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Exercises for Algebraic Topology

WS 2017

Andreas Kriegl

1.1.
Prove the following statements:

(a) Let X and Y be topological spaces, A ⊆ X, B ⊆ Y . Then A × Ḃ ∪ Ȧ × B is the boundary of
A×B in X × Y .

(b) Let A ⊆ Rm and B ⊆ Rn be convex. Then A×B ⊆ Rn+m is convex.

1.2.
The convex hull 〈A〉cv of A ⊆ Rn is defined to be the smallest convex subset of Rn which contains A.
This is the intersection of all convex subsets of Rn containing A. Show that

〈A〉cv =
{ q∑
i=0

λi xi : q ∈ N, λi ≥ 0, xi ∈ A,
q∑
i=0

λi = 1
}
.

1.3.
Give an example of a mapping of pairs f : (X,A) → (Y,B) which is a relative homeomorphism and
for which f |A : A→ B is a homeomorphism, but which is not a homeomorphism of pairs.

1.4.
For locally compact (T2) but not compact spaces X the Alexandroff-compactification X∞ is defined as
the disjoint union X t {∞} with the neighborhoods in X as neighborhoodbasis for the points x ∈ X
and the complements of the compact subsets K ⊆ X in X∞ as neighborhoodbasis at ∞.
Show that this compactification is up to homeomorphy characterized by the properties that X∞ is a
compact space, X is a topological subspace of X∞, and X∞ \X is a single point.
Conclude that for compact spaces X and x0 ∈ X we have X ∼= (X \ {x0})∞.

1.5.
Show that for any x, y ∈

◦
Dn there is a homeomorphism of pairs (Dn, {x}) ∼= (Dn, {y}).

1.6.
For R > r > 0 let the filled torus be the subset of V of R3 obtained by rotating a closed disk in the
x-z-plane with center (R, 0, 0) and radius r around the z-axes. It can be described by V = {(x, y, z) :

(
√
x2 + y2−R)2 + z2 ≤ r2}. Show that formula of the embedding described in example [1, 1.18] gives

also a homeomorphism S1 ×D2 ∼= V .

1.7.
Show that the mapping (i1, . . . , in) : X1∨· · ·∨Xn → X1× . . .×Xn defined in [1, 1.41] is an embedding.

1.8.
Show: (S1 × S1)/(S1 ∨ S1) ∼= S2.

1.9.
Show that Rn/Dn ∼= Rn and that Rn/

◦
Dn is not Hausdorff.
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1.10.
Show that any continuous f : X → Y induces a continuous mapping C(f) : C(X) → C(Y ) between
the cones, via f × I : X × I → Y × I.

1.11.
The suspension (dt. Einhängung) of a topological space X is E(X) := C(X)/X, where X is embedded
into C(X) via x 7→ (x, 1). Show that f : X → Y induces a mapping E(f) : E(X) → E(Y ). Show
furthermore, that E(Dn) ∼= Dn+1 and E(Sn) ∼= Sn+1.

1.12.
Show that the lens space L( 1

2 ) is homeomorphic to P3
R.

1.13.
Describe a mapping f : S2 → S2 ∨S1 such that (S2 ∨S1)∪f D3 ∼= S2×S1. Hint: [1, 1.12]. Note, that
the product p × q : X × Y → X/A × Y/B of the two quotient mappings does not induce a bijection
(X × Y )/(A×B)→ X/A× Y/B, but only a well-defined surjective continuous mapping. By [1, 1.34]
we have the quotient maps induce homeomorphisms X \A ∼= X/A \ {A} and Y \B ∼= Y/B \ {B} and
hence a homeomorphism

(X×Y )\(X×B∪A×Y ) = (X\A)×(Y \B) ∼= (X/A\{A})×(Y/B\{B}) = (X/A×Y/B)\(X/A ∨ ;Y/B)

Whereas (X × Y ) \ (A×B) ⊃ (X × Y ) \ (X ×B ∪A× Y )

1.14.
Consider the subspace X := S1 ∪ D1 ⊆ C and a mapping f : S1 → X which runs through the top
half circle, the diameter D1, the bottom half circle, and again the diameter. Show that X ∪f D2 is
homeomorphic to the Möbius strip. Hint: Use [1, 1.92].

1.15.
Let Z act on R2 by n : (x1, x2) 7→ (x1 + n, (−1)nx2). Show that R2/Z is homeomorphic to the open
Möbius strip (i.e. the Möbius strip from [1, 1.58] without its boundary S1).

1.16.
Let G be the subgroup of homeomorphisms on R2 generated by (x1, x2) 7→ (x1 + 1, x2) and (x1, x2) 7→
(−x1, x2 + 1). Show that R2/G is homeomorphic to Kleins bottle.

1.17.
Let T be the torus into R3 as in [1, 1.18]. Consider the action of the group S0 = {±1} on T given by

(1) (x, y, z)
−17−→ (−x,−y, z) and show that T/S0 ∼= S1 × S1.

(2) (x, y, z)
−17−→ (x,−y,−z) and show that T/S0 ∼= S2.

(3) (x, y, z)
−17−→ (−x,−y,−z) and show that T/S0 is homeomorphic to Kleins bottle.

1.18.
Let G be a finite group acting on X, A ⊆ X closed with X = GA and ∼ die equivalence relation
generated by x ∼ gx for all x. Show, that the canonical mapping A/∼ → X/∼ is a homeomorphism.
Hint: In order to show openness prove that for every open U ⊆ A we have GU :=

⋃
g∈G g(U) =⋂

g∈G g(V ), where V = (X \A) ∪ U is open in X.

2.1.
Show that X × Y is contractible provided X and Y are contractible.
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2.2.
Show that X is contractible if and only if ∆ : X → X ×X, x 7→ (x, x) is 0-homotopic.

2.3.
Two homeomorphisms f0, f1 : X → Y are called isotopic, iff there exists a homotopy t 7→ ft consisting
of homeomorphism ft : X → Y only. Let f : Dn → Dn be a homeomorphism with f |Sn−1 = id and
f(0) = 0. Show that idDn

is isotopic f to via ft : x 7→ t f̃(x/t), where f̃ : Rn → Rn is an appropriate
extension of f .

2.4.
Show that the pointwise multiplication defines an Abelian group structure on [X,S1] and, furthermore,
that deg : [S1, S1]→ (Z,+) is a group-homomorphism with respect to this group structure for X := S1.

2.5.
Let f : D2 → R2 be a continuous function with f |S1 odd. Show that there exists a z ∈ D2 with
f(z) = 0. Deduce the existence of a solution (x, y) ∈ R2 for

x cos(y) = x2 + y2 − 1 and y cos(x) = sin(2π(x2 + y2))

2.6.
Show that S∞ is contractible.
Hint: Let p : R∞ \ {0} → S∞ given by x 7→ x

‖x‖2 , where ‖x‖2 :=
√∑

k x
2
k. Show that ht :

(x0, x1, x2, . . . ) 7→ p((1 − t)x0, tx0 + (1 − t)x1, tx1 + (1 − t)x2, tx2 + (1 − t)x3, . . . ) defines a homo-
topy between idS∞ and the right shift S∞ → {x ∈ S∞ : x0 = 0}. Now consider the homotopy
(0, x1, x2, . . . ) 7→ p(t, (1− t)x1, (1− t)x2, . . . ).

2.7.
Let p, q ∈ S1 × S1 be different points. Show that S1 × S1 \ {p, q} ∼ S1 ∨ S1 ∨ S1.

2.8.
Show that R3 \ S1 ∼ S1 ∨ S2, where S1 ⊆ R3 is the unit-circle in R2 × {0}.

2.9.
Show that S3 \ S1 ∼ S1, where S1 is the unit-circle in R2 × {(0, 0)}.

2.10.
Show that the mapping cylinder of z 7→ z2, S1 → S1 is homeomorphic to the Möbius strip.

2.11.
Show that for f : Sn−1 → Y one has Mf/S

n−1 ∼ Y ∪f Dn.

2.12.
Show that O(n) ⊆ GL(n) is an SDR. Hint: Apply Gram-Schmidt orthonormalization to the columns of
A ∈ GL(n) to obtain r(A) ∈ O(n). This procedure is given by multiplication with an upper triangular
matrix with positive diagonal entries depending smoothly on A. Now deform the matrix to the identity
matrix.

3.1.
Let K be a simplicial complex in Rn and p ∈ Rn+1 \Rn. The cone C(K, p) is the set consisting of {p},
all simplices of K, and all simplices 〈p, x0, . . . , xi〉 for 〈x0, . . . , xi〉 ∈ K. The suspension is E(K) :=
C(K, p) ∪ C(K,−p). Show that C(K, p) and E(K) are simplicial complexes with |C(K, p)| ∼= C(|K|)
and |E(K)| = E(|K|).
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3.2.
The cartesian product of two polyeder is a polyeder. Hint: Show that the product of two closed
simplices σ̄ and τ̄ can be triangulated using C((σ × τ)·) ∼= σ̄ × τ̄ .

3.3.
LetK be a simplicial complex and αi the number of i-simplices ofK. The number χ(K) :=

∑
i≥0(−1)iαi

is called Euler-characteristic of K. Show that

• For any triangulation K of S1 we have χ(K) = 0.

• χ(C(K, p)) = 1 for the cone C(K, p) given in exercise (3.1).

• χ(E(K)) = 2− χ(K) for the suspension E(K) given in exercise (3.1).

• χ(σ̇) = 1 + (−1)n where σ̇ := {τ : τ < σ} for any n+ 1-simplex σ.

3.4.
Let x0, . . . , xq be vertices of K. Show that stK(x0) ∩ · · · ∩ stK(xq) 6= ∅ ⇔ 〈x0, . . . , xq〉 ∈ K.

3.5.
Show that S1 6∼ Sn for n > 1 and deduce R2 6∼= Rn+1. Hint: [1, 3.32].

4.1.
Find CW-decompositions with as few cells as possible of Dn, S1 × I, the closed Möbiusstrip, and the
disk D2

g with g holes as in [1, 1.65].

4.2.
Show that Sn × Sm/Sn ∨ Sm is a CW -space which is homeomorphic to Sn+m.

4.3.
Show that the mapping cylinder of a cellular mapping between CW-spaces is a CW-space.

4.4.
Let X be a CW -space with dim(X) < n. Show that [X,Sn] = {0}. Hint: Use [1, 4.20].

5.1.
Determine the fundamental group of S1 × P2, P2 ∨ P2, P2 × P2, S1 × Sm for m ≥ 2, and of R3 \ S1.

The following exercises (5.2)–(5.5) show, that the isomorphy problem is algorithmically unsolvable for
m-manifolds with m ≥ 4. For this it is enough to show that every finitely presented group appears as
fundamental group of such a manifold.

5.2.
Let M be a connected manifold of dimension m ≥ 3. Show that π1(M \

◦
D1) ∼= π1(M) for M \

◦
D1

as in [1, 1.59]. Deduce that for the connected sum M]N of [1, 1.63] of two such manifolds we get
π1(M]N) ∼= π1(M)

∐
π1(N).

Hint: Theorem of Seifert and van Kampen.

5.3.
Show that for m ≥ 4 the fundamental group of the connected sum M of k copies of S1 × Sm−1 is the
free group 〈{s1, . . . , sk} : ∅〉 with k generators.

5.4.
Show that
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(a) π1(M) ∼= π1(M \f(S1×
◦
Dm−1)) when f : S1×2Dm−1 →M is an embedding into an m-manifold

M with m ≥ 3.

(b) π1(M ∪f (D2 × Sm−2)) ∼= π1(M)/〈{f |S1×{∗}}〉 when f : S1 × Sm−2 → M is continuous and
m ≥ 4.

5.5.
Let G = 〈{s1, . . . , sk} : {r1, . . . , rl}〉 be a finitely represented group. Now construct a compact connect-
ed manifold without boundary recursively by starting with M from exercise (5.3) and cutting for every
ri ∈ π1(M) a neighborhood homeomorphic to S1 ×Dm−1 of an appropriately choosen representant of
ri and pasting a cylinder D2 × Sm−2 as in exercise (5.4).

6.1.
Consider a torus T ⊆ R3 with the z-axes as rotation axis. Now glue g ≥ 2 many handles to T such
that the resulting surface Fg+1 is invariant under rotation R around the z-axes by the angle 2π/g. Let
G be the cyclic group generated by R. Show that Fg+1/G ∼= F2 and hence Fg+1 → F2 is a covering
map.

6.2.
Consider the covering p : R → S1, t 7→ e2πit. Let Y := S1 ∨ S1 ⊆ S1 × S1 and X := (p × p)−1(Y ) =
{(x, y) ∈ R2 : x ∈ Z oder y ∈ Z}. Show that:

1. (p× p)|Y : X → Y is an infinite covering.

2. π1(X) is a free group with infinite many generators (Hint: [1, 5.46])

3. Show that the image of π1(X) in π1(Y ) is the commutator subgroup of π1(Y ) = Z
∐

Z.

4. Note that this subgroup of the free group with 2 generators is a free group with infinite many
generators.

6.3.
Let Y → X be a n-fold covering map with Y path-connected and X locally path-connected. Show that
there is an automorphism which acts cyclically on the standard fibre if and only if the isotropy groups
Gy are normal and G/Gy is a cyclic group.

6.4.
Determine the group Aut(p) of Deck-transformations and the conjugacy class of the covering map p
from [1, 6.26].
Hint: Use a maximal tree in the total space Y .

6.5.
Show that the universal coverings of sufficiently connected homotopy equivalent spaces are homotopy
equivalent.

6.6.
Show that the universal covering of S1 ∪gn D2 from [1, 1.93] is given by D2×{0, . . . , n− 1}/ ∼, where
(x, i) ∼ (x, j) for all x ∈ S1 and all i, j.

6.7.
Determine the fundamental groups of the torus knots t 7→ (e2πipt, e2πiqt), [0, 1]→ S1×S1, with p, q ≥ 2
relative prime integers.
Hint: Apply the theorem of Seifert and van Kampen to the complement of a neighborhood S1 ×

◦
D2

of the knot in S3 using the decomposition of S3 into two filled tori as in [1, 1.73].
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