Algebraic Topology
Andreas Kriegl

email:andreas.kriegl@Qunivie.ac.at

250155, WS 2017, Mo.-Do. 10%° — 10*°, SR10,
Oskar-Morgenstern-Platz 1



mailto:andreas.kriegl@univie.ac.at

These lecture notes are inspired to a large extend by the book

R.St6cker /H.Zieschang: Algebraische Topologie, B.G.Teubner, Stuttgart 1988

which T recommend for many of the topics I could not treat in this lecture course,
in particular this concerns the homology of products [20, chapter 12], homology
with coefficients [20, chapter 10], cohomology [20, chapter 13-15].

As always, I am very thankful for any feedback in the range from simple typing
errors up to mathematical incomprehensibilities.

Vienna, 2000.08.01 Andreas Kriegl

Since Simon Hochgerner pointed out, that I forgot to treat the case g =n—1—1r
for r < n —1 in theorem , I adopted the proof appropriately.

Vienna, 2000.09.25 Andreas Kriegl

I translated chapter 1 from German to English, converted the whole source from
amstex to latex and made some stylistic changes for my lecture course in this
summer semester.

Vienna, 2006.02.17 Andreas Kriegl

I am thankfull for the lists of corrections which has been provided by Martin
Heuschober and by Stefan Fiirdos.

Vienna, 2008.01.30 Andreas Kriegl

I added a chapter on cohomology and on homology with coeffients.

Vienna, 2015.01.27 Andreas Kriegl

andreas.kriegl@univie.ac.at © 7. Februar 2018 i






Inhaltsverzeichnis

. Building Blocks and Homeomorphy
. Homotopy

. Simplicial Complexes

CW-Spaces

. Fundamental Group

. Covering Maps

. Simplicial Homology

. Singular Homology

© 0 N > Ul W N e

. Cohomology
10. Homology with Coefficients

Literaturverzeichnis

Index

29
42
o1
59
75
100
116
143
167

179

181

andreas.kriegl@univie.ac.at © 7. Februar 2018

iii



1. Building Blocks and Homeomorphy

In this first chapter we introduce the ‘homeomorphy problem’. We will see that
even for the best known topological building blocks like ball and spheres this is
not easily decided and will be attacked with algebraic methods later on. We will
also recall various quotient space constructions and important classes of topological
spaces (like manifolds, orbit spaces) constructed from the building blocks.

In this chapter I mainly listed the contents in form of short statements. For details
please refer to the book.

Ball, sphere and cell

Problem of homeomorphy.
When is X = Y? Either we find a homeomorphism f : X — Y, or a topological
property, which hold for only one of X and Y, or we cannot decide this question.

1.1 Definition of basic building blocks. [20, 1.1.2]

1. R with the metric given by d(z,y) := |z — y|.

2. I:=[0,1]:={z € R:0 < x <1}, the unit interval.

3. R" = [[,R = [[;c, R = [I/Z) R = {(#i)i=0,..n—1 : @i € R}, with the
product topology or, equivalently, with any of the equivalent metrics given
by a norm on this vector space.

4 I =TI ={(z)]= :0<a; <Wit ={z eR": [z — (5,..., 5)]lo < 3},
the n-dimensional unit cube, where |||/ := max{|x;| : i}.

5. For subsets 'A C R" we denote with A = 9gn A the boundary of A in R™. In
particular, I" := OgnI™ = {(x;); € I" : i : z; € {0,1}}, the boundary of I"
in R™.

6. D" :={x € R" : [|z|]2 := /D _;c,(wi)? < 1}, the n-dimensional closed unit
ball (with respect to the Euclidean norm).

A topological space X is called n-BALL iff X = D™,

7. D" := Oga D" = "' := {x € R" : ||z = 1}, the n — 1-dimensional unit

sphere.

A topological space X is called n-SPHERE iff X = S™.

8. D" .= {z € R : ||lz[|2 < 1}, the interior of the n-dimensional unit ball.
A topological space X is called n-CELL iff X = D",
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1.7 1. BUILDING BLOCKS AND HOMEOMORPHY

1.2 Definition. [20, 1.1.3] An AFFINE HOMEOMORPHISMS is a mapping of the form
x +— A -z + b with an invertible linear A and a fixed vector b.

Hence the ball in R™ with center b and radius r is homeomorphic to D™ and thus
is an n-ball.

1.3 Example. [20, 1.1.4] D' = R: Use the odd functions ¢ tan(t), or t

e
with derivative t — (tt22+11)2 >0, or t — %Itl with derivative t — 1_| > 0 and
inverse mapping s + g +| - Note, that any bijective function f : [0,1) — [0, 4+00)

with f(0) = 0 extends to an odd function f:(=1,1) = R by setting f(t) := —f(— )
for t <~0. For f(t) := 1% we have f(t) = —ﬁ = %It\ and for f(t) := 4z we
have f(t) :~*ﬁ = 1=. Note that in both cases f/(0) = lim;_,04 f'(t) exists
and hence f is a C! diffeomorphism. However, in the first case lim; ;o f”(t) = 2

and hence the odd function f is not C2.

1.4 Example. [20, 1.1.5] D" = R™: Use for example f : & — =iz = 1o f1(||ac||)
with fi(¢) :== 15 and directional derivative f'(z)(v) = 1—||-76H v+ (1_|<‘2|”U)>2HI“ T =
for x — 0.

1.5 Corollary. [20, 1.1.6] R™ is a cell; products of cells are cells, since R™ x R™
Rt by “associativity” of the product.

1.6 Definition. A pPAIR (X, A) of spaces is a topological space X together with a
subspace A C X.

A mAPPING f: (X, A) — (Y, B) of pairs is a continuous mapping
f: X =Y with f(4) C B.

x—toy
A HOMEOMORPHISM f : (X, A) — (Y, B) of pairs is a mapplng of j j
A fla B

—

pairs which is a homeomorphism f : X — Y and satisfies f(A

(and hence induces a homeomorphism f|4 : A — B). —

1.7 Definition. [20, 1.3.2] A mapping f : (X,A) — (Y, B) of pairs is called
RELATIVE HOMEOMORPHISM, iff f : X\ A — Y\ B is a well-defined homeomorphism.

A homeomorphism of pairs is obviously .

a relative homeomorphism, but not con-

versely even if f|4 : A — B is a homeo-

morphism: Consider for example A :=

{1}, X :=AU(1,2], and f:t s t> — 2. s MG

X\A

However, for compact X and Y any homeomorphism f : X\{zq} = Y \{yo} extends
to a homeomorphism f : (X, {zo}) = (Y, {yo}) of pairs, since X 2 (X \ {20})oo, cf.
. Note that Z., denotes the 1-point compactification of the locally compact
space Z, see [6, 2.2.5].
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.10

1.8 Example. [20, 1.1.15]

L R\ {0} 2 8" x (0,+00) = S"! xR, M
via  — (Hm”m In(||z|))), ety < (y,t).

2. D"\ {0} = 8" 1 x (0,1] =25 x (e1],
via (0,1] 2 (e,1] and (1).

1.9 Definition. A subset A C R" ist called CONVEX, iff  + t(y — x) € A for
Vz,y € A, t €[0,1].

1.10 Theorem. [20, 1.1.8] X C R™ compact, convez, X #0 =(X,X) = (D", 8" 1).
In particular, X is a ball, X is a sphere and X s a cell.
If X CR" is (bounded,) open and convex and not empty, then X is a cell.

Proof. W.l.o. g let 0 € X (translate X by —x¢ with z¢ € )O() The mapping
f: X3z~ =l H x € S" 1 is bijective, since it keeps rays from 0 invariant and smce
for y # 0 let tg := max{t > 0:ty € X}, then ty ¢ X for all t > ¢;, and tyGX for
all 0 < t <ty (consider the cone with an open 0-neighborhood in X as basis and
toy as apex), hence t( is the unique ¢ > 0 with ty € X.

Since X is compact f is a homeomorphism. By radial extension we obtain (using

) a continuous bijection

D™\ {0} = 5" ! x (0,1] 2% % (0,1] — X \ {0},

oo (gplel) o (57 () ) = et 5 (57

which extends via 0 — 0 to a continuous bijection of the 1-point compactifications
and hence a homeomorphism of pairs (D", S"~1) — (X, X).

The second part follows by applying the first part to X, a compact convex set
with interior X: In order to see this take a point z in the interior of X. So there
exists a open neighborhood of z in X and we may assume that this is of the form
of an m-simplex (see ) (i.e. a hypertetraeder). Since its vertices are in X we
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1.18 1. BUILDING BLOCKS AND HOMEOMORPHY

can approximate them by points in X and hence z lies inside this approximating
simplex contained in X.

That the boundedness condition can be dropped can be found for a much more
general situation in [11, 16.21]. O

1.11 Corollary. [20, 1.1.9] I" is an n-ball and I™ is an n — 1-sphere. O

1.12 Example. [20, 1.1.10] [20, 1.1.11] D? x D1 is a ball, hence products of balls
are balls, and 9(DP x D) = SP~1 x D9U DP x S9=1 is a sphere:
DP x D1 is compact convex, and by exercise (1.1.1A) d(Ax B) = 0Ax BUA X 0B.

So by the result follows.

1.13 Remark. [20, 1.1.12] is wrong without convexity or compactness as-
sumption: For compactness this is obvious since D™ is compact. That, for example,
a compact annulus is not a ball will follow from .

1.14 Example. [20, 1.1.13] S" = D% U D", (1)
Dr N D" = S"1 x {0} = S"!, where D} :=
{(z;t) € S" CR" xR : &t > 0} = D" are the
southern and northern hemispheres. The stereo- x
graphic projection S™\ {(0,...,0;1)} 2 R" is giv- 1-t
en by (z;t) — 5.

1.15 Corollary. [20, 1.1.14] S™\ {} is a cell. O

1.16 Example. [20, 1.1.15.3]
For all & € S"~1:

D"\ {&} 2R x [0, +00),
R™ 1 x [0, +00) = (S" 1\ {i}) x (0,1] = D™\ {i},
(z,t) = &+ t(x — ).

1.17 Example. [20, 1.1.20] S™ 2 R™ and D™ % R", since R" is not compact.
None-homeomorphy of X = S! with I follows by counting components of X \ {x}.

1.18 Example. [20, 1.1.21] S x St is called torus. It is embeddable into R® by
(z,y) = (z1,22;11,Y2) — (R+ry1)z,my2) with 0 < r < R. This image is described
by the equation {(x,vy, 2) : (v/22 + y2 — R)?+ 22 = r2}. Furthermore, S x S 2 §2
by Jordan’s curve theorem, since (S x S1)\ (S* x {1}) is connected.
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.25

1.19 Theorem (Invariance of a domain). [20, 1.1.16) R* D X Y C R", X
open in R™ =Y open in R".

We will prove this hard theorem after .

1.20 Theorem (Invariance of dimension). [20, 1.1.17] m # n =R™ % R",
Sm ok Sno D™ Dn.

Proof. Let m < n.

Suppose R™ 2 R™ then R™ C R" is open, but the image R™ = R™ x {0} C R" is
not, a contradiction to .

Sma 8 = R™ =S\ {z} 2S5\ {y} XR" = m=n.

f:Dm = D" = D" ffl(l%”) C D™ C R™ C R™ and f’l(lo)”) is not open, a

contradiction to . O

1.21 Theorem (Invariance of the boundary). [20, 1.1.18] f : D™ — D"
homeomorphism =f : (D", S"~1) — (D™, S"~1) homeomorphism of pairs.

Proof. Let & € D" with y = f(i) ¢ D" Then y € D" =: U and f~'(U) is
homeomorphic to U but not open in R", since x € f~1(U) N D", a contradiction

to[1.19]. o

1.22 Definition. [20, 1.1.19] Let X be an n-ball and f : D" — X a homeo-
morphism. The BOUNDARY X of X ist defined as the image f(D"™). This definition

makes sense by .

Quotient spaces

1.23 Definition. Quotient space. [20, 1.2.1] Cf. [6, 1.2.12]. Let ~ be an equiva-
lence relation on a topological space X. We denote the set of EQUIVALENCE CLASSES
[z]~ :=={y € X : y ~ z} by X/~. The QUOTIENT TOPOLOGY on X/~ is the final
topology with respect to the mapping 7 : X — X/~ x +— [z] (i.e. the finest
topology for which this mapping is continuous, see [6, 1.2.11]).

1.24 Proposition. [20, 1.2.2] A subset B C X/~ is open/closed iff 7=1(B) is
open/closed. The quotient mapping m is continuous and surjective. It is open/closed
iff for every open/closed A C X the saturated hull 7= (n(A)) ={zr € X : Ja € A:
x ~ a} is open/closed.

For a proof see [6, 1.2.12].
The image of the closed subset {(z,y) : z -y = 1,2,y > 0} C R? under the first

projection pr; : R? — R is not closed!

1.25 Definition. [20, 1.2.9] A mapping f : X — Y is called QUOTIENT MAPPING
(or final), iff f is surjective and satisfies one of the following equivalent conditions:

1. The induced mapping X/~ — Y is a homeomorphism,
where 1 ~ 3 & f(z1) = f(x2).

2. A subset B CY is open/closed iff f~1(B) is it.

3. A mapping ¢ : Y — Z is continuous iff g o f is it.
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1.28 1. BUILDING BLOCKS AND HOMEOMORPHY

Note that f induces a bijection f : X/~—=Y.

(1=-2) since 7 : X — X/~ has this property. f
(2=3) g~ (W) open & (go )~ (W) = f~*(g~'W') is open. x Loy
(3=1) f: X — Y is continuous by (3) for g := idy and f

f: X/~ =Y is continuous by (1=3) for Y := X/~ and g := i / \L
Conversely, f~': Y — X/~ is continuous by (3) for Z := X / ~. X/~ Z

1.26 Examples. [20, 1.2.3]

1. I/~ = S' where 0 ~ 1: The mapping ¢t + e*™ [ — S! factors to a
homeomorphism I/~ — St cf. .

2. I?/~ = S x I, where (0,t) ~ (1,t) for all ¢.

- .

3. I?/~ = St x S where (¢,0) ~ ) and ( for all ¢.

b
-

1.27 Proposition. [20, 1.2.10] Continuous surjective closed/open mappings are
obviously quotient-mappings, but not conversely. Continuous surjective mappings
from a compact to a Ts-space are quotient-mappings, since the image of each closed
subset is compact hence closed.

1. fi, fo quotient mappings = f1 o fo quotient mapping.
2. f1 0 fa quotient mapping = f1 quotient mapping.

Proof. Apply . O

1.28 Proposition. Universal property of X/~.

[20, 1.2.11] [20, 1.2.6] [20, 1.2.5]
Let f : X = Y be continuous. Then f is compatible with the

equivalence relation (i.e. x ~ x' = f(x) = f(2')) iff it factors x_ 1 oy
to a mapping X/~ —'Y over m : X — X/~. Note that f is R
compatible with the equivalence relation iff the relation f on™! i” =

is a mapping. The factorization X/~ — Y is then given by X/~ 7o
forn! and is continuous.

7_‘,71

Proof. (z,y) € for ! & dx € X : f(x) = y,m(x) = 2. Thus fon~! is a mapping,
i.e. y is uniquely determined by z iff w(x) = n(2') = f(z) = f(2’). Continuity of

fon! follows from | 1.25.3 |. O
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.32

1.29 Proposition. [20, 1.2.4]

Functoriality of formation of quotients. Let f : X — Y be f

. : . ) ) X Y
continuous and compatible with equivalence relations ~x
on X and ~y onY, ie. 11 ~x x2 = f(x1) ~yv f(z2). i i
Then there is a unique induced continuous mapping [ : :
X/Nx—>Y/Ny. X/NX f>Y/NY

If f and F~1 are compatible with the equivalence relations and is a homeomorphism,
then f is a homeomorphism.

For a proof see [6, 1.2.11,1.2.12].
1.30 Proposition. [20, 1.2.7] [20, 1.2.12]

The restriction of a quotient-mapping to a closed/open X f o
saturated set is a quotient-mapping, i.e. let f : X = Y
be a quotient mapping, B C Y open (or closed), and
A= f~Y(B). Then f|a: A — B is a quotient mapping.

=

f—l(B) fly=1(m)

For example, the restriction of 7 : I — I/I to the open set [0,1) is not a quotient
mapping.
Proof. Let U C B with (f|4)~}(U) open. Then f~Y(U) = (f|a)~1(U) is open and

hence U C Y is open. O
1.31 Corollary. [20, 1.2.8] XLty

Let p : X — Y quotient-mapping, A C X closed/open,

Vae A,z € X :p(z) =pla) =z =a.

Then pla: A— p(A) CY is an embedding. A i>p(A)

P

kS

Proof. = A = p~t(p(4)) pla: A — B :=p(A) is a quotient mapping and
it is injective by assumption, hence a homeomorphism. O

1.32 Proposition. Theorem of Whitehead. [20, 1.2.13] Let g be a quotient
mapping and X be locally compact. Then X x g :=idx Xg is a quotient mapping.

For a counter-example with not locally compact X see [6, 1.2.12]:

Proof.
gtV I f-w
\ z
o)
(X0,20)
Y \% o— e
W o
ftw
gV (Xo0:Y0)
*—
U X
U X

Let (z0,20) € W C X x Z with open f~1(W) C X x Y, where f := X x g for
g:Y — Z. We choose yo € g~(29) and a compact neighborhood U of zq with

andreas.kriegl@univie.ac.at (© 7. Februar 2018 7



1.38 1. BUILDING BLOCKS AND HOMEOMORPHY

Ux{yo} C f~H(W). Since f~1(W) is saturated, U x g~ (g(y)) C f~1(W) provided
U x {y} C f~1(W). In particular, U x g~(z0) C f~H(W).

Let Vi={2€Z:Uxg (2) C f7Y(W)}. Then (z0,20) €U x V C W and V is
open, since g~ 1 (V) :={y € Y : U x {y} C f~1(W)} is open (see [6, 2.1.11]). O

1.33 Corollary. [20, 1.2.14] f: X —» X', g: Y = Y’ quotient mappings, X, Y’
locally compact = f X g quotient mapping.

Proof.
Xxvy 2% xrxy

lxN\ iX'Xg

Xxv' 2% xrxy

Special cases of quotient mappings

1.34 Proposition. Collapse of a subspace. [20, 1.3.1] [20, 1.3.3]

A C X closed =m : (X,A) — (X/A,{A}) is a relative homeomorphism, where
X/A := X/~ with the equivalence relation generated by Va,a' € A:a ~ d'.

The functorial property for mappings of pairs is:

(X, A)—7  —(v.B)

l l

(X/A,AJA) > (Y/B,B/B)

Note that the equivalence class A is a point in X /A, hence {A} is a subset of X/A.

Proof. That 7 : X\ A — X/A\ A/A is a homeomorphism follows from . The
functorial property follows from . O

1.35 Example. [20, 1.3.4] X/0 = X and X/{*} = X. Furthermore, I/] = S (by
) and, more generally, X/A = (X \ A), provided X is compact and A C X
is closed: In fact, X/A is compact, X \ A is openly embedded into X/A by
and X/A\ (X \ A) is the single point A € X/A. Now use exercise (1.4).

1.36 Example. [20, 1.3.5] D"\ §"~1 = D" =~ R»
and hence by DSt~ (pr\ Snl =
(R™) oo 22 8™. Or, explicitly,

e (t = (1—||z|), ﬁ) — (sm( )W , cos(t ))

1.37 Example. [20, 1.3.6] X x I is called CYLINDER OVER X and CX := (X X
I)/(X x {0}) is called the CONE WITH BASE X. C(S™) =2 D" via (x,t) — t .

1.38 Example. [20, 1.3.7] Let (X, z;) be pointed spaces, i.e. X, a topological
space and z; € X; a point in Xj, or, with other words, (Xj,{z;}) is a pair of
spaces. The 1-point union is

\/Xj:\/ Xj,x5) : <|_|X) {z;: j}

jeJ JjeJ
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.42

By the projection  : |_|j X; — \/j X is a closed mapping for T3-spaces X.

1.39 Proposition. [20, 1.3.8] X; embeds into \/; X; and \/; X; is union of the
images, which have pairwise as intersection the base point.

Proof. That the composition X; — |_|j X; — \/j X is continuous and injective

is clear. That it is an embedding follows, since by the projection 7 is also a
closed mapping. O

1.40 Proposition. [20, 1.3.9] Universal and functorial property of the 1-point-
UNLON:

fi fi

(Xi,2;) — (Y, y) (Xi, ) —— (Y3, 4)
| L
\/j X; \/j X; > Vj Y;
Proof. This follows from and . O

[\Xlxxzxxg

1.41 Proposition. [20, 1.3.10]

Embedding X1V ---V X, = X1 X ... x X,.
Proof. Let i; : X; — [[;_; Xi be given by
z v (x1,...,%j-1,2,Tj41,- - -, Tn), Where the
x), are the base-points of Xj. Then ||, i :
Ll X& — I, Xx factors to the claimed em-
bedding, see exercise (1.7). O

1.42 Example. [20, 1.3.11] is wrong for infinite index sets: The open neigh-
borhoods of the base point in \/j X; are given by \/j U;, where U; is an open
neighborhood of the base point in X;. Hence \/ X is in general not first countable,
whereas the product of countable many metrizable spaces X is first countable.

A visualization of the image of \/, Stin [Tjen S is given by the union of count-
able many circles in R? which intersect only in a single point. This is not their
one-point union, since a neighborhood of the single point contains almost all circles
completely.

andreas.kriegl@univie.ac.at (© 7. Februar 2018 9



1.45 1. BUILDING BLOCKS AND HOMEOMORPHY

1.43 Definition. Gluing. [20, 1.3.12] f : X D A — Y with A C X closed.
Y U X :=Y UX/~, where a ~ f(a) for all a € A, is called Y glued with X via f
(or X glued to Y along f).

i®

f(A)

YUf X

A

1.44 Proposition. [20, 1.3.13] [20, 1.3.14] Let f : X D A — Y with A C X closed
and m:Y UX — Y Uy X be the quotient mapping.
Thenmly : Y =Y Uy X is a closed embedding and w|x : (X, A) = (Y Uy X, 7(Y))
is a relative homeomorphism.

YU X = @)\ f(A)Uf(A)Ur(X\A)

——
oy ~x\A

Proof. That 7|y : Y — Y Uy X is continuous and injective is clear. Now let B C 'Y
be closed. Then 7~ (7(B)) = B L f~1(B) is closed and hence also 7(B).

That 7: X \ A — (Y Uy X) \ n(Y) is a homeomorphism follows from . O

1.45 Proposition. [20, 1.3.15] Universal property of push-outs Y Uy X :

Proof. . O

10 andreas.kriegl@univie.ac.at © 7. Februar 2018




1. BUILDING BLOCKS AND HOMEOMORPHY 1.48

1.46 Lemma. Let f; : X; D A; = Y be given, X := X7 UXs, A= A1 UA; C X
and f=fUfa: XDA—-Y. ThenYUfX%(YUfl Xl)UfQXQ.

Proof.

d\ f2
A f

5=

i1
) £ i

X - YUf X
7.

X, L (Y Uy, X1)Up, Xo

1.47 Example. [20, 1.3.16]

(1) f: XD2A—-Y :={x} =Y U; X = X/A, since X/A satisfies the universal
property of the push-out.
(2) f: XD{x} =Y =YU; X =ZX VY, by definition.

B) f: X2A—=Y constant =Y Uy X = X/AVY, since we can compose
push-outs:

f1 Y c f2 Y,

| |

— "N U Xf)YVQUf’z (Yl U X)

<~

1.48 Example. [20, 1.3.17] f : X D A — B C Y homeomorphism of closed
subsets. =Y Uy X = 7(X)Un(Y) with n(X) = X, n(Y) =2 Y and 7(X) Nn(Y) =
A = B. This follows from since Y Up X 2 X Uy Y.

Note however, that Y Uy X depends not only on X O A and Y O B but also on
the gluing map f: A — B as the example X = I x [ =Y and A= B =1x1
with id # f : (z,1) = (1 — 2,1), (x,0) — (z,0) of a Mébius-strip versus a cylinder

shows, see .
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1.50 1. BUILDING BLOCKS AND HOMEOMORPHY

[
S

1.49 Proposition. [20, 1.3.18]

XﬁA—f>Y

XAty — YU X2V Up X

Proof.

By the push-out property we ob- A
tain a uniquely determined continuous {
X

map GUF : YU X = Y Up X'
with (GU F) on|x = 7'|x o F and
(GUF)om|y =x'|y o F.

Since G lo f =G o f o FoF|,' =
G loGofoF|' = foF Y we
get similarly GT'UF~ : Y/ Up X/ —
Y U;X.On X and Y (resp. X’ and Y”) F ¥ GO
they are inverse to each other, hence de- e
fine a homeomorphism as required. [ X’ Y'U o X!

1R
9
-
7
4

1.50 Example. [20, 1.3.19]

(1) Z = XUY with X, Y closed and A := XNY. = Z = YUjq, X: The canonical
mapping Y UX — Z induces a continuous bijective mapping ¥ Uijg , X — Z,
which is closed and hence a homeomorphism, since Y LI X — Z is obviously
closed.

(2) Z=XUY with X, Y closed, A:=XNY, and f: A — A extendable to a
homeomorphism of the pair (X, A) = Z =Y Uy X: Apply to

f

X > A AC Y
&’lf ﬂlf ulid ﬁ’lid
X >4 g Y

(3) D™ Uy D™ 2 S™ for all homeomorphisms f : S"~! — S"~1: We can extend
f radially to a homeomorphism f : D* — D" by f(z) = ||z| f(q57) and can
now apply (2).

(4) Gluing two identical cylinders X x I along any homeomorphism f : X x
{0} = X x {0} yields again the cylinder X x I: Since f extends to a homeo-
morphism X x I — X x I, (z,t) — (f(x),t) we may apply (2) to obtain
(XxDUp (X x=2(X xDUg (X xI) =X x1I.
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.55

Manifolds

1.51 Definition. [20, 1.4.1] [20, 1.5.1] An m-dimensional MANIFOLD (or m-manifold
for short) (possibly with boundary) is a topological space X (which we will always
require to be Hausdorff and second countable), for which each of its points x € X
has a neighborhood A which is an n-ball, i.e. a homeomorphism ¢ : A = D™ (which
we call CHART at x) exists. A point € X is called BOUNDARY POINT iff for some
(and by any) chart ¢ at = the point is mapped to ¢(x) € S™~ L. The set of
all boundary points is called the BOUNDARY of X and denoted by X or X. It is
obviously a closed subset of X. A manifold is called CLOSED if it is compact and
has empty boundary. Two-dimensional manifolds are called SURFACEs.

1.52 Examples. [20, 1.4.4] [20, 1.4.5]

1. 0-manifolds are discrete countable topological spaces.

2. The connected 1-manifolds are R, S*, I and [0, +00).

3. Quadrics like hyperboloids (=2 R? UR? or = S! x R), paraboloids (= R?),
and the cylinder S' x R are surfaces.

4. Let X be a manifold (without boundary) and A C X be a discrete subset.
Then X \ A is also a manifold (without boundary).

5. D™ is a manifold with boundary S™~!, so D™ 2 R™ is a manifold without

boundary.
The halfspace R™~1 x [0, +00) is a manifold with boundary R™~1 x {0}.

1.53 Lemma. Let U C X be open in an m-manifold X. Then U is an m-manifold
with U =X NU.

Proof. Let z € U and ¢ : A—=+ D™ =: D be a chart at = for X. Then (U) is an
open neighborhood of ¢(z) in D and hence contains a convex compact neighborhood
B which is an m-ball by . Consequently, ¢|,-15): U 2 ¢ (B) 2B C D is
the required chart at = for U.

WehaveaceU & Ple-1(p) (@ )€ B e px)eD e xe X, smceap( )1smthe
interior B of B with respect to the topology of D, BnBP C D (since DNBP - B)
and BND C B (since BC D= BN D = BﬂDCCBﬂBC—B) O

1.54 Proposition. [20, 1.4.2] [20, 1.5.2]
Let f: X =Y be a homeomorphism between manifolds. Then f(X) =Y.

Proof. Let z € X and ¢ : A= D™ be a chart at 2. Then ¢ o =t f4 — D™
is a chart of Y at f(z) and hence x € X & (po f71)(f(z)) = ¢(z) € D™ &
flz)eY. O

1.55 Proposition. [20, 1.4.3] [20, 1.5.3]
Let X be an m-manifold and x € X. Then there exists a neighborhood U of x in X
with (U,UN X, x) 2 (D™ x I,D"™ ' x {0}, (0,0)), a homeomorphism of triples.

Proof. By assumption there exists a neighborhood A of z in X and a homeo-
morphism ¢ : A — D™ with ¢(z) € S™~!. Choose an open neighborhood W C A of
x. Then W = XNW and the manifold W is homeomorphic to ¢(W) € D™ by .
Obviously ¢(W) contains a neighborhood B of ¢(x) homeomorphic to D™~ ! x I,
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1.60 1. BUILDING BLOCKS AND HOMEOMORPHY

where B N .S™~! corresponds to D™ ! x {0}, cf. [ 1.8.2]. The set U := ¢~ (B) is
then the required neighborhood:

|

WnX == WL omw) e(W)ND™ = p(W)n sm1

UNX=UnWnXZBne(W)nsmt=pm1lx{ol O

1.56 Corollary. [20, 1.5.4] The boundary X of a manifold is a manifold without
boundary.

Proof. By X is locally homeomorphic to D"~1 x {0} =2 D™ ! and = € X
corresponds to 0 thus is not in the boundary of X. O

1.57 Proposition. [20, 1.5.7] Let M be an m-dimensional and N an n-dimensional
mamfold Then M x N is an m+n-dimensional manifold with boundary (M x N)* =

. M x N. For a manifold X without boundary (like S*) the cylinder
XxIisa mamfold with boundary X x {0,1}.

This way we get examples of 3-manifolds: S x R, §% x I, and S% x S'.

Proof. | 1.12] and | 1.50.1]. O

1.58 Example. Mébius strip. [20, 1.4.6] The (compact) MOBIUS-STRIP X is
defined as I x I/ ~, where (z,0) = (1 — z,1) for all z, cf. . Its boundary is
(I xI)/~ = 8" and hence X is not homeomorphic to the cylinder S* x I by .

An embedding of X into R? is given by factoring
(o, 1) — ((2 +(2r—1) cos mp) cos 2mp, (24 (2r — 1) cos wp) sin 2w, (2r — 1) sin ng)
over the quotient.

The Mobius-strip is not orientable which we will make precise later.

1.59 Proposition. [20, 1.4.7] [20, 1.5.5] By cutting finitely many disjoint open
holes into a manifold one obtains a manifold whose boundary is the union of the
boundary of X and the boundaries of the holes. More precisely, let X be an m-
manifold and f; : D™ — X embeddings with pairwise disjoint images. Let D
{filz) : |z| < 2} and S; == {fi(x) : |z| = 3}. Then X \ U _1D is an m- mamfold
with boundary X U| |7, S;.

The manifold which results by cutting g open holes in the unit-disk D? will be
denoted D?.

Proof. No point in {f;(x) : || < 1} is a boundary point of X, hence the result
follows. N

1.60 Proposition. [20, 1.4.8] [20, 1.5.6] Let X and X' be two manifolds and R and
R’ components of the corresponding boundaries and g : R — R’ a homeomorphism.
Then X' Uy X is a manifold in which X and X' are embedded as closed subsets and

has boundary (X \ R) U (X' \ R').

Proof. It is enough to find charts at points z from RU R’. Let A = D_m_1 x I
and A" = D™~ x T be neighborhoods of x € R and g(z) € R’ with X N A =
D™ 1 x {0} and X' N A" = D™ ' x {0} as in [1.55] W.lo.g. we may assume
that g(X N A) = X’ N A’. The image of A’ U A in X’ Ug X is given by gluing
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.65

D™= x Tu D™ ! x I along a homeomorphism D™~ ! x {0} — D™~ x {0} and
hence is by | 1.50.3 | homeomorphic to D™~! x I where x corresponds to (0,0). O

1.61 Example. [20, 1.4.9]

S x St can be obtained from two copies of S! x I that way.

The same is true for KLEIN’S BOTTLE but with a different gluing homeomorphism:
b

b

1.62 Example. Gluing a handle. [20, 1.4.10] [20, 1.5.8.7] Let X be a surface in
which weocut t\évo holes as in . The surface obtained from X by gluing a handle
is (X \ (D*UD?) Uy (S* x I), where f: 8" x I D S'x =85S C DU D>

More generally, one can glue handles S"~! x I to n-manifolds.

1.63 Example. Connected sum. [20, 1.4.11] [20, 1.5.8.8] The CONNECTED SUM
of two surfaces X; and X3 is given by cutting a whole into each of them and gluing
along boundaries of the respective holes. X1£X» := (X1 \ D?) Uy (X3 \ D?), where
f:D?>D> 8 =8l C D%

More generally, one can define analogously the connected sum of n-manifolds. This
however depends essentially on the gluing map.

1.64 Example. Doubling of a manifold with boundary. [20, 1.4.12] |20,
1.5.8.9] The DOUBLING OF A MANIFOLD is given by gluing two copies along their
boundaries with the identity: 2X := X Uy X, where f :=id : X — X.

1.65 Example. [20, 1.4.13] The connected compact oriented surfaces F, (of genus
g) without boundary can be described as:

1. boundary Vg of a handlebody (pretzel, Brezel) V; := D?; x I of genus g.

2. doubling 2D7.

3. connected sum of tori.

4

. sphere with g handles.
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1.68 1. BUILDING BLOCKS AND HOMEOMORPHY

1.66 Example. [20, 1.4.14]

by a

The compact oriented surface als
quotient of a 4g-polygon. By induc-
tion this surface is homeomorphic to

those given in .

\_:

el by

1.67 Example. [20, 1.4.15] [20, 1.5.13] The PROJECTIVE PLANE P? is defined as
(R3\ {0})/~ with x ~ X\ -z fir R X # 0.

More generally, let for K € {R, C,H} the PROJECTIVE SPACE be defined by Pf :=
(K"+1\ {0})/~, where z ~ Az for 0 # X € K. The quotient mapping K"*1\ {0} —
Pg is an open mapping, since the saturated hull of an open subset U is the open
double-cone with base U and without its apex.

1.68 Examples. [20, 1.4.17] [20, 1.4.18]

1. P?2 = D?/~ where z ~ —z for all z € S*.

2. P = D"/~ where z ~ —z for all z € S"~1:
Consider a hemisphere D7 C S™. Then the open quotient mapping S™ — P"
restricts to a quotient mapping (by ) on the compact set DY with
associated equivalence relation x ~ —x on Ssn—1 C Dr.

3. P2 can be obtained by gluing a disk to a M&bius strip.
Consider the closed subsets A := {z € % : 15 < 0,|z3| < 1/2} and B = {z €

S? : x3 > 1/2}. The open quotient mapping induces an homeomorphism on
the saturated subset B C D7, i.e. m(B) is a 2-ball. The set A is mapped to a
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.72

Mébius-strip by and | 1.58 | Since 7(B)Un(A) = P? and 7(B)N7(A) =

S! we are done.

1.69 Proposition. [20, 1.4.16] [20, 1.5.14] [20, 1.6.6] P} is a dn-dimensional
connected closed manifold, where d := dimg K. The mapping p : S~ 1 — ]P’Hzfl,
x > [x] is a quotient mapping. In particular, Pk = S,

Proof. Charts are ¢; : K" — P&, (z!,...,2") — [(z},..., 2%, 1,2 ... 2™)] for
i—1 i+1 n
i €{0,...,n} with inverse [(y%,...,y")] — (Z—,,T,%,,Z—)

The restriction K"+ D §¥n+1)=1 _ Pr is a quotient mapping since K"+ \ {0} —
Pg is an open mapping, cf. , hence Pg is compact. For K = R this quotient

mapping induces the equivalence relation x ~ —zx.
For n = 1 we have P% \ ¢o(K) = {[(0,1)]}, therefore PL =2 K, = S%. O

1.70 Example. [20, 1.4.19] The none-oriented connected closed surface IV, of genus
g without boundary is
1. connected sum of g projective planes,

2. or equivalently by | 1.68.3 |, a sphere with g M&bius strips glued to it.

Klein’s bottle as sum of two Mobius strips, see [8, 9.3]:

)

1.71 Proposition. [20, 1.4.20] The none-orientable connected compact surfaces
without boundary as quotient of a 2g-polygon.

1.72 Theorem. [20, 1.9.1] Each connected closed surface is homeomorphic to one
of the surfaces S* = Fy,S' x S' = Fy,... orP2=N;,No,....

For a sketch of proof, see [8, 9.4]
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1.76 1. BUILDING BLOCKS AND HOMEOMORPHY

= & =

BIC

1.73 Example. |20, 1.5.9] Union of filled tori (D?xS!)Uijq(S'x D?) = (D?x D?)" =
(D*) = S3 by . Other point of view: S* = D3 Ujq D? and remove a filled
cylinder from D_ and glue that to D, to obtain two tori. With respect to the
stereographic projection the torus {(z1,22) € S® C C? : |21] = 71, |22] = r2} with
7? + 13 = 1 corresponds to the torus with the z-axes as its axes and big radius
A:=1/ry > 1 and small radius a := 1—7’—2 see [8, 11.6,11.7].

1.74 Example. [20, 1.5.10] More generally, let the homeomorphism f : S* x St —
S1x St be given by f : (z,w) — (2w’ z°w?), where a, b, ¢,d € Z with ad—bc = +1.

1)

R? R?

| :

Slxgt—— I gy

A meridian S* x {w} € D? x S! on the torus is mapped to a curve t — (e2™ w)
(wb e?miat gy e27ict) which winds a-times around the axes and c-times around the
core of St x St — St x D? < R3. Similar for a circle of latitude.
a b\, 2 1 1 2
M(c d) = (D* x S) Uy (S" x D).

In together with and we will indicate that M is often not homeo-
morphic to S3.

1.75 Example. [20, 1.5.11] Cf. [1.60]. By a HEEGARD DECOMPOSITION of a 3-
dimensional manifold M one understands a representation of M by gluing two
handle bodies V, (see | 1.65.1|) of the same genus g along their boundary.

1.76 Example. [20, 1.5.12] Cf. ’ 1.66‘ and ’ 1.71 ‘ For relative prime 1 < ¢ < p let
the LENS SPACE be L() := D3/~ where (p,0,1) ~ (¢ — 2rl,—0,1) for 6 > 0
with respect to spherical coordinates, so the northern hemisphere is identified with
the southern one rotated by 27r%. The interior of D? is mapped homeomorphically
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.80

to a 3-cell in L(%) by . The image of points in the open hemispheres have
also such neighborhoods (formed by one half in the one part inside the northern
hemisphere and one inside the southern). Each p-points on the equator obtained by
recursively turning by 277% get identified. After squeezing D? a little in direction
of the axes we may view a neighborhood of a point on the equator as a cylinder
over a sector of a circle (a piece of cake) where the flat sides lie on the northern
and southern hemisphere. In the quotient p many of these pieces are glued together

along their flat sides thus obtaining again a 3-cell as neighborhood. We will come

to this description again in .

Group actions and orbit spaces

1.77 Definition. [20, 1.7.3] Group action of a group G on a topological space
X is a group-homomorphism G — Homeo(X) into the group of homeomorphisms
of X. The ORBIT SPACE is X/G := X/~ = {Gz : v € X}, where z ~ y &
dg € G : y = g - x. For this we may without loss of generality assume that G is a
subgroup of Homeo(X), since only its image in Homeo(X) is needed.

1.78 Examples. [20, 1.7.4]

1. St acts on C by multiplication = C/S! 2 [0, +0).

2. Z acts on R by translation (k,z) — k+z = R/Z = S* R?/Z = S* x R.
ATTENTION: R/Z has two meanings.

3. 589 acts on S™ by reflection (scalar multiplication) = S™/S% = P,

1.79 Definition. [20, 1.7.5] G is said to ACT FREELY on X, when no g # id has a
fixed-point on X, i.e. gx # x for all x and g # id.

1.80 Theorem. [20, 1.7.6] Let G act STRICTLY DISCONTINUOUSLY on X, i.e. each
x € X has a neighborhood U with gU NU # () = g = id. This is in particular the
case, when G is finite and acts freely on a Ty space X.

Then X/G is a closed m-manifold provided X is one.

Proof. The quotient mapping 7 : X — X /G is open since 7~ (7(W)) = Uyea W
for W C X. Free actions of finite groups on Th-spaces are strictly discontinuous,
since for + € X and g # id we find disjoint neighborhoods Uy of x and W, of gx
and then U := ﬂg;ﬁid UgN gleg is the required neighborhood:

weUNgU = glue U C g 'W, = ue U, N W,, a contradiction.

Let now X be an closed m-manifold. Since U — 7(U) is a homeomorphism, any
chart A 2 D™ with A C U induces a chart for X/G. In particular, points in X/G
are closed (see [8, 19.1.1]), and hence the orbits as inverse images are closed. The
orbits have to be discrete, so when X is compact the orbits are finite and hence the
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1.81 1. BUILDING BLOCKS AND HOMEOMORPHY

group G is finite.

The quotient manifold is T: For « « y € X and any g € G choose disjoint
neighborhoods Uy of -z and Wy of y. Then U := G-, g~ 'Uy and W := G-, W,
are disjoint saturated neighborhoods of the orbits. In fact, y € UNW = ¢ :=
gty € N, Wy for some g1 € G and y' € gf1G~ﬂg g U, ey = go-g5 Uy, = Uy,
for some g5 € g7 '@, a contradiction. O

Example. Orbit spaces need not be Hausdorff.
Consider the ordinary differential equation

dz 9 Y . -
o st E, o =sine -
Since this vector field is bounded, the solutions —
exist globally and we get a smooth function ¢ :
R x R? — R? associating to each t € R and
(x,y) € R? the solution with value (z,y) at 0 at
time t. -
If the initial value satisfies cosz = 0 then the so-
lution is y(t) = y(0) + ¢ - sin x. Otherwise we have

NN N N N NN N O N Y
NN NN NN N N N Y
'

SA A A A A A A A A A A A
S A A A A A A A A A A A A
'

= Csoi;lfm = d%ﬁ, hence it has to be con- _ - -
tained in {(y,z) : y(z) = ——}. Moreover the — - -
time it takes from x = xg to x = x7 is giv- %

T1 di 11
€1 by t(xl) - t(a?o) = f(Egl dr fzol coszxd‘r =
tan |7l .

Note that the orbit space R?/R is not Hausdorff (and R?/Z as well). It consists of
a countable union | |, R of R’s together with the points 7/2+7-Z. A neighborhood
basis of /2 + k is given by end-intervals of the two neighboring R’s. However, Z
acts strictly discontinuous on RZ.

We may also form the space X := ([—7/2,7/2]xR)/~, where (—7/2, —t) ~ (7/2,1).
Since the action of R is compatible with this equivalence relation R acts fixed-
point free on this borderless Mobius strip X as well. The orbits of the discrete
subgroup Z C R are obviously closed subsets. However, the action is not strictly
discontinuous, since for any neighborhood of [(7/2,0)]. some translate by ¢t € Z
meets it again.

1.81 Example. [20, 1.7.7] Let 1 < p € N be relative prime to q1,...,qr € Z. Then
E,:={g€e C:g? =1} 27, :=7/pZacts freely on S*»~1 C C¥ by g-(z1,...,2,) —
(99 z1,...,9%z). The GENERAL LENS SPACE Lok_1(p;q1,...,qx) == S**71/E, of
type (p;qi,-..,qx) is a closed manifold of dimension 2k — 1. Note that this space
depends only on ¢g; mod p and not on g; itself, so we may assume 0 < g; < p.

el

In particular, L3(p;q,1) = L(%): We may parametrize S C C? by the quotient
mapping f : D?x S — 53, (21, 22) + (21,1/1 — |21]? 22) and the action of E, = (g)
on S3, where g := €2™/?_lifts to the action given by g- (21, 22) = (g9 21,9 z2). Only
the points in {z;} x St for 2; € S! get identified by f. A representative subset of S3
for the action is given by {(z1,22) € S* : [arg(ze)| < T}, its preimage in D? x S!
is homeomorphic to D? x I, and only points (z1,0) and (g?z1,1) are in the same
orbit. Thus the top D2 x {1} and the bottom D? x {0} rotated by g = ¢>™*% have
to be identified in the orbit space and also the generators {21} x I for z; € S'. This
gives the description of L(2) in [1.76 |

aq
p
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.84

One has:

o L3(p;q1,q2) = L3(p;q2,q1) via the reflection C x C D % — 3 C C x C,
(z1,22) > (22,21).
o L3(p;qq1,q9492) = L3(p; g2, q1) for ¢ relative prime to p via the group isomor-

phism g +— ¢9.
o L3(p;—q1,q2) = L3(p;q1,q2) via (z1,22) — (21,%2) and the group isomor-
phism g g~ =7
(21, 22) (21,22)
lg l
(g9 z1,9%20) — (9721, §" 22) == (5 "'21,§%" 22)

/

1.82 Theorem. [20, 1.9.5] L(%) =~ L(%) < p=9p and (@ = £¢ mod p or
q¢ = +1 mod p).

Proof. (<) By

e L3(p;q,1) = Ls(p; ¢, 1) for ¢ = +¢q mod p.
e L3(p;q,1) = L3(p; ¢, 1) for q¢' = £1 mod p, since L3(p;q,1) = L3(p:q¢' q,q') =
L3(p;£1,¢") = Ls(p; 1,4¢') = La(p; ¢', 1)

(=) is beyond the algebraic methods of this lecture course, see [5] for an elaboration.
O

1.83 Definition. [20, 1.7.1] A TOPOLOGICAL GROUP is a topological space together
with a group structure, s.t. 4 : G X G — G and inv : G — G are continuous.

1.84 Examples of topological groups. [20, 1.7.2]

1. R™ with addition.

2. S C R, S' C C and S3 C H with multiplication, see [8, 14.16].

3. G x H for topological groups G and H.

4. The general linear group GL(n) :== GL(n,R) := {A € L(R",R") : det(A) #

0} with composition, see [8, 14.1].

The special linear group SL(n) := {A € GL(n) : det(A) = 1}, see [8, 14.5].

6. The orthogonal group O(n) := {A € GL(n) : A* - A = id} and the (path-)
connected component SO(n) := {T € O(n) : det(T) = 1} of the identity in
O(n). As topological space O(n) = SO(n) x S°. For all this see [8, 14.6].

7. GL(n,C) :={A € Lc(C™,C") : detc(A) # 0}, see [8, 14.14].

8. The unitary group U(n) := {4 € GL(n,C) : A* - A = id} with closed
subgroup SU(n) := {A € U(n) : detc(A) = 1}, see [8, 14.14]. As topological
space U(n) = SU(n) x St see [10, 1.27]

o
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1.86 1. BUILDING BLOCKS AND HOMEOMORPHY

9. In particular SO(1) = SU(1) = {1}, SO(2) 2 U(1) = S*, SU(2) = {(2}) :
* —1 N _ ~ ~ TS
(e8) =(28) }={(27") ol + > =1} = 8%, SO(3) = P*.
For the last isomorphism consider the surjective , I
mapping f : [0, 7] x S? — SO(3) given, by asso- [0, 7] x §% ——= SO(3)

ciating to an angle ¢ € [0, 7] and an unit-vector J/‘ T
x € S? the rotation f(ip, x) by the angle ¢ around T
the axes x. D3

This mapping is injective except for f(0,z) = f(0,2’) and (7, z) = f(m, —x)
for all z, 2’ € S2. Hence it factors to a surjective mapping f : D3 — SO(3)
over the surjective multiplication p : [0, 7] x S* — D?, (¢, z) — £ -2, which
is injective except for u(0,r) = u(0,z’) for all 2,2’ € S%. Thus f is injec-
tive except for f (y) = f (—y) for all y € S2. This is exactly the equivalence
relation defining P? = D3/ ~.

The problem of homeomorphy

Remark. For 3-manifolds one is far from a solution to the classification problem.
For n > 3 there can be no algorithm.

1.85 Theorem. [20, 1.9.2] Each closed orientable 3-manifold admits a Heegard-
decomposition.

Hence in order to solve the classification problem it suffices to investigate the homeo-
morphisms of closed oriented surfaces and determine which gluings give homeo-
morphic manifolds.

In the following example we study this for the homeomorphisms of the torus con-

sidered in .
A

/
1.86 Example. [20, 1.9.3] Let M := M (08‘ Z) and M' = M (CCL, 2,) with

I /
(Ccl Z) and <z/ Z/) in SL(2,7Z), see . For o,3,v,6 € S° and m,n € Z

consider the homeomorphisms
F:D*x 8" D?x S, (z,w)— (%™, w?)

G:8'xD* = St x D2 (z,w) (27, 2"w°)

v 0\ fa b\ [(d b\ [a m
n 0)\c d) \cd d)\0 pB)°
va=da, Fb=dm+Vp, nat+dc=ca, nb+dd=cm+dp
then (Glgixgi) o f = f" o(F|sixst) andthusM%M’by.

Reduction:

If

i.e.

(GSO): 72:—1,0(::ﬂ::6;:17m::n::0
a b\ o —a —b\ .
:>M<C d) =M< . d),l.e. w.lo.g. a > 0.
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.87

,6:=—1,m:=n:=0
:>M<C d %M<_C _q) e w.l.o.g. ad —bc = 1.

a b\ o 0 I\ o 2 2 1~ @2 1
=M =M :(D UidD)xS:S x S,

(a:1):a::(S::a”ﬂ::a’d_bc77::1am::b7n::—c
a b 10 o
< (1 9= (G D) =00 x (st x5 (1)

(ad —=Vec=1): = a(d—d)=c(b—"V) since ad —bc=1and Im: b — b = ma,
d —d' = me since ged(a,c) = 1.

a b\ a UV
a:zﬁ:z’y:zd:zl,n:zO#M(c d>:M<c d,)z:M(a,c).

(¢ :=c—na): a:=p:=y:=8§:=-1,m:=0= M(a,c) = M(a,c), ie wlo.g.
0<c<a(lIfc=0=a=1= M(a,c)=S53).

Thus it suffices to investigate the spaces M (a.c) with 0 < ¢ < a and ggT(a,c) =1
(& 3b,d:ad —bec=1).

1.87 Theorem. Heegard- decomposition of lens spaces. [20, 1.9.4] For relative
prime 0 < ¢ < a we have L(%

Proof. We start with L(£) = D?/ ~ (see 1.76 |) and drill a cylindrical hole into
D3 and glue its top and bottom via ~ to obtain a filled torus, where collections of
a many generators of the cylinder (e.g. the red/green edges) are glued to from a
closed curve which winds c-times around the core of the torus (i.e. the axes of the
cylinder) and a-times around the axes of the torus. The remaining D? with hole is
cut into a sectors, each homeomorphic to a piece of a cake, which yield D? x I after
gluing the blue sides (which correspond to points on S?) and groups of a many
generators of the cylindrical hole are glued to a circle St x {t}. After gluing the
green top and the correspondingly rotated bottom disc we obtain a second filled
torus, where the groups of a many generators of the cylinder (e.g. the red/green
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1.90 1. BUILDING BLOCKS AND HOMEOMORPHY

edges) form a meridian. This is exactly the gluing procedure described in for
M(a,c). d

1.88 Definition. [20, 1.9.7] A KNOT is an embedding S! — R? C 3.

1.89 Definition. [20, 1.9.6] Two embeddings f,g : X — Y are called TOPOLOGI-
CAL EQUIVALENT, if there exists a homeomorphism h : Y — Y with g = ho f. Each
two embeddings S' — R? are by Schénflies’s theorem (which is a strong version of
Jordan’s theorem) equivalent.

Remark. To each knot we may associated the complement of a tubular neighbor-
hood in S%. This is a compact connected 3-manifold with a torus as boundary.
By a result of [4] a knot is up to equivalence uniquely determined by the homotopy

class (see | 2.34]) of this manifold.

As another invariant we may consider closed (orientable) surfaces in R? of minimal
genus which have the knot as boundary.

Gluing cells

1.90 Notation. [20, 1.6.1] f: D" 2 "~ — X. Consider X Uy D", p: X UD" —
XU D™ e :=pD"),i:=plx : X = XUy D" = X Ue".
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.93

By i: X — X Ue" is a closed embedding, X Ne™ =) and p : (D™, 8" 1) —
(X Ue™ X) is a relative homeomorphism, i.e. p: D" 2 €™ is a homeomorphism.
For X Ty also X Ue™ is Ty:

Points in X can be separated in X by U; and the sets U;U{tz : 0 < t < 1, f(x) € U;}
separate them in X Ue". When both points are in the open subset e,,, this is obvious.
Otherwise one lies in e, and the other in X, so a sphere in D™ separates them.

Conversely we have:

1.91 Proposition. [20, 1.6.2] Let Z be Ty, X C Z closed and F : (D", S""!) —
(Z,X) a relative homeomorphism.
Then X Uy D™ = Z, where f := Flgn-1, via g:= (jUF)op™*.

Proof. We consider
f=F|sn—1

sn—1 X
X Uy D" J

V g
D F - Z

j: X — Z is closed by assumption and also F, since D" is compact and Z is T5.
Thus g is closed and obviously bijective and continuous, hence a homeomorphism.
O

1.92 Theorem. [20, 1.6.3] Let f : S"~' — X be continuous and surjective and X
be Ty. Then p|pn : D™ — X Uy D™ is a quotient mapping.

Proof. The restriction p|p~ is surjective, since f is. Since D™ is compact and

X Uy D™ is Ty by 7 p is a quotient mapping by . O
1.93 Examples. [20, 1.6.4]

136
(1) f:8" 1 = {x} =X = XU; D" = Dr/sn-l = gn.

) 1.47.3 )
(2) f: 8" = X constant == X Uy D" = XV (D"/S"') = XVS"

(3) f=id:S" ! —» "1 = X = X U; D" = D" by |1.92|
(4) f=incl: S"" 1 — D" =: X = X Uy D" 2 S™ by | 1.50.3 |.

3
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1.97 1. BUILDING BLOCKS AND HOMEOMORPHY

(5) [20, 1.6.10] Let g, : S' — S*, 2 — 2". Then S U,, D* = S' v 52 by ,
S'U,, D* = D? by [3], §Tu,, D2 = P? by [1.68.1], S' U, D? = S'U,  D?

by conjugation z — Z.

1.94 Theorem. [20, 1.6.9] [20, 1.6.11] Let i} : S* < \/;_; S* be z — 2" into
the ' summand S*, furthermore, By, = {exp(%”) ck—1<1t <k} an arc
of length 2= and fr : By — S', exp(2ZL) — exp(2mi(t — k + 1)). Finally, for
Jiyeeesdm € {1, r} let il e il 51 — /" St the mapping which coincides
on By with 2?: o fx, i.e. one runs first ni-times along the ji-th summand S*, etc

. . -1 =1 . . —1 —1 2 2 ]
Forg>1and f:=1;-i3-9] -ig -+--- iog—1l2g lgg 1 lg, TESP. fi=17 13 """ i

we have \/* S* Uy D2 = F, resp. \/gslufDZNN

Proof. = X, :=\V S Uy D? 2 D?/~ where z ~ y for z,y € S* & f(z) =
f(y). This is precisely the relation from ‘ 1.66 ‘, resp. ‘ 1.71 ‘ O

1.95 Proposition. [20, 1.6.5] [20, 1.6.7] [20, 1.6.8] We have a closed embedding
Pp !t PR via K® = K" x {0} C K"+, The mapping

F:K"D> D" PR (2. 2" [(a',..., 2", 1 — |z|)]

defines a relative homeomorphism F : (D% §9=1) — (IP’%,]P’H%_l). Thus, by ,
P = ]P’E(l UF|gan_1 D, Hence we have decompositions into disjoint cells:

Pr=eluelu---ue”, PRz=cfuclu---Ue?, and Ph=eluetu---uel”

Proof. The induced mapping ]P’%‘l — Pg is injective, hence a closed embedding.

The charts K® & U, = PR\PE !, (21,...,2") = [(2!,...,2", 1)] were construct-
ed in the proof of | 1.69 |
n F
The mapping D" \ §~1 — K" given D?
by @ — =f7, is a homeomorphism as in j JA
, and thus the composite F|an\sdn 1 o
is a homeomorphlsm as well. O D\ §dn— 1 — Pg \ Pg

1.96 Definition. Gluing several cells. [20, 1.6.12] For continuous mappings
fi: D" DSt — X for j € J let

X Uy, U D= XUy, ¥, |_| D",
jeJ jE€JT

1.97 Example. [20, 1.6.13]
(1) X Ugg,.pp) (D" LD™) = (X Uy, D") Uy, D", by [1.46]
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1. BUILDING BLOCKS AND HOMEOMORPHY 1.101

(2) Let f; :=id:S""! — S"~1 for j € {1,2}.
1.93.4
Then S™ ' Uy, ) (D"LD™) = (S~ 1Ue™)Ue” = D"Ue" =
(3) If fj : S"~! — {¥} =: X for each j, then X Uy, U,;c; D" =V, 8™
By D™\ Snml =2 R™ 22 §7\ {x} extends to a relative homeomorphism
A (D™, 8" = (S, {*}). Thus also | [; A =J x X: (Jx D", JxS" 1) —
(J x 8™, J x {x}) is a relative homeomorphism and J x A : J x D" — J x S™
is a quotient mapping by since J is locally compact as discrete space.
Hence also the induced mapping (Jx D™)/(JxS"™1) — (JxS™)/(Jx{x}) =
\ j S™ is a quotient mapping by and is obviously bijective, hence a

homeomorphism.
Jx §nH s J 5 DM —— (J x D) /(J x S"TY) ==], D"/, S""*
i [1.36] i] 1.32] l
I x {x} = J x 8" ——= (J x §7)/(J x {x}) ——=V/, 5"

Inductive limits

1.98 Definition. [20, 1.8.1] Let X be a set and A; C X topological spaces with
X = ;s Aj and such that the trace topology on A; N Ay induced from A; and
from Ay is identical and the intersection closed. We consider the final topology
induced on X by all the inclusions inj; : A; < X.

This topology induces on A; the given topology, moreover A; — X is a closed
embedding: Let B be closed in Aj, then BN Ay = BN (A; N Ag) is closed in the
topology of A; and hence also in that of A, so B is closed in the final topology on
X. Conversely, let B C A; be closed in the final topology of X, then B = BNA; =
injj_l(B) is closed in A;.

The canonical mapping p := |_|j inj; : |_|j Aj; — X is a quotient mapping by defini-
tion of the final topology (it is clearly onto and B C X is closed iff inj;1 (B) = BNA,;

is closed in A;) and thus we have the corresponding universal property:
A mapping f: X — Y is continuous, iff f|4; : A; = Y is continuous for all j.

1.99 Proposition. [20, 1.8.3] [20, 1.8.4] Let A be a closed (locally) finite covering
of X. Then X carries the final topology with respect to A.

Proof. See [6, 1.2.14.3]: Let B C X be such that BN A C A is closed for all A € A.
In order to show that B C X is closed it suffices to prove that Joee C = Upee C

for locally finite families C(:= {BNA : A € A}). (D) is obvious. (C) Let € (oo C
and U an open neighborhood of z with Cy := {C' € C: CNU # 0} being finite.
Then z ¢ Uceere, € and since 2 € Upee € = Ugee, € U Ucec\, € we have

z € Uoec, € = Ucec, CCUcecC [

1.100 Definition. [20, 1.8.5] Let A,, be an increasing sequence of topological
spaces, where each A, is a closed subspace in A, 1. Then |J, .y An with the final
topology is called (INDUCTIVE) LIMIT hgnn A, of the sequence (Ay,),.

1.101 Examples. [20, 1.8.6] [20, 1.8.7]
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1. BUILDING BLOCKS AND HOMEOMORPHY

1.

o IR = S B U X

R*>® := limn R™, the space of finite sequences. Let x € R*> and &, > 0.
Then {y € R® : |y, — z,| < £,¥n} is an open neighborhood of x in R*.
Conversely, let U C R*> be an open set containing x. Then there exists an
g1 > 0 with Ky := {y1 : |y1 — 21| < e1} € UNRL Since K; € R! C R?
is compact, there exists by [6, 2.1.11] an g2 > 0 with K5 := {(y1,92) : y1 €
K1, |ya — 22| < g2} € U N R2 Inductively we obtain &, with {y € R*> :
lyr — ak| < exVk} = U,, Kn C U. Thus the sets from above form a basis of
the topology.

In contrast, the sets (J,{y € R" : [ly — z|| < d,} do not from a basis for
this topology, since for 6§, \, 0 they contain none of the neighborhoods
from above, since z + (5,..., %,0,...) is not contained therein for n with
0n < 5.

S = %nn S™ is the set of unit vectors in R>.

P> = h_n}n P" is the space of lines through 0 in R*°.

O(c0) :=1im O(n), where GL(n) < GL(n +1) via A (49).

SO(o0) := lﬂ'n SO(n)

U(c0) := limg U(n)
SU(o0) :=lim SU(n)

28
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2. Homotopy

In this chapter we introduce the concept of homotopy. This leads to a weakening
of the concept of homeomorphy to that of homotopy-equivalence and the special
cases of (strict or neighborhood) deformation retracts.

2.1 Definition. [20, 2.1.1] A HOMOTOPY is a mapping h : I — C(X,Y’), which
is continuous as mapping h : I x X — Y, where h(t,z) := h(t)(z). Note that this
implies, that h: I — C(X,Y) is continuous for the compact-open topology (This
is a version of the topology of uniform convergence for general topological spaces
instead of uniform spaces Y. A subbasis for it is given by the sets Nxy := {f €
C(X,Y): f(K) C U} with arbitrary compact K C X and open U C Y') but not
conversely.

Two mappings h; : X — Y for j € {0,1} are

called HOMOTOPIC (we write hg ~ hy) if there ex-  {0,1} x X
ists a homotopy h : I — C(X,Y) with h(j) = h; for
j €{0,1}, i.e. a continuous mapping H : [ x X =Y T H
with and H(j,z) = hj(z) forallz € X and j € {0,1}. Ix X

W - 7z

2.2 Lemma. [20, 2.1.2] To be homotopic is an equivalence relation on C(X,Y).

hoUh1
- Y
7

2.3 Definition. [20, 2.1.5] The HOMOTOPY CLASS [f] of a mapping g € C(X,Y)
is [f] :=={g € C(X,Y) : g is homotopic to f}. Let [X,Y]:={[f]: f € C(X,Y)}.

2.4 Lemma. [20, 2.1.3] Homotopy is compatible with the composition.

For f : X’ - X and g : YV — Y’ let f* :

fr ,
C(X,Y) — C(X",Y) be defined by f*(k) := ko f CX,Y) ——C(XY)

and g, @ C(X)Y) — C(X.,Y’) be defined by Q*J/ R'C(f’g) ig*
g«(k) := gok. Finally, let C(f,g) := f*og. = T
geof*: C(X,)Y)=>C(X",Y'), k—gokof. (X, Y ?C(X/,Y’)

Proof. Let h : I — C(X,Y) be a homotopy and f : X' — X, g : Y — Y’
be continuous. Then C(f,g)oh := f*ogioh : I — C(X',Y’) is a homotopy
gohgo f~gohyof, since (C(f,g)oh)"=goho(Ix f)is continuous. O
2.5 Definition. [20, 2.1.4] A mapping f : X — Y is called 0-HOMOTOPIC iff it is
homotopic to a constant mapping.

A space X is called CONTRACTIBLE, iff idx is O-homotopic.

2.6 Remarks. [20, 2.1.6]
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(1) Any two constant mappings into Y are homotopic iff Y is path-connected:
In fact, a path y : I — Y induces a homotopy ¢ — const, ).

(2) [{*},Y] is in bijection with the path-components of Y : homotopy = path.

(3) Star-shaped subsets A C R™ are contractible by scalar-multiplication. In par-
ticular, this is true for A = R"™ and for conver subsets A C R™.

(4) For a contractible space X there need not exist an appropriate homotopy h
which keeps the point fixed, e.g. the infinite comb (see |2.36.10 |).

Contractible spaces are path-connected.

(5) Any composition of a 0-homotopic mapping with any mapping is 0-homotopic:
[2.4]

(6) If Y is contractible then any two mappings f; : X — Y are homotopic, i.e.
[X,V]:= {+}:[24]

(7) Any continuous none-surjective mapping f : X — S™ is 0-homotopic:
S™\ {x} 2 R"™ by , now use |3 | and @

(8) If X is contractible and Y is path-connected then any two mappings f; :
X =Y are homotopic, i.e. [X,Y]={+}:|5|and .

(9) Any mapping f : R™ =Y is 0-homotopic: and the arguments in .

2.7 Definition. [20, 2.1.7] [20, 2.1.8] [20, 2.1.10]

(1) A HOMOTOPY RELATIVE A C X is a homotopy h : I — C(X,Y) with
incl*oh : I — C(X,Y) — C(A,Y) being constant. Two mappings h; :
X — Y are called homotopic relative A C X, iff there exists a homotopy
h:1— C(X,Y) relative A with boundary values h(j) = h; for j € {0,1}.

(2) A HOMOTOPY OF PAIRS (X, A) and (Y, B) is a homotopy h: I — C(X,Y)
with h(I)(A) C B. Two mappings h; : (X, A) — (Y, B) of pairs are called
HOMOTOPIC, iff there exists a homotopy (of pairs) h : I — C(X,Y) with
h(I)(A) € B and h(j) = h; for j € {0,1}. We denote with [ho] also this
homotopy class and with [(X, A), (Y, B)] the set of all these classes.

(3) A homotopy of pairs with A = {z¢} and B = {yo} is called BASE-POINT
PRESERVING HOMOTOPY. We have f ~ g : (X,{z0}) = (Y, {yo}) iff f ~¢g
relative {zo}.

2.8 Example. [20, 2.1.9] Since I is contractible we have [I,I] = {[t — 0]} by
[2.6.6], but [(1,1), (I, 1)) = {fid], [t = 1 — ], [t = 0], [t — 1]}
2.9 Lemma. [20, 2.1.11] Let p : X' — X be a quotient mapping and let h : I —

C(X,Y) be a mapping for which p*oh : I — C(X',Y) is a homotopy. Then h is a
homotopy.

Proof. Note that for quotient-mappings p the induced injective mapping p* is in
general not an embedding (we may not find compact inverse images). However

m =ho (I x p) and I X p is a quotient-mapping by . O

2.10 Corollary. [20, 2.1.12]
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(1) Let p : X' — X be a quotient mapping, h : I — C(X',Y) be a homotopy
and hy op™! : X =Y be a well-defined mapping for all t. Then this defines
a homotopy I — C(X,Y) as well: This is just a reformulation of .

(2) Let f : X D A=Y be a gluing map A—f>Y
and h : I — C(X,Z) and k : I —
C(Y, Z) be homotopies with incl* oh =
f*ok. Then they induce a homotopy
I C(YU; X, Z):
Apply and top:YUX —

YUfX.

(3) Let h : I — C(X,Y) be a homotopy compatible with equivalence relations
~on X and on'Y, i.e. x ~ x' = h(t,z) ~ h(t,x’). Then h factors to a
homotopy I — C(X/~,Y/~): Apply | 1| to (gy)xoh: I — C(X,Y/~).

(4) Each homotopy h : I — C((X, A), (Y, B)) of pairs induces a homotopy I —
C(X/A,Y/B):[3].

(5) Homotopies b/ : I — C((X;,2Y),(Y;,yY)) induce a homotopy V; i I —
C((V; X, 29), (V; Y;,y%)): Apply to the homotopy h - I — C((L; X, {2 :
3h, (L; Y5, 48 2 31)-

2.11 Example. [20, 2.1.13]

(1) Let hy : (X,I) — (X,I) be given by hi(z,s) := (x,ts). This induces a
contraction of the cone CX := (X x I)/(X x {0}) to its apex by |2.10.3 |.

(2) The contraction of D™ = CS™~! given by is not compatible with the
equivalence relation describing D™ /S™~! 22 §™ hence induces no contraction
of S™. We will see in and , that S™ is not contractible at all.

Homotopy classes for mappings of the circle

2.12 Definition. [20, 2.2.1] We consider the (periodic) quotient mapping (and
group homomorphism) p : R — S, ¢+ 2™ as well as its restriction p|; : I — S*.

©
A mapping ¢ : I — R factors to a well defined I =R
mapping @ := powop~ ! : S — ST if and only ip ip

if n:=p(1) —¢(0) € Z.

€l

Sl - Sl
Conversely:
2.13 Lemma. [20, 2.2.2] (R,0) L= (R, 0)
Let f : S' — S! be continuous, then there
exists a unique continuous ¢ : (R,0) = (R,0) ip ip
with f = f(1) - @. (S, 1) f)~f (S1,1)

Proof. Replace f by f(1)~!- f,ie wlo.g. f(1)=1.Let h:= fop: R — S'. Then
h is periodic, uniformly continuous and h(0) = 1. So choose ¢ > 0 with |t —¢'| < §
= |h(t) — h(t")| < 2 and hence % # —1. Let t; := j 6. The mapping ¢ — e’ is a
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homeomorphism (—m,7) — S\ {—1}. Let arg : S*\ {-1} — (==, 7) C R denote
(z

ar8()) — 2. Then for t; <t <t let

1 h(ty) h(t)
o(t) = 7 (arg h(to) + .-+ arg h(tj)> ,

which gives the desired lifting.

its inverse, i.e. p(

This lifting is unique, since the difference of two such liftings has image in the
discrete subset p~1(1) C R, and hence is constant (=0). O

2.14 Definition. [20, 2.2.3] Let f : S — S! be continuous and ¢ as in [2.13],
then deg f := (1) € p~1(1) = Z is called MAPPING DEGREE of f.

2.15 Theorem. [20, 2.2.4] deg induces an isomorphism [S', S| = Z of semigroups.
In more detail:

(1) The mapping gn : z — 2™ from | 1.93.5| has degree n.
(2) Two mappings are homotopic iff they have the same degree.

(3) deg(f1 o f2) = deg(f1) - deg(f2)-
Proof. | 1| follows since ¢(t) =n - t.
Let f be a homotopy I — C(S',S'). Then, by , there exists a lifting
o : I — C(R,R) with p(¢:(2)) = fe(1)~ - fi(p(2)). This ¢ is a homotopy, since we

can use for each h; the same § in the proof of[ 2.13|. In particular ¢, (1) € p~1(1) = Z
and hence is constant. So deg(fo) = po(1) = p1(1) = deg(f1).

Conversely, we define ¢ : I — C(R,R) by ¢; := (1 — t)eo + tp1. Then this induces
a homotopy f: I — C(S*,S!) by , since ¢¢(1) = deg(fo) = deg(f1) € Z.

Let n := deg(f1) and m := deg(f2). Obviously, g, © gm = gnm. By and
f1 ~ gn and fa ~ g, hence fio fo ~ gn0gm = gnm and thus deg(f10 f2) =nm. O

2.16 Remarks. [20, 2.2.5]
(1) deg(id) = 1: id = g1; f 0-homotopic = deg(f) = 0: f ~ go; deg(g—1 : z —~

%)= 1 by [2.05.4],

(2) f homeomorphism = deg(f) € {£1}, by since deg(f) is invertible
in Z.

(3) incl : ST < C\ {0} is not 0-homotopic, since idg: is not: deg(id) = 1 and
applied to C \ {0} — S. We can use [S™, X] to detect “holes” in X.

(4) The two natural inclusions inc; : ST < S1x St are not homotopic: pry oinc; =
id, pry oincg ~ 0.

2.17 Lemma. [20, 2.2.6] S' is not contractible.

Proof. deg(id) = 1. O

2.18 Definition. [20, 2.3.1] A subspace A C X is called RETRACT iff there exists
anr: X — A with r|4 =ida, i.e. an extension r : X — A (called a RETRACTION)
of idA.

Being a retract is a transitive relation. Retracts in Hausdorff spaces are closed
A={ze X :r(z)=2})

2.19 Lemma. [20, 2.3.2]
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(1) A subspace {1 C X s a retract of X iff every function f : A =Y can be
extended to f : X =Y.

(2) Let A C X be closed. Then a function f: A —Y can be extended to X iff
Y is a retract of Y Uy X.

Proof. For we prove that id4 can be extended iff any f : A — Y can be

extended:
A Y
X

f

-

—Y U

X

~

i

Xy
Thus the extensions f of f: A — Y correspond to retractions r = idy U f of
Y CYurX. O

2.20 Lemma. [20, 2.2.7] There is no retraction of D* to S* — D?.

Proof. Otherwise, let r : D> — S! be a retraction to ¢ : S' < D?2. Then id =

rot~ro0=0,a contradiction to | 2.16.1|. O

2.21 Lemma. Brouwer’s fixed point theorem. [20, 2.2.8]
Fvery continuous mapping f : D> — D? has a fized point.

Proof.

Assume f(z) # z and let r(z) be the
unique intersection point of the ray from
f(x) to  with S*. Then r is a retraction,

a contradiction to . O

2.22 Lemma. Fundamental theorem of algebra. [20, 2.2.9]
Every nonconstant polynomial has a root.

(X

Proof. Let p(r) = ag + -+ + ap,_12" " + 2" be a polynomial without root and
n>1,s:=lag|+ -+ |ap_1]+1>1and z € S'. Then

Ip(sz) — (s2)"| < |ao| + slar| + -+ + 5" Han_1]
<" Hagl + - A Jan_1]) < 8™ = |(s2)".

Hence 0 ¢ p(sz), (sz)™. Thus z — s" 2", St — C\{0} is homotopic to z + p(sz) and
consequently 0-homotopic. Hence 0 ~ g, : z — 2", a contradiction to . O

2.23 Definition. [20, 2.2.10]
The DEGREE of f : S* — R2
with respect to 29 & f(S1) is
the degree of x % and
will be denoted by U(f, 29) the
TURNING (WINDING) NUMBER 0
of f around zg.
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2.24 Lemma. [20, 2.2.11] If zg and 2, are in the same component of C\ f(S!)
then U(fa ZO) = U(f) Zl)'

Proof. Let t — z; be a path in C\ f(S*). Then t — (z ch;:zz‘) is a homotopy

and hence U(f,20) = U(f,21) by . O

2.25 Lemma. (20, 2.2.12] There is exactly one unbounded component of C\ f(S*)
and for z in this component we have U(f,z) = 0.

Proof. For 2’ outside a sufficiently large disk containing f(S') (this complement
is connected and contained in the (unique) unbounded component) the mapping

= (o e -a)

is a homotopy showing that x — f(x):x: is 0-homotopic and hence U(f,z') = 0
[f(@)—a'|
and thus U(f,_) = 0 on the unbounded component by . O

By Jordan’s curve theorem there are exactly two components for an embedding
f:81 = Cand U(f,2) € {&1} for z in the bounded component.

2.26 Theorem. [20, 2.3.3] A mapping
[+ X =Y is 0-homotopic iff there exists J /

tensi :CX =Y with = f.
an extension f with flx = f P X -
Proof. We prove that homotopies h : X x T i
I — Y with constant hg correspond to t h

; : A
extensions h: CX — Y of h;. O X x {0} _ t Sy

o=cons

2.27 Theorem of Borsuk and Ulam. [20, 2.2.13]
For every continuous mapping f : S? — R? there is a z € S? with f(2) = f(—=2).

Proof. Suppose indirectly that f(z) # f(—z) for all z € S%. Consider f; : S? — S,

v MO and fy 0 CS' = D? 5 8% 5 SY @ s filw, /T [2). Then

g := fals1 ~ 0 via fy by . Let ¢ : (R,0) — (R,0) be the lift of g(1)~'g from
and hence (1) =: deg(g) = 0. Since f; and thus also g is odd, we have
glexp(2mi(t + 1))) = g(— exp(2mit)) = —g(exp(2mit)) for all t. Hence

exp(2mip(t + %)) — g(1) " g(exp(2mi(t + %))) = —g(1)"g(exp(2nit))
= —exp(2mip(t)) = exp (27m'(cp(t) + %))

Hence k := ¢(t + ) — ¢(t) — 5 € Z and is independent on ¢. For t = 0 we get
e(3)=k+ 1 and for t =  we get deg(g) = ¢(1) =p(3)+ 2 +k=2k+1#0,a
contradiction. O

2.28 Ham-Sandwich-Theorem. [20, 2.2.14]
Let Ag, Ay, As be bounded measurable subsets of R3.
Then there is a plane which cuts Ag, A1 and As in exactly equal parts.

Proof. We denote the halfspaces with H, 4 := {z € R : (z,a) < d} and the
volume of the trace of A; on this halfspace with p;(a,d) := p(A; N Hy,q). Then
pj 8% x R — R is a continuous function with u;(—a, —d) + p;(a,d) = p(4;) and
monotone increasing with respect to d. Let d, be the midpoint of the closed interval
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I, :=={d: po(a,d) = u(Ap)/2}. For d € I, we have pg(a,d) = “(‘240) = po(—a, —d)
and hence d_, = —d,.

Moreover, a — d, is continuous: let d_ := min/l,, and dy := maxI,,. Then
to(ao,d) < p(Ag)/2 for all d < d_ and by continuity of po there exists for € > 0
a § > 0 such that po(a,d_ —¢e) < p(Ap)/2 for all |a — ag] < § and analogously
to(a,dy +¢) > u(Ap)/2 for all |a — ag| < 9§, thus I, C [d- — e,d4 + €]. In case
d_ = dy we get |dg — dg,| < e. Otherwise d — p(ag,d) = p(Ap)/2 is constant on
[d_,dy] and thus p(Ao N (Hag,d, \ Hag,a_)) = plao, dy) — p(ag,d—) = 0. Hence we
may assume that § > 0 is so small, that p(a,d) = u(Ap)/2 for all |a — ag| < § and
alld_ +e<d<dy —e. Soagain |d, — dg,| < €.

Now let f : S? — R? be given by f(a) := (u1(a,da), u2(a,ds)). By there
exists a point b € S? with f(b) = f(—b). Since d_, = —d, we have that f(-b) is
the volume of A; and A, on the complement of H, q4,. O

2.29 Definition. [20, 2.3.4] A pair (X, A) is said to have the general HOMOTOPY
EXTENSION PROPERTY (HEP) (equiv. is said to be a COFIBRATION) iff A is closed
in X and we have

AC— s X A

iHS(:l insorl

[ h H
Ho
X
or, equivalently,
AC This is dual to the'notion' of A <<74 X
FIBRATION (mappings with N =
hl H J/Ho the homotopy lifting prop- =
£ ty): Y xI <Y
CUY) Y erty) e
2.30 Theorem. [20, 2.3.5]
(X,A) has HEP & L:= X x {0} UA x I is a retract of X x I.
A
Proof. (X, A) has HEP < —
& each f: L =Y extends to X x I | //
L C X x I is a retract. O]

2.31 Remarks. [20, 2.3.6]

(1) The pair (D™, S™~1) has the HEP: Radial projection from the axis at some
point above the cylinder is a retraction.

(2) If (X, A) has HEP then (Y Uy X,Y) has HEP for each f : A=Y :

At oy " oz

T
J [ @ J{ew
RO R

X >YUu; X Z

Ho

(3) If Z is obtained from'Y by gluing cells, then (Z,Y") has HEP: < , .
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(4) The pair (N, {c0}) does not have HEP.

Otherwise, for z # oo the map ¢t +—
r(z,t), I — L, maps 0 — (z,0) =
r(fe} x 1) € Ln ({«} x I) = {(z,0)},
but r(x,1) is near r(co0, 1) = (o0, 1) for =
43 2

near o0.
o

1 0

2.32 Remark. [20, 2.3.7] Let (X, A) has HEP.

(1) If f~g: A=Y and f extends to X then so does g: By Definition of HEP.

(2) If f: X =Y is 0-homotopic on A, then there exists a mapping g homotopic
to f, which is constant on A:
Consider f on X x {0} and the given homotopy on A x I.

(3) If A={x0} and Y is path-connected, then every mapping X — Y is homo-
topic to a base-point preserving one:
Consider f on X x {0} and a path w on {z} x I between f(z() and yo.

(4) There exists a continuous u : X — I with A =u"1(0):
Define u(z) := sup{t — pry(r(z,t)) : t € I}. Then v : X — I is continuous,
ula =0, and u(x) = 0=t < pry(r(z,t)) = pry(r(z,t)) # 0 for ¢t > 0, thus
r(z,t) € A x I for t > 0 and hence also (z,0) = r(z,0) € A x I, ie. x € A.
(5) For closed subsets A of metric spaces Y there always exists a function u :

Y —>1Tasin : Define u(y) := d(y, A) = inf{d(y,a) : a € A}.

2.33 Theorem. [20, 2.3.8] If (X, A) has HEP, then so has (X x I, X x TUAx I).

Proof.

We use to show that X x I x I has L :=
X xIx{0}U(X x TUAxTI)x I as retract. For this
we consider planes E through the axis X x(1/2, 2).
For planes intersecting the bottom X x I x {0} we
take the retraction r of the intersection F N (X x
I xI) = X x I (via horizontal projection) onto
the intersection ENL = X x {0} UA x I. For
the other planes meeting the sides we take the
retraction r of the intersection EN (X x I x I) =
X x [0,s/4] 2 X x [0, s] (via vertical projection)
onto the intersection ENL = X x {0} N A x [0, s].
For this we have to use that the retraction 7 :
(x,t) — (ri(x,t),r2(x,t)) given by can be
chosen such that ro(x,t) <t by replaceing ro(x, t)
by min{t,rs(z,t)}.

Homotopy equivalences

2.34 Definition. [20, 2.4.1] [20, 2.4.2] [20, 2.4.3]

(1) A HOMOTOPY EQUIVALENCE is a mapping having an inverse up to homotopy.
It is enough to assume a homotopy left inverse [ and a homotopy right inverse
r, i.e. [I] o [f] = [id] and [f] o [r] = [id], since then [f] o [I] = [f]o[]] o
lid] = [f]o [ o [f]ofr] = [f] o [id] o 1] = [f] o [r] = [id]. Two spaces are
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called HOMOTOPY EQUIVALENT (and we write ~) iff there exists a homotopy
equivalence between them.

(2) A continuous mapping between pairs is called HOMOTOPY EQUIVALENCE OF
PAIRS, iff there is a mapping of pairs in the opposite direction which is inverse
up to homotopy of pairs.

(3) A subspace A C X is called DEFORMATION RETRACT (DR) iff there is a
homotopy h; : X — X with hg = idx and h; : X — A C X being a
retraction to A — X.

(4) The subspace A C X is called STRICT DEFORMATION RETRACT (SDR) iff,
in addition to , h: is a homotopy rel. A and there exists a continuous
u: X — I with A = u=1(0). The later condition is not assumed in [20,
2.4.3]

(5) A subspace A C X is called NEIGHBORHOOD DEFORMATION RETRACT (NDR)
iff there exists a continuous u : X — I with A = v~1(0) and a homotopy
hy : X — X relative A with hy =idx and hi(z) € A for u(x) < 1.

Note that the SDRs are exactly the NDRs for which u can be choosen with
u(z) < 1for all z € X (replace u by %).
For NDR it suffices to assume that the homotopy h; is a homotopy on
U :={z: u(x) < 1}, since we can replace it by the new homotopy h;(x) :=
Rt max(0,min(1,2—3u(z))) (z) for all z € U(A), i.e. u(x) < 1. Then
ﬁt(x){x for z € A or u(z) > 2
hi(z) fort=1and u(z) < 3

Thus A extends by id to a homotopy of X and with @(x) := min{1, 3u(z)}

we get the NDR property.

2.35 Theorem. [20, 2.4.4] For (X, A) with HEP the following is equivalent:

(1) A — X is a homotopy-equivalence;
(2) Ais a DR of X;
(3) A is an SDR of X.

The implications :>:>) are true without assuming HEP.

Proof. (:>) is obvious.

(:>) Let h; be a homotopy from idy to a retraction h; : X — A C X. Then h;
is a homotopy inverse to ¢ : A < X, since hy ot =idy and tohy = hy ~ hg = idx.
(:>) Let g be a homotopy inverse to¢ : A < X. Since got ~idgandg: X — A
is an extension of got, we conclude from | 2.32.1 [that id4 : A — A has an extension
r: X - AC X, ie. aretraction. Moreover, idxy ~tog=rotog~roidyxy =r.

(:>) Let hy : X — X be a homotopy from hg = idx to a retraction hy = r:
X 5> ACX andlet H,: W:=X xUAx I — X be given by

Hi(z,s) = hst(r(z)) fiir s =1 (the back side)
t(x,8) = hsi () elsewhere, i.e. for € A or s = 0 (front) or even ¢t = 1 (top).

Because of r(z) = z for € A the definition coincides on the intersection. Since
the expression for Hy works on X x I and (X x I,W) has HEP by we can
extend Hy to X x [ by|2.32.1| This is the required deformation idx ~ r rel. A.

Since (X, A) has HEP we have A = «"1(0) fora u: X — I by|2.32.4|. O

2.36 Remarks. [20, 2.4.5]
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(1) X is contractible iff it is homotopy-equivalent to a point:
X is contractible :& idx ~ const, < {*} C X is a DR < {x} & X.

(2) Ewvery set being star-shaped with respect to some point, has this point as SDR.

Furthermore, S"~1 C R™\ {0} is SDR: The radial homotopy from is
the strict deformation.

(3) Composition of (S)DRs are (S)DRs:

2 <
Wt z) = {h (2t, ) for t <

nl h2
h (N g™
RU2t —1,h2(1,2)) fort>1 o ® * *

SN

and v := max{ug,u; o h3}.
(4) If {x} is an (S)DR of Y, then so is X x {*} of X XY and of XVY C X xY:
Use hy(z,y) := (z, he(y)) and u(z,y) := u(y).

(5) If (X, A) is an NDR and (Y, B) is an NDR (SDR), then (X xY, X x BUAXY)
is an NDR (SDR): Let

(pst (@) 1u(®)  for 0 # u(a) = u(y)
hi(z,y) = (ht(x),ht%(y)) for u(z) <wu
w2
(z,y) for u(z) =0 =u(y)
and u(z,y) = min{u(z), u(y)}. The continuity of (¢, z,y) — hi(z,y) follows,
since hi(z) — hi(xo) = 2o for £ — z¢ € A uniformly in ¢t and similarly for

hi(y).
If u(z,y) < 1 and say u(xz) < u(y) then u(x) < 1 and hence h;i(x) € A and
thus hy(z,y) € A x X.

(6) The complement of any k-dimensional affine subspace of R™ has S" %=1 as
SDR: R™\ R* = R¥ x (R™%\ {0}) ~ {0} x (R"~*\ {0}) = R** 1, {0} ~

Sn=k=1 by , , and .
(7) X x {0} is an SDR of X x I and consequently the apex X x {0} € C(X) is

an SDR of CX : By , , and .

(8) St is a DR of X x St for every contractible X and also of the M&bius strip:
By , , and using I x {0} C I x [—1,1] for the M&bius strip.

(9) Ewvery handle-body of genus g has S*V ---V S as SDR.

D ok

(10) The infinite comb (see ) has (+00,1) as DR but not as SDR.

2.37 Proposition. [20, 2.4.6] If A is an NDR (SDR) in X and f : A — Y s
continuous, then'Y is an NDR (SDR) inY Uy X.
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Proof.
Idea: A—f>Y Details: IxA 7 IxY
(l 1\ (l 1 K
X—>YUfX IXX—>I><(Y fX) Y
X R ,l \ ' ,; l
A N
X—YUur X X YUurX

Note that the product of a pushout with a locally compact space is again a pushout.
Let w: Y Uy X — I be given by u(y) := 0 for y € Y and u([z]) := u(z) for z € X.

2.38 Corollary. [20, 2.4.7] If Z is built from Y by gluing simultaneously cells, then
Y is an SDR in Z \ P, where P is given by picking in every cell a single point.

Proof. Use [2.36.2 ] and [ 2.37]. O

2.39 Example. [20, 2.4.8] The pointed compact surfaces have S' Vv --- Vv St as
SDR.

Proof. By they are S*V ---V 81Uy (D?\ {0}). Now use | 2.38 . O

2.40 Theorem. [20, 2.4.9] For a pair (X,A) and L:=X x {0} UAXT C X x [
the following statements are equivalent:

(1) (X, A) is NDR;

(2) (X x1I,L) is SDR;

(3)
(4)

L is a retract of X x I;
4) (X,

A) has HEP.

Proof.

(1=2) By |2.36.5 |, since (X, A) is NDR and (/, {0}) is SDR.
(2=-3) Take r := h;y.

(3e4) is [2.30].

(3=1) Let r = (r1,7r2) be a retraction for L < X x I.
Define u(z) := sup{t — ro(z,t) : t € I} and hy(x) := r1(z,t). Then A = u=1(0) as

in | 2.32.4|. Furthermore, ho(z) = r1(z,0) = z, hy(a) = r1(a,t) = a for all a € A,

and u(z) < 1= ra(z,1) > 0= hi(z) =ri(z,1) € A O

2.41 Dependencies for closed subspaces A — X.

SDR
/ \ -2.40
DR NDR <—— HEP
/ \ ﬂ [2.324]
Retr. A~X =u"
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2.42 Counter-Examples.
y Prop. [LC E [{(00, 1)} CE [ {0} CNy [ STCD?[{0} C I, 1|
SDR - - - - -
NDR=HEP -
DR
Retract
A~X
A=u"1(0)

+ 4+ +
+ + + +
+ 1+

\
I+ + +

Here

e (Nu,00) = ({2 :0+#neN}u{0},0),
o E:=Ng x IU][0,400] x {0} is the infinite comb,

e and L := {oo} x TU[0,+00] x {0} C E.

2.43 Definition. [20, 2.4.10] The MAPPING CYLINDER M/ of a mapping f : X - Y
is given by Y Uy (X x I), where f is considered as mapping X x {1} =2 X —» Y.

We have the diagram
f

xX— vy
i T
HEP SDR
My

where f = roi and i is a closed embedding with
HEP and Y — M/ a SDR (along the generators
X x I) with retraction  (by[2.36.7 | and [ 2.37]).
To see the HEP, construct a retraction My xI —
M; x {0} UX x I by projecting radially in the
plane {x} x I x I from {z} x {1} x {2} and use

[2.30)

2.44 Corollary. [20, 2.4.12] Two spaces are homotopy equivalent iff there exists a
third one which contains both as SDRs.

Proof. (=) Use the mapping cylinder as third space. Since f is a homotopy equi-
valence, so is ¢ : X — My by and by the HEP it is an SDR by .

(<) Use that SDRs are by always homotopy equivalences. O

2.45 Proposition. [20, 2.4.13] Assume (X, A) has HEP and f; : X D A=Y are
homotopic. Then Y U, X and Y Uy, X are homotopy equivalent rel. Y.
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A i Y
N AT
Proof. !
Consider the homotopy f : A x I — Y and AxT
the space Z :=Y Uy (X x I). We show that o
Y Uy, X are SDRs of Z and hence are homo- PO

topy equivalent by . Yuy X

X
Here we use that if the composite of push-out PO SDR m
and a commuting square is a push-out then -

so is the second square, cf. | 1.47 |. O pL Z

X x1I

2.46 Example. [20, 2.4.14] The dunce hat D, i.e. a triangle with sides a, a, a™*
identified, is contractible:
By |1.92],[2.31.1],[2.45], and [ 1.93.3 | we have D = S* Uy D? ~ S' Ujq D? = D2.

2.47 Proposition. [20, 2.4.15] Let A be contractible and let (X, A) have the HEP.
Then the projection X — X/A is a homotopy equivalence.

Proof. Consider
AC— X — X/A

E R .
ftl Fy: Ry

AC— X — X/A

Then R, being given by factoring F} (since F1(A) = {x}), is the desired homotopy
inverse to X — X/A (since Iy =ida and Fp = idx/4). O
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In this chapter we consider topological spaces (the so-called polyhedra) which can
be treated by combinatorial methods (so called simplicial complexes) and we will
prove homotopy properties for them.

Basic concepts

3.1 Remark (Points in general position). [20, 3.1.1] A finite set of points
Zo, ..., Tq in R™ is said to be IN GENERAL POSITION if one of the following equivalent
conditions is satisfied:

1. The affine subspace {d.7_,Xiz; : Y i_gAi = 1} generated by the z; has

dimension g¢;

2. No strict subset of {zo, ..., x4} generates the same affine subspace;

3. The vectors x; — xg for ¢ > 0 are linear independent;

4. The representation Y ¢ A\;z; with Y7 A; = 1 is unique.
These statements are equivalent, since

Z Ny = (1 — Z )\i)l‘o + Z NiT; = T + Z )\1(1‘1 — xo)

i#0 i#0 i#0
{Z)‘ixi : Z)‘i = 1} =0+ {ZAZ(% - IEO)}
i i i#0

3.2 Definition (Simplex). [20, 3.1.2] The SIMPLEX of dimension ¢ (or short:
g-simplex) generated by points zo, ..., z, in general position is the set

o= (Tg,...,Tq) = {Z/\ixi : Z/\i =1,Vi:\ >O}
Its closure in R™ is the convex hull

The points x; are called the VERTICES of o. Note that as extremal points of & they
are uniquely determined. The set ¢ := 7 \ ¢ is called boundary of o.

X2

=}

<Xp> <Xg,X1>

X %o X <Xo,X1,%2>

Xo X

fia

3.3 Lemma. [20, 3.1.3] Let o be a q-simplex. Then (5,5) = (D?,5971).
Proof. Use for the affine subspace generated by o. O

3.4 Definition (Faces). [20, 3.1.4] Let ¢ and 7 be simplices in R™. Then 7 is
called FACE of o (and we write 7 < o) iff the vertices of 7 form a subset of those of
o.

3.5 Remark. [20, 3.1.5]
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(1) Every g-simplex has 291 — 1 many faces and it has (Zﬁ

dimension p: In fact this is the number of none-void subsets (of cardinality
p+1)of {zg,..., x4}

) many faces of

(2) The relation of being a face is transitive.

(3) The closure of a simplex o is the disjoint union of all its faces o=, ., 7:
Remove all summands \;z; in ¢ = Zl Aix; for which \; = 0 to get the face

containing x.

3.6 Definition (Simplicial Complex). [20, 3.1.6] A SIMPLICIAL COMPLEX K is
a finite set of simplices in some R™ with the following properties:

l.ceK,7<o=71€K.

2.0,TeK,0#17=0nT1=0.

The O-simplices {z} (or their elements x) are called VERTICES and the 1-simplices
are called EDGES of K.
The number max{dimo : o € K} is called DIMENSION of K.

3.7 Definition (Triangulation). [20, 3.1.7] For a simplicial complex K the sub-
space |K| := (J,c 0 is called the UNDERLYING TOPOLOGICAL SPACE. Every space
which is homeomorphic to the underlying space of a simplicial complex is called
POLYHEDRA. A corresponding simplicial complex is called a TRIANGULATION of the
space.

3.8 Remark. [20, 3.1.8] We have |K| = J,cx 0 and hence every polyhedra is
compact and metrizable:

U2y y-2 Jr-ix

ceK ceK t<o TEK

Moreover, @ N T is a either empty or the closure of a common face:

[

reocnNT reop<ogreEn ST oo=m1CoNT

and each closed convex subset of & (like & N 7) which consists only of whole faces
has to be the closure of some face, namely the simplex generated by all vertices of
these faces.

3.9 Remarks. [20, 3.1.9]

1. Regular polyhedra are triangulations of a 2-sphere.
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3.14 3. SIMPLICIAL COMPLEXES

2. There is a triangulation of the Mobius strip by 5 triangles.

2 5

3. There is a (minimal) triangulation of the projective plane by 10 triangles:
Add the cone with the boundary of the M&biusstrip as base and an apex not
in R3.

4. One can show, that every compact surface, every compact 3-dimensional
manifold and every compact differentiable manifold has a triangulation.

5. It is not known whether every compact manifold has a triangulation.

6. Every ball (and every sphere) has the n-simplex together with all its faces
as a triangulation.

7. A countable union of circles tangent at some point is not a polyhedra, since
it needs infinite many 1-simplices for a decomposition.

3.10 Definition (Carrier Simplex). [20, 3.1.10] For every = € |K| exists a unique
simplex ¢ € K with = € o by . It is called the CARRIER SIMPLEX of x and
denoted carrg (z).

3.11 Lemma. [20, 3.1.11] Every point x € |K| has a unique representation x =
Do N, with Yo A =1 and \; > 0 and vertices {x;} of K. The x; are the vertices
of the carrier simplex carrk (z) of x.

Conversely, any point x = Y. N\jx;, with Y, A\ = 1 and X\; > 0 and such that the
set of those x; generate a simplex o € K, belongs to |K|. O

3.12 Definition. [20, 3.1.12] A SUBCOMPLEX is a subset L C K, that is itself a

simplicial complex. This is exactly the case if 7 < o € L = 7 € L (condition
is obvious).

3.13 Lemma. [20, 3.1.13] A subset L C K is a subcomplex iff |L| is closed in |K]|.

Proof. (=) since |L| is compact by .
(<:)T§a€L:>T§5§|L|:Up€Lp:>E|p:T:p€L7byandthen

362} 0

3.14 Definition (Components of a Complex). [20, 3.1.14] Two simplices o
and 7 are called CONNECTIBLE in K iff there are simplices o9 = o,...,0, = T
with 6; N&,4+1 # 0. The equivalence classes with respect to being connectible are
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3. SIMPLICIAL COMPLEXES 3.20

called the COMPONENTS of K. If there is only one component then K is called
CONNECTED.

3.15 Lemma. [20, 3.1.15] The components of K are subcomplexes and their un-
derlying spaces are the path-components (connected components) of |K]|.

Proof. Since & is a closed convex subset of some R™, it is path-connected and
hence the underlying subspace of a component is (path-)connected. Conversely,
if two simplices ¢ and 7 belong to the same path-component of the underlying
space, then there is a curve ¢ connecting o with 7. This curve meets finitely many
simplices 09 = 0,...,0n = 7 and we may assume that it meets o; before o; for
i < j. By induction we show that all ; belong to the same component of K. In fact
if 00, ..., 051 does so, then let to := min{t € [0,1] : ¢(¢) € 7;}. Then c(t) € U, 0;
for t < tg and hence c(tg) € Uj<i7jﬂﬁ. Thus ; No; # 0 for some j < i. O
3.16 Definition (Simplicial Mapping). [20, 3.1.16] A mapping ¢ : K — L
between simplicial complexes is called SIMPLICIAL MAPPING iff

1. Tt maps vertices to vertices (and we write p({z}) =: {¢(x)}); And

2. If o is generated by vertices xo, . .., x4 then ¢(o) is generated by the vertices

p(20), - p(2g), Le. p((To, -+, xq)) = {p(w:) : 0 <0 < g}).
Attention: Tt is not assumed, that the ¢(z;) are pairwise distinct, so we
need to consider simplices generated by a finite set of vertices.

3.17 Lemma. [20, 3.1.17]

1. A simplicial mapping is uniquely determined by its action on the vertices.
2. Ifo <7 €K then (o) < ¢(1) € L.
3. dim(p(0)) < dimo.

Proof. This follows immediately, since ¢({zo,...,zq)) = {@(z;) : 0<i<gq}). O

3.18 Definition (Underlying continuous Mapping). [20, 3.1.18] Let ¢ : K —
L be a simplicial mapping. Then, by ,

o] (Z )\ixi) = Z)\M(l‘i) for z; € K, Z)\i =land \; >0

describes a welldefined continuous mapping |¢| : |K| — |L| (which is affine on every
closed simplex ).

3.19 Remark. [20, 3.1.19] There are only finitely many simplicial mappings from
K to L. For every simplicial mapping ¢ the mapping || is not dimension increasing.

3.20 Lemma. [20, 3.1.21]

1. A mapping ¢ : K — L is a simplicial isomorphism (i.e. has an inverse,
which is simplicial) iff it is simplicial and bijective.
2. For every simplicial isomorphism ¢ the mapping |¢| is a homeomorphism.

Proof. (, <) We have to show that the inverse of a bijective simplicial mapping
is simplicial.
Let £ = {z} be a vertex of L and (o) = . We have to show that o is a 0-simplex.

Let zo,...,xq be the vertices of o. By |3.16.2 | the ¢(x¢),...,¢(z,) generate the
simplex £ = ¢(o) and hence have to be equal to the single vertex z of £. Since ¢ is

injective ¢ = 0 and o = {xo}. Hence ¢ is bijective on the vertices.
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3.24 3. SIMPLICIAL COMPLEXES

Now let 7 = ¢(0) be a simplex in L with vertices yo, ..., yq. Let zo,...,x, be the
vertices of o. Since ¢ is injective and simplicial the images ¢(zo),. .., ¢(z,) are

distinct and generate the simplex (o) by |3.16.2|, hence are exactly the vertices
Yos---,Yq of 7. Thus p = ¢ and w.lo.g. ¢(z;) =y, for all j. So o is generated by
the ¢~ 1(y;) = z;. O

Simplicial approximation

3.21 Definition (Simplicial Approximation). [20, 3.2.4] Let K and L be two
simplicial complexes, f : |K| — |L| be continuous. Then a simplicial mapping
¢ : K — L is called SIMPLICIAL APPROXIMATION for f iff for all € |K| we have
lol(x) € carrp(f(z)), i.e. f(x) € 0 € L = |p|(z) € 6. This can be expressed shortly
by Vo € L : |¢|(f~1(0)) C . In particular, for every x € |K| there is then a simplex
o € L (namely o := carr,(f(x))) with f(z), |¢|(x) € 7. Note that |p|(7) = (o).

3.22 Lemma. [20, 3.2.5] Let ¢ be a simplicial approzimation of f, then |p| ~ f.
Proof. Connect |p|(z) to f(x) by the segment in carry, f(z). O

3.23 Example. [20, 3.2.6]
1. Let K := 6% Then X := |K| = S'. If ¢ : K — K is simplicial, then either
¢ is bijective or not surjective, so || has degree in {£1,0} by |2.16.2 | and
. Thus every continuous map f : X — X with |deg(f)| > 1 has no

simplicial approximation.

2. For f: ¢~ 4t(1 —t) from [0,1] — [0,1] there is no simplicial approximation
v: K — K := {{(0),(1),(0,1)}: In fact, carr(f(j)) = {4} for j € {0,1} and
carr(f(%)) = {1}, hence any such ¢ must satisfy ¢(0) = (1) = 0 and thus

lel(3) =0¢ {1}.

In order to get simplicial approximations we have to refine the triangulation of | K]|.
This can be done with the following barycentric refinement.

3.24 Definition (Barycentric Refinement). [20, 3.2.1] The BARYCENTER & of
a g-simplex o with vertices z; is given by

1

For every simplicial complex K the BARYCENTRIC REFINEMENT K’ is given by all
simplices having as vertices the barycenter of strictly increasing sequences of faces
of a simplex in K| i.e.

K':={{(60,...,04):00 < <04 € K}
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3.25 Theorem. [20, 3.2.2] For every simplicial complex K the barycentric re-
finement K’ is a simplicial complez of the same dimension dim K and the same
underlying space but with max{d(c’) : 0/ € K'} < 1_‘&%5}( max{d(c) : 0 € K}.
Here d(o) := sup{|x — y| : x,y € o} denotes the diameter of o.

Proof. If oy < --- < 04, then their barycenters 6y,...,d, all lie in 64 and are in
general position: In fact, let o; = (xg,...,x,,) with i — n, strictly increasing and
q 1 7 1
Tr = Z)\igi = Z)\zmzxj = ij Z /\zm with Z:)\Z =1.
=0 [ 7=0 J 7 7
n;>j
=i
Then

1 1
Zujzz Z)\iiﬂi—Fl :ZZMT—Fl :Z)\i:L
J J 1 1 J K3
Since the z; are in general position the p; are uniquely determined and thus also

the A; = (n; +1) (Nm = 2isi A n,,1+1)'

We show now by induction on ¢ := dim(c) that for o € K theset {0’ € K’ : ¢/ C 0}
is a disjoint partition of o: For (¢ = 0) this is obvious. For (¢ > 0) and z € o \ {6}
the half-line from & through x meets ¢ in some point y,. By induction hypothesis

A" € K' : y, € 7. Thus y, is a positive convex combination of 7y, ...,7; with
To < --- < 7j. Hence z is a positive convex combination of 7y,...,7;,0.

Finally, let =’ # 3’ be two vertices of some ¢/ € K’ i.e. 2’ = i(xo +---+uz,) and
y = Sil(onr' -~ 4xs) withr < s < ¢ < dim K for some simplex o = (2g,...,24) €
K. Then

1 .
7' =y < ﬁzm —y'| < max{|z; —y| : i}
7

r+
s dim K
-z < < —————d(o).
;m 7] < 7540) < TG @) O

;i —y| <
s y|*s+1

3.26 Corollary. [20, 3.2.3] For every simplicial complex K and every € > 0 there
is an iterated barycentric refinement K9 (for some ¢ € N) with d(c) < € for all
oce K@,

Proof. (~dimk \* o O
roof. ({qmz ) — 0forg— oo

3.27 Definition. Star of a Vertex. [20, 3.2.8] Let £ = {z} be a vertex of K.
Then the STAR of £ in K is defined as

st (§) == U o= {y €|K|:ze€ carJrK(y)}7
¢<oeK

ileyestg(§) e INo:yeoand { <o < & ={zr} <carrg(y) & x € carrg (y).
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3.28 Lemma. [20, 3.2.9] The family of stars of vertices of K forms an open cov-
ering of |K|. For every open covering U of |K| there is a refinement by the stars of
some iterated barycentric refinement K9 of K.

Proof. For vertices { = {z} of K let K, := {0 € K : z is not vertex of ¢}. Then
K, is a subcomplex of K and hence stk (§) = | K|\ | K| is open in |K].

If o € K and z is any vertex of o then obviously o C stx({z}) and hence the stars
form a covering.

By the Lebesgue-covering lemma (see [6, 3.3.3] or [7, 5.1.5]) applied to the compact
metric space |K|, there is a 6 > 0 such that each set of diameter less then d is
contained in some U € U. Choose by a barycentric refinement K (9, such
that d(o) < $§ for all 0 € K. For every y € stpw ({z}) we have d(y,z) <
max{d(c) : o} hence d(stxw ({z})) < 2 max{d(c) : o} < §, and thus the stars
form a refinement of U. O

3.29 Corollary. Simplicial Approximation. [20, 3.2.7] For every continuous
map f : |K| — |L| there is a simplicial approzimation ¢ : K9 — L of f for some
iterated barycentric refinement K (9.

Proof. Let ¢ be chosen so large, that by the stars of K(9 form a refinement
of the open covering {f~1(stz({y})) : {y} € L}. For sake of simplicity we write K
instead of K@), Thus for every vertex ¢ € K we may choose a vertex denoted p(£) €
L with f(stx(§)) Cstr(¢(§)). For o € K with vertices x, ..., x, define p(o) to be
the simplex generated by the ¢({z;}). In order to see that ¢ is a simplicial mapping,
we have to show that this simplex belongs to L. Let = € ¢ be any point in ¢. Since
o C ();stx({zi}) we get f(z) € f(o) © f(N;stae({zi})) € N, flste({zi})) S
Nisto(e({zi})). Thus f(z) € str(e({zi})), Le. o({z:}) < carrp(f(z)) = 7 € L,
for all 4. Hence |¢|(z) € ¢(o) = (p({zo}),...,o({zp})) < 7 € L and ¢ is a
simplicial approximation of f. O

3.30 Corollary. [20, 3.2.10] Let X and Y be polyhedra. Then [X,Y] is countable.
O

3.31 Remark. [20, 3.2.11]

We obtain a simplicial approzimation x : K' — K of id : |[K'| — |K| by choosing
for every vertex 6 € K' a vertex x(6) of o:

Let 69, ...,6, be the vertices of some simplex ¢’ € K’ with o9 < -+ < 0, and
hence ¢’ C 0,. Then the x(6;) are vertices of o; < o, and hence they generate a
face of 0, € K. Thus x extends to a simplicial mapping.

Let « € o’. Then |x|(x) € x(¢') C 0, = carrg(z), hence x is a simplicial approxi-
mation of id.
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Let o be any q-simplex of K. Then there exists a unique simpler o' C o which is
mapped by x to o and all other o' C o are mapped to true faces of o.

Proof. We use induction on g. For ¢ = 0 this is X=x(5)
obvious, since  is the identity on 6 = o. If ¢ > 0
and z := x (&) let 7 be the face of o opposite to x.
By induction hypothesis there is a unique 7’ C 7
of K’ which is mapped to 7. But then the simplex
o’ generated by 7' and & is the unique simplex

mapped to o: In fact, any simplex (6o, ...,6,) C
o that is mapped via x to o has to satisfy r >
dimo and 0g < -+ < 0, = 7, hence r = dim(0). 7S

Since x(6) = x we have that x(6¢),...,x(6r—1)
generate 7 and thus 7/ is the simplex with vertices
69, ---,0-_1 by induction hypothesis. O - T

Freeing by deformations

3.32 Proposition. [20, 3.3.2] Let K be a simplicial complex and dim K < n.
Then every continuous f : |K| — S™ is 0-homotopic. In particular, this is true for
K = ¢*1 with dim K = k < n.

Proof. Bythere exists a simplicial approximation ¢ of f : |K| — S™ = |¢"|
for some iterated barycentric refinement of K. Then |p| : |[K| — S™ cannot be
surjective (since dim K < n) and hence f ~ |p| is 0-homotopic since S™ \ {*} is
contractible.

3.33 Theorem. Freeing of a point. [20, 3.3.3] Let (K, L) be a simplicial pair
and €™ be an n-cell with dim K < n. Then every fo : (|K|,|L|) — (e™,e™\ {0}) is
homotopic relative |L| to a mapping f1 : |K| — €™\ {0}.

Proof. We first show this result for (|K|,|L|) = (D*,S*71). By |2.36.6 | we have

e\ {0} ~ S Hence fo|ge1 : S¥~1 — ¢\ {0} is 0-homotopic by [3.32]. By
this homotopy gives an extension f; : D¥ = C(S*~1) — ™\ {0}. Consider a
mapping h : (DF x I)" — €™ which is f; on the top, and is fo on the bottom and on
Sh=1 % {t} for all ¢t € I. Since e™ is contractible this mapping h is 0-homotopic by

and hence extends to C((D* x I)") = D* x I again by . This extension

is the desired homotopy.

For the general case we proceed by induction on the number of cells in K \ L.
For K = L the homotopy is constant fo. So let K D L and take 0 € K \ L of
maximal dimension. Then K, := K \ {o} D L is a simplicial complex. Obviously
|K,| UG = |K| and |K,| N & = ¢. Consider the diagram

e @\
Nz
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By induction hypothesis we have the required homotopy (1) relative |L| on |K,]|.
Since (7,0) has HEP by , we may extend its restriction (1’) to ¢ to a
homotopy (2) on ¢ with initial value fo. The union of these two homotopies (1)
and (2) gives a homotopy h; rel. |L| indicated by arrow (3) which satisfies hg = fo
and h1(|K |) C e™\ {0}. By the special case treated above, there is a homotopy
gt : @ — €" relative ¢ with gg = hql5 : (7,6) — (e™,e™\ {0}) and g1(5) C €™\ {0}.
Let f1 = h’1||Ka\ Ugl. Then f1(|K|) g e’ \ {O} and f() = ho ~ hl = h’1||Ka\ Ugo ~
h1||K0‘ U g1 = f1 relative |L| O

3.34 Theorem. Freeing of a cell. [20, 3.3.4] Let (K, L) be a simplicial pair and
let Z be obtained from gluing an n-cell e to a space Y and dim K < n. Then every
f: (K|, |L|) = (Z,Y) is homotopic relative |L| to a mapping f1 : |K| = Y.

K] f
L] ILI

Proof. For 0 € ™ C Z we consider the subcomplexes
Koy = {aeK;f(a—) gZ\{o}} = {aeK;a—gf—l(Z\{o})} S L and
K| = {UGK:f((T) Qe”} = {06K:5§f*1(e”)}

By passing to an appropriate iteration (again denoted K) of barycentric subdivi-
sions, we may assume that K = Ky U K; by .
Now consider the diagram

Y( A

v |K| \ {Oi 55 {0}

! |K0/ \K1|
e e

|L| | Ko N K1

By there exists a mapping (1) homotopic to f| g, | relative [K; N Ko|. Gluing
the homotopy with the f|x, gives a homotopy relative |Ky| to a mapping (2).
Composing with the retraction r (homotopic to id relative Y) from gives the
desired mapping f1 : |[K| — Y homotopic to f relative |L|. Note that the triangle
on top, as those above (1) and (2) commute only up to homotopy. O
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In this chapter we will generalize the polyhedra to so-called CW-spaces, where the
finiteness condition on the number of building blocks is weakend and the boundary
of the cells need not be a sphere any more.

Basics

4.1 Definition. [20, 4.1.3] A CW-CcOMPLEX is a Hausdorff space X together with
a partition X into cells e, such that the following properties hold:

(C1) For every n-cell e € X' there exists a continuous so-called CHARACTERISTIC
MAP x¢ : D™ — X, which restricts to a homeomorphism from D" onto e
and which maps S”~! into the n — l-skeleton X"~ ! of X, which is defined
to be the union of all cells of dimension less than n in X.

(C2) The closure € of each cell meets only finitely many cells.

(W) X carries the final topology with respect to € for all cells e € X.

A CW-sPACE is a Hausdorff-space X, which admits a CW-complex X (which is
called CW-DECOMPOSITION of X).

Note that if X is finite (X is then called finite CW-complex), then the conditions
(C2) and (W) are automatically satisfied.

If X = X" # X" ! then the CW-complex is said to be of dimension n. If X # X"
for all n, then it is said to be of infinite dimension.

Note that, since the image x(D™) of the n-ball under a characteristic map is com-
pact, it coincides with € and x : D™ — € is a quotient mapping. So € := € \e=
X(D™)\ x(D") C x(D"\ D") = x(S™!) and conversely y(S"~1) C x(D") = € and
x(S"71) € X1 C X \ e, thus x(S™71) = ¢é and hence in follows that: The char-
acteristic map x of each e € X is a relative homeomorphism (D™, S"~1) — (&, ¢é).

ﬁn ¢ D ) Sn—l

T

eC € D¢

4.2 Example. [20, 4.1.4] For every simplicial complex K the underlying space |K|
is a finite CW-complez, the cells being the simplices of K and the characteristic
maps the inclusions € C |K]|.

The sphere S™ is a CW-complez with one 0-cell e® and one n-cell e”, in particular
the boundary ¢ = €\ e of an n-cell, needn’t be a sphere in contrast to the situation
for simplicial complexes.

The one point union of spheres is a CW-space with one 0-cell and for each sphere
a cell of the same dimension.

51V 82 can be made in a different way into a CW-complex by taking a point e? € St
different from the base point. Then S! = e® Ue! and S' v 2 = e® Ue! Ue?. But
the boundary é2 of the two-cell is not even a union of cells.

The compact surfaces of genus g are all CW-complexes with one 0-cell and one 2-
cell and 2g 1-cells (in the orientable case) and g 1-cells (in the non-orientable case),

see .
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The projective spaces P™ are CW-complexes with one cell of each dimension from 0
to n, see , where F' is the characteristic map for the n-cell.

4.3 Definition. [20, 4.1.5] For a subset } of a CW-decomposition X of a space X
the underlying space Y := (J{e : e € Y} is called CW-SUBSPACE and } is called
CW-SUBCOMPLEX, iff }V is a CW-decomposition of Y with the trace topology. In
this situation (X,Y) is called CW-PAIR.

Let us first characterize finite CW-subcomplexes:

4.4 Lemma. Let Y be a finite subset of a CW-decomposition X of a space X. Then
Y forms a CW-subcomplex iff Y :=J{e : e € Y} is closed. Cf.|3.13].

Proof. (=) If Y is a CW-subcomplex, then for every cell e € ), there is a charac-
teristic map y : D™ — &¥ . Hence &Y is compact and thus coincides with the closure
of e in X, so the finite union Y = | J{é: e € Y} is closed.

(<) Since Y is closed the characteristic maps for e € Y C X have values in Y and
hence are also characteristic maps with respect to ). The other properties for a
CW-complex are obvious by the first remark in . O

4.5 Lemma. [20, 4.1.9] Every compact subset of a CW-complex is contained in
some finite subcomplex. In particular a CW-complex is compact iff it is finite.

Proof. Let X be a CW-complex. We first show that the closure € of every cell
is contained in a finite subcomplex using induction on the dimension of the cell.
Assume this is true for all cells of dimension less than n and let e be an n-cell. By
(C2) the boundary ¢ meets only finitely many cells, each of dimension less than n.
By induction hypotheses each of these cells is contained in some finite subcomplex
X;. Then union of these complexes is again a complex, by . If we add e itself
to this complex, we get the desired finite complex.

Let now K be compact. For every e € X with e N K # () choose a point z. in the
intersection. Every subset A C K := {x.: eNK # (0} C K is closed, since it meets
any € only in finitely many points by (C2). Hence Kj is a discrete compact subset,
and thus finite, i.e. K meets only finitely many cells. Since every € is contained
in a finite subcomplex, we have that K is contained in the finite union of these
subcomplexes.

The last statement of the lemma is now obvious. O

4.6 Corollary. Every CW-complex carries the final topology with respect to its
finite subcomplexes and also with respect to its skeletons.

Proof. Since the closure € of every cell e is contained in a finite subcomplex by
and every finite subcomplex is contained in some skeleton X", these families
are confinal to {€ : e € X'}. Furthermore, the inclusion of each of its spaces into
X is continuous (for the final topology on X induced by the & by property (W)).
Hence these families induce the same topology. (Let F; and F3 be two families of
mappings into a space X, and assume F5 is confinal to Fi, i.e. for every f; € F}
there is some fo € F» and a map h such that f; = fo o h. Let X; denote the
space X with the final topology induced by F;. Then the identity from X; — X»
is continuous, since for every f; € F; we can write idof; = fo o h) O

Now we are able to extend to infinite subcomplexes.

4.7 Proposition. Let X a CW-decomposition of X and let Y be a subset of X and
Y :=J{e: e € Y}. Then the following statements are equivalent:
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4. CW-SPACES 4.10

1. Y is a CW-subcomplex of X;
2. Y is closed in X;
3. For every cell e € Y we have e C Y.

Proof. (:) is obvious.

(:>) follows, since the closure ¥ in Y is compact and hence equals & := &*.

For the converse directions we show first that () implies:
If ACY has closed trace on & := &X for each e € ), then A is closed in X:
By it suffices to show that the trace of A on every finite CW-subcomplex

Xy C X is closed. For each cell e € Xy NY we have e C XoNY by and ()
Hence
XoNA=XoNYNA= ( U é) NA= U (en A),
ecXpoNY ecXoNY
which is closed since there are only finitely e € Xy N V.

(:>) by taking A =Y in the previous claim.
(:) The previous claim shows the condition (W) for ). The other conditions

for being a CW-complex are obvious since eX = &Y. O

4.8 Corollary. [20, 4.1.6] Intersections and unions of CW-complexes are CW-
complexes. Connected components and topological disjoint unions of CW-complexes
are CW-complexes. If € C X is family of n-cells, then X"~ 1UJ & is a CW-complex.
Each n-cell e is open in X™.

Proof. For intersections this follows from (1<2) in . For unions this follows
from (1<3) in . The statement on components follows, since € is connected
and by (1<3). For topological sums it is obvious. That X"~ 1 U(J& is a CW-
complex follows also from (1 < 3) in . In particular, X™ \ e = X"~ U J{e; #

e : ey an n-cell in X"} is a CW-space, thus it is closed by (1<2) in and hence
e is open in X". O

Further constructions of CW-spaces

4.9 Proposition. [20, 4.2.9] Let X and Y be two CW-complexes. Then X xY
with cells e X f fore € X and f € Y satisfies all properties of a CW-complex, with
the possible exception of (W). If X or'Y is in addition locally compact, then X xY
is a CW-complez.

Proof. Take the product of the characteristic maps in order to obtain a character-
istic map for the product cell.

In order to get the property (W) we have to show that the map | |, FEX f—=XxY
is a quotient map. Since it can be rewritten as

|_|é><|_|f—>|_|é><Y—>X><Y
e f e
this follows from using compactness of € and locally compactness of Y. [

4.10 Proposition. Let (X, A) be a CW-pair. Then AU X™ is obtained from AU
X1 by gluing all n-cells contained in X™ \ A via the characteristic mappings.
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4.11 4. CW-SPACES

Proof. Let £ be the set of all n-cells contained in X \ A and let characteristic
mappings x¢ : D" — € for every e € £ be chosen. Let x := | J,ce X© : [Joce D™ —
Uece € € X™. We have to show that the rectangle in

n—1 ( D"

I_leSn—l(—>|—|eDn €

\ e
X|ue sn—1 X

AUX"ilC—>AUX_"

Q

is a push-out. So let ¢"~' : AUX"! — Z and ¢¢ : D" — Z be given, such
that g" =1 o x|gn-1 = ¢g°gn-1. Then g : AU X" — Z, given by glauxn-—1 = g" !
and gle = g¢|Pn o (x| PHr) ! for e € €, is the unique mapping making everything
commutative. It is continuous by property (W), since on é it equals g" ! if e C
AU X" ! and composed with the quotient-mapping x© : D™ — € it equals ¢° for
the remaining e (i.e. e € £). O

Now we give an inductive description of CW-spaces.

4.11 Theorem. [20, 4.2.2] A topological space X is a CW-complex iff there are
spaces X™, with X° discrete, X™ is formed from X"~ ' by gluing n-cells and X is
the limit of the X™ with respect to the natural inclusions X" 1 — X",

Proof. (=) We take X™ to be the n-skeleton. Then X carries the final topology
with respect to the closed subspaces X" by and XY is discrete (see the proof

of ) Taking A := ) in we get that X" can be obtained from X"~! by
gluing all the n-cells via their corresponding characteristic maps restricted to the
boundary spheres.

(<) We first show by induction that X™ is a CW-complex, with n — 1-skeleton
X" and those cells, which have been glued to X" to obtain X™, as n-cells:
For the discrete space X© this is obvious. Since X" is
obtained from X"~ ! by gluing n-cells we have that X™ |J, St =] D"

€ €
is Hausdorff by and is as set the disjoint union
of the closed subspace X"~ !, which is a CW-complex f l P J/
by induction hypothesis, and the homeomorphic image xn-1c xn
U.eof ||, D"\, S" =], D"
As characteristic mappings for the n-cells e we may use p|pn, since it induces a
homeomorphism D" — e and it maps S"~! to f(S"~!) C X"~! which is com-
pact and hence contained in a finite subcomplex of X™~! by . The condition
(W) follows, since X™ carries by construction the final topology with respect to
X" Landp:||D" — X", and | | D™ carries the final topology with respect to the
inclusion of the summands D™ C | |, D".

The inductive limit X := li an now obviously satisfies all axioms of a CW-
complex — only Hausdorffness is to be checked. So let x,y be different points in X.
They lie in some X" and we find open disjoint neighborhoods U™ and V"™ in X™.
We construct open disjoint neighborhoods U* and V* in X* with k& > n inductively.

In fact, take U* := UF~! Up(r_l(Uk_l))7 where r : | | D*\ {0} — X%~ is the
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retraction from . Then U* is the image of the open and saturated set UF~1 L
r~1(U*1) € X*~1 U || D* and hence open, and U* N Xk~ = U*~!. Proceeding
the same way with V* gives the required disjoint open sets U := Uksn Uk and
V= Ups, VR O

Example. Gluing a CW-pair to a CW-space does not give a CW-space in general.
Consider for example a surjective map f : S' — S2. Then the boundary é = S* of
e := (D?)° is not contained in any 1-dimensional CW-complex.

So we define:

4.12 Definition. [20, 4.2.4] A continuous map f : X — Y between CW-complexes
is called CELLULAR iff f(X™) C Y™ for all n.

4.13 Lemma. Let f : X D A — Y be given and let Y C Y and X' C X
be two closed subspaces, such that f(ANX') CY'. Then the canonical mapping
Y'Up X' =Y Uy X is a closed embedding, where f':= f|A" with A’ := AN X'.

Proof.
Consider the commutative diagram:
W % The dashed arrow ¢ exists by the
push-out property of the back side.
\ Since Y/ Up X' =Y Up/(X'\ 4)
as sets, we get that ¢ is the inclusion
r AC X yup(X'\A) CYup(X\A) and
Plxr hence injective.
f l Now let B C Y’ U X' be closed,

Y | ——Y' Ufl X' plx ie. B= B L]p/(BQ) with B; C Y’

e closed and By C X'\ A’ such that
ey (@' |x)~(B) = (f)""(B1) U By is
y ¢ Y Uy X closed in X”.

In order to show that ¢«(B) = By Up(Bs) CY'Up(X'\A") CY Up(X\ A) is closed
we only have to show that f~!(B;) U By is closed in X, which follows from

F B VB = (FBY U THBY) UBy = £ (B U ()7 (B UBy),

since (f)71(B1) U By € X’ C X is closed and f~1(B;) C A C X is closed. O

4.14 Theorem. [20, 4.2.5] Let (X, A) be a CW-pair and f : A - Y a cellular
mapping into a CW-complex Y. Then (Y Uy X,Y) is a CW-pair with the cells of
Y and of X \ A as cells.

Proof. We consider the spaces Z" := Y" Uy, X", where f, := f|an. Note that
A" = AN X™ By the Z™ form an increasing sequence of closed subspaces
of the Hausdorff space Z := Y Uy X. Obviously Z° is discrete and Z carries the
final topology induced by all Z™. So by it remains to show that Z™ can be
obtained from Z"~! by gluing all n-cells of Y and of X™\ A™. For this we consider
the following commutative diagram:
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usm—tC— s ||pn

By m we have the
closed embedding (0)
and we have to show
that Z"™ is the push-out
of (0) and the union
of the two mappings
UD™ —- Y™ — Z™ and
uD™ — X™ — Z™.

So let mappings on all
the D™ and on Z"!
into a space W be giv-

: . en whose composites
————— X" with the arrows from

Po S™~1 into these spaces
are the same.
upDn
Using the push-out property (shown in ) of Y", A" U X"l X" and Z"

we get in succession unique maps (1), (2), (3), and (4). The map (4) is then the
required unique mapping from Z" — W. O

4.15 Corollary. [20, 4.2.6] Let (X, A) be a CW-pair with A # 0. Then X/A is a
CW-space with A as one 0-cell and the image of all cells in X \ A.

Proof. X/A = {*} Uy X by |1.47.1|, where f : A — {*} is constant, Now apply

[d11) 0

4.16 Corollary. [20, 4.2.8] Let X be a CW-compler and n > 1. Then X"/ X"1
is a join of spheres of dimension n, for each n-cell one.

Proof. By Xn/X"=1is a CW-space consisting of one 0-cell and all the n-
cells of X. The characteristic mappings for the n-cells of X"™/X"~! into the single
0-cell X"~ ! have to be constant and hence X" /X"~ ! = \/_S™ by |1.97.3|. O

4.17 Corollary. [20, 4.2.7] Let X; be CW-spaces with base-point x; € X?. Then
the join \/, X; is a CW-space.

Proof. \/, X; = (L, Xi)/{z; : i} is a CW-space by and [4.15]. O

Homotopy properties

4.18 Theorem. [20, 4.3.2] For each CW-pair (X, A) we can find a continuous
functionu: X — I s.t. A=u"10) and A — U(A) :=u=1({t:t <1}) is an SDR.
These neighborhoods can be chosen coherently, i.e. U(AN B) = U(A) NU(B).

In particular, A — X is an NDR hence has HEP.

Proof. Let X~ ! := (. By A U X™ is obtained by glueing the n-cells e in

X\ Ato AU X" ! By AU X" 'is an SDR in AU X"\ || {0.}. Let
the corresponding homotopy relative A U X"~ ! be denoted by A and the (radial)
retraction by 7™ := hT. Note that r™ o A} = r".
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We first define a function u : X — [0, 1] by recursive extension as follows:
u|aux-1 = 0 and let w,, := u|auxn be given by un|a xn-1 = tu,—1 and

Unle : X°(z) — {1 ~ el (1 a u"—l(xe(\l%\l))) f{lr Vprer
1 fir 0 =0, € D™

Then u,, is a well-defined continuous map with (u,)~1(0) = A and by the
same holds for u.

Let U(A) :={z € X 1 u(z) < 1} and U" :=U(A) N(AUX") ={x € AUX":
un(z) < 1}. Note that the homotopy hy on AUX™\| | {0} restricts to a homotopy
on U™ with final value r™ : U™ — U™~1, since with every point € U™ = U"~1 U
{x(z) : x # 0 and x(x/||z||) € U"~1} the whole path {h}}(z) : t € I'} belongs to U™
and Uy, | guxn-—1 = Up—_1-

By induction on n we construct now homotopies H{* : U™ — U™, by

id for t < =5,
H} := A" for #gtﬁ%wheres:: n(t(n+1)—1) € [0,1],

H' lor™ fort> L
Then H} is well-defined and HJ|yn—1 = H}'"', since H;'"' = id for t < L and
h%|auxn— = id. The union H; := U,y H{* @ U(A) — U(A) is the required
deformation relative A and, since r™ o h? = ™ (H ' or™)(U") C U™"', and
r™|yn—1 =1id, we get by induction
HYoH! =H} 'or"oH =

_{H?-lovnoh@:w—lor" for £ <

T\ HI oo (P o) = (HY T o HP Y ort = HI T or fort >
= H7.

Thus HioHy = Hy =r%0rlo...ormo...: UA) = - U1 ... 5 U -

U-l=A

In order to show that A — X is an NDR we consider a new homotopy Hy(z) =
Hy max(0,min(1,2—3u(2))) () for all z € U(A), i.e. u(x) < 1. Since Hy(z) = xforx € A
or u(z) > 2 it extends by id to a homotopy of X rel. A. Since H,(z) = Hy(z) for
u(x) < & we get the NDR property with @(z) := min{1, 3u(z)}.

By recursive construction, we have U"(AN B) = U"(A) N U™(B). O

4.19 Corollary. [20, 4.3.3] Every point x in a CW-complex X has an open neigh-
borhood, of which it is an SDR.

Proof. Let e be the cell containing x and n its dimension. By A= X"
is an NDR of X, so there is a neighborhood U(A) C X and a homotopy H; :
U(A) — U(A) between the identity and a retraction r := Hy : U(A) — A and we
have shown that r o H; = r. So we may restrict this homotopy to the open subset
r~1(e) C U(A), showing that e is an SDR in r~!(e). Since = is an SDR in e we

obtain the required result by transitivity | 2.36.3 | O

4.20 Theorem. Cellular approximation. [20, 4.3.4] For every continuous fj :
X — Y between CW-complexes there exists a homotopic cellular mapping. If fo is
cellular on some CW -subspace A, then the homotopy can be chosen to be rel. A.

Proof. We recursively extend the constant homotopy on A to a homotopy Ay :
AUX™ — 'Y with A being cellular. For the induction step we use for each n-cell
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e C X \ A a characteristic mapping x : D™ — €. By induction hypothesis we get a
mapping o : (D™ x {0}) U (S"~! x I) — Y given by fy o x on the bottom and by
hi~! o x on the mantle S"~! x {t} with A7 toyx: 5" 1 — X*~1 5 yn-lCy”
Since the domain of g is a retract in D™ x I by ’ 2.31.1 ‘ and ’ 2.30 ‘ we can extend
it to a mapping again denoted g on D™ x I. The image @o(D™ x {1}) is compact
and hence contained in a finite CW-complex by . Let e, ... ,e"" be its cells
of dimensions n, > --- > ny > n. Then @o|pnyxq1y + (D™ x {1},5"71 x {1}) —
(YruemU---Ue™,Y™) is well defined. Applying now r-times we can
deform @o|pn 13 successively relative S~ x {1} so, that its image finally avoids
e"mU---Ue™. Let p; be the corresponding homotopy.

We can extend ¢; : D™ x {1} = Y™ via ¢ to a con-
tinuous mapping on the boundary (D™ x I)’, which is gn—1c¢ Dn

homotopic to @g|(pnx ) relative D™ x {0} U S"~1 x I N Vs
via ;. The pair (D" x I, (D" x I)’) & (D"t S") is a po(-t) e3(-t)

- ‘ s N/
CW-pair and hence has the HEP by and g lives Yy Y
on D™ x I, so 1 can be extended to D™ x I as well by AR

2.32.1|. Now ¢ factors over the quotient mapping x x I hy ™ h’[‘lg.
to a homotopy t — h}|z. The union of the h}'|. gives the - N
required hj. O

Q]

€c

4.21 Corollary. [20, 4.3.5] Let fo, f1 : X — Y be homotopic and cellular. Then
there exists a homotopy H : X x I —Y such that H,(X™) C Y™ for all n.

Note that the inclusions of the endpoints in I are homotopic and cellular, but every
homotopy has to map that point into the 1-skeleton.

Proof. Consider the CW-pair (X x I, X x I) and the given homotopy f : X xI — Y.
Since by assumption its boundary value f|y, ; is cellular, we can find another
mapping H : X x I — Y by , which is cellular and homotopic to f relative

X x I. Thus H is the required homotopy, since for 0 < ¢ < 1 and every n-cell e” of
X the image Hy(e™) = H(e™ x {t}) is contained in H(e" x e') C Y"1, O
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Basic properties of the fundamental group

5.1 Definition. [20, 5.1.1] A path is a continuous mapping w : I — X. The
CONCATENATION ug - 41 of two paths ug and u; is defined by

('LLO . Ul)(t) = {

uo(2t) for t <
up(2t —1) fort >

N[ N =

It is continuous provided ug(1) = u;(0).
The REVERSE PATH u~! : [ — X is given by u=!(t) := u(1 —¢t).

Note that concatenation is not associative and the constant path is not a neutral
element. The corresponding identities hold only up to reparametrizations.

5.2 Lemma. Reparametrization. [20, 5.1.5] Let u : I — X be a path and
f:I — 1 be the identity on I. Then u~ uo f rel. I.

Proof. A homotopy is given by h(t, s) := u(ts + (1 — t) f(s)), see | 2.4 O

5.3 Corollary. [20, 5.1.6]
L. Let u, v and w be paths with u(1) = v(0) and v(1) = w(0), then (u-v) w ~
w-(v-w) rel. I.
2. Let u be path with x := u(0), y := u(1) then consty -u ~ u ~ u - consty rel.
I.
3. Let u be a path with z := u(0) and y := u(1). Then u-u~! ~ const, and

u o~ const, rel. I.

Proof. In (1) and (2) we only have to reparametrize. In (3) we consider the homo-

topy, which has constant value on each circle with center (%, 0). O

1 1 1
X0
u(t)

1/4 m
0 0 0 m
0 1 3 1 0 1 1 o Y 1 U 1
2 4 2 2

5.4 Definition. [20, 5.1.7] Let (X, z¢) be a pointed space. Then the FUNDAMENTAL
GROUP (or FIRST HOMOTOPY GROUP) is defined by

m (X, z0) = (1, 1), (X, {zo})] = [(S*, {1}), (X, {zo})],
where multiplication is given by [u] - [w] := [u - w], the neutral element is 1., :=
[const,,] and the inverse to [u] is [u~!]. This gives a group by .

5.5 Lemma. [20, 5.1.8] Let u: I — X be a path from zg to x1.

Then conjy,) : 71 (X, z0) — m1(X, x1) is a group isomorphism, where conjy, : [v] —

[ =[] Ju] = [u™" v
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5.6 Lemma. [20, 5.1.10] Let h : I? — I? be as follows:

©0) ©D 1D

(J,t) = (4, 4) fort < 3,5 € {0,1}

6.0) {(2t,0) fort <1

) 1

(1,2t —=1) fort>3

(t1) (0,2t) fort <1

00 » ’ (2t—1,1) fort>1

, w0 ,

and a piecewise affine homeomorphism on the interior, i.e.
(1 — 2)(0,0) +2t(s(0,1) +( —s)(LO)) fort <1/2

h(t,s) :=
2 - 2t)(s(0, 1)+ (1- s)(l,O)) +(2t—1)(1,1) fort>1/2

For continuous f : (I?)" — X and u;j(t) == f(t,7) resp. vi(s) = f(j,s) its values
on the 4 edges the following statements are equivalent:

1. There exists a continuous extension of f to I?;

2. f is 0-homotopic;

3. There exists a continuous extension of f oh to I?;

4. Uy -1 ~vg-uy rel. I.

Proof.

( & ) was shown in .

( & ) foh: (I?) — X is the boundary data
for the homotopy required in ()

(é) Take f;/h = foh.
(i) Since f o h is constant on h~Y(s,t) for

all (s,t) € (I?)", it factors over the quotient map-
ping h : I? — I? to a continuous extension

f:I?—=X.

5.7 Corollary. Let X be a topological group (monoid) then w1 (X, 1) is abelian,
where 1 denotes the neutral element of X.

Proof. Consider the map f : (t,s) — u(t) - v(s) and apply :\ of . O

5.8 Proposition. [20, 5.1.12] Let V : (X, zo) = [(S*, {1}), (X, {z0})] — [S, X]
be the mapping forgetting the base-points. Then

1. [u] is in the image of V iff u(1) can be connected by a path with xq.

2. V is surjective iff X is path-connected.

3. V(a) = V(B) iff there exists a v € m1(X,xz0) with B =~"1-a 7.

4. 'V is injective iff m1 (X, xg) is abelian.

5. The ‘kernel’ V=1([const,,]) of V is trivial.

Warning: Since V is not a group-homomorphism, does not contradict .

Proof. () [u] is in the image of V iff u is homotopic to a base point preserving
closed path. Such a homotopy evaluated at the base-point gives a path connecting
u(1) with zo. Conversely, any path v from u(1) to xg can be used to give a homotopy
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between u and a base point preserving path (namely v~ - u - v) by |2.32.3 ]| (since

(S',{1}) has HEP by [4.18]).
:>) is obvious.

) Let @ = [u] and 8 = [v]. Then V(a) = V(B) iff v is homotopic to v.
Let h be such a homotopy, w(s) := h(j,s) for j € I and  := [w]. Then by

:) inwe have w-v ~ u-wrel. I,i.e.y-8 = a-vyand hence 8 =y 1-a-~.
<) Let B=~"1-a-vyand v = [w]. Then v-B =~ and hence w - u ~ v - w rel.

I. Then by (¢) in we have u ~ v, i.e. V(a) = V(f).

o~~~ A~ o~
~—

(=) Let a,y € m(X) and B :=~v"!-a-v. By () we have V(a) = V(8) and since
is assumed to be injective we get a = B, i.e. v -a=a-7.

<) Conversely, if V(a) = V(f), then by () there exists a v € m1(X) with
B=~"1a -y =a by commutativity.

(:>) Let V() = [const,,] = V(const,,). By () there exists a v with a =

y~L o feonsty, ]y ="ty =1. O

5.9 Corollary. [20, 5.1.13] Let X be path-connected. Then the following statements
are equivalent:
1. m(X,m0) =2 1 for some (any) o € X, i.e. every u : (S*,{1}) — (X, {xo})
is 0-homotopic rel. {1};
2. [SY, X] = {0}, i.e. every u:S* — X is 0-homotopic;
3. Any two paths which agree on the endpoints are homotopic rel. I.

A path-connected space satisfying these equivalent conditions is called SIMPLY CON-
NECTED.

Proof. (:>) since V : 71 (X, zg) — [S?, X] is onto by .

(:>) Let up and u1 be two such paths with w;(j) = x; for ¢,j € {0,1}. For
vj := const; the mapping f : (I?)" — X given by wug, vi, u1, and vg on the
4 edges is by assumption 0-homotopic (i.e. f considered as mapping S' — X is
ug vy - uytcvyt ~ 0 by ), hence f extends to I? = C(S') by , ie toa

homotopy ug ~ u; rel. I .
(:>) is obvious, since then u ~ consty, rel. I. O

Corollary. Let X be contractible, then X is simply connected.
Proof. By we get that [ST, X] = {0} provided X is contractible. O

5.10 Example. [20, 5.1.9] Let X be a CW-complex without 1-cells, e.g. X = S™
forn > 1. Then 7 (X, z0) = {1} for each zo € X°.

In fact, every u : (I,1) — (X, z¢) is by homotopic rel. I to a cellular mapping
v, ie. v(I) € X! = XY hence v is constant.

Note that such an X is path-connected iff it has exactly one 0-cell.

(=) Let zp and z; be two 0-cells and u be a path between them. By u is
homotopic to a cellular and hence constant path rel. I, since X has no 1-cells. Thus
Tro = T1.

(<) Since balls are path-connected each point in X™ can be connected with some
point in X~ ! and by induction with the unique point in X?.
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5.11 Definition. [20, 5.1.15] Every f : (X,z) — (Y,yo) induces a group homo-
morphism 71 (f) : (X, zg) = 71 (Y, yo) given by w1 (f)[u] := [f o ul:

Just use that u ~ v = fou ~ fovand fo(u-v) = (fou):(fowv) to get
well-definedness and the homomorphy-property.

We will often use the notation f, as an abbreviation of m(f).

5.12 Corollary. [20, 5.1.16] 1 is a functor from the category of pointed topological
spaces to that of groups, i.e. preserves identities and commutativity of diagrams. [

5.13 Proposition. [20, 5.1.18] 7 is homotopy invariant.

More precisely: If f ~ g rel. xy then 71(f) = m(g). If f ~ g then m(g) =
conjpy om1(f), where u is the path given by the homotopy at xzo. If f : X =Y is a
homotopy equivalence then 71 (f) : m1 (X, xo) — m (Y, f(x0)) is an isomorphism.

Proof. If f ~ g rel. 29 and [v] € 71 (X, x) then fov ~ gowrel. I, i.e. m (f)[v] =
[f ov] = [gov] = m(g)[v].

If h is a free homotopy from f to g, then w(t) := h(t,xo) defines a path from f(zg)
to g(xo). And applying (:>) in to (s,t) — h(t,v(s)) we get (fov) w ~
w-(gow) rel. I, and hence [fov] - [w] =[(fov) w]=[w-(gov)] = [w][gov], ie.
mi(g)lv] = [gov] = [w]™" - [fov] - [w] = [w]™" - m (f)[v] - [w] = (conjp,) om () ([v])-
Let now f: X — Y be a homotopy equivalence with homotopy inverse g : ¥ — X.
Then up to conjugation 71 (f) and m1(g) are inverse to each other. O

The fundamental group of the circle

5.15 Proposition. [20, 5.2.2]
The composition degoV : w1 (S, 1) — [S1, S — (Z,+) is a group isomorphism.

Proof. By we have that deg is a bijection. Since S! is path-connected the
map V is surjective by . Since S! is a topological group the map V is also

injective by and .

Remains to show that the composite is a group-homomorphism: Recall that deg([u])
is given by evaluating at 1 the lift @ : R — R of the path u: (S, {1}) — (S%,{1})
with @(0) = 0 and exp(2mia(t)) = u(exp(2mit)). Given u,v € m1(S, 1) with lifts @
and 0, then the lift of u - v is given by

{a(%) for ¢ <

N N

(1) +0(2t—1) fort>1 O

5.16 Corollary. [20, 5.2.4] m (X, 20) = Z for every space X which is homotopy
equivalent St. In particular this is true for C\ {0}, the Mébius strip, a full torus
and the complement of a line in R® since they all contain S* as SDR. O

Constructions from group theory

5.17 Definition. [20, 5.3.1] We will denote with 1 the NEUTRAL ELEMENT in a
given group.

A SUBGROUP of a group G is a subset H C G, which is with the restricted group
operations itself a group, i.e. hy,heo € H = hi1hy € H, h1_1 €cH 1€H.
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The SUBGROUP (X)ge generated by a subset X C G is defined to be the smallest
subgroup of G containing X, i.e.

n

(X)sc:=(WH: X CH<G}= {x§1~-~--x5" L1, € X5 € {ﬂ}}.

Given an equivalence relation ~ on G we can form the quotient set G/~ and have
the natural mapping = : G — G/~. In order that G/~ carries a group structure,
for which 7 is a homomorphism, i.e. m(x-y) = w(x) - 7(y), we need precisely that ~
is & CONGRUENCE RELATION, i.e. Z1 ~ Zg, §1 ~ Yo = T} " ~ Ty ', 1 - Y1 ~ To - Y.
Then H := {x : © ~ e} = 7 1(e) is a NORMAL SUBGROUP (we write H < G), i.e.
is a subgroup such that g € G, h € H = g~ 'hg € H. And conversely, for normal
subgroups H <G we have that x ~ x-h for all x € G and h € H defines a congruence
relation ~ and G/H := G/~ = {¢gH : g € G}. This shows, that normal subgroups
are exactly the kernels of group homomorphisms. Every surjective group morphism
p: G — Gy is up to an isomorphism G — G/ ker p.

The NORMAL SUBGROUP (X)n¢ generated by a subset X C G is defined to be the
smallest normal subgroup of G containing X, i.e.

(X)ve=(){H:XCH<G}= {gflywl g0 Yngn 95 € Gys € <X>SG}~

5.18 Definition. Let G; be groups. Then the PRODUCT [], G; of the {G; : i} is
defined to be the solution of the following universal problem:

Hi Gi

Y i 7

H

pr;

G;

A concrete realization of [[, G; is the cartesian product with the component-wise
group operations.

5.19 Definition. Let G; be groups. Then the COPRODUCT (FREE PRODUCT) [, G;
of is defined to be the solution of the following universal problem:

Hi Gi

X (i
g

H

inj;

G;

Remark. [20, 5.3.3] A concrete realization of [ [, G; is constructed as follows. Take
the set X of all finite sequences of elements of the disjoint union | |, G;. With
concatenation of sequences X becomes a monoid, where the empty sequence is
the neutral element. Every G; is injectively mapped into X by mapping g to the
sequence with the single entry g. However this injection is not multiplicative and X
is not a group. So we consider the congruence relation generated by (g, h) ~ (gh) if
g, h belong to the same group and (1;) ~ @ for the neutral element 1; of any group
G;. Then X/~ is a group and the composite G; — X — X/~ is the required group
homomorphism and this object satisfies the universal property of the coproduct.

In every equivalence class of X/~ we find a unique representative of the form
(915 -+, 9n), with g; € G;; \ {1} and i; # i;41. Since (g1, ..., gn) is just the product
of the images of ¢g; € G; we may write this also as g; - ... - gn.
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5.20 Definition. [20, 5.7.8] Let H, G, G2 be groups and f; : H — G; group
homomorphisms. Then the PUsH-OUT G ][, G2 of (f1, f2) is a solution of the
following universal problem:

f

H—= =G,

It can be constructed as follows:

G ];I[G2 = (G111 G5)/N, where N := <f1(h) (Rt ihe H>NG

and where g; is given by composing the inclusion G; — G I G2 with the natural

quotient mapping G I1 Go — (G I1 G2)/N.

5.21 Definition. [20, 5.6.3] Let G be a group. Then the ABELIZATION %°G of G is
an abelian group being solution of the following universal problem:

where A is an arbitrary abelian group.

A realization of G is given by G/G’, where the COMMUTATOR SUBGROUP G’
denotes the normal subgroup generated by all COMMUTATORS |[g, h] := ghg~'h~1.
Note that G = {[g1, k1] - [gn, hn] : g, hj € G}, since g[h1, halg™! = [ghig™!, ghag™!].

Remark. From general categorical results we conclude that the product (and more
general limits) in the category of abelian groups is the product (limit) formed in
that of all groups. And abelization of a coproduct (more generally a colimit) is
just the coproduct (colimit) of the abelizations formed in the category of abelian
groups.

5.22 Definition. [20, 5.3.7] Let G; be abelian groups. Then the COPRODUCT (DI-
RECT SUM) “° [, G; of the G; is defined to be the solution of the following universal
problem:

inj;

G;

ab HZ Gi

X (fi)i‘
e
H

where H is an arbitrary abelian group.

Remark. A concrete realization of *[], G; is given by those elements of [], G,
for which almost all coordinates are equal to the neutral element.
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5.23 Definition. [20, 5.5.3] Let X be a set. Then the FREE GROUP F(X) is the
universal solution to

where the arrows starting at X are just mappings and f is a group homomorphism.

Remark. [20, 5.5.2] One has F(X) = F(| | . x{z}) = [I,cx F({z}) by a general
categorical argument, and F({x}) = Z, as is easily seen.

5.24 Definition. Let X be a set. Then the FREE ABELIAN GROUP “F(X) is the
universal solution to

Li

X

“F(X)

where the arrows starting at X are just mappings and f is a group homomorphism.

Remark. By a general categorical argument we have *°(F(X)) = ®®F(X). And

WF(X) 2], F({z}) =2 1], Z, which are just the finite sequences in Z~.

We will show in the any subgroup of a free abelian group is itself a free

abelian group.

5.25 Definition. [20, 5.6.1] Given a set X and a subset R C F(X) we define
(X:R):=F(X)/(R)nG

to be the GROUP WITH GENERATORS X AND DEFINING RELATIONS R.

If G = (X : R), then (X : R) is called a REPRESENTATION of the group G.

5.26 Examples. One has F(X) = (X : 0) and Z,, := ({z} : {z"}).
More generally, [[,(X; : R;) = (X, : U; R;).
Moreover, (X : R) = (X : RU{[z,y] : 7,y € X})
5.27 Remark. [20, 5.8.1] Obviously we have:
1. (X :Ry= (X : RU{r'}) for ' € (R)n¢-
2. (X:R)~2(XU{a}: RU{a"t w}) fora¢ X and w € F(X).
These operations are called Tietze operations.
5.28 Theorem. [20, 5.8.2] Two finite representations (X : R) and (Y : S) describe

isomorphic groups iff there is a finite sequence of Tietze operations converting one
description into the other.

Proof. Let f: (X : R) = (Y : S) be an isomorphism with inverse g.
For each € X we choose f(z) € f([z]) € F(Y) X F(X)—>(X:R)

and similarly g(y) € g([y]) € F(X). By the universal S

; ~ . m7@ ~|f
propery we may extend f and g to homomorphisms Y
f:F(X)=>FY)and g: F(Y) = F(X). Let FY)—(Y:5)

S:={z7' f(z):xe X}CFXUY)and R:={y - g(y):y €Y} CF(XUY).
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For symmetry reasons it suffices to show that a finite sequence of Tietze-operations
of [5.27 | applied to (X : R) gives (X UY : RURU S U S):
Applying the operation | 5.27.2 | successively for every y € Y to (X : R) obviously
yields (X UY : RUR).
For every y € F(Y') we have y’l'g(y) € (R)ne € F(XUY): In fact, y = yi*- -y
for some y; € Y and ¢; € {£1}, yr gy )ER: g(y1) "ty € (R R) =y g(yl) =
yi- (@)™ ) ot € (Rine = 2=y - §(y1)T € (Riwe =

y gy =t y) T a)T e aly

)™

)"
“g(y2)*2 - gyn)*"

= (5 y) Ty gy
=z =p
=5t y) " ge) - glya)™ p Ttz p € (R)na.
E(R)NG by induction hypothesis €<R>NG

For y € S we have [~(y)] = g([y]) = 9(1) = 1, Le. g(y) € (R)ng. Therefore
v =3(y) - (- 5(5)" € (RU R)nc, ice. 5 € (RU R)xc.

For o € X and y := f(x) we have [3(y)] = g(ly]) = g([f ( ) = g(f(]) = [a],
hence 2" -§(y) € (R)ng and thus 27 f() = 27" -3(y)- (v "-3(y)) "' € (RUR)xc,
ie. S C(RUR)NG.

Applying the operation | 5.27.1 | successively for every y € SUS to (XUY : RUR)
yields therefore (X 1Y : RURUSUS). O

Remark. The word problem for finitely presented groups is the problem to deter-
mine whether two elements w,w’ € F(X) define the same element of (X : R), or
equivalently whether w=1w’ € (R)ng.

The isomorphy problem is to determine whether two finite group representations
describe isomorphic groups.

It has been shown that both problems have no algorithmic solution.

Group descriptions of CW-spaces

5.29 Proposition. [20, 5.2.6] For pointed spaces (X;,x;) we have the following
isomorphism m ([ 1, Xi, (z:):) = 11, m (X5, 2).

Proof. Obvious, since [(Y,y), (I, Xi, (z:)i)] = [ LY, v), (Xi, z;)], by composition
with the coordinate projections, and since the concatenation of paths in [[, X; is
given component-wise. O

5.30 Proposition. [20, 5.1.21] Let X be a path component of X and let xy € Xy.
Then the inclusion of Xo C X induces an isomorphism w1 (Xo, zo) = 71 (X, zg).

Proof. Since S' and S' x I is path-connected, the paths and the homotopies have
values in Xj. O

5.31 Proposition. Let X, be subspaces of X such that every compact set is con-
tained in some X,. And for any two of these subspaces there is a third one con-
taining both. Let xg € X for all a. Then 71(X, xo) is the INDUCTIVE LIMIT of all
Uy (Xaa xO) .

66 andreas.kriegl@univie.ac.at © 7. Februar 2018



5. FUNDAMENTAL GROUP 5.32

Proof. Let G be any group and f, : m1(X,) — G be group-homomorphisms, such
that for every inclusion ¢ : X, C Xz we have fg o m(i) = f,. We have to find
a unique group-homomorphism f : m(X) — G, which satisfies f o w1 (i) = f, for
all inclusions 7 : X, — X. Since every closed curve w in X is contained in some
Xa, we have to define f([w]x) := fo([w]x,). We only have to show that f is well-
defined: So let [wi]x = [ws]x for curves w; in X,, and wy € X,,. The image of
the homotopy wy ~ ws is contained in some X, which we may assume to contain
Xa, and Xo,. Thus fo, ([wn]x,,) = fa(lwi]x,) = fa([w2lx,) = fao([w2]x,,). O
5.32 Theorem of Seifert and van Kampen. [20, 5.3.11]

Let X be covered by two open path-connected subsets Uy and Uy such that Uy N Us
is path-connected and let xg € Uy NUs. Then

i2
T (U1 N Uz, o) — m1 (U2, x0)

lii jfi
I

T (Ut, 2o) m (X, zo)

is a push-out, where all arrows are induced by the corresponding inclusions.

Proof. Let G; := m (U, o) fiir j € {1,2}, Go := m (U1 N Uz, x0), G := m (U1 U
Us,79) = m1 (X, 29) and G := (G111G5) /N with g; : G; — G the push-out, where N
is the normal subgroup generated by {il([u])-i2([u])~! : [u] € Go}. By the universal
property of the push-out there exists a unique group-homomorphism ¢ : G — G

with ¢ o g; = j% and we only have to show that it is bijective.

Surjectivity: Let [w] € G. By the Lebesgue-covering lemma applied to [0, 1]
may take n sufficiently large such that for each 0 < i < n we have w([t;, ti11)] C U.
for some ¢; € {1,2} and ¢, := <

Let w; be the restriction of w to Uy

[tj,tj+1] and let v; be a path from w, W) wy

xo to w(t;) in U, N U,,_,. We may

take vg and v,, to be constant xqg. Let w(ts) w(ty)
Uy = V; - W; v;rll. Then u; is a closed

path in U,, and w ~ ug - ... Up—1 in Ws Wo

X rel. I. Let g; :== 9, ([u]u.,) € G.

Hence
[wlx = [uolx - - [un—1]x = j([uolu,) - - - - 4" ([un—lu., )
=(@1) - 2(Gn-1) = (g1 Gn-1) € 9(G).

Injectivity: Let 2 € G = (G1 11 G2)/N with ¢(2) = 1 € G. Then we find closed

paths u; in U, for certain g; € {1,2} with z = g., ([u1]v.,) - - -+ ge, ([un]u., ). Since
fconsty]x = 1= (=) = (g2, ([wa]) -+ 9o, ([ua]) )
=@(ge ([ual)) - -0 (ge, ([un])) = [walx - - [un]x = [ua - un]x
there is a homotopy H : [ x I — X relative I between Uy - ... Uy and consty,. We

partition 7 x I into squares @, such that H(Q) C U, for certain eq € {1,2}. We
may assume that the resulting partition on the bottom edge I x {0} 2 I is finer than
0< % < % < ... < 2 =1. For every vertex k of this partition we choose a curve
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vy, connecting o with H (k). If H(k) € U; then we may assume that v,(I) C U;. If
H(k) = xo, we may assume that vy is constant. For every edge ¢ of such a square @
we define the closed curve u. := v,y (Hoc) ~vc_(i) through z(. Since u, is contained
in some U; we may consider [uc]y, and its image ¢ := g;([uc]u;) € G. This is well

defined, since if u. is contained in U; N Uy then [u.]y,nv, is mapped to [u.]u, € G
for i € {1,2} and further on to the same element ¢ in the push-out G.

Let now @ be such a square with edges d, r, u, [. Then d-r ~ - u rel. N
I in @, hence Ug - Up ~ U - Uy el Tin Uy, L. [ud] - [ur] = [uﬂ - [ty] in . “ .
G.,, and thus d -7 = ge, ([ua]) - geo ([ur]) = geo ([w] - [uu]) =1- @ in G. d

—_—
Multiplying in G all these equations resulting from one row of squares, gives that
the product corresponding to the top line equals in G that corresponding to the
bottom line, since the inner vertical parts cancel, and those at the boundary are
1. Since the top row represents 1, we get that the same is true for the bot-
tom one. But u; is homotopic in U, rel. I to the concatenation of the corre-
sponding u,. in the bottom row, i.e. [ui]UEi = Hcg[%7%]x{0} [Uc]Usi in G¢,. Thus

2=l gEi([ui]Usi) = Hcg[o,l}x{o} gEi([uC]Usi) =Jl.e=1inG. O

5.33 Corollary. [20, 5.3.9] [20, 5.3.12] Let X = U; UU; be as in .

1. If Uy N Uy is simply connected, then 1 (U; UUs) = 71(Uy) Uy (U2).

2. If Uy and Us are simply connected, then Uy U Uy is simply connected.

3. If Uy is simply connected, then incl, : m(Uy) — 71 (Uy U Us) in the push-
out square is an epimorphism and its kernel is generated by the image of
incl, : 7T1(U1 n UQ) — 7T1(U1).

4. If Uy and Uy N Uz are simply connected, then w1 (Uy) =2 7 (U UU3).

Proof.
In this situation N = {1} and hence G; II G3 is the push-out.
Here G1 I1 Gy = {1} I {1} = {1} and hence also the push-out.

In this situation G; I1 Go = G; 1 {1} 2 G; and N is the normal subgroup
generated by the image of Gy in G;.

Here we have N = {1} and hence the push-out is isomorphic to Gj. O

5.34 Theorem. [20, 5.4.8] Let a CW-complex X be the union of two connected
CW-subcompleres A and B. Let xo € ANB and AN B be connected. Then w1 maps
the push-out square to a push-out.

Proof. By we may choose open neighborhoods U(A), U(B) and U(ANB) =
U(A) NU(B) which contain A, B and AN B as SDRs. Then application of

and of gives the result.

U(A)NU(B) ¢ U(A)
AN B/ W A/
|
U(B) ¢ X
- /
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5.35 Proposition. [20, 5.4.9] Let A and B be (connected) CW-complexes. Then
m1(AV B, %) 21 (A, %) L7 (B, *).

Proof. Since AN B = {x} in AV B and hence simply connected this follows from
[5.34] and [5.33.1]. O

5.36 Example. By we have 71 (ST v S1) 2 Z 1 Z.

However, for spaces being not CW-spaces 71 (AV B) # 71 (A)Il71(B) might happen:
Take for example for A and B the subset of R? formed by infinite many circles
tangent at the base point. The closed curve which passes through all those circles

alternatingly can not be expressed homotopically as finite product of words in 71 (A)
and 7 (B).

5.37 Proposition. [20, 5.5.9] Let X; be a CW-complex with base-point x; € X]Q.
Then (Ve Xj) = [1;e;m(X;). In particular we have mi(\ ;S) = [[,2Z =
F(J), where the free generators of 7r1(\/j SY) are just the inclusions inj; : St —
V, St

Proof. This follows from by induction for finite J and by for general
J, since every compact subset is by contained in a finite subcomplex of the

CW-complex of \/ jes Xj given by and since the coproduct is the inductive
limit of its finite subcoproducts. O

5.38 Corollary. [20, 5.4.1] [20, 5.4.2]

Let Y be path-connected with yo € Y and f : S"™' — Y be continuous. Then the
inclusion Y CY Uy D™ induces an isomorphism m1(Y,y0) — m (Y Uy D™, yo) if
n > 3 and an epimorphism if n = 2. In the later case the kernel is the normal
subgroup generated by [v][f][v™!], where v is a path from yy to f(1). So

m (Y Uy D?) 2= my (Y)/(conjpy ([f])) v

One could say that by gluing D? to Y the element [f] € m1(Y) gets killed.

Proof. We take U :=Y Uy (D™ \ {0}) and V :=e".

unvc V

N N Then V ~ {0} and U NV =e™\
1/2 {0} ~ S~ are simply connected
gn—1 {0} for n > 3, by . Thus the

inclusion U C Y Uy D™ induces

~ an isomorphism by | 5.33.4 |. Since
¥ U C UuvVv YisaSDRobeythe
N inclusion of Y — U induces an
/ isomorphism by .
Y ¢ YUy D"

Now for n = 2. Again V is simply connected, but U NV ~ S and hence 71 (U NV)
is the infinite cyclic group generated by the image of a circle of radius say 1/2. This
path is homotopic to [v][f][v™!] in YU; D?, hence everything follows by|5.33.3]. O
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5.39 Example. [20, 5.4.4] We have 71 (S! U,» D?) = 71(S1)/([2"]) & Z,.

=R

In particular, 71 (P?) = m1(S! U,2 D?) & Zs.

This can be easily visualized: The top semi-circle a in
D? has as « - « the full circle, which is contractible to 0.
Equally, P2 is obtained by glueing a 2-cell to the bound-
ary of a Mobius strip and the generator o € 1 (P?) is
just the middle line on the Mobius strip. Its square a - «
is homotopic to the boundary of the Moébius strip which
is contractible in the disk.

5.40 Corollary. [20, 5.4.3] [20, 5.4.6] Let X be a CW-complex and zo € X°.
Then X? — X induces an isomorphism 7y (X2, z0) = 71 (X, 7).

Moreover, X' — X induces an epimorphism w1 (X', z0) — (X, z0) with the
normal subgroup generated by conj[ve][xe|51] as kernel, where ve is a path joining

xo and x°(1) in'Y and e runs through all 2-cells in the connected component of x
n X.

Proof. If X is a finite CW-complex then this follows from by induction.

By any compact subset of X is contained in a finite subcomplex X, hence
m1 (X, x0) is the inductive limit of the 71 (Xy,x0) for the finite subcomplexes X

containing xg by , hence the result holds in general.

O

5.41 Example. [20, 5.4.7] Since P" = P2Ue3U- - -Ue" we have 71 (P") = 7 (P?) =
Zs.

5.42 Definition. [20, 5.5.11] A CW-complex X with X = X' is called a GRAPH.
A graph is called TREE if it is simply connected.

5.43 Lemma. [20, 5.5.12] A connected graph is a tree iff it is contractible.

Proof. (=) Let X° be the O-skeleton of a tree X. And let 7o € X° be fixed. Every
x € XY can be connected by a path with zg, which gives a homotopy X° — X. By
it can be extended to a homotopy hy : X — X with hy = idx and h;(X°) =
{z0}. Let e C X be a l-cell with characteristic map y. : I = D! — X. Then
[h1 0 xe] € m1(X, x0) = {1}, hence there is a homotopy k¢ : (I,1) — (X, {zo}) with
k§ = h1oXe and k§(I) = {xo}. Let kf : X°Ue — X be defined by kf(X°) = {zo}
and kf = kf o x.! on e. Taking the union of all k gives a homotopy k; : X* — X
between h; and the constant map xg. O

5.44 Lemma. [20, 5.5.13] Every connected graph X contains a mazimal tree. Any
maximal tree in X contains all vertices of X.
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Proof. Let M be the set of trees of X ordered by inclusion. Since the union of any
linear ordered subset of M is a tree (use ), we get by Zorns lemma a maximal
tree Y C X.

Let Y be a maximal tree and
suppose that there is some xy €
XO\Y% Let w: 1 — X bea e
path-connecting xy and Y. Let
t; be minimal in w=!(Y) (hence W
w(ty) € Y°) and tg < t; be w(ty)
maximal in w=1(X%\ Y?). Then
w([to, t1]) is the closure of a 1-cell
e and Y Ue is a larger tree, since
Y is an SDR of Y U é by defor-
mation along e. O

w(to)

5.45 Corollary. [20, 5.5.17] Every connected CW-space is homotopy equivalent to
a CW-complex with just one 0-cell.

Proof. The 1-skeleton X! is connected since any path with endpoints in X° is
homotopic to a cellular path I — X! by . For a maximal tree Y in X! as

constructed in we have that X — X/Y is a homotopy equivalence by

since Y is contractible by and (X,Y) has the HEP by [4.18]. O

5.46 Proposition. Fundamental group of graphs. [20, 5.5.14]

Let X be a connected graph and xo € X°. Let Y C X be a mazimal tree. For every
0-cell x choose a path vy, in'Y connecting xo with x. And for every 1-celle C X \Y
with characteristic mapping x¢ : I = DY — X' let s(e) := [vye ()] [X][vye(y] ™ €
m1(X,x0). Then s induces an isomorphism

F({e:eis I-cell in X \ Y}) = m (X, 20),
i.e. m (X, o) is the free group generated by {s(e) : e is 1-cell in X \ Y'}.

Proof. As in the proof of the quotient mapping p : X — X/Y is a homotopy-
equivalence onto a CW-space with just one O-cell Y. By XYy =\, S,
where e runs through the (1-)cells in X \ Y, see also . Thus 71 (X, z9) =
m(X/Y,y0) = m1(V, ") = F({e : e is 1-cell in X \ Y'}) by [5.37]. The inverse of
this isomorphism is given by e +— [vye(g) - X* - fu;el(l)} = s(e). O

5.47 Corollary. [20, 5.5.16] Let X be a finite connected graph with dy vertices and
dy edges. Then w1 (X) is a free group of 1 — dy + di generators.

Proof. By induction we show that for each 1 < n < dj there is a tree Y,, C X
with n vertices and n — 1 edges: Let Y, for n < dy be given and choose a point
2o € X\ Y, and a path w connecting zo with Y;,. Then proceed as in the proof

of to find an edge w([to,?1]) connecting a vertex outside Y,, with one in Y;,.
Now Y41 = Y, Uw([to, t1]) is the required tree with one more vertex and one more
edge.

By the result follows, since there are d; — (dp — 1) many 1-cells not in Yy,. O

5.48 Theorem. Fundamental group of CW-complexes. [20, 5.6.4]
Let X be a CW-complex with mazimal tree Y .
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Let generators s(e') be constructed for every et € X' \'Y as in .
For every 2-cell e* € X? define r(€?) := [u - Xe2|s1 - u™t] € m (X1, 30), where u is
a path from xq to x.2(1) in X' and x.2 : D* — &% a characteristic mapping. Then

(X, o) = <{s(61) cetis I-cellin X'\ Y} : {r(e?): e € X2}>.

Proof. By the mapping m1 (X1, z0) — m(X?,20) = 7 (X, 20) induced by
X! — X? — X is surjective and its kernel is the normal subgroup generated by
r(e?) = [u- xez|g1 - u™t] € w1 (X1). Finally, w1 (X1) =2 F({s(e?) : et is 1-cell in X'\

Y}) by [5.46]. O

5.49 Remark. [20, 5.6.5] For every group representation (S : R) there is a 2-
dimensional CW-complex X denoted CW (S : R) with m(X) = (S : R).

Proof. Let X! :=\/4S*. Every r € R C F(S) = m;(X") is the homotopy class of
a curve mapping f. : S' — X! and we glue a 2-cell to X! via this mapping. Le.
X =CW(S:R):=X! Uf(UTERDQ),Wheref:: L, er fre O

Note that this construction depends on the choice of the f, € [r]. However, different

choices give rise to homotopy equivalent spaces by . Moreover, they depend
on the representation (S : R) and not only on its isomorphy class, see the following

remark and .

5.50 Proposition. [20, 5.8.6] Every connected CW-complex of dimension less or
equal to 2 is homotopy equivalent to CW (S : R) for some representation (S : R)
of its fundamental group.

Proof. Choose a maximal tree Y C X!. Then by the proof of we have that
X is homotopy equivalent to X/Y, which has as 1-skeleton \/4 S*, where S := {e :
e is 1-cell in X \ Y'}. For every 2-cell e of X/Y (equivalently, of X) we choose a
characteristic map x°. Thus X/Y = (V¢ S") U, el Ll D* By we can
deform x¢|s1 to a base point preserving map f¢ : S* — \/4 S*. Hence by XY
is homotopy equivalent to CW (S : R), where R := {f° : e is 2-cell of X/Y}. O

Remark. Note, that this does not solve the isomorphy problem for 2-dimensional
CW-complexes: Obviously, X; ~ Xy = m1(X1) & m1(X3). However, m(X;) =
Despite (S : R1) = (Sa, R) it does not follow that X1 ~ CW (Sy : Ry) ~ CW(Ss :
Ry) ~ Xa, as m1(S?) = {1} = m ({#}) with S? % {} by [8.43] and [2.36.1 | shows.

The following lemma shows exactly how the homotopy type might change while
passing to other representations of the same group (using the Tietze operations of

[5.27]).

5.51 Lemma. [20, 5.8.7]
We have CW (S : RU{r}) ~CW(S: R)V S? forr € (R)y¢g \ R
and CW(SU{s}: RU{s tw}) ~CW(S: R) for s ¢ S and w € F(S5).

This shows that CW ((S : R)) := CW (S : R) would not be well-defined.

Proof. Let X :=CW(S: R) and Y := CW(S: RU {r}) with r € (R)ng \ R.
Then Y = X Uy D?, where f : S' — \/4S' = X' C X is such that [f] =
r € m(VgS') = F(S). Since 7 € (R)ng, we have that [f]lx = 1 € m(X) =
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71 (Vg SY)/(R)NG, hence f ~0in X. Thus Y = X Uy D? ~ X Uy D? = X vV S? by

(2303

Let X :==CW(S:R)and Y := CW(SU{s}: RU{s tw}).

Then Y = (X V S') Uy D?, where f = 07! - w for the inclusion o : S* — X v S?
and w = [w] € m(X) =2 F(S). Thus Y = (X VSY)Us D? = (X Ug D) Uy-1,, D? =
X Uf| o D? ~ X and since the lower semi-circle S C D? is an SDR we have that

X is also an SDR in Y, by . O

5.52 Example. [20, 5.7.1]
The fundamental group of the orientable compact surface of genus g > 0 is

<OZ1,51, cee 70[9759 : [alvﬂl} Teee” [agvﬁgb'
That of the non-orientable compact surface of genus g > 1 is

(al,...,ag:a%-...-a_g).

Proof. By these surfaces are obtained by gluing one 2-cell e to a join \/ S!

of 2g, respectively g, many S' and the gluing map is given by i1 - iy ~i1_1 -i;l .

and 42 -...-42, so the homotopy class of the characteristic mapping x¢|s: is [o1, £1] -
1 g g
oo |ag,Bgland o - .. .- ag, respectively. Now apply O

5.53 Corollary. [20, 5.7.2] None of the spaces in are homotopy equivalent.

Proof. The abelization of the fundamental groups are Z29 and Z9~! @ Z,. In fact
ab<a1a617 .o >ag35g : [alvﬁl] et [agaBgD =
= <a1aﬁ17 cee aagvﬁg : [041, 61] Tt [ag’ﬁg]v [ai’ aj]v [ﬁiaﬁjL [O‘ivﬁjp

5.27.1

<Oé17ﬂ1a .. 'aagaﬂg : [Oéiaaj]a [ﬂhﬂj]ﬂ [ahﬂjD
ab<a1aﬂ1a"'7agaﬂg:®>
:ab}'(al,ﬁl,...,ag,ﬁg) :ZQQ

and
ab(al,...,ag:a%-...-oé)
:ab<a17...,ag (ag e -ag)2>
)
[5272] ab(al,...,ag,a:az,a 1a1...ag>
“b<a1,...,o¢g,1,a a?)
=%ay, ..., 41 : 0) 1T {a: a?))
=717, O

Geometric interpretations are the following:

52 is simply connected by hence m; has no generator and no relation.

St x St is a torus. By the generators a and 3 of 71 are given by S x {1}
and {1} x S', which are a meridian and an equator in the 3-dimensional picture.
This can be also seen by gluing the 4 edges of a square as aBa~'87!. The relation
af = Pa is seen geometrically by taking as homotopy the closed curves given by
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running through some arc on the equator, then the meridian at that position and
then the rest of the equator.

The oriented surface of genus g is obtained by cutting 2¢ holes into the sphere and
gluing g cylinders to these holes. Let xy be one point on the sphere not contained
in the holes. As generators o; we may take curves through zg along some generator
{x} x I of the cylinder and as 3; loops around one boundary component S x {0}
of the cylinder. Then o;B;0; ! describes the loop around the other component and
aiﬂiajlﬂfl is a loop around both holes. The product of all these loops is a loop
with all holes lying on one side and hence homotopic to a point, cf.

We have discussed the generator o and the relation a? ~ 1 on P2 in [5.39 |

The non-orientable surface of genus g is obtained from a sphere by cutting g holes
and gluing g Mobius-strips. The generators «; are just conjugates of the middle
lines on the Mobius strips. Their squares are homotopic to the boundary circles.
And hence the product of all a? is homotopic to a loop around all holes, which is
in turn homotopic to a point.

This shows that beside the sphere, the torus and the projective plane these funda-
mental groups are not abelian.
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We take up the method leading to the calculation m1(S!) & Z in . Basic
ingredient was the lifting property of the mapping ¢ +— exp(27it), R — S, see
. Its main property can be stated abstractly as follows:

6.1 Definition. Covering maps. [20, 6.1.1] A COVERING MAP p: Y — X is a
surjective continuous map, such that each x € X has an open neighborhood U C X
for which p|,-1(y) : p~1(U) — U is up to an homeomorphism just the projection
pr:| ], U — U for some set J # 0, i.e.
The images of the summands U
in p~1(U) C Y are called the
~2p ' (U)=—— ||, U 2 U 1LEAVES and U is called a TRIV-
IALIZING NEIGHBORHOOD. The
»l, A / inverse images of points under
X<~—U p are called FIBERS, X is called
BASE, and Y TOTAL SPACE.

Y

6.2 Lemma. Let G be a group acting freely (see ) onY.
Then the action is strictly discontinuous (see ) if and only if
the quotient mapping m:Y — Y/G (see ) s a covering map.

Proof. (=) Since G acts strictly discontinuous we find for each y € Y a neighbor-
hood V such that: g- VNV #0 = g=1. Thus 7|y : V — 7(V) =: U is a bijective
quotient mapping (since 7 is open by the proof of ) hence a homeomorphism.
Furthermore, 7=1(U) = G-V = || .~ gV is open in Y and hence U is open in
Y/G.

geG

(<) If7:Y — Y/G is a convering map, then for every y € Y there has to exist an
open neighborhood U C Y/G such that 7=1(U) is a disjoint union of open subsets
V' homeomorphic via 7 to U. So U = 7(V) and 7= 1(U) = 7~} (n(V)) = G - V.
Suppose g - VNV #£ 0, i.e. Jv € V with g-v € V. Since w(v) = 7(g-v) and 7 is
injective on V we get v = ¢ - v and, since G acts freely, g = 1. Thus the action is
strictly discontinuous. O

Remark. We used that G acts freely only for («<). Otherwise, we could only deduce
that g keeps each v € V N g~ 'V fixed, i.e. g is contained in the isotropy subgroup
G, :={g9€G:g-v=nv}of v. However, if Y is assumed to be locally connected,
we may assume that V is connected and hence gV = V provided gV NV #
(since gV C 7~ Y(xV) = |, V). Thus G, = G, for all v,v’ € V (in fact: g € G,
gv=0v€egVNV =gV =V = € gVNV = g € G,). Therefore, the
family of subsets {v € Y : G, = H}, where H runs through all subgroups of G,
forms a partition of Y into open subsets. Thus, if in addition Y is assumed to be
connected, then H := G, is independent on v € Y (and hence a normal subgroup,
see ) and thus the action of G on Y factors to a strictly discontinuous action

of G := G/H on Y having the same orbits, i.e. Y/G = Y/G.

6.3 Example.
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1. Let Y := {(sin(2nt), cos(2nt),t) : t e R} =R and p = pr; , : ¥ = S' C R?.
Then p is a covering map: Use for R/Z = S, see [1.78.2 |

]R>g—>>YC—>(C><R

ﬂ'i > 2mit ip Pri
N

R/Z = 5 ¢ C

2. The map z + 2" : S — S is an n-fold covering map: Use for S1 /7, =
I)I=S"

3. The map S™ — P" is a two-fold covering map: Use for S™/Zy = P™,
see ’ 1.67‘ and ’ 1.69 ‘

4. Let p; : Y1 — X7 and ps : Yo — X5 be two covering maps, then so is
p1 X P2 Y] x Yy = X1 x X5. Examples are R2 — S x ST, R? — R x S,
and R x St — St x ST,

5. There is a twofold covering map from I x S! to the closed Mé6bius strip: Use
for the action of Zy on [—1,1] x St given by (t,¢) — (—t, + 7), see
exercise (1.15).

6. The torus is a two fold covering of Klein’s bottle. Use for the action of
Zy on S x S given by (p,9) — (—¢, % + ), see exercise (1.17.3).

7. Zy acts freely on S2k=1 and the orbit space is the lens space (see ), SO
we get a covering map S2*~1 — L(p;q1,...,qx)-

6.4 Lemma. [20, 6.1.3] Let p: Y — X be a covering map. Then
1. The fibers are discrete in'Y .

Every open subset of a trivializing set is trivializing.

w N

Let AC X. Then p|,-1(a): p*(A) = A is a covering map.
If BCY is connected and p(B) C U for some trivializing set U, then B is
contained in some leaf.

=~

5. The mapping p is a surjective local homeomorphism and hence an open quo-
tient mapping.

Proof. () Points in the fiber are separated by the leaves.
() and () Take the restriction of the characterizing diagram.

() B is covered by the leaves. Since each leaf is open, so is the trace on B. Since
B is connected only one leaf may hit B, thus B is contained in this leaf.

() Obviously the projection is a local homeomorphism. Hence it is open and thus
a quotient mapping. O

Lemma. Let X be a connected Hausdorff space and Y # 0 compact. Then every
local homeomorphism f 1Y — X is a covering map.

Proof. Since f is a local homeomorphism, the fibers f~!(z) are discrete and closed
and hence finite since Y is compact.

Let us show next that f is surjective. In fact the image is open in X, since f is a
local homeomorphism. It is closed, since Y is compact and X is Hausdorff. Since
X is assumed to be connected and Y # () it has to be all of X.
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Let € X. Choose pairwise disjoint neighborhoods V,, for each y € f~!(x) which
are mapped homeomorphically onto a corresponding neighborhood of z. By taking
the inverse images of the (finite!) intersection U := (1, ¢ -1, f(V}) in the V; we
may assume that the image is the same neighborhood U for all y € f~!(x). Hence
U is trivializing with leaves V;, and thus p: Y — X is a covering. O

Example.
Not every surjective local homeomorphism is a covering map.

Take for example an open interval I C R of length more than 1. '\
Then the restriction I — S! of the covering map from is
not a covering map.

6.5 Definition. Homomorphisms of coverings.

Let p : Y — X’ and p : Y — X be two covering maps Yy

with the same total space Y. A HOMOMORPHISM f of these ' »
coverings is a map f : X’ — X such that the diagram to / \
the right commutates. X’ f X

Note that such an f exists, iff p factors over p’, i.e. the fibers of p’ are contained in
fibers of p. If such an f exists it is uniquely determined since p’ is onto. So we get
a category Cov” (a quasi-ordering) of all coverings with total space Y.

Conversely, let p’ : Y/ - X and p: Y — X be two covering v f v
maps with the same base space X. A HOMOMORPHISM f
of these coverings is a fiber respecting map f : Y/ — Y, \ /
P
X

i.e. the diagram on the right commutates.

We denote the set of all homomorphisms from p’ : Y/ — X top : Y — X by
Homx (p’, p). So we get a category Covy of all coverings with base space X.

Note that a homomorphism f is nothing else but a lift of p’ : Y/ — X along
p Y — X. The automorphisms f, i.e. invertible homomorphisms p — p, are also
called COVERING TRANSFORMATIONS or DECKTRANSFORMATIONS, and we write
Aut(p) for the group formed by them.

6.6 Remark. Unique lifts along covering maps exist locally.
Let p: (Y, yo0) — (X, 20) be a covering map and ¢ : (Z, z9) — (X, zo). Take a trivial-
izing neighborhood U of zo and let U be the leaf of p over U which contains yo. Then
(plg) : U — U is a homeomorphism and hence (p|5) 'og:Z2¢ ' (U)»UCY
is a continuous local lift of g.
Let g be any continuous (local)
lift of g with G(z0) = yo. Then
W=g"'U) Cg ' (U) =
g 1(U) is a neighborhood of zg
Y and §(W) C U, hence g = po §
,implies (plg) ™" o g = (plg)~" o
plg 0§ =gon W, ie. locally the
X lift of g is unique.
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6.7 Lemma. Uniqueness of lifts. [20, 6.2.4]

Letp:Y — X be a covering map and let Z be connected.

Then any two lifts of a continuous map g : Z — X, which coincide in one point,
are equal. In particular, if g is constant so are its lifts.

Proof. Let g', g? be two lifts of g. Then the set of points {z € Z : g'(2) = ¢°(2)}
is clopen: In fact if U7 is the leaf over U containing of ¢7(z), then g/ = (p|yi)~tog
on the neighborhood (g*)~1(U') N (¢%)~1(U?) of z by . Hence either g! = g2
or g' # g? at each point of this neighborhood. O

6.8 Lemma.

Let X locally path-connected and 7 a Y
letq:Z —Y andp:Y — X be given. \ /
Then the following statements hold: ped x ?

1. If p and p o q are coverings and Y is connected, then q is onto.
2. If p and p o q are coverings and q is onto, then q is a covering.

3. If p and q are coverings and X is locally simply-connected, then p o q is a
COvering.

4. If ¢ and p o q are coverings, then p is a covering.

Proof. () We claim that the image of ¢ is clopen in Y and hence coincides
with the connected space Y. For this we consider all leaves V' C Y for p over
path-connected open subsets U C X, which are trivializing for p and p o q. It suf-
fices to show that if such a leaf V' meets the image ¢(W) of a leaf W C Z over
U for p o q then it is contained in q(W), since then ¢(W) = Uynqmrzo V and
yeV\qgZ2)=VnqeZ) =0.

So let wy € W be such that g(wy) € V. Since
V has to be path-connected as well, we may
connect ¢(wp) with any v € V by a curve ¢ in
V. The curve poc has a lift ¢ = (pog|w ) topoc
starting at wg € (poq) 1 (p(c(0))) with values
in W. By the lift ¢ o ¢ coincides with ¢
and hence v = ¢(1) = q(c(1)) € ¢(W).

() Take a path-connected set U C X being trivializing for po g and p. Every leaf
W of poq over U is mapped by ¢ into some leaf V of p over U: In fact, since the
leaves are homeomorphic to U, they are path-connected as well, hence ¢(W) is com-
pletely contained in some leaf V of p over U = (p o q)(W) by . Thus ¢~ (V)
is the topological disjoint union of all leaves W of po g over U, which meet ¢~ (V).
Moreover, qlw = (plv) "t oplv oqlw = (plv)"' o (p o q)lw is a homeomorphism
W=U=V.

() Let p and g be coverings, with X locally simply connected. Then the leaves V;
of p over a simply connected trivializing set U are again simply connected, hence
are trivializing neighborhoods of ¢ as will be shown in . Hence (poq)~1(U) =
g (' (U) = a ' Ujes Vi) = Ujesa ' (Vy) and ¢~ '(V;) = [, V. Since the
restriction (p o q)|lw = plv; o qlw is a homeomorphism W = V; = U for each leaf
W over Vj, the map po g is a covering as well.
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() Let p o ¢ and ¢ be coverings. We claim that p is a covering. Let W be a
leaf of p o ¢ over a path-connected trivializing set U. Since ¢ is an open map-
ping, V := ¢(W) is open in Y. Since (p o q)|w is an embedding the same is
true for glw. Thus ¢l : W = V is a homeomorphism and consequently also
plv = (poglwolgw) ' :V>W=U.

We claim that q(W) is a path-component of p~!(U) and hence the distinct ones
among these sets form a disjoint partition of p~1(U):

Let zp € W be choosen and let ¢ be a continuous W?L» V ——p }(U)

. . \g
curve in p~1(U) from ¢(2g) to some point y € p~1(U). - .
We have a lift ¢ := (pog|w)~to(poc) into W of poec
with initial value zy. Then ¢ and q o ¢ are two lifts of

p o ¢ with initial value g(zg) hence coincide by
and thus y = ¢(1) = q(¢(1)) € g(W).

poq|w

O

6.9 The category Covzorm.

We try to get a description of the category CovY of coverings with fixed total
space Y. For every group G acting strictly discontinuous on Y (and w.l.0.g. we may
assume that G C Homeo(Y')) we get a covering 7 : Y — Y/G by .

Can we recover G from the covering 7 : Y — Y/G?

Yes: If Y is connected then Aut(w) = G:

Obviously, G C Aut(n). Conversely, let ® € Aut(n), i.e. 7(y) = 7(P(y)) for all
y € Y. Choose yo € Y, then there is some gy € G with gg - yo = P(yo) since the
fibers of m are the G-orbits. Since the two mappings ® and gy cover the identity
(i.e. are lifts of 7 along 7) and coincide on yo they are equal by .

Note, that if G’ < G is a subgroup then 7 : Y — Y/G factors over 7' : Y — Y/G’
to a unique mapping f : Y/G' — Y/G, i.e. a homomorphism 7’ — 7. So we get
a functor Actgqis.(Y) — CovY from the partially ordered set (hence category)
Actgirais. (Y) of subgroups of Homeo(Y') for which the action on Y is strictly dis-
continuous.

Is this functor DENSE, i.e. is every covering mapping p : Y — X up to isomorphy in
the image of this functor? For this we have to find a subgroup G < Homeo(Y") for
which the action on Y is strictly discontinuous and such that p 2 (7 : Y — Y/G).
The natural candidate is G := Aut(p).

Obviously the action of Aut(p) on Y is strictly discontinuous, since for any leaf U
over some trivializing set U and any g in Aut(p) we have:

g(U)NU # 0 implies Iy € U : g(y) € U. From p(g(y)) = p(y) and since Pl - U—U
is injective we conclude that g(y) = y = id(y), but then g = id by .

Since p o g = p for every g € Aut(p), we have

that p is constant on the Aut(p)-orbits and hence

Y
factors to a mapping Y/ Aut(p) — X, which is by / \1
a covering map, provided X is locally path-
connected, and hence a quotient map by . Y/ Aut(p) > X

This mapping is injective (and hence a homeomorphism) iff every two points in the
same fiber of p are in the same orbit under Aut(p), i.e. iff Aut(p) acts transitive on
the fibers of p. Such covering maps p are called NORMAL, see for a counter-
example. Note that for a group G acting strictly discontinuous on Y the covering

7 :Y — Y/G is obviously normal. Let CovzOrm denotes the category of normal
coverings with total space Y. Then we have:
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6.10 Theorem. [20, 6.5.3] For path-connected and locally path-connected Y we
have an equivalence of categories

CovY

norm

~ ACtstr.dis. (Y)a

i.e. there exists also a functor in the opposite direction and the compositions of
these two are up to natural isomorphisms the identity.

Proof. The functor Act . 4i5.(Y) — Cov’, . discussed above is given by Homeo(Y) >
G (r:Y =-Y/G)and if G < G then 7:Y — Y/G factors over ' : Y — Y/G’
to a unique mapping f : Y/G' — Y/G, i.e. a homomorphism 7/ — .

Conversely, every homomorphism f : 7/ — 7 has to be the unique factorization of
7m:Y — Y/G and induces an inclusion G' C G: ® € Aut(n') =G = 7' o ® = 7’
=700 =fono® = forn =m,ie ® € Aut(n) = G. Thus the functor is full
and faithfull.

It is a general categorical result, that a full, faithful and dense functor is an equiva-
lence. In fact, an inverse is given by selecting for every object in the range category
an inverse image up to an isomorphism and by the full and faithfulness this can be
extended to a functor.

We have shown in that the functor is dense, hence it induces the desired
equivalence of categories. O

We now try to desribe the category Covx of coverings with base X in algebraic
terms. Since the homomorphisms p’ — p are lifts of p’ along p we have to study
liftings along coverings in more detail.

6.11 Theorem. Lifting of curves. [20, 6.2.2] [20, 6.2.5] Letp : ¥ — X be a
covering. Every path u : I — X has a unique lift Ya with Ya(0) = y for given
y € p~1(u(0)). Paths homotopic relative their initial value have homotopic lifts.

In particular we have an action of w1 (X, o) on p~t(xo) given by [u] : y — Ya(1),
i.e. the end-point of the lift of u, which starts at y.

The total space Y is path-connected iff X is path-connected and this action is tran-
sitive, i.e. for all y1,y2 € p~t(x0) there exists a g € m (X, z0) with y1 - g = Yo
(equivalently: there exists a yo € p~L(xo) with yo - (X, 20) = p~(z0))-

Proof. By we have to show existence of a lift. By considering a path w as a
homotopy being constant in the second factor, it is enough to show that homotopies
h:IxI— X can be lifted.

For this choose a partition of I? into squares Qi,j, such that h(Q; ;) is contained in
a trivializing neighborhood U; ; of X . For each fixed j we construct inductively a lift
hi along |J; Q;,; with initial value yo at the bottom left corner, by taking the leaf
U; j over the trivializing neighborhood of Qi,; which contains the image under h? of
the right bottom corner of Q;_1 ;. Then h'|g, . can be defined as (p\UM) ohlq,

and agrees with h |._,; on the vertical edge Q;_1,;MNQ; ;, since this is contained in

f]i_l,j N Ul j by . By induction we can show that these lifts agree on the lines
formed by horizontal edges: In fact the image of h on a horizontal edge is contained
in the intersection of the trivializing sets containing the image of the square above
and below. And since the lifts 27 and hi~! are contained in the respective leaves,
and thus in the leaf over the intersection, they have to be equal on the edge. We
denote the unique homotopy by Y0h.

Qi

Now suppose h is a homotopy rel. I between two paths ug and u; from z to z1 and
let yo € p~!(20). The homotopy h with initail value h(O s) = yo has as boundary
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values the (unique) lifts i and @; with i;(0) = yo. Since s — h(1, s) is a lift of the
constant path x1, it has to be constant by , ie hisa homotopy rel. I.

The lifting property gives us a mapping from 71(X,xg) into the set of mappings
p 1 (zg) — p~Y(x0) by setting [u](y) := Ya(1). This is well defined, since curves u
homotopic relative I have lifts Y@ homotopic relative I and hence have the same
end point in p~!(zo).

Composition law: The lift of Y& v is ¥ - ¥, where y/ := Ya(1).

Moreover we have [u-v](y) = Yu~v(1) = (*@¥ 8)(1) = ¥'5(1) = [v](y') = []([ul(y)),
where ¢y’ = Ya(1) = [u](y). Hence, we consider this mapping as a right action, i.e.
we write y - [u] for [u](y). Then we have y - ([u] - [v]) = (y - [u]) - [v].

In particular, [u] acts on p~!(zg) as bijection.

Now the statement on path-connectedness:

If Y is path-connected then so is the surjective continuous image X. Furthermore
a curve v connecting y,3’ € p~!(zo) has a closed curve u := p o v as image and
v="Y4, so y-[u] =y, i.e. the action is transitive.

Conversely, let y € Y be arbitrary. Since X is path-connected we have a curve u
connecting p(y) with xq. Its lift Y@ connects y with ¢’ := Y4(1) € p~!(zp). Since
m1(X, xo) acts transitive on p~!(x) there is a [u/] € m (X, zo) with v'a@/(1) =
y - W] = yo, i.e. the curve v'@ connects y' with yo and Y@ - ¥ @ connects y with
Yo- O

6.12 Corollary. [20, 6.3.5] Let X be path-connected. Then the fibers of any covering
p:Y — X can be mapped bijectively onto one another by lifting a curve connecting
the foot points.

Proof. Let Fy := p~!(x¢), F1 := p~!(z1) and let u be a path from x¢ to x; then
y +— Yu(1) defines a mapping Fy — F; and y — Yu~1(1) a mapping F; — Fp and
these mappings are inverse to each other, since the lift of the curve u - u=! ~ 0 is
0-homotopic rel. I and hence closed. O

6.13 Corollary. Let X be simply connected and p : Y — X be a path-connected
covering. Then p is a homeomorphism. In particular every simply connected open
subset in a locally path-connected base space of a covering is a trivializing neighbor-
hood.

Proof. Since m1(X,z0) = {1} acts transitively on the fiber p~1(xq) by , the
fiber has to be single pointed, hence p is injective and thus a homeomorphism.

For the second statement consider a simply connected open subset U C X and the
partition of p~1(U) into (open!) path-connected components U. Then Plg U—U
is a covering map (since every leaf over a path-connected trivialising subset of U is
either completely contained in U or in its complement and U is simply connected)
and hence a homeomorphism by the first part. O

6.14 General lifting theorem. [20, 6.2.6] Let Z be path-connected and locally
path-connected. Let p : Y — X be a covering and g : Z — X continuous. Let
xo € X, yo €Y and zg € Z be base points and p and g base point preserving. Then
g has a base point preserving lift g iff im(m1(g)) C im(m(p)).

Proof. (=) If g = po g then im(m1(g)) = im(m1(p) o m1(g)) C im(m1(p)).

(<) Let z € Z be arbitrary. Since Z is path-connected we may choose a path u
from 2z to z and take the lift ¥0g ou and define §(z) := Yogou(l).
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First we have to show that this definition is independent from the choice of u. So
let «’ be another path from 2o to z. Then go (v’ -u™1) = (gou/) - (gou)~tis a
closed path through zg, hence by assumption there exists a closed path v through
Yo with pov ~ (gou') - (gou)~" rel. I and hence (pow) - (gou) ~ (gou') rel. I.
Thus g ou'(1) =% ((pov) (gou))™ (1) = (wpov-wgou)(l) =vgou(l).

Remains to show that g is continuous. Let z; € Z be fixed and let U be a leaf over
a trivializing neighborhood U of ¢(z1) containing §(z1). Let W be a path-connected
neighborhood of z; with g(W) C U and let « be a path from 2y to z; and hence
y1 = g(z1) = Ygou(l). For every 2 € W we can choose a path w, in W from
1 to 2. Hence §(2) = "(go (u-w.))*(1) = (0550 - ¥ gow,)(1) = “gows(L).
But since g o w, is contained in the trivializing neighborhood U and U is the leaf
over U containing the lift 31, we have that ¥1gow, = (plg) ™t o g ow,, and hence
g(z) =¥'gow,(1) = ((plg)~* o g)(z) and thus is continuous. O

Thus it is important to determine the image of 71 (p) : m1 (Y, y0) — 71 (X, zo).

6.15 Proposition. [20, 6.3.1] Let p : (Y,yo) — (X, z0) be a covering. Then the
induced map m (p) : m1(Y,y0) — m (X, xo) is injective and its image is formed by
those [u] € m1(X, xg) for which for (some) any representative u the lift ¥4 is closed,
i.e. by those g € m(X,x9) =: G which act trivial on yo. They form the so called
ISOTROPY SUBGROUP Gy, :={g € G :yo-g = yo} of G at yo with respect to the
action of G on p~1(xg).

mi(p) : m (Y, y0) = m1(X, 20)y, € m (X, 20).

Proof. Injectivity: Let [v] € m1(Y, yo) be such that 1 = [pov], i.e. pov ~ consty,.

—~

By we have v = ¥ powv ~ Y const,, = consty, rel. I, hence [v] = 1.

If some lift v of u is closed, then 71 (p)[v] = [p o v] = [u], hence [u] € im(m1(p)).
Conversely let [u] € imm(p). Then there exists a closed curve v through yg with
[pow] =m1(p)[v] = [u], hence u ~ pow rel. I, and so ¥ ~ ¥pcv = v rel. I, thus
Yog is closed as well. O

In view of we study now abstractly given transitive (right) actions of a group
G on sets (i.e. discrete spaces) F.

6.16 Lemma. Transitive actions and isotropy subgroups.

Let G act transitively on F' (and on F') from the right. A G-EQUIVARIANT MAPPING
or G-HOMOMORPHISM s a mapping ¢ : F — F', which satisfies o(y - g) = ¢(y) - g
forally € G and g € G. We write Homg (F, F') for the set of all G-homomorphisms
F—F and G, :={g € G:y-g =y} for the ISOTROPY SUBGROUP of y € F.. Then

1. We have Gy., = g7'Gg.

2. {Gy :y € F} is a conjugacy class of subgroups of G, i.e. an equivalence class
of subgroups of H with respect to the relation of being conjugate.

3. Let H be a subgroup of G. Then the set G/H := {Hg : g € G} of right
classes admits a unique (transitive) right G-action, such that the canonical
projection 7 : G — G/H, g — Hg is G-equivariant, where the action of G
on G is given by multiplication from the right side.

4. For y € F the G-equivariant mapping G — F given by g — vy - g factors to
a G-isomorphism G/G, —=— F.

5. For ¢ € Homg(F, F') we have Gy C G,y). Conversely if yo € F and
y1 € F' satisfy Gy, C Gy,, then there is a unique ¢ € Homeg(F, F') with
©(Yyo) = v
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6. F2g F' & {Gy:ye F} ={Gy :y € F'}
S {Gyiye F}n{Gy :y € F'} #0.

Note, that we refrain from writing the quotient G/H correctly as H\G.

Proof. () We have G, = g7 'Gyg,since h € Gy & y-g-h=y-g < y-(ghg™') =
y, i.e. ghg™t € G,.

() Since G acts transitively, {G, : y € F} = {Gyyg = 97 'Gyg : g € G} is a
conjugacy class by ()

() The only possible action of G on G/H such that 7 is G-equivariant is given
by Hg-g =7(g)-g :==n(9-¢) = w(g99’) = Hgg'. The so defined action makes
sense, since Hg1 = Hgy = gogy ' € H = (Hg1) - g := Hg1g = Hgz2g =: (Hgs) - 9.

() Consider ev, : G — F given by g — y - g. This G-equivariant mapping has
image y - G = F, since G acts transitively. Furthermore ¢’ and g have the same
image y-¢' =y-giff g~ € Gy, so ev, factors to a G-isomorphism G/G, — F.

(5]) We have G, = {g:y-9 =y} C{9: 0(y) -9 =9y-9) = ¢y} = Go(y).
Conversely let Gy, € Gy, and y € F'. Since G acts transitively there exists a g € G
with y = yo - g. Define ¢(y) = ©(yo - 9) := ©(yo) - ¢ = y1 - g. This definition makes
sense, since yo - ¢’ = yo - g implies ¢'g~' € Gy, € Gy, and hence y; - ¢’ =y - g. By
construction ¢ is G-equivariant.

(@) (1=2) Let ¢ : F' — F' be a G-equivariant isomorphism. Then G, € G, €

Go-1(p(y)) = Gy by ()

(1«<=3) By assumption there are y € F' and y' € F’ with G, = G,/ and therefore
F=gG/G, =G/Gy =g F' by [4]. O

6.17 The category Subgr(G).

We use for associating to each subgroup H < G the transitive action of G

on G/H. In order to extend this to a full and faithfull functor, we have to define

the morphisms H — H’ between subgroups appropriately:

Let ¢ € Homg(G/H,G/H') and yo := H € G/H. Then G, := {9 € G : Hg =

Yo-g =1y = H} = H. By ¢ is uniquely determined by y1 = ¢(yo) =:

H'g, € G/H' with H = G,, C Gy, = Gy, = g7 "H'g1 by [6.16.1]. So we define
Hom(H,H'):={9€ G:9gH C H'g}/H’,

where H' acts on {g : gH C H'g} by multiplication from the left, since gH C H'g

and b/ € H' implies g H ChH' g=H'g=H'lg.

Then the set Subgr(G) of subgroups H < G and H"g' o H' g := H"¢'g as composi-

tion of these morphisms forms a category:

The composition H"g' o H'g := H" ¢’ g is well-defined, since gH C H'g and ¢'H’ C

H"¢ = ¢'gH C ¢H'g C H"¢'g and since H//(h//g/)(h/g) =H"¢'Wg = H//B//g/g _

H"g'g for B = g/h/(g/)—l c g/H/(g/)—l C H".

The identity on H is given by H = H 1.

Theorem. We have an equivalence Acty-(G) ~ Subgr(G) of categories.

Proof. The functor Subgr(G) — Act,(G) is given on morphisms by:
Hom(H,H')> H'¢1 — ¢(: Hg— H' g19) € Homg(G/H,G/H').

This is well-defined, since Hg = Hg = ¢19(g19) ™" = q199 ‘97> € g1 Hg;* C H'
= H'g19= H' ¢1§ and since H' (h'¢1)g = H' ¢1g for ' € H'.
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Functorality: H = H1 ~ idg,g and the composition H” gy 0 H'gy := H" gag1 is
mapped to Hgw— H' g9 — H" ga2g19.

The functor is faithfull: Vg : Hg— H'g19 = H'g1g = H'g1 = H'gy € Hom(H, H').

The functor is full by what we have shown above.

The functor is dense by | 6.16.4 |. O

6.18 Corollary. [20, 6.3.3] Let G act transitively on F from the right. With
Autg(F) we denote the group of all G-equivariant isomorphisms F — F. For a
subgroup H of G one denotes with Normg(H) :={g € G: H = g~ Hg}, the NOR-
MALIZER of H in G, i.e. the largest subgroup of G, which contains H as normal
subgroup. Then we have a group isomorphism

Autg(F) = Normg(Gy,)/G

Yo

Proof. By ’ 6.16.4‘ and ’ 6.17 ‘ we have
Homg(F, F') 2 Homg(G/H,G/H') < Hom(H,H') := {9 : gH C H'g}/H’,

where H := G, and H' := G are isotropy subgroups of G for the action on F' and
F’. Moreover,

H'g € Hom(H, H') is an isomorphism
& 3JdHg e Hom(H')H): H=Hg'oH'g=Hg'gand H = H'go Hg' = H'g¢’
<319 eG:¢gH CHy, gge H,and g9’ € H'
=3¢ €G- HCg 'HgC(¢9) 'Hyg=H, ¢yH CHy, gg€ H, and g9 € H'
S H=g 'Hg(and ¢’ := g 1).

Thus Autg(F) = Autg(G/H) =2 Aut(H) = {Hg: H = g 'Hg} = Normg(H)/H.
O

6.19 Corollary. We have a bijection between the set of isomorphy classes of tran-
sitive right actions of G and that of conjugacy classes of subgroups of G.

Proof. By we have a bijection between isomorphy classes of transitive actions

and isomorphy classes in Subgr(G). And by the proof of we have that H'g €
Hom(H, H') is an isomorphism, iff H = g7'H’g, i.e. H and H' belong to the same
conjugacy class. O

6.20 Corollary. Letp:Y — X be a covering with path-connected Y and g € X.
The images 71 (p) (771(Y, y)) fory € p~Y(x0) form a conjugacy class of subgroups in
1 (X, LL'()).

This class is called the CHARACTERISTIC CONJUGACY CLASS of the covering p.

Proof. By mi(p)(m1(Y,y)) = Gy for G := (X, z0) and y € F := p~(zo),
and by |6.16.2| {G, : y € F'} is a conjugacy class of subgroups of G. O

6.21 Corollary. For transitive actions of G on F the following statements are
equivalent:
1. Gy is normal in G for some (all) y € F;
2. Gy =Gy forally,y €F;
3. The induced action of G/ ﬂyeF Gy on F is free,
i.e. if g € G has some fized point yg € F' then it acts as identity on F';
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4. Autg(F) acts transitive on F.

For note that (), Gy is the kernel of the action G — Bij(F") and hence the

action factors over G — G/, cp Gy

Proof. (:>) If Gy, is normal in G, then Norm¢g(Gy,) = G and hence Autg (F') =
G/Gy, by which obviously acts transitive, since G does.

(=>) Let yo - g = yo and y € F. Since Autg(F) acts transitive there is an
automorphism ¢ with y = ¢(y0) = ¢(yo - 9) = #(y0) -9 =y g-

(:>) Let g € Gy, i.e. y is a fixed point of g. Hence g acts as identity, so g € G
for ally’ € F.

: ) is obvious, since Gy = Gy = g~ Gyg by _ ]

Let us now show that Covk’ — Acty, (m1(X, 20)) can be extended to a full and
faithful functor:

6.22 Proposition. Let X be locally path-connected. Let p:Y — X andp’ : Y’ —
X be two path-connected coverings with typical fibers F := p~Y(zo) and F' =
(p')~Yxo) and G := 71 (X, z0). Then Homx (p,p’) = Homg(F, F’) via ® — ®|p.

Proof. The mapping ® — ®|p is well-defined, i.e. ®|F is a G-homomorphism,
since ®(y - [u]) = (® o ¥a)(1) = ®Wa(1) = d(y) - [u]. Obviously, this extends
p— F:=p~t(z0) to a functor Covl — Acte (m (X, z0)).

It is faithfull, since ®1|p = Po|p implies P1(yo) = P2(yo) and hence &1 = Py, by
the uniqueness of lifts of p proved in .

Fullness: Let ¢ : I — F’ be G-equivariant. As ® : Y — Y’ we take the lift of
p : Y — X which maps yo € F to ¢(yo) € F'. This lift exists by , since
() (M (Y,90)) = Gyy € Gurye) = m(@)(m1 (Y, 0(y0))) by |6.16.5 and since

with X also Y is locally path-connected. By |6.16.5| ®|r = ¢, since both are
G-equivariant and coincide on . ]

6.23 Corollary. [20, 6.3.4] Two path-connected coverings of a locally path-connected
space are isomorphic, iff their characteristic conjugacy classes are the same.

622 6166

Proof. p = p/ {Gy:ye F} ={Gy :y € F'}. O

6.24 Corollary. [20, 6.5.5] Let Y be path-connected and X be locally path-connected.
For any covering map p: Y — X we have

Aut(p) & Aty (x,20) (P (20)) = NOTm(Wl(p) (m (Y, yo))) / m1(p) (71(Y, 0))-

The inverse of this isomorphism is given by mapping [u] € Norm (7r1 (p) (7r1 v, yo)))

to the unique covering transformation f which maps yo to ¥ou(1).

Proof. Since the elements of Aut are just the isomorphisms of an object with itself,
,and [6.15]. O

6.25 Corollary. Normal coverings. [20, 6.5.8] For path-connected coverings p :
Y — X of locally path-connected spaces X the following conditions are equivalent:

1. m(p)(m1(Y,y)) is normal in m (X, zqg) for (some) all y in the fiber over xy;
2. The characteristic conjugacy class of the covering consists of a single group;
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3. If one lift of a closed path through xo is closed, then so are all lifts;

4. The covering p is normal, i.e. the group Aut(p) acts transitive on the fiber
over xg.

In particular is true if 71 (X) is abelian or the covering is 2-fold or m (V) =
{1}

Proof. Let G := m1(X,z0) and F := p~!(z0). By m(p)(m(Y,y)) = G, and
by the characteristic conjugacy class is {G, : y € F}; the lift with initial
value y of a closed curve u through xq is closed iff y is a fixed point of [u] acting
on F'; and the group of covering transformations is Aut(p) = Autg(F') by .

O

So the result follows from .

6.26 Example. [20, 6.1.5]

Since every subgroup of an abelian group is nor-
mal and also any subgroup of index two, the sim-
plest non-normal covering could best be found

among the 3-fold coverings of S* Vv S*. ‘
<Y

a
There is a three-fold covering of S* v S*,
which is not normal. > b,
Proof. Let {yo,y1,y2} be the fiber over zg, let a * "
and b denote parametrizations of the two factors

Stin STv St and let ag, a1, as be the leaves over p

a and by, b1, by be the leaves over b. Let b; be from

Yi+1 10 yiro (mod 3). Let ag be a closed path at a b
1o and a; and ag connect y; and y, in opposite
directions.

So a has closed as well as none closed lifts. O

6.27 Corollary. [20, 6.5.6] If p : Y — X is a covering with Y simply connected
and X locally path-connected, then Aut(p) = 1 (X, x0) as groups and, in particular,
p s a normal covering, so X =Y/ Aut(p).

Proof. By we have an isomorphism Aut(p) = Normg(Gy,)/Gy,y, < Gy, 9,
where g € G := m1 (X, z0), Gy, = m1(p)(m1(Y, y0)), and ®(yo) = yo - 9. By assump-
tion 71 (Y,yo) = {1}, hence Gy, = {1}, thus Normg(G,,) = G, and so we have
Normg (Gy,)/{1} = G.

Moreover, p is normal, since Aut(p) = m(X,xzo) acts transitively. Hence X

Y/ Aut(p) by . O

6.28 Examples of the fundamental group of orbit spaces. [20, 5.7.5]
We can use to calculate 71 (X) by finding a covering p : Y — X with simply

connected total space Y (see ) and then determine its automorphism group
Aut(p) & m(X).

In particular, if X = Y/G with simply connected Y and strictly discontinuously

acting G, then 7 (X) = Aut(p) = G by . This applies to the examples in .
In particular, we have Z as group of covering transformations of R — S1 =~ R/Z
and Zsy as group of covering transformations of S™ — P" = S"/7Z, for n > 1.

Furthermore, the homotopy group of L(%) ~ S§3/7, from is Z, and that of

M (2%) 2 L(2) from | 1.74| (see | 1.87]) is Z)y).
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6.29 Maximal Covering.

We aim to show that the functor Covkl — Act, (G), where G := 7 (X, z0), is an
equivalence of categories. In view of it remains to show its denseness.
For this we search for the “maximal” elements first. For transitive actions of G the

maximal object is G with the right multiplication on itself, since for every action
of G on some F' we have G-equivariant mappings ev, : G = F, g+—y-g,fory € I

by (6163}

The corresponding maximal path-connected covering p : X — X should thus have
as typical fiber p~!(z9) = G and the action of G = 71 (X, z¢) on it should be given
by right multiplication. In particular, we must have G, = {1} for all y € G. Choose
a base-point yo € X with xo = p(yo). Since m1(p) : 71(X,50) = Gy, = {1} is an
isomorphism by , we have that X should be simply connected.

For every point y € X we find C((I, {0})’ (X, {yo}))/N

a path v, from yo to y and

since X is simply connected evy up*

the homotopy class [v,] rel. I - = e B .
is well defined. X peevi| CO((I,{0}), (X, {zo}))/~
Let ~ denote temporarily the

relation of being ‘homotopic p evi

relative I”.

Thus y + [v,] gives a bijection X = C((1,{0}), (X, {yo}))/~ with inverse ev; :
v(1) = [v]. By the lifting property 7 these homotopy classes correspond bijec-
tively to homotopy classes of paths in X starting at xg.

So we would like to identify evy : C'((,{0}), (X, {z0}))/~ — X as a covering map:
Let U be a path-connected neighborhood of z; € X. We calculate evfl(U). Note

that ev; ! (x1) = {[v] : v is a path in X from zq to x1} and in particular ev] ! (zo) =
1 (Xa IO)

eV1 (U) 1

{[w] : ()EU} (use w ~ w-u~
{ —xo,v(l):xl,u(O):xl,u(I)QU}
{ ] € evi(x1),u(0) = z1,u(l) C U}

= U LI, with MU = {[v] “u] s u(0) = zq,u(l) C U}.

[vl€evy (z1)

-u with appropriate )

Since U is path-connected the mapping evy |5 : 17 — U is onto. In order that it
is injective, we need that ug(1) = u1(1) = [ug] = [uq], i.e. every closed curve in U
through x; should be 0-homotopic in X. A space X which has for each of its points
a neighborhood with this property is called SEMI-LOCALLY SIMPLY CONNECTED.
Note that the closed curves are assumed to be local (i.e. contained in U), whereas
the homotopy may leave U. Since any subset of such a set U has the same property,
we get for a locally connected semi-locally simply connected space a neighborhood-
basis of connected sets U with this property. The cone over the image of \/; S* in R?
discussed in gives an example of a contractible (hence simply connected and
thus semi-locally simply connected) space which is not locally simply connected.

Note that 10 N 21T £ @ iff there exist curves u; with [v1] - [u1] = [va] - [ua],
where wu; are curves in U from z; to the same endpoint. Hence [u1] = [us] by the
semi-local simple connectedness and thus [v1] = [vs].
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For a path-connected, locally path-connected and semi-locally simply connected
space X we thus define X to be the set C((1,{0}), (X, {z0}))/~ and p; : X=X
by p1([u]) := evy(u) = u(1). Since for every U as above we want [“/U to be a leaf over
U, we declare those sets to be open in X . In order that these sets form the basis of a
topology (cf. [6, 1.1.4]) we have to consider two such neighborhoods Uy and Uy and
y € Uy N¥1U;. Then p;(y) € Uy NU; and hence we can find such a neighborhood
UCUynU; of p1(y). Then y € vU and YU C % U, N ¥ U, by construction, since
y-[u] €YU and y =: y; - [u;] € ¥'U; implies y - [u] = y; - [u; - u] € ¥:U;. Obviously
we have that pi|,; : vU — U is a homeomorphism, and hence p; : X — X is a
covering map.

Note that for any path u starting at zo we have that ¢ — [us] is the lift along p;
with starting value [const,,] =: yo, where u:(s) := u(ts). Thus X is path-connected.

Finally X is simply connected: Let v be a closed curve in X through yo. Then
u:=pjov is a closed curve through z¢ and v(t) = [s — u(ts)], since both sides are
lifts of w with starting point yo. Hence [u] = v(1) = v(0) = yo = [const,,]. Since
homotopies can be lifted, we have v ~ const,, rel. I.

Theorem. Universal covering. [20, 6.6.2]

Let X be path-connected, locally path-connected and semi-locally simply-connected.
Then there exists a path-connected, simple-connected covering map p1 : X - X.
Every simply connected path-connected covering of X covers any other path-con-
nected covering.

Proof. We have just shown the first part. The other one follows, since we can lift
the projection of any simple connected covering by and the lift is a covering

by [65.2]. 5

6.30 Denseness of Covk® — Acti,(G). Let us return to the question of (almost)
surjectivity of Covk’ — Acttr(G), where G := m1 (X, z0). So let G act transitively

on F. Then F = G/H by |6.16.4 |, where H := G, is any isotropy subgroup of this
action. Thus we are searching for a covering p : Y — X with typical fibre p=1(x¢) =

F and with the action of G on it given by |6.16.3 | Thus m(p) : m(Y,y) — Gy
should be an isomorphism.

Let p : Y — X be some path-connected covering of X. By the universal
covering map p; : X — X lifts to a covering map p; : X — Y with pop; = p; and

p1 is normal by [6.27]. Thus Y 2 X/ Aut(py) and Aut(p1) = 71 (Y, y) by [6.27].

So we define V' := X/H and
let p:Y - X = X/G be the ; 930 ) == G/H = p~(z)

G=p
unique factorization of p; over
X — X/H. Then p is a covering / / i
map by with typical fibre

pr(z0)/H = G/H = F. V=X G = )
The action of G = m(X,x0) \ ip /

on G/H is obviously the one in- .

duced by the right multiplication X~X/G

of G on p;*(z0) = G.

6.31 Theorem. [20, 6.6.3] Let X be path-connected, locally path-connected and
semi-locally simply connected. Then we have an equivalence between the category of
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path-connected coverings of X and transitive actions of G := w1 (X, o).

Covly ~ Acty (G).

Proof. By the functor is full and faithful and by it is dense. O

6.32 The category Covk® is not quasi-ordered.

A QUASI-ORDERING is a relation, which is transitive and reflexive. A category for
which each set Hom(X’, X) has at most one element is isomorphic to the quasi-
ordering of its objects given by X’ > X & 3f € Hom(X', X).

Obviously Hom(p', p) =& Homg (F’, F') may contain more than one element, as the
example of any G-action on set F' with at least two elements yy and y; and action
on F’ := G by right multiplication shows: The mappings ev,, : G — F are different
G-homomorphisms by . However, there is an automorphism ® € Autg(G)
with ev,, = ev,, o®. In fact, choose go € G with y1 = yo - go and let ®(g) := gog,
then evy, (®(g)) = yo - gog = y1 - g = evy, (9).

We give now an example that for two coverings p: Y — X and p’ : Y’ — X there
may be more than one element in Homx (p,p’) even up to isomorphy.

By it is enough to consider the corresponding question for transitive G-
actions. For this we will construct subgroups H < H' < G for which Normg(H) =
H and Normg(H') = H' and for which a g ¢ H' exists with gHg~! C H'.

Thus Autg(H) = {1}, Autg(H’) = {1}, and H' # H'g € Hom(H, H'). By
this gives the corresponding result for transitive actions of G.

Remains to show that H, H', G and g can be found:

So let F' be finite, G := Bij(F') and let {F}; : j € J} be a partition of F in disjoint
subsets of different non-zero cardinality. Recall that any finitely generated group
appears as fundamental group of some 2-dimensional CW-complex by .
Then H :={g € G:VYj e J:g(F;)=F;} is a subgroup with Norm¢g(H) = H:

In fact, let g ¢ H, i.e. there is some j with g(F;) # F; and let |F;| be maximal
with this property.

There has to exist y1,y2 € F; such that g(y1) and g(y2) are in different sets F},
and F}j,: Otherwise, there would exist an i # j with F; D g(F;) & Fj, thus |F;| >
|F;| and by the cardinality assumption |F;| > |F;|. Thus g(F;) = F; D g(Fj) by
maximality of j and hence F; O F}, a contradiction.

Now take h € H given by exchanging just y; and y,. Then ghg™
g(y2), and hence Fj, is not invariant, so ghg™' ¢ H.

If F = {1,2,3,4,5,6,7,8,9,10} and F; = {1}, F» = {2,3}, F3 = {4,5,6} and
Fy ={7,8,9,10}. Let H be given by the partition {Fy, F5, F3, F4} and H' be given
by {Fy U Fy, F3 U Fy} and let g := (1,4)(2,5)(3,6) ¢ H'. Then gHg~! C H’, since
g HFLUF,) = Fs, g7Y(F3) = F1 UF; and g~!(Fy) = Fj, hence ghg™'(F3) =
gh(Fl U F2> = g(Fl U FQ) = Fj, ghg_l(Fl U Fg) = gh(Fg) = g(Fg) = F1 U Fy and
ghg_l(F4) = F4.

" maps g(y1) to

Example. Let p:Y — X and p’ : Y/ — X be two coverings. Then there may
exist homomorphisms in Homx (p, p’) and Homx (p/, p) without p = p'.

In fact we can translate this to transitive actions, resp. subgroups of G. So we
need subgroups H < G and H' < G which are not conjugate, but such that
H is contained in some conjugate g~'H’g of H' and conversely. Then G/H —
G/(g~'H'g) = G/H' is G-equivariant as is G/H' — G/((¢')"'Hg') = G/H, but
G/H is not isomorphic to G/H’.

In [12, p.187] the existence of such groups is shown.
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6.33 Example. Threefold coverings. [20, 6.7.3] We now try to identify all 3-fold
coverings of SV S! and also those of the torus S* x S* and of Klein’s bottle. For G

we have in these cases ({a, 8} : 0), ({a, B} : {af = Ba}), and ({a, B} : {a?p% = 1}).

First we have to determine all transitive actions of ({a, 8} : 0) on {0,1,2}, i.e.
group-homomorphisms from the free group with two generators o and S into that
group of permutations of {0, 1,2}. We write such permutations in cycle notation,
i.e. these are

(0), (01), (02), (12), (012), (021).

Where (0) has order 1, (012) and (021) have order 3 and the rest order 2. Let a be
the image of a and b that of 8. Note, that two actions on {0, 1,2} are isomorphic
if there exists a permutation which conjugates these generators (and hence any
element) for one action onto those of the other one.

Up to symmetry we may assume that ord a < ord b for the order of the generators.
If orda = 1, i.e. @ = (0) then ord b has to be 3 (otherwise the resulting action is
not transitive) and the two possible choices are conjugate via (01).

If orda = 2, then ord b can be 2, but b has to be different from a (for transitivity)
and any two choices {a,b} and {a’,b'} are conjugate via the common element ¢ €
{a,b} N {d’,b'}; or b can have order 3, and again the choices of b are conjugate by
a, and that of a are conjugate by b or b=!.

If orda = 3 = ord b, they can be either the same or different.

So we get representatives for all transitive actions with (=) + indicating (none-
Jnormality:

a b STv ST T ST x ST T Kleins bottle
(0) | (012) +

(012) | (0) +
(01) | (02) -
(01) | (012) -
(012) | (01) -

(012) | (012) +
(012) | (021) +

+ (et
B h= N0 SN b SN TN

Note, that the action is normal iff every g € G acts either fixed-point free or is the
identity by . Thus at least both generators a and b have be of order 3 or 1.
This excludes the 3 actions in the middle. All other cases are normal, because there
the group generated by a and b is {(0), (012), (021)} and only the identity (0) has
fixed points.

The last two columns are determined by checking ab = ba and a?b? = 1.

6.34 Proposition. [20, 6.8.1] Let p : Y — X be a covering. Then the following
statements are true:

1. If X is a CW-complex then so is Y. The cells of Y are the path-components
(leaves) of p~1(e) for all cells e of X.

2. If X is a manifold so is Y.

3. If X is a topological group, so isY .
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Proof.

(1) The condition (C1) of is satisfied:

Let e be a cell of X. Since e is simply con-
nected it is trivializing for the restricted covering
p~i(e) = e by . Thus each path component
€ of p~1(e) is homeomorphic to e via the projec-
tion plz. Since D™ is simply connected we may lift
the characteristic map x® of e to a characteristic

map x° of the lifted cell & by |6.14].

The condition (C2) is satisfied: It suffices to show that every compact subset K CY
meets only finitely many cells €. Since p(K) is compact it is contained in a finite
subcomplex of X by . So it suffices to check that K meets only finitely many
leaves ¢ C p~!(e) for each cell e of this subcomplex. Suppose this were not the
case. Then choose points z; € K contained in different leaves for i € N and let
2 € (x9) 7 (p(x;)). The sequence (z;); has an accumulation point 2., in D™. Let U
be a trivializing neighborhood of x°(z+) and we may assume that U N e is path-
connected and all p(z;) € U. For each i there is a unique leaf, denoted U?, over U
containing x;, since otherwise two such points are contained in one leaf, and then
they can be connected by the lift of a curve in U N e and hence would be in one
é. Since K is covered by the open sets U’ together with Y \ {z; : i € N} we get a
contradiction to compactness.

The condition (W) is satisfied:

Since X carries the final topology with respect to the

characteristic maps x¢ : D" — X every open subset D» X
U C X carries the final topology with respect to the maps j j
X¢|ye : U¢ — U, where U¢ := (x¢)"*(U) C D™ e Xl
In fact, let V C U with (x¢|y<)"1(V) C U® open for all JA j«
e. Then (x¢)~1(V) = (x®|ye) 1 (V) is open in D™ and by

finality V is open in X and hence in U. X)) ——=V

Conversely, we claim that each leaf U over an open trivializing set U C X carries
the final topology with respect to X% : (x*) " (U) — U for the cells & of Y :

So let V C U be such that (x®)~1(V) € D™ is open for all &. We have to show that
V is open in U and since Y carries the final topology with respect to the sets U it
then carries also the final topology with respect to the x®é.

D" . Y
~0 X 7
()7 ) p )

D) o

-
<<
IR
S

Ve x© (\

Since plg - U — U is a homeomorphism, it suffices to show that p(V) is open
in U, i.e. (x¢)"1(p(V)) is open in D™ for all e. This follows from (x¢)~!(p(V)) =

X
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U-(x®)~1(V), which we prove now:
Obviously (x°) ™' (p(V)) = (pox°) ' (p(V)) = (x°) (0~ ((V))) 2 (x°) (V).
Conversely, let z € (x¢)~(p(V)). Consider ¢ : I — D™ given by c(t) := (1 —t)z.
Then x¢(c(0)) = x°(z) = p(v) for some v € V C U. Let & be the unique local lift
into U of x© o ¢ with &0) = v. Since (x° o ¢)(t) € e for all t > 0 we have that &)
has values in some leaf & over e for all ¢ > 0 and hence &(t) = ((p|z) Lo x®oc)(t) =
x¢(c(t)) for these t. Thus v = &(0) = limp o ¢(t) = limp o X°((1 — ¢)2) = x°(2), i.e.
z€ (x)HV).

(2) We may take the chart domains to be trivializing sets in X. The leaves can then
be used as chart domains of Y.

(3) The group structures g : X x X — X and v : X — X can be lifted to
mappings Y x Y — Y and Y — Y: In fact chose 1 € p~1(1). Then m1(p o (p X
p))([wa], [uz]) = [po (pour, pous)] = [(pour)- (pous)] = m1(p)[us - ug] by the proof
of . Thus p o (p X p) has a unique lift to & : Y x Y = Y by . Similarly
m(vop)([ul) =[poul™" =m(p)[u"]. O

6.35 Theorem. [20, 6.9.1] Every subgroup H of a free group G is free.
If H has finite index k in G, then rank(H) = (rank(G) — 1) - k + 1.
In particular, there exist subgroups of each finite rank in the free group of rank 2.

Proof. Let G be a free group and H a subgroup of G. By G is the fundamental
group of a join X of 1-spheres. Since X has a universal covering X — X by ,
there exists also a covering ¥ — X with isotropy subgroup H. By Y isa
graph as well, and hence its homotopy group 7(Y) = H is a free group by .

If H has finite index k in G, then rank(H) — 1 = k - (rank(G) — 1) by , since
the fiber of Y is G/H by the proof of and hence Y has k-times as many cells
of fixed dimension as X.

Let G := {{a,b} : 0) and k& > 1. Then there exists a unique surjective homomor-
phism ¢ : G — Zj, with p(a) =1 and ¢(b) = 0. Thus H := ker ¢ has index k in G
and hence rank H = (2—-1)k+1=k+ 1. O

Some basics on knots

6.36 Definition (knots and their equivalence).

A simple closed curve in R? is called a KNOT. We will now describe what it means
that two knots are essentially the same. For this we consider two regularly (i.e.
smoothly with nowhere vanishing derivative) parameterized simple closed curves
cj + S' = R3 for j € {0,1}. We call them ISOTOPIC if an ISOTOPY h between
them exists, i.e. is a smooth homotopy h : S' x [0,1] — R? with h(t,5) = ¢;(¢)
for j € {0,1} and ¢ € S! and such that h(.,s) is a simple closed regular curve for
each s € [0,1]. This does not seem to be the desired description yet, because if we
deform ¢g to ¢, we also have to move the surrounding “air” a bit. Thus we define:
¢ and ¢; are called DIFFEOTOPIC if a DIFFEOTOPY (also called AMBIENT ISOTOPY)
H between them exists, that is a smooth homotopy H : R3 x [0,1] — R? with
H(co(t),1) = cy1(t) for all t € St, H(.,0) = idgs and such that H(.,s) : R® — R3 is
a diffeomorphism for all s € [0, 1].

One can show that each isotopy h can be extended to a diffeotopy H, i.e. h(t,s) =
H(h(t,0),s).
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The definition of isotopy also makes sense for simple closed curves considered as
subsets K; C R? (by forgetting the parametrization). All one has to do is to replace
the first condition on H by H(Kj,1) = K.

A question that arises is whether the specification of a final value, i.e. a diffeomor-
phism H; : R? — R3, is enough to ensure the existence of a diffeotopy H with
H(_,1) = Hj. This can not be true in general, since the identity is orientation-
preserving and hence this has also to be true for the the end value H;. However,
under this additional assumption we have:

6.37 Theorem. [2]
Any orientation preserving diffeomorphism can be extended to a diffeotopy.

Therefore, one calls two knots EQUIVALENT if there exists a diffeomorphism (or,
equivalently, a homeomorphism) H : R?* — R?, which maps one knot to the other.

Each equivalence class of a knot consists of one or two diffeotopy classes, depending
on whether or not it is diffeotopic to its mirror image. A knot is called AMPHICHERI-
AL if it is diffeotopic to its mirror image.

Each equivalence class of an oriented knot consists of one or two equivalence class-
es with respect to the relation “oriented-equivalent” (that is, the diffeomorphism
has to respect the orientation of the knots), depending on whether or not it is
is oriented-equivalent to the reverse knot. In the former case the oriented knot is
called INVERTIBLE. The first non-invertible knot was found by [21]:

)
3 &

:
:
:
:

A table of some knots having or not having the introduced properties is the follow-
ing:

invertible not invertible

amphicheral (8)
not amphicheral U
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How to find out, whether two knots are equivalent? One idea for answering this
question is: A knot K is characterized by what it is not, i.e. its complement R3\ K.
However, the validity of that statement was first proved in 1989:

6.38 Theorem. [3]
Two knots are equivalent if and only if their complements are homeomorphic.

One way to figure out that the two complements are not homeomorphic is to com-
pare their fundamental groups 7 (R3 \ K), the so called KNOT GROUP of K.

An English poem summarizes the most important results about it:

A knot
and another knot
may not be the same,
although
the knot group of the knot
and others knot’s knot group
differ not.

But if
the knot group of a knot
is the knot group
of the not knotted knot
then the knot is not knotted.

That is, two knots with same knot group may but not be equivalent. An example for
that situation is the square knot and the granny knot with knot group ({z,y, 2} :
{zyr = yry, vze = zxz}):

SaS e

And if the knot group of a knot is that of the trivial knot S* C R? C R?, namely
Z (since R3\ St ~ S Vv §? by exercise (2.8)), then the knot can be unknotted, i.e.
is equivalent to the trivial one. This was demonstrated by [1] using a lemma that
was first completely proved in [14].

This leaves us with the problem of calculating the knot group of a knot. This can
be done by means of the Wirtinger representation. We explain this method for the
example of the simplest non-trivial knot, the trefoil knot:

\ )

We envision the knot as a curtain rail and let an infinite long curtain hanging down
from it. Let xo be some point above the knot. For each part of the knot that lies
between two puncture points with the curtain, we choose a loop ¢; through xg,
which runs clockwise (viewed in direction of the parametrization of the knot) once
around this arc, Now, let any representation of an element of the knot group be
given, i.e. a closed loop ¢ in R\ K through 5. We can deform curve homotopically
so that it only transversally intersects the curtain. Then we can go on to deform
it homotopically in R?® \ K by raising the parts between intersection points with
the curtain so that they then pass through xy and the intersection points stayed
unchanged. Now we move the intersection points along the walls of the chambers
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created by the curtain, so that they eventually coincide with those of the c¢;. Then,
however, we can align the pieces of the curve between g and the intersection points
with the corresponding parts of ¢;. So we conclude, that ¢ can be homotopically
deformed into a concatenation of curves c; and reversed c¢;. The knot group is thus
generated by the ¢; and hence a quotient of the free group with the c; as generators.

We still have to determine the relations that we need to factor out of the free
group in order to obtain the knot group. For this we consider small circles running
horizontally (counter clockwise when viewed from above) around the edge (say that
below ¢1) of the chambers of the curtain. Clearly, this circle is homotopic to the
constant curve xg, so it represents the neutral element 1 in the knot group. It is
homotopic to cicy tejtes. Thus eicy tejtes ~ 1 is certainly one of the relations,
as well as those that arise through cyclic permutation of the indices 1, 2, 3. They
already generate all relations, because any 0-homotopic loop ¢ can be homotopically
deformed so that it no longer hits the curtain. When this homotopy meets one of
the edges the representation as a word in the letters c; and cj_1 changes namely, by
the corresponding relation just described.

In summary, we have seen that the knot group G of the trefoil knot has as generators
c1,co2,c3 and the relations are generated by clcglcflcg ~ 1, czcglcglcl ~ 1 and
0301_103_1(:2 ~ 1, i.e.

1 -1 1 -1 1 -1
G:<{C1,C2,C3}: {0102 €] €3, CaC3 Cy €1, C3C] Cq 02}>

Now we have to show that G is not the trivial group. In general this is a difficult
problem because the word problem for finitely generated groups is not algorithmi-
cally solvable. From the first relation we see that c3 ~ 016261_1. By inserting this
expression for cz into the second relation we get

. -1 —1y,.—1 —1y/,.—1 —1
G = <{61,CQ} {ea(erey e ey ter, (ereaer M) ey teg )c2}>.
Moreover,
-1 -1 -1 —1
C2C1Cy €1 Cy C1 ~ 1 <~ C2C1 ~ Cq C2C1C2 <  C1C2C1 ~ C2C1Co

and the same relation also results from the transformation of the second relation.
If we set © := cicocy and y := cic, then ¢ = y 'z and ¢y = cl_ly =z 19y% sozx

and y together create this group and the relation translates into  ~ z~'y3. Thus,

G = ({z,y}: {2 ~y*}).

This group is not Z because we can specify a surjective group homomorphism
f: G — 83 in the permutation group Sz of three elements: f(z) := (12), f(y) =
(123). Then f(z)? = (12)% = (1) = (123)3 = f(y)3, so f is a well-defined group
homomorphism. And since (123) and (12) generate Ss, it is also surjective. Thus
G can not be Abelian ((123)(12) = (23) # (13) = (12)(123)) and thus is not
isomorphic to Z.

Note, however, that the Abelization G/G’ of the knot group, i.e. when one adds the
relations c;c; ~ cjc; to the knot group, is isomorphic to Z, because the generating
relations such as e.g. c¢ic; cj'es ~ e translate then into ¢y ~ ¢3. So G/G' =
({c1,c0,c3} 1 {c1 ~ca ~c3}) = ({c1} : 0) = Z. That the knot group G of each knot
has as Abelization G/G’' = Z is due to [14].

Since the knot group does not characterize the knots, a number of other invariants
have been introduced.
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6.39 Higher homotopy groups

In analogy with the fundamental group 7 (X) the higher homotopy groups m(X)
are defined as the set of homotopy classes of base point preserving continuous maps
f : S* — X. Thus instead of catching “holes” with “lassos” (i.e., elements of
m1(X)), one tries to use “nets” (i.e., elements of m3(X)) and higher-dimensional
analogons.

Two such classes [f1] and [f2] can be multiplied by considering the quotient map
Sk — Sk /Sk=1 = gk GF (where S¥~1 denotes the equator in S* containing the
base point) and composing it with the union f; U fo : S¥ v S* — X.

St

It can be shown that 74 (X) is commutative for k& > 1.

In contrast to the case k = 1 we have no pendant to the Theorem of Seifert and van
Kampen. The main tool for calculating higher homotopy groups is the long exact
sequence of a (Serre) fibration F — Y —2+ X (where F := p~1(Y)) (see ; for
Serre fibrations one requires the homotopy lifting property only for polyhedra as
domains):

.. —)7Tk+1(F) —>7Tk+1(Y) —>7Tk+1(X) — Wk(F) —>7Tk(Y) —)Wk(X) — ...

In particular, for covering maps p (and hence discrete F') we have 7 (F') = 0 for all
k> 1, thus m,(Y) = m(X) for all k£ > 1.

Theorem of J.H.C. Whitehead.

A map f:(X,z0) = (Y,y0) between connected CW-spaces is a homotopy equiva-
lence if and only if the induced homomorphisms 7 (f) : (X, 20) = 7 (Y, y0) are
isomorphisms for all k > 0.

6.40 The homotopy groups of spheres

We have shown in that m1(S™) = 0 for n > 2. More generally 7;(S™) = 0

holds for 1 < k < n by [3.32]:

Moreover 1 (S!) 2 Z generalizes to m,(S™) 2 Z for all n > 1, where the generator
of the group is given by the homotopy class [idgn].

We have 7,(S') = 0 for all & > 1 since any ¢ : S¥ — S! can be lifted to the
universal (contractible) covering R — S* and hence is 0-homotopic. Thus we might
be led to expect that 7 (S™) = {0} for k > n > 1.

Surprisingly, this is not the case!
A counter-example is the Hopf fibration S < §3 — S2.
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6.41 The Hopf fibration S3 — 52

It is defined by the following commutative diagram

(21,22)€ C?\ {0} > 53 = R3 U {oo}

stereogr.proj.

l l Hopf fibration
v

29/21 € CU {oo} = 52 C CxR=R?

stereogr.proj.

Since the inverse to the stereographic projection with pole p = (0,0,1) is the map

Yy 294“2‘%&;1)? — IyI%Jrl (2y,|y|? — 1), we get the following formula for the Hopf
fibration:
1 Zo 1222 2121 2o |2l* = |z)?
5 ) o (022 1) = )
(1o22) = g 5015 P+ P e s

= (22’22’_1, |2’2|2 — |Zl|2) S 52 Q CxR.

We consider the inverse images in S of a circle of fixed latitude on the S?, where
0 is the latitude.

29 T 0
, €S |Zl=r=t (— 7)41)
(21,22) - r an( 7 + 5
- |z2| = 7|21 - |22)? = 72| 21|
(21,20) € 83 212 + |22 =1
1
2_ 2
L [l =rlal N A
2P (14 77) =1 2_ 1
|Zl| - 1412
r

This corresponds under the stereographic projection S — R? to a torus in R?

where A =+v/r?2+1and a =r.

Next we consider the inverse image in S of the South Pole of S2
A

(0,0,-1) € 8% £ (r=0)€R?> £ (Jz1] =1,20=0) C 5%,
and of the North Pole of S?:

0,0,41) €5 £ (r=o00) CR? £ (2 =0,|2z| =1) C 5%
We claim that in general the inverse image of each point on the S? (which is given
with respect to the stereographic projection S2 — C by zg € C with r := |2]) is a

circle in S3 C R*, which is obtained as intersection of the sphere S® C R* with the
plane zo = 21 2¢:

P =
3 = 2
(21,22) € S |22|2+|Zl|2:1 1+7r
Z2 C = . 4 ‘22|2:’I"2 1
Z—ZOG 2120 = 22 1412
Z9 = 2120

In stereographic coordinates, the first two equations in R3 correspond to the torus
T: 22+ (Va2 + 92 — V/r2+1)% = r2. Without less of generality let r = zy € R,
(otherwise rotate it by e, which corresponds to a rotation in the (z,%) plane).

andreas.kriegl@univie.ac.at (© 7. Februar 2018 97



6.41 6. COVERING MAPS

29 =T2] Ty =TT1, Y2 =TY1
1 1
2_ .2 2 _ 2
On §3:4 1=l =7 14+r2 = S 1472
1 1
2 2 _
21| T 1412 1] 14172
z=rx

OnR3:{ 2?+y*+22—1=2ry
2+ (Vat+y? = V1) =2

Where we have set z; := x1 + iy1, 22 := X2 + iyo and used the formulas for
stereographic projection:

2z 2y
W= V17 V=TT 2
1+ (2, y,2)? 1+ |(z,y,2)
2z |(z,y,2)]> =1
T2 = T3 Y2 =T e
1+ |(z,y,2)] 14 [(z,y,2)]

So the inverse image of a point is contained in the union of the two circles obtained
from intersecting the torus with the plane z = rx. A more carefull investigation
shows that it is the circle lying in front of the other with respect to the y-axes.

0

Let S' — 83 — S? be the Hopf fibration. Then we have an exact sequence of
groups

Thus 73(5?) = 73(9%) = Z. The Hopf fibration captures “something high-dimensional”
on the 2-sphere.

Suspension Theorem of Hans Freudenthal.
7, (S™) = M1 (S™TY) for 1 <k <2n—1.

With other words, n — 71, (S™) is constant for n > k + 2.

It is known that mj4,(S™) is a torsion group for all 0 < k # n — 1. Not all
homotopy groups of spheres are known. A table of the first groups 4, (S™) of
the low-dimensional spheres is the following, where an entry oco™(p1)™ ... (pg)™*
denotes the group Z" & (Zp, )™ & - - - & (Zp, )™ and 1 denotes the trivial group {0}:
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E\n| 2 3 4 5 6 7 8 9 10
0 00 00 00 00 00 00 00 00 00
1] oo 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
3 2 12 00.12 24 24 24 24 24 24
41 12 2 22 2 1 1 1 1 1
5 2 2 22 2 00 1 1 1 1
6 2 3 24.3 2 2 2 2 2 2
7 3 15 15 30 60 120 00.120 240 240
8| 15 2 2 2 24.2 23 24 23 22
9 2 22 23 23 23 24 25 24 00.23

10 | 22 122 120.12.2 72.2 72.2 242 2422 242 122
11 | 122 8422 84.23 504.22 5044 504.2 504.2 504.2 504
12 | 84.22 22 26 23 240 1 1 1 12
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7. Simplicial Homology

Since it is difficult to calculate within non-abelian groups we try to associate abelian
groups to topological spaces. Certainly we could take the Abelization 7 (X) of
the fundamental group, but in order to calculate this we can hardly avoid the non-
commutative group m(X) as intermediate step. So we try to find a more direct
approach. We start with the most explicitly describable spaces, i.e. the simplicial
complexes K. To each closed curve |A| = §* — | K| there is a homotopic simplicial
approximation ¢ from some barycentric refinement of A to K by . Note that
any barycentric refinement of A is just a finite sequence of adjacent edges. If we
want to get rid of none-commutativity we should consider the curve as formal linear
combination ) n, - o with integer coefficients n, of oriented edges o in K (we
dropped those images of edges which are degenerated to some vertex). That the
curve is a closed (and connected) curve corresponds to the assumption that every
vertex occurs equally often as start and as end point. So we can associate to such a
linear combination ¢ := Y _n,-o (a so-called 1-chain) a boundary 9(>°, ne o) :=
Y o Mo - 0o, where Jo is just x; — xo for o being the edge from z¢ to x;. Thus we
call a 1-chain ¢ cLOSED iff dc = 0.

Next we should reformulate what it means that ¢ is 0-homotopic, i.e. that there
exists an extension ¢ : |A| = D? — |K|. Again by we may assume that ¢ is
simplicial from some barycentric refinement of A into K. The image of ¢ can be
viewed as 2-chain, i.e. formal linear combination ) n, - o with integer coefficients
ne of ordered 2-simplices o of K. Note that an orientation of a triangle induces
(or even is) a coherent orientation on the boundary edges. That ¢ is an extension
of ¢ means that the edges of these simplices, which do not belong to ¢, occur as
often with one orientation as with the other. And those which do belong to ¢ occur
exactly that many times more often with that orientation than with the other.
So we can define the boundary 9(3_, ne - 0) of a linear combination of oriented
2-simplices as ) _n, - 0o, where do = (xo,x1) + (1, x2) + (z2,z0) for o being the
triangle with vertices xg, 1,2 in that ordering. Thus ¢ being 0-homotopic seems
to correspond to the existence of a 2-chain with boundary ¢. We call such a 1-chain
¢ EXACT or 0-HOMOLOGUE. The difference between closed and exact 1-chains is an
obstruction to simply connectedness of |K|. At the same time this easily generalizes
to k-chains:

Homology groups

7.1 Definition. Orientation and chain groups. [20, 7.1.1] [20, 7.1.4]

An ORIENTATION OF A ¢-SIMPLEX (with ¢ > 0) is an equivalence class of linear
orderings of its vertices, where two such orderings are called equivalent iff they can
be transformed into each other by an even permutation. So if a ¢-simplex o has
vertices To, ..., T4 then an orientation is fixed by specifying an ordering x,) <
-+ < Zy(q) and two such orderings o and ¢’ describe the same oriented simplex iff
sign(c’ o 071) = +1. We will denote the ordered simplex (i.e. a representant of an
oriented simplex o) with (), - - -, Zo(q))- Let o1 denote the oriented simplex with
the same vertices as o but the opposite orientation. Warning: A representant for
the opposite orientation is only for ¢ congruent to 1 or 2 mod 4 given by the reverse
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7. SIMPLICIAL HOMOLOGY 7.2

ordering z, < --- < x¢ of an representant xy < ...z, of the original ordering.
X2

Xo X Xo X1

The ¢*"-CHAIN GROUP is the abelian group with all oriented ¢-simplices o as gener-
ators and o040~ = 0 for all these simplices as generating relations. More precisely,
it can be described as follows:

Since each simplex is determined by its vertices, a simplicial complex K can be
viewed as a finite set of finite subsets (the vertices of its simplices) of some R™.
Temporarily, let

o K1:= {0 € K :|o| =q+ 1} be the set of its g-simplices.

o UK :=,cx o be the set of its vertices.

o K<9” :={x=(x,...,24) € (UK)T™ : 2; # z; < i # j} be the set of all
q + 1-tuples of distinct vertices.

o K9 = {z = (z9,...,24) € K< : {x0,...,24} € K} be the set of all
ordered ¢-simplices in K.

o Klil:= K@/~ be the set of oriented g-simplices in K, where x ~ p*(z) :=
(Zp(0)s - - - » Tp(sy) for each even permutation p. Note, that K = K©).

Then the ¢'"-chain group
Cy(K) = “b<K[Q}, {oc+c :0€ K[q1}>

is the abelian group with K9 as generators and 0 ~! ~ —¢ for each o € K9 as basis
of the relations. Note, that for O-simplices o~ does not exist, so Co(K) := (K (),

7.2 Lemma. [20, 7.1.5] By picking an ordering of each simplex we get an isomor-
phism (depending on the orderings) between Cy(K) and the free abelian group with
the (unoriented) q-simplices as generators:

Cy(K) = (K1),

Proof. Let w be a section to K9 — K1, i.e. to each set of g vertices, describing
a simplex ¢ in K, we assign an ordering of its elements, and hence an element
&= [w(o)] € Kl := K@/~ Thus K9 = {6 :0 € Ki}U {67 : 0 € K9}. We
claim that w induces an isomorphism

ab(Kq> — ab(K(Q)> — “b<K[q]> — ab(K[q] : {0'_1 +o0:0€ K[q]}>.

D) = Cy(K) Kf s K9 s N (KY)
NN o A
. o A

(K@) — s b(Kldy <O {671 45:0 e Kld} K@ 5 Kl

For this we consider the map ¢ : K9 — ®(K49) given by 6 + o and 6~ — —0o.
This induces a surjective group-homomorphism ¢ : ®*(K4) — 9®(K9) and, since
o + o' is mapped to 0, it factors over **(K) — C,(K) to an epimorphism
@ : Cq(K) — **(K41), This epimorphism is injective, since [g] for g := > q(ns -
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G +nz-1-6-1) € ®(KWW) is mapped to 3 pa(ns — ns-1) - o € (K9) and this
vanishes only if ns = ns-1, i.e. if the image [g] of g in Cy(K) is 0. O

7.3 Definition. Boundary of (oriented) simplices. [20, 7.1.2] [20, 7.1.6]
Note that the boundary of ordered simplices can be rewritten as:

— [
I wo, 1) = 11 — 10 = (W0, 1) + (T0, T1) 3

O{xo, 1, x2) = (T0, 1) + (T1,22) + (T2, T0)

1 1 1
= (w0, 1, T2 ) + (20, 21, T2) + (To, T1,32) "
— 1 _ 1
= (xo,x1,x2) + (T0, T1,x2) vy (w0, x1, T2),

where 'z;' indicates that x; has to be left out. Let o be the tetrahedron with the
natural orientation zg < 21 < @2 < x3. Its faces should have orientation (x1, z2, x3),
(z0, T2, 23) "1, (x0, 21, 73) and (zo, z1,32) " .

This leads to the generalized definition:
The ORDERING of the face o’ opposite to the vertex z; in o = (zg, ..., z4) should
be given by

0'/ = <$0, sy L1, ,.’L'_j\,.il,‘j+17 ce ,.Tq>(_1)J.
Let us show that this definition makes sense for oriented simplices. So let 7 be a
permutation of {0,...,q}. Then (z,(g),...,T(q) = (zo,... ,T4)%8"7 and we have
to show that

[P —1)7 sign T
Tr(i) =1

—1)¢ [po|
(Tr0)s s ..,xT(q)>( ) = (o, ... i1, Tjyr, ..., Tq)

where i is the position of j in 7(0),...,7(q), i.e. i = 771(j). Without loss of gen-
erality let i < j (otherwise consider 77! instead). Consider the permutations of
{0,...,¢} given by the function table

0 ... -1 i j—1 § 41 ... ¢
0 ... -1 i+l ... G i g+l ... q
70) ... 7(6-1) 7GE+1) ... 7)) 6 TG+ ... 7(9

The first one is the cyclic permutation (i,i+1,...,5—1,5), hence has sign (—1)7=% =
(—=1)*77, the second one is 7, and the composite leaves j = 7(i) invariant, has sign
(—1)*77 - sign7, and as permutation of {0,...,7",..., ¢} induces the identity

[poul _ (o —1)" I sign T
(Trys---s 2y, .,xT(q)>—<x0,...,xj,1,xj,xjﬂ,...,xq)( ) e

From now on we will use the same notation for ordered and oriented simplices, i.e.

(0, ..,24) will denote an element in K (9 and at the same time its equivalence
class in K4,

For ¢ > 0 we define the BOUNDARY OF AN ORIENTED ¢-SIMPLEX 0 = (Zq, ..., Zq)

to be
q

0o := Z(—l)] <.1307 sy Lj—1, 'l‘_j\, Tit1y--- ,l‘q>.
§=0
Extended by linearity and factorization over 0~ ~ —¢ we obtain linear mappings
0 =0y : Cy(K) = Cy_1(K). For 0 > g € Z one puts Cy_1(K) := {0} and
0q :=0: Cy(K) = Cy_1(K).

7.4 Definition. [20, 7.1.7] [20, 7.1.8] With Z,(K) := Ker(9,) we denote the set
of CLOSED ¢-CHAINS or ¢-CYCLES. With B, (K) := Im(9,+1) we denote the set of
EXACT (or 0-HOMOLOGOUS) g¢-chains (or ¢-BOUNDARIES). Two g-chains are called
HOMOLOGOUS iff their difference is exact.
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7. SIMPLICIAL HOMOLOGY 7.8

In particular, Zo(K) = Co(K) and Bgimx)(K) = {0}.

7.5 Theorem. [20, 7.1.9] 0 = 9% = 9, 0 9,41 and hence B, C Z,.

Proof. Let 0 = (xo,...,Z¢+1) with ¢ > 1. Then

q+1
1

000 =0 (=1)(z0,.., Tj,. .., Tqs1)
7=0

=0

ot ] . I 1
= Z(—l)J <Z(—1)’(wo, ey Ty Ty, Tggl)
j=0

q+1
o — —
+ Z(—l)l 1<£C0,...,.’ﬂj,...,xi,...,$q+1>>

i=j+1
it it [l [l
:Z((_U I ()Y (s ey Ty Ty Tgp)
1<j
=0 O

7.6 Definition. Chain complex. [20, 8.3.1]

A CHAIN COMPLEX is a family (Cy)qez of abelian groups together with group-
homomorphisms 9, : C; — Cq—1 which satisfy d, 0 9441 = 0. Equally, we may
consider C := ]_[qu C,, which is a Z-graded abelian group and 9 := quZ Jq,
which is a graded group homomorphism C — C of degree —1 and satisfies 92 = 0.

7.7 Definition. Homology. [20, 7.1.10]

For a chain complex (C, ) we define its HOMOLOGY H(C,9) := ker 9/im J.

This is a Z-graded abelian group with H(C, 9) = ez Hq(C,0), where Hy(C,9) :=
ker 9,/ 1im Og41.

The group H,(K) := Z,(K)/B,(K) is called the ¢-th HOMOLOGY GROUP of K.

Examples and exact sequences

7.8 Example. [20, 7.2.1] We consider the following simplicial complex K formed
by one triangle oo with vertices xg, x1, 22 and edges 09, o}, o7, and one further
point z3 connected by 1-simplices o3 and of with z; and with 5. We choose ori-
entations as depicted below on each simplex.

The generic chains are of the form: \
3
co = Zai x; € Co(K) with a; € Z,

iZO Xo Ez) 0'8 X3
c1 =Y bioj € Ci(K) withb; € Z,
=0

ca =moy € C3(K) with m € Z. 71 7

X1
Since dca = m(o? + of + 0%) # 0 for m # 0 the only closed 2-cycle is 0, hence
Hy(K)=0.
The boundary 861 = (b1 - bg) xo + (bg — bo + bg) 1+ (b() — b1 - b4) o + (b4 — bg) I3
vanishes, iff by = by, by = bs and by = by + bs. So Z1(K) is formed by those
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c1 = bi(oV+0o1 +03)+b3(00 + 03 +0f) with by, by € Z and hence 21 := o)+ 0] + 07
and 2] := 0y + 0 + o} form a basis with 9oy = 21. So B1(K) = {mz : m € Z}
und Hy(K) 2 Z.

For the determination of Ho(K) 2 Z see | 7.11],

7.9 Remark. [20, 7.2.2] We have H,(K) = 0 for ¢ < 0 and ¢ > dim K. Further-
more, Haim k(K) = Zaim k(K) (by ) is a free abelian group as subgroup of

Caim x (K) by and ~

7.10 Lemma. [20, 7.2.3] If K1, ..., K, are the connected components of K, then
Co(K) = EBj Cq(K;) and Hy(K) = @j Hy(Kj).

Proof. The subgroup C(K;) is 0-invariant. O

7.11 Lemma. [20, 7.2.4] Hy(K) is a free abelian group. Generators are given by
choosing in each component one point.

Proof.
Oy (K) —2 Bo(K) = Zy(K) —= Ho(K)

w -
\

ker(e) = Co(K) ——7

Because of we may assume that K is connected and not empty. Let ¢ :
Co(K) — Z be the linear map given by x — 1 for all vertices € K. Obviously ¢ is
surjective. Remains to show that its kernel is By(K). Every two vertices z¢ and
are homologous, since there is a 1-chain connecting xo with ;. Thus ¢ := )" ng-x
is homologous to (>, ns) - 9 = €(c) - 9 and hence Ker(e) C By. Conversely let
c=03,n00) =2 ns- 0o. Since e(O(zxg,z1)) = e(x1 — 29) = 0 we have the
opposite inclusion. O

7.12 Example. The homology of the cylinder X := S! x I. [20, 7.2.10]
Note that S! x I ~ S and hence we would expect
Ho(X) = 0 and Hy(X) = ®(71(SY)) = Z. Let
us show that this is in fact true. We consider the
triangulation given by 6 triangles. We will show in
a later section that the homology does not depend
on the triangulation. We orient the triangles in the
natural way.

HQ(X)Z Let 2o = Zdimo‘:? Ng + 0 € ZQ(X) =
Hy(X), i.e. 0z = 0. Since those edges, which join
the inner boundary with the outer one belong to
exactly two 2-simplices, the coeflicients of these
two simplices have to be equal. So n := n,, is in-
dependent on o.

However 0(}__ o) is the difference of the inner boundary and the outer one, hence
not zero, and so zz = n()_, o) is a cycle only if n = 0, i.e. H3(X) = {0}.

Hi(X): Let (1] € Hi(X),1.€. 21 =Y gimoeq Mo -0 € C1(X) with dz; = 0. Since we
may replace z; by a homologous chain, it is enough to consider linear combinations
of a subset of edges, such that for each triangle at least 2 edges belong to this subset.
In particular we can use the 6 interior edges. Since each vertex is a boundary point
of exactly two of these edges the corresponding coefficients have to be equal (if
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we orient them coherently). Thus z; is homologous to a multiple of the sum ¢; of
theses 6 edges. Hence Z;(X) is generated by c¢;. The only multiple of ¢;, which is a
boundary, is 0, since the boundary of Y. . n, -0 contains £n, - o1, where oy
is the none-interior edge of 0. So Hy(X) & Z.

7.13 Example. The homology of the projective plane X := P2.[20, 7.2.14]
We use the triangulation of P2 by 10 triangles

described in . And we take the obvious b
orientation of all triangles. Note however that O
on the “boundary edges” these orientations are

not coherent.

Hy(X): Let 23 = Y qimoao -0 € Z3(X) =

Hy(X), i.e. Oz = 0. Since those edges, which

/(
belong to the “interior” in the drawing be- Q Q
O

@ a

O

long to exactly two 2-simplices, the coefficient

of these two simplices have to be equal. So

n := n is independent on 0. However 9() _ o)

is twice the sum a + b + ¢ of the three edges O
along which we have to glue, and hence is not

zero. So zo = n()_ o) is a cycle only if n = 0, b
ie. Ho(X) = {0}.

Hi(X): Let [21] € Hi(X), 1.e. 21 =Y gimoeq Mo - 0 € C1(X) with 9z; = 0. Now we
may replace z; by a homologous chain using all edges except the 3 inner most ones
and the 3 edges normal to the “boundary”. Now consider the vertices on the inner
most triangle. Since for each such point exactly two of the remaining edges have
it as a boundary point, they have to have the same coefficient, and hence may be
replaced by the corresponding “boundary” parts. So z; is seen to be homologous
to a sum of “boundary” edges. But another argument of the same kind shows that
they must occur with the same coefficient. Hence H;(X) is generated by a + b+ c.
As we have show above 2(a 4+ b + ¢) is the boundary of the sum over all triangles.
Whereas a + b + ¢ is not a boundary of some 2-chain ) _n, - o, since as before
such a chain must have all coefficients equal to say n and hence its boundary is
2n(a + b+ ¢). Thus Hy(P?) = Zs, which is no big surprise, since 71 (P?) = Zy by

[5:39]

7.14 Definition. Exact Sequences. [20, 8.2.1]

A sequence A —Ly B2 C of abelian groups is called EXACT at B iff ker g = im f.
An infinite (or finite) sequence of groups C,; and group homomorphisms f, : Cgy1 —
C, is called exact if it is exact at all (but the end) points.

O

(3 :

7.15 Remark. [20, 8.2.2]

1. A sequence 0 — A —Ls B is exact iff f is injective.

2. A sequence A -1+ B — 0 is exact iff f is surjective.

3. A sequence 0 — A —L B — 0 is exact iff f is bijective.
4

. Let Agqq S SN A, SLEN Aga BTN Ay—2 be exact. Then the following
statements are equivalent:

e f,4+1 is onto;
° fq=0;

e f,—1 is injective.
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7.16 Lemma. Let 0 = Cy — C, — --- = C,, — 0 be an exact sequence of finitely
generated free abelian groups. Then ZZ:O(—l)q rank C, = 0.

Proof. For a Z-linear map (i.e. abelian group homomorphism) f between free
abelian groups we have

rank(ker f) + rank(im f) = rank(dom f)

by the pendent to the classical formula from linear algebra (use ) Thus taking
the alternating sum of all rank(dom f;) gives a telescoping one and hence evaluates
to 0. O

7.17 Proposition. [20, 7.2.5] Let K be a 1-dimensional connected simplicial com-
plex. Then H1(K) is a free abelian group with 1 — g + a1 many generators, where
«; are the number of i-simplices.

Compare this with the corresponding result for fundamental groups.

Proof. Consider the sequence

0 7, C o, -2~ 7, H, 0

7] |71

H1 COEHZ

It is exact by definition and the vertical arrow at Hg is an isomorphism by
and hence we get by the equation 0 = rank(Hy) — a1 + a9 — 1 O

7.18 Definition. Cone over simplicial complex. [20, 7.2.6] Let K be a simpli-
cial complex in R™. Let p € R™ be not contained in the affine subspace generated
by all o € K. Let px (2o, ..., Zq) := (P, T0,...,&q) and let px K := KU{pxo:0 €
K} U {p}. It is called the CONE over K with vertex p and is obviously a simplicial
complex (see exercise (3.1)). Note that we can extend p x (_) to a linear mapping
Cq(K) = Cy(px K).

7.19 Proposition. Homology of a cone. [20, 7.2.7]
He have Hy(p* K) = {0} for all ¢ # 0.

Proof. Let ¢ be a g-chain of K. We claim that

Dpxc) = {c—a(c)p ifg=0

c—px0c otherwise.

Note that this shows that any g-chain ¢ (with ¢ > 0) is homologous to p x dc.
In order to show this we may assume that ¢ = (zg,...,2,). For ¢ = 0 we have
O(p*c)=0(p,x9) =x0 —p =c—e(c)p. For ¢ > 0 we get

O(p*c)=90p,xo,...,%q)
q

M : —
=(p,T0,...,%q) — Z(—l)%p,xo,..., Tiyon,Tg) =C—pxOc.
i=0
Now let ¢ € Z,(p x K) for ¢ > 0. We have to show that it is a boundary. Clearly
c is a combination of simplices of the form (zo,...,xzq) and (p,xo,...,2q-1), i€

c=cq+prcq_1 with ¢g € Cy(K) and cq—1 € Cq—1(K). Hence c = ¢g + p*cg_1 =
O(prcq) +p*Ocq+p*cq—1. S0 px(Dcg+cq—1) € Z,. But, again by the equation above,
the boundary of this cone vanishes only if dcy + ¢4—1 = 0, hence ¢ = d(px¢,) +0
is a boundary. O
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7.20 Corollary. Homology of a simplex. [20, 7.2.8]

For an n-simplex o, let K(o,) := {7 : 7 < on}. Then K(o,) is a connect-
ed simplicial complex of dimension n with |K(cy,)| being an n-ball and we have
Hq(K(Un)) =0 for ¢ #0.

Proof. K(o,) = 2o x K(0y,—1) for o, = (x0,...,2pn) and 0y,—1 = (z1,...,2,). O

7.21 Proposition. Homology of a sphere. [20, 7.2.9]

For an n + 1-simplex 041 let K(6p11) := {7 : 7 < 0py1}. Then K(6p41) is a
connected simplicial complez of dimension n with |K(6,41)| being an n-sphere and
we have

Z for qe€ {0,n}

0 otherwise.

Hq(K(d'n+1)) = {
A generator of Hy(K(6p41)) is O0pq1 = Z?iol(—l)j@o, R S
Proof. Let K := K(6,,41) and L := K(041). Then L\ K = {0,,+1} and we have

Cyia (L) =2

%) 0 %)

0——s Cn+1 (L) Cn (L)

Cy(L) 22— ..
O Y (K) 2L Oy (K) 2~ ..

By the top row is exact (for ¢ > 0). Thus we have exactness in the bottom
row for all 0 < ¢ < n. By exactness the arrow (0,41) = Cpy1(L) =2 Cp(L) is
injective, and H,(K) = Z,(K) = Z,(L) = 0(Cp41(L)) = Cpy1(L) = Z. O

We will show later that if |K| ~ |L| then Hy(K) = Hy(L) for all ¢ € Z, hence it
makes sense to speak about the homology groups of a polyhedra.

7.22 5°’Lemma. [20, 8.2.3] Let

©»1 P2 ®3

Ay A, As Ay —25 A

flim leu fsi f4lu fslE
P P P P

B —>By—2> B3 —>> B, ——> Bs

be a commutative diagram with exact horizontal rows. If all vertical arrows but the
middle one are isomorphisms so is the middle one.

Proof.

(f5 is injective) fzaz = 0= 0=13f3a3 = fipzas
fa inj. p3az = 0

exact at Az .
3@2 L az = Y20a9

= 0= fzaz = f3p2a2 = P2 foaz
exact at Bo 31)1 . f2a2 _ Z/)lbl

% Hal : bl = f1a1
= faag = 1 fra1 = faprar
% as = pra;

exact at As
az = @aas = pap1a; =0
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ai 't as | as 't 0 L4
f1|x fo| = fsl f412
byt 2 fa(az) s 00 °
(f3 is onto) by L2 30, : fuay = by

exact at By

= f504a4 = VY4 fsas = Ps1P3b3 =0

%@4a420

exact at Ay
Jdas : a4 = p3as3

= Y3 fsa3 = fapsas = faas = P33

exact at Bs

_ E|b2 : b3 — f3a,3 = @2b2

f2 surj.

== day : by = f2a2
= bz = fzas + haby = faaz + 2 frae = f3(as + p2a2)

° ag f as 't gyt Y404
fo | I3 f41~ fSIN
o bo | ve b3 } vs ¢3b3 f b 0

7.23 Remark. Short exact sequences. An exact sequence of the form
0-A—-B—->C—=0
is called SHORT EXACT.

e We have that the top row in the diagram

J f
Aq+1 q+1 Aq q Aq_l

i

0 —— fgr1(Ags1)—— Ay — f,(4)) —=0

is exact at A, iff the bottom row is short exact.

e Up to an isomorphism we have the following description of short exact se-
quences:

R
R

0— >A—*">p_? ¢ 0

| i

i(A) &——= B ——= B/i(A)
e The sequence 0 — Z -~ Z —» Z,, — 0 is short exact.

e The sequence 0 — A My A C B2 0 — 0 is short exact.

Lemma. Splitting short exact sequences. [20, 8.2.4] For a short exact sequence
0—A—Ls B9 C — 0 the following statements are equivalent:
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. : : A ¢
1. There is an (iso)morphism o
p: B — A®C such that the id T id
. . — /,’
diagram is commutative; 0 A C 0
& 2. g has a right inverse p; g
< 3. f has a left inverse A.
0——=A “JIA@(J%CHO

Under these equivalent conditions the sequence is called SPLITTING.

Proof. (1=2) That any morphism ¢ : B — A ® C, which makes the diagram
commutative, is already an isomorphism follows from . Thus the morphism

p:=¢ loinj,:c— ¢ 1(0,c) is right inverse to g.

(2=3) The morphism idp —p o g has image in ker(g), hence factors to a morphism
A:B — Aover f. Thus folof = (idgp —pog)of=f—0= foidand so Ao f =

(3=1) Define ¢ := (A, g9) : B — A® C. Then ¢ makes the diagram commutative
(pryoth = g and ¥ o f = (id 4, 0) = inj,). O

7.24 Example. Not every short exact sequence splits. [20, 8.2.5]

The sequence 0 — Z "~ Z — Z,, — 0 does not split. In fact, every a € Z,, has
order ord(a) < m < oo but all 0 # b € Z have order ord(b) = oo, thus 0 is the only
p: Zs — Z. Equally, A as in the lemma cannot exist, since 1 = A(2) = 2A(1) has no
solution in Z.

7.25 Remark.
If C is free abelian, then any short exact sequence 0 - A — B — C' — 0 splits:
A right inverse to B — C'is given by choosing inverse images of the generators of

C.

If0o—+A— B— C — 0isexact and A and C are finitely generated, then so is B.
In fact, the generators of A together with inverse images of those of C' generate B.

7.26 Definition. Chain-groups as functors. [20, 7.3.1]
Let ¢ : K — L be a simplicial map between simplicial complexes. Define group
homomorphisms C,(¢) : Cy(K) — C4(L) by

Cq(p) =0 for ¢ < 0 and for ¢ > dim K

w(zo),...,o(x if ¢ is injective on {xq,..., x4},
Col) (@0, ) 1= | PEO) o () . (o 20}
0 otherwise.

7.27 Definition. Chain mappings. [20, 8.3.4]

Let (C,0) and (C’,0") be two chain complexes. .- —C, —> Cyq —> -+
A CHAIN MAPPING is a family of homomorphisms ¢
fq : Cqg — C} which commutes with the boundary lf a lf a1

. / _
operators, i.e. 9y 0 fy = fy—100,. - c 4 - o

7.28 Proposition. C' is a functor. [20, 7.3.2] For every simplicial map ¢ : K — L
the induced map (Cy(p))qez is a chain mapping.

Proof. We have to show that 0,(Cy(¢)(0)) = Cy—1(¢)(940) for every g-simplex
o = (x,...,xq). If all vertices p(x;) are distinct or are at least two pairs (including
the case of a triple) are identical this is obvious. So we may assume that exactly two

andreas.kriegl@univie.ac.at (© 7. Februar 2018 109



7.30 7. SIMPLICIAL HOMOLOGY

are the same. By reordering we may assume ¢(zg) = ¢(x1). Then C,(¢)(c) =0
and hence also 9(Cy(¢)(c)) = 0. On the other hand

1 1 [P
0o = (o, x1, ..., 2q) — (T0, T1, T2, ..., T4 +§ Y20, Ty ey T Ty

The first two simplices have the same image under Cq-1(p) and, since p(x¢) =
©(x1), the other faces are mapped to 0. O

7.29 Lemma. Homology is a functor. [20, 8.3.5]
The chain mappings form a category.
Any chain map f induces homomorphisms Hy(f) : Hy(C) — Hy(C").

Proof. The first statement is obvious.
Since fod = do f we have that f(Z,(C)) C Z,(C") := kerd, and f(B,(C)) C
By(C") :=1im 9, and hence H,(f) : Hy(C) — Hy(C') makes sense:

0 —— B,(C) —— Z,(C) H,(C) 0

if lf Hq(f)
\

0 ——By(C") — Z4(C") —= H,(C") —0

O

7.30 Theorem. [20, 8.3.8] Let 0 — C' —L— ¢ —9 C" — 0 be a short exact
sequence of chain mappings. Then we obtain a long exact sequence in homology:

s () Y g (o) B9 gty 2 H, o (C7) LT,

In particular, we can apply this to a chain subcomplex C’ of a chain complex C
and C" := C/C": Note that 9 factors as 8" : C"" — C”, via 9" (c+ C") := dc+ C".

Proof. Consider

0 o —L oo, —2 o 0
|
0 11— Gy~ O 0

Let 0.[2"] :=[(f~t0dog 1) (") for 2" € C” with 92" = 0.

We first show that it is possible to choose elements in the corresponding inverse
images and then we will show that the resulting class does not depend on any of
the choices.

1" 1 : " __ :

So. let zj € C be a cycle, Le. 0z, = 9 S%nce 4 2!
g is onto we find z, € Cy with gz, = 2. Since
g0z, = dgxy = 0z, = 0, we find x’q_ll € Cf/]_//l OI aI
with fa! | = dx,. And hence z!_, € f~ 09~ "2/ .

fgs e a1 €709z xflll qulg 0
Furthermore fox; | = Jfx,_, = 00z, = 0.
Since f is injective we get dx;_; = 0 and hence 9 o
we may form the class [z} ;] =: Oi[2;]. o’ _, 0

q—

Now the independency from all choices, So let [2]] = [2{1’], i.e. Joy L D 0xy, =

zd — 7 Choose xq,Zq € Cy as before, so that gz, = !

choose z!

p " and gzq = x . As before

4—1>Tq_1 € Cy_q with fai_, = Oz, and fz;,_; = 0z, We have to show
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that [z}, ;] = [Z;_;]. So choose ;1 € Cyy1 with gzg1 = 27, Then gdz,11 =
8g:/cq+1 = 0wy :_z;/ — 7 = /g(:cq — ;}_cq)7 hence there exi_sts an x; € C, Yvith
fry = 0x441 —wq+ g And fOz;, = Ofxy = 0(0xg1 — ¢+ Ty) = 0— 0wy + 07y =
—f(xy_1—7,_1)- Since f is injective we have x;_; = T;,_;+0x,, i.e. [z, ;] = [T/ _4].
4 Y N
Tqt1! x;{/j‘l qg+1
- AN J
e Y Y N
Tqs Tg ! ¢ z;’,_ég
&EE‘H [ >z, - Zy
a! g axtﬁlixq"‘fq ' >0
- AN AN J
e Y Y N
X1, T 0y, 0%y | >Ov0
q—1>"q—1" 9 “%q )
N Y
0 0 q—1
v
—Ty 1+ Ty —0xq + 0T | >0
- AN AN J
C’ f C 9 ok

Exactness at Hy(C"):

(S) fu0.z"] = [ff10g712"] = [0g~1"] = 0.

(D) Let 92/ = 0 and 0 = f.[2'] = [f#/], i.e. Tz Jz = fz’. Then 2" := gz satisfies
02" = dgx = gOxr = gf2' = 0 and O,[2"] = [f~1Og~tgx] = [f~10z] = [¢'].

Exactness at H,(C):

(C) since go f = 0.

(D) Let 9z = 0 with 0 = g.[z] = [gz], i.e. 2”": z" = gz. Then Jz: gx = 2. Hence
gz = 0x" = 0gx = g0x = T': fo' = 2 —0x = fOx' =0fa’ =0(z —0x) =0 =
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Oz’ =0 and f,[2'] = [f2'] = [z — 0x] = [2].

4 N N
2 .
1.
o L %
4 Ve N N
0.
z| gz
" N\
Oz | > gz
v’ | 6. >z — 0z} 5 gz — gz
o NS NS /
4 Ve N
0.
0
4.
0
8. 5
0+ 0
o NS /
c ! c ! ol

Exactness at Hq(C"):

(C) We have d.g.[2] = [f 199 'gz] = [f10z] = [f'0] = 0.

(D) Let 02" = 0 and 0 = 9,[2"], i.e. 32’: 92’ = 2/, where 2’ € f~10g7 12", i.e. Jua:
gr =2" and fz' = Ox. Then O(x — fo') = fz' — f(O2') =0 and g(x — fo') = 2" -0,
ie. gifz — fa'] = [2"].
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4 N N N
z 2
' | Q»f_a_;’i 30
" x —me’l o0
N AN AN J
4 N N N
0 0
prgu ox 0
\ 3.
ox
4.
dx — Ox
\_ A\ A\ )
c ! c ! ol
O

Relative homology

7.31 Definition. Relative homology. [20, 7.4.1] Let Ky C K be a simplicial
subcomplex. Then C(Kj) is a chain subcomplex of C'(K) and hence we may form
the chain complex C(K, Ky) given by Cy(K, Ky) := Cy(K)/Cy(Kp). Note that by
we can identify this so-called RELATIVE CHAIN GROUP with the free abelian
group (denoted Cy(K \ Ky)) generated by all g-simplices in K \ K. The boundary
operator is given by taking the boundary of )k, - o in C(K), but deleting all
summands of simplices in C(K)y).

00— Cy(Ko) Cq(K) Cy(K, Ko) ——=0

C

v
0 —— Cg1(Ko) — Cy1(K) —= Cy_1 (K, Ko) —=0

The g¢-th homology group of C(K, K) will be denoted by Hy (K, Ky) and is called
the RELATIVE HOMOLOGY of K with respect to K.

Using the short exact sequence 0 — C(Kg) — C(K) 5 C(K,Kp) — 0 we get a
long exact sequence in homology by :
Hq (i) Hq(p) Hy—1(3) )

o2 HO(K) 2 H(K) =<2 H (K, Ko) -2 H,_,(K,) == |,
7.32 Remark. [20, 7.4.2]

1. Obviously Cy(K, K) = Cy(0) = {0} and hence H (K, K) = {0}.
2. Obviously Cy(K,0) = Cy(K) and hence H,(K,0) = Hy(K).
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3. If K is connected and K 2 Ky # 0, then Ho(K, Ko) = {0}: In fact, let
z € Co(K,Ky), ie. z = EzeK\KO ky - x. Let 2o € Ky be chosen fixed.
Since K is connected we have Ho(K) = Z, [z] — e(z), by . Thu
z—¢e(2)xg € Bo(K), i.e. Ic € C1(K) with z —e(2)zg = Oc. Then z = p(z) =
p(e(2)xo) + p(0c) = e(2)0+ O(p(c)), where p : Cq(K) — Cy(K, Ko) denotes
the natural quotient mapping. Thus [z] = 0 € Hy (K, Ky).

4. Note that in we calculated the relative chain complex Cy (L, K), where
L := K(0,) and K := K(6,) and obtained Cy(L, K) = {0} for ¢ # n and
Cn(L,K) = (0,) 2 Z. Hence Hy(L,K) = {0} for ¢ # 0 and H, (L, K) = Z.

7.33 Example. [20, 7.4.7] Let M be the Mobius strip with boundary 0M. We have
a triangulation of M in 5 triangles as in . Since OM is a 1-sphere Hy(OM) 2 Z

by , where a generator is given by the 1-cycle r formed by the 5-edges of the
boundary.

Furthermore Hy (M) = Z, where a generator is given by the sum m of the remaining
edges: In fact every triangle has two of these edges, so it suffices to consider linear
combinations of these edges. Since every vertex belongs to exactly two of theses
edges, the coefficients have to be equal.

If a combination of triangles has a multiple of m as boundary (and nothing from
r), their coeflicients have to be 0, cf. .

Now consider the following fragment of the long exact homology sequence:

Hy(OM) —— Hy(M) —3= H1(M,0M) —— Ho(0M) —= Ho(M)

([r]) ([ml) ([zol) ([o])

Since Ho(OM) = Z = Hy(M) by , where a generator is given by any point
xg in OM C M, we have that the rightmost arrow is a bijection, so the one to
the left is 0 and hence the previous one is onto. Remains to calculate the image of
([r]) = H1(OM) — H1(M) = ([m]). For this we consider the sum over all triangles
(alternating oriented). It has boundary 2m — r and hence [r] is mapped to 2[m)].
Thus H, (M, M) = Z/2Z = L.

7.34 Proposition. Homology ladder. [20, 8.3.11] Let (C,C’) and (D,D’) be
pairs of chain complezes, C" := C/C', D" .= D/D’ and let f : (C,C") — (D, D")
be a chain mapping of pairs. This induces a homomorphism which intertwines with
the long exact homology sequences.

d. ) Hy-1(9)
_—,

Hy(p) .
" Hy(CY) H,(C) —=% H,(C") —=> H, 1 (C")

| | | |
Hq j Hq * Hq—l
o H (D) S H(D) S H (D) Hya (D

Hg (i)
_—
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Proof. The commutativity of all but the rec-
tangle involving 0, is obvious. For this re-

maining one let 2”7 € C” be a cycle. We

have to show that f.0.[2"] = 0.f«[2"]. So

let 2/ € i~'0p~'2", ie. iz’ = Ox for some x fx £
with pr = 2. Then f.0,[z"] = [fz'] and we ‘\ \

have to show that j(fz') € g~ 'fz", which I

follows from jfz' = fiz’ = fOxr = O0fx and j

alfe) = flpr) = f2". O f# = 0fs

7.35 Corollary. [20, 7.4.6] Proposition applies in particular to simplicial
mappings ¢ : (K, Ko) — (L, Ly) of pairs. O

7.36 Excision theorem. [20, 7.4.9] Let K be the union of two subcomplezes Ky
and Ky. Then (K1, KoNKy) — (K, Ko) induces an isomorphism H(Ky, KoNK;y) —
H(K; UKy, Ky).

Proof. Note that we have
Ki\(KonK;)=K;\ Ky=(KoUK7)\ Ky

and also

0 Cy(Ko N Ky) “s Oy (K1) —= Cy(Ky, Ko N K1) = Co(Ky \ (Ko N Ky)) =0

i2\£_\ le B
; \

0 — Cy(Ko) L Cy(Kog UK;) » Cy(Ko U Ky, Ko) = Cy((KoU K1)\ Ko) =0

This gives an isomorphism even on the level of chain complexes, as follows from the
commutativity of the diagram. O

Let K := K()UKl and U := K\Kl = Ko\(KomKl) then Kl = K\Uand
KyN Ky = Ky \ U, hence the isomorphism of reads H(K \ U, Ko\ U) &
H(K, Ky). Conversely, if (K, Ky) is a pair of simplicial complexes and U C K is
such that K7 := K \ U is a simplicial complex, then we get:

7.37 Corollary. [20, 7.4.8] Let Koy C K be a pair of simplicial complexes and
U C Ky a set such that V71 < o: 7 € U = o € U. Then K; := K\ U and
KoN Ky = Ko\ U are simplicial complexes and H(K, Ky) =2 H(K\U,Ko\U). O
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Basics

8.1 Definition. [20, 9.1.1] The STANDARD (CLOSED) ¢-SIMPLEX 4, is the simplex
spanned by the standard unit vectors e; € R4+ for 0 < 5 < gq. So

Agi= {00, A) 10N <103 N =1}
J

8.2 Definition. [20, 9.1.2] For ¢ > 1 and 0 < j < ¢ let the FACE-MAP 55_1 :
Agy—1 — Ay be the unique affine map, which maps e; to e; for ¢ < j and to e;41 for
i> g, ie.

-
€0y---3€g—1 2 €055 €5 ,...,€Eq.

8.3 Lemma. [20, 9.1.3] For ¢ > 2 and 0 < k < j < q we have 6371 o 5(’;_2 =

k j—1
5q_1 o5q_2.

Proof. The mapping on the left side has the following effect on the edges:

[
€05y €Chy--3Cq—1 7 €05 3 €kyenny €5,...,Eq

[ [ [
€05+ 3€q—2F 2 €0y ..y €y, €12 €0y, €Ly €y, €Cg

And on the right side:
[

> €0y 3€j—15...,€q—1F?€0y...;, Cky...y€j,...,€q

1 [ [
€0y 3€q—2F 2 €053 €j—1,...,g—1F?€0y..., Cky..., €j,...,€q

O

8.4 Definition. [20, 9.1.4] Let X be a topological space. A SINGULAR ¢-SIMPLEX
is a continuous map o : A; — X. The ¢-th SINGULAR CHAIN GROUP Sg(X) is the
free abelian group generated by all singular g-simplices, i.e.

Sq(X) = "PF(C(Ag, X))

Its elements are called SINGULAR ¢-CHAINS. The boundary operator 0 is the linear
extension of

q
0:0— Z(—l)jao5j.
=0

By the groups S, (X) together with 0 from a chain complex S(X):

q q q—1
000 = 8(2(—1)j0 o (5j) = Z(—l)j Z(—l)ko 047 o o*
=0 =0 k=0
= Y (~1)Teodosh+ > (-1)/TFgodlodt
0<k<j<q 0<j<k<q

Z (—1)*kgodk 0671 4 Z (~1) g0 okt =0. O

0<k<j<q 0<j<k<q
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The g-th SINGULAR HOMOLOGY GROUP H,(X) is defined to be H,(S(X)). The
elements of B,(X) := By(S(X)) are called (SINGULAR) ¢-BOUNDARIES and those
of Zy(X) := Z,(S(X)) are called (SINGULAR) ¢-CYCLES.

Note that singular O-simplices can be identified with the points in X and singular
1-simplices with paths in X.

8.5 Definition. [20, 9.1.6] [20, 9.1.8] [20, 9.1.9] Let f : X — Y be continuous.
Then f induces a chain-mapping f. := S(f) : S(X) — S(Y) (by S(f)(0) := foo
for singular simplices o) and hence group-homomorphisms

fe = Hy(f): Hq(X) - Hq(y)

q q

(S(N(@) =8(for) = > (~1) foros’ = S(£)(D_(~1)o0d’) = S(£)(9(e)).
j=0 j=0

So H, is a functor from continuous maps between topological spaces into group

homomorphisms between abelian groups.

8.6 Remark. [20, 9.1.7] The identity ida, : A; — A, is a singular g-simplex
of Ay, which we will denote again by A,. If o is a singular ¢-simplex in X, then
S(0)(Ay) =0 0ida, = 0.

We will make use of this several times (e.g. in | 8.21 |,

‘ 8.29 ‘, and | 8.32 ‘) in order to construct natural trans- B! :
formations, by defining them first for the standard Nax

simplex: Sq(Aq) > F(Ay)
Let F' be some functor from topological spaces in- . F(o)

to groups and ¢ € F(A;) be given. Then there L nx (o)

is a unique natural transformation n : S, — F, i

which maps A, € S;(Ay) to ¢ € F(A,) given by

nx(0) = F(0)(c). S(X) = F(X)

8.7 Theorem. [20, 9.1.10] Let X = {x} be a single point. Then H,(X) = {0} for
q# 0 and Ho(X) = So(X) 2 Z.

A space X is called AcycLic iff it is path-connected and Hy(X) = {0} for ¢ # 0.

Proof. The only singular ¢-simplex is the constant mapping o, : A, — {*}. Its
boundary is 9oy = > 7_(—1)7 04067 = (3°{_(~1)7)og—1. So for even ¢ > 0 we
have doy, = 04—1 and hence Z,(X) = {0}. For odd ¢ we have that (0o, = 0 and)
00g+1 = 04, hence By(X) = S,(X). Thus in both cases Hy(X) := Z,(X)/B,(X) =
{0}. For ¢ = 0 we have Bo(X) = {0} and Zy(X) = So({*}) = Z, hence Hy(X) =
Z. O

8.8 Corollary. [20, 9.1.11] Let f : X — Y be constant. Then Hy(f) =0 for g # 0.
Proof. Obvious, since f factors over a single point. O

8.9 Proposition. [20, 9.1.12] Let X; be the path components of X. Then the
inclusions of X; — X induce an isomorphism LI; Hy(X;) = He(X); cf. .

Proof. This follows as : Let o be a singular simplex of X. Then ¢ is completely
contained in some Xj, hence C(Ag, X) = | |; C(Ag, X;), thus

Sq(X) =P F(C(Ag, X)) = P TP F(C(Ag, X;)) = P T Sal(X))
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and this induces an isomorphism of homology groups. O

8.10 Proposition. [20, 9.1.13] Let X be a topological space. Then Ho(X) is a free
abelian group with generators given by choosing one point in each path-component;

cf. .

Proof. Because of we may assume that X is path-connected. The mapping
€:20(X)=5(X)—=Z,>  ns -0+ Y  ngisonto and as in its kernel is
just Bo(X), so € induces an isomorphism Hy(X) 2 Z; cf. . O

8.11 Corollary. [20,9.1.14] Let X andY be path-connected. Then every continuous
mapping f: X =Y induces an isomorphism Ho(f) : Ho(X) — Ho(Y).

Proof. Obvious since the generator is mapped to a generator. O

8.12 Definition. [20, 9.1.15] Let A C R™ be convex and p € A be fixed. For a

singular g-simplex o : A; — A we define the CONE px o : Agy1 = egx Ay — A by
(p*a)((l —1)el + tao(x)) = (1—t)p+to(z) for t € [0,1] and z € A,.

For a g-chain ¢ = ) _n, - 0 we extend this operation by linearity:

p*c::Zna~(p*a)

o

and obtain a homomorphism Sy (A4) = Sg+1(A4); cf. .

8.13 Lemma. [20, 9.1.16] Let A C R™ be convex and c € Sq(A) then

(9( *C)_ C—E(C)p fO’I’qZO,
P le—pxdc  forq>0,

where E(ZI Ny x) =) . Ng; cf. .

Proof. It is enough to show this for singular simplices ¢ = o,. For ¢ = 0 we have
that px o : Ay — X is a path from p to o hence d(p* o) =0 —p =0 —(o)p. For
q >0 we have (px )08’ =0 and (p*xc) o =px (g0~ for i > 0 since

(pxo)od)((1—1)e’ +t5°(x)) = (p*o)((1 —)8°(e%) + 5" (8°(z)))

= (p*o)(1 =) +16°(5"*(z))) by
=(1-t)p+ ta(éi_l(m))
= (px (008 ) ((1—1)e’ +t8%x)).

Hence d(pxo) = (pxo)0d® + Zg;l(—l)ip* (006 Y =0—pxdo. O

8.14 Corollary. [20, 9.1.18] Let A C R™ be conver. Then A is acyclic; cf.

85.

Proof. Let p € A and z € Z;(A) for some g > 0. Then z = 9(p * z) by and
hence Z,(A) = B,(A), i.e. Hy(A) = {0}. O
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Relative homology

8.15 Definition. [20, 9.2.1] Let (X, A) be a pair of spaces. Then we get a pair of
chain complexes (S(X), S(A)) and hence a short exact sequence
0—S(A) = S(X)—» S(X,A) =0,

where Sq(X,A) 1= 54(X)/S4(A). Its elements are called RELATIVE SINGULAR ¢-

CHAINS. But unlike we can not identify them with formal linear
combinations of simplices in X \ A.

8.16 Remark. [20, 9.2.3] However, as in we get a long exact sequence in
homology

o Hyp1 (X, A) =2 Hy(A) — Hy(X) — Hy(X,A) -2 Hy1(A) — -+,
where Hy (X, A) := H,(S(X, A)). Note that z € S;(X) with 9z € S;_1(A) describe
cycles z+54(A) in S4(X, A) (since d(c+.S4(A4)) := dc+ S4-1(A)) and hence classes
[z + 54(A)] € Hy(X, A).
In particular, for acyclic A and injective Hy(A) — Ho(X) we get Hy(X) = Hy(X, A)
for all ¢ # 0.
For a continuous mapping of pairs (X, A) — (Y, B) we get a homology ladder by

[r31]

8.17 Remark. [20, 9.2.2] As in we get
L HQ(Xa X) = {O}v
2. H,(X,0) = Hy(X), and
3. Ho(X,A) = {0} for path-connected X and A # 0.

8.18 Remark. [20, 9.2.4] Using the long exact homology sequence
v Hyp1 (X, A) » Hy(A) - Hy(X) = Hy(X,A) > Hy—1(A) — -+ -,
we obtain:

1. Let A C X be such that Hy(A) — H,(X) is injective for all g. Then we
get short exact sequences 0 — Hy(A) — Hy(X) — Hy(X,A) — 0, where
H,(X,A) — H,_1(A) is 0, since the next one in the long exact sequence is
assumed to be injective.

2. Let A C X be aretract (i.e. has a left inverse). Then by functorality H,(A) —
H,(X) is aretract and hence by | 1 | we have (splitting) short exact sequences,
ie. Hy(X) 2 Hy(A) ® Hy(X, A).

3. Let zyp € X. The constant mapping X — {z¢} is a retraction, hence H,(X) =
H,({z0}) ® Hy(X,{x0}) by . By we have that H,({z¢}) = {0} for
g # 0 and Ho({zo}) = Z, hence Hy(X,{zo}) = Hy(X) for ¢ > 0 and
0 —Z — Ho(X) = Ho(X,{x0}) — 0 is splitting exact.

4. Let f: (X, A) — (Y, B) besuch that f, : Hj(A) - Hy(B) and f. : Hy(X) —
H,(Y) are isomorphisms for all . Then the same is true for f, : Hy (X, A) —
H,(Y, B) by the 5’Lemma applied to the homology ladder of .

8.19 Theorem. Exact homology sequence of a triple. [20, 9.2.5]
Let BC A C X. Then we get a long exact homology sequence

oo Hy1 (X, A) =2 Hy(A,B) — Hy(X,B) — Hy(X,A) = ---
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The operator 0, can also be described by [2](x, a) — [02](a,B) for z € Sy(X) with
0z € Sy_1(A) or as composition Hyy1(X, A) -2 H,(A) — H,(A, B).

Note, that B := ) gives us the long exact sequence of .

Proof. We have a short sequence
0— S(A,B) — S(X,B) — S(X,A) — 0.

given by
S(B) =———=15(B) —— S(4)
S(A) —— S(X) S(X)

The bottom row is exact at S(X, A) and also at S(A, B): h=——73b .
In fact for & € S(A, B) let the image in S(X, B) be 0. 3.
Then a = b € S(B) and hence ¢ =0 in S(4, B). "
2.
It is also exact at S(X, B), since for ¢ € S(X, B) which EIaL = y
is mapped to 0 in S(X, A) the image v € S(X) isana € I I
A) and h tisfies a i d to d below). 2
S(A) and hence satisfies @ is mapped to & (see below) 3 %0 .
. . Ja
‘|v'3
ar—= 3z T ° z+54(B) > 2+ 54(4)
1.
LI I I
4. o Y2
G+—>3 & —>0 02+ S4_1(B)——=0z+ Sy_1(B) ——= 0+ S4-1(4)

So this short exact sequence induces a long exact sequence in homology by .
The boundary operator maps the class [z + S(A4)] with 9z € S(A) to [0z + S(B)]

by construction (see the diagram above).

This is precisely the image of value 4 2 >z 4 S,(A)
of the boundary operator [0z] for the
pair (X, A) under the natural map I

H(A) — H(A, B): o 5. -

Homotopy Theorem

We are going to prove now that homotopic mappings induce identical mappings in
homology. For this we consider first a homotopy, which is as free and as natural as
possible, i.e. the homotopy given by ins; : X — X x I, z — (x,t). We have to show
that insp and ins; induce the same mapping in homology. So the images of a cycle
should differ only by a boundary. Let ¢ : A; — X be a singular simplex. Then
we may consider the cylinder o(Ay) x I over o(4,). It seems clear, that we can
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triangulate A, x I (cf. exercise (3.2)). The image of the corresponding chain c¢,4+1
under o x I gives then a g+ 1-chain in X x I, whose boundary consists of the parts
o x {1} =ins; oo and ¢ x {0} = insg oo and a triangulation of (¢ x I),dc,. Note
that it would have been easier here, if we had defined the singular homology by
using squares instead of triangles, since it is not so clear how to describe an explicit
triangulation of A, x I, in fact we will show the existence of c,41 by induction in

lemma .

We make use of the following

8.20 Definition. [20, 8.4.6] Let R,S : X — ) be two functors. A NATURAL
TRANSFORMATION ¢ : R — S is a family consisting of }-morphisms px : R(X) —
S(X) for each object X € X such that for every X-morphism f : X — X’ the
following diagram commutes:

pYx

R(X) 2%~ 5(X)

R(f)i S(f)i

R(X') ——= S(X')

8.21 Lemma. [20, 9.3.7] Let o, 1 : S(-) = S(= x I) be two natural transforma-
tions and assume furthermore that Ho(po) = Ho(p1) @ Ho({x}) — Ho({x} x I).
Then o and 1 are chain homotopic (see ), i.e. there exists Z = (24)q with
homomorphisms Z, : Sg(X) = Sg+1(X x I) such that 0Z;+ 2,10 = 1 — @o on
Sq(X).

Proof. We construct Z, by induction on g¢:

For ¢ < 0let Z, := 0. Now let Z; for all j < ¢ be already constructed. Consider
the natural transformation ¢ := ¢1 — ¢o. We first treat the case X := A,. In
particular, we have to find for o := ida, = A, € S,(X) an element Z,(4,) =:
Cqt1 € Sqr1(Ag x I) with dcgy1 = @Ay — Z,-10A,. For ¢ = 0 this follows from
the assumption [p(Ag)] =0 € Ho(Ap x I). For ¢ > 0 we can use that S(Ag x I) is
acyclic by , since A, x I is a convex subset of R972. So we only have to show
that the right side is a cycle. In fact, by induction hypothesis (applied to 9A,) we
have

00— Z4 100,) = A — (p—Z420) 0D = A, — (DA, — Z, 200A,) = 0.

Now we extend Z; : Sy(X) — Sq+1(X x I) by natu- Ay }T) Cq+1
rality to the case of a general X: Le. for o : Ay = X

we define Z,(0) 1= Sy11(0 x I)(cgs1)- l"* I“’”)*
Then Z, is in fact natural, since Sy1(f x I)Z,(0) =  Sq(X) =z, (X x 1)
Sq+1(f X I)Sqqi1(o x I)(cq41) and Z,S,(f)(o) = ; l(f“)
2,(0) = Sy1(fo x I)(cger) and (£ x I)o (o x I) = : :
(foo)x1I. Sy(Y) ——= Sy(Y x I)

Furthermore Z, is also a chain homotopy, since

0Z4(0) = 05¢41(0 x I)(cq1) = Sq(0 x 1)Ocqi1 = Sg(o x I)(pAq — Z4-10A)
= 08,(0) g — Z4105,(0)Dy = 9(0) — Z,10(0). T
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8.22 Definition. [20, 8.3.12] [20, 8.3.15] Two chain mappings ¢, : C — C’ are
called (CHAIN) HOMOTOPIC and we write ¢ ~ 1 if there exists a graded group-
homomorphism Z : C — C’ of degree 1 (ie. a family Z = (Z;)q4ez of group
homomorphisms 2, : Cy — Cp ) with ¢ — ¢ = 0Z + Z0.

8.23 Proposition. [20, 8.3.13]
Let p ~1p: C — C'. Then H(p) = H(y) : H(C) — H(C").

Proof. Let [c] € H(C), i.e. d¢ = 0, then H(yp)[c] — HW)[c] = [(¢ — ¥)c] = [0Zc +
Zdc] = [0Zc] =0. O

8.24 Proposition. [20, 8.3.14] Chain homotopies are compatible with compositions
and chain homotopic is an equivalence relation.

Proof. Clearly, for ¢ ~ 1 we have y o p ~ y ot (since x(¢p — ) = x(0Z 4+ 20) =
OxZ+ xZ0) and similarly poy ~ 1ox and being chain homotopic is transitive. [

8.25 Theorem. [20, 9.3.1]
Let f~g:(X,A) = (Y,B). Then f. = g.: Hy(X,A) - H,(Y, B).

Proof. By we have that the chain mappings induced by the inclusions ins; :
X — X x I are chain homotopic to each other for j € {0, 1} by a chain homotopy Z.
Let h be a homotopy of pairs between f and g, i.e. f = hoinsg and g = hoins;. By
the composite ho Z is a chain homotopy S(f) ~ S(g) : S(X) — S(Y) and its
restriction is a chain homotopy S(f) ~ S(g) : S(A) — S(B), since the construction
is natural. Thus S(f) ~ S(g) : S(X,A) — S(X, B), since S(f), S(g), 0, and ho Z
are given on the relative singular chains by their value on representants. By
we have that H(f) = H(g) : H(X,A) — H(X, B). O

8.26 Corollary. [20, 9.3.2]
Let f ~g: X =Y. Then f, = g« : Hy(X) = Hy(Y).

Proof. Obvious, since H, (X, ) = H,(X) naturally. O

8.27 Corollary. [20, 9.3.3] Let f : X — Y be a homotopy equivalence. Then
fo t HY(X) — Hy(Y) is an isomorphism for all q. In particular, all contractible
spaces are acyclic.

Proof. Obvious by functoriality and since an inverse g up to homotopy
induces an inverse H(g) of H(f). O

8.28 Corollary. [20, 9.3.4] [20, 9.3.5] [20, 9.3.6]
1. Let A C X be a DR. Then H,(A) — H,(X) is an isomorphism and hence

H,(X,A) ={0} forallq, cf. |8.18.2]
2. Let BC AC X and A be a DR of X. Then H,(A,B) — H,(X,B) is an
isomorphism.

3. Let BC AC X and B be a DR of A. Then Hy(X,B) — Hy (X, A) is an
isomorphism.

Proof. The first part follows as special case from and from , the long
exact homology sequence of a pair. The other two cases then follow by using ,
the long exact homology sequence of a triple. O
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Excision Theorem

In order to prove the excision theorem for the singular homology we need the
barycentric refinement for singular simplices, since a singular simplex in X need
neither be contained in S(U) nor in S(V) for a given covering {U,V} of X.

8.29 Definition. [20, 9.4.1] For the standard ¢-simplex A, we define the BARYCEN-
TRIC CHAIN B(A,) € S,(A,) recursively by (cf. [ 3.24])

B(Ao) == Ao

=A, *Z 1)75(67)(B(Ag-1)) for ¢ > 1,

where A 7 +1 Z _o € is the barycenter. Next we define in a natural way
B(o) = B(S(0)(Ag)) := S(0)B(A,) for 0 : Ay — X

and extend it linearly to B : S¢(X) — 5¢(X) by setting
B(Z N - 0‘) = Z neB(0)

Note that the recursion formula for B(A,) can be rewritten as
BA, = A, x BOA,.
8.30 Proposition. [20, 9.4.2] The barycentric refinement is a natural chain map-
ping B : S(-) — S(-) with B ~ id.
Proof. Let us first show naturality: So let f : X — Y be continuous. Then
(foB)o = (.0 B)A, = (f 0 0).BA, = B(f 0 0) = (Bf.)o.

Next we prove that it is a chain mapping, i.e. 0B = BJ. On S, (X) with ¢ < 0 this
is obvious. Now we use induction for ¢ > 0:

0Bo = 00,BA, = 0,0BA, = a*a(AAq * BaAq)

8.13 —
bu) (BoA, - B, »0B0A,)
= B0o.(A,) — 0= Boo.

I.Hyp.

Bo.0(A,) — 0. (AAq * Bc‘?a(Aq))

Finally we prove the existence of a chain homotopy id ~ B : S — S. Let ¢ = insg :
X — X xI be given by z + (2,0) and p = pr; : X xI — X given by (z, t) — x then
S(p)oS(i) = id. Since B|g, = id we have a chain homotopy S(i)oB ~ S(i) by
Composing with S(p) gives a chain homotopy B = S(p)oS(i)oB ~ S(p )oS( )

by [5.21], :

8.31 Corollary. [20, 9.4.3] Let AC X. Then B, =id: H(X,A) —» H(X, A).

r times

By iteration we get the corresponding result for B" := Bo...o B.

Proof. Let a € Hy(X, A) be given, i.e. a = [z + S,(A4)] for a z € S, (X) with

0z € S4-1(A). By ~id. Let (2, : S4(-) = Sg+1(-))q be a corresponding
natural chaln homotopy Then Bz—2z= 8Zqz + 2,10z € 0242+ 54(A), i.e. Bz is
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homologous to z relative A and, furthermore, 0Bz € 0z + 0+ 0Z,_10z € S;_1(4),
so Bz is a cycle relative A, i.e. a = [z 4+ S4(A)] = [Bz + S4(4)] = B.(a). O

8.32 Lemma. [20, 9.4.4] Let X be the union of two open subsets U and V. Then
for every ¢ € Sy(X) there is an r > 0 with B"c € Sy(U) + 54(V) C S4(X).

Proof. It is enough to show this for ¢ being a singular simplex o : A, — X. The sets
o~ 1(U) and c=(V) form an open covering of A,. Let A be the Lebesgue number
for this covering, i.e. all subsets of A, of diameter less than A belong to one of the
two sets. Since B"(A,) is a finite linear combination of singular simplices, whose
image are closed simplices of the r-th barycentric refinement of K := {7 : 7 < A},
we have by that for sufficiently large r each summand of B"(A,) has image
in o= (U) or in 0= (V). Hence B"(0) = B"(5(c)(A)) = S(0)B"(4,) is a sum of
summands in S,(U) and in Sy (V). O

8.33 Excision theorem. [20, 9.4.5]

Let X; C X for j € {1,2} such that the interiors X cover X.

Then the inclusion i, : (X2, Xo N X;) —» (X U Xl,Xl) induces isomorphisms
H (XQ,XQ N Xl) — H (X2 U X17X1) for all q.

In particular this applies to X1 :=Y C X and Xo := X \ Z for subsets Z and Y
satisfying Z C Y and so gives isomorphisms Hy(X \ Z,Y \ Z) — Hy(X,Y).

Proof. We have to show that i, : Ho(X2, XoNX1) = Hy(X2UX1, X1) is bijective.

i. is onto: Let 8 € H (X2 U Xq,X1), i.e. B = [z + Sg(X1)] for some z € Sy(X)
with 0z € S;,_1(X1). By there exists an r > 0 and u; € Sq()O(j) such that
z ~ B"z = uy + us ~ ug relative X; by . We have Jus € Sy—1(X32) and
Ous = 0B"z — Ouy = B"0z — Our € Sy—1(X1), hence dus € S;_1(X1 N Xs). So
a = [ug + 54(X2 N X1)] € Hy(X2, X2 N X1) and it is mapped by . to 5.

ix is injective: Let a € Hy (X2, X2 N X1) be such that i.a = 0. Then a = [z2 +
Sq(X2NXy)] for some xo € So(X2) and since 0 = i, = [x2+ 5¢(X1)] € Hy(X, X1)
we have a (¢ + 1)-chain ¢ in X and a g-chain x; in X; with dc = x4 + 1. Again
by there is an r > 0 such that B"c = uy + ug with u; € S4(X,). Hence
ouq + Oug = 0B"c = B"0¢ = B"(x2 + x1). So a := B"xo — Qug = 5‘u1 B"zxy is a
chain in X1 N X5 and 9 ~ B"z5 = Qus +a by , fe.a=[ra+5,(XanNXy)| =
[Qus + a+ Sy (X2 N X1)] =0, since a € S4(X2NXq) and ug € S(Xs).

The alternatlve descrlptlon is valid, since the 1nter10rs of X1 :=Y and X5 := X\ Z
cover X iff ¥ = X12X\X2 X\(X\Z) Z. Obviously Y\ Z = X1NX,. O

8.34 Corollary. [20, 9.4.6] [20, 9.4.7] Let (X, A) be a CW-pair. Then the quotient
map p: (X, A) = (X/A, A/A) induces an isomorphism in homology for all q and,
in particular, hence Hy(X,A) = Hy,(X/A) for all ¢ # 0.

Proof. By we have an open neighborhood U of A in X, of which A is an SDR.
Let p: X — X/A =Y be the quotient mapping and let V :=p(U) C X/A =Y
and y := A/A € X/A. Since U is saturated its image V C Y is open and p(A4) = {y}
is an SDR in V. Now consider

H,y(X, A) Hy(X,U) Hy(X\ AU\ A)
8.28.3 8.
lu . lu ) lg y

Hy (Y, {y}) ————> H (Y, V) =———— H, (Y \ {y}.V \ {3}
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By we have that p: (X, A) — (Y, {y}) is a relative homeomorphism, so the
vertical arrow on the right side is induced by an isomorphism of pairs and hence
is an isomorphism. The horizontal arrows on the right side are isomorphisms by
the excision theorem . Hence the vertical arrow in the middle is an isomor-

phism. By | 8.28.3 | the horizontal arrows on the left are isomorphisms, hence also
the vertical arrow on the left.

Finally, by we have H (Y, {y}) = Hy(Y) for ¢ > 0. O

8.35 Corollary. [20, 9.4.8] Let f : (X, A) — (Y, B) be a relative homeomorphism
of CW-pairs. Assume furthermore that X \ A contains only ﬁm'tely many cells
or f+ X =Y is a quotient mapping. Then f, : Hy(X,A) — Hy(Y,B) is an
isomorphism for all q.

Proof. By we have an induced continuous bijective mapping f : X/A—Y/B
making the following diagrams commute:

A—t op Hy(X, A) — > H,(Y.B)
7 e e
x—L vy Hy(X/A, AJA) — H,(Y/B, B/B)
T e
X/A-Y/B H,(X/A) —Z— H,(Y/B)

)

That this bijection is a homeomorphism follows in case X \ A has only finitely many
cells since then X /A is compact by and , and in the case where f : X — Y
is a quotient map then so is X — Y — Y/B and hence also X/A — Y/B. Thus
fu: Hy(X/A) = H,(Y/B) and by[8.18.3 | (and [ 8.18.4 ) the horizontal arrow in the
middle on the right is an isomorphism. By both X/A and Y/ B are CW-spaces

thus by the vertical down-arrows on the right are isomorphisms as well, so
the same has to be true for the top horizontal arrow on the right. O

8.36 Proposition. [20, 9.4.9] Let X; be CW-complexes with 0-cells x; € X; as
base-points. Then we have natural zsomorphzsms “b]_[ Hy(X;) = He(V; X; ) for

q7#0.

Proof. We have \/; X; = | |; X;/A, where A := {z; : j € J} with H,(A)
ab II; H({z;}) = 0 by and for g # 0. Furthermore, Ho(A) — Ho(L]; X;)
is injective by , so

Hq(\/Xj) Hq<UXj,A) 2 Hq(UXj) abL[Hq(X

8.37 Proposition. Mayer-Vietoris sequence. [20, 9.4.10] Let X = X; U X»,
where the X; C X are open. Then there is a long exact sequence

= Hq(Xl N Xg) — Hq<X1) D Hq(XQ) — Hq(X) — Hq—l(Xl n XQ) —

Proof. Let S := S(X), S1 := S(X;) C S(X) and Sy := S(X2) C S(X). Then
S(X7; N Xg) =851 NS, Let S; + 53 be the chain complex which has the subgroup
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of S generated by S7 and S5 in every dimension.
We claim that the following short sequence

O—>S1/(SlﬂSQ) —>S/S2 —>S/(S1 —|—Sg) —0

is exact:
S1NS—-— s Gy ———3)
S —— =5+ 55C j S/(Sl —|—Sg)
S1/Slﬂ52 = (Sl"’SQ)/SQC S/SQ S/(Sl —|—SQ)

In fact, by the first isomorphy theorem we have S;/(S1 N S3) = (S1 + S2)/S2 and
hence the inclusion S; + Sy C S induces an injection S1/(S1 N S2) — S/S5. The
quotient of it is (S/S2)/((S1 + S2)/S2) = S/(S1 + S2) by the second isomorphy
theorem, which proves the claim.

By the excision theorem m we have that the inclusion (57,51 N S2) < (5, S2)
induces an isomorphism H(S1/(51NSs)) =: H(X1, X1NX3) = H(X1UXs, Xs) :
H(S/S2). Hence the long exact homology sequence gives H(S/(S1+52)) =

If we consider now the short exact sequence
O—>51+SQ—>S—>S/(S1+SQ)—>O

then we deduce from the long exact homology sequence that H(S; + S2) —
H(S) is an isomorphism.

0.

Now consider the sequence

0—>S1NSy—>S1®Sy— 51 +S5,—0,
where the inclusion is given by ¢ — (¢, —c¢) and the projection by (c1,¢2) — ¢1 + ca.
This is obviously short exact, since (c1,c¢2) is mapped to 0 iff ¢; + ¢ = 0, ie.
c:=c¢ = —cg € 81 NSy is mapped to (c1,c2). So we get a long exact homology

sequence | 7.30 |, where we may replace H(S; + S) by H(S) =: H(X) by what we
said above.

Note that the boundary operator is [z] — [0z1] = [~0z2], where B"z = z; + 2. O

8.38 Remark. [20, 9.4.12]

(1) Instead of openness of X; and X it is enough to assume in that there are
open neighborhoods of X7 and X5 which have X; and X5 and their intersection has
X7 N X5 as DRs. In particular this applies to CW-subspaces X; of a C'W-complex

X by[4.18]

(2) Let X7 N Xy be acyclic. Then the Mayer-Vietoris sequence gives Hy(X) =
H,(X1) ® Hy(X>) for g # 0. In fact only the case ¢ = 1 needs some argument: We
have the exact sequence

0= Hl(Xl ﬂXQ) *>H1(X1) @ Hq1(Xo) *>H1(X)

/

Z = Ho(X1 N X3) > Ho(X1) ® Ho(X2) — Ho(X) —=0
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and the mapping Ho (X1 N X2) — Ho(X1)® Ho(X2) is injective, since the generator
is mapped to a generator of Hy(X7) and of Hy(X2).

(3) Let X; and X be acyclic. Then we have Hg(Xq N X2) = Hyq1(X) for ¢ > 0
and furthermore H;(X) is free abelian and if Ho(X; N Xo) = Z* with k # 0 then

Hl(Xl) D Hl(XQ) — Hl(X) >> Ho(Xl OXQ) — H()(Xl) S¥) H()(XQ) — Ho(X) —0
I [ I I
0 zk 7?2 Z

gives Hy(X) = Z*~! via the rank formula rank(ker f) + rank(im f) = rank(dom f),
where we used that X = X; U X5 is connected being the union of two connected
not disjoint sets.

(4) Consider the covering S™ = D U D". By we get a long exact Mayer-
Vietoris sequence. And since D'} and D" are convex, they are acyclic by . So
H,(S™) = Hy (DT ND") = Hy_1(S™ 1) for ¢ > 1 and n > 0 by . Inductively
we hence get H,(S™) = H,_,(S°) = {0} for ¢ > n, since S° is discrete. And for
0 <gq<n weget Hy(S") = Hy(S"9"!) = {0}, since

0— Hl(Snqurl) >> Ho(Sniq) > Ho(Diiq) 57 Ho(DT_liq) - Ho(Sn7q+1) =0

I | I
Z ZoL Z

and H,, (S™) = H,(S') & Z, since

00— Hl(Sl) > Ho(SO) — > HQ(D&) D Ho(D(i) —> Ho(Sl) —=0

| I ]
yAY/ yAY/ Z

Homology of balls, spheres and their complements

8.39 Proposition. [20, 9.5.1] Let n > 0. Then

Hy(An, A, = {Z for g =mn,

0 otherwise.

The generator in Hy,(A,,A,) will be denoted [A,] and is given by the relative
homology class of the singular simplex ida,, : A, — A,,. Cf. | 7.32.4|.

Proof. We prove this by induction on n:

-
(n=0) Hy(Ao,Ag) = Hy({1},0) Hgy({*}).
(n > 0) We consider A,,_; as face opposite to e, in A, and let A, := A, \ Aon_l.
Since A,, is a DR of A,,, we get Hy(A,, An) = Hq_l(An,An) .
from for the triple A, C A, C A,. Since A,_; \ Hp(Bn, An)

A, = A, \ A, we get from that the inclusion in- i
duces an isomorphism Hq,l(An,l,An,l) = Hq,l(An,An). '
Hence H,(A,,A,) = H, 1(A,—1,A,_1) and by recursion Hy1(Ap; An)

we finally reach H,_,, (Ao, Ao) — which we calculated above — T-
in case ¢ > n, and Hyo(A,_4,A,_,) = 0 by [8.17.3] in case ]
g < n, since A,,_, is connected and An,q £ 0. Hy1(Ap-1,An-1)
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Let [A,] denote the relative homology class in Hn(An,An) of ida, : Ap — A,
Then its image in H,_1(A,, A,) ist given by [@ida, +S,_1(A,)] which equals the
image [ida, _, +Sn—1(Ay)] of [Ap_1] € Hn_l(An_l,An_l). Obviously [Ag] is the
generator of Ho(Ag, Ag) = Ho({1}). O

8.40 Corollary. [20, 9.5.2] For n > 0 we have

7, =
Hy(Dn sy g n Sora=n
0 otherwise
We denote the canonical generator by [D™]. It is given by the relative homology
class of a homeomorphism A, — D™. [
8.41 Corollary. [20, 9.5.3] For n > 0 we have
N 7/ forq=mnorq=0
Hq(S ) = {

We denote the canonical generator by [S™]. It is given by [S™] = 0.([D"*1]) =
[oD"T1].

This gives a different proof from | 8.38.4

Proof. For g > 0 consider the homology sequence of the pair S C D" +!:

0 otherwise

Hy1 (DY) —> Hyoy (D™, 87) == H,(S") —= H,(D")

[En |
0 0

O

8.42 Corollary. [20, 9.5.6] By we have Hy(\/; S") = 0 for q ¢ {0,n} and
H,(V,; S") = ab [1;Z and the generators are (inj;).[S™]. O

We now prove the following (strengthend) part of
Proposition . Let m >n > 0. Then R™ 2 R" and S™ 4 S™.
We have “proved” this by applying the theorem of the invariance of domains.

Proof of for R” and S™. By we have H,,(S™) = Z but H,,(S™) =
{0}, so 8™ £ 8™, Assume R™ = R" then S™~1 ~ R™\ {0} 2 R"\ {0} ~ S"~! for
n > 0, hence m = n. For n = 0 we get the result since R = {0} is compact. O

8.43 Proposition. [20, 11.1.1] The sphere S™ is not contractible and is not a
retract in D"t forn > 0.

Proof. Since H,(S™) = Z 2% {0} = H,({+}) the first statement is clear. And
the second follows, since retracts of contractible spaces are contractible. In fact let
hy : X — X be a contraction and let ¢ : A — X have a left inverse p : X — A.
Then poh;oi: A— A is a contraction of A. O

8.44 Corollary. Brouwers fixed point theorem. [20, 11.1.2]
Every continuous map f : D™ — D™ has a fized point.

Proof. Otherwise we can define a retraction as in . O

8.45 Proposition. [20, 11.7.1] Let B C S™ be a ball. Then S™\ B is acyclic.
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Proof. Induction on r := dim B.

(r =0) Then B is a point and hence S™ \ B = R" is contractible and thus acyclic.
(r+1) Let z € Z,(S"\ B) for ¢ > 0 and z :==z —y € Zy(S™ \ B) for ¢ = 0 with
z,y € S™\ B. We have to show that 3b € Sy41(S™ \ B) with 9b = z.

Consider a homeomorphisms f : I"*! = I" x [ = B. Then B; := f(I" x {t}) is
an r-ball. Thus by induction hypothesis there are by € Sy41(S™ \ By) with 0b, = =z
considered as element in Sy (S™\B;) «= S¢(S™\B). Since the image of b; is disjoint to
By, we can choose an open neighborhood V; of ¢ such that 1" x V; C f=1(S™\im(b;)).
Using compactness we find a partition of 0 = ¢y < t; < -+ < ty = 1 of I
into finitely many intervals I, := [t;,¢;+1] such that for each 0 < j < N there
exists a ¢ with I; C V;. Let b; := b € Sy41(Y;) where Y; is the open subset
ST \ f([r X I]) and let Xj = mi<j K = 5" \ f(IT X [O,t]]) Then Xj n YVJ = Xj+1
and X; UYj = 8"\ (f(I" > [0,t;])) N f(I" x [t;, tj41])) = S™\ F(I" x {t;}).

We now show by induction on j that [z] = 0 in H,(X;). For (j = 0) nothing is to be
shown, since Xog = S™ and z € Z;(S™ \ B) C Zy(S™ \ {*}) = Z,(R") = B4(R™) C
B,(S™). For (j + 1) we apply the Mayer-Vietoris sequence to the open sets
X; and Y;:

ST\ fUIT < {t;}) Xjt1
— —
Ho1(X; UY)) —— Hy(X; NY)) —— Hy(X;) & Hy(Yj)
ind. on r
0

The image of [2] € Hy(X,11) in Hy(X,) ® H,(Y;) is zero, since the first component
is [z7] = 0 € Hy(X;) by induction hypothesis on j, and the second component
[2] = [0b;] = 0 € H,(Y}). Since the group on the left side is zero, the arrow on the
right is injective and we get [2] =0 € Hy(X;41).

Since Xy = S™\ B, we are done. O

8.46 Theorem. [20, 11.7.4] Let S C S™ be an r-sphere with 0 < r < n and n > 2.
Then
Z®Z forr=n—1andq=0
H,(S"\S)=17Z forr<n—1andqe {0,n—1—r}

0 otherwise.

Proof. Induction on r:

(r =0) Then § = S% = {—1,+1} and S\ S ~ R"\ {0} ~ S"1, so the result
follows from ’ 8.38.4‘ or ’8.41 ‘

(r > 0) We have S™ = D™ U D%, and By := f(DZ) are r-balls and S’ := f(S"!)
is an (r — 1)-sphere. By S™\ By are acyclic and since S™\ S' = (8™ \
By)U(S"\ B_) and S\ S = (S™\ By) N (S"\ B_) we get by that
H,(S™\ S) &2 Hyp1(S™\ §') for ¢ > 0 and Ho(S™ \ S) = H1(S™\ S') ® Z. By
recursion we finally arrive at H,4,.(S™ \ {£1}) = Hy1(S" 1), which we treated
before. O

8.47 Proposition. [20, 11.7.2] [20, 11.7.5] Let n > 2.

If B CR"™ is a ball, then

Z forqe{0,n—1}
0 otherwise.

Hy(R™\ B) = {
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If S CR™ is an r-sphere with 0 < r < n, then
Z@®Z for(r=n—1,q=0)or(r=0,g=n—1)
Hy(R"\S)=(Z for(r<n—-1#qge{0,n—1-7r}) or (r#£0,g=n—1)
0 otherwise.

Proof. Let A C R™ = S§™\ {x} C S™ be compact. The long exact homology
sequence of the pair (S™\ A,R™\ A) gives

— Hy1(S™\ AR\ A) -2 H, (R"\ A) — H, (S"\ A) — H,(S"\ A,R"\ A) —
By the excision theorem applied to A C R™ C 8™ we get Hy(S™\ A, R"\ A) =
H,(S™, R™), which is isomorphic by | 8.28.3 |to H,(S™, {*}), since R" is contractible.

By | 8.18.3 | this homology group equals H,(S™) for ¢ > 0 and by |8.17.3| it is 0 for

q = 0, since S™ is path-connected, i.e.

{z for g =

H,(S™"\ A,R"\ A) == H,(S",R") Hy (5™, {+}) 0 otherwise

The long exact sequence from above thus is

oo Hy 1 (S™, {#}) =2 H (R \ A) — H,(S™\ A) — H, (8™, {x}) — ...
In particular, H,(R™\ A) = H,(S™\ A) for ¢ ¢ {n —1,n} and by and

for A a sphere or ball the sequence is near ¢ = n — 1:

0—-H,R"\A) >0—->Z—H, 1(R"\A) — H,_1(S"\ A) = 0,

This gives H,(R*"\ A) =0=H,(S"\ A) and H,_1(R*\ A) 2 Z & H,_1(S"\ A),
from which the claimed result follows. O

8.48 Corollary. Jordan’s separation theorem generalized). [20, 11.7.6] [20,
11.7.7) Let X € {R"™, S™} with n > 2. For any r-sphere S with r < n — 1 we have
that X \ S is connected (i.e. we cannot cut X into two pieces along such a sphere).
If S is an n — 1-sphere then X \ S has ezxactly two components, both of which have
S as boundary. If X = S™ then the components are acyclic.

Proof. For spheres S of dimension r < n — 1 the result follows from and
since Hyo(X \ S) = Z in these cases.

If S is a sphere of dimension n— 1, then Ho(X \ S) = Z2 by and . Hence
X \ S has two components, say U and V.

That for X = S™ the components U and V are acyclic follows from H,(U) &
Hy(V) = Hy(X '\ S) = {0} for ¢ # 0.

(U C S) In fact UNU = @, since U is open and thus U = U\(; = U\ U. From
UCX\VwegetU CX\V =X\Vsince Visopen. SoU = U\U C (X\V)\U =
X\ (UUV)=S8S.

(S CU) Let & € S and W be a neighborhood of z € X. Choose n — 1-balls B and
B’ with S = BU B’ and such that x € B C W. Let ¢ be a path in R" from U to
V', which avoids B’ C S (this is possible by since X \ B’ is path-connected).
Let to := sup{t : ¢(t) € U}. Hence y := ¢(tg) € U\U = U C S = BU B’. Hence
y€ BCW andso WnN U contains y and is not empty, hence x € U. O

8.49 Remark. [20, 11.7.8] For dimension 2 we have Schonflies’s theorem (see [13,
§9]): For every Jordan curve in S2, i.e. injective continuous mapping c : S* — 52,
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there exists a homeomorphism f : S? = S? with f|s1 = c.
Thus up to a homeomorphism a Jordan-curve looks like the equator S C S2.

In dimension greater than 2, Alexanders horned sphere is a counterexample: One
component of the complement is not simply connected. This gives at the same time
an example of an open subset U C S3, which is homologically trivial (i.e. acyclic)
but not homotopy-theoretical (71 (U) # 0).

The third and the final step in constructing the horned sphere

A sphere with 4 horns attached

A sphere with 8 more horns attached
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A torus with parts complementary to 2 handles removed

The generators of the fundamental group of the removed part

Let U, be the outer component of the complement of the sphere with 2"”-handles
constructed in the n-th step. The outer component of Alexanders horned sphere is
then the union U, = UneN U,, and each of its compact subsets is contained in U,

for some n. By we have that m (Ux) = lim 71(Uy,) is the injective limit. We
determine m, (U,,) recursively:

By the complement Uy of a filled torus in % is an open torus D? x S! ~ §1
and hence its fundamental group m (Up) = Z, where a generator « is given by an
enlarged meridian of the original torus. The inclusion U, <+ U, induces an iso-
morphism of the fundamantal groups, and U, ist the union of Uy and the closure
Zy of the part Zl,owhich we remove from the torus in the first step. Note that
7, = (D*\(DyU D) x I ~ 8"V S (cf.[1.65.4 ] and [2.36.9)). Let a; and as be
the generators (i.e. loops along the two handles) of m1(Z1) = m1(Z1).
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The intersection Ay := UyNZ; = St x T ~ St
has also fundamental group Z and its generator
51 x {3} (denoted ) is mapped by the inclusion
1o : A1 = Up to the generator a of m(Up), i.e.
71(to) : m1 (A1) — m1(Up) is an isomorphism.

By the theorem of Seifert and von Kampen
the pushout is 7 (U1) and thus m1(Z1) — m1(Uy)
is an isomorphism as well. The inclusion ¢1 : A1 —
Z; maps «a to the commutator [ay,as] (look at
the plane through a = S* x {1} C Z;, it has 4
holes with boundary parametrized by a1, o, o] t
and oy !, cf. [2.36.9]). Hence the same is true for
7 = 7T1(U0) — 7T1(U1) =Z1Z.

(02

1R
|

a €l — 7T1<Sl) = 7T1(A1)

| i |

[a]_,OéQ] € ZHZ = 71'1(51 \/Sl) = 7T1(Z1) >;>>7T1(U1) = 7T1(U1)

Using analogous arguments we obtain that 1 (U,,) is the free group with 2"-many
generators of with 0 < ¢ < 2" and the inclusion U,,_; < U, maps o] '
[a;, by 1]. Thus the set m(Us) is the union of these free groups and hence Uy, is
not simply connected. Note however, that the Abelisation of m1 (Us) is obviously

trivial.

Corollary. Invariance of the domain.
Let X, Y CR”™ be homeomorphic. If X is open then so is Y.

Proof. Take x € X and y := f(z) € Y. By assumption there is a ball B := {2z : |z —
2| <r} C X.Let S:=9B. Then R™\ f(S) = (R"\ f(B))U(f(B)\ f(S)). The first
part is connected by and the second one coincides with f(B\S) = B\S = D"
and hence is connected as well. Thus they are the path components of the open set
R™\ f(S) and hence are open in R™. So the component f(B\S) C f(B) C f(X)=Y
is an open neighborhood of y in R™, and thus Y is open. O

Cellular Homology

8.50 Proposition. [20, 9.6.1] Let X be a CW -complez.
Then Hy(X9, X971 =0 for p #q.

Proof. For ¢ = 0 we have H,(X4, X% ') = H,(X",0) = Hy(X°) = 0 by [8.17.2|,
and [8.9]

So let ¢ > 0. For p = 0 we have Ho(X9™ ') = Ho(X?) -2 Hy(X9,X771) — 0,
where the first mapping is onto (since each component of X7 meets X971) and so

the second one is 0.
Now let p # 0. By we have H,(X?, X971) =~ H,(X?/X97!) and so the result

follows from [ 8.42], since X94/X471 2 \/ S% by [4.16 ] O
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8.51 Corollary. [20, 9.6.2] The inclusions induce an epimorphism Hy,(X9) —
H,(X) and an isomorphism H,(X%1) = H,(X).

Proof. By and
Hyr (X9, X771) = Hy(X771) = Hy(X7) = H, (X7, X9)
the first arrow in the sequence
Hy(X7) = Hy(XT) =5 - 55 Hy(XT7) = Hy(X)

is onto and all others but the last one are isomorphisms. So we have the result
for finite CW-complexes. In the general case we use that every singular simplex
lies in some XP by , hence H,(X%™') — H,(X) is surjective. Similar one
shows injectivity, since [z] = 0 € H,(X) implies z = dc for some ¢ € S;_1(X) =
U, Sq—1(X?), hence ¢ € S_1(X?) for some p and thus [z] =0 € Hy(XP). O

8.52 Corollary. [20, 9.6.3] Let X be a CW -space without g-cells. Then Hy(X) = 0.
In particular Hy(X) =0 for ¢ > dim X.

Proof. From the homology sequence
Hy (XP,XP7Y = H(XP™Y) — Hy(XP) — Hy(XP, XP™1)

for ¢ > p and we deduce H,(X7') = ...~ H,(X~!) = 0. By assumption
X9 = X9! and hence H,(X?, X971) = 0. So we get the surjectivity of Hy(X971) —
H,(X?) and thus H,(X?) = 0 as well. Now the result follows since H,(X?) —

H,(X) is onto by . O

8.53 Definition. [20, 9.6.4] The ¢-th CELLULAR CHAIN GROUP of a C'W-complex
X is defined as

Cq(X) = Hq(Xq7Xq_1)7
and its elements are called CELLULAR ¢-CHAINS. For every g¢-cell e in X with char-
acteristic map x¢ : (D?,877!) — (X% X97!) we define a so-called orientation
X¢([D1)) € Cy(X) as the image of x¢ : Hy(D?,5971) =2 Z — H, (X, X971,
where [D?] denotes the generator in H,(D?, S?1) induced from a homeomorphism

A7 — D17, see .

Lemma. For every cell there are exactly two orientations, which differ only by their
sign. And Cy(X) is a free abelian group generated by a selection of orientations for
each q-cell.

Proof. Let x; and x2 be two characteristic mappings for e. We can consider them
as relative homeomorphisms x; : (D?,597!) — (X97' Ue, X971). By they
induce isomorphisms in homology. Hence H,(x1)[D?] = £H,(x2)[D], since the
generator in Hy (X9 1Ue, X971) has to correspond to a generator in H,(D?,S771),
and the only ones are +[D1].

Obviously Co(X) = Ho(X?,0) = Ho(X?) is free abelian generated by the set X°.

For ¢ > 0 the projection p : (X4, X% 1) — (Y, {yo}) := (X9/X971 Xa-1/xa~1)

induces by an isomorphism p, : Cy(X) = H (X%, X9 — Hy(Y,{yo}).
Since Y is a join of ¢-spheres we have that p,.x¢[D?] form a basis in the free
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abelian group H, (Y, {yo}), as follows from [8.42}: In fact, consider the following
commutative diagram and the induced one in homology:

(D9, 59°1) 2o (X0, X071)  Hy (D, 8971) X Hy (X9, X071 = Cy(X)

hl /| e s

(57, {x}) —= (X7/ X971 {}) Z = H,(57) === H,(\/ §7) = [ Z

The vertical arrows are isomorphisms in homology by and the bottom arrow
maps the generator [S9] € H,(S?) = H, (5%, {*}) to the corresponding generator in

Hy(X9/X971) 2 Hy(X9/X 971, {x}) by [8.42] O

8.54 Definition. [20, 9.6.6] Using the long exact sequences for the pairs (X 7+, X9)
and (X7, X9 1) we have
Co+1(X)
, I
T o (X X) o H(X) e Hy(XTH)
| ,
e Hy (X0 e Hy(X7) s Hy (X, X0 P

[852]] [
0 C,y(X)

Let 0 := j. 00, : Cyp1(X) = Hy(X?) — Cy(X). We have 9% = 0 by the exactness
of the second sequence at H,(X?, X971) and thus we obtain a chain complex. Its
homology H(C(X)) is called CELLULAR HOMOLOGY of the CW-complex X.

For any ¢ + 1-cell e with characteristic map x¢ and ¢ > 0 we get d(x¢[D9T1]) =

G0 D L G ([50).0.[DT] = G (X|50)2[0DTH] = G (X°|50)[S7), where

for () we used the homology ladder

X5
[DIH] € Hypr (DT, 89) —> Hypq (X9, X ) == Cy1.1(X)

R
[S9] € Hy(S7) Hy(X7) ——— Cy(X).

Example. Despite looking rather complicated the cellular homology is often easy
to calculate. Take for example the cell decompostion of the sphere S™ = ey U e,,.
Thus

0 otherwise.

Cy(X) = {Z for ¢ € {0,n},

Hence the cellular boundary operator 9 is 0 for n > 1 and hence

Z for g € {0,n},
0 otherwise.

Hy(C(X)) = Cy(X) ’“{

Singular versus cellular homology

8.55 Proposition. [20, 9.6.9] [20, 9.6.11] The homomorphism j. : Hy(X?) —
H, (X4, X971) is injective and maps onto the q-th cellular cycles.
The map i, : Hy(X9) — Hy(X) is onto and its kernel is mapped by j. onto the g-th
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cellular boundaries.
Thus one obtains isomorphisms

Ju t Hy(X) == Hy(C (X)),

which are natural for cellular mappings.

Proof. From the exact sequence

0 == Hy(X11) = Hy(X7) ~L Hy(X9, X971) = Cy(X)

we deduce that j, is injective and hence Ker(9) := Ker(j.0x) = Ker(d,) = Im(j.),
which proves the first statement.

From the exact homology sequence of the pair (X, X7+1)

Ho o (Xatly x) 9. X, xoth %o g (xet) 2= o (X
q+1( ) q+1( ) q+1( : ) q( ) q( )

0
we get Hy1(X, X9T1) = 0.
By the exact homology sequence for the triple X7 C X9t C X

0
|
Hq+1(Xq+17Xq) - q+1(X7 Xq) - q+1(X’ Xq+1)

we get that Hy (X9, X9) - H,1(X, X9) is onto. The g-th cellular boundaries

are the image of the top row in

HqH(X‘”l,Xq) &HQ(X‘?) LHq(Xquqfl)

i |

Hyr (X, X9) % H(X%) —— H,(X)

Since the rectangle commutes by naturality of 0, and since Im 0, = Keri, we get
Im(9) := Im(j.0s) = j=(Im 0,) = j.(Keriy),

i.e. the g-th cellular boundaries are the image of Ker i, under j,. Now we get the
desired natural isomorphism

0 Keri, € H,(X7) ‘ H/(X)——0
I
Hy(X9,X971)
I« | &2, 2 g« |22, 1 H e 2,3
Cq(X)
Y
0 —Imdy,41 ——=Kerd, H,(C(X))—0 O

8.56 Proposition. [20, 9.6.10] For g > 1 we have that in the short exact sequence

0 — Ker(iy) < Hy(X7) 5 Hy(X) = 0

H,(X) is free abelian and Ker(i.) is generated by the H,(x®)[S9], where x¢: S? —
X4 are chosen gluing maps for each ¢ + 1-cell e in X.
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Proof.

00— Keri,C— Hy(X9) —= Hy(X) ——=0

Bild 0,

o—> Cyy1(X) THq(Xq) —— H (X)) —— ...

1%
x
o
=

By we have that H,(X9) = Kerd, C Cy(X) and hence is free abelian
by . Furthermore H,(X9") = H,(X) by , and hence the kernel of
iv 1 Hy(X7) — Hy(X) equals the kernel of Hy(X7) — H,(X%!) = H, (X), and
equals the image of 9, : Cyq1(X) 1= Hy1 (X7, X9) — H,(X?) by the homol-
ogy sequence of the pair (X971 X9). By we have that Cy4q(X) is the free
abelian group generated by x¢[D"], where x¢ : (D91, 5%) — (X9t X9) are
chosen characteristic maps for each g + 1-cells e in X. By we have that
0« (XS[DTH]) = x5[S7]. O

8.57 Proposition. [20, 9.9.10] For the projective spaces we have
Z forq=20,2,...,2n

0 otherwise

Hy(P"(C)) = {

and

Hy(P"(H)) =

Z forq=0,4,...,4n
0 otherwise.

For the homology of the real projective spaces P*(R) see .

Proof. By there are no cells in all but the dimensions divisible by 2 (resp.
4), thus the boundary operator of the cellular homology is 0 (since either domain
or codomain is zero) and hence the homology coincides with the cellular chain
complex. O

Simplicial versus singular homology

We are going to show now that the singular homology of a singular complex K is
naturally isomorphic to the homology of the associated CW-space |K|. The idea
behind this isomorphism is very easy: To a given simplex o = (zg,...,24) € K
one associates the affine singular simplex ¢ : A, — |K|, which maps e; — x; for
all 0 < j < g. We will show that this induces an isomorphism H,(K) — H,(|K]),
[o] — []. In order that it is well defined, we have to show that an even permutation
of the vertices does not change the homology class of . We do this in the following

8.58 Lemma. [20, 9.7.1] Let T be a permutation of {0,...,q}. Then 7 induces
an affine mapping T : (Ag,Aq) — (Ag,Ag), with Hy(T)[A,] = sign(1)[A,] €
Hy(Ag, Ag)-

Proof. Since any permutation is a product of transpositions, we may assume that
T is a transposition, say (0,1). Let an affine o : Ayy1 — Ay be defined by eg — eq
and e; — e;—1 for all ¢ > 0. The boundary of this singular ¢ 4+ 1-simplex in A, is
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do = 0080+ ,010.0(—1)'000" +000% = ida, +etT for c:= 37,000y (—1)'000" €
Sq(Ay). Hence Tu[Ag] = [7] = —[Ay] € Hy(Ay, Ay). O
Although this lemma shows that the mapping H,(K) — H,(|K|) is well-defined,
it is not so obvious that it is an isomorphism, since there are a lot more singular

simplices in | K| then just the simplices of K. So we will make a little detour via
the cellular homology.

8.59 Definition. [20, 9.7.2] Let 0 = (zo, ..., z,) be an oriented ¢-simplex of a sim-
plicial complex K. This induces an affine mapping & : (A,, A,) — (|K|9, |K|71),
which can be considered as characteristic mapping for o C |K|. Hence we get a
mapping

©: Co(K) = C|K|) == Ho (K|, |K|"7), 0 6.]A] = [5].
Recall that Cy(K) := (K4 {oc+ 071 : 0 € Kl9}) by . Note that & depends
on the chosen ordering of the vertices. Nevertheless, ® is well-defined (i.e. depends

no longer on the ordering but only on the orientation) by and since we may
identify Cy(K) with the free abelian group generated by the simplices with some

fixed orientation by .

8.60 Theorem. [20, 9.7.3]

The mapping ® : o — [5] defines a natural isomorphism C(-) — C(|-]).

Proof. That ®x : C(K) — C(]K]) is an isomorphism is clear, since the free
generators o (see ) are mapped to the free generators [5] (see )

It is natural for simplicial mappings ¢ : K — L. In fact take a simplex ¢ =
(%o, ...,xq) € K. If ¢ is injective on the vertices z; of o, then

Drpo = (o), - .., ¥(xq)) = [(Y(20), ..., ¥(xq))~] = [[¥] 0 6] = [¢]s[5] = [¢]. Do
In the other case o = 0, hence ®tpo = 0 and |¢|.Po = [|¢p] 0 5], but || o & has
values in |L|971, hence [|¢)| 0 6] =0 € Hy(|L|9, |L|771).
Let us show that it is a chain mapping. For ¢ = (zg,...,z4) we have
g = j.0.[6] = 7.[05] = [95] = [Z(—l)jé o 53} and
J
do = @(Z(_nj@:o, T .,xq>)
J J

So 0 = ¢0. O

|
(]
—
|
—_
—
.
Qv
o
9
<.
I

8.61 Corollary. [20, 9.7.4] Let K be a simplicial complex. Then we have natural
isomorphisms Hy(K) —2= H,(C(|K|)) <&~ H,(|K|), from the simplicial over the
cellular to the singular homology.

Proof. This follows by composing the isomorphisms in and . O

Let us now come back to the description of the isomorphism H(K) = H(|K|)
indicated in the introduction to this section.

8.62 Proposition. [20, 9.7.7] The isomorphism H(K) = H(|K|) between simpli-
cial and singular homology can be described as follows: Choose a linear ordering of
the vertices of K, and then map a simplex 0 = (xo,...,xq) with zg < --- < x4 to
&, which is just o considered as affine map Ay — |K|, ej — ;.
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Proof. We consider the following commutative diagram and take o € H,(K):
It can be represented by a simpli- )
clal cycle z 1= 37, n0 € Zy(K) C Z4(|K|9) —— Hy(|K|%) = Hqy(|K])

Cy(K). On the other hand we can j.

consider the singular g-chain z := /
>0 no0 € Sg(|K|7), since the im- pr 171q (a1 My .
age of ¢ is the closure of the sim- G ™= ’

plex o and hence contained in |K|?. \
This singular chain is a cycle, since
% - % moo L T onds —  CallKD Kerd, = H,(C(|K]))

O, n,0))~ = 9z = 0 = 0 and 4% o o |

hence we may consider 8 := [Z] €
H,(|K|), i.e. i.(8) = [2] € Hy(|K]). Cy(K) Z4(K) Hy(K)

Note that @(z) = 3, ne®(0) = 3, nel3] = [, 108] = [2] = 4.(8) € Cy(K]).
Thus the composition of isomorphisms H,(K)-2= H,(C(|K]|)) +L—~ H,(|K|) maps
a = [z] = [®(2)] = i) ®(2)] = ix(B) = [2] € Hy(]K|). Note that [z] denotes
classes in various homology groups during this calculation. O

IR

Fundamental group versus first homology group

8.63 Proposition. [20, 9.8.1] There is a natural homomorphism hy : m (X, o) —

H1(X) given by [¢] — 0.[S'] = [p], where for the last equality ¢ : (S*,1) — (X, o)

is considered as singular chain Ag ~ 68l 5 X,

If X is path-connected then this homomorphism is surjective and its kernel is just
~ ab

the commutator subgroup. Thus Hqy(X) = *°m (X, zg), the abelization of m (X, xo).

Proof. That h is natural is clear. Let us show that it is a homomorphism: So let two
closed curves ¢, 1 considered as maps (S!,1) — (X, zo) be given. The corresponding
paths I — X are obtained by composing them with ¢ — €27 I — S'. Hence
0 Y= (p,)ov: (SH1) — (S, 1) Vv (SH1) — (X,x0), where v : St — St v S?
is given by t — (272t 1) € S' v ST C S x S* for 2t < 1 and t — (1,€2™(1~1) ¢
S1v St for 2t > 1. In order to determine v, : Hy(S*) — Hp(S'VS!) we consider the
relative homeomorphism o : (A1, A;) — (S*,{1}) given by (1 — t)eq + te; — ™t
It induces an isomorphism o, : Z = H; (A1, A1) — Hi(SY,{1}) = H,(S") = Z,
with o, : [A1] = [0 oida,] = [0] = [S1] for the generators (by for [A4]; by
[8.41 | and [8.40| for [S']). Using the barycentric refinement Bo = o.(BA;) (sce

) gives

v,[SY] = v.[o]

vi[Bo] = [inj; oo] + [inj, oo

[SY @ [SY] , thus
N—_——
E€H{(StvS?) EH(SY)®H (SY)
ha(le] - W) = (- ¥]) = ha(l(e, %) o) = (¢,9) 0 ). 18] = (o, 1)2s (S
= (0, 9). (15" @ [8) = @ul8"] + .[S"] = halie] + ha[u].

Although the theorem is valid for arbitrary path-connected topological spaces, see
[15, IV.3.8], we give the proof only for connected CW-complexes X. Since m; and
H, do not depend on cells of dimension greater then 2 by and , we may
assume dim X < 2. The theorem is invariant under homotopy equivalences, hence
we may assume by that X has exactly one 0-cell and that this cell is zg. So
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X' is a one-point union of 1-cells and X is obtained by gluing 2-cells e via maps
fe: St = X' By ’ 2.32.3 ‘ and ’ 2.45 ‘ we may assume that f¢(1) = .

Now consider the diagram below.

By the top i, is onto and its kernel
Xl / X ! .
m1 (X, xo)" — m1 (X, 20) N is the normal subgroup generated by the

£ £ [f¢]. By the bottom 4, is onto and its

kernel U is the subgroup generated by the

N & (X 2 2 (X, xo) (£©)[SY] =: h1(f¢). By and the
- two sSpaces 1 the mi € are Iree resp. Iree
[5.48] in the middl f f

abelian, with the corresponding generators,

UcC Hy(XY) = H,(X) and by we know that the abelization
of a free group is the free abelian group.

So we have that the result is true for X'. Furthermore hi(N) = U, since the gen-
erators of IV are mapped to those of U. By diagram chasing the general result
follows: Let G := 11 (X', zg). The homomorphism hy : 71 (X, z) = H1(X) is obvi-
ously surjective and its kernel is given by all gV, for which 0 = hy(gN) = h1(g)U,
ie. hi(g) € U. Again by surjectivity of hy : N — U we have an n € N with
hi(n) = hi(g), i.e. gn~t € ker(hy) = G'. So gN € G'/N = (G/N)'. The converse
inclusion (G/N)' C ker(hy) is clear, since H;(X) is abelian. O

8.64 Corollary. [20, 9.8.2] For the closed orientable surface X of genus g we have
H1(X) =2 729, for the non-orientable one we have Hy(X) = 7971 @ Zy, and for the
projective spaces we have Hy(P™) 22 Zs for 2 < n < oo.

Proof. Use the formulas given in the proof of ’ 5.53 ‘ and in ’ 5.41 ‘ O

8.65 Proposition. [20, 9.9.2] For continuous f : (S',1) — (S',1) the induced
homomorphism f. : Hi(S') — Hy(S%) is given by [S'] — deg(f) - [S].

Proof. For [c] € m(S!,1) we have deg(f o c¢) = deg(f) - deg(c) by |2.15.3 | and
deg : m1(S1,1) =2 Z is an isomorphism by , thus 71(f) acts by multiplication
with deg(f) and using the naturality of hq, gives the same result for Hy(f).

Z<d;771(5171) %Hl(sl)

eg
deg(f)-l m(f)l
Z~—m(8"1) —— Hi(5")

[
=
iy
—~
)
-

For a direct proof see [20, 9.5.5] and . O

8.66 Proposition. [20, 9.9.9]
The homology of the closed orientable surface of genus g is:

Z forq=20,2
Hy(X)=({Z% forq=1
0 otherwise

and that for the non-orientable one of genus g is:

Z forq=20
H(X)2 29 ' ®Zy forq=1
0 otherwise.
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Proof. This time we calculate the cellular homology. Recall that in both cases X
can be described as the CW-complex obtained by gluing one 2-cell €2 to a join
of circles ' along a map f : S' — \/¥ ST of the form g e dnt (see )
Thus the non-vanishing cellular chain groups are Co(X) = Z, C1(X) = Z*, and
Co(X) = Z with generators given by the base-point €, the 1-cells el ..., e,lc, and
one 2-cell €2 with chosen orientations, by . More precisely, the generators are
e = (x9)«[D1] € Cy(X) = Hy(X9,X91) for the generator [D7] € H,(D4,5971)
and a characteristic maps x¢ for each ¢-cell e. As in the proof of for v, and
using one shows that

Fol8T = (@ )a[8TT + o+ () [S'] = na - (i )+ [ST] 4+ 4 1y - (i, ) [S7]-

Hence 0(&*) = 8((><62)*[D2]) = j.(x"]s1):[8" = 8¢ D! st

]*f* [Sl] = nl ml +--- +nlé'}nl by and since &const \Lxc}n &m

Em = (X)+[D'] = Ji(im)+[S1]): X0 X1 ——1/, 5!
(X°m)s : Hy (DY, S%) = Hy(SY) —Gmdey {y (XYY Loy Hy (XY, X0) = O (X)

For the boundary of the 1-cells we get
~ . 1 . 1 . 1
9(€5) = jx0(x* )+ [D'] = (x| 50):0:[D'] = ju(x“?]50)[0D]
= juconst,[(+1) — (=1)] = &” — & = 0.
In case of the oriented closed surface X of genus g (where k = 2g) we thus have
0e®> =éj+ey—eél—él+--- =0, hence Hy(X) =2 H,(C(X)) = Cy(X) is as claimed.

In case of a non-orientable surfaces X of genus g (where k = g) we have 9¢* =
261 + - - - + 2¢;, which shows that Hy(X) = Kerd, = {0} and

H\(X) =Ker01/Imdy = 79 /27(¢} + - - + €})
“({ed e} 2 4 ) = 0))

5.27.2

“({et. o epa) o =l 4o+ 8, 20 = 0})

I

5.27.2

ab<{é}, e ) {2w = 0}> =791 @ Z,.

8.67 Proposition. [20, 9.9.14] For the real projective spaces we have

Z  forq=0 orq=mn odd,
H,(P"(R)) = { Zy for 0 < q<n with q odd,
0  otherwise.

Proof. The idea is to consider the CW-decomposition of S™ compatible with the
equivalence relation x ~ —z, which gives P" = S"/~ (see ) For this we
consider the spheres S° € S* C --- C S™ and the cells {z € S?: £x,.; > 0} with
characteristic map f{ : x — (z,£+/1 — |z|?). They form a cell decomposition of S™
and hence &% := (f{).[DY] is a basis in C,(S™) by [8.53 ] We have the reflection
r:D?— DI x+ —r and may consider it as mapping 7 : (59, 9971) — (89,897 1)
to obtain an homomorphism 7, : C;(S") — C,(S™) and also r, : Hy(D4,5771) —
H, (D7, 5971,
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Claim: r,e = (—1)%e:

Note that r.[D4] = (=1)4[D9] € H,(D4,587!) which is obvious for ¢ = 1 and
follows by induction for g > 2:

A reflection r on a hyperplane A induces —id on H,(D?, 87 ') = H, 4(S771),
since we may choose a ¢-simplex o with edges xg, x1 symmetric with respect to A,
Z2,...,2y € A and 0 in its interior. Let 6 : Ay, — (xo,...,%,) the associated (see

8.59]) singular simplex and p : R%\ {0} — S9! the retraction x + z/||z||. Then
poo : Aq — S9! is a homeomorphism and ropo & = porod :pO&Op|Aq,
where p is the affine isomorphism, which exchanges eg and e;. Hence r, = —id

since (p|4, )« = —id by .

Since r o f{ = f? or we thus get
P = o (F)D7) = (£1).r[D9) = (~1)(1).[D7] = (-1)7et.

Claim: 9e%" = §a%" = +(¢1 —¢&1):
Since 1 |s0 = id we get 9L = O(fLT).[D) = ju(fT50)4[S) = 5.[S7) by
. Using we consider the long exact sequence of the pair for ¢ > 1:

Hy(§971) ——> H,(S7) = H, (9, 5971) — % H, 1(S971) —> H, 1(59)

[ [ [ I I
0 CHsM=z e e h=ZeZ  Z 0

So 9. # 0 since it is onto and in particular applied to the generators é% we have
0,89 = 0. (f1)u[DY = (fLlsa-1)«[S971] = id[S9""] by[8.19], hence d,&% = 9.&% #
0.50Z- (&% —éL) =Kerd, = Imj, = Z- j.[SY. Thus j,[S9] = £(e% —e?).
The projective space P" = 5™/~ is a CW-complex with cells p(f{ (D?)) = p(f2(D?))
and with characteristic mappings po f{ : D? — P?. Hence the generator of C(P™)
is given by p.(é%) = (po f{).[D? =: &9. Since p o r = p we have by the first claim
that p.(22) = (— 1)1p.(r.e]) = (~1)7p. () = (~1)1".
For 0 < ¢ < n we get by the second claim that

981 = Op, (L) = pO(eL) = £p. (81! — &t

=£(1— (-1)7)eet = 0 for odd g.
42671 for even q.

0—=C,(P") 2 ... L cyP) L C3(Pm) 2 Cy(Pr) 2 1 (P7) 2 Co(Pm) L0

I I [ [ I |

0 7. — 7 72— o7 /A 9.0

Z

HqI 0 Z2 0 ZQ Z

Thus for even ¢ > 0 we have no non-trivial cycle in Cy(P™) and for odd ¢ > 0 we
have that €7 is a cycle and 267 = +9&9*! is a boundary for ¢ < n. So the claimed
homology follows. O
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> 9.1 Definition. Roughly speaking cohomology is the dual construction to homol-
ogy. Let
"'%CqLCq—l — ...
be a chain complex and G be an abelian group. Then
.-+ ¢ Hom(Cy, G) +2— Hom(C,_1,G) - --
defines another chain complex C~? := Hom(Cy, G) and hence we may consider
its homology H(C*) and we call H(C;G) := H_,(C*) = H_,(Hom(C_., G)) the
COHOMOLOGY of C with coefficients in G.
V In particular, we have

e the simplicial cohomology groups H?(K; G) of simplicial complexes;

e the singular cohomology groups H4(X; G) of topological spaces X; and

e the cellular cohomology groups H%(C(X); G) of CW-spaces X.
Note that Hom(_,G) : A-Gru — A-Gru is a contravariant functor which maps
f:C = C"to f*: Hom(C’,G) — Hom(C, G) defined by f*(g) := g o f. Hence we
better use A-Gru®” (the category A-Gru but with all arrows reversed) as its domain
to get a covariant functor.
Since Hom(_, G) is additiv (i.e. (f1+ fo)* = f1+f5 :(g— fiog+ faog)) it
preserves the biproduct Cy @ Cs (see [9, 3.27],), which is completely described by
the projections pr; and the injections inj; with pr;oinj; = d; ;. Thus this Hom-
functor also preserves splitting exact sequences.

> 9.2 Remark.
A more naive dual construction would be to consider Hom(H,(C), G) and leads to
the question: Do these two constructions coincide?

We get mappings h : H1(C;G) — Hom(H,(C),G) defined by [p] — <;|\ZJq, where
¢ € Hom(Cy, G) with 0 = 9*(¢) = ¢ 00 : Cgy1 — Cq — G, i.e. p|p, = 0. Hence
¢lz, + Z4 — G factors over Z;, — Hy(C) = Z,/B, and thus defines an element
h(l¢)) == ¢lz, € Hom(H,(C), G).

Coi1 & c, & Cy1
\ (p
0.
F) G _
AR elzy
.""“80|Zq 2.” e
0 B, (C)— Z4(C) H,y(C) 0
0 H(C;G) 29(C;G) <———BI(C; G) 0

[} J ¢ T
17}
o <—— Hom(Cyt1,G) 7 Hom(Cy, G) T Hom(Cy—1,G) =—— - --
] | -
Hom(B,(C),G) ~ = Hom(Z,(C),G) =<—=Hom(H,(C),G) <——0

0 Plzy ®lzg
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Let --- — C, 2, Cy—1 — -+ be a chain complex of free abelian groups. Consider
its cycle subgroups Z, C C, and boundary subgroups B, C Z, i.e. the short exact
and splitting (since B,_; is free abelian) sequence

J 7]

0 Z, € Cy B,_1 0

For an abelian group G we apply the functor Hom(_, G) to this sequence and obtain
a short exact(!) sequence of chain complexes, where the boundary operator in the
middle is given by 0* and the others are 0.

*

0 <— Hom(Z_.,G) A Hom(C_,, G) < Hom(Bj_.,G) =——0

() () ()

0 o* 0

Applying the homology functor H, gives a long exact sequence for the cohomology
groups H~1(C;G) :== Hy(Hom(C_., Q)), etc.:
-+ =— H1(B;G) <=— Hq(Z;G)QFHq(C; G) La—)*Hq_l(B; G)<=—HI"YZ;G) <— - -
I . I I . I
Hom(B,, G) < Hom(Z,,G) Hom(B,_1,G) < Hom(Z,_1,Q)

Since the boundary operator on Hom(Z_,, G) and on Hom(B_,, G) is 0, we have
HY(Z;G) = Hom(Z,,G) and HY(B;G) = Hom(B,,G). Moreover the connect-
ing homomorphism H(Z;G) — HY(B;G) is i*, where i : By — Z, denotes the
inclusion: Let ¢ € Hom(Z,,G) and ¢ € Hom(Cy, G) with 4|z, = j* (@) = ¢
(exists, since the short exact sequence Z, — C; — By splits). Hence for the
connecting homomorphism [p] — [(0%)710* (%)~ Ly] = [(0*)10*@] = [i*¢], since
0*(i*(v)) = 0*(¢lp,) = ¢o0d = $od = 0°(p). Now consider the short exact
sequence

0 B, ¢ Z, H,(C) 0

i

Let us assume for the moment that applying Hom(_, G) gives again a short exact
sequence (e.g. if H,(C) is free abelian (or, more general, a projective module), since
then the sequence splits and so also its image under the additive functor Hom(_, G))

0 <— Hom(B,, G) S Hom(Z,,G) =<— Hom(H,(C),G) =—0

In particular 7* is onto, hence (0*), = 0 and thus (j*). is injective and its image is
Ker(i*) = {¢ € Hom(Z,,G) : ¢|p, = 0} = Hom(Hy(C),G), i.e.

() = h : HY(C; G) = Hom(H,(C), G).

9.3 Example.[20, 13.1.2]
1. Hom(Z,G) = G via ¢ — ¢(1).

2. Hom(Z,,,G) = {g € G : ng = 0} via p — g := (1),
since 0 = ¢(0) = p(n) = ng.

3. Hom(Z,,G) =0 if G is torsion free by .

4. Hom(Zy, Z) = Zgea(n.my by [1]
5. Hom(_, G) is additive.

144 andreas.kriegl@univie.ac.at © 7. Februar 2018



9. COHOMOLOGY 9.7

Let us now check, whether Hom(_, G) preserves also short exact sequences (which
are not assumed to be splitting).

> 9.4 Proposition.[20, 13.1.5] If 0 < C «2— B <~ A is exact, then
0 — Hom(C, G) 2~ Hom(B, G) -/ Hom(A, G)
is also exact, i.e. Hom(_, G) is a LEFT EXACT FUNCTOR.
Proof. (p* is injective) Let 0 = p*(p) = ¢ o p. Then ¢ = 0, since p is onto.

(ker(i*) = im(p*)) Let 0 = i*(yp) = @ o4, i.e. ¢ vanishes on im(i) = ker(p) and
hence factors to a ¢ : C' — G with ¢ = @ op = p*(@). The converse inclusion is
obvious by poi = 0. O

9.5 Remark. Exactness at Hom(A, G) would mean that ¢* : Hom(B, G) — Hom(A4, G)
is onto for injective i : A — B, i.e. every homomorphism ¢ : A — G must have an
extension to B. An abelian group G having this property for arbitrary monomor-
phisms A — B is called INJECTIVE. Thus the arguments in hold for injective

G even if Hy(C) is not free abelian.

9.6 Example. Z; is not injective.[20, 13.1.4]

The exact sequence 0 — 2Z <l> z5 Zo — 0 is mapped to
0 — Hom(Zs, Zy) =" Hom(Z, Zy) —— Hom(2Z, Z5)

Zo i Zo

Ly

9.7 Definition. A LEFT MODULE over a ring R is an abelian group M together
with a multiplication - : R x M — M which satisfies the distributive laws
r-(c+y)=r-z+r-y and (r+s)-z=r-z+s-y
the “associativity” law
r-(s-x)=(rs) -z
and the unit 1 € R acts as identity 1 -2 = z.
The Z-modules are exactly the abelian groups.
A left module M over a ring R is called INJECTIVE iff

any short exact sequence 0 - M — B — C — 0 of 0 A~ B
left R-modules splits, or, equivalently, if i : A — B is an
injective module homomorphism then every module ho- if o
momorphism f : A — M extends to B (i.e. Hom(i, M) is Mﬁ
onto):

v (=)

i1

0 M

idMl E
L

M
Note, that the push-out of a mono is a mono: In fact, let 0 = ¢;(m) = [m&0]. Then
m®0 = f(a) ®i(—a) for some a € A, hence a = 0 (since 7 is injective) and thus
m = f(0) = 0.

PO > PO/M —0
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>
A left module M over a ring R is called PROJECTIVE iff
any short exact sequence 0 - A - B — M — 0 of

left R-modules splits, or, equivalently, if p : B — C'is a b7
surjective module homomorphism, then for every module f T o
homomorphism f : M — B lifts to C' (i.e. Hom(M, p) is M..
onto):
V(=)
0 C<"—B

S

O%M«ﬂchB<—3kerprl<—O

7
id g o

M

9.8 Lemma. Stability of projective and injective objects.

o Coproducts and direct summands of projective objects are projective.
e Products and direct summands of injective objects are injective.

Proof.
B C 0 B——s(C—0
A AN ;
1. 2 v fT 1. 2 ;\
MT>]_[M N<~—<M-20 O

\_/

> 9.9 Lemma. A module is projective, iff it is a direct summand in a free module.
An abelian group is projective if and only if it is free abelian.

vV Proof. (<) By it is enough to show show this for a free module M := F(X).
Let p : ¢ — B be onto and f : F(X) = M — B a homomorphism. Then we
define f : M — C by sending each generator x € X to a chosen inverse image in

P~ (f(2)).
(=) Since every module M is the quotient of a (the) free module (**F(M)) we
may lift the identity on M, hence M is a direct summand of a free module. And

for abelian groups it is itself free by . O

9.10 Example. Projective modules are not always free:
Let R :=7Z¢ = Zo & Z3. Then Zs is a projective R-module but not free.

> 9.11 Definition. An abelian group A is called DIVISIBLE, iff for every 0 < n € N
and g € A there exists an z € A mit n-z = g.
Examples are: Q, R, Z, := ligkeN Lo = {ezﬂ/T’k : j, k € N}, where the connect-
ing mappings Z,x — Zpyr+1 are given by multiplication with p.

9.12 Lemma. An abelian group is injective if and only if it is divisible.

vV Proof. (<) Let A be a subgroup of B and f : A — M be a homomorphism.
Consider the set S := {(9,C) : A C C < B,g: C — M,gla = f} of all par-
tial extensions of f ordered by componentwise inclusion. Obviously any linearly
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ordered subset S C & has an upper bound given by the componentwise union
(U(g,C)ESO g, U(g,C)eSO C). By Zorns Lemma we have a maximal element (f, A).
Suppose A # C and take g € B\ C. If g+ C has infinite order in B/C, then f can
be extended to (CU{g}) = C@® (g) by f(c+kg) := f(c), contradicting maximality.
Otherwise let n be minimal with ng € C'. Since M is divisible there exists v € M
with nz = f(ng) so we can extend f to C' + (g) by f(c+ kg) := f(¢) + kz, again a
contradiction.

(=) Let 0 <n € Nand g € M. Consider the inclusion nZ < Z and f : nZ — M
given by n — g. By injectivity of M we have an extension f : Z — M and then

z:= f(1) solves nz = nf(1) = f(n) = f(n) = g. O

9.13 Remark. One can show that the divisible abelian groups are exactly the
direct sums of Q and the Zpe.

> 9.14 Remark. In order to generalize the arguments in we need an exact
sequence

0 —— Hom(H,(C), M) — Hom(Z;, M) — Hom(By, M) —= 7 —— - - -

For injective M we can replace ‘?” by 0. So we try to ‘approximate’ a general
module M by injective modules, i.e. we try to find an exact sequence of the form
0=+ M — Iy - I = I — ---, where all I; are injective modules, a so called
INJECTIVE RESOLUTION of M.

For the induction step we need:
9.15 Proposition. FEvery module is submodule of injective module.

V Proof. For abelian groups injectivity is equivalent to divisibility by .
Any abelian group A is quotient of a free group, i.e. a
coproduct of copies of Z which embeds in the divisible [z =[1Q

group given by the corresponding coproduct of Q. Taking i i
the push-out shows that A is a subgroup of a (divisible)
quotient of a divisible group. A>—— PO

For every R-module N there is a R-module structure on Homyz(R, N) given by
r-@ 1 — o('r). We have Homz(N, D) = Homp(N,Homz(R, D)): We map
¢ € Homy(N,D) to ¢ : x — (' — ¢(r'z)). We have ¢ € Hompg(N, Homy(R, D)),

since

G(ro)(r') = o(r'rz) = () (r'r) = (r- G(x))(r').

Conversely, ¢ — ¢ 1= evy 0.

If M — D is a group-monomorphism into a divisible(=injective) abelian group D.
Then the corresponding R-module homomorphism M — Homy (R, D) is obviously

a monomorphism (we assume that R is a ring with unit) and Homgz(R, D) is an
injective R-module. O

> 9.16 Corollary. FEvery module has an injective resolution.

V Proof. By we find for every module M an injective module [y and an
embedding M — Iy. Now proceed recursively by chossing an embedding of the
I,/ im(I;—1 — Ii) into an injective module Iy 1. O

> 9.17 Lemma. Every module has a PROJECTIVE RESOLUTION.
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vV Proof. Let M be a module. Then M is quotient of the free module Py = [],, R.
Consider the kernel K of this quotient map w: Py — M. If R =7, i.e. M is just
an abelian group (i.e. R = Z), then K is free as well by and we found the
projective resolution 0 — Ky — Py — M — 0. For general R we find a free module
P, which has Ky as quotient. Recursively we get an exact sequence

=P =>P P —->M-=0 1

9.18 Lemma. Let P — M — 0 be a projective resolution, X — N — 0 an
arbitrary resolution (i.e. exact sequence), and f : M — N a homomorphism. Then
there exists a homomorphism f : P — X of chain-complexes, which extends f and
which is unique up to chain homotopies:

0 1%}

Pn+1 Pn Pnfl e PO M 0
Ve e . ~
fn+1 7 fn - frn—1 fo lf
- 7 Sn—1
Y £ \ A \
Xn+1 P X'IL P Xn—l XO N 0

The following proof shows, that we don’t need that P — M — 0 is exact and that
Xy — N is onto, P being a chain complex, X an exact sequence, and f mapping
the image of Py — M into that of X; — N suffices.

Proof. Existence: Since P, is projective and Xy — N is onto, we have a lift
fo : Py — Xoof for: Py — M — N and recursively we get lifts fn P, — X,
since Ppy1 — P, —fn s X, — X,_; is 0 hence has values in ker(X, — X,—1) =
im(X,+1 — X,) and by projectivity of P, 41 has a lift f11 : Puy1 — Xpi1.

Uniqueness: Let § we another lift of f. Then fy — go has values in the kernel of
Xo — N and hence has a lift sg : Py — X3. Recursively we get s, : P, =& X411
with 88y, + $n_10 = fn — §n: Since a(fn —Jn — Sp—10) = (fn_l —Gn—1—08,-1)0 =
Sn_20% = 0 there exists a lift s, : P, — Xy 41 with s, = fr — Gn — Sn_10. O

9.19 Lemma. Let 0 — M — I be an injective resolution, 0 — N — X an
arbitrary resolution (i.e. exact sequence), and f : N — M a homomorphism. Then
there exists a homomorphism f : X — I of cochain-complezxes, which extends f and
which is unique up to chain homotopies:

0 N—2.x,- 2 o, x, 2
, Y Y
0 LY/ A—" °.1, -2

Proof. Existence: Since I is injective and N — X, is injective, we have an
extension fy : Xo — Ip of N - M — I, and recursively we get extensions
fn: Xn — I, since X,, o — X, S LES RN I,_1 — I, is 0 hence factors over

irn(Xn_l — Xn) = Xn_l/ker(Xn_g — Xn—l)-

Uniqueness: Let f be another extension of f. Then fo — f(’) vanishes on the image
of N = Xj and factors over Xy/ker(Xo — X;) & im(Xy — X1). By injectivity
of Iy we get an extension sq : )~(1 — I~0. Recursively we get s @ X411 — I with
0si+sp—10 = fr,— f}.: Since O( fr41 — frp1—5k0) = 0 there exists a s 41 : Xpyo —
Ik+1 with 88k+1 = fk+1 - f];+1 — Ska. O
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> 9.20 Proposition. FEvery subgroup of a free abelian group is free abelian. More
generally, every submodule of a free module over a PID is free. Thus we find in this
situation a projective resolution of the form:

0—>P —FP—M-—D0.

v Proof. Let H be a submodule of a free module G := [[; R. For every subset A C J
we consider Hy := HN ][], R. Let

S = {(A,B) : A C J, Hy is free with generators B C HA}

and define a partial ordering (A, B) < (A, B’) :& AC A and BC B'.

For every linearly ordered subset Sy € S'let (Aoo, Boo) := (Ua,5yes, M Ua, B)es, B)-
Then B, are free generators of

Hy :Hn]_[R:Hm( U ]_[R) - J #n][R= | &
Ao (A,B)ESy A (A,B)ESo A (A,B)ESo
(e [Ip, R — Ha,, (\p) = >, Apb is an isomorphism). Hence (Aw, Boo) is
an upper bound for §y. Thus by Zorns Lemma there exists a maximal element
(Ag, Bp) of S. Remains to show that Ay = J. Otherwise choose j € J \ Ay and
consider Ay := {j} UAo. Then [[, R = R®[[,, R and since Hy, = Ha, N[5, R
the inclusion Hy, < [[,, R induces an injection Hy, /Ha, — [, R/ [, R = R.
Since R is a PID there exists an r € R with Hx,/Hp, & Rr = R and hence
Hp, ® R = Hy, since R is a free R-module. Let by be the image of (0,1) in Hy,.
Then By := BoU{b;} are free generators of Hy,, a contradiction to maximality. [J

9.21 Double complex lemma. Let (C*7); j>o be a double complez, i.e. we have
given boundary operators 0, : C — C*tLI gnd 8y, : C% — C™+1 which satisfy
92 =0,0? =0, and O, 00y + 9y 0 J, = 0. Let C~1J := Ker(9, : C% — C1J)
and O~ := Ker(d, : C*° — C¥) and C™ := Iij=n CI with 0 : C™ —
C™t1 be given by Oy + 0,. Then C~4*, C*~1 and C* are cochain complexes and
Hk(C*’_l) o Hk(C*) o~ Hk(C_l’*).

Note that instead of anti-commutativity dy o &, + 0, 0 9 = 0 we could assume
commutativity dj, o 8, = 8, o 9, if we replace 9;7 : C* — C»IT! by (-1)'9,7.

Proof. By symmetry it suffices to show H*(C*) = H*(C*~!): Define a natural
homomorphism ¢ : H*(C*~1) — H¥(C*) by [a*°] — [a*°@®0&- - -©0]. Conversely
let z = [ @ - @ aF] € H*(C*) with o' € C*~%%. We claim that if a;41 = --- =
ap = 0 for some i > 0 then we may also assume that a® = 0: Then 9p(a’) =
pry_;;i+1(9(x)) = pry_; ;4+1(0) = 0 and by exactness of the (k — i)-th row, there
exists an e € C*~%1~1 with Jy(e) = a’. Then

& ®ad G0 B0 —[a" B (@ —0(e)B0®- B0
[ @00 0,(e)@ad 0D ...]

[ @08 0,(e) DOn(e) B0 ...]
=[0(--e0dea0a...)],

ie [ @d@00---00=a"® - ®(a"-0(e) ®OD--- DO It is easy
to check that this gives the required isomorphism. O

9.22 Lemma. The functor Hompg(M, _) : R-Mod — R-Mod is left exact.
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Proof. Let 0 - N’ -4 N -2+ N’ — 0 be a short exact sequence and consider the
sequence

0 — Homp (M, N') = Homp (M, N) —2= Hompg (M, N").
It is exact at Hompg (M, N'), since i, is obviously injective.
It is exact at Homp (M, N), since ¢ € Homp(M, N) is in ker(p.) < 0 = p.(p) = pop

< im(p) C ker(p) = im(i) & ¢ factors to a homomorphism ¢ : M — N’ over
i: M — M & ¢eim(i*). O
In general, p, will not be onto, since this would mean, that every homomorphism

@ : M — N" can be lifted along p : N — N” to a morphism ¢ : M — N.

> 9.23 Theorem. There are functors Exty : R-Mod°® x R-Mod — AGru for n € Z
(called the RIGHT-DERIVED FUNCTORS of Hom) and natural transformations § such
that:

. Exti(M,N) =0 forn < 0.

. Ext% = Hom.

. Exti(M,N) =0 for all n > 0 if M is projective or N is injective.

. For every short exact sequence 0 — M' — M — M" — 0 there is a long
exact sequence

- — Bxt}h(M",N) — Ext}(M, N) — Ext}(M',N) = Ext}}H (M, N) — --- .

For every short exact sequence 0 — N’ — N — N"” — 0 there is a long

exact sequence

-+ — Ext} (M, N') — Ext}h(M, N) — Ext}t(M, N") -2 Exti ™ (M, N') — --- .

W NN =

For fized N the functor Exty(_, N) together with the natural transformation § is up
to isomorphisms uniquely determined by —. And similarly for each fized M.

\Y
Proof.

() By there is an injective resolution I of N:

O0=-N—=Iy—-1 —=1Ir— -
Applying Hompg (M, ) to I (only!) gives a cochain complex
0 — Homp (M, Iy) — Hompr(M, I;) — Homp(M, I3) — ---
and we define Ext% (M, N) := H*(Homg (M, I..)) := H_j(Homg(I_.)).

By ’ 9.19 ‘ and ’ 8.23 ‘ the groups Exth, (M, N) are independent on the injective res-
olution of N.

() By definition Ext% (M, N) is just the kernel of Hom(M,Iy) — Hom(M,I))
and by left exactness in the sequence
0 — Homg (M, N) — Hompg(M, Iy) - Homp(M, ;) — - --
is exact, hence this kernel is isomorphic to Hompg (M, N).
() If N is injective then we may take Iy := N and I} := 0 for k > 0 as injective res-

olution. Hence Hompg (M, I;;) = 0 and thus also Ext® (M, N) = H*(Homg (M, I)) =
0 for £ > 0.

) Let 0 <= M" < M < M’ < 0 be short exact and I be an injective resolution
of N. Since I} is injective we have short exact sequences

0— HOHlR(MH,Ik) — HOIHR(M, Ik) — HOIIlR(M,,Ik) —0
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and this gives a short exact sequence of cochain complexes since Homp is a bifunc-
tor:

0 — Hompg(M",I) = Homp(M,I) — Hompg(M',I) = 0
By we get a long exact sequence in (co)homology:
o= Exth (M N) — Exth (M, N) — Exth(M', N) -2 Extht™ (M N) — -

(Projective construction) Alternatively we could use a projective resolution P of
M instead of an injective resolution I of N in order to define Ext% (M, N) as
H*(Hompg(P., N)). That this gives naturally isomorphic functors to those defined
before is seen as follows: Consider the double-complex (Hompg(P;,I;)); ;. Since
Hompg(-, I;) and Hompg(P;, ) are left-exact, the complex C*~! is Hompg(M, I,)
and C~1* is Hompg(P,, N) (cf. ) Thus by the two definitions are isomor-
phic.

In particular this shows that is valued for projective M and the second long
exact sequence in holds as well.

(Uniqueness) We proceed by induction on k. For k < 0 we have uniqueness by ()

and () So we assume that we have two sequences of functors Exty,, which are
naturally isomorphic till order k, and we have natural connecting morphisms. Then
a diagram chase starting at a short exact sequence 0 - M’ — M — M" — 0 with
free M shows that they are also isomorphic in order k+ 1 on M":

...H—OHEXU&(M’,N)i>Ext};3+1(M”,N)*>O*>...

| -

...HOH%Z(M’,N)LE?_I(M”,N)HOH...

O

> 9.24 Lemma. Ext]f%(]\/[, N) =0 for k > 2, arbitrary M and N, and any PID R
(in particular, for R :=17).

V Proof. By we may use a projective resolution P with P, = 0 for all k£ > 2.
Hence Hom(P;, N) = 0 and thus also Ext*(M, N). O

> 9.25 Lemma. A module N is injective < Ext’f{(M, N)=0 forall M and k =1
(or all k> 1).

Vv Proof. N injective = 0 — N — N — 0 is an injective resolution = Hom(M, I},) =
0 for k > 1 = Ext*(M,N) =0 for k > 1 = Ext'(M,N) = 0 = Hom(M,N) —
Hom(M', N) — 0 is exact for short exact sequences 0 — M’ — M — M" — 0, i.e.
N is injective. O

> 9.26 Lemma. A module M is projective < Ext¥ (M, N) =0 for all N and k = 1
(or allk>1).

Vv Proof. M projective =0 — M — M — 0 is a projective resolution = Hom (P, N) =
0 for k > 1 = Ext*(M,N) =0 for k > 1 = Ext'(M,N) = 0 = Hom(M,N) —
Hom(M, N"") — 0 is exact for short exact sequences 0 - M’ — M — M" — 0, i.e.
M is projective. O
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> 9.27 Lemma. A ring R is SEMISIMPLE (i.e. every short exact sequence of R-moduls

splits, equivalently, is semisimple as module over itself) < Ext]f%(M, N) =0 for all
R-modules M and N and k=1 (or even all k > 1).

V Proof. R semisimple iff every short exact sequence splits, i.e. every R-module N
is injective. By this is equivalent to Ext% (M, N) = 0 for k = 1 (or even all
k>1). O

9.28 Remark. Is every abelian group A with Ext%(A, Z) = 0 free abelian? This
is undecideable in ZFC by [16, 17, 18]

> 9.29 Examples.

e Ext}(Z,,Z) = Z,. The exact sequence 0 — qZ — Z — Z, — 0 is a projective
resolution, hence

Homg(Zy, G) — Homg(Z, G) — Homy(qZ, G) — Ext},(Z,, G) — Ext;(Z, G)

G—X - @ 0

is exact and thus Ext}(Z,, G) = G/qG.

e For R := 7, is Ext},(Z,,2,) = Z, for all k > 0:
A projective resolution Pis--- -+ R+ R —+ R —» Z, -0, where 0: R = R
is given by 1 + p?Z + p + p°Z, ie. [k] = [pk]. Then Homg(Py, N) =
Homp(R,N) = N and 0* =p: N — N, ie. 0* =0 for N := Z,. Thus
Ext}y(Zp, Z,) = Homp(R, Z,) = Z,.

9.30 Universal coefficient theorem for cohomology.
Let R be a PID, C a free chain complex over R, and M an R-module. Then there
are splitting natural short exact sequences:

0 — Extp(H,_1(C), M) — HY(C, M) — Hom(H,(C), M) — 0

V Proof. We proceed as in :
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0

........ N

0 < Hom(Z,, M) < Hom(Cy, M) < Hom(B, 1, M) <——0
J

o< (B, M) <2 (2, M) S H(C, M) L (B, M) 2 HN (2, M) <

Hom(B,, M) < Hom(Z,, M) Hom(B,_1, M) = Hom(Z,_1, M)
0— Kegi* < HY(C, M) << Coii* S
H
Hom(H,, M) Ext!(H,_1, M)
0 < Ext!(H,_,, M) < Hom(B,, M) Hom(Z,, M) <— Hom(H,, M) <— 0
\Bild(i*)/
0 B, ¢ Z, = H, 0

A splitting for the sequence is given by Hom(H,, M) > ¢ — [pomop] € HI(C, M).
O

> 9.31 Proposition. Ext' via extensions. Ext' (M, N) = Ext(M,N), the set of
isomorphy classes of extensions of M with N.

vV Proof. Let {: 0 — A — B — C — 0 be short exact. Then 0 — Hom(C, A) —
Hom(B, A) — Hom(A, A) — Ext'(C,A) — --- is exact by |9.23.4| and we may
consider the image (denoted ¥(¢)) of id4 € Hom(A4, A) in Ext!(C, A).

(T is well-defined) Two extensions A - B — C and A — B’ — C are called

EQUIVALENT, if a homomorphism (hence isomorphism by ) p: B — B’ exists,
such that

0 C B A 0
w
v
0 C B’ A 0

The long exact sequence for Ext™ is natural

-+ —Hom(C, A) — Hom(B, A) — Hom(A, A) — Ext'(C, A) — - -

d

-+ —= Hom(C, A) — Hom(B’, A) — Hom(A, A) — Ext'(C, A) — - - -

hence the images of id4 in Ext*(C, A) are the same.
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(VU is onto) Let 0 - R — P — C — 0 be a short exact sequence with projective P.
Then 0 — Hom(C, A) — Hom(P, A) — Hom(R, A) — Ext!(C, A) — Ext'(P, A) =
0 is exact. So for ¢ € Ext'(C, A) there exists an inverse image ¢ : R — A. Let
B =: ¢, (P) be the push-out of R — P and . We get obvious morphisms to make
the following diagram commutative with exact rows:

0 C< B < A<—0
A
I
0 C P R 0

That it is exact at A follows by this property of the push-out (see ) and exact-
ness at @, (P) can be seen from its construction:

0 C < ? v« (P) < d <A<——0
ﬁT /
Pe—m—PoA ¢
T
0 C P R 0
g s

kerg' ={p@®a+kerm:g(p)=0}={pda+kerm:pe f(R)}
={f(r)@a:r€Rac A} ={0® (a+p(r)) +kerm:r € R,a € A} = f'(A)

From this we get:

0 — Hom(C, A) — Hom(B, A) —= Hom(A, A) — Ext'(C, A) — - -+

L

0 —= Hom(C, A) — Hom(P, A) —> Hom(R, A) — Ext'(C, A) — - --

And hence (A — B — C) is by definition the image of id 4 in Ext'(C, A) and this
is also the image ¥ of ¢*(id4) = .

(T is injective) Let the image of two extensions A - B — C and A - B’ — C
be the same and let P — C' — 0 be a projective resolution of C. By we get

morphisms

0 c<! Bt 4 0
A A
Lo
0 C Py 5 Py
! wl
7y v
0 C B’ A 0

and by taking Py sufficiently large (i.e. a free Py wuch that Py — C @& B @ B’ onto),
we may assume that ¢ and ¢’ are onto. By replacing P; with Ry := ker §, we may
assume that C' < Py < R; is short exact.
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Now consider

Hom(A, A) — Ext’(

(w)*u@m*

Hom(Py, A) —> Hom(Py, A) — Ext'(C, A) — Ext'(Py, A) = 0

By assumption the images of id 4 in Ext’ (C, A) are the same, hence also the images
of (¥)*(id4) = ¢ and (¥/)*(id4) = ¥’ in Ext*(C, A), i.e. ¢’ =1 € ker(Hom(P;, A) —
Ext!(C, A)) = im(0*). Thus there exists a x € Hom(Py, A) with ¢/ — ¢ = §*(x) =
x 0 8. If we replace ¢ by @ := ¢ + fox € Hom(Py, B) and ¢ by 9) = ¢ + x 06 =
v’ € Hom(P;, A) we get the commutative diagram:

p s We have ker ¢’ = ker ¢:
0 ¢ B A 0 In fact py € ker¢’ = g(¢'(po)) = 0, ie.
SOT x//Z,L/j pg = d(p1) for some p; € P. S/o 0 =
] ' (0(p1)) = (fod)(p1) & 0 =¥ (p1) =
0 ¢ P Py P(p1) & 0= (f o) (p1) = ¢(6(p1)).

Furthermore, ¢, ¢ and thus @ are onto: In fact, ¢ (and equally ¢’) is onto, since
for a € A we get pg € Py with ¢(po) = f(a) and hence 0 = ¢g(f(a)) = g(v(po)), so

po € imd, ie. 3 p1 € P1: 6(p1) = po, hence f(a) = ¢(po) = ¢(0 ( 1)) = f((p1)),
and so a = ¥(p;). Now let ¢(pg) = b and choose p; with ¢(p1) = ' (p1) = —x(po)-

Then @(po +dp1) = #(po) + (0(p1)) = @(po) + f (X (po)) + f(¥(p1)) = b. So we get
a morphism between B 2 Py/ker g and B’ = Py/ker ¢’ which induces on A and

on C' the identity. Thus the two extensions are equivalent. O

9.32 Definition. Ext as AGru-valued functor. The functorial properties of Ext

are:
0 B C 0
A
T’Y
0——A4A >v*(B) >(C'——0

where v*(B) denotes the pull-back and Ext(A4,~v) : Ext(C, A) — Ext(C’, A) maps
A— B— CtoA— ~v*(B)— C. Similarly,

0 A B c 0

b

0——=A > . (B) >C ——0

where . (B) denotes the push-out and Ext(a, C) : Ext(C, A) — Ext(C, A") maps
A—-B—CtoA— a.(B)—C.

In fact, let ¢ € Ext'(C,A) correspond to ¢ : A — B = ¢*(P) — C, where
0 - R — P — C — 0 is short exact with projective P and ¢ an inverse image of 1)
with respect to Hom(R, A) — Ext'(C, A). By naturality Ext'(C, a)(¢)) is the image
of a,(¢) = a o with respect to Hom(R, A’) - Ext*(C, A’) and the corresponding
short exact sequence Ext(C, «)(€) is the pushout (aop).(P) = a.(¢«(P)) = a.(B).

andreas.kriegl@univie.ac.at (© 7. Februar 2018 155



9.32 9. COHOMOLOGY

That Ext : R-Mod°® x R-Mod — Set is a bifunctor follows also from

/5 } : \f*/\

— =

/

A —— a,v*B o> YraB

where the morphism a,vy*B — v*a, B is obtained by the universal properties and
it is an isomorphism by the 5’'Lemma .

The group structure on Ext(C, A) induced by the bijection of is given by the
BAER-SUM of extensions, which can be defined as follows:

0 A & B, Z C 0
f2 g2
0 A Bs C 0
0 Aa A f1Df2 B, & B, 91Dg2 CacC 0
A
|
0——=AdA >A*(31@B2)) > 0
d
Y
0—>A >E*(A*(B1@BQ) >C 0

or, equivalently, by

0——= A A B1 & B> CeC——=0
:
Y
0——A >, (B ® Bs) ~>CpC ——=0
A
R
0 A >A*(E*(B1€BB2)) >C —=0

For this note, that the addition on Hom (M, I) can be described by
+ : Hom(M, I) x Hom(M, I) — Hom(M x M, I x I) —2em&:2) o Hom (M, 1),

where A : M — M x M is given by « — (z,z) and ¥ : I x I — I by (x1,22) —
x1 + 3. Thus addition on Ext'(M, N) is also the composite

Ext! (M, N) x Ext' (M, N) — Ext' (M x M, N x N) -2 A2, gl (A7 N,

On Ext this sends two extensions A — By — C and A — By — C first to
A®A— By ® By — C® C and then to A*(X,.(B1 ® Bz)).
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The Baer-sum can also be constructed by taking the pull-back PB of ¢g; and gs and
then the coequalizer of (f1,0), (0, f3) : A — PB:

N

Z PB —— CoEqu >(C

\/

This follows since the following two types of cones correspond to each other

Bi@B,—2%"2 . cac B 7 C
X A . T
(h17h2) TA h1 = k . ng
X >C X > By
k ha
and also the following two types of cocones
, f
Ap A % B A —1> B
fa
\LZ ha e ha
\ . v
A > X . ¢
h1

9.33 Definition. Group-Cohomology. Let G be a (not necessarily abelian) group
and M a G-module, i.e. and abelian group together with an action (i.e. group-
homomorphism) G — Homgz(M, M). Then we are interested in the submodule
MC :={x € M:g-2 =2 Vg € G} of joint fixed points (i.e. the G-invariant
elements). We can extend the group-action of G on M to a ring-action of the group
ring Z[G] of G on M, i.e. the free abelian group with G as set of generators and
with convolution as ring-multiplication
(@*y)(g) = > a(h)y(k) =Y x(h)y(h 'x),

hk=g hea
by

x-m:= Zx(g)g~m.

g€eG

Thus G-group-modules are in 1-1 correspondence with Z[G]-ring-modules.

We have M¢ = Homy)(Z, M), where we consider Z as trivial Z[G]-module: In fact,
¢ € Homgg)(Z, M) & Vg € G : p(k) = p(g-k) = g-p(k), L.e. kp(1) = p(k) € MC.
Thus M — M€ is a left-exact functor G-Mod — AGru and we define the coho-
mology of G with coefficients in M as

H*(G, M) := Exty)(Z, M).
In particular, we have H(G, M) = M“ and H'(G, M) = Extgg)(Z, M), the group
of isomorphy classes of module extensions of Z with M.

In general we can use the projective resolution
- 2GS ZIGY - - Z[G] =5 Z — 0,
where the action of G on the generators of Z|G"1] is given by

g-(g90,---,9n) := (990, --,99n)
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and 0 is given by

n

0(gos---r9n) = > _(=1)(go, -, G5, n)-

=0

Thus Extyg)(Z, M) is defined as the cohomology of

Homgq)(Z|G"], M) = {tp € MY : (990, -, 99n) = 9 @0, - - - 7gn)}
with respect to the coboundary operator

o* HOIHZ G]( [Gn] ) — Homz[g] (Z[Gn+1]7 M),

n

O 0G0 90) = O (1) 0(g0, -, Gi's -, gn)-

i=0
By the defining relation for ¢ € Homgg(Z[G*], M) it is enough to know
(91, -59n) = ¢(1,91,9192,-- -, 91 gn),
since
©(90, 915+ >9n) = 90 - £(1, 95 91,90 92 = 9o 9197 925+ -+ 90 ' Gn)
=90 2(90 " 91, Gn 19m)-
The coboundary operator than takes the form

O*B(g1, .- gn) = 0" 0(1, 01, .., g1 Gn)

1
= ¢(91,9192, - -, 1 —I—Z W1, g1y ey g1 GiyeesG1 " Gn)
1
:gl'@(17g27..~, +Z 1917"'7gl"'gia"'agl"'gn)
=g1-@(g2, - 9n) +Z G915 GiGit1s - 9n) + (1) P91, - gn1)-

Let us now determine H?(G, M):

-+ —— Homg (Z[G?], M) —Z~ Homg (Z[G?], M) —Z~ Homg (Z[G*], M) — - --

MG

MG MG

Thus
H*(G,M) = Z*(G, M)/B*(G, M), where
Z2(G, M) ={p: G* = M : g1 - ¢(g2, 93) — $(9192,93) + P(91, 9293) — (91, 92)}
B*(G, M) ={(g1.92) = g1 - ¥(g2) — ¥(g192) + (1) : ¥ : G — M}

9.34 Group extensions

We consider (equivalence classes of) short exact sequenes N —— H —2— G of
(not necessarily abelian) groups. By choosing an inverse image s(g) € p~1(g) for
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every g € G we get a mapping s : H < G right inverse to p. Using this we have
H 2N x G via

H<+ NxG, in)-s(g) <« (n,g)
H—NxG, hw(h-s(p(h))"',p(h)) und

The group multiplication on N x G induced from H is thus given by
(n1,91) - (n2,92) = (i(m) - s(91) - i(n2) - s(92) - s(g1 - 92) ™1, 91 - g2)-
If we put
c:GxG =N, ilc(g.g))):=s(g) s(g') s(g-9')"" und
p:G = Aut(N), i(p(g)(n)) = s(g) -i(n) - s(g) ™",
then the multiplication is given by
(n,g) - (n',g') = (n-p(g)(n') - c(g,9"),9 - 9)-

Let s’ : H < G be another section of p : H — G. Then there exists a uniquely
determined mapping 7 : G — N with s'(g) = i(7(g) - s(g). The corresponding
mappings ¢ : G X G — N and p’ : G — Aut(N) is then given by

Let N — H' — G be another extension, which is isomorphic via ¢ : H — H’. Then
¢ can be described as

¢:(n,g9)—~ (n-7(9),9), NxG=H— H =N xG,

where we use the section s’ := ¢ o s for the second extension.

9.35 abelian extensions

Let us now restrict to the case, where N is abelian and we write it additively.

Then we get an action p of G on N defined by p

1 . 1 N C d H : G
p(p(R))(n) 1= i (- i(n) - hL). I
With other words, the previously defined p does not conj L
depend on the section s: Aut(N)

In fact, p(h) = p(h’) implies h=-h' = i(n’) for some n’ € N, hence h'-i(n)-(h')~! =
h-i(n')-i(n)-i(n')~t-h=t = h-i(n’ +n—n')- h~L. Thus the definition of p gives a
well-defined representation (turning N into a G-module), since conj : H — Aut(N)
is one. Let now s : H <= GG be any section. Then the group multiplication on N x G
is given by

(n1,01) - (n2,92) = (n1 + p(g1)(n2) + c(g1, 92), 91 - 92),

where ¢: G X G — N is defined by

(g1,92) =i (s(91) - s(92) - (g1 - 92) ")
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The two sides of the associativity law are:
((n1,91) - (n2,92)) - (n3,93) =
= (n1 + p(g1)(n2) + c(g1,92), 91 - g2) - (n3, 93)
= (n1+ p(g1)(n2) + c(g1, 92) + p(g1 - 92)(n3) + c(g1 - 92, 93), 91 - 92 - 93)
(n1,91) - ((n2,92) - (n3,93)) =
= (n1,91) - (n2 + p(g2)(n3) + c(92, 93), 92 - g3)
= (n1 + plg1) (ma + p(92) (ns) + (2. 98) ) + (g1, 92 - 93). 91 - 92 95)
Thus ¢ (together with p) gives an associative structure if and only if (using com-
mutativity of N) the following cocycle-equation is satisfied:
(g1,92) + (g1 92, 93) = plg1) (c(g2.93) ) + (91,92 95),
ie.
9pc(91, 92, 93) = p(g1) (C(gz, 93)) —c(g1 - 92,93) + c(g1,92 - g3) — c(g1,92) = 0.
1

Since we may assume s(1) = 1 (by replacing s by s'(g) := s(g) - s(1)71), we get
i(c(1,1)) = s(1) = 1 = i(0) and further more:

0=10pc(1,1,9) = p(1)(c(1,9)) —c(1,9) + c(1,9) —c(1,1) = ¢(1, )
0:3/)0(97 1) =p(g)(c(1,1)) —c(g,1) + c(g,1) — (g, 1) = —c(g, 1)
0=0,c(9,97",9) = p(g9)(c(g™", 9)) — c(1,9) + (g, 1) — c(g, g~ ")m
:p(g)(C(g L9)—clg gt

Thus a mapping ¢ : G x G — N, which satisfies this cocycle equality and ¢(1,1) =
00, defines a group structure on H := N x G by

(n,9)-(n',g") == (n+p(g)(n') + c(9,9'),9-9")
(n,g) ' = (—clg™",9) +plgH(n 1), g7

such that 1 — N - H —2+ G — 1 is an abelian extension, where i : N — H is
given by n +— (n,1) and p by (n,h) — h. Furthermore the section s : G — N x G
is given by h +— (1,h) and satisfies

s(g9)-s(g) - s(g-9) " =(Lg)-(1,g)-(1,g-9")"" = (c(g,9),1).

9.36 Isomorphy classes of abelian extensions

The question arises, which cocycles ¢ give isomorphic extensions (with the same
action p). Let first s’ be another section (with s'(1) = 1). Then s'(g) = i(7(g)) - s(g)
for a mapping 7 : G — N, with 7(1) = 1. The following direct calculation for the
associated cocycles ¢ and ¢’ yields

i(c'(9,9) = 5'(9) - $'(g) - s'(9-9')™
= i(r(9)) - 5(9) -i(r(9) - 5(g) - s(g - g) " +i(r(g - g) !
9)) - s(9) - i(r(g)) - s(9) "+ 5(9) - 5(g") - s(g - g) " +ilr(g- )"
9)) - i(plg)((g))) - i(clg. ) - i(r(g - )"
—i(r(o)+ p(g)(r( '>> +elg.9)~7(9-9))

1
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Let now ¢ : H — H be an ismomorphism of groups, such that the following
diagram commutes:

1 1

where H = N x G with the group structure induced by the cocycle cand H' = NxG
with that induced by the cocycle ¢/. We get two sections s and pos’ for p: H — G,
and thus a 7 : H — N with

o(s'(9)) = i(7(g)) - s(g)-
For the cocycles a short calculation yields:
(9.9') = 0p7(9,9") +clg.9).
Conversely, any 7 : H — N induces an isomorphism ¢ : H — H of groups by

p(n,g) == (n+T(g) g), since
e(n,9) - p(n,g') = (n+7(g9) + plg)(n" +7(g')) + (9, 9'),9- 9)
= (n+7(9) + p(g)(n') + p(9)(1(9") + (9, 9") — 0p7(9,9'),9-9)
= ((n+p(g)(n") +¢(9,9") + p(9)(7(9") = Dp7(9,9") +7(9),9-9")
=p(n+p(g)(n) +(9,9),9-9) = ¢((n,g9) - (n',g))

Thus we obtained:

9.37 Theorem. Isomorphy classes of abelian extensions with respect to a rep-
resentation p : G — Aut(N) are in bijective correspondance to the second group
cohomology

H?*(G,N)={ce N9*C:9,c=0}/{9,7: 7€ N°}. O

Note, that the conditions ¢(1,1) =1 and 7(1) = 1 can be dropped (see [10, A.6]).

Applications to cohomology of spaces

9.39 Remark. Let ¢ — C — C” be a splitting short exact sequence of chain
complexes. Then Hom(C”,G) — Hom(C,G) — Hom(C’,G) is also a splitting
short exact sequence of cochain complexes. Hence the corresponding homologies
(i.e. cohomologies of the original chain complexes) form a long exact sequence

-— HIY(C",G) - HY(C,G) —» HY(C',G) — H" (C",G) —
In particular, we get the following corollaries:
9.40 Corollary. [20, 13.5.7] For a pair (X, A) of spaces
S HY(X, A;G) < HY(A; Q) 2 HY(X;G) < H(X, A;G) L=
is an exact sequence. O
9.41 Corollary. [20, 13.5.8] For a triple (X, A, B) of spaces

2 HY(X, A; Q)< HY(X, B; Q)+~ HY(A, B;G)2— HI*' (X, A; Q)<L

1S an exact sequence.

andreas.kriegl@univie.ac.at (© 7. Februar 2018 161



9.46 9. COHOMOLOGY

9.42 Proposition. [20, 13.5.9]
Let f,g: C — C' be chain-homotopic. Then f* = g* : H1(C';G) — HY(C; Q).
In particular, if f is a chain-homotopy equivalence, then f* is an isomorphism.

Proof. If we dualize, the dual of the chain-homotopy gives a chain-homotopy be-
tween f* and ¢g* and hence induce the same mapping in the homology of the dual
complexes. O

9.43 Corollary. [20, 13.5.10]
If f~g:(X,A) = (Y, B), then f* = g* : HI(Y, B;G) — HU(X, 4; G).
In particular, if f is a homotopy equivalence, then f* is an isomorphism. [

A carefull analysis of shows the following

9.44 Proposition. [19, 4.4.14] If X is union of the interior of two subsets X7 and
Xo, then the inclusion is a chain equivalence S(X1) + S(X2) ~ S(X).

Thus HY(X) = H4(S(X;1) + S(X3)) in such a situation.

9.45 3 x 3-Lemma. If the top two rows and all columns in the following diagram
a short exact, then so is the bottom row.

A1>;£92814i;>ch

Ia Ia Ia

A2>;£9ﬂB24£;>C&

ia ia ia
f g

A3*>33*>C3

Proof. (Exact at As) Let az € A3 with faz = 0. Choose ay € Ay with das = as.
Then dfas = fOas = faz = 0 hence there exists by € By with dby = fas. Since
dgby = gob; = gfas = 0 also gb; = 0, hence there exists a; € A; with fa; = b;.
Then fOa, = dfai = Oby = fas, hence as = Oaq and thus as = das = H%a; = 0.
(Exact at Bs) Let bs € Bs with gbs = 0. Choose by € By with dxby = b3. Since
Ogbs = g0Oby = gbs = 0 there exists ¢; € Cp with dc; = gby and there exists
b1 € By with gb; = ¢1. Then gdby = dgby = dc; = gbs. Thus we find ay € Ay with
fCLQ = bg — 8b1 and thus f6a2 = 8fa2 = 6b2 —0= bg.

The converse is obvious, since gfd = dgf = 0: Az — C3 and 0 is onto.

(Exact at C3) is obvious, since By —4 Cy =2 (3 is onto. O

9.46 Relative Mayer-Vietoris sequence. [19, 5.4.9] Let X; C X and A; C X;
with S(X1) + S(X2) — S(X1 U X3) and S(A1) + S(A2) — S(A1 U Ay) inducing
isomorphisms in cohomology. For any R-module G he have the exact sequence:
e — Hq<X1 U XQ, Al U AQ; G) — Hq(Xl,Al; G) (&) Hq(XQ, AQ; G) —
— Hq(Xl ﬂXQ,Al OAQ,G) — Hq+1(X1 UXQ,Al UAQ;G) —r e
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Proof. The first 2 rows in the following diagram are short exact (see |8.37]) and
by definition also all columns, thus the third row is short exact as well

S(A; N Ap) = S(A1) & S(As) —— S(A;) + S(As)

! y !

| / ;

S(X1 N Xa, Ay N Ag) == @7, S(X;, Ai) —= (S(X1) + S(X2))/(S(A1) + S(A3))

So we get a long exact sequence in cohomology, and by the 5’Lemma ap-
plied to the long exact cohomology sequences induced by the following short exact
sequences

S(A1) + 5(A2) —— S(X3) + 5(Xz) —= (S(X1) + 5(X32))/(5(A1) + 5(A2))

S(AlUAQ)(—>S(X1UX2) S(X1 UXQ)/S(AlUAQ)

the mapping (S(X1)+ 5(X2))/(S(A1)+ S(A2)) = S(X1UX3)/S(A1UAs3) induces
an isomorphism in homology and so we get the claimed exact sequence. O

> 9.47 Corollary. If X is the union of the interiors of X1 and X9 and Ay U Ay is
the union of the interiors of A1 and Ay then we have the relative Mayer-Vietoris
sequence in cohomology. O

9.48 Remark. The relative Mayer-Vietoris sequence implies the exact se-
quence of a triple (and a pair). In fact, given a triple (X, A, B), then we can apply

to the pairs (X, B) and (A4, A).

9.49 Corollary. Excision theorem. [20, 13.5.12] Let U C A C X with U C A.
Then i: (X \U,A\U) — (X, A) induces an isomorphism

7 HY(X, A Q) = HI(X \ U, A\ U;G).

V Proof for PIDs. We use the equivalent description as in . By the excision

theorem for homology the inclusion i, : (X2, X2 N X71) — (X2 U X3, X7)
induces isomorphisms Hy (X2, Xo N X1) — Hy (X2 U X1, X4) for all ¢. Using now
the universal coefficient theorem gives

0 0
v v
Exth(Hy—1(Xo, X2 N X1),G) — Extp(H,—1(X2 U X1, X1),G)
v - \
Hq(X27X2 N Xl,G) —_—> Hq(X2 UXl,Xl;G)
v v
HOIn(Hq(XQ,XQ ﬂXl),G) = Hom(Hq(X2 UX17X1)7G)
¥ ¥
0 0
and the 5’Lemma yields the result. O

General proof. We use again the equivalent description as in . Let Ay := X3
and A2 = X1 OXQ then A1 @] A2 = X1 and A1 N AQ = X1 N XQ, hence the relative
Mayer-Vietoris sequence gives:

~~%0%Hq(X1UX2,X1;G)%Hq(XQ,XlﬂXg;G)%Oﬂu' O
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> 9.50 Example. By we have

H, (") = Z forgq=norqgq=0
e —]o otherwise

and thus by the universal coefficient theorem (since Z is projective)

HY(S™; G) = Homg (H,(S™), G) =

G forgq=norqg=0
0 otherwise

Analogous results follow for the cohomology of S™\ S, S™\ B, R\ S, R™\ B, F,
P™(C), and of P"(H) for r-spheres S, r-Balls B, and the orientable closed surfaces

F, of genus g, see

, and ’8.57 ‘ In these cases one only
has to replace all Z* in the homology groups by G* and obtains the corresponding
cohomology groups.

9.51 Example. [20, 13.6.9] For the none-orientable closed surface X of genus g

we got in

Z forg=0
Hy(X)=(Z29 ' ®Zy forqg=1
0 otherwise.

Hence by the universal coefficient theorem ’ 9.30 ‘ and ’ 9.3 ‘ and ’ 9.29 ‘
H°(X;G) = Hom(Hy(X),G) @ Ext' (H_1(X),G)
=~ Hom(Z,G) ® Ext'(0,G) = G
HY(X;G) = Hom(H,(X),G) @ Ext'(Ho(X), Q)
>~ Hom(Z9' @ Zy,G) ® Ext (Z,G) =G ' @ {g € G :29 =0}
H*(X;G) = Hom(Hy(X),G) @ Ext'(H,(X),G)
>~ Hom(0,G) @ Ext' (297! @ Zs, G) = G/2G

In particular, for g = 1 we have

| HIP*G) [q=0]qg=1[q=2]
[H,P) [ ¢q=0]g=1[q=2] G =7, Zo | Zs | Zs
(C=2] Z | Z, | 0 | G=z | z | 0 | z
G=R R 0 0

9.52 Example. By we have for the real projective spaces

Z for g=0o0r g =n odd,
H,(P*"(R)) = { Zy for 0 < g <mn with ¢ odd,
0  otherwise.

Hence by the universal coefficient theorem ’ 9.30 ‘ and ’ 9.3 ‘ and ’ 9.29 ‘ we get
HY(P"; G) = Hom(H,(P"),G) ® Ext'(H,_,(P"),G)
Hom(Z,G) @ Ext*(0,G) = G for ¢ =0,
Hom(Zs,G) ® Ext'(Z,G) = {g € G:29 =0} forq=1,
Hom(Z,,G) ® Ext'(0,G) =2 {g € G:2g =0} forodd1<gq<n,
(0
(Z

1%

Hom(0, G) @ Ext'(Zs, G) = G/2G for even 0 < ¢ < n,

Hom(Z,G) @ Ext'(0,G) = G for odd ¢ =n
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In particular, HI(P";Zsy) = Zs for all 0 < ¢ < n, whereas HI(P™";R) = 0 for
0 < g # n and for even q = n.

\%

> 9.53 Definition. Cup-product. [20, 15.2.3]
Although cohomology can be calculated in principle from the homology by the uni-
versal coefficient theorem , cohomolgy has the advange of additional algebraic
structure. Let R be a commutative ring with unit. Elements ¢ € H9(X; R) are rep-
resented by homomorphisms f : S,(X) — R. For such cochains f : S,(X) — R
and g : Sq(X) — R one defines the CUP-PRODUCT
fUgiom floot..p) 9(0 0Ly piq)

where o : APT9 — X is any singular (p+ q)-simplex and ¢g,... , : AP — APta (resp.
pptq o AT < APT?) denotes the canonical embedding onto the ‘front’-side (resp.
‘back’-side). This operation satisfies the Leibiz-rule

F(fUg) =0"fug+ (-1)PfUdyg
and hence induces a welldefined mapping
U: HP(X;R) x H(X;R) — H"T(X, R).

which turns H*(X; R) into a graduated commutative ring, i.e. we have

commutativity: aU g = (—-1)P18 U «.
distributivity: (a+o)US=aUB+a’' UB.
homogeneity: (ra)U g =r(aUp) for r € R.
associativity: (aUB)U~vy=aU(BU~).

neutral element: 1, Ua = a.

naturality: f*(aUp) = f*aU f*gfor f: X' — X.

This additional algebraic structure is a main advantage of the cohomology over the
homology.

> 9.54 Example. [20, 15.3.6.c] One can show
H (XVY)2 H(X)x H*(Y)
and
H(XxY)2H(X)® H(Y)
as rings with respect to the cup-product U, where
H*(X)® H*(Y) = ( Y H(X)® Hq(Y)>
p+g=n

and the product is defined component-wise. Thus the spaces S™ V S™ vV S™*" and
S™ x S™ for m > n > 1 have isomorphic fundamental groups (by and ),

homology groups (by ’ 8.36 ‘ and ’ 10.33 ‘) and cohomology groups.
(S VSTV ST 22y (S™) Moy (S™) Ly (S™H7) 22 7y (S™)
= (S™) x m(S™) 2w (S™ x S™)

neN

Z for ke {0,n,m,m+n}

Hi(S™ V8™V S™H) o H (8™ x S™) .
0 otherwise

G for k€ {0,n,m,m+n}

HE(S™ v S™ v S™n. Q) = HF(S™ x S™; G) = )
0 otherwise
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However, the cohomology ring of the first space is trivial, whereas that of the second
is not.

v

9.55 Example. [20, 15.5.2] One can show, that the cohomology ring of P™(C) is
isomorphic to Z[z]/{x" '), where x corresponds to the generator in H?(P"(C)) = Z

(by [9.50]). Moreover, H*(P>(C)) = Z[z].

9.56 Example. [20, 15.5.4] One can show that the cohomology ring of P™(R) with
coefficients in Zy is isomorphic to Z[z]/(z"*!), where z corresponds to the generator

in H'(P™(C),Zs) = Zs (by [9.52]). Moreover, H*(P™(R), Zs) = Z[z].

9.57 Lemma. [20, 15.5.8] Let f : P" — P™ be continuous with n > m > 1. Then
m(f) : T (P") — 71 (P™) is trivial.

Proof. For m = 1 this is obvious, since 771( ") 2 7o and 71 (P!) 2 Z. So let m > 1
and k € {m,n}. Then Z, = 7r1(]P’k) Hy(P*) = Hom(H,(P*),Zy) = H'(PF; Z,).
Thus it remains to show that f* : H1(P™;Zy) — H'(P";Zy) is trivial. Otherwise,
f*(a) = B # 0, where 8 and « are the non-zero elements in Zy. By the n-fold
cup-products are « U ... U« = 0, whereas f*(aU...Ua) =BU...UB #0, a
contradiction. O

9.58 Lemma. [20, 15.5.9] There exists no continuous g : S™ — S™ forn >m > 1
with g(—x) = —g(x) for all x.

Proof. Otherwise, g would induce a continuous g : P* — P™. By m1(g)
71 (P") — 71 (P™) is trivial, hence g has a lift g : P® — S™ along p : S™ — P™.
For fixed x € S™ either (go p)(x) = g(x) or (§op)(x) = —g(z). In the second case

(gop)(—x) = (gop)(x) = —g(z) = g(—=) and thus in both cases gop = g by
Since p(z) = p(—x) we get g(z) = g(—x) = —g(z) € ™, a contradiction.

> 9.59 Theorem of Borsuk-Ulam. [20, 15.5.10] For each continuous f : S™ — R"™
exists an x € S™ with f(x) = f(—x). In particular, there is no embedding S™ — R™.

This generalizes .
f(z)—f (=)

V Proof. Otherwise, consider g : z > TF @ =F o) which is a continuous map S™ —
S™~1 with g(—z) = —g(z) for all z. Since S° is discrete, this is impossible in the
case n =1 and for n > 1 it is impossible by . O
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10. Homology with Coefficients

In this section G is a fixed abelian group or more generally, an R-module. We are
particularly interested in the cases G = Z, G = Zy, G = Q or G = R. The chain
groups we considered so far are free abelian groups, i.e. its elements were formal
linear combinations with coefficients in Z, and we will replace Z by the group G
now. Since the boundary operator 0 was defined on the generators and extended
Z-linearly to the chain groups it is well defined for this modified chain groups as
well and hence we can consider its homology. An advantage of using G = Zs is, that
we get rid of signs. And with G = Q or G = R we will get rid of torsion elements.

In order to make this process as natural as possible we have to consider tensor
products and for their (categorical) construction coseparators are helpfull:

10.1 Definition. A R-modules S is called COSEPARATOR iff Hompg(-, ) is faithfull,
ie. f: M — M’ with Hom(f,S) = 0 implies f = 0.

10.2 Lemma. The category R-Mod of R-modules has a COSEPARATOR.

Proof. Note, that S is a coseparator iff for every 0 # a € A we find a ¢ € Hom(A4, 5)
with ¢(a) # 0:

(<) Let 0 # f : A/ — A. Then there exists an o’ € A’ with a := f(a’) # 0, so
by assumption we find ¢ € Hom(A, S) with Hom(f,S)(¢) = f*(¢) = ¢ o f not
vanishing on o, i.e. Hom(f,S) # 0.

(=) Let 0 # a € A and consider f : R — A, r — ra. Then f # 0, thus there is a
¢ € Hom(A,S) with 0% f*(p) = o f,ie. 0# o(f(1)) = ¢(a).

Q/Z is an injective coseparator for AGru: Let A be an abelian group and 0 # a € A.
Consider ¢ : Z — A given by ¢(k) = k - a and its kernel Kerp :={k € Z : k-a =
0} = Z - ord(a). Then p(Z) = Z/Ker¢ = Zgra(q) and Zgq(q) embeds into Q/Z
by ¢ : [k] — [%@] Since Q/Z is divisible(=injective) ¢ can be extended along
Zora(a) — A to obtain a homomorphism 7 : A — Q/Z with i(a) = i(¢(1)) =
i((jom)(1)) = ¢(m(1)) # 0.

Z-ord(a) —=Z ——> A

i

Z01rd(a) — Q/Z

Homy(R,Q/Z) is an injective coseparator for R-Mod:

Let 0 # bp € B and ¢ : B — Q/Z a homomorphism of groups with ¢(by) # 0.
By the proof of we have Homyz(B,Q/Z) = Hompg(B,Homz(R,Q/Z)) and
the corresponding R-module homomorphism ¢ : B — Homg(R,Q/Z) satisfies
P(b)(1) = ¢(b) # 0, i.e. Homz(R,Q/Z) is a coseparator for R-modules. O

Remark. It follows that the category R-Mod of R-modules is cocomplete, i.e.
arbitrary colimits exist, since every complete, local-small (every object has only a
set of non-equivalent subobjects) category which has a coseparator is cocomplete,
see [9, 3.37].

10.3 Corollary. For any left R-module M the Hom-functor Homy (M, ) : AGru —
Mod-R is a right adjoint, i.e. there exists a functor denoted - @pr M : Mod-R —
AGru such that there are natural isomorphisms

Homy (N ®r M,G) = Hompg (N, Homz (M, G)).
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An explicit construction of N ®g M is the following: Take the free abelian group
generated by N x M and factor out the subgroup generated by all the elements
(z+a2,y) = (z,y) — (@ y), (x,y+¥) — (z,y) — (z,9), and (z -1, y) — (z,r-y) for
z,2’ € N,y,y € M, and r € R.

Proof. The right R-Module structure on Homgz(M, G) is given by (¢ - r)(z) =
@(r-x). This functor has all the properties required for the Special Adjoint Functor
Theorem (see [9, 4.27]), i.e. is continuous, Mod-R = R°P-Mod is complete (products
are the cartesian product with component-wise operations, kernels are the zero-sets
as submodules), is locally small (i.e. there is only a set of submodules for any given
module), and has a coseparator. Thus it has a left adjoint - ®gr M : Mod-R —
AGru. O

10.4 Remark. Note, that ¢ € Homp(N,Homz (M, G)) & ¢(x-r,y) = p(z-r)(y) =
(p(x) - 1) (y) = e(x)(r-y) = $(z,r - y) and is additive in both variables separately.
Let us denote the set of these ¢ by
Biling(N, M;G) := {¢p € GN*M p(nr,m) = (n,rm),
P(n+n',m)=1p(n,m)+o(n',m),
7/’(7% m+ ml) - w(nv m) + 1/)(77,, ml)}
If we take G := N®@gr M, then idng s corresponds to such a mapping ¢ : N xM —
N ®gr M denoted ®. Thus 2r ® y = & ® ry. Moreover, the bijection Homz(N ®g
M,G) = Hompg(N,Homyz(M,G)) = Biling(M, N;G)) is given by ¢ — ¢ o ®(:
N xM — N®rM — @), as chaseing idyg,n through the following diagram
shows
Homyz(N ®g M, N @ M) = Biling(N, M; N @ M)

: :
Homyz(N ®g M, G) = Biling(N, M; G)

Consequently the abelian group N ® g M is generated generated by {x Q@ y : = €

N,y e M}.

10.5 Lemma. If Hom(A4', ) 2 Hom(A4, .), then A = A’

Proof. Let ¢p : Hom(A’, B) — Hom(A, B) be the natural isomorphism. Define
fi=pa(ida) € Hom(A, A") and g := ¢, '(ida) € Hom(A’, A) and consider in the
following diagrams

Hom(A’, A”) A Hom(A, A") Hom(A4, A) L. Hom(A', A)
f*T f*T Q*T (]*T
Hom(A4’, A) =22 Hom(A, A) Hom(A, A’) B Hom(A’, A)

the image of g € Hom(A’, A) (resp. f € Hom(A, A’)) to conclude that go f = idg
and fog=1ida. O

10.6 Lemma. If for a sequence M’ —{— M —9— M" — 0 the dual sequences
0 — Hom(M", G) < Hom(M, G) -~ Hom(M’, G) are exact for every G, then
the original sequence is exact.

Proof. (Exact at M"”) Take G := M"/g(M) and p : M"” — G the canonical
quotient mapping. Then ¢g*(p) = po g = 0 and by assumption p =0, i.e. 0 = G =
M"/g(M). Thus g is onto.
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(Exact at M) Take as G := M/ f(M) and consider the canonical projection p :
M — G. Note that ker(f*) = {¢ € Hom(M,G) : ¢[far = 0} and im(g*) =
{g*(¥) = og: 9 € Hom(M" G)} = {¢ € Hom(M, G) : ¢ factors over g} = {p €
Hom(M, Q) : ¢lkerg = 0}. Thus p € ker(f*) = im(g*), i.e. p(kerg) = {0}. Hence
ker g C im(f). Conversely, take G = M". then 0 = f*(¢*(idp)) = go f. O

> 10.7 Corollary. We have natural isomorphisms R @r M = M and - Q@r M com-
mutes with colimits and is right-exact.

V Proof. Since Hom(R ® M, G) = Hompg(R,Hom(M, G)) = Hom(M, G), it follows
from that Rer M = M.
As left adjoint - ®r M commutes with colimits.
Let now N/ -+ N — N” — 0 be exact. Then

Homp(N', P) < Hompg(N, P) < Hompg(N", P) + 0
is exact and in particular for P := Hom(M, G). Thus
Hom(N' @ M, G) <+ Hom(N ®r M,G) + Hom(N" @r M,G) < 0

is exact, and by the sequence

N/®RM—>N®RM—)NH®RM—>O

is exact. O

10.8 Remark. Note, that ®p is also a covariant functor in the second variable,
since Homp (N, Homz(-, G)) and Homgz(-, G) are contravariant functors R-Mod —
AGru.

> 10.9 Definition. An R-module M is called FLAT, iff for every monomorphism
a: A — A of right R-modules the tensor product a g M : AQg M — A’ Qg M
is injective, i.e. _.®pr M is (left) exact.

10.10 Proposition. Coproducts and direct summands of flat modules are flat.
Every projective module is flat and every flat module over an integral domain is
torsion-free.

Proof. The statement on coproducts follows, since the tensor product commutes
with coproducts, and a coproduct (as subspace of the product) of monomorphisms
is a monomorphism.

Let M’ — M be a direct summand of a flat module A’ @x M >—> A@r M
and A’ — A be injective. Then A ®r M’ — A®r M

and A’ @r M’ — A’ @ M are sections and A’ @ p M —

A ®g M is injective, thus also A’ g M’ — A®pr M'. A @p M Awp M
Since every projective module is a direct summand in a free module it suffices to
show that R itself is flat, which is obvious, since A ®p R = A.

Let now M be a flat module and assume it is not torsion free, so there is 0 # a € M
and 0 # r € R with ra = 0. Consider « : R — R given by 7’ — 7’'r, which is a
monomorphism, since R is an integral domain. Since M is flat, a®@r M : RQg M —
R ®p M is injective. Since (a @g M)(1®a) = r®a = 1 ® ra = 0 it follows
a=1®a =0, a contradiction. O
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10.11 Lemma. An R-module M 1is flat if and only if for every ideal 0 % I < R
the canonical mapping I g M — R®r M = M 1is injective.
In particular, every module over a field R is flat.

Proof. (=) Since I — R is injective and M is flat, also @ g M - RQr M = M
is injective.

(<) Let N’ — N be a submodule. Since every module is the inductive limit of its
finitely generated submodules F' and - ® g M commutes with colimits it is enough
to consider finitely generated N (N’ = |Jp N’ N F'). So we have an epimorphism
R™ — N for some finite n. Let K denote its kernel and let P be the pull-back of
R™ - N and N’ < N. Then N’ & P/K and applying -®g M to both short exact
sequences gives

0—Kp M“—R"@p M —> N@r M ——0

]

KQprM —PRr M — N Qpr M ——=0

It follows, that N/ @ g M — N ®pr M is injective, provided we can show that
K ®r M — R™ ®r M is injective for every submodule K C K", which we prove
now by induction on n.

(n=1) Then K — R is an ideal, hence by assumption K ® g M — R ®r M is
injective.

(n+1) We consider

0 RC R x R" R" 0
0—>KNRC K K/(KNR) —=0

and apply - ®gr M to obtain

0 Ropr M — = Rl @p M R"®r M 0
(KNR) QR M ——— K®r M — K/(KNR)Qr M ——0
Thus also the vertical arrow in the middle is injective. O

10.12 Proposition. If R is a PID. Then every torsion-free R-module is flat.

Proof.
Since R is a PID, every ideal 0 # I < R is of the form

I = Rr for some 0 # r € R. Since M is torsion-free, the IT®r M SR R@pr M

L®R
mapping 7 : R — I, v’ — r/r, is an isomorphism, hence @M ET
I ®r M — R ®pr M is an isomorphism. By |10.11 | this o

implies that M is flat. 0 RRpM<~—M

10.13 Example. The torsion-free(=flat) group Q is not free(=projective): It is
divisible, whereas free abelian groups are not, since their generators cannot be
divided by n > 1.

10.14 Lemma. Let R be a PID and M a finitely generated torsion-free R-module.
Then M is a free module.
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Proof. Let S be a finite set of generator for M. We find a maximal subset Sy C S
such that My := (Sp) is a free submodule. If z € S\ Sy then we find 0 # r, € R
and r, € R for s € Sy such that rpz + 25650 rss = 0, i.e. M/Mj is a torsion
module. Now let r := erS\So ry 7# 0, since R is an integral domain. Since My is

free and M C My we have that rM is free by . Since M is torsion free the
multiplication map r : M — rM is a isomorphism, hence M is free. O

10.15 Corollary. If M is an (R, S)-bimodule (i.e. an abelian group with left R-
action and a right S-action, which commute with each other) and G is an right
S-module, then Homg (M, G) is a right R-submodule of Homz(M, G) and N @ M
is a Tight S-module and we have natural isomorphisms

Homg(N ®g M,G) =2 Homg(N,Homg(M,G)). O

If, in particular, R is a commutative ring, then every R-module is also an (R, R)-
bimodule, where the two actions coincide. Thus N ®g M is itself an R-module
with

Hompg(N ®r M,G) = Hompg(N,Homg(M, G)).

10.16 Corollary. For commutative rings R we have M g N =2 N ®r M and
(M ©r N)©r P~ M®g (N ®g P).

Proof. The first isomorphism follows using from
Hom(M ®p N, G) =2 Hompg(M,Hompg(N, G))
>~ Homp(N,Homg(M,G)) 2 Homgr(N ®r M, G),
via f — f, where f(y)(z) := f(x)(y). And the second one follows from
Homp((M ®r N) ®gr P,G) = Homr(M ®r N,Hompg(P, G))
>~ Homp(M,Hompg (N, Homg (P, G)))
>~ Homp(M,Hompr(N ®g P,G))
~ Homgp(M ®r (N ®gr P),G). O

10.17 Example.[20, 10.2.4]

1. A® Zy, = A/mA and hence Zy, @ Ly, = Lged(m,n):

Homg(Zy,,G) = {g € G : mg = 0} by , hence Hom(A ® Z,,,G) =
Hom(A, {g : mg = 0}) = Hom(A/mA, G).

2. AR = 0 if A is a torsion group, i.e. all elements in A have finite order:
Let ¢ € Bilin(4,R; G) = Hom(A4, Hom(R, G)). Then ¢ = 0, since ¢(a,b) =
QO(G, r %) = Lp((l?", g) = 90(0’ g) =0.

3. Zs is not a flat abelian group:

Zo ® 7. = Zs is not a subgroup of Zs ® R = 0 although Z < R is one.

4. (ab 1I,Z) ® B = ab 11, B, by . In particular, the tensor product of
two free rings with p and ¢ many generators is a free ring with p - ¢ many
generators.

> 10.18 Definition. Homology with coefficients. [20, 10.5.1] Let (X, A) be a
pair of spaces and G be an abelian group. Then the ¢g-th homology of (X, A) with
coefficients in G is defined as the abelian group

H) (X, A;GQ) = Hy(S(X,A) ®z G)
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If G is even a right R-module over some ring R, then S(X,A) ®z G is a chain
complex of right R-modules and hence H,(X, A; G) are also right R-modules.

Again the question arises what H,(X; G) has to do with Hy(X) ® G.

10.19 Universal coefficient theorem for homology with flat coefficients.
Let C be a chain complex of right R-modules and M a flat left R-module. Then we
have a natural isomorphism

Hq(C) Rr M = Hq(C KRR M)

V Proof. We proceed analogous to and the proof of . We apply -®r M to
the short exact sequence

0 A a— 0

Cy By 0

and obtain the short exact sequence (of chain-complexes)

0—>ZQ®MCﬂ>C’q®Mﬂ»Bq_1®M—>O

which gives by a long exact sequence in homology

[ ORM) O
b ze )2 g, (00 M) 2 H, L (Be M) 2 H, (20 M) —

Z,® M BoioM—2M .z oM
The identities hold, since the boundary operator on Z and on B and hence on Z®pg
M and B ®p M is 0. The rectangle commutes (i.e. the connecting homomorphism
S, is i ®@p M), since (0@ M) o (0 @r M)~ : B,—1 ®g M — Cy_1 ®p M is just
the composite By_1 @ M —OpM Zg—1Qr M —JorM , Cqo1 ®r M.
Now consider the short exact sequence

0 B, —— Z, H,(C) 0

Taking the tensor product with the flat module M yields the short exact sequence
0 Bq®MCi®—M>Zq®M H,(C)o M 0

In particular, i ® g M = §, is injective, so (0 ® M), = 0 and (j ® M), is onto. The
kernel of (j ® M), is the image of 0, =i @ M, i.e. the kernel of the epimorphism
Zy@rM — Hy(C)®rM. Hence (j®M), factors to an isomorphism H,(C)®@gM —

H,(C®r M). O
(GQM). 0
J(B® M) = Hy(Z @ MYZSH(C @ M) —% Hy (B ® M) 2> H,_1(Z ® M)
=
i®M A oM
ByoM=—2M. 7. 9 M —= H,(C)® M ByioM~—M_ 7z oM

10.20 Corollary. Let (X, A) be a pair of spaces and G be a torsion-free group.
Then we have a natural isomorphism

Hy(X,A) ®, G = Hy(X,A;G). O

>10.21 Theorem. There are functors Tor? : Mod-R x R-Mod — AGru and
natural transformations such that

1. Tor®(N, M) =0 forn <0.
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2. Torl(N,M) = N ®g M.

Torf(N, M) =0 for alln >0 if N or M is projective.

4. For every short exact sequence 0 — N' — N — N — 0 in Mod-R there is
a long exact sequence in AGru

- = Tor®(N', M) — Tor®*(N, M) — Tor®(N", M) -5 Tor® (N', M) — --- .

n—1

@

For every short exact sequence 0 — M' — M — M" — 0 in R-Mod there
is a long exact sequence in AGru

- = Tor®(N, M") — Tor®(N, M) — Tor®(N, M") =% Tor® (N, M') = --- .

For fized M the functor Torf‘(,7 M) together with the natural transformation § is
up to isomorphisms uniquely determined by —. And similarly for each fized N.

Proof. We consider a projective resolution P — M — 0 and the induced chain
complex
o S>INRKR P, > N®rPL > N®rFPy—0

Then Tor(N, M) is defined as its homology, i.e. Tor, (N, M) := H,(N ® P,). Now

proceed as in the proof of :

() is obvious by definition.

() By definition Tor{ (N, M) is just the cokernel of N ®p Py — N ®g Py, i.e. the
group N ®p Py modulo the image of N ® g P, -+ N ®g Py and by right exactness
the sequence N @ g P, & N Qg Py - N ® g M — 0 is exact, hence this cokernel is
isomorphic to N ®g M.

() If M is projective, then we may take Py = M and P, = 0 for all £ > 0, hence
N & Py = 0 and thus also Tors'(N, M) = H,(N ®r P) = 0 for these k.

() Let 0 - N’ — N — N” — 0 be short exact and P be a projective resolution
of M. So we have short exact sequences

0= N ®rP, - NRrP, = N"®r P, —0
and this gives a short exact sequence of cochain complexes since ® g is a bifunctor:
0N ®rP—+N®rpP—+N'"®grP—0
By we get a long exact sequence in homology:
- = Torf(N', M) — Torf{(N, M) — Tory(N", M) =% Tory’ | (N', M) — ---

Again by the Double Complex Lemma it does not matter whether we take a
projective resolution of N or of M for the definition of N ® g M. So also the second

long exact sequence of |4 | holds.
Uniqueness follows the same way as in the proof of . O

10.22 Lemma. For commutative rings R the functor Tor; is commutative, asso-
ciative and preserves colimits.

Proof. This follows from the same properties | 10.16 | of the tensor product. O

10.23 Lemma. Let R be a PID (e.g. R = 7). Then Torfi(N, M) = 0 for arbitrary
M and N and all k > 2.

Proof. By we have a projective resolution P of M with P, = 0 for all £ > 2.
Hence N ® g P, = 0 and thus also Tory(N, M) := Hi(N ®p P) = 0 for those k. O

10.24 Remark.[20, 10.3.6]
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1. A module M is flat iff Torf(N, M) =0 for all N:
(<) obvious by [10.21.4] and [10.21.2 ]
(=) Let 0 > Q@ — P — N — 0 be short exact with free P. By we
have the exact sequence

0 = Torf(P, M) — Torf(N,M) - Q@r M — P @ M

with Torf (P, M) = 0 by | 10.21.3 |since P is free and with Q@zM — PRrM
injective since M is flat. Thus Torf(N, M) = 0.

2. Tor1(A,Z,) = {a € A : na = 0}: Consider the short exact sequence nZ —
7 — Z, leading to the long exact sequence

-+ —>Tory1(A,Z) — Tor1(A,Z,) >> A@nNL —>ARZL —> AR L, —0

EE] | o171
0

{a:na =0} A—"—=A A/nA

More generally, Tor®(R/(Rr),M) = {z € M : rz = 0} provided R is
commutative and r not a zero divisor: Again R —— R — R/(Rr) is short
exact, hence we have the exact sequence

.- —> Torf (R, M) — Torf(R/(Rr), M) > Rr M >~ R@r M — - - -
[102L3]| | | |
0 {reM:rz=0} M—"—sM

3. TOI'1 (Zm, Zn) = chd(m,n):
Again by |2 | we have Tory(Zm, Zn) = {a € Zyp : na = 0} = Zgea(m,n)-

10.25 Lemma. Let R be a PID. Then Tor®(A, B) = Tor®(Tor(A), Tor(B)), where
Tor(G) denotes the torsion submodule of G.

This motivates the notation Tor;, which is also called the TORSION PRODUCT .

Proof. Consider the short exact sequence Tor(B) — B — B/Tor(B). Since

B/ Tor(B) is torsion-free we get Torf(A, B/ Tor(B)) = 0 by [10.12| So get an
exact sequence

Toré:é(A7 B/ Tor(B)) — TOI‘{%(A, Tor(B)) — Torf(A, B) — Tor{%(A7 B/ Tor(B))

o] 012
0 0

and hence an isomorphism Tor(A, Tor(B)) = Torf(A, B). Now use the symmetry
of TorP. O

> 10.26 Kiinneth theorem. [20, 12.3.3] Let R be a PID and C a chain complex of
free (or at least flat) modules and C' be any chain complex. Then we have natural
short exact sequences

[I Hy(C) ®@r Hy(C") = H,,(C@r C") —]] Torf(Hp(C), Hy(C")).

ptHq=n ptg=n—1
If C and C' are free, then the sequences split.

The tensor product of chain complexes has ]_[p tq=n Cp ® C[] as n-th component
(C ®gr C"), by definition and the boundary operator is given by d(¢ ® ¢’) := de ®
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d+ (-1)Pec® 9 for c € Cp and ¢ € C.
We will also use the abbreviation

Torf”(Hp(C), Hy(C"))p—1 = H TOT?(HP(C)a Hy(C")).

p+g=n—1

V Proof. Again we start with the short exact (and, in case Cp_;1 and hence B,_1 is
free, splitting) sequences

0 Z, C, By 0

Tensoring with €7 and takeing direct the sums over p + ¢ = n gives short exact
sequences (If C,_; is flat(=torsion-free) then also B,_; hence Torf'(B, 1, ;) =0)

of chain complexes (where (B), := B,_1) by [10.21.4 :

0 700 % L coc 2% L Bec

By we get the long exact sequence in homology:

i®C’ 0RC") . .
e 2o v ooy 2 H, (BeC) — e H, (200 — .

= iQH'
(Z® H(C))n (B® H(C")n ——> (Z© H(C")a-
The identities follow from | 10.19 | by taking direct sums, since the boundary opera-
tor on Z and on B is 0. The rectangle commutes by summing up the corresponding

rectangles in the proof of | 10.19 | Again we consider the short exact sequence

0

0

Bp(c) (f) ZP(C) HP(C)

Taking the tensor product with H; := H,(C") yields the exact sequence (since Z,,_;
is flat)

iQH!
O%—Torl(H,H')n,lﬁBp(@H/ Hq-Z ®H’ ‘»HP®H{1%—0

N

(i® Hy)

and by summing over p + ¢ = n we get the exact sequence

0— Herq:nfl Torl(Hva ) (B Y H/ 1®H Z ® H/ (H X H')n —0
(i@ H),

In particular, im((0 ®g C')«) = ker(d.) = ker(i ®@r H') =[] Tory (Hy, Hy).

pFg=n—1

On the other hand the kernel of (j ® g C'), is the image of 6, = ¢ g H', i.e. the
kernel of the epimorphism (Z®pr H'),, - (H®pr H'),,. Thus (j @ g C"). factors over
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(H ®@p H'),, to yield a monomorphism with the kernel of (0 ® C'). as image:
n+1(B®C”)6> H,(Z®C)+H,(C®C')— H,(Bx () —> Hn 1 (Z2C7) >

H * H i § H * H

(B®H’) (Z®H’) (B H'),— 1?(Z®Hl -1

| J

00— Cok(i ® H') = H,(C® C") > Ker(i ® H') ——— 0

(H® H'), Tory (H @ H')p—1

If both chain complexes are free, then we have retractions r : C;, — Z, and r’ : Cj —
Z,. The homomorphism r @7 : (C®rC"), — (H(C)®r H(C")), maps the bound-
aries of (C ® C"),, to 0, hence induces a homomorphism H,(C ® C') — (H(C) ®
H(C"))n, which is obviously inverse to the monomorphism (H(C) ® H(C")),, —
H,(C ® C") constructed above. O

As a special case of | 10.26 | we obtain:

> 10.28 Universal coefficient theorem for homology of chain complexes.
[20, 10.4.6]
Let C be a free chain complex and M be a module over a PID R. There there is a
splitting natural short exact sequence

H,(C) ®r M = H,(C ©p M) —= Tor!(H,(C), M)

V Proof. Let another chain complex C’ be defined by Cj := M and Cj, = 0 for all
q # 0. By the Kiinneth-Theorem | 10.26 | we have the short exact sequence

LIH,(O) @5 Hy(C') = Ha(C @5 ') —= L] Torf{ (Hy (C), H (C')
ptg=n H p+q=n— H

H,(C)®r M H,(C®r M) Torl(H,,_1(C), M)
Since B,,_; is free we get a right inverse ker(0 @ M) < ker(i @ M)

s : B,_1 — (C, for 0. This induces
a morphism B,_1 g M — C,, g M,

which maps the kernel Tor®(H,_1, M) of ¢, oM —" B oM

iQrM : By 1 ®r M — Z,,—1 ®r M into ~ et ‘

Zn(C ®p M), and thus defines a section ~ 99M l@M
[10.19]

for H,(C ®g M) — Tory(H,,_1(C), M). Co oM <-;Aj Z oM 0
j

> 10.29 Universal coefficient theorem for homology of spaces. [20, 10.5.3]
Let (X, A) be a pair of spaces and G be an abelian group. Then we have splitting
short exact sequences

H, (X, A) @z G > Hy (X, A;G) —s Tor?(H, 1(X, A),G) O

10.30 Example.
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1. If H;—1(X) is free (or at least torsion-free), then Tor;(H,—1(X),G) = 0
and hence H,(X) ® G = H,(X;G). In particular, we get easily Ho(X;G),
Hq(Dnv Snil; G)v Hq(Sn; G)7 Hq(Fg; G)’ Hq(]Pm((C)v G)’ etc..

2. Hy(P™;Zy) = Zy for 0 < g < m:

By we have H,(P") € {Z,Zy,0} and hence H,(P") ® Zy € {Z3, 75,0}
and Tory (H,(P™),Zs) € {0,Z2,0}. Thus H,(P™;Zs) = Zsy for 0 < ¢ < n.

> 10.31 Proposition. [20, 10.5.5]
The homotopy theorem, the relative Mayer-Vietoris sequence and their consequences
(like the excision theorem and the exact sequence for a pair and a triple) hold also
for the homology with coefficients.

V Proof. The homotopy theorem carries over, since a homotopy between map-
pings (X, A) — (Y, B) induces a chain homotopy for the correspoding chain map-
pings S(X,A) — S(Y,B) and tensoring with G gives a chain homotopy for the
chain mappings S(X, A) ®z G — S(Y, B) ®z G. By this induces the identity
in the homology (with coefficients).

The relative Mayer-Vietoris sequences (and its consequences) is shown as for the
cohomology in , since all chain complexes considered there consist of free
abelian groups, hence the corresponding short exact sequences are splitting and
thus are also short exact after tensoring with G. Hence we have the corresponding
long exact sequences also in homology with coefficients by . O

> 10.32 Eilenberg-Zilber theorem. [20, 12.2.6]
There is a natural equivalence of chain complezes S(X xY) ~ S(X) ®z S(Y).

V Proof. (+) Let first X = A, und Y = A,. For n = 0 we define ¢ : (S(X) ®

S(Y))o = S(X xY) by p(z®y) := (z,y) forz € X undy €Y. By this can
be extended to a chain mapping ¢ : S(A,) ® S(A,) = S(A, x A,). For arbirary
X and Y define ¢ by p(0 @ 7) := (0 X 7)(p(Ap @ Ay))

(=) For X =A,, Y =A,, and (n = 0) we define ¢y : S(X xY )y — (S(X)@5(Y))o
by o (z,y) :=  ® y. By the Kiinneth-Theorem we have that H, (S(Ap) ®
S(Ag)) = 0 for all n > 0. For singular 1-simplices o and 7 with 0o =: 1 — xo
and d7 =: y; — yo we have that (o,7) : Ay = X X Y is a singular 1-simplex with
boundary ¢ = (z1, 1) — (Zo, yo)- Since o(c) = 21 QY1 — 2o QYo = o QY1 + TR T)
we can extend ¢ by to a chain mapping ¢ : S(X xY) = S(X) ® S(Y). For
arbirary X and Y we define ¢ by (0, 7) := (0 x 7). (¥ (A, Ay)).

In dimension 0 obviously ¢ o ¢ = id and 9 o ¢ = id. By we get a chain
homotopies o1 ~id and ¢ o p ~id for X = A, and Y = A,. By naturality they
can be extended to arbitrary X and Y. O

Using one can easily show that v is uniqely determined up to chain homo-
topies and hence the induced isomorphism of homologies is uniquely determined.
In particular, one can use

U0 Ay = XXY) = Y (pryooog, . p)®(Pry000L,  pig) € (S(X)@S(Y))n.

p+g=n

> 10.33 Corollary. Kiinneth theorem for spaces. [20, 12.4.3]
We have a splitting short exact sequence

(H(X) @z H(Y))p > H,(X xY) — Tor?(H(X), H(Y))n_1
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Proof. By the Kiinneth-Theorem we have the splitting short exact sequence
I Hp(X) @ Hy(Y) > H,(5(X) ® S(Y)) — [ Tor1(H,(X), Hy(Y)).

p+qg=n p+g=n—1
By the Eilenberg-Zilber Theorem we have S(X)®S5(Y) ~ S(X®Y). Hence
H,(S(X) @ S(Y)) 2 Hy(S(X x Y)) = Hy(X x Y) by [8.23] O

10.35 Corollary. [20, 12.5.5] Let R be a field, then
H.(X;R)® H.(Y;R) = H.(X x Y3 R).

Proof. Since C := S(X) ®z R is a chain complex of R-modules, the H,(X;R) :=
H,(C) are R-modules. Since R is a field, all R-modules are flat by [ 10.11], hence
Torf(H,(C), Hy(C")) = 0. By the Kiinneth—Theorem H(X,R)®@rH(Y,R) =
H(C)®r H(C') = H(C ®g C"), so it remains to show that

C®RC’ = (S(X)@ZR)®R(S(XI)®ZR) = (S(X)@ZS(X/))®ZR ~ S(XXX/)Q?ZR,
which is obvious via (s @ 1) ® (' ® ') — (s ® §') ® rr’ with inverse mapping
() (@r)«—(s@s)®r. O
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G-equivariant mapping, 82
G-homomorphism, 82
n-ball, 1

n-cell, 1

n-sphere, 1

g-boundaries, 102

g-cycles, 102

qt"-chain group, 101
(chain) homotopic chain mappings, 122
(inductive) limit, 27
(singular) g-boundaries, 117
(singular) g-cycles, 117
0-homologous g-chains, 102
0-homologue, 100
0-homotopic, 29

abelization of a group, 64
act freely, 19

acyclic space, 117

affine homeomorphisms, 2
ambient isotopy, 92
amphicherial knot, 93

Baer-sum, 156

barycenter, 46

barycentric chain, 123

barycentric refinement, 46

base space, 75

base-point preserving homotopy, 30
boundary, 5, 13

boundary of an oriented g-simplex, 102
boundary point, 13

carrier simplexof a point, 44
cellular g-chains, 134

cellular chain group, 134

cellular homology, 135

cellular mapping, 55

chain complex, 103

chain mapping, 109
characteristic conjugacy class, 84
characteristic map, 51

chart, 13

closed g-chains, 102

closed 1-chain, 100

closed manifold, 13

cofibration, 35

cohomology, 143

commutator subgroup, 64
commutators, 64

components of a simplicial complex, 45
concatenation of paths, 59

Index

cone, 106, 118

cone with base X, 8
congruence relation, 63
connected simplicial complex, 45
connected sum, 15
connectible simplices, 44
contractible, 29

convex, 3

coproduct of abelian groups, 64
coproduct of groups, 63
coseparator, 167

covering map, 75

covering transformations, 77
cup-product, 165
CW-complex, 51
CW-decomposition, 51
CW-pair, 52

CW-space, 51
CW-subcomplex, 52
CW-subspace, 52

cylinder over X, 8

decktransformations, 77
deformation retract, 37

degree, 33

dense functor, 79

diffeotopic knots, 92

diffeotopy, 92

dimension of a simplical complex, 43
direct sum of abelian groups, 64
divisible, 146

doubling of a manifold, 15

edges of a simplical complex, 43
equivalence classes, 5

equivalent extensions, 153

equivalent knots, 93

exact g-chains, 102

exact 1-chain, 100

exact sequence of abelian groups, 105

face, 42

face-map, 116

fibers, 75

fibration, 35

first homotopy group, 59
flat module, 169

free abelian group, 65
free group, 65

free product of groups, 63
fundamental group, 59
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general lens space, 20 projective space, 16

graph, 70 push-out of groups, 64
group with generators X and defining rela-
tions R, 65 quasi-ordering, 89
quotient mapping, 5
Heegard decomposition, 18 quotient topology, 5

homeomorphism of pairs, 2
homologous g-chains, 102
homology, 103

homology group, 103
homomorphism of coverings, 77
homotopic, 29, 30

homotopy, 29

homotopy class, 29

homotopy equivalence, 36
homotopy equivalence of pairs, 37
homotopy equivalent, 37
homotopy extension property (HEP), 35
homotopy of pairs, 30

homotopy relative a subset, 30

relative chain group, 113
relative homeomorphism, 2
relative homology, 113
relative singular g-chains, 119
representationof group, 65
retract, 32

retraction, 32

reverse path, 59

right-derived functors, 150

semi-locally simply connected, 87
semisimple, 152

short exact sequence of abelian groups, 108
simplex, 42

simplicial approximation, 46
simplicial complex, 43

simplicial mapping, 45

simply connected space, 61
singular g-chains, 116

singular ¢g-simplex, 116

singular chain group, 116
singular homology group, 117
splitting sequence, 109

standard (closed) g-simplex, 116
Klein’s bottle, 15 star, 47

knot, 24, 92 strict deformation retract, 37
strictly discontinuous action, 19
subcomplex, 44

induced ordering of the opposite face, 102
inductive limit, 66

injective, 145

injective abelian group, 145

injective resolution, 147

invertible knot, 93

isotopic knots, 92

isotopy, 92

isotropy subgroup, 82

knot group, 94

leaves, 75 subgroup, 62
left exact functor, 145 subgroup generated by a subset, 63
left module, 145 surface, 13

1 18
NS Space, topological equivalent, 24

Mébius-strip, 14 topological group, 21
manifold, 13 torsion product of modules, 174
mapping cylinder, 40 total space, 75

tree, 70

triangulation, 43

trivializing neighborhood, 75
turning (winding) number, 33

mapping degree, 32
mapping of pairs, 2
Mayer-Vietoris sequence, 125

natural transformation, 121

neighborhood deformation retract, 37
neutral element, 62

normal coverings, 79

normal subgroup, 63

normal subgroup generated by a subset, 63
normalizer, 84

underlying topological space, 43

vertices, 42
vertices of a simplical complex, 43

orbit space, 19
orientation of a g-simplex, 100

pair of spaces, 2

points in general position, 42
polyhedra, 43

product of groups, 63
projective, 146

projective plane, 16
projective resolution, 147
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