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1. Building Blocks and Homeomorphy

In this first chapter we introduce the ‘homeomorphy problem’. We will see that
even for the best known topological building blocks like ball and spheres this is
not easily decided and will be attacked with algebraic methods later on. We will
also recall various quotient space constructions and important classes of topological
spaces (like manifolds, orbit spaces) constructed from the building blocks.

In this chapter I mainly listed the contents in form of short statements. For details
please refer to the book.

Ball, sphere and cell

Problem of homeomorphy.
When is X ∼= Y ? Either we find a homeomorphism f : X → Y , or a topological
property, which hold for only one of X and Y , or we cannot decide this question.

1.1 Definition of basic building blocks. [20, 1.1.2]

1. R with the metric given by d(x, y) := |x− y|.
2. I := [0, 1] := {x ∈ R : 0 ≤ x ≤ 1}, the unit interval.

3. Rn :=
∏
nR =

∏
i∈nR =

∏n−1
i=0 R = {(xi)i=0,...,n−1 : xi ∈ R}, with the

product topology or, equivalently, with any of the equivalent metrics given
by a norm on this vector space.

4. In :=
∏
n I = {(xi)n−1

i=0 : 0 ≤ xi ≤ 1∀i} = {x ∈ Rn : ‖x− ( 1
2 , . . . ,

1
2 )‖∞ ≤ 1

2},
the n-dimensional unit cube, where ‖x‖∞ := max{|xi| : i}.

5. For subsets A ⊆ Rn we denote with Ȧ = ∂RnA the boundary of A in Rn. In
particular, İn := ∂RnI

n = {(xi)i ∈ In : ∃i : xi ∈ {0, 1}}, the boundary of In

in Rn.

6. Dn := {x ∈ Rn : ‖x‖2 :=
√∑

i∈n(xi)2 ≤ 1}, the n-dimensional closed unit
ball (with respect to the Euclidean norm).
A topological space X is called n-ball iff X ∼= Dn.

7. Ḋn := ∂RnD
n = Sn−1 := {x ∈ Rn : ‖x‖2 = 1}, the n − 1-dimensional unit

sphere.

A topological space X is called n-sphere iff X ∼= Sn.

8.
◦
Dn := {x ∈ Rn : ‖x‖2 < 1}, the interior of the n-dimensional unit ball.
A topological space X is called n-cell iff X ∼=

◦
Dn.
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1.7 1. Building Blocks and Homeomorphy

1.2 Definition. [20, 1.1.3] An affine homeomorphisms is a mapping of the form
x 7→ A · x+ b with an invertible linear A and a fixed vector b.

Hence the ball in Rn with center b and radius r is homeomorphic to Dn and thus
is an n-ball.

1.3 Example. [20, 1.1.4]
◦
D1 ∼= R: Use the odd functions t 7→ tan(π2 t), or t 7→ t

1−t2

with derivative t 7→ t2+1
(t2−1)2 > 0, or t 7→ t

1−|t| with derivative t 7→ 1
1−|t| > 0 and

inverse mapping s 7→ t
1+|t| . Note, that any bijective function f : [0, 1) → [0,+∞)

with f(0) = 0 extends to an odd function f̃ : (−1, 1)→ R by setting f̃(t) := −f(−t)
for t < 0. For f(t) := t

1−t we have f̃(t) = − −t
1−(−t) = t

1−|t| and for f(t) := t
1−t2 we

have f̃(t) = − −t
1−(−t)2 = t

1−t2 . Note that in both cases f ′(0) = limt→0+ f
′(t) exists

and hence f̃ is a C1 diffeomorphism. However, in the first case limt→0+ f
′′(t) = 2

and hence the odd function f̃ is not C2.

1.4 Example. [20, 1.1.5]
◦
Dn ∼= Rn: Use for example f : x 7→ x

1−‖x‖ = x
‖x‖ ·f1(‖x‖)

with f1(t) := t
1−t and directional derivative f ′(x)(v) = 1

1−‖x‖ v+ 〈x|v〉
(1−‖x‖)2‖x‖ x→ v

for x→ 0.

1.5 Corollary. [20, 1.1.6] Rn is a cell; products of cells are cells, since Rn×Rm ∼=
Rn+m by “associativity” of the product.

1.6 Definition. A pair (X,A) of spaces is a topological space X together with a
subspace A ⊆ X.
A mapping f : (X,A) → (Y,B) of pairs is a continuous mapping
f : X → Y with f(A) ⊆ B.
A homeomorphism f : (X,A) → (Y,B) of pairs is a mapping of
pairs which is a homeomorphism f : X → Y and satisfies f(A) = B
(and hence induces a homeomorphism f |A : A→ B).

X
f // Y

A
f |A //

?�

OO

B
?�

OO

1.7 Definition. [20, 1.3.2] A mapping f : (X,A) → (Y,B) of pairs is called
relative homeomorphism, iff f : X\A→ Y \B is a well-defined homeomorphism.

A homeomorphism of pairs is obviously
a relative homeomorphism, but not con-
versely even if f |A : A → B is a homeo-
morphism: Consider for example A :=
{−1}, X := A ∪ (1, 2], and f : t 7→ t2 − 2.

A X�A

B Y�B

However, for compactX and Y any homeomorphism f : X\{x0} → Y \{y0} extends

to a homeomorphism f̃ : (X, {x0})→ (Y, {y0}) of pairs, since X ∼= (X \{x0})∞, cf.

1.35 . Note that Z∞ denotes the 1-point compactification of the locally compact
space Z, see [6, 2.2.5].
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1. Building Blocks and Homeomorphy 1.10

1.8 Example. [20, 1.1.15]

1. Rn \ {0} ∼= Sn−1 × (0,+∞) ∼= Sn−1 × R,
via x 7→ ( 1

‖x‖x, ln(‖x‖)), et y← (y, t).

2. Dn \ {0} ∼= Sn−1 × (0, 1] ∼= Sn−1 × (ε, 1],
via (0, 1] ∼= (ε, 1] and (1).

Sn-1

x�ÈxÈ

x

ÈxÈ

1.9 Definition. A subset A ⊆ Rn ist called convex, iff x + t(y − x) ∈ A for
∀x, y ∈ A, t ∈ [0, 1].

1.10 Theorem. [20, 1.1.8] X ⊆ Rn compact, convex,
◦
X 6= ∅ ⇒(X, Ẋ) ∼= (Dn, Sn−1).

In particular, X is a ball, Ẋ is a sphere and
◦
X is a cell.

If X ⊆ Rn is (bounded,) open and convex and not empty, then X is a cell.

Proof. W.l.o.g. let 0 ∈
◦
X (translate X by −x0 with x0 ∈

◦
X). The mapping

f : Ẋ 3 x 7→ 1
‖x‖x ∈ S

n−1 is bijective, since it keeps rays from 0 invariant and since

for y 6= 0 let t0 := max{t > 0 : t y ∈ X}, then t y /∈ X for all t > t0 and t y ∈
◦
X for

all 0 ≤ t < t0 (consider the cone with an open 0-neighborhood in X as basis and

t0 y as apex), hence t0 is the unique t > 0 with t y ∈ Ẋ.

y

t0y

X
 X

0

Since Ẋ is compact f is a homeomorphism. By radial extension we obtain (using

1.8.2 ) a continuous bijection

Dn \ {0} ∼= Sn−1 × (0, 1]
f×id∼= Ẋ × (0, 1]→ X \ {0},

x 7→
(

x

‖x‖
, ‖x‖

)
7→
(
f−1

(
x

‖x‖

)
, ‖x‖

)
7→ ‖x‖ f−1

(
x

‖x‖

)
which extends via 0 7→ 0 to a continuous bijection of the 1-point compactifications
and hence a homeomorphism of pairs (Dn, Sn−1)→ (X, Ẋ).

The second part follows by applying the first part to X̄, a compact convex set
with interior X: In order to see this take a point x in the interior of X̄. So there
exists a open neighborhood of x in X̄ and we may assume that this is of the form

of an n-simplex (see 3.2 ) (i.e. a hypertetraeder). Since its vertices are in X̄ we
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1.18 1. Building Blocks and Homeomorphy

can approximate them by points in X and hence x lies inside this approximating
simplex contained in X.

That the boundedness condition can be dropped can be found for a much more
general situation in [11, 16.21].

1.11 Corollary. [20, 1.1.9] In is an n-ball and İn is an n− 1-sphere.

1.12 Example. [20, 1.1.10] [20, 1.1.11] Dp ×Dq is a ball, hence products of balls
are balls, and ∂(Dp ×Dq) = Sp−1 ×Dq ∪Dp × Sq−1 is a sphere:
Dp×Dq is compact convex, and by exercise (1.1.1A) ∂(A×B) = ∂A×B∪A×∂B.

So by 1.10 the result follows.

1.13 Remark. [20, 1.1.12] 1.10 is wrong without convexity or compactness as-
sumption: For compactness this is obvious since Dn is compact. That, for example,

a compact annulus is not a ball will follow from 2.17 .

1.14 Example. [20, 1.1.13] Sn = Dn
+ ∪ Dn

−,
Dn

+ ∩ Dn
− = Sn−1 × {0} ∼= Sn−1, where Dn

± :=
{(x; t) ∈ Sn ⊆ Rn × R : ±t ≥ 0} ∼= Dn are the
southern and northern hemispheres. The stereo-
graphic projection Sn \{(0, . . . , 0; 1)} ∼= Rn is giv-
en by (x; t) 7→ 1

1−tx.

1

x

���������������
x

1 - t

Hx,tL

1.15 Corollary. [20, 1.1.14] Sn \ {∗} is a cell.

1.16 Example. [20, 1.1.15.3]
For all ẋ ∈ Sn−1:

Dn \ {ẋ} ∼= Rn−1 × [0,+∞),

via

Rn−1 × [0,+∞) ∼= (Sn−1 \ {ẋ})× (0, 1] ∼= Dn \ {ẋ},
(x, t) 7→ ẋ+ t(x− ẋ).

x 

x

x  +tHx-x  L

1.17 Example. [20, 1.1.20] Sn 6∼= Rn and Dn 6∼= Rn, since Rn is not compact.

None-homeomorphy of X = S1 with I follows by counting components of X \ {∗}.

1.18 Example. [20, 1.1.21] S1 × S1 is called torus. It is embeddable into R3 by
(x, y) = (x1, x2; y1, y2) 7→ ((R+r y1)x, r y2) with 0 < r < R. This image is described

by the equation {(x, y, z) : (
√
x2 + y2−R)2 +z2 = r2}. Furthermore, S1×S1 6∼= S2

by Jordan’s curve theorem, since (S1 × S1) \ (S1 × {1}) is connected.
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1. Building Blocks and Homeomorphy 1.25

1.19 Theorem (Invariance of a domain). [20, 1.1.16] Rn ⊇ X ∼= Y ⊆ Rn, X
open in Rn ⇒Y open in Rn.

We will prove this hard theorem after 8.49 .

1.20 Theorem (Invariance of dimension). [20, 1.1.17] m 6= n ⇒Rm 6∼= Rn,
Sm 6∼= Sn, Dm 6∼= Dn.

Proof. Let m < n.

Suppose Rn ∼= Rm, then Rn ⊆ Rn is open, but the image Rm ∼= Rm × {0} ⊆ Rn is

not, a contradiction to 1.19 .

Sm ∼= Sn ⇒ Rm ∼= Sm \ {x} ∼= Sn \ {y} ∼= Rn ⇒ m = n.

f : Dm ∼= Dn ⇒
◦
Dn ∼= f−1(

◦
Dn) ⊆ Dm ⊆ Rm ⊂ Rn and f−1(

◦
Dn) is not open, a

contradiction to 1.19 .

1.21 Theorem (Invariance of the boundary). [20, 1.1.18] f : Dn → Dn

homeomorphism ⇒f : (Dn, Sn−1)→ (Dn, Sn−1) homeomorphism of pairs.

Proof. Let ẋ ∈ Ḋn with y = f(ẋ) /∈ Ḋn. Then y ∈
◦
Dn =: U and f−1(U) is

homeomorphic to U but not open in Rn, since x ∈ f−1(U) ∩ Ḋn, a contradiction

to 1.19 .

1.22 Definition. [20, 1.1.19] Let X be an n-ball and f : Dn → X a homeo-

morphism. The boundary Ẋ of X ist defined as the image f(Ḋn). This definition

makes sense by 1.21 .

Quotient spaces

1.23 Definition. Quotient space. [20, 1.2.1] Cf. [6, 1.2.12]. Let ∼ be an equiva-
lence relation on a topological space X. We denote the set of equivalence classes
[x]∼ := {y ∈ X : y ∼ x} by X/∼. The quotient topology on X/∼ is the final
topology with respect to the mapping π : X → X/∼, x 7→ [x]∼ (i.e. the finest
topology for which this mapping is continuous, see [6, 1.2.11]).

1.24 Proposition. [20, 1.2.2] A subset B ⊆ X/∼ is open/closed iff π−1(B) is
open/closed. The quotient mapping π is continuous and surjective. It is open/closed
iff for every open/closed A ⊆ X the saturated hull π−1(π(A)) = {x ∈ X : ∃a ∈ A :
x ∼ a} is open/closed.

For a proof see [6, 1.2.12].

The image of the closed subset {(x, y) : x · y = 1, x, y > 0} ⊆ R2 under the first
projection pr1 : R2 → R is not closed!

1.25 Definition. [20, 1.2.9] A mapping f : X → Y is called quotient mapping
(or final), iff f is surjective and satisfies one of the following equivalent conditions:

1. The induced mapping X/∼ → Y is a homeomorphism,
where x1 ∼ x2 :⇔ f(x1) = f(x2).

2. A subset B ⊆ Y is open/closed iff f−1(B) is it.

3. A mapping g : Y → Z is continuous iff g ◦ f is it.
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1.28 1. Building Blocks and Homeomorphy

Note that f induces a bijection f̃ : X/∼ → Y .

(1⇒2) since π : X → X/∼ has this property.
(2⇒3) g−1(W ) open ⇔ (g ◦ f)−1(W ) = f−1(g−1W ) is open.
(3⇒1) f : X → Y is continuous by (3) for g := idY and

f̃ : X/∼ → Y is continuous by (1⇒3) for Y := X/∼ and g := f .

Conversely, f̃−1 : Y → X/∼ is continuous by (3) for Z := X/∼.

X
f //

π
����

Y

g

��
X/∼

f̃

==

Z

1.26 Examples. [20, 1.2.3]

1. I/∼ ∼= S1, where 0 ∼ 1: The mapping t 7→ e2πit, I → S1 factors to a

homeomorphism I/∼ → S1, cf. 1.35 .

2. I2/∼ ∼= S1 × I, where (0, t) ∼ (1, t) for all t.

a a

a

3. I2/∼ ∼= S1 × S1, where (t, 0) ∼ (t, 1) and (0, t) ∼ (1, t) for all t.

a a

b

b

a

b

1.27 Proposition. [20, 1.2.10] Continuous surjective closed/open mappings are
obviously quotient-mappings, but not conversely. Continuous surjective mappings
from a compact to a T2-space are quotient-mappings, since the image of each closed
subset is compact hence closed.

1. f1, f2 quotient mappings ⇒f1 ◦ f2 quotient mapping.

2. f1 ◦ f2 quotient mapping ⇒f1 quotient mapping.

Proof. Apply 1.25.3 .

1.28 Proposition. Universal property of X/∼.
[20, 1.2.11] [20, 1.2.6] [20, 1.2.5]
Let f : X → Y be continuous. Then f is compatible with the
equivalence relation (i.e. x ∼ x′ ⇒ f(x) = f(x′)) iff it factors
to a mapping X/∼ → Y over π : X → X/∼. Note that f is
compatible with the equivalence relation iff the relation f ◦ π−1

is a mapping. The factorization X/∼ → Y is then given by
f ◦ π−1 and is continuous.

X
f //

π
����

Y

X/∼

!

f◦π−1

==

Proof. (z, y) ∈ f ◦π−1 ⇔ ∃x ∈ X : f(x) = y, π(x) = z. Thus f ◦π−1 is a mapping,
i.e. y is uniquely determined by z iff π(x) = π(x′) ⇒ f(x) = f(x′). Continuity of

f ◦ π−1 follows from 1.25.3 .
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1. Building Blocks and Homeomorphy 1.32

1.29 Proposition. [20, 1.2.4]

Functoriality of formation of quotients. Let f : X → Y be
continuous and compatible with equivalence relations ∼X
on X and ∼Y on Y , i.e. x1 ∼X x2 ⇒ f(x1) ∼Y f(x2).

Then there is a unique induced continuous mapping f̃ :
X/∼X → Y/∼Y .

X
f //

����

Y

����
X/∼X

!

f̃

// Y/∼Y

If f and f−1 are compatible with the equivalence relations and is a homeomorphism,
then f̃ is a homeomorphism.

For a proof see [6, 1.2.11,1.2.12].

1.30 Proposition. [20, 1.2.7] [20, 1.2.12]

The restriction of a quotient-mapping to a closed/open
saturated set is a quotient-mapping, i.e. let f : X → Y
be a quotient mapping, B ⊆ Y open (or closed), and
A := f−1(B). Then f |A : A→ B is a quotient mapping.

X
f // // Y

f−1(B)
?�

OO

f |f−1(B) // // B
?�

OO

For example, the restriction of π : I → I/İ to the open set [0, 1) is not a quotient
mapping.

Proof. Let U ⊆ B with (f |A)−1(U) open. Then f−1(U) = (f |A)−1(U) is open and
hence U ⊆ Y is open.

1.31 Corollary. [20, 1.2.8]
Let p : X → Y quotient-mapping, A ⊆ X closed/open,
∀a ∈ A, x ∈ X : p(x) = p(a)⇒ x = a.
Then p|A : A→ p(A) ⊆ Y is an embedding.

X
p // // Y

A
?�

OO

∼=
p|A
// p(A)
?�

OO

Proof. ⇒ A = p−1(p(A)) =
1.30

====⇒ p|A : A → B := p(A) is a quotient mapping and
it is injective by assumption, hence a homeomorphism.

1.32 Proposition. Theorem of Whitehead. [20, 1.2.13] Let g be a quotient
mapping and X be locally compact. Then X × g := idX ×g is a quotient mapping.

For a counter-example with not locally compact X see [6, 1.2.12]:

Proof.

g-1V

g-1V

U X

Y

f -1W

f -1W

Hx0 ,y0L

V

W

Z

XU

Hx0 ,z0L

Let (x0, z0) ∈ W ⊆ X × Z with open f−1(W ) ⊆ X × Y , where f := X × g for
g : Y → Z. We choose y0 ∈ g−1(z0) and a compact neighborhood U of x0 with

andreas.kriegl@univie.ac.at c© 7. Februar 2018 7



1.38 1. Building Blocks and Homeomorphy

U×{y0} ⊆ f−1(W ). Since f−1(W ) is saturated, U×g−1(g(y)) ⊆ f−1(W ) provided
U × {y} ⊆ f−1(W ). In particular, U × g−1(z0) ⊆ f−1(W ).
Let V := {z ∈ Z : U × g−1(z) ⊆ f−1(W )}. Then (x0, z0) ∈ U × V ⊆ W and V is
open, since g−1(V ) := {y ∈ Y : U × {y} ⊆ f−1(W )} is open (see [6, 2.1.11]).

1.33 Corollary. [20, 1.2.14] f : X → X ′, g : Y → Y ′ quotient mappings, X, Y ′

locally compact ⇒f × g quotient mapping.

Proof.

X × Y
f×Y //

f×g

%%
X×g
��

X ′ × Y

X′×g
��

X × Y ′
f×Y ′ // X ′ × Y ′

Special cases of quotient mappings

1.34 Proposition. Collapse of a subspace. [20, 1.3.1] [20, 1.3.3]
A ⊆ X closed ⇒π : (X,A) → (X/A, {A}) is a relative homeomorphism, where
X/A := X/∼ with the equivalence relation generated by ∀a, a′ ∈ A : a ∼ a′.
The functorial property for mappings of pairs is:

(X,A)
f //

��

(Y,B)

��
(X/A,A/A)

! // (Y/B,B/B)

Note that the equivalence class A is a point in X/A, hence {A} is a subset of X/A.

Proof. That π : X \A→ X/A \A/A is a homeomorphism follows from 1.31 . The

functorial property follows from 1.28 .

1.35 Example. [20, 1.3.4] X/∅ ∼= X and X/{∗} ∼= X. Furthermore, I/İ ∼= S1 (by

1.26.1 ) and, more generally, X/A ∼= (X \A)∞, provided X is compact and A ⊆ X
is closed: In fact, X/A is compact, X \ A is openly embedded into X/A by 1.34
and X/A \ (X \A) is the single point A ∈ X/A. Now use exercise (1.4).

1.36 Example. [20, 1.3.5] Dn\Sn−1 =
◦
Dn ∼= Rn

and hence by 1.35 Dn/Sn−1 ∼= (Dn \ Sn−1)∞ ∼=
(Rn)∞ ∼= Sn. Or, explicitly,

x 7→
(
t := (1−‖x‖)π, x

‖x‖

)
7→
(

sin(t)
x

‖x‖
, cos(t)

)
.

1.37 Example. [20, 1.3.6] X × I is called cylinder over X and CX := (X ×
I)/(X × {0}) is called the cone with base X. C(Sn) ∼= Dn+1, via (x, t) 7→ t x.

1.38 Example. [20, 1.3.7] Let (Xj , xj) be pointed spaces, i.e. Xj a topological
space and xj ∈ Xj a point in Xj , or, with other words, (Xj , {xj}) is a pair of
spaces. The 1-point union is∨

j∈J
Xj =

∨
j∈J

(Xj , xj) :=
(⊔
j

Xj

)
/{xj : j}.

8 andreas.kriegl@univie.ac.at c© 7. Februar 2018



1. Building Blocks and Homeomorphy 1.42

By 1.24 the projection π :
⊔
j Xj →

∨
j Xj is a closed mapping for T1-spaces Xj .

1.39 Proposition. [20, 1.3.8] Xi embeds into
∨
j Xj and

∨
j Xj is union of the

images, which have pairwise as intersection the base point.

Proof. That the composition Xi ↪→
⊔
j Xj →

∨
j Xj is continuous and injective

is clear. That it is an embedding follows, since by 1.38 the projection π is also a
closed mapping.

1.40 Proposition. [20, 1.3.9] Universal and functorial property of the 1-point-
union:

(Xi, xi)
fi //

��

(Y, y) (Xi, xi)
fi //

��

(Yi, yi)

��∨
j Xj

!

::

∨
j Xj

! // ∨
j Yj

Proof. This follows from 1.28 and 1.29 .

1.41 Proposition. [20, 1.3.10]
Embedding X1 ∨ · · · ∨Xn ↪→ X1 × . . .×Xn.

Proof. Let ij : Xj →
∏n
k=1Xk be given by

z 7→ (x1, . . . , xj−1, z, xj+1, . . . , xn), where the
xk are the base-points of Xk. Then

⊔
k ik :⊔

kXk →
∏
kXk factors to the claimed em-

bedding, see exercise (1.7).

X1´X2´X3

X1

X2

X3

X1ÞX2ÞX3

1.42 Example. [20, 1.3.11] 1.41 is wrong for infinite index sets: The open neigh-
borhoods of the base point in

∨
j Xj are given by

∨
j Uj , where Uj is an open

neighborhood of the base point in Xj . Hence
∨
Xj is in general not first countable,

whereas the product of countable many metrizable spaces Xj is first countable.

A visualization of the image of
∨
j∈N S

1 in
∏
j∈N S

1 is given by the union of count-

able many circles in R2 which intersect only in a single point. This is not their
one-point union, since a neighborhood of the single point contains almost all circles
completely.
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1.45 1. Building Blocks and Homeomorphy

1.43 Definition. Gluing. [20, 1.3.12] f : X ⊇ A → Y with A ⊆ X closed.
Y ∪f X := Y tX/∼, where a ∼ f(a) for all a ∈ A, is called Y glued with X via f
(or X glued to Y along f).

X

A

A

Y

fHAL

Y

Yæ
f
X

fHAL

1.44 Proposition. [20, 1.3.13] [20, 1.3.14] Let f : X ⊇ A→ Y with A ⊆ X closed
and π : Y tX � Y ∪f X be the quotient mapping.
Then π|Y : Y → Y ∪f X is a closed embedding and π|X : (X,A)→ (Y ∪f X,π(Y ))
is a relative homeomorphism.

Y ∪f X = (π(Y ) \ f(A)) ∪ f(A)︸ ︷︷ ︸
∼=Y

∪π(X \A)︸ ︷︷ ︸
∼=X\A

Proof. That π|Y : Y → Y ∪f X is continuous and injective is clear. Now let B ⊆ Y
be closed. Then π−1(π(B)) = B t f−1(B) is closed and hence also π(B).

That π : X \A→ (Y ∪f X) \ π(Y ) is a homeomorphism follows from 1.31 .

1.45 Proposition. [20, 1.3.15] Universal property of push-outs Y ∪f X:

A_�

��

f // Y_�

��

��

X //

..

Y ∪f X
!

##
Z

Proof. 1.28 .
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1. Building Blocks and Homeomorphy 1.48

1.46 Lemma. Let fi : Xi ⊇ Ai → Y be given, X := X1 tX2, A := A1 t A2 ⊆ X
and f := f1 t f2 : X ⊇ A→ Y . Then Y ∪f X ∼= (Y ∪f1

X1) ∪f2
X2.

Proof.

A2

  

� _

��

� p

  

f2

--A� _

(0)

��

f // Y � _

i

��

nN

i1

}}

A1

``

f1

33

P0

``

� _

��
X1

p1 //
oO

��

p1 // Y ∪f1
X1
� _

i2

��

(1)

((
X

p //

(0)

**

Y ∪f X

(2)

vv
X2

p2 //
/ �

??

(Y ∪f1 X1) ∪f2 X2

(2)

66

1.47 Example. [20, 1.3.16]

(1) f : X ⊇ A → Y := {∗} ⇒Y ∪f X ∼= X/A, since X/A satisfies the universal
property of the push-out.

(2) f : X ⊇ {∗} → Y ⇒Y ∪f X ∼= X ∨ Y , by definition.

(3) f : X ⊇ A → Y constant ⇒Y ∪f X ∼= X/A ∨ Y , since we can compose
push-outs:

A
f1 //

_�

��

Y1
� � f2 //

��

Y2
_�

��

��

X //

//

Y1 ∪f1
X //

++

Y2 ∪f2
(Y1 ∪f1

X)

''
W

1.48 Example. [20, 1.3.17] f : X ⊇ A → B ⊆ Y homeomorphism of closed
subsets. ⇒Y ∪f X = π(X) ∪ π(Y ) with π(X) ∼= X, π(Y ) ∼= Y and π(X) ∩ π(Y ) ∼=
A ∼= B. This follows from 1.44 since Y ∪f X ∼= X ∪f−1 Y .
Note however, that Y ∪f X depends not only on X ⊇ A and Y ⊇ B but also on

the gluing map f : A → B as the example X = I × I = Y and A = B = I × İ
with id 6= f : (x, 1) 7→ (1− x, 1), (x, 0) 7→ (x, 0) of a Möbius-strip versus a cylinder

shows, see 1.58 .
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1.50 1. Building Blocks and Homeomorphy

a

a

1.49 Proposition. [20, 1.3.18]

X

F∼=
��

A
f //_?

oo

F |A∼=
��

Y

∼=G

��
X ′ A′

f ′ //_?
oo Y ′ =⇒ Y ∪f X ∼= Y ′ ∪f ′ X ′.

Proof.

By the push-out property 1.45 we ob-
tain a uniquely determined continuous
map G ∪ F : Y ∪f X → Y ′ ∪f ′ X ′
with (G ∪ F ) ◦ π|X = π′|X′ ◦ F and
(G ∪ F ) ◦ π|Y = π′|Y ′ ◦ F .
Since G−1 ◦ f ′ = G−1 ◦ f ′ ◦ F ◦ F |−1

A =

G−1 ◦ G ◦ f ◦ F |−1
A = f ◦ F−1|A′ we

get similarly G−1 ∪ F−1 : Y ′ ∪f ′ X ′ →
Y ∪f X. On X and Y (resp. X ′ and Y ′)
they are inverse to each other, hence de-
fine a homeomorphism as required.

A
f //

� _

��

F |A
∼=   

Y � _

��

G
∼=

&&
A′� _

��

// Y ′� _

��

X //

F
∼= ��

Y ∪f X
G∪F

&&
X ′ // Y ′ ∪f ′ X ′

G−1∪F−1

ff

1.50 Example. [20, 1.3.19]

(1) Z = X∪Y with X, Y closed and A := X∩Y .⇒ Z = Y ∪idAX: The canonical
mapping Y tX → Z induces a continuous bijective mapping Y ∪idAX → Z,
which is closed and hence a homeomorphism, since Y tX → Z is obviously
closed.

(2) Z = X ∪ Y with X, Y closed, A := X ∩ Y , and f : A→ A extendable to a

homeomorphism of the pair (X,A) ⇒ Z ∼= Y ∪f X: Apply 1.49 to

X

f̃∼=
��

A

f∼=
��

? _oo f // A

id∼=
��

� � // Y

id∼=
��

X A? _oo id // A �
� // Y

(3) Dn ∪f Dn ∼= Sn for all homeomorphisms f : Sn−1 → Sn−1: We can extend

f radially to a homeomorphism f̃ : Dn → Dn by f̃(x) = ‖x‖ f( x
‖x‖ ) and can

now apply (2).

(4) Gluing two identical cylinders X × I along any homeomorphism f : X ×
{0} → X×{0} yields again the cylinder X× I: Since f extends to a homeo-
morphism X × I → X × I, (x, t) 7→ (f(x), t) we may apply (2) to obtain
(X × I) ∪f (X × I) ∼= (X × I) ∪id (X × I) ∼= X × I.
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1. Building Blocks and Homeomorphy 1.55

Manifolds

1.51 Definition. [20, 1.4.1] [20, 1.5.1] Anm-dimensional manifold (orm-manifold
for short) (possibly with boundary) is a topological space X (which we will always
require to be Hausdorff and second countable), for which each of its points x ∈ X
has a neighborhood A which is an n-ball, i.e. a homeomorphism ϕ : A ∼= Dm (which
we call chart at x) exists. A point x ∈ X is called boundary point iff for some

(and by 1.21 any) chart ϕ at x the point is mapped to ϕ(x) ∈ Sm−1. The set of

all boundary points is called the boundary of X and denoted by ∂X or Ẋ. It is
obviously a closed subset of X. A manifold is called closed if it is compact and
has empty boundary. Two-dimensional manifolds are called surfaces.

1.52 Examples. [20, 1.4.4] [20, 1.4.5]

1. 0-manifolds are discrete countable topological spaces.

2. The connected 1-manifolds are R, S1, I and [0,+∞).

3. Quadrics like hyperboloids (∼= R2 t R2 or ∼= S1 × R), paraboloids (∼= R2),
and the cylinder S1 × R are surfaces.

4. Let X be a manifold (without boundary) and A ⊆ X be a discrete subset.
Then X \A is also a manifold (without boundary).

5. Dm is a manifold with boundary Sm−1, so
◦
Dm ∼= Rm is a manifold without

boundary.
The halfspace Rm−1 × [0,+∞) is a manifold with boundary Rm−1 × {0}.

1.53 Lemma. Let U ⊆ X be open in an m-manifold X. Then U is an m-manifold
with U̇ = Ẋ ∩ U .

Proof. Let x ∈ U and ϕ : A−∼=→ Dm =: D be a chart at x for X. Then ϕ(U) is an
open neighborhood of ϕ(x) inD and hence contains a convex compact neighborhood

B which is an m-ball by 1.10 . Consequently, ϕ|ϕ−1(B) : U ⊇ ϕ−1(B) ∼= B ⊆ D is
the required chart at x for U .
We have x ∈ U̇ :⇔ ϕ|ϕ−1(B)(x) ∈ Ḃ ⇔ ϕ(x) ∈ Ḋ ⇔: x ∈ Ẋ, since ϕ(x) is in the

interior
◦
BD of B with respect to the topology ofD, Ḃ∩

◦
BD ⊆ Ḋ (since

◦
D∩

◦
BD ⊆

◦
B),

and B ∩ Ḋ ⊆ Ḃ (since
◦
B ⊆

◦
D ⇒ B ∩ Ḋ = B ∩

◦
Dc ⊆ B ∩

◦
Bc = Ḃ).

1.54 Proposition. [20, 1.4.2] [20, 1.5.2]

Let f : X → Y be a homeomorphism between manifolds. Then f(Ẋ) = Ẏ .

Proof. Let x ∈ X and ϕ : A ∼= Dm be a chart at x. Then ϕ ◦ f−1 : f(A) → Dm

is a chart of Y at f(x) and hence x ∈ Ẋ :⇔ (ϕ ◦ f−1)(f(x)) = ϕ(x) ∈ Ḋm ⇔:

f(x) ∈ Ẏ .

1.55 Proposition. [20, 1.4.3] [20, 1.5.3]

Let X be an m-manifold and x ∈ Ẋ. Then there exists a neighborhood U of x in X
with (U,U ∩ Ẋ, x) ∼= (Dm−1 × I,Dm−1 × {0}, (0, 0)), a homeomorphism of triples.

Proof. By assumption there exists a neighborhood A of x in X and a homeo-
morphism ϕ : A→ Dm with ϕ(x) ∈ Sm−1. Choose an open neighborhood W ⊆ A of

x. Then Ẇ = Ẋ∩W and the manifoldW is homeomorphic to ϕ(W ) ⊆ Dm by 1.53 .

Obviously ϕ(W ) contains a neighborhood B of ϕ(x) homeomorphic to Dm−1 × I,
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1.60 1. Building Blocks and Homeomorphy

where B ∩ Sm−1 corresponds to Dm−1 × {0}, cf. 1.8.2 . The set U := ϕ−1(B) is
then the required neighborhood:

W ∩ Ẋ =
1.53

===== Ẇ
ϕ∼= ϕ(W )̇ =

1.53
===== ϕ(W ) ∩ Ḋm = ϕ(W ) ∩ Sm−1

U ∩ Ẋ = U ∩W ∩ Ẋ
ϕ∼= B ∩ ϕ(W ) ∩ Sm−1 ∼= Dm−1 × {0}

1.56 Corollary. [20, 1.5.4] The boundary Ẋ of a manifold is a manifold without
boundary.

Proof. By 1.55 Ẋ is locally homeomorphic to Dm−1 × {0} ∼= Dm−1 and x ∈ Ẋ
corresponds to 0 thus is not in the boundary of Ẋ.

1.57 Proposition. [20, 1.5.7] Let M be an m-dimensional and N an n-dimensional
manifold. Then M×N is an m+n-dimensional manifold with boundary (M×N). =

Ṁ ×N ∪id |Ṁ×Ṅ M × Ṅ . For a manifold X without boundary (like S1) the cylinder

X × I is a manifold with boundary X × {0, 1}.

This way we get examples of 3-manifolds: S2 × R, S2 × I, and S2 × S1.

Proof. 1.12 and 1.50.1 .

1.58 Example. Möbius strip. [20, 1.4.6] The (compact) Möbius-strip X is

defined as I × I/ ∼, where (x, 0) ∼= (1 − x, 1) for all x, cf. 1.48 . Its boundary is

(I × İ)/∼ ∼= S1 and hence X is not homeomorphic to the cylinder S1× I by 1.54 .

An embedding of X into R3 is given by factoring

(ϕ, r) 7→
((

2+(2r−1) cosπϕ
)

cos 2πϕ,
(
2+(2r−1) cosπϕ

)
sin 2πϕ, (2r−1) sinπϕ

)
over the quotient.

The Möbius-strip is not orientable which we will make precise later.

1.59 Proposition. [20, 1.4.7] [20, 1.5.5] By cutting finitely many disjoint open
holes into a manifold one obtains a manifold whose boundary is the union of the
boundary of X and the boundaries of the holes. More precisely, let X be an m-
manifold and fi : Dm → X embeddings with pairwise disjoint images. Let

◦
Di :=

{fi(x) : |x| < 1
2} and Si := {fi(x) : |x| = 1

2}. Then X \
⋃n
i=1

◦
Di is an m-manifold

with boundary Ẋ t
⊔n
i=1 Si.

The manifold which results by cutting g open holes in the unit-disk D2 will be
denoted D2

g .

Proof. No point in {fi(x) : |x| < 1} is a boundary point of X, hence the result
follows.

1.60 Proposition. [20, 1.4.8] [20, 1.5.6] Let X and X ′ be two manifolds and R and
R′ components of the corresponding boundaries and g : R→ R′ a homeomorphism.
Then X ′∪gX is a manifold in which X and X ′ are embedded as closed subsets and

has boundary (Ẋ \R) ∪ (Ẋ ′ \R′).

Proof. It is enough to find charts at points x from R ∪ R′. Let A ∼= Dm−1 × I
and A′ ∼= Dm−1 × I be neighborhoods of x ∈ R and g(x) ∈ R′ with Ẋ ∩ A =

Dm−1 × {0} and Ẋ ′ ∩ A′ = Dm−1 × {0} as in 1.55 . W.l.o.g. we may assume

that g(Ẋ ∩ A) = Ẋ ′ ∩ A′. The image of A′ t A in X ′ ∪g X is given by gluing
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1. Building Blocks and Homeomorphy 1.65

Dm−1 × I ∪Dm−1 × I along a homeomorphism Dm−1 × {0} → Dm−1 × {0} and

hence is by 1.50.3 homeomorphic to Dm−1 × I where x corresponds to (0, 0).

1.61 Example. [20, 1.4.9]
S1 × S1 can be obtained from two copies of S1 × I that way.
The same is true for Klein’s bottle but with a different gluing homeomorphism:

a a

b

b

a

b

1.62 Example. Gluing a handle. [20, 1.4.10] [20, 1.5.8.7] Let X be a surface in

which we cut two holes as in 1.59 . The surface obtained from X by gluing a handle

is (X \ (
◦
D2 t

◦
D2)) ∪f (S1 × I), where f : S1 × I ⊇ S1 × İ ∼= S1 t S1 ⊆ D2 tD2.

More generally, one can glue handles Sn−1 × I to n-manifolds.

1.63 Example. Connected sum. [20, 1.4.11] [20, 1.5.8.8] The connected sum
of two surfaces X1 and X2 is given by cutting a whole into each of them and gluing
along boundaries of the respective holes. X1]X2 := (X1 \

◦
D2) ∪f (X2 \

◦
D2), where

f : D2 ⊇ S1 ∼= S1 ⊆ D2.

More generally, one can define analogously the connected sum of n-manifolds. This
however depends essentially on the gluing map.

1.64 Example. Doubling of a manifold with boundary. [20, 1.4.12] [20,
1.5.8.9] The doubling of a manifold is given by gluing two copies along their

boundaries with the identity: 2X := X ∪f X, where f := id : Ẋ → Ẋ.

1.65 Example. [20, 1.4.13] The connected compact oriented surfaces Fg (of genus
g) without boundary can be described as:

1. boundary V̇g of a handlebody (pretzel, Brezel) Vg := D2
g × I of genus g.

2. doubling 2D2
g .

3. connected sum of tori.

4. sphere with g handles.
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1.68 1. Building Blocks and Homeomorphy

1.66 Example. [20, 1.4.14]

a0

a0

a1

b0

b0

b1

an bn

The compact oriented surface als
quotient of a 4g-polygon. By induc-
tion this surface is homeomorphic to

those given in 1.65 .

a0

a0

b0 b0

1.67 Example. [20, 1.4.15] [20, 1.5.13] The projective plane P2 is defined as
(R3 \ {0})/∼ with x ∼ λ · x für R 3 λ 6= 0.

More generally, let for K ∈ {R,C,H} the projective space be defined by PnK :=
(Kn+1 \{0})/∼, where x ∼ λx for 0 6= λ ∈ K. The quotient mapping Kn+1 \{0} →
PnK is an open mapping, since the saturated hull of an open subset U is the open
double-cone with base U and without its apex.

1.68 Examples. [20, 1.4.17] [20, 1.4.18]

1. P2 ∼= D2/∼ where x ∼ −x for all x ∈ S1.

2. Pn ∼= Dn/∼ where x ∼ −x for all x ∈ Sn−1:
Consider a hemisphere Dn

+ ⊆ Sn. Then the open quotient mapping Sn → Pn

restricts to a quotient mapping (by 1.27 ) on the compact set Dn
+ with

associated equivalence relation x ∼ −x on Sn−1 ⊆ Dn
+.

3. P2 can be obtained by gluing a disk to a Möbius strip.
Consider the closed subsets A := {x ∈ S2 : x2 ≤ 0, |x3| ≤ 1/2} and B = {x ∈
S2 : x3 ≥ 1/2}. The open quotient mapping induces an homeomorphism on
the saturated subset B ⊆ Dn

+, i.e. π(B) is a 2-ball. The set A is mapped to a
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1. Building Blocks and Homeomorphy 1.72

Möbius-strip by 1.29 and 1.58 . Since π(B)∪π(A) = P2 and π(B)∩π(A) ∼=
S1 we are done.

1.69 Proposition. [20, 1.4.16] [20, 1.5.14] [20, 1.6.6] PnK is a dn-dimensional

connected closed manifold, where d := dimR K. The mapping p : Sdn−1 → Pn−1
K ,

x 7→ [x] is a quotient mapping. In particular, P1
K
∼= Sd.

Proof. Charts are ϕi : Kn → PnK, (x1, . . . , xn) 7→ [(x1, . . . , xi, 1, xi+1, . . . , xn)] for

i ∈ {0, . . . , n} with inverse [(y0, . . . , yn)] 7→ (y
0

yi , . . . ,
yi−1

yi ,
yi+1

yi , . . . ,
yn

yi ).

The restriction Kn+1 ⊇ Sd(n+1)−1 → PnK is a quotient mapping since Kn+1 \ {0} →
PnK is an open mapping, cf. 1.67 , hence PnK is compact. For K = R this quotient
mapping induces the equivalence relation x ∼ −x.
For n = 1 we have P1

K \ ϕ0(K) = {[(0, 1)]}, therefore P1
K
∼= K∞ ∼= Sd.

1.70 Example. [20, 1.4.19] The none-oriented connected closed surface Ng of genus
g without boundary is

1. connected sum of g projective planes,

2. or equivalently by 1.68.3 , a sphere with g Möbius strips glued to it.

Klein’s bottle as sum of two Möbius strips, see [8, 9.3]:

1.71 Proposition. [20, 1.4.20] The none-orientable connected compact surfaces
without boundary as quotient of a 2g-polygon.

a0

a0

a1

an

1.72 Theorem. [20, 1.9.1] Each connected closed surface is homeomorphic to one
of the surfaces S2 = F0, S

1 × S1 = F1, . . . or P2 = N1, N2, . . . .

For a sketch of proof, see [8, 9.4]
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1.76 1. Building Blocks and Homeomorphy

1.73 Example. [20, 1.5.9] Union of filled tori (D2×S1)∪id(S1×D2) = (D2×D2). ∼=
(D4). ∼= S3 by 1.57 . Other point of view: S3 = D3

+ ∪id D
3
− and remove a filled

cylinder from D− and glue that to D+ to obtain two tori. With respect to the
stereographic projection the torus {(z1, z2) ∈ S3 ⊆ C2 : |z1| = r1, |z2| = r2} with
r2
1 + r2

2 = 1 corresponds to the torus with the z-axes as its axes and big radius

A := 1/r1 ≥ 1 and small radius a :=
√
A2 − 1 = r2

r1
, see [8, 11.6,11.7].

1.74 Example. [20, 1.5.10] More generally, let the homeomorphism f : S1×S1 →
S1×S1 be given by f : (z, w) 7→ (zawb, zcwd), where a, b, c, d ∈ Z with ad−bc = ±1.

R2

����

a b
c d


// R2

����
S1 × S1 f // S1 × S1

A meridian S1×{w} ⊆ D2×S1 on the torus is mapped to a curve t 7→ (e2πit, w) 7→
(wb e2πiat, wd e2πict) which winds a-times around the axes and c-times around the
core of S1 × S1 ↪→ S1 ×D2 ↪→ R3. Similar for a circle of latitude.

M

(
a b
c d

)
:= (D2 × S1) ∪f (S1 ×D2).

In 1.86 together with 1.87 and 1.82 we will indicate that M is often not homeo-

morphic to S3.

1.75 Example. [20, 1.5.11] Cf. 1.60 . By a Heegard decomposition of a 3-
dimensional manifold M one understands a representation of M by gluing two

handle bodies Vg (see 1.65.1 ) of the same genus g along their boundary.

1.76 Example. [20, 1.5.12] Cf. 1.66 and 1.71 . For relative prime 1 ≤ q < p let

the lens space be L( qp ) := D3/∼, where (ϕ, θ, 1) ∼ (ϕ − 2π qp ,−θ, 1) for θ ≥ 0

with respect to spherical coordinates, so the northern hemisphere is identified with
the southern one rotated by 2π qp . The interior of D3 is mapped homeomorphically
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1. Building Blocks and Homeomorphy 1.80

to a 3-cell in L( qp ) by 1.31 . The image of points in the open hemispheres have

also such neighborhoods (formed by one half in the one part inside the northern
hemisphere and one inside the southern). Each p-points on the equator obtained by
recursively turning by 2π qp get identified. After squeezing D3 a little in direction

of the axes we may view a neighborhood of a point on the equator as a cylinder
over a sector of a circle (a piece of cake) where the flat sides lie on the northern
and southern hemisphere. In the quotient p many of these pieces are glued together
along their flat sides thus obtaining again a 3-cell as neighborhood. We will come

to this description again in 1.87 .

Group actions and orbit spaces

1.77 Definition. [20, 1.7.3] Group action of a group G on a topological space
X is a group-homomorphism G → Homeo(X) into the group of homeomorphisms
of X. The orbit space is X/G := X/∼ = {Gx : x ∈ X}, where x ∼ y :⇔
∃g ∈ G : y = g · x. For this we may without loss of generality assume that G is a
subgroup of Homeo(X), since only its image in Homeo(X) is needed.

1.78 Examples. [20, 1.7.4]

1. S1 acts on C by multiplication ⇒ C/S1 ∼= [0,+∞).

2. Z acts on R by translation (k, x) 7→ k + x ⇒ R/Z ∼= S1, R2/Z ∼= S1 × R.
ATTENTION: R/Z has two meanings.

3. S0 acts on Sn by reflection (scalar multiplication) ⇒ Sn/S0 ∼= Pn.

1.79 Definition. [20, 1.7.5] G is said to act freely on X, when no g 6= id has a
fixed-point on X, i.e. gx 6= x for all x and g 6= id.

1.80 Theorem. [20, 1.7.6] Let G act strictly discontinuously on X, i.e. each
x ∈ X has a neighborhood U with gU ∩ U 6= ∅ ⇒ g = id. This is in particular the
case, when G is finite and acts freely on a T2 space X.
Then X/G is a closed m-manifold provided X is one.

Proof. The quotient mapping π : X → X/G is open since π−1(π(W )) =
⋃
g∈G gW

for W ⊆ X. Free actions of finite groups on T2-spaces are strictly discontinuous,
since for x ∈ X and g 6= id we find disjoint neighborhoods Ug of x and Wg of g x
and then U :=

⋂
g 6=id Ug ∩ g−1Wg is the required neighborhood:

u ∈ U ∩ gU ⇒ g−1u ∈ U ⊆ g−1Wg ⇒ u ∈ Ug ∩Wg, a contradiction.

Let now X be an closed m-manifold. Since U → π(U) is a homeomorphism, any
chart A ∼= Dm with A ⊆ U induces a chart for X/G. In particular, points in X/G
are closed (see [8, 19.1.1]), and hence the orbits as inverse images are closed. The
orbits have to be discrete, so when X is compact the orbits are finite and hence the
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1.81 1. Building Blocks and Homeomorphy

group G is finite.
The quotient manifold is T2: For x 6∼ y ∈ X and any g ∈ G choose disjoint
neighborhoods Ug of g ·x and Wg of y. Then U := G ·

⋂
g g
−1Ug and W := G ·

⋂
gWg

are disjoint saturated neighborhoods of the orbits. In fact, y ∈ U ∩ W ⇒ y′ :=
g−1

1 y ∈
⋂
gWg for some g1 ∈ G and y′ ∈ g−1

1 G·
⋂
g g
−1Ug, i.e. y′ = g2 ·g−1

2 Ug2
= Ug2

for some g2 ∈ g−1
1 G, a contradiction.

Example. Orbit spaces need not be Hausdorff.
Consider the ordinary differential equation

dx

dt
= cos2 x,

dy

dt
= sinx

Since this vector field is bounded, the solutions
exist globally and we get a smooth function ϕ :
R × R2 → R2 associating to each t ∈ R and
(x, y) ∈ R2 the solution with value (x, y) at 0 at
time t.
If the initial value satisfies cosx = 0 then the so-
lution is y(t) = y(0) + t · sinx. Otherwise we have
dy
dx = sin x

cos2 x = d
dx

1
cos x , hence it has to be con-

tained in {(y, x) : y(x) = 1
cos x}. Moreover the

time it takes from x = x0 to x = x1 is giv-
en by t(x1) − t(x0) =

∫ x1

x0

dt
dx =

∫ x1

x0

1
cos2 xdx =

tanx|x1
x=x0

.

Note that the orbit space R2/R is not Hausdorff (and R2/Z as well). It consists of
a countable union

⊔
Z R of R′s together with the points π/2+π ·Z. A neighborhood

basis of π/2 + kπ is given by end-intervals of the two neighboring R′s. However, Z
acts strictly discontinuous on R2.

We may also form the space X := ([−π/2, π/2]×R)/∼, where (−π/2,−t) ∼ (π/2, t).
Since the action of R is compatible with this equivalence relation R acts fixed-
point free on this borderless Möbius strip X as well. The orbits of the discrete
subgroup Z ⊆ R are obviously closed subsets. However, the action is not strictly
discontinuous, since for any neighborhood of [(π/2, 0)]∼ some translate by t ∈ Z
meets it again.

1.81 Example. [20, 1.7.7] Let 1 < p ∈ N be relative prime to q1, . . . , qk ∈ Z. Then
Ep := {g ∈ C : gp = 1} ∼= Zp := Z/pZ acts freely on S2k−1 ⊆ Ck by g·(z1, . . . , zk) 7→
(gq1z1, . . . , g

qkzk). The general lens space L2k−1(p; q1, . . . , qk) := S2k−1/Ep of
type (p; q1, . . . , qk) is a closed manifold of dimension 2k − 1. Note that this space
depends only on qj mod p and not on qj itself, so we may assume 0 < qj < p.

In particular, L3(p; q, 1) ∼= L( qp ): We may parametrize S3 ⊆ C2 by the quotient

mapping f : D2×S1 � S3, (z1, z2) 7→ (z1,
√

1− |z1|2 z2) and the action of Ep = 〈g〉
on S3, where g := e2πi/p, lifts to the action given by g · (z1, z2) = (gq z1, g z2). Only
the points in {z1}×S1 for z1 ∈ S1 get identified by f . A representative subset of S3

for the action is given by {(z1, z2) ∈ S3 : | arg(z2)| ≤ π
p }, its preimage in D2 × S1

is homeomorphic to D2 × I, and only points (z1, 0) and (gq z1, 1) are in the same

orbit. Thus the top D2×{1} and the bottom D2×{0} rotated by gq = e2πi qp have
to be identified in the orbit space and also the generators {z1}× I for z1 ∈ S1. This

gives the description of L( qp ) in 1.76 .
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1. Building Blocks and Homeomorphy 1.84

One has:

• L3(p; q1, q2) ∼= L3(p; q2, q1) via the reflection C × C ⊇ S3 → S3 ⊆ C × C,
(z1, z2) 7→ (z2, z1).

• L3(p; q q1, q q2) = L3(p; q2, q1) for q relative prime to p via the group isomor-
phism g 7→ gq.

• L3(p;−q1, q2) ∼= L3(p; q1, q2) via (z1, z2) 7→ (z1, z2) and the group isomor-
phism g 7→ g−1 = g:

(z1, z2) //

g

��

(z1, z̄2)

ḡ

��
(gq1z1, g

q2z2) // (gq1z1, ḡ
q2 z̄2) (ḡ−q1z1, ḡ

q2 z̄2)

1.82 Theorem. [20, 1.9.5] L( qp ) ∼= L( q
′

p′ ) ⇔ p = p′ and (q ≡ ±q′ mod p or

qq′ ≡ ±1 mod p).

Proof. (⇐) By 1.81

• L3(p; q, 1) ∼= L3(p; q′, 1) for q′ ≡ ±q mod p.

• L3(p; q, 1) ∼= L3(p; q′, 1) for qq′ ≡ ±1 mod p, since L3(p; q, 1) ∼= L3(p; q′ q, q′) =
L3(p;±1, q′) ∼= L3(p; 1, q′) ∼= L3(p; q′, 1)

(⇒) is beyond the algebraic methods of this lecture course, see [5] for an elaboration.

1.83 Definition. [20, 1.7.1] A topological group is a topological space together
with a group structure, s.t. µ : G×G→ G and inv : G→ G are continuous.

1.84 Examples of topological groups. [20, 1.7.2]

1. Rn with addition.

2. S0 ⊆ R, S1 ⊆ C and S3 ⊆ H with multiplication, see [8, 14.16].

3. G×H for topological groups G and H.

4. The general linear group GL(n) := GL(n,R) := {A ∈ L(Rn,Rn) : det(A) 6=
0} with composition, see [8, 14.1].

5. The special linear group SL(n) := {A ∈ GL(n) : det(A) = 1}, see [8, 14.5].

6. The orthogonal group O(n) := {A ∈ GL(n) : At · A = id} and the (path-)
connected component SO(n) := {T ∈ O(n) : det(T ) = 1} of the identity in
O(n). As topological space O(n) ∼= SO(n)× S0. For all this see [8, 14.6].

7. GL(n,C) := {A ∈ LC(Cn,Cn) : detC(A) 6= 0}, see [8, 14.14].

8. The unitary group U(n) := {A ∈ GL(n,C) : A∗ · A = id} with closed
subgroup SU(n) := {A ∈ U(n) : detC(A) = 1}, see [8, 14.14]. As topological
space U(n) ∼= SU(n)× S1, see [10, 1.27]
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1.86 1. Building Blocks and Homeomorphy

9. In particular SO(1) = SU(1) = {1}, SO(2) ∼= U(1) ∼= S1, SU(2) = {
(
a b
c d

)
:(

a b
c d

)∗
=
(
a b
c d

)−1} = {( a −c̄c ā ) : |a|2 + |c|2 = 1} ∼= S3, SO(3) ∼= P3.

For the last isomorphism consider the surjective
mapping f : [0, π] × S2 � SO(3) given, by asso-
ciating to an angle ϕ ∈ [0, π] and an unit-vector
x ∈ S2 the rotation f(ϕ, x) by the angle ϕ around
the axes x.

[0, π]× S2

µ
����

f // // SO(3)

D3

f̃

99 99

This mapping is injective except for f(0, x) = f(0, x′) and f(π, x) = f(π,−x)

for all x, x′ ∈ S2. Hence it factors to a surjective mapping f̃ : D3 � SO(3)
over the surjective multiplication µ : [0, π]×S2 � D3, (ϕ, x) 7→ ϕ

π · x, which

is injective except for µ(0, x) = µ(0, x′) for all x, x′ ∈ S2. Thus f̃ is injec-

tive except for f̃(y) = f̃(−y) for all y ∈ S2. This is exactly the equivalence
relation defining P3 = D3/ ∼.

The problem of homeomorphy

Remark. For 3-manifolds one is far from a solution to the classification problem.
For n > 3 there can be no algorithm.

1.85 Theorem. [20, 1.9.2] Each closed orientable 3-manifold admits a Heegard-
decomposition.

Hence in order to solve the classification problem it suffices to investigate the homeo-
morphisms of closed oriented surfaces and determine which gluings give homeo-
morphic manifolds.

In the following example we study this for the homeomorphisms of the torus con-

sidered in 1.74 .

1.86 Example. [20, 1.9.3] Let M := M

(
a b
c d

)
and M ′ := M

(
a′ b′

c′ d′

)
with(

a b
c d

)
and

(
a′ b′

c′ d′

)
in SL(2,Z), see 1.74 . For α, β, γ, δ ∈ S0 and m,n ∈ Z

consider the homeomorphisms

F : D2 × S1 → D2 × S1, (z, w) 7→ (zαwm, wβ)

G : S1 ×D2 → S1 ×D2, (z, w) 7→ (zγ , znwδ)

If (
γ 0
n δ

)(
a b
c d

)
=

(
a′ b′

c′ d′

)(
α m
0 β

)
,

i.e.

γa = a′α, γb = a′m+ b′β, na+ δc = c′α, nb+ δd = c′m+ d′β

then (G|S1×S1) ◦ f = f ′ ◦ (F |S1×S1) and thus M ∼= M ′ by 1.49 .

Reduction:

(a ≤ 0): γ := −1, α := β := δ := 1, m := n := 0

⇒ M

(
a b
c d

)
∼= M

(
−a −b
c d

)
, i.e. w.l.o.g. a ≥ 0.
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1. Building Blocks and Homeomorphy 1.87

(ad− bc = −1): α := β := γ := 1, δ := −1, m := n := 0

⇒ M

(
a b
c d

)
∼= M

(
a b
−c −d

)
, i.e. w.l.o.g. ad− bc = 1.

(a = 0): ⇒ bc = −1. α := c, β := b, γ := 1, δ := 1, n := 0, m := d

⇒ M

(
a b
c d

)
∼= M

(
0 1
1 0

)
∼= (D2 ∪id D

2)× S1 ∼= S2 × S1.

(a = 1): α := δ := a, β := ad− bc, γ := 1, m := b, n := −c

⇒ M

(
a b
c d

)
∼= M

(
1 0
0 1

)
= (D2 × S1) ∪id (S1 ×D2) ∼= S3, by 1.73 .

(ad′ − b′c = 1): ⇒ a(d − d′) = c(b − b′) since a d − b c = 1 and ∃m: b − b′ = ma,
d− d′ = mc since gcd(a, c) = 1.

α := β := γ := δ := 1, n := 0 ⇒ M

(
a b
c d

)
∼= M

(
a b′

c d′

)
=: M(a, c).

(c′ := c− na): α := β := γ := δ := −1, m := 0 ⇒ M(a, c) ∼= M(a, c′), i.e. w.l.o.g.
0 ≤ c < a (If c = 0 ⇒ a = 1 ⇒ M(a, c) ∼= S3).

Thus it suffices to investigate the spaces M(a.c) with 0 < c < a and ggT (a, c) = 1
(⇔ ∃b, d : ad− bc = 1).

1.87 Theorem. Heegard-decomposition of lens spaces. [20, 1.9.4] For relative
prime 0 < c < a we have L( ca ) ∼= M(a, c).

Proof. We start with L( ca ) = D3/ ∼ (see 1.76 ) and drill a cylindrical hole into

D3 and glue its top and bottom via ∼ to obtain a filled torus, where collections of
a many generators of the cylinder (e.g. the red/green edges) are glued to from a
closed curve which winds c-times around the core of the torus (i.e. the axes of the
cylinder) and a-times around the axes of the torus. The remaining D3 with hole is
cut into a sectors, each homeomorphic to a piece of a cake, which yield D2×I after
gluing the blue sides (which correspond to points on S2) and groups of a many
generators of the cylindrical hole are glued to a circle S1 × {t}. After gluing the
green top and the correspondingly rotated bottom disc we obtain a second filled
torus, where the groups of a many generators of the cylinder (e.g. the red/green
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1.90 1. Building Blocks and Homeomorphy

edges) form a meridian. This is exactly the gluing procedure described in 1.74 for
M(a, c).

1.88 Definition. [20, 1.9.7] A knot is an embedding S1 → R3 ⊆ S3.

1.89 Definition. [20, 1.9.6] Two embeddings f, g : X → Y are called topologi-
cal equivalent, if there exists a homeomorphism h : Y → Y with g = h◦f . Each
two embeddings S1 → R2 are by Schönflies’s theorem (which is a strong version of
Jordan’s theorem) equivalent.

Remark. To each knot we may associated the complement of a tubular neighbor-
hood in S3. This is a compact connected 3-manifold with a torus as boundary.
By a result of [4] a knot is up to equivalence uniquely determined by the homotopy

class (see 2.34 ) of this manifold.

As another invariant we may consider closed (orientable) surfaces in R3 of minimal
genus which have the knot as boundary.

b0

b1

b2

a0

a1

a2

c2

c0

c1

a0

c2a1

c0

a2 c1

b0

a2b1

a1b2

a0

c2

a1

c0

a2

c1

b0

a2

b1

a1

b2

Gluing cells

1.90 Notation. [20, 1.6.1] f : Dn ⊇ Sn−1 → X. Consider X ∪f Dn, p : X tDn →
X ∪f Dn, en := p(

◦
Dn), i := p|X : X ↪→ X ∪f Dn =: X ∪ en.
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1. Building Blocks and Homeomorphy 1.93

Dn

X

By 1.44 i : X → X ∪ en is a closed embedding, X ∩ en = ∅ and p : (Dn, Sn−1)→
(X ∪ en, X) is a relative homeomorphism, i.e. p :

◦
Dn ∼= en is a homeomorphism.

For X T2 also X ∪ en is T2:
Points in X can be separated in X by Ui and the sets Ui∪{tx : 0 < t < 1, f(x) ∈ Ui}
separate them in X∪en. When both points are in the open subset en, this is obvious.
Otherwise one lies in en and the other in X, so a sphere in Dn separates them.

Conversely we have:

1.91 Proposition. [20, 1.6.2] Let Z be T2, X ⊆ Z closed and F : (Dn, Sn−1) →
(Z,X) a relative homeomorphism.
Then X ∪f Dn ∼= Z, where f := F |Sn−1 , via g := (j t F ) ◦ p−1.

Proof. We consider

Sn−1
f=F |Sn−1 //

� _

��

X
lL

zz

� _

j

��

X ∪f Dn

g

$$
Dn

p|Dn
99

F // Z
j : X ↪→ Z is closed by assumption and also F , since Dn is compact and Z is T2.
Thus g is closed and obviously bijective and continuous, hence a homeomorphism.

1.92 Theorem. [20, 1.6.3] Let f : Sn−1 → X be continuous and surjective and X
be T2. Then p|Dn : Dn → X ∪f Dn is a quotient mapping.

Proof. The restriction p|Dn is surjective, since f is. Since Dn is compact and

X ∪f Dn is T2 by 1.90 , p is a quotient mapping by 1.27 .

1.93 Examples. [20, 1.6.4]

(1) f : Sn−1 → {∗} =: X ⇒ X ∪f Dn
1.47.1
∼= Dn/Sn−1

1.36
∼= Sn.

(2) f : Sn−1 → X constant ⇒ X ∪f Dn
1.47.3
∼= X ∨ (Dn/Sn−1)

1.36
∼= X ∨ Sn.

(3) f = id : Sn−1 → Sn−1 =: X ⇒ X ∪f Dn ∼= Dn by 1.92 .

(4) f = incl : Sn−1 ↪→ Dn =: X ⇒ X ∪f Dn ∼= Sn by 1.50.3 .
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1.97 1. Building Blocks and Homeomorphy

(5) [20, 1.6.10] Let gn : S1 → S1, z 7→ zn. Then S1 ∪g0
D2 ∼= S1 ∨ S2 by 2 ,

S1 ∪g1
D2 ∼= D2 by 3 , S1 ∪g2

D2 ∼= P2 by 1.68.1 , S1 ∪gn D2 ∼= S1 ∪g−n D2

by conjugation z 7→ z̄.

1.94 Theorem. [20, 1.6.9] [20, 1.6.11] Let inj : S1 ↪→
∨r
k=1 S

1 be z 7→ zn into

the jth summand S1, furthermore, Bk := {exp( 2πit
m ) : k − 1 ≤ t ≤ k} an arc

of length 2π
m and fk : Bk → S1, exp( 2πit

m ) 7→ exp(2πi(t − k + 1)). Finally, for

j1, . . . , jm ∈ {1, . . . , r} let in1
j1
· · · · · inmjm : S1 →

∨r
S1 the mapping which coincides

on Bk with inkjk ◦ fk, i.e. one runs first n1-times along the j1-th summand S1, etc.

For g ≥ 1 and f := i1 · i2 · i−1
1 · i

−1
2 · · · · · i2g−1 · i2g · i−1

2g−1 · i
−1
2g resp. f := i21 · i22 · · · · · i2g

we have
∨2g

S1 ∪f D2 ∼= Fg resp.
∨g

S1 ∪f D2 ∼= Ng.

Proof. 1.92 ⇒ Xg :=
∨
S1 ∪f D2 ∼= D2/∼ where x ∼ y for x, y ∈ S1 ⇔ f(x) =

f(y). This is precisely the relation from 1.66 , resp. 1.71 .

1.95 Proposition. [20, 1.6.5] [20, 1.6.7] [20, 1.6.8] We have a closed embedding
Pn−1
K ↪→ PnK via Kn ∼= Kn × {0} ⊆ Kn+1. The mapping

F : Kn ⊇ Ddn → PnK, (x1, . . . , xn) 7→ [(x1, . . . , xn, 1− ‖x‖)]

defines a relative homeomorphism F : (Ddn, Sdn−1)→ (PnK,P
n−1
K ). Thus, by 1.91 ,

PnK = Pn−1
K ∪F |

Sdn−1
Ddn. Hence we have decompositions into disjoint cells:

PnR ∼= e0 ∪ e1 ∪ · · · ∪ en, PnC ∼= e0 ∪ e2 ∪ · · · ∪ e2n, and PnH ∼= e0 ∪ e4 ∪ · · · ∪ e4n

Proof. The induced mapping Pn−1
K → PnK is injective, hence a closed embedding.

The charts Kn ∼= Un+1 = PnK\P
n−1
K , (x1, . . . , xn) 7→ [(x1, . . . , xn, 1)] were construct-

ed in the proof of 1.69 .

The mapping Ddn \ Sdn−1 → Kn, given
by x 7→ x

1−‖x‖ , is a homeomorphism as in

1.4 , and thus the composite F |Ddn\Sdn−1

is a homeomorphism as well.

Ddn F // PnK

Ddn \ Sdn−1
∼=

1.4

//
?�

OO

Kn
∼=

1.69

// PnK \ P
n−1
K

?�

OO

1.96 Definition. Gluing several cells. [20, 1.6.12] For continuous mappings
fj : Dn ⊇ Sn−1 → X for j ∈ J let

X ∪(fj)j

⋃
j∈J

Dn := X ∪⊔
j∈J fj

⊔
j∈J

Dn.

1.97 Example. [20, 1.6.13]

(1) X ∪(f1,f2) (Dn tDn) ∼= (X ∪f1
Dn) ∪f2

Dn, by 1.46 .
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(2) Let fj := id : Sn−1 → Sn−1 for j ∈ {1, 2}.

Then Sn−1 ∪(f1,f2) (Dn tDn)
1
∼= (Sn−1 ∪ en)∪ en

1.93.3
∼= Dn ∪ en

1.93.4
∼= Sn.

(3) If fj : Sn−1 → {∗} =: X for each j, then X ∪(fj)j

⋃
j∈J D

n ∼=
∨
J S

n:

By 1.36 Dn \Sn−1 ∼= Rn ∼= Sn \ {∗} extends to a relative homeomorphism

λ : (Dn, Sn−1)→ (Sn, {∗}). Thus also
⊔
J λ = J ×λ : (J ×Dn, J ×Sn−1)→

(J ×Sn, J ×{∗}) is a relative homeomorphism and J ×λ : J ×Dn → J ×Sn
is a quotient mapping by 1.32 since J is locally compact as discrete space.

Hence also the induced mapping (J×Dn)/(J×Sn−1)→ (J×Sn)/(J×{∗}) =∨
j S

n is a quotient mapping by 1.27 and is obviously bijective, hence a
homeomorphism.

J × Sn−1 �
� //

1.36
����

J ×Dn // //

1.32
����

(J ×Dn)/(J × Sn−1)
��

1.27
����

⊔
J D

n/
⊔
J S

n−1

J × {∗} �
� // J × Sn // // (J × Sn)/(J × {∗})

∨
J S

n

Inductive limits

1.98 Definition. [20, 1.8.1] Let X be a set and Aj ⊆ X topological spaces with
X =

⋃
j∈J Aj and such that the trace topology on Aj ∩ Ak induced from Aj and

from Ak is identical and the intersection closed. We consider the final topology
induced on X by all the inclusions injj : Aj ↪→ X.
This topology induces on Aj the given topology, moreover Aj ↪→ X is a closed
embedding: Let B be closed in Aj , then B ∩ Ak = B ∩ (Aj ∩ Ak) is closed in the
topology of Aj and hence also in that of Ak, so B is closed in the final topology on
X. Conversely, let B ⊆ Aj be closed in the final topology of X, then B = B∩Aj =

inj−1
j (B) is closed in Aj .

The canonical mapping p :=
⊔
j injj :

⊔
j Aj → X is a quotient mapping by defini-

tion of the final topology (it is clearly onto and B ⊆ X is closed iff inj−1
j (B) = B∩Aj

is closed in Aj) and thus we have the corresponding universal property:
A mapping f : X → Y is continuous, iff f |Aj : Aj → Y is continuous for all j.

1.99 Proposition. [20, 1.8.3] [20, 1.8.4] Let A be a closed (locally) finite covering
of X. Then X carries the final topology with respect to A.

Proof. See [6, 1.2.14.3]: Let B ⊆ X be such that B∩A ⊆ A is closed for all A ∈ A.

In order to show that B ⊆ X is closed it suffices to prove that
⋃
C∈C C =

⋃
C∈C C

for locally finite families C(:= {B∩A : A ∈ A}). (⊇) is obvious. (⊆) Let x ∈
⋃
C∈C C

and U an open neighborhood of x with C0 := {C ∈ C : C ∩ U 6= ∅} being finite.

Then x /∈
⋃
C∈C\C0 C and since x ∈

⋃
C∈C C =

⋃
C∈C0 C ∪

⋃
C∈C\C0 C we have

x ∈
⋃
C∈C0 C =

⋃
C∈C0 C ⊆

⋃
C∈C C.

1.100 Definition. [20, 1.8.5] Let An be an increasing sequence of topological
spaces, where each An is a closed subspace in An+1. Then

⋃
n∈NAn with the final

topology is called (inductive) limit lim−→n
An of the sequence (An)n.

1.101 Examples. [20, 1.8.6] [20, 1.8.7]
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1.101 1. Building Blocks and Homeomorphy

1. R∞ := lim−→n
Rn, the space of finite sequences. Let x ∈ R∞ and εn > 0.

Then {y ∈ R∞ : |yn − xn| < εn∀n} is an open neighborhood of x in R∞.
Conversely, let U ⊆ R∞ be an open set containing x. Then there exists an
ε1 > 0 with K1 := {y1 : |y1 − x1| ≤ ε1} ⊆ U ∩ R1. Since K1 ⊆ R1 ⊆ R2

is compact, there exists by [6, 2.1.11] an ε2 > 0 with K2 := {(y1, y2) : y1 ∈
K1, |y2 − x2| ≤ ε2} ⊆ U ∩ R2. Inductively we obtain εn with {y ∈ R∞ :
|yk − xk| ≤ εk∀k} =

⋃
nKn ⊆ U . Thus the sets from above form a basis of

the topology.
In contrast, the sets

⋃
n{y ∈ Rn : ‖y − x‖ < δn} do not from a basis for

this topology, since for δn ↘ 0 they contain none of the neighborhoods
from above, since x+ ( ε12 , . . . ,

εn
2 , 0, . . . ) is not contained therein for n with

δn ≤ ε1
2 .

2. S∞ := lim−→n
Sn is the set of unit vectors in R∞.

3. P∞ := lim−→n
Pn is the space of lines through 0 in R∞.

4. O(∞) := lim−→n
O(n), where GL(n) ↪→ GL(n+ 1) via A 7→ (A 0

0 1 ).

5. SO(∞) := lim−→n
SO(n)

6. U(∞) := lim−→n
U(n)

7. SU(∞) := lim−→n
SU(n)
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2. Homotopy

In this chapter we introduce the concept of homotopy. This leads to a weakening
of the concept of homeomorphy to that of homotopy-equivalence and the special
cases of (strict or neighborhood) deformation retracts.

2.1 Definition. [20, 2.1.1] A homotopy is a mapping h : I → C(X,Y ), which

is continuous as mapping ĥ : I ×X → Y , where ĥ(t, x) := h(t)(x). Note that this
implies, that h : I → C(X,Y ) is continuous for the compact-open topology (This
is a version of the topology of uniform convergence for general topological spaces
instead of uniform spaces Y . A subbasis for it is given by the sets NK,U := {f ∈
C(X,Y ) : f(K) ⊆ U} with arbitrary compact K ⊆ X and open U ⊆ Y ) but not
conversely.

Two mappings hj : X → Y for j ∈ {0, 1} are
called homotopic (we write h0 ∼ h1) if there ex-
ists a homotopy h : I → C(X,Y ) with h(j) = hj for
j ∈ {0, 1}, i.e. a continuous mapping H : I ×X → Y
with and H(j, x) = hj(x) for all x ∈ X and j ∈ {0, 1}.

{0, 1} ×X h0∪h1 //
� _

��

Y

I ×X
H

77

0 1t

X
h0

h1

h

Y

2.2 Lemma. [20, 2.1.2] To be homotopic is an equivalence relation on C(X,Y ).

2.3 Definition. [20, 2.1.5] The homotopy class [f ] of a mapping g ∈ C(X,Y )
is [f ] := {g ∈ C(X,Y ) : g is homotopic to f}. Let [X,Y ] := {[f ] : f ∈ C(X,Y )}.

2.4 Lemma. [20, 2.1.3] Homotopy is compatible with the composition.

For f : X ′ → X and g : Y → Y ′ let f∗ :
C(X,Y )→ C(X ′, Y ) be defined by f∗(k) := k ◦ f
and g∗ : C(X,Y ) → C(X,Y ′) be defined by
g∗(k) := g ◦ k. Finally, let C(f, g) := f∗ ◦ g∗ =
g∗ ◦ f∗ : C(X,Y )→ C(X ′, Y ′), k 7→ g ◦ k ◦ f .

C(X,Y )

g∗

��

f∗ //

C(f,g)

&&

C(X ′, Y )

g∗

��
C(X,Y ′)

f∗
// C(X ′, Y ′)

Proof. Let h : I → C(X,Y ) be a homotopy and f : X ′ → X, g : Y → Y ′

be continuous. Then C(f, g) ◦ h := f∗ ◦ g∗ ◦ h : I → C(X ′, Y ′) is a homotopy

g ◦ h0 ◦ f ∼ g ◦ h1 ◦ f , since (C(f, g) ◦ h)̂= g ◦ ĥ ◦ (I × f) is continuous.

2.5 Definition. [20, 2.1.4] A mapping f : X → Y is called 0-homotopic iff it is
homotopic to a constant mapping.
A space X is called contractible, iff idX is 0-homotopic.

2.6 Remarks. [20, 2.1.6]
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2.10 2. Homotopy

(1) Any two constant mappings into Y are homotopic iff Y is path-connected :
In fact, a path y : I → Y induces a homotopy t 7→ consty(t).

(2) [{∗}, Y ] is in bijection with the path-components of Y : homotopy = path.

(3) Star-shaped subsets A ⊆ Rn are contractible by scalar-multiplication. In par-
ticular, this is true for A = Rn and for convex subsets A ⊆ Rn.

(4) For a contractible space X there need not exist an appropriate homotopy h

which keeps the point fixed, e.g. the infinite comb (see 2.36.10 ).

Contractible spaces are path-connected.

(5) Any composition of a 0-homotopic mapping with any mapping is 0-homotopic :

2.4 .

(6) If Y is contractible then any two mappings fj : X → Y are homotopic, i.e.

[X,Y ] := {∗} : 2.4 .

(7) Any continuous none-surjective mapping f : X → Sn is 0-homotopic :

Sn \ {∗} ∼= Rn by 1.14 , now use 3 and 6 .

(8) If X is contractible and Y is path-connected then any two mappings fj :

X → Y are homotopic, i.e. [X,Y ] = {∗} : 5 and 1 .

(9) Any mapping f : Rn → Y is 0-homotopic : 3 and the arguments in 8 .

2.7 Definition. [20, 2.1.7] [20, 2.1.8] [20, 2.1.10]

(1) A homotopy relative A ⊆ X is a homotopy h : I → C(X,Y ) with
incl∗ ◦h : I → C(X,Y ) → C(A, Y ) being constant. Two mappings hj :
X → Y are called homotopic relative A ⊆ X, iff there exists a homotopy
h : I → C(X,Y ) relative A with boundary values h(j) = hj for j ∈ {0, 1}.

(2) A homotopy of pairs (X,A) and (Y,B) is a homotopy h : I → C(X,Y )
with h(I)(A) ⊆ B. Two mappings hj : (X,A) → (Y,B) of pairs are called
homotopic, iff there exists a homotopy (of pairs) h : I → C(X,Y ) with
h(I)(A) ⊆ B and h(j) = hj for j ∈ {0, 1}. We denote with [h0] also this
homotopy class and with [(X,A), (Y,B)] the set of all these classes.

(3) A homotopy of pairs with A = {x0} and B = {y0} is called base-point
preserving homotopy. We have f ∼ g : (X, {x0}) → (Y, {y0}) iff f ∼ g
relative {x0}.

2.8 Example. [20, 2.1.9] Since I is contractible we have [I, I] = {[t 7→ 0]} by

2.6.6 , but [(I, İ), (I, İ)] = {[id], [t 7→ 1− t], [t 7→ 0], [t 7→ 1]}.

2.9 Lemma. [20, 2.1.11] Let p : X ′ → X be a quotient mapping and let h : I →
C(X,Y ) be a mapping for which p∗ ◦ h : I → C(X ′, Y ) is a homotopy. Then h is a
homotopy.

Proof. Note that for quotient-mappings p the induced injective mapping p∗ is in
general not an embedding (we may not find compact inverse images). However

p̂∗ ◦ h = ĥ ◦ (I × p) and I × p is a quotient-mapping by 1.32 .

2.10 Corollary. [20, 2.1.12]
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2. Homotopy 2.12

(1) Let p : X ′ → X be a quotient mapping, h : I → C(X ′, Y ) be a homotopy
and ht ◦ p−1 : X → Y be a well-defined mapping for all t. Then this defines

a homotopy I → C(X,Y ) as well: This is just a reformulation of 2.9 .

(2) Let f : X ⊇ A → Y be a gluing map
and h : I → C(X,Z) and k : I →
C(Y, Z) be homotopies with incl∗ ◦h =
f∗ ◦ k. Then they induce a homotopy
I → C(Y ∪f X,Z):

Apply 1 and 1.32 to p : Y t X →
Y ∪f X.

A
f //

_�

��

Y
_�

��
kt

��

X //

ht
))

Y ∪f X
h

##
Z

(3) Let h : I → C(X,Y ) be a homotopy compatible with equivalence relations
∼ on X and on Y , i.e. x ∼ x′ ⇒ h(t, x) ∼ h(t, x′). Then h factors to a

homotopy I → C(X/∼, Y/∼): Apply 1 to (qY )∗ ◦ h : I → C(X,Y/∼).

(4) Each homotopy h : I → C((X,A), (Y,B)) of pairs induces a homotopy I →
C(X/A, Y/B): 3 .

(5) Homotopies hj : I → C((Xj , x
0
j ), (Yj , y

0
j )) induce a homotopy

∨
j h

j : I →
C((
∨
j Xj , x

0), (
∨
j Yj , y

0)): Apply 4 to the homotopy h : I → C((
⊔
j Xj , {x0

j :

j}), (
⊔
j Yj , {y0

j : j})).

2.11 Example. [20, 2.1.13]

(1) Let ht : (X, I) → (X, I) be given by ht(x, s) := (x, ts). This induces a

contraction of the cone CX := (X × I)/(X × {0}) to its apex by 2.10.3 .

(2) The contraction of Dn = CSn−1 given by 1 is not compatible with the

equivalence relation describing Dn/Sn−1 ∼= Sn, hence induces no contraction

of Sn. We will see in 2.17 and 8.43 , that Sn is not contractible at all.

Homotopy classes for mappings of the circle

2.12 Definition. [20, 2.2.1] We consider the (periodic) quotient mapping (and
group homomorphism) p : R� S1, t 7→ e2πit as well as its restriction p|I : I � S1.

A mapping ϕ : I → R factors to a well defined
mapping ϕ := p◦ϕ◦p−1 : S1 → S1 if and only
if n := ϕ(1)− ϕ(0) ∈ Z.

I

p
����

ϕ // R

p
����

S1 ϕ // S1

Conversely:

2.13 Lemma. [20, 2.2.2]
Let f : S1 → S1 be continuous, then there
exists a unique continuous ϕ : (R, 0) → (R, 0)
with f = f(1) · ϕ̄.

(R, 0)
ϕ //

p
����

(R, 0)

p
����

(S1, 1)
f(1)−1f // (S1, 1)

Proof. Replace f by f(1)−1 ·f , i.e. w.l.o.g. f(1) = 1. Let h := f ◦p : R→ S1. Then
h is periodic, uniformly continuous and h(0) = 1. So choose δ > 0 with |t− t′| ≤ δ
⇒ |h(t)− h(t′)| < 2 and hence h(t)

h(t′) 6= −1. Let tj := j δ. The mapping t 7→ eit is a
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2.19 2. Homotopy

homeomorphism (−π, π) → S1 \ {−1}. Let arg : S1 \ {−1} → (−π, π) ⊆ R denote

its inverse, i.e. p( arg(z)
2π ) = z. Then for tj ≤ t ≤ tj+1 let

ϕ(t) :=
1

2π

(
arg

h(t1)

h(t0)
+ · · ·+ arg

h(t)

h(tj)

)
,

which gives the desired lifting.

This lifting is unique, since the difference of two such liftings has image in the
discrete subset p−1(1) ⊆ R, and hence is constant (=0).

2.14 Definition. [20, 2.2.3] Let f : S1 → S1 be continuous and ϕ as in 2.13 ,

then deg f := ϕ(1) ∈ p−1(1) = Z is called mapping degree of f .

2.15 Theorem. [20, 2.2.4] deg induces an isomorphism [S1, S1] ∼= Z of semigroups.
In more detail:

(1) The mapping gn : z 7→ zn from 1.93.5 has degree n.

(2) Two mappings are homotopic iff they have the same degree.

(3) deg(f1 ◦ f2) = deg(f1) · deg(f2).

Proof. 1 follows since ϕ(t) = n · t.

2 Let f be a homotopy I → C(S1, S1). Then, by 2.13 , there exists a lifting

ϕ : I → C(R,R) with p(ϕt(z)) = ft(1)−1 · ft(p(z)). This ϕ is a homotopy, since we

can use for each ht the same δ in the proof of 2.13 . In particular ϕt(1) ∈ p−1(1) = Z
and hence is constant. So deg(f0) = ϕ0(1) = ϕ1(1) = deg(f1).

Conversely, we define ϕ : I → C(R,R) by ϕt := (1− t)ϕ0 + tϕ1. Then this induces

a homotopy f : I → C(S1, S1) by 2.12 , since ϕt(1) = deg(f0) = deg(f1) ∈ Z.

3 Let n := deg(f1) and m := deg(f2). Obviously, gn ◦ gm = gnm. By 1 and 2
f1 ∼ gn and f2 ∼ gm, hence f1◦f2 ∼ gn◦gm = gnm and thus deg(f1◦f2) = nm.

2.16 Remarks. [20, 2.2.5]

(1) deg(id) = 1: id = g1; f 0-homotopic ⇒ deg(f) = 0: f ∼ g0; deg(g−1 : z 7→
z) = −1 by 2.15.1 .

(2) f homeomorphism ⇒ deg(f) ∈ {±1}, by 2.15.3 since deg(f) is invertible
in Z.

(3) incl : S1 ↪→ C \ {0} is not 0-homotopic, since idS1 is not: deg(id) = 1 and

2.4 applied to C \ {0}� S1. We can use [Sn, X] to detect “holes” in X.

(4) The two natural inclusions inci : S1 ↪→ S1×S1 are not homotopic: pr1 ◦ inc1 =
id, pr1 ◦ inc2 ∼ 0.

2.17 Lemma. [20, 2.2.6] S1 is not contractible.

Proof. deg(id) = 1.

2.18 Definition. [20, 2.3.1] A subspace A ⊆ X is called retract iff there exists
an r : X → A with r|A = idA, i.e. an extension r : X → A (called a retraction)
of idA.

Being a retract is a transitive relation. Retracts in Hausdorff spaces are closed
(A = {x ∈ X : r(x) = x})

2.19 Lemma. [20, 2.3.2]

32 andreas.kriegl@univie.ac.at c© 7. Februar 2018



2. Homotopy 2.22

(1) A subspace A ⊆ X is a retract of X iff every function f : A → Y can be

extended to f̃ : X → Y .

(2) Let A ⊆ X be closed. Then a function f : A → Y can be extended to X iff
Y is a retract of Y ∪f X.

Proof. For 1 we prove that idA can be extended iff any f : A → Y can be
extended:

1 A � n

��

idA //

f

��

A

f

��

2 A� _

��

f // Y
_�

�� idY

��

X

r

@@

f̃

��

X //

f̃ ++

Y ∪f X
r

##
Y Y

Thus the extensions f̃ of f : A → Y correspond to retractions r = idY ∪f̃ of
Y ⊆ Y ∪f X.

2.20 Lemma. [20, 2.2.7] There is no retraction of D2 to S1 ↪→ D2.

Proof. Otherwise, let r : D2 → S1 be a retraction to ι : S1 ↪→ D2. Then id =

r ◦ ι ∼ r ◦ 0 = 0, a contradiction to 2.16.1 .

2.21 Lemma. Brouwer’s fixed point theorem. [20, 2.2.8]
Every continuous mapping f : D2 → D2 has a fixed point.

Proof.

Assume f(x) 6= x and let r(x) be the
unique intersection point of the ray from
f(x) to x with S1. Then r is a retraction,

a contradiction to 2.20 .

x

fHxL

rHxL

2.22 Lemma. Fundamental theorem of algebra. [20, 2.2.9]
Every nonconstant polynomial has a root.

Proof. Let p(x) = a0 + · · · + an−1x
n−1 + xn be a polynomial without root and

n ≥ 1, s := |a0|+ · · ·+ |an−1|+ 1 ≥ 1 and z ∈ S1. Then

|p(sz)− (sz)n| ≤ |a0|+ s|a1|+ · · ·+ sn−1|an−1|
≤ sn−1(|a0|+ · · ·+ |an−1|) < sn = |(sz)n|.

Hence 0 /∈ p(sz), (sz)n. Thus z 7→ sn zn, S1 → C\{0} is homotopic to z 7→ p(sz) and

consequently 0-homotopic. Hence 0 ∼ gn : z 7→ zn, a contradiction to 2.15 .

2.23 Definition. [20, 2.2.10]
The degree of f : S1 → R2

with respect to z0 /∈ f(S1) is

the degree of x 7→ f(x)−z0
|f(x)−z0| and

will be denoted by U(f, z0) the
turning (winding) number
of f around z0.

+2+10

-1 -1

+1

0
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2.28 2. Homotopy

2.24 Lemma. [20, 2.2.11] If z0 and z1 are in the same component of C \ f(S1)
then U(f, z0) = U(f, z1).

Proof. Let t 7→ zt be a path in C \ f(S1). Then t 7→ (x 7→ f(x)−zt
|f(x)−zt| ) is a homotopy

and hence U(f, z0) = U(f, z1) by 2.15 .

2.25 Lemma. [20, 2.2.12] There is exactly one unbounded component of C \ f(S1)
and for z in this component we have U(f, z) = 0.

Proof. For x′ outside a sufficiently large disk containing f(S1) (this complement
is connected and contained in the (unique) unbounded component) the mapping

t 7→
(
x 7→ tf(x)− x′

|tf(x)− x′|

)
is a homotopy showing that x 7→ f(x)−x′

|f(x)−x′| is 0-homotopic and hence U(f, x′) = 0

and thus U(f, ) = 0 on the unbounded component by 2.24 .

By Jordan’s curve theorem there are exactly two components for an embedding
f : S1 → C and U(f, z) ∈ {±1} for z in the bounded component.

2.26 Theorem. [20, 2.3.3] A mapping
f : X → Y is 0-homotopic iff there exists
an extension f̃ : CX → Y with f̃ |X = f .

Proof. We prove that homotopies h : X×
I → Y with constant h0 correspond to
extensions h̃ : CX → Y of h1.

X × {1}
� _

��

X

h1=f

��

nN

}}
X × I // //

h

))

CX

h̃

!!
X × {0}
� ?

OO

h0=const
// Y

2.27 Theorem of Borsuk and Ulam. [20, 2.2.13]
For every continuous mapping f : S2 → R2 there is a z ∈ S2 with f(z) = f(−z).

Proof. Suppose indirectly that f(x) 6= f(−x) for all x ∈ S2. Consider f1 : S2 → S1,

x 7→ f(x)−f(−x)
|f(x)−f(−x)| and f2 : CS1 ∼= D2 → S2 → S1, x 7→ f1(x,

√
1− |x|2). Then

g := f2|S1 ∼ 0 via f2 by 2.26 . Let ϕ : (R, 0) → (R, 0) be the lift of g(1)−1g from

2.13 and hence ϕ(1) =: deg(g) = 0. Since f1 and thus also g is odd, we have

g(exp(2πi(t+ 1
2 ))) = g(− exp(2πit)) = −g(exp(2πit)) for all t. Hence

exp
(

2πiϕ
(
t+

1

2

))
= g(1)−1g

(
exp
(
2πi(t+

1

2
)
))

= −g(1)−1g
(
exp(2πit)

)
= − exp

(
2πiϕ(t)

)
= exp

(
2πi
(
ϕ(t) +

1

2

))
.

Hence k := ϕ(t + 1
2 ) − ϕ(t) − 1

2 ∈ Z and is independent on t. For t = 0 we get

ϕ( 1
2 ) = k + 1

2 and for t = 1
2 we get deg(g) = ϕ(1) = ϕ( 1

2 ) + 1
2 + k = 2k + 1 6= 0, a

contradiction.

2.28 Ham-Sandwich-Theorem. [20, 2.2.14]
Let A0, A1, A2 be bounded measurable subsets of R3.
Then there is a plane which cuts A0, A1 and A2 in exactly equal parts.

Proof. We denote the halfspaces with Ha,d := {x ∈ R3 : 〈x, a〉 ≤ d} and the
volume of the trace of Aj on this halfspace with µj(a, d) := µ(Aj ∩ Ha,d). Then
µj : S2 × R→ R is a continuous function with µj(−a,−d) + µj(a, d) = µ(Aj) and
monotone increasing with respect to d. Let da be the midpoint of the closed interval
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2. Homotopy 2.31

Ia := {d : µ0(a, d) = µ(A0)/2}. For d ∈ Ia we have µ0(a, d) = µ(A0)
2 = µ0(−a,−d)

and hence d−a = −da.
Moreover, a 7→ da is continuous: let d− := min Ia0

and d+ := max Ia0
. Then

µ0(a0, d) < µ(A0)/2 for all d < d− and by continuity of µ0 there exists for ε > 0
a δ > 0 such that µ0(a, d− − ε) < µ(A0)/2 for all |a − a0| < δ and analogously
µ0(a, d+ + ε) > µ(A0)/2 for all |a − a0| < δ, thus Ia ⊆ [d− − ε, d+ + ε]. In case
d− = d+ we get |da − da0 | ≤ ε. Otherwise d 7→ µ(a0, d) = µ(A0)/2 is constant on
[d−, d+] and thus µ(A0 ∩ (Ha0,d+

\Ha0,d−)) = µ(a0, d+)− µ(a0, d−) = 0. Hence we
may assume that δ > 0 is so small, that µ(a, d) = µ(A0)/2 for all |a− a0| < δ and
all d− + ε < d < d+ − ε. So again |da − da0

| ≤ ε.
Now let f : S2 → R2 be given by f(a) := (µ1(a, da), µ2(a, da)). By 2.27 there

exists a point b ∈ S2 with f(b) = f(−b). Since d−a = −da we have that f(−b) is
the volume of A1 and A2 on the complement of Ha,da .

2.29 Definition. [20, 2.3.4] A pair (X,A) is said to have the general homotopy
extension property (HEP) (equiv. is said to be a cofibration) iff A is closed
in X and we have

A �
� //
_�

ins0

��

X
_�

ins0

�� H0

��

A× I �
� //

h ..

X × I
H

""
Y

A

X

I h

H0

H

or, equivalently,

A
� � //

ȟ
��

X

H0

��
Ȟ

{{
C(I, Y )

ev0

// Y

This is dual to the notion of
fibration (mappings with
the homotopy lifting prop-
erty):

A Xoooo

Y × I

h

OO

H

<<

Y?
_

ins0

oo

H0

OO

2.30 Theorem. [20, 2.3.5]
(X,A) has HEP ⇔ L := X × {0} ∪A× I is a retract of X × I.

Proof. (X,A) has HEP ⇔
⇔ each f : L→ Y extends to X × I

⇐
2.19

====⇒ L ⊆ X × I is a retract.

A

X

I

2.31 Remarks. [20, 2.3.6]

(1) The pair (Dn, Sn−1) has the HEP : Radial projection from the axis at some
point above the cylinder is a retraction.

(2) If (X,A) has HEP then (Y ∪f X,Y ) has HEP for each f : A→ Y :

A
f //

� _

��

Y � _

��

h // C(I, Z)

ev0

��
X //

(1)

55

Y ∪f X
H0

//

(2)

99

Z

(3) If Z is obtained from Y by gluing cells, then (Z, Y ) has HEP : ⇐ 1 , 2 .
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2.34 2. Homotopy

(4) The pair (N∞, {∞}) does not have HEP.

Otherwise, for x 6= ∞ the map t 7→
r(x, t), I → L, maps 0 7→ (x, 0) ⇒
r({x} × I) ⊆ L ∩ ({x} × I) = {(x, 0)},
but r(x, 1) is near r(∞, 1) = (∞, 1) for x
near ∞.

¥ 01234

2.32 Remark. [20, 2.3.7] Let (X,A) has HEP.

(1) If f ∼ g : A→ Y and f extends to X then so does g : By Definition of HEP.

(2) If f : X → Y is 0-homotopic on A, then there exists a mapping g homotopic
to f , which is constant on A :
Consider f on X × {0} and the given homotopy on A× I.

(3) If A = {x0} and Y is path-connected, then every mapping X → Y is homo-
topic to a base-point preserving one :
Consider f on X × {0} and a path w on {x0} × I between f(x0) and y0.

(4) There exists a continuous u : X → I with A = u−1(0) :
Define u(x) := sup{t − pr2(r(x, t)) : t ∈ I}. Then u : X → I is continuous,
u|A = 0, and u(x) = 0 ⇒ t ≤ pr2(r(x, t)) ⇒ pr2(r(x, t)) 6= 0 for t > 0, thus
r(x, t) ∈ A× I for t > 0 and hence also (x, 0) = r(x, 0) ∈ A× I, i.e. x ∈ A.

(5) For closed subsets A of metric spaces Y there always exists a function u :

Y → I as in 4 : Define u(y) := d(y,A) = inf{d(y, a) : a ∈ A}.

2.33 Theorem. [20, 2.3.8] If (X,A) has HEP, then so has (X × I,X × İ ∪A× I).

Proof.
We use 2.30 to show that X × I × I has L :=

X×I×{0}∪(X× İ∪A×I)×I as retract. For this
we consider planes E through the axisX×(1/2, 2).
For planes intersecting the bottom X×I×{0} we
take the retraction r of the intersection E ∩ (X ×
I × I) ∼= X × I (via horizontal projection) onto
the intersection E ∩ L ∼= X × {0} ∪ A × I. For
the other planes meeting the sides we take the
retraction r of the intersection E ∩ (X × I × I) ∼=
X × [0, s/4] ∼= X × [0, s] (via vertical projection)
onto the intersection E ∩L ∼= X×{0}∩A× [0, s].
For this we have to use that the retraction r :
(x, t) 7→ (r1(x, t), r2(x, t)) given by 2.30 can be
chosen such that r2(x, t) ≤ t by replaceing r2(x, t)
by min{t, r2(x, t)}.

Homotopy equivalences

2.34 Definition. [20, 2.4.1] [20, 2.4.2] [20, 2.4.3]

(1) A homotopy equivalence is a mapping having an inverse up to homotopy.
It is enough to assume a homotopy left inverse l and a homotopy right inverse
r, i.e. [l] ◦ [f ] = [id] and [f ] ◦ [r] = [id], since then [f ] ◦ [l] = [f ] ◦ [l] ◦
[id] = [f ] ◦ [l] ◦ [f ] ◦ [r] = [f ] ◦ [id] ◦ [r] = [f ] ◦ [r] = [id]. Two spaces are
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2. Homotopy 2.36

called homotopy equivalent (and we write ∼) iff there exists a homotopy
equivalence between them.

(2) A continuous mapping between pairs is called homotopy equivalence of
pairs, iff there is a mapping of pairs in the opposite direction which is inverse
up to homotopy of pairs.

(3) A subspace A ⊆ X is called deformation retract (DR) iff there is a
homotopy ht : X → X with h0 = idX and h1 : X → A ⊆ X being a
retraction to A ↪→ X.

(4) The subspace A ⊆ X is called strict deformation retract (SDR) iff,

in addition to 3 , ht is a homotopy rel. A and there exists a continuous

u : X → I with A = u−1(0). The later condition is not assumed in [20,
2.4.3]

(5) A subspaceA ⊆ X is called neighborhood deformation retract (NDR)
iff there exists a continuous u : X → I with A = u−1(0) and a homotopy
ht : X → X relative A with h0 = idX and h1(x) ∈ A for u(x) < 1.
Note that the SDRs are exactly the NDRs for which u can be choosen with
u(x) < 1 for all x ∈ X (replace u by u

2 ).
For NDR it suffices to assume that the homotopy ht is a homotopy on
U := {x : u(x) < 1}, since we can replace it by the new homotopy h̃t(x) :=
ht max(0,min(1,2−3u(x)))(x) for all x ∈ U(A), i.e. u(x) < 1. Then

h̃t(x) =

{
x for x ∈ A or u(x) ≥ 2

3

h1(x) for t = 1 and u(x) ≤ 1
3

Thus h̃t extends by id to a homotopy of X and with ũ(x) := min{1, 3u(x)}
we get the NDR property.

2.35 Theorem. [20, 2.4.4] For (X,A) with HEP the following is equivalent:

(1) A ↪→ X is a homotopy-equivalence;

(2) A is a DR of X;

(3) A is an SDR of X.

The implications ( 3 ⇒ 2 ⇒ 1 ) are true without assuming HEP.

Proof. ( 3 ⇒ 2 ) is obvious.

( 2 ⇒ 1 ) Let ht be a homotopy from idX to a retraction h1 : X → A ⊆ X. Then h1

is a homotopy inverse to ι : A ↪→ X, since h1 ◦ ι = idA and ι ◦ h1 = h1 ∼ h0 = idX .

( 1 ⇒ 2 ) Let g be a homotopy inverse to ι : A ↪→ X. Since g◦ι ∼ idA and g : X → A

is an extension of g◦ι, we conclude from 2.32.1 that idA : A→ A has an extension
r : X → A ⊆ X, i.e. a retraction. Moreover, idX ∼ ι ◦ g = r ◦ ι ◦ g ∼ r ◦ idX = r.

( 2 ⇒ 3 ) Let ht : X → X be a homotopy from h0 = idX to a retraction h1 = r :

X → A ⊆ X and let Ht : W := X × İ ∪A× I → X be given by

Ht(x, s) :=

{
hst(r(x)) für s = 1 (the back side)

hst(x) elsewhere, i.e. for x ∈ A or s = 0 (front) or even t = 1 (top).

Because of r(x) = x for x ∈ A the definition coincides on the intersection. Since

the expression for H1 works on X × I and (X × I,W ) has HEP by 2.33 we can

extend H0 to X × I by 2.32.1 . This is the required deformation idX ∼ r rel. A.

Since (X,A) has HEP we have A = u−1(0) for a u : X → I by 2.32.4 .

2.36 Remarks. [20, 2.4.5]
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(1) X is contractible iff it is homotopy-equivalent to a point :

X is contractible :⇔ idX ∼ const∗ ⇔ {∗} ⊆ X is a DR ⇔ {∗} ∼↪→ X.

(2) Every set being star-shaped with respect to some point, has this point as SDR.

Furthermore, Sn−1 ⊆ Rn \ {0} is SDR : The radial homotopy from 2.6.3 is
the strict deformation.

(3) Composition of (S)DRs are (S)DRs :

h(t, x) :=

{
h2(2t, x) for t ≤ 1

2

h1(2t− 1, h2(1, x)) for t ≥ 1
2

where • �
� h

1
∼ // • �

� h
2
∼ // •

and u := max{u2, u1 ◦ h2
1}.

(4) If {∗} is an (S)DR of Y , then so is X×{∗} of X×Y and of X∨Y ⊆ X×Y :
Use ht(x, y) := (x, ht(y)) and u(x, y) := u(y).

(5) If (X,A) is an NDR and (Y,B) is an NDR (SDR), then (X×Y,X×B∪A×Y )
is an NDR (SDR) : Let

ht(x, y) :=


(
h
t
u(y)
u(x)

(x), ht(y)
)

for 0 6= u(x) ≥ u(y)(
ht(x), h

t
u(x)
u(y)

(y)
)

for u(x) ≤ u(y) 6= 0(
x, y
)

for u(x) = 0 = u(y)

and u(x, y) = min{u(x), u(y)}. The continuity of (t, x, y) 7→ ht(x, y) follows,
since ht(x) → ht(x0) = x0 for x → x0 ∈ A uniformly in t and similarly for
ht(y).
If u(x, y) < 1 and say u(x) ≤ u(y) then u(x) < 1 and hence h1(x) ∈ A and
thus h1(x, y) ∈ A×X.

(6) The complement of any k-dimensional affine subspace of Rn has Sn−k−1 as
SDR : Rn \ Rk = Rk × (Rn−k \ {0}) ∼ {0} × (Rn−k \ {0}) ∼= Rn−k \ {0} ∼
Sn−k−1 by 2 , 4 , and 3 .

(7) X × {0} is an SDR of X × I and consequently the apex X × {0} ∈ C(X) is

an SDR of CX : By 2 , 4 , and 2.10.4 .

(8) S1 is a DR of X×S1 for every contractible X and also of the Möbius strip :

By 1 , 4 , and using I × {0} ⊆ I × [−1, 1] for the Möbius strip.

(9) Every handle-body of genus g has S1 ∨ · · · ∨ S1 as SDR.

(10) The infinite comb (see 2.6.4 ) has (+∞, 1) as DR but not as SDR.

2.37 Proposition. [20, 2.4.6] If A is an NDR (SDR) in X and f : A → Y is
continuous, then Y is an NDR (SDR) in Y ∪f X.
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Proof.

Idea: A
f //

_�

��

Y
_�

��

id

##

Details: I ×A
I×f //

_�

��

I × Y
_�

��

pr2

&&
X //

ht   

Y ∪f X

h̃t

##

Y
_�

��

I ×X //

h
%%

I × (Y ∪f X)

h̃

%%

Y
_�

��
X // Y ∪f X X // Y ∪f X

Note that the product of a pushout with a locally compact space is again a pushout.
Let u : Y ∪f X → I be given by u(y) := 0 for y ∈ Y and u([x]) := u(x) for x ∈ X.

2.38 Corollary. [20, 2.4.7] If Z is built from Y by gluing simultaneously cells, then
Y is an SDR in Z \ P , where P is given by picking in every cell a single point.

Proof. Use 2.36.2 and 2.37 .

2.39 Example. [20, 2.4.8] The pointed compact surfaces have S1 ∨ · · · ∨ S1 as
SDR.

Proof. By 1.94 they are S1 ∨ · · · ∨ S1 ∪f (D2 \ {0}). Now use 2.38 .

2.40 Theorem. [20, 2.4.9] For a pair (X,A) and L := X × {0} ∪ A× I ⊆ X × I
the following statements are equivalent:

(1) (X,A) is NDR;

(2) (X × I, L) is SDR;

(3) L is a retract of X × I;

(4) (X,A) has HEP.

Proof.

(1⇒2) By 2.36.5 , since (X,A) is NDR and (I, {0}) is SDR.

(2⇒3) Take r := h1.

(3⇔4) is 2.30 .

(3⇒1) Let r = (r1, r2) be a retraction for L ↪→ X × I.
Define u(x) := sup{t − r2(x, t) : t ∈ I} and ht(x) := r1(x, t). Then A = u−1(0) as

in 2.32.4 . Furthermore, h0(x) = r1(x, 0) = x, ht(a) = r1(a, t) = a for all a ∈ A,
and u(x) < 1⇒ r2(x, 1) > 0⇒ h1(x) = r1(x, 1) ∈ A.

2.41 Dependencies for closed subspaces A ↪→ X.

SDR

!)v~
DR

x� �'

NDR ks
2.40

+3 HEP

2.32.4
��

Retr. A ∼ X A = u−1(0)
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2.42 Counter-Examples.
Prop. L ⊆ E {(∞, 1)} ⊆ E {∞} ⊆ N∞ S1 ⊆ D2 {0} ⊆

∏
I I

SDR – – – – –
NDR=HEP – – – + –

DR – + – – +
Retract + + + – +
A ∼ X + + – – +

A = u−1(0) + + + + –

Here

• (N∞,∞) ∼= ({ 1
n : 0 6= n ∈ N} ∪ {0}, 0),

• E := N∞ × I ∪ [0,+∞]× {0} is the infinite comb,

• and L := {∞} × I ∪ [0,+∞]× {0} ⊆ E.

2.43 Definition. [20, 2.4.10] The mapping cylinderMf of a mapping f : X → Y
is given by Y ∪f (X × I), where f is considered as mapping X × {1} ∼= X → Y .

We have the diagram

X
f //

p�
i

HEP   

Y
nN

SDR~~
Mf

r
>> >>

where f = r ◦ i and i is a closed embedding with
HEP and Y →Mf a SDR (along the generators

X×I) with retraction r (by 2.36.7 and 2.37 ).
To see the HEP, construct a retraction Mf×I →
Mf × {0} ∪X × I by projecting radially in the
plane {x} × I × I from {x} × {1} × {2} and use

2.30 .

X

I

I Y

2.44 Corollary. [20, 2.4.12] Two spaces are homotopy equivalent iff there exists a
third one which contains both as SDRs.

Proof. (⇒) Use the mapping cylinder as third space. Since f is a homotopy equi-

valence, so is i : X →Mf by 2.43 and by the HEP it is an SDR by 2.35 .

(⇐) Use that SDRs are by 2.35 always homotopy equivalences.

2.45 Proposition. [20, 2.4.13] Assume (X,A) has HEP and fj : X ⊇ A→ Y are
homotopic. Then Y ∪f0

X and Y ∪f1
X are homotopy equivalent rel. Y .
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Proof.
Consider the homotopy f : A × I → Y and
the space Z := Y ∪f (X × I). We show that
Y ∪fj X are SDRs of Z and hence are homo-

topy equivalent by 2.44 .

Here we use that if the composite of push-out
and a commuting square is a push-out then

so is the second square, cf. 1.47 .

A
fj //

PO

PO

q�
insj

##

_�

��

Y

��

A× I
f

99

PO

� _

��

X
q�

""

// Y ∪fj X

2.37SDR

��
L

99

_�

2.40.2 SDR

��

Z

X × I
f

99

2.46 Example. [20, 2.4.14] The dunce hat D, i.e. a triangle with sides a, a, a−1

identified, is contractible:

By 1.92 , 2.31.1 , 2.45 , and 1.93.3 we have D ∼= S1 ∪f D2 ∼ S1 ∪id D
2 ∼= D2.

a

aa

2.47 Proposition. [20, 2.4.15] Let A be contractible and let (X,A) have the HEP.
Then the projection X � X/A is a homotopy equivalence.

Proof. Consider
A

ft

��

� � // X

Ft

��

// // X/A

R̃

}}
F̃t
��

A �
� // X // // X/A

Then R̃, being given by factoring F1 (since F1(A) = {∗}), is the desired homotopy

inverse to X → X/A (since F0 = idA and F̃0 = idX/A).
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3. Simplicial Complexes

In this chapter we consider topological spaces (the so-called polyhedra) which can
be treated by combinatorial methods (so called simplicial complexes) and we will
prove homotopy properties for them.

Basic concepts

3.1 Remark (Points in general position). [20, 3.1.1] A finite set of points
x0, . . . , xq in Rn is said to be in general position if one of the following equivalent
conditions is satisfied:

1. The affine subspace {
∑q
i=0 λixi :

∑q
i=0 λi = 1} generated by the xi has

dimension q;

2. No strict subset of {x0, . . . , xq} generates the same affine subspace;

3. The vectors xi − x0 for i > 0 are linear independent;

4. The representation
∑q
i=0 λixi with

∑q
i=0 λi = 1 is unique.

These statements are equivalent, since∑
i

λixi = (1−
∑
i 6=0

λi)x0 +
∑
i 6=0

λixi = x0 +
∑
i 6=0

λi(xi − x0)

So {∑
i

λixi :
∑
i

λi = 1
}

= x0 +
{∑
i 6=0

λi(xi − x0)
}

3.2 Definition (Simplex). [20, 3.1.2] The simplex of dimension q (or short:
q-simplex) generated by points x0, . . . , xq in general position is the set

σ := 〈x0, . . . , xq〉 :=
{∑

i

λixi :
∑
i

λi = 1,∀i : λi > 0
}

Its closure in Rn is the convex hull

σ̄ :=
{∑

i

λixi :
∑
i

λi = 1,∀i : λi ≥ 0
}
.

The points xi are called the vertices of σ. Note that as extremal points of σ̄ they
are uniquely determined. The set σ̇ := σ̄ \ σ is called boundary of σ.

x0

<x0>

x0 x1

<x0 ,x1>

x0 x1

x2

<x0 ,x1 ,x2>

x0

x1

x2

x3

<x0 ,x1 ,x2 ,x3>

3.3 Lemma. [20, 3.1.3] Let σ be a q-simplex. Then (σ̄, σ̇) ∼= (Dq, Sq−1).

Proof. Use 1.10 for the affine subspace generated by σ.

3.4 Definition (Faces). [20, 3.1.4] Let σ and τ be simplices in Rn. Then τ is
called face of σ (and we write τ ≤ σ) iff the vertices of τ form a subset of those of
σ.

3.5 Remark. [20, 3.1.5]

42 andreas.kriegl@univie.ac.at c© 7. Februar 2018
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(1) Every q-simplex has 2q+1 − 1 many faces and it has
(
q+1
p+1

)
many faces of

dimension p: In fact this is the number of none-void subsets (of cardinality
p+ 1) of {x0, . . . , xq}.

(2) The relation of being a face is transitive.

(3) The closure of a simplex σ is the disjoint union of all its faces σ =
⋃
τ≤σ τ :

Remove all summands λixi in x =
∑
i λixi for which λi = 0 to get the face

containing x.

3.6 Definition (Simplicial Complex). [20, 3.1.6] A simplicial complex K is
a finite set of simplices in some Rn with the following properties:

1. σ ∈ K, τ ≤ σ ⇒ τ ∈ K.

2. σ, τ ∈ K, σ 6= τ ⇒ σ ∩ τ = ∅.

The 0-simplices {x0} (or their elements x0) are called vertices and the 1-simplices
are called edges of K.
The number max{dimσ : σ ∈ K} is called dimension of K.

3.7 Definition (Triangulation). [20, 3.1.7] For a simplicial complex K the sub-
space |K| :=

⋃
σ∈K σ is called the underlying topological space. Every space

which is homeomorphic to the underlying space of a simplicial complex is called
polyhedra. A corresponding simplicial complex is called a triangulation of the
space.

3.8 Remark. [20, 3.1.8] We have |K| =
⋃
σ∈K σ̄ and hence every polyhedra is

compact and metrizable :

⋃
σ∈K

σ̄ =
3.5.3

======
⋃
σ∈K

⋃
τ≤σ

τ =
3.6.1

======
⋃
τ∈K

τ = |K|.

Moreover, σ̄ ∩ τ̄ is a either empty or the closure of a common face :

x ∈ σ̄ ∩ τ̄ =
3.5.3

=====⇒ x ∈ σ1 ≤ σ, x ∈ τ1 ≤ τ =
3.6.2

=====⇒ σ1 = τ1 ⊆ σ̄ ∩ τ̄

and each closed convex subset of σ̄ (like σ̄ ∩ τ̄) which consists only of whole faces
has to be the closure of some face, namely the simplex generated by all vertices of
these faces.

3.9 Remarks. [20, 3.1.9]

1. Regular polyhedra are triangulations of a 2-sphere.
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2. There is a triangulation of the Möbius strip by 5 triangles.

1

2

3

4

5

6 1

2

3

4

5

5

1

2

3. There is a (minimal) triangulation of the projective plane by 10 triangles :
Add the cone with the boundary of the Möbiusstrip as base and an apex not
in R3.

4. One can show, that every compact surface, every compact 3-dimensional
manifold and every compact differentiable manifold has a triangulation.

5. It is not known whether every compact manifold has a triangulation.

6. Every ball (and every sphere) has the n-simplex together with all its faces
as a triangulation.

7. A countable union of circles tangent at some point is not a polyhedra, since
it needs infinite many 1-simplices for a decomposition.

3.10 Definition (Carrier Simplex). [20, 3.1.10] For every x ∈ |K| exists a unique

simplex σ ∈ K with x ∈ σ by 3.6.2 . It is called the carrier simplex of x and
denoted carrK(x).

3.11 Lemma. [20, 3.1.11] Every point x ∈ |K| has a unique representation x =∑
i λixi, with

∑
i λi = 1 and λi > 0 and vertices {xi} of K. The xi are the vertices

of the carrier simplex carrK(x) of x.

Conversely, any point x =
∑
i λixi, with

∑
i λi = 1 and λi > 0 and such that the

set of those xi generate a simplex σ ∈ K, belongs to |K|.

3.12 Definition. [20, 3.1.12] A subcomplex is a subset L ⊆ K, that is itself a

simplicial complex. This is exactly the case if τ ≤ σ ∈ L⇒ τ ∈ L (condition 3.6.2
is obvious).

3.13 Lemma. [20, 3.1.13] A subset L ⊆ K is a subcomplex iff |L| is closed in |K|.

Proof. (⇒) since |L| is compact by 3.8 .

(⇐) τ ≤ σ ∈ L ⇒ τ ⊆ σ̄ ⊆ |L| =
⋃
ρ∈L ρ ⇒ ∃ρ : τ = ρ ∈ L, by 3.5.3 and then

3.6.2 .

3.14 Definition (Components of a Complex). [20, 3.1.14] Two simplices σ
and τ are called connectible in K iff there are simplices σ0 = σ, . . . , σr = τ
with σ̄j ∩ σ̄j+1 6= ∅. The equivalence classes with respect to being connectible are
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called the components of K. If there is only one component then K is called
connected.

3.15 Lemma. [20, 3.1.15] The components of K are subcomplexes and their un-
derlying spaces are the path-components (connected components) of |K|.

Proof. Since σ is a closed convex subset of some Rn, it is path-connected and
hence the underlying subspace of a component is (path-)connected. Conversely,
if two simplices σ and τ belong to the same path-component of the underlying
space, then there is a curve c connecting σ with τ . This curve meets finitely many
simplices σ0 = σ, . . . , σN = τ and we may assume that it meets σi before σj for
i < j. By induction we show that all σi belong to the same component of K. In fact
if σ0, . . . , σi−1 does so, then let t0 := min{t ∈ [0, 1] : c(t) ∈ σi}. Then c(t) ∈

⋃
j<i σj

for t < t0 and hence c(t0) ∈
⋃
j<i σj ∩ σi. Thus σi ∩ σj 6= ∅ for some j < i.

3.16 Definition (Simplicial Mapping). [20, 3.1.16] A mapping ϕ : K → L
between simplicial complexes is called simplicial mapping iff

1. It maps vertices to vertices (and we write ϕ({x}) =: {ϕ(x)}); And

2. If σ is generated by vertices x0, . . . , xq then ϕ(σ) is generated by the vertices
ϕ(x0), . . . , ϕ(xq), i.e. ϕ(〈x0, . . . , xq〉) = 〈{ϕ(xi) : 0 ≤ i ≤ q}〉.
Attention: It is not assumed, that the ϕ(xi) are pairwise distinct, so we
need to consider simplices generated by a finite set of vertices.

3.17 Lemma. [20, 3.1.17]

1. A simplicial mapping is uniquely determined by its action on the vertices.

2. If σ ≤ τ ∈ K then ϕ(σ) ≤ ϕ(τ) ∈ L.

3. dim(ϕ(σ)) ≤ dimσ.

Proof. This follows immediately, since ϕ(〈x0, . . . , xq〉) = 〈{ϕ(xi) : 0 ≤ i ≤ q}〉.

3.18 Definition (Underlying continuous Mapping). [20, 3.1.18] Let ϕ : K →
L be a simplicial mapping. Then, by 3.11 ,

|ϕ|
(∑

i

λixi

)
:=
∑
i

λiϕ(xi) for xi ∈ K,
∑
i

λi = 1 and λi ≥ 0

describes a welldefined continuous mapping |ϕ| : |K| → |L| (which is affine on every
closed simplex σ̄).

3.19 Remark. [20, 3.1.19] There are only finitely many simplicial mappings from
K to L. For every simplicial mapping ϕ the mapping |ϕ| is not dimension increasing.

3.20 Lemma. [20, 3.1.21]

1. A mapping ϕ : K → L is a simplicial isomorphism (i.e. has an inverse,
which is simplicial) iff it is simplicial and bijective.

2. For every simplicial isomorphism ϕ the mapping |ϕ| is a homeomorphism.

Proof. ( 1 , ⇐) We have to show that the inverse of a bijective simplicial mapping
is simplicial.

Let ξ = {x} be a vertex of L and ϕ(σ) = ξ. We have to show that σ is a 0-simplex.

Let x0, . . . , xq be the vertices of σ. By 3.16.2 the ϕ(x0), . . . , ϕ(xq) generate the
simplex ξ = ϕ(σ) and hence have to be equal to the single vertex x of ξ. Since ϕ is
injective q = 0 and σ = {x0}. Hence ϕ is bijective on the vertices.
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Now let τ = ϕ(σ) be a simplex in L with vertices y0, . . . , yq. Let x0, . . . , xp be the
vertices of σ. Since ϕ is injective and simplicial the images ϕ(x0), . . . , ϕ(xp) are

distinct and generate the simplex ϕ(σ) by 3.16.2 , hence are exactly the vertices
y0, . . . , yq of τ . Thus p = q and w.l.o.g. ϕ(xj) = yj for all j. So σ is generated by
the ϕ−1(yj) = xj .

Simplicial approximation

3.21 Definition (Simplicial Approximation). [20, 3.2.4] Let K and L be two
simplicial complexes, f : |K| → |L| be continuous. Then a simplicial mapping
ϕ : K → L is called simplicial approximation for f iff for all x ∈ |K| we have

|ϕ|(x) ∈ carrL(f(x)), i.e. f(x) ∈ σ ∈ L⇒ |ϕ|(x) ∈ σ̄. This can be expressed shortly
by ∀σ ∈ L : |ϕ|(f−1(σ)) ⊆ σ̄. In particular, for every x ∈ |K| there is then a simplex

σ ∈ L (namely σ := carrL(f(x))) with f(x), |ϕ|(x) ∈ σ. Note that |ϕ|(σ̄) = ϕ(σ).

3.22 Lemma. [20, 3.2.5] Let ϕ be a simplicial approximation of f , then |ϕ| ∼ f .

Proof. Connect |ϕ|(x) to f(x) by the segment in carrL f(x).

3.23 Example. [20, 3.2.6]

1. Let K := σ̇2. Then X := |K| ∼= S1. If ϕ : K → K is simplicial, then either

ϕ is bijective or not surjective, so |ϕ| has degree in {±1, 0} by 2.16.2 and

2.6.7 . Thus every continuous map f : X → X with |deg(f)| > 1 has no
simplicial approximation.

2. For f : t 7→ 4t(1− t) from [0, 1]→ [0, 1] there is no simplicial approximation
ϕ : K → K := {〈0〉, 〈1〉, 〈0, 1〉}: In fact, carr(f(j)) = {j} for j ∈ {0, 1} and
carr(f( 1

2 )) = {1}, hence any such ϕ must satisfy ϕ(0) = ϕ(1) = 0 and thus

|ϕ|( 1
2 ) = 0 /∈ {1}.

In order to get simplicial approximations we have to refine the triangulation of |K|.
This can be done with the following barycentric refinement.

3.24 Definition (Barycentric Refinement). [20, 3.2.1] The barycenter σ̂ of
a q-simplex σ with vertices xi is given by

σ̂ =
1

q + 1

q∑
i=0

xi.

For every simplicial complex K the barycentric refinement K ′ is given by all
simplices having as vertices the barycenter of strictly increasing sequences of faces
of a simplex in K, i.e.

K ′ := {〈σ̂0, . . . , σ̂q〉 : σ0 < · · · < σq ∈ K}.
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3.25 Theorem. [20, 3.2.2] For every simplicial complex K the barycentric re-
finement K ′ is a simplicial complex of the same dimension dimK and the same
underlying space but with max{d(σ′) : σ′ ∈ K ′} ≤ dimK

1+dimK max{d(σ) : σ ∈ K}.
Here d(σ) := sup{|x− y| : x, y ∈ σ} denotes the diameter of σ.

Proof. If σ0 < · · · < σq, then their barycenters σ̂0, . . . , σ̂q all lie in σ̄q and are in
general position: In fact, let σi = 〈x0, . . . , xni〉 with i 7→ ni strictly increasing and

x =

q∑
i=0

λiσ̂i =
∑
i

λi
1

ni + 1

ni∑
j=0

xj =
∑
j

xj
∑
i

ni≥j

λi
1

ni + 1︸ ︷︷ ︸
=:µj

with
∑
i

λi = 1.

Then ∑
j

µj =
∑
j

∑
i

ni≥j

λi
1

ni + 1
=
∑
i

∑
j

ni≥j

λi
1

ni + 1
=
∑
i

λi = 1.

Since the xi are in general position the µj are uniquely determined and thus also

the λi = (ni + 1)
(
µni −

∑
i′>i λi′

1
ni′+1

)
.

We show now by induction on q := dim(σ) that for σ ∈ K the set {σ′ ∈ K ′ : σ′ ⊆ σ}
is a disjoint partition of σ: For (q = 0) this is obvious. For (q > 0) and x ∈ σ \ {σ̂}
the half-line from σ̂ through x meets σ̇ in some point yx. By induction hypothesis
∃!τ ′ ∈ K ′ : yx ∈ τ ′. Thus yx is a positive convex combination of τ̂0, . . . , τ̂j with
τ0 < · · · < τj . Hence x is a positive convex combination of τ̂0, . . . , τ̂j , σ̂.

Finally, let x′ 6= y′ be two vertices of some σ′ ∈ K ′, i.e. x′ = 1
r+1 (x0 + · · ·+xr) and

y′ = 1
s+1 (x0 + · · ·+xs) with r < s ≤ q ≤ dimK for some simplex σ = 〈x0, . . . , xq〉 ∈

K. Then

|x′ − y′| ≤ 1

r + 1

∑
i

|xi − y′| ≤ max{|xi − y′| : i}

|xi − y′| ≤
1

s+ 1

∑
j 6=i

|xi − xj | ≤
s

1 + s
d(σ) ≤ dimK

1 + dimK
d(σ).

3.26 Corollary. [20, 3.2.3] For every simplicial complex K and every ε > 0 there
is an iterated barycentric refinement K(q) (for some q ∈ N) with d(σ) < ε for all
σ ∈ K(q).

Proof.
(

dimK
1+dimK

)q
→ 0 for q →∞.

3.27 Definition. Star of a Vertex. [20, 3.2.8] Let ξ = {x} be a vertex of K.
Then the star of ξ in K is defined as

stK(ξ) :=
⋃

ξ≤σ∈K

σ =
{
y ∈ |K| : x ∈ carrK(y)

}
,

i.e. y ∈ stK(ξ)⇔ ∃(!)σ : y ∈ σ and ξ ≤ σ ⇔ ξ = {x} ≤ carrK(y)⇔ x ∈ carrK(y).
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x0

3.28 Lemma. [20, 3.2.9] The family of stars of vertices of K forms an open cov-
ering of |K|. For every open covering U of |K| there is a refinement by the stars of
some iterated barycentric refinement K(q) of K.

Proof. For vertices ξ = {x} of K let Kx := {σ ∈ K : x is not vertex of σ}. Then
Kx is a subcomplex of K and hence stK(ξ) = |K| \ |Kx| is open in |K|.
If σ ∈ K and x is any vertex of σ then obviously σ ⊆ stK({x}) and hence the stars
form a covering.

By the Lebesgue-covering lemma (see [6, 3.3.3] or [7, 5.1.5]) applied to the compact
metric space |K|, there is a δ > 0 such that each set of diameter less then δ is

contained in some U ∈ U . Choose by 3.25 a barycentric refinement K(q), such

that d(σ) < δ
2 for all σ ∈ K(q). For every y ∈ stK(q)({x}) we have d(y, x) ≤

max{d(σ) : σ} hence d(stK(q)({x})) ≤ 2 max{d(σ) : σ} < δ, and thus the stars
form a refinement of U .

3.29 Corollary. Simplicial Approximation. [20, 3.2.7] For every continuous
map f : |K| → |L| there is a simplicial approximation ϕ : K(q) → L of f for some
iterated barycentric refinement K(q).

Proof. Let q be chosen so large, that by 3.28 the stars of K(q) form a refinement

of the open covering {f−1(stL({y})) : {y} ∈ L}. For sake of simplicity we write K
instead of K(q). Thus for every vertex ξ ∈ K we may choose a vertex denoted ϕ(ξ) ∈
L with f(stK(ξ)) ⊆ stL(ϕ(ξ)). For σ ∈ K with vertices x0, . . . , xp define ϕ(σ) to be
the simplex generated by the ϕ({xi}). In order to see that ϕ is a simplicial mapping,
we have to show that this simplex belongs to L. Let x ∈ σ be any point in σ. Since
σ ⊆

⋂
i stK({xi}) we get f(x) ∈ f(σ) ⊆ f(

⋂
i stK({xi})) ⊆

⋂
i f(stK({xi})) ⊆⋂

i stL(ϕ({xi})). Thus f(x) ∈ stL(ϕ({xi})), i.e. ϕ({xi}) ≤ carrL(f(x)) =: τ ∈ L,
for all i. Hence |ϕ|(x) ∈ ϕ(σ) := 〈ϕ({x0}), . . . , ϕ({xp})〉 ≤ τ ∈ L and ϕ is a
simplicial approximation of f .

3.30 Corollary. [20, 3.2.10] Let X and Y be polyhedra. Then [X,Y ] is countable.

3.31 Remark. [20, 3.2.11]

We obtain a simplicial approximation χ : K ′ → K of id : |K ′| → |K| by choosing
for every vertex σ̂ ∈ K ′ a vertex χ(σ̂) of σ :
Let σ̂0, . . . , σ̂p be the vertices of some simplex σ′ ∈ K ′ with σ0 < · · · < σp and
hence σ′ ⊆ σp. Then the χ(σ̂j) are vertices of σj ≤ σp and hence they generate a
face of σp ∈ K. Thus χ extends to a simplicial mapping.

Let x ∈ σ′. Then |χ|(x) ∈ χ(σ′) ⊆ σp = carrK(x), hence χ is a simplicial approxi-
mation of id.
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Let σ be any q-simplex of K. Then there exists a unique simplex σ′ ⊆ σ which is
mapped by χ to σ and all other σ′ ⊆ σ are mapped to true faces of σ.

Proof. We use induction on q. For q = 0 this is
obvious, since χ is the identity on σ̂ = σ. If q > 0
and x := χ(σ̂) let τ be the face of σ opposite to x.
By induction hypothesis there is a unique τ ′ ⊆ τ
of K ′ which is mapped to τ . But then the simplex
σ′ generated by τ ′ and σ̂ is the unique simplex
mapped to σ: In fact, any simplex 〈σ̂0, . . . , σ̂r〉 ⊆
σ that is mapped via χ to σ has to satisfy r ≥
dimσ and σ0 < · · · < σr = σ, hence r = dim(σ).
Since χ(σ̂) = x we have that χ(σ̂0), . . . , χ(σ̂r−1)
generate τ and thus τ ′ is the simplex with vertices
σ̂0, . . . , σ̂r−1 by induction hypothesis. Τ’

Σ
`

Σ’

x= ΧHΣ
` L

Τ

Freeing by deformations

3.32 Proposition. [20, 3.3.2] Let K be a simplicial complex and dimK < n.
Then every continuous f : |K| → Sn is 0-homotopic. In particular, this is true for
K := σ̇k+1 with dimK = k < n.

Proof. By 3.29 there exists a simplicial approximation ϕ of f : |K| → Sn = |σ̇n+1|
for some iterated barycentric refinement of K. Then |ϕ| : |K| → Sn cannot be
surjective (since dimK < n) and hence f ∼ |ϕ| is 0-homotopic since Sn \ {∗} is
contractible.

3.33 Theorem. Freeing of a point. [20, 3.3.3] Let (K,L) be a simplicial pair
and en be an n-cell with dimK < n. Then every f0 : (|K|, |L|) → (en, en \ {0}) is
homotopic relative |L| to a mapping f1 : |K| → en \ {0}.

Proof. We first show this result for (|K|, |L|) = (Dk, Sk−1). By 2.36.6 we have

en \ {0} ∼ Sn−1. Hence f0|Sk−1 : Sk−1 → en \ {0} is 0-homotopic by 3.32 . By

2.26 this homotopy gives an extension f1 : Dk = C(Sk−1)→ en \ {0}. Consider a

mapping h : (Dk× I). → en which is f1 on the top, and is f0 on the bottom and on
Sk−1 × {t} for all t ∈ I. Since en is contractible this mapping h is 0-homotopic by

2.6.6 and hence extends to C((Dk× I).) ∼= Dk× I again by 2.26 . This extension
is the desired homotopy.

For the general case we proceed by induction on the number of cells in K \ L.
For K = L the homotopy is constant f0. So let K ⊃ L and take σ ∈ K \ L of
maximal dimension. Then Kσ := K \ {σ} ⊇ L is a simplicial complex. Obviously
|Kσ| ∪ σ̄ = |K| and |Kσ| ∩ σ̄ = σ̇. Consider the diagram

|K|

(3)

��
|Kσ|
. �

==

(1) // en σ̄
/ O

__

(2)oo

|L|
?�

OO

σ̇
�/

HEP

??

P0

aa

(1′)

OO
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By induction hypothesis we have the required homotopy (1) relative |L| on |Kσ|.
Since (σ̄, σ̇) has HEP by 2.31.1 , we may extend its restriction (1’) to σ̇ to a
homotopy (2) on σ̄ with initial value f0. The union of these two homotopies (1)
and (2) gives a homotopy ht rel. |L| indicated by arrow (3) which satisfies h0 = f0

and h1(|Kσ|) ⊆ en \ {0}. By the special case treated above, there is a homotopy
gt : σ̄ → en relative σ̇ with g0 = h1|σ̄ : (σ̄, σ̇)→ (en, en \ {0}) and g1(σ̄) ⊆ en \ {0}.
Let f1 := h1||Kσ| ∪ g1. Then f1(|K|) ⊆ en \ {0} and f0 = h0 ∼ h1 = h1||Kσ| ∪ g0 ∼
h1||Kσ| ∪ g1 = f1 relative |L|.

3.34 Theorem. Freeing of a cell. [20, 3.3.4] Let (K,L) be a simplicial pair and
let Z be obtained from gluing an n-cell en to a space Y and dimK < n. Then every
f : (|K|, |L|)→ (Z, Y ) is homotopic relative |L| to a mapping f1 : |K| → Y .

ÈKÈ

ÈLÈ ÈLÈ

f

Y

Z
en

0

Proof. For 0 ∈ en ⊆ Z we consider the subcomplexes

K0 :=
{
σ ∈ K : f(σ̄) ⊆ Z \ {0}

}
=
{
σ ∈ K : σ̄ ⊆ f−1(Z \ {0})

}
⊇ L and

K1 :=
{
σ ∈ K : f(σ̄) ⊆ en

}
=
{
σ ∈ K : σ̄ ⊆ f−1(en)

}
By passing to an appropriate iteration (again denoted K) of barycentric subdivi-

sions, we may assume that K = K0 ∪K1 by 3.26 .

Now consider the diagram

Y �
� // Z

Z \ {0}

∼

∼
, �

;;
2.38

r

cc

en
7 W

jj

Y
- 


SDR

;;id

OO

|K|

f

OO

(2)

cc

en \ {0} ∼
7 W

ii

, �

::

{0}
0 P

aa

|K0|
- 


;;
f

OO

|K1|

f

OO

7 W

jj
3.33

(1)

dd

|L|

f

OO

- 


;;

|K0 ∩K1|
, �

::

7 W

ii f

OO

By 3.33 there exists a mapping (1) homotopic to f ||K1| relative |K1 ∩K0|. Gluing
the homotopy with the f ||K0| gives a homotopy relative |K0| to a mapping (2).

Composing with the retraction r (homotopic to id relative Y ) from 2.38 gives the
desired mapping f1 : |K| → Y homotopic to f relative |L|. Note that the triangle
on top, as those above (1) and (2) commute only up to homotopy.
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4. CW-Spaces

In this chapter we will generalize the polyhedra to so-called CW-spaces, where the
finiteness condition on the number of building blocks is weakend and the boundary
of the cells need not be a sphere any more.

Basics

4.1 Definition. [20, 4.1.3] A CW-complex is a Hausdorff space X together with
a partition X into cells e, such that the following properties hold:

(C1) For every n-cell e ∈ X there exists a continuous so-called characteristic
map χe : Dn → X, which restricts to a homeomorphism from

◦
Dn onto e

and which maps Sn−1 into the n − 1-skeleton Xn−1 of X, which is defined
to be the union of all cells of dimension less than n in X .

(C2) The closure ē of each cell meets only finitely many cells.

(W) X carries the final topology with respect to ē for all cells e ∈ X .

A CW-space is a Hausdorff-space X, which admits a CW-complex X (which is
called CW-decomposition of X).

Note that if X is finite (X is then called finite CW-complex), then the conditions
(C2) and (W ) are automatically satisfied.

If X = Xn 6= Xn−1 then the CW-complex is said to be of dimension n. If X 6= Xn

for all n, then it is said to be of infinite dimension.

Note that, since the image χ(Dn) of the n-ball under a characteristic map is com-
pact, it coincides with ē and χ : Dn � ē is a quotient mapping. So ė := ē \ e =
χ(Dn)\χ(

◦
Dn) ⊆ χ(Dn \

◦
Dn) = χ(Sn−1) and conversely χ(Sn−1) ⊆ χ(Dn) = ē and

χ(Sn−1) ⊆ Xn−1 ⊆ X \ e, thus χ(Sn−1) = ė and hence in follows that: The char-
acteristic map χ of each e ∈ X is a relative homeomorphism (Dn, Sn−1)→ (ē, ė).

◦
Dn � � //
��
∼=
����

Dn

χe

����

Sn−1? _oo

����
e �
� // e ė? _oo

4.2 Example. [20, 4.1.4] For every simplicial complex K the underlying space |K|
is a finite CW-complex, the cells being the simplices of K and the characteristic
maps the inclusions e ⊆ |K|.
The sphere Sn is a CW-complex with one 0-cell e0 and one n-cell en, in particular
the boundary ė = ē \ e of an n-cell, needn’t be a sphere in contrast to the situation
for simplicial complexes.

The one point union of spheres is a CW-space with one 0-cell and for each sphere
a cell of the same dimension.

S1∨S2 can be made in a different way into a CW-complex by taking a point e0 ∈ S1

different from the base point. Then S1 = e0 ∪ e1 and S1 ∨ S2 = e0 ∪ e1 ∪ e2. But
the boundary ė2 of the two-cell is not even a union of cells.

The compact surfaces of genus g are all CW-complexes with one 0-cell and one 2-
cell and 2g 1-cells (in the orientable case) and g 1-cells (in the non-orientable case),

see 1.94 .
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The projective spaces Pn are CW-complexes with one cell of each dimension from 0

to n, see 1.95 , where F is the characteristic map for the n-cell.

4.3 Definition. [20, 4.1.5] For a subset Y of a CW-decomposition X of a space X
the underlying space Y :=

⋃
{e : e ∈ Y} is called CW-subspace and Y is called

CW-subcomplex, iff Y is a CW-decomposition of Y with the trace topology. In
this situation (X,Y ) is called CW-pair.

Let us first characterize finite CW-subcomplexes:

4.4 Lemma. Let Y be a finite subset of a CW-decomposition X of a space X. Then

Y forms a CW-subcomplex iff Y :=
⋃
{e : e ∈ Y} is closed. Cf. 3.13 .

Proof. (⇒) If Y is a CW-subcomplex, then for every cell e ∈ Y, there is a charac-
teristic map χ : Dn � ēY . Hence ēY is compact and thus coincides with the closure
of e in X, so the finite union Y =

⋃
{ē : e ∈ Y} is closed.

(⇐) Since Y is closed the characteristic maps for e ∈ Y ⊆ X have values in Y and
hence are also characteristic maps with respect to Y. The other properties for a

CW-complex are obvious by the first remark in 4.1 .

4.5 Lemma. [20, 4.1.9] Every compact subset of a CW-complex is contained in
some finite subcomplex. In particular a CW-complex is compact iff it is finite.

Proof. Let X be a CW-complex. We first show that the closure ē of every cell
is contained in a finite subcomplex using induction on the dimension of the cell.
Assume this is true for all cells of dimension less than n and let e be an n-cell. By
(C2) the boundary ė meets only finitely many cells, each of dimension less than n.
By induction hypotheses each of these cells is contained in some finite subcomplex

Xi. Then union of these complexes is again a complex, by 4.4 . If we add e itself
to this complex, we get the desired finite complex.

Let now K be compact. For every e ∈ X with e ∩K 6= ∅ choose a point xe in the
intersection. Every subset A ⊆ K0 := {xe : e∩K 6= ∅} ⊆ K is closed, since it meets
any ē only in finitely many points by (C2). Hence K0 is a discrete compact subset,
and thus finite, i.e. K meets only finitely many cells. Since every ē is contained
in a finite subcomplex, we have that K is contained in the finite union of these
subcomplexes.

The last statement of the lemma is now obvious.

4.6 Corollary. Every CW-complex carries the final topology with respect to its
finite subcomplexes and also with respect to its skeletons.

Proof. Since the closure ē of every cell e is contained in a finite subcomplex by

4.5 and every finite subcomplex is contained in some skeleton Xn, these families
are confinal to {ē : e ∈ X}. Furthermore, the inclusion of each of its spaces into
X is continuous (for the final topology on X induced by the ē by property (W)).
Hence these families induce the same topology. (Let F1 and F2 be two families of
mappings into a space X, and assume F2 is confinal to F1, i.e. for every f1 ∈ F1

there is some f2 ∈ F2 and a map h such that f1 = f2 ◦ h. Let Xj denote the
space X with the final topology induced by Fj . Then the identity from X1 → X2

is continuous, since for every f1 ∈ F1 we can write id ◦f1 = f2 ◦ h)

Now we are able to extend 4.4 to infinite subcomplexes.

4.7 Proposition. Let X a CW-decomposition of X and let Y be a subset of Xand
Y :=

⋃
{e : e ∈ Y}. Then the following statements are equivalent:
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1. Y is a CW-subcomplex of X ;

2. Y is closed in X;

3. For every cell e ∈ Y we have ē ⊆ Y .

Proof. ( 2 ⇒ 3 ) is obvious.

( 1 ⇒ 3 ) follows, since the closure ēY in Y is compact and hence equals ē := ēX .

For the converse directions we show first that ( 3 ) implies:

If A ⊆ Y has closed trace on ē := ēX for each e ∈ Y, then A is closed in X:

By 4.6 it suffices to show that the trace of A on every finite CW-subcomplex

X0 ⊆ X is closed. For each cell e ∈ X0 ∩ Y we have ē ⊆ X0 ∩ Y by 4.4 and ( 3 ).
Hence

X0 ∩A = X0 ∩ Y ∩A =
( ⋃
e∈X0∩Y

ē
)
∩A =

⋃
e∈X0∩Y

(ē ∩A),

which is closed since there are only finitely e ∈ X0 ∩ Y.

( 3 ⇒ 2 ) by taking A = Y in the previous claim.

( 3 ⇒ 1 ) The previous claim shows the condition (W) for Y. The other conditions

for being a CW-complex are obvious since ēX = ēY .

4.8 Corollary. [20, 4.1.6] Intersections and unions of CW-complexes are CW-
complexes. Connected components and topological disjoint unions of CW-complexes
are CW-complexes. If E ⊆ X is family of n-cells, then Xn−1∪

⋃
E is a CW-complex.

Each n-cell e is open in Xn.

Proof. For intersections this follows from (1⇔2) in 4.7 . For unions this follows

from (1⇔3) in 4.7 . The statement on components follows, since e is connected

and by 4.7 (1⇔3). For topological sums it is obvious. That Xn−1 ∪
⋃
E is a CW-

complex follows also from (1⇔ 3) in 4.7 . In particular, Xn \ e = Xn−1 ∪
⋃
{e1 6=

e : e1 an n-cell in Xn} is a CW-space, thus it is closed by (1⇔2) in 4.7 and hence
e is open in Xn.

Further constructions of CW-spaces

4.9 Proposition. [20, 4.2.9] Let X and Y be two CW-complexes. Then X × Y
with cells e× f for e ∈ X and f ∈ Y satisfies all properties of a CW-complex, with
the possible exception of (W ). If X or Y is in addition locally compact, then X×Y
is a CW-complex.

Proof. Take the product of the characteristic maps in order to obtain a character-
istic map for the product cell.

In order to get the property (W) we have to show that the map
⊔
e,f ē× f̄ → X×Y

is a quotient map. Since it can be rewritten as⊔
e

ē×
⊔
f

f̄ →
⊔
e

ē× Y → X × Y

this follows from 1.33 using compactness of ē and locally compactness of Y .

4.10 Proposition. Let (X,A) be a CW-pair. Then A ∪Xn is obtained from A ∪
Xn−1 by gluing all n-cells contained in Xn \A via the characteristic mappings.
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4.11 4. CW-Spaces

Proof. Let E be the set of all n-cells contained in X \ A and let characteristic
mappings χe : Dn � ē for every e ∈ E be chosen. Let χ :=

⊔
e∈E χ

e :
⊔
e∈E D

n �⋃
e∈E e ⊆ Xn. We have to show that the rectangle in

Sn−1 �
� //

K k

xx

Dn
M m

{{

χe

��
ge

��

⊔
e S

n−1 �
� //

χ|⊔
e S

n−1

��

⊔
eD

n

χ

��
⊔
e g

e

��

A ∪Xn−1

gn−1

**

� � // A ∪Xn

g!

$$
Z

is a push-out. So let gn−1 : A ∪ Xn−1 → Z and ge : Dn → Z be given, such
that gn−1 ◦ χe|Sn−1 = ge|Sn−1 . Then g : A ∪Xn → Z, given by g|A∪Xn−1 = gn−1

and g|e = ge| ◦Dn ◦ (χe| ◦Dn)−1 for e ∈ E , is the unique mapping making everything

commutative. It is continuous by property (W), since on ē it equals gn−1 if e ⊆
A ∪Xn−1 and composed with the quotient-mapping χe : Dn → ē it equals ge for
the remaining e (i.e. e ∈ E).

Now we give an inductive description of CW-spaces.

4.11 Theorem. [20, 4.2.2] A topological space X is a CW-complex iff there are
spaces Xn, with X0 discrete, Xn is formed from Xn−1 by gluing n-cells and X is
the limit of the Xn with respect to the natural inclusions Xn−1 ↪→ Xn.

Proof. (⇒) We take Xn to be the n-skeleton. Then X carries the final topology

with respect to the closed subspaces Xn by 4.6 and X0 is discrete (see the proof

of 4.5 ). Taking A := ∅ in 4.10 we get that Xn can be obtained from Xn−1 by
gluing all the n-cells via their corresponding characteristic maps restricted to the
boundary spheres.

(⇐) We first show by induction that Xn is a CW-complex, with n − 1-skeleton
Xn−1 and those cells, which have been glued to Xn−1 to obtain Xn, as n-cells :
For the discrete space X0 this is obvious. Since Xn is
obtained from Xn−1 by gluing n-cells we have that Xn

is Hausdorff by 1.90 and is as set the disjoint union

of the closed subspace Xn−1, which is a CW-complex
by induction hypothesis, and the homeomorphic image⋃
e e of

⊔
eD

n \
⊔
e S

n−1 =
⊔
e

◦
Dn.

⊔
e S

n−1 �
� //

f

��

⊔
eD

n

p

��
Xn−1 �

� // Xn

As characteristic mappings for the n-cells e we may use p|Dn , since it induces a
homeomorphism

◦
Dn → e and it maps Sn−1 to f(Sn−1) ⊆ Xn−1, which is com-

pact and hence contained in a finite subcomplex of Xn−1 by 4.5 . The condition
(W) follows, since Xn carries by construction the final topology with respect to
Xn−1 and p :

⊔
Dn → Xn, and

⊔
Dn carries the final topology with respect to the

inclusion of the summands Dn ⊆
⊔
eD

n.

The inductive limit X := lim−→n
Xn now obviously satisfies all axioms of a CW-

complex – only Hausdorffness is to be checked. So let x, y be different points in X.
They lie in some Xn and we find open disjoint neighborhoods Un and V n in Xn.
We construct open disjoint neighborhoods Uk and V k in Xk with k ≥ n inductively.

In fact, take Uk := Uk−1 ∪ p
(
r−1(Uk−1)

)
, where r :

⊔
Dk \ {0} → Xk−1 is the
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retraction from 2.38 . Then Uk is the image of the open and saturated set Uk−1 t
r−1(Uk−1) ⊆ Xk−1 t

⊔
Dk and hence open, and Uk ∩Xk−1 = Uk−1. Proceeding

the same way with V k gives the required disjoint open sets U :=
⋃
k≥n U

k and

V :=
⋃
k≥n V

k.

Example. Gluing a CW-pair to a CW-space does not give a CW-space in general.
Consider for example a surjective map f : S1 → S2. Then the boundary ė = S1 of
e := (D2)o is not contained in any 1-dimensional CW-complex.

So we define:

4.12 Definition. [20, 4.2.4] A continuous map f : X → Y between CW-complexes
is called cellular iff f(Xn) ⊆ Y n for all n.

4.13 Lemma. Let f : X ⊇ A → Y be given and let Y ′ ⊆ Y and X ′ ⊆ X
be two closed subspaces, such that f(A ∩ X ′) ⊆ Y ′. Then the canonical mapping
Y ′ ∪f ′ X ′ → Y ∪f X is a closed embedding, where f ′ := f |A′ with A′ := A ∩X ′.

Proof.

Consider the commutative diagram:

A′ �
� //

f ′

��

� p

  

X ′ � s

&&

p′|X′

��

A �
� //

f

��

X

p|X

��

Y ′ �
� //� o

��

Y ′ ∪f ′ X ′

ι

&&
Y �
� // Y ∪f X

The dashed arrow ι exists by the
push-out property of the back side.
Since Y ′ ∪f ′ X ′ = Y ′ t p′(X ′ \ A′)
as sets, we get that ι is the inclusion
Y ′ t p′(X ′ \A′) ⊆ Y t p(X \A) and
hence injective.
Now let B ⊆ Y ′ ∪f ′ X ′ be closed,
i.e. B = B1 t p′(B2) with B1 ⊆ Y ′

closed and B2 ⊆ X ′ \ A′ such that
(p′|X′)−1(B) = (f ′)−1(B1) ∪ B2 is
closed in X ′.

In order to show that ι(B) = B1 t p(B2) ⊆ Y ′ ∪ p(X ′ \A′) ⊆ Y ∪ p(X \A) is closed
we only have to show that f−1(B1) ∪B2 is closed in X, which follows from

f−1(B1) ∪B2 =
(
f−1(B1) ∪ (f ′)−1(B1)

)
∪B2 = f−1(B1) ∪

(
(f ′)−1(B1) ∪B2

)
,

since (f ′)−1(B1) ∪B2 ⊆ X ′ ⊆ X is closed and f−1(B1) ⊆ A ⊆ X is closed.

4.14 Theorem. [20, 4.2.5] Let (X,A) be a CW-pair and f : A → Y a cellular
mapping into a CW-complex Y . Then (Y ∪f X,Y ) is a CW-pair with the cells of
Y and of X \A as cells.

Proof. We consider the spaces Zn := Y n ∪fn Xn, where fn := f |An . Note that

An = A ∩ Xn. By 4.13 the Zn form an increasing sequence of closed subspaces

of the Hausdorff space Z := Y ∪f X. Obviously Z0 is discrete and Z carries the

final topology induced by all Zn. So by 4.11 it remains to show that Zn can be

obtained from Zn−1 by gluing all n-cells of Y n and of Xn \An. For this we consider
the following commutative diagram:
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4.18 4. CW-Spaces

tSn−1

PO

� � //

��

tDn

��

��

Y n−1 �
� //� s

&&

Y n � v

))
(1)

��

An−1

PO

fn−1
::

� � //

 m

��

An PO
fn

88

� n

��

Zn−1 �
�

(0)
PO
//

%%

Zn

(4)

||
W

Xn−1 �
� //

@@

An ∪Xn−1 �
� //

(2)

99

Xn

OO

(3)

bb

tSn−1

PO
ff OO

� � // tDn

OO

YY

By 4.13 we have the
closed embedding (0)
and we have to show
that Zn is the push-out
of (0) and the union
of the two mappings
tDn → Y n → Zn and
tDn → Xn → Zn.
So let mappings on all
the Dn and on Zn−1

into a space W be giv-
en whose composites
with the arrows from
Sn−1 into these spaces
are the same.

Using the push-out property (shown in 4.10 ) of Y n, An ∪ Xn−1, Xn, and Zn

we get in succession unique maps (1), (2), (3), and (4). The map (4) is then the
required unique mapping from Zn →W .

4.15 Corollary. [20, 4.2.6] Let (X,A) be a CW-pair with A 6= ∅. Then X/A is a
CW-space with A as one 0-cell and the image of all cells in X \A.

Proof. X/A = {∗} ∪f X by 1.47.1 , where f : A → {∗} is constant, Now apply

4.14 .

4.16 Corollary. [20, 4.2.8] Let X be a CW-complex and n ≥ 1. Then Xn/Xn−1

is a join of spheres of dimension n, for each n-cell one.

Proof. By 4.15 Xn/Xn−1 is a CW-space consisting of one 0-cell and all the n-

cells of X. The characteristic mappings for the n-cells of Xn/Xn−1 into the single

0-cell Xn−1 have to be constant and hence Xn/Xn−1 ∼=
∨
e S

n by 1.97.3 .

4.17 Corollary. [20, 4.2.7] Let Xi be CW-spaces with base-point xi ∈ X0
i . Then

the join
∨
iXi is a CW-space.

Proof.
∨
iXi = (

⊔
iXi)/{xi : i} is a CW-space by 4.8 and 4.15 .

Homotopy properties

4.18 Theorem. [20, 4.3.2] For each CW-pair (X,A) we can find a continuous
function u : X → I s.t. A = u−1(0) and A ↪→ U(A) := u−1({t : t < 1}) is an SDR.
These neighborhoods can be chosen coherently, i.e. U(A ∩B) = U(A) ∩ U(B).
In particular, A ↪→ X is an NDR hence has HEP.

Proof. Let X−1 := ∅. By 4.10 A ∪ Xn is obtained by glueing the n-cells e in

X \ A to A ∪ Xn−1. By 2.38 A ∪ Xn−1 is an SDR in A ∪ Xn \
⊔
e{0e}. Let

the corresponding homotopy relative A ∪Xn−1 be denoted by hnt and the (radial)
retraction by rn := hn1 . Note that rn ◦ hnt = rn.
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We first define a function u : X → [0, 1] by recursive extension as follows:
u|A∪X−1 = 0 and let un := u|A∪Xn be given by un|A∪Xn−1 = un−1 and

un|ē : χe(x) 7→

{
1− ‖x‖

(
1− un−1

(
χe
(
x
‖x‖
)))

für 0 6= x ∈ Dn

1 für 0 = 0e ∈ Dn

Then un is a well-defined continuous map with (un)−1(0) = A and by 4.6 the
same holds for u.

Let U(A) := {x ∈ X : u(x) < 1} and Un := U(A) ∩ (A ∪ Xn) = {x ∈ A ∪ Xn :
un(x) < 1}. Note that the homotopy hnt on A∪Xn\

⊔
e{0e} restricts to a homotopy

on Un with final value rn : Un → Un−1, since with every point x ∈ Un = Un−1 ∪
{χ(x) : x 6= 0 and χ(x/‖x‖) ∈ Un−1} the whole path {hnt (x) : t ∈ I} belongs to Un

and un|A∪Xn−1 = un−1.

By induction on n we construct now homotopies Hn
t : Un → Un, by

Hn
t :=


id for t ≤ 1

n+1 ,

hns for 1
n+1 ≤ t ≤

1
n where s := n

(
t(n+ 1)− 1

)
∈ [0, 1],

Hn−1
t ◦ rn for t ≥ 1

n .

Then Hn
t is well-defined and Hn

t |Un−1 = Hn−1
t , since Hn−1

t = id for t ≤ 1
n and

hns |A∪Xn−1 = id. The union Ht :=
⋃
n∈NH

n
t : U(A) → U(A) is the required

deformation relative A and, since rn ◦ hns = rn, (Hn−1
t ◦ rn)(Un) ⊆ Un−1, and

rn|Un−1 = id, we get by induction

Hn
1 ◦Hn

t = Hn−1
1 ◦ rn ◦Hn

t =

=

{
Hn−1

1 ◦ (rn ◦ hns ) = Hn−1
1 ◦ rn for t ≤ 1

n

Hn−1
1 ◦ rn ◦ (Hn−1

t ◦ rn) = (Hn−1
1 ◦Hn−1

t ) ◦ rn = Hn−1
1 ◦ rn for t ≥ 1

n

= Hn
1 .

Thus H1 ◦Ht = H1 = r0 ◦ r1 ◦ . . . ◦ rn ◦ . . . : U(A) → · · · → Un−1 → · · · → U0 →
U−1 = A.

In order to show that A ↪→ X is an NDR we consider a new homotopy H̃t(x) :=

Ht max(0,min(1,2−3u(x)))(x) for all x ∈ U(A), i.e. u(x) < 1. Since H̃t(x) = x for x ∈ A
or u(x) ≥ 2

3 it extends by id to a homotopy of X rel. A. Since H̃1(x) = H1(x) for

u(x) ≤ 1
3 we get the NDR property with ũ(x) := min{1, 3u(x)}.

By recursive construction, we have Un(A ∩B) = Un(A) ∩ Un(B).

4.19 Corollary. [20, 4.3.3] Every point x in a CW-complex X has an open neigh-
borhood, of which it is an SDR.

Proof. Let e be the cell containing x and n its dimension. By 4.18 A := Xn

is an NDR of X, so there is a neighborhood U(A) ⊆ X and a homotopy Ht :
U(A) → U(A) between the identity and a retraction r := H1 : U(A) → A and we
have shown that r ◦Ht = r. So we may restrict this homotopy to the open subset
r−1(e) ⊆ U(A), showing that e is an SDR in r−1(e). Since x is an SDR in e we

obtain the required result by transitivity 2.36.3 .

4.20 Theorem. Cellular approximation. [20, 4.3.4] For every continuous f0 :
X → Y between CW-complexes there exists a homotopic cellular mapping. If f0 is
cellular on some CW -subspace A, then the homotopy can be chosen to be rel. A.

Proof. We recursively extend the constant homotopy on A to a homotopy hnt :
A ∪Xn → Y with hn1 being cellular. For the induction step we use for each n-cell
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e ⊆ X \ A a characteristic mapping χ : Dn → ē. By induction hypothesis we get a
mapping ϕ0 : (Dn × {0}) ∪ (Sn−1 × I)→ Y given by f0 ◦ χ on the bottom and by
hn−1
t ◦ χ on the mantle Sn−1 × {t} with hn−1

1 ◦ χ : Sn−1 → Xn−1 → Y n−1 ⊆ Y n.

Since the domain of ϕ0 is a retract in Dn × I by 2.31.1 and 2.30 we can extend
it to a mapping again denoted ϕ0 on Dn × I. The image ϕ0(Dn × {1}) is compact

and hence contained in a finite CW-complex by 4.5 . Let en1 , . . . , enr be its cells

of dimensions nr ≥ · · · ≥ n1 > n. Then ϕ0|Dn×{1} : (Dn × {1}, Sn−1 × {1}) →
(Y n ∪ en1 ∪ · · · ∪ enr , Y n) is well defined. Applying now 3.34 r-times we can

deform ϕ0|Dn×{1} successively relative Sn−1 × {1} so, that its image finally avoids
enr ∪ · · · ∪ en1 . Let ϕt be the corresponding homotopy.

We can extend ϕ1 : Dn × {1} → Y n via ϕ0 to a con-
tinuous mapping on the boundary (Dn × I)., which is
homotopic to ϕ0|(Dn×I). relative Dn × {0} ∪ Sn−1 × I
via ϕt. The pair (Dn × I, (Dn × I).) ∼= (Dn+1, Sn) is a

CW-pair and hence has the HEP by 4.18 and ϕ0 lives
on Dn × I, so ϕ1 can be extended to Dn × I as well by

2.32.1 . Now ϕ1 factors over the quotient mapping χ×I
to a homotopy t 7→ hnt |ē. The union of the hnt |e gives the
required hnt .

Sn−1 �
� //

χ

����

ϕ0( ,t)

""

Dn

χ

����

ϕ1( ,t)

~~
Y

ė �� //

hn−1
t

<<

ē

hnt |ē

aa

4.21 Corollary. [20, 4.3.5] Let f0, f1 : X → Y be homotopic and cellular. Then
there exists a homotopy H : X × I → Y such that Ht(X

n) ⊆ Y n+1 for all n.

Note that the inclusions of the endpoints in I are homotopic and cellular, but every
homotopy has to map that point into the 1-skeleton.

Proof. Consider the CW-pair (X×I,X×İ) and the given homotopy f : X×I → Y .
Since by assumption its boundary value f |X×İ is cellular, we can find another

mapping H : X × I → Y by 4.20 , which is cellular and homotopic to f relative

X × İ. Thus H is the required homotopy, since for 0 < t < 1 and every n-cell en of
X the image Ht(e

n) = H(en × {t}) is contained in H(en × e1) ⊆ Y n+1.
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Basic properties of the fundamental group

5.1 Definition. [20, 5.1.1] A path is a continuous mapping u : I → X. The
concatenation u0 · u1 of two paths u0 and u1 is defined by

(u0 · u1)(t) :=

{
u0(2t) for t < 1

2

u1(2t− 1) for t ≥ 1
2

.

It is continuous provided u0(1) = u1(0).

The reverse path u−1 : I → X is given by u−1(t) := u(1− t).
Note that concatenation is not associative and the constant path is not a neutral
element. The corresponding identities hold only up to reparametrizations.

5.2 Lemma. Reparametrization. [20, 5.1.5] Let u : I → X be a path and

f : I → I be the identity on İ. Then u ∼ u ◦ f rel. İ.

Proof. A homotopy is given by h(t, s) := u(ts+ (1− t)f(s)), see 2.4 .

5.3 Corollary. [20, 5.1.6]

1. Let u, v and w be paths with u(1) = v(0) and v(1) = w(0), then (u · v) ·w ∼
u · (v · w) rel. İ.

2. Let u be path with x := u(0), y := u(1) then constx ·u ∼ u ∼ u · consty rel.

İ.

3. Let u be a path with x := u(0) and y := u(1). Then u · u−1 ∼ constx and

u−1 · u ∼ consty rel. İ.

Proof. In (1) and (2) we only have to reparametrize. In (3) we consider the homo-
topy, which has constant value on each circle with center (1

2 , 0).

0
����

1

2
����

3

4

1
0

1�2

1�4

1

0
����

1

2

1
0

1

u u

uHtL
uH0L

x0

0
����

1

2

1
0

1

5.4 Definition. [20, 5.1.7] Let (X,x0) be a pointed space. Then the fundamental
group (or first homotopy group) is defined by

π1(X,x0) := [(I, İ), (X, {x0})] ∼= [(S1, {1}), (X, {x0})],
where multiplication is given by [u] · [w] := [u · w], the neutral element is 1x0

:=

[constx0
] and the inverse to [u] is [u−1]. This gives a group by 5.3 .

5.5 Lemma. [20, 5.1.8] Let u : I → X be a path from x0 to x1.
Then conj[u] : π1(X,x0)→ π1(X,x1) is a group isomorphism, where conj[u] : [v] 7→
[u]−1 · [v] · [u] := [u−1 · v · u].
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5.6 Lemma. [20, 5.1.10] Let h : I2 → I2 be as follows:

H0,0L

H0,0L

H1,0L

H0,1L H1,1L

H1,1L

(j, t) 7→ (j, j) for t ≤ 1
2 , j ∈ {0, 1}

(t, 0) 7→

{
(2t, 0) for t ≤ 1

2

(1, 2t− 1) for t ≥ 1
2

(t, 1) 7→

{
(0, 2t) for t ≤ 1

2

(2t− 1, 1) for t ≥ 1
2

and a piecewise affine homeomorphism on the interior, i.e.

h(t, s) :=

(1− 2t)(0, 0) + 2t
(
s(0, 1) + (1− s)(1, 0)

)
for t ≤ 1/2

(2− 2t)
(
s(0, 1) + (1− s)(1, 0)

)
+ (2t− 1)(1, 1) for t ≥ 1/2

For continuous f : (I2). → X and uj(t) := f(t, j) resp. vj(s) := f(j, s) its values
on the 4 edges the following statements are equivalent:

1. There exists a continuous extension of f to I2;

2. f is 0-homotopic;

3. There exists a continuous extension of f ◦ h to I2;

4. uo · v1 ∼ v0 · u1 rel. İ.

Proof.
( 1 ⇔ 2 ) was shown in 2.26 .

( 3 ⇔ 4 ) f ◦h : (I2). → X is the boundary data

for the homotopy required in ( 4 ).

( 1 ⇒ 3 ) Take f̃ ◦ h := f̃ ◦ h.

( 3 ⇒ 1 ) Since f̃ ◦ h is constant on h−1(s, t) for

all (s, t) ∈ (I2)., it factors over the quotient map-
ping h : I2 → I2 to a continuous extension
f̃ : I2 → X.

(I2).
h // //

_�

��

(I2).
_�

�� f

��

I2 h // //

f̃◦h ,,

I2

f̃

""
X

5.7 Corollary. Let X be a topological group (monoid) then π1(X, 1) is abelian,
where 1 denotes the neutral element of X.

Proof. Consider the map f̃ : (t, s) 7→ u(t) · v(s) and apply 1 ⇒ 4 of 5.6 .

5.8 Proposition. [20, 5.1.12] Let V : π1(X,x0) = [(S1, {1}), (X, {x0})]→ [S1, X]
be the mapping forgetting the base-points. Then

1. [u] is in the image of V iff u(1) can be connected by a path with x0.

2. V is surjective iff X is path-connected.

3. V (α) = V (β) iff there exists a γ ∈ π1(X,x0) with β = γ−1 · α · γ.

4. V is injective iff π1(X,x0) is abelian.

5. The ‘kernel’ V −1([constx0 ]) of V is trivial.

Warning: Since V is not a group-homomorphism, 5 does not contradict 4 .

Proof. ( 1 ) [u] is in the image of V iff u is homotopic to a base point preserving
closed path. Such a homotopy evaluated at the base-point gives a path connecting
u(1) with x0. Conversely, any path v from u(1) to x0 can be used to give a homotopy
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between u and a base point preserving path (namely v−1 · u · v) by 2.32.3 (since

(S1, {1}) has HEP by 4.18 ).

( 1 ⇒ 2 ) is obvious.

( 3 ) Let α = [u] and β = [v]. Then V (α) = V (β) iff u is homotopic to v.

(⇒) Let h be such a homotopy, w(s) := h(j, s) for j ∈ İ and γ := [w]. Then by

( 1 ⇒ 4 ) in 5.6 we have w ·v ∼ u·w rel. İ, i.e. γ ·β = α·γ and hence β = γ−1 ·α·γ.

(⇐) Let β = γ−1 · α · γ and γ = [w]. Then γ · β = α · γ and hence w · u ∼ v ·w rel.

İ. Then by ( 1 ⇐ 4 ) in 5.6 we have u ∼ v, i.e. V (α) = V (β).

( 3 ⇒ 4 )

(⇒) Let α, γ ∈ π1(X) and β := γ−1 ·α ·γ. By ( 3 ) we have V (α) = V (β) and since
V is assumed to be injective we get α = β, i.e. γ · α = α · γ.

(⇐) Conversely, if V (α) = V (β), then by ( 3 ) there exists a γ ∈ π1(X) with

β = γ−1 · α · γ = α by commutativity.

( 3 ⇒ 5 ) Let V (α) = [constx0 ] = V (constx0). By ( 3 ) there exists a γ with α =

γ−1 · [constx0 ] · γ = γ−1 · γ = 1.

5.9 Corollary. [20, 5.1.13] Let X be path-connected. Then the following statements
are equivalent:

1. π1(X,x0) ∼= 1 for some (any) x0 ∈ X, i.e. every u : (S1, {1}) → (X, {x0})
is 0-homotopic rel. {1};

2. [S1, X] = {0}, i.e. every u : S1 → X is 0-homotopic;

3. Any two paths which agree on the endpoints are homotopic rel. İ.

A path-connected space satisfying these equivalent conditions is called simply con-
nected.

Proof. ( 1 ⇒ 2 ) since V : π1(X,x0)→ [S1, X] is onto by 5.8.2 .

( 2 ⇒ 3 ) Let u0 and u1 be two such paths with ui(j) = xj for i, j ∈ {0, 1}. For

vj := constxj the mapping f : (I2)· → X given by u0, v1, u1, and v0 on the

4 edges is by assumption 0-homotopic (i.e. f considered as mapping S1 → X is

u0 · v1 · u−1
1 · v−1

0 ∼ 0 by 2 ), hence f extends to I2 ∼= C(S1) by 2.26 , i.e. to a

homotopy u0 ∼ u1 rel. İ .

( 3 ⇒ 1 ) is obvious, since then u ∼ constx0
rel. İ.

Corollary. Let X be contractible, then X is simply connected.

Proof. By 2.6.6 we get that [S1, X] = {0} provided X is contractible.

5.10 Example. [20, 5.1.9] Let X be a CW-complex without 1-cells, e.g. X = Sn

for n > 1. Then π1(X,x0) = {1} for each x0 ∈ X0.

In fact, every u : (I, İ)→ (X,x0) is by 4.20 homotopic rel. İ to a cellular mapping

v, i.e. v(I) ⊆ X1 = X0, hence v is constant.

Note that such an X is path-connected iff it has exactly one 0-cell.

(⇒) Let x0 and x1 be two 0-cells and u be a path between them. By 4.20 u is

homotopic to a cellular and hence constant path rel. İ, since X has no 1-cells. Thus
x0 = x1.
(⇐) Since balls are path-connected each point in Xn can be connected with some
point in Xn−1 and by induction with the unique point in X0.
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5.11 Definition. [20, 5.1.15] Every f : (X,x0) → (Y, y0) induces a group homo-
morphism π1(f) : π1(X,x0)→ π1(Y, y0) given by π1(f)[u] := [f ◦ u]:
Just use that u ∼ v ⇒ f ◦ u ∼ f ◦ v and f ◦ (u · v) = (f ◦ u) · (f ◦ v) to get
well-definedness and the homomorphy-property.
We will often use the notation f∗ as an abbreviation of π1(f).

5.12 Corollary. [20, 5.1.16] π1 is a functor from the category of pointed topological
spaces to that of groups, i.e. preserves identities and commutativity of diagrams.

5.13 Proposition. [20, 5.1.18] π1 is homotopy invariant.
More precisely: If f ∼ g rel. x0 then π1(f) = π1(g). If f ∼ g then π1(g) =
conj[u] ◦π1(f), where u is the path given by the homotopy at x0. If f : X → Y is a

homotopy equivalence then π1(f) : π1(X,x0)→ π1(Y, f(x0)) is an isomorphism.

Proof. If f ∼ g rel. x0 and [v] ∈ π1(X,x0) then f ◦ v ∼ g ◦ v rel. İ, i.e. π1(f)[v] =
[f ◦ v] = [g ◦ v] = π1(g)[v].

If h is a free homotopy from f to g, then w(t) := h(t, x0) defines a path from f(x0)

to g(x0). And applying ( 1 ⇒ 4 ) in 5.6 to (s, t) 7→ h(t, v(s)) we get (f ◦ v) · w ∼
w · (g ◦ v) rel. İ, and hence [f ◦ v] · [w] = [(f ◦ v) ·w] = [w · (g ◦ v)] = [w] · [g ◦ v], i.e.
π1(g)[v] = [g ◦ v] = [w]−1 · [f ◦ v] · [w] = [w]−1 · π1(f)[v] · [w] = (conj[w] ◦π1(f))([v]).

Let now f : X → Y be a homotopy equivalence with homotopy inverse g : Y → X.
Then up to conjugation π1(f) and π1(g) are inverse to each other.

The fundamental group of the circle

5.15 Proposition. [20, 5.2.2]
The composition deg ◦V : π1(S1, 1)→ [S1, S1]→ (Z,+) is a group isomorphism.

Proof. By 2.15 we have that deg is a bijection. Since S1 is path-connected the

map V is surjective by 5.8.2 . Since S1 is a topological group the map V is also

injective by 5.7 and 5.8.4 .

Remains to show that the composite is a group-homomorphism: Recall that deg([u])
is given by evaluating at 1 the lift ũ : R→ R of the path u : (S1, {1})→ (S1, {1})
with ũ(0) = 0 and exp(2πiũ(t)) = u(exp(2πit)). Given u, v ∈ π1(S1, 1) with lifts ũ
and ṽ, then the lift of u · v is given by

t 7→

{
ũ(2t) for t ≤ 1

2

ũ(1) + ṽ(2t− 1) for t ≥ 1
2 .

5.16 Corollary. [20, 5.2.4] π1(X,x0) ∼= Z for every space X which is homotopy
equivalent S1. In particular this is true for C \ {0}, the Möbius strip, a full torus
and the complement of a line in R3 since they all contain S1 as SDR.

Constructions from group theory

5.17 Definition. [20, 5.3.1] We will denote with 1 the neutral element in a
given group.

A subgroup of a group G is a subset H ⊆ G, which is with the restricted group
operations itself a group, i.e. h1, h2 ∈ H ⇒ h1h2 ∈ H, h−1

1 ∈ H, 1 ∈ H.
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The subgroup 〈X〉SG generated by a subset X ⊆ G is defined to be the smallest
subgroup of G containing X, i.e.

〈X〉SG :=
⋂
{H : X ⊆ H ≤ G} =

{
xε11 · · · · · xεnn : xj ∈ X, εj ∈ {±1}

}
.

Given an equivalence relation ∼ on G we can form the quotient set G/∼ and have
the natural mapping π : G → G/∼. In order that G/∼ carries a group structure,
for which π is a homomorphism, i.e. π(x · y) = π(x) ·π(y), we need precisely that ∼
is a congruence relation, i.e. x1 ∼ x2, y1 ∼ y2 ⇒ x−1

1 ∼ x−1
2 , x1 · y1 ∼ x2 · y2.

Then H := {x : x ∼ e} = π−1(e) is a normal subgroup (we write H / G), i.e.
is a subgroup such that g ∈ G, h ∈ H ⇒ g−1hg ∈ H. And conversely, for normal
subgroups H/G we have that x ∼ x·h for all x ∈ G and h ∈ H defines a congruence
relation ∼ and G/H := G/∼ = {gH : g ∈ G}. This shows, that normal subgroups
are exactly the kernels of group homomorphisms. Every surjective group morphism
p : G→ G1 is up to an isomorphism G→ G/ ker p.

The normal subgroup 〈X〉NG generated by a subset X ⊆ G is defined to be the
smallest normal subgroup of G containing X, i.e.

〈X〉NG :=
⋂
{H : X ⊆ H C G} =

{
g−1

1 y1g1 · · · · · g−1
n yngn : gj ∈ G, yj ∈ 〈X〉SG

}
.

5.18 Definition. Let Gi be groups. Then the product
∏
iGi of the {Gi : i} is

defined to be the solution of the following universal problem:

Gi
∏
iGi

prioo

H

fi

``
(fi)i

!

<<

A concrete realization of
∏
iGi is the cartesian product with the component-wise

group operations.

5.19 Definition. Let Gi be groups. Then the coproduct (free product)
∐
iGi

of is defined to be the solution of the following universal problem:

Gi
fi

  

inji // ∐
iGi

!

(fi)i

||
H

Remark. [20, 5.3.3] A concrete realization of
∐
iGi is constructed as follows. Take

the set X of all finite sequences of elements of the disjoint union
⊔
iGi. With

concatenation of sequences X becomes a monoid, where the empty sequence is
the neutral element. Every Gi is injectively mapped into X by mapping g to the
sequence with the single entry g. However this injection is not multiplicative and X
is not a group. So we consider the congruence relation generated by (g, h) ∼ (gh) if
g, h belong to the same group and (1i) ∼ ∅ for the neutral element 1i of any group
Gi. Then X/∼ is a group and the composite Gi → X → X/∼ is the required group
homomorphism and this object satisfies the universal property of the coproduct.

In every equivalence class of X/∼ we find a unique representative of the form
(g1, . . . , gn), with gj ∈ Gij \{1} and ij 6= ij+1. Since (g1, . . . , gn) is just the product
of the images of gi ∈ Gi we may write this also as g1 · . . . · gn.
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5.20 Definition. [20, 5.7.8] Let H, G1, G2 be groups and fj : H → Gj group
homomorphisms. Then the push-out G1

∐
H G2 of (f1, f2) is a solution of the

following universal problem:

H
f2 //

f1

��

G2

g2

�� k2

��

G1
g1 //

k1 ,,

G1

∐
H G2

!

$$
K

It can be constructed as follows:

G1

∐
H

G2 := (G1 qG2)/N , where N :=
〈
f1(h) · f2(h)−1 : h ∈ H

〉
NG

and where gj is given by composing the inclusion Gj → G1 qG2 with the natural
quotient mapping G1 qG2 → (G1 qG2)/N .

5.21 Definition. [20, 5.6.3] Let G be a group. Then the abelization abG of G is
an abelian group being solution of the following universal problem:

G
f

��

π // abG

!

f̃

}}
A

where A is an arbitrary abelian group.

A realization of abG is given by G/G′, where the commutator subgroup G′

denotes the normal subgroup generated by all commutators [g, h] := ghg−1h−1.
Note thatG′ = {[g1, h1]·· · ··[gn, hn] : gj , hj ∈ G}, since g[h1, h2]g−1 = [gh1g

−1, gh2g
−1].

Remark. From general categorical results we conclude that the product (and more
general limits) in the category of abelian groups is the product (limit) formed in
that of all groups. And abelization of a coproduct (more generally a colimit) is
just the coproduct (colimit) of the abelizations formed in the category of abelian
groups.

5.22 Definition. [20, 5.3.7] Let Gi be abelian groups. Then the coproduct (di-
rect sum) ab

∐
iGi of the Gi is defined to be the solution of the following universal

problem:

Gi
fi

��

inji // ab∐
iGi

!

(fi)i

{{
H

where H is an arbitrary abelian group.

Remark. A concrete realization of ab
∐
iGi is given by those elements of

∏
iGi,

for which almost all coordinates are equal to the neutral element.
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5.23 Definition. [20, 5.5.3] Let X be a set. Then the free group F(X) is the
universal solution to

X
f

��

ι // F(X)

!

f̃

||
H

where the arrows starting at X are just mappings and f̃ is a group homomorphism.

Remark. [20, 5.5.2] One has F(X) ∼= F(
⊔
x∈X{x}) ∼=

∐
x∈X F ({x}) by a general

categorical argument, and F({∗}) ∼= Z, as is easily seen.

5.24 Definition. Let X be a set. Then the free abelian group abF(X) is the
universal solution to

X

f

��

ιi // abF(X)

!

f̃

{{
A

where the arrows starting at X are just mappings and f̃ is a group homomorphism.

Remark. By a general categorical argument we have ab(F(X)) ∼= abF(X). And
abF(X) ∼= ab

∐
x F({x}) ∼= ab

∐
x Z, which are just the finite sequences in ZX .

We will show in 9.20 the any subgroup of a free abelian group is itself a free
abelian group.

5.25 Definition. [20, 5.6.1] Given a set X and a subset R ⊆ F(X) we define

〈X : R〉 := F(X)/〈R〉NG
to be the group with generators X and defining relations R.
If G ∼= 〈X : R〉, then 〈X : R〉 is called a representation of the group G.

5.26 Examples. One has F(X) = 〈X : ∅〉 and Zn := 〈{x} : {xn}〉.
More generally,

∐
j〈Xj : Rj〉 = 〈

⊔
Xj :

⋃
j Rj〉.

Moreover, ab〈X : R〉 = 〈X : R ∪ {[x, y] : x, y ∈ X}〉

5.27 Remark. [20, 5.8.1] Obviously we have:

1. 〈X : R〉 ∼= 〈X : R ∪ {r′}〉 for r′ ∈ 〈R〉NG.
2. 〈X : R〉 ∼= 〈X ∪ {a} : R ∪ {a−1 · w}〉 for a /∈ X and w ∈ F(X).

These operations are called Tietze operations.

5.28 Theorem. [20, 5.8.2] Two finite representations 〈X : R〉 and 〈Y : S〉 describe
isomorphic groups iff there is a finite sequence of Tietze operations converting one
description into the other.

Proof. Let f : 〈X : R〉
∼=→ 〈Y : S〉 be an isomorphism with inverse g.

For each x ∈ X we choose f̃(x) ∈ f([x]) ⊆ F(Y )
and similarly g̃(y) ∈ g([y]) ⊆ F(X). By the universal

propery we may extend f̃ and g̃ to homomorphisms
f̃ : F(X)→ F(Y ) and g̃ : F(Y )→ F(X). Let

X // //

(1)

��

F(X) // //

f̃ (2)

��

〈X : R〉

f∼=
��

F(Y ) // // 〈Y : S〉

S̃ := {x−1 · f̃(x) : x ∈ X} ⊆ F(X t Y ) and R̃ := {y−1 · g̃(y) : y ∈ Y } ⊆ F(X t Y ).
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For symmetry reasons it suffices to show that a finite sequence of Tietze-operations

of 5.27 applied to 〈X : R〉 gives 〈X t Y : R ∪ R̃ ∪ S ∪ S̃〉:
Applying the operation 5.27.2 successively for every y ∈ Y to 〈X : R〉 obviously

yields 〈X t Y : R ∪ R̃〉.

For every y ∈ F(Y ) we have y−1 ·g̃(y) ∈ 〈R̃〉NG ⊆ F(XtY ): In fact, y = yε11 ·· · ··yεnn
for some yi ∈ Y and εi ∈ {±1}, y−1

1 ·g̃(y1) ∈ R̃⇒ g̃(y1)−1 ·y1 ∈ 〈R̃〉 ⇒ y1 ·g̃(y1)−1 =

y1 · (g̃(y1)−1 · y1) · y−1
1 ∈ 〈R̃〉NG ⇒ z := y−ε11 · g̃(y1)ε1 ∈ 〈R̃〉NG ⇒

y−1 · g̃(y) = (yε11 · · · yεnn )−1 · g̃(y1)ε1 · · · g̃(yn)εn

= (yε12 · · · yεnn )−1 · y−ε11 · g̃(y1)ε1︸ ︷︷ ︸
=z

· g̃(y2)ε2 · · · g̃(yn)εn︸ ︷︷ ︸
=:p

= (yε22 · · · yεnn )−1 · g̃(y2)ε2 · · · g̃(yn)εn︸ ︷︷ ︸
∈〈R̃〉NG by induction hypothesis

· p−1 · z · p︸ ︷︷ ︸
∈〈R̃〉NG

∈ 〈R̃〉NG.

For y ∈ S we have [g̃(y)] = g([y]) = g(1) = 1, i.e. g̃(y) ∈ 〈R〉NG. Therefore

y = g̃(y) · (y−1 · g̃(y))−1 ∈ 〈R ∪ R̃〉NG, i.e. S ⊆ 〈R ∪ R̃〉NG.

For x ∈ X and y := f̃(x) we have [g̃(y)] = g([y]) = g([f̃(x)]) = g(f([x])) = [x],

hence x−1 ·g̃(y) ∈ 〈R〉NG and thus x−1 ·f̃(x) = x−1 ·g̃(y)·(y−1 ·g̃(y))−1 ∈ 〈R∪R̃〉NG,

i.e. S̃ ⊆ 〈R ∪ R̃〉NG.

Applying the operation 5.27.1 successively for every y ∈ S̃ ∪S to 〈X tY : R∪ R̃〉
yields therefore 〈X t Y : R ∪ R̃ ∪ S ∪ S̃〉.

Remark. The word problem for finitely presented groups is the problem to deter-
mine whether two elements w,w′ ∈ F(X) define the same element of 〈X : R〉, or
equivalently whether w−1w′ ∈ 〈R〉NG.

The isomorphy problem is to determine whether two finite group representations
describe isomorphic groups.

It has been shown that both problems have no algorithmic solution.

Group descriptions of CW-spaces

5.29 Proposition. [20, 5.2.6] For pointed spaces (Xi, xi) we have the following
isomorphism π1(

∏
iXi, (xi)i) ∼=

∏
i π1(Xi, xi).

Proof. Obvious, since [(Y, y), (
∏
iXi, (xi)i)] ∼=

∏
i[(Y, y), (Xi, xi)], by composition

with the coordinate projections, and since the concatenation of paths in
∏
iXi is

given component-wise.

5.30 Proposition. [20, 5.1.21] Let X0 be a path component of X and let x0 ∈ X0.
Then the inclusion of X0 ⊆ X induces an isomorphism π1(X0, x0) ∼= π1(X,x0).

Proof. Since S1 and S1 × I is path-connected, the paths and the homotopies have
values in X0.

5.31 Proposition. Let Xα be subspaces of X such that every compact set is con-
tained in some Xα. And for any two of these subspaces there is a third one con-
taining both. Let x0 ∈ Xα for all α. Then π1(X,x0) is the inductive limit of all
π1(Xα, x0).
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Proof. Let G be any group and fα : π1(Xα)→ G be group-homomorphisms, such
that for every inclusion i : Xα ⊆ Xβ we have fβ ◦ π1(i) = fα. We have to find
a unique group-homomorphism f : π1(X) → G, which satisfies f ◦ π1(i) = fα for
all inclusions i : Xα → X. Since every closed curve w in X is contained in some
Xα, we have to define f([w]X) := fα([w]Xα). We only have to show that f is well-
defined: So let [w1]X = [w2]X for curves w1 in Xα1

and w2 ∈ Xα2
. The image of

the homotopy w1 ∼ w2 is contained in some Xα, which we may assume to contain
Xα1

and Xα2
. Thus fα1

([w1]Xα1
) = fα([w1]Xα) = fα([w2]Xα) = fα2

([w2]Xα2
).

5.32 Theorem of Seifert and van Kampen. [20, 5.3.11]
Let X be covered by two open path-connected subsets U1 and U2 such that U1 ∩ U2

is path-connected and let x0 ∈ U1 ∩ U2. Then

π1(U1 ∩ U2, x0)
i2∗ //

i1∗
��

π1(U2, x0)

j2∗
��

π1(U1, x0)
j1∗ // π1(X,x0)

is a push-out, where all arrows are induced by the corresponding inclusions.

Proof. Let Gj := π1(Uj , x0) für j ∈ {1, 2}, G0 := π1(U1 ∩ U2, x0), G := π1(U1 ∪
U2, x0) = π1(X,x0) and Ḡ := (G1qG2)/N with gi : Gi → Ḡ the push-out, where N
is the normal subgroup generated by {i1∗([u]) ·i2∗([u])−1 : [u] ∈ G0}. By the universal
property of the push-out there exists a unique group-homomorphism ϕ : Ḡ → G
with ϕ ◦ gi = ji∗ and we only have to show that it is bijective.

Surjectivity: Let [w] ∈ G. By the Lebesgue-covering lemma applied to [0, 1] we
may take n sufficiently large such that for each 0 ≤ i < n we have w([ti, ti+1)] ⊆ Uεi
for some εi ∈ {1, 2} and ti := i

n .

Let wj be the restriction of w to
[tj , tj+1] and let vi be a path from
x0 to w(ti) in Uεi ∩ Uεi−1

. We may
take v0 and vn to be constant x0. Let
ui := vi ·wi · v−1

i+1. Then ui is a closed
path in Uεi and w ∼ u0 · . . . · un−1 in

X rel. İ. Let ḡi := gεi([u]Uεi ) ∈ Ḡ.

U1 U2

x0

wHt1L

wHt2L

wHt3L

w0

w1w2

w3

v1

v2

v3

Hence

[w]X = [u0]X · . . . · [un−1]X = jε0∗ ([u0]Uε0 ) · . . . · jεn−1
∗ ([un−1]Uεn−1

)

= ϕ(ḡ1) · . . . · ϕ(ḡn−1) = ϕ(ḡ1 · . . . · ḡn−1) ∈ ϕ(Ḡ).

Injectivity: Let z ∈ Ḡ = (G1 q G2)/N with ϕ(z) = 1 ∈ G. Then we find closed
paths ui in Uεi for certain εi ∈ {1, 2} with z = gε1([u1]Uε1 ) · . . . · gεn([un]Uεn ). Since

[constx0 ]X = 1 = ϕ(z) = ϕ
(
gε1([u1]) · . . . · gεn([un])

)
= ϕ

(
gε1([u1])

)
· . . . · ϕ

(
gεn([un])

)
= [u1]X · . . . · [un]X = [u1 · . . . · un]X

there is a homotopy H : I × I → X relative İ between u1 · . . . · un and constx0 . We
partition I × I into squares Q, such that H(Q) ⊆ UεQ for certain εQ ∈ {1, 2}. We
may assume that the resulting partition on the bottom edge I×{0} ∼= I is finer than
0 < 1

n < 2
n < . . . < n

n = 1. For every vertex k of this partition we choose a curve
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vk connecting x0 with H(k). If H(k) ∈ Uj then we may assume that vk(I) ⊆ Uj . If
H(k) = x0, we may assume that vk is constant. For every edge c of such a square Q
we define the closed curve uc := vc(0) ·(H ◦c) ·v−1

c(1) through x0. Since uc is contained

in some Uj we may consider [uc]Uj and its image c̄ := gj([uc]Uj ) ∈ Ḡ. This is well
defined, since if uc is contained in U1 ∩U2 then [uc]U1∩U2 is mapped to [uc]Uj ∈ Gj
for i ∈ {1, 2} and further on to the same element c̄ in the push-out Ḡ.

Let now Q be such a square with edges d, r, u, l. Then d · r ∼ l · u rel.
İ in Q, hence ud · ur ∼ ul · uu rel. İ in UεQ , i.e. [ud] · [ur] = [ul] · [uu] in

GεQ and thus d̄ · r̄ = gεQ([ud]) · gεQ([ur]) = gεQ([ul] · [uu]) = l̄ · ū in Ḡ.

u
//

d //
l

OO
r

OO

Multiplying in Ḡ all these equations resulting from one row of squares, gives that
the product corresponding to the top line equals in Ḡ that corresponding to the
bottom line, since the inner vertical parts cancel, and those at the boundary are
1. Since the top row represents 1, we get that the same is true for the bot-
tom one. But ui is homotopic in Uεi rel. İ to the concatenation of the corre-
sponding uc in the bottom row, i.e. [ui]Uεi =

∏
c⊆[ i−1

n , in ]×{0}[uc]Uεi in Gεi . Thus

z =
∏
i gεi([ui]Uεi ) =

∏
c⊆[0,1]×{0} gεi([uc]Uεi ) =

∏
c c̄ = 1 in Ḡ.

5.33 Corollary. [20, 5.3.9] [20, 5.3.12] Let X = U1 ∪ U2 be as in 5.32 .

1. If U1 ∩ U2 is simply connected, then π1(U1 ∪ U2) ∼= π1(U1)q π1(U2).

2. If U1 and U2 are simply connected, then U1 ∪ U2 is simply connected.

3. If U2 is simply connected, then incl∗ : π1(U1) → π1(U1 ∪ U2) in the push-
out square is an epimorphism and its kernel is generated by the image of
incl∗ : π1(U1 ∩ U2)→ π1(U1).

4. If U2 and U1 ∩ U2 are simply connected, then π1(U1) ∼= π1(U1 ∪ U2).

Proof.

1 In this situation N = {1} and hence G1 qG2 is the push-out.

2 Here G1 qG2 = {1} q {1} = {1} and hence also the push-out.

3 In this situation G1 q G2 = G1 q {1} ∼= G1 and N is the normal subgroup
generated by the image of G0 in G1.

4 Here we have N = {1} and hence the push-out is isomorphic to G1.

5.34 Theorem. [20, 5.4.8] Let a CW-complex X be the union of two connected
CW-subcomplexes A and B. Let x0 ∈ A∩B and A∩B be connected. Then π1 maps
the push-out square to a push-out.

Proof. By 4.18 we may choose open neighborhoods U(A), U(B) and U(A∩B) =

U(A) ∩ U(B) which contain A, B and A ∩ B as SDRs. Then application of 5.32

and of 5.13 gives the result.

U(A) ∩ U(B) �
� //

_�

��

U(A)
_�

��

A ∩B
* 


∼
77

� � //
_�

��

A
_�

��

, �

∼
::

U(B) �
� // X

B
* 


∼
77

� � // A ∪B
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5.35 Proposition. [20, 5.4.9] Let A and B be (connected) CW-complexes. Then
π1(A ∨B, ∗) ∼= π1(A, ∗)q π1(B, ∗).

Proof. Since A ∩B = {∗} in A ∨B and hence simply connected this follows from

5.34 and 5.33.1 .

5.36 Example. By 5.34 we have π1(S1 ∨ S1) ∼= Zq Z.
However, for spaces being not CW-spaces π1(A∨B) 6= π1(A)qπ1(B) might happen:
Take for example for A and B the subset of R2 formed by infinite many circles
tangent at the base point. The closed curve which passes through all those circles
alternatingly can not be expressed homotopically as finite product of words in π1(A)
and π1(B).

5.37 Proposition. [20, 5.5.9] Let Xj be a CW-complex with base-point xj ∈ X0
j .

Then π1(
∨
j∈J Xj) ∼=

∐
j∈J π1(Xj). In particular we have π1(

∨
J S

1) ∼=
∐
J Z ∼=

F(J), where the free generators of π1(
∨
j S

1) are just the inclusions injj : S1 →∨
J S

1.

Proof. This follows from 5.35 by induction for finite J and by 5.31 for general

J , since every compact subset is by 4.5 contained in a finite subcomplex of the

CW-complex of
∨
j∈J Xj given by 4.17 and since the coproduct is the inductive

limit of its finite subcoproducts.

5.38 Corollary. [20, 5.4.1] [20, 5.4.2]
Let Y be path-connected with y0 ∈ Y and f : Sn−1 → Y be continuous. Then the
inclusion Y ⊆ Y ∪f Dn induces an isomorphism π1(Y, y0) → π1(Y ∪f Dn, y0) if
n ≥ 3 and an epimorphism if n = 2. In the later case the kernel is the normal
subgroup generated by [v][f ][v−1], where v is a path from y0 to f(1). So

π1(Y ∪f D2) ∼= π1(Y )/〈conj[v]([f ])〉NG

One could say that by gluing D2 to Y the element [f ] ∈ π1(Y ) gets killed.

Proof. We take U := Y ∪f (Dn \ {0}) and V := en.

U ∩ V �
� //

_�

��

V � _

��

Sn−1

, �
∼

1/2

::

_�

f

��

∼

{0}
+ �

∼

99

U �
� // U ∪ V

Y
, �

∼
::

� � // Y ∪f Dn

Then V ∼ {0} and U ∩ V = en \
{0} ∼ Sn−1 are simply connected

for n ≥ 3, by 5.10 . Thus the
inclusion U ⊆ Y ∪f Dn induces

an isomorphism by 5.33.4 . Since

Y is a SDR of U by 2.38 the
inclusion of Y → U induces an
isomorphism by 5.13 .

Now for n = 2. Again V is simply connected, but U ∩V ∼ S1 and hence π1(U ∩V )
is the infinite cyclic group generated by the image of a circle of radius say 1/2. This

path is homotopic to [v][f ][v−1] in Y ∪fD2, hence everything follows by 5.33.3 .
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5.39 Example. [20, 5.4.4] We have π1(S1 ∪zn D2) ∼= π1(S1)/〈[zn]〉 ∼= Zn.

In particular, π1(P2) = π1(S1 ∪z2 D2) ∼= Z2.
This can be easily visualized: The top semi-circle α in
D2 has as α ·α the full circle, which is contractible to 0.
Equally, P2 is obtained by glueing a 2-cell to the bound-
ary of a Möbius strip and the generator α ∈ π1(P2) is
just the middle line on the Möbius strip. Its square α ·α
is homotopic to the boundary of the Möbius strip which
is contractible in the disk.

Α

Α

∆1

∆1

∆2

∆2

Β1

Β2

Α

M1

M2

D1

D2

∆1 Β2Β1

Β1

Β2

∆2

D1

D2

5.40 Corollary. [20, 5.4.3] [20, 5.4.6] Let X be a CW-complex and x0 ∈ X0.
Then X2 ↪→ X induces an isomorphism π1(X2, x0) ∼= π1(X,x0).
Moreover, X1 ↪→ X induces an epimorphism π1(X1, x0) � π1(X,x0) with the
normal subgroup generated by conj[ve][χ

e|S1 ] as kernel, where ve is a path joining

x0 and χe(1) in Y and e runs through all 2-cells in the connected component of x0

in X.

Proof. If X is a finite CW-complex then this follows from 5.38 by induction.

By 4.5 any compact subset of X is contained in a finite subcomplex X0 hence
π1(X,x0) is the inductive limit of the π1(X0, x0) for the finite subcomplexes X0

containing x0 by 5.31 , hence the result holds in general.

5.41 Example. [20, 5.4.7] Since Pn = P2∪e3∪· · ·∪en we have π1(Pn) ∼= π1(P2) ∼=
Z2.

5.42 Definition. [20, 5.5.11] A CW-complex X with X = X1 is called a graph.
A graph is called tree if it is simply connected.

5.43 Lemma. [20, 5.5.12] A connected graph is a tree iff it is contractible.

Proof. (⇒) Let X0 be the 0-skeleton of a tree X. And let x0 ∈ X0 be fixed. Every
x ∈ X0 can be connected by a path with x0, which gives a homotopy X0 → X. By

4.18 it can be extended to a homotopy ht : X → X with h0 = idX and h1(X0) =

{x0}. Let e ⊆ X be a 1-cell with characteristic map χe : I ∼= D1 → X. Then

[h1 ◦χe] ∈ π1(X,x0) = {1}, hence there is a homotopy ket : (I, İ)→ (X, {x0}) with

ke0 = h1 ◦ χe and ke1(I) = {x0}. Let k̃et : X0 ∪ e→ X be defined by k̃et (X
0) = {x0}

and k̃et = ket ◦ χ−1
e on e. Taking the union of all k̃et gives a homotopy k̃t : X1 → X

between h1 and the constant map x0.

5.44 Lemma. [20, 5.5.13] Every connected graph X contains a maximal tree. Any
maximal tree in X contains all vertices of X.
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Proof. LetM be the set of trees of X ordered by inclusion. Since the union of any

linear ordered subset of M is a tree (use 4.5 ), we get by Zorns lemma a maximal
tree Y ⊆ X.

Let Y be a maximal tree and
suppose that there is some x0 ∈
X0 \ Y 0. Let w : I → X be a
path-connecting x0 and Y . Let
t1 be minimal in w−1(Y ) (hence
w(t1) ∈ Y 0) and t0 < t1 be
maximal in w−1(X0 \ Y 0). Then
w([t0, t1]) is the closure of a 1-cell
e and Y ∪ ē is a larger tree, since
Y is an SDR of Y ∪ ē by defor-
mation along ē.

Y

x0

wHt0L

wHt1L

e

w

5.45 Corollary. [20, 5.5.17] Every connected CW-space is homotopy equivalent to
a CW-complex with just one 0-cell.

Proof. The 1-skeleton X1 is connected since any path with endpoints in X0 is

homotopic to a cellular path I → X1 by 4.20 . For a maximal tree Y in X1 as

constructed in 5.44 we have that X � X/Y is a homotopy equivalence by 2.47

since Y is contractible by 5.43 and (X,Y ) has the HEP by 4.18 .

5.46 Proposition. Fundamental group of graphs. [20, 5.5.14]
Let X be a connected graph and x0 ∈ X0. Let Y ⊆ X be a maximal tree. For every
0-cell x choose a path vx in Y connecting x0 with x. And for every 1-cell e ⊆ X \Y
with characteristic mapping χe : I ∼= D1 → X1 let s(e) := [vχe(0)][χ

e][vχe(1)]
−1 ∈

π1(X,x0). Then s induces an isomorphism

F({e : e is 1-cell in X \ Y })−∼=→ π1(X,x0),

i.e. π1(X,x0) is the free group generated by {s(e) : e is 1-cell in X \ Y }.

Proof. As in the proof of 5.45 the quotient mapping p : X → X/Y is a homotopy-

equivalence onto a CW-space with just one 0-cell Y . By 4.15 X/Y ∼=
∨
e S

1,

where e runs through the (1-)cells in X \ Y , see also 4.16 . Thus π1(X,x0) ∼=
π1(X/Y, y0) ∼= π1(

∨
e S

1) ∼= F({e : e is 1-cell in X \ Y }) by 5.37 . The inverse of

this isomorphism is given by e 7→ [vχe(0) · χe · v−1
χe(1)] = s(e).

5.47 Corollary. [20, 5.5.16] Let X be a finite connected graph with d0 vertices and
d1 edges. Then π1(X) is a free group of 1− d0 + d1 generators.

Proof. By induction we show that for each 1 ≤ n ≤ d0 there is a tree Yn ⊆ X
with n vertices and n − 1 edges: Let Yn for n < d0 be given and choose a point
x0 ∈ X0 \ Yn and a path w connecting x0 with Yn. Then proceed as in the proof

of 5.44 to find an edge w([t0, t1]) connecting a vertex outside Yn with one in Yn.
Now Yn+1 = Yn∪w([t0, t1]) is the required tree with one more vertex and one more
edge.

By 5.46 the result follows, since there are d1−(d0−1) many 1-cells not in Yd0 .

5.48 Theorem. Fundamental group of CW-complexes. [20, 5.6.4]
Let X be a CW-complex with maximal tree Y .

andreas.kriegl@univie.ac.at c© 7. Februar 2018 71



5.51 5. Fundamental Group

Let generators s(e1) be constructed for every e1 ∈ X1 \ Y as in 5.46 .

For every 2-cell e2 ∈ X2 define r(e2) := [u · χe2 |S1 · u−1] ∈ π1(X1, x0), where u is
a path from x0 to χe2(1) in X1 and χe2 : D2 → ē2 a characteristic mapping. Then

π1(X,x0) ∼=
〈{
s(e1) : e1 is 1-cell in X1 \ Y

}
:
{
r(e2) : e2 ∈ X2

}〉
.

Proof. By 5.40 the mapping π1(X1, x0) → π1(X2, x0) ∼= π1(X,x0) induced by

X1 ↪→ X2 ↪→ X is surjective and its kernel is the normal subgroup generated by
r(e2) = [u ·χe2 |S1 · u−1] ∈ π1(X1). Finally, π1(X1) ∼= F({s(e1) : e1 is 1-cell in X1 \
Y }) by 5.46 .

5.49 Remark. [20, 5.6.5] For every group representation 〈S : R〉 there is a 2-
dimensional CW-complex X denoted CW(S : R) with π1(X) ∼= 〈S : R〉.

Proof. Let X1 :=
∨
S S

1. Every r ∈ R ⊆ F(S) ∼= π1(X1) is the homotopy class of
a curve mapping fr : S1 → X1 and we glue a 2-cell to X1 via this mapping. I.e.
X = CW (S : R) := X1

⋃
f (
⊔
r∈RD

2), where f :=
⊔
r∈R fr.

Note that this construction depends on the choice of the fr ∈ [r]. However, different

choices give rise to homotopy equivalent spaces by 2.45 . Moreover, they depend
on the representation 〈S : R〉 and not only on its isomorphy class, see the following

remark and 5.51 .

5.50 Proposition. [20, 5.8.6] Every connected CW-complex of dimension less or
equal to 2 is homotopy equivalent to CW (S : R) for some representation 〈S : R〉
of its fundamental group.

Proof. Choose a maximal tree Y ⊆ X1. Then by the proof of 5.46 we have that

X is homotopy equivalent to X/Y , which has as 1-skeleton
∨
S S

1, where S := {e :
e is 1-cell in X \ Y }. For every 2-cell e of X/Y (equivalently, of X) we choose a

characteristic map χe. Thus X/Y = (
∨
S S

1) ∪⊔
e χ

e|S1

⊔
eD

2. By 2.32.3 we can

deform χe|S1 to a base point preserving map fe : S1 →
∨
S S

1. Hence by 2.45 X/Y
is homotopy equivalent to CW (S : R), where R := {fe : e is 2-cell of X/Y }.

Remark. Note, that this does not solve the isomorphy problem for 2-dimensional
CW-complexes: Obviously, X1 ∼ X2 ⇒ π1(X1) ∼= π1(X2). However, π1(X1) ∼=
π1(X2) ⇒ ∃(Si, Ri) with π1(Xi) ∼= 〈Si : Ri〉 with Xi ∼ CW (Si : Ri) by 5.50 .
Despite 〈S1 : R1〉 ∼= 〈S2, R2〉 it does not follow that X1 ∼ CW (S1 : R1) ∼ CW (S2 :

R2) ∼ X2, as π1(S2) = {1} = π1({∗}) with S2 6∼ {∗} by 8.43 and 2.36.1 shows.

The following lemma shows exactly how the homotopy type might change while
passing to other representations of the same group (using the Tietze operations of

5.27 ).

5.51 Lemma. [20, 5.8.7]
We have CW (S : R ∪ {r}) ∼ CW (S : R) ∨ S2 for r ∈ 〈R〉NG \R
and CW (S ∪ {s} : R ∪ {s−1w}) ∼ CW (S : R) for s /∈ S and w ∈ F(S).

This shows that CW (〈S : R〉) := CW (S : R) would not be well-defined.

Proof. Let X := CW (S : R) and Y := CW (S : R ∪ {r}) with r ∈ 〈R〉NG \R.
Then Y = X ∪f D2, where f : S1 →

∨
S S

1 = X1 ⊆ X is such that [f ] =
r ∈ π1(

∨
S S

1) = F(S). Since r ∈ 〈R〉NG, we have that [f ]X = 1 ∈ π1(X) =
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π1(
∨
S S

1)/〈R〉NG, hence f ∼ 0 in X. Thus Y = X ∪f D2 ∼ X ∪0 D
2 = X ∨ S2 by

2.34.3 .

Let X := CW (S : R) and Y := CW (S ∪ {s} : R ∪ {s−1w}).
Then Y = (X ∨ S1) ∪f D2, where f = σ−1 · ω for the inclusion σ : S1 → X ∨ S1

and w = [ω] ∈ π1(X) ∼= F(S). Thus Y = (X ∨S1)∪f D2 = (X ∪0 D
1)∪σ−1·ωD

2 =
X ∪f |

S1
−
D2 ∼ X and since the lower semi-circle S1

− ⊆ D2 is an SDR we have that

X is also an SDR in Y , by 2.37 .

5.52 Example. [20, 5.7.1]
The fundamental group of the orientable compact surface of genus g ≥ 0 is

〈α1, β1, . . . , αg, βg : [α1, β1] · . . . · [αg, βg]〉.

That of the non-orientable compact surface of genus g ≥ 1 is

〈α1, . . . , αg : α2
1 · . . . · α2

g〉.

Proof. By 1.94 these surfaces are obtained by gluing one 2-cell e to a join
∨
S1

of 2g, respectively g, many S1 and the gluing map is given by i1 · i2 · i−1
1 · i

−1
2 · . . .

and i21 · . . . · i2g, so the homotopy class of the characteristic mapping χe|S1 is [α1, β1] ·
. . . · [αg, βg] and α2

1 · . . . · α2
g, respectively. Now apply 5.48

5.53 Corollary. [20, 5.7.2] None of the spaces in 5.52 are homotopy equivalent.

Proof. The abelization of the fundamental groups are Z2g and Zg−1 ⊕ Z2. In fact

ab〈α1, β1, . . . , αg, βg : [α1, β1] · . . . · [αg, βg]〉 =

= 〈α1, β1, . . . , αg, βg : [α1, β1] · . . . · [αg, βg], [αi, αj ], [βi, βj ], [αi, βj ]〉

=
5.27.1

======= 〈α1, β1, . . . , αg, βg : [αi, αj ], [βi, βj ], [αi, βj ]〉

= ab〈α1, β1, . . . , αg, βg : ∅〉

= abF(α1, β1, . . . , αg, βg) = Z2g

and

ab〈α1, . . . , αg : α2
1 · . . . · α2

g〉

= ab〈α1, . . . , αg : (α1 · . . . · αg)2〉

=
5.27.2

======= ab〈α1, . . . , αg, α : α2, α−1α1 . . . αg〉

=
5.27.2

======= ab〈α1, . . . , αg−1, α : α2〉

= ab(〈α1, . . . , αg−1 : ∅〉 q 〈α : α2〉)
= Zg−1 ⊕ Z2.

Geometric interpretations are the following:

S2 is simply connected by 5.10 hence π1 has no generator and no relation.

S1 × S1 is a torus. By 5.29 the generators α and β of π1 are given by S1 × {1}
and {1} × S1, which are a meridian and an equator in the 3-dimensional picture.
This can be also seen by gluing the 4 edges of a square as αβα−1β−1. The relation
αβ = βα is seen geometrically by taking as homotopy the closed curves given by
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running through some arc on the equator, then the meridian at that position and
then the rest of the equator.

The oriented surface of genus g is obtained by cutting 2g holes into the sphere and
gluing g cylinders to these holes. Let x0 be one point on the sphere not contained
in the holes. As generators αj we may take curves through x0 along some generator
{x} × I of the cylinder and as βi loops around one boundary component S1 × {0}
of the cylinder. Then αiβiα

−1
i describes the loop around the other component and

αiβiα
−1
i β−1

i is a loop around both holes. The product of all these loops is a loop

with all holes lying on one side and hence homotopic to a point, cf. 2.36.9

We have discussed the generator α and the relation α2 ∼ 1 on P2 in 5.39 .

The non-orientable surface of genus g is obtained from a sphere by cutting g holes
and gluing g Möbius-strips. The generators αj are just conjugates of the middle
lines on the Möbius strips. Their squares are homotopic to the boundary circles.
And hence the product of all α2

i is homotopic to a loop around all holes, which is
in turn homotopic to a point.

This shows that beside the sphere, the torus and the projective plane these funda-
mental groups are not abelian.
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We take up the method leading to the calculation π1(S1) ∼= Z in 5.15 . Basic

ingredient was the lifting property of the mapping t 7→ exp(2πit), R � S1, see

2.15 . Its main property can be stated abstractly as follows:

6.1 Definition. Covering maps. [20, 6.1.1] A covering map p : Y → X is a
surjective continuous map, such that each x ∈ X has an open neighborhood U ⊆ X
for which p|p−1(U) : p−1(U) → U is up to an homeomorphism just the projection
pr :

⊔
J U → U for some set J 6= ∅, i.e.

Y

p
"" ""

p−1(U)

p|p−1(U) "" ""

? _oo ⊔
J U

pr

}}

∼=oo U? _
injjoo

id
ssX U_?oo

The images of the summands U
in p−1(U) ⊆ Y are called the
leaves and U is called a triv-
ializing neighborhood. The
inverse images of points under
p are called fibers, X is called
base, and Y total space.

6.2 Lemma. Let G be a group acting freely (see 1.79 ) on Y .

Then the action is strictly discontinuous (see 1.80 ) if and only if

the quotient mapping π : Y → Y/G (see 1.77 ) is a covering map.

Proof. (⇒) Since G acts strictly discontinuous we find for each y ∈ Y a neighbor-
hood V such that: g · V ∩ V 6= ∅ ⇒ g = 1. Thus π|V : V → π(V ) =: U is a bijective

quotient mapping (since π is open by the proof of 1.79 ) hence a homeomorphism.

Furthermore, π−1(U) = G · V =
⊔
g∈G g · V is open in Y and hence U is open in

Y/G.

(⇐) If π : Y → Y/G is a convering map, then for every y ∈ Y there has to exist an
open neighborhood U ⊆ Y/G such that π−1(U) is a disjoint union of open subsets
V homeomorphic via π to U . So U = π(V ) and π−1(U) = π−1(π(V )) = G · V .
Suppose g · V ∩ V 6= ∅, i.e. ∃v ∈ V with g · v ∈ V . Since π(v) = π(g · v) and π is
injective on V we get v = g · v and, since G acts freely, g = 1. Thus the action is
strictly discontinuous.

Remark. We used that G acts freely only for (⇐). Otherwise, we could only deduce
that g keeps each v ∈ V ∩ g−1V fixed, i.e. g is contained in the isotropy subgroup
Gv := {g ∈ G : g · v = v} of v. However, if Y is assumed to be locally connected,
we may assume that V is connected and hence gV = V provided gV ∩ V 6= ∅
(since gV ⊆ π−1(πV ) =

⊔
J V ). Thus Gv = Gv′ for all v, v′ ∈ V (in fact: g ∈ Gv

⇒ gv = v ∈ gV ∩ V ⇒ gV = V ⇒ v′ ∈ gV ∩ V ⇒ g ∈ Gv′). Therefore, the
family of subsets {v ∈ Y : Gv = H}, where H runs through all subgroups of G,
forms a partition of Y into open subsets. Thus, if in addition Y is assumed to be
connected, then H := Gv is independent on v ∈ Y (and hence a normal subgroup,

see 6.16.1 ) and thus the action of G on Y factors to a strictly discontinuous action

of G̃ := G/H on Y having the same orbits, i.e. Y/G = Y/G̃.

6.3 Example.
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6.4 6. Covering Maps

1. Let Y := {(sin(2πt), cos(2πt), t) : t ∈ R} ∼= R and p = pr1,2 : Y → S1 ⊆ R2.

Then p is a covering map: Use 6.2 for R/Z ∼= S1, see 1.78.2 .

R // ∼= // //

π
����
t 7→e2πit

!! !!

Y

p
����

� � // C× R

pr
����

R/Z //
∼=
// // S1 �

� // C

2. The map z 7→ zn : S1 → S1 is an n-fold covering map: Use 6.2 for S1/Zn ∼=
I/İ ∼= S1.

3. The map Sn → Pn is a two-fold covering map: Use 6.2 for Sn/Z2
∼= Pn,

see 1.67 and 1.69 .

4. Let p1 : Y1 → X1 and p2 : Y2 → X2 be two covering maps, then so is
p1 × p2 : Y1 × Y2 → X1 ×X2. Examples are R2 → S1 × S1, R2 → R × S1,
and R× S1 → S1 × S1.

5. There is a twofold covering map from I×S1 to the closed Möbius strip: Use

6.2 for the action of Z2 on [−1, 1] × S1 given by (t, ϕ) 7→ (−t, ϕ + π), see
exercise (1.15).

6. The torus is a two fold covering of Klein’s bottle. Use 6.2 for the action of

Z2 on S1 × S1 given by (ϕ,ψ) 7→ (−ϕ,ψ + π), see exercise (1.17.3).

7. Zp acts freely on S2k−1 and the orbit space is the lens space (see 1.81 ), so

we get a covering map S2k−1 → L(p; q1, . . . , qk).

6.4 Lemma. [20, 6.1.3] Let p : Y → X be a covering map. Then

1. The fibers are discrete in Y .

2. Every open subset of a trivializing set is trivializing.

3. Let A ⊆ X. Then p|p−1(A) : p−1(A)→ A is a covering map.

4. If B ⊆ Y is connected and p(B) ⊆ U for some trivializing set U , then B is
contained in some leaf.

5. The mapping p is a surjective local homeomorphism and hence an open quo-
tient mapping.

Proof. ( 1 ) Points in the fiber are separated by the leaves.

( 2 ) and ( 3 ) Take the restriction of the characterizing diagram.

( 4 ) B is covered by the leaves. Since each leaf is open, so is the trace on B. Since
B is connected only one leaf may hit B, thus B is contained in this leaf.

( 5 ) Obviously the projection is a local homeomorphism. Hence it is open and thus
a quotient mapping.

Lemma. Let X be a connected Hausdorff space and Y 6= ∅ compact. Then every
local homeomorphism f : Y → X is a covering map.

Proof. Since f is a local homeomorphism, the fibers f−1(x) are discrete and closed
and hence finite since Y is compact.

Let us show next that f is surjective. In fact the image is open in X, since f is a
local homeomorphism. It is closed, since Y is compact and X is Hausdorff. Since
X is assumed to be connected and Y 6= ∅ it has to be all of X.
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6. Covering Maps 6.6

Let x ∈ X. Choose pairwise disjoint neighborhoods Vy for each y ∈ f−1(x) which
are mapped homeomorphically onto a corresponding neighborhood of x. By taking
the inverse images of the (finite!) intersection U :=

⋂
y∈f−1(x) f(Vy) in the Vy we

may assume that the image is the same neighborhood U for all y ∈ f−1(x). Hence
U is trivializing with leaves Vy and thus p : Y → X is a covering.

Example.
Not every surjective local homeomorphism is a covering map.

Take for example an open interval I ⊂ R of length more than 1.

Then the restriction I → S1 of the covering map from 6.3.1 is
not a covering map.

6.5 Definition. Homomorphisms of coverings.

Let p′ : Y � X ′ and p : Y � X be two covering maps
with the same total space Y . A homomorphism f of these
coverings is a map f : X ′ → X such that the diagram to
the right commutates.

Y
p′

~~~~

p

    
X ′

f // X

Note that such an f exists, iff p factors over p′, i.e. the fibers of p′ are contained in
fibers of p. If such an f exists it is uniquely determined since p′ is onto. So we get
a category CovY (a quasi-ordering) of all coverings with total space Y .

Conversely, let p′ : Y ′ � X and p : Y � X be two covering
maps with the same base space X. A homomorphism f
of these coverings is a fiber respecting map f : Y ′ → Y ,
i.e. the diagram on the right commutates.

Y ′
f //

p′     

Y

p~~~~
X

We denote the set of all homomorphisms from p′ : Y ′ � X to p : Y � X by
HomX(p′, p). So we get a category CovX of all coverings with base space X.

Note that a homomorphism f is nothing else but a lift of p′ : Y ′ � X along
p : Y � X. The automorphisms f , i.e. invertible homomorphisms p → p, are also
called covering transformations or decktransformations, and we write
Aut(p) for the group formed by them.

6.6 Remark. Unique lifts along covering maps exist locally.
Let p : (Y, y0)→ (X,x0) be a covering map and g : (Z, z0)→ (X,x0). Take a trivial-

izing neighborhood U of x0 and let Ũ be the leaf of p over U which contains y0. Then
(p|Ũ ) : Ũ → U is a homeomorphism and hence (p|Ũ )−1 ◦ g : Z ⊇ g−1(U)→ Ũ ⊆ Y
is a continuous local lift of g.

Ũ �
� //

∼=
p|Ũ ""

p−1(U)
q�

""��
W �� //

g̃
00

g−1(U)
q�

##

g|g−1(U)

//

<<

U
q�

##

Y

p
����

Z
g // X

Let g̃ be any continuous (local)
lift of g with g̃(z0) = y0. Then

W := g̃−1(Ũ) ⊆ g̃−1(p−1(U)) =
g−1(U) is a neighborhood of z0

and g̃(W ) ⊆ Ũ , hence g = p ◦ g̃
implies (p|Ũ )−1 ◦ g = (p|Ũ )−1 ◦
p|Ũ ◦ g̃ = g̃ on W , i.e. locally the
lift of g̃ is unique.
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6.7 Lemma. Uniqueness of lifts. [20, 6.2.4]
Let p : Y → X be a covering map and let Z be connected.
Then any two lifts of a continuous map g : Z → X, which coincide in one point,
are equal. In particular, if g is constant so are its lifts.

Proof. Let g1, g2 be two lifts of g. Then the set of points {z ∈ Z : g1(z) = g2(z)}
is clopen: In fact if U j is the leaf over U containing of gj(z), then gj = (p|Uj )−1 ◦ g
on the neighborhood (g1)−1(U1) ∩ (g2)−1(U2) of z by 6.12 . Hence either g1 = g2

or g1 6= g2 at each point of this neighborhood.

6.8 Lemma.

Let X locally path-connected and
let q : Z → Y and p : Y → X be given.

Then the following statements hold:

Z
q //

p◦q   

Y

p~~
X

1. If p and p ◦ q are coverings and Y is connected, then q is onto.

2. If p and p ◦ q are coverings and q is onto, then q is a covering.

3. If p and q are coverings and X is locally simply-connected, then p ◦ q is a
covering.

4. If q and p ◦ q are coverings, then p is a covering.

Proof. ( 1 ) We claim that the image of q is clopen in Y and hence coincides
with the connected space Y . For this we consider all leaves V ⊆ Y for p over
path-connected open subsets U ⊆ X, which are trivializing for p and p ◦ q. It suf-
fices to show that if such a leaf V meets the image q(W ) of a leaf W ⊆ Z over
U for p ◦ q then it is contained in q(W ), since then q(W ) =

⋃
V ∩q(W )6=∅ V and

y ∈ V \ q(Z)⇒ V ∩ q(Z) = ∅.

So let w0 ∈ W be such that q(w0) ∈ V . Since
V has to be path-connected as well, we may
connect q(w0) with any v ∈ V by a curve c in
V . The curve p◦c has a lift c̃ = (p◦q|W )−1◦p◦c
starting at w0 ∈ (p ◦ q)−1(p(c(0))) with values

in W . By 6.7 the lift q ◦ c̃ coincides with c
and hence v = c(1) = q(c̃(1)) ∈ q(W ).

Z

p◦q

�� ��

q // Y

p

����

W
��

p◦q|W
�� ��

, �

99

V
, �

99

��

����

I

c
99

p◦c
��

c̃
ee

X

U
�,

99

( 2 ) Take a path-connected set U ⊆ X being trivializing for p ◦ q and p. Every leaf
W of p ◦ q over U is mapped by q into some leaf V of p over U : In fact, since the
leaves are homeomorphic to U , they are path-connected as well, hence q(W ) is com-

pletely contained in some leaf V of p over U = (p ◦ q)(W ) by 6.4.4 . Thus q−1(V )

is the topological disjoint union of all leaves W of p ◦ q over U , which meet q−1(V ).
Moreover, q|W = (p|V )−1 ◦ p|V ◦ q|W = (p|V )−1 ◦ (p ◦ q)|W is a homeomorphism
W ∼= U ∼= V .

( 3 ) Let p and q be coverings, with X locally simply connected. Then the leaves Vj
of p over a simply connected trivializing set U are again simply connected, hence

are trivializing neighborhoods of q as will be shown in 6.13 . Hence (p ◦ q)−1(U) =

q−1(p−1(U)) = q−1(
⊔
j∈J Vj) =

⊔
j∈J q

−1(Vj) and q−1(Vj) ∼=
⊔
Jj
Vj . Since the

restriction (p ◦ q)|W = p|Vj ◦ q|W is a homeomorphism W ∼= Vj ∼= U for each leaf
W over Vj , the map p ◦ q is a covering as well.
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6. Covering Maps 6.9

( 4 ) Let p ◦ q and q be coverings. We claim that p is a covering. Let W be a
leaf of p ◦ q over a path-connected trivializing set U . Since q is an open map-
ping, V := q(W ) is open in Y . Since (p ◦ q)|W is an embedding the same is
true for q|W . Thus q|W : W ∼= V is a homeomorphism and consequently also
p|V = (p ◦ q)|W ◦ (q|W )−1 : V →W → U .
We claim that q(W ) is a path-component of p−1(U) and hence the distinct ones
among these sets form a disjoint partition of p−1(U):

Let z0 ∈ W be choosen and let c be a continuous
curve in p−1(U) from q(z0) to some point y ∈ p−1(U).
We have a lift c̃ := (p ◦ q|W )−1 ◦ (p ◦ c) into W of p ◦ c
with initial value z0. Then c and q ◦ c̃ are two lifts of

p ◦ c with initial value q(z0) hence coincide by 6.7
and thus y = c(1) = q(c̃(1)) ∈ q(W ).

W
��

p◦q|W

�� ��

// q // // V �
� // p−1(U)

p

����

I

c

;;
c̃

__

p◦c

��
U

6.9 The category CovYnorm.

We try to get a description of the category CovY of coverings with fixed total
space Y . For every group G acting strictly discontinuous on Y (and w.l.o.g. we may

assume that G ⊆ Homeo(Y )) we get a covering π : Y → Y/G by 6.2 .

Can we recover G from the covering π : Y → Y/G?

Yes: If Y is connected then Aut(π) = G:
Obviously, G ⊆ Aut(π). Conversely, let Φ ∈ Aut(π), i.e. π(y) = π(Φ(y)) for all
y ∈ Y . Choose y0 ∈ Y , then there is some g0 ∈ G with g0 · y0 = Φ(y0) since the
fibers of π are the G-orbits. Since the two mappings Φ and g0 cover the identity

(i.e. are lifts of π along π) and coincide on y0 they are equal by 6.7 .

Note, that if G′ ≤ G is a subgroup then π : Y → Y/G factors over π′ : Y → Y/G′

to a unique mapping f : Y/G′ → Y/G, i.e. a homomorphism π′ → π. So we get

a functor Actstr.dis.(Y ) → CovY from the partially ordered set (hence category)
Actstr.dis.(Y ) of subgroups of Homeo(Y ) for which the action on Y is strictly dis-
continuous.

Is this functor dense, i.e. is every covering mapping p : Y → X up to isomorphy in
the image of this functor? For this we have to find a subgroup G ≤ Homeo(Y ) for
which the action on Y is strictly discontinuous and such that p ∼= (π : Y → Y/G).
The natural candidate is G := Aut(p).

Obviously the action of Aut(p) on Y is strictly discontinuous, since for any leaf Ũ
over some trivializing set U and any g in Aut(p) we have:

g(Ũ)∩Ũ 6= ∅ implies ∃y ∈ Ũ : g(y) ∈ Ũ . From p(g(y)) = p(y) and since p|Ũ : Ũ → U

is injective we conclude that g(y) = y = id(y), but then g = id by 6.7 .
Since p ◦ g = p for every g ∈ Aut(p), we have
that p is constant on the Aut(p)-orbits and hence
factors to a mapping Y/Aut(p)→ X, which is by

6.8.4 a covering map, provided X is locally path-

connected, and hence a quotient map by 6.4.5 .

Y
p

�� ��

π

zzzz
Y/Aut(p) // // X

This mapping is injective (and hence a homeomorphism) iff every two points in the
same fiber of p are in the same orbit under Aut(p), i.e. iff Aut(p) acts transitive on

the fibers of p. Such covering maps p are called normal, see 6.26 for a counter-
example. Note that for a group G acting strictly discontinuous on Y the covering
π : Y → Y/G is obviously normal. Let CovYnorm denotes the category of normal
coverings with total space Y . Then we have:
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6.10 Theorem. [20, 6.5.3] For path-connected and locally path-connected Y we
have an equivalence of categories

CovYnorm ∼ Actstr.dis.(Y ),

i.e. there exists also a functor in the opposite direction and the compositions of
these two are up to natural isomorphisms the identity.

Proof. The functor Actstr.dis.(Y )→ CovYnorm discussed above is given by Homeo(Y ) ≥
G 7→ (π : Y → Y/G) and if G′ ≤ G then π : Y → Y/G factors over π′ : Y → Y/G′

to a unique mapping f : Y/G′ → Y/G, i.e. a homomorphism π′ → π.

Conversely, every homomorphism f : π′ → π has to be the unique factorization of
π : Y → Y/G and induces an inclusion G′ ⊆ G: Φ ∈ Aut(π′) = G′ ⇒ π′ ◦ Φ = π′

⇒ π ◦ Φ = f ◦ π′ ◦ Φ = f ◦ π′ = π, i.e. Φ ∈ Aut(π) = G. Thus the functor is full
and faithfull.

It is a general categorical result, that a full, faithful and dense functor is an equiva-
lence. In fact, an inverse is given by selecting for every object in the range category
an inverse image up to an isomorphism and by the full and faithfulness this can be
extended to a functor.

We have shown in 6.9 that the functor is dense, hence it induces the desired
equivalence of categories.

We now try to desribe the category CovX of coverings with base X in algebraic
terms. Since the homomorphisms p′ → p are lifts of p′ along p we have to study
liftings along coverings in more detail.

6.11 Theorem. Lifting of curves. [20, 6.2.2] [20, 6.2.5] Let p : Y → X be a
covering. Every path u : I → X has a unique lift yũ with yũ(0) = y for given
y ∈ p−1(u(0)). Paths homotopic relative their initial value have homotopic lifts.

In particular we have an action of π1(X,x0) on p−1(x0) given by [u] : y 7→ yũ(1),
i.e. the end-point of the lift of u, which starts at y.

The total space Y is path-connected iff X is path-connected and this action is tran-
sitive, i.e. for all y1, y2 ∈ p−1(x0) there exists a g ∈ π1(X,x0) with y1 · g = y2

(equivalently: there exists a y0 ∈ p−1(x0) with y0 · π1(X,x0) = p−1(x0)).

Proof. By 6.7 we have to show existence of a lift. By considering a path w as a
homotopy being constant in the second factor, it is enough to show that homotopies
h : I × I → X can be lifted.

For this choose a partition of I2 into squares Qi,j , such that h(Qi,j) is contained in
a trivializing neighborhood Ui,j of X. For each fixed j we construct inductively a lift

h̃j along
⋃
iQi,j with initial value y0 at the bottom left corner, by taking the leaf

Ũi,j over the trivializing neighborhood of Qi,j which contains the image under h̃j of

the right bottom corner of Qi−1,j . Then h̃j |Qi,j can be defined as (p|Ũi,j )
−1 ◦ h|Qi,j

and agrees with h̃1|Qi−1,j
on the vertical edge Qi−1,j∩Qi,j , since this is contained in

Ũi−1,j ∩ Ũi,j by 6.4.4 . By induction we can show that these lifts agree on the lines
formed by horizontal edges: In fact the image of h on a horizontal edge is contained
in the intersection of the trivializing sets containing the image of the square above
and below. And since the lifts h̃j and h̃j−1 are contained in the respective leaves,
and thus in the leaf over the intersection, they have to be equal on the edge. We
denote the unique homotopy by y0 h̃.

Now suppose h is a homotopy rel. İ between two paths u0 and u1 from x0 to x1 and
let y0 ∈ p−1(x0). The homotopy h̃ with initail value h̃(0, s) = y0 has as boundary
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values the (unique) lifts ũ0 and ũ1 with ũj(0) = y0. Since s 7→ h̃(1, s) is a lift of the

constant path x1, it has to be constant by 6.7 , i.e. h̃ is a homotopy rel. İ.

The lifting property gives us a mapping from π1(X,x0) into the set of mappings
p−1(x0) → p−1(x0) by setting [u](y) := yũ(1). This is well defined, since curves u

homotopic relative İ have lifts yũ homotopic relative İ and hence have the same
end point in p−1(x0).

Composition law: The lift of yũ · v is yũ · y′ ṽ, where y′ := yũ(1).

Moreover we have [u·v](y) = yũ · v(1) = (yũ·y′ ṽ)(1) = y′ ṽ(1) = [v](y′) = [v]([u](y)),
where y′ = yũ(1) = [u](y). Hence, we consider this mapping as a right action, i.e.
we write y · [u] for [u](y). Then we have y · ([u] · [v]) = (y · [u]) · [v].

In particular, [u] acts on p−1(x0) as bijection.

Now the statement on path-connectedness:
If Y is path-connected then so is the surjective continuous image X. Furthermore
a curve v connecting y, y′ ∈ p−1(x0) has a closed curve u := p ◦ v as image and
v = yũ, so y · [u] = y′, i.e. the action is transitive.

Conversely, let y ∈ Y be arbitrary. Since X is path-connected we have a curve u
connecting p(y) with x0. Its lift yũ connects y with y′ := yũ(1) ∈ p−1(x0). Since

π1(X,x0) acts transitive on p−1(x0) there is a [u′] ∈ π1(X,x0) with y′ ũ′(1) =

y′ · [u′] = y0, i.e. the curve y′ ũ′ connects y′ with y0 and yũ · y′ ũ′ connects y with
y0.

6.12 Corollary. [20, 6.3.5] Let X be path-connected. Then the fibers of any covering
p : Y → X can be mapped bijectively onto one another by lifting a curve connecting
the foot points.

Proof. Let F0 := p−1(x0), F1 := p−1(x1) and let u be a path from x0 to x1 then

y 7→ yũ(1) defines a mapping F0 → F1 and y 7→ yũ−1(1) a mapping F1 → F0 and
these mappings are inverse to each other, since the lift of the curve u · u−1 ∼ 0 is
0-homotopic rel. İ and hence closed.

6.13 Corollary. Let X be simply connected and p : Y → X be a path-connected
covering. Then p is a homeomorphism. In particular every simply connected open
subset in a locally path-connected base space of a covering is a trivializing neighbor-
hood.

Proof. Since π1(X,x0) = {1} acts transitively on the fiber p−1(x0) by 6.11 , the
fiber has to be single pointed, hence p is injective and thus a homeomorphism.
For the second statement consider a simply connected open subset U ⊆ X and the
partition of p−1(U) into (open!) path-connected components Ũ . Then p|Ũ : Ũ → U
is a covering map (since every leaf over a path-connected trivialising subset of U is

either completely contained in Ũ or in its complement and U is simply connected)
and hence a homeomorphism by the first part.

6.14 General lifting theorem. [20, 6.2.6] Let Z be path-connected and locally
path-connected. Let p : Y → X be a covering and g : Z → X continuous. Let
x0 ∈ X, y0 ∈ Y and z0 ∈ Z be base points and p and g base point preserving. Then
g has a base point preserving lift g̃ iff im(π1(g)) ⊆ im(π1(p)).

Proof. (⇒) If g = p ◦ g̃ then im(π1(g)) = im(π1(p) ◦ π1(g̃)) ⊆ im(π1(p)).

(⇐) Let z ∈ Z be arbitrary. Since Z is path-connected we may choose a path u
from z0 to z and take the lift y0 g̃ ◦ u and define g̃(z) := y0 g̃ ◦ u(1).
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First we have to show that this definition is independent from the choice of u. So
let u′ be another path from z0 to z. Then g ◦ (u′ · u−1) = (g ◦ u′) · (g ◦ u)−1 is a
closed path through x0, hence by assumption there exists a closed path v through
y0 with p ◦ v ∼ (g ◦ u′) · (g ◦ u)−1 rel. İ and hence (p ◦ v) · (g ◦ u) ∼ (g ◦ u′) rel. İ.

Thus y0 g̃ ◦ u′(1) = y0
(
(p ◦ v) · (g ◦ u)

)∼
(1) = (y0 p̃ ◦ v · y0 g̃ ◦ u)(1) = y0 g̃ ◦ u(1).

Remains to show that g̃ is continuous. Let z1 ∈ Z be fixed and let Ũ be a leaf over
a trivializing neighborhood U of g(z1) containing g̃(z1). Let W be a path-connected
neighborhood of z1 with g(W ) ⊆ U and let u be a path from z0 to z1 and hence
y1 := g̃(z1) = y0 g̃ ◦ u(1). For every z ∈ W we can choose a path wz in W from

z1 to z. Hence g̃(z) = y0(g ◦ (u · wz))∼(1) = (y0 g̃ ◦ u · y1 g̃ ◦ wz)(1) = y1 g̃ ◦ wz(1).

But since g ◦ wz is contained in the trivializing neighborhood U and Ũ is the leaf
over U containing the lift y1, we have that y1 g̃ ◦ wz = (p|Ũ )−1 ◦ g ◦ wz, and hence

g̃(z) = y1 g̃ ◦ wz(1) = ((p|Ũ )−1 ◦ g)(z) and thus is continuous.

Thus it is important to determine the image of π1(p) : π1(Y, y0)→ π1(X,x0).

6.15 Proposition. [20, 6.3.1] Let p : (Y, y0) → (X,x0) be a covering. Then the
induced map π1(p) : π1(Y, y0) → π1(X,x0) is injective and its image is formed by
those [u] ∈ π1(X,x0) for which for (some) any representative u the lift y0 ũ is closed,
i.e. by those g ∈ π1(X,x0) =: G which act trivial on y0. They form the so called
isotropy subgroup Gy0

:= {g ∈ G : y0 · g = y0} of G at y0 with respect to the
action of G on p−1(x0).

π1(p) : π1(Y, y0) ∼= π1(X,x0)y0 ⊆ π1(X,x0).

Proof. Injectivity: Let [v] ∈ π1(Y, y0) be such that 1 = [p ◦ v], i.e. p ◦ v ∼ constx0 .

By 6.11 we have v = y0 p̃ ◦ v ∼ y0 ˜constx0
= consty0

rel. İ, hence [v] = 1.

If some lift v of u is closed, then π1(p)[v] = [p ◦ v] = [u], hence [u] ∈ im(π1(p)).
Conversely let [u] ∈ imπ1(p). Then there exists a closed curve v through y0 with

[p ◦ v] = π1(p)[v] = [u], hence u ∼ p ◦ v rel. İ, and so y0 ũ ∼ y0 p̃ ◦ v = v rel. İ, thus
y0 ũ is closed as well.

In view of 6.11 we study now abstractly given transitive (right) actions of a group
G on sets (i.e. discrete spaces) F .

6.16 Lemma. Transitive actions and isotropy subgroups.
Let G act transitively on F (and on F ′) from the right. A G-equivariant mapping
or G-homomorphism is a mapping ϕ : F → F ′, which satisfies ϕ(y · g) = ϕ(y) · g
for all y ∈ G and g ∈ G. We write HomG(F, F ′) for the set of all G-homomorphisms
F → F ′ and Gy := {g ∈ G : y ·g = y} for the isotropy subgroup of y ∈ F . Then

1. We have Gy·g = g−1Gyg.

2. {Gy : y ∈ F} is a conjugacy class of subgroups of G, i.e. an equivalence class
of subgroups of H with respect to the relation of being conjugate.

3. Let H be a subgroup of G. Then the set G/H := {Hg : g ∈ G} of right
classes admits a unique (transitive) right G-action, such that the canonical
projection π : G � G/H, g 7→ Hg is G-equivariant, where the action of G
on G is given by multiplication from the right side.

4. For y ∈ F the G-equivariant mapping G � F given by g 7→ y · g factors to
a G-isomorphism G/Gy −'→ F .

5. For ϕ ∈ HomG(F, F ′) we have Gy ⊆ Gϕ(y). Conversely if y0 ∈ F and
y1 ∈ F ′ satisfy Gy0

⊆ Gy1
, then there is a unique ϕ ∈ HomG(F, F ′) with

ϕ(y0) = y1.
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6. F ∼=G F ′ ⇔ {Gy : y ∈ F} = {Gy′ : y′ ∈ F ′}
⇔ {Gy : y ∈ F} ∩ {Gy′ : y′ ∈ F ′} 6= ∅.

Note, that we refrain from writing the quotient G/H correctly as H\G.

Proof. ( 1 ) We have Gy·g = g−1Gyg, since h ∈ Gy·g ⇔ y·g·h = y·g ⇔ y·(ghg−1) =

y, i.e. ghg−1 ∈ Gy.

( 2 ) Since G acts transitively, {Gy : y ∈ F} = {Gy0·g = g−1Gy0g : g ∈ G} is a

conjugacy class by ( 1 ).

( 3 ) The only possible action of G on G/H such that π is G-equivariant is given
by Hg · g′ = π(g) · g′ := π(g · g′) = π(gg′) = Hgg′. The so defined action makes
sense, since Hg1 = Hg2 ⇒ g2g

−1
1 ∈ H ⇒ (Hg1) · g := Hg1g = Hg2g =: (Hg2) · g.

( 4 ) Consider evy : G → F given by g 7→ y · g. This G-equivariant mapping has
image y · G = F , since G acts transitively. Furthermore g′ and g have the same
image y · g′ = y · g iff g′g−1 ∈ Gy, so evy factors to a G-isomorphism G/Gy → F .

( 5 ) We have Gy = {g : y · g = y} ⊆ {g : ϕ(y) · g = ϕ(y · g) = ϕ(y)} = Gϕ(y).
Conversely let Gy0 ⊆ Gy1 and y ∈ F . Since G acts transitively there exists a g ∈ G
with y = y0 · g. Define ϕ(y) = ϕ(y0 · g) := ϕ(y0) · g = y1 · g. This definition makes
sense, since y0 · g′ = y0 · g implies g′g−1 ∈ Gy0

⊆ Gy1
and hence y1 · g′ = y1 · g. By

construction ϕ is G-equivariant.

( 6 ) (1⇒2) Let ϕ : F → F ′ be a G-equivariant isomorphism. Then Gy ⊆ Gϕ(y) ⊆
Gϕ−1(ϕ(y)) = Gy by ( 5 ).

(1⇐3) By assumption there are y ∈ F and y′ ∈ F ′ with Gy = Gy′ and therefore

F ∼=G G/Gy = G/Gy′ ∼=G F ′ by 4 .

6.17 The category Subgr(G).

We use 6.16.3 for associating to each subgroup H ≤ G the transitive action of G
on G/H. In order to extend this to a full and faithfull functor, we have to define
the morphisms H → H ′ between subgroups appropriately:
Let ϕ ∈ HomG(G/H,G/H ′) and y0 := H ∈ G/H. Then Gy0 := {g ∈ G : Hg =

y0 · g = y0 = H} = H. By 6.16.5 ϕ is uniquely determined by y1 := ϕ(y0) =:

H ′g1 ∈ G/H ′ with H = Gy0
⊆ Gy1

= GH′g1
= g−1

1 H ′g1 by 6.16.1 . So we define

Hom(H,H ′) := {g ∈ G : gH ⊆ H ′g}/H ′,
where H ′ acts on {g : gH ⊆ H ′g} by multiplication from the left, since gH ⊆ H ′g
and h′ ∈ H ′ implies h′g H ⊆ h′H ′ g = H ′ g = H ′ h′g.
Then the set Subgr(G) of subgroups H ≤ G and H ′′g′ ◦H ′g := H ′′g′g as composi-
tion of these morphisms forms a category:
The composition H ′′g′ ◦H ′g := H ′′g′g is well-defined, since gH ⊆ H ′g and g′H ′ ⊆
H ′′g′ ⇒ g′gH ⊆ g′H ′g ⊆ H ′′g′g and since H ′′(h′′g′)(h′g) = H ′′g′h′g = H ′′h̄′′g′g =
H ′′g′g for h̄′′ := g′h′(g′)−1 ∈ g′H ′(g′)−1 ⊆ H ′′.
The identity on H is given by H = H 1.

Theorem. We have an equivalence Acttr(G) ∼ Subgr(G) of categories.

Proof. The functor Subgr(G)→ Acttr(G) is given on morphisms by:

Hom(H,H ′) 3 H ′g1 7→ ϕ(: H g 7→ H ′ g1g) ∈ HomG(G/H,G/H ′).

This is well-defined, since H g = H ḡ ⇒ g1ḡ(g1g)−1 = g1ḡg
−1g−1

1 ∈ g1Hg
−1
1 ⊆ H ′

⇒ H ′ g1g = H ′ g1ḡ and since H ′ (h′g1)g = H ′ g1g for h′ ∈ H ′.
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Functorality: H = H 1 7→ idG/H and the composition H ′′g2 ◦ H ′g1 := H ′′g2g1 is
mapped to H g 7→ H ′ g1g 7→ H ′′ g2g1g.

The functor is faithfull: ∀g : Hg 7→ H ′g1g = H ′ḡ1g ⇒ H ′g1 = H ′ḡ1 ∈ Hom(H,H ′).

The functor is full by what we have shown above.

The functor is dense by 6.16.4 .

6.18 Corollary. [20, 6.3.3] Let G act transitively on F from the right. With
AutG(F ) we denote the group of all G-equivariant isomorphisms F → F . For a
subgroup H of G one denotes with NormG(H) := {g ∈ G : H = g−1Hg}, the nor-
malizer of H in G, i.e. the largest subgroup of G, which contains H as normal
subgroup. Then we have a group isomorphism

AutG(F ) ∼= NormG(Gy0)/Gy0

Proof. By 6.16.4 and 6.17 we have

HomG(F, F ′) ∼= HomG(G/H,G/H ′) ∼= Hom(H,H ′) := {g : gH ⊆ H ′g}/H ′,
where H := Gy and H ′ := Gy′ are isotropy subgroups of G for the action on F and
F ′. Moreover,

H ′g ∈ Hom(H,H ′) is an isomorphism

⇔ ∃Hg′ ∈ Hom(H ′, H) : H = Hg′ ◦H ′g = Hg′g and H ′ = H ′g ◦Hg′ = H ′gg′

⇔ ∃ g′ ∈ G : g′H ′ ⊆ Hg′, g′g ∈ H, and gg′ ∈ H ′

⇔ ∃ g′ ∈ G : H ⊆ g−1H ′g ⊆ (g′g)−1Hg′g = H, g′H ′ ⊆ Hg′, g′g ∈ H, and gg′ ∈ H ′

⇔ H = g−1H ′g (and g′ := g−1).

Thus AutG(F ) ∼= AutG(G/H) ∼= Aut(H) = {Hg : H = g−1Hg} = NormG(H)/H.

6.19 Corollary. We have a bijection between the set of isomorphy classes of tran-
sitive right actions of G and that of conjugacy classes of subgroups of G.

Proof. By 6.17 we have a bijection between isomorphy classes of transitive actions

and isomorphy classes in Subgr(G). And by the proof of 6.18 we have that H ′g ∈
Hom(H,H ′) is an isomorphism, iff H = g−1H ′g, i.e. H and H ′ belong to the same
conjugacy class.

6.20 Corollary. Let p : Y → X be a covering with path-connected Y and x0 ∈ X.
The images π1(p)

(
π1(Y, y)

)
for y ∈ p−1(x0) form a conjugacy class of subgroups in

π1(X,x0).

This class is called the characteristic conjugacy class of the covering p.

Proof. By 6.15 π1(p)
(
π1(Y, y)

)
= Gy for G := π1(X,x0) and y ∈ F := p−1(x0),

and by 6.16.2 {Gy : y ∈ F} is a conjugacy class of subgroups of G.

6.21 Corollary. For transitive actions of G on F the following statements are
equivalent:

1. Gy is normal in G for some (all) y ∈ F ;

2. Gy = Gy′ for all y, y′ ∈ F ;

3. The induced action of G/
⋂
y∈F Gy on F is free,

i.e. if g ∈ G has some fixed point y0 ∈ F then it acts as identity on F ;
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4. AutG(F ) acts transitive on F .

For 3 note that
⋂
y∈F Gy is the kernel of the action G → Bij(F ) and hence the

action factors over G� G/
⋂
y∈F Gy.

Proof. ( 1 ⇒ 4 ) IfGy0
is normal inG, then NormG(Gy0

) = G and hence AutG(F ) ∼=
G/Gy0 by 6.18 which obviously acts transitive, since G does.

( 4 ⇒ 3 ) Let y0 · g = y0 and y ∈ F . Since AutG(F ) acts transitive there is an
automorphism ϕ with y = ϕ(y0) = ϕ(y0 · g) = ϕ(y0) · g = y · g.

( 3 ⇒ 2 ) Let g ∈ Gy, i.e. y is a fixed point of g. Hence g acts as identity, so g ∈ Gy′
for all y′ ∈ F .

( 2 ⇒ 1 ) is obvious, since Gy = Gy·g = g−1Gyg by 6.16.1 .

Let us now show that Covpc
X → Acttr(π1(X,x0)) can be extended to a full and

faithful functor:

6.22 Proposition. Let X be locally path-connected. Let p : Y → X and p′ : Y ′ →
X be two path-connected coverings with typical fibers F := p−1(x0) and F ′ :=
(p′)−1(x0) and G := π1(X,x0). Then HomX(p, p′) ∼= HomG(F, F ′) via Φ 7→ Φ|F .

Proof. The mapping Φ 7→ Φ|F is well-defined, i.e. Φ|F is a G-homomorphism,
since Φ(y · [u]) = (Φ ◦ yũ)(1) = Φ(y)ũ(1) = Φ(y) · [u]. Obviously, this extends
p 7→ F := p−1(x0) to a functor Covpc

X → Acttr(π1(X,x0)).

It is faithfull, since Φ1|F = Φ2|F implies Φ1(y0) = Φ2(y0) and hence Φ1 = Φ2, by

the uniqueness of lifts of p proved in 6.7 .

Fullness: Let ϕ : F → F ′ be G-equivariant. As Φ : Y → Y ′ we take the lift of

p : Y → X which maps y0 ∈ F to ϕ(y0) ∈ F ′. This lift exists by 6.14 , since

π1(p)
(
π1(Y, y0)

)
= Gy0

⊆ Gϕ(y0) = π1(p′)
(
π1(Y ′, ϕ(y0))

)
by 6.16.5 and since

with X also Y is locally path-connected. By 6.16.5 Φ|F = ϕ, since both are
G-equivariant and coincide on y0.

6.23 Corollary. [20, 6.3.4] Two path-connected coverings of a locally path-connected
space are isomorphic, iff their characteristic conjugacy classes are the same.

Proof. p ∼= p′ ⇐
6.22

====⇒ F ∼=G F ′ ⇐
6.16.6

======⇒ {Gy : y ∈ F} = {Gy′ : y′ ∈ F ′} .

6.24 Corollary. [20, 6.5.5] Let Y be path-connected and X be locally path-connected.
For any covering map p : Y → X we have

Aut(p) ∼= Autπ1(X,x0)

(
p−1(x0)

) ∼= Norm
(
π1(p)

(
π1(Y, y0)

)) /
π1(p)

(
π1(Y, y0)

)
.

The inverse of this isomorphism is given by mapping [u] ∈ Norm
(
π1(p)

(
π1(Y, y0)

))
to the unique covering transformation f which maps y0 to y0 ũ(1).

Proof. Since the elements of Aut are just the isomorphisms of an object with itself,

this follows directly from 6.22 , 6.18 , and 6.15 .

6.25 Corollary. Normal coverings. [20, 6.5.8] For path-connected coverings p :
Y → X of locally path-connected spaces X the following conditions are equivalent:

1. π1(p)(π1(Y, y)) is normal in π1(X,x0) for (some) all y in the fiber over x0;

2. The characteristic conjugacy class of the covering consists of a single group;
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3. If one lift of a closed path through x0 is closed, then so are all lifts;

4. The covering p is normal, i.e. the group Aut(p) acts transitive on the fiber
over x0.

In particular 1 – 4 is true if π1(X) is abelian or the covering is 2-fold or π1(Y ) =
{1}.

Proof. Let G := π1(X,x0) and F := p−1(x0). By 6.15 π1(p)(π1(Y, y)) = Gy and

by 6.20 the characteristic conjugacy class is {Gy : y ∈ F}; the lift with initial
value y of a closed curve u through x0 is closed iff y is a fixed point of [u] acting

on F ; and the group of covering transformations is Aut(p) ∼= AutG(F ) by 6.22 .

So the result follows from 6.21 .

6.26 Example. [20, 6.1.5]
Since every subgroup of an abelian group is nor-
mal and also any subgroup of index two, the sim-
plest non-normal covering could best be found
among the 3-fold coverings of S1 ∨ S1.
There is a three-fold covering of S1 ∨ S1,
which is not normal.

Proof. Let {y0, y1, y2} be the fiber over x0, let a
and b denote parametrizations of the two factors
S1 in S1 ∨ S1 and let a0, a1, a2 be the leaves over
a and b0, b1, b2 be the leaves over b. Let bi be from
yi+1 to yi+2 (mod 3). Let a0 be a closed path at
y0 and a1 and a2 connect y1 and y2 in opposite
directions.

So a has closed as well as none closed lifts.

x0

y0

y1

y2

a

a0

a1 a2

b

b2

b0

b1

p

6.27 Corollary. [20, 6.5.6] If p : Y → X is a covering with Y simply connected
and X locally path-connected, then Aut(p) ∼= π1(X,x0) as groups and, in particular,
p is a normal covering, so X ∼= Y/Aut(p).

Proof. By 6.24 we have an isomorphism Aut(p) ∼= NormG(Gy0
)/Gy0

, Φ←Gy0
g,

where g ∈ G := π1(X,x0), Gy0 = π1(p)(π1(Y, y0)), and Φ(y0) = y0 · g. By assump-
tion π1(Y, y0) = {1}, hence Gy0 = {1}, thus NormG(Gy0) = G, and so we have
NormG(Gy0

)/{1} ∼= G.

Moreover, p is normal, since Aut(p) ∼= π1(X,x0) acts transitively. Hence X ∼=
Y/Aut(p) by 6.10 .

6.28 Examples of the fundamental group of orbit spaces. [20, 5.7.5]

We can use 6.27 to calculate π1(X) by finding a covering p : Y → X with simply

connected total space Y (see 6.29 ) and then determine its automorphism group
Aut(p) ∼= π1(X).

In particular, if X = Y/G with simply connected Y and strictly discontinuously

acting G, then π1(X) ∼= Aut(p) = G by 6.9 . This applies to the examples in 6.3 .

In particular, we have Z as group of covering transformations of R → S1 ∼= R/Z
and Z2 as group of covering transformations of Sn → Pn ∼= Sn/Z2 for n > 1.

Furthermore, the homotopy group of L( qp ) ∼= S3/Zp from 1.81 is Zp and that of

M
(
a b
c d

) ∼= L( ca ) from 1.74 (see 1.87 ) is Z|a|.
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6.29 Maximal Covering.

We aim to show that the functor Covpc
X → Acttr(G), where G := π1(X,x0), is an

equivalence of categories. In view of 6.22 it remains to show its denseness.

For this we search for the “maximal” elements first. For transitive actions of G the
maximal object is G with the right multiplication on itself, since for every action
of G on some F we have G-equivariant mappings evy : G→ F , g 7→ y · g, for y ∈ F
by 6.16.3 .

The corresponding maximal path-connected covering p : X̃ → X should thus have
as typical fiber p−1(x0) = G and the action of G = π1(X,x0) on it should be given
by right multiplication. In particular, we must have Gy = {1} for all y ∈ G. Choose

a base-point y0 ∈ X̃ with x0 = p(y0). Since π1(p) : π1(X̃, y0) → Gy0 = {1} is an

isomorphism by 6.15 , we have that X̃ should be simply connected.

For every point y ∈ X̃ we find
a path vy from y0 to y and

since X̃ is simply connected
the homotopy class [vy] rel. İ
is well defined.
Let ∼̇ denote temporarily the
relation of being ‘homotopic
relative İ’.

C
(
(I, {0}), (X̃, {y0})

)
/∼̇

yy
ev1

∼=yyyy

%%

∼=

p∗

%% %%
p ◦ ev1

����

X̃

p
%% %%

C
(
(I, {0}), (X, {x0})

)
/∼̇

ev1

yyyy
X

Thus y 7→ [vy] gives a bijection X̃ ∼= C
(
(I, {0}), (X̃, {y0})

)
/∼̇ with inverse ev1 :

v(1)← [v]. By the lifting property 6.11 , these homotopy classes correspond bijec-
tively to homotopy classes of paths in X starting at x0.

So we would like to identify ev1 : C
(
(I, {0}), (X, {x0})

)
/∼̇ → X as a covering map:

Let U be a path-connected neighborhood of x1 ∈ X. We calculate ev−1
1 (U). Note

that ev−1
1 (x1) = {[v] : v is a path in X from x0 to x1} and in particular ev−1

1 (x0) =
π1(X,x0).

ev−1
1 (U) = {[w] : w(1) ∈ U} (use w ∼̇ w · u−1 · u with appropriate u)

=
{

[v] · [u] : v(0) = x0, v(1) = x1, u(0) = x1, u(I) ⊆ U
}

=
{

[v] · [u] : [v] ∈ ev−1
1 (x1), u(0) = x1, u(I) ⊆ U

}
=

⋃
[v]∈ev−1

1 (x1)

[v]Ũ , with [v]Ũ :=
{

[v] · [u] : u(0) = x1, u(I) ⊆ U
}
.

Since U is path-connected the mapping ev1 |[v]Ũ : [v]Ũ → U is onto. In order that it
is injective, we need that u0(1) = u1(1) ⇒ [u0] = [u1], i.e. every closed curve in U
through x1 should be 0-homotopic in X. A space X which has for each of its points
a neighborhood with this property is called semi-locally simply connected.
Note that the closed curves are assumed to be local (i.e. contained in U), whereas
the homotopy may leave U . Since any subset of such a set U has the same property,
we get for a locally connected semi-locally simply connected space a neighborhood-
basis of connected sets U with this property. The cone over the image of

∨
N S

1 in R2

discussed in 1.42 gives an example of a contractible (hence simply connected and
thus semi-locally simply connected) space which is not locally simply connected.

Note that [v1]Ũ ∩ [v2]Ũ 6= ∅ iff there exist curves ui with [v1] · [u1] = [v2] · [u2],
where ui are curves in U from x1 to the same endpoint. Hence [u1] = [u2] by the
semi-local simple connectedness and thus [v1] = [v2].
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For a path-connected, locally path-connected and semi-locally simply connected
space X we thus define X̃ to be the set C

(
(I, {0}), (X, {x0})

)
/∼̇ and p1 : X̃ → X

by p1([u]) := ev1(u) = u(1). Since for every U as above we want [u]Ũ to be a leaf over

U , we declare those sets to be open in X̃. In order that these sets form the basis of a
topology (cf. [6, 1.1.4]) we have to consider two such neighborhoods U0 and U1 and

y ∈ y0Ũ0 ∩ y1Ũ1. Then p1(y) ∈ U0 ∩U1 and hence we can find such a neighborhood

U ⊆ U0 ∩ U1 of p1(y). Then y ∈ yŨ and yŨ ⊆ y0Ũ0 ∩ y1Ũ1 by construction, since

y · [u] ∈ yŨ and y =: yi · [ui] ∈ yiŨi implies y · [u] = yi · [ui · u] ∈ yiŨi. Obviously

we have that p1|yŨ : yŨ → U is a homeomorphism, and hence p1 : X̃ → X is a
covering map.

Note that for any path u starting at x0 we have that t 7→ [ut] is the lift along p1

with starting value [constx0
] =: y0, where ut(s) := u(ts). Thus X̃ is path-connected.

Finally X̃ is simply connected: Let v be a closed curve in X̃ through y0. Then
u := p1 ◦ v is a closed curve through x0 and v(t) = [s 7→ u(ts)], since both sides are
lifts of u with starting point y0. Hence [u] = v(1) = v(0) = y0 = [constx0 ]. Since

homotopies can be lifted, we have v ∼ consty0
rel. İ.

Theorem. Universal covering. [20, 6.6.2]
Let X be path-connected, locally path-connected and semi-locally simply-connected.
Then there exists a path-connected, simple-connected covering map p1 : X̃ � X.
Every simply connected path-connected covering of X covers any other path-con-
nected covering.

Proof. We have just shown the first part. The other one follows, since we can lift

the projection of any simple connected covering by 6.14 and the lift is a covering

by 6.8.2 .

6.30 Denseness of Covpc
X → Acttr(G). Let us return to the question of (almost)

surjectivity of Covpc
X → Acttr(G), where G := π1(X,x0). So let G act transitively

on F . Then F ∼= G/H by 6.16.4 , where H := Gy is any isotropy subgroup of this

action. Thus we are searching for a covering p : Y → X with typical fibre p−1(x0) ∼=
F and with the action of G on it given by 6.16.3 . Thus π1(p) : π1(Y, y) → Gy
should be an isomorphism.

Let p : Y → X be some path-connected covering of X. By 6.29 the universal

covering map p1 : X̃ → X lifts to a covering map p̃1 : X̃ → Y with p ◦ p̃1 = p1 and

p̃1 is normal by 6.27 . Thus Y ∼= X̃/Aut(p̃1) and Aut(p̃1) ∼= π1(Y, y) by 6.27 .

So we define Y := X̃/H and

let p : Y → X ∼= X̃/G be the
unique factorization of p1 over
X̃ → X̃/H. Then p is a covering

map by 6.8.4 with typical fibre

p−1
1 (x0)/H = G/H ∼= F .

The action of G = π1(X,x0)
on G/H is obviously the one in-
duced by the right multiplication
of G on p−1

1 (x0) = G.

G = p−1
1 (x0)

jJ

ww

// // G/H = p−1(x0)
jJ

ww ����
X̃

p̃1 // //

p1 '' ''

Y := X̃/H

p
����

{G} = {x0}
jJ

ww
X ∼= X̃/G

6.31 Theorem. [20, 6.6.3] Let X be path-connected, locally path-connected and
semi-locally simply connected. Then we have an equivalence between the category of

88 andreas.kriegl@univie.ac.at c© 7. Februar 2018



6. Covering Maps 6.32

path-connected coverings of X and transitive actions of G := π1(X,x0).

CovpcX ∼ Acttr(G).

Proof. By 6.22 the functor is full and faithful and by 6.30 it is dense.

6.32 The category Covpc
X is not quasi-ordered.

A quasi-ordering is a relation, which is transitive and reflexive. A category for
which each set Hom(X ′, X) has at most one element is isomorphic to the quasi-
ordering of its objects given by X ′ ≥ X :⇔ ∃f ∈ Hom(X ′, X).

Obviously Hom(p′, p) ∼= HomG(F ′, F ) may contain more than one element, as the
example of any G-action on set F with at least two elements y0 and y1 and action
on F ′ := G by right multiplication shows: The mappings evyi : G→ F are different

G-homomorphisms by 6.16.4 . However, there is an automorphism Φ ∈ AutG(G)
with evy1 = evy0 ◦Φ. In fact, choose g0 ∈ G with y1 = y0 · g0 and let Φ(g) := g0g,
then evy0(Φ(g)) = y0 · g0g = y1 · g = evy1(g).

We give now an example that for two coverings p : Y → X and p′ : Y ′ → X there
may be more than one element in HomX(p, p′) even up to isomorphy.

By 6.31 it is enough to consider the corresponding question for transitive G-
actions. For this we will construct subgroups H ≤ H ′ ≤ G for which NormG(H) =
H and NormG(H ′) = H ′ and for which a g /∈ H ′ exists with gHg−1 ⊆ H ′.
Thus AutG(H) = {1}, AutG(H ′) = {1}, and H ′ 6= H ′g ∈ Hom(H,H ′). By 6.17
this gives the corresponding result for transitive actions of G.

Remains to show that H, H ′, G and g can be found:
So let F be finite, G := Bij(F ) and let {Fj : j ∈ J} be a partition of F in disjoint
subsets of different non-zero cardinality. Recall that any finitely generated group

appears as fundamental group of some 2-dimensional CW-complex by 5.49 .
Then H := {g ∈ G : ∀j ∈ J : g(Fj) = Fj} is a subgroup with NormG(H) = H:
In fact, let g /∈ H, i.e. there is some j with g(Fj) 6= Fj and let |Fj | be maximal
with this property.
There has to exist y1, y2 ∈ Fj such that g(y1) and g(y2) are in different sets Fj1
and Fj2 : Otherwise, there would exist an i 6= j with Fi ⊇ g(Fj) ∼= Fj , thus |Fi| ≥
|Fj | and by the cardinality assumption |Fi| > |Fj |. Thus g(Fi) = Fi ⊇ g(Fj) by
maximality of j and hence Fi ⊇ Fj , a contradiction.
Now take h ∈ H given by exchanging just y1 and y2. Then ghg−1 maps g(y1) to
g(y2), and hence Fj1 is not invariant, so ghg−1 /∈ H.

If F = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and F1 = {1}, F2 = {2, 3}, F3 = {4, 5, 6} and
F4 = {7, 8, 9, 10}. Let H be given by the partition {F1, F2, F3, F4} and H ′ be given
by {F1 ∪ F2, F3 ∪ F4} and let g := (1, 4)(2, 5)(3, 6) /∈ H ′. Then gHg−1 ⊆ H ′, since
g−1(F1 ∪ F2) = F3, g−1(F3) = F1 ∪ F2 and g−1(F4) = F4, hence ghg−1(F3) =
gh(F1 ∪ F2) = g(F1 ∪ F2) = F3, ghg−1(F1 ∪ F2) = gh(F3) = g(F3) = F1 ∪ F2 and
ghg−1(F4) = F4.

Example. Let p : Y → X and p′ : Y ′ → X be two coverings. Then there may
exist homomorphisms in HomX(p, p′) and HomX(p′, p) without p ∼= p′.
In fact we can translate this to transitive actions, resp. subgroups of G. So we
need subgroups H ≤ G and H ′ ≤ G which are not conjugate, but such that
H is contained in some conjugate g−1H ′g of H ′ and conversely. Then G/H →
G/(g−1H ′g) ∼= G/H ′ is G-equivariant as is G/H ′ → G/((g′)−1Hg′) ∼= G/H, but
G/H is not isomorphic to G/H ′.
In [12, p.187] the existence of such groups is shown.
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6.33 Example. Threefold coverings. [20, 6.7.3] We now try to identify all 3-fold
coverings of S1∨S1 and also those of the torus S1×S1 and of Klein’s bottle. For G
we have in these cases 〈{α, β} : ∅〉, 〈{α, β} : {αβ = βα}〉, and 〈{α, β} : {α2β2 = 1}〉.

First we have to determine all transitive actions of 〈{α, β} : ∅〉 on {0, 1, 2}, i.e.
group-homomorphisms from the free group with two generators α and β into that
group of permutations of {0, 1, 2}. We write such permutations in cycle notation,
i.e. these are

(0), (01), (02), (12), (012), (021).

Where (0) has order 1, (012) and (021) have order 3 and the rest order 2. Let a be
the image of α and b that of β. Note, that two actions on {0, 1, 2} are isomorphic
if there exists a permutation which conjugates these generators (and hence any
element) for one action onto those of the other one.
Up to symmetry we may assume that ord a ≤ ord b for the order of the generators.
If ord a = 1, i.e. a = (0) then ord b has to be 3 (otherwise the resulting action is
not transitive) and the two possible choices are conjugate via (01).
If ord a = 2, then ord b can be 2, but b has to be different from a (for transitivity)
and any two choices {a, b} and {a′, b′} are conjugate via the common element c ∈
{a, b} ∩ {a′, b′}; or b can have order 3, and again the choices of b are conjugate by
a, and that of a are conjugate by b or b−1.
If ord a = 3 = ord b, they can be either the same or different.

So we get representatives for all transitive actions with (–) + indicating (none-
)normality:

a b S1 ∨ S1 S1 × S1 Kleins bottle
(0) (012) + + @

(012) (0) + + @
(01) (02) – @ –
(01) (012) – @ @
(012) (01) – @ @
(012) (012) + + @
(012) (021) + + +

Note, that the action is normal iff every g ∈ G acts either fixed-point free or is the

identity by 6.21.3 . Thus at least both generators a and b have be of order 3 or 1.
This excludes the 3 actions in the middle. All other cases are normal, because there
the group generated by a and b is {(0), (012), (021)} and only the identity (0) has
fixed points.

The last two columns are determined by checking ab = ba and a2b2 = 1.

6.34 Proposition. [20, 6.8.1] Let p : Y → X be a covering. Then the following
statements are true:

1. If X is a CW-complex then so is Y . The cells of Y are the path-components
(leaves) of p−1(e) for all cells e of X.

2. If X is a manifold so is Y .

3. If X is a topological group, so is Y .
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Proof.
(1) The condition (C1) of 4.1 is satisfied:
Let e be a cell of X. Since e is simply con-
nected it is trivializing for the restricted covering

p−1(e)→ e by 6.13 . Thus each path component

ẽ of p−1(e) is homeomorphic to e via the projec-
tion p|ẽ. Since Dn is simply connected we may lift
the characteristic map χe of e to a characteristic

map χẽ of the lifted cell ẽ by 6.14 .

ẽ
� � //

p|ẽ∼=

��

Y

p

��

◦
Dn � � //

∼=

66

∼=
((

Dn

χẽ

77

χe

''
e
� � // X

The condition (C2) is satisfied: It suffices to show that every compact subset K ⊆ Y
meets only finitely many cells ẽ. Since p(K) is compact it is contained in a finite

subcomplex of X by 4.5 . So it suffices to check that K meets only finitely many

leaves ẽ ⊆ p−1(e) for each cell e of this subcomplex. Suppose this were not the
case. Then choose points xi ∈ K contained in different leaves for i ∈ N and let
zi ∈ (χe)−1(p(xi)). The sequence (zi)i has an accumulation point z∞ in Dn. Let U
be a trivializing neighborhood of χe(z∞) and we may assume that U ∩ e is path-

connected and all p(xi) ∈ U . For each i there is a unique leaf, denoted Ũ i, over U
containing xi, since otherwise two such points are contained in one leaf, and then
they can be connected by the lift of a curve in U ∩ e and hence would be in one
ẽ. Since K is covered by the open sets Ũ i together with Y \ {xi : i ∈ N} we get a
contradiction to compactness.

The condition (W) is satisfied:
Since X carries the final topology with respect to the
characteristic maps χe : Dn → X every open subset
U ⊆ X carries the final topology with respect to the maps
χe|Ue : Ue → U , where Ue := (χe)−1(U) ⊆ Dn:
In fact, let V ⊆ U with (χe|Ue)−1(V ) ⊆ Ue open for all
e. Then (χe)−1(V ) = (χe|Ue)−1(V ) is open in Dn and by
finality V is open in X and hence in U .

Dn χe // X

Ue
?�

OO

χe|Ue // U
?�

OO

(χe)−1(V )
?�

OO

// V
?�

OO

Conversely, we claim that each leaf Ũ over an open trivializing set U ⊆ X carries
the final topology with respect to χẽ : (χẽ)−1(Ũ)→ Ũ for the cells ẽ of Y :

So let V ⊆ Ũ be such that (χẽ)−1(V ) ⊆ Dn is open for all ẽ. We have to show that

V is open in Ũ and since Y carries the final topology with respect to the sets Ũ it
then carries also the final topology with respect to the χẽ.

Dn

χẽ
// Y

p

����

(χẽ)−1(p−1(U)) //
5 U

gg

p−1(U)

����

) 	
77

(χẽ)−1(Ũ) //
4 T
ff

_�

��

Ũ
* 


88

��

∼=

����

(χẽ)−1(V ) //
4 T
ff

_�

��

V
* 


88

��
����

(χe)−1(p(V )) //
jJxx

p(V )
t�
&&

Ue // p(Ũ)

(χe)−1(U)
iIww

// U u�
''

Dn χe // X

Since p|Ũ : Ũ → U is a homeomorphism, it suffices to show that p(V ) is open
in U , i.e. (χe)−1(p(V )) is open in Dn for all e. This follows from (χe)−1(p(V )) =
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⋃
ẽ(χ

ẽ)−1(V ), which we prove now:
Obviously (χe)−1(p(V )) = (p ◦ χẽ)−1(p(V )) = (χẽ)−1(p−1(p(V ))) ⊇ (χẽ)−1(V ).
Conversely, let z ∈ (χe)−1(p(V )). Consider c : I → Dn given by c(t) := (1 − t)z.
Then χe(c(0)) = χe(z) = p(v) for some v ∈ V ⊆ Ũ . Let c̃ be the unique local lift

into Ũ of χe ◦ c with c̃(0) = v. Since (χe ◦ c)(t) ∈ e for all t > 0 we have that c̃(t)
has values in some leaf ẽ over e for all t > 0 and hence c̃(t) = ((p|ẽ)−1 ◦χe ◦ c)(t) =
χẽ(c(t)) for these t. Thus v = c̃(0) = limt↘0 c̃(t) = limt↘0 χ

ẽ((1− t)z) = χẽ(z), i.e.
z ∈ (χẽ)−1(V ).

(2) We may take the chart domains to be trivializing sets in X. The leaves can then
be used as chart domains of Y .

(3) The group structures µ : X × X → X and ν : X → X can be lifted to
mappings Y × Y → Y and Y → Y : In fact chose 1 ∈ p−1(1). Then π1(µ ◦ (p ×
p))([u1], [u2]) = [µ ◦ (p ◦u1, p ◦u2)] = [(p ◦u1) · (p ◦u2)] = π1(p)[u1 ·u2] by the proof

of 5.7 . Thus µ ◦ (p × p) has a unique lift to µ̃ : Y × Y → Y by 6.14 . Similarly

π1(ν ◦ p)([u]) = [p ◦ u]−1 = π1(p)[u−1].

6.35 Theorem. [20, 6.9.1] Every subgroup H of a free group G is free.
If H has finite index k in G, then rank(H) = (rank(G)− 1) · k + 1.
In particular, there exist subgroups of each finite rank in the free group of rank 2.

Proof. LetG be a free group andH a subgroup ofG. By 5.37 G is the fundamental

group of a join X of 1-spheres. Since X has a universal covering X̃ → X by 6.29 ,

there exists also a covering Y → X with isotropy subgroup H. By 6.34 Y is a

graph as well, and hence its homotopy group π(Y ) ∼= H is a free group by 5.46 .

If H has finite index k in G, then rank(H)− 1 = k · (rank(G)− 1) by 5.47 , since

the fiber of Y is G/H by the proof of 6.30 and hence Y has k-times as many cells
of fixed dimension as X.

Let G := 〈{a, b} : ∅〉 and k ≥ 1. Then there exists a unique surjective homomor-
phism ϕ : G→ Zk with ϕ(a) = 1 and ϕ(b) = 0. Thus H := kerϕ has index k in G
and hence rankH = (2− 1)k + 1 = k + 1.

Some basics on knots

6.36 Definition (knots and their equivalence).
A simple closed curve in R3 is called a knot. We will now describe what it means
that two knots are essentially the same. For this we consider two regularly (i.e.
smoothly with nowhere vanishing derivative) parameterized simple closed curves
cj : S1 → R3 for j ∈ {0, 1}. We call them isotopic if an isotopy h between
them exists, i.e. is a smooth homotopy h : S1 × [0, 1] → R3 with h(t, j) = cj(t)
for j ∈ {0, 1} and t ∈ S1 and such that h(., s) is a simple closed regular curve for
each s ∈ [0, 1]. This does not seem to be the desired description yet, because if we
deform c0 to c1, we also have to move the surrounding “air” a bit. Thus we define:
c0 and c1 are called diffeotopic if a diffeotopy (also called ambient isotopy)
H between them exists, that is a smooth homotopy H : R3 × [0, 1] → R3 with
H(c0(t), 1) = c1(t) for all t ∈ S1, H(., 0) = idR3 and such that H(., s) : R3 → R3 is
a diffeomorphism for all s ∈ [0, 1].

One can show that each isotopy h can be extended to a diffeotopy H, i.e. h(t, s) =
H(h(t, 0), s).
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The definition of isotopy also makes sense for simple closed curves considered as
subsets Ki ⊆ R3 (by forgetting the parametrization). All one has to do is to replace
the first condition on H by H(K0, 1) = K1.

A question that arises is whether the specification of a final value, i.e. a diffeomor-
phism H1 : R3 → R3, is enough to ensure the existence of a diffeotopy H with
H( , 1) = H1. This can not be true in general, since the identity is orientation-
preserving and hence this has also to be true for the the end value H1. However,
under this additional assumption we have:

6.37 Theorem. [2]
Any orientation preserving diffeomorphism can be extended to a diffeotopy.

Therefore, one calls two knots equivalent if there exists a diffeomorphism (or,
equivalently, a homeomorphism) H : R3 → R3, which maps one knot to the other.

Each equivalence class of a knot consists of one or two diffeotopy classes, depending
on whether or not it is diffeotopic to its mirror image. A knot is called amphicheri-
al if it is diffeotopic to its mirror image.

Each equivalence class of an oriented knot consists of one or two equivalence class-
es with respect to the relation “oriented-equivalent” (that is, the diffeomorphism
has to respect the orientation of the knots), depending on whether or not it is
is oriented-equivalent to the reverse knot. In the former case the oriented knot is
called invertible. The first non-invertible knot was found by [21]:

A table of some knots having or not having the introduced properties is the follow-
ing:

invertible not invertible

amphicheral

not amphicheral
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How to find out, whether two knots are equivalent? One idea for answering this
question is: A knot K is characterized by what it is not, i.e. its complement R3 \K.
However, the validity of that statement was first proved in 1989:

6.38 Theorem. [3]
Two knots are equivalent if and only if their complements are homeomorphic.

One way to figure out that the two complements are not homeomorphic is to com-
pare their fundamental groups π1(R3 \K), the so called knot group of K.

An English poem summarizes the most important results about it:

A knot
and another knot

may not be the same,
although

the knot group of the knot
and others knot’s knot group

differ not.

But if
the knot group of a knot

is the knot group
of the not knotted knot

then the knot is not knotted.

That is, two knots with same knot group may but not be equivalent. An example for
that situation is the square knot and the granny knot with knot group 〈{x, y, z} :
{xyx = yxy, xzx = zxz}〉:

And if the knot group of a knot is that of the trivial knot S1 ⊂ R2 ⊂ R3, namely
Z (since R3 \ S1 ∼ S1 ∨ S2 by exercise (2.8)), then the knot can be unknotted, i.e.
is equivalent to the trivial one. This was demonstrated by [1] using a lemma that
was first completely proved in [14].

This leaves us with the problem of calculating the knot group of a knot. This can
be done by means of the Wirtinger representation. We explain this method for the
example of the simplest non-trivial knot, the trefoil knot:

We envision the knot as a curtain rail and let an infinite long curtain hanging down
from it. Let x0 be some point above the knot. For each part of the knot that lies
between two puncture points with the curtain, we choose a loop cj through x0,
which runs clockwise (viewed in direction of the parametrization of the knot) once
around this arc, Now, let any representation of an element of the knot group be
given, i.e. a closed loop c in R3 \K through x0. We can deform curve homotopically
so that it only transversally intersects the curtain. Then we can go on to deform
it homotopically in R3 \ K by raising the parts between intersection points with
the curtain so that they then pass through x0 and the intersection points stayed
unchanged. Now we move the intersection points along the walls of the chambers
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created by the curtain, so that they eventually coincide with those of the cj . Then,
however, we can align the pieces of the curve between x0 and the intersection points
with the corresponding parts of cj . So we conclude, that c can be homotopically
deformed into a concatenation of curves cj and reversed cj . The knot group is thus
generated by the cj and hence a quotient of the free group with the cj as generators.

We still have to determine the relations that we need to factor out of the free
group in order to obtain the knot group. For this we consider small circles running
horizontally (counter clockwise when viewed from above) around the edge (say that
below c1) of the chambers of the curtain. Clearly, this circle is homotopic to the
constant curve x0, so it represents the neutral element 1 in the knot group. It is
homotopic to c1c

−1
2 c−1

1 c3. Thus c1c
−1
2 c−1

1 c3 ∼ 1 is certainly one of the relations,
as well as those that arise through cyclic permutation of the indices 1, 2, 3. They
already generate all relations, because any 0-homotopic loop c can be homotopically
deformed so that it no longer hits the curtain. When this homotopy meets one of
the edges the representation as a word in the letters cj and c−1

j changes namely, by
the corresponding relation just described.

In summary, we have seen that the knot group G of the trefoil knot has as generators
c1, c2, c3 and the relations are generated by c1c

−1
2 c−1

1 c3 ∼ 1, c2c
−1
3 c−1

2 c1 ∼ 1 and
c3c
−1
1 c−1

3 c2 ∼ 1, i.e.

G =
〈
{c1, c2, c3} :

{
c1c
−1
2 c−1

1 c3, c2c
−1
3 c−1

2 c1, c3c
−1
1 c−1

3 c2
}〉

Now we have to show that G is not the trivial group. In general this is a difficult
problem because the word problem for finitely generated groups is not algorithmi-
cally solvable. From the first relation we see that c3 ∼ c1c2c

−1
1 . By inserting this

expression for c3 into the second relation we get

G =
〈
{c1, c2} :

{
c2(c1c

−1
2 c−1

1 )c−1
2 c1, (c1c2c

−1
1 )(c−1

2 c−1
1 )c2

}〉
.

Moreover,

c2c1c
−1
2 c−1

1 c−1
2 c1 ∼ 1 ⇔ c2c1 ∼ c−1

1 c2c1c2 ⇔ c1c2c1 ∼ c2c1c2

and the same relation also results from the transformation of the second relation.
If we set x := c1c2c1 and y := c1c2, then c1 = y−1x and c2 = c−1

1 y = x−1y2, so x
and y together create this group and the relation translates into x ∼ x−1y3. Thus,

G =
〈
{x, y} : {x2 ∼ y3}

〉
.

This group is not Z because we can specify a surjective group homomorphism
f : G → S3 in the permutation group S3 of three elements: f(x) := (12), f(y) =
(123). Then f(x)2 = (12)2 = (1) = (123)3 = f(y)3, so f is a well-defined group
homomorphism. And since (123) and (12) generate S3, it is also surjective. Thus
G can not be Abelian ((123)(12) = (23) 6= (13) = (12)(123)) and thus is not
isomorphic to Z.

Note, however, that the Abelization G/G′ of the knot group, i.e. when one adds the
relations cicj ∼ cjci to the knot group, is isomorphic to Z, because the generating

relations such as e.g. c1c
−1
2 c−1

1 c3 ∼ e translate then into c2 ∼ c3. So G/G′ =
〈{c1, c2, c3} : {c1 ∼ c2 ∼ c3}〉 = 〈{c1} : ∅〉 ∼= Z. That the knot group G of each knot
has as Abelization G/G′ ∼= Z is due to [14].

Since the knot group does not characterize the knots, a number of other invariants
have been introduced.
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6.39 Higher homotopy groups

In analogy with the fundamental group π1(X) the higher homotopy groups πk(X)
are defined as the set of homotopy classes of base point preserving continuous maps
f : Sk → X. Thus instead of catching “holes” with “lassos” (i.e., elements of
π1(X)), one tries to use “nets” (i.e., elements of π2(X)) and higher-dimensional
analogons.

Two such classes [f1] and [f2] can be multiplied by considering the quotient map
Sk � Sk/Sk−1 ∼= Sk ∨ Sk (where Sk−1 denotes the equator in Sk containing the
base point) and composing it with the union f1 ∪ f2 : Sk ∨ Sk → X.

f1

f2

X

It can be shown that πk(X) is commutative for k > 1.

In contrast to the case k = 1 we have no pendant to the Theorem of Seifert and van
Kampen. The main tool for calculating higher homotopy groups is the long exact

sequence of a (Serre) fibration F ↪→ Y −p→ X (where F := p−1(Y )) (see 2.29 ; for
Serre fibrations one requires the homotopy lifting property only for polyhedra as
domains):

. . .→ πk+1(F )→ πk+1(Y )→ πk+1(X)→ πk(F )→ πk(Y )→ πk(X)→ . . .

In particular, for covering maps p (and hence discrete F ) we have πk(F ) = 0 for all
k ≥ 1, thus πk(Y ) ∼= πk(X) for all k > 1.

Theorem of J.H.C. Whitehead.
A map f : (X,x0) → (Y, y0) between connected CW-spaces is a homotopy equiva-
lence if and only if the induced homomorphisms πk(f) : πk(X,x0) → πk(Y, y0) are
isomorphisms for all k ≥ 0.

6.40 The homotopy groups of spheres

We have shown in 5.10 that π1(Sn) = 0 for n ≥ 2. More generally πk(Sn) = 0

holds for 1 ≤ k < n by 3.32 :

Moreover π1(S1) ∼= Z generalizes to πn(Sn) ∼= Z for all n ≥ 1, where the generator
of the group is given by the homotopy class [idSn ].

We have πk(S1) = 0 for all k > 1 since any ϕ : Sk → S1 can be lifted to the
universal (contractible) covering R� S1 and hence is 0-homotopic. Thus we might
be led to expect that πk(Sn) = {0} for k > n ≥ 1.

Surprisingly, this is not the case!
A counter-example is the Hopf fibration S1 ↪→ S3 � S2.
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6.41 The Hopf fibration S3 → S2

It is defined by the following commutative diagram

(z1, z2)
_

��

∈C2 \ {0}

����

S3

Hopf fibration

����

? _oo ∼
stereogr.proj.

R3 ∪ {∞}

z2/z1 ∈ C ∪ {∞} S2∼
stereogr.proj.

� � // C× R = R3

Since the inverse to the stereographic projection with pole p = (0, 0, 1) is the map

y 7→ 2y+(|y|2−1)p
|y|2+1 = 1

|y|2+1 (2y, |y|2 − 1), we get the following formula for the Hopf

fibration:

S3 3 (z1, z2) 7→ 1

| z2z1 |
2 + 1

(
2
z2

z1
,
∣∣z2

z1

∣∣2 − 1
)

=
z1z̄1

|z1|2 + |z2|2
(

2
z2

z1
,
|z2|2 − |z1|2

z1z̄1

)
=
(
2z2z̄1, |z2|2 − |z1|2

)
∈ S2 ⊆ C× R.

We consider the inverse images in S3 of a circle of fixed latitude on the S2, where
θ is the latitude.

(z1, z2) ∈ S3,

∣∣∣∣z2

z1

∣∣∣∣ = r := tan
(π

4
+
θ

2

)
⇔

⇔

{
|z2| = r|z1|
(z1, z2) ∈ S3

}
⇔

{
|z2|2 = r2|z1|2

|z1|2 + |z2|2 = 1

}

⇔

{
|z2| = r|z1|
|z1|2(1 + r2) = 1

}
⇔


|z2|2 = r2 1

1 + r2

|z1|2 =
1

1 + r2


This corresponds under the stereographic projection S3 → R3 to a torus in R3

where A =
√
r2 + 1 and a = r.

Next we consider the inverse image in S3 of the South Pole of S2

(0, 0,−1) ∈ S2 ∧
= (r = 0) ∈ R2 ∧

= (|z1| = 1, z2 = 0) ⊂ S3,

and of the North Pole of S2:

(0, 0,+1) ∈ S2 ∧
= (r =∞) ⊂ R2 ∧

= (z1 = 0, |z2| = 1) ⊂ S3.

We claim that in general the inverse image of each point on the S2 (which is given
with respect to the stereographic projection S2 → C by z0 ∈ C with r := |z0|) is a
circle in S3 ⊂ R4, which is obtained as intersection of the sphere S3 ⊂ R4 with the
plane z2 = z1z0:

 (z1, z2) ∈ S3

z2

z1
= z0 ∈ C

⇔
{
|z2|2 + |z1|2 = 1

z1z0 = z2

}
⇔


|z1|2 =

1

1 + r2

|z2|2 = r2 1

1 + r2

z2 = z1z0


In stereographic coordinates, the first two equations in R3 correspond to the torus

T : z2 + (
√
x2 + y2 −

√
r2 + 1)2 = r2. Without less of generality let r = z0 ∈ R,

(otherwise rotate it by e−iθ, which corresponds to a rotation in the (x, y) plane).
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On S3 :


z2 = rz1

|z2|2 = r2 1

1 + r2

|z1|2 =
1

1 + r2

 =


x2 = rx1, y2 = ry1

|z2|2 = r2 1

1 + r2

|z1|2 =
1

1 + r2


On R3 :


z = rx

x2 + y2 + z2 − 1 = 2ry

z2 + (
√
x2 + y2 −

√
r2 + 1)2 = r2


Where we have set z1 := x1 + i y1, z2 := x2 + i y2 and used the formulas for
stereographic projection:

x1 =
2x

1 + |(x, y, z)|2
y1 =

2y

1 + |(x, y, z)|2

x2 =
2z

1 + |(x, y, z)|2
y2 =

|(x, y, z)|2 − 1

1 + |(x, y, z)|2
.

So the inverse image of a point is contained in the union of the two circles obtained
from intersecting the torus with the plane z = rx. A more carefull investigation
shows that it is the circle lying in front of the other with respect to the y-axes.

Let S1 ↪→ S3 � S2 be the Hopf fibration. Then we have an exact sequence of
groups

. . .→ π3(S1)︸ ︷︷ ︸
=0

→ π3(S3)︸ ︷︷ ︸
∼=Z

→ π3(S2)→ π2(S1)︸ ︷︷ ︸
=0

→ . . .

Thus π3(S2) ∼= π3(S3) ∼= Z. The Hopf fibration captures “something high-dimensional”
on the 2-sphere.

Suspension Theorem of Hans Freudenthal.
πk(Sn) = πk+1(Sn+1) for 1 ≤ k < 2n− 1.

With other words, n 7→ πk+n(Sn) is constant for n ≥ k + 2.

It is known that πk+n(Sn) is a torsion group for all 0 < k 6= n − 1. Not all
homotopy groups of spheres are known. A table of the first groups πk+n(Sn) of
the low-dimensional spheres is the following, where an entry ∞n(p1)n1 . . . (pk)nk

denotes the group Zn⊕ (Zp1
)n1 ⊕· · ·⊕ (Zpk)nk and 1 denotes the trivial group {0}:
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k\n 2 3 4 5 6 7 8 9 10

0 ∞∞∞ ∞∞∞ ∞∞∞ ∞∞∞ ∞∞∞ ∞∞∞ ∞∞∞ ∞∞∞ ∞∞∞
1 ∞∞∞ 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
3 2 12 ∞∞∞.12 24 24 24 24 24 24
4 12 2 22 2 1 1 1 1 1
5 2 2 22 2 ∞∞∞ 1 1 1 1
6 2 3 24.3 2 2 2 2 2 2
7 3 15 15 30 60 120 ∞∞∞.120 240 240
8 15 2 2 2 24.2 23 24 23 22

9 2 22 23 23 23 24 25 24 ∞∞∞.23

10 22 12.2 120.12.2 72.2 72.2 24.2 242.2 24.2 12.2
11 12.2 84.22 84.23 504.22 504.4 504.2 504.2 504.2 504
12 84.22 22 26 23 240 1 1 1 12

andreas.kriegl@univie.ac.at c© 7. Februar 2018 99



7.1 6. Covering Maps

7. Simplicial Homology

Since it is difficult to calculate within non-abelian groups we try to associate abelian
groups to topological spaces. Certainly we could take the Abelization abπ1(X) of
the fundamental group, but in order to calculate this we can hardly avoid the non-
commutative group π1(X) as intermediate step. So we try to find a more direct
approach. We start with the most explicitly describable spaces, i.e. the simplicial
complexes K. To each closed curve |∆̇| = S1 → |K| there is a homotopic simplicial

approximation c from some barycentric refinement of ∆̇ to K by 3.29 . Note that

any barycentric refinement of ∆̇ is just a finite sequence of adjacent edges. If we
want to get rid of none-commutativity we should consider the curve as formal linear
combination

∑
σ nσ · σ with integer coefficients nσ of oriented edges σ in K (we

dropped those images of edges which are degenerated to some vertex). That the
curve is a closed (and connected) curve corresponds to the assumption that every
vertex occurs equally often as start and as end point. So we can associate to such a
linear combination c :=

∑
σ nσ ·σ (a so-called 1-chain) a boundary ∂

(∑
σ nσ ·σ

)
:=∑

σ nσ · ∂σ, where ∂σ is just x1 − x0 for σ being the edge from x0 to x1. Thus we
call a 1-chain c closed iff ∂c = 0.

Next we should reformulate what it means that c is 0-homotopic, i.e. that there

exists an extension c̃ : |∆| = D2 → |K|. Again by 3.29 we may assume that c̃ is
simplicial from some barycentric refinement of ∆ into K. The image of c̃ can be
viewed as 2-chain, i.e. formal linear combination

∑
nσ · σ with integer coefficients

nσ of ordered 2-simplices σ of K. Note that an orientation of a triangle induces
(or even is) a coherent orientation on the boundary edges. That c̃ is an extension
of c means that the edges of these simplices, which do not belong to c, occur as
often with one orientation as with the other. And those which do belong to c occur
exactly that many times more often with that orientation than with the other.
So we can define the boundary ∂(

∑
σ nσ · σ) of a linear combination of oriented

2-simplices as
∑
σ nσ · ∂σ, where ∂σ = 〈x0, x1〉+ 〈x1, x2〉+ 〈x2, x0〉 for σ being the

triangle with vertices x0, x1, x2 in that ordering. Thus c being 0-homotopic seems
to correspond to the existence of a 2-chain with boundary c. We call such a 1-chain
c exact or 0-homologue. The difference between closed and exact 1-chains is an
obstruction to simply connectedness of |K|. At the same time this easily generalizes
to k-chains:

Homology groups

7.1 Definition. Orientation and chain groups. [20, 7.1.1] [20, 7.1.4]
An orientation of a q-simplex (with q > 0) is an equivalence class of linear
orderings of its vertices, where two such orderings are called equivalent iff they can
be transformed into each other by an even permutation. So if a q-simplex σ has
vertices x0, . . . , xq then an orientation is fixed by specifying an ordering xσ(0) <
· · · < xσ(q) and two such orderings σ and σ′ describe the same oriented simplex iff

sign(σ′ ◦ σ−1) = +1. We will denote the ordered simplex (i.e. a representant of an
oriented simplex σ) with 〈xσ(0), . . . , xσ(q)〉. Let σ−1 denote the oriented simplex with
the same vertices as σ but the opposite orientation. Warning: A representant for
the opposite orientation is only for q congruent to 1 or 2 mod 4 given by the reverse
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ordering xq < · · · < x0 of an representant x0 < . . . xq of the original ordering.

x0 x1

x2

x0 x1

x2

x3

The qth-chain group is the abelian group with all oriented q-simplices σ as gener-
ators and σ+σ−1 = 0 for all these simplices as generating relations. More precisely,
it can be described as follows:
Since each simplex is determined by its vertices, a simplicial complex K can be
viewed as a finite set of finite subsets (the vertices of its simplices) of some Rn.
Temporarily, let

• Kq := {σ ∈ K : |σ| = q + 1} be the set of its q-simplices.

•
⋃
K :=

⋃
σ∈K σ be the set of its vertices.

• K<q> :=
{
x = (x0, . . . , xq) ∈ (

⋃
K)q+1 : xi 6= xj ⇐ i 6= j

}
be the set of all

q + 1-tuples of distinct vertices.

• K(q) :=
{
x = (x0, . . . , xq) ∈ K<q> : {x0, . . . , xq} ∈ K

}
be the set of all

ordered q-simplices in K.

• K [q] := K(q)/∼ be the set of oriented q-simplices in K, where x ∼ ρ∗(x) :=
(xρ(0), . . . , xρ(i)) for each even permutation ρ. Note, that K [0] = K(0).

Then the qth-chain group

Cq(K) := ab
〈
K [q], {σ + σ−1 : σ ∈ K [q]}

〉
is the abelian group with K [q] as generators and σ−1 ∼ −σ for each σ ∈ K [q] as basis
of the relations. Note, that for 0-simplices σ−1 does not exist, so C0(K) := ab〈K(0)〉.

7.2 Lemma. [20, 7.1.5] By picking an ordering of each simplex we get an isomor-
phism (depending on the orderings) between Cq(K) and the free abelian group with
the (unoriented) q-simplices as generators:

Cq(K) ∼= ab〈Kq〉.

Proof. Let ω be a section to K(q) � Kq, i.e. to each set of q vertices, describing
a simplex σ in K, we assign an ordering of its elements, and hence an element
σ̃ := [ω(σ)] ∈ K [q] := K(q)/∼. Thus K [q] = {σ̃ : σ ∈ Kq} t {σ̃−1 : σ ∈ Kq}. We
claim that ω induces an isomorphism

ab〈Kq〉 → ab〈K(q)〉 → ab〈K [q]〉 → ab〈K [q] : {σ−1 + σ : σ ∈ K [q]}〉.

ab〈Kq〉
_�

ω̃

��

// Cq(K)
ϕ̃
llll Kq id //

t�

ω
''

Kq �
� // ab〈Kq〉

ab〈K(q)〉 // // ab〈K [q]〉

OOOOcccc

{σ−1 + σ : σ ∈ K [q]}? _oo K(q)

OOOO

// // K [q]

ϕ

OOcccc

For this we consider the map ϕ : K [q] → ab〈Kq〉, given by σ̃ 7→ σ and σ̃−1 7→ −σ.
This induces a surjective group-homomorphism ϕ̃ : ab〈K [q]〉 � ab〈Kq〉 and, since
σ + σ−1 is mapped to 0, it factors over ab〈K [q]〉 � Cq(K) to an epimorphism
ϕ̃ : Cq(K)� ab〈Kq〉, This epimorphism is injective, since [g] for g :=

∑
σ∈Kq (nσ̃ ·
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σ̃ + nσ̃−1 · σ̃−1) ∈ ab〈K [q]〉 is mapped to
∑
σ∈Kq (nσ̃ − nσ̃−1) · σ ∈ ab〈Kq〉 and this

vanishes only if nσ̃ = nσ̃−1 , i.e. if the image [g] of g in Cq(K) is 0.

7.3 Definition. Boundary of (oriented) simplices. [20, 7.1.2] [20, 7.1.6]
Note that the boundary of ordered simplices can be rewritten as:

∂〈x0, x1〉 = x1 − x0 = 〈p
−−−−qx0 , x1〉+ 〈x0,

p−−−−qx1 〉−1;

∂〈x0, x1, x2〉 = 〈x0, x1〉+ 〈x1, x2〉+ 〈x2, x0〉

= 〈x0, x1,
p−−−−qx2 〉+ 〈p

−−−−qx0 , x1, x2〉+ 〈x0,
p−−−−qx1 , x2〉−1

= 〈p
−−−−qx0 , x1, x2〉+ 〈x0,

p−−−−qx1 , x2〉−1 + 〈x0, x1,
p−−−−qx2 〉,

where p−−−qxi indicates that xi has to be left out. Let σ be the tetrahedron with the
natural orientation x0 < x1 < x2 < x3. Its faces should have orientation 〈x1, x2, x3〉,
〈x0, x2, x3〉−1, 〈x0, x1, x3〉 and 〈x0, x1, x2〉−1.

This leads to the generalized definition:
The ordering of the face σ′ opposite to the vertex xj in σ = 〈x0, . . . , xq〉 should
be given by

σ′ := 〈x0, . . . , xj−1, p
−−−−qxj , xj+1, . . . , xq〉(−1)j .

Let us show that this definition makes sense for oriented simplices. So let τ be a
permutation of {0, . . . , q}. Then 〈xτ(0), . . . , xτ(q)〉 = 〈x0, . . . , xq〉sign τ and we have
to show that

〈xτ(0), . . . , p
−−−−−−−−−−−−−qxτ(i) , . . . , xτ(q)〉(−1)i = 〈x0, . . . , xj−1, p

−−−−qxj , xj+1, . . . , xq〉(−1)j sign τ

where i is the position of j in τ(0), . . . , τ(q), i.e. i = τ−1(j). Without loss of gen-
erality let i ≤ j (otherwise consider τ−1 instead). Consider the permutations of
{0, . . . , q} given by the function table

0 . . . i− 1 i . . . j − 1 j j + 1 . . . q
0 . . . i− 1 i+ 1 . . . j i j + 1 . . . q

τ(0) . . . τ(i− 1) τ(i+ 1) . . . τ(j) τ(i) τ(j + 1) . . . τ(q)

The first one is the cyclic permutation (i, i+1, . . . , j−1, j), hence has sign (−1)j−i =
(−1)i−j , the second one is τ , and the composite leaves j = τ(i) invariant, has sign

(−1)i−j · sign τ , and as permutation of {0, . . . , pqj , . . . , q} induces the identity

〈xτ(0), . . . , p
−−−−qxj , . . . , xτ(q)〉 = 〈x0, . . . , xj−1, p

−−−−qxj , xj+1, . . . , xq〉(−1)i−j sign τ .

From now on we will use the same notation for ordered and oriented simplices, i.e.
〈x0, . . . , xq〉 will denote an element in K(q) and at the same time its equivalence

class in K [q].

For q > 0 we define the boundary of an oriented q-simplex σ = 〈x0, . . . , xq〉
to be

∂σ :=

q∑
j=0

(−1)j〈x0, . . . , xj−1, p
−−−−qxj , xj+1, . . . , xq〉.

Extended by linearity and factorization over σ−1 ∼ −σ we obtain linear mappings
∂ := ∂q : Cq(K) → Cq−1(K). For 0 ≥ q ∈ Z one puts Cq−1(K) := {0} and
∂q := 0 : Cq(K)→ Cq−1(K).

7.4 Definition. [20, 7.1.7] [20, 7.1.8] With Zq(K) := Ker(∂q) we denote the set
of closed q-chains or q-cycles. With Bq(K) := Im(∂q+1) we denote the set of
exact (or 0-homologous) q-chains (or q-boundaries). Two q-chains are called
homologous iff their difference is exact.
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In particular, Z0(K) = C0(K) and Bdim(K)(K) = {0}.

7.5 Theorem. [20, 7.1.9] 0 = ∂2 = ∂q ◦ ∂q+1 and hence Bq ⊆ Zq.

Proof. Let σ = 〈x0, . . . , xq+1〉 with q ≥ 1. Then

∂∂σ = ∂

q+1∑
j=0

(−1)j〈x0, . . . ,
p−−−−qxj , . . . , xq+1〉

=

q+1∑
j=0

(−1)j
(j−1∑
i=0

(−1)i〈x0, . . . ,
p−−−qxi , . . . , p

−−−−qxj , . . . , xq+1〉+

+

q+1∑
i=j+1

(−1)i−1〈x0, . . . ,
p−−−−qxj , . . . , p

−−−qxi , . . . , xq+1〉
)

=
∑
i<j

((−1)i+j − (−1)j+i)〈x0, . . . ,
p−−−qxi , . . . , p

−−−−qxj , . . . , xq+1〉

= 0

7.6 Definition. Chain complex. [20, 8.3.1]
A chain complex is a family (Cq)q∈Z of abelian groups together with group-
homomorphisms ∂q : Cq → Cq−1 which satisfy ∂q ◦ ∂q+1 = 0. Equally, we may
consider C := ab

∐
q∈Z Cq, which is a Z-graded abelian group and ∂ := ab

∐
q∈Z ∂q,

which is a graded group homomorphism C → C of degree −1 and satisfies ∂2 = 0.

7.7 Definition. Homology. [20, 7.1.10]
For a chain complex (C, ∂) we define its homology H(C, ∂) := ker ∂/ im ∂.
This is a Z-graded abelian group withH(C, ∂) = ab

∐
q∈ZHq(C, ∂), whereHq(C, ∂) :=

ker ∂q/ im ∂q+1.

The group Hq(K) := Zq(K)/Bq(K) is called the q-th homology group of K.

Examples and exact sequences

7.8 Example. [20, 7.2.1] We consider the following simplicial complex K formed
by one triangle σ2 with vertices x0, x1, x2 and edges σ0

1 , σ1
1 , σ2

1 , and one further
point x3 connected by 1-simplices σ3

1 and σ4
1 with x1 and with x2. We choose ori-

entations as depicted below on each simplex.

The generic chains are of the form:

c0 =

3∑
i=0

ai xi ∈ C0(K) with ai ∈ Z,

c1 =

4∑
i=0

bi σ
i
1 ∈ C1(K) with bi ∈ Z,

c2 = mσ2 ∈ C2(K) with m ∈ Z.

Σ2

Σ1
2

Σ1
0

Σ1
1

Σ1
3

Σ1
4

x0

x1

x2

x3

Since ∂c2 = m(σ0
1 + σ1

1 + σ2
1) 6= 0 for m 6= 0 the only closed 2-cycle is 0, hence

H2(K) = 0.

The boundary ∂c1 = (b1− b2)x0 + (b2− b0 + b3)x1 + (b0− b1− b4)x2 + (b4− b3)x3

vanishes, iff b2 = b1, b4 = b3 and b0 = b1 + b3. So Z1(K) is formed by those
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c1 = b1(σ0
1 +σ1

1 +σ2
1)+b3(σ0

1 +σ3
1 +σ4

1) with b1, b2 ∈ Z and hence z1 := σ0
1 +σ1

1 +σ2
1

and z′1 := σ0
1 + σ3

1 + σ4
1 form a basis with ∂σ2 = z1. So B1(K) = {mz1 : m ∈ Z}

und H1(K) ∼= Z.

For the determination of H0(K) ∼= Z see 7.11 .

7.9 Remark. [20, 7.2.2] We have Hq(K) = 0 for q < 0 and q > dimK. Further-

more, HdimK(K) = ZdimK(K) (by 7.4 ) is a free abelian group as subgroup of

CdimK(K) by 7.2 and 9.20 .

7.10 Lemma. [20, 7.2.3] If K1, . . . ,Km are the connected components of K, then
Cq(K) ∼=

⊕
j Cq(Kj) and Hq(K) ∼=

⊕
j Hq(Kj).

Proof. The subgroup C(Ki) is ∂-invariant.

7.11 Lemma. [20, 7.2.4] H0(K) is a free abelian group. Generators are given by
choosing in each component one point.

Proof.

C1(K)
∂ // // B0(K)

� � // Z0(K) // //

7.4

H0(K)

∼=
��

ker(ε) �
� // C0(K)

ε // // Z

Because of 7.10 we may assume that K is connected and not empty. Let ε :
C0(K)→ Z be the linear map given by x 7→ 1 for all vertices x ∈ K. Obviously ε is
surjective. Remains to show that its kernel is B0(K). Every two vertices x0 and x1

are homologous, since there is a 1-chain connecting x0 with x1. Thus c :=
∑
x nx ·x

is homologous to (
∑
x nx) · x0 = ε(c) · x0 and hence Ker(ε) ⊆ B0. Conversely let

c = ∂(
∑
σ nσ · σ) =

∑
σ nσ · ∂σ. Since ε(∂〈x0, x1〉) = ε(x1 − x0) = 0 we have the

opposite inclusion.

7.12 Example. The homology of the cylinder X := S1 × I. [20, 7.2.10]
Note that S1×I ∼ S1 and hence we would expect
H2(X) = 0 and H1(X) = ab(π1(S1)) = Z. Let
us show that this is in fact true. We consider the
triangulation given by 6 triangles. We will show in
a later section that the homology does not depend
on the triangulation. We orient the triangles in the
natural way.
H2(X): Let z2 =

∑
dimσ=2 nσ · σ ∈ Z2(X) =

H2(X), i.e. ∂z2 = 0. Since those edges, which join
the inner boundary with the outer one belong to
exactly two 2-simplices, the coefficients of these
two simplices have to be equal. So n := nσ is in-
dependent on σ.

However ∂(
∑
σ σ) is the difference of the inner boundary and the outer one, hence

not zero, and so z2 = n(
∑
σ σ) is a cycle only if n = 0, i.e. H2(X) = {0}.

H1(X): Let [z1] ∈ H1(X), i.e. z1 =
∑

dimσ=1 nσ ·σ ∈ C1(X) with ∂z1 = 0. Since we
may replace z1 by a homologous chain, it is enough to consider linear combinations
of a subset of edges, such that for each triangle at least 2 edges belong to this subset.
In particular we can use the 6 interior edges. Since each vertex is a boundary point
of exactly two of these edges the corresponding coefficients have to be equal (if
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we orient them coherently). Thus z1 is homologous to a multiple of the sum c1 of
theses 6 edges. Hence Z1(X) is generated by c1. The only multiple of c1, which is a
boundary, is 0, since the boundary of

∑
dimσ=2 nσ · σ contains ±nσ · σ1, where σ1

is the none-interior edge of σ. So H1(X) ∼= Z.

7.13 Example. The homology of the projective plane X := P2.[20, 7.2.14]
We use the triangulation of P2 by 10 triangles

described in 3.9.2 . And we take the obvious
orientation of all triangles. Note however that
on the “boundary edges” these orientations are
not coherent.

H2(X): Let z2 =
∑

dimσ=2 nσ · σ ∈ Z2(X) =
H2(X), i.e. ∂z2 = 0. Since those edges, which
belong to the “interior” in the drawing be-
long to exactly two 2-simplices, the coefficient
of these two simplices have to be equal. So
n := nσ is independent on σ. However ∂(

∑
σ σ)

is twice the sum a + b + c of the three edges
along which we have to glue, and hence is not
zero. So z2 = n(

∑
σ σ) is a cycle only if n = 0,

i.e. H2(X) = {0}.

a

a

b

b

c

c

H1(X): Let [z1] ∈ H1(X), i.e. z1 =
∑

dimσ=1 nσ · σ ∈ C1(X) with ∂z1 = 0. Now we
may replace z1 by a homologous chain using all edges except the 3 inner most ones
and the 3 edges normal to the “boundary”. Now consider the vertices on the inner
most triangle. Since for each such point exactly two of the remaining edges have
it as a boundary point, they have to have the same coefficient, and hence may be
replaced by the corresponding “boundary” parts. So z1 is seen to be homologous
to a sum of “boundary” edges. But another argument of the same kind shows that
they must occur with the same coefficient. Hence H1(X) is generated by a+ b+ c.
As we have show above 2(a+ b+ c) is the boundary of the sum over all triangles.
Whereas a + b + c is not a boundary of some 2-chain

∑
σ nσ · σ, since as before

such a chain must have all coefficients equal to say n and hence its boundary is
2n(a + b + c). Thus H1(P2) = Z2, which is no big surprise, since π1(P2) = Z2 by

5.39 .

7.14 Definition. Exact Sequences. [20, 8.2.1]

A sequence A−f→ B−g→ C of abelian groups is called exact at B iff ker g = im f .
An infinite (or finite) sequence of groups Cq and group homomorphisms fq : Cq+1 →
Cq is called exact if it is exact at all (but the end) points.

7.15 Remark. [20, 8.2.2]

1. A sequence 0→ A−f→ B is exact iff f is injective.

2. A sequence A−f→ B → 0 is exact iff f is surjective.

3. A sequence 0→ A−f→ B → 0 is exact iff f is bijective.

4. Let Aq+1 −fq+1→ Aq −fq→ Aq−1 −fq−1→ Aq−2 be exact. Then the following
statements are equivalent:

• fq+1 is onto;
• fq = 0;
• fq−1 is injective.
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7.16 Lemma. Let 0→ C0 → C1 → · · · → Cn → 0 be an exact sequence of finitely
generated free abelian groups. Then

∑n
q=0(−1)q rankCq = 0.

Proof. For a Z-linear map (i.e. abelian group homomorphism) f between free
abelian groups we have

rank(ker f) + rank(im f) = rank(dom f)

by the pendent to the classical formula from linear algebra (use 7.25 ). Thus taking
the alternating sum of all rank(dom fq) gives a telescoping one and hence evaluates
to 0.

7.17 Proposition. [20, 7.2.5] Let K be a 1-dimensional connected simplicial com-
plex. Then H1(K) is a free abelian group with 1− α0 + α1 many generators, where
αi are the number of i-simplices.

Compare this with the corresponding result 5.47 for fundamental groups.

Proof. Consider the sequence

0 // Z1

7.4∼=
��

� � // C1
∂ // Z0

// // H0
//

7.11∼=
��

0

H1 C0
ε // // Z

It is exact by definition and the vertical arrow at H0 is an isomorphism by 7.11

and hence we get by 7.16 the equation 0 = rank(H1)− α1 + α0 − 1

7.18 Definition. Cone over simplicial complex. [20, 7.2.6] Let K be a simpli-
cial complex in Rn. Let p ∈ Rn be not contained in the affine subspace generated
by all σ ∈ K. Let p ? 〈x0, . . . , xq〉 := 〈p, x0, . . . , xq〉 and let p ?K := K ∪{p ? σ : σ ∈
K} ∪ {p}. It is called the cone over K with vertex p and is obviously a simplicial
complex (see exercise (3.1)). Note that we can extend p ? ( ) to a linear mapping
Cq(K)→ Cq(p ? K).

7.19 Proposition. Homology of a cone. [20, 7.2.7]
He have Hq(p ? K) = {0} for all q 6= 0.

Proof. Let c be a q-chain of K. We claim that

∂(p ? c) =

{
c− ε(c)p if q = 0

c− p ? ∂c otherwise.

Note that this shows that any q-chain c (with q > 0) is homologous to p ? ∂c.
In order to show this we may assume that c = 〈x0, . . . , xq〉. For q = 0 we have
∂(p ? c) = ∂〈p, x0〉 = x0 − p = c− ε(c)p. For q > 0 we get

∂(p ? c) = ∂〈p, x0, . . . , xq〉

= 〈pqp , x0, . . . , xq〉 −
q∑
i=0

(−1)i〈p, x0, . . . ,
p−−−qxi , . . . , xq〉 = c− p ? ∂c.

Now let c ∈ Zq(p ? K) for q > 0. We have to show that it is a boundary. Clearly
c is a combination of simplices of the form 〈x0, . . . , xq〉 and 〈p, x0, . . . , xq−1〉, i.e.
c = cq + p ? cq−1 with cq ∈ Cq(K) and cq−1 ∈ Cq−1(K). Hence c = cq + p ? cq−1 =
∂(p?cq)+p?∂cq+p?cq−1. So p?(∂cq+cq−1) ∈ Zq. But, again by the equation above,
the boundary of this cone vanishes only if ∂cq + cq−1 = 0, hence c = ∂(p ? cq) + 0
is a boundary.
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7.20 Corollary. Homology of a simplex. [20, 7.2.8]
For an n-simplex σn let K(σn) := {τ : τ ≤ σn}. Then K(σn) is a connect-
ed simplicial complex of dimension n with |K(σn)| being an n-ball and we have
Hq(K(σn)) = 0 for q 6= 0.

Proof. K(σn) = x0 ? K(σn−1) for σn = 〈x0, . . . , xn〉 and σn−1 = 〈x1, . . . , xn〉.

7.21 Proposition. Homology of a sphere. [20, 7.2.9]
For an n + 1-simplex σn+1 let K(σ̇n+1) := {τ : τ < σn+1}. Then K(σ̇n+1) is a
connected simplicial complex of dimension n with |K(σ̇n+1)| being an n-sphere and
we have

Hq(K(σ̇n+1)) ∼=

{
Z for q ∈ {0, n}
0 otherwise.

A generator of Hn(K(σ̇n+1)) is ∂σn+1 :=
∑n+1
j=0 (−1)j〈x0, . . . , p

−−−−qxj , . . . , xn+1〉.

Proof. Let K := K(σ̇n+1) and L := K(σn+1). Then L \K = {σn+1} and we have

0 // Cn+1(L) //
∂ // Cn(L)

∂ // . . .
∂ // Cq+1(L)

∂ // Cq(L)
∂ // . . .

0
∂ // Cn(K)

∂ // . . .
∂ // Cq+1(K)

∂ // Cq(K)
∂ // . . .

By 7.20 the top row is exact (for q > 0). Thus we have exactness in the bottom

row for all 0 < q < n. By exactness the arrow 〈σn+1〉 ∼= Cn+1(L) −∂→ Cn(L) is
injective, and Hn(K) = Zn(K) = Zn(L) = ∂(Cn+1(L)) ∼= Cn+1(L) = Z.

We will show later that if |K| ∼ |L| then Hq(K) ∼= Hq(L) for all q ∈ Z, hence it
makes sense to speak about the homology groups of a polyhedra.

7.22 5’Lemma. [20, 8.2.3] Let

A1
ϕ1 //

∼=f1

��

A2
ϕ2 //

∼=f2

��

A3
ϕ3 //

f3

��

A4
ϕ4 //

∼=f4

��

A5

∼=f5

��
B1

ψ1 // B2
ψ2 // B3

ψ3 // B4
ψ4 // B5

be a commutative diagram with exact horizontal rows. If all vertical arrows but the
middle one are isomorphisms so is the middle one.

Proof.

f3a3 = 0⇒ 0 = ψ3f3a3 = f4ϕ3a3(f3 is injective)

=
f4 inj.
====⇒ ϕ3a3 = 0

=
exact at A3=========⇒ ∃a2 : a3 = ϕ2a2

⇒ 0 = f3a3 = f3ϕ2a2 = ψ2f2a2

=
exact at B2=========⇒ ∃b1 : f2a2 = ψ1b1

=
f1 surj.
=====⇒ ∃a1 : b1 = f1a1

⇒ f2a2 = ψ1f1a1 = f2ϕ1a1

=
f2 inj.
====⇒ a2 = ϕ1a1

=
exact at A2=========⇒ a3 = ϕ2a2 = ϕ2ϕ1a1 = 0
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a1
� ϕ1 //

_
∼=f1

��

a2
� ϕ2 //

_
∼=f2

��

a3
� ϕ3 //

_

f3

��

0_

∼=f4

��

•

b1
� ψ1 // f2(a2) � ψ2 // 0 � ψ3 // 0 •

b3 =
f4 surj.
=====⇒ ∃a4 : f4a4 = ψ3b3(f3 is onto)

=
exact at B4=========⇒ f5ϕ4a4 = ψ4f4a4 = ψ4ψ3b3 = 0

=
f5 inj.
====⇒ ϕ4a4 = 0

=
exact at A4=========⇒ ∃a3 : a4 = ϕ3a3

⇒ ψ3f3a3 = f4ϕ3a3 = f4a4 = ψ3b3

=
exact at B3=========⇒ ∃b2 : b3 − f3a3 = ϕ2b2

=
f2 surj.
=====⇒ ∃a2 : b2 = f2a2

⇒ b3 = f3a3 + ψ2b2 = f3a3 + ψ2f2a2 = f3(a3 + ϕ2a2)

• a2
� ϕ2 //

_
∼=f2

��

a3
� ϕ3 //

_

f3

��

a4
� ϕ4 //

_
∼=f4

��

ϕ4a4_
∼=f5

��
• b2

� ψ2 // b3
� ψ3 // ψ3b3

� ψ4 // 0

7.23 Remark. Short exact sequences. An exact sequence of the form

0→ A→ B → C → 0

is called short exact.

• We have that the top row in the diagram

Aq+1

fq+1 //

����

Aq
fq // Aq−1

0 // fq+1(Aq+1)
� � // Aq // // fq(Aq)

?�

OO

// 0

is exact at Aq iff the bottom row is short exact.

• Up to an isomorphism we have the following description of short exact se-
quences:

0 // A
i //

∼=
��

B
p // C //

∼=
��

0

i(A) �
� // B // // B/i(A)

• The sequence 0→ Z−m·→ Z� Zm → 0 is short exact.

• The sequence 0→ A−inj1→ A⊕ C −pr2→ C → 0 is short exact.

Lemma. Splitting short exact sequences. [20, 8.2.4] For a short exact sequence

0→ A−f→ B −g→ C → 0 the following statements are equivalent:
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1. There is an (iso)morphism
ϕ : B → A⊕ C such that the
diagram is commutative;

⇔ 2. g has a right inverse ρ;

⇔ 3. f has a left inverse λ.

A C

id
��

ρ

{{
0 // A //

f
//

id

OO

B
g
// //

λ

cc

ϕ∼=
��

C // 0

0 // A // inj1 // A⊕ C
pr2 // // C // 0

Under these equivalent conditions the sequence is called splitting.

Proof. (1⇒2) That any morphism ϕ : B → A ⊕ C, which makes the diagram

commutative, is already an isomorphism follows from 7.22 . Thus the morphism

ρ := ϕ−1 ◦ inj2 : c 7→ ϕ−1(0, c) is right inverse to g.

(2⇒3) The morphism idB −ρ ◦ g has image in ker(g), hence factors to a morphism
λ : B → A over f . Thus f ◦λ◦f = (idB −ρ◦g)◦f = f−0 = f ◦ id and so λ◦f = id.

(3⇒1) Define ψ := (λ, g) : B → A ⊕ C. Then ψ makes the diagram commutative
(pr2 ◦ψ = g and ψ ◦ f = (idA, 0) = inj1).

7.24 Example. Not every short exact sequence splits. [20, 8.2.5]
The sequence 0 → Z −m·→ Z � Zm → 0 does not split. In fact, every a ∈ Zm has
order ord(a) ≤ m <∞ but all 0 6= b ∈ Z have order ord(b) =∞, thus 0 is the only
ρ : Z2 → Z. Equally, λ as in the lemma cannot exist, since 1 = λ(2) = 2λ(1) has no
solution in Z.

7.25 Remark.
If C is free abelian, then any short exact sequence 0→ A→ B → C → 0 splits:
A right inverse to B → C is given by choosing inverse images of the generators of
C.

If 0→ A→ B → C → 0 is exact and A and C are finitely generated, then so is B.
In fact, the generators of A together with inverse images of those of C generate B.

7.26 Definition. Chain-groups as functors. [20, 7.3.1]
Let ϕ : K → L be a simplicial map between simplicial complexes. Define group
homomorphisms Cq(ϕ) : Cq(K)→ Cq(L) by

Cq(ϕ) := 0 for q < 0 and for q > dimK

Cq(ϕ)(〈x0, . . . , xq〉) :=

{
〈ϕ(x0), . . . , ϕ(xq)〉 if ϕ is injective on {x0, . . . , xq},
0 otherwise.

7.27 Definition. Chain mappings. [20, 8.3.4]

Let (C, ∂) and (C ′, ∂′) be two chain complexes.
A chain mapping is a family of homomorphisms
fq : Cq → C ′q which commutes with the boundary
operators, i.e. ∂′q ◦ fq = fq−1 ◦ ∂q.

· · · // Cq
∂q

//

fq

��

Cq−1
//

fq−1

��

· · ·

· · · // C ′q
∂′q // C ′q−1

// · · ·

7.28 Proposition. C is a functor. [20, 7.3.2] For every simplicial map ϕ : K → L
the induced map (Cq(ϕ))q∈Z is a chain mapping.

Proof. We have to show that ∂q(Cq(ϕ)(σ)) = Cq−1(ϕ)(∂qσ) for every q-simplex
σ = 〈x0, . . . , xq〉. If all vertices ϕ(xj) are distinct or are at least two pairs (including
the case of a triple) are identical this is obvious. So we may assume that exactly two
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are the same. By reordering we may assume ϕ(x0) = ϕ(x1). Then Cq(ϕ)(σ) = 0
and hence also ∂(Cq(ϕ)(σ)) = 0. On the other hand

∂σ = 〈p−−−−qx0 , x1, . . . , xq〉 − 〈x0, p
−−−−qx1 , x2, . . . , xq〉+

q∑
j=2

(−1)j〈x0, x1, . . . , p
−−−−qxj , . . . , xq〉.

The first two simplices have the same image under Cq−1(ϕ) and, since ϕ(x0) =
ϕ(x1), the other faces are mapped to 0.

7.29 Lemma. Homology is a functor. [20, 8.3.5]
The chain mappings form a category.
Any chain map f induces homomorphisms Hq(f) : Hq(C)→ Hq(C

′).

Proof. The first statement is obvious.
Since f ◦ ∂ = ∂ ◦ f we have that f(Zq(C)) ⊆ Zq(C

′) := ker ∂′q and f(Bq(C)) ⊆
Bq(C

′) := im ∂′q+1 and hence Hq(f) : Hq(C)→ Hq(C
′) makes sense:

0 // Bq(C) �
� //

f

��

Zq(C) // //

f

��

Hq(C) //

Hq(f)

��

0

0 // Bq(C ′)
� � // Zq(C ′) // // Hq(C

′) // 0

7.30 Theorem. [20, 8.3.8] Let 0 → C ′ −f→ C −g→ C ′′ → 0 be a short exact
sequence of chain mappings. Then we obtain a long exact sequence in homology:

. . .−∂∗→ Hq(C
′)−Hq(f)→ Hq(C)−Hq(g)→ Hq(C

′′)−∂∗→ Hq−1(C ′)−Hq−1(f)→ . . .

In particular, we can apply this to a chain subcomplex C ′ of a chain complex C
and C ′′ := C/C ′: Note that ∂ factors as ∂′′ : C ′′ → C ′′, via ∂′′(c+ C ′) := ∂c+ C ′.

Proof. Consider

0 // C ′q
f //

∂

��

Cq
g //

∂

��

C ′′q //

∂

��

0

0 // C ′q−1

f // Cq−1
g // C ′′q−1

// 0

Let ∂∗[z
′′] := [(f−1 ◦ ∂ ◦ g−1)(z′′)] for z′′ ∈ C ′′ with ∂z′′ = 0.

We first show that it is possible to choose elements in the corresponding inverse
images and then we will show that the resulting class does not depend on any of
the choices.

So let z′′q ∈ C ′′q be a cycle, i.e. ∂z′′q = 0. Since
g is onto we find xq ∈ Cq with gxq = z′′q . Since
g∂xq = ∂gxq = ∂z′′q = 0, we find x′q−1 ∈ C ′q−1

with fx′q−1 = ∂xq. And hence x′q−1 ∈ f−1∂g−1z′′q .

Furthermore f∂x′q−1 = ∂fx′q−1 = ∂∂xq = 0.
Since f is injective we get ∂x′q−1 = 0 and hence
we may form the class [x′q−1] =: ∂∗[z

′′
q ].

xq
� g // //

_

∂

��

z′′q_

∂

��
x′q−1

� f //
_

∂

��

∂xq
� g // //

_

∂

��

0

∂x′q−1
� f // 0

Now the independency from all choices, So let [z′′q ] = [z̄′′q ], i.e. ∃x′′q+1 : ∂x′′q+1 =
z′′q − z̄′′q . Choose xq, x̄q ∈ Cq as before, so that gxq = x′′q and gx̄q = x̄′′q . As before
choose x′q−1, x̄

′
q−1 ∈ C ′q−1 with fx′q−1 = ∂xq and fx̄′q−1 = ∂x̄q. We have to show
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that [x′q−1] = [x̄′q−1]. So choose xq+1 ∈ Cq+1 with gxq+1 = x′′q+1. Then g∂xq+1 =
∂gxq+1 = ∂x′′q+1 = z′′q − z̄′′q = g(xq − x̄q), hence there exists an x′q ∈ Cq with
fx′q = ∂xq+1−xq + x̄q. And f∂x′q = ∂fx′q = ∂(∂xq+1−xq + x̄q) = 0−∂xq +∂x̄q =
−f(x′q−1−x̄′q−1). Since f is injective we have x′q−1 = x̄′q−1+∂x′q, i.e. [x′q−1] = [x̄′q−1].

xq+1
� //

_

��

x′′q+1_

��

q + 1

∂

��xq, x̄q
� //

_

��

z′′q , z̄
′′
q_

��

∂xq+1
� //

_

��

z′′q − z̄′′q_

��

q

x′q
� //

_

��

∂xq+1−xq+x̄q � //
_

��

0_

��

∂

��x′q−1, x̄
′
q−1

� // ∂xq, ∂x̄q
� // 0, 0

0 0 q − 1

−x′q−1 + x̄′q−1
� // −∂xq + ∂x̄q

� // 0

C ′
f // C

g // C ′′

Exactness at Hq(C
′):

(⊆) f∗∂∗[z
′′] = [ff−1∂g−1z′′] = [∂g−1z′′] = 0.

(⊇) Let ∂z′ = 0 and 0 = f∗[z
′] = [fz′], i.e. ∃x: ∂x = fz′. Then x′′ := gx satisfies

∂x′′ = ∂gx = g∂x = gfz′ = 0 and ∂∗[x
′′] = [f−1∂g−1gx] = [f−1∂x] = [z′].

Exactness at Hq(C):
(⊆) since g ◦ f = 0.
(⊇) Let ∂z = 0 with 0 = g∗[z] = [gz], i.e. ∃x′′: ∂x′′ = gz. Then ∃x: gx = x′′. Hence
gz = ∂x′′ = ∂gx = g∂x ⇒ ∃x′: fx′ = z − ∂x ⇒ f∂x′ = ∂fx′ = ∂(z − ∂x) = 0 ⇒
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∂x′ = 0 and f∗[x
′] = [fx′] = [z − ∂x] = [z].

x � 2. //
_

3.
��

x′′_
1.

��

z � 0. //
_

0.
��

gz

∂x � 4. //
_

4.
��

gz

x′ � 6. //
_

8.
��

z − ∂x � 5. //
_

5.
��

gz − gz

0

0

0
� 7. // 0

C ′
f // C

g // C ′′

Exactness at Hq(C
′′):

(⊆) We have ∂∗g∗[z] = [f−1∂g−1gz] = [f−1∂z] = [f−10] = 0.
(⊇) Let ∂z′′ = 0 and 0 = ∂∗[z

′′], i.e. ∃x′: ∂x′ = z′, where z′ ∈ f−1∂g−1z′′, i.e. ∃x:
gx = z′′ and fz′ = ∂x. Then ∂(x−fx′) = fz′−f(∂x′) = 0 and g(x−fx′) = z′′−0,
i.e. g∗[x− fx′] = [z′′].
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x � 0. //
_

0.
��

z′′_

0.
��

x′_
0.

��

� 2. // fx′ � 3. //
_

3.
��

0

x− fx′ � 4. //
_

4.
��

z′′ − 0

z′ � 0. // ∂x 0

∂x

∂x− ∂x

C ′
f // C

g // C ′′

Relative homology

7.31 Definition. Relative homology. [20, 7.4.1] Let K0 ⊆ K be a simplicial
subcomplex. Then C(K0) is a chain subcomplex of C(K) and hence we may form
the chain complex C(K,K0) given by Cq(K,K0) := Cq(K)/Cq(K0). Note that by

7.2 we can identify this so-called relative chain group with the free abelian
group (denoted Cq(K \K0)) generated by all q-simplices in K \K0. The boundary
operator is given by taking the boundary of

∑
σ kσ · σ in C(K), but deleting all

summands of simplices in C(K0).

0 // Cq(K0) �
� //

∂

��

Cq(K) // //

∂

��

Cq(K,K0) //

∂

��

0

0 // Cq−1(K0)
� � // Cq−1(K) // // Cq−1(K,K0) // 0

The q-th homology group of C(K,K0) will be denoted by Hq(K,K0) and is called
the relative homology of K with respect to K0.

Using the short exact sequence 0 → C(K0)
i
↪→ C(K)

p
� C(K,K0) → 0 we get a

long exact sequence in homology by 7.30 :

. . .−∂∗→ Hq(K0)−Hq(i)→ Hq(K)−Hq(p)→ Hq(K,K0)−∂∗→ Hq−1(K0)−Hq−1(i)→ . . .

7.32 Remark. [20, 7.4.2]

1. Obviously Cq(K,K) ∼= Cq(∅) = {0} and hence Hq(K,K) = {0}.
2. Obviously Cq(K, ∅) = Cq(K) and hence Hq(K, ∅) = Hq(K).
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3. If K is connected and K ⊇ K0 6= ∅, then H0(K,K0) = {0}: In fact, let
z ∈ C0(K,K0), i.e. z =

∑
x∈K\K0

kx · x. Let x0 ∈ K0 be chosen fixed.

Since K is connected we have H0(K) ∼= Z, [z] 7→ ε(z), by 7.11 . Thus
z− ε(z)x0 ∈ B0(K), i.e. ∃c ∈ C1(K) with z− ε(z)x0 = ∂c. Then z = p(z) =
p(ε(z)x0) + p(∂c) = ε(z)0 + ∂(p(c)), where p : Cq(K)→ Cq(K,K0) denotes
the natural quotient mapping. Thus [z] = 0 ∈ H0(K,K0).

4. Note that in 7.21 we calculated the relative chain complex Cq(L,K), where
L := K(σn) and K := K(σ̇n) and obtained Cq(L,K) = {0} for q 6= n and
Cn(L,K) = 〈σn〉 ∼= Z. Hence Hq(L,K) ∼= {0} for q 6= 0 and Hn(L,K) ∼= Z.

7.33 Example. [20, 7.4.7] Let M be the Möbius strip with boundary ∂M . We have

a triangulation of M in 5 triangles as in 3.9.2 . Since ∂M is a 1-sphere H1(∂M) ∼= Z
by 7.21 , where a generator is given by the 1-cycle r formed by the 5-edges of the
boundary.

Furthermore H1(M) ∼= Z, where a generator is given by the sum m of the remaining
edges: In fact every triangle has two of these edges, so it suffices to consider linear
combinations of these edges. Since every vertex belongs to exactly two of theses
edges, the coefficients have to be equal.
If a combination of triangles has a multiple of m as boundary (and nothing from

r), their coefficients have to be 0, cf. 7.12 .

Now consider the following fragment of the long exact homology sequence:

H1(∂M)
4.

2 // H1(M)
3.
// // H1(M,∂M)

0

2.
// H0(∂M)

∼=
1.
// H0(M)

〈[r]〉 〈[m]〉 〈[x0]〉 〈[x0]〉

Since H0(∂M) ∼= Z ∼= H0(M) by 7.11 , where a generator is given by any point
x0 in ∂M ⊆ M , we have that the rightmost arrow is a bijection, so the one to
the left is 0 and hence the previous one is onto. Remains to calculate the image of
〈[r]〉 = H1(∂M)→ H1(M) = 〈[m]〉. For this we consider the sum over all triangles
(alternating oriented). It has boundary 2m − r and hence [r] is mapped to 2[m].
Thus H1(M,∂M) ∼= Z/2Z = Z2.

7.34 Proposition. Homology ladder. [20, 8.3.11] Let (C,C ′) and (D,D′) be
pairs of chain complexes, C ′′ := C/C ′, D′′ := D/D′ and let f : (C,C ′) → (D,D′)
be a chain mapping of pairs. This induces a homomorphism which intertwines with
the long exact homology sequences.

. . .
∂∗ // Hq(C

′)

f∗

��

Hq(i) // Hq(C)

f∗

��

Hq(p) // Hq(C
′′)

f∗

��

∂∗ // Hq−1(C ′′)

f∗

��

Hq−1(g)// . . .

. . .
∂∗ // Hq(D

′)
Hq(j) // Hq(D)

Hq(q) // Hq(D
′′)

∂∗ // Hq−1(D′′)
Hq−1(g)// . . .
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Proof. The commutativity of all but the rec-
tangle involving ∂∗ is obvious. For this re-
maining one let z′′ ∈ C ′′ be a cycle. We
have to show that f∗∂∗[z

′′] = ∂∗f∗[z
′′]. So

let z′ ∈ i−1∂p−1z′′, i.e. iz′ = ∂x for some x
with px = z′′. Then f∗∂∗[z

′′] = [fz′] and we
have to show that j(fz′) ∈ ∂q−1fz′′, which
follows from jfz′ = fiz′ = f∂x = ∂fx and
q(fx) = f(px) = fz′′.

x � p //
_

��

�
f

""

z′′�
f

""
z′ � i //

�
f

  

∂x�
f

!!

fx_

��

� q // fz′′

fz′ � j // ∂fx

7.35 Corollary. [20, 7.4.6] Proposition 7.34 applies in particular to simplicial

mappings ϕ : (K,K0)→ (L,L0) of pairs.

7.36 Excision theorem. [20, 7.4.9] Let K be the union of two subcomplexes K0

and K1. Then (K1,K0∩K1)→ (K,K0) induces an isomorphism H(K1,K0∩K1)→
H(K1 ∪K0,K0).

Proof. Note that we have

K1 \ (K0 ∩K1) = K1 \K0 = (K0 ∪K1) \K0

and also

0 // Cq(K0 ∩K1)
� � i1 //

� _

i2

��

Cq(K1) // //
� _

j1

��

Cq(K1,K0 ∩K1) ∼=

∼=
��

Cq(K1 \ (K0 ∩K1)) // 0

0 // Cq(K0) �
�j2 // Cq(K0 ∪K1) // // Cq(K0 ∪K1,K0) ∼= Cq((K0 ∪K1) \K0) // 0

This gives an isomorphism even on the level of chain complexes, as follows from the
commutativity of the diagram.

Let K := K0 ∪ K1 and U := K \ K1 = K0 \ (K0 ∩ K1) then K1 = K \ U and

K0 ∩ K1 = K0 \ U , hence the isomorphism of 7.36 reads H(K \ U,K0 \ U) ∼=
H(K,K0). Conversely, if (K,K0) is a pair of simplicial complexes and U ⊆ K0 is
such that K1 := K \ U is a simplicial complex, then we get:

7.37 Corollary. [20, 7.4.8] Let K0 ⊆ K be a pair of simplicial complexes and
U ⊆ K0 a set such that ∀τ < σ: τ ∈ U ⇒ σ ∈ U . Then K1 := K \ U and
K0 ∩K1 = K0 \U are simplicial complexes and H(K,K0) ∼= H(K \U,K0 \U).
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8. Singular Homology

Basics

8.1 Definition. [20, 9.1.1] The standard (closed) q-simplex ∆q is the simplex
spanned by the standard unit vectors ej ∈ Rq+1 for 0 ≤ j ≤ q. So

∆q :=
{

(λ0, . . . , λq) : 0 ≤ λj ≤ 1 :
∑
j

λj = 1
}
.

8.2 Definition. [20, 9.1.2] For q ≥ 1 and 0 ≤ j ≤ q let the face-map δjq−1 :
∆q−1 → ∆q be the unique affine map, which maps ei to ei for i < j and to ei+1 for
i > j, i.e.

e0, . . . , eq−1 7→ e0, . . . , p
−−−qej , . . . , eq.

8.3 Lemma. [20, 9.1.3] For q ≥ 2 and 0 ≤ k < j ≤ q we have δjq−1 ◦ δkq−2 =

δkq−1 ◦ δ
j−1
q−2.

Proof. The mapping on the left side has the following effect on the edges:

e0, . . . , ek, . . . , eq−1 7→ e0, . . . , ek, . . . ,
p−−−qej , . . . , eq

e0, . . . , eq−2 7→ e0, . . . ,
p−−−−qek , . . . , eq−1 7→ e0, . . . ,

p−−−−qek , . . . , p
−−−qej , . . . , eq

And on the right side:

7→ e0, . . . , ej−1, . . . , eq−1 7→ e0, . . . ,
p−−−−qek , . . . , ej , . . . , eq

e0, . . . , eq−2 7→ e0, . . . ,
p−−−−−−−−−−−−qej−1 , . . . , eq−1 7→ e0, . . . ,

p−−−−qek , . . . , p
−−−qej , . . . , eq

8.4 Definition. [20, 9.1.4] Let X be a topological space. A singular q-simplex
is a continuous map σ : ∆q → X. The q-th singular chain group Sq(X) is the
free abelian group generated by all singular q-simplices, i.e.

Sq(X) := abF(C(∆q, X))

Its elements are called singular q-chains. The boundary operator ∂ is the linear
extension of

∂ : σ 7→
q∑
j=0

(−1)j σ ◦ δj .

By 8.3 the groups Sq(X) together with ∂ from a chain complex S(X):

∂∂σ = ∂
( q∑
j=0

(−1)jσ ◦ δj
)

=

q∑
j=0

(−1)j
q−1∑
k=0

(−1)kσ ◦ δj ◦ δk

=
∑

0≤k<j≤q

(−1)j+kσ ◦ δj ◦ δk +
∑

0≤j≤k<q

(−1)j+kσ ◦ δj ◦ δk

=
8.3

====
∑

0≤k<j≤q

(−1)j+kσ ◦ δk ◦ δj−1 +
∑

0≤j<k≤q

(−1)j+k−1σ ◦ δj ◦ δk−1 = 0.
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The q-th singular homology group Hq(X) is defined to be Hq(S(X)). The
elements of Bq(X) := Bq(S(X)) are called (singular) q-boundaries and those
of Zq(X) := Zq(S(X)) are called (singular) q-cycles.

Note that singular 0-simplices can be identified with the points in X and singular
1-simplices with paths in X.

8.5 Definition. [20, 9.1.6] [20, 9.1.8] [20, 9.1.9] Let f : X → Y be continuous.
Then f induces a chain-mapping f∗ := S(f) : S(X) → S(Y ) (by S(f)(σ) := f ◦ σ
for singular simplices σ) and hence group-homomorphisms

f∗ := Hq(f) : Hq(X)→ Hq(Y )

∂
(
S(f)(σ)

)
= ∂(f ◦σ) =

q∑
j=0

(−1)jf ◦σ◦δj = S(f)
( q∑
j=0

(−1)jσ◦δj
)

= S(f)
(
∂(σ)

)
.

So Hq is a functor from continuous maps between topological spaces into group
homomorphisms between abelian groups.

8.6 Remark. [20, 9.1.7] The identity id∆q
: ∆q → ∆q is a singular q-simplex

of ∆q, which we will denote again by ∆q. If σ is a singular q-simplex in X, then
S(σ)(∆q) = σ ◦ id∆q = σ.

We will make use of this several times (e.g. in 8.21 ,

8.29 , and 8.32 ) in order to construct natural trans-
formations, by defining them first for the standard
simplex:
Let F be some functor from topological spaces in-
to groups and c ∈ F (∆q) be given. Then there
is a unique natural transformation η : Sq → F ,
which maps ∆q ∈ Sq(∆q) to c ∈ F (∆q) given by
ηX(σ) := F (σ)(c).

∆q
� //

_

��

c_

��

Sq(∆q)

σ∗

��

η∆X // F (∆q)

F (σ)

��

σ
� // ηX(σ)

S(X)
ηX // F (X)

8.7 Theorem. [20, 9.1.10] Let X = {∗} be a single point. Then Hq(X) = {0} for
q 6= 0 and H0(X) = S0(X) ∼= Z.

A space X is called acyclic iff it is path-connected and Hq(X) = {0} for q 6= 0.

Proof. The only singular q-simplex is the constant mapping σq : ∆q → {∗}. Its
boundary is ∂σq =

∑q
j=0(−1)j σq ◦ δj = (

∑q
i=0(−1)j)σq−1. So for even q > 0 we

have ∂σq = σq−1 and hence Zq(X) = {0}. For odd q we have that (∂σq = 0 and)
∂σq+1 = σq, hence Bq(X) = Sq(X). Thus in both cases Hq(X) := Zq(X)/Bq(X) =
{0}. For q = 0 we have B0(X) = {0} and Z0(X) = S0({∗}) ∼= Z, hence H0(X) ∼=
Z.

8.8 Corollary. [20, 9.1.11] Let f : X → Y be constant. Then Hq(f) = 0 for q 6= 0.

Proof. Obvious, since f factors over a single point.

8.9 Proposition. [20, 9.1.12] Let Xj be the path components of X. Then the

inclusions of Xj → X induce an isomorphism ab
∐
j Hq(Xj)→ Hq(X); cf. 7.10 .

Proof. This follows as 7.10 : Let σ be a singular simplex of X. Then σ is completely
contained in some Xj , hence C(∆q, X) =

⊔
j C(∆q, Xj), thus

Sq(X) := abF(C(∆q, X)) ∼= ab
∐
j

abF(C(∆q, Xj)) = ab
∐
j

Sq(Xj)
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and this induces an isomorphism of homology groups.

8.10 Proposition. [20, 9.1.13] Let X be a topological space. Then H0(X) is a free
abelian group with generators given by choosing one point in each path-component;

cf. 7.11 .

Proof. Because of 8.9 we may assume that X is path-connected. The mapping

ε : Z0(X) = S0(X) → Z,
∑
σ nσ · σ 7→

∑
σ nσ is onto and as in 7.11 its kernel is

just B0(X), so ε induces an isomorphism H0(X) ∼= Z; cf. 7.11 .

8.11 Corollary. [20, 9.1.14] Let X and Y be path-connected. Then every continuous
mapping f : X → Y induces an isomorphism H0(f) : H0(X)→ H0(Y ).

Proof. Obvious since the generator is mapped to a generator.

8.12 Definition. [20, 9.1.15] Let A ⊆ Rn be convex and p ∈ A be fixed. For a
singular q-simplex σ : ∆q → A we define the cone p ? σ : ∆q+1 = e0 ?∆q → A by

(p ? σ)
(

(1− t)e0 + tδ0(x)
)

:= (1− t)p+ tσ(x) for t ∈ [0, 1] and x ∈ ∆q.

For a q-chain c =
∑
σ nσ · σ we extend this operation by linearity:

p ? c :=
∑
σ

nσ · (p ? σ)

and obtain a homomorphism Sq(A)→ Sq+1(A); cf. 7.18 .

8.13 Lemma. [20, 9.1.16] Let A ⊆ Rn be convex and c ∈ Sq(A) then

∂(p ? c) =

{
c− ε(c) p for q = 0,

c− p ? ∂c for q > 0,

where ε
(∑

x nx · x
)

=
∑
x nx; cf. 7.19 .

Proof. It is enough to show this for singular simplices c = σq. For q = 0 we have
that p ? σ : ∆1 → X is a path from p to σ hence ∂(p ? σ) = σ − p = σ − ε(σ)p. For
q > 0 we have (p ? σ) ◦ δ0 = σ and (p ? σ) ◦ δi = p ? (σ ◦ δi−1) for i > 0 since(

(p ? σ) ◦ δi
)(

(1− t)e0 + tδ0(x)
)

= (p ? σ)
(
(1− t)δ0(e0) + tδi(δ0(x))

)
= (p ? σ)

(
(1− t)e0 + tδ0(δi−1(x))

)
by 8.3

= (1− t)p+ tσ(δi−1(x))

=
(
p ? (σ ◦ δi−1)

)(
(1− t)e0 + tδ0(x)

)
.

Hence ∂(p ? σ) = (p ? σ) ◦ δ0 +
∑q+1
i=1 (−1)ip ? (σ ◦ δi−1) = σ − p ? ∂σ.

8.14 Corollary. [20, 9.1.18] Let A ⊆ Rn be convex. Then A is acyclic; cf. 7.19

& 7.20 .

Proof. Let p ∈ A and z ∈ Zq(A) for some q > 0. Then z = ∂(p ? z) by 8.13 and
hence Zq(A) = Bq(A), i.e. Hq(A) = {0}.
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Relative homology

8.15 Definition. [20, 9.2.1] Let (X,A) be a pair of spaces. Then we get a pair of
chain complexes (S(X), S(A)) and hence a short exact sequence

0→ S(A)→ S(X)� S(X,A)→ 0,

where Sq(X,A) := Sq(X)/Sq(A). Its elements are called relative singular q-

chains. But unlike 7.31 we can not identify them with formal linear
combinations of simplices in X \A.

8.16 Remark. [20, 9.2.3] However, as in 7.31 we get a long exact sequence in
homology

· · · → Hq+1(X,A)−∂∗→ Hq(A)→ Hq(X)→ Hq(X,A)−∂∗→ Hq−1(A)→ · · · ,

where Hq(X,A) := Hq(S(X,A)). Note that z ∈ Sq(X) with ∂z ∈ Sq−1(A) describe
cycles z+Sq(A) in Sq(X,A) (since ∂(c+Sq(A)) := ∂c+Sq−1(A)) and hence classes
[z + Sq(A)] ∈ Hq(X,A).
In particular, for acyclicA and injectiveH0(A)→ H0(X) we getHq(X) ∼= Hq(X,A)
for all q 6= 0.
For a continuous mapping of pairs (X,A) → (Y,B) we get a homology ladder by

7.34 .

8.17 Remark. [20, 9.2.2] As in 7.32 we get

1. Hq(X,X) = {0},
2. Hq(X, ∅) ∼= Hq(X), and

3. H0(X,A) = {0} for path-connected X and A 6= ∅.

8.18 Remark. [20, 9.2.4] Using the long exact homology sequence

· · · → Hq+1(X,A)→ Hq(A)→ Hq(X)→ Hq(X,A)→ Hq−1(A)→ · · · ,

we obtain:

1. Let A ⊆ X be such that Hq(A) → Hq(X) is injective for all q. Then we
get short exact sequences 0 → Hq(A) → Hq(X) → Hq(X,A) → 0, where
Hq(X,A) → Hq−1(A) is 0, since the next one in the long exact sequence is
assumed to be injective.

2. LetA ⊆ X be a retract (i.e. has a left inverse). Then by functoralityHq(A)→
Hq(X) is a retract and hence by 1 we have (splitting) short exact sequences,
i.e. Hq(X) ∼= Hq(A)⊕Hq(X,A).

3. Let x0 ∈ X. The constant mappingX → {x0} is a retraction, henceHq(X) ∼=
Hq({x0}) ⊕ Hq(X, {x0}) by 2 . By 8.7 we have that Hq({x0}) = {0} for
q 6= 0 and H0({x0}) = Z, hence Hq(X, {x0}) ∼= Hq(X) for q > 0 and
0→ Z→ H0(X)→ H0(X, {x0})→ 0 is splitting exact.

4. Let f : (X,A)→ (Y,B) be such that f∗ : Hq(A)→ Hq(B) and f∗ : Hq(X)→
Hq(Y ) are isomorphisms for all q. Then the same is true for f∗ : Hq(X,A)→
Hq(Y,B) by the 5’Lemma applied to the homology ladder of 7.34 .

8.19 Theorem. Exact homology sequence of a triple. [20, 9.2.5]
Let B ⊆ A ⊆ X. Then we get a long exact homology sequence

· · · → Hq+1(X,A)−∂∗→ Hq(A,B)→ Hq(X,B)→ Hq(X,A)→ · · ·
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The operator ∂∗ can also be described by [z](X,A) 7→ [∂z](A,B) for z ∈ Sq(X) with

∂z ∈ Sq−1(A) or as composition Hq+1(X,A)−∂∗→ Hq(A)→ Hq(A,B).

Note, that B := ∅ gives us the long exact sequence of 8.16 .

Proof. We have a short sequence

0→ S(A,B)→ S(X,B)→ S(X,A)→ 0.

given by

S(B)
� _

��

S(B) �
� //

� _

��

S(A)
� _

��
S(A) �

� //

����

S(X)

����

S(X)

����
0 // S(A,B)

� � //

��

S(X,B) // //

��

S(X,A) //

��

0

0 0 0

The bottom row is exact at S(X,A) and also at S(A,B):
In fact for ȧ ∈ S(A,B) let the image in S(X,B) be 0.
Then a = b ∈ S(B) and hence ȧ = 0 in S(A,B).

It is also exact at S(X,B), since for ẋ ∈ S(X,B) which
is mapped to 0 in S(X,A) the image x ∈ S(X) is an a ∈
S(A) and hence satisfies ȧ is mapped to ẋ (see below).

b_

4.��

∃b_
3.

��

•

∃a_
1.

��

� 2.// a_

2.��

•

ȧ � 0.// 0 •

• • ∃a_
3.

��
a � 4.//
_

4.��

∃x_
1.

��

x_

2.��
ȧ � 5. // ẋ � 0.// 0

• z + Sq(B)
_

∂

��

� // z + Sq(A)
_

∂

��
∂z + Sq−1(B)

� // ∂z + Sq−1(B)
� // 0 + Sq−1(A)

So this short exact sequence induces a long exact sequence in homology by 7.30 .
The boundary operator maps the class [z + S(A)] with ∂z ∈ S(A) to [∂z + S(B)]

by construction 7.30 (see the diagram above).

This is precisely the image of value
of the boundary operator [∂z] for the
pair (X,A) under the natural map
H(A)→ H(A,B):

• z � //
_

��

z + Sq(A)

∂z
� // ∂z

Homotopy Theorem

We are going to prove now that homotopic mappings induce identical mappings in
homology. For this we consider first a homotopy, which is as free and as natural as
possible, i.e. the homotopy given by inst : X → X × I, x 7→ (x, t). We have to show
that ins0 and ins1 induce the same mapping in homology. So the images of a cycle
should differ only by a boundary. Let σ : ∆q → X be a singular simplex. Then
we may consider the cylinder σ(∆q) × I over σ(∆q). It seems clear, that we can
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triangulate ∆q × I (cf. exercise (3.2)). The image of the corresponding chain cq+1

under σ× I gives then a q+ 1-chain in X× I, whose boundary consists of the parts
σ × {1} = ins1 ◦σ and σ × {0} = ins0 ◦σ and a triangulation of (σ × I)∗∂cq. Note
that it would have been easier here, if we had defined the singular homology by
using squares instead of triangles, since it is not so clear how to describe an explicit
triangulation of ∆q × I, in fact we will show the existence of cq+1 by induction in

lemma 8.21 .

We make use of the following

8.20 Definition. [20, 8.4.6] Let R,S : X → Y be two functors. A natural
transformation ϕ : R→ S is a family consisting of Y-morphisms ϕX : R(X)→
S(X) for each object X ∈ X such that for every X -morphism f : X → X ′ the
following diagram commutes:

R(X)
ϕX //

R(f)

��

S(X)

S(f)

��
R(X ′)

ϕX′
// S(X ′)

8.21 Lemma. [20, 9.3.7] Let ϕ0, ϕ1 : S( ) → S( × I) be two natural transforma-
tions and assume furthermore that H0(ϕ0) = H0(ϕ1) : H0({∗}) → H0({∗} × I).

Then ϕ0 and ϕ1 are chain homotopic (see 8.22 ), i.e. there exists Z = (Zq)q with
homomorphisms Zq : Sq(X)→ Sq+1(X × I) such that ∂Zq + Zq−1∂ = ϕ1 − ϕ0 on
Sq(X).

Proof. We construct Zq by induction on q:
For q < 0 let Zq := 0. Now let Zj for all j < q be already constructed. Consider
the natural transformation ϕ := ϕ1 − ϕ0. We first treat the case X := ∆q. In
particular, we have to find for σ := id∆q

= ∆q ∈ Sq(X) an element Zq(∆q) =:
cq+1 ∈ Sq+1(∆q × I) with ∂cq+1 = ϕ∆q − Zq−1∂∆q. For q = 0 this follows from
the assumption [ϕ(∆0)] = 0 ∈ H0(∆0 × I). For q > 0 we can use that S(∆q × I) is

acyclic by 8.14 , since ∆q × I is a convex subset of Rq+2. So we only have to show
that the right side is a cycle. In fact, by induction hypothesis (applied to ∂∆q) we
have

∂
(
ϕ∆q−Zq−1∂∆q

)
= ϕ∂∆q−

(
ϕ−Zq−2∂

)
∂∆q = ϕ∂∆q−

(
ϕ∂∆q−Zq−2∂∂∆q

)
= 0.

Now we extend Zq : Sq(X)→ Sq+1(X × I) by natu-
rality to the case of a general X: I.e. for σ : ∆q → X
we define Zq(σ) := Sq+1(σ × I)(cq+1).

Then Zq is in fact natural, since Sq+1(f × I)Zq(σ) =
Sq+1(f × I)Sq+1(σ × I)(cq+1) and ZqSq(f)(σ) =
Zq(fσ) = Sq+1(fσ× I)(cq+1) and (f × I) ◦ (σ× I) =
(f ◦ σ)× I.

∆q
�
Zq

//
_
σ∗

��

cq+1_

(σ×I)∗
��

Sq(X)
Zq
//

f∗

��

Sq(X × I)

(f×I)∗
��

Sq(Y )
Zq
// Sq(Y × I)

Furthermore Zq is also a chain homotopy, since

∂Zq(σ) = ∂Sq+1(σ × I)(cq+1) = Sq(σ × I)∂cq+1 = Sq(σ × I)(ϕ∆q −Zq−1∂∆q)

= ϕSq(σ)∆q −Zq−1∂Sq(σ)∆q = ϕ(σ)−Zq−1∂(σ).
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8.22 Definition. [20, 8.3.12] [20, 8.3.15] Two chain mappings ϕ,ψ : C → C ′ are
called (chain) homotopic and we write ϕ ∼ ψ if there exists a graded group-
homomorphism Z : C → C ′ of degree 1 (i.e. a family Z = (Zq)q∈Z of group
homomorphisms Zq : Cq → C ′q+1) with ϕ− ψ = ∂Z + Z∂.

8.23 Proposition. [20, 8.3.13]
Let ϕ ∼ ψ : C → C ′. Then H(ϕ) = H(ψ) : H(C)→ H(C ′).

Proof. Let [c] ∈ H(C), i.e. ∂c = 0, then H(ϕ)[c]−H(ψ)[c] = [(ϕ− ψ)c] = [∂Zc+
Z∂c] = [∂Zc] = 0.

8.24 Proposition. [20, 8.3.14] Chain homotopies are compatible with compositions
and chain homotopic is an equivalence relation.

Proof. Clearly, for ϕ ∼ ψ we have χ ◦ ϕ ∼ χ ◦ ψ (since χ(ϕ− ψ) = χ(∂Z +Z∂) =
∂χZ+χZ∂) and similarly ϕ◦χ ∼ ψ◦χ and being chain homotopic is transitive.

8.25 Theorem. [20, 9.3.1]
Let f ∼ g : (X,A)→ (Y,B). Then f∗ = g∗ : Hq(X,A)→ Hq(Y,B).

Proof. By 8.21 we have that the chain mappings induced by the inclusions insj :
X → X×I are chain homotopic to each other for j ∈ {0, 1} by a chain homotopy Z.
Let h be a homotopy of pairs between f and g, i.e. f = h◦ ins0 and g = h◦ ins1. By

8.24 the composite h◦Z is a chain homotopy S(f) ∼ S(g) : S(X)→ S(Y ) and its
restriction is a chain homotopy S(f) ∼ S(g) : S(A)→ S(B), since the construction
is natural. Thus S(f) ∼ S(g) : S(X,A)→ S(X,B), since S(f), S(g), ∂, and h ◦ Z
are given on the relative singular chains by their value on representants. By 8.23
we have that H(f) = H(g) : H(X,A)→ H(X,B).

8.26 Corollary. [20, 9.3.2]
Let f ∼ g : X → Y . Then f∗ = g∗ : Hq(X)→ Hq(Y ).

Proof. Obvious, since Hq(X, ∅) ∼= Hq(X) naturally.

8.27 Corollary. [20, 9.3.3] Let f : X → Y be a homotopy equivalence. Then
f∗ : Hq(X) → Hq(Y ) is an isomorphism for all q. In particular, all contractible
spaces are acyclic.

Proof. Obvious by functoriality and 8.26 since an inverse g up to homotopy
induces an inverse H(g) of H(f).

8.28 Corollary. [20, 9.3.4] [20, 9.3.5] [20, 9.3.6]

1. Let A ⊆ X be a DR. Then Hq(A) → Hq(X) is an isomorphism and hence

Hq(X,A) = {0} for all q, cf. 8.18.2 .

2. Let B ⊆ A ⊆ X and A be a DR of X. Then Hq(A,B) → Hq(X,B) is an
isomorphism.

3. Let B ⊆ A ⊆ X and B be a DR of A. Then Hq(X,B) → Hq(X,A) is an
isomorphism.

Proof. The first part follows as special case from 8.27 and from 8.16 , the long

exact homology sequence of a pair. The other two cases then follow by using 8.19 ,
the long exact homology sequence of a triple.
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Excision Theorem

In order to prove the excision theorem for the singular homology we need the
barycentric refinement for singular simplices, since a singular simplex in X need
neither be contained in S(U) nor in S(V ) for a given covering {U, V } of X.

8.29 Definition. [20, 9.4.1] For the standard q-simplex ∆q we define the barycen-

tric chain B(∆q) ∈ Sq(∆q) recursively by (cf. 3.24 )

B(∆0) := ∆0

B(∆q) := ∆̂q ?

q∑
j=0

(−1)jS(δj)
(
B(∆q−1)

)
for q ≥ 1,

where ∆̂q := 1
q+1

∑q
j=0 e

j is the barycenter. Next we define in a natural way

B(σ) = B
(
S(σ)(∆q)

)
:= S(σ)B(∆q) for σ : ∆q → X

and extend it linearly to B : Sq(X)→ Sq(X) by setting

B
(∑

σ

nσ · σ
)

:=
∑
σ

nσB(σ).

Note that the recursion formula for B(∆q) can be rewritten as

B∆q = ∆̂q ? B∂∆q.

8.30 Proposition. [20, 9.4.2] The barycentric refinement is a natural chain map-
ping B : S( )→ S( ) with B ∼ id.

Proof. Let us first show naturality: So let f : X → Y be continuous. Then

(f∗B)σ = (f∗σ∗B)∆q = (f ◦ σ)∗B∆q = B(f ◦ σ) = (Bf∗)σ.

Next we prove that it is a chain mapping, i.e. ∂B = B∂. On Sq(X) with q ≤ 0 this
is obvious. Now we use induction for q > 0:

∂Bσ = ∂σ∗B∆q = σ∗∂B∆q = σ∗∂
(

∆̂q ? B∂∆q

)
=

8.13
===== σ∗

(
B∂∆q − ∆̂q ? ∂B∂∆q

)
=
I.Hyp.
===== Bσ∗∂(∆q)− σ∗

(
∆̂q ? B∂∂(∆q)

)
= B∂σ∗(∆q)− 0 = B∂σ.

Finally we prove the existence of a chain homotopy id ∼ B : S → S. Let i = ins0 :
X → X×I be given by x 7→ (x, 0) and p = pr1 : X×I → X given by (x, t) 7→ x then

S(p)◦S(i) = id. Since B|S0
= id we have a chain homotopy S(i)◦B ∼ S(i) by 8.21 .

Composing with S(p) gives a chain homotopy B = S(p)◦S(i)◦B ∼ S(p)◦S(i) = id

by 8.24 .

8.31 Corollary. [20, 9.4.3] Let A ⊆ X. Then B∗ = id : H(X,A)→ H(X,A).

By iteration we get the corresponding result for Br :=
r times

B ◦ . . . ◦B.

Proof. Let α ∈ Hq(X,A) be given, i.e. α = [z + Sq(A)] for a z ∈ Sq(X) with

∂z ∈ Sq−1(A). By 8.30 B ∼ id. Let (Zq : Sq( ) → Sq+1( ))q be a corresponding
natural chain homotopy. Then Bz− z = ∂Zqz+Zq−1∂z ∈ ∂Zqz+Sq(A), i.e. Bz is
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homologous to z relative A and, furthermore, ∂Bz ∈ ∂z+ 0 + ∂Zq−1∂z ∈ Sq−1(A),
so Bz is a cycle relative A, i.e. α = [z + Sq(A)] = [Bz + Sq(A)] = B∗(α).

8.32 Lemma. [20, 9.4.4] Let X be the union of two open subsets U and V . Then
for every c ∈ Sq(X) there is an r > 0 with Brc ∈ Sq(U) + Sq(V ) ⊆ Sq(X).

Proof. It is enough to show this for c being a singular simplex σ : ∆q → X. The sets
σ−1(U) and σ−1(V ) form an open covering of ∆q. Let λ be the Lebesgue number
for this covering, i.e. all subsets of ∆q of diameter less than λ belong to one of the
two sets. Since Br(∆q) is a finite linear combination of singular simplices, whose
image are closed simplices of the r-th barycentric refinement of K := {τ : τ ≤ ∆q},
we have by 3.26 that for sufficiently large r each summand of Br(∆q) has image

in σ−1(U) or in σ−1(V ). Hence Br(σ) = Br
(
S(σ)(∆q)

)
= S(σ)Br(∆q) is a sum of

summands in Sq(U) and in Sq(V ).

8.33 Excision theorem. [20, 9.4.5]
Let Xj ⊆ X for j ∈ {1, 2} such that the interiors

◦
Xj cover X.

Then the inclusion i∗ : (X2, X2 ∩ X1) → (X2 ∪ X1, X1) induces isomorphisms
Hq(X2, X2 ∩X1)→ Hq(X2 ∪X1, X1) for all q.
In particular this applies to X1 := Y ⊆ X and X2 := X \ Z for subsets Z and Y
satisfying Z̄ ⊆

◦
Y and so gives isomorphisms Hq(X \ Z, Y \ Z)→ Hq(X,Y ).

Proof. We have to show that i∗ : Hq(X2, X2∩X1)→ Hq(X2∪X1, X1) is bijective.

i∗ is onto: Let β ∈ Hq(X2 ∪ X1, X1), i.e. β = [z + Sq(X1)] for some z ∈ Sq(X)

with ∂z ∈ Sq−1(X1). By 8.32 there exists an r > 0 and uj ∈ Sq(
◦
Xj) such that

z ∼ Brz = u1 + u2 ∼ u2 relative X1 by 8.31 . We have ∂u2 ∈ Sq−1(X2) and
∂u2 = ∂Brz − ∂u1 = Br∂z − ∂u1 ∈ Sq−1(X1), hence ∂u2 ∈ Sq−1(X1 ∩ X2). So
α := [u2 + Sq(X2 ∩X1)] ∈ Hq(X2, X2 ∩X1) and it is mapped by i∗ to β.

i∗ is injective: Let α ∈ Hq(X2, X2 ∩X1) be such that i∗α = 0. Then α = [x2 +
Sq(X2∩X1)] for some x2 ∈ Sq(X2) and since 0 = i∗α = [x2 +Sq(X1)] ∈ Hq(X,X1)
we have a (q + 1)-chain c in X and a q-chain x1 in X1 with ∂c = x2 + x1. Again

by 8.32 there is an r > 0 such that Brc = u1 + u2 with uj ∈ Sq(
◦
Xj). Hence

∂u1 + ∂u2 = ∂Brc = Br∂c = Br(x2 + x1). So a := Brx2 − ∂u2 = ∂u1 − Brx1 is a

chain in X1 ∩X2 and x2 ∼ Brx2 = ∂u2 +a by 8.31 , i.e. α = [x2 +Sq(X2 ∩X1)] =
[∂u2 + a+ Sq(X2 ∩X1)] = 0, since a ∈ Sq(X2 ∩X1) and u2 ∈ Sq(X2).

The alternative description is valid, since the interiors of X1 := Y and X2 := X \Z
cover X iff

◦
Y =

◦
X1 ⊇ X \

◦
X2 = X \ (X \ Z̄) = Z̄. Obviously Y \Z = X1 ∩X2.

8.34 Corollary. [20, 9.4.6] [20, 9.4.7] Let (X,A) be a CW-pair. Then the quotient
map p : (X,A) → (X/A,A/A) induces an isomorphism in homology for all q and,
in particular, hence Hq(X,A) ∼= Hq(X/A) for all q 6= 0.

Proof. By 4.18 we have an open neighborhood U of A in X, of which A is an SDR.
Let p : X → X/A =: Y be the quotient mapping and let V := p(U) ⊆ X/A =: Y
and y := A/A ∈ X/A. Since U is saturated its image V ⊆ Y is open and p(A) = {y}
is an SDR in V . Now consider

Hq(X,A)
∼=

8.28.3

//

∼=, 3.p∗

��

Hq(X,U)

∼=, 2.p∗

��

Hq(X \A,U \A)
8.33

∼=oo

∼= 1.34 , 1.p∗

��
Hq(Y, {y})

∼=

8.28.3

// Hq(Y, V ) Hq(Y \ {y}, V \ {y})
8.33

∼=oo
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By 1.34 we have that p : (X,A) → (Y, {y}) is a relative homeomorphism, so the
vertical arrow on the right side is induced by an isomorphism of pairs and hence
is an isomorphism. The horizontal arrows on the right side are isomorphisms by

the excision theorem 8.33 . Hence the vertical arrow in the middle is an isomor-

phism. By 8.28.3 the horizontal arrows on the left are isomorphisms, hence also
the vertical arrow on the left.

Finally, by 8.18.3 we have Hq(Y, {y}) ∼= Hq(Y ) for q > 0.

8.35 Corollary. [20, 9.4.8] Let f : (X,A) → (Y,B) be a relative homeomorphism
of CW-pairs. Assume furthermore that X \ A contains only finitely many cells
or f : X → Y is a quotient mapping. Then f∗ : Hq(X,A) → Hq(Y,B) is an
isomorphism for all q.

Proof. By 1.34 we have an induced continuous bijective mapping f̃ : X/A→ Y/B
making the following diagrams commute:

A
f //

_�

��

B
_�

��

Hq(X,A)
f∗

∼=, 4.
//

��
8.34p∗
����

Hq(Y,B)
��

8.34q∗
����

X
f //

p
����

Y

q
����

Hq(X/A,A/A) ∼=, 3.
// Hq(Y/B,B/B)

X/A
f̃

∼=, 1.
// Y/B Hq(X/A)

f̃∗

∼=, 2.
//

8.18.3

OOOO

Hq(Y/B)

8.18.3

OOOO

That this bijection is a homeomorphism follows in case X \A has only finitely many

cells since then X/A is compact by 4.15 and 4.5 , and in the case where f : X → Y
is a quotient map then so is X → Y → Y/B and hence also X/A → Y/B. Thus

f̃∗ : Hq(X/A) ∼= Hq(Y/B) and by 8.18.3 (and 8.18.4 ) the horizontal arrow in the

middle on the right is an isomorphism. By 4.15 both X/A and Y/B are CW-spaces

thus by 8.34 the vertical down-arrows on the right are isomorphisms as well, so
the same has to be true for the top horizontal arrow on the right.

8.36 Proposition. [20, 9.4.9] Let Xj be CW-complexes with 0-cells xj ∈ Xj as
base-points. Then we have natural isomorphisms ab

∐
j Hq(Xj) ∼= Hq(

∨
j Xj) for

q 6= 0.

Proof. We have
∨
j Xj :=

⊔
j Xj/A, where A := {xj : j ∈ J} with Hq(A) =

ab
∐
j Hq({xj}) = 0 by 8.9 and 8.7 for q 6= 0. Furthermore, H0(A)→ H0(

⊔
j Xj)

is injective by 8.18.2 , so

Hq

(∨
j

Xj

) 8.34
∼= Hq

(⊔
j

Xj , A
) 8.16
∼= Hq

(⊔
j

Xj

) 8.9
∼= ab

∐
j

Hq(Xj).

8.37 Proposition. Mayer-Vietoris sequence. [20, 9.4.10] Let X = X1 ∪ X2,
where the Xj ⊆ X are open. Then there is a long exact sequence

· · · → Hq(X1 ∩X2)→ Hq(X1)⊕Hq(X2)→ Hq(X)→ Hq−1(X1 ∩X2)→ · · · .

Proof. Let S := S(X), S1 := S(X1) ⊆ S(X) and S2 := S(X2) ⊆ S(X). Then
S(X1 ∩X2) = S1 ∩ S2. Let S1 + S2 be the chain complex which has the subgroup
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of S generated by S1 and S2 in every dimension.
We claim that the following short sequence

0→ S1/(S1 ∩ S2)→ S/S2 → S/(S1 + S2)→ 0

is exact:

S1 ∩ S2
� � //

� _

��

S2� _

��

S2� _

��
S1
� � //

����

S1 + S2
� � //

����

S // //

����

S/(S1 + S2)

S1/S1 ∩ S2
∼

(S1 + S2)/S2
� � // S/S2

// // S/(S1 + S2)

In fact, by the first isomorphy theorem we have S1/(S1 ∩ S2) ∼= (S1 + S2)/S2 and
hence the inclusion S1 + S2 ⊆ S induces an injection S1/(S1 ∩ S2) → S/S2. The
quotient of it is (S/S2)/((S1 + S2)/S2) ∼= S/(S1 + S2) by the second isomorphy
theorem, which proves the claim.

By the excision theorem 8.33 we have that the inclusion (S1, S1 ∩ S2) ↪→ (S, S2)
induces an isomorphism H(S1/(S1∩S2)) =: H(X1, X1∩X2)→ H(X1∪X2, X2) :=

H(S/S2). Hence the long exact homology sequence 7.30 gives H(S/(S1 +S2)) = 0.

If we consider now the short exact sequence

0→ S1 + S2 → S → S/(S1 + S2)→ 0

then we deduce from the long exact homology sequence 7.30 that H(S1 + S2)→
H(S) is an isomorphism.

Now consider the sequence

0→ S1 ∩ S2 → S1 ⊕ S2 → S1 + S2 → 0,

where the inclusion is given by c 7→ (c,−c) and the projection by (c1, c2) 7→ c1 + c2.
This is obviously short exact, since (c1, c2) is mapped to 0 iff c1 + c2 = 0, i.e.
c := c1 = −c2 ∈ S1 ∩ S2 is mapped to (c1, c2). So we get a long exact homology

sequence 7.30 , where we may replace H(S1 + S2) by H(S) =: H(X) by what we
said above.

Note that the boundary operator is [z] 7→ [∂z1] = [−∂z2], where Brz = z1 + z2.

8.38 Remark. [20, 9.4.12]

(1) Instead of openness of X1 and X2 it is enough to assume in 8.37 that there are
open neighborhoods of X1 and X2 which have X1 and X2 and their intersection has
X1 ∩X2 as DRs. In particular this applies to CW -subspaces Xi of a CW -complex

X by 4.18 .

(2) Let X1 ∩ X2 be acyclic. Then the Mayer-Vietoris sequence gives Hq(X) ∼=
Hq(X1)⊕Hq(X2) for q 6= 0. In fact only the case q = 1 needs some argument: We
have the exact sequence

0 = H1(X1 ∩X2) // H1(X1)⊕H1(X2) // H1(X)

0

}}
Z = H0(X1 ∩X2) // // H0(X1)⊕H0(X2) // H0(X) // 0
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and the mapping H0(X1∩X2)→ H0(X1)⊕H0(X2) is injective, since the generator
is mapped to a generator of H0(X1) and of H0(X2).

(3) Let X1 and X2 be acyclic. Then we have Hq(X1 ∩ X2) ∼= Hq+1(X) for q > 0
and furthermore H1(X) is free abelian and if H0(X1 ∩X2) ∼= Zk with k 6= 0 then

H1(X1)⊕H1(X2) // H1(X) // // H0(X1 ∩X2) // H0(X1)⊕H0(X2) // H0(X) // 0

0 Zk Z2 Z

gives H1(X) ∼= Zk−1 via the rank formula rank(ker f) + rank(im f) = rank(dom f),
where we used that X = X1 ∪ X2 is connected being the union of two connected
not disjoint sets.

(4) Consider the covering Sn = Dn
+ ∪ Dn

−. By 1 we get a long exact Mayer-

Vietoris sequence. And since Dn
+ and Dn

− are convex, they are acyclic by 8.14 . So

Hq(S
n) ∼= Hq−1(Dn

+ ∩Dn
−) = Hq−1(Sn−1) for q > 1 and n > 0 by 3 . Inductively

we hence get Hq(S
n) ∼= Hq−n(S0) = {0} for q > n, since S0 is discrete. And for

0 < q < n we get Hq(S
n) ∼= H1(Sn−q+1) = {0}, since

0 // H1(Sn−q+1) // // H0(Sn−q) // H0(Dn−q
+ )⊕H0(Dn−q

− ) // H0(Sn−q+1) // 0

Z Z⊕ Z Z

and Hn(Sn) ∼= H1(S1) ∼= Z, since

0 // H1(S1) // // H0(S0) // H0(D0
+)⊕H0(D0

−) // H0(S1) // 0

Z⊕ Z Z⊕ Z Z

Homology of balls, spheres and their complements

8.39 Proposition. [20, 9.5.1] Let n ≥ 0. Then

Hq(∆n, ∆̇n) ∼=

{
Z for q = n,

0 otherwise.

The generator in Hn(∆n, ∆̇n) will be denoted [∆n] and is given by the relative

homology class of the singular simplex id∆n
: ∆n → ∆n. Cf. 7.32.4 .

Proof. We prove this by induction on n:

(n = 0) Hq(∆0, ∆̇0) = Hq({1}, ∅) =
8.17.2

======= Hq({∗}).

(n > 0) We consider ∆n−1 as face opposite to en in ∆n and let An := ∆̇n \
◦

∆n−1.

Since An is a DR of ∆n, we get Hq(∆n, ∆̇n) ∼= Hq−1(∆̇n, An)

from 8.19 for the triple An ⊆ ∆̇n ⊆ ∆n. Since ∆n−1 \
∆̇n−1 = ∆̇n \ An we get from 8.35 that the inclusion in-

duces an isomorphism Hq−1(∆n−1, ∆̇n−1) ∼= Hq−1(∆̇n, An).

Hence Hq(∆n, ∆̇n) ∼= Hq−1(∆n−1, ∆̇n−1) and by recursion

we finally reach Hq−n(∆0, ∆̇0) – which we calculated above –

in case q ≥ n, and H0(∆n−q, ∆̇n−q) = 0 by 8.17.3 in case

q < n, since ∆n−q is connected and ∆̇n−q 6= ∅.

Hn(∆n, ∆̇n)
��

8.19����
Hn−1(∆̇n, An)

Hn−1(∆n−1, ∆̇n−1)

OO 8.35

OOOO
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Let [∆n] denote the relative homology class in Hn(∆n, ∆̇n) of id∆n
: ∆n → ∆n.

Then its image in Hn−1(∆̇n, An) ist given by [∂ id∆n
+Sn−1(An)] which equals the

image [id∆n−1 +Sn−1(An)] of [∆n−1] ∈ Hn−1(∆n−1, ∆̇n−1). Obviously [∆0] is the

generator of H0(∆0, ∆̇0) = H0({1}).

8.40 Corollary. [20, 9.5.2] For n ≥ 0 we have

Hq(D
n, Sn−1) ∼=

{
Z for q = n

0 otherwise

We denote the canonical generator by [Dn]. It is given by the relative homology
class of a homeomorphism ∆n → Dn.

8.41 Corollary. [20, 9.5.3] For n > 0 we have

Hq(S
n) ∼=

{
Z for q = n or q = 0

0 otherwise

We denote the canonical generator by [Sn]. It is given by [Sn] = ∂∗([D
n+1]) =

[∂Dn+1].

This gives a different proof from 8.38.4

Proof. For q > 0 consider the homology sequence of the pair Sn ⊆ Dn+1:

Hq+1(Dn+1) //

8.14

Hq+1(Dn+1, Sn)
∼= // Hq(S

n) // Hq(D
n+1)

8.14

0 0

8.42 Corollary. [20, 9.5.6] By 8.36 we have Hq(
∨
j S

n) = 0 for q /∈ {0, n} and

Hn(
∨
j S

n) ∼= ab
∐
j Z and the generators are (injj)∗[S

n].

We now prove the following (strengthend) part of

Proposition 1.20 . Let m > n ≥ 0. Then Rm 6∼= Rn and Sm 6∼ Sn.

We have “proved” this by applying the theorem 1.19 of the invariance of domains.

Proof of 1.20 for Rn and Sn. By 8.39 we have Hm(Sm) ∼= Z but Hm(Sn) =

{0}, so Sm 6∼ Sn. Assume Rm ∼= Rn then Sm−1 ∼ Rm \ {0} ∼= Rn \ {0} ∼ Sn−1 for
n > 0, hence m = n. For n = 0 we get the result since R0 = {0} is compact.

8.43 Proposition. [20, 11.1.1] The sphere Sn is not contractible and is not a
retract in Dn+1 for n ≥ 0.

Proof. Since Hn(Sn) ∼= Z 6∼= {0} = Hn({∗}) the first statement is clear. And
the second follows, since retracts of contractible spaces are contractible. In fact let
ht : X → X be a contraction and let i : A → X have a left inverse p : X → A.
Then p ◦ ht ◦ i : A→ A is a contraction of A.

8.44 Corollary. Brouwers fixed point theorem. [20, 11.1.2]
Every continuous map f : Dn → Dn has a fixed point.

Proof. Otherwise we can define a retraction as in 2.21 .

8.45 Proposition. [20, 11.7.1] Let B ⊆ Sn be a ball. Then Sn \B is acyclic.
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Proof. Induction on r := dimB.
(r = 0) Then B is a point and hence Sn \B ∼= Rn is contractible and thus acyclic.
(r + 1) Let z ∈ Zq(Sn \ B) for q > 0 and z := x − y ∈ Z0(Sn \ B) for q = 0 with
x, y ∈ Sn \B. We have to show that ∃b ∈ Sq+1(Sn \B) with ∂b = z.

Consider a homeomorphisms f : Ir+1 = Ir × I ∼= B. Then Bt := f(Ir × {t}) is
an r-ball. Thus by induction hypothesis there are bt ∈ Sq+1(Sn \Bt) with ∂bt = z
considered as element in Sq(S

n\Bt)� Sq(S
n\B). Since the image of bt is disjoint to

Bt, we can choose an open neighborhood Vt of t such that Ir×Vt ⊆ f−1(Sn\im(bt)).
Using compactness we find a partition of 0 = t0 < t1 < · · · < tN = 1 of I
into finitely many intervals Ij := [tj , tj+1] such that for each 0 ≤ j < N there
exists a t with Ij ⊂ Vt. Let bj := bt ∈ Sq+1(Yj) where Yj is the open subset
Sn \ f(Ir × Ij) and let Xj :=

⋂
i<j Yi = Sn \ f(Ir × [0, tj ]). Then Xj ∩ Yj = Xj+1

and Xj ∪ Yj = Sn \
(
f(Ir × [0, tj ]) ∩ f(Ir × [tj , tj+1])

)
= Sn \ f(Ir × {tj}).

We now show by induction on j that [z] = 0 in Hq(Xj). For (j = 0) nothing is to be
shown, since X0 = Sn and z ∈ Zq(Sn \ B) ⊆ Zq(S

n \ {∗}) ∼= Zq(Rn) = Bq(Rn) ⊆
Bq(S

n). For (j + 1) we apply the Mayer-Vietoris sequence 8.37 to the open sets
Xj and Yj :

Hq+1(

Sn \ f(Ir × {tj})︷ ︸︸ ︷
Xj ∪ Yj) //

ind. on r

Hq(

Xj+1︷ ︸︸ ︷
Xj ∩ Yj) // // Hq(Xj)⊕Hq(Yj)

0

The image of [z] ∈ Hq(Xj+1) in Hq(Xj)⊕Hq(Yj) is zero, since the first component
is [z] = 0 ∈ Hq(Xj) by induction hypothesis on j, and the second component
[z] = [∂bj ] = 0 ∈ Hq(Yj). Since the group on the left side is zero, the arrow on the
right is injective and we get [z] = 0 ∈ Hq(Xj+1).

Since XN = Sn \B, we are done.

8.46 Theorem. [20, 11.7.4] Let S ⊆ Sn be an r-sphere with 0 ≤ r < n and n ≥ 2.
Then

Hq(S
n \ S) =


Z⊕ Z for r = n− 1 and q = 0

Z for r < n− 1 and q ∈ {0, n− 1− r}
0 otherwise.

Proof. Induction on r:
(r = 0) Then S ∼= S0 = {−1,+1} and Sn \ S ∼ Rn \ {0} ∼ Sn−1, so the result

follows from 8.38.4 or 8.41 .

(r > 0) We have Sr = Dr
− ∪Dr

+ and B± := f(Dr
±) are r-balls and S′ := f(Sr−1)

is an (r − 1)-sphere. By 8.45 Sn \ B± are acyclic and since Sn \ S′ = (Sn \
B+) ∪ (Sn \ B−) and Sn \ S = (Sn \ B+) ∩ (Sn \ B−) we get by 8.38.3 that
Hq(S

n \ S) ∼= Hq+1(Sn \ S′) for q > 0 and H0(Sn \ S) ∼= H1(Sn \ S′) ⊕ Z. By
recursion we finally arrive at Hq+r(S

n \ {±1}) = Hq+r(S
n−1), which we treated

before.

8.47 Proposition. [20, 11.7.2] [20, 11.7.5] Let n ≥ 2.
If B ⊆ Rn is a ball, then

Hq(Rn \B) =

{
Z for q ∈ {0, n− 1}
0 otherwise.
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If S ⊆ Rn is an r-sphere with 0 ≤ r < n, then

Hq(Rn \ S) =


Z⊕ Z for (r = n− 1, q = 0) or (r = 0, q = n− 1)

Z for (r < n− 1 6= q ∈ {0, n− 1− r}) or (r 6= 0, q = n− 1)

0 otherwise.

Proof. Let A ⊆ Rn ∼= Sn \ {∗} ⊂ Sn be compact. The long exact homology

sequence 8.16 of the pair (Sn \A,Rn \A) gives

→ Hq+1(Sn \A,Rn \A)−∂∗→ Hq(Rn \A)→ Hq(S
n \A)→ Hq(S

n \A,Rn \A)→

By the excision theorem 8.33 applied to A ⊆ Rn ⊆ Sn we get Hq(S
n\A,Rn\A) ∼=

Hq(S
n,Rn), which is isomorphic by 8.28.3 to Hq(S

n, {∗}), since Rn is contractible.

By 8.18.3 this homology group equals Hq(S
n) for q > 0 and by 8.17.3 it is 0 for

q = 0, since Sn is path-connected, i.e.

Hq(S
n \A,Rn \A) =

8.33
===== Hq(S

n,Rn) =
8.28.3

======= Hq(S
n, {∗}) =

8.18.3
=======

{
Z for q = n

0 otherwise.

The long exact sequence from above thus is

. . .→ Hq+1(Sn, {∗})−∂∗→ Hq(Rn \A)→ Hq(S
n \A)→ Hq(S

n, {∗})→ . . .

In particular, Hq(Rn \A) ∼= Hq(S
n \A) for q /∈ {n− 1, n} and by 8.45 and 8.46

for A a sphere or ball the sequence is near q = n− 1:

0→ Hn(Rn \A)→ 0→ Z→ Hn−1(Rn \A)→ Hn−1(Sn \A)→ 0,

This gives Hn(Rn \A) = 0 = Hn(Sn \A) and Hn−1(Rn \A) ∼= Z⊕Hn−1(Sn \A),
from which the claimed result follows.

8.48 Corollary. Jordan’s separation theorem generalized). [20, 11.7.6] [20,
11.7.7] Let X ∈ {Rn, Sn} with n ≥ 2. For any r-sphere S with r < n − 1 we have
that X \S is connected (i.e. we cannot cut X into two pieces along such a sphere).
If S is an n− 1-sphere then X \ S has exactly two components, both of which have
S as boundary. If X = Sn then the components are acyclic.

Proof. For spheres S of dimension r < n − 1 the result follows from 8.46 and

8.47 since H0(X \ S) ∼= Z in these cases.

If S is a sphere of dimension n−1, then H0(X \S) ∼= Z2 by 8.46 and 8.47 . Hence
X \ S has two components, say U and V .

That for X = Sn the components U and V are acyclic follows from Hq(U) ⊕
Hq(V ) ∼= Hq(X \ S) = {0} for q 6= 0.

(U̇ ⊆ S) In fact U̇ ∩ U = ∅, since U is open and thus U̇ = Ū \
◦
U = Ū \ U . From

U ⊆ X\V we get Ū ⊆ X \ V = X\V since V is open. So U̇ = Ū \U ⊆ (X\V )\U =
X \ (U ∪ V ) = S.

(S ⊆ U̇) Let x ∈ S and W be a neighborhood of x ∈ X. Choose n− 1-balls B and
B′ with S = B ∪ B′ and such that x ∈ B ⊆ W . Let c be a path in Rn from U to

V , which avoids B′ ⊆ S (this is possible by 8.47 since X \B′ is path-connected).

Let t0 := sup{t : c(t) ∈ U}. Hence y := c(t0) ∈ Ū \ U = U̇ ⊆ S = B ∪ B′. Hence

y ∈ B ⊆W and so W ∩ U̇ contains y and is not empty, hence x ∈ U̇ .

8.49 Remark. [20, 11.7.8] For dimension 2 we have Schönflies’s theorem (see [13,
§9]): For every Jordan curve in S2, i.e. injective continuous mapping c : S1 → S2,
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8. Singular Homology 8.49

there exists a homeomorphism f : S2 ∼= S2 with f |S1 = c.
Thus up to a homeomorphism a Jordan-curve looks like the equator S1 ⊆ S2.

In dimension greater than 2, Alexanders horned sphere is a counterexample: One
component of the complement is not simply connected. This gives at the same time
an example of an open subset U ⊆ S3, which is homologically trivial (i.e. acyclic)
but not homotopy-theoretical (π1(U) 6= 0).

The third and the final step in constructing the horned sphere

A sphere with 4 horns attached

A sphere with 8 more horns attached
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A torus with parts complementary to 2 handles removed

The generators of the fundamental group of the removed part

Let Un be the outer component of the complement of the sphere with 2n-handles
constructed in the n-th step. The outer component of Alexanders horned sphere is
then the union U∞ =

⋃
n∈N Un and each of its compact subsets is contained in Un

for some n. By 5.31 we have that π1(U∞) = lim−→n
π1(Un) is the injective limit. We

determine π1(Un) recursively:

By 1.73 the complement U0 of a filled torus in S3 is an open torus
◦
D2 × S1 ∼ S1

and hence its fundamental group π1(U0) ∼= Z, where a generator α is given by an
enlarged meridian of the original torus. The inclusion Un ↪→ Ūn induces an iso-
morphism of the fundamantal groups, and Ū1 ist the union of Ū0 and the closure
Z̄1 of the part Z1, which we remove from the torus in the first step. Note that

Z̄1
∼= (D2 \ (

◦
D1

0 t
◦
D2

1))× I ∼ S1 ∨ S1 (cf. 1.65.4 and 2.36.9 ). Let α1 and α2 be

the generators (i.e. loops along the two handles) of π1(Z̄1) ∼= π1(Z1).
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The intersection A1 := Ū0 ∩ Z̄1
∼= S1 × I ∼ S1

has also fundamental group Z and its generator
S1 × { 1

2} (denoted α) is mapped by the inclusion

ι0 : A1 ↪→ Ū0 to the generator α of π1(Ū0), i.e.
π1(ι0) : π1(A1)→ π1(U0) is an isomorphism.

By the theorem 5.33 of Seifert and von Kampen

the pushout is π1(Ū1) and thus π1(Z̄1) → π1(Ū1)
is an isomorphism as well. The inclusion ι1 : A1 →
Z̄1 maps α to the commutator [α1, α2] (look at
the plane through α = S1 × { 1

2} ⊆ Z̄1, it has 4

holes with boundary parametrized by α1, α2, α−1
1 ,

and α−1
2 , cf. 2.36.9 ). Hence the same is true for

Z ∼= π1(U0)→ π1(U1) = Zq Z.

Α

Α1

Α1

Α2

Α2

α ∈ Z ===== π1(S1) ∼= π1(A1) //
∼= // //

��

_

��

π1(Ū0) ∼= π1(U0)

��
[α1, α2] ∈ Z

∐
Z = π1(S1 ∨ S1) ∼= π1(Z̄1) //

∼= // // π1(Ū1) ∼= π1(U1)

Using analogous arguments we obtain that π1(Un) is the free group with 2n-many
generators αni with 0 ≤ i < 2n and the inclusion Un−1 ↪→ Un maps αn−1

i 7→
[αn2i, α

n
2i+1]. Thus the set π1(U∞) is the union of these free groups and hence U∞ is

not simply connected. Note however, that the Abelisation of π1(U∞) is obviously
trivial.

1.19 Corollary. Invariance of the domain.
Let X,Y ⊆ Rn be homeomorphic. If X is open then so is Y .

Proof. Take x ∈ X and y := f(x) ∈ Y . By assumption there is a ball B := {z : |z−
x| ≤ r} ⊆ X. Let S := ∂B. Then Rn \f(S) = (Rn \f(B))∪ (f(B)\f(S)). The first

part is connected by 8.47 and the second one coincides with f(B\S) ∼= B\S =
◦
Dn

and hence is connected as well. Thus they are the path components of the open set
Rn\f(S) and hence are open in Rn. So the component f(B\S) ⊆ f(B) ⊆ f(X) = Y
is an open neighborhood of y in Rn, and thus Y is open.

Cellular Homology

8.50 Proposition. [20, 9.6.1] Let X be a CW -complex.
Then Hp(X

q, Xq−1) = 0 for p 6= q.

Proof. For q = 0 we have Hp(X
q, Xq−1) = Hp(X

0, ∅) = Hp(X
0) = 0 by 8.17.2 ,

8.7 and 8.9 .

So let q > 0. For p = 0 we have H0(Xq−1) � H0(Xq) −0→ H0(Xq, Xq−1) → 0,
where the first mapping is onto (since each component of Xq meets Xq−1) and so
the second one is 0.
Now let p 6= 0. By 8.34 we have Hp(X

q, Xq−1) ∼= Hp(X
q/Xq−1) and so the result

follows from 8.42 , since Xq/Xq−1 ∼=
∨
Sq by 4.16 .
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8.51 Corollary. [20, 9.6.2] The inclusions induce an epimorphism Hq(X
q) �

Hq(X) and an isomorphism Hq(X
q+1)−∼=→ Hq(X).

Proof. By 8.50 and

Hp+1(Xq, Xq−1)→ Hp(X
q−1)→ Hp(X

q)→ Hp(X
q, Xq−1)

the first arrow in the sequence

Hq(X
q)� Hq(X

q+1)−∼=→ · · · −∼=→ Hq(X
q+j)→ Hq(X)

is onto and all others but the last one are isomorphisms. So we have the result
for finite CW -complexes. In the general case we use that every singular simplex

lies in some Xp by 4.5 , hence Hq(X
q+1) → Hq(X) is surjective. Similar one

shows injectivity, since [z] = 0 ∈ Hq(X) implies z = ∂c for some c ∈ Sq−1(X) =⋃
p Sq−1(Xp), hence c ∈ Sq−1(Xp) for some p and thus [z] = 0 ∈ Hq(X

p).

8.52 Corollary. [20, 9.6.3] Let X be a CW -space without q-cells. Then Hq(X) = 0.
In particular Hq(X) = 0 for q > dimX.

Proof. From the homology sequence

Hq+1(Xp, Xp−1)→ Hq(X
p−1)→ Hq(X

p)→ Hq(X
p, Xp−1)

for q > p and 8.50 we deduce Hq(X
q−1) ∼= . . . ∼= Hq(X

−1) = 0. By assumption

Xq = Xq−1 and henceHq(X
q, Xq−1) = 0. So we get the surjectivity ofHq(X

q−1)�
Hq(X

q) and thus Hq(X
q) = 0 as well. Now the result follows since Hq(X

q) �
Hq(X) is onto by 8.51 .

8.53 Definition. [20, 9.6.4] The q-th cellular chain group of a CW -complex
X is defined as

Cq(X) := Hq(X
q, Xq−1),

and its elements are called cellular q-chains. For every q-cell e in X with char-
acteristic map χe : (Dq, Sq−1) → (Xq, Xq−1) we define a so-called orientation
χe∗([D

q]) ∈ Cq(X) as the image of χe∗ : Hq(D
q, Sq−1) ∼= Z → Hq(X

q, Xq−1),
where [Dq] denotes the generator in Hq(D

q, Sq−1) induced from a homeomorphism

∆q → Dq, see 8.40 .

Lemma. For every cell there are exactly two orientations, which differ only by their
sign. And Cq(X) is a free abelian group generated by a selection of orientations for
each q-cell.

Proof. Let χ1 and χ2 be two characteristic mappings for e. We can consider them

as relative homeomorphisms χj : (Dq, Sq−1) → (Xq−1 ∪ e,Xq−1). By 8.35 they
induce isomorphisms in homology. Hence Hq(χ1)[Dq] = ±Hq(χ2)[Dq], since the
generator in Hq(X

q−1∪e,Xq−1) has to correspond to a generator in Hq(D
q, Sq−1),

and the only ones are ±[Dq].

Obviously C0(X) = H0(X0, ∅) = H0(X0) is free abelian generated by the set X0.

For q > 0 the projection p : (Xq, Xq−1) → (Y, {y0}) := (Xq/Xq−1, Xq−1/Xq−1)

induces by 8.34 an isomorphism p∗ : Cq(X) := Hq(X
q, Xq−1) → Hq(Y, {y0}).

Since Y is a join of q-spheres we have that p∗χ
e
∗[D

q] form a basis in the free

134 andreas.kriegl@univie.ac.at c© 7. Februar 2018



8. Singular Homology 8.55

abelian group Hq(Y, {y0}), as follows from 8.42 : In fact, consider the following
commutative diagram and the induced one in homology:

(Dq, Sq−1)
χe //

h

��

(Xq, Xq−1)

p

��

Hq(D
q, Sq−1)

χe∗ //

∼=h∗

��

Hq(X
q, Xq−1) = Cq(X)

∼=p∗

��
(Sq, {∗}) // (Xq/Xq−1, {∗}) Z = Hq(S

q)
8.42

// Hq(
∨
Sq) = ab

∐
Z

The vertical arrows are isomorphisms in homology by 8.34 and the bottom arrow
maps the generator [Sq] ∈ Hq(S

q) ∼= Hq(S
q, {∗}) to the corresponding generator in

Hq(X
q/Xq−1) ∼= Hq(X

q/Xq−1, {∗}) by 8.42 .

8.54 Definition. [20, 9.6.6] Using the long exact sequences for the pairs (Xq+1, Xq)
and (Xq, Xq−1) we have

Cq+1(X)

. . .
j∗ // Hq+1(Xq+1, Xq) //∂∗ // Hq(X

q) // Hq(X
q+1) // . . .

. . . // Hq(X
q−1) //

8.52

Hq(X
q) �
� j∗ // Hq(X

q, Xq−1)
∂∗ // . . .

0 Cq(X)

Let ∂ := j∗ ◦ ∂∗ : Cq+1(X)→ Hq(X
q)→ Cq(X). We have ∂2 = 0 by the exactness

of the second sequence at Hq(X
q, Xq−1) and thus we obtain a chain complex. Its

homology H(C(X)) is called cellular homology of the CW -complex X.
For any q + 1-cell e with characteristic map χe and q > 0 we get ∂(χe∗[D

q+1]) =

j∗∂∗χ
e
∗[D

q+1]
(†)
= j∗(χ

e|Sq )∗∂∗[Dq+1] = j∗(χ
e|Sq )∗[∂Dq+1] = j∗(χ

e|Sq )∗[Sq], where
for (†) we used the homology ladder

[Dq+1] ∈ Hq+1(Dq+1, Sq)
χe∗ //

∂∗

��

Hq+1(Xq+1, Xq)

∂∗

��

Cq+1(X)

∂

��
[Sq] ∈ Hq(S

q)
(χe|Sq )∗ // Hq(X

q)
j∗ // Cq(X).

Example. Despite looking rather complicated the cellular homology is often easy
to calculate. Take for example the cell decompostion of the sphere Sn = e0 ∪ en.
Thus

Cq(X) ∼=

{
Z for q ∈ {0, n},
0 otherwise.

Hence the cellular boundary operator ∂ is 0 for n > 1 and hence

Hq(C(X)) = Cq(X) ∼=

{
Z for q ∈ {0, n},
0 otherwise.

Singular versus cellular homology

8.55 Proposition. [20, 9.6.9] [20, 9.6.11] The homomorphism j∗ : Hq(X
q) �

Hq(X
q, Xq−1) is injective and maps onto the q-th cellular cycles.

The map i∗ : Hq(X
q)� Hq(X) is onto and its kernel is mapped by j∗ onto the q-th
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cellular boundaries.
Thus one obtains isomorphisms

j∗ : Hq(X)−∼=→ Hq(C(X)),

which are natural for cellular mappings.

Proof. From the exact sequence

0 =
8.52

===== Hq(X
q−1)→ Hq(X

q)−j∗→ Hq(X
q, Xq−1) =: Cq(X)

we deduce that j∗ is injective and hence Ker(∂) := Ker(j∗∂∗) = Ker(∂∗) = Im(j∗),
which proves the first statement.

From the exact homology sequence 8.16 of the pair (X,Xq+1)

Hq+1(Xq+1)
8.51

// // Hq+1(X)
0 // Hq+1(X,Xq+1)

0 // Hq(X
q+1) //

∼=

8.51

// Hq(X)

0

we get Hq+1(X,Xq+1) = 0.

By the exact homology sequence 8.19 for the triple Xq ⊆ Xq+1 ⊆ X

0

Hq+1(Xq+1, Xq) // // Hq+1(X,Xq) // Hq+1(X,Xq+1)

we get that Hq+1(Xq+1, Xq)� Hq+1(X,Xq) is onto. The q-th cellular boundaries
are the image of the top row in

Hq+1(Xq+1, Xq)
∂∗ //

����

Hq(X
q)

j∗ // Hq(X
q, Xq−1)

Hq+1(X,Xq)
∂∗ // Hq(X

q)
i∗

8.51

// // Hq(X)

Since the rectangle commutes by naturality of ∂∗ and since Im ∂∗ = Ker i∗ we get

Im(∂) := Im(j∗∂∗) = j∗(Im ∂∗) = j∗(Ker i∗),

i.e. the q-th cellular boundaries are the image of Ker i∗ under j∗. Now we get the
desired natural isomorphism

0 // Ker i∗
� � //

∼=, 2.j∗

��

Hq(X
q)

i∗ // //

∼=, 1.j∗

��

)) j∗
))

Hq(X) //

∼=, 3.j∗

��

0

Hq(X
q, Xq−1)

Cq(X)

0 // Im ∂q+1
� � // Ker ∂q // //

' �
55

Hq(C(X)) // 0

8.56 Proposition. [20, 9.6.10] For q ≥ 1 we have that in the short exact sequence

0→ Ker(i∗) ↪→ Hq(X
q)

i∗
� Hq(X)→ 0

Hq(X
q) is free abelian and Ker(i∗) is generated by the Hq(χ

e)[Sq], where χe : Sq →
Xq are chosen gluing maps for each q + 1-cell e in X.
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Proof.

0 // Ker i∗
� � // Hq(X

q)
i∗

8.51

// // Hq(X) // 0

Bild ∂∗s�

%%
. . . // Cq+1(X)

∂∗

//

∂∗

OOOO

Hq(X
q) // // Hq(X

q+1)

∼= 8.51

OO

// . . .

By 8.55 we have that Hq(X
q) ∼= Ker ∂q ⊆ Cq(X) and hence is free abelian

by 9.20 . Furthermore Hq(X
q+1) ∼= Hq(X) by 8.51 , and hence the kernel of

i∗ : Hq(X
q) → Hq(X) equals the kernel of Hq(X

q) → Hq(X
q+1) ∼= Hq(X), and

equals the image of ∂∗ : Cq+1(X) := Hq+1(Xq+1, Xq) → Hq(X
q) by the homol-

ogy sequence of the pair (Xq+1, Xq). By 8.53 we have that Cq+1(X) is the free

abelian group generated by χe∗[D
q+1], where χe : (Dq+1, Sq) → (Xq+1, Xq) are

chosen characteristic maps for each q + 1-cells e in X. By 8.54 we have that

∂∗(χ
e
∗[D

q+1]) = χe∗[S
q].

8.57 Proposition. [20, 9.9.10] For the projective spaces we have

Hq(Pn(C)) ∼=

{
Z for q = 0, 2, . . . , 2n

0 otherwise

and

Hq(Pn(H)) ∼=

{
Z for q = 0, 4, . . . , 4n

0 otherwise.

For the homology of the real projective spaces Pn(R) see 8.67 .

Proof. By 1.95 there are no cells in all but the dimensions divisible by 2 (resp.
4), thus the boundary operator of the cellular homology is 0 (since either domain
or codomain is zero) and hence the homology coincides with the cellular chain
complex.

Simplicial versus singular homology

We are going to show now that the singular homology of a singular complex K is
naturally isomorphic to the homology of the associated CW-space |K|. The idea
behind this isomorphism is very easy: To a given simplex σ = 〈x0, . . . , xq〉 ∈ K
one associates the affine singular simplex σ̄ : ∆q → |K|, which maps ej 7→ xj for
all 0 ≤ j ≤ q. We will show that this induces an isomorphism Hq(K) → Hq(|K|),
[σ] 7→ [σ̄]. In order that it is well defined, we have to show that an even permutation
of the vertices does not change the homology class of σ̄. We do this in the following

8.58 Lemma. [20, 9.7.1] Let τ be a permutation of {0, . . . , q}. Then τ induces

an affine mapping τ : (∆q, ∆̇q) → (∆q, ∆̇q), with Hq(τ)[∆q] = sign(τ)[∆q] ∈
Hq(∆q, ∆̇q).

Proof. Since any permutation is a product of transpositions, we may assume that
τ is a transposition, say (0, 1). Let an affine σ : ∆q+1 → ∆q be defined by e0 7→ e1

and ei 7→ ei−1 for all i > 0. The boundary of this singular q + 1-simplex in ∆q is
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∂σ = σ◦δ0+
∑
i/∈{0,2}(−1)iσ◦δi+σ◦δ2 = id∆q

+c+τ for c :=
∑
i/∈{0,2}(−1)iσ◦δi ∈

Sq(∆̇q). Hence τ∗[∆q] = [τ ] = −[∆q] ∈ Hq(∆q, ∆̇q).

Although this lemma shows that the mapping Hq(K) → Hq(|K|) is well-defined,
it is not so obvious that it is an isomorphism, since there are a lot more singular
simplices in |K| then just the simplices of K. So we will make a little detour via
the cellular homology.

8.59 Definition. [20, 9.7.2] Let σ = 〈x0, . . . , xq〉 be an oriented q-simplex of a sim-

plicial complex K. This induces an affine mapping σ̃ : (∆q, ∆̇q) → (|K|q, |K|q−1),
which can be considered as characteristic mapping for σ ⊆ |K|. Hence we get a
mapping

Φ : Cq(K)→ Cq(|K|) := Hq(|K|q, |K|q−1), σ 7→ σ̃∗[∆q] = [σ̃].

Recall that Cq(K) := ab
〈
K [q], {σ + σ−1 : σ ∈ K [q]}

〉
by 7.1 . Note that σ̃ depends

on the chosen ordering of the vertices. Nevertheless, Φ is well-defined (i.e. depends

no longer on the ordering but only on the orientation) by 8.58 and since we may
identify Cq(K) with the free abelian group generated by the simplices with some

fixed orientation by 7.2 .

8.60 Theorem. [20, 9.7.3]
The mapping Φ : σ 7→ [σ̃] defines a natural isomorphism C( )−∼=→ C(| |).

Proof. That ΦK : C(K) → C(|K|) is an isomorphism is clear, since the free

generators σ (see 7.2 ) are mapped to the free generators [σ̃] (see 8.53 ).

It is natural for simplicial mappings ψ : K → L. In fact take a simplex σ =
〈x0, . . . , xq〉 ∈ K. If ψ is injective on the vertices xj of σ, then

Φψσ = Φ〈ψ(x0), . . . , ψ(xq)〉 = [〈ψ(x0), . . . , ψ(xq)〉∼] = [|ψ| ◦ σ̃] = |ψ|∗[σ̃] = |ψ|∗Φσ.

In the other case ψσ = 0, hence Φψσ = 0 and |ψ|∗Φσ = [|ψ| ◦ σ̃], but |ψ| ◦ σ̃ has
values in |L|q−1, hence [|ψ| ◦ σ̃] = 0 ∈ Hq(|L|q, |L|q−1).

Let us show that it is a chain mapping. For σ = 〈x0, . . . , xq〉 we have

∂Φσ = j∗∂∗[σ̃] = j∗[∂σ̃] = [∂σ̃] =
[∑
j

(−1)j σ̃ ◦ δj
]

and

Φ∂σ = Φ
(∑

j

(−1)j〈x0, . . . ,
p−−−−qxj , . . . , xq〉

)
=
[∑
j

(−1)j σ̃ ◦ δj
]

So ∂Φ = Φ∂.

8.61 Corollary. [20, 9.7.4] Let K be a simplicial complex. Then we have natural

isomorphisms Hq(K)−Φ∗→ Hq(C(|K|))←j∗−Hq(|K|), from the simplicial over the
cellular to the singular homology.

Proof. This follows by composing the isomorphisms in 8.60 and 8.55 .

Let us now come back to the description of the isomorphism H(K) ∼= H(|K|)
indicated in the introduction to this section.

8.62 Proposition. [20, 9.7.7] The isomorphism H(K) ∼= H(|K|) between simpli-
cial and singular homology can be described as follows: Choose a linear ordering of
the vertices of K, and then map a simplex σ = 〈x0, . . . , xq〉 with x0 < · · · < xq to
σ̃, which is just σ considered as affine map ∆q → |K|, ej 7→ xj.
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Proof. We consider the following commutative diagram and take α ∈ Hq(K):
It can be represented by a simpli-
cial cycle z :=

∑
σ nσσ ∈ Zq(K) ⊆

Cq(K). On the other hand we can
consider the singular q-chain z̃ :=∑
σ nσσ̃ ∈ Sq(|K|q), since the im-

age of σ̃ is the closure of the sim-
plex σ and hence contained in |K|q.
This singular chain is a cycle, since

∂z̃ =
∑
σ nσ∂σ̃

!
=

∑
σ nσ∂̃σ =

(∂(
∑
σ nσσ))∼ = ∂̃z = 0̃ = 0 and

hence we may consider β := [z̃] ∈
Hq(|K|q), i.e. i∗(β) = [z̃] ∈ Hq(|K|).

Zq(|K|q) // // Hq(|K|q)
i∗ // //

j∗

xx
∼= 8.55j∗

��

Hq(|K|)

∼=j∗

��

Hq(|K|q, |K|q−1)

Cq(|K|) Ker ∂q

ff

// // Hq(C(|K|))

Cq(K)

Φ ∼= 8.60

OO

Zq(K)

Φ ∼= 8.60

OO

oo // // Hq(K)

Φ∗ ∼=

OO

Note that Φ(z) =
∑
σ nσΦ(σ) =

∑
σ nσ[σ̃] = [

∑
σ nσσ̃] = [z̃] = j∗(β) ∈ Cq(|K|).

Thus the composition of isomorphisms Hq(K)−Φ∗→ Hq(C(|K|))←j∗−Hq(|K|) maps
α = [z] 7→ [Φ(z)] 7→ i∗j

−1
∗ [Φ(z)] = i∗(β) = [z̃] ∈ Hq(|K|). Note that [z] denotes

classes in various homology groups during this calculation.

Fundamental group versus first homology group

8.63 Proposition. [20, 9.8.1] There is a natural homomorphism h1 : π1(X,x0)→
H1(X) given by [ϕ] 7→ ϕ∗[S

1] = [ϕ], where for the last equality ϕ : (S1, 1)→ (X,x0)

is considered as singular chain ∆̇2
∼= S1 → X.

If X is path-connected then this homomorphism is surjective and its kernel is just
the commutator subgroup. Thus H1(X) ∼= abπ1(X,x0), the abelization of π1(X,x0).

Proof. That h is natural is clear. Let us show that it is a homomorphism: So let two
closed curves ϕ,ψ considered as maps (S1, 1)→ (X,x0) be given. The corresponding
paths I → X are obtained by composing them with t 7→ e2πit, I → S1. Hence
ϕ · ψ := (ϕ,ψ) ◦ ν : (S1, 1) → (S1, 1) ∨ (S1, 1) → (X,x0), where ν : S1 → S1 ∨ S1

is given by t 7→ (e2πi2t, 1) ∈ S1 ∨ S1 ⊆ S1 × S1 for 2t ≤ 1 and t 7→ (1, e2πi(2t−1)) ∈
S1∨S1 for 2t ≥ 1. In order to determine ν∗ : H1(S1)→ H1(S1∨S1) we consider the

relative homeomorphism σ : (∆1, ∆̇1)→ (S1, {1}) given by (1− t)e0 + te1 7→ e2πit.

It induces an isomorphism σ∗ : Z ∼= H1(∆1, ∆̇1) → H1(S1, {1}) ∼= H1(S1) ∼= Z,

with σ∗ : [∆1] 7→ [σ ◦ id∆1
] = [σ] = [S1] for the generators (by 8.39 for [∆1]; by

8.41 and 8.40 for [S1]). Using the barycentric refinement Bσ = σ∗(B∆1) (see

8.29 ) gives

ν∗[S
1] = ν∗[σ] =

8.31
===== ν∗[Bσ] = [inj1 ◦σ] + [inj2 ◦σ]︸ ︷︷ ︸

∈H1(S1∨S1)

=
8.36

===== [S1]⊕ [S1]︸ ︷︷ ︸
∈H1(S1)⊕H1(S1)

, thus

h1([ϕ] · [ψ]) = h1([ϕ · ψ]) = h1([(ϕ,ψ) ◦ ν]) = ((ϕ,ψ) ◦ ν)∗[S
1] = (ϕ,ψ)∗ν∗[S

1]

= (ϕ,ψ)∗

(
[S1]⊕ [S1]

)
= ϕ∗[S

1] + ψ∗[S
1] = h1[ϕ] + h1[ψ].

Although the theorem is valid for arbitrary path-connected topological spaces, see
[15, IV.3.8], we give the proof only for connected CW-complexes X. Since π1 and

H1 do not depend on cells of dimension greater then 2 by 5.40 and 8.51 , we may
assume dimX ≤ 2. The theorem is invariant under homotopy equivalences, hence

we may assume by 5.45 that X has exactly one 0-cell and that this cell is x0. So
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X1 is a one-point union of 1-cells and X is obtained by gluing 2-cells e via maps

fe : S1 → X1. By 2.32.3 and 2.45 we may assume that fe(1) = x0.

Now consider the diagram below.

π1(X1, x0)′
� _

5.24

��

// π1(X,x0)′
� _

��
N �
� //

h1|N
����

π1(X1, x0)
i∗

5.48

// //

h1 5.37 , 8.42����

π1(X,x0)

h1

��
U �
� // H1(X1)

i∗

8.56

// // H1(X)

By 5.48 the top i∗ is onto and its kernel
N is the normal subgroup generated by the

[fe]. By 8.56 the bottom i∗ is onto and its
kernel U is the subgroup generated by the

(fe)∗[S
1] =: h1(fe). By 5.37 and 8.42 the

two spaces in the middle are free resp. free
abelian, with the corresponding generators,

and by 5.24 we know that the abelization
of a free group is the free abelian group.

So we have that the result is true for X1. Furthermore h1(N) = U , since the gen-
erators of N are mapped to those of U . By diagram chasing the general result
follows: Let G := π1(X1, x0). The homomorphism h1 : π1(X,x0)� H1(X) is obvi-
ously surjective and its kernel is given by all gN , for which 0 = h1(gN) = h1(g)U ,
i.e. h1(g) ∈ U . Again by surjectivity of h1 : N � U we have an n ∈ N with
h1(n) = h1(g), i.e. gn−1 ∈ ker(h1) = G′. So gN ∈ G′/N = (G/N)′. The converse
inclusion (G/N)′ ⊆ ker(h1) is clear, since H1(X) is abelian.

8.64 Corollary. [20, 9.8.2] For the closed orientable surface X of genus g we have
H1(X) ∼= Z2g, for the non-orientable one we have H1(X) ∼= Zg−1⊕Z2, and for the
projective spaces we have H1(Pn) ∼= Z2 for 2 ≤ n ≤ ∞.

Proof. Use the formulas given in the proof of 5.53 and in 5.41 .

8.65 Proposition. [20, 9.9.2] For continuous f : (S1, 1) → (S1, 1) the induced
homomorphism f∗ : H1(S1)→ H1(S1) is given by [S1] 7→ deg(f) · [S1].

Proof. For [c] ∈ π1(S1, 1) we have deg(f ◦ c) = deg(f) · deg(c) by 2.15.3 and

deg : π1(S1, 1) ∼= Z is an isomorphism by 5.15 , thus π1(f) acts by multiplication
with deg(f) and using the naturality of h1, gives the same result for H1(f).

Z

deg(f)· 5.15

��

π1(S1, 1)
∼=

deg
oo

8.63

∼=
h1

//

π1(f)

��

H1(S1)

H1(f)

��
Z π1(S1, 1)

∼=
deg
oo ∼=

h1

// H1(S1)

For a direct proof see [20, 9.5.5] and 2.15 .

8.66 Proposition. [20, 9.9.9]
The homology of the closed orientable surface of genus g is:

Hq(X) ∼=


Z for q = 0, 2

Z2g for q = 1

0 otherwise

and that for the non-orientable one of genus g is:

Hq(X) ∼=


Z for q = 0

Zg−1 ⊕ Z2 for q = 1

0 otherwise.
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Proof. This time we calculate the cellular homology. Recall that in both cases X
can be described as the CW-complex obtained by gluing one 2-cell e2 to a join

of circles S1 along a map f : S1 →
∨k

S1 of the form in1
m1
· · · · · inlml (see 1.94 ).

Thus the non-vanishing cellular chain groups are C0(X) ∼= Z, C1(X) ∼= Zk, and
C2(X) ∼= Z with generators given by the base-point e0, the 1-cells e1

1, . . . , e
1
k, and

one 2-cell e2 with chosen orientations, by 8.53 . More precisely, the generators are

ẽ := (χe)∗[D
q] ∈ Cq(X) = Hq(X

q, Xq−1) for the generator [Dq] ∈ Hq(D
q, Sq−1)

and a characteristic maps χe for each q-cell e. As in the proof of 8.63 for ν∗ and

using 8.65 one shows that

f∗[S
1] = (in1

m1
)∗[S

1] + · · ·+ (inlml)∗[S
1] = n1 · (im1

)∗[S
1] + · · ·+ nl · (iml)∗[S1].

Hence ∂(ẽ2) = ∂((χe
2

)∗[D
2]) = j∗(χ

e2 |S1)∗[S
1] =

j∗f∗[S
1] = n1ẽ

1
m1

+ · · ·+nlẽ
1
ml

by 8.54 and since

ẽ1
m = (χe

1
m)∗[D

1] = j∗(im)∗[S
1]):

S0 �
� //

const����

D1 // //

χe
1
m

��

S1
� _

im��
X0 �
� // X1

∨
k S

1

(χe
1
m)∗ : H1(D1, S0) ∼= H1(S1)−(im)∗→ H1(X1)−j∗→ H1(X1, X0) =: C1(X)

For the boundary of the 1-cells we get

∂(ẽ1
j ) = j∗∂∗(χ

e1j )∗[D
1] = j∗(χ

e1j |S0)∗∂∗[D
1] = j∗(χ

e1j |S0)∗[∂D
1]

= j∗ const∗[(+1)− (−1)] = ẽ0 − ẽ0 = 0.

In case of the oriented closed surface X of genus g (where k = 2g) we thus have
∂ẽ2 = ẽ1

1 + ẽ1
2− ẽ1

1− ẽ1
2 + · · · = 0, hence Hq(X) ∼= Hq(C(X)) = Cq(X) is as claimed.

In case of a non-orientable surfaces X of genus g (where k = g) we have ∂ẽ2 =
2ẽ1

1 + · · ·+ 2ẽ1
g, which shows that H2(X) = Ker ∂2 = {0} and

H1(X) = Ker ∂1/ Im ∂2 = Zg/2Z(ẽ1
1 + · · ·+ ẽ1

g)

= ab
〈
{ẽ1

1, . . . , ẽ
1
g} : {2(ẽ1

1 + · · ·+ ẽ1
g) = 0}

〉
=

5.27.2
======= ab

〈
{ẽ1

1, . . . , ẽ
1
g, x} : {x = ẽ1

1 + · · ·+ ẽ1
g, 2x = 0}

〉
=

5.27.2
======= ab

〈
{ẽ1

1, . . . , ẽ
1
g−1, x} : {2x = 0}

〉
= Zg−1 ⊕ Z2.

8.67 Proposition. [20, 9.9.14] For the real projective spaces we have

Hq(Pn(R)) ∼=


Z for q = 0 or q = n odd,

Z2 for 0 < q < n with q odd,

0 otherwise.

Proof. The idea is to consider the CW-decomposition of Sn compatible with the

equivalence relation x ∼ −x, which gives Pn = Sn/∼ (see 1.95 ). For this we

consider the spheres S0 ⊂ S1 ⊂ · · · ⊂ Sn and the cells {x ∈ Sq : ±xq+1 > 0} with

characteristic map fq± : x 7→ (x,±
√

1− |x|2). They form a cell decomposition of Sn

and hence ẽq± := (fq±)∗[D
q] is a basis in Cq(S

n) by 8.53 . We have the reflection

r : Dq → Dq, x 7→ −x and may consider it as mapping r : (Sq, Sq−1)→ (Sq, Sq−1)
to obtain an homomorphism r∗ : Cq(S

n) → Cq(S
n) and also r∗ : Hq(D

q, Sq−1) →
Hq(D

q, Sq−1).
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Claim: r∗ẽ
q
+ = (−1)q ẽq−:

Note that r∗[D
q] = (−1)q[Dq] ∈ Hq(D

q, Sq−1) which is obvious for q = 1 and
follows by induction for q ≥ 2:
A reflection r on a hyperplane A induces − id on Hq(D

q, Sq−1) ∼= Hq−1(Sq−1),
since we may choose a q-simplex σ with edges x0, x1 symmetric with respect to A,
x2, . . . , xq ∈ A and 0 in its interior. Let σ̃ : ∆q → 〈x0, . . . , xq〉 the associated (see

8.59 ) singular simplex and p : Rq \ {0} → Sq−1 the retraction x 7→ x/‖x‖. Then

p ◦ σ̃ : ∆̇q → Sq−1 is a homeomorphism and r ◦ p ◦ σ̃ = p ◦ r ◦ σ̃ = p ◦ σ̃ ◦ ρ|∆̇q
,

where ρ is the affine isomorphism, which exchanges e0 and e1. Hence r∗ = − id

since (ρ|∆̇q
)∗ = − id by 8.58 .

Since r ◦ fq+ = fq− ◦ r we thus get

r∗ẽ
q
+ = r∗(f

q
+)∗[D

q] = (fq−)∗r∗[D
q] = (−1)q(fq−)∗[D

q] = (−1)q ẽq−.

Claim: ∂ẽq+1
− = ∂ẽq+1

+ = ±(ẽq+ − ẽ
q
−):

Since fq+1
± |Sq = id we get ∂ẽq+1

± = ∂(fq+1
± )∗[D

q] = j∗(f
q+1
± |Sq )∗[Sq] = j∗[S

q] by

8.54 . Using 8.41 we consider the long exact sequence of the pair for q > 1:

Hq(S
q−1) // Hq(S

q) //
j∗ // Hq(S

q, Sq−1)
∂∗ // // Hq−1(Sq−1) // Hq−1(Sq)

0 ab〈{[Sq]}〉∼= Z ab〈{ẽq+, ẽ
q
−}〉∼= Z⊕ Z Z 0

So ∂∗ 6= 0 since it is onto and in particular applied to the generators ẽq± we have

∂∗ẽ
q
± = ∂∗(f

q
±)∗[D

q] = (fq±|Sq−1)∗[S
q−1] = id[Sq−1] by 8.19 , hence ∂∗ẽ

q
− = ∂∗ẽ

q
+ 6=

0. So Z · (ẽq+ − ẽ
q
−) = Ker ∂∗ = Im j∗ = Z · j∗[Sq]. Thus j∗[S

q] = ±(ẽq+ − ẽ
q
−).

The projective space Pn = Sn/∼ is a CW -complex with cells p(fq+(Dq)) = p(fq−(Dq))
and with characteristic mappings p ◦ fq+ : Dq → Pq. Hence the generator of Cq(Pn)
is given by p∗(ẽ

q
+) = (p ◦ fq+)∗[D

q] =: ẽq. Since p ◦ r = p we have by the first claim
that p∗(ẽ

q
−) = (−1)qp∗(r∗ẽ

q
+) = (−1)qp∗(ẽ

q
+) = (−1)q ẽq.

For 0 < q ≤ n we get by the second claim that

∂ẽq = ∂p∗(ẽ
q
+) = p∗∂(ẽq+) = ±p∗(ẽq−1

+ − ẽq−1
− )

= ±(1− (−1)q−1)ẽq−1 =

{
0 for odd q.

±2ẽq−1 for even q.

0 // Cn(Pn)
∂ // . . .

∂ // C4(Pn)
∂ // C3(Pn)

∂ // C2(Pn)
∂ // C1(Pn)

∂ // C0(Pn)
∂ // 0

0 // Z // . . . // Z ±2 // Z 0 // Z ±2 // Z 0 // Z ∂ // 0

Hq : . . . 0 Z2 0 Z2 Z

Thus for even q > 0 we have no non-trivial cycle in Cq(Pn) and for odd q > 0 we
have that ẽq is a cycle and 2ẽq = ±∂ẽq+1 is a boundary for q < n. So the claimed
homology follows.
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9. Cohomology

. 9.1 Definition. Roughly speaking cohomology is the dual construction to homol-
ogy. Let

· · · → Cq −∂→ Cq−1 → · · ·
be a chain complex and G be an abelian group. Then

· · · ← Hom(Cq, G)←∂
∗
−Hom(Cq−1, G)← · · ·

defines another chain complex C−q := Hom(Cq, G) and hence we may consider
its homology H(C∗) and we call Hq(C;G) := H−q(C

∗) = H−q(Hom(C−∗, G)) the
cohomology of C with coefficients in G.
O In particular, we have

• the simplicial cohomology groups Hq(K;G) of simplicial complexes;

• the singular cohomology groups Hq(X;G) of topological spaces X; and

• the cellular cohomology groups Hq(C(X);G) of CW-spaces X.

Note that Hom( , G) : A-Gru → A-Gru is a contravariant functor which maps
f : C → C ′ to f∗ : Hom(C ′, G)→ Hom(C,G) defined by f∗(g) := g ◦ f . Hence we
better use A-Gruop (the category A-Gru but with all arrows reversed) as its domain
to get a covariant functor.

Since Hom( , G) is additiv (i.e. (f1 + f2)∗ = f∗1 + f∗2 : (g 7→ f1 ◦ g + f2 ◦ g)) it
preserves the biproduct C1 ⊕ C2 (see [9, 3.27],), which is completely described by
the projections pri and the injections inji with pri ◦ injj = δi,j . Thus this Hom-
functor also preserves splitting exact sequences.

. 9.2 Remark.
A more naive dual construction would be to consider Hom(Hq(C), G) and leads to
the question: Do these two constructions coincide?

We get mappings h : Hq(C;G) → Hom(Hq(C), G) defined by [ϕ] 7→ ϕ̃|Zq , where
ϕ ∈ Hom(Cq, G) with 0 = ∂∗(ϕ) = ϕ ◦ ∂ : Cq+1 → Cq → G, i.e. ϕ|Bq = 0. Hence
ϕ|Zq : Zq → G factors over Zq � Hq(C) = Zq/Bq and thus defines an element

h([ϕ]) := ϕ̃|Zq ∈ Hom(Hq(C), G).

· · · // Cq+1
∂ //

∂

����

0

**

Cq
∂ //

ϕ
0.

""

Cq−1
// · · ·

G

0 // Bq(C)
� � i // Zq(C) // //

?�

OO

ϕ|Zq
1.

<<

Hq(C) //

ϕ̃|Zq

2.

bb

0

0 Hq(C;G)
[ϕ]

oo Zq(C;G)
ϕ

oooo
� _

��

Bq(C;G)_?
oo 0oo

· · · Hom(Cq+1, G)
0

oo Hom(Cq, G)
ϕ

∂∗oo

��

Hom(Cq−1, G)
∂∗oo

∂∗
OOOO

· · ·oo

Hom(Bq(C), G)
0

OO∂∗

OO

Hom(Zq(C), G)
ϕ|Zq

i∗oo Hom(Hq(C), G)
ϕ̃|Zq

oooo 0oo
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Let · · · → Cq −∂→ Cq−1 → · · · be a chain complex of free abelian groups. Consider
its cycle subgroups Zq ⊆ Cq and boundary subgroups Bq ⊆ Zq, i.e. the short exact
and splitting (since Bq−1 is free abelian) sequence

0 // Zq
� � j // Cq

∂ // // Bq−1
// 0

For an abelian group G we apply the functor Hom( , G) to this sequence and obtain
a short exact(!) sequence of chain complexes, where the boundary operator in the
middle is given by ∂∗ and the others are 0.

0 Hom(Z−∗, G)

0

GG
oo Hom(C−∗, G)

∂∗

GG
j∗oo Hom(B1−∗, G)

0

GG
∂∗oo 0oo

Applying the homology functor Hq gives a long exact sequence for the cohomology
groups H−q(C;G) := Hq(Hom(C−∗, G)), etc.:

· · · Hq(B;G)oo Hq(Z;G)oo Hq(C;G)
(j∗)∗oo Hq−1(B;G)

(∂∗)∗oo Hq−1(Z;G)oo · · ·oo

Hom(Bq, G) Hom(Zq, G)
i∗oo Hom(Bq−1, G) Hom(Zq−1, G)

i∗oo

Since the boundary operator on Hom(Z−∗, G) and on Hom(B−∗, G) is 0, we have
Hq(Z;G) = Hom(Zq, G) and Hq(B;G) = Hom(Bq, G). Moreover the connect-
ing homomorphism Hq(Z;G) → Hq(B;G) is i∗, where i : Bq ↪→ Zq denotes the
inclusion: Let ϕ ∈ Hom(Zq, G) and ϕ̃ ∈ Hom(Cq, G) with ϕ̃|Zq = j∗(ϕ̃) = ϕ
(exists, since the short exact sequence Zq → Cq → Bq−1 splits). Hence for the
connecting homomorphism [ϕ] 7→ [(∂∗)−1∂∗(j∗)−1ϕ] = [(∂∗)−1∂∗ϕ̃] = [i∗ϕ], since
∂∗(i∗(ϕ)) = ∂∗(ϕ|Bq ) = ϕ ◦ ∂ = ϕ̃ ◦ ∂ = ∂∗(ϕ̃). Now consider the short exact
sequence

0 // Bq
� �

i
// Zq // // Hq(C) // 0

Let us assume for the moment that applying Hom( , G) gives again a short exact
sequence (e.g. if Hq(C) is free abelian (or, more general, a projective module), since
then the sequence splits and so also its image under the additive functor Hom( , G))

0 Hom(Bq, G)oo Hom(Zq, G)
i∗oo Hom(Hq(C), G)oo 0oo

In particular i∗ is onto, hence (∂∗)∗ = 0 and thus (j∗)∗ is injective and its image is
Ker(i∗) = {ϕ ∈ Hom(Zq, G) : ϕ|Bq = 0} ∼= Hom(Hq(C), G), i.e.

(j∗)∗ = h : Hq(C;G) ∼= Hom(Hq(C), G).

O

9.3 Example.[20, 13.1.2]

1. Hom(Z, G) ∼= G via ϕ 7→ ϕ(1).

2. Hom(Zn, G) = {g ∈ G : ng = 0} via ϕ 7→ g := ϕ(1),
since 0 = ϕ(0) = ϕ(n) = ng.

3. Hom(Zn, G) = 0 if G is torsion free by 1 .

4. Hom(Zn,Zm) ∼= Zgcd(n,m) by 1 .

5. Hom( , G) is additive.
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Let us now check, whether Hom( , G) preserves also short exact sequences (which
are not assumed to be splitting).

. 9.4 Proposition.[20, 13.1.5] If 0← C ←p−B ←i−A is exact, then

0→ Hom(C,G)−p
∗
→ Hom(B,G)−i

∗
→ Hom(A,G)

is also exact, i.e. Hom( , G) is a left exact functor.

Proof. (p∗ is injective) Let 0 = p∗(ϕ) = ϕ ◦ p. Then ϕ = 0, since p is onto.

(ker(i∗) = im(p∗)) Let 0 = i∗(ϕ) = ϕ ◦ i, i.e. ϕ vanishes on im(i) = ker(p) and
hence factors to a ϕ̃ : C → G with ϕ = ϕ̃ ◦ p = p∗(ϕ̃). The converse inclusion is
obvious by p ◦ i = 0.

9.5 Remark. Exactness at Hom(A,G) would mean that i∗ : Hom(B,G)→ Hom(A,G)
is onto for injective i : A→ B, i.e. every homomorphism ϕ : A→ G must have an
extension to B. An abelian group G having this property for arbitrary monomor-

phisms A ↪→ B is called injective. Thus the arguments in 9.2 hold for injective
G even if Hq(C) is not free abelian.

9.6 Example. Z2 is not injective.[20, 13.1.4]

The exact sequence 0→ 2Z i
↪→ Z

π
� Z2 → 0 is mapped to

0 // Hom(Z2,Z2) //
π∗ //

9.3.4

Hom(Z,Z2)
i∗ //

9.3.1

Hom(2Z,Z2)

Z2
id // Z2

0 // Z2

9.7 Definition. A left module over a ring R is an abelian group M together
with a multiplication · : R×M →M which satisfies the distributive laws

r · (x+ y) = r · x+ r · y and (r + s) · x = r · x+ s · y
the “associativity” law

r · (s · x) = (r s) · x
and the unit 1 ∈ R acts as identity 1 · x = x.
The Z-modules are exactly the abelian groups.

A left module M over a ring R is called injective iff
any short exact sequence 0 → M → B → C → 0 of
left R-modules splits, or, equivalently, if i : A → B is an
injective module homomorphism then every module ho-
momorphism f : A → M extends to B (i.e. Hom(i,M) is
onto):

0 // A // i //

f

��

B

~~
M

O (⇒)

0 // A // i //

f

��

B

i2

��
0 // M // i1 //

idM

��

PO �
� //

}}

PO/M // 0

M

Note, that the push-out of a mono is a mono: In fact, let 0 = i1(m) = [m⊕0]. Then
m ⊕ 0 = f(a) ⊕ i(−a) for some a ∈ A, hence a = 0 (since i is injective) and thus
m = f(0) = 0.
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.
A left module M over a ring R is called projective iff
any short exact sequence 0 → A → B → M → 0 of
left R-modules splits, or, equivalently, if p : B → C is a
surjective module homomorphism, then for every module
homomorphism f : M → B lifts to C (i.e. Hom(M,p) is
onto):

0 Coo B
p
oooo

M

f

OO >>

O (⇒)

0 Coo B
poooo

0 M

f

OO

oo M ×C B
pr1oooo

pr2

OO

ker pr1
? _oo 0oo

M

idM

OO ::

9.8 Lemma. Stability of projective and injective objects.

• Coproducts and direct summands of projective objects are projective.

• Products and direct summands of injective objects are injective.

Proof.

B // // C // 0 B // // C // 0

Mi
inji

//

1.

OO

∐
iMi

f

OO

2.

cc

N 88 88

1.

OO

M
idM //oooo

f

OO

2.

``

M

f

``

. 9.9 Lemma. A module is projective, iff it is a direct summand in a free module.
An abelian group is projective if and only if it is free abelian.

O Proof. (⇐) By 9.8 it is enough to show show this for a free module M := F(X).
Let p : C → B be onto and f : F(X) = M → B a homomorphism. Then we

define f̃ : M → C by sending each generator x ∈ X to a chosen inverse image in
p−1(f(x)).

(⇒) Since every module M is the quotient of a (the) free module (abF(M)) we
may lift the identity on M , hence M is a direct summand of a free module. And

for abelian groups it is itself free by 9.20 .

9.10 Example. Projective modules are not always free:
Let R := Z6 = Z2 ⊕ Z3. Then Z2 is a projective R-module but not free.

. 9.11 Definition. An abelian group A is called divisible, iff for every 0 < n ∈ N
and g ∈ A there exists an x ∈ A mit n · x = g.

Examples are: Q, R, Zp∞ := lim−→k∈N Zpk ∼= {e2πj/pk : j, k ∈ N}, where the connect-

ing mappings Zpk → Zpk+1 are given by multiplication with p.

9.12 Lemma. An abelian group is injective if and only if it is divisible.

O Proof. (⇐) Let A be a subgroup of B and f : A → M be a homomorphism.
Consider the set S := {(g, C) : A ⊆ C ≤ B, g : C → M, g|A = f} of all par-
tial extensions of f ordered by componentwise inclusion. Obviously any linearly
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ordered subset S0 ⊆ S has an upper bound given by the componentwise union
(
⋃

(g,C)∈S0
g,
⋃

(g,C)∈S0
C). By Zorns Lemma we have a maximal element (f̃ , Ã).

Suppose Ã 6= C and take g ∈ B \C. If g+C has infinite order in B/C, then f̃ can

be extended to 〈C ∪{g}〉 ∼= C⊕〈g〉 by f̃(c+kg) := f(c), contradicting maximality.
Otherwise let n be minimal with ng ∈ C. Since M is divisible there exists x ∈ M
with nx = f(ng) so we can extend f to C + 〈g〉 by f̃(c+ kg) := f(c) + k x, again a
contradiction.

(⇒) Let 0 < n ∈ N and g ∈ M . Consider the inclusion nZ ↪→ Z and f : nZ → M

given by n 7→ g. By injectivity of M we have an extension f̃ : Z → M and then
x := f̃(1) solves nx = nf̃(1) = f̃(n) = f(n) = g.

9.13 Remark. One can show that the divisible abelian groups are exactly the
direct sums of Q and the Zp∞ .

. 9.14 Remark. In order to generalize the arguments in 9.2 we need an exact
sequence

0 // Hom(Hq(C),M) // Hom(Zq,M) // Hom(Bq,M) // ? // · · ·

For injective M we can replace ‘?’ by 0. So we try to ‘approximate’ a general
module M by injective modules, i.e. we try to find an exact sequence of the form
0 → M → I0 → I1 → I2 → · · · , where all Ij are injective modules, a so called
injective resolution of M .

For the induction step we need:

9.15 Proposition. Every module is submodule of injective module.

O Proof. For abelian groups injectivity is equivalent to divisibility by 9.12 .
Any abelian group A is quotient of a free group, i.e. a
coproduct of copies of Z which embeds in the divisible
group given by the corresponding coproduct of Q. Taking
the push-out shows that A is a subgroup of a (divisible)
quotient of a divisible group.

∐
Z �
� //

����

∐
Q

����
A // // PO

For every R-module N there is a R-module structure on HomZ(R,N) given by
r · ϕ : r′ 7→ ϕ(r′r). We have HomZ(N,D) ∼= HomR(N,HomZ(R,D)): We map
ϕ ∈ HomZ(N,D) to ϕ̃ : x 7→ (r′ 7→ ϕ(r′x)). We have ϕ̃ ∈ HomR(N,HomZ(R,D)),
since

ϕ̃(rx)(r′) = ϕ(r′rx) = ϕ̃(x)(r′r) = (r · ϕ̃(x))(r′).

Conversely, ϕ̃ 7→ ϕ := ev1 ◦ϕ̃.

If M � D is a group-monomorphism into a divisible(=injective) abelian group D.
Then the corresponding R-module homomorphism M → HomZ(R,D) is obviously
a monomorphism (we assume that R is a ring with unit) and HomZ(R,D) is an
injective R-module.

. 9.16 Corollary. Every module has an injective resolution.

O Proof. By 9.15 we find for every module M an injective module I0 and an
embedding M ↪→ I0. Now proceed recursively by chossing an embedding of the
Ik/ im(Ik−1 → Ik) into an injective module Ik+1.

. 9.17 Lemma. Every module has a projective resolution.
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O Proof. Let M be a module. Then M is quotient of the free module P0 =
∐
M R.

Consider the kernel K0 of this quotient map π : P0 � M . If R = Z, i.e. M is just

an abelian group (i.e. R = Z), then K0 is free as well by 9.20 and we found the
projective resolution 0→ K0 → P0 →M → 0. For general R we find a free module
P1 which has K0 as quotient. Recursively we get an exact sequence

· · · → Pn → · · · → P1 → P0 →M → 0.

9.18 Lemma. Let P → M → 0 be a projective resolution, X → N → 0 an
arbitrary resolution (i.e. exact sequence), and f : M → N a homomorphism. Then

there exists a homomorphism f̃ : P → X of chain-complexes, which extends f and
which is unique up to chain homotopies:

· · · // Pn+1
∂ //

f̃n+1

��

Pn

f̃n

��

∂ //

sn||

Pn−1
//

f̃n−1

��
sn−1||

· · · // P0
//

f̃0

��

M //

f

��

0

· · · // Xn+1
∂
// Xn

∂
// Xn−1

// · · · // X0
// N // 0

The following proof shows, that we don’t need that P →M → 0 is exact and that
X0 → N is onto, P being a chain complex, X an exact sequence, and f mapping
the image of P0 →M into that of X1 → N suffices.

Proof. Existence: Since P0 is projective and X0 → N is onto, we have a lift
f̃0 : P0 → X0 of f ◦ π : P0 → M → N and recursively we get lifts f̃n : Pn → Xn

since Pn+1 → Pn −f̃n→ Xn → Xn−1 is 0 hence has values in ker(Xn → Xn−1) =

im(Xn+1 → Xn) and by projectivity of Pn+1 has a lift f̃n+1 : Pn+1 → Xn+1.

Uniqueness: Let g̃ we another lift of f . Then f̃0 − g̃0 has values in the kernel of
X0 → N and hence has a lift s0 : P0 → X1. Recursively we get sn : Pn → Xn+1

with ∂sn+ sn−1∂ = f̃n− g̃n: Since ∂(f̃n− g̃n− sn−1∂) = (f̃n−1− g̃n−1−∂sn−1)∂ =

sn−2∂
2 = 0 there exists a lift sn : Pn → Xn+1 with ∂sn = f̃n − g̃n − sn−1∂.

9.19 Lemma. Let 0 → M → I be an injective resolution, 0 → N → X an
arbitrary resolution (i.e. exact sequence), and f : N →M a homomorphism. Then

there exists a homomorphism f̃ : X → I of cochain-complexes, which extends f and
which is unique up to chain homotopies:

0 // N

f

��

∂ // X0

f̃0

��

∂ // · · · ∂ // Xn

f̃n
��

∂ // · · ·

0 // M
∂ // I0

∂ // · · · ∂ // In
∂ //

Proof. Existence: Since I0 is injective and N → X0 is injective, we have an
extension f̃0 : X0 → I0 of N → M → I0 and recursively we get extensions

f̃n : Xn → In since Xn−2 → Xn−1 −fn−1→ In−1 → In is 0 hence factors over
im(Xn−1 → Xn) ∼= Xn−1/ ker(Xn−2 → Xn−1).

Uniqueness: Let f̃ be another extension of f . Then f̃0 − f̃ ′0 vanishes on the image
of N → X0 and factors over X0/ ker(X0 → X1) ∼= im(X0 → X1). By injectivity
of I0 we get an extension s0 : X1 → I0. Recursively we get sk : Xk+1 → Ik with

∂sk+sk−1∂ = f̃k− f̃ ′k: Since ∂(f̃k+1− f̃ ′k+1−sk∂) = 0 there exists a sk+1 : Xk+2 →
Ik+1 with ∂sk+1 = f̃k+1 − f̃ ′k+1 − sk∂.
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. 9.20 Proposition. Every subgroup of a free abelian group is free abelian. More
generally, every submodule of a free module over a PID is free. Thus we find in this
situation a projective resolution of the form:

0→ P1 → P0 →M → 0.

O Proof. Let H be a submodule of a free module G :=
∐
J R. For every subset Λ ⊆ J

we consider HΛ := H ∩
∐

ΛR. Let

S :=
{

(Λ, B) : Λ ⊆ J,HΛ is free with generators B ⊆ HΛ

}
and define a partial ordering (Λ, B) � (Λ′, B′) :⇔ Λ ⊆ Λ′ and B ⊆ B′.

For every linearly ordered subset S0 ⊆ S let (Λ∞, B∞) := (
⋃

(Λ,B)∈S0
Λ,
⋃

(Λ,B)∈S0
B).

Then B∞ are free generators of

HΛ∞ = H ∩
∐
Λ∞

R = H ∩
( ⋃

(Λ,B)∈S0

∐
Λ

R
)

=
⋃

(Λ,B)∈S0

H ∩
∐
Λ

R =
⋃

(Λ,B)∈S0

HΛ

(i.e.
∐
B∞

R → HΛ∞ , (λb) 7→
∑
b λb b is an isomorphism). Hence (Λ∞, B∞) is

an upper bound for S0. Thus by Zorns Lemma there exists a maximal element
(Λ0, B0) of S. Remains to show that Λ0 = J . Otherwise choose j ∈ J \ Λ0 and
consider Λ1 := {j} ∪Λ0. Then

∐
Λ1
R = R⊕

∐
Λ0
R and since HΛ0

= HΛ1
∩
∐

Λ0
R

the inclusion HΛ1
↪→
∐

Λ1
R induces an injection HΛ1

/HΛ0
�
∐

Λ1
R/
∐

Λ0
R ∼= R.

Since R is a PID there exists an r ∈ R with HΛ1
/HΛ0

∼= Rr ∼= R and hence
HΛ0 ⊕ R ∼= HΛ1 since R is a free R-module. Let b1 be the image of (0, 1) in HΛ1 .
Then B1 := B0t{b1} are free generators of HΛ1 , a contradiction to maximality.

9.21 Double complex lemma. Let (Ci,j)i,j≥0 be a double complex, i.e. we have
given boundary operators ∂v : Ci,j → Ci+1,j and ∂h : Ci,j → Ci,j+1 which satisfy
∂2
v = 0, ∂2

h = 0, and ∂h ◦ ∂v + ∂v ◦ ∂h = 0. Let C−1,j := Ker(∂v : C0,j → C1,j)
and Ci,−1 := Ker(∂h : Ci,0 → Ci,1) and Cn := ab

∐
i+j=n C

i,j with ∂ : Cn →
Cn+1 be given by ∂h + ∂v. Then C−1,∗, C∗,−1 and C∗ are cochain complexes and
Hk(C∗,−1) ∼= Hk(C∗) ∼= Hk(C−1,∗).

Note that instead of anti-commutativity ∂h ◦ ∂v + ∂v ◦ ∂h = 0 we could assume
commutativity ∂h ◦ ∂v = ∂v ◦ ∂h if we replace ∂i,jh : Ci,j → Ci,j+1 by (−1)i∂i,jh .

Proof. By symmetry it suffices to show Hk(C∗) ∼= Hk(C∗,−1): Define a natural
homomorphism ϕ : Hk(C∗,−1)→ Hk(C∗) by [ak,0] 7→ [ak,0⊕0⊕· · ·⊕0]. Conversely
let x = [a0 ⊕ · · · ⊕ ak] ∈ Hk(C∗) with ai ∈ Ck−i,i. We claim that if ai+1 = · · · =
ak = 0 for some i > 0 then we may also assume that ai = 0: Then ∂h(ai) =
prk−i,i+1(∂(x)) = prk−i,i+1(0) = 0 and by exactness of the (k − i)-th row, there

exists an e ∈ Ck−i,i−1 with ∂h(e) = ai. Then

[a0 ⊕ · · · ⊕ ai ⊕ 0⊕ · · · ⊕ 0]− [a0 ⊕ · · · ⊕ (ai−1 − ∂v(e))⊕ 0⊕ · · · ⊕ 0]

= [· · · ⊕ 0⊕ ∂v(e)⊕ ai ⊕ 0⊕ . . . ]
= [· · · ⊕ 0⊕ ∂v(e)⊕ ∂h(e)⊕ 0⊕ . . . ]
= [∂

(
· · · ⊕ 0⊕ e⊕ 0⊕ . . .

)
],

i.e. [a0 ⊕ · · · ⊕ ai ⊕ 0⊕ · · · ⊕ 0] = [a0 ⊕ · · · ⊕ (ai−1 − ∂v(e))⊕ 0⊕ · · · ⊕ 0]. It is easy
to check that this gives the required isomorphism.

9.22 Lemma. The functor HomR(M, ) : R-Mod→ R-Mod is left exact.

andreas.kriegl@univie.ac.at c© 7. Februar 2018 149



9.23 9. Cohomology

Proof. Let 0→ N ′−i→ N −p→ N ′′ → 0 be a short exact sequence and consider the
sequence

0→ HomR(M,N ′)−i∗→ HomR(M,N)−p∗→ HomR(M,N ′′).

It is exact at HomR(M,N ′), since i∗ is obviously injective.

It is exact at HomR(M,N), since ϕ ∈ HomR(M,N) is in ker(p∗)⇔ 0 = p∗(ϕ) = p◦ϕ
⇔ im(ϕ) ⊆ ker(p) = im(i) ⇔ ϕ factors to a homomorphism ϕ̃ : M → N ′ over
i : M ′ →M ⇔ ϕ ∈ im(i∗).

In general, p∗ will not be onto, since this would mean, that every homomorphism
ϕ : M → N ′′ can be lifted along p : N → N ′′ to a morphism ϕ̃ : M → N .

. 9.23 Theorem. There are functors ExtnR : R-Modop × R-Mod → AGru for n ∈ Z
(called the right-derived functors of Hom) and natural transformations δ such
that:

1. ExtnR(M,N) = 0 for n < 0.

2. Ext0
R
∼= Hom.

3. ExtnR(M,N) = 0 for all n > 0 if M is projective or N is injective.

4. For every short exact sequence 0 → M ′ → M → M ′′ → 0 there is a long
exact sequence

· · · → ExtnR(M ′′, N)→ ExtnR(M,N)→ ExtnR(M ′, N)−δ→ Extn+1
R (M ′′, N)→ · · · .

For every short exact sequence 0 → N ′ → N → N ′′ → 0 there is a long
exact sequence

· · · → ExtnR(M,N ′)→ ExtnR(M,N)→ ExtnR(M,N ′′)−δ→ Extn+1
R (M,N ′)→ · · · .

For fixed N the functor Ext∗R( , N) together with the natural transformation δ is up

to isomorphisms uniquely determined by 1 - 4 . And similarly for each fixed M .

O

Proof.
( 1 ) By 9.16 there is an injective resolution I of N :

0→ N → I0 → I1 → I2 → · · ·
Applying HomR(M, ) to I (only!) gives a cochain complex

0→ HomR(M, I0)→ HomR(M, I1)→ HomR(M, I2)→ · · ·

and we define ExtkR(M,N) := Hk(HomR(M, I∗)) := H−k(HomR(I−∗)).

By 9.19 and 8.23 the groups ExtpR(M,N) are independent on the injective res-
olution of N .

( 2 ) By definition Ext0
R(M,N) is just the kernel of Hom(M, I0) → Hom(M, I1)

and by left exactness in 9.22 the sequence

0→ HomR(M,N)→ HomR(M, I0)→ HomR(M, I1)→ · · ·
is exact, hence this kernel is isomorphic to HomR(M,N).

( 3 ) IfN is injective then we may take I0 := N and Ik := 0 for k > 0 as injective res-

olution. Hence HomR(M, Ik) = 0 and thus also ExtkR(M,N) = Hk(HomR(M, I)) =
0 for k > 0.

4 ) Let 0 ← M ′′ ← M ← M ′ ← 0 be short exact and I be an injective resolution
of N . Since Ik is injective we have short exact sequences

0→ HomR(M ′′, Ik)→ HomR(M, Ik)→ HomR(M ′, Ik)→ 0
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and this gives a short exact sequence of cochain complexes since HomR is a bifunc-
tor:

0→ HomR(M ′′, I)→ HomR(M, I)→ HomR(M ′, I)→ 0

By 7.30 we get a long exact sequence in (co)homology:

· · · → ExtkR(M ′′, N)→ ExtkR(M,N)→ ExtkR(M ′, N)−δ→ Extk+1
R (M ′′, N)→ · · · .

(Projective construction) Alternatively we could use a projective resolution P of

M instead of an injective resolution I of N in order to define ExtkR(M,N) as
Hk(HomR(P∗, N)). That this gives naturally isomorphic functors to those defined
before is seen as follows: Consider the double-complex (HomR(Pi, Ij))i,j . Since
HomR( , Ij) and HomR(Pi, ) are left-exact, the complex C∗,−1 is HomR(M, I∗)

and C−1,∗ is HomR(P∗, N) (cf. 2 ). Thus by 9.21 the two definitions are isomor-
phic.

In particular this shows that 3 is valued for projective M and the second long

exact sequence in 4 holds as well.

(Uniqueness) We proceed by induction on k. For k ≤ 0 we have uniqueness by ( 1 )

and ( 2 ). So we assume that we have two sequences of functors Ext∗R, which are
naturally isomorphic till order k, and we have natural connecting morphisms. Then
a diagram chase starting at a short exact sequence 0→M ′ →M →M ′′ → 0 with
free M shows that they are also isomorphic in order k + 1 on M ′′:

. . . // 0 // ExtkR(M ′, N)
∼= //

∼=
��

Extk+1
R (M ′′, N) //

∼=
��

0 // . . .

. . . // 0 // Ext
k

R(M ′, N)
∼= // Ext

k+1

R (M ′′, N) // 0 // . . .

. 9.24 Lemma. ExtkR(M,N) = 0 for k ≥ 2, arbitrary M and N , and any PID R
(in particular, for R := Z).

O Proof. By 9.20 we may use a projective resolution P with Pk = 0 for all k ≥ 2.

Hence Hom(Pk, N) = 0 and thus also Extk(M,N).

. 9.25 Lemma. A module N is injective ⇔ ExtkR(M,N) = 0 for all M and k = 1
(or all k ≥ 1).

O Proof. N injective⇒ 0→ N → N → 0 is an injective resolution⇒ Hom(M, Ik) =

0 for k ≥ 1 ⇒ Extk(M,N) = 0 for k ≥ 1 ⇒ Ext1(M,N) = 0 ⇒ Hom(M,N) →
Hom(M ′, N)→ 0 is exact for short exact sequences 0→M ′ →M →M ′′ → 0, i.e.
N is injective.

. 9.26 Lemma. A module M is projective ⇔ ExtkR(M,N) = 0 for all N and k = 1
(or all k ≥ 1).

O Proof.M projective⇒ 0→M →M → 0 is a projective resolution⇒Hom(Pk, N) =

0 for k ≥ 1 ⇒ Extk(M,N) = 0 for k ≥ 1 ⇒ Ext1(M,N) = 0 ⇒ Hom(M,N) →
Hom(M,N ′′)→ 0 is exact for short exact sequences 0→M ′ →M →M ′′ → 0, i.e.
M is projective.
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. 9.27 Lemma. A ring R is semisimple (i.e. every short exact sequence of R-moduls

splits, equivalently, is semisimple as module over itself) ⇔ ExtkR(M,N) = 0 for all
R-modules M and N and k = 1 (or even all k ≥ 1).

O Proof. R semisimple iff every short exact sequence splits, i.e. every R-module N

is injective. By 9.26 this is equivalent to ExtkR(M,N) = 0 for k = 1 (or even all
k ≥ 1).

9.28 Remark. Is every abelian group A with Ext1
Z(A,Z) = 0 free abelian? This

is undecideable in ZFC by [16, 17, 18]

. 9.29 Examples.

• Ext1
Z(Zq,Z) ∼= Zq. The exact sequence 0→ qZ→ Z→ Zq → 0 is a projective

resolution, hence

HomZ(Zq, G) // HomZ(Z, G) // HomZ(qZ, G) // Ext1
Z(Zq, G) // Ext1

Z(Z, G)

G
q· // G 0

is exact and thus Ext1
Z(Zq, G) ∼= G/qG.

• For R := Zp2 is ExtkR(Zp,Zp) = Zp for all k ≥ 0:
A projective resolution P is · · · → R→ R→ R� Zp → 0, where ∂ : R→ R
is given by 1 + p2Z 7→ p + p2Z, i.e. [k] 7→ [p k]. Then HomR(Pk, N) =
HomR(R,N) = N and ∂∗ = p : N → N , i.e. ∂∗ = 0 for N := Zp. Thus

ExtkR(Zp,Zp) = HomR(R,Zp) = Zp.

9.30 Universal coefficient theorem for cohomology.
Let R be a PID, C a free chain complex over R, and M an R-module. Then there
are splitting natural short exact sequences:

0→ Ext1
R(Hq−1(C),M)→ Hq(C,M)→ Hom(Hq(C),M)→ 0

O Proof. We proceed as in 9.2 :
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0 // Zq ��
j

// Cq
∂

// //
p

tt
Bq−1

9.20
tt // 0

0 Hom(Zq,M)oo

p∗

++
Hom(Cq,M)

j∗
oo Hom(Bq−1,M)

∂∗
oo 0oo

· · · Hq(B,M)
j∗oo Hq(Z,M)

δ∗oo Hq(C,M)
(j∗)∗oo Hq−1(B,M)

(∂∗)∗oo Hq−1(Z,M)
δ∗oo · · ·oo

Hom(Bq,M) Hom(Zq,M)
i∗oo Hom(Bq−1,M)

����

Hom(Zq−1,M)
i∗oo

0 Ker i∗oo
� ?

OO

Hq(C,M)oooo Cok i∗oooo 0oo

Hom(Hq,M) Ext1(Hq−1,M)

0 Ext1(Hq−1,M)oo Hom(Bq,M)oo Hom(Zq,M)
i∗oo

i∗vvvv

Hom(Hq,M)oooo 0oo

Bild(i∗)
4 T

gg

0 // Bq
� �

i
// Zq

π // // Hq
// 0

A splitting for the sequence is given by Hom(Hq,M) 3 ϕ 7→ [ϕ◦π ◦p] ∈ Hq(C,M).

. 9.31 Proposition. Ext1 via extensions. Ext1(M,N) ∼= Ext(M,N), the set of
isomorphy classes of extensions of M with N .

O Proof. Let ξ : 0 → A → B → C → 0 be short exact. Then 0 → Hom(C,A) →
Hom(B,A) → Hom(A,A) → Ext1(C,A) → · · · is exact by 9.23.4 and we may

consider the image (denoted Ψ(ξ)) of idA ∈ Hom(A,A) in Ext1(C,A).

(Ψ is well-defined) Two extensions A → B → C and A → B′ → C are called

equivalent, if a homomorphism (hence isomorphism by 7.22 ) ϕ : B → B′ exists,
such that

0 Coo Boo

ϕ

��

Aoo 0oo

0 Coo B′oo Aoo 0oo

The long exact sequence for Ext∗ is natural

· · · // Hom(C,A) // Hom(B,A) // Hom(A,A) // Ext1(C,A) // · · ·

· · · // Hom(C,A) // Hom(B′, A) //

ϕ∗

OO

Hom(A,A) // Ext1(C,A) // · · ·

hence the images of idA in Ext1(C,A) are the same.
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(Ψ is onto) Let 0→ R→ P → C → 0 be a short exact sequence with projective P .
Then 0 → Hom(C,A) → Hom(P,A) → Hom(R,A) → Ext1(C,A) → Ext1(P,A) =
0 is exact. So for ψ ∈ Ext1(C,A) there exists an inverse image ϕ : R → A. Let
B =: ϕ∗(P ) be the push-out of R→ P and ϕ. We get obvious morphisms to make
the following diagram commutative with exact rows:

0 Coo Boo Aoo 0oo

0 Coo Poo

OO

Roo

ϕ

OO

0oo

That it is exact at A follows by this property of the push-out (see 9.7 ) and exact-
ness at ϕ∗(P ) can be seen from its construction:

0 Coo ϕ∗(P )
g′oooo Aoo

f ′oo
xx

inj2xx

0oo

P

g
zzzz

P ⊕A

π

OOOO

pr1

oooo

0 Coo P
g

oooo
OO inj1

OO

Roo
f

oo

ϕ

OO

0oo

ker g′ = {p⊕ a+ kerπ : g(p) = 0} = {p⊕ a+ kerπ : p ∈ f(R)}
= {f(r)⊕ a : r ∈ R, a ∈ A} = {0⊕ (a+ ϕ(r)) + kerπ : r ∈ R, a ∈ A} = f ′(A)

From this we get:

0 // Hom(C,A) // Hom(B,A) //

��

Hom(A,A) //

ϕ∗

��

Ext1(C,A) // · · ·

0 // Hom(C,A) // Hom(P,A) // Hom(R,A) // Ext1(C,A) // · · ·

And hence Ψ(A→ B → C) is by definition the image of idA in Ext1(C,A) and this
is also the image ψ of ϕ∗(idA) = ϕ.

(Ψ is injective) Let the image of two extensions A → B → C and A → B′ → C

be the same and let P → C → 0 be a projective resolution of C. By 9.18 we get
morphisms

0 Coo B
goooo Aoo

foo 0oo

0 Coo P0
oooo

ϕ′
����

ϕ

OOOO

P1
δ

oo

ψ

OO

ψ′

��

· · ·oo

0 Coo B′oooo Aoooo 0oo

and by taking P0 sufficiently large (i.e. a free P0 wuch that P0 → C⊕B⊕B′ onto),
we may assume that ϕ and ϕ′ are onto. By replacing P1 with R1 := ker δ, we may
assume that C ← P0 ← R1 is short exact.
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Now consider

Hom(A,A) //

(ψ′)∗

��
(ψ)∗

��

Ext1(C,A)

Hom(P0, A)
δ∗ // Hom(P1, A) // // Ext1(C,A) // Ext1(P0, A) = 0

By assumption the images of idA in Ext1(C,A) are the same, hence also the images
of (ψ)∗(idA) = ψ and (ψ′)∗(idA) = ψ′ in Ext1(C,A), i.e. ψ′−ψ ∈ ker(Hom(P1, A)→
Ext1(C,A)) = im(δ∗). Thus there exists a χ ∈ Hom(P0, A) with ψ′ − ψ = δ∗(χ) =
χ ◦ δ. If we replace ϕ by ϕ̄ := ϕ + f ◦ χ ∈ Hom(P0, B) and ψ by ψ̄ = ψ + χ ◦ δ =
ψ′ ∈ Hom(P1, A) we get the commutative diagram:

0 Coo B
goooo Aoo

foo 0oo

0 Coo P0
oooo

ϕ̄

OO
χ

>>

P1
δoo

ψ′ ψ̄=

OO
We have kerϕ′ = ker ϕ̄:
In fact p0 ∈ kerϕ′ ⇒ g(ϕ′(p0)) = 0, i.e.
p0 = δ(p1) for some p1 ∈ P1. So 0 =
ϕ′(δ(p1)) = (f ◦ ψ′)(p1) ⇔ 0 = ψ′(p1) =
ψ̄(p1) ⇔ 0 = (f ′ ◦ ψ̄)(p1) = ϕ̄(δ(p1)).

Furthermore, ϕ′, ϕ and thus ϕ̄ are onto: In fact, ψ (and equally ψ′) is onto, since
for a ∈ A we get p0 ∈ P0 with ϕ(p0) = f(a) and hence 0 = g(f(a)) = g(ϕ(p0)), so
p0 ∈ im δ, i.e. ∃ p1 ∈ P1: δ(p1) = p0, hence f(a) = ϕ(p0) = ϕ(δ(p1)) = f(ψ(p1)),
and so a = ψ(p1). Now let ϕ(p0) = b and choose p1 with ψ̄(p1) = ψ′(p1) = −χ(p0).
Then ϕ̄(p0 + δp1) = ϕ̄(p0) + ϕ̄(δ(p1)) = ϕ(p0) + f(χ(p0)) + f(ψ̄(p1)) = b. So we get
a morphism between B ∼= P0/ ker ϕ̄ and B′ ∼= P0/ kerϕ′ which induces on A and
on C the identity. Thus the two extensions are equivalent.

9.32 Definition. Ext as AGru-valued functor. The functorial properties of Ext
are:

0 // A // B // C // 0

0 // A // γ∗(B)

OO

// C ′

γ

OO

// 0

where γ∗(B) denotes the pull-back and Ext(A, γ) : Ext(C,A) → Ext(C ′, A) maps
A→ B → C to A→ γ∗(B)→ C. Similarly,

0 // A //

α

��

B //

��

C // 0

0 // A′ // α∗(B) // C // 0

where α∗(B) denotes the push-out and Ext(α,C) : Ext(C,A) → Ext(C,A′) maps
A→ B → C to A→ α∗(B)→ C.
In fact, let ψ ∈ Ext1(C,A) correspond to ξ : A → B = ϕ∗(P ) → C, where
0→ R→ P → C → 0 is short exact with projective P and ϕ an inverse image of ψ
with respect to Hom(R,A)� Ext1(C,A). By naturality Ext1(C,α)(ψ) is the image
of α∗(ϕ) = α ◦ϕ with respect to Hom(R,A′)� Ext1(C,A′) and the corresponding
short exact sequence Ext(C,α)(ξ) is the pushout (α◦ϕ)∗(P ) = α∗(ϕ∗(P )) = α∗(B).
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That Ext : R-Modop ×R-Mod→ Set is a bifunctor follows also from

A

α

##

// B

$$

// C

A′ // α∗B // C

A

α

��

// γ∗B

CC

��

// C ′

γ

FF

A′ // α∗γ∗B

::

∼=
// γ∗α∗B

DD

// C ′

γ

GG

where the morphism α∗γ
∗B → γ∗α∗B is obtained by the universal properties and

it is an isomorphism by the 5’Lemma 7.22 .

The group structure on Ext(C,A) induced by the bijection of 9.31 is given by the
Baer-sum of extensions, which can be defined as follows:

0 // A
f1 // B1

g1 // C // 0

0 // A
f2 // B2

g2 // C // 0

0 // A⊕A
f1⊕f2 // B1 ⊕B2

g1⊕g2 // C ⊕ C // 0

0 // A⊕A //

Σ

��

∆∗(B1 ⊕B2)) //

OO

��

C //

∆

OO

0

0 // A // Σ∗(∆∗(B1 ⊕B2) // C // 0

or, equivalently, by

0 // A⊕A //

Σ

��

B1 ⊕B2
//

��

C ⊕ C // 0

0 // A // Σ∗(B1 ⊕B2) // C ⊕ C // 0

0 // A // ∆∗(Σ∗(B1 ⊕B2)) //

OO

C

∆

OO

// 0

For this note, that the addition on Hom(M, I) can be described by

+ : Hom(M, I)×Hom(M, I)→ Hom(M ×M, I × I)−Hom(∆,Σ)→ Hom(M, I),

where ∆ : M → M ×M is given by x 7→ (x, x) and Σ : I × I → I by (x1, x2) 7→
x1 + x2. Thus addition on Ext1(M,N) is also the composite

Ext1(M,N)× Ext1(M,N)→ Ext1(M ×M,N ×N)−Ext1(∆,Σ)→ Ext1(M,N).

On Ext this sends two extensions A → B1 → C and A → B2 → C first to
A⊕A→ B1 ⊕B2 → C ⊕ C and then to ∆∗(Σ∗(B1 ⊕B2)).
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The Baer-sum can also be constructed by taking the pull-back PB of g1 and g2 and
then the coequalizer of (f1, 0), (0, f2) : A→ PB:

B1

g1

""
A

f1
..

f2 00

//
//
PB

;;

##

// // CoEqu // C

B2

g2

<<

This follows since the following two types of cones correspond to each other

B1 ⊕B2
g1⊕g2 // C ⊕ C B1

g1 // C

X

(h1,h2)

OO

k
// C

∆

OO

X

h1

OO

h2

//
k

77

B2

g2

OO

and also the following two types of cocones

A⊕A

Σ

��

(f1,f2) // B

h2

��

A
f2

//
f1 //

h1 ..

B

h2

��
A

h1

// X X

9.33 Definition. Group-Cohomology. LetG be a (not necessarily abelian) group
and M a G-module, i.e. and abelian group together with an action (i.e. group-
homomorphism) G → HomZ(M,M). Then we are interested in the submodule
MG := {x ∈ M : g · x = x ∀g ∈ G} of joint fixed points (i.e. the G-invariant
elements). We can extend the group-action of G on M to a ring-action of the group
ring Z[G] of G on M , i.e. the free abelian group with G as set of generators and
with convolution as ring-multiplication

(x ? y)(g) :=
∑
hk=g

x(h)y(k) =
∑
h∈G

x(h) y(h−1x),

by

x ·m :=
∑
g∈G

x(g) g ·m.

Thus G-group-modules are in 1-1 correspondence with Z[G]-ring-modules.

We haveMG = HomZ[G](Z,M), where we consider Z as trivial Z[G]-module: In fact,

ϕ ∈ HomZ[G](Z,M)⇔ ∀g ∈ G : ϕ(k) = ϕ(g ·k) = g ·ϕ(k), i.e. k ϕ(1) = ϕ(k) ∈MG.

Thus M 7→ MG is a left-exact functor G-Mod → AGru and we define the coho-
mology of G with coefficients in M as

Hk(G,M) := ExtkZ[G](Z,M).

In particular, we have H0(G,M) = MG and H1(G,M) = ExtZ[G](Z,M), the group
of isomorphy classes of module extensions of Z with M .

In general we can use the projective resolution

· · · → Z[Gn+1]−∂→ Z[Gn]→ · · · → Z[G]−Σ→ Z→ 0,

where the action of G on the generators of Z[Gn+1] is given by

g · (g0, . . . , gn) := (gg0, . . . , ggn)
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and ∂ is given by

∂(g0, . . . , gn) :=

n∑
i=0

(−1)i(g0, . . . , p
−−qgi , . . . , gn).

Thus Ext∗Z[G](Z,M) is defined as the cohomology of

HomZ[G](Z[G∗],M) =
{
ϕ ∈MG∗ : ϕ(gg0, . . . , ggn) = g · ϕ(g0, . . . , gn)

}
with respect to the coboundary operator

∂∗ : HomZ[G](Z[Gn],M)→ HomZ[G](Z[Gn+1],M),

∂∗ϕ(g0, . . . , gn) =

n∑
i=0

(−1)iϕ(g0, . . . ,
p−−qgi , . . . , gn).

By the defining relation for ϕ ∈ HomZ[G](Z[G∗],M) it is enough to know

ϕ̄(g1, . . . , gn) := ϕ(1, g1, g1g2, . . . , g1 . . . gn),

since

ϕ(g0, g1, . . . , gn) = g0 · ϕ(1, g−1
0 g1, g

−1
0 g2 = g−1

0 g1g
−1
1 g2, . . . , g

−1
0 gn)

= g0 · ϕ̄(g−1
0 g1, . . . , g

−1
n−1gn).

The coboundary operator than takes the form

∂∗ϕ̄(g1, . . . , gn) = ∂∗ϕ(1, g1, . . . , g1 · · · gn)

= ϕ(g1, g1g2, . . . , g1 · · · gn) +

n∑
i=1

(−1)iϕ(1, g1, . . . ,
p−−−−−−−−−−−−−−−−−−−−−−−−qg1 · · · gi , . . . , g1 · · · gn)

= g1 · ϕ(1, g2, . . . , g2 · · · gn) +

n∑
i=1

(−1)iϕ(1, g1, . . . ,
p−−−−−−−−−−−−−−−−−−−−−−−−qg1 · · · gi , . . . , g1 · · · gn)

= g1 · ϕ̄(g2, . . . , gn) +

n−1∑
i=1

(−1)iϕ̄(g1, . . . , gigi+1, . . . , gn) + (−1)nϕ̄(g1, . . . , gn−1).

Let us now determine H2(G,M):

· · · // HomG(Z[G2],M)
∂∗ // HomG(Z[G3],M)

∂∗ // HomG(Z[G4],M) // · · ·

MG MG2

MG3

Thus

H2(G,M) ∼= Z2(G,M)/B2(G,M), where

Z2(G,M) = {ϕ̄ : G2 →M : g1 · ϕ̄(g2, g3)− ϕ̄(g1g2, g3) + ϕ̄(g1, g2g3)− ϕ̄(g1, g2)}
B2(G,M) = {(g1, g2) 7→ g1 · ψ̄(g2)− ψ̄(g1g2) + ψ̄(g1) : ψ̄ : G→M}

9.34 Group extensions

We consider (equivalence classes of) short exact sequenes N −i→ H −p→ G of
(not necessarily abelian) groups. By choosing an inverse image s(g) ∈ p−1(g) for
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every g ∈ G we get a mapping s : H ← G right inverse to p. Using this we have
H ∼= N ×G via

H ← N ×G, i(n) · s(g)← (n, g)

H → N ×G, h 7→ (h · s(p(h))−1, p(h)) und

The group multiplication on N ×G induced from H is thus given by

(n1, g1) · (n2, g2) = (i(n1) · s(g1) · i(n2) · s(g2) · s(g1 · g2)−1, g1 · g2).

If we put

c : G×G→ N, i(c(g, g′))) := s(g) · s(g′) · s(g · g′)−1 und

ρ : G→ Aut(N), i(ρ(g)(n)) := s(g) · i(n) · s(g)−1,

then the multiplication is given by

(n, g) · (n′, g′) = (n · ρ(g)(n′) · c(g, g′), g · g′).

Let s′ : H ← G be another section of p : H → G. Then there exists a uniquely
determined mapping τ : G → N with s′(g) = i(τ(g) · s(g). The corresponding
mappings c′ : G×G→ N and ρ′ : G→ Aut(N) is then given by

ρ′(g)(n) = τ(g) · ρ(g)(n) · τ(g)−1

c′(g, g′) = τ(g) · ρ(g)(τ(g′)) · c(g, g′) · τ(g · g′)−1.

Let N → H ′ → G be another extension, which is isomorphic via ϕ : H → H ′. Then
ϕ can be described as

ϕ : (n, g) 7→ (n · τ(g), g), N ×G ∼= H → H ′ ∼= N ×G,

where we use the section s′ := ϕ ◦ s for the second extension.

9.35 abelian extensions

Let us now restrict to the case, where N is abelian and we write it additively.

Then we get an action ρ of G on N defined by

ρ(p(h))(n) := i−1(h · i(n) · h−1).

With other words, the previously defined ρ does not
depend on the section s:

N
� � i // H

p // //

conj

��

G

ρ{{
Aut(N)

In fact, p(h) = p(h′) implies h−1 ·h′ = i(n′) for some n′ ∈ N , hence h′ ·i(n)·(h′)−1 =
h · i(n′) · i(n) · i(n′)−1 ·h−1 = h · i(n′+n−n′) ·h−1. Thus the definition of ρ gives a
well-defined representation (turning N into a G-module), since conj : H → Aut(N)
is one. Let now s : H ← G be any section. Then the group multiplication on N ×G
is given by

(n1, g1) · (n2, g2) = (n1 + ρ(g1)(n2) + c(g1, g2), g1 · g2),

where c : G×G→ N is defined by

c(g1, g2) := i−1
(
s(g1) · s(g2) · s(g1 · g2)−1

)
.
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The two sides of the associativity law are:

((n1, g1) · (n2, g2)) · (n3, g3) =

= (n1 + ρ(g1)(n2) + c(g1, g2), g1 · g2) · (n3, g3)

= (n1 + ρ(g1)(n2) + c(g1, g2) + ρ(g1 · g2)(n3) + c(g1 · g2, g3), g1 · g2 · g3)

(n1, g1) · ((n2, g2) · (n3, g3)) =

= (n1, g1) · (n2 + ρ(g2)(n3) + c(g2, g3), g2 · g3)

= (n1 + ρ(g1)
(
n2 + ρ(g2)(n3) + c(g2, g3)

)
+ c(g1, g2 · g3), g1 · g2 · g3)

Thus c (together with ρ) gives an associative structure if and only if (using com-
mutativity of N) the following cocycle-equation is satisfied:

c(g1, g2) + c(g1 · g2, g3) = ρ(g1)
(
c(g2, g3)

)
+ c(g1, g2 · g3),

i.e.

∂ρc(g1, g2, g3) := ρ(g1)
(
c(g2, g3)

)
− c(g1 · g2, g3) + c(g1, g2 · g3)− c(g1, g2) = 0.

Since we may assume s(1) = 1 (by replacing s by s′(g) := s(g) · s(1)−1), we get
i(c(1, 1)) = s(1) = 1 = i(0) and further more:

0 = ∂ρc(1, 1, g) = ρ(1)(c(1, g))− c(1, g) + c(1, g)− c(1, 1) = c(1, g)

0 = ∂ρc(g, 1, 1) = ρ(g)(c(1, 1))− c(g, 1) + c(g, 1)− c(g, 1) = −c(g, 1)

0 = ∂ρc(g, g
−1, g) = ρ(g)(c(g−1, g))− c(1, g) + c(g, 1)− c(g, g−1)m

= ρ(g)(c(g−1, g))− c(g, g−1)

Thus a mapping c : G×G→ N , which satisfies this cocycle equality and c(1, 1) =
00, defines a group structure on H := N ×G by

(n, g) · (n′, g′) := (n+ ρ(g)(n′) + c(g, g′), g · g′)
(n, g)−1 = (−c(g−1, g) + ρ(g−1)(n−1), g−1)

such that 1 → N −i→ H −p→ G → 1 is an abelian extension, where i : N → H is
given by n 7→ (n, 1) and p by (n, h) 7→ h. Furthermore the section s : G → N ×G
is given by h 7→ (1, h) and satisfies

s(g) · s(g′) · s(g · g′)−1 = (1, g) · (1, g′) · (1, g · g′)−1 = (c(g, g′), 1).

9.36 Isomorphy classes of abelian extensions

The question arises, which cocycles c give isomorphic extensions (with the same
action ρ). Let first s′ be another section (with s′(1) = 1). Then s′(g) = i(τ(g)) ·s(g)
for a mapping τ : G → N , with τ(1) = 1. The following direct calculation for the
associated cocycles c and c′ yields

i
(
c′(g, g′)

)
= s′(g) · s′(g′) · s′(g · g′)−1

= i(τ(g)) · s(g) · i(τ(g′))) · s(g′) · s(g · g′)−1 · i(τ(g · g′))−1

= i(τ(g)) · s(g) · i(τ(g′)) · s(g)−1 · s(g) · s(g′) · s(g · g′)−1 · i(τ(g · g′))−1

= i(τ(g)) · i(ρ(g)(τ(g′))) · i(c(g, g′)) · i(τ(g · g′))−1

= i
(
τ(g) + ρ(g)(τ(g′)) + c(g, g′)− τ(g · g′)

)
= i
(
∂ρτ(g, g′) + c(g, g′)

)
,

where ∂ρτ(g, g′) := ρ(g)
(
τ(g′)

)
− τ(g · g′) + τ(g).
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Let now ϕ : H ′ → H be an ismomorphism of groups, such that the following
diagram commutes:

1 // N
i // H

p // G // 1

1 // N
i′ // H ′

p′ //

ϕ ∼=

OO

G // 1

where H = N×G with the group structure induced by the cocycle c and H ′ = N×G
with that induced by the cocycle c′. We get two sections s and ϕ◦s′ for p : H → G,
and thus a τ : H → N with

ϕ(s′(g)) = i(τ(g)) · s(g).

For the cocycles a short calculation yields:

c′(g, g′) = ∂ρτ(g, g′) + c(g, g′).

Conversely, any τ : H → N induces an isomorphism ϕ : H ′ → H of groups by
ϕ(n, g) := (n+ τ(g), g), since

ϕ(n, g) · ϕ(n, g′) = (n+ τ(g) + ρ(g)(n′ + τ(g′)) + c(g, g′), g · g′)
= (n+ τ(g) + ρ(g)(n′) + ρ(g)(τ(g′)) + c′(g, g′)− ∂ρτ(g, g′), g · g′)
=
(
(n+ ρ(g)(n′)) + c′(g, g′) + ρ(g)(τ(g′))− ∂ρτ(g, g′) + τ(g), g · g′

)
= ϕ(n+ ρ(g)(n′) + c′(g, g′), g · g′) = ϕ((n, g) · (n′, g′))

Thus we obtained:

9.37 Theorem. Isomorphy classes of abelian extensions with respect to a rep-
resentation ρ : G → Aut(N) are in bijective correspondance to the second group
cohomology

H2(G,N) ∼= {c ∈ NG×G : ∂ρc = 0}/{∂ρτ : τ ∈ NG}.

Note, that the conditions c(1, 1) = 1 and τ(1) = 1 can be dropped (see [10, A.6]).

Applications to cohomology of spaces

. 9.39 Remark. Let C ′ → C → C ′′ be a splitting short exact sequence of chain
complexes. Then Hom(C ′′, G) → Hom(C,G) → Hom(C ′, G) is also a splitting
short exact sequence of cochain complexes. Hence the corresponding homologies
(i.e. cohomologies of the original chain complexes) form a long exact sequence

· · · → Hq(C ′′, G)→ Hq(C,G)→ Hq(C ′, G)→ Hq+1(C ′′, G)→ . . . .

In particular, we get the following corollaries:

9.40 Corollary. [20, 13.5.7] For a pair (X,A) of spaces

· · · −δ
∗
→ Hq(X,A;G)−j

∗
→ Hq(A;G)−i

∗
→ Hq(X;G)−δ

∗
→ Hq+1(X,A;G)−j

∗
→ · · ·

is an exact sequence.

9.41 Corollary. [20, 13.5.8] For a triple (X,A,B) of spaces

· · ·−δ
∗
→ Hq(X,A;G)−j

∗
→ Hq(X,B;G)−i

∗
→ Hq(A,B;G)−δ

∗
→ Hq+1(X,A;G)−j

∗
→ · · ·

is an exact sequence.
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9.42 Proposition. [20, 13.5.9]
Let f, g : C → C ′ be chain-homotopic. Then f∗ = g∗ : Hq(C ′;G)→ Hq(C;G).
In particular, if f is a chain-homotopy equivalence, then f∗ is an isomorphism.

Proof. If we dualize, the dual of the chain-homotopy gives a chain-homotopy be-
tween f∗ and g∗ and hence induce the same mapping in the homology of the dual
complexes.

9.43 Corollary. [20, 13.5.10]
If f ∼ g : (X,A)→ (Y,B), then f∗ = g∗ : Hq(Y,B;G)→ Hq(X,A;G).
In particular, if f is a homotopy equivalence, then f∗ is an isomorphism.

O

A carefull analysis of 8.32 shows the following

9.44 Proposition. [19, 4.4.14] If X is union of the interior of two subsets X1 and
X2, then the inclusion is a chain equivalence S(X1) + S(X2) ∼ S(X).

Thus Hq(X) ∼= Hq(S(X1) + S(X2)) in such a situation.

9.45 3× 3-Lemma. If the top two rows and all columns in the following diagram
a short exact, then so is the bottom row.

A1
// f //

��
∂

��

B1
g // //

��
∂

��

C1
��
∂

��
A2
// f //

∂
����

B2
g // //

∂
����

C2

∂
����

A3
f // B3

g // C3

Proof. (Exact at A3) Let a3 ∈ A3 with fa3 = 0. Choose a2 ∈ A2 with ∂a2 = a3.
Then ∂fa2 = f∂a2 = fa3 = 0 hence there exists b1 ∈ B1 with ∂b1 = fa2. Since
∂gb1 = g∂b1 = gfa2 = 0 also gb1 = 0, hence there exists a1 ∈ A1 with fa1 = b1.
Then f∂a1 = ∂fa1 = ∂b1 = fa2, hence a2 = ∂a1 and thus a3 = ∂a2 = ∂2a1 = 0.

(Exact at B3) Let b3 ∈ B3 with gb3 = 0. Choose b2 ∈ B2 with ∂2b2 = b3. Since
∂gb2 = g∂b2 = gb3 = 0 there exists c1 ∈ C1 with ∂c1 = gb2 and there exists
b1 ∈ B1 with gb1 = c1. Then g∂b1 = ∂gb1 = ∂c1 = gb2. Thus we find a2 ∈ A2 with
fa2 = b2 − ∂b1 and thus f∂a2 = ∂fa2 = ∂b2 − 0 = b3.
The converse is obvious, since gf∂ = ∂gf = 0 : A2 → C3 and ∂ is onto.

(Exact at C3) is obvious, since B2 −g→ C2 −∂→ C3 is onto.

9.46 Relative Mayer-Vietoris sequence. [19, 5.4.9] Let Xi ⊆ X and Ai ⊆ Xi

with S(X1) + S(X2) ↪→ S(X1 ∪ X2) and S(A1) + S(A2) ↪→ S(A1 ∪ A2) inducing
isomorphisms in cohomology. For any R-module G he have the exact sequence:

· · · → Hq(X1 ∪X2, A1 ∪A2;G)→ Hq(X1, A1;G)⊕Hq(X2, A2;G)→
→ Hq(X1 ∩X2, A1 ∩A2;G)→ Hq+1(X1 ∪X2, A1 ∪A2;G)→ · · · .
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Proof. The first 2 rows in the following diagram are short exact (see 8.37 ) and
by definition also all columns, thus the third row is short exact as well

S(A1 ∩A2) // //
��
��

S(A1)⊕ S(A2) // //
��
��

S(A1) + S(A2)
��
��

S(X1 ∩X2) // //

����

S(X1)⊕ S(X2) // //

����

S(X1) + S(X2)

����
S(X1 ∩X2, A1 ∩A2) // //

⊕2
i=1 S(Xi, Ai) // // (S(X1) + S(X2))/(S(A1) + S(A2))

So we get a long exact sequence in cohomology, and by the 5’Lemma 7.22 ap-
plied to the long exact cohomology sequences induced by the following short exact
sequences

S(A1) + S(A2) �
� //

� _
��

S(X1) + S(X2) // //
� _
��

(S(X1) + S(X2))/(S(A1) + S(A2))

��
S(A1 ∪A2) �

� // S(X1 ∪X2) // // S(X1 ∪X2)/S(A1 ∪A2)

the mapping (S(X1) +S(X2))/(S(A1) +S(A2))→ S(X1∪X2)/S(A1∪A2) induces
an isomorphism in homology and so we get the claimed exact sequence.

. 9.47 Corollary. If X is the union of the interiors of X1 and X2 and A1 ∪ A2 is
the union of the interiors of A1 and A2 then we have the relative Mayer-Vietoris
sequence in cohomology.

9.48 Remark. The relative Mayer-Vietoris sequence 9.46 implies the exact se-
quence of a triple (and a pair). In fact, given a triple (X,A,B), then we can apply

9.46 to the pairs (X,B) and (A,A).

9.49 Corollary. Excision theorem. [20, 13.5.12] Let U ⊆ A ⊆ X with Ū ⊆
◦
A.

Then i : (X \ U,A \ U)→ (X,A) induces an isomorphism

i∗ : Hq(X,A;G) ∼= Hq(X \ U,A \ U ;G).

O Proof for PIDs. We use the equivalent description as in 8.33 . By the excision

theorem 8.33 for homology the inclusion i∗ : (X2, X2 ∩ X1) → (X2 ∪ X1, X1)
induces isomorphisms Hq(X2, X2 ∩ X1) → Hq(X2 ∪ X1, X1) for all q. Using now

the universal coefficient theorem 9.30 gives

0
��

0
��

Ext1
R(Hq−1(X2, X2 ∩X1), G)

��
∼=
// Ext1

R(Hq−1(X2 ∪X1, X1), G)

��
Hq(X2, X2 ∩X1;G)

��

// Hq(X2 ∪X1, X1;G)

��
Hom(Hq(X2, X2 ∩X1), G)

��
∼=

// Hom(Hq(X2 ∪X1, X1), G)

��
0 0

and the 5’Lemma 7.22 yields the result.

General proof. We use again the equivalent description as in 8.33 . Let A1 := X1

and A2 := X1 ∩X2 then A1 ∪A2 = X1 and A1 ∩A2 = X1 ∩X2, hence the relative

Mayer-Vietoris sequence 9.46 gives:

· · · → 0→ Hq(X1 ∪X2, X1;G)→ Hq(X2, X1 ∩X2;G)→ 0→ · · ·
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. 9.50 Example. By 8.41 we have

Hq(S
n) ∼=

{
Z for q = n or q = 0

0 otherwise

and thus by the universal coefficient theorem 9.30 (since Z is projective)

Hq(Sn;G) ∼= HomZ(Hq(S
n), G) ∼=

{
G for q = n or q = 0

0 otherwise

Analogous results follow for the cohomology of Sn \ S, Sn \B, Rn \ S, Rn \B, Fg,
Pn(C), and of Pn(H) for r-spheres S, r-Balls B, and the orientable closed surfaces

Fg of genus g, see 8.45 , 8.46 , 8.47 , 8.66 , and 8.57 . In these cases one only

has to replace all Zk in the homology groups by Gk and obtains the corresponding
cohomology groups.

9.51 Example. [20, 13.6.9] For the none-orientable closed surface X of genus g

we got in 8.66

Hq(X) ∼=


Z for q = 0

Zg−1 ⊕ Z2 for q = 1

0 otherwise.

Hence by the universal coefficient theorem 9.30 and 9.3 and 9.29

H0(X;G) ∼= Hom(H0(X), G)⊕ Ext1(H−1(X), G)

∼= Hom(Z, G)⊕ Ext1(0, G) ∼= G

H1(X;G) ∼= Hom(H1(X), G)⊕ Ext1(H0(X), G)

∼= Hom(Zg−1 ⊕ Z2, G)⊕ Ext1(Z, G) = Gg−1 ⊕ {g ∈ G : 2g = 0}
H2(X;G) ∼= Hom(H2(X), G)⊕ Ext1(H1(X), G)

∼= Hom(0, G)⊕ Ext1(Zg−1 ⊕ Z2, G) = G/2G

In particular, for g = 1 we have

Hq(P2) q = 0 q = 1 q = 2

G = Z Z Z2 0

Hq(P2;G) q = 0 q = 1 q = 2

G = Z2 Z2 Z2 Z2

G = Z Z 0 Z2

G = R R 0 0

9.52 Example. By 8.67 we have for the real projective spaces

Hq(Pn(R)) ∼=


Z for q = 0 or q = n odd,

Z2 for 0 < q < n with q odd,

0 otherwise.

Hence by the universal coefficient theorem 9.30 and 9.3 and 9.29 we get

Hq(Pn;G) ∼= Hom(Hq(Pn), G)⊕ Ext1(Hq−1(Pn), G)

∼=



Hom(Z, G)⊕ Ext1(0, G) ∼= G for q = 0,

Hom(Z2, G)⊕ Ext1(Z, G) ∼= {g ∈ G : 2g = 0} for q = 1,

Hom(Z2, G)⊕ Ext1(0, G) ∼= {g ∈ G : 2g = 0} for odd 1 < q < n,

Hom(0, G)⊕ Ext1(Z2, G) ∼= G/2G for even 0 < q ≤ n,
Hom(Z, G)⊕ Ext1(0, G) ∼= G for odd q = n
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In particular, Hq(Pn;Z2) ∼= Z2 for all 0 ≤ q ≤ n, whereas Hq(Pn;R) = 0 for
0 < q 6= n and for even q = n.

O

. 9.53 Definition. Cup-product. [20, 15.2.3]
Although cohomology can be calculated in principle from the homology by the uni-

versal coefficient theorem 9.30 , cohomolgy has the advange of additional algebraic
structure. Let R be a commutative ring with unit. Elements ϕ ∈ Hq(X;R) are rep-
resented by homomorphisms f : Sn(X) → R. For such cochains f : Sp(X) → R
and g : Sq(X)→ R one defines the cup-product

f ∪ g : σ 7→ f(σ ◦ ιo,...,p) · g(σ ◦ ιp,...,p+q),
where σ : ∆p+q → X is any singular (p+ q)-simplex and ι0,...,p : ∆p ↪→ ∆p+q (resp.
ιp,...,p+q : ∆q ↪→ ∆p+q) denotes the canonical embedding onto the ‘front’-side (resp.
‘back’-side). This operation satisfies the Leibiz-rule

∂∗(f ∪ g) = ∂∗f ∪ g + (−1)pf ∪ ∂∗g
and hence induces a welldefined mapping

∪ : Hp(X;R)×Hq(X;R)→ Hp+q(X,R).

which turns H∗(X;R) into a graduated commutative ring, i.e. we have
O

commutativity: α ∪ β = (−1)pqβ ∪ α.

distributivity: (α+ α′) ∪ β = α ∪ β + α′ ∪ β.

homogeneity: (rα) ∪ β = r(α ∪ β) for r ∈ R.

associativity: (α ∪ β) ∪ γ = α ∪ (β ∪ γ).

neutral element: 1x ∪ α = α.

naturality: f∗(α ∪ β) = f∗α ∪ f∗β for f : X ′ → X.

This additional algebraic structure is a main advantage of the cohomology over the
homology.

. 9.54 Example. [20, 15.3.6.c] One can show

H∗(X ∨ Y ) ∼= H∗(X)×H∗(Y )

and
H∗(X × Y ) ∼= H∗(X)⊗H∗(Y )

as rings with respect to the cup-product ∪, where

H∗(X)⊗H∗(Y ) =
( ∑
p+q=n

Hp(X)⊗Hq(Y )
)
n∈N

and the product is defined component-wise. Thus the spaces Sm ∨ Sn ∨ Sm+n and

Sm×Sn for m > n ≥ 1 have isomorphic fundamental groups (by 5.37 and 5.29 ),

homology groups (by 8.36 and 10.33 ) and cohomology groups.

π1(Sm ∨ Sn ∨ Sm+n) ∼= π1(Sm)q π1(Sn)q π1(Sm+n) ∼= π1(Sn)

∼= π1(Sm)× π1(Sn) ∼= π1(Sm × Sn)

Hk(Sm ∨ Sn ∨ Sm+n) ∼= Hk(Sm × Sn) ∼=

{
Z for k ∈ {0, n,m,m+ n}
0 otherwise

Hk(Sm ∨ Sn ∨ Sm+n;G) ∼= Hk(Sm × Sn;G) ∼=

{
G for k ∈ {0, n,m,m+ n}
0 otherwise
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However, the cohomology ring of the first space is trivial, whereas that of the second
is not.

O

9.55 Example. [20, 15.5.2] One can show, that the cohomology ring of Pn(C) is
isomorphic to Z[x]/〈xn+1〉, where x corresponds to the generator in H2(Pn(C)) ∼= Z
(by 9.50 ). Moreover, H∗(P∞(C)) ∼= Z[x].

9.56 Example. [20, 15.5.4] One can show that the cohomology ring of Pn(R) with
coefficients in Z2 is isomorphic to Z[x]/〈xn+1〉, where x corresponds to the generator

in H1(Pn(C),Z2) ∼= Z2 (by 9.52 ). Moreover, H∗(P∞(R),Z2) ∼= Z[x].

9.57 Lemma. [20, 15.5.8] Let f : Pn → Pm be continuous with n > m ≥ 1. Then
π1(f) : π1(Pn)→ π1(Pm) is trivial.

Proof. For m = 1 this is obvious, since π1(Pn) ∼= Z2 and π1(P1) ∼= Z. So let m > 1
and k ∈ {m,n}. Then Z2

∼= π1(Pk) ∼= H1(Pk) ∼= Hom(H1(Pk),Z2) ∼= H1(Pk;Z2).
Thus it remains to show that f∗ : H1(Pm;Z2) → H1(Pn;Z2) is trivial. Otherwise,

f∗(α) = β 6= 0, where β and α are the non-zero elements in Z2. By 9.56 the n-fold
cup-products are α ∪ . . . ∪ α = 0, whereas f∗(α ∪ . . . ∪ α) = β ∪ . . . ∪ β 6= 0, a
contradiction.

9.58 Lemma. [20, 15.5.9] There exists no continuous g : Sn → Sm for n > m ≥ 1
with g(−x) = −g(x) for all x.

Proof. Otherwise, g would induce a continuous ḡ : Pn → Pm. By 9.57 π1(ḡ) :
π1(Pn) → π1(Pm) is trivial, hence ḡ has a lift g̃ : Pn → Sm along p : Sm → Pm.
For fixed x ∈ Sn either (g̃ ◦ p)(x) = g(x) or (g̃ ◦ p)(x) = −g(x). In the second case

(g̃ ◦ p)(−x) = (g̃ ◦ p)(x) = −g(x) = g(−x) and thus in both cases g̃ ◦ p = g by 6.7 .
Since p(x) = p(−x) we get g(x) = g(−x) = −g(x) ∈ Sm, a contradiction.

. 9.59 Theorem of Borsuk-Ulam. [20, 15.5.10] For each continuous f : Sn → Rn
exists an x ∈ Sn with f(x) = f(−x). In particular, there is no embedding Sn ↪→ Rn.

This generalizes 2.27 .

O Proof. Otherwise, consider g : x 7→ f(x)−f(−x)
|f(x)−f(−x)| which is a continuous map Sn →

Sn−1 with g(−x) = −g(x) for all x. Since S0 is discrete, this is impossible in the

case n = 1 and for n > 1 it is impossible by 9.58 .
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In this section G is a fixed abelian group or more generally, an R-module. We are
particularly interested in the cases G = Z, G = Z2, G = Q or G = R. The chain
groups we considered so far are free abelian groups, i.e. its elements were formal
linear combinations with coefficients in Z, and we will replace Z by the group G
now. Since the boundary operator ∂ was defined on the generators and extended
Z-linearly to the chain groups it is well defined for this modified chain groups as
well and hence we can consider its homology. An advantage of using G = Z2 is, that
we get rid of signs. And with G = Q or G = R we will get rid of torsion elements.

In order to make this process as natural as possible we have to consider tensor
products and for their (categorical) construction coseparators are helpfull:

10.1 Definition. A R-modules S is called coseparator iff HomR( , S) is faithfull,
i.e. f : M →M ′ with Hom(f, S) = 0 implies f = 0.

10.2 Lemma. The category R-Mod of R-modules has a coseparator.

Proof. Note, that S is a coseparator iff for every 0 6= a ∈ A we find a ϕ ∈ Hom(A,S)
with ϕ(a) 6= 0:
(⇐) Let 0 6= f : A′ → A. Then there exists an a′ ∈ A′ with a := f(a′) 6= 0, so
by assumption we find ϕ ∈ Hom(A,S) with Hom(f, S)(ϕ) = f∗(ϕ) = ϕ ◦ f not
vanishing on a′, i.e. Hom(f, S) 6= 0.
(⇒) Let 0 6= a ∈ A and consider f : R → A, r 7→ ra. Then f 6= 0, thus there is a
ϕ ∈ Hom(A,S) with 0 6= f∗(ϕ) = ϕ ◦ f , i.e. 0 6= ϕ(f(1)) = ϕ(a).

Q/Z is an injective coseparator for AGru: Let A be an abelian group and 0 6= a ∈ A.
Consider ϕ : Z → A given by ϕ(k) = k · a and its kernel Kerϕ := {k ∈ Z : k · a =
0} = Z · ord(a). Then ϕ(Z) ∼= Z/Kerϕ = Zord(a) and Zord(a) embeds into Q/Z
by ι : [k] 7→ [ k

ord(a) ]. Since Q/Z is divisible(=injective) ι can be extended along

Zord(a) ↪→ A to obtain a homomorphism ι̃ : A → Q/Z with ι̃(a) = ι̃(ϕ(1)) =
ι̃((j ◦ π)(1)) = ι(π(1)) 6= 0.

Z · ord(a) �
� // Z

ϕ //

π !! !!

A

ι̃

##
Zord(a)

� ?

j

OO

//
ι
// Q/Z

HomZ(R,Q/Z) is an injective coseparator for R-Mod:
Let 0 6= b0 ∈ B and ϕ : B → Q/Z a homomorphism of groups with ϕ(b0) 6= 0.

By the proof of 9.15 we have HomZ(B,Q/Z) ∼= HomR(B,HomZ(R,Q/Z)) and
the corresponding R-module homomorphism ϕ̃ : B → HomZ(R,Q/Z) satisfies
ϕ̃(b)(1) = ϕ(b) 6= 0, i.e. HomZ(R,Q/Z) is a coseparator for R-modules.

Remark. It follows that the category R-Mod of R-modules is cocomplete, i.e.
arbitrary colimits exist, since every complete, local-small (every object has only a
set of non-equivalent subobjects) category which has a coseparator is cocomplete,
see [9, 3.37].

. 10.3 Corollary. For any left R-module M the Hom-functor HomZ(M, ) : AGru→
Mod-R is a right adjoint, i.e. there exists a functor denoted ⊗R M : Mod-R →
AGru such that there are natural isomorphisms

HomZ(N ⊗RM,G) ∼= HomR(N,HomZ(M,G)).
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An explicit construction of N ⊗R M is the following: Take the free abelian group
generated by N ×M and factor out the subgroup generated by all the elements
(x+ x′, y)− (x, y)− (x′, y), (x, y + y′)− (x, y)− (x, y′), and (x · r, y)− (x, r · y) for
x, x′ ∈ N , y, y′ ∈M , and r ∈ R.

O Proof. The right R-Module structure on HomZ(M,G) is given by (ϕ · r)(x) =
ϕ(r ·x). This functor has all the properties required for the Special Adjoint Functor
Theorem (see [9, 4.27]), i.e. is continuous, Mod-R ∼= Rop-Mod is complete (products
are the cartesian product with component-wise operations, kernels are the zero-sets
as submodules), is locally small (i.e. there is only a set of submodules for any given
module), and has a coseparator. Thus it has a left adjoint ⊗R M : Mod-R →
AGru.

10.4 Remark. Note, that ϕ ∈ HomR(N,HomZ(M,G))⇔ ϕ̂(x·r, y) := ϕ(x·r)(y) =
(ϕ(x) · r)(y) = ϕ(x)(r · y) = ϕ̂(x, r · y) and is additive in both variables separately.
Let us denote the set of these ϕ̂ by

BilinR(N,M ;G) := {ψ ∈ GN×M :ψ(n r,m) = ψ(n, rm),

ψ(n+ n′,m) = ψ(n,m) + ψ(n′,m),

ψ(n,m+m′) = ψ(n,m) + ψ(n,m′)}
If we take G := N⊗RM , then idN⊗RM corresponds to such a mapping ϕ̂ : N×M →
N ⊗R M denoted ⊗. Thus xr ⊗ y = x ⊗ ry. Moreover, the bijection HomZ(N ⊗R
M,G) ∼= HomR(N,HomZ(M,G)) ∼= BilinR(M,N ;G)) is given by ϕ 7→ ϕ ◦ ⊗(:
N ×M → N ⊗R M → G), as chaseing idN⊗RM through the following diagram
shows

HomZ(N ⊗RM,N ⊗RM)

ϕ∗

��

//∼= // // BilinR(N,M ;N ⊗RM)

ϕ∗

��
HomZ(N ⊗RM,G) //

∼= // // BilinR(N,M ;G)

Consequently the abelian group N ⊗R M is generated generated by {x ⊗ y : x ∈
N, y ∈M}.

10.5 Lemma. If Hom(A′, ) ∼= Hom(A, ), then A ∼= A′.

Proof. Let ϕB : Hom(A′, B) → Hom(A,B) be the natural isomorphism. Define
f := ϕA′(idA′) ∈ Hom(A,A′) and g := ϕ−1

A (idA) ∈ Hom(A′, A) and consider in the
following diagrams

Hom(A′, A′) //
ϕA′ // // Hom(A,A′) Hom(A,A) Hom(A′, A)

ϕAoo

Hom(A′, A) //
ϕA // //

f∗

OO

Hom(A,A)

f∗

OO

Hom(A,A′)

g∗

OO

Hom(A′, A′)

g∗

OO

ϕA′oo

the image of g ∈ Hom(A′, A) (resp. f ∈ Hom(A,A′)) to conclude that g ◦ f = idA
and f ◦ g = idA′ .

10.6 Lemma. If for a sequence M ′ −f→ M −g→ M ′′ → 0 the dual sequences

0→ Hom(M ′′, G)−g
∗
→ Hom(M,G)−f

∗
→ Hom(M ′, G) are exact for every G, then

the original sequence is exact.

Proof. (Exact at M ′′) Take G := M ′′/g(M) and p : M ′′ � G the canonical
quotient mapping. Then g∗(p) = p ◦ g = 0 and by assumption p = 0, i.e. 0 = G =
M ′′/g(M). Thus g is onto.
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10. Homology with Coefficients 10.10

(Exact at M) Take as G := M/f(M) and consider the canonical projection p :
M � G. Note that ker(f∗) = {ϕ ∈ Hom(M,G) : ϕ|f(M) = 0} and im(g∗) =
{g∗(ψ) = ψ ◦ g : ψ ∈ Hom(M ′′, G)} = {ϕ ∈ Hom(M,G) : ϕ factors over g} = {ϕ ∈
Hom(M,G) : ϕ|ker g = 0}. Thus p ∈ ker(f∗) = im(g∗), i.e. p(ker g) = {0}. Hence
ker g ⊆ im(f). Conversely, take G = M ′′. then 0 = f∗(g∗(idM ′′)) = g ◦ f .

. 10.7 Corollary. We have natural isomorphisms R ⊗RM ∼= M and ⊗RM com-
mutes with colimits and is right-exact.

O Proof. Since Hom(R⊗RM,G) ∼= HomR(R,Hom(M,G)) ∼= Hom(M,G), it follows

from 10.5 that R⊗RM ∼= M .
As left adjoint ⊗RM commutes with colimits.
Let now N ′ → N → N ′′ → 0 be exact. Then

HomR(N ′, P )← HomR(N,P )← HomR(N ′′, P )← 0

is exact and in particular for P := Hom(M,G). Thus

Hom(N ′ ⊗RM,G)← Hom(N ⊗RM,G)← Hom(N ′′ ⊗RM,G)← 0

is exact, and by 10.6 the sequence

N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM → 0

is exact.

10.8 Remark. Note, that ⊗R is also a covariant functor in the second variable,
since HomR(N,HomZ( , G)) and HomZ( , G) are contravariant functors R-Mod→
AGru.

. 10.9 Definition. An R-module M is called flat, iff for every monomorphism
α : A→ A′ of right R-modules the tensor product α⊗RM : A⊗RM → A′ ⊗RM
is injective, i.e. ⊗RM is (left) exact.

O

10.10 Proposition. Coproducts and direct summands of flat modules are flat.
Every projective module is flat and every flat module over an integral domain is
torsion-free.

Proof. The statement on coproducts follows, since the tensor product commutes
with coproducts, and a coproduct (as subspace of the product) of monomorphisms
is a monomorphism.

Let M ′ ↪→ M be a direct summand of a flat module
and A′ → A be injective. Then A ⊗R M ′ → A ⊗R M
and A′⊗RM ′ → A′⊗M are sections and A′⊗RM →
A⊗RM is injective, thus also A′ ⊗RM ′ → A⊗RM ′.

A′ ⊗RM // // A⊗RM

A′ ⊗RM ′
OO

OO

// A⊗RM ′
OO

OO

Since every projective module is a direct summand in a free module it suffices to
show that R itself is flat, which is obvious, since A⊗R R ∼= A.

Let now M be a flat module and assume it is not torsion free, so there is 0 6= a ∈M
and 0 6= r ∈ R with ra = 0. Consider α : R → R given by r′ 7→ r′r, which is a
monomorphism, since R is an integral domain. Since M is flat, α⊗RM : R⊗RM →
R ⊗R M is injective. Since (α ⊗R M)(1 ⊗ a) = r ⊗ a = 1 ⊗ ra = 0 it follows
a = 1⊗ a = 0, a contradiction.
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10.11 Lemma. An R-module M is flat if and only if for every ideal 0 6= I C R
the canonical mapping I ⊗RM → R⊗RM ∼= M is injective.
In particular, every module over a field R is flat.

Proof. (⇒) Since I ↪→ R is injective and M is flat, also I ⊗RM → R⊗RM ∼= M
is injective.

(⇐) Let N ′ ↪→ N be a submodule. Since every module is the inductive limit of its
finitely generated submodules F and ⊗RM commutes with colimits it is enough
to consider finitely generated N (N ′ =

⋃
F N

′ ∩ F ). So we have an epimorphism
Rn � N for some finite n. Let K denote its kernel and let P be the pull-back of
Rn � N and N ′ ↪→ N . Then N ′ ∼= P/K and applying ⊗RM to both short exact
sequences gives

0 // K ⊗RM �
� // Rn ⊗RM // // N ⊗RM // 0

K ⊗RM // P ⊗RM // //
OO

OO

N ′ ⊗RM //
?�

OO

0

It follows, that N ′ ⊗R M → N ⊗R M is injective, provided we can show that
K ⊗R M → Rn ⊗R M is injective for every submodule K ⊆ Kn, which we prove
now by induction on n.

(n=1) Then K ↪→ R is an ideal, hence by assumption K ⊗R M → R ⊗R M is
injective.

(n+1) We consider

0 // R �
� // R×Rn // //gg Rn // 0

0 // K ∩R
?�

OO

� � // K
?�

OO

// // K/(K ∩R) //
OO

OO

0

and apply ⊗RM to obtain

0 // R⊗RM �
� // Rn+1 ⊗RM // // Rn ⊗RM // 0

(K ∩R)⊗RM
OO

OO

// K ⊗RM

OO

// // K/(K ∩R)⊗RM //
OO

OO

0

Thus also the vertical arrow in the middle is injective.

10.12 Proposition. If R is a PID. Then every torsion-free R-module is flat.

Proof.
Since R is a PID, every ideal 0 6= I C R is of the form
I = Rr for some 0 6= r ∈ R. Since M is torsion-free, the
mapping r : R → I, r′ 7→ r′r, is an isomorphism, hence

I ⊗R M → R ⊗R M is an isomorphism. By 10.11 this
implies that M is flat.

I ⊗RM
ι⊗RM

// R⊗RM

R⊗RM

r⊗RM

OO

M
∼=oo

∼=

OO

10.13 Example. The torsion-free(=flat) group Q is not free(=projective): It is
divisible, whereas free abelian groups are not, since their generators cannot be
divided by n > 1.

10.14 Lemma. Let R be a PID and M a finitely generated torsion-free R-module.
Then M is a free module.
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Proof. Let S be a finite set of generator for M . We find a maximal subset S0 ⊆ S
such that M0 := 〈S0〉 is a free submodule. If x ∈ S \ S0 then we find 0 6= rx ∈ R
and rs ∈ R for s ∈ S0 such that rxx +

∑
s∈S0

rss = 0, i.e. M/M0 is a torsion

module. Now let r :=
∏
x∈S\S0

rx 6= 0, since R is an integral domain. Since M0 is

free and rM ⊆ M0 we have that rM is free by 9.20 . Since M is torsion free the
multiplication map r : M → rM is a isomorphism, hence M is free.

10.15 Corollary. If M is an (R,S)-bimodule (i.e. an abelian group with left R-
action and a right S-action, which commute with each other) and G is an right
S-module, then HomS(M,G) is a right R-submodule of HomZ(M,G) and N ⊗RM
is a right S-module and we have natural isomorphisms

HomS(N ⊗RM,G) ∼= HomR(N,HomS(M,G)).

If, in particular, R is a commutative ring, then every R-module is also an (R,R)-
bimodule, where the two actions coincide. Thus N ⊗R M is itself an R-module
with

HomR(N ⊗RM,G) ∼= HomR(N,HomR(M,G)).

10.16 Corollary. For commutative rings R we have M ⊗R N ∼= N ⊗R M and
(M ⊗R N)⊗R P ∼= M ⊗R (N ⊗R P ).

Proof. The first isomorphism follows using 10.5 from

Hom(M ⊗R N,G) ∼= HomR(M,HomR(N,G))

∼= HomR(N,HomR(M,G)) ∼= HomR(N ⊗RM,G),

via f 7→ f̃ , where f̃(y)(x) := f(x)(y). And the second one follows from

HomR((M ⊗R N)⊗R P,G) ∼= HomR(M ⊗R N,HomR(P,G))

∼= HomR(M,HomR(N,HomR(P,G)))

∼= HomR(M,HomR(N ⊗R P,G))

∼= HomR(M ⊗R (N ⊗R P ), G).

10.17 Example.[20, 10.2.4]

1. A⊗ Zm = A/mA and hence Zn ⊗ Zm ∼= Zgcd(m,n):

HomZ(Zm, G) = {g ∈ G : mg = 0} by 9.3.1 , hence Hom(A ⊗ Zm, G) ∼=
Hom(A, {g : mg = 0}) = Hom(A/mA,G).

2. A ⊗ R = 0 if A is a torsion group, i.e. all elements in A have finite order:
Let ϕ ∈ Bilin(A,R;G) ∼= Hom(A,Hom(R, G)). Then ϕ = 0, since ϕ(a, b) =
ϕ(a, r br ) = ϕ(a r, br ) = ϕ(0, br ) = 0.

3. Z2 is not a flat abelian group:
Z2 ⊗ Z = Z2 is not a subgroup of Z2 ⊗ R = 0 although Z ↪→ R is one.

4. (ab
∐
J Z) ⊗ B ∼= ab

∐
J B, by 10.7 . In particular, the tensor product of

two free rings with p and q many generators is a free ring with p · q many
generators.

. 10.18 Definition. Homology with coefficients. [20, 10.5.1] Let (X,A) be a
pair of spaces and G be an abelian group. Then the q-th homology of (X,A) with
coefficients in G is defined as the abelian group

Hq(X,A;G) := Hq(S(X,A)⊗Z G)
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If G is even a right R-module over some ring R, then S(X,A) ⊗Z G is a chain
complex of right R-modules and hence Hq(X,A;G) are also right R-modules.

Again the question arises what Hq(X;G) has to do with Hq(X)⊗G.

10.19 Universal coefficient theorem for homology with flat coefficients.
Let C be a chain complex of right R-modules and M a flat left R-module. Then we
have a natural isomorphism

Hq(C)⊗RM ∼= Hq(C ⊗RM).

O Proof. We proceed analogous to 9.2 and the proof of 9.30 . We apply ⊗RM to
the short exact sequence

0 // Zq
� � j // Cq

∂ // // Bq−1
// 0

and obtain the short exact sequence (of chain-complexes)

0 // Zq ⊗M �
� j⊗M // Cq ⊗M

∂⊗M // // Bq−1 ⊗M // 0

which gives by 7.30 a long exact sequence in homology

· · · δ∗ // Hq(Z ⊗M)
(j⊗M)∗// Hq(C ⊗M)

(∂⊗M)∗// Hq−1(B ⊗M)
δ∗ // Hq−1(Z ⊗M) // · · ·

Zq ⊗M Bq−1 ⊗M
i⊗M // Zq−1 ⊗M

The identities hold, since the boundary operator on Z and on B and hence on Z⊗R
M and B ⊗RM is 0. The rectangle commutes (i.e. the connecting homomorphism
δ∗ is i ⊗R M), since (∂ ⊗R M) ◦ (∂ ⊗R M)−1 : Bq−1 ⊗R M → Cq−1 ⊗R M is just

the composite Bq−1 ⊗RM −i⊗RM→ Zq−1 ⊗RM −j⊗RM→ Cq−1 ⊗RM .
Now consider the short exact sequence

0 // Bq
� �

i
// Zq // // Hq(C) // 0

Taking the tensor product with the flat module M yields the short exact sequence

0 // Bq ⊗M �
�

i⊗M
// Zq ⊗M // // Hq(C)⊗M // 0

In particular, i⊗RM = δ∗ is injective, so (∂ ⊗M)∗ = 0 and (j ⊗M)∗ is onto. The
kernel of (j ⊗M)∗ is the image of δ∗ = i⊗RM , i.e. the kernel of the epimorphism
Zq⊗RM � Hq(C)⊗RM . Hence (j⊗M)∗ factors to an isomorphism Hq(C)⊗RM →
Hq(C ⊗RM).

Hq(B ⊗M)
δ∗ // Hq(Z ⊗M)

(j⊗M)∗// // Hq(C ⊗M)
0 // Hq−1(B ⊗M) //

δ∗ // Hq−1(Z ⊗M)

Bq ⊗M // i⊗M // Zq ⊗M // // Hq(C)⊗M
OO
∼=
OOOO

Bq−1 ⊗M // i⊗M // Zq−1 ⊗M

10.20 Corollary. Let (X,A) be a pair of spaces and G be a torsion-free group.
Then we have a natural isomorphism

Hq(X,A)⊗Z G ∼= Hq(X,A;G).

. 10.21 Theorem. There are functors TorRn : Mod-R × R-Mod → AGru and
natural transformations such that

1. TorRn (N,M) = 0 for n < 0.
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2. TorR0 (N,M) ∼= N ⊗RM .

3. TorRn (N,M) = 0 for all n > 0 if N or M is projective.

4. For every short exact sequence 0→ N ′ → N → N ′′ → 0 in Mod-R there is
a long exact sequence in AGru

· · · → TorRn (N ′,M)→ TorRn (N,M)→ TorRn (N ′′,M)−δ→ TorRn−1(N ′,M)→ · · · .
For every short exact sequence 0 → M ′ → M → M ′′ → 0 in R-Mod there
is a long exact sequence in AGru

· · · → TorRn (N,M ′)→ TorRn (N,M)→ TorRn (N,M ′′)−δ→ TorRn−1(N,M ′)→ · · · .

For fixed M the functor TorR∗ ( ,M) together with the natural transformation δ is

up to isomorphisms uniquely determined by 1 - 4 . And similarly for each fixed N .

O Proof. We consider a projective resolution P → M → 0 and the induced chain
complex

· · · → N ⊗R P2 → N ⊗R P1 → N ⊗R P0 → 0

Then TorRn (N,M) is defined as its homology, i.e. Torn(N,M) := Hn(N ⊗P∗). Now

proceed as in the proof of 9.23 :

( 1 ) is obvious by definition.

( 2 ) By definition TorR0 (N,M) is just the cokernel of N ⊗R P1 → N ⊗R P0, i.e. the
group N ⊗R P0 modulo the image of N ⊗R P1 → N ⊗R P0 and by right exactness
the sequence N ⊗R P1 → N ⊗R P0 � N ⊗RM → 0 is exact, hence this cokernel is
isomorphic to N ⊗RM .

( 3 ) If M is projective, then we may take P0 = M and Pk = 0 for all k > 0, hence

N ⊗ Pk = 0 and thus also TorRk (N,M) = Hk(N ⊗R P ) = 0 for these k.

( 4 ) Let 0→ N ′ → N → N ′′ → 0 be short exact and P be a projective resolution
of M . So we have short exact sequences

0→ N ′ ⊗R Pk → N ⊗R Pk → N ′′ ⊗R Pk → 0

and this gives a short exact sequence of cochain complexes since ⊗R is a bifunctor:

0→ N ′ ⊗R P → N ⊗R P → N ′′ ⊗R P → 0

By 7.30 we get a long exact sequence in homology:

· · · → TorRk (N ′,M)→ TorRk (N,M)→ TorRk (N ′′,M)−δ→ TorRk−1(N ′,M)→ · · · .

Again by the Double Complex Lemma 9.21 it does not matter whether we take a
projective resolution of N or of M for the definition of N ⊗RM . So also the second

long exact sequence of 4 holds.

Uniqueness follows the same way as in the proof of 9.23 .

10.22 Lemma. For commutative rings R the functor Tor1 is commutative, asso-
ciative and preserves colimits.

Proof. This follows from the same properties 10.16 of the tensor product.

10.23 Lemma. Let R be a PID (e.g. R = Z). Then TorRk (N,M) = 0 for arbitrary
M and N and all k ≥ 2.

Proof. By 9.20 we have a projective resolution P of M with Pk = 0 for all k ≥ 2.
Hence N ⊗R Pk = 0 and thus also Tork(N,M) := Hk(N ⊗R P ) = 0 for those k.

10.24 Remark.[20, 10.3.6]
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1. A module M is flat iff TorR1 (N,M) = 0 for all N :

(⇐) obvious by 10.21.4 and 10.21.2 .

(⇒) Let 0→ Q→ P → N → 0 be short exact with free P . By 10.21.4 we
have the exact sequence

0 = TorR1 (P,M)→ TorR1 (N,M)→ Q⊗RM � P ⊗RM

with TorR1 (P,M) = 0 by 10.21.3 since P is free and with Q⊗RM → P⊗RM
injective since M is flat. Thus TorR1 (N,M) = 0.

2. Tor1(A,Zn) ∼= {a ∈ A : na = 0}: Consider the short exact sequence nZ ↪→
Z� Zn leading to the long exact sequence

· · · // Tor1(A,Z) //

10.21.3

Tor1(A,Zn) // // A⊗ nZ // A⊗ Z // A⊗ Zn //

10.17.1

0

0 {a : na = 0} A
n // A A/nA

More generally, TorR1 (R/(Rr),M) ∼= {x ∈ M : rx = 0} provided R is
commutative and r not a zero divisor: Again R −r→ R → R/(Rr) is short
exact, hence we have the exact sequence

· · · // TorR1 (R,M) //

10.21.3

TorR1 (R/(Rr),M) // // R⊗RM
r // R⊗RM // · · ·

0 {x ∈M : r x = 0} M
r // M

3. Tor1(Zm,Zn) = Zgcd(m,n):

Again by 2 we have Tor1(Zm,Zn) = {a ∈ Zm : na = 0} ∼= Zgcd(m,n).

10.25 Lemma. Let R be a PID. Then TorR1 (A,B) = TorR1 (Tor(A),Tor(B)), where
Tor(G) denotes the torsion submodule of G.

This motivates the notation Tor1, which is also called the torsion product .

Proof. Consider the short exact sequence Tor(B) ↪→ B � B/Tor(B). Since

B/Tor(B) is torsion-free we get TorR1 (A,B/Tor(B)) = 0 by 10.12 . So get an
exact sequence

TorR2 (A,B/Tor(B)) //

10.26

TorR1 (A,Tor(B)) // TorR1 (A,B) // TorR1 (A,B/Tor(B))

10.12

0 0

and hence an isomorphism TorR1 (A,Tor(B)) ∼= TorR1 (A,B). Now use the symmetry

of TorR1 .

. 10.26 Künneth theorem. [20, 12.3.3] Let R be a PID and C a chain complex of
free (or at least flat) modules and C ′ be any chain complex. Then we have natural
short exact sequences∐

p+q=n
Hp(C)⊗R Hq(C

′) // // Hn(C ⊗R C ′) // // ∐
p+q=n−1

TorR1 (Hp(C), Hq(C
′)).

If C and C ′ are free, then the sequences split.

The tensor product of chain complexes has
∐
p+q=n Cp ⊗ C ′q as n-th component

(C ⊗R C ′)n by definition and the boundary operator is given by ∂(c⊗ c′) := ∂c⊗
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c′ + (−1)pc⊗ ∂c′ for c ∈ Cp and c′ ∈ Cq.
We will also use the abbreviation

TorR1 (Hp(C), Hq(C
′))n−1 :=

∐
p+q=n−1

TorR1 (Hp(C), Hq(C
′)).

O Proof. Again we start with the short exact (and, in case Cp−1 and hence Bp−1 is
free, splitting) sequences

0 // Zp
� � j // Cp

∂ // // Bp−1
// 0

Tensoring with C ′q and takeing direct the sums over p + q = n gives short exact

sequences (If Cp−1 is flat(=torsion-free) then also Bp−1 hence TorR1 (Bp−1, C
′
q) = 0)

of chain complexes (where (B̄)p := Bp−1) by 10.21.4 :

0 // Z ⊗ C ′ �
� j⊗C′ // C ⊗ C ′ ∂⊗C′ // // B̄ ⊗ C ′ // 0.

By 7.30 we get the long exact sequence in homology:

· · · δ∗ // Hn(Z ⊗ C ′)
(j⊗C′)∗// Hn(C ⊗ C ′)

(∂⊗C′)∗// Hn−1(B ⊗ C ′) δ∗ // Hn−1(Z ⊗ C ′) // · · ·

(Z ⊗H(C ′))n (B̄ ⊗H(C ′))n
i⊗H′ // (Z ⊗H(C ′))n−1

The identities follow from 10.19 by taking direct sums, since the boundary opera-
tor on Z and on B is 0. The rectangle commutes by summing up the corresponding

rectangles in the proof of 10.19 . Again we consider the short exact sequence

0 // Bp(C) �
�

i
// Zp(C) // // Hp(C) // 0

Taking the tensor product with H ′q := Hq(C
′) yields the exact sequence (since Zp−1

is flat)

0 // Tor1(H,H ′)n−1
// // Bp ⊗H ′q

i⊗H′q //

$$ $$

Zp ⊗H ′q // // Hp ⊗H ′q // 0

im(i⊗H ′q)
?�

OO

and by summing over p+ q = n we get the exact sequence

0 // ∐
p+q=n−1 Tor1(Hp, H

′
q) // // (B ⊗H ′)n

i⊗H′ //

&& &&

(Z ⊗H ′)n // // (H ⊗H ′)n // 0

im((i⊗H ′)n)
?�

OO

In particular, im((∂ ⊗R C ′)∗) = ker(δ∗) = ker(i⊗R H ′) ∼=
∐
p+q=n−1 Tor1(Hp, H

′
q).

On the other hand the kernel of (j ⊗R C ′)∗ is the image of δ∗ = i ⊗R H ′, i.e. the
kernel of the epimorphism (Z⊗RH ′)n � (H⊗RH ′)n. Thus (j⊗RC ′)∗ factors over
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(H ⊗R H ′)n to yield a monomorphism with the kernel of (∂ ⊗ C ′)∗ as image:

· · · // Hn+1(B̄ ⊗ C ′)
δ∗

// Hn(Z ⊗ C ′)
j∗
// Hn(C ⊗ C ′)

∂∗

// Hn(B̄ ⊗ C ′)
δ∗

// Hn−1(Z ⊗ C ′) // · · ·

(B ⊗H ′)n
i⊗H′
// (Z ⊗H ′)n

����

(B ⊗H ′)n−1
i⊗H′
// (Z ⊗H ′)n−1

0 // Cok(i⊗H ′) // // Hn(C ⊗ C ′) // // Ker(i⊗H ′)
?�

OO

// 0

(H ⊗H ′)n Tor1(H ⊗H ′)n−1

If both chain complexes are free, then we have retractions r : Cp → Zp and r′ : C ′q →
Z ′q. The homomorphism r⊗r′ : (C⊗RC ′)n → (H(C)⊗RH(C ′))n maps the bound-
aries of (C ⊗ C ′)n to 0, hence induces a homomorphism Hn(C ⊗ C ′) → (H(C) ⊗
H(C ′))n, which is obviously inverse to the monomorphism (H(C) ⊗ H(C ′))n →
Hn(C ⊗ C ′) constructed above.

As a special case of 10.26 we obtain:

. 10.28 Universal coefficient theorem for homology of chain complexes.
[20, 10.4.6]
Let C be a free chain complex and M be a module over a PID R. There there is a
splitting natural short exact sequence

Hq(C)⊗RM // // Hq(C ⊗RM) // // TorR1 (Hq−1(C),M)

O Proof. Let another chain complex C ′ be defined by C ′0 := M and C ′q = 0 for all

q 6= 0. By the Künneth-Theorem 10.26 we have the short exact sequence∐
p+q=n

Hp(C)⊗R Hq(C
′) // // Hn(C ⊗R C ′) // // ∐

p+q=n−1
TorR1 (Hp(C), Hq(C

′))

Hn(C)⊗RM Hn(C ⊗RM) TorR1 (Hn−1(C),M)

Since Bn−1 is free we get a right inverse
s : Bn−1 → Cn for ∂. This induces
a morphism Bn−1 ⊗R M → Cn ⊗R M ,
which maps the kernel TorR1 (Hn−1,M) of
i⊗RM : Bn−1⊗RM → Zn−1⊗RM into
Zn(C ⊗R M), and thus defines a section
for Hn(C ⊗RM)� Tor1(Hn−1(C),M).

ker(∂ ⊗M)
� _

��

ker(i⊗M)
� _

��

oo

Cn ⊗M

∂⊗M
��

∂⊗M // Bn−1 ⊗M

i⊗M
��

s⊗M
kk

Cn−1 ⊗M Zn−1 ⊗M
j⊗M

10.19
oo

. 10.29 Universal coefficient theorem for homology of spaces. [20, 10.5.3]
Let (X,A) be a pair of spaces and G be an abelian group. Then we have splitting
short exact sequences

Hq(X,A)⊗Z G // // Hq(X,A;G) // // TorZ1 (Hq−1(X,A), G)

O

10.30 Example.
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1. If Hq−1(X) is free (or at least torsion-free), then Tor1(Hq−1(X), G) = 0
and hence Hn(X) ⊗ G ∼= Hn(X;G). In particular, we get easily H0(X;G),
Hq(D

n, Sn−1;G), Hq(S
n;G), Hq(Fg;G), Hq(Pn(C);G), etc..

2. Hq(Pn;Z2) ∼= Z2 for 0 ≤ q ≤ n:

By 8.67 we have Hq(Pn) ∈ {Z,Z2, 0} and hence Hq(Pn)⊗Z2 ∈ {Z2,Z2, 0}
and Tor1(Hq(Pn),Z2) ∈ {0,Z2, 0}. Thus Hq(Pn;Z2) ∼= Z2 for 0 ≤ q ≤ n.

. 10.31 Proposition. [20, 10.5.5]
The homotopy theorem, the relative Mayer-Vietoris sequence and their consequences
(like the excision theorem and the exact sequence for a pair and a triple) hold also
for the homology with coefficients.

O Proof. The homotopy theorem 8.28 carries over, since a homotopy between map-
pings (X,A) → (Y,B) induces a chain homotopy for the correspoding chain map-
pings S(X,A) → S(Y,B) and tensoring with G gives a chain homotopy for the

chain mappings S(X,A)⊗Z G→ S(Y,B)⊗Z G. By 8.23 this induces the identity
in the homology (with coefficients).

The relative Mayer-Vietoris sequences (and its consequences) is shown as for the

cohomology in 9.46 , since all chain complexes considered there consist of free
abelian groups, hence the corresponding short exact sequences are splitting and
thus are also short exact after tensoring with G. Hence we have the corresponding

long exact sequences also in homology with coefficients by 7.30 .

. 10.32 Eilenberg-Zilber theorem. [20, 12.2.6]
There is a natural equivalence of chain complexes S(X × Y ) ∼ S(X)⊗Z S(Y ).

O Proof. (←) Let first X = ∆p und Y = ∆q. For n = 0 we define ϕ0 : (S(X) ⊗
S(Y ))0 → S(X×Y )0 by ϕ(x⊗y) := (x, y) for x ∈ X und y ∈ Y . By 9.18 this can
be extended to a chain mapping ϕ : S(∆p) ⊗ S(∆q) → S(∆p ×∆q). For arbirary
X and Y define ϕ by ϕ(σ ⊗ τ) := (σ × τ)∗(ϕ(∆p ⊗∆q))

(→) For X = ∆p, Y = ∆q, and (n = 0) we define ψ0 : S(X×Y )0 → (S(X)⊗S(Y ))0

by ψ0(x, y) := x⊗ y. By the Künneth-Theorem 10.26 we have that Hn(S(∆p)⊗
S(∆q)) = 0 for all n > 0. For singular 1-simplices σ and τ with ∂σ =: x1 − x0

and ∂τ =: y1 − y0 we have that (σ, τ) : ∆1 → X × Y is a singular 1-simplex with
boundary c = (x1, y1)−(x0, y0). Since ψ0(c) = x1⊗y1−x0⊗y0 = ∂(σ⊗y1 +x0⊗τ)

we can extend ψ by 9.18 to a chain mapping ψ : S(X × Y )→ S(X)⊗ S(Y ). For
arbirary X and Y we define ψ by ψ(σ, τ) := (σ × τ)∗(ψ(∆p,∆q)).

In dimension 0 obviously ϕ ◦ ψ = id and ψ ◦ ϕ = id. By 9.18 we get a chain
homotopies ϕ ◦ψ ∼ id and ψ ◦ϕ ∼ id for X = ∆p and Y = ∆q. By naturality they
can be extended to arbitrary X and Y .

Using 9.18 one can easily show that ψ is uniqely determined up to chain homo-
topies and hence the induced isomorphism of homologies is uniquely determined.
In particular, one can use

ψ(σ : ∆n → X×Y ) :=
∑

p+q=n

(pr1 ◦σ◦ι0,...,p)⊗(pr2 ◦σ◦ιp,...,p+q) ∈ (S(X)⊗S(Y ))n.

. 10.33 Corollary. Künneth theorem for spaces. [20, 12.4.3]
We have a splitting short exact sequence

(H(X)⊗Z H(Y ))n // // Hn(X × Y ) // // TorZ1 (H(X), H(Y ))n−1
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Proof. By the Künneth-Theorem 10.26 we have the splitting short exact sequence∐
p+q=n

Hp(X)⊗Hq(Y ) // // Hn(S(X)⊗ S(Y )) // // ∐
p+q=n−1

Tor1(Hp(X), Hq(Y )).

By the Eilenberg-Zilber Theorem 10.32 we have S(X)⊗S(Y ) ∼ S(X⊗Y ). Hence

Hn(S(X)⊗ S(Y )) ∼= Hn(S(X × Y )) = Hn(X × Y ) by 8.23 .

10.35 Corollary. [20, 12.5.5] Let R be a field, then

H∗(X;R)⊗H∗(Y ;R) ∼= H∗(X × Y ;R).

Proof. Since C := S(X)⊗Z R is a chain complex of R-modules, the Hp(X;R) :=

Hp(C) are R-modules. Since R is a field, all R-modules are flat by 10.11 , hence

TorR1 (Hp(C), Hq(C
′)) = 0. By the Künneth-Theorem 10.26 H(X,R)⊗RH(Y,R) =

H(C)⊗R H(C ′) ∼= H(C ⊗R C ′), so it remains to show that

C⊗RC ′ = (S(X)⊗ZR)⊗R(S(X ′)⊗ZR) ∼= (S(X)⊗ZS(X ′))⊗ZR ∼ S(X×X ′)⊗ZR,

which is obvious via (s ⊗ r) ⊗ (s′ ⊗ r′) 7→ (s ⊗ s′) ⊗ rr′ with inverse mapping
(s⊗ 1)⊗ (s′ ⊗ r)← (s⊗ s′)⊗ r.
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G-equivariant mapping, 82
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(singular) q-boundaries, 117

(singular) q-cycles, 117

0-homologous q-chains, 102

0-homologue, 100

0-homotopic, 29

abelization of a group, 64

act freely, 19

acyclic space, 117

affine homeomorphisms, 2

ambient isotopy, 92

amphicherial knot, 93

Baer-sum, 156

barycenter, 46

barycentric chain, 123

barycentric refinement, 46

base space, 75

base-point preserving homotopy, 30

boundary, 5, 13

boundary of an oriented q-simplex, 102

boundary point, 13

carrier simplexof a point, 44

cellular q-chains, 134

cellular chain group, 134

cellular homology, 135

cellular mapping, 55

chain complex, 103

chain mapping, 109

characteristic conjugacy class, 84

characteristic map, 51

chart, 13

closed q-chains, 102

closed 1-chain, 100

closed manifold, 13

cofibration, 35

cohomology, 143

commutator subgroup, 64

commutators, 64

components of a simplicial complex, 45

concatenation of paths, 59

cone, 106, 118

cone with base X, 8

congruence relation, 63

connected simplicial complex, 45

connected sum, 15

connectible simplices, 44

contractible, 29

convex, 3

coproduct of abelian groups, 64

coproduct of groups, 63

coseparator, 167

covering map, 75

covering transformations, 77

cup-product, 165

CW-complex, 51

CW-decomposition, 51

CW-pair, 52

CW-space, 51

CW-subcomplex, 52

CW-subspace, 52

cylinder over X, 8

decktransformations, 77

deformation retract, 37

degree, 33

dense functor, 79

diffeotopic knots, 92

diffeotopy, 92

dimension of a simplical complex, 43

direct sum of abelian groups, 64

divisible, 146

doubling of a manifold, 15

edges of a simplical complex, 43

equivalence classes, 5

equivalent extensions, 153

equivalent knots, 93

exact q-chains, 102

exact 1-chain, 100

exact sequence of abelian groups, 105

face, 42

face-map, 116

fibers, 75

fibration, 35

first homotopy group, 59

flat module, 169

free abelian group, 65

free group, 65

free product of groups, 63

fundamental group, 59
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general lens space, 20

graph, 70

group with generators X and defining rela-
tions R, 65

Heegard decomposition, 18

homeomorphism of pairs, 2

homologous q-chains, 102

homology, 103

homology group, 103

homomorphism of coverings, 77

homotopic, 29, 30

homotopy, 29

homotopy class, 29

homotopy equivalence, 36

homotopy equivalence of pairs, 37

homotopy equivalent, 37

homotopy extension property (HEP), 35

homotopy of pairs, 30

homotopy relative a subset, 30

induced ordering of the opposite face, 102

inductive limit, 66

injective, 145

injective abelian group, 145

injective resolution, 147

invertible knot, 93

isotopic knots, 92

isotopy, 92

isotropy subgroup, 82

Klein’s bottle, 15

knot, 24, 92

knot group, 94

leaves, 75

left exact functor, 145

left module, 145

lens space, 18

Möbius-strip, 14

manifold, 13

mapping cylinder, 40

mapping degree, 32

mapping of pairs, 2

Mayer-Vietoris sequence, 125

natural transformation, 121

neighborhood deformation retract, 37

neutral element, 62

normal coverings, 79

normal subgroup, 63

normal subgroup generated by a subset, 63

normalizer, 84

orbit space, 19

orientation of a q-simplex, 100

pair of spaces, 2

points in general position, 42

polyhedra, 43

product of groups, 63

projective, 146

projective plane, 16

projective resolution, 147

projective space, 16

push-out of groups, 64

quasi-ordering, 89

quotient mapping, 5

quotient topology, 5

relative chain group, 113

relative homeomorphism, 2
relative homology, 113

relative singular q-chains, 119

representationof group, 65
retract, 32

retraction, 32

reverse path, 59
right-derived functors, 150

semi-locally simply connected, 87
semisimple, 152

short exact sequence of abelian groups, 108

simplex, 42
simplicial approximation, 46

simplicial complex, 43

simplicial mapping, 45
simply connected space, 61

singular q-chains, 116

singular q-simplex, 116
singular chain group, 116

singular homology group, 117
splitting sequence, 109

standard (closed) q-simplex, 116

star, 47
strict deformation retract, 37

strictly discontinuous action, 19

subcomplex, 44
subgroup, 62

subgroup generated by a subset, 63

surface, 13

topological equivalent, 24
topological group, 21
torsion product of modules, 174

total space, 75

tree, 70
triangulation, 43

trivializing neighborhood, 75

turning (winding) number, 33

underlying topological space, 43

vertices, 42

vertices of a simplical complex, 43
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