,∞)M) :=
⋃

1≤i<∞ C∞(M←D(i)M)
are sub Lie algebras of C∞(M←DM).

If X ∈ X(M) is a kinematic vector field, then [X, ] maps C∞(M←D(`)M) into
itself.

This suggests to introduce the notation D(0) := T , but here it does not indicate
the order of differentiation present in the tangent vector.

32.12. Integral curves

Let c : J → M be a smooth curve in a manifold M defined on an interval J . It
will be called an integral curve or flow line of a kinematic vector field X ∈ X(M) if
c′(t) = X(c(t)) holds for all t ∈ J .

For a given kinematic vector field integral curves need not exist locally, and if they
exist they need not be unique for a given initial value. This is due to the fact that
the classical results on existence and uniqueness of solutions of equations like the
inverse function theorem, the implicit function theorem, and the Picard-Lindelöf
theorem on ordinary differential equations can be deduced essentially from one
another, and all depend on Banach’s fixed point theorem. Beyond Banach spaces
these proofs do not work any more, since the reduction does no longer lead to a
contraction on a metrizable space. We are now going to give examples, which show
that almost everything that might fail indeed fails.

Example 1. Let E := s be the Fréchet space of rapidly decreasing sequences.
Note that s = C∞(S1,R) by the theory of Fourier series. Consider the continuous
linear operator T : E → E given by T (x0, x1, x2, . . . ) := (0, 12x0, 22x1, 32x2, . . . ).
The ordinary linear differential equation x′(t) = T (x(t)) with constant coefficients
and initial value x(0) := (1, 0, 0, . . . ) has no solution, since the coordinates would
have to satisfy the recursive relation x′n(t) = n2xn−1(t), In particular, x′1(t) = 0,
and hence we must have xn(t) = n!tn. But the so defined curve t 7→ x(t) has only
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for t = 0 values in E. Thus, no local solution exists. By recursion one sees that the
solution for an arbitrary initial value x(0) should be given by

xn(t) =
n∑
i=0

(
n!
i!
)2
xi(0) tn−i

(n− i)!
.

If the initial value is a finite sequence, say xn(0) = 0 for n > N and xN (0) 6= 0,
then

xn(t) =
N∑
i=0

(
n!
i!
)2
xi(0) tn−i

(n− i)!

= (n!)2

(n−N)!
tn−N

N∑
i=0

( 1
i!
)2
xi(0) (n−N)!

(n−i)! t
N−i

|xn(t)| ≥ (n!)2

(n−N)!
|t|n−N

(
|xN (0)|

( 1
N !
)2 − N−1∑

i=0

( 1
i!
)2 |xi(0)| (n−N)!

(n−i)! |t|
N−i

)

≥ (n!)2

(n−N)!
|t|n−N

(
|xN (0)|

( 1
N !
)2 − N−1∑

i=0

( 1
i!
)2 |xi(0)||t|N−i

)
,

where the first factor does not lie in the space s of rapidly decreasing sequences,
and where the second factor is larger than ε > 0 for t small enough. So at least for
a dense set of initial values this differential equation has no local solution.

This also shows that the theorem of Frobenius is wrong in the following sense: The
vector field x 7→ T (x) generates a 1-dimensional subbundle E of the tangent bundle
on the open subset s \ {0}. It is involutive since it is 1-dimensional. But through
points representing finite sequences there exist no local integral submanifolds (M
with TM = E|M). Namely, if c were a smooth non-constant curve with c′(t) =
f(t).T (c(t)) for some smooth function f , then x(t) := c(h(t)) would satisfy x′(t) =
T (x(t)), where h is a solution of h′(t) = 1/f(h(t)).

Example 2. Next consider E := RN and the continuous linear operator T : E → E
given by T (x0, x1, . . . ) := (x1, x2, . . . ). The corresponding differential equation
has solutions for every initial value x(0), since the coordinates must satisfy the
recursive relation xk+1(t) = x′k(t), and hence any smooth function x0 : R → R

gives rise to a solution x(t) := (x(k)
0 (t))k with initial value x(0) = (x(k)

0 (0))k. So
by Borel’s theorem there exist solutions to this equation for all initial values and
the difference of any two functions with same initial value is an arbitrary infinite
flat function. Thus, the solutions are far from being unique. Note that RN is
a topological direct summand in C∞(R,R) via the projection f 7→ (f(n))n, and
hence the same situation occurs in C∞(R,R).

Note that it is not possible to choose the solution depending smoothly on the initial
value: suppose that x is a local smooth mapping R×E ⊃ I×U → E with x(0, y) = y
and ∂tx(t, y) = T (x(t, y)), where I is an open interval containing 0 and U is open
in E. Then x0 : I × U → R induces a smooth local mapping x0

∨ : U → C∞(I,R),
which is a right inverse to the linear infinite jet mapping j∞0 : C∞(I,R)→ RN = E.
Then the derivative of x0

∨ at any point in U would be a continuous linear right
inverse to j∞0 , which does not exist (since RN does not admit a continuous norm,
whereas C∞(I,R) does for compact I, see also [123, IV.3.9]).
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Also in this example the theorem of Frobenius is wrong, now in the following
sense: On the complement of T−1(0) = R× 0 we consider again the 1-dimensional
subbundle generated by the vector field T . For every smooth function f ∈ C∞(R,R)
the infinite jet t 7→ j∞t (f) is an integral curve of T . We show that integral curves
through a fixed point sweep out arbitrarily high dimensional submanifolds of RN:
Let ϕ : R → [0, 1] be smooth, ϕ(t) = 0 near t = 0, and ϕ(t) = 1 near t = 1. For
each (s2, . . . , sN ) we get an integral curve

t 7→ jt

(
t+ s2

2!
ϕ(t)(t− 1)2 + s3

3!
ϕ(t)(t− 1)3 + · · ·+ sN

N !
ϕ(t)(t− 1)N

)
connecting (0, 1, 0, . . . ) with (1, 1, s2, s3, . . . , sN , 0, . . . ), and for small s this integral
curve lies in RN \ 0.

Problem: Can any two points be joined by an integral curve in RN \ 0: One has to
find a smooth function on [0, 1] with prescribed jets at 0 and 1 which is nowhere
flat in between.

Example 3. Let now E := C∞(R,R), and consider the continuous linear operator
T : E → E given by T (x) := x′. Let x : R → C∞(R,R) be a solution of the
equation x′(t) = T (x(t)). In terms of x̂ : R2 → R this says ∂

∂t x̂(t, s) = ∂
∂s x̂(t, s).

Hence, r 7→ x̂(t− r, s+ r) has vanishing derivative everywhere, and so this function
is constant, and in particular x(t)(s) = x̂(t, s) = x̂(0, s+ t) = x(0)(s+ t). Thus, we
have a smooth solution x uniquely determined by the initial value x(0) ∈ C∞(R,R),
which even describes a flow for the vector field T in the sense of 32.13 below. In
general however, this solution is not real-analytic, since for any x(0) ∈ C∞(R,R)
which is not real-analytic in a neighborhood of a point s the composite evs ◦x =
x(s+ ) is not real-analytic around 0.

32.13. The flow of a vector field

Let X ∈ X(M) be a kinematic vector field. A local flow FlX for X is a smooth
mapping M × R ⊃ U −FlX→ M defined on a c∞-open neighborhood U of M × 0
such that

(1) U ∩ ({x} × R) is a connected open interval.

(2) If FlXs (x) exists then FlXt+s(x) exists if and only if FlXt (FlXs (x)) exists, and
we have equality.

(3) FlX0 (x) = x for all x ∈M .

(4) d
dt FlXt (x) = X(FlXt (x)).

In formulas similar to ( 4 ) we will often omit the point x for sake of brevity,
without signalizing some differentiation in a space of mappings. The latter will be
done whenever possible in section 42 .

32.14. Lemma. Let X ∈ X(M) be a kinematic vector field which admits a local
flow FlXt . Then for each integral curve c of X we have c(t) = FlXt (c(0)), thus
there exists a unique maximal flow. Furthermore, X is FlXt -related to itself, i.e.,
T (FlXt ) ◦X = X ◦ FlXt .
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Proof. We compute
d
dt FlX(−t, c(t)) = − d

ds |s=−t FlX(s, c(t)) + d
ds |s=t FlX(−t, c(s))

= − d
ds |s=0 FlX−t FlX(s, c(t)) + T (FlX−t).c′(t)

= −T (FlX−t).X(c(t)) + T (FlX−t).X(c(t)) = 0.

Thus, FlX−t(c(t)) = c(0) is constant, so c(t) = FlXt (c(0)). For the second assertion
we have X ◦ FlXt = d

dt FlXt = d
ds |0 FlXt+s = d

ds |0(FlXt ◦FlXs ) = T (FlXt ) ◦ d
ds |0 FlXs =

T (FlXt ) ◦X, where we omit the point x ∈M for the sake of brevity.

33. Differential Forms

This section is devoted to the search for the right notion of differential forms which
are stable under Lie derivatives LX , exterior derivative d, and pullback f∗. Here
chaos breaks out (as one referee has put it) since the classically equivalent descrip-
tions of differential forms give rise to many different classes; in the table 33.21 we
shall have 12 classes. But fortunately it will turn out in 33.22 that there is only
one suitable class satisfying all requirements, namely

Ωk(M) := C∞(Lkalt(TM,M × R)).

33.1. Cotangent bundles

We consider the contravariant smooth functor which associates to each convenient
vector space E its dual E′ of bounded linear functionals, and we apply it to the
kinematic tangent bundle TM described in 28.12 of a smooth manifold M (see
[75, 29.5]) to get the kinematic cotangent bundle T ′M . A smooth atlas (Uα, uα :
Uα → Eα) of M gives the cocycle of transition functions

Uαβ 3 x 7→ d(uβ ◦ u−1
α )(uα(x))∗ ∈ GL(E′β , E′α).

If we apply the same duality functor to the operational tangent bundle DM de-
scribed in 28.12 we get the operational cotangent bundle D′M . A smooth atlas
(Uα, uα : Uα → Eα) of M now gives rise to the following cocycle of transition
functions

Uαβ 3 x 7→ D(uβ ◦ u−1
α )(uα(x))∗ ∈ GL((D0Eβ)′, (D0Eα)′),

see 28.9 and 28.12 .

For each k ∈ N we get the operational cotangent bundle (D(k))′M of order ≤ k,
which is described by the same cocycle of transition functions but now restricted
to have values in GL((D(k)

0 Eβ)′, (D(k)
0 Eα)′), see 28.10 .

33.2. 1-forms

Let M be a smooth manifold. We may define 1-forms to be the sections of one of
the cotangent bundles. In particular, a kinematic 1-form is just a smooth section
of the kinematic cotangent bundle T ′M . So C∞(M←T ′M) denotes the convenient
vector space (with the structure from 30.1 ) of all kinematic 1-forms on M .

Andreas Kriegl , Univ.Wien, June 30, 2017 235



33.4 33. Differential Forms

An operational 1-form is just a smooth section of the operational cotangent bundle
D′M . So C∞(M←D′M) denotes the convenient vector space (with the structure
from 30.1 ) of all operational 1-forms on M .

For each k ∈ N we get the convenient vector space C∞(M←(D(k))′(M)) of all
operational 1-forms of order ≤ k, a closed linear subspace of C∞(M←D′M).

On the other hand, we may consider 1-forms as C∞(M,R)-module homomor-
phisms for the spaces of vector fields defined in 32.1 to C∞(M,R). In partic-
ular and more precisely, a modular 1-form is a bounded linear sheaf homomor-
phism ω : Der(C∞( ,R)) → C∞( ,R) which satisfies ωU (f · X) = f · ωU (X) for
X ∈ Der(C∞(U,R)) = C∞(U←DU) and f ∈ C∞(U,R) for each open U ⊂M . We
denote the space of all modular 1-forms by

HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
and we equip it with the initial structure of a convenient vector space induced by
the closed linear embedding

HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
↪→
∏
U

L
(
C∞(U←DU), C∞(U,R)

)
.

Convention

Similarly as in 32.1 , we shall follow the convention that either the manifolds in
question are smoothly regular or that Hom means the space of sheaf homomor-
phisms (as defined above) between the sheafs of sections like C∞(M←DM) of the
respective vector bundles. This is justified by 33.3 below.

33.3. Lemma. If M is smoothly regular, the bounded C∞(M,R)-module homo-
morphisms ω : C∞(M←DM) → C∞(M,R) are exactly the modular 1-forms and
this identification is an isomorphism of the convenient vector spaces.

Proof. If X ∈ C∞(M←DM) vanishes on an open subset U ⊂M then also ω(X):
For x ∈ U we take a bump function g ∈ C∞(M,R) at x, i.e. g = 1 near x and
supp(g) ⊂ U . Then ω(X) = ω((1 − g)X) = (1 − g)ω(X) which is zero near x. So
ω(X) | U = 0.

Now let X ∈ C∞(U←DU) for a c∞-open subset U of M . We have to show
that we can define ωU (X) ∈ C∞(U,R) in a unique manner. For x ∈ U let g ∈
C∞(M,R) be a bump function at x, i.e. g = 1 near x and supp(g) ⊂ U . Then
gX ∈ C∞(M←DM), and ω(gX) makes sense. By the argument above, ω(gX)(x)
is independent of the choice of g. So let ωU (X)(x) := ω(gX)(x). It has all required
properties since the topology on C∞(U←DU) is initial with respect to all mappings
X 7→ gX, where g runs through all bump functions as above.

That this identification furnishes an isomorphism of convenient vector spaces can
be seen as in 32.4 .

33.4. Lemma. On any manifold M the space of operational 1-forms is a closed
linear subspace of that of modular 1-forms:

C∞(M←D′M) ↪→ HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
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The closed vector bundle embedding TM → DM induces a bounded linear mapping
C∞(M←D′M)→ C∞(M←T ′M).

We do not know whether C∞(M←D′M) → C∞(M←T ′M) is surjective or even
final.

Proof. A smooth section ω ∈ C∞(M←D′M) defines a modular 1-form which
assigns ωU (X)(x) := ω(x)(X(x)) to X ∈ C∞(U←DU) and x ∈ U , by 32.2 , since
this gives a bounded sheaf homomorphism which is C∞( ,R)-linear.

To show that this gives an embedding onto a c∞-closed linear subspace we consider
the following diagram, where (Uα) runs through an open cover of charts of M . Then
the vertical mappings are closed linear embeddings by 30.1 , 33.1 , and 32.2 .

C∞(M←D′M) //

��

HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
��∏

α C
∞(Uα, (D0Eα)′)

��

// ∏
α L
(
C∞(Uα←DUα), C∞(Uα,R)

)
��∏

α C
∞(Uα ×D0Eα,R) // ∏

α C
∞
(
C∞(Uα, D0Eα)× Uα,R

)
The horizontal bottom arrow is the mapping f 7→ ((X,x) 7→ f(x,X(x))), which is
an embedding since (X,x) 7→ (x,X(x)) has (x, Y ) 7→ (const(Y ), x) as smooth right
inverse.

33.5. Lemma. Let M be a smooth manifold such that for all model spaces E
the convenient vector space D0E has the bornological approximation property [75,
28.6]. Then

C∞(M←D′M) ∼= HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
.

If all model spaces E have the bornological approximation property then D0E = E′′,
and the space E′′ also has the bornological approximation property. So in this case,

HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
∼= C∞(M←T ′′′M).

If, moreover, all E are reflexive, we have

HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
∼= C∞(M←T ′M),

as in finite dimensions.

Proof. By lemma 33.4 the space C∞(M←D′M) is a closed linear subspace of
the convenient vector space HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
. We have to

show that any sheaf homomorphism ω ∈ HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
lies in C∞(M←D′M). This is a local question, hence we may assume that M is a
c∞-open subset of E.

We have to show that for each X ∈ C∞(U,D0E) the value ωU (X)(x) depends only
on X(x) ∈ D0E. So let X(x) = 0, and we have to show that ωU (X)(x) = 0.

By assumption, there is a net `α ∈ (D0E)′ ⊗ D0E ⊂ L(D0E,D0E) of bounded
linear operators with finite dimensional images, which converges to IdD0E in the
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bornological topology of L(D0E,D0E). Then Xα := `α ◦ X converges to X in
C∞(U,D0E) since X∗ : L(D0E,D0E) → C∞(U,D0E) is continuous linear. It
remains to show that ωU (Xα)(x) = 0 for each α.

We have `α =
∑n
i=1 ϕi ⊗ ∂i ∈ (D0E)′ ⊗ D0E, hence Xα =

∑
(ϕi ◦ X).∂i and

ωU (Xα)(x) =
∑
ϕi(X(x)).ωU (∂i)(x) = 0 since X(x) = 0.

So we get a fiber linear mapping ω : DM → M × R which is given by ω(Xx) =
(x, ωU (X)(x)) for any X ∈ C∞(U←DU) with X(x) = Xx. Obviously, ω : DM →
M × R is smooth and gives rise to a smooth section of D′M .

If E has the bornological approximation property, then by 28.7 we have D0E =
E′′. If `α is a net of finite dimensional bounded operators which converges to IdE
in L(E,E), then the finite dimensional operators `∗∗α converge to Id′′E = IdE′′ in
L(E′′, E′′), in the bornological topology. The rest follows from theorem 28.7

33.6. Queer 1-forms

Let E be a convenient vector space without the bornological approximation prop-
erty, for example an infinite dimensional Hilbert space. Then there exists a bounded
linear functional α ∈ L(E,E)′ which vanishes on E′ ⊗ E such that α(IdE) = 1.
Then ωU : C∞(U,E) → C∞(U,R), given by ωU (X)(x) := α(dX(x)), is a boun-
ded sheaf homomorphism which is a module homomorphism, since ωU (f.X)(x) =
α(df(x) ⊗ X(x) + f(x).dX(x)) = f(x)ωU (X)(x). Note that ωU (X)(x) does not
depend only on X(x). So there are many ‘kinematic modular 1-forms’ which are
not kinematic 1-forms.

This process can be iterated to involve higher derivatives like for derivations, see
28.2 , but we resist the temptation to pursue this task. It would be more interesting

to produce queer modular 1-forms which are not operational 1-forms.

33.7. k-forms

Since the natural mapping ΛkE∗ → Lkalt(E,R) is usually not an isomorphism for
convenient vector spaces E, we have multiple ways to define k-forms for k ≥ 2. For
a smooth manifold M there are at least 10 interesting spaces of k-forms, see the
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diagram below where A := C∞(M,R).

ΛkAC∞(M←D′M)

&&

��

// ΛkAC∞(M←T ′M)

&&

��

C∞
(
M←Λk(D′M)

)
��

// C∞
(
M←Λk(T ′M)

)
��

C∞
(
M←Lkalt(DM,M × R)

)

��

// C∞
(
M←Lkalt(TM,M × R)

)

��

ΛkA HomA

(
C∞(M←DM), A

)
%%

// ΛkA HomA

(
C∞(M←TM), A

)
%%

Homk,alt
A

(
C∞(M←DM), A

)
// Homk,alt

A

(
C∞(M←TM), A

)
Here Λk is the bornological exterior product which was treated in 5.9 . One could
also start from other tensor products. By ΛkA = ΛkC∞(M,R) we mean the convenient
module exterior product, the subspace of all skew symmetric elements in the k-fold
bornological tensor product over A, see 5.21 . By Homk

C∞(M,R),alt = Homk, alt
C∞(M,R)

we mean the convenient space of all bounded homomorphism between the respective
sheaves of convenient modules over the sheaf of smooth functions.

33.8. Wedge product

For differential forms ϕ of degree k and ψ of degree ` and for (local) vector fields
Xi (or tangent vectors) we put

(ϕ ∧ ψ)(X1, . . . , Xk+`) =

= 1
k! `!

∑
σ∈Sk+`

signσ · ϕ(Xσ1, . . . , Xσk).ψ(Xσ(k+1), . . . , Xσ(k+`)).

This is well defined for differential forms in each of the spaces in 33.7 and others
(see 33.12 below) and gives a differential form of the same type of degree k+`. The
wedge product is associative, i.e (ϕ∧ψ)∧τ = ϕ∧ (ψ∧τ), and graded commutative,
i. e. ϕ ∧ ψ = (−1)k`ψ ∧ ϕ. These properties are proved in multilinear algebra.
There arise several kinds of algebras of differential forms.

33.9. Pullback of differential forms

Let f : N → M be a smooth mapping between smooth manifolds, and let ϕ be a
differential form on M of degree k in any of the following spaces:

C∞
(
M←Lkalt(DαM,M × R)

)
for Dα ∈ {D,D(k), D[1,∞), T}.

In this situation the pullback f∗ϕ is defined for tangent vectors Xi ∈ Dα
xN by

(f∗ϕ)x(X1, . . . , Xk) := ϕf(x)(Dα
xf.X1, . . . , D

α
xf.Xk).
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Then we have f∗(ϕ ∧ ψ) = f∗ϕ ∧ f∗ψ, so the linear mapping f∗ is an algebra
homomorphism. Moreover, we have (g◦f)∗ = f∗◦g∗ if g : M → P , and (IdM )∗ = Id,
and (f, ϕ) 7→ f∗ϕ is smooth in all these cases.

If f : N →M is a local diffeomorphism, then we may define the pullback f∗ϕ also
for a modular differential form ϕ ∈ Homk, alt

C∞(M,R)(C
∞(M←DαM), C∞(M,R)), by

(f∗ϕ)|U (X1, . . . , Xk) := ϕ|f(U)(Dαf ◦X1 ◦ (f |U)−1, . . . , Dαf ◦Xk ◦ (f |U)−1) ◦ f.

These two definitions are intertwined by the canonical mappings between different
spaces of differential forms.

33.10. Insertion operator

For a vector field X ∈ C∞(M←DαM) where Dα ∈ {D,D(k), D[1,∞), T} we define
the insertion operator

iX = i(X) : Homk, alt
C∞(M,R)

(
C∞(M←DαM), C∞(M,R)

)
→

→ Homk−1, alt
C∞(M,R)(C

∞(M←DαM), C∞(M,R))
(iXϕ)(Y1, . . . , Yk−1) := ϕ(X,Y1, . . . , Yk−1).

It restricts to operators

iX = i(X) : C∞
(
M←Lkalt(DαM,M × R)

)
→ C∞

(
M←Lk−1

alt (DαM,M × R)
)
.

33.11. Lemma. iX is a graded derivation of degree −1, so we have iX(ϕ ∧ ψ) =
iXϕ ∧ ψ + (−1)degϕϕ ∧ iXψ.

Proof. We have

(iX1(ϕ ∧ ψ))(X2, . . . , Xk+`) = (ϕ ∧ ψ)(X1, . . . , Xk+`)

= 1
k! `!

∑
σ

sign(σ)ϕ(Xσ1, . . . , Xσk)ψ(Xσ(k+1), . . . , Xσ(k+`)).

(iX1ϕ ∧ ψ + (−1)kϕ ∧ iX1ψ)(X2, . . . , Xk+`)

= 1
(k−1)! `!

∑
σ

sign(σ)ϕ(X1, Xσ2, . . . , Xσk)ψ(Xσ(k+1), . . . , Xσ(k+`))

+ (−1)k

k! (`− 1)!
∑
σ

sign(σ)ϕ(Xσ2, . . . , Xσ(k+1))ψ(X1, Xσ(k+2), . . .).

Using the skew symmetry of ϕ and ψ we may distribute X1 to each position by
adding an appropriate sign. These are k+ ` summands. Since 1

(k−1)! `! + 1
k! (`−1)! =

k+`
k! `! , and since we can generate each permutation in Sk+` in this way, the result
follows.

33.12. Exterior derivative

Let U ⊂ E be c∞-open in a convenient vector space E, and let ω ∈ C∞(U,Lkalt(E;R))
be a kinematic k-form on U . We define the exterior derivative dω ∈ C∞(U,Lk+1

alt (E;R))
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as the skew symmetrization of the derivative ω′(x) : E → Lkalt(E;R) (sorry for the
two notions of d, it’s only local); i.e.

(dω)(x)(X0, . . . , Xk) =
k∑
i=0

(−1)iω′(x)(Xi)(X0, . . . ,
p
−−−−−
qXi , . . . , Xk)(1)

=
k∑
i=0

(−1)id(ω( )(X0, . . . ,
p
−−−−−
qXi , . . . , Xk))(x)(Xi)

where Xi ∈ E. Next we view the Xi as ‘constant vector fields’ on U and try to
replace them by kinematic vector fields. Let us compute first for Xj ∈ C∞(U,E),
where we suppress obvious evaluations at x ∈ U :∑
i

(−1)iXi(ω ◦ (X0, . . . ,
p
−−−−−
qXi , . . . , Xk))(x) =

=
∑
i

(−1)i(ω′(x).Xi)(X0, . . . ,
p
−−−−−
qXi , . . . , Xk)+

+
∑
j<i

(−1)iω ◦ (X0, . . . , dXj(x).Xi, . . . ,
p
−−−−−
qXi , . . . , Xk)+

+
∑
i<j

(−1)iω ◦ (X0, . . . ,
p
−−−−−
qXi , . . . , dXj(x).Xi, . . . , Xk) =(2)

=
∑
i

(−1)i(ω′(x).Xi)(X0, . . . ,
p
−−−−−
qXi , . . . , Xk)+

+
∑
j<i

(−1)i+jω ◦ (dXj(x).Xi − dXi(x).Xj , X0, . . . ,
p
−−−−−−
qXj , . . . ,

p
−−−−−
qXi , . . . , Xk)

=
∑
i

(−1)i(ω′(x).Xi)(X0, . . . ,
p
−−−−−
qXi , . . . , Xk)+

+
∑
j<i

(−1)i+jω ◦ ([Xi, Xj ], X0, . . . ,
p
−−−−−−
qXj , . . . ,

p
−−−−−
qXi , . . . , Xk).

Combining 2 and 1 gives the global formula for the exterior derivative

(dω)(x)(X0, . . . , Xk) =
k∑
i=0

(−1)iXi(ω ◦ (X0, . . . ,
p
−−−−−
qXi , . . . , Xk))+(3)

+
∑
i<j

(−1)i+jω ◦ ([Xi, Xj ], X0, . . . ,
p
−−−−−
qXi , . . . ,

p
−−−−−−
qXj , . . . , Xk).

Formula 3 defines the exterior derivative for modular forms on C∞(M←DαM)
for each Dα ∈ {T,D,D[1,∞)}, since it gives multilinear module homomorphisms by
the Lie module properties of the Lie bracket, see 32.5 and 32.8 .

The local formula 1 gives the exterior derivative on C∞
(
M←Lkalt(TM,M × R)

)
:

Local expressions 1 for two different charts describe the same differential form
since both can be written in the global form 3 , and the canonical mapping
C∞

(
M←Lkalt(TM,M × R)

)
→ Homk, alt

C∞(M,R)(X(M), C∞(M,R)) is injective, since
we use sheaves on the right hand side.

The first line of the local formula 1 gives an exterior derivative dloc also on the
space C∞

(
U←Lkalt(DU,R)

)
, where U is an open subset in a convenient vector
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space E, if we replace ω′(x) by Dxω : D0E → D0(Lkalt(D0E,R)) composed with
the canonical mapping

D0(Lkalt(D0E,R))−( )[1]
→ D0(Lkalt(D0E,R))−(∂[1])−1

→ Lkalt(D0E,R)′′ =

= (Λk(D0E))′′′ −ι
∗
→ (Λk(D0E))′ = Lkalt(D0E,R).

Here ι : ΛkD0E → (ΛkD0E)′′ is the canonical embedding into the bidual. If we
replace the derivative by D in the second expression of the local formula 1 we get
the same expression. For ω ∈ C∞(U,Lkalt(D0E,R)) we have

(dlocω)(x)(X0, . . . , Xk) =
k∑
i=0

(−1)iDx(ω( )(X0, . . . ,
p
−−−−−
qXi , . . . , Xk))(Xi)

=
k∑
i=0

(−1)iDx(ev
(X0,...,

p
−−−
q

Xi ,...,Xk)
◦ω)(Xi)

=
k∑
i=0

(−1)iDω(x)(ev
(X0,...,

p
−−−
q

Xi ,...,Xk)
).Dxω.Xi

=
k∑
i=0

(−1)i(D(1)
ω(x) ev

(X0,...,
p
−−−
q

Xi ,...,Xk)
.(Dxω.Xi)[1] by 28.11.4

=
k∑
i=0

(−1)i(ev
(X0∧...p

−−−
q

Xi ···∧Xk)
)∗∗.(∂[1])−1.(Dxω.Xi)[1] by 28.11.3

=
k∑
i=0

(−1)i ev
(X0∧...p

−−−
q

Xi ···∧Xk)
.ι∗.(∂[1])−1.(Dxω.Xi)[1]

=
k∑
i=0

(−1)i
(
ι∗ ◦ (∂[1])−1 ◦ ( )[1] ◦Dxω

)
(Xi)(X0, . . . ,

p
−−−−−
qXi , . . . , Xk),

since the following diagram commutes:

(ΛkD0E)′
ev

(X0∧...p
−−−
qXi ···∧Xk) // R

(ΛkD0E)′′′
(ev

(X0∧...p
−−−
qXi ···∧Xk)

)∗∗

//

ι∗

OO

R

The local formula 1 describes by a similar procedure the local exterior derivative
dloc also on C∞

(
M←Lkalt(D[1,∞)M,R

)
).

For the forms of tensorial type (i.e. involving Λk) there is no exterior derivative in
general, since the derivative is not tensorial in general.
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For a manifold M let us now consider the following diagram of certain spaces of
differential forms.

C∞
(
M←Lkalt(DM,M × R)

)
//

��

Homk,alt
C∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
��

C∞
(
M←Lkalt(D[1,∞)M,M × R)

)
//

��

Homk,alt
C∞(M,R)

(
C∞(M←D[1,∞)M), C∞(M,R)

)
��

C∞
(
M←Lkalt(TM,M × R)

)
// Homk,alt

C∞(M,R)

(
C∞(M←TM), C∞(M,R)

)
If M is a c∞-open subset in a convenient vector space E, on the two upper left
spaces there exists only the local (from formula 1 ) exterior derivative dloc. On all
other spaces the global (from formula 3 ) exterior derivative d makes sense. All
canonical mappings in this diagram commute with the exterior derivatives except
the dashed ones. In fact, the following example 33.13 shows that

1. The dashed arrows do not commute with the respective exterior derivatives.

2. The (global) exterior derivative does not respect the spaces on the left hand
side of the diagram except the bottom one.

3. The dashed arrows are not surjective.

The example 33.14 shows that the local exterior derivative on the two upper
left spaces does not commute with pullbacks of smooth mappings, not even of
diffeomorphisms, in general. So it does not even exist on manifolds. Furthermore,
dloc ◦ dloc is more interesting than 0, see example 33.16 .

33.13. Example. Let U be c∞-open in a convenient vector space E. If ω ∈
C∞(U,E′′′) = C∞(U,L(D(1)

0 E,R)) then in general the exterior derivative

dω ∈ Hom2, alt
C∞(U,R)

(
C∞(U←DU), C∞(U,R)

)
is not contained in C∞

(
U←L2

alt(DU,U × R)
)

.

Proof. Let X,Y ∈ C∞(U,E′′). The Lie bracket [X,Y ] is given in [75, 32.7], and
ω depends only on the D(1)-part of the bracket. Thus, we have

dω(X,Y )(x) = X(ω(Y ))(x)− Y (ω(X))(x)− ω([X,Y ])(x)
= 〈X(x), d〈ω, Y 〉E′′(x)〉E′ − 〈Y (x), d〈ω,X〉E′′(x)〉E′
− 〈ω(x), (dY (x)t)∗.X(x)− (dX(x)t)∗.Y (x)〉E′′

= 〈X(x), 〈dω(x), Y (x)〉E′′〉E′ + 〈X(x), 〈ω(x), dY (x)〉E′′〉E′−
− 〈Y (x), 〈dω(x), X(x)〉E′′〉E′ − 〈Y (x), 〈ω(x), dX(x)〉E′′〉E′
− 〈ω(x), (dY (x)∗ ◦ ιE′)∗.X(x)〉E′′ + 〈ω(x), (dX(x)∗ ◦ ιE′)∗.Y (x)〉E′′ .
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Let us treat the terms separately which contain derivatives of X or Y . Choosing
X constant (but arbitrary) we have to consider only the following expression:

〈X(x), 〈ω(x), dY (x)〉E′′〉E′ − 〈ω(x), (dY (x)∗ ◦ ιE′)∗.X(x)〉E′′ =
= 〈X(x), ω(x) ◦ dY (x)〉E′ − 〈ω(x), ι∗E′ .dY (x)∗∗.X(x)〉E′′
= 〈X(x), dY (x)∗.ω(x)〉E′ − 〈ι∗∗E′ .ω(x), dY (x)∗∗.X(x)〉E′′′′
= 〈ιE′′′ .ω(x), dY (x)∗∗.X(x)〉E′′′′ − 〈ι∗∗E′ .ω(x), dY (x)∗∗.X(x)〉E′′′′
= 〈(ιE′′′ − ι∗∗E′).ω(x), dY (x)∗∗.X(x)〉E′′′′ ,

which is not 0 in general since ker(ιE′′′ − ι∗∗E′) = ιE′(E′) at least for Banach spaces,
see [23, 1.15], applied to ιE′ . So we may assume that (ιE′′′ − ι∗∗E′).ω(x) 6= 0 ∈ E′′′′′.
We choose a non-reflexive Banach space which is isomorphic to its bidual ([52])
and we choose as dY (x) this isomorphism, then dY (x)∗∗ is also an isomorphism,
and a suitable X(x) makes the expression nonzero.

Note that this also shows that for general convenient vector spaces E the exterior
derivative dω is in C∞(U,L2

alt(D
(1)
0 E,R)) only if ω ∈ C∞(M←T ′M). Note that

even for ω : U → E′′′ a constant 1-form of order 1 we need not have dω = 0.

33.14. Example. There exist c∞-open subsets U and V in a Banach space E, a
diffeomorphism f : U → V , and a 1-form ω ∈ C∞(U,L(E′′,R)) such that dlocf∗ω 6=
f∗dlocω.

Proof. We start in a more general situation. Let f : U → V ⊂ F be a smooth
mapping, and let Xx, Yx ∈ D(1)

x U = E′′. Then we have

dloc(f∗ω)x(Xx, Yx) = Dx(f∗ω( ).Yx).Xx −Dx(f∗ω( ).Xx).Yx
= Dx(ω(f( )).D( )f.Yx).Xx − . . .
= Xx〈ω ◦ f,D( )f.Yx〉F ′′ − . . .
= d〈ω ◦ f, df( )∗∗.Yx〉F ′′(x)∗∗.Xx − . . . by [75, 32.6]
= d〈ω(f( )), df(x)∗∗.Yx〉F ′′(x)∗∗.Xx+

+ d〈ω(f(x)), df( )∗∗.Yx〉F ′′(x)∗∗.Xx − . . . by [75, 32.6]

f∗(dlocω)x(Xx, Yx) = (dlocω)f(x)(Dxf.Xx, Dxf.Yx)
= Df(x)(ω( ).Dxf.Yx).Dxf.Xx −Df(x)(ω( ).Dxf.Xx).Dxf.Yx

= d〈ω( ), df(x)∗∗.Yx〉F ′′(f(x))∗∗.df(x)∗∗.Xx − . . .

Recall that for ` ∈ H ′ = L(H,R) the bidual mapping satisfies L(H ′′,R) 3 `∗∗ =
ιH′(`) ∈ H ′′′. Then for the difference we get

dloc(f∗ω)x(Xx, Yx)− f∗(dlocω)x(Xx, Yx)
= d〈ω(f(x)), df( )∗∗.Yx〉F ′′(x)∗∗.Xx − d〈ω(f(x)), df( )∗∗.Xx〉F ′′(x)∗∗.Yx
= 〈iF ′′′ω(f(x)), d(df( )∗∗.Yx)(x)∗∗.Xx − d(df( )∗∗.Xx)(x)∗∗.Yx〉F ′′′′ .

This expression does not vanish in general, e.g., when the following choices are
made: We put ω(f(x)) = ιF ′ .` = `∗∗ for ` ∈ F ′, and we have

d(d(` ◦ f)( )∗∗Yx)(x)∗∗.Xx = d(d〈`, f〉F ( )∗∗Yx)(x)∗∗.Xx

= d〈ιF ′`, df( )∗∗Yx〉F ′′(x)∗∗.Xx

= 〈ιF ′′′`∗∗, d(df( )∗∗Yx)(x)∗∗.Xx〉F ′′′′ ,
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which is not symmetric in general for ` ◦ f = ev : G′ ×G→ R (for a non reflexive
Banach space G) by the argument in [75, 32.7]. It remains to show that such a
factorization of ev over a diffeomorphism f and ` ∈ (G′ × G)′ is possible. Choose
(α, x) ∈ G′ ×G such that 〈α, x〉 = 1, and consider

G′ ×G = G′ × kerα× R.x−f→ G′ × kerα× R.x−`→ R
(β, y, tx) 7→ (β, y, 〈β, y + tx〉G.x) 7→ 〈β, y + tx〉G

(β, y, t−〈β,y〉〈β,x〉 .x)←− (β, y, tx).

33.15. Proposition. Let f : M → N be a smooth mapping between smooth
manifolds. Then we have

f∗ ◦ d = d ◦ f∗ : C∞
(
N←Lkalt(TN,N × R)

)
→ C∞

(
M←Lk+1

alt (TM,M × R)
)
.

Proof. Since by 33.12 the local and global formula for the exterior derivative
coincide on spaces C∞(Lkalt(DαM,M × R)) we shall prove the result with help of
the local formula. So we may assume that f : U → V is smooth between c∞-open
sets in convenient vector spaces E and F , respectively. Note that we may use the
global formula only if f is a local diffeomorphism, see 33.9 .

For ω ∈ C∞(V,Lkalt(F,R)), x ∈ U , and Xi ∈ E we have

(f∗ω)(x)(X1, . . . , Xk) = ω(f(x))(df(x).X1, . . . , df(x).Xk),

so by 33.12.1 we may compute

(df∗ω)(x)(X0, . . . , Xk) =
k∑
i=0

(−1)id(f∗ω)(x)(Xi)(X0, . . . ,
p
−−−−−
qXi , . . . , Xk)

=
k∑
i=0

(−1)i (dω(f(x)).df(x).Xi)(df(x).X0, . . . ,
pq
i , . . . , df(x).Xk)

+
k∑
i=0

(−1)i
∑
j<i

ω(f(x))(df(x).X0, . . . , d
2f(x).(Xi, Xj), . . . , pqi , . . . , df(x).Xk)

+
k∑
i=0

(−1)i
∑
j>i

ω(f(x))(df(x).X0, . . . ,
pq
i , . . . , d

2f(x).(Xi, Xj), . . . , df(x).Xk)

=
k∑
i=0

(−1)i dω(f(x))(df(x).X0, . . . , df(x).Xk)

+
∑
j<i

(−1)i+jω(f(x))(d2f(x).(Xi, Xj)− d2f(x).(Xj , Xi),

df(x).X0, . . . ,
pq
j , . . . ,

pq
i , . . . , df(x).Xk)

= (f∗dω)(x)(X0, . . . , Xk) + 0.

33.16. Example. There exists a smooth function

f ∈ C∞(E,R) = C∞(E,L0
alt(D(1)E,R))

such that
0 6= dlocdlocf ∈ C∞(E,L2

alt(D(1)E,R)).
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Proof. Let f ∈ C∞(E,R), Xx, Yx ∈ D(1)
x E = E′′. Then we have

(dlocf)x(Xx) = df(x)∗∗.Xx = 〈ιF ′ .df(x), Xx〉E′′
= 〈Xx, df(x)〉E′

(dlocdlocf)x(Xx, Yx) =
= d〈Yx, df( )〉E′(x)∗∗.Xx − d〈Xx, df( )〉E′(x)∗∗.Yx
= 〈ιE′′ .Yx, d(df)(x)∗∗.Xx〉E′′′ − 〈ιE′′ .Xx, d(df)(x)∗∗.Yx〉E′′′
= 〈d(df)(x)∗∗.Xx, Yx〉E′′ − 〈d(df)(x)∗∗.Yx, Xx〉E′′ ,

which does not vanish in general by the argument in [75, 32.7].

33.17. Lie derivatives

Let Dα denote one of T , D, or D[1,∞). For a vector field X ∈ C∞(M←DαM) and
ω ∈ Homk, alt

C∞(M,R)

(
C∞(M←DαM), C∞(M,R)

)
we define the Lie derivative LXω

of ω along X by

(LXω)|U (Y1, . . . , Yk) = X(ω(Y1, . . . , Yk))−
k∑
i=1

ω|U (Y1, . . . , [X,Yi], . . . , Yk),

for Y1, . . . , Yk ∈ C∞(U←DαU). From 32.5 it follows that

LXω ∈ Homk, alt
C∞(M,R)

(
C∞(M←DαM), C∞(M,R)

)
.

33.18. Theorem. The following formulas hold for C∞
(
M←Lkalt(TM,M × R)

)
and for the spaces Homk, alt

C∞(M,R)

(
C∞(M←DαM), C∞(M,R)

)
where Dα is any of

T , D, or D[1,∞).

(1) iX(ϕ ∧ ψ) = iXϕ ∧ ψ + (−1)degϕϕ ∧ iXψ.

(2) LX(ϕ ∧ ψ) = LXϕ ∧ ψ + ϕ ∧ LXψ.

(3) d(ϕ ∧ ψ) = dϕ ∧ ψ + (−1)degϕϕ ∧ dψ.

(4) d2 = d ◦ d = 1
2 [d, d] = 0.

(5) [LX , d] = LX ◦ d− d ◦ LX = 0.

(6) [iX , d] = iX ◦ d+ d ◦ iX = LX .

(7) [LX ,LY ] = LX ◦ LY − LY ◦ LX = L[X,Y ].

(8) [LX , iY ] = LX iY − iY LX = i[X,Y ].

(9) [iX , iY ] = iX iY + iY iX = 0.

(10) Lf.Xϕ = f.LXϕ+ df ∧ iXϕ.
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33.21. Review of operations on differential forms

Space of differential forms LX d f∗

Hom∗, alt
C∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
+ + diff

Λ∗C∞(M,R) HomC∞(M,R)

(
C∞(M←DM), C∞(M,R)

)
– – diff

Λ∗C∞(M,R)C
∞(M←D′M) – – +

C∞
(
M←Λ∗(D′M)

)
– – +

C∞
(
M←L∗alt(DM,M × R)

)
flow – +

Hom∗, alt
C∞(M,R)

(
C∞(M←D[1,∞)M), C∞(M,R)

)
+ + diff

C∞
(
M←L∗alt(D[1,∞)M,M × R)

)
flow – +

Hom∗, alt
C∞(M,R)

(
C∞(M←D(1)M), C∞(M,R)

)
flow ? diff

C∞
(
M←L∗alt(D(1)M,M × R)

)
flow – +

Hom∗, alt
C∞(M,R)

(
C∞(M←TM), C∞(M,R)

)
+ + diff

Λ∗C∞(M,R) HomC∞(M,R)

(
C∞(M←TM), C∞(M,R)

)
– – diff

Λ∗C∞(M,R)C
∞(M←T ′M) – – +

C∞
(
M←Λ∗(T ′M)

)
– – +

C∞
(
M←L∗alt(TM,M × R)

)
+ + +

In this table a ‘–’ means that the space is not invariant under the operation on
top of the column, a ‘+’ means that it is invariant, ‘diff’ means that it is invariant
under f∗ only for diffeomorphisms f , and ‘flow’ means that it is invariant under LX
for all kinematic vector fields X which admit local flows. Moreover, Λ∗, Hom∗,alt

A ,
and L∗alt denote the N-graded spaces with these spaces for ∗ replaced by k ∈ N as
k-homogeneous parts.

33.22. Remark

From the table 33.21 we see that for many purposes only one space of differential
forms is fully suited. We will denote from now on by

Ωk(M) := C∞
(
M←Lkalt(TM,M × R)

)
the space of differential forms, for a smooth manifold M . By 30.1 it carries the
structure of a convenient vector space induced by the closed embedding

Ωk(M)→
∏
α

C∞
(
Uα, L

k
alt(E,R)

)
s 7→ pr2 ◦ ψα ◦ (s | Uα),

where (Uα, uα : Uα → E) is a smooth atlas for the manifold M , and where ψα :=
Lkalt(Tu−1

α ,R)) is the induced vector bundle chart.

Similarly, we denote by

Ωk(M,V ) := C∞
(
M←Lkalt(TM,M × V )

)
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the space of differential forms with values in a convenient vector space V , and by

Ωk(M ;E) := C∞
(
M←Lkalt(TM,E)

)
the space of differential forms with values in a vector bundle p : E →M .

Lemma. The space Ωk(M) is isomorphic as convenient vector space to the closed
linear subspace of C∞(TM ×M . . . ×M TM,R) consisting of all fiberwise k-linear
alternating smooth functions in the vector bundle structure TM ⊕ · · · ⊕ TM from
[75, 29.5].

Proof. By [75, 27.17], the space C∞(TM ×M . . . ×M TM,R) carries the initial
structure with respect to the closed linear embedding

C∞
(
TM ×M . . .×M TM,R

)
→
∏
α

C∞(uα(Uα)× E × . . .× E,R),

and C∞
(
uα(Uα)×E×. . .×E,R

)
contains an isomorphic copy of C∞(Uα, Lkalt(E,R))

as closed linear subspace by cartesian closedness.

Corollary. All the important mappings are smooth:
d : Ωk(M)→ Ωk+1(M)

i : X(M)× Ωk(M)→ Ωk−1(M)

L : X(M)× Ωk(M)→ Ωk(M)

f∗ : Ωk(M)→ Ωk(N)
where f : N →M is a smooth mapping. The last mappings is even smooth consid-
ered as mapping (f, ω) 7→ f∗ω, C∞(N,M)× Ωk(M)→ Ωk(N).

Recall once more the formulas for ω ∈ Ωk(M) and Xi ∈ X(M), from 33.12.3 ,
33.10 , 33.17 :

(dω)(x)(X0, . . . , Xk) =
k∑
i=0

(−1)iXi

(
ω(X0, . . . ,

p
−−−−−
qXi , . . . , Xk)

)
+

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . ,
p
−−−−−
qXi , . . . ,

p
−−−−−−
qXj , . . . , Xk),

(iXϕ)(X1, . . . , Xk−1) = ϕ(X,X1, . . . , Xk−1),

(LXω)(X1, . . . , Xk) = X(ω(X1, . . . , Xk))−
k∑
i=1

ω(X1, . . . , [X,Xi], . . . , Xk).

Proof. For d we use the local formula 33.12.1 , smoothness of i is obvious, and
for the Lie derivative we may use formula 33.18.6 . The pullback mapping f∗ is
induced from Tf × . . .× Tf .

248 Andreas Kriegl , Univ.Wien, June 30, 2017



Chapter IX
Manifolds of Mappings

41. Jets and Whitney Topologies . . . . . . . . . . . . . . . . . . . 431
42. Manifolds of Mappings . . . . . . . . . . . . . . . . . . . . . 439
43. Diffeomorphism Groups . . . . . . . . . . . . . . . . . . . . . 454
44. Principal Bundles with Structure Group a Diffeomorphism Group . . . 474
45. Manifolds of Riemannian Metrics . . . . . . . . . . . . . . . . . 487
46. The Korteweg – De Vrieß Equation as a Geodesic Equation . . . . . 498
Complements to Manifolds of Mappings . . . . . . . . . . . . . . . . 510

Manifolds of smooth mappings between finite dimensional manifolds are the fore-
most examples of infinite dimensional manifolds, and in particular diffeomorphism
groups can only be treated in a satisfactory manner at the level of generality devel-
oped in this book: One knows from [102] that a Banach Lie group acting effectively
on a finite dimensional compact manifold is necessarily finite dimensional. So there
is no way to model the diffeomorphism group on Banach spaces as a manifold.

The space of smooth mappings C∞(M,N) carries a natural atlas with charts in-
duced by any exponential mapping on N 42.1 , which permits us also to consider
certain infinite dimensional manifolds N in 42.4 . Unfortunately, for noncom-
pact M , the space C∞(M,N) is not locally contractible in the compact-open C∞-
topology, and the natural chart domains are quite small: Namely, the natural model
spaces turn out to be convenient vector spaces of sections with compact support
of vector bundles f∗TN , which have been treated in detail in section 30 . Thus,
the manifold topology on C∞(M,N) is finer than the Whitney C∞-topology, and
we denote by C∞(M,N) the resulting smooth manifold (otherwise, e.g. C∞(R,R)
would have two meanings).

With a careful description of the space of smooth curves 42.5 we can later often
avoid the explicit use of the atlas, for example when we show that the composition
mapping is smooth in 42.13 . Since we insist on charts the exponential law for
manifolds of mappings holds only for a compact source manifold M , 42.14 .

If we insist that the exponential law should hold for manifolds of mappings between
all (even only finite dimensional) manifolds, then one is quickly lead to a more
general notion of a manifold, where an atlas of charts is replaced by the system of
all smooth curves. One is lead to further requirements: tangent spaces should be
convenient vector spaces, the tangent bundle should be trivial along smooth curves
via a kind of parallel transport, and a local addition as in 42.4 should exist. In
this way one obtains a cartesian closed category of smooth manifolds and smooth
mappings between them, where those manifolds with Banach tangent spaces are
exactly the classical smooth manifolds with charts. Theories along these lines can
be found in [73], [99], and [Kriegl, 1984]. Unfortunately they found no applications,
and even the authors were not courageous enough to pursue them further and to
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include them in this book. But we still think that it is a valuable theory, since
for instance the diffeomorphism group Diff(M) of a non-compact finite dimensional
smooth manifold M with the compact-open C∞-topology is a Lie group in this
sense with the space of all vector fields on M as Lie algebra. Also, in section [75,
45] results will appear which indicate that ultimately this is a more natural setting.

Let us return (after discussing non-contents) to describing the contents of this
chapter. For the tangent space we have a natural diffeomorphism TC∞(M,N) ∼=
C∞c (M,TN) ⊂ C∞(M,TN), see [75, 42.17]. In the same manner we also treat
manifolds of real analytic mappings from a compact manifold M into N .

In section 43 on diffeomorphism groups we first show that the group Diff(M)
is a regular smooth Lie group 43.1 . The proof clearly shows the power of our
calculus: It is quite obvious that the inversion is smooth, whereas more traditional
treatments as in [84], [96], and [Michor, 1980c] needed specially tailored inverse
function theorems in infinite dimensions. The Lie algebra of the diffeomorphism
group is the space Xc(M) of all vector fields with compact support on M , with the
negative of the usual Lie bracket. The exponential mapping exp is the flow mapping
to time 1, but it is not surjective on any neighborhood of the identity 43.2 , and
Ad◦exp : Xc(M)→ L(Xc(M),Xc(M)) is not real analytic, [75, 43.3]. Real analytic
diffeomorphisms on a real analytic compact manifold form a regular real analytic
Lie group [75, 43.4]. Also regular Lie groups are the subgroups of volume preserving
43.7 , symplectic 43.12 , exact symplectic [75, 43.13], or contact diffeomorphisms
43.19 .

In section [75, 44] we treat principal bundles with a diffeomorphism group as struc-
ture group. The first example is the space of all embeddings between two manifolds
44.1 , a sort of nonlinear Grassmann manifold, in particular if the image space is

an infinite dimensional convenient vector space which leads to a smooth manifold
which is a classifying space for the diffeomorphism group of a compact manifold
44.24 . Another example is the nonlinear frame bundle of a fiber bundle with

compact fiber [75, 44.5], for which we investigate the action of the gauge group on
the space of generalized connections [75, 44.14] and show that in the smooth case
there never exist slices [75, 44.19], [75, 44.20].

In section [75, 45] we compute explicitly all geodesics for some natural (pseudo)
Riemannian metrics on the space of all Riemannian metrics. Section [75, 46] is
devoted to the Korteweg–De Vrieß equation which is shown to be the geodesic
equation of a certain right invariant Riemannian metric on the Virasoro group.
Here we also compute the curvature [75, 46.13] and the Jacobi equation [75, 46.14].
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41.5. The compact-open topology on spaces of continuous map-
pings

Let M and N be Hausdorff topological spaces. The best known topology on the
space C(M,N) of all continuous mappings is the compact-open topology or CO-
topology. A subbasis for this topology consists of all sets of the form {f ∈ C(M,N) :
f(K) ⊆ U}, where K runs through all compact subsets in M and U through all
open subsets of N . This is a Hausdorff topology, since it is finer than the topology
of pointwise convergence.

It is easy to see that if M has a countable basis of the compact sets and is compactly
generated ( 4.7 .(i), i.e., M carries the final topology with respect to the inclusions
of its compact subsets), and if N is a complete metric space, then there exists a
complete metric on (C(M,N), CO), so it is a Baire space.

41.6. The graph topology

For f ∈ C(M,N) let graphf : M →M ×N be given by graphf (x) = (x, f(x)), the
graph mapping of f .

The WO-topology or wholly open topology on C(M,N) is given by the basis {f ∈
C(M,N) : f(M) ⊂ U}, where U runs through all open sets in N . It is not
Hausdorff, since mappings with the same image cannot be separated.

The graph topology or WO0-topology on C(M,N) is induced by the mapping
graph : C(M,N)→ (C(M,M ×N), WO-topology).

A basis for it is given by all sets of the form {f ∈ C(M,N) : graphf (M) ⊆ U},
where U runs through all open sets in M×N . This topology is Hausdorff since it is
finer than the compact-open topology. Note that a continuous mapping g : N → P
induces a continuous mapping g∗ : C(M,N) → C(M,P ) for the WO0-topology,
since graphg◦f = (Id×g) ◦ graphf .

If M is paracompact and (N, d) is a metric space, then for f ∈ C(M,N) the sets
{g ∈ C(M,N) : d(g(x), f(x)) < ε(x) for all x ∈M} form a basis of neighborhoods,
where ε runs through all positive continuous functions on M . This is easily seen.

41.7. Lemma. Let N be metrizable, and let M satisfy one of the following condi-
tions:

(1) M is locally compact with a countable basis of open sets.
(2) M = R(N).

Then for any sequence (fn) in C(M,N) the following holds: (fn) converges to f
in the WO0-topology if and only if there exists a compact set K ⊆M such that fn
equals f off K for all but finitely many n, and fn|K converges to f |K uniformly.

Note that in case ( 2 ) we get fn = f for all but finitely many n, since f differs
from fn on a c∞-open subset.

Proof. Clearly, the condition above implies convergence. Conversely, let (fn) and
f in C(M,N) be such that the condition does not hold. In case ( 1 ) let Kn ⊂ Ko

n+1
be a basis of the compact sets in M , and in case ( 2 ) let Kn := {x ∈ Rn ⊂ R(N) :
|xi| ≤ n for i ≤ n}. Then either fn does not converge to f in the compact-open
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topology, or there exists xn /∈ Kn with d(fn(xn), f(xn)) =: εn > 0. Then (xn) is
without cluster point in M : This is obvious in case ( 1 ), and in case ( 2 ) this can
be seen by the following argument: Assume that there exists a cluster point y. Let
N be so large that supp(y) ⊂ {0, . . . , N} and |yi| ≤ N − 1 for all i. Then we define
kn ∈ N and δn > 0 by{
kn := n, δn := 1 for n ≤ N or supp(xn) ⊆ {1, . . . , n}
kn := min{i > n : xin 6= 0}, δn := |xknn | otherwise

Then xn − y /∈ U := {z : |zki | < δi for all i} for n > N , so y cannot be a cluster
point.

The set {(x, y) ∈ M × N : if x = xn for some n then d(f(xn), y) < εn} is an
open neighborhood of graphf (M) not containing any graphfn(M). So fn cannot
converge to f in the WO0-topology.

41.8. Lemma. Let E be a convenient vector space, and suppose that M satisfies
the following condition:

(1) Each neighborhood of each point contains a sequence without cluster point
in M .

Then for f ∈ C(M,E) we have tf → 0 in the WO0-topology for t→ 0 in R if and
only if f = 0.

Moreover, each open subset in an infinite dimensional locally convex space has prop-
erty ( 1 ).

Proof. The mapping f 7→ g ◦ f is continuous in the WO0-topologies, so by com-
posing with bounded linear functionals on E we may suppose that E = R.

Suppose that f 6= 0, say f(x) = 2 for some x. Then f(y) > 1 for y in some
neighborhood U of x, which contains a sequence xn without cluster point in M .
Then {(x, y) ∈ M × R : if x = xn then y < 1/n} is an open neighborhood of
graph0(M) not containing any graphtf (M) for t 6= 0. So tf cannot converge to 0
in the WO0-topology.

For the last assertion we have to show that the unit ball of each seminorm p in
an infinite dimensional locally convex vector space M contains a sequence without
cluster point. If the seminorm has non-trivial kernel p−1(0) then (n.x)n for 0 6=
x ∈ p−1(0) has this property. If p has trivial kernel, it is a norm, and the unit
ball in the normed space (M,p) contains a sequence without cluster point, since
otherwise the unit ball would be compact, and (M,p) would be finite dimensional.
This sequence has also no cluster point in M , since M has a finer topology.

41.9. The COk-topology on spaces of smooth mappings

Let M and N be smooth manifolds, possibly infinite dimensional. For 0 ≤ k ≤
∞ the compact-open Ck-topology or COk-topology on the space C∞(M,N) of all
smooth mappings M → N is induced by the k-jet extension 41.3 from the CO-
topology

jk : C∞(M,N)→ (C(M,Jk(M,N)),CO).
We conclude with some remarks. If M is infinite dimensional it would be more
natural to replace the system of compact sets in M by the system of all subsets
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on which each smooth real valued function is bounded. Since these topologies will
play only minor roles in this book we do not develop them here.

41.10. Whitney Ck-topology

Let M and N be smooth manifolds, possibly infinite dimensional. For 0 ≤ k ≤ ∞
the Whitney Ck-topology or WOk-topology on the space C∞(M,N) of all smooth
mappings M → N is induced by the k-jet extension 41.3 from the WO-topology

jk : C∞(M,N)→ (C(M,Jk(M,N)),WO).
A basis for the open sets is given by all sets of the form {f ∈ C∞(M,N) : jkf(M) ⊂
U}, where U runs through all open sets in the smooth manifold Jk(M,N). A
smooth mapping g : N → P induces a smooth mapping Jk(M, g) : Jk(M,N) →
Jk(M,P ) by 41.3.4 , and thus in turn a continuous mapping g∗ : C∞(M,N) →
C∞(M,P ) for the WOk-topologies for each k.

For a convenient vector space E and for a manifold M modeled on infinite di-
mensional Fréchet spaces (so that there the c∞-topology coincides with the locally
convex one) we see from 41.8 that for f ∈ C∞(M,E) we have t.f → 0 for t → 0
in the WOk-topology if and only if f = 0. So (C∞(M,E),WOk) does not contain
a non-trivial topological vector space if M is infinite dimensional.

If M is compact, then the WOk-topology and the COk-topology coincide on the
space C∞(M,N) for all k.

41.11. Lemma. Let M , N be smooth manifolds, where M is finite dimensional
and second countable, and where N is metrizable. Then J∞(M,N) is also a metriz-
able manifold. If, moreover, N is second countable then also J∞(M,N) is also
second countable.

Let Kn ⊂ Ko
n+1 ⊂ Kn+1 be a compact exhaustion of M . Then the following is a

basis of open sets for the Whitney C∞-topology:
M(U,m) := {f ∈ C∞(M,N) : jmnf(M \Ko

n) ⊂ Un},
where (mn) is any sequence in N and where Un ⊂ Jmn(M,N) is an open subset.

Proof. Looking at 41.3 we see that J∞(M,N) is a bundle over M × N with
Fréchet spaces as fibers, so it is metrizable. We can also write

M(U,m) := {f ∈ C∞(M,N) : j∞f(M \Ko
n) ⊂ (π∞mn)−1Un}.

By pulling up to higher jet bundles, we may assume that mn is strictly increasing. If
we put Vn = (π∞mn)−1Un, we may then replace Vn by V0∩· · ·∩Vn without changing
M(U,m). But then we may replace M \Ko

n by Kn+1 \Ko
n without changing the

set. Using that J∞(M,N) carries the initial topology with respect to all projections
π∞l : J∞(M,N) → J l(M,N) by 41.3.6 , we get an equivalent basis of open sets
given by

M(U) := {f ∈ C∞(M,N) : j∞f(Kn+1 \Ko
n) ⊂ Un},

where now Un ⊂ J∞(M,N) is a sequence of open sets. It is obvious that this
basis generates a topology which is finer than the WO∞-topology. To show the
converse let f ∈ M(U). Let d be a compatible metric on the metrizable manifold
J∞(M,N), and let 0 < εn be smaller than the distance between the compact set
j∞f(Kn+1 \ Ko

n) and the complement of its open neighborhood Un. Let ε be a
positive continuous function on M such that 0 < ε(x) < εn for x ∈ Kn+1 \ Ko

n,
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and consider the open set W := {σ ∈ J∞(M,N) : d(σ, j∞f(α(σ))) < ε(α(σ))} in
J∞(M,N). Then f ∈ {g ∈ C∞(M,N) : j∞g(M) ⊂W} ⊆M(U).

41.12. Corollary. Let M , N be smooth manifolds, where M is finite dimen-
sional and second countable, and where N is metrizable. Then the COk-topology is
metrizable. If N is also second countable then so is the COk-topology.

Proof. Use 41.11 and [20, X, 3.3].

41.13. Comparison of topologies on C∞(M,E)

Let p : E → M be a smooth finite dimensional vector bundle over a finite dimen-
sional second countable base manifold M . We consider the space C∞c (M←E) of all
smooth sections of E with compact support, equipped with the bornological locally
convex topology from 30.4 ,

C∞c (M←E) = lim−→
K

C∞K (M←E),

where K runs through all compact sets in M and each of the spaces C∞K (M←f∗TN)
is equipped with the topology of uniform convergence (on K) in all derivatives
separately, as in 30.4 , reformulated for the bornological topologies. Consider
also the space C∞(M,E) of all smooth mappings M → E, equipped with the
Whitney C∞-topology, and the subspace C∞(M←E) of all smooth sections, with
the induced topology.

Lemma. Then the canonical injection

C∞c (M←E)→ C∞(M,E)

is a topological embedding. The subspace C∞(M←E) is a vector space, but scalar
multiplication is jointly continuous in the induced topology on it if and only if M
is compact or the fiber is 0. The maximal topological vector space contained in
C∞(M←E) is just C∞c (M←E).

Proof. That the injection is an embedding is clear by contemplating the descrip-
tion of the Whitney C∞-topology given in lemma 41.11 , which obviously is the
inductive limit topology lim−→C∞Kn(E). The rest follows from 41.7 since t.f → 0 for
t → 0 in in C∞(M,E) for WO∞ if and only if t.j∞f → 0 in C∞(M,J∞(E)) for
the WO0-topology.

41.14. Tubular neighborhoods

Let M be an (embedded) submanifold of a smooth finite dimensional manifold N .
Then the normal bundle of M in N is the vector bundleN (M) := (TN |M)/TM−π→
M with fiber TxN/TxM over a point x ∈ M . A tubular neighborhood of M in N
consists of:

(1) A fiberwise radial open neighborhood Ũ ⊂ N (M) of the 0-section in the
normal bundle

(2) A diffeomorphism ϕ : Ũ → U ⊂ N onto an open neighborhood U of M in N ,
which on the 0-section coincides with the projection of the normal bundle.
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It is well known that tubular neighborhoods exist.
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42. Manifolds of Mappings

The aim is to turn C∞(M,N) for (finite dimensional) smooth manifolds M and N
into a smooth manifold which hopefully satisfies the exponential law

C∞(P,C∞(M,N)) ∼= C∞(P ×M,N)
for any other (finite dimensional) smooth manifold P . Since for finite dimensional
vector spaces M and N the appropriate topology for the exponential law on the
vector space C∞(M,N) is that of uniform convergence of each derivative on each
compact set, one would expect that this topology is also appropriate in the general
case.

a.1 Example. Note however, that C(
⊔
N
S1, S1) is not locally path connected in

the compact open topology, since any neighborhood of f0 :=
⋃
N

idS1 contains fn :=
idt · · · t idtp2 t idt . . . for sufficiently large n, where p2 : z 7→ z2 sits on the n-th
summand S1. If fn could be connected to f0 by a path h : [0, 1] → C(

⊔
N
S1, S1),

then ĥ : [0, 1] ×
⊔
N
S1 → S1 would be a homotopy between f0 and fn. But then

composition with the embedding id× injn : [0, 1] × S1 → [0, 1] ×
⊔
N
S1 would be

a homotopy between idS1 and p2, which is impossible since their winding numbers
are 1 and 2.

This counter example may not be completely satisfying, since the domain manifold
is not connected. So let us give another.

a.2 Example. Let M := C \ Z and N := C \ {0} and consider maps of the
form x + iy 7→ h0(x) + ih1(x)y, where h0, h1 ∈ C∞(R,R) which h−1

0 (0) ⊆ Z and
0 /∈ h1(Z). They are well-defined M → N , since h0(x) + ih1(x)y = 0 ⇒ x ∈
h−1

0 (0) ⊆ Z ⇒ 0 /∈ h1(x) ⇒ y = 0. In particular, let f0 : M → N be such a
map with h0(x) := 2 sin(πx) and h1(x) := 1 for all x and for n > 0 let fn be
such a map with the same h0 but h1(x) := h(x − n), where h ∈ C∞(R, [−1, 1]) is
equal to 1 outside (−1, 1) and equal to -1 on [−1/2, 1/2]. Then fn = f0 outside
(n− 1, n+ 1) and hence any neighborhood of f0 contains fn for sufficiently large n.
Any continuous curve in C∞(M,N) ⊆ C(M,N) connecting f0 and f2n would yield
a homotopy between f0 and f2n and hence also a homotopy between p◦f0 ◦ i2n and
p ◦ f2n ◦ i2n, where p : C \ {0} → S1 is given by p : z 7→ z

|z| and i2n : S1 → C \ Z is
given by x+ i y 7→ 2n+ 1

π arcsin
(
x
2
)

+ i y. Then

(f0 ◦ i2n)(x+ i y) = h0

(
2n+ 1

π
arcsin

(x
2

))
+ i y = x+ i y

(f2n ◦ i2n)(x+ i y) = h0

(
2n+ 1

π
arcsin

(x
2

))
− i y = x− i y.

So the winding numbers of p◦f0 ◦ i2n and p◦f2n ◦ i2n are 1 and −1, a contradiction.

From this one can construct an even more geometric example using N := S1 and
for M ⊆ R3 the connected sum of the tori centered at (n, 0, 0) with rotation axes
(0, 0, 1) for n ∈ Z. The embedding i2n factors over pr1 : C×R ⊇M → C \ Z, thus
p ◦ f0 ◦ pr1 and p ◦ f2n ◦ pr1 are non-homotopic in C∞(M,N).

But is the topology used in the previous two examples really the appropriate topol-
ogy on C∞(M,N)? Infinite dimensional manifolds modelled on convenient vector
space should be considered with the final topology with respect to (the inverse of)
their charts u : C∞(M,N) ⊇ U → u(U) ⊆ E, where u(U) is supplied with the
c∞-topology (inherited from E). This final topology is just the final topology with
respect to the smooth curves into C∞(M,N), which, by exponential law, should
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correspond to the smooth mappings R×M → N . Obviously this topology is locally
(C∞-)path connected. Thus it cannot be the topology used in the two examples
above.

a.3 Example. Let M be the 0-dimensional discrete manifold N and N := S1. We
claim the product topology on (S1)N = C∞(M,N) is the final topology with respect
to the smooth curves c ∈ C∞(R, C∞(M,N)) ∼= C∞(R × N, N) ∼= C∞(R, S1)N,
given by the eponential law. Since these curves are obviously continuous for the
(metrizable) product topology on the range space, the final topology has to be finer
or equal.

Let conversely U be open in the final topology. Suppose there exists a z∞ ∈ U ⊆
(S1)N for which U is not a neighborhood of z∞ in the product topology. So there
exists a sequence zn ∈ (S1)N \ U which converges to z∞. We lift the coordinates
zknz
−1
∞ ∈ S1 of zn

z∞
to xkn ∈ R along exp : R→ S1 such that xkn → 0 for n→∞ and

each k. By passing to a common subsequence (given by j(n) := n+ max{i : ∃k ≤
n : |xki | > 1

2n }) we get that {2nxkj(n) : n ∈ N} is bounded for each k. So there exist
smooth curves ck : R → R with ck(1/n) = xkj(n) by the special curve lemma. The
curve c̃ := (xk∞ · exp ◦ck)k∈N : R→ (S1)N is then a smooth curve with c̃( 1

n ) = zj(n),
a contradiction to the openness of U in the final topology.

Moreover, this topology is (locally) connected but not locally simply connected:
Obviously we may connect z0, z1 ∈ (S1)N by parametrizing in the k-th factor one
of the two arcs von zk0 to zk1 for each k ∈ N.
Let U be any neighborhood of z0 := (1, 1, . . . ) ∈ (S1)N. Then for sufficently large
n the loop injn : S1 → (S1)N, z 7→ (1, . . . , 1, z, 1, . . . ) has image in U but cannot be
0-homotopic, otherwise prn ◦ injn = idS1 would be 0-homotopic.

42.1a Trying to find charts for C∞(M,N). Let f ∈ C∞(M,N). The basic
idea is, that for mappings g sufficiently near to f and any x ∈ M the point g(x)
should be connectable with f(x) by a geodesic starting at f(x) with some initial
vector σ(x) ∈ Tf(x)N , i.e. g(x) = expf(x)(σ(x)), where we have choosen some
fixed Riemannian metric on N . We may assume that the exponential mapping
exp of the Riemannian metric is defined on an open neighborhood U of the zero
section N ⊆ TN such that (πN , exp) : TN ⊇ U −∼=→ V ⊆ N × N is a smooth
diffeomorphism onto an open neighborhood V of the diagonal N ⊆ N ×N . Thus
the g correspond to sections σ along f or, equivalently, sections s of the pullback
bundle f∗(TN)→M :

M ×N TN
pr1

''

pr2

&&
f∗TN

π∗Nf
//

f∗πN
��

TN

πN

��
M

f
//s=(id,σ)

WW

σ

DD

N.

Now let

Uf :=
{
g ∈ C∞(M,N) : (f(x), g(x)) ∈ V for all x ∈M

}
,

uf : Uf → C∞(M←f∗TN),

uf (g)(x) :=
(
x, exp−1

f(x)
(
g(x)

))
=
(
x,
(
(πN , exp)−1 ◦ (f, g)

)
(x)
)
.
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Then uf is a bijective mapping from Uf onto the set

uf (Uf ) =
{
s ∈ C∞(M←f∗TN) : s(M) ⊆ f∗U := (π∗Nf)−1(U)

}
,

whose inverse is given by
u−1
f (s) = exp ◦σ := exp ◦π∗Nf ◦ s.

We will have to show that uf (Uf ) is c∞-open is some space of sections.

Now we consider the atlas (Uf , uf )f∈C∞(M,N) for C∞(M,N). Its chart change
mappings are given for s ∈ uf1(Uf2 ∩ Uf1) ⊆ C∞(M←f1

∗TN) by

(uf2 ◦ u−1
f1

)(s) =
(

idM , (πN , exp)−1 ◦ (f2, exp ◦π∗Nf1 ◦ s)
)

= (τ−1
f2
◦ τf1)∗(s) ∈ C∞(M←f2

∗TN),

where τf (x, Y ) := (x, expf(x)(Y )) is a smooth diffeomorphism

τf : f∗TN ⊇ f∗U −∼=→ (f × idN )−1(V ) ⊆M ×N
which is fiber respecting over M :

f∗U //33

τf

,, ,,

� _

��

U // ∼=
(πN ,exp)

// //
� _

��

V � _

��

(f ×N)−1(V )oo
� _

��
f∗TN

f∗πN=pr1

����

π∗Nf=pr2 // TN

πN

����

exp

��

N ×N
pr2
����

pr1
vvvv

M ×N
f×N

oo

pr1
����

M
f //

u−1
f (s)

44

s

BB

id

88

σ

66

N N M

f

jj

We will have to show that the chart change uf2 ◦ u−1
f1

= (τ−1
f2
◦ τf1)∗ is defined on

a c∞-open subset and is smooth.

30.8. Lemma. Curves in spaces of sections.

(1) For a smooth vector bundle p : E → M a curve c : R → C∞(M←E) is
smooth if and only if c∧ : R×M → E is smooth.

(2) For a holomorphic vector bundle p : E → M a curve c : D → H(M←E) is
holomorphic if and only if c∧ : D×M → E is holomorphic.

(3) For a real analytic vector bundle p : E →M a curve c : R→ Cω(M←E) is
real analytic if and only if the associated mapping c∧ : R ×M → E is real
analytic.

(4) For a real analytic vector bundle p : E → M a curve c : R → Cω(M←E)
is smooth if and only if c∧ : R ×M → E is C∞,ω, see [75, 30.7]. A curve
c : R→ C∞(M←E) is real analytic if and only if c∧ : R×M → E is Cω,∞,
see 11.20 .

Proof. By the descriptions of the structures ( 30.1 for the smooth case, [75, 30.5]
for the holomorphic case, and [75, 30.6] for the real analytic case) we may assume
that M is open in a convenient vector space F , and we may consider functions with
values in the standard fiber instead of sections. The statements then follow from the
respective exponential laws ( 3.12 for the smooth case, 7.22 for the holomorphic
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case, 11.18 for the real analytic case, and the definition in 11.20 for the C∞,ω
and Cω,∞ cases).

30.9. Lemma. Curves in spaces of sections with compact support.

(1) For a smooth vector bundle p : E →M with finite dimensional base manifold
M a curve c : R→ C∞c (M←E) is smooth if and only if c∧ : R×M → E is
smooth and satisfies the following condition:

For each compact interval [a, b] ⊂ R there is a compact sub-
set K ⊂ M such that c∧(t, x) is constant in t ∈ [a, b] for
each x ∈M \K.

(2) For a real analytic finite dimensional vector bundle p : E → M a curve
c : R→ C∞c (M←E) is real analytic if and only if c∧ satisfies the condition
of ( 1 ) above and c∧ : R×M → E is Cω,∞, see [75, 30.7].

Compare this with 42.5 and 42.12 .

Proof. By lemma 30.4.1 a curve c : R → C∞c (M←E) is smooth if it factors
locally as a smooth curve into some step C∞K (M←E) for some compact K in M ,
and this is by 30.8.1 equivalent to smoothness of c∧ and to condition ( 1 ). An
analogous proof applies to the real analytic case.

30.10. Corollary. Let p : E →M and p′ : E′ →M be smooth vector bundles with
finite dimensional base manifold. Let W ⊆ E be an open subset, and let f : W → E′

be a fiber respecting smooth (nonlinear) mapping. Then
C∞c (M←W ) := {s ∈ C∞c (M←E) : s(M) ⊆W}

is c∞-open in the convenient vector space C∞c (M←E). The mapping
f∗ : C∞c (M←W )→ C∞c (M←E′)

is smooth with derivative
(dvf)∗ : C∞c (M←W )× C∞c (M←E)→ C∞c (M←E′),

where the vertical derivative dvf : W ×M E → E′ is given by
dvf(u,w) := d

dt |0f(u+ tw).

If the vector bundles and f are real analytic then f∗ : C∞c (M←W )→ C∞c (M←E′)
is real analytic with derivative (dvf)∗.

If M is compact and the vector bundles and f are real analytic then Cω(M←W ) :=
{s ∈ Cω(M←E) : s(M) ⊆ W} is open in the convenient vector space Cω(M←E),
and the mapping f∗ : Cω(M←W ) → Cω(M←E′) is real analytic with derivative
(dvf)∗.

Proof. The set C∞c (M←W ) is open in C∞c (M←E) since its intersection with
each C∞K (M←E) is open therein, see corollary 4.16 , and the colimit is strict and
regular by 30.4 . Then f∗ has all the stated properties, since it preserves (by [75,
30.7] for C∞,ω) the respective classes of curves which are described in 30.8 and
30.9 . The derivative can be computed pointwise on M .

42.1. Theorem. Manifold structure of C∞(M,N). Let M and N be smooth
finite dimensional manifolds. Then the space C∞(M,N) of all smooth mappings
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from M to N is a smooth manifold, modeled on spaces C∞c (M←f∗TN) of smooth
sections with compact support of pullback bundles along f : M → N over M .

Proof. As indicated in 42.1a we choose a smooth Riemannian metric on N
and open neighborhoods U of the zero section N ↪→ TN and V of the diagonal
N ↪→ N × N such that (πN , exp) : U → V is a smooth diffeomorphism. Since
we will use spaces C∞c (M←f∗TN) of sections with compact support as modelling
vector spaces, we need to consider the equivalence relation on C∞(M,N) given by
f ∼ g if f and g agree off some compact subset in M . Then we define charts

Uf :=
{
g ∈ C∞(M,N) : (f(x), g(x)) ∈ V for all x ∈M, g ∼ f

}
,

uf : Uf → C∞c (M←f∗TN),

uf (g)(x) :=
(
x, exp−1

f(x)
(
g(x)

))
=
(
x,
(
(πN , exp)−1 ◦ (f, g)

)
(x)
)
.

These are bijections onto

uf (Uf ) =
{
s ∈ C∞c (M←f∗TN) : s(M) ⊆ f∗U = (π∗Nf)−1(U)

}
,

with inverse given by u−1
f (s) = exp ◦π∗Nf ◦s, where we view U → N as fiber bundle.

The image uf (Uf ) is c∞-open in C∞c (M←f∗TN) by 30.10 .

The chart change mappings for the atlas (Uf , uf )f∈C∞(M,N) for C∞(M,N) are given
for s ∈ uf1(Uf2 ∩ Uf1) ⊆ C∞(M←f1

∗TN) by

(uf2 ◦ u−1
f1

)(s) =
(

idM , (πN , exp)−1 ◦ (f2, exp ◦π∗Nf1 ◦ s)
)

= (τ−1
f2
◦ τf1)∗(s) ∈ C∞(M←f2

∗TN),

where τf (x, Y ) := (x, expf(x)(Y )) is a smooth diffeomorphism

τf : f∗TN ⊇ f∗U −∼=→ (f × idN )−1(V ) ⊆M ×N

which is fiber respecting over M . Thus τ−1
f2
◦τf1 is a fibre respecting diffeomorphism

from an open set in f1
∗TN onto one in f2

∗TN , hence (τ−1
f2
◦ τf1)∗ is smooth by

30.10 .

Finally, following 27.1 , the natural topology on C∞(M,N) is the identification
topology from this atlas (with the c∞-topologies on the modeling spaces), which is
obviously finer than the topology of pointwise convergence and thus Hausdorff.

The equation uf ◦ u−1
g = (τ−1

f ◦ τg)∗ shows that the smooth structure does not
depend on the choice of the smooth Riemannian metric on N .

42.3. Proposition. For finite dimensional second countable manifolds M , N the
smooth manifold C∞(M,N) has separable connected components and is smoothly
paracompact and Lindelöf. If M is compact, it is metrizable.

Proof. Each connected component of a mapping f is contained in the open equiv-
alence class {g : g ∼ f} of f consisting of those smooth mappings which differ
from f only on compact subsets. This equivalence class is the countable induc-
tive limit in the category of topological spaces of the sets {g : g = f off K} of all
mappings which differ from f only on members Kn of a countable exhaustion of
M with compact sets, see 30.9 , since a smooth curve locally has values in these
steps {g : g = f off Kn}. By 41.12 the steps are metrizable and second countable.
Thus, {g : g ∼ f} is Lindelöf and separable. Since its model spaces C∞c (M←h∗TN)
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are smoothly paracompact by 30.4 , by 16.10 the space {g : g ∼ f} is smoothly
paracompact, and since C∞(M,N) is the disjoint union of such open sets, it is
smoothly paracompact, too.

42.4. Manifolds of mappings with an infinite dimensional range
space

The method of proof of theorem 42.1 carries over to spaces C∞(M,N ), where
M is a finite dimensional smooth manifold, and where N is a possibly infinite
dimensional manifold which is required to admit an analogue of the exponential
mapping used above, i.e., a smooth mapping α : TN ⊃ U → N , defined on an
open neighborhood of the zero section in TN , which satisfies

(1) (πN , α) : TN ⊃ U → N ×N is a diffeomorphism onto a c∞-open neighbor-
hood of the diagonal.

(2) α(0x) = x for all x ∈ N .

A smooth mapping α with these properties is called a local addition on N .

42.5. Lemma. Smooth curves in C∞(M,N ). Let M and N be smooth
manifolds with M finite dimensional and N admitting a smooth local addition.
Then the smooth curves c in C∞(M,N ) correspond exactly to the smooth mappings
c∧ ∈ C∞(R×M,N ) which satisfy the following property:

(1) For each compact interval [a, b] ⊂ R there is a compact subset K ⊂M such
that c∧(t, x) is constant in t ∈ [a, b] for all x ∈M \K.

In particular, the identity induces a smooth mapping C∞(M,N )→ C∞(M,N ) into
the Frölicher space C∞(M,N ) discussed in [75, 23.2.3], which is a diffeomorphism
if and only if M is compact or N is discrete.

Proof. Since R is locally compact, property ( 1 ) is equivalent to

(2) For each t ∈ R there is an open neighborhood U of t in R and a compact
K ⊂ M such that the restriction has the property that c∧(t, x) is constant
in t ∈ U for all x ∈M \K.

Since this is a local condition on R, and since smooth curves in C∞(M,N ) locally
take values in charts as in the proof of theorem 42.1 , it suffices to describe the
smooth curves in the space C∞c (M←E) of sections with compact support of a
vector bundle (p : E → M,V ) with finite dimensional base manifold M , with the
structure described in 30.4 . This was done in 30.9 .

42.6. Theorem. Cω-manifold structure of Cω(M,N ). Let M and N be real
analytic manifolds, let M be compact, and let N be either finite dimensional, or let
us assume that N admits a real analytic local addition in the sense of 42.4 .

Then the space Cω(M,N ) of all real analytic mappings from M to N is a real
analytic manifold, modeled on spaces Cω(M←f∗TN ) of real analytic sections of
pullback bundles along f : M → N over M .

Proof. The proof is a variant of the proof of 42.4 , using a real analytic Riemann-
ian metric if N is finite dimensional, and the given real analytic local addition
otherwise. For finite dimensional N a detailed proof can be found in [76].
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42.7. Lemma. Let M , N be real analytic finite dimensional manifolds. Then
the space Cω(M,N) of all real analytic mappings is dense in C∞(M,N), in the
Whitney C∞-topology.

This is not true in the manifold topology of C∞(M,N) used in 42.1 , if M is not
compact, because of the compact support condition used there.

Proof. By [45, theorem 3], there is a real analytic embedding i : N → Rk on
a closed submanifold, for some k. We use the constant standard inner product
on Rk to obtain a real analytic tubular neighborhood U of i(N) with projection
p : U → i(N). By [45, proposition 8] applied to each coordinate of Rk, the space
Cω(M,Rk) of real analytic Rk-valued functions is dense in the space C∞(M,Rk)
of smooth functions, in the Whitney C∞-topology. If f : M → N is smooth we
may approximate i ◦ f by real analytic mappings g in Cω(M,U), then p ◦ g is real
analytic M → i(N) and approximates i ◦ f .

42.8. Theorem. Cω-manifold structure on C∞(M,N). Let M and N be real
analytic finite dimensional manifolds, with M compact. Then the smooth manifold
C∞(M,N) with the structure from 42.1 is even a real analytic manifold.

Proof. For a fixed real analytic exponential mapping on N the charts (Uf , uf )
from 42.1 for f ∈ Cω(M,N) form a smooth atlas for C∞(M,N), since Cω(M,N)
is dense in C∞(M,N) by 42.7

The chart changings uf ◦ u−1
g = (τ−1

f ◦ τg)∗ are real analytic by 30.10 .

42.12. Lemma. Real analytic curves in spaces of mappings. Let M and N
be finite dimensional real analytic manifolds with M compact.

(1) A curve c : R → Cω(M,N) is real analytic if and only if the associated
mapping c∧ : R×M → N is real analytic.
The curve c : R → Cω(M,N) is smooth if and only if c∧ : R ×M → N
satisfies the following condition:

For each n there is an open neighborhood Un of R ×M in
R×MC and a (unique) Cn-extension c̃ : Un → NC such that
c̃(t, ) is holomorphic for all t ∈ R.

(2) The curve c : R → C∞(M,N) is real analytic if and only if c∧ satisfies the
following condition:

For each n there is an open neighborhood Un of R ×M in
C×M and a (unique) Cn-extension c̃ : Un → NC such that
c̃( , x) is holomorphic for all x ∈M .

Note that the two conditions are in fact local in R. We need N finite dimensional
since we need an extension NC of N to a complex manifold.

Proof. This follows from the corresponding statement 30.8 for spaces of sections
of vector bundles, and from the chart structure on Cω(M,N) and C∞(M,N).

42.13. Theorem. Smoothness of composition. If M , N are smooth mani-
folds with M finite dimensional and N admitting a smooth local addition, then the
evaluation mapping ev : C∞(M,N )×M → N is smooth.
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If P is another smooth finite dimensional manifold, then the composition mapping

comp : C∞(M,N)× C∞prop(P,M)→ C∞(P,N)

is smooth, where C∞prop(P,M) denotes the space of all proper smooth mappings
P → M (i.e. compact sets have compact inverse images). This space is open
in C∞(P,M).

In particular, f∗ : C∞(M,N ) → C∞(M,N ′) and g∗ : C∞(M,N ) → C∞(P,N ) are
smooth for f ∈ C∞(N ,N ′) and g ∈ C∞prop(P,M).

The corresponding statement for real analytic mappings can be shown along similar
lines, using 42.12 . But we will give another proof in 42.15 below.

Proof. Using the description of smooth curves in C∞(M,N ) given in 42.5 ,
we immediately see that (ev ◦(c1, c2))(t) = c∧1 (t, c2(t)) is smooth for each smooth
(c1, c2) : R→ C∞(M,N )×M , so ev is smooth as claimed.

The space of proper mappings C∞prop(P,M) is open in the manifold C∞(P,M) since
property 42.5.1 shows that smooth curves stay locally in C∞prop(P,M). Let (c1, c2) :
R→ C∞(M,N )×C∞prop(P,M) be a smooth curve. Then we have (comp ◦(c1, c2))(t)(p) =
c∧1 (t, c∧2 (t, p)), and one may check that this has again property 42.5.1 , so it is a
smooth curve in C∞(P,N ). Thus, comp is smooth.

42.14. Theorem. Exponential law. Let M, M , and N be smooth manifolds
with M finite dimensional and N admitting a smooth local addition.

Then we have a canonical injection

C∞(M,C∞(M,N )) ⊆ C∞(M×M,N ),

where the image in the right hand side consists of all smooth mappings f :M×M →
N which satisfy the following property

(1) If M is locally metrizable then for each point x ∈ M there is an open
neighborhood U and a compact set K ⊂ M such that f(x, y) is constant in
x ∈ U for all y ∈M \K.

(2) For generalM: For each c ∈ C∞(R,M) and each t ∈ R there exists a neigh-
borhood U of t and a compact set K ⊂M such that f(c(s), y) is constant in
s ∈ U for each y ∈M \K.

Under the assumption that N admits smooth functions which separate points, we
have equality if and only if M is compact, or N is discrete, or each f ∈ C∞(M,R)
is constant along all smooth curves into M.

If M and N are real analytic manifolds with M compact we have

Cω(M, Cω(M,N )) = Cω(M×M,N )

for each real analytic (possibly infinite dimensional) manifold M.

Proof. The smooth case is simple: The description ( 1 ) of the image follows
directly from the characterization of all smooth curves in C∞(M,N ) given in the
proof of 42.5 .

It remains to show that for locally metrizable M a smooth mapping f : M →
C∞(M,N ) satisfies condition ( 1 ). Since f is smooth, locally it has values in a
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chart, so we may assume that M is open in a Fréchet space by 4.19 , and that f
has values in C∞c (M←E) for some vector bundle p : E →M .

We claim that f locally factors into some C∞Kn(E) where (Kn) is an exhaustion of M
by compact subsets such that Kn is contained in the interior of Kn+1. If not there
exist a (fast) converging sequence (yn) inM and xn /∈ Kn such that f(yn)(xn) 6= 0.
One may find a proper smooth curve e : R → M with e(n) = xn and a smooth
curve g : R → M with g(1/n) = yn. Then by 30.4 , Pt(e, )∗ ◦ f ◦ g is a smooth
curve into C∞c (R, Ee(0)). Since the latter space is a strict inductive limit of spaces
C∞I (R, Ee(0)) for compact intervals I, the curve Pt(e, )∗ ◦ f ◦ g locally factors into
some C∞I (R, Ee(0)), but (e∗ ◦ f ◦ g)(1/n)(n) = f(yn)(xn) 6= 0, a contradiction.

We check now the statement on equality: if M is compact, or if N is discrete then
( 2 ) is automatically satisfied. If each f ∈ C∞(M,R) is constant along all smooth
curves into M, we may check global constancy in ( 2 ) by composing with smooth
functions on N which separate points there.

For the converse, we may assume that there are a function f ∈ C∞(M,R), a curve
c ∈ C∞(R,M) such that f ◦c is not constant, and an injective smooth curve e : R→
N . Then M×M 3 (x, y) 7→ e(f(x)) is in C∞(M×M,N ) \ C∞(M,C∞(M,N ))
since condition ( 2 ) is violated for the curve c.

Now we treat the real analytic case. Let f∧ ∈ Cω(M×M,N ) ⊂ C∞(M×M,N ) =
C∞(M,C∞(M,N )). So we may restrict f to a neighborhood U in M, where
it takes values in a chart Ug of C∞(M,N ) for g ∈ Cω(M,N ). Then f(U) ⊂
Ug ∩Cω(M,N ), one of the canonical charts of Cω(M,N ). So we may assume that
f : U → Cω(M←g∗TN ). For a real analytic vector bundle atlas (Uα, ψα) of g∗TN
the composites U → Cω(M←g∗TN ) → Cω(Uα,Rn) are real analytic by applying
cartesian closedness 11.18 to the mapping (x, y) 7→ ψα(πN , exp)−1(g(y), f∧(x, y)).
By the description [75, 30.6] of the structure on Cω(M←g∗TN ), the chart repre-
sentation of f is real analytic, so f is it also.

Let conversely f :M→ Cω(M,N ) be real analytic. Then its chart representation is
real analytic and we may use cartesian closedness in the other direction to conclude
that f∧ is real analytic.

42.15. Corollary. If M and N are real analytic manifolds with M compact
and N admitting a real analytic local addition, then the evaluation mapping ev :
Cω(M,N )×M → N is real analytic.

If P is another compact real analytic manifold, then the composition mapping
comp : Cω(M,N )× Cω(P,M)→ Cω(P,N ) is real analytic.

In particular, f∗ : Cω(M,N ) → Cω(M,N ′) and g∗ : Cω(M,N ) → Cω(P,N ) are
real analytic for real analytic f : N → N ′ and g ∈ Cω(P,M).

Proof. The mapping ev∨ = IdCω(M,N ) is real analytic, so ev too, by 42.14 .
The mapping comp∧ = ev ◦(IdCω(M,N )× ev) : Cω(M,N ) × Cω(P,M) × P →
Cω(M,N )×M → N is real analytic, thus comp too.

42.10. Lemma. Let M and N be real analytic finite dimensional manifolds with
M compact. Let (Uα, uα) be a real analytic atlas for M , and let i : N → Rn

be a closed real analytic embedding into some Rn. Let M be a possibly infinite
dimensional real analytic manifold.
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Then f :M→ Cω(M,N) is real analytic or smooth if and only if Cω(u−1
α , i) ◦ f :

M→ Cω(uα(Uα),Rn) is real analytic or smooth, respectively.

Furthermore, f : M → C∞(M,N) is real analytic or smooth if and only if the
mapping C∞(u−1

α , i) ◦ f :M→ C∞(uα(Uα),Rn) is real analytic or smooth, respec-
tively.

Proof. The statement that i∗ is initial is obvious. So we just have to treat
C∞(u−1

α , N). The corresponding statement for spaces of sections of vector bun-
dles are [75, 30.6] for the real analytic case and 30.1 for the smooth case. So if
f takes values in a chart domain Ug of C∞(M,N) for a real analytic g : M → N ,
the result follows. Recall from the proof of 42.1 that Ug = {h ∈ Cβ(M,N) :
(g(x), h(x)) ∈ V } where V is a fixed open neighborhood of the diagonal in N ×N ,
and where β =∞ or ω. Let f(z0) ∈ Ug for z0 ∈M. Since M is covered by finitely
many of its charts Uα, and since by assumption f(z)|Uα is near f(z0)|Uα for z near
z0, so f(z) ∈ Ug for z near z0 in M. So f takes values locally in charts, and the
result follows.

42.11. Corollary. Let M and N be finite dimensional real analytic manifolds with
M compact. Then the inclusion Cω(M,N)→ C∞(M,N) is real analytic.

Proof. Use the chart description and lemma 11.3 .

42.16. Lemma. Let Mi and Ni be finite dimensional real analytic manifolds
with Mi compact. Then for f ∈ C∞(N1, N2) the push forward f∗ : C∞(M,N1) →
C∞(M,N2) is real analytic if and only if f is real analytic. For f ∈ C∞(M2,M1)
the pullback f∗ : C∞(M1, N)→ C∞(M2, N) is, however, always real analytic.

Proof. If f is real analytic and if g ∈ Cω(M,N1), then the mapping

uf◦g ◦ f∗ ◦ u−1
g : C∞(M←g∗TN1)→ C∞(M←(f ◦ g)∗TN2)

is a push forward by the real analytic mapping(
pr1, (π, expN2)−1 ◦ (f ◦ g ◦ pr1, f ◦ expN1 ◦ pr2)

)
: g∗TN1 → (f ◦ g)∗TN2,

which is real analytic by 30.10 .

The canonical mapping evx : C∞(M,N2) → N2 is real analytic since evx |Ug =
expN2 ◦ evx ◦ug : Ug → C∞(M←g∗TN2) → Tg(x)N2 → N2, where the second evx
is linear and bounded. Furthermore, const : N1 → C∞(M,N1) is real analytic since
the mapping ug ◦ const : y 7→ (x 7→ (πN1 , expN1)−1(g(x), y)) is locally real analytic
into Cω(M←g∗TN1) and hence into C∞(M←g∗TN1).

If f∗ is real analytic, also f = evx ◦f∗ ◦ const is.

For the second statement choose real analytic atlas (U iα, uiα) of Mi such that
f(U2

α) ⊆ U1
α and a closed real analytic embedding j : N → Rn. Then the dia-

gram

C∞(M1, N)
f∗ //

C
∞((u1

α)−1,j)
��

C∞(M2, N)

C
∞((u2

α)−1,j)
��

C∞(u1
α(U1

α),Rn)
(u2
α◦f◦(u

1
α)−1)∗ // C∞(u2

α(U2
α),Rn)
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commutes, the bottom arrow is a continuous and linear mapping, so it is real
analytic. Thus, by 42.10 , the mapping f∗ is real analytic.

43. Diffeomorphism Groups

43.1. Theorem. Diffeomorphism group. For a smooth manifold M the group
Diff(M) of all smooth diffeomorphisms of M is an open submanifold of C∞(M,M),
composition and inversion are smooth. It is a regular Lie group in the sense of
38.4 .

The Lie algebra of the smooth infinite dimensional Lie group Diff(M) is the con-
venient vector space C∞c (M←TM) of all smooth vector fields on M with compact
support, equipped with the negative of the usual Lie bracket. The exponential map-
ping exp : C∞c (M←TM) → Diff∞(M) is the flow mapping to time 1, and it is
smooth.

Proof. We first show that Diff(M) is open in C∞(M,M). Let c : R→ C∞(M,M)
be a smooth curve such that c(0) is a diffeomorphism. We have to show that then
c(t) also is a diffeomorphism for all small t. Since composition from the right with
c(0)−1 is smooth by 42.13 we may assume that c(0) = id. Using 42.5 we choose
a compact set K1 ⊆M such that c(t)(x) = x for all t ∈ [−1, 1] and x /∈ K1.

For x ∈ M choose a chart u : M ⊇ U → u(U) ⊆ Rm centered at x. Let K ⊆ U
be a compact neighborhood of x. Then {0} × K ⊆ (c∧)−1(U), hence we find
a δ > 0 such that c(t)(K) ⊆ U for all |t| < δ and we may consider the chart
representation c̄(t) : u(K) → u(U) ⊆ Rm. Since c̄(0) = id we have c̄(0)′(0) =
id and hence c̄(t)′(y) ∈ GL(m) for all small t and all y near 0. We may cover
K1 by the corresponding neighborhoods of x in M for finitely many x ∈ M and
take intersection of the 0-neighborhoods for the t. Thus for all t ∈ [−1, 1] in this
intersection, c(t) is a local diffeomorphisms near any x ∈M .

The mapping c(t) stays injective for t near 0: Let K2 := c∧([−1, 1] ×K1). If c(t)
does not stay injective for t near 0 then there are tn → 0 and xn 6= yn in M with
c(tn)(xn) = c(tn)(yn). We claim that xn, yn ∈ K2: If xn /∈ K2 ⊇ c(0)(K1) = K1
then c(tn)(yn) = c(tn)(xn) = xn 6= yn, so yn ∈ K1 and hence xn = c(tn)(xn) =
c(tn)(yn) ∈ c∧([−1, 1]×K1) = K2, a contradiction.
Passing to subsequences we may assume that xn → x and yn → y in K2. By
continuity of c∧, we get c(0)(x) = c(0)(y), so x = y. The mapping (t, z) 7→
(t, c(t)(z)) is a diffeomorphism near (0, x), since it is an immersion. But then
c(tn)(xn) 6= c(tn)(yn) for large n.

The mapping c(t) stays surjective for t near 0: In the situation of the last paragraph
c(t)(M) = c(t)(K2) ∪ (M \K interior

1 ) is closed in M for |t| ≤ 1 and also open for t
near 0, since c(t) is a local diffeomorphism. It meets each connected component of
M since c(t) is homotopic to c(0). Thus, c(t)(M) = M .

Therefore, Diff(M) is an open submanifold of C∞prop(M,M), so composition is
smooth by 42.13 . To show that the inversion inv is smooth, we consider a
smooth curve c : R → Diff(M) ⊂ C∞(M,M). Then the mapping c∧ : R ×M →
M satisfies 42.5.1 , and (inv ◦c)∧ fulfills the finite dimensional implicit equation
c∧(t, (inv ◦c)∧(t,m)) = m for all t ∈ R and m ∈ M . By the finite dimensional
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implicit function theorem, (inv ◦c)∧ is smooth in (t,m). Property 42.5.1 is obvi-
ous. Hence, inv maps smooth curves to smooth curves and is thus smooth. (This
proof is by far simpler than the original one, see [95], and shows the power of the
Frölicher-Kriegl calculus.)

By the chart structure from 42.1 , or directly from theorem [75, 42.17], we see that
the tangent space Te Diff(M) equals the space C∞c (M←TM) of all vector fields with
compact support. Likewise Tf Diff(M) = C∞c (M←f∗TM), which we identify with
the space of all vector fields with compact support along the diffeomorphism f .
Right translation µf is given by µf (g) = f∗(g) = g ◦ f , thus T (µf ).X = X ◦ f ,
and for the flow FlXt of the vector field with compact support X we have d

dt FlXt =
X ◦ FlXt = T (µFlXt ).X. So the one parameter group t 7→ FlXt ∈ Diff(M) is the
integral curve of the right invariant vector field RX : f 7→ T (µf ).X = X ◦ f on
Diff(M). Thus, the exponential mapping of the diffeomorphism group is given by
exp = Fl1 : C∞c (M←TM) → Diff(M). To show that is smooth we consider a
smooth curve in C∞c (M←TM), i.e., a time dependent vector field with compact
support Xt. We may view it as a complete vector field (0t, Xt) on R ×M whose
smooth flow respects the level surfaces {t} ×M and is smooth. Thus, exp ◦X =
(pr2 ◦Fl(0,X)

1 )∨ maps smooth curves to smooth curves and is smooth itself. Again
one may compare this simple proof with the original one [98, section 4].

To see that Diff(M) is a regular Lie group note that the evolution is given by
integrating time dependent vector fields with compact support,

evol(t 7→ Xt) = ϕ(1, )
∂
∂tϕ(t, x) = X(t, ϕ(t, x)), ϕ(0, x) = x.

Let us finally compute the Lie bracket on C∞c (M←TM) viewed as the Lie algebra
of Diff(M). For X ∈ C∞c (M←TM) let LX denote the left invariant vector field on
Diff(M). Its flow is given by FlLXt (f) = f ◦ exp(tX) = f ◦ FlXt = (FlXt )∗(f). From
[75, 32.15] we get [LX , LY ] = d

dt |0(FlLXt )∗LY , so for e = IdM we have

[LX , LY ](e) = ( ddt |0(FlLXt )∗LY )(e)

= d
dt |0(T (FlLX−t ) ◦ LY ◦ FlLXt )(e)

= d
dt |0T (FlLX−t )(LY (e ◦ FlXt ))

= d
dt |0T ((FlX−t)∗)(T (FlXt ) ◦ Y )

= d
dt |0(T (FlXt ) ◦ Y ◦ FlX−t), by [75, 42.18]

= d
dt |0(FlX−t)∗Y = −[X,Y ].

Another proof using [75, 36.10] is as follows:

Ad(exp(sX))Y = ∂
∂t

∣∣
0 exp(sX) ◦ exp(tY ) ◦ exp(−sX)

= T (FlXs ) ◦ Y ◦ FlX−s = (FlX−s)∗Y,

thus
∂
∂t

∣∣
0 Ad(exp(tX))Y = ∂

∂t

∣∣
0 (FlX−t)∗Y = −[X,Y ]

is the negative of the usual Lie bracket on C∞c (M←TM).

It is well known that the space Diff(M) of all diffeomorphisms of M is open in
C∞(M,M) even for the Whitney C∞-topology, see 41.10 ; proofs can be found in
[51, p. 38] or [95, section 5].
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38.4. Definition. Regular Lie groups

If for each X ∈ C∞(R, g) there exists g ∈ C∞(R, G) satisfying
g(0) = e
∂
∂tg(t) = Te(µg(t))X(t) = RX(t)(g(t)),

or κr( ∂∂tg(t)) = δrg(∂t) = X(t)

then we write

evolrG(X) = evolG(X) := g(1),
EvolrG(X)(t) := evolG(s 7→ tX(ts)) = g(t),

and call them the right evolution of the curve X in G. By lemma [75, 38.3], the
solution of the differential equation 1 is unique, and for global existence it is
sufficient that it has a local solution. Then

EvolrG : C∞(R, g)→ {g ∈ C∞(R, G) : g(0) = e}

is bijective with inverse δr. The Lie group G is called a regular Lie group if evolr :
C∞(R, g)→ G exists and is smooth.

43.2. Example

The exponential mapping exp : C∞c (M←TM)→ Diff(M) satisfies T0 exp = Id, but
it is not locally surjective near IdM : This is due to [38] and [62]. The strongest
result in this direction is [44], where it is shown, that Diff(M) contains a smooth
curve through IdM whose points (sauf IdM ) are free generators of an arcwise con-
nected free subgroup which meets the image of exp only at the identity.

We shall prove only a weak version of this for M = S1. For large n ∈ N we consider
the diffeomorphism

fn(θ) = θ + 2π
n + 1

2n sin2(nθ2 ) mod 2π;

(the subgroup generated by) fn has just one periodic orbit and this is of period
n, namely { 2πk

n : k = 0, . . . , n − 1}. For even n the diffeomorphism fn cannot be
written as g ◦ g for a diffeomorphism g (so fn is not contained in a flow), by the
following argument: If g ◦ g has exactly one periodic orbit (say through x) and this
is of even period, then the orbit through x is a periodic orbit of g. If it had odd
order for g, then the orbit of g ◦ g through x would have the same order. Thus it
has even order for g and so x and gx would yield two different orbits for g ◦ g, a
contradiction.

43.6. Examples

Example 1. Let g ⊂ Xc(R2) be the closed Lie subalgebra of all vector fields
with compact support on R2 of the form X(x, y) = f(x, y) ∂

∂x + g(x, y) ∂∂y where g
vanishes on the strip 0 ≤ x ≤ 1.
Claim. There is no Lie subgroup G of Diff(R2) corresponding to g.
If G exists then there is a smooth curve t 7→ ft ∈ G ⊂ Diffc(R2). Then Xt :=
( ∂∂tft) ◦ f

−1
t is a smooth curve in g, and we may assume that X0 = f ∂

∂x where
f = 1 on a large ball. But then AdG(ft) = f∗t : g 6→ g, a contradiction.
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So we see that on any manifold of dimension greater than 2 there are closed Lie
subalgebras of the Lie algebra of vector fields with compact support which do not
admit Lie subgroups.

Example 2. The space XK(M) of all vector fields with support in some open set
U is an ideal in Xc(M), the corresponding Lie group is the connected component
DiffU (M)0 of the group of all diffeomorphisms which equal Id off some compact in
U , but this is not a normal subgroup in the connected component Diffc(M)0, since
we may conjugate the support out of U .

Note that this examples do not work for the Lie group of real analytic diffeomor-
phisms on a compact manifold.

43.7. Theorem. [30] Let M be a compact orientable manifold, let µ0 be a positive
volume form on M with total mass 1. Then the regular Lie group Diff+(M) of all
orientation preserving diffeomorphisms splits smoothly as Diff+(M) = Diff(M,µ0)×
Vol(M), where Diff(M,µ0) is the regular Lie group of all µ0-preserving diffeomor-
phisms, and Vol(M) is the space of all volume forms of total mass 1.

If (M,µ0) is real analytic, then Diffω+(M) splits real analytically as Diffω+(M) =
Diffω(M,µ0) × Volω(M), where Diffω(M,µ0) is the Lie group of all µ0-preserving
real analytic diffeomorphisms, and Volω(M) is the space of all real analytic volume
forms of total mass 1.

Proof. Note that Diff+(M) is open in Diff(M) and Vol(M) is open in the closed
hyperplane {ω ∈ Ωm(M) :

∫
M
ω = 1}.

We show first that there exists a smooth mapping τ : Vol(M) → Diff+(M) such
that τ(µ)∗µ0 = µ.

We put µt = µ0 + t(µ − µ0). We want a smooth curve t 7→ ft ∈ Diff+(M) with
f∗t µt = µ0. We have ∂

∂tft = Xt ◦ ft for a time dependent vector field Xt on M .
Then 0 = ∂

∂tf
∗
t µt = f∗t LXtµt + f∗t

∂
∂tµt = f∗t (LXtµt + (µ− µ0)), so LXtµt = µ0 − µ

and LXtµt = diXtµt + iXt0 = dω for some ω ∈ ΩdimM−1(M). Now we choose ω
such that dω = µ0 − µ, and we choose it smoothly and in the real analytic case
even real analytically depending on µ by the theorem of Hodge, as follows: For any
α ∈ Ω(M) we have α = Hα+dδGα+δGdα, where H is the projection on the space
of harmonic forms, δ = ∗d∗ is the codifferential, ∗ is the Hodge-star operator, and
G is the Green operator, see [130]. All these are bounded linear operators, G is
even compact. So we may choose ω = δG(µ0−µ). Then the time dependent vector
field Xt is uniquely determined by iXtµt = ω since µt is nowhere 0. Let ft be the
evolution operator of Xt, and put τ(µ) = f−1

1 .

Now we may prove the theorem itself. We define a mapping Ψ : Diff+(M) →
Diff(M,µ0) × Vol(M) by Ψ(f) := (f ◦ τ(f∗µ0)−1, f∗µ0), which is smooth or real
analytic by 42.15 and [75, 43.4]. An easy computation shows that the inverse is
given by the restriction of the smooth (or real analytic) mapping Ψ : Diff+(M) ×
Vol(M)→ Diff+(M), Ψ−1(g, µ) = g ◦ τ(µ).

That Diff(M,µ0) is regular follows from [75, 38.7], where we use the mapping
p : Diff+(M)→ Ωmax(M), given by p(f) := f∗µ0 − µ0.

We next treat the Lie group of symplectic diffeomorphisms.
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43.8. Symplectic manifolds

Let M be a smooth manifold of dimension 2n ≥ 2. A symplectic form on M is
a closed 2-form σ such that σn = σ ∧ · · · ∧ σ ∈ Ω2n(M) is nowhere 0. The pair
(M,σ) is called a symplectic manifold. See section [75, 48] for a treatment of infinite
dimensional symplectic manifolds.

43.11. Lemma. Let M be a smooth finite dimensional manifold, let N ⊂ M be
a closed submanifold, and let σ0 and σ1 be symplectic forms on M which are equal
along N .

Then there exist: A diffeomorphism f : U → V between two open neighborhoods
U and V of N in M which satisfies f |N = IdN , Tf |(TM |N) = IdTM |N , and
f∗σ1 = σ0.

If all data are real analytic then the diffeomorphism can be chosen real analytic,
too.

Proof. Let σt = σ0 + t(σ1−σ0) for t ∈ [0, 1]. Since the restrictions of σ0 and σ1 to
Λ2TM |N are equal, there is an open neighborhood U1 of N in M such that σt is a
symplectic form on U1, for all t ∈ [0, 1]. If i : N →M is the inclusion, we also have
i∗(σ1 − σ0) = 0, so by lemma [75, 43.10] there is a smaller open neighborhood U2
of N such that σ1|U2 − σ0|U2 = dϕ for some ϕ ∈ Ω1(U2) with ϕx = 0 for x ∈ N ,
such that also all first derivatives of ϕ vanish along N .

Let us now consider the time dependent vector field Xt := −(σt∨)−1 ◦ ϕ, which
vanishes together with all first derivatives along N . Let ft be the curve of local
diffeomorphisms with ∂

∂tft = Xt ◦ ft, then ft|N = IdN and Tft|(TM |N) = Id.
There is a smaller open neighborhood U of N such that ft is defined on U for all
t ∈ [0, 1]. Then we have

∂
∂t (f

∗
t σt) = f∗t LXtσt + f∗t

∂
∂tσt = f∗t (diXtσt + σ1 − σ0)

= f∗t (−dϕ+ σ1 − σ0) = 0,

so f∗t σt is constant in t, equals f∗0σ0 = σ0, and finally f∗1σ1 = σ0 as required.

43.12. Theorem. Let (M,σ) be a finite dimensional symplectic manifold. Then
the group Diff(M,σ) of symplectic diffeomorphisms is a smooth regular Lie group
and a closed submanifold of Diff(M). The Lie algebra of Diff(M,σ) agrees with
Xc(M,σ).

If moreover (M,σ) is a compact real analytic symplectic manifold, then the group
Diffω(M,σ) of real analytic symplectic diffeomorphisms is a real analytic regular
Lie group and a closed submanifold of Diffω(M).

Proof. The smooth and the real analytic cases will be proved simultaneously; only
once we will need an extra argument for the latter.

Consider a local addition α : TM → M in the sense of 42.4 , so that (πM , α) :
TM →M×M is a diffeomorphism onto an open neighborhood of the diagonal, and
α(0x) = x. Let us compose α from the right with a fiber respecting diffeomorphism
TM∗ → TM (coming from the symplectic structure or from a Riemannian metric)
and call the result again α : T ∗M →M . Then (πM , α) : T ∗M →M ×M also is a
diffeomorphism onto an open neighborhood of the diagonal, and α(0x) = x.
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We consider now two symplectic structures on T ∗M , namely the canonical sym-
plectic structure σ0 = σM , and σ1 := (πM , α)∗(pr∗1 σ− pr∗2 σ). Both have vanishing
pullbacks on the zero section 0M ⊂ T ∗M .

Claim. In this situation, there exists a diffeomorphism ϕ : V0 → V1 between two
open neighborhoods V0 and V1 of the zero section in T ∗M which is the identity on
the zero section and satisfies ϕ∗σ1 = σ0.

First we solve the problem along the zero section, i.e., in T (T ∗M)|0M . There is
a vector bundle isomorphism γ : T (T ∗M)|0M → T (T ∗M)|0M over the identity
on 0M , which is the identity on T (0M ) and maps the symplectic structure σ0 on
each fiber to σ1. In the smooth case, by using a partition of unity it suffices
to construct γ locally. But locally σi can be described by choosing a Lagrange
subbundle Li ⊂ T (T ∗M)|0M which is a complement to T0M . Then σi is completely
determined by the duality between T0M and Wi induced by it, and a smooth γ is
then given by the resulting isomorphism W0 →W1.

In the real analytic case, in order to get a real analytic γ, we consider the principal
fiber bundle P → 0M consisting of all γx ∈ GL(T0x(T ∗M)) with γx|T0x(0M ) = Id
and γ∗xσ1 = (σ0)0x . The proof above shows that we may find a smooth section of
P . By lemma [75, 30.12], there also exist real analytic sections.

Next we choose a diffeomorphism h : V0 → V1 between open neighborhoods of
0M in T ∗M such that Th|0M = γ, which can be constructed as follows: Let u :
N (0M ) → V0 be a tubular neighborhood of the zero section, where N (0M ) =
(T (T ∗M)|0M )/T (0M ) is the normal bundle of the zero section. Clearly, γ induces
a vector bundle automorphism of this normal bundle, and h = u ◦ γ ◦ u−1 satisfies
all requirements.

Now σ0 and h∗σ1 agree along the zero section 0M , so we may apply lemma 43.11 ,
which implies the claim with possibly smaller Vi.

We consider the diffeomorphism ρ := (πM , α) ◦ ϕ : T ∗M ⊃ V0 → V2 ⊂ M ×M
from an open neighborhood of the zero section to an open neighborhood of the
diagonal, and we let U ⊆ Diff(M) be the open neighborhood of IdM consisting of
all f ∈ Diff(M) with compact support such that (IdM , f)(M) ⊂ V2, i.e. the graph
{(x, f(x)) : x ∈ M} of f is contained in V2, and πM : ρ−1({(x, f(x)) : x ∈ M}) →
M is still a diffeomorphism.

For f ∈ U the mapping (IdM , f) : M → graph(f) ⊂ M × M is the natural
diffeomorphism onto the graph of f , and the latter is a Lagrangian submanifold if
and only if

0 = (IdM , f)∗(pr∗1 σ − pr∗2 σ) = Id∗M σ − f∗σ.
Therefore, f ∈ Diff(M,σ) if and only if the graph of f is a Lagrangian submanifold
of (M ×M, pr∗1 σ − pr∗2 σ). Since ρ∗(pr∗1 σ − pr∗2 σ) = σ0 this is the case if and only
if {ρ−1(x, f(x)) : x ∈M} is a Lagrange submanifold of (T ∗M,σ0).

We consider now the following smooth chart of Diff(M) which is centered at the
identity:

Diff(M) ⊃ U −u→ u(U) ⊂ C∞c (M←T ∗M) = Ω1
c(M),

u(f) := ρ−1 ◦ (IdM , f) ◦ (πM ◦ ρ−1 ◦ (IdM , f))−1 : M → T ∗M.

Then f ∈ U ∩ Diff(M,σ) if and only if u(f) is a closed form, since u(f)(M) =
{ρ−1(x, f(x)) : x ∈ M} is a Lagrange submanifold if and only if f is symplec-
tic. Thus, (U, u) is a smooth chart of Diff(M) which is a submanifold chart for
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Diff(M,σ). For arbitrary g ∈ Diff(M,σ) we consider the smooth submanifold
chart

Diff(M) ⊃ Ug := {f : f ◦ g−1 ∈ U} −ug→ ug(Ug) ⊂ C∞c (M←T ∗M) = Ω1
c(M),

ug(f) := u(f ◦ g−1).
Hence, Diff(M,σ) is a closed smooth submanifold of Diff(M) and a smooth Lie
group, since composition and inversion are smooth by restriction. If M is compact
then the space of closed 1-forms is a direct summand in Ω1(M) by Hodge theory,
as in the proof of 43.7 , so in this case Diff(M,σ) is even a splitting submanifold
of Diff(M). The embedding Diff(M,σ) → Diff(M) is smooth, thus it induces a
bounded injective homomorphism of Lie algebras which is an embedding onto a
closed Lie subalgebra, which we shall soon identify with Xc(M,σ).

Suppose that X : R→ Xc(M,σ) is a smooth curve, and consider the evolution curve
f(t) = EvolrDiff(M)(X)(t), which is the solution of the differential equation ∂

∂tf(t) =
X(t) ◦ f(t) on M . Then f : R → Diff(M) actually has values in Diff(M,σ), since
∂
∂tf
∗
t σ = f∗t LXtσ = 0. So the restriction of evolrDiff(M) to Xc(M,σ) is smooth into

Diff(M,σ) and thus gives evolrDiff(M,σ). We take now the right logarithmic derivative
of f(t) in Diff(M,σ) and get a smooth curve in the Lie algebra of Diff(M,σ) which
maps to X(t). Thus, the Lie algebra of Diff(M,σ) is canonically identified with
Xc(M,σ).

Note that this proof of regularity is an application of the method from [75, 38.7],
where p(f) := f∗σ − σ, p : Diff(M)→ Ω2(M).

43.15. Contact manifolds

Let M be a smooth manifold of dimension 2n + 1 ≥ 3. A contact form on M is
a 1-form α ∈ Ω1(M) such that α ∧ (dα)n ∈ Ω2n+1(M) is nowhere zero. This is
sometimes called an exact contact structure. The pair (M,α) is called a contact
manifold.

A contact form can be put into the following normal form: For each x ∈ M there
is a chart M ⊃ U −u→ u(U) ⊂ R2n+1 centered at x such that α|U = u1 dun+1 +
u2 dun+2 + · · ·+un du2n+du2n+1. This follows from proposition [75, 43.18] below,
for a simple direct proof see [85].

The vector subbundle ker(α) ⊂ TM is called the contact distribution. It is as
non-involutive as possible, since dα is even non-degenerate on each fiber ker(α)x =
ker(αx) ⊂ TxM . The characteristic vector field Xα ∈ X(M) is the unique vector
field satisfying iXαα = 1 and iXαdα = 0.

Note that X 7→ (iXdα, iXα) is isomorphic TM → {ϕ ∈ T ∗M : iXαϕ = 0} ×R, but
we shall use the isomorphism of vector bundles

TM → T ∗M, X 7→ iXdα+ α(X).α,
A diffeomorphism f ∈ Diff(M) with f∗α = λf .α for a nowhere vanishing function
λf ∈ C∞(M,R \ 0) is called a contact diffeomorphism. The group of all contact
diffeomorphisms will be denoted by Diff(M,α).

A vector field X ∈ X(M) is called a contact vector field if LXα = µX .α for a
smooth function µX ∈ C∞(M,R). The linear space of all contact vector fields will
be denoted by X(M,α); it is clearly a Lie algebra. Contraction with α is a linear
mapping also denoted by α : X(M,α) → C∞(M,R). It is bijective since we may
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apply iXα to µX .α = LXα = iX dα + d(α(X)) to get µX = 0 + Xα(α(X)), and
since by using ( 1 ) we may reconstruct X from α(X) as

iX dα+ α(X).α = µX .α− d(α(X)) + α(X).α
= Xα(α(X)).α− d(α(X)) + α(X).α.

Note that the inverse f 7→ gradα(f) of α : X(M,α) → C∞(M,R) is a linear
differential operator of order 1.

A smooth mapping f : L→M is called a Legendre mapping if f∗α = 0. If f is also
an embedding and dimM = 2 dimL+ 1, then the image f(L) is called a Legendre
submanifold of M .

43.16. Lemma. Let Xt be a time dependent vector field on M , and let ft be
the local curve of local diffeomorphisms with ∂

∂tft ◦ f
−1
t = Xt and f0 = Id. Then

LXtα = µtα if and only if f∗t α = λt.α, where λt and µt are related by ∂tλt
λt

= f∗t µt.

Proof. The two following equations are equivalent:

α = 1
λt
f∗t α,

0 = ∂
∂t

(
1
λt
f∗t α

)
= −

∂
∂tλt

λ2
t

f∗t α+ 1
λt
f∗t LXtα = 1

λt
f∗t (−µt.α+ LXtα).

43.19. Theorem. Let (M,α) be a finite dimensional contact manifold. Then
the group Diff(M,α) of contact diffeomorphisms is a smooth regular Lie group.
The injection i : Diff(M,α) → Diff(M) is smooth, TIdi maps the Lie algebra of
Diff(M,α) isomorphically onto Xc(M,α) with the negative of the usual Lie bracket,
and locally there exist smooth retractions to i, so i is an initial mapping, see 27.11 .

If (M,α) is in addition a real analytic and compact contact manifold then all as-
sertions hold in the real analytic sense.

Proof. For a contact manifold (M,α) let M̂ = M ×M × (R \ 0), with the con-
tact structure α̂ = t.pr∗1 α − pr∗2 α, where t = pr3 : M ×M × (R \ 0) → R. Let
f ∈ Diff(M,α) be a contact diffeomorphism with f∗α = λf .α. Inserting the char-
acteristic vector field Xα into this last equation we get

λf = iXαλfα = iXα(f∗α) = f∗(if∗Xαα).

Thus, f determines λf , and for an arbitrary diffeomorphism f ∈ Diff(M) we may
define a smooth function λf by 1 . Then λf ∈ C∞(M,R \ 0) if f is near a contact
diffeomorphism in the Whitney C0-topology. We consider its contact graph Γf :
M → M̂ , given by Γf (x) := (x, f(x), λf (x)), a section of the surjective submersion
pr1 : M̂ → M . Note that Γf is a Legendre mapping if and only if f is a contact
diffeomorphism, f ∈ Diff(M,α), since Γ∗f α̂ = λf .α− f∗α.

Let us now fix a contact diffeomorphism f ∈ Diff(M,α) with f∗α = λf .α. By
proposition [75, 43.18], and also using the diffeomorphism Γf : M → Γf (M) there
are: an open neighborhood U ′f of Γf (M) ⊂ M̂ , an open neighborhood V ′f of the
zero section 0M in T ∗M ×R, and a diffeomorphism M̂ ⊃ U ′f −

ϕf→ V ′f ⊂ T ∗M ×R,
such that the restriction ϕf |Γf (M) equals the inverse of Γf : 0M ∼= M → Γf (M),
and ϕ∗f (θM − dt) = α̂.
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Now let Ũf be the open set of all diffeomorphisms g ∈ Diff(M) such that g equals
f off some compact subset of M , Γg(M) ⊂ U ′f ⊂ M̂ , and π ◦ ϕf ◦ Γg : M → M is
a diffeomorphism, where π : T ∗M × R → M is the vector bundle projection. For
g ∈ Ũf and

sf (g) := (ϕf ◦ Γg) ◦ (π ◦ ϕf ◦ Γg)−1 ∈ C∞c (M←T ∗M × R)
=: (σf (g), uf (g)) ∈ Ω1

c(M)× C∞c (M,R)

the following conditions are equivalent:

(2) g is a contact diffeomorphism.
(3) Γg(M) is a Legendre submanifold of (M̂, α̂).
(4) ϕf (Γg(M)) is a Legendre submanifold of (T ∗M × R, θM − dt).
(5) The section sf (g) satisfies sf (g)∗(θM −dt) = 0, equivalently (by [75, 43.17])

σf (g) = d(uf (g)).

Let us now consider the following diagram:

Diff(M) Ũf?
_oo sf // Ṽf

� � // C∞c (M←T ∗M × R)

Diff(M,α)
?�

OO

Uf?
_oo uf

∼=
//

?�

OO

Vf
� � //

?�
j

OO

C∞c (M,R).
?�
j linear, splitting

OO

In this diagram we put j(h) := (dh, h), a bounded linear splitting embedding. We
let Ṽf ⊂ C∞c (M←T ∗M × R) be the open set of all (ω, h) ∈ Ω1

c(M) × C∞c (M,R)
with (ω, h)(M) ⊂ V ′f and such that pr1 ◦ϕ−1

f ◦ (ω, h) : M →M is a diffeomorphism.
We also consider the smooth mapping

wf : Ṽf → Diff(M)
wf (ω, h) := pr2 ◦ϕ−1

f ◦ (ω, h) ◦ (pr1 ◦ϕ−1
f ◦ (ω, h))−1 : M →M,

and let Vf = (wf ◦j)−1Ũf . Then wf ◦sf = Id, and so we may use as chart mappings
for Diff(M,α):

uf : Uf := Ũf ∩Diff(M,α)→ Vf := (wf ◦ j)−1(Ũf ) ⊂ C∞c (M,R),
uf (g) := pr2 ◦(ϕf ◦ Γg) ◦ (π ◦ ϕf ◦ Γg)−1 ∈ C∞(M,R),

u−1
f (h) = (wf ◦ j)(h) = wf (dh, h).

The chart change mapping uk ◦ u−1
f is defined on an open subset and is smooth,

because uk ◦ u−1
f = pr2 ◦sk ◦ wf ◦ j, and sk and wf are smooth by 42.13 , 43.1 ,

and by [75, 42.20]. Thus, the resulting atlas (Uf , uf )f∈Diff(M,α) is smooth, and
Diff(M,α) is a smooth manifold in such a way that the injection i : Diff(M,α) →
Diff(M) is smooth.

Note that sf ◦ wf 6= Id, so we cannot construct (splitting) submanifold charts in
this way.

But there exist local smooth retracts u−1
f ◦ pr2 ◦sf : (pr2 ◦sf )−1(Vf )→ Uf . There-

fore, the injection i has the property that a mapping into Diff(M,α) is smooth if
and only if its prolongation via i into Diff(M) is smooth. Thus, Diff(M,α) is a Lie
group, and from [75, 38.7] we may conclude that it is a regular Lie group.

A direct proof of regularity goes as follows: From lemma 43.16 and [75, 36.6]
we see that TIdi maps the Lie algebra of Diff(M,α) isomorphically onto the Lie
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algebra Xc(M,α) of all contact vector fields with compact support. It also follows
from lemma 43.16 that we have for the evolution operator

EvolrDiff(M)|C∞(R,Xc(M,α)) = EvolrDiff(M,α)

so that Diff(M,α) is a regular Lie group.

44.1. Theorem. Principal bundle of embeddings. Let M and N be smooth
finite dimensional manifolds, connected and second countable such that dimM ≤
dimN .

Then the set Emb(M,N) of all smooth embeddings M → N is an open subman-
ifold of C∞(M,N). It is the total space of a smooth principal fiber bundle with
structure group Diff(M), whose smooth base manifold is the space B(M,N) of all
submanifolds of N of type M .

The open subset Embprop(M,N) of proper (equivalently closed) embeddings is satu-
rated under the Diff(M)-action, and is thus the total space of the restriction of the
principal bundle to the open submanifold Bclosed(M,N) of B(M,N) consisting of
all closed submanifolds of N of type M .

This result is based on an idea implicitly contained in [131], it was fully proved by
[11] for compact M and for general M by [97]. The clearest presentation was in
[95, section 13].

44.2. Result. [21]. Let M and N be smooth manifolds. Then the diffeomorphism
group Diff(M) acts smoothly from the right on the manifold Immprop(M,N) of all
smooth proper immersions M → N , which is an open subset of C∞(M,N).

Then the space of orbits Immprop(M,N)/Diff(M) is Hausdorff in the quotient
topology.

Let Immfree, prop(M,N) be set of all proper immersions, on which Diff(M) acts
freely. Then this is open in C∞(M,N) and it is the total space of a smooth principal
fiber bundle

Immfree,prop(M,N)→ Immfree,prop(M,N)/Diff(M).

44.21. A classifying space for the diffeomorphism group

Let `2 be the Hilbert space of square summable sequences, and let S be a com-
pact manifold. By a slight generalization of theorem 44.1 (we use a Hilbert space
instead of a Riemannian manifold N), the space Emb(S, `2) of all smooth embed-
dings is an open submanifold of C∞(S, `2), and it is also the total space of a smooth
principal bundle with structure group Diff(S) acting from the right by composition.
The base space B(S, `2) := Emb(S, `2)/Diff(S) is a smooth manifold modeled on
Fréchet spaces which are projective limits of Hilbert spaces. B(S, `2) is a Lindelöf
space in the quotient topology, and the model spaces admit bump functions, thus
B(S, `2) admits smooth partitions of unity, by 16.10 . We may view B(S, `2) as
the space of all submanifolds of `2 which are diffeomorphic to S, a nonlinear analog
of the infinite dimensional Grassmannian.

44.22. Lemma. The total space Emb(S, `2) is contractible.
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Therefore, by the general theory of classifying spaces the base space B(S, `2) is a
classifying space of Diff(S). We will give a detailed description of the classifying
process in 44.24 .

Proof. We consider the continuous homotopy A : `2×[0, 1]→ `2 through isometries
which is given by A0 = Id and by

At(a0, a1, a2, . . .) = (a0, . . . , an−2, an−1 cos θn(t), an−1 sin θn(t),
an cos θn(t), an sin θn(t), an+1 cos θn(t), an+1 sin θn(t), . . .)

for 1
n+1 ≤ t ≤ 1

n , where θn(t) = ϕ(n((n + 1)t − 1))π2 for a fixed smooth function
ϕ : R→ R which is 0 on (−∞, 0], grows monotonely to 1 in [0, 1], and equals 1 on
[1,∞).

Then A1/2(a0, a1, a2, . . .) = (a0, 0, a1, 0, a2, 0, . . .) is in `2even and on the other hand
A1(a0, a1, a2, . . .) = (0, a0, 0, a1, 0, a2, 0, . . .) is in `2odd. The same homotopy makes
sense as a mapping A : R∞ × R → R(N), and here it is easily seen to be smooth:
a smooth curve in R(N) is locally bounded and thus locally takes values in a finite
dimensional subspace RN ⊂ R(N). The image under A then has values in R2N ⊂
R(N), and the expression is clearly smooth as a mapping into R2N . This is a variant
of a homotopy constructed by [107].

Given two embeddings e1 and e2 ∈ Emb(S, `2) we first deform e1 through embed-
dings to e′1 ∈ Emb(S, `2even), and e2 to e′2 ∈ Emb(S, `2odd). Then we connect them
by te′1 + (1− t)e′2 which is a smooth embedding for all t since the values are always
orthogonal.

44.23

We consider the smooth action ev : Diff(S) × S → S and the associated bundle
Emb(S, `2)[S, ev] = Emb(S, `2)×Diff(S)S which we call E(S, `2), a smooth fiber bun-
dle over B(S, `2) with standard fiber S. In view of the interpretation of B(S, `2) as
the nonlinear Grassmannian, we may visualize E(S, `2) as the ”universal S-bundle”
as follows: E(S, `2) = {(N, x) ∈ B(S, `2)×`2 : x ∈ N} with the differentiable struc-
ture from the embedding into B(S, `2)× `2.

The tangent bundle TE(S, `2) is then the space of all (N, x, ξ, v) where N ∈
B(S, `2), x ∈ N , ξ is a vector field along and normal to N in `2, and v ∈ Tx`2 such
that the part of v normal to TxN equals ξ(x). This follows from the description of
the principal fiber bundle Emb(S, `2)→ B(S, `2) given in 44.1 combined with [75,
42.17]. Obviously, the vertical bundle V E(S, `2) consists of all (N, x, v) with x ∈ N
and v ∈ TxN . The orthonormal projection p(N,x) : `2 → TxN defines a connection
Φclass : TE(S, `2)→ V E(S, `2) which is given by Φclass(N, x, ξ, v) = (N, x, p(N,x)v).
It will be called the classifying connection for reasons to be explained in the next
theorem.

44.24. Theorem. Classifying space for Diff(S).
The fiber bundle (E(S, `2)→ B(S, `2), S) is classifying for S-bundles and Φclass is
a classifying connection:

For each finite dimensional bundle (p : E → M,S) and each connection Φ on E
there is a smooth (classifying) mapping f : M → B(S, `2) such that (E,Φ) is iso-
morphic to (f∗E(S, `2), f∗Φclass). Homotopic maps pull back isomorphic S-bundles
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and conversely (the homotopy can be chosen smooth). The pulled back connection
is invariant under a homotopy H if and only if i(CclassT(x,t)H.(0x, ddt ))R

class = 0
where Cclass is the horizontal lift of Φclass, and Rclass is its curvature .

Since S is compact the classifying connection Φclass is complete, and its parallel
transport Ptclass has the following classifying property:

f̃ ◦ Ptf
∗Φclass

(c, t) = Ptclass(f ◦ c, t) ◦ f̃ ,

where f̃ : E ∼= f∗E(S, `2) → E(S, `2) is the fiberwise diffeomorphic which covers
the classifying mapping f : M → B(S, `2).

47.2. Example: The sphere S∞

This is the set {x ∈ R(N) : 〈x, x〉 = 1}, the usual infinite dimensional sphere
used in algebraic topology, the topological inductive limit of Sn ⊂ Sn+1 ⊂ . . ..
The inductive limit topology coincides with the subspace topology since clearly
lim−→Sn → S∞ ⊂ R(N) is continuous, S∞ as closed subset of R(N) with the c∞-
topology is compactly generated, and since each compact set is contained in a step
of the inductive limit.

We show that S∞ is a smooth manifold by describing an explicit smooth atlas, the
stereographic atlas. Choose a ∈ S∞ (”south pole”). Let

U+ := S∞ \ {a}, u+ : U+ → {a}⊥, u+(x) = x−〈x,a〉a
1−〈x,a〉 ,

U− := S∞ \ {−a}, u− : U− → {a}⊥, u−(x) = x−〈x,a〉a
1+〈x,a〉 .

From an obvious drawing in the 2-plane through 0, x, and a it is easily seen that
u+ is the usual stereographic projection. We also get

u−1
+ (y) = |y|2−1

|y|2+1a+ 2
|y|2+1y for y ∈ {a}⊥ \ {0}

and (u−◦u−1
+ )(y) = y

|y|2 . The latter equation can directly be seen from the drawing
using the intersection theorem.

The two stereographic charts above can be extended to charts on open sets in R(N)

in such a way that S∞ becomes a splitting submanifold of R(N):

ũ+ : R(N) \ [0,+∞)a→ a⊥ + (−1,+∞)a

ũ+(z) := u+( z
|z| ) + (|z| − 1)a

= (1 + 〈z, a〉)u−1
+ (z − 〈z, a〉a)

Since the model space R(N) of S∞ has the bornological approximation property by
[75, 28.6], and is reflexive, by 28.7 the operational tangent bundle of S∞ equals
the kinematic one: DS∞ = TS∞.

We claim that TS∞ is diffeomorphic to {(x, v) ∈ S∞ × R(N) : 〈x, v〉 = 0}.
The Xx ∈ TxS

∞ are exactly of the form c′(0) for a smooth curve c : R → S∞

with c(0) = x by 28.13 . Then 0 = d
dt |0〈c(t), c(t)〉 = 2〈x,Xx〉. For v ∈ x⊥ we use

c(t) = cos(|v|t)x+ sin(|v|t) v
|v| .

The construction of S∞ works for any positive definite bounded bilinear form on
any convenient vector space.
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The sphere is smoothly contractible, by the following argument: We consider the
homotopy A : R(N) × [0, 1] → R(N) through isometries which is given by A0 = Id
and by 44.22

At(a0, a1, a2, . . .) = (a0, . . . , an−2, an−1 cos θn(t), an−1 sin θn(t),
an cos θn(t), an sin θn(t), an+1 cos θn(t), an+1 sin θn(t), . . .)

for 1
n+1 ≤ t ≤ 1

n , where θn(t) = ϕ(n((n + 1)t − 1))π2 for a fixed smooth function
ϕ : R → R which is 0 on (−∞, 0], grows monotonely to 1 in [0, 1], and equals 1
on [1,∞). The mapping A is smooth since it maps smooth curves (which locally
map into some RN ) to smooth curves (which then locally have values in R2N ).
Then A1/2(a0, a1, a2, . . .) = (a0, 0, a1, 0, a2, 0, . . .) is in R(N)

even, and on the other hand
A1(a0, a1, a2, . . .) = (0, a0, 0, a1, 0, a2, 0, . . .) is in R(N)

odd. This is a variant of a ho-
motopy constructed by [107]. Now At|S∞ for 0 ≤ t ≤ 1/2 is a smooth isotopy on
S∞ between the identity and A1/2(S∞) ⊂ R(N)

even. The latter set is contractible in a
chart.

One may prove in a simpler way that S∞ is contractible with a real analytic homo-
topy with one corner: roll all coordinates one step to the right and then contract
in the stereographic chart opposite to (1, 0, . . . ).

47.3. Example. The Grassmannians and the Stiefel manifolds

The Grassmann manifold G(k,∞;R) = G(k,∞) is the set of all k-dimensional
linear subspaces of the space of all finite sequences R(N). The Stiefel manifold
of orthonormal k-frames O(k,∞;R) = O(k,∞) is the set of all linear isometries
Rk → R(N), where the latter space is again equipped with the standard weak inner
product described at the beginning of 47.2 . The Stiefel manifold of all k-frames
GL(k,∞;R) = GL(k,∞;R) is the set of all injective linear mappings Rk → R(N).

There is a canonical transposition mapping ( )t : L(Rk,R(N))→ L(R(N),Rk) which
is given by

At : R(N) −incl→ RN =
(
R(N)

)′
−A
′
→ (Rk)′ = Rk

and satisfies 〈At(x), y〉 = 〈x,A(y)〉. The transposition mapping is bounded and
linear, so it is real analytic. Then we have

GL(k,∞) = {A ∈ L(Rk,R(N)) : At ◦A ∈ GL(k)},

since At ◦ A ∈ GL(k) if and only if 〈Ax,Ay〉 = 〈AtAx, y〉 = 0 for all y implies
x = 0, which is equivalent to A injective. So in particular GL(k,∞) is open in
L(Rk,R(N)). The Lie group GL(k) acts freely from the right on the space GL(k,∞).
Two elements of GL(k,∞) lie in the same orbit if and only if they have the same
image in R(N). We have a surjective mapping π : GL(k,∞) → G(k,∞), given by
π(A) = A(Rk), where the inverse images of points are exactly the GL(k)-orbits.
Similarly, we have

O(k,∞) = {A ∈ L(Rk,R(N)) : At ◦A = Idk}.

The Lie group O(k) of all isometries of Rk acts freely from the right on the space
O(k,∞). Two elements of O(k,∞) lie in the same orbit if and only if they have
the same image in R(N). The projection π : GL(k,∞) → G(k,∞) restricts to a
surjective mapping π : O(k,∞) → G(k,∞), and the inverse images of points are
now exactly the O(k)-orbits.
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47.6. Theorem. The principal bundle (O(k,∞), π,G(k,∞)) is classifying for
finite dimensional principal O(k)-bundles and carries a universal real analytic O(k)-
connection ω ∈ Ω1(O(k,∞), o(k)).

This means: For each finite dimensional smooth or real analytic principal O(k)-
bundle P → M with principal connection ωP there is a smooth or real analytic
mapping f : M → G(k,∞) such that the pullback O(k)-bundle f∗O(k,∞) is iso-
morphic to P and the pullback connection f∗ω equals ωP via this isomorphism.

For ∞ replaced by a large N and bundles where the dimension of the base is
bounded this is due to [110].

47.9. Theorem. Let g be a Lie subalgebra of gl(∞). Then there is a smoothly
arcwise connected splitting regular Lie subgroup G of GL(∞) whose Lie algebra is
g. The exponential mapping of GL(∞) restricts to that of G, which is a local real
analytic diffeomorphism near zero. The Campbell-Baker-Hausdorff formula gives a
real analytic mapping near 0 and has the usual properties, also on G.

Proof. Let gn := g∩gl(n), a finite dimensional Lie subalgebra of g. Then
⋃
gn = g.

The convenient structure g = lim−→n
gn coincides with the structure inherited as a

complemented subspace, since gl(∞) carries the finest locally convex structure.

So for each n there is a connected Lie subgroup Gn ⊂ GL(n) with Lie algebra gn.
Since gn ⊂ gn+1 we have Gn ⊂ Gn+1, and we may consider G :=

⋃
nGn ⊂ GL(∞).

Each g ∈ G lies in some Gn and may be connected to Id via a smooth curve there,
which is also smooth curve in G, so G is smoothly arcwise connected.

All mappings exp |gn : gn → Gn are local real analytic diffeomorphisms near 0, so
exp : g → G is also a local real analytic diffeomorphism near zero onto an open
neighborhood of the identity in G. A similar argument applies to evol so that G is
regular. The rest is clear.

47.10. Examples

In the following we list some of the well known examples of simple infinite dimen-
sional Lie groups which fit into the picture treated in this section. The reader can
easily continue this list, especially by complex versions.

The Lie group

SL(∞) is the inductive limit

SL(∞) = {A ∈ GL(∞) : det(A) = 1}
= lim−→
n→∞

SL(n) ⊂ GL(∞),

the connected Lie subgroup with Lie algebra sl(∞) = {X ∈ gl(∞) : tr(X) = 0}.
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The Lie group SO(∞,R)

is the inductive limit

SO(∞) = {A ∈ GL(∞) : 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ R(N) and det(A) = 1}
= lim−→
n→∞

SO(n) ⊂ GL(∞),

the connected Lie subgroup of GL(∞) with the Lie algebra o(∞) = {X ∈ gl(∞) :
Xt = −X} of skew elements.

The Lie group

O(∞) is the inductive limit

O(∞) = {A ∈ GL(∞) : 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ R(N)}
= lim−→
n→∞

O(n) ⊂ GL(∞).

It has two connected components, that of the identity is SO(∞).

The Lie group

Sp(∞,R) is the inductive limit

Sp(∞,R) = {A ∈ GL(∞) : AtJA = J}
= lim−→
n→∞

Sp(2n,R) ⊂ GL(∞), where

J =



0 1

−1 0

0 1

−1 0
. . .


∈ L(R(N),R(N)).

It is the connected Lie subgroup of GL(∞) with the Lie algebra sp(∞,R) = {X ∈
gl(∞) : XtJ + JX = 0} of symplectically skew elements.

47.11. Theorem. The following manifolds are real analytically diffeomorphic to
the homogeneous spaces indicated:

GL(k,∞) ∼= GL(∞)

/Idk L(Rk,R∞−k)

0 GL(∞− k)

 ,

O(k,∞) ∼= O(∞)/(Idk ×O(∞− k)),
G(k,∞) ∼= O(∞)/(O(k)×O(∞− k)).
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43. Diffeomorphism Groups 47.11

The universal vector bundle (E(k,∞), π,G(k,∞),Rk) is defined as the asso-
ciated bundle

E(k,∞) = O(k,∞)[Rk]

= {(Q, x) : x ∈ Q} ⊂ G(k,∞)× R(N).

The tangent bundle of the Grassmannian is then given by
TG(k,∞) = L(E(k,∞), E(k,∞)⊥).

Proof. This is a direct consequence of the chart construction of G(k,∞).
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30:223–250, 1978.

[103] D. Pisanelli. Applications analytiques en dimension infinie. C. R. Acad. Sci. Paris, 274:760–
762, 1972.

[104] D. Pisanelli. Applications analytiques en dimension infinie. Bull. Sci. Math., 96:181–191,
1972.

[105] D. Preiss. Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal., 91:312–
345, 1990.
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Index

Bε(x), ε-ball centered at x, 172
C(X,R), 2
C1

Λ, 89
C∞(X,R), 3
C∞K , 6
C∞b , space of smooth functions with boun-

ded derivatives, 176
C∞c , 7
Cω-manifold structure of Cω(M,N ), 261
Cω-manifold structure on C∞(M,N), 262
CkB , space of Ck-functions with k-th deriva-

tive bounded by B, 176
Ckb , space of Ck-functions with k-th deriva-

tive bounded, 176
Cn(X,R), 3
C2π , 6
D1(X,R), 2
E ⊗ F , 63
E ⊗π F , 64
EB , linear space generated by B ⊆ E, 21
Eborn, 44
M -continuous, 93
NW,U , 9
S1, 93
S∞, 93
Sne , 94
Sn+1, 93
T ⊗ S, 64
T1 ⊗π T2, 66
U ⊗ V , 65
Y X , 8
∆ Laplace-operator, 5
Ωk(M), space of differential forms, 247
Ωk(M,V ), space of differential forms with

values in a convenient vector space V ,
248

Ωk(M ;E), space of differential forms with
values in a vector bundle E, 248

δ, natural embedding into the bidual, 25
`∗, adjoint mapping, 18
`1(X), 59
∞-norm ΓB30D ΓB30D∞, 156
f̌ , 7
Ê, completion of E, 25
ĝ, 9
Sn, group of permutations, 69
D, 6, 7
H(U, F ), 108
Lipk-curve, 19
C∞(M,N), manifold of smooth mappings,

259

πU,V , 65
c∞-completion, 55
c0(X), 58
f∗, 9
n-times (continuously) Silva differentiable in

the enlarged sense, 94
n+1-times continuously Silva differentiable,

93
X(M), the space of all kinematic vector fields,

229
(B-)differentiable at x ∈ U , 88
kE, 46
sE, 46
C∞, 38
C∞-structure, 206
C∞(U, F ), 38
C∞(R, E), 36
D

[d]
a E, space of operational tangent vectors

of homogeneous order d, 215
E′, space of bounded linear functionals on

E, 18
E ⊗β F , 66
E∗, space of continuous linear functionals,

18
K′, set of accumulation points of K, 160
L(E,F ), 42
L(E∗equi,R), 25
L(E1, ..., En;F ), 61
M-convergence condition, 48
M-convergent net, 22
M-converging sequence, 44
ℵ0, 54
`∞(X), 58
`∞(X,F ), 30
`∞c (X), 58
S-functions, 169
S-normal space, 182
S-paracompact space, 182
S-partition of unity, 182
S-regular space, 169
µ-converging, 28
µ-converging sequence, 44
ω1, first uncountable ordinal number, 57
4∗, 72
c∞-approximation property, 216
c∞-open set, 28
c∞-topology, 28
c0(Γ), space of 0-sequences, 159
d, 42
dnv , 35
dpv, 76
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Index

k-jet extension, 80
(foot point) projection, 222
(truncated) composition, 80
1-homogeneous mapping, 43
Asplund space, 153
COk-topology, 252
CO-topology, 251
Fréchet-differentiable, 147
Fundamental theorem of calculus, 26
Gâteaux-differentiable, 147
Grassmann manifold G(k,∞;R), 278
Hölder mapping, 147
Kelley-fication, 46
Legendre mapping, 273
Legendre submanifold, 273
Leibniz formula, 62
Lie bracket of vector fields, 231
Lie derivative, 246
Lipschitz condition, 18
Lipschitz mapping, 147
Mackey adherence of order α, 57
Mackey adherence, 57, 59
Mackey approximation property, 216
Mackey complete space, 24
Mackey convergent sequence, 21
Mackey-Cauchy net, 24
Mackey-closure topology, 29
Minkowski functional, 21
PRI, projective resolution of identity on a

Banach space, 192
Radon-Nikodym property, 153
Radon-Nikodym property of a bounded con-

vex subset of a Banach space, 154
Riemann integral, 25
Riemann sums R(c,Z, ξ), 25
SPRI, separable projective resolution of iden-

tity, 192
Silva space, 187
Stiefel manifold of all k-frames GL(k,∞;R),

278
Stiefel manifold of orthonormal k-frames O(k,∞;R),

278
Valdivia compact space, 194
Vandermonde’s determinant, 35
WCD, weakly countably determined space,

196
WCG-Banach-space, 153
WO0-topology, 251
WOk-topology, 253
WO-topology, 251
Whitney Ck-topology, 253
n-th derivative, 72
absolutely convex Lipschitz bound, 26
absorbs, 43
almost continuous function, 105
alt, 69
alternating tensor, 68
alternator, 69
approximation of unity, 35
arc-generated vector space, 48
atlas, 206
base of a vector bundle, 225
biholomorphic mappings, 206

bipolarsUoo, 25
bornivorous, 43
bornivorous set, 44
bornological approximation property, 216
bornological embedding, 56
bornological isomorphism, 18
bornological mapping, 28
bornological tensor product, 66
bornological vector space, 43
bornologically real analytic curve, 117
bornologification, 44
bornologification of a locally convex topol-

ogy, 23
bornology of a locally convex space, 18
bornology on a set, 30
bounded algebra, 77
bounded linear mapping, 18
bounded mapping, 28
bounded modules, 77
bump function, 169
carrier of a mapping, 169
characteristic vector field, 272
chart changing mapping, 206
classifying connection, 276
colim, 68
commutative algebra, 69
comp, the composition, 39
compact-open Ck-topology, 252
compact-open topology, 251
compatible vector bundle charts, 225
completely regular space, 54
completion of a locally convex space, 25
complex differentiable mapping, 99
complex manifold MC (complexification of

M), 122
contact diffeomorphism, 272
contact distribution, 272
contact form , 272
contact graph of a diffeomorphism, 273
contact manifold, 272
continuous derivation overeva, 214
convolution, 36
definite integral, 26
degree of a polynomial, 72
density number densX of a topological space,

168
density of a subset of R, 31
dentable, 153
dentable subset, 153
derivative of a curve, 18
diffeomorphic manifolds, 206
difference quotient, 137
differentiable curve, 18
differential of a function, 224
differentiation operator, 42
directional derivative, 146
directional derivatives, 35
dual of a convex function, 150
dual space E′ of all bounded linear function-

als on E, 18
dual space E∗ of all continuous linear func-

tionals on E, 18
embedding of manifolds, 211
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Index

equicontinuous sets, 25
equidistant difference quotient, 137
equivalent, 225
equivalent atlas, 206
exact contact structure, 272
expose a subset, 149
extension property, 56
exterior algebra, 69
falls fast, 27
fast converging sequence, 27
fiber of the operational tangent bundle, 222
fiber of the tangent bundle, 222
fibered composition of jets, 80
finite type polynomial, 74
first uncountable ordinal number ω1, 57
flow line of a kinematic vector field, 232
germ of f along A, 212
germs along A of holomorphic functions, 110
global formula for the exterior derivative,

241
graded-commutative algebra, 69
graph topology, 251
holomorphic atlas, 206
holomorphic curve, 99
holomorphic diffeomorphisms, 206
holomorphic mapping, 101
holomorphic vector bundle, 225
homogeneous operational tangent vector of

order d, 215
infinite polygon, 27
infinitely flat at 0, 73
initial holomorphic mappings, 210
initial real analytic mappings, 210
initial smooth mapping, 210
insertion operator, 240
integral curve of a kinematic vector field,

232
integral linear mapping, 153
integral mapping, 154
jets, 80
kinematic 1-form, 235
kinematic cotangent bundle, 235
kinematic tangent bundle, 222
kinematic tangent vector, 214
kinematic vector field, 229
local addition, 261
local flow of a kinematic vector field, 234
locally Lipschitzian curve, 18
locally uniformly rotund norm, 164
manifold, 206
maximal atlas, 206
mean value theorem, 20
mesh of a partition, 25
modeling convenient vector spaces of a mani-

fold, 208
modular 1-form, 236
monomial of degree p, 73
natural topology on a manifold, 206
normal bundle, 254
nuclear mapping, 154
operational 1-form, 236
operational 1-forms of order ≤ k, 236
operational cotangent bundle, 235

operational cotangent bundle (D(k))′M of
order ≤ k, 235

operational tangent bundle, 222
operational tangent vector, 214
operational vector field, 230
order of a derivation, 214
polars Uo, 25
polynomial, 72
product of manifolds, 207
product rule, 62
projection of a vector bundle, 225
projective resolution of identity, 192
proper mapping, 263
pure manifold, 208
radial subset, 43
real analytic atlas, 206
real analytic diffeomorphisms, 206
real analytic mapping, 120
real analytic vector bundle, 225
realcompact space, 194
regular Lie group, 268
right evolution, 268
rough norm, 153, 154
scalarly true property, 21
scattered topological space, 162
section of a vector bundle, 226
separable projective resolution of identity, 192
sequential adherence, 49
smooth atlas, 206
smooth curve, 18
smooth functions of class S, 169
smooth mapping, 38
smooth mapping between manifolds, 206
smooth seminorm, 148
smoothly Hausdorff, 207
smoothly normal space, 182
smoothly paracompact space, 182
smoothly regular space, 169
space of all bounded n-linear mappings, 61
space of all bounded linear mappings, 42
space of all holomorphic functions, 109
space of all holomorphic mappings, 108
space of all real analytic curves, 119
space of all real analytic mappings, 120
space of all smooth mappings, 38
space of germs of real analytic functions,

123
space of real analytic functions, 122
splitting submanifold, 210
standard fiber of a vector bundle, 225
stereographic atlas, 277
strongly expose a subset, 149
strongly rough norm, 174
submanifold, 209
submanifold charts, 209
subordinated partition of unity, 182
support of a mapping, 169
support of a section, 226
sym, 69
symmetric algebra, 69
symmetrizer, 69
symplectic form, 270
symplectic manifold, 270
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tangent hyperplane, 149
tensor algebra, 69
topologically real analytic curve, 117
total space of a vector bundle, 225
transition function between two vector bun-

dle charts, 225
transposition mapping ( )t : L(Rk,R(N)) →

L(R(N),Rk), 278
tubular neighborhood, 254
typical fiber of a vector bundle, 225
unidirectional iterated derivative, 76
uniform S-boundedness principle, 78
vector bundle, 225
vector bundle atlas, 225
vector bundle chart, 225
wholly open topology, 251
zero section, 225
zero set of a mapping, 169
c∞-complete space, 29
anti-derivative, 29
convenient vector space, 29
locally complete space, 29
1-norm ΓB30D ΓB30D1, 155

adjoint mapping `∗, 18
algebraic tensor product, 63

Boman’s theorem, 34
bornologically compact set, 76, 106
bornologically compact subset, 50
boundary value problem of second order, 4

Cartesian closedness, 39
cbs, 92
chain rule, 42
chain-rule, 7, 13
Classifying space, 276
compactly generated space, 2
compactly-continuous map, 9
continuously (B-)differentiable, 88
continuously Silva differentiable, 93
convenient vector spaces, 17
convex bornological space, 92

Der(C∞(M,R)), space of all operational vec-
tor fields, 230

derivative, 13
Diff(X), 11
Diffeomorphism group, 266
difference quotient, 22
differential equation, 1
differentiation under the integral sign, 7
directional derivative, 87
dual mapping `∗, 18
Dunford-Pettis property, 66

equation of heat-conduction, 5
equivalent category, 10
Euler-Lagrange partial differential equation,

10
evaluation map ev, 9
Exponential law, 263

flow, 11
Fourier-series, 6

Frobenius theorem, 233, 234

Gâteaux differentiable, 88
gas-equation, 11
General curve lemma, 136
Green-function, 6
Green-operator, 6
group of diffeomorphisms, 11

insertion map ins, 9
integral equation, 3
inverse function theorem, 13

Köthe sequence space, 217
Köthe set, 217
Kelley space, 2

Lagrange function, 10
Laplace-operator, 5
lim, 68
linear differential equation of order n, 4
linear differential equation with constant co-

efficients, 4
linear partial differential equation with con-

stant coefficients, 5
linear partial differential equation with non-

constant coefficients, 7
Linearization, 63
Lipk-mapping, 136
LipkK , space of Ck-functions with global Lipschitz-

constant K for the k-th derivatives, 176
Lipkglobal, space of Ck-functions with global

Lipschitz k-th derivatives, 176
locally p-times differentiable between normed

spaces at a point, 94

Mackey convergent net, 22
Manifold structure of C∞(M,N), 259

non-linear partial differential equation, 7

optimization problem, 10
ordinary differential equation, 1
ordinary differential equation of order 1, 1

partial differential equation, 5
point evaluation, 7
Polyp(E,F ), 73
power series space of infinite type, 218
Principal bundle of embeddings, 275
projective tensor product, 64

radial set, 44

Schrödinger equation, 5
Schrödinger-operator, 5
second countability condition of Mackey, 176
second countable, has countable base of topol-

ogy, 226
Silva differentiable, 93
Silva differentiable at x ∈ E, 92
Silva differentiable in the enlarged sense, 94
Smooth curves in C∞(M,N ), 261
Smoothness of composition, 262
space of continuous linear mappings, 64
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space of continuous multi-linear mappings,
64

special curve lemma, 27

three-space property, 162
tubular neighborhoods, 254

uniform boundedness principle, 75
universal vector bundle, 281

vector field, 11
vibrating string, 6

wave-equation, 5
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