Exercises for Algebraic Topology

WS 2017

Andreas Kriegl

1.1.

Prove the following statements:

- (a) Let X and Y be topological spaces, $A \subseteq X$, $B \subseteq Y$. Then $\overline{A} \times \dot{B} \cup \dot{A} \times \overline{B}$ is the boundary of $A \times B$ in $X \times Y$.
- (b) Let $A \subseteq \mathbb{R}^m$ and $B \subseteq \mathbb{R}^n$ be convex. Then $A \times B \subseteq \mathbb{R}^{n+m}$ is convex.

1.2.

The convex hull $\langle A \rangle_{cv}$ of $A \subseteq \mathbb{R}^n$ is defined to be the smallest convex subset of \mathbb{R}^n which contains A. This is the intersection of all convex subsets of \mathbb{R}^n containing A. Show that

$$\langle A \rangle_{\rm cv} = \Big\{ \sum_{i=0}^q \lambda_i \, x_i : q \in \mathbb{N}, \lambda_i \ge 0, x_i \in A, \sum_{i=0}^q \lambda_i = 1 \Big\}.$$

1.3.

Give an example of a mapping of pairs $f: (X, A) \to (Y, B)$ which is a relative homeomorphism and for which $f|_A: A \to B$ is a homeomorphism, but which is not a homeomorphism of pairs.

1.4.

For locally compact (T_2) but not compact spaces X the Alexandroff-compactification X_{∞} is defined as the disjoint union $X \sqcup \{\infty\}$ with the neighborhoods in X as neighborhoodbasis for the points $x \in X$ and the complements of the compact subsets $K \subseteq X$ in X_{∞} as neighborhoodbasis at ∞ . Show that this compactification is up to homeomorphy characterized by the properties that X_{∞} is a compact space, X is a topological subspace of X_{∞} , and $X_{\infty} \setminus X$ is a single point. Conclude that for compact spaces X and $x_0 \in X$ we have $X \cong (X \setminus \{x_0\})_{\infty}$.

1.5.

Show that for any $x, y \in \mathring{D}^n$ there is a homeomorphism of pairs $(D^n, \{x\}) \cong (D^n, \{y\})$.

1.6.

For R > r > 0 let the filled torus be the subset of V of \mathbb{R}^3 obtained by rotating a closed disk in the *x*-*z*-plane with center (R, 0, 0) and radius r around the *z*-axes. It can be described by $V = \{(x, y, z) : (\sqrt{x^2 + y^2} - R)^2 + z^2 \le r^2\}$. Show that formula of the embedding described in example [1, 1.18] gives also a homeomorphism $S^1 \times D^2 \cong V$.

1.7.

Show that the mapping $(i_1, \ldots, i_n) : X_1 \lor \cdots \lor X_n \to X_1 \times \ldots \times X_n$ defined in [1, 1.41] is an embedding.

1.8.

Show: $(S^1 \times S^1)/(S^1 \vee S^1) \cong S^2$.

1.9.

Show that $\mathbb{R}^n/D^n \cong \mathbb{R}^n$ and that $\mathbb{R}^n/\mathring{D}^n$ is not Hausdorff.

1.10.

Show that any continuous $f: X \to Y$ induces a continuous mapping $C(f): C(X) \to C(Y)$ between the cones, via $f \times I: X \times I \to Y \times I$.

1.11.

The suspension (dt. Einhängung) of a topological space X is E(X) := C(X)/X, where X is embedded into C(X) via $x \mapsto (x, 1)$. Show that $f : X \to Y$ induces a mapping $E(f) : E(X) \to E(Y)$. Show furthermore, that $E(D^n) \cong D^{n+1}$ and $E(S^n) \cong S^{n+1}$.

1.12.

Show that the lens space $L(\frac{1}{2})$ is homeomorphic to $\mathbb{P}^3_{\mathbb{R}}$.

1.13.

Describe a mapping $f: S^2 \to S^2 \vee S^1$ such that $(S^2 \vee S^1) \cup_f D^3 \cong S^2 \times S^1$. **Hint:** [1, 1.12]. Note, that the product $p \times q: X \times Y \to X/A \times Y/B$ of the two quotient mappings does not induce a bijection $(X \times Y)/(A \times B) \to X/A \times Y/B$, but only a well-defined surjective continuous mapping. By [1, 1.34] we have the quotient maps induce homeomorphisms $X \setminus A \cong X/A \setminus \{A\}$ and $Y \setminus B \cong Y/B \setminus \{B\}$ and hence a homeomorphism

$$(X \times Y) \setminus (X \times B \cup A \times Y) = (X \setminus A) \times (Y \setminus B) \cong (X/A \setminus \{A\}) \times (Y/B \setminus \{B\}) = (X/A \times Y/B) \setminus (X/A \lor ; Y/B)$$

Whereas $(X \times Y) \setminus (A \times B) \supset (X \times Y) \setminus (X \times B \cup A \times Y)$

1.14.

Consider the subspace $X := S^1 \cup D^1 \subseteq \mathbb{C}$ and a mapping $f : S^1 \to X$ which runs through the top half circle, the diameter D^1 , the bottom half circle, and again the diameter. Show that $X \cup_f D^2$ is homeomorphic to the Möbius strip. **Hint:** Use [1, 1.92].

1.15.

Let \mathbb{Z} act on \mathbb{R}^2 by $n : (x_1, x_2) \mapsto (x_1 + n, (-1)^n x_2)$. Show that \mathbb{R}^2/\mathbb{Z} is homeomorphic to the open Möbius strip (i.e. the Möbius strip from [1, 1.58] without its boundary S^1).

1.16.

Let G be the subgroup of homeomorphisms on \mathbb{R}^2 generated by $(x_1, x_2) \mapsto (x_1 + 1, x_2)$ and $(x_1, x_2) \mapsto (-x_1, x_2 + 1)$. Show that \mathbb{R}^2/G is homeomorphic to Kleins bottle.

1.17.

Let T be the torus into \mathbb{R}^3 as in [1, 1.18]. Consider the action of the group $S^0 = \{\pm 1\}$ on T given by

- (1) $(x, y, z) \xrightarrow{-1} (-x, -y, z)$ and show that $T/S^0 \cong S^1 \times S^1$.
- (2) $(x, y, z) \xrightarrow{-1} (x, -y, -z)$ and show that $T/S^0 \cong S^2$.
- (3) $(x, y, z) \xrightarrow{-1} (-x, -y, -z)$ and show that T/S^0 is homeomorphic to Kleins bottle.

1.18.

Let G be a finite group acting on X, $A \subseteq X$ closed with X = GA and \sim die equivalence relation generated by $x \sim gx$ for all x. Show, that the canonical mapping $A/\sim \to X/\sim$ is a homeomorphism. **Hint:** In order to show openness prove that for every open $U \subseteq A$ we have $GU := \bigcup_{g \in G} g(U) = \bigcap_{g \in G} g(V)$, where $V = (X \setminus A) \cup U$ is open in X.

2.1.

Show that $X \times Y$ is contractible provided X and Y are contractible.

2.2.

Show that X is contractible if and only if $\Delta : X \to X \times X, x \mapsto (x, x)$ is 0-homotopic.

2.3.

Two homeomorphisms $f_0, f_1 : X \to Y$ are called isotopic, iff there exists a homotopy $t \mapsto f_t$ consisting of homeomorphism $f_t : X \to Y$ only. Let $f : D^n \to D^n$ be a homeomorphism with $f|_{S^{n-1}} = \text{id}$ and f(0) = 0. Show that id_{D_n} is isotopic f to via $f_t : x \mapsto t \tilde{f}(x/t)$, where $\tilde{f} : \mathbb{R}^n \to \mathbb{R}^n$ is an appropriate extension of f.

2.4.

Show that the pointwise multiplication defines an Abelian group structure on $[X, S^1]$ and, furthermore, that deg : $[S^1, S^1] \to (\mathbb{Z}, +)$ is a group-homomorphism with respect to this group structure for $X := S^1$.

2.5.

Let $f : D^2 \to \mathbb{R}^2$ be a continuous function with $f|_{S^1}$ odd. Show that there exists a $z \in D^2$ with f(z) = 0. Deduce the existence of a solution $(x, y) \in \mathbb{R}^2$ for

$$x\cos(y) = x^2 + y^2 - 1$$
 and $y\cos(x) = \sin(2\pi(x^2 + y^2))$

2.6.

Show that S^{∞} is contractible.

Hint: Let $p : \mathbb{R}^{\infty} \setminus \{0\} \to S^{\infty}$ given by $x \mapsto \frac{x}{\|x\|_2}$, where $\|x\|_2 := \sqrt{\sum_k x_k^2}$. Show that $h_t : (x_0, x_1, x_2, \ldots) \mapsto p((1-t)x_0, tx_0 + (1-t)x_1, tx_1 + (1-t)x_2, tx_2 + (1-t)x_3, \ldots)$ defines a homotopy between $\mathrm{id}_{S^{\infty}}$ and the right shift $S^{\infty} \to \{x \in S^{\infty} : x_0 = 0\}$. Now consider the homotopy $(0, x_1, x_2, \ldots) \mapsto p(t, (1-t)x_1, (1-t)x_2, \ldots)$.

2.7.

Let $p, q \in S^1 \times S^1$ be different points. Show that $S^1 \times S^1 \setminus \{p, q\} \sim S^1 \vee S^1 \vee S^1$.

2.8.

Show that $\mathbb{R}^3 \setminus S^1 \sim S^1 \vee S^2$, where $S^1 \subseteq \mathbb{R}^3$ is the unit-circle in $\mathbb{R}^2 \times \{0\}$.

2.9.

Show that $S^3 \setminus S^1 \sim S^1$, where S^1 is the unit-circle in $\mathbb{R}^2 \times \{(0,0)\}$.

2.10.

Show that the mapping cylinder of $z \mapsto z^2$, $S^1 \to S^1$ is homeomorphic to the Möbius strip.

2.11.

Show that for $f: S^{n-1} \to Y$ one has $M_f/S^{n-1} \sim Y \cup_f D^n$.

2.12.

Show that $O(n) \subseteq GL(n)$ is an SDR. **Hint:** Apply Gram-Schmidt orthonormalization to the columns of $A \in GL(n)$ to obtain $r(A) \in O(n)$. This procedure is given by multiplication with an upper triangular matrix with positive diagonal entries depending smoothly on A. Now deform the matrix to the identity matrix.

3.1.

Let K be a simplicial complex in \mathbb{R}^n and $p \in \mathbb{R}^{n+1} \setminus \mathbb{R}^n$. The cone C(K, p) is the set consisting of $\{p\}$, all simplices of K, and all simplices $\langle p, x_0, \ldots, x_i \rangle$ for $\langle x_0, \ldots, x_i \rangle \in K$. The suspension is $E(K) := C(K, p) \cup C(K, -p)$. Show that C(K, p) and E(K) are simplicial complexes with $|C(K, p)| \cong C(|K|)$ and |E(K)| = E(|K|).

3.2.

The cartesian product of two polyeder is a polyeder. **Hint:** Show that the product of two closed simplices $\bar{\sigma}$ and $\bar{\tau}$ can be triangulated using $C((\sigma \times \tau)^{\cdot}) \cong \bar{\sigma} \times \bar{\tau}$.

3.3.

Let K be a simplicial complex and α_i the number of *i*-simplices of K. The number $\chi(K) := \sum_{i \ge 0} (-1)^i \alpha_i$ is called Euler-characteristic of K. Show that

- For any triangulation K of S^1 we have $\chi(K) = 0$.
- $\chi(C(K, p)) = 1$ for the cone C(K, p) given in exercise (3.1).
- $\chi(E(K)) = 2 \chi(K)$ for the suspension E(K) given in exercise (3.1).
- $\chi(\dot{\sigma}) = 1 + (-1)^n$ where $\dot{\sigma} := \{\tau : \tau < \sigma\}$ for any n + 1-simplex σ .

3.4.

Let x_0, \ldots, x_q be vertices of K. Show that $\operatorname{st}_K(x_0) \cap \cdots \cap \operatorname{st}_K(x_q) \neq \emptyset \Leftrightarrow \langle x_0, \ldots, x_q \rangle \in K$.

3.5.

Show that $S^1 \not\sim S^n$ for n > 1 and deduce $\mathbb{R}^2 \cong \mathbb{R}^{n+1}$. Hint: [1, 3.32].

4.1.

Find CW-decompositions with as few cells as possible of D^n , $S^1 \times I$, the closed Möbiusstrip, and the disk D_a^2 with g holes as in [1, 1.65].

4.2.

Show that $S^n \times S^m / S^n \vee S^m$ is a CW-space which is homeomorphic to S^{n+m} .

4.3.

Show that the mapping cylinder of a cellular mapping between CW-spaces is a CW-space.

4.4.

Let X be a CW-space with dim(X) < n. Show that $[X, S^n] = \{0\}$. Hint: Use [1, 4.20].

5.1.

Determine the fundamental group of $S^1 \times \mathbb{P}^2$, $\mathbb{P}^2 \vee \mathbb{P}^2$, $\mathbb{P}^2 \times \mathbb{P}^2$, $S^1 \times S^m$ for $m \ge 2$, and of $\mathbb{R}^3 \setminus S^1$.

The following exercises (5.2)–(5.5) show, that the isomorphy problem is algorithmically unsolvable for *m*-manifolds with $m \ge 4$. For this it is enough to show that every finitely presented group appears as fundamental group of such a manifold.

5.2.

Let M be a connected manifold of dimension $m \geq 3$. Show that $\pi_1(M \setminus \mathring{D}_1) \cong \pi_1(M)$ for $M \setminus \mathring{D}_1$ as in [1, 1.59]. Deduce that for the connected sum $M \sharp N$ of [1, 1.63] of two such manifolds we get $\pi_1(M \sharp N) \cong \pi_1(M) \coprod \pi_1(N)$.

Hint: Theorem of Seifert and van Kampen.

5.3.

Show that for $m \ge 4$ the fundamental group of the connected sum M of k copies of $S^1 \times S^{m-1}$ is the free group $\langle \{s_1, \ldots, s_k\} : \emptyset \rangle$ with k generators.

5.4. Show that

- (a) $\pi_1(M) \cong \pi_1(M \setminus f(S^1 \times \mathring{D}^{m-1}))$ when $f: S^1 \times 2D^{m-1} \to M$ is an embedding into an *m*-manifold M with $m \ge 3$.
- (b) $\pi_1(M \cup_f (D^2 \times S^{m-2})) \cong \pi_1(M) / \langle \{f|_{S^1 \times \{*\}}\} \rangle$ when $f: S^1 \times S^{m-2} \to M$ is continuous and $m \ge 4$.

5.5.

Let $G = \langle \{s_1, \ldots, s_k\} : \{r_1, \ldots, r_l\} \rangle$ be a finitely represented group. Now construct a compact connected manifold without boundary recursively by starting with M from exercise (5.3) and cutting for every $r_i \in \pi_1(M)$ a neighborhood homeomorphic to $S^1 \times D^{m-1}$ of an appropriately choosen representant of r_i and pasting a cylinder $D^2 \times S^{m-2}$ as in exercise (5.4).

6.1.

Consider a torus $T \subseteq \mathbb{R}^3$ with the z-axes as rotation axis. Now glue $g \geq 2$ many handles to T such that the resulting surface F_{g+1} is invariant under rotation R around the z-axes by the angle $2\pi/g$. Let G be the cyclic group generated by R. Show that $F_{g+1}/G \cong F_2$ and hence $F_{g+1} \to F_2$ is a covering map.

6.2.

Consider the covering $p : \mathbb{R} \to S^1$, $t \mapsto e^{2\pi i t}$. Let $Y := S^1 \vee S^1 \subseteq S^1 \times S^1$ and $X := (p \times p)^{-1}(Y) = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Z} \text{ oder } y \in \mathbb{Z}\}$. Show that:

- 1. $(p \times p)|_Y : X \to Y$ is an infinite covering.
- 2. $\pi_1(X)$ is a free group with infinite many generators (Hint: [1, 5.46])
- 3. Show that the image of $\pi_1(X)$ in $\pi_1(Y)$ is the commutator subgroup of $\pi_1(Y) = \mathbb{Z} \prod \mathbb{Z}$.
- 4. Note that this subgroup of the free group with 2 generators is a free group with infinite many generators.

6.3.

Let $Y \to X$ be a *n*-fold covering map with Y path-connected and X locally path-connected. Show that there is an automorphism which acts cyclically on the standard fibre if and only if the isotropy groups G_y are normal and G/G_y is a cyclic group.

6.4.

Determine the group $\operatorname{Aut}(p)$ of Deck-transformations and the conjugacy class of the covering map p from [1, 6.26].

Hint: Use a maximal tree in the total space Y.

6.5.

Show that the universal coverings of sufficiently connected homotopy equivalent spaces are homotopy equivalent.

6.6.

Show that the universal covering of $S^1 \cup_{g_n} D^2$ from [1, 1.93] is given by $D^2 \times \{0, \ldots, n-1\}/\sim$, where $(x, i) \sim (x, j)$ for all $x \in S^1$ and all i, j.

6.7.

Determine the fundamental groups of the torus knots $t \mapsto (e^{2\pi i p t}, e^{2\pi i q t}), [0, 1] \rightarrow S^1 \times S^1$, with $p, q \ge 2$ relative prime integers.

Hint: Apply the theorem of Seifert and van Kampen to the complement of a neighborhood $S^1 \times \mathring{D}^2$ of the knot in S^3 using the decomposition of S^3 into two filled tori as in [1, 1.73].

Literatur

[1] A. Kriegl. Algebraic Topology. Vorlesung, Univ. Wien, 2017. 1, 2, 4, 5