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This is the preliminary english version of the script for my lecture course of the
same name in the Summer Semester 2018. It was translated from the german
original using a pre and post processor (written by myself) for google translate.
Due to the limitations of google translate — see the following article by Douglas
Hofstadter www.theatlantic.com/... /551570 — heavy corrections by hand had to
be done afterwards. However, it is still a rather rough translation which I will try
to improve during the semester.

It consists of selected parts of the much more comprehensive differential geometry
script (in german), which is also available as a PDF file on
http://www.mat.univie.ac.at/~kriegl/Skripten/diffgeom.pdf.

When choosing the content, I followed the curricula. Accordingly, the following
topics should be known, in particular from "Higher Analysis and Elementary Dif-
ferential Geometry’:

e Curves (see [81, 5.5] and [86, Kapitel I]), submanifolds of R™ (see ), par-
titions of unity (see [82, 7.6.2]),

e Transformation formula for multidimensional integrals (see [82, 7.5.10]),

o Multilinear forms (see [82, 8.2]), differential forms (see [82, 8.3]), oriented sub-
manifolds and integration of differential forms (see [82, 8.6]), Stokes Theorem
(see [82, 8.7.3]) and classical integral formulas (see [82, 8.1.2,8.1.5,8.1.7]).

And in this lecture should be treated:
e Abstract manifolds,
e Tangential bundle, vector fields and flows, Lie bracket,
e Differential forms, outer derivative and Cartan calculus,

e Integration and the Theorem of Stokes,

Applications (e.g. symplectic geometry, differential topology).
The structure of the script is thus the following:

In Chapter II, we first recall manifolds as subsets of a Euclidean space, and then
introduce them as abstract objects that are obtained by gluing Fuclidean spaces.

In Chapter III the concept of derivative is transferred to manifolds. This leads to
tangent spaces and tangent mappings and is used to get a notion of sub objects
and quotient objects of manifolds.

Ordinary differential equations on manifolds are introduced in Chapter IV. For this,
the tangent spaces are merged into a tangent bundle and vector fields are examined
as sections of this bundle.

Chapter VI is dedicated to differential forms and their algebraic structure, and also
serves as preparation for integration on manifolds in Chapter VII.

At the end of the semester, I will post a detailed list of all the sections treated at
https://www.mat.univie.ac.at/~kriegl /Skripten/2018SS-hist.html.

Of course, the attentive reader will be able to find (typing) errors. I kindly ask to
let me know about them (consider the german saying: shared suffering is half the
suffering). Future generations of students might appreciate it.

Andreas Kriegl, Vienna in February 2018


https://www.theatlantic.com/technology/archive/2018/01/the-shallowness-of-google-translate/551570/
http://www.mat.univie.ac.at/~kriegl/Skripten/diffgeom.pdf
https://www.mat.univie.ac.at/~kriegl/Skripten/2018SS-hist.html

I1.

© 0 N Ol W N e

I11.
10
11

12.
13.

IV.

14.
15.
16.
17.
18.

Contents

Manifolds

. Examples of two-dimensional surfaces
. Submanifolds of R™
. Examples of submanifolds

. Examples of Lie groups

Smooth mappings

. Abstract manifolds
. Products and sums of manifolds
. Partitions of unity

. Topological properties of manifolds

Tangent space

. Tangent space and derivatives

. Immersions

Submersions
Fiber bundles

Vector fields
Tangent bundle
Vector fields
Ordinary differential equations of first order
Lie bracket

Integral manifolds

12
23
31
33
41
43
46

93
53
63
()
75

78
78
83
86
89
100

andreas.kriegl@univie.ac.at © June 26, 2018

ii



VI

19.
20.
21.
22.
23.
24.
25.
26.

VIL

27.
28.
29.

Differential Forms
Constructions and 1-forms
Motivation for forms of higher order
Multilinear algebra and tensors
Vector bundle constructions
Differential forms
Differential forms on Riemannian manifolds
Graded derivations

Cohomology

Integration
Orientability
Integration and the Theorem of Stokes

Applications of integration to cohomology

Bibliography

Index

109
109
116
118
124
126
129
132
146

155
155
178
183

202

207



II. Manifolds

In this chapter we introduce the concept of manifolds. We start by playing around
with two-dimensional submanifolds of R™ - so called surfaces -, and we will gener-
alize these in the second section to higher dimensional submanifolds of R™, and in
the third section we will make the examples from the beginning precise. Then we
will treat the classical examples of those manifolds, which carry a smooth group
structure, so-called Lie-groups. After having introduced the notion of smooth map-
pings we may turn to abstract manifolds, by which I mean manifolds, which are
not embedded into some Euclidean space a priori. After discussing products and
disjoint unions of manifolds we come to the question of the abundance of smooth
functions on manifolds. In particular, this concerns separation axioms like Haus-
dorffness, locally compactness, and - most important - paracompactness and the
related concept of partitions of unity, which is the main tool for passing from local
constructions (like those treated in calculus classes) to global pendants.

1. Examples of two-dimensional surfaces

For the time being, we want to become playfully acquainted with two-dimensional
manifolds in this section. These are objects that look like a disc in the R?, up to
bending and stretching.

1.1 Examples of orientable surfaces.

Sphere

andreas.kriegl@univie.ac.at © June 26, 2018 1


https://www.mat.univie.ac.at/~kriegl/Lehrveranstaltungen/Differentialgeometrie/sphere.html

1. EXAMPLES OF TWO-DIMENSIONAL SURFACES 1.1

a

Cylinder

Orientable compact surfaces of genus 2 and 3
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1. EXAMPLES OF TWO-DIMENSIONAL SURFACES 1.3

Orientable compact surface of genus 3

1.2 Classification theorem for orientable surfaces.

Each compact, connected surface in R3 is homeomorphic to a surface of some genus
g >0, i.e. arises from the sphere by glueing g cylinders to it.

Without proof, see, e.g. [65, 9.3.5]. We give some evidence for that in .

1.3 Examples of non-orientable surfaces.

Examples of two-dimensional, connected, non-orientable surfaces:

a

gee

Mobius strip
If you cut the Mdbius strip lengthwise, you get a doubly twisted ribbon, which can

be untwisted in R* (see )
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1. EXAMPLES OF TWO-DIMENSIONAL SURFACES 1.3

2-fold twisted Mobius strip

Examples of two-dimensional, connected, compact, non-orientable surfaces:

Klein bottle

This is called the KLEIN BOTTLE, which can be realized in R* without self-intersections
and which can also be obtained by gluing two Md&bius strips along their boundary
edge.

%%

Klein’s bottle dissected
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1. EXAMPLES OF TWO-DIMENSIONAL SURFACES 1.3

Another example is the PROJECTIVE PLANE P2, which is the set of all lines through
the zero point in R3. One can obtain the projective plane from the sphere in the
following way: The antipodal points on the sphere generate the same line and hence
must be identified with each other. To do this, we stick the northern hemisphere
antipodally to the southern one. We still have to identify opposite points on the
equator. For this we deform the hemisphere to a disc, from which we cut out a
semicircle on both sides and, after gluing the antipodal points at the equator, we
get a Mobius strip and a disc. Now you just have to glue the edge of the disc to
the boundary of the Md&bius strip.

ag
by
az az b2
) a2 ’
1
2

Projective plane

You can imagine this in three ways:
1) Draw the Mobius strip and glue the disk (with self-intersection).

2) Draw the disk and glue the Mobius strip (with self-intersection). This is also

called the CROSS CAP.
a;
ay
b1 bz
as az
by by
az

e

Cross cap

3) Again, we glue a Mobius strip (three-fold twisted and self-intersected) to a disc.
This is also called BOY’S SURFACE.
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1. EXAMPLES OF TWO-DIMENSIONAL SURFACES
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1. EXAMPLES OF TWO-DIMENSIONAL SURFACES 1.4

LAl A

Construction of Boys surface

1.4 Classification theorem for non-orientable surfaces.

FEach non-orientable, connected, compact surface arises from a sphere by glueing a
finite number of (> 1) cross-caps to it. The number of glued cross-caps is called the
genus of the surface.

Without proof, see, e.g. [65, 9.3.10]. An evidential proof for this and for
uses surgery as follows: Try to find a simply closed curve on the surface M, which
does not section M in two parts, and widen this curve to a band, i.e. a rectangle
with one pair of parallel sides glued together. Depending on whether this gluing
involves a twist or not, it is a Mdobius strip or a cylinder. We remove this band
and glue one or two disks to the sectioning circle(s) and get a new surface M'.
Conversely, M is obtained from M’ by gluing a cross cap or a handle to it. We
continue this process until the resulting surface decomposes into two parts along
each simple closed curve. One has to convince oneself, that this surface is then
homeomorphic to the sphere: Each such curve can be extended to a cylinder, and
if one glues discs to the complement of this cylinder, then the two smaller resulting
surfaces have the same property. So M can be obtained from a sphere by gluing
handles and cross-caps to it. However, it is also not obvious that the above process
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1. EXAMPLES OF TWO-DIMENSIONAL SURFACES 2.3

really stops after finitely many steps. Furthermore, it remains to show that it
suffices to glue only handles or only cross-caps. It suffices to show that if you cut a
hole in a torus and glue a Md&bius strip to it, then this is the same as cutting a hole
in a Klein bottle and gluing a Mdbius strip to it. This is shown by the following
drawing;:

=2 & @ &

PPDC

Transforming of a torus into Klein’s Bottle

J

2. Submanifolds of R"

In this section we want to define manifolds as sufficiently “regular” subsets of R™.
We will see that these can be described in various ways.
2.1 Definition (Regular mappings).

We generalize the notion of regularity of curves from [86, 1.2]. A smooth map
f:U —=V, where U C R"” and V C R™ are open, is called REGULAR if the rank
of the derivative f’(x) at each point € U is as large as possible, i.e. equal to
min{n, m}.

Note that a map being regular at one point is regular locally around this point,
because the rank can not fall locally.

If m < n, then regularity means that the derivative is surjective at each point.

From linear algebra we know the following relationships for the rank of a linear
mapping A : R" — R™:

rank(A) := dim(im(A)) = dim(R") — dim(ker(A)).
Thus for m > n regularity means that the derivative is injective at each point.

For the equivalence of the description of “well-behaved” subsets of R™ to be given
in , we need the following two central results from multidimensional analysis:

2.2 Inverse function theorem.

Let U be open in R™ and f : U — R™ be smooth, with f(0) = 0, and invertible deriv-
ative f'(0) at 0. Then f is a local diffeomorphism, i.e. there are open neighborhoods
V and V' of 0, such that f : V — V' is bijective and f~' is smooth.

Without proof, see Real Analysis, e.g. [81, 6.2.1] and [81, 6.3.15].

2.3 Implicit function theorem.

Let f: R™ x R™ — R™ be smooth with f(0,0) = 0 and invertible partial derivative
O2£(0,0) : R™ — R™. Then there is locally a unique solution y(z) of f(z,y(z)) =0
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2. SUBMANIFOLDS OF R" 2.4

and x — y(x) is C. More precisely, there is an open 0-neighborhood U x V C
R™ x R™ such that for (x,y) € U x V we have f(z,y) =0 < y = g(z).

Proof. See also [81, 6.2.3] and [81, 6.3.15]. We define F : R™ x R™ — R"™ x R™
with F(z,y) := (z, f(z,y)). This mapping is smooth and F(0,0) = 0. Its derivative
at (0,0) is given by the (n +m) X (n + m)-matrix

F'(0,0) = <if an?o, 0))

This is invertible, so it follows from the Inverse Function Theorem that F~1
exists locally and is smooth. Since F' is the identity in the first variable, the same
holds for F~1. Thus let (u, g(u,v)) := F~!(u,v), then:

f(z,y) =06 F(z,y) = (2,0) &
& (v,y) = F'(2,0) = (z,9(2,0)) & y =g(x,0) O

2.4 Proposition (Characterization of submanifolds).

For a subset M C R™ with p € M and m < n, the following statements are
equivalent:

1. (LOCAL PARAMETERIZATION) There is a smooth and at 0 regular mapping
¢ : U = R", where U is open in R™ with 0 € U and ¢(0) = p, such that for
each open neighborhood Uy C U of 0 an open neighborhood W of p exists in R™
with o(Uy)) =M NW.

Rm
u

Rn

2. (LOCAL GRAPH) There is a smooth mapping g : U — V, where U is open in an
m-dimensional subspace E of R™ and V' is open in in the orthogonal complement
EL, withp € M N (U x V) = graph(g) := {(z,9(x)) :x € U} C E x Bt 2R,

A UxV
E

3. (LOCAL EQUATION) There is a smooth and at p regular mapping f : W —
R™=™  where W is open in R™, withp € M NW = f~1(0).
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2. SUBMANIFOLDS OF R" 2.4

R"-MA

——
/]Rn

4. (LOCAL TRIVIALIZATION) There is a diffeomorphism ¥ : W — W', where W'
is open in R™ x R"™™ and W is open in R™, withp € M NW = v—1(W' N

(R™ % {0}))-

Rnfm

e
. X

]Rm

Proof. Without loss of generality p = 0 since for an affine mapping « the state-

ments hold p € M iff they hold for M replaced by «a(M) and p by a(p) when we

compose the claimed regular mappings with o and/or a=!.

(:>) Let ¢ : R™ O U — R™ be a local parametrization as in . Analogous
to [86, 2.3], we want to extend ¢ to a local diffeomorphism ®. Let E C R™ be
the image of ¢’(0). Due to the regularity of ¢, dim(E) = m and with respect
to Ex B+ 2 E® EL = R" let ¢ = (p1,92), hence ¢'(0) = (¢1(0),©5(0)).
Consequently, ¢5(0) = 0 and ¢ (0) : R™ — F is injective (hence bijective).

Let . R" @ EL DU® EL > Ee EL be defined by

B(u,v) = p(u) + v = (p1(u), p2(u) +v).
The Jacobi matrix of ® at (0,0) has block form:

/
’ _ (%1 0) 0

¥(0.0)= (90'2(0) id)

It is invertible because ¢}(0) : R™ — E is bijective! It follows from the Inverse

Function Theorem that ® is a local diffeomorphism, that is, 3U; C U C R™

open, 1 V3 C E+ open, and 3 Wy C W open, so that ® : Uy x V3 — Wi is a
diffeomorphism.

E- E W
Ul X V]_
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2. SUBMANIFOLDS OF R" 2.4

In particular, p(U;) = ®(U; x {0}) CW; CW. n @

. Ux F——R"
Because of the property of ¢, there is an 0.
open Wy C R™, and without loss of general- j j
ity, Wo C Wi, with ¢(U1) = Wo N M. Then Up X Vi>opo> W)
Up x {0} C W' := & 1(W,) C U; x Vi, because j JA
o(U; x {0}) = cp(Ul).: Wg’ﬁ M, and. furthfsr— W= = (Wa) = = W,
more ® : W’ — W, is a diffeomorphism with 3.
inverse mapping ¥ := ®~! : W, — W'. Thus, JA j

W(WonM) = Uy x {0} = WN(R™x{0}) holds. W' NE=Uy > WyNM

In particular, ¢ is on U the restriction of the homeomorphism ® : W/ — W5, hence
¢ : U — M is a topological embedding onto the open subset Wy N M of M.

(:>) Let ¥ be a local trivialization as in and put f := pry oV, where
pry : R™ x R*™™ — R™™™ ig the projection onto the second factor. Since f'(z) =
pry o ¥/(2) is onto, f is regular. If 2 € W, then:

—~ —~—

surj. bij.

z€M & U(z) e R™ x {0} & 0= (pryo¥P)(z) = f(2).

(:>.) Let f: W — R"™™ be a local equation as in -

N @/

We define E := ker f/(0) and use R" = E @ EL. Because of
dim ker f'(0) + dim im f/(0) = dimR",
(0) (0) = ,

E n—m n

dim F = m and dim E+ = n —m. We are looking for a function g : £ — E+, which
is implicitly given as solution g(z) :=y of f(z,y) =0 (i.e. (z,y) € M). In order to
apply the Implicit Function Theorem we have to show thatr the second partial
derivative of f

ol =0f(0,0): BX R
ay(0,0) 2f<a)

is bijective: Because of f/(0)(v1,v2) = 01.f(0)(v1)+02f(0)(v2) we have 01 f(0)(v1) =
f'(0)(v1,0) = 0 for all v; € E = ker f/(0), thus f/(0) = 92f(0) o pry : R* —
E+ — R™™ and is surjective by assumption. Hence also 0, f(0) : B+ — R"™™ is
surjective and therefore bijective because of dim(E+) =n — m.

By the Implicit Function Theorem there exists an open 0-neighborhood U x
V CW C E x E+ and a smooth g : U — V, with g(z) = y < f(x,y) = 0 for each
(z,y) e U x V.

(2 = 1) Let M be described locally as the graph of g : E D U — V C E+. We
define the smooth mapping ¢ : U — E x E+ = R" by x — (z,g(z)). Remains to
show that ¢ locally describes the set M. For (z,y) € U x V =: W we conclude as
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2. SUBMANIFOLDS OF R" 3.2

follows:

(z,y) € M & (z,y) € graph(g) & y = g(z) & (z,y) = (z,9(x)) = o(z).

The mapping ¢ is locally a topological embedding, because (z,y) — y describes a
left inverse. O

Definition (Concrete manifold).

A subset M of R™ having one of the above equivalent properties for all of its points
p € M is called C*°-(suB-)MANIFOLD (OF R™) of dimension m. Unlike curves,
these manifolds do not have self-intersections even for m = 1.

A smooth regular mapping ¢ : R™ O U — M C R" with open U C R™ and
©(0) = p, which is a topological embedding onto an open subset of M, is called
LOCAL PARAMETERIZATION of M (centered at p). In (:>) we have shown that
any  satisfying is a local parameterization (on some smaller 0-neighborhood).

Rm

The components u!,...,u™ of the inverse mapping (u!,...,u™) = u = ¢~ ! :
»(U) — U to a local parameterization ¢ are called local coordinates of M. Points
p € M can therefore be described locally (after specification of a parameterization

©) by m numbers u!(p),...,u™(p).

3. Examples of submanifolds

In this section, we will now give several examples of submanifolds M, providing at
the same time precise definitions for the surfaces in .

3.1 The circle.

1. Equation: z2 + y? = R2.
Thus f: R? — R defined by f(z,y) := 22 + y? — R? describes an equation for
M that is regular on W := R?\ {0}.

2. Parameterization: ¢ — (z,y) := (R - cosp, R - sinp).
For all (xg,90) € M there is a ¢y € R (given by €0 = (zg, o)), s.t. ¢ — (z,y)
is a local parameterization from U := Jpg — 7,0 + 7[ to W N M with W :=

R?\ {(~0, —30)}.

3. Graph: y = +vVR2 —z2 or x = £/ R2 — 32
Put £ := R x {0}, U := |-R,+R[ C E, and V := ]0,+00o[ C E*+. Then
MNUxV)={(z,VR? —22) : x € U} is a local representation of M as graph
ofg: U —= V.

4. Trivialization: W=1 : (r,) — (r-cosg,r - sing). Then U1 : R? — R? with
V(M) ={R} x R=R. These are just polar coordinates.

3.2 The cylinder.
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3. EXAMPLES OF SUBMANIFOLDS 3.3

1. Equation: 22 +y?> +0-2z = R
Note that this is the same equation as that of the circle, but now understood
as an equation on R3.

2. Parameterization: (p,z) — (R -cosp, R -siny, z). We obtain this parameteri-
zation by parametrizing a generator of the cylinder by means of z — (R,0, 2)
and rotating it by the angle ¢ around the z axis via

cosp —singp 0
sinp cose 0],

0 0 1
ie.
cosp —sinp 0 R Rcosp
singp cose 0)-|10] =] Rsing
0 0 1 z z

3. Graph: y = £vV/R2 — 22 or x = +/R2 — 4.

4. Trivialization: (@, r, z) <> (r-cosp,r -sinp, z), these are the cylindrical coor-
dinates.

A parameterization f: R™ D U — M C R" is (by definition) LENGTH-PRESERVING
if and only if the length of each curve ¢ : [a,b] = U C R™ is equal to that of the
image curve foc: [a,b] = M CR", ie.

/\c (1) dt = /\ o) (t)|dt = /|f ()] dt

holds. This is exactly fulfilled if f/(p) is an isometry for all p € U, ie
|f (p)(v)] = |v| for all v € R™

Namely let f be length preserving, v € R™ and ¢4 : t — p+tsv. Thenc, : [0,1] - U
for all s > 0 close to p and thus

slv] = /|c )| dt — /|f ealt sv|dt—s/ 1 (s (8))(0)] dt

and, since ¢ — ¢o for s — 0 uniformly on [0, 1]:

o= [ 1wl = [ 17 ool = e
The reverse implication is obvious.

The above parameterization f : (@, z) — (Rcos g, Rsinp, z) is not length preserv-
ing for R # 1, because

' (0,2)(1,0)] = |55 (0, 2)] = |R(=sing, cos ,0)] = R # |(1,0)].

However, this can easily be corrected by considering the new parameterization
f:(p,2) = (Re'¥/R 2) with derivative

0
f'(e,2) = | cos(f) 0O
1

The columns now form an orthonormal system, so f’(¢, z) is an isometry and thus
f is length preserving.

0

3.3 The cone.

It is formed by rotating a straight line through zero with slope « around the z axis.
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3. EXAMPLES OF SUBMANIFOLDS 3.4

1. Equation: tana = z//22 + 42 or (22 + y?) tan® a = 22. The former describes
the cone, the latter the double cone. The equation is not regular at (0,0,0), so
we need to remove the tip, because there the (double) cone is not a manifold.

2. Parameterization: (p, s) — (scosacos ¢, scosasin g, ssin a).
We obtain this parameterization by parameterizing a generator of the cone by
arc length as s — (scosq, 0, ssina) and rotating that by the angle ¢ around
the z axis via
cosep —sing 0
sinp cosep O

3

0 0 1
i.e.
cosp —singp 0 scos o 5COS L Cos
sing cose O - 0 = | scosasinyp
0 0 1 ssina ssina

3. Graph: z = +tan a\/.m

4. Trivialization: (p,q,s) <> (scosacosp, scosasin g, ssin «), these are the spher-

ical coordinates.
- 21 cos (a)

cos (a)

0

A better parameterization is obtained by unfurling the cone into the plane:

( : )
T COS (x COS
v cos o
— — = = — . )
(@.y) = (r,9) (8 ne cosa) Tcosasm< L >
cos o
rsin o

where (z,y) are Cartesian coordinates and (1, r) are polar coordinates in the plane.

The derivative of this parameterization is the composition of

cosa - cos(cofa) —rcosa - sin(&) 1 0 costp  —rsing -1
cosc)wsin(&) rcosa'cos(%) 1) =
0 siny  rcosy
sin o 0 cosa

cos a cos a cos a

cos a cos P sin a sin ¥

cos a

cos a cos cos(codﬁ)fsinw sin( CO'/S’Q ) cos a sin ¥ COS(%)*COS’(L) sin( c&:ia )
cos a cos P sin(L)ﬂ—sinw cos( ¥ ) cos a sin sin(L)-i-cosw cos( ® ) P
which can be shown to be isometric by a lengthy direct calculation.

3.4 The sphere.
1. Equation: z2 + y? + 22 = R?
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3. EXAMPLES OF SUBMANIFOLDS 3.4

2. Parameterization: (¢, ) — (R cos ¥ cos ¢, R cos ¥ sin p, Rsin ¢) with longitudes
@ and latitudes 9. Again, we obtain this surface by looking at the inter-
section curve with the z-z plane, which is a (semi-)circle parameterized by
¥ — R(cos¥,0,sind) and rotating this around the z-axis by some angle . So
we obtain

cosp —sing 0 Rcosd Rcos?cos
sinp cosep 0] - 0 = | Rcos¥sinp
0 0 1 Rsind Rsind

3. Graph: z = +y/R2 — 22 — 4?2
4. Trivialization: Spherical coordinates.

One can also parametrize a sphere by projecting onto the touching cone with slope
(N
Rcos?cos e
(x,9) = (p,8) = (p,9(s)) — | Reosdsing ||
Rsind

where (¢, s) are the parameters of the above parameterization of the cone and (¢, 1)
are the parameters of the sphere.

Particular choices for the function ¢ yield the radial projection, or the normal
projection to the generators of the cone, see exercise [86, 72.42]. In particular, one
is interested in angle or area preserving projections. We will show, that a length-
preserving parametrization is not possible - one can not form the sphere by furling
a sheet of paper.

Especially important is the stereographic projection: There one projects from one
point of the sphere (without restricting the generality: the north pole) to the tan-
gential plane in the antipodal point.
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: 0

Then 28+ (5 —9) =7 = =% + 2 and thus

T 19) _ 1 +tan(9/2)

f—tnﬁ—tn -+ - —
o T P E T T ) T T tan(v/2)

This projection is angle preserving and circles are mapped to circles or straight
lines, see Exercise [86, 72.41].

For seafaring, however, this representation of the sphere is not optimal: There one
is particularly interested in the loxodromes, i.e. those curves on the sphere, which
intersect the meridians under a fixed angle, because these are the orbits that one
travels when keeping constant course with respect to direction north (identifed by
the Polar Star or compass). In the stereographic projection, the mappings of the
meridians are straight lines through 0, an hence the loxodromes are (logarithmic)
spirals. If, on the other hand, we project to the cylinder touching along the equator,
then the meridians become parallel straight lines and if we choose the projection
angle preserving (the so-called Mercator projection) then the Loxodrome lines, are
very easy to draw by plotting the connecting line between start location and desti-
nation.

3.5 The n-sphere.

The n-dimensional sphere (or n-sphere for short) is S™ := {z € R"™! : |z| =
1} ¢ R™*1. The function f : o + |2|?> — 1 is a regular equation for S™, because
f'(z)(z) = 2|z|? = 2 for z € S™. As local coordinates, we use the stereographic
projection (but this time to the equatorial plane, giving a factor of 1/2 with respect
to the one previously discussed), i.e. associating to € S™ the y € R" = p+ c R"+!
lying on the line through the choosen pole p € S™ and z, i.e. y = p + A(xz — p) for
the A > 0 with

0=(p,p+ Az —p)) = Ip]* = Mp,p — 2)

2
1
I

pp—a) 1-(pa)

=y =M+ (1-Np= ﬁ(ﬂc— (p,z)p).

Vice versa

x =p+ ply —p) with 4 > 0, such that
1= |z]* = (p+puly —p),p+ uly —p))
=1+2(p, uly —p)) +1*(y —p.y — p)
= 0=p?ly —pl* +2ulp,y — p) = p(ply — pI* = 2(p,p — v)).
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3. EXAMPLES OF SUBMANIFOLDS 3.6

For i := 0 we get the uninteresting solution x = p. The other value is

2(1 —
= 2( py) _ : and thus
W2 —2(y,p)+1  |y2+1
~——
0
r=———(2y+(y* -1 )
|y|2+1( y+(yl” =1p
3.6 The torus.
asr vy
A
1. Equation: 22 + (\/:Wy2 — A)2 = a2
2. Parameterization:
(A+acosy)cose
(p, ) — | (A+acosy)sing |,

asiny
with longitudes ¢ and latitudes ¥. This is not length-preserving.

For the special torus a? := A% — 1 with 4 > 1 we compute the inverse image under
the stereographic projection R* D $% — R? with respect to the point (0,0,0,1) €
R* as follows:

z—{z,p)p
1- <Zap> .

(x1,y1,22,y2) — (x1,y1,x2,0) since z —
2

1—
This torus corresponds to the following subset of R*:
oyt =1

2
( 2 >2+<MA> e

1=y 1=y

Using the first equation, we transform the second one as follows:

2 2 2 2
0:<‘T2 ) (VIR 4} a2y
11—y 1—y

22 12 + 12 V12 4 12

= + —2A +1
(I—9y2)%2 (1 —y2)? 11—y
1— 2 1— 2 2

S oSV S W
(1-1y2) -y

S 241 — (@2 +y?) =1+ + (1 —y2) =2

andreas.kriegl@univie.ac.at (© June 26, 2018 17



3. EXAMPLES OF SUBMANIFOLDS 3.7

So the torus is described by the following system of equations:

5512 +y12 —|—l‘22 +y22 =1

1
1— (22 +y0°) = Vel
1
2+t = PR Circle in R? x {(0,0)}
< 9 2 A2—1 a2 2
T2 o’ = T Circle in {(0,0)} x R

The torus is thus the Cartesian product S' x S of two circles standing normal to
each other.

The parameterization

a Ay

(p, ) — (% cos(Ayp), % sin(Ayp), 1 COS(T), % sin(ﬂ))

a

is length-preserving, thus a torus can be generated in R* by furling a plane.

Remark: The following special cut through the torus in R3 results in two intersect-
ing circles:

e

On the cutting plane z = —s—=% Wwe use the basis with orthonormal vectors

(7&[“2, 0, %) and (0, 1,0) and we denote the corresponding coordinates with (s, ).
Then z = Y4202 . g and z = 2 . 5. If we plug this into the torus equation

A A
22+ (Va2 +y? — A)? = a2, we get

2
a \2 A? — g2
hal 2 2 _ _ 2
(AS>+<” yE $°+y A) a® &

o a?(A? - ) = (\/(A2 —a2)s? + A%y? —A2)2
= (A% —a?)s? + A%y? + A* — 242 /(A2 — a2)s2 + A2y2
& 247+ (A% —a?) = 21/(A2 — a?)s2 + A2y?
& (sP+y*+ (A% - a2))2 = 4(A? — a?)s? + 4A4%y?
& (A-("++a)?) (A= (s"+ (y—a))) =0,

and that is the equation of two circles with centers (0, +a) in the (s,y) coordinates
and radius A.

3.7 The Hopf fibration 3 — §2.
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3. EXAMPLES OF SUBMANIFOLDS 3.7

It is defined by the following commutative diagram

Hopf fibration
g3 P - 52

,l \Lstereogr.proj.

C2 o= C

(21722) f %

Since the inverse to the stereographic projection around p = (0,0, 1) is the mapping

y 2%\8%‘?—11)1) - Iy\21+1 (2y, ly|*> — 1), we get the following formula for the Hopf
fibration:
1 z 2z 2
2 2
AL22) e <277 — - 1) =
(21, 22) BTl Ol b
A (o2 [l
|21]2 + [222 \ 21 2171
1 —
N PAERRPAE (22221’ |2|* — \Z1|2) €S2 CCxR.
—

=1, because (z1,22)€S3

We look at the inverse images in S® of a circle of fixed latitude ¥ on S?, where ¥:
Z2

o = r(: tan(% + §>) &

- |z2| = r|21] - |22]* = 17|21 |?
(21,2’2) € SS |Zl‘2 + ‘ZQ|2 =1
1
2 _ .2
L [l =rlal o e
|21 (147%) =1 |21]2 = 1
1+7r2

This corresponds by to a torus in R3 under the stereographic projection S% —
R3, where A =712+ 1 and a = r.

We consider the inverse image in S2 of the South Pole on S2:

(Zl, 2’2) € SS,

A

(0,0,-1) € 8% £ (r=0)€R?> £ (Jz1| =1,20=0) C S,
or the North Pole on S2:
(0,0,41) € S% £ (r=o00) CR? £ (2, =0,|2| =1) c 5%

We claim in general: The inverse image of each point on S? (which is given by
2o € C with r := || with respect to the stereographic projection S? — C) is
a circle in $ C R* obtained by intersecting the sphere S C R* with the plane
Z9 = Z120-

jaal? = —
3 = 2
(2’1722)65 |22|2—|—|Zl|2:1 1+7“1
Z2 & 2 _ .2
Z:ZOGC Zo = 2120 |2’2| r 1—|—T‘2
Z9 = 2120

i.e. z; runs through one circle and at the same time z5 runs through a second circle.

In stereographic coordinates, the first two equations in R3 correspond to the torus
T: 22+ (\/12 +y2 —V/r2+1)% = r2. Without restriction of generality, let r =

andreas.kriegl@univie.ac.at (© June 26, 2018 19



3. EXAMPLES OF SUBMANIFOLDS 3.8

—i

zo € R, otherwise we rotate z; by e™*V, which corresponds to a rotation around the

z-axes in R3 = C x R.

22 =Tz T2 =Tx1, Y2 =THh
1 1
2 _ .2 2 _ .2
On the 53 : 4 22" =7 1472 p = |2 =7 1+7r2
1 1
2 _ 2 _
1] T 142 1] 1+ 72
z=1rx

Corresponds to R3 . 2+ y2 +22-1= 2ry
22+(\/x2+y2—\/r2+1)2:7"2

Where we have set z; = x1 + 1 y1, 22 = T2 + i y2 and used the formulas for stereo-
graphic projection:

_ 2x _ 2y
2y — 2z vy = |(:E,y,2)|271'
1+ [(z,y,2) 1+ |(z,y,2)[?

So the inverse image of a point is contained in the two intersection circles of the
torus with the plane z = rx. A more detailed analysis provides that it is exactly
the front one with respect to y.

The complement of the filled torus in the S is the interior of another filled torus.
These two filled tori are the inverse images of the southern and the northern hemi-
sphere.

e

3.8 The manifold of linear mappings of fixed rank.

The subspace L.(n,m) of all T € L(n,m) of fixed rank r is a submanifold of di-
mension r (n +m —r).

For mazimal r = min{n, m} this dimension is n - m = dim(L(n,m)), thus in this
case L.(n,m) is open in L(n,m).

Proof. We describe L.(n,m) locally as a graph. Let Ty € L,.(n,m), that is
rank(Tp) = dimim Ty = 7. Put F :=imTp and E := (ker Tp)*. Then Ty|g : E — F
is injective, and because of dim £ = n — dimker Ty = dimim 7y = dim F' = r it is
even bijective. With respect to the orthogonal decompositions R® = E @& E+ and
R™ = F @ F*, the mapping Ty thus has the following form:

(AO BO) with By = 0, Cy = 0, Dy = 0, and with invertible Aj.

Co Dy
Now let U be the open (because GL(E) C L(FE, E) is open) neighborhood of all
matrices T' = (é g) with invertible A. Then T is in L,(R™,R™) if and only if

dimim7T = r. We have
(V) A B v\ [(Av+ Bw
w) \C DJ\w) \Cv+Dw)"’
Thus, T <Z)) = 0 is exactly when v = —A~'Bw and Cv + Dw = 0, ie. kerT =
{(-A7'Bw,w) € E x E+ : CA7'Bw = Dw}. Therefore r = rank T' = dimim T =
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3. EXAMPLES OF SUBMANIFOLDS 3.9

dim dom T'—dim ker T' = n—dim ker T exactly when all w € E satisfy the equation
CA~'Bw = Dw, that is D = CA™'B.

The map

¢ 0 c 0

is well-defined and smooth on the trace of the open subset U on the linear subspace

{(é g) GL(n,m):D—O},

and its graph describes L,(n,m) in the open set

{(g lB)) € L(n,m): A € GL(E, F)}

The dimension of L,(R™,R™) is thusnm — (n—r)(m —r)=r(n+m—r). O

g: {(A B) € L(n,m): A invertible} — L(E+, F1), <A B) — CA™'B

3.9 The Graflmann Manifolds G(r,n).

The Grafimann manifold G(r,n) (according to Hermann Grafimann, 1809-1877) of
r-planes through 0 in R™ is a submanifold of L(n,n) of dimension r (n —r).

If we choose © = 1, we get as special case the projective spaces P"~! = G(1,n) of
the straight lines through 0 in R™.

Proof. We identify the linear subspaces of R™ with the orthogonal projections onto
them. Thus, G(r,n) is a subset of the manifold L.(n,n). Let Ey be a subspace
of R™ of dimension r and P, the ortho-projection onto Ey. With respect to the
decomposition R" = Ey @ Ej the projection Py is given by (49). A neighborhood
of Py in Ly(n,n) is then given by the matrices (5 ., ) with invertible A. Any
linear map P is an ortho-projection if and only if it is idempotent (P? = P) and self-
adjoint (P = P?), or equivalent, if it satisfies the single equation P*P = P. In fact:
That P is a projection means Pliy, p = id, i.e. P2 = P, and being an orthogonal
projection means ker(P) = im(P)*. From P? = P follows ker(P) = im(1 — P),
because P(1—P) =0and Pz =0 = 2 = 2— Pz = (1—P)x. Thus, ker(P) L im(P)
is exactly if 0 = ((1 — P)z, Py) = (z,(1 — P")Py) for all z, y, that is P = P'P.
Conversely, P! = (P'P)! = P'P = P follows and thus P = P'P = P2

This is the case for (é oalip) if and only if A = A’ and B' = C (and then

(CA~'B)! = B{(A)~'C" = CA~'B) and

AtA + CtC A'B+ C'CA-'B B
B'A+ B'(AY)~1Ct'C  B!'B+ BY(AY)IC'CA-'B) T

(A ct A B \ (A B
“\Bt Btany-tct)\c ca'B) ~\c ca'B

or equivalently A'A + C'C = A (= A' = A) and thus
A'B+C'CA™'B=A'"B+ (A— A"A)A™'B = B,
B'A+ BY(AY)TIC'C = B'A + BY(A") 71 (A - A'A) = B'(AH)TA = C,
B'B+ BY(AN'C'CA™'B = B'B+ B(A") "1 (A—- A'A)A™'B
=BY(AY'B=CA™'B
Together, the equations are A’A+ C*'C = A, B = C* and D = CA~'B. These are

r2+7(n—r)+ (n—r)? independent equations, and thus the dimension of G(r,n)
should be just n? — (r2 +n% —2nr +72 + nr —12) = nr —r?2 = r(n — r). These
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equations describe G(r,n) locally as a graph of (4,C) — (B, D) = (C*,CA=C")
over the subset {(4,C) € L(Ey,R") : A € GL(Ey), A'A + C'C = A}

So it remains to show that the equations are regular and for that it is enough(!)
to show the regularity of the first equation A*A + C*C — A = 0. Its derivative in
direction (X,Y) is (X,Y) = X'A+ A'X — X +Y'C + C'Y. So we have to solve
the equation X'A + A'X — X + Y'C + C'Y = Z for (4,C) = (id,0), i.e. X' =2Z
for (X,Y). Obviously (Z¢,0) is a solution. O

3.10 Unfurl a 2-fold twisted band.

An untwisted piece of band (i.e. rectangle) is parameterized by

@o:[0,27] x [-1,+1] > R* CR*,  (9,7) — (9,7,0,0).

A double-twisted band is parameterized by

or 1 [0,27] x [-1,+1] = R* C R, (9,7) — (9,7 cosd, rsind,0).

We now want to find a diffeotopy F : R x R* — R* of R?* (i.e. a smoothly param-
eterized family ¢ — F(t; ) of diffeomorphisms of R™ with F'(0,_) = id and F(w, )
the desired diffeomorphism), which converts the non-twisted band into the 2-fold
twisted band, i.e. F(m, 0o (9,7)) = ox(9,7). We refer to the coordinates in R* with
(x,y,z,w). This diffeotopy F(¢;-) is supposed to leave the hyperplanes normal to
the z-axis invariant and act as rotation on them. We denote this rotation in hy-
perplane {z} x R?® = R? at time ¢ with R(t,z). It should be the rotation by angle
t around the axis £ := (cos §,sin ,0). We obtain R(t, ) by first rotating £ around
the w-axis into the y-axis, then turning by the angle —t around the y-axis, and
finally rotating the y-axis around the w-axis back into the ¢.

z

(0, Cos (x), Sin(x))

(Cos (x/2),Sin(x/2))
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The matrix representation of R(t,x) with respect to the coordinates (y, z,w) thus
looks like this:

[R(t,2)] =
cosg —sing 0 1 0 0 cosg sing 0
= |sin§g cosy O 0 cost sint —sing cos3 0
0 0 1 0 —sint cost 0 0 1
cosg —sing 0 cos 3 sin 5 0
= |sin§g cosy O —costsing  costcos3  sint
0 0 1 sintsin§  —sintcos§ cost
cos? £ +costsin®Z (1 —cost)cosZsinZ —sintsin L
= | (1—cost)sinZcosZ sin®Z +costcos®’%  sintcos
sintsin 5 —sintcos 3 cost
In the boundary points x = 0 and =z = 27,
1 0 0
[R(t,0)] = [0 cost sint
0 —sint cost
and
1 0 0
[R(t,2m)] = |0 cost —sint

0 sint cost
keeps y-axis fixed.

Our wanted diffeotopy is thus
F(t;z,y, z,w) = (x, R(t,z)(y, z,w))
and the corresponding isotopy
pi(0,r) : = F(t;00(9,7)) = (9, R(¢,9)(r,0,0))

= (19, 5(1+cos? + cost(l — cos¥)), 5(1 — cost)sind, rsintsin g)

Clearly, p¢(9,7) = (9,7,0,0) is for ¥ = 0 and for ¥ = 27. Furthermore, pg and
@ are the desired boundary values. And by design, all ¢, are embeddings from
[0,27] x [~1,1] into R*.

0

4. Examples of Lie groups

Some of the classic examples of manifolds are even Lie groups, i.e. they carry also
a smooth group structure. There are lecture courses completely devoted to them,
e.g. http://www.mat.univie.ac.at /~kriegl/Skripten/2010WS.pdf.

4.1 General linear group.

The vector space L(R"™,R™) = L(n,m) := {T : R® — R™ linear } is nm-
dimensional.

The GENERAL LINEAR GROUP (see also [86, 1.2])
GL(R") = GL(n) :={T € L(n,n) : det T # 0} C L(n,n)

is an open (and thus n?-dimensional) submanifold in L(n,n), because it is given by
a continuous strict inequality. With respect to composition, GL(n) is a group.
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4. EXAMPLES OF LIE GROUPS 4.3

4.2 Special linear group.
The special linear group is defined by
SL(n):={T € L(n,n) : det(T) = 1} C GL(n).

So it is given by the equation det(T) = 1, or f(T) = 0, where f : L(n,n) — R is
the function f(T) := det(T) — 1. We assert that this equation is regular, that is,
the derivative of the determinant function is surjective. Since the determinant is
multilinear in the columns (or even polynomial in the coefficients), its smoothness
follows. The derivative at A in direction B is:

det'(A)(B) = &|i—odet(A+tB) = 4|,_sdet(A- (1+tA™'B))
= 4|_odet(tA) - det(: + A™'B)
1
= L]_ot" det(A) - (

+
= det(A) trace(A' B).

P trace(A™'B) 4 - + det(A_lB)>

This shows the surjectivity of det’(A) and thus the regularity of det. Without
calculating the derivative det’(A) : L(R™,R™) — R completely, you can proceed as
follows:

det’(A)(A) = L|_odet((1+t)A) =n(1+1t)" "|;—o det A = ndet A.
—_—————
(14+)" det A

Consequently, det’(A) is surjective and SL(R™) is a n? — 1 dimensional manifold.

4.3 Orthogonal group.
It is defined by (see also [86, 1.2]):
O(n) :={T € GL(n,n) : T" o T =id} = {T € GL(n,n) : (Tx,Ty) = (z,y)¥ x,y}.

As in Example , let us now show that the equation 7% o T' = id is a regular
one. For this purpose we compute the derivative of the quadratic - hence smooth -
function f : GL(n) — L(n,n) given by f(T):=T"oT = comp(T*,T):

f(T) - S = comp(S",T) + comp(T*,S) = S o T+ T"o S.

Since f(T) is obviously symmetric, that is, f has values in the linear subspace
Lgym(n,n) C L(n,n) of the symmetric matrices, we can only hope to have surjec-
tivity for f'(T') : L(n,n) — Lgym(n,n). The dimension of Lgym(n,n) is obviously
w. For an R € Lgym(n,n) there is an S € L(n,n) with R=S"oT +T"0 S =
(§'0T)+(S*oT)!, because S'oT = $R has the solution S = (S*)! = (JRoT 1) =
(T*)~'1R. Consequently, f'(T) is surjective, and thus O(n) is a submanifold of

. . . _ n(n+1l) _ n(n—1)
L(n,n) of dimension dim(O(n)) = n? — M5= = =51

Note that det(T) = +1 follows from 1 = det(1) = det(T*T) = det(T)? for T €
O(n). Thus, O(n) = SO(n) X Zy, where SO(n) := O(n)NSL(n) = O(n) NGL4(n)
is an open subset of O(n).

More generally, we can consider the STIEFEL MANIFOLD (due to Eduard Stiefel,
1909-1978)

V(k,n) :={T € L(k,n) : T'T = id}
(see also [86, 70.6]). Thus, the elements of V(k,n) are the isometric mappings of
R — R™, and these can be equivalently described by their values on the standard
base in R¥, i.e. by k-tuples of orthonormal vectors in R", so-called orthonormal
k-frames in R”™.
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The function f : L(k,n) — Lsym(k,k), T — T'T — id, is smooth and satisfies
F(T)(S) = T'S + S'T. So it is regular, because for symmetric R we can solve
f/(T)(S) = R with S := 1 TR as before.

4.4 Groups of invariant automorphisms, Op.

Let us generalize the orthogonal group by considering any bilinear form b : Ex E —
R on an Euclidean space E. With

Op(E):={T € GL(E) : b(Tz,Ty) = b(z,y)V z,y € E}

we denote the group of all invertible linear mappings that keep the bilinear form b
invariant. The bilinear forms b : E x E — R are in bijective relation to the linear
maps B : E — E, by virtue of

b(z,y) = (Bz,y) = (z, B'y) :
since we may consider any bilinear b : E x E — R as mapping b: E — L(E,R) =:
E*, which is given by z — (y — b(x,y)). The scalar product (_,_) : Ex E — R

corresponds to a mapping ¢ : E — E*, which is an isomorphism, because ker(:) =
{z : (z,y) = 0 V y} = {0}, and since dim(F) = dim(E*). The composite B :=

" lob: E — E* — E is then the sought-after linear mapping, because

b(z,y) = b(z)(y) = (0 B)(2)(y) = «(B())(y) = (Bz,y).
The equation b(T'z, Ty) = b(x,y) is thus equivalent to (I"BTx,y) = (BTxz,Ty) =
(Bz,y), and hence

Oy(E) = {T € GL(E) : T'BT = B}.

Thus we have to show that this is a regular equation. For the derivative of the
function f : GL(E) — L(E), which is defined by f(T) := T*BT — B, we obtain
F(T)(S) = S'BT + T*BS. As with O(E), we can not expect it to be surjective
onto L(FE, E), but we need a linear subspace F C L(E, E) in which f has values
and on which f'(T') is surjective.

If B is (skew-)symmetric, then the same holds for f(T'), so we should use the space
Li(E,E) of (skew-)symmetric linear mappings as F. This space has dimension
n(n 4+ 1)/2 (resp. n(n — 1)/2), where n is the dimension of E. f U € F and T
is the identity then U = f/(T)(S) = S'B + BS will be solvable in S provided we
can find an S with BS = U in S, since then also S'B = +(BS)! = £1U" = 1U.
If B is invertible, then S := $B~'U is the solution. If T € GL(E) is arbitrary
and B is invertible, then the equation U = f/(T)(S) = S'BT + T*BS has the
solution S = B~HT')'U, because then T'BS = iU and S'BT = +S'B'T =
+(T'BS)" = £1U" = JU follows. Thus, if B is injective, that is, b is not degen-
erate, or equivalently x = 0 < V y : b(z,y) = 0, then Oy(F) is a submanifold of
dimension

dim Oy(F) := {

Note that det(T) = £1 for invertible B and T € Oy(E), because 0 # det(B) =
det(T*BT) = det(T)? det(B).

n? —n(n+1)/2=n(n—1)/2 if bis symmetrical
n?—n(n—1)/2=n(n+1)/2 if b is skew-symmetric.

4.5 The symmetric case, O(n,k).

In the symmetric case we can find an (orthonormal) base of eigenvectors e; for B
with corresponding eigenvalues A; € R by use of the spectral theorem (i.e. principal
axis theorem). Then

B(x) = Z)\j@veﬁ@j
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and thus
b(x,y) = <Bm,y> = Z/\j<x7€j><y’ej>

Since we assumed ker(B) = {0}, no eigenvalue A; is 0, and thus b is represented in
the orthogonal basis f; := /|Ajle; as

b(.’E,y) = Z xjyj - Z ‘rjij

A;>0 A;<0
where 27 := (z, f;) denotes the coordinates of x with respect to the basis (f;).

One calls such a b also a PSEUDO-EUCLIDEAN PRODUCT. They are of importance
for Relativity Theory. Note that there are vectors = # 0 with norm b(z,x) = 0
and also vectors with b(x, ) being negative. Those with vanishing norm are called
LIGHT-LIKE, >, (#7)% = 37,4 (27)? (this describes a “cone”), those with positive
norm are called SPACE-LIKE and those with negative norm are TIME-LIKE. Consider
e.g. the form
<(ﬂ§1, I2, 1’3), (yla Y2, y3)> = T1Y1 + TaY2 — T3Ys3.

Then the vectors in the interior of the double cone with the z3-axis are the time-like
ones, those on the outside the space-like and those on the double cones the light-like
ones.

The group Oy (FE) thus depends, up to isomorphism, only on the signature, defined
as the number k of the negative eigenvalues of b, and is therefore also referred to
as O(n, k) (and sometimes also as O(n — k, k)), where n = dim(F) is. Note that
O(n, k) = O(n,n — k) (replace b with —b). The open subgroup SL(n) N O(n,k) is
denoted SO(n, k). The O(4,1) is also referred to as the LORENTZ GROUP.

4.6 The skew-symmetric case, Sp(2n).

In the skew-symmetric case, we can find a normal form as follows. Let b be a non-
degenerate skew-symmetric bilinear form, a so-called SYMPLECTIC FORM. They are
important for classical mechanics (see section [86, 45]). For a subset A C E, we
denote

At :={zcE:x LyVycA}
and call it the ORTHOGONAL COMPLEMENT, where x L y stands for b(z,y) = 0.
Since b is skew-symmetric, x | x for all x. Nevertheless, for each linear subspace F
we have dim E = dim F + dim F* (in fact: i*ob: E — E* — F* is surjective with
kernel F-, where i : F' — E denotes the inclusion, because b : E — E* is bijective
by assumption, and i* : E* — F* is clearly surjective (choose a left-inverse p to 4,
then i* o p* = id) and thus dim E = dim(ker) + dim(im) = dim(F*) + dim(F)).
Note that for linear subspaces A and B the equations At+ = A (&« A C AL+
and dimensional reasons), as well as (A + B)t = A+ N Bt (trivial) and finally
At + Bt = (At + BHH = (At n Bt = (AN B)? hold.
A subset A C E is called 1SOTROPIC if A C AL, that is blaxa = 0. Let F be
maximal among the isotropic subsets. Then F = F* holds (i.e. F is a so-called
LAGRANGE SUBSPACE): Otherwise we can add any y € F+\ F to F and get a
larger isotropic subset of F'U {y}; Because of the bilinearity of b, the orthogonal
complement A is a linear subspace for each subset A C E, and in particular
any Lagrangian subspace ' = F is a linear subspace. Consequently dim E =
dim F 4+ dim F+ = 2dim F, hence the existence of Lagrange subspaces implies that
FE must be even-dimensional.

We now choose a Lagrange subspace F and a complementary Lagrange subspace
F’: This is possible because if for an isotropic subspace G with GNF = {0} still
G+ F C E holds, then Gt + F =G+ + F+ = (GNF)* ={0}* =E>G+F
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and thus we can choose an y € G\ (G + F). Therefore G; := Ry + G is a larger
isotropic subspace with Gq N F = {0}.

Let i’ : F' < E be the inclusion. Then i*oboi’ : F' — E-=+ E* —» F* is injective,
because the kernel of i* 0 b is F+ = F and F N F’' = {0}, and thus by considering
dimension an isomorphism. We claim that the induced isomorphism E = F’ x F' =
F* x F translates the symplectic form b into the form (y§,v1;95,v2) — yi(y2) —
y5(y1): Solet x; =: y;+y; withy; € F'and y} € F'. Since F' and F” are isotropic, we
have b(z1, 22) = b(y1,y2) +b(y1,y2) = b(y1, y2) —b(ys, y1). With yj := (i*oboi’)(y})
we get b(yy,y2) = b(i'y}, iy2) = b(i"yy) (iy2) = (i* 0 boi’)(y1)(y2) = ¥i(y2) and thus
is b(z1,22) = yi(y2) — y5(y1)-

Now we choose a basis (€j)r<;<2r in F (with 2k = n := dim F) and take the dual
basis (¢7) > in F*. With (e; := €}, ;) <k we denote the corresponding basis in F”,
ie. i*oboi : €; eFtJ. Then, (ej)j<2k=n is a basis of E, which corresponds to that
of F* x F, and furthermore, y*(y) = >, y;y’, where y; denote the coordinates
of y* € F* with respect to e/ and 3/ denote coordinates for y € F with respect to
ej. So the STANDARD SYMPLECTIC FORM ON R?¥ is

o . 0 —id
b(x17x2) :%I]lx;"" —;[;]1"" _’1,‘; = <JZL‘1,$2>, with J = (ldk 0 k> .

The corresponding group is denoted Sp(2k), and is called a REAL SYMPLECTIC
GROUP. Since Sp(n) does not exist for odd n, Sp(2k) is sometimes referred to as
Sp(k) in the literature!

4.7 Reflections.

Now we want to describe those T € Oy(E) (for symmetric and skew-symmetric
b) which have a hyperplane as fixed point set {x € E : Tz = x}. Let F be this
hyperplane and 0 # y € F1, that is F = {y}*t. If y ¢ F with b(y/,y) = 1
(possible because b(y',y) = 0 = y' € {y}+ = F), then each x € E can be written
as x = b(z,y)y' +(z—b(z,y)y’), and b(z —b(z, y)y',y) = 0, that is z —b(z,y)y’ € F.
Any such T must therefore have the following form:

T(x) = bz, y)T(Y) + (& = blx,y)y") =z + bz, y)(T(W) —¢) = 2 + bz, y)y".

That T keeps the form b invariant amounts to

b(ar,w2) = B(T (1), T(w2)) = b1 + b, )y w2 + blwz, y)y" ) =
= b(xlv ‘r2) + b(xlv y)b(y”, x2) + b(1'27 y)b(xla y//) + b(‘rlv y)b(x% y)b(yﬂv y”)v

Le. b(’l}l,y)b(y”,.IQ) + b(x27y)b(x17y//) + b(:ﬂl,y)b(%%y)b(y”, y”) = 0. If we put
x5 := ¢ and choose 21 L y, then b(x1,y") = 0 follows, so 3’ € {y}*+ = Ry. Let
y" = Ay (with XA # 0, since T' can not be the identity). Then

0= )\b(l’l, y)b(yv Z'Q) + )\b(x27 y)b($1» y) + b(xlv y)b(x27 y))\2b(y7 y)
= Ab(1,9)b(w2,y) (1 + 1+ Ab(y, y))
for all 21 and x5 if and only if 1 4+ Ab(y,y) = F1 (choose z; = 25 :=¢/).

In the symmetric case this is equivalent to Ab(y,y) = —2 (i.e. b(y,y) # 0 and
A= —%) and in the skew-symmetric one it is always satisfied.

The T € Oy(E) with a hyperplane F' = {y}* as fixed point set are therefore
precisely those of the form

T(z) = T — 225:5331 with b(y,y) # 0 in the symmetric case,
Tzt Ab(z,y)y  with 0 # A € R in the skew-symmetric case.
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These T are also called REFLECTIONS, in analogy to the case where b is an Euclidean
metric. A simple calculation shows, that 72 = id.

y X

T(X) 2Ab(X,y)y x
A, T2

y F

T(x)

In the symplectic case, each reflection is orientation-preserving, because T(y') =
y'+ Ay is on the same side of F' as v’ and ( i(‘)i Aly ) is (because of y € F') the component
representation of T with respect to the decomposition £ = F @ Ky’ = F x K. In
the symmetric case reflections are orientation-reversing, because T(y) = y — 2y =
—y and thus (i(‘)l _01) is the component representation of T° with respect to the

decomposition F = F & Ky = F x K.

For x # 2 it is possible to find a reflection T : x — x + \b(x, y)y with Tx = x’ iff
b(x,z) = b(a’,2") and b(x,z’) # b(x,z): In fact, 2’ — x = \b(z,y)y is valid if and
only if y = p(x’ — x) with 1 = M\b(z,y)pu = M\ (b(w,2") — b(z,x)). This reflection
T keeps y* = (2 — x)* fived. In the symmetric case, the necessary equation
Ab(y,y) = M\u®b(z’ — 2,2’ — ) = —2 follows. Note that for positive definite b, due
to the Cauchy Schwarz Inequality, the situation b(x, ') = b(x, ) can not occur. In
the symplectic case b(z,z) =0 = b(a’, 2’) is always fulfilled.

Proposition.

For each (skew)-symmetric non-degenerate bilinear form b : E x E — R, the group
Op(E) is generated by the reflections.

It can be shown that in the symmetric case n = dim E many reflections are sufficient
and in the symplectic one n + 1 are necessary (see [35, Sur les Groups Classique,
Hermann, Paris 1967]).

Proof. Inthe symmetric case we choose an orthonormal basis of E (i.e. b(e;, e;) =
0 for i # j and b(e;, e;) = £1) The images e} := T'(e;) from then also an orthonormal
basis. We now show by induction that T leaves up to composition with reflections
the set {e1,...,ex} invariant:

In fact, if T keeps {e1,...,ex—1} fixed by induction assumption, and b(eg,e}) #
b(ek, ex), then the reflection S on the orthogonal complement of e}, —ey maps ey, to €,
and leaves (e}, —ex)T 2 (ef)TN(ex)t D {e1=¢€l,...,ex—1 =¢}_,} fixed, so S7IT
keeps even {eq,..., e} fixed. On the other hand, if b(ey, €},) = b(e, er), then we
first reflect at the orthogonal complement of ej (with b(eg, ex) = +1 # 0) and then
at that of e}, +ey, (with b(ey +e},, ex+e).) = 2(b(ex, ex) +b(ex, e}.)) = 4b(ex, ex) # 0).
These reflections leave (ex)® N (ex +e},)t 2 {e1,...,ex_1} invariant and their com-
position maps ey, to —ey, and on to e}, so up to them T leaves {eq, ..., e} invariant.

In the symplectic case we prove the statement by induction on j :=n — dim F,
where F :={z : Tz = z}. For j = 0 we have T'=id. So let j > 0. For each y € E,
we have b(y,z) = b(Ty,Tz) = b(Ty, ) for all x € F, i.e. Ty —y € F*.

If b(Ty,y) # 0 for some y € E (= y ¢ F), then there is a reflection which maps
y to Ty and leaves (Ty — y)= D F fixed. Apart from this reflection T' also fixes
FoRy.

Otherwise, b(Ty,y) = 0 for all y. Let first F N F+ # {0}. Then we choose
0#z € FNF' and y € E with b(y,z) = 1 (as in the description of reflections).
Then y ¢ F, since x € F. Furthermore, b(Ty,z) = b(Ty,Tz) = b(y,z) = 1
and therefore reflections exist which map y on x + y, respectively Ty to x + y
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(because b(y,x + y) = bly,z) # 0 and b(Ty,x +y) = b(Ty,x) # 0), and keep
(x+y—y)-N(z+y—Ty)* D F fixed. So T fixes F @Ry up to these reflections,
and we can apply the induction assumption.

If F = {0}, take y # 0, extend the isotropic set {e; :=y,ea := Ty} to a basis in a
Lagrangian subspace, and let = := e! + €2 in terms of the dual basis (ei)le. Then
b(xz,y) =1 =b(x,Ty) and we may proceed as just before.

Finally, if F # {0} and F N F+ = {0}, then E = F & F! and b induces on
Ft a symplectic form, because for ¢/ € F* with b(y’,y) = 0V y € F* we have
y' € (F1)* = F and thus y' = 0. Furthermore, T € O,(FE) leaves the space F'*
invariant, because b(Ty',y) = b(Ty', Ty) = b(y',y) =0 for all y € F and 3y € F+.
Since T|p1 has only 0 as a fixed point, it follows from the previous case that T'|p.
is a composite of reflections along vectors in F-. Such reflections, however, leave

F = F1 fixed and thus T is the composition of these reflections on all E. O
Corollary.
We have Sp(2k) C SL(2k). O

4.8 Low dimensions.

We will jointly diagonalize the elements of the Abelian among the following groups
G, i.e. for each T € G we will determine the eigenvalues A1 and associated eigen-
vectors ey (independent on T'). If AT is the diagonal matrix with entries A% and
AT, and U is the matrix with columns e, and e_, i.e. U(e;) = ey and U(es) = e_,
then T -U=U-AT,ie. U™ -T-U = AT. The conjugation with U thus maps the
group G isomorphically to a group of diagonal matrices in SLc(2).

(1) a®>+c=1 (ber,e1)=1)
. b (2) b2 + d? = (b(€2,62) = 1)
since ( d) € S0(2) & (3) abted=0 (bles,en) =0)
(4) ad—bc=1 (det=1)

It follows that
d-(3)=b-(4): —b=c(d®+b*) =c,
b-3)+d-(4): d=al®*+d)=a
and thus a? + b? = 1. All this follows more easily from the matrix equation BT =
(T")~'B, with B = id.
The eigenvalues of T are Ay = a £ ib with associated eigenvectors ex = (1, £i).

Thus, the conjugation with U = (1 1-) maps the group SO(2) isomorphically to

i —1

the diagonal matrices with conjugate complex entries of absolute value 1.
11 =i\ (a b\ (1 1\ _ (a+ib 0
2\1 ¢ b a i =i 0 a—1b

50(2,1):{<Z 2) ca,b €R, a2—b2:1}%

o~ {(6\ 1%) :)\ER\{O}} =R\ {0},
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Similar to SO(2), the first equation follows from the matrix equation with B =

((1) 91). The first isomorphism is then analogously given by conjugation with the

matrix U = (% fl) of the eigenvectors to the eigenvalues Ay := a £b. Conjugating

with U gives
L/t 1 fa b)Y (1 1Y\ _fa+bd 0
2\1 -1 b a 1 -1) 0 a—"b

with (a +b)(a —b) = 1.

SL(2) = {(i fl) ta,b,c,d € R, ad—bc=1} =
b
a

g{(‘g >;a,be<c, |a2—b|2:1},

where the isomorphism is given by conjugation with U := (% 7 ), see [86, 34.5] and
[86, 72.62], because

<a b>U1'<OZ1+ia2 ﬁ1+iﬁg>.U<Oz1+ﬁ1 a2—52>

c d B1—iB2 a1 — i —ag —fy a1 —
a+d b—c a—d b+c

o= (0, Qg = 9 aﬂlz 9 762:* 9

2

Note that the quadric {(a,b) € C? : |a]*> — |b]> = 1} is diffeomorphic to S* x C
because of (a,b) — (%,b) = (—==2=,b). However, the induced group structure on

lal? V1412’

St x C looks more complicated.

(7)== o™

S ad—bec=1
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SO(3) = PSU(2) = PS3 = P3, where PG := G/Z(G) for each group G and
Z(G) ={g€G:YheG:g-h=h-g} denotes the center of G. Each unit
quaternion ¢ = a + ib + jc + kd (see [86, 14.16]) acts orthogonally on R* = H by
conjugation and preserves the decomposition R x R3, because ¢='-1-¢q = % q=1
and

g paP=(@ pq- (¢ pa)=7Pqq" pq

=q¢ ' pP? q=p

Thus it acts as isometry on R® = {0} x R* C H. The kernel of this group ho-
momorphism H 2 S3 — O(3) obviously is Z(S%) = Z(H) N S® = {+1}. Thus,
S$3 — PS? := §3/Z(S3) is a covering map of groups (see [86, 24.19]) and thus PS3
is a compact connected 3-dimensional Lie group, i.e. openly embeds into SO(3).
Since SO(3) is connected (see [86, 1.3]), SO(3) = §3/Z(S3) = PS? follows.

Geometrically, we saw this also in [86, 1.3]: A rotation is defined by the axis of
rotation and the angle of rotation, i.e. by a vector u € D? := {z € R : |z| < 1}
which corresponds to the rotation with the axis u/|u| € S? and the rotation angle
wlu| € [-m, 7]/~ = St (Note, that (z1,p1) # (72,¢2) describe the same rotation
iff o1 = 0 = g or (x1,pp1) = —(x2,92)). So we get a twofold covering map
S$3 — 83/~ = D3/~ = SO(3) also from the following diagram

id xe'™-

S? x [~1,1] 8% x St

where the left vertical mapping is given by (z,t) — tz, the right by (v,¢) —
“rotation around v with angle ¢” and ~ is the equivalence relation generated by
v~ —v for v € S2, see also [86, 24.40]. However, we do not get the homomorphism
property of S% — SO(3) this way.

5. Smooth mappings

In order to relate different manifolds to each other, we also need the notion of
smooth mappings between them and that we define now.

5.1 Definition (Smooth mapping).

A mapping f : M — N between two smooth manifolds M C R™ and N C R"
is called SMOOTH (C*°): < locally it can be extended to a smooth mapping f :
R™ — R™, that is

Vpe M3IU CR™3 f:U — R" smooth with p € U and f|MQU = flanu-

open

The constant mapping, the identity and the composition of smooth mappings are
smooth: Let f : My — Ms and g : My — M;s be smooth and f: U; — R™ or
G : Uy — R" local smooth extensions, then (go f)~ =go f: f~1(Us) = R" is a
local smooth extension of g o f, so g o f is smooth.

5.2 Examples of smooth mappings.
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1. For the classical Lie groups G from section , the multiplication mult : G x
G — G is smooth, because for the open subset GL(E) of L(E,E) this is
the restriction of the bilinear mapping (7,5) — TS, and the other classical
Lie groups G are submanifolds in GL(E). The same holds to the inversion
inv : G — @G, because for GL(E) it is the solution for the implicit equation
mult(A,inv(A)) = id, to which the Inverse Function Theorem applies. The
derivative is given by

inv/(A)(B) = —A"'BA™L.

2. Taking the orthogonal complement L: G(k,n) — G(n — k,n) is a smooth

mapping between GraBmann manifolds (see ) as restriction to G(k,n) C
L(n,n) of the affine mapping L(n,n) — L(n,n) given by P +— 1 — P.

3. The mapping “taking the image” im : V(k,n) — G(k,n) is a smooth mapping
on the Stiefel manifold (see ), because as mapping V (k,n) = {T € L(k,n) :
T'T = id} — G(k,n) C Li(n,n) it is given by T + TT*: Obviously TT"
is the ortho projection ((TT)Y(TT!) = TUT'TT! = Tid T = TT?) with
imT 2DOimTT! DimTT!T =imT.

5.3 Lemma (Charts are diffeomorphisms).

Let ¢ : U — M be a local parameterization of the manifold M. Then ¢ is a local
diffeomorphism.

Proof. By definition ¢ is smooth. In the proof of the implication (1 = 4) of
theorem we have extended ¢ to a local diffeomorphism ® : R™ x R"™™ — R™.
It follows from the bijectivity of ¢ : U — M NV (by assumption) that ¢! :
M NV — U exists as a map. It is smooth, because locally it can be extended to
the smooth mapping ®~'. O

5.4 Lemma (Smooth mappings).

For a continuous mapping f : M — N between two manifolds M and N, the
following statements are equivalent:

1. f is smooth.

2. For each local parameterization ¢ of M and each local parameterization v of N,
the following holds: The mapping 1~ o f o ¢ is smooth wherever it is defined.

3. For each p € M, a local parameterization ¢ exists for M centered at p, and
a local parameterization ¢ exists for N centered at f(p), such that the chart
representation 1~ o f o ¢ is smooth.
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R™ R"

ytofop

Proof. (:>) Let o : Uy > Vi N M and ¢ : Uy — Vo N N be local parameteri-
zations. The mapping ¥ ! o f o ¢ is defined exactly for those = € Uy, which satisfy
f(p(x)) € Vo. But this is the open set Uy N (f o )~ (V3). The above mapping is
smooth, as it is composed of smooth functions only.

(:>) If the statement holds for all local parameterizations, then also for a
specific one.

(:) We have to show that f is smooth. This is a local property, and locally
f can be represented as a composition of smooth mappings as follows:

f:@/}o(;/}flofogp)ogpfl. O
—_———

smooth by (3)

6. Abstract manifolds

Our preliminary definition of a manifold is unsatisfactory: So far, we have been
using the properties of the surrounding space in an essential way, which conceptually
has nothing to do with the object we want to describe.

In this section we want to get rid of the surrounding Euclidean space, and thus
come to the concept of abstract manifolds.

The relevance of this approach is already shown in following examples.

6.1 Examples.

(See also section )
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1. The Mobius strip topologically results when we identify one pair of opposite
edges of a rectangle and supply the resulting object with the induced quotient
topology. If we consider a realization of this space in R? and cut it along
the its middle line, we get a double twisted band. But if we do the same
thing topologically, we get in contrast a non-twisted band. However, these two
version cannot be transformed continuoulsy into one another in R?, whereas in

R* this is possible, as we saw in .

2. For the “Klein bottle” and the “projective plane” we can not be easily seen in
which R™ they can be embedded. In any case it is not possible in R3.

We now extend the definition of submanifolds of R™ to that of abstract manifolds.

6.2 Definition (Abstract manifold).

Let X be an arbitrary set. A CHART (or LOCAL PARAMETERIZATION) of X is an
injective map ¢ : R™ 2O U — X defined on an open set U C R™.

Two charts o1, @2 are called C°°-COMPATIBLE if the CHART CHANGE
03 01107 Hp2(Ua) = @3 (p1(Uh))

is a diffeomorphism of open sets. The idea behind this is that every chart ¢
should be smooth, and by Yy ! 6 ¢, should be smooth wherever it is defined.

<~

/A
0 ©

A C>°-ATLAS for a set X is a family of C*°-compatible charts whose images cover
X. Two C*-atlases are called equivalent if all of their charts are C'°°-COMPATIBLE
to each other, i.e. their union is an C'*°-atlas.

An ABSTRACT C'°°-MANIFOLD is a set together with an equivalence class of smooth
atlases.

6.3 Definition (Topology of a manifold).

On an abstract manifold M one obtains the final topology with respect to the charts
by defining:
U C M is open :& ¢~ 1(U) is open in R™ for each chart of the atlas.

The charts ¢ : U — ¢(U) C M then become homeomorphisms: They are continu-
ous by construction of the topology on M and if U; C U is open, so is ¢(U;) C M
because ¥~ (p(Ur)) = (¢~ o)1 (U7) is the inverse image under the homeomor-
phism ¢! o 1.

Usually it is required that this topology is HAUSDORFF, i.e. each two disjoint points
can be separated by disjoint open neighborhoods, This is done since uniqueness of
limits is essential for analysis, and for most (but by no means all, see, e.g., [86,
30.15]) manifolds considered in the applications this holds.
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6. ABSTRACT MANIFOLDS 6.6

The following proposition shows that this definition is really an extension of Defi-

nition .

6.4 Proposition.

Each C*° submanifold M of an R™ is naturally a C*° manifold and its topology is
the subspace topology.

Proof. An atlas on M is obtained from all local injective parameterizations using
. The chart changes are then smooth by and the topology of M is the
topology induced from the surrounding R™ because the parameterizations are local
homeomorphisms, see the proof of . O

6.5 Proposition (Maximal Atlas).
If A is a C* atlas for M, then
Amax = {p : ¢ is a chart for M and is compatible with all ) € A}

is the uniquely determined mazximal atlas that includes A.

Proof. We first show that An.c is a C atlas: Let ¢, ¥ € Apax, then we
show that ¢~! o1 is smooth. So let x € ¥~ 1(imyp), i.e. ¥(x) € imp N imp.
Since A is an atlas, the existence of a y € A with ¢(z) € imy follows. Thus,
e toyxox low = (x"toyp) to(x o) is defined locally at z. The two bracketed
parts are smooth by the definition of A,.x and consequently ¢~ o4 is also smooth.

Now let B be a C°° atlas that includes A, then we have to show that B C A ax-

Let ¢ € B, then ¢ is compatible with all ¢» € B. Since B O A we have that ¢ is
compatible with all ) € A, so by construction ¢ € Apax. O

6.6 Manifolds via chart changes.

The following considerations show that the chart changes, i.e. a family of local maps

R™ — R™, already contain all the information about M. Let {go5 : ., 5 € A} be

a family of diffeomorphisms of open subsets of finite-dimensional vector spaces, so

that g;é = gga and gop © ggy C gay hold (these are obviously properties of chart

changes). Put U, := dom g, and define an equivalence relation on the disjoint
union | |, Uy = U, {a} x Uy by: (a,2) ~ (B,y) 1 & = gap(y). This is indeed an
equivalence relation:

Reflexivity: We have g, = idy, , because g, = gaq implies im goo = dom goq =
Uy, and goa © goa € Jao implies goo C id, because g,, is injective being a
diffeomorphism. Thus, (o, x) ~ (o, ).

Symmetry: Let (a,z) ~ (8,y) be v = gop(y), ie. y = g;é(x) = gga(x), le.
(B,y) ~ (o, z).

Transitivity: We have (o, 2) ~ (8,y) ~ (7,2), L.e. gap(y) = x and gg,(2) = ¥.
Thus, ga~y(2) = (gas © 98~)(2) = gap(y) = z, that is  ~ z.

Now let M := (LlaeA Ua)/N and let g, : Uy — M be defined by = — [(a, z)]~.

Then g, is injective, because (o, x) ~ (o, y) implies = goa(y) = y.

Moreover, idy, = gaa 2 gaB © Yo = ggof © 9ga = iddom g5, implies dom(gga) C U

and im ggq = gga(dom(gga)) C dom(gas) C Us.

Furthermore the chart changes ggl 0 g, are given by y = (gg1 09ga)(z) with z € U,

and y € Ug < gp(y) = ga(z) & (,2) ~ (B,y) & & = gap(y) & ¥ = gpa(z)
with € dom ggo and y € im gg,. Thus, M is a C* manifold with chart changes

9Ba = gﬁ_l ©Ja-
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6.7 Definition (Topological manifold).

A topological space M is called a TOPOLOGICAL MANIFOLD :< There is a family
of homeomorphisms between open subsets of a finite-dimensional vector space and
open subsets of M whose images cover M.

Such homeomorphisms are called CHARTS of M.

Comments.

1. If M is a topological manifold and A is the set of all charts for the topological
manifold M, then their chart changes are automatically homeomorphisms of
open subsets of R™. So in order to obtain a smooth atlas (and hence recognize
M as a smooth manifold) one only needs to find enough of them, such that the
corresponding chart changes are differentiable.

2. However, not every topological manifold has a C*° atlas. The first example
[72] was 10-dimensional. Nowadays 4 is the lowest dimension for which there
is an example.

We now want to transfer our differentiability concept for maps between submani-
folds to abstract manifolds. Lemma suggests the following definition:

6.8 Definition (Smooth mapping).

Let (M, A) and (N, B) be two C* manifolds. A map f: M — N is called SMOOTH
& f is continuous, and for each point z € M, there are charts ¢ € A and ¢ € B,
so that o € im ¢, f(z) € im+ and the CHART REPRESENTATION ¢! o f o of f is
smooth. This then also holds to all charts ¢ € A and ¢ € B.

@9
\ﬁ
o

ytof o

In particular, the identity id : (M,.A) — (M, B) is a diffeomorphism if and only if
the two atlases are equivalent to A and B.

6.9 Remarks.

1. The continuity of f is assumed in order that the chart representation is defined
on an open set.

2. Since the chart change is smooth, it suffices to request for each x the above
property for some chart in 4 at x and some chart in B at f(z). The property
then follows for all charts.

3. Let us consider R as a topological manifold. It is very easy to specify two C'*°
structures, namely: A; := {id : R — R}, and As := {¢(z) = 2% : R — R}.
These are incompatible because p~!oid :  — ¥z is not smooth (because
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d (3/7) does not exist on 0), so they define two different C° manifold structure

dz
on R. However, the two structures are diffeomorphic, so in some sense are the
same:
f .
R——R -+ here as manifolds
wT id
id
R——R -+ here as vector spaces

The mapping f = ¢z is a diffeomorphism: f, f~! are bijective and clearly
continuous. Likewise, f is smooth as (id ' of o ¢)(z) = f(2®) = Va3 =z is
smooth. Similarly f~! is smooth, since (¢~ o f~toid)(z) = p~1(2®) = x is
smooth.

4. For dim M = 4 and higher it is not true that any two C'*° atlases of a topological
manifold are the same up to a diffeomorphism. For dimension smaller than 4,
however, it holds by [121]. For example, according to [115], S7 carries at
least 15 non-diffeomorphic C* structures; the S3' more than 16 - 105. More
precisely:

n=dm(S") |7 |8 |9 |10 | 11 |12 |13 (14 | 15 |16 |17 |18
Strukturen auf S™ |28 |2 (8 |6 992 |1 |3 |2 |16256 |2 |16 |16

For the topological space R™ with n # 4 there is exactly one smooth structure.
For n > 4 this was proved in [137]. Quite surprisingly, Kirby proved 1982 that
an exotic C™ structure exists for R*. In [139] it was shown that there are even
uncountable many.

5. The class of C*° mappings between manifolds form a category, where a CATE-
GORY is a class of spaces (objects) and a class of mappings (morphisms), such
that for each object the identity is a morphism and the composition of mor-
phisms is one again. It is thus to be shown for three C'>° manifolds M, N, P
and f: M — N and g : N — P smooth mappings:

e go f: M — P is smooth.
e id : M — M is smooth.

6.10 Lemma (Open submanifold).

Let (M, A) be a C*® manifold, and U open in M. Then, U is naturally a C*
mamnifold. An atlas on U is given by the restrictions of charts of M and the topology
of this manifold is the trace topology of M.

Proof. The family Ay = {¢[,-1v) : ¢ € A} is a C° atlas for U, because the
chart changes

Wly-1 )" o plo-rwy = @7 o @)1y
are C'° as restrictions of C'*° functions. The topology of the manifold U is the

trace topology, because a set W C U is open in the manifold U if and only if
(@lo—1(0))"HW) = 1 (W) C ¢ 1(U) is open to all charts . O

6.11 Remarks.

1. So it makes sense to talk about C>° mappings that are defined only on open
subsets of a C'*° manifold.

2. The charts ¢ of a C°° manifold are diffeomorphisms

@:R™ DO domp —imp C M.

open open
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In particular, An.x consists of all those charts ¢ that are diffeomorphisms onto
their images, i.e. ¢~ ! o1 is diffeomorphism of open sets for all charts 1 € A.

6.12 Examples of atlases.

1. " ={x e R"!: |z| =1}
We consider as charts the radial projections onto the
tangential planes
a+v = Az with || =1 and (a,v) =0

=z vi=(r,0) - x—a,

v zi=(a+v) - a7
A chart centered at « is

Yo R"=at 5 {2€8": (z,0) >0} C M
pa(v) 1= (a+v)-|(a+v)!
po'(@) = (r,0)" r—a
The family {p, : & € S™} forms a C* atlas for S™. However, already the im-
ages of the o1, i =1,...,n+ 1 cover S™. Since both ¢, and ¢_! are smooth
on open neighborhoods {v : v # —a} and {z : (x,a) > 0} in R*"1  all chart
changes are obviously smooth.

2. The atlas of stereographic projections for S™ has as charts ¢, with o € S™:
Yo :at = 8"\ {a}, v a+2v—a) (u?+1)7"

(see ) with inverse mapping

e (1) = (@ = (z,0) @) - (1= (z,0)) 7"

The chart ¢, has S™\ {a} as image. For an atlas, it is sufficient to find another
chart centered at «, such as ¥_,. The chart change for these two particular
charts is easily determined by elementary geometric considerations: Let v and
v* be the images of  under ¢! and 1/~}. The triangles (a, 0,v) and (a, z, —«)
have two equal angles, one right angle and one at «, so they are similar. The
triangles (o, z, —a) and (0,v*, —a) are also similar for analogous reasons.

p

n/2-
72—

From the basic proportionality theorem (intercept theorem) we get:

1 . _ . _
T =T = e va) @) = vt = v el

3. The obvious question whether the two structures on S™ given by and
coincide has the following answer: These charts are compatible (that is, produce
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6. ABSTRACT MANIFOLDS 6.12

the same maximum atlas) because

otz (z,0) ! —a

s iv i B+ 20— B)- (o2 + 1)
B+2w—p)-(v*+1)""

B+2(w=5)-(WP+1)"a)

is an - albeit more complicated - C*° diffeomorphism. The compatibility of the

charts can also be deduced from the fact that the charts can be considered as
local diffeomorphisms of the surrounding space.

@Elowgzv»—)

4. ONE-POINT COMPACTIFICATION of R™:
We define on RZ := R"™ U {oco} an atlas with two charts yo and x given by:
Xo : R" = R,
Xo(z) =z
Xoo : R" = RY
Xoo(0) = 00 and X0 () = x - || 72 otherwise.
The chart changes ;' 0 Xoo and X' o xo as maps R™\ {0} — R™\ {0} evaluate
to x + x - |z|~2. This chart change has already appeared in |2 | for the sphere,

hence R7, is diffeomorphic to S™. More explicitely, a diffgeomorphism f can
be described as follows

Claim: R? = S" via f(o0) = e; and f(z) = 9., (x):

It is clear that f is bijective. Remains to show that both f and f~! are smooth.
The cases to be examined are:

e o foxo=xo=idgrnm (0}
e Y10 foXae =X5" ©Xeo
e Y. o foxo=Xx°X0

e Y. o foXe =idge\ (o}
These are all diffeomorphisms, so f is a diffeomorphism.

5. PROJECTIVE SPACES
P™ := {¢: { is a straight line through 0 in R"*'} = (R"*!\ {0})/~
where z ~ y < 3 A € R\ {0}, so that Az = y. As charts one uses for 0 <i < n:
R" — R"*! — P"
. {(y17.-~,y")H (s (D)5 )]

The sign is chosen so that P™ will be oriented whenever this is possible, see

27.42.3|. Then ¢; : R" — {z € R*"™1\ {0} : 1 #£ 0}/ is bijective with

inverse

o [CA L |
The chart change is calculated as follows:

(So;l o Soi)(yla cee 7yn) = 80;1 [(y17 cee 7yi7 (_1)i>yi+17 e >yn)]

—1)d , o R
= (yj) (y17""yl7(_1)z7yz+1""7y‘] 1’y]+17"'7yn)'
This is a diffeomorphism (on its domain) and additionally orientation-preserving
for odd n. So P™ is a C*° manifold. An analogous procedure yields P¢ (the space

of complex lines in C"*!) with dimPZ = 2n and also P} with dim P = 4n.

(W.lo.g. j > 1)
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In we had given another description of the projective spaces P as Graf}-
mann manifolds G(1,n+ 1) C L(R*"1 R"*1). We had identified straight lines
through 0 in R™*! with the orthogonal projections onto them. We now want
to show that this describes diffeomorphic spaces. Let @; : R — R" ™1\ {0} be
given by (y!,...,y") — (y',...,9% (=1 y ... y"). Then ¢; = 7o @,
where 7 : R"*1\ {0} — P" := R"*!/_ denotes the canonical projection
x + [z]. For a,b € E := R""! the operator a ® b € L(E, E) is defined

by (a ® b)(z) := (a,z)b (For an explanation of this notation, see )
Then (a,b) — a ® b is bilinear and

e (a®b)! =b®a, because ((a @ b)x,y) = (a,z) - (b,y) = (z, (bR a)y),

e (a1 ®b1)o(az ®by) = (ay,ba) aa @by : T+ {ay,be){as, z)b;.
The rank 1 linear operators P are exactly those of the form P =a ® b # 0 (in
fact, codimker P = 1 = ker P = a for some |a| = 1 = z — (a,2)a € ker P
= P(z) = (a,z) P(a) = (a ® P(a))(x)) and the ortho-projections among
them are those of the form P = a ® a with |a| = 1: From P = Pto P =
(P(a) ® a) o (a® P(a)) = |P(a)]?a ® a we get P(a) = |P(a)|?|a|? @ and hence
|P(a)| = 1/|al]® = 1, thus P(a) = a.
The smooth mapping a — ﬁ ® ﬁ is thus a surjective smooth (since ® is bilin-
ear) mapping f : R"*1\ {0} — G(1,n+ 1) and factorizes to a smooth bijection
f:P" = G(1,n+ 1). Locally we get a smooth (since P — P(a) is linear) in-
verse mapping by sending P near a ® a to w(P(a)) € P": In fact, for P=5b®1b
with [b] = 1 we have P(a) = (b,a)b and thus f(m(P(a))) = f(x((b,a)b)) =
f(r(b)) = f(b) =b@b = P. Conversely, 7(f(b)(a)) = = ( f;;“? b) = 7(b). So f is

the desired diffeomorphism.

~

Pi T T
R® — 25 R+ {0} — s g
s =TT
Pi

P >G(1,n+1) = L(R"T1 R+

Sk

6.13 Remarks.
Between lowdimensional projective spaces and spheres there are some relationships:
1. The projective line P* = S1.
As charts for S' we use ¥, := P,1) and P_ = g _1), the stereographic

projections with respect to the poles (0,1) and (0,—1) (cf. ) For the
chart change we got:

1
(1/}(70%1) o P(o,—1))(x) = (1#(70}1,1) o o,))(x) = e R\ {0}

As charts for P!, we associate to each line through the origin the intersection

with the line y =1 (or z = 1), see | 6.12.5 |

. _{R—)]}Dl\[(o,l)] and o .{R—Hpﬂ\[(l,())]
z - [(1,2)] Tz [(2,1)

The chart p_ reaches all equivalence classes except [(0,1)] (which corresponds
to the y-axis). This deficiency is corrected by the ¢ chart. We calculate the
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inverse mappings:

oy = [(1L0)] = 2

7' P\ [(1,0)] — R mit
wlliK%yﬂF+g

Now for the chart change:

_ _ 1 _ _ 1
(3l op)@) =o' (La) =~ (el opy)(@) = ¢ (2, )] = —,
Both are defined on R \ {0}. Let f: P! — S given by:

f Y- 0wt on P\ [(0,1)]
¥ opi! on PA[(1,0)).
This mapping is well-defined, as ¢~ o9, = ¢~ 0 implies that ¢_ o~ =
Y4 0 @rt on P\ {[(1,0)],[(0,1)]}. But it is also a diffeomorphism: We only
have to show this for the chart representations. On P!\ [(0,1)] the chart
representation - o fop_ =y toth_ o lop_ =idis a diffeomorphism
because of f(imp_) =im_.

1 f g1
P+

R
Analogously for z € P!\ [(1,0)].
The diffeomorphy P! 22 St can be seen easier using | 6.12.4 |:

~

P+

g —

2. PL = S%: Geometrically, this can be visualized as follows: P{. is parameterized
by the unique intersections of these complex lines through 0 with the complex
affine line g := {(2,1) : z € C} = R% Only the complex line h parallel to g,
that is h = {(z,0) : z € C} € P, is not caught. Those straight lines that are
close to h have their intersections far out on g. Thus, the missing straight line
h corresponds to the point oo in the one-point compacting R% of R?. But we
know that R, and S? are diffeomorphic (see Example [6.12]).

7. Products and sums of manifolds

The easiest way to make out of manifolds new ones is the formation of products
and coproducts (i.e. sums) which we will cover in this section.

7.1 Proposition (Products).
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Fori=1,...,nlet (M;, A;) be a C*° manifold. Then, [[\_; M; is naturally a C>
manifold. The atlas on [[ M; is given by

H.AZ ::{gol x...xcpn:goiGAi}.
1=1

The product [[ M; has the following universal property: For each C* manifold N
and C* mappings f; : N — M;, there exists a unique C> mapping f = (f1,..., fn)
with pr;of = fi. Where pr; : [[ M; — M; is the C*° mapping (x',...,z") — z°.
The universal property can also be expressed by the following diagram:

Mz‘ pr; HZ Mz

fi 3y

N

The topology induced on [];, M; is exactly the product topology.

Proof. Obviously, the topology induced by the atlas [], A; is just the product
topology, because the product of homeomorphisms ¢; is also a homeomorphism

Y1 X ... Xy domp; X ... xdomy, = imp; X...Ximp, QHMi.
The chart changes

(1% o x )0 (1 X X pn) = (BT 0.01) X . x (1 0 pu).

are products of diffeomorphisms (1, Lo ©;) hence are diffeomorphisms, and thus
[1M; is a C°° manifold.

We now claim pr; : [[ M; — M; is smooth.

Let (2',...,2") € [[ M; and let 1 X ... X ¢, be a chart at this point, i.e. p; is
chart at *. Thus,

i

Qp;l opr;o(pr X ... X )t Rt dma ygmi (gl ) s g

is a linear projection, hence smooth.
Let f; € C®°(N,M;), then f : z — (fi(z),..., fn(z)) is the only mapping with
pr,of = fi and it is C°°: If ¢ is a chart of N then
(1 % ... xcpn)flofogp:(gol_l X...oxp o (fiop, ..., fanop)
=(pilofiog,..., 0yt o frnop).

By assumption the 4,0;1 o f; o ¢ are smooth (because the f; are smooth), thus also
f is smooth. O

7.2 Examples of products.

1. The cylinder is a subset in R3, namely the Cartesian product of S and an open
interval I C R, hence is a C'°° manifold.

2. The n-dimensional torus in R?" is the n-fold Cartesian product of S* C R?:
n
S'x St x. xS =[S =) =1
i=1

For n = 2 we get the already known “bicycle tube” (see ), but as a subset
of R* instead of R3.
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7.3 Proposition (Sums).

Let (M;, A;) be C> manifolds. Then the disjoint union ||, M; is naturally a C>
manifold. An atlas A on ||, M; is given by J, Ai (here no constraint on the index
set is necessary).

In addition, | | M; has the following universal property: For each C*° manifold N
and for all C°° mappings f; : M; — N there is a unique smooth mapping f with

f=f:L M > N, so flu, = fi.

This can also be expressed by the following diagram:

M; ], M

k\ A JIf

N

Proof. For ¢, € |JA;, either ¢! ot = () or some i exists with p,1 € A; and
thus =1 o ¢ is smooth. Open sets in | | M; are unions of open sets in M;. The
universal property is now obvious. O

8. Partitions of unity

To get global constructions from local constructions (such as those treated in Anal-
ysis), we need a method to glue them locally. This requires families of “weight”
functions, i.e. functions which are non-vanishing only locally, are greater than or
equal to 0 and together add up to 1. These are the so-called partitions of unity,
which we will discuss in this section.

8.1 Definition (Partition of unity).

Let M be a C°° manifold and U an open covering of M. A SMOOTH PARTITION OF
UNITY subordinated to U is a set F of smooth functions M — {t € R: ¢t > 0} with
the following properties:

1. The family {supp(f) : f € F} is a refinement of U,
ie. VfeF 3U; el :supp(f) C Uy,
where supp(f) is the closure of {z : f(z) # 0}.

2. The family {supp(f) : f € F} is locally finite,
ie. Vpe M FU(p) so that {f € F :supp(f) NU(p) # 0} is finite.

8. Yerf =1

8.2 Proposition (Partition of unity).
Let X C R™ open and U be an open covering of X. Then there is a C'°° partition
of unity subordinated to U.

Proof. Claim: X (and indeed every separable metric space) is LINDELOF, i.e.
every open covering of X has a countable subcovering.
So let U be an open covering of X. Let

Xo = {(r,x):0<r€@,x€@”ﬂX,3U€U:UT(a?) ::{y:||y—a:H<r}§U}.

Then X is countable and by definition there is a set U, , € U with U, (z) C U, , for
each (r,x) € Xy. By the selection principle we can define a function ¥ : Xg — U,
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(r,z) — U, ;. We claim that the image Uy := ¥(Xj) of ¥ is a countable subcovering
of U. Countability is clear. So let z € X be arbitrary. Since U is a covering of X,
there exists U € U with x € U. Since U is open, a § > 0 exists with Us(z) C U.
Let r € Q with 0 < 2r < §. Since Q" N X is dense in X, there is zg € Q" N X
with d(xg,z) < r and thus z € U.(z9) C Us(z) C U, i.e. x € U(x0) C Uy 4, with
(T, LL'()) € Xo.

Claim: There are smooth functions with arbitrarily small support.
Let us consider the smooth function h : R — R given by

1
h(t)::{e t >0 fort>0

0 fort <0

If we now define a smooth function ¢ : R" — R
for zg € R™ and r > 0 by

p(x) = h(r? — [lz — xo|*),

ST N,
then ¢(z) > 0 is for all z € R™ and = 'm{{i::«.

0= g(z) = h(r? = ||z — o) &

ez —wo|? <0e x ¢ U (o), N

i.e. the support of ¢ is given by
suppp = {x : ||z — zo|| < 7}

Claim: There is a countable locally finite refinement {W,, : n € N} for U.

Let U be the given open covering of X. For each x € U € U we choose an 7 > 0
with U, (x) C U. From the above we know that there is a ¢ € C°(R",R) with

Ur(@) =A{y: o(y) # 0} =: Us.
These sets are a refinement of Y. Since X is Lindel6f, countably many functions
exist ¢1,2,... s.t. {Uy,, :n € N} is a covering of X and a refinement of .

This does not have to be local finite yet, so we define W,, as follows:

W, = {x ton(z) > 0Api(x) <+ for 1 <i< n} CU,,.
It is clear that the W,, are open (given by continuous inequalities) and are subsets
of Ug,.

The W,, form an covering of X, because for each x € X there is a minimal ng with
©no(x) > 0 and thus x € W,,.

To prove that {W,, : n € N} is locally finite we define an open neighborhood around
x:

Uw) = {y : ¢ny () > 5m(2) }
If Wi, nU(x) # 0, then for y chosen in the intersection of these two sets we have:

pi(y) < g foralli <k und  3on,(2) < @n,(y)-

If k > ng is so large that + < 3¢n,(2), then

% < %@no(x) < ‘Pno(y) < %

yields a contradiction. So there are only finitely many k with W, N U (z) # 0.
Claim: There is a partition of unity {fn : n € N} with {z : fn(z) # 0} = W,.
For the time being we define smooth function t,, : X — {¢t:0 <t} by

(@) = hlpn(z)) - h(% _ gpl(x)) N h(% _ <pn_1(m)>.
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Then
Yn(z) £0 & ((pn(x) > 0) /\(%—4,01(:8) > O)/\.../\(%—apn,l(a:) > O) Sz eW,.

Since {W,, : n} is locally finite, locally only finitely many
summands in the sum Y7, 1, are not equal to 0, and
thus ¢ := Y7 ¢, € C°°(X,R). This function 1 van-
ishes nowhere, because the {W,, : n € N} form an covering.
Now we define f,, := % € C*(X,R). Then

and this proves (3) of .
(1) and (2) now follow: supp(f,) € W,, C
Uel.

Remarks.

This proof works for Lindelof spaces X for which the sets {« : f(z) # 0} with
f € C*= form a basis of the topology.

8.3 Corollary (Extending smooth functions).

Let M be a submanifold of R™. A map g : M — R is smooth if and only if there
is an open subset M of R™ that includes M, and a smooth map g : M — R that
extends g, i.e. §lp = g.

Proof. (<) is trivial.

(=) For each p € M there is an open neighborhood U, C R™ and a smooth
extensionn §* : U, — R. Let U := {U, : p € M} and M := U = Upear Up- Then
M C R™ is open and M C M. By there is a partition F of unity which is
subordinated to U, so in particular for each f € F there exists a p(f) € M with
supp(f) € Up(y). We now define the mapping g as follows:

G = Zf.gp(f)’

feF

where f - g?() on M \ supp(f) is extended by 0 (note that a function piecewise
smoothly defined on an open covering is itself smooth). In this sum, the individual
summands are smooth, but only finitely many are # 0. But that just means that
g : M — R is also smooth. To show the last equation, we restrict g to M and
calculate for a x € M:

=3 f@) p(f) (Zf) =g(z). O

fex g(f) ﬁ,_/
1
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8.4 Corollary (Partition of unity for manifolds).

Each submanifold of R™ has a subordinate C'*° partition of unity for every open
covering.

Proof. Let U be an open covering of M. Without restricting generality, the U € U
can be chosen so small that they are images of parametrizations and thus there
are open subsets U of R™, which trivialize M locally. In particular they satisfy
UNM =U (and U N M is closed in U). Then X := Uveu U C R" is open (and
M is closed in X: Namely given € X \ M, then 3 U €Y : x € U \ M and thus
3 U@)CU:U(x)NM=0).

By , a partition F of unity exists on X, which is subordinated to U= {U :
UeU}. So{f|lm: f € F}isa partition of unity, which is subordinated to Y. [

8.5 Proposition.
Each closed set of A CR"™ is the zero set of a C*° function.

Compare this with Theorem on zero sets of regular mappings.

Proof. Let A C R" be closed and 2z € R™ \ A, then there is a smooth f, > 0 with
x € supp fr € R™\ A, compact. Let U be an open covering of R™ \ A with sets of
the form U, = {y : fx(y) > 0}, where x € R™ \ A. Since R™ \ A is Lindel6f, & has
a countable subcovering. Let f1, fa, ... be the corresponding functions. Without
loss of generality

aflil +...Ftn

‘ axtf ... Ozt
This can be achieved by multiplying fx by a sufficiently small number. The series
Z;’;O fx then converges uniformly in all (partial) derivatives, thus defines a smooth

function f > 0 with f(z) =0« fr(z) =0forallk & x ¢ Uy, foralke Ne z €
A. O

1
(I)‘S%forIERn and t1 + -+ +tp < k.

9. Topological properties of manifolds

9.1 Lemma (Topology on Hausdorff manifolds).
Let M be a Hausdorff C*> manifold, then:

1. M s locally compact (i.e. ¥ x € M 3 U, with compact closure Uy; in other
words there are relatively compact neighborhoods).

2. The C* functions M — R separate points. They even separate points from
closed sets (that is, for x ¢ A, where A is closed, a smooth f: M — R euxists,
such that f(x) =1 and f(y) =0 for ally € A). In particular, M is completely
regqular.

Proof. Let a x € M and ¢ a chart at « with open domp C R™. Without
restriction of generality ¢(0) = x holds. Let B, C R™ be a ball around 0, with
B, C dom¢ compact. Then ¢(B,) is an open neighborhood of x, and ¢(B,)
is compact in M as ¢ is continuous and hence closed since M is Hausdorff. So
©(B;) = ¢(B,) and hence is compact.

When z ¢ A and A is closed, then there exists a relatively compact neighborhood
W, of  whose (compact) closure is completely contained in a chart ¢ centered at .
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Thus ¢~ 1(W,) is compact and ¢~ (W) is an open neighborhood of 0 = ¢~!(z) ¢
@ 1(A). Hence there is an 7 > 0, such that

B, :={y e R™: |y| <7} C o Y(W,) and B, Ny *(A) =0, hence ¢(B,) C M\ A.

From theorem , we know that there is a smooth mapping f : R™ — R, with
f(0) =1 and supp f C B,.

Let’s define g : M — R by

o flp™1(2)) for z €imyp
g(z) = {0 for z € M\ ¢(B,).

This definition makes sense and gives a smooth mapping, because f(¢~%(2)) =0
for all z € imp \ p(B,). Moreover, g(x) = f(0) = 1 and gla = 0, because
A C M\ ¢(B,). This proves the claim. O

9.2 Definition (Paracompactness).

A topological space X is said to be PARACOMPACT if there is a local finite refinement
Y for each open covering U of X, i.e. V is an open covering of X satisfying:

1. For all V € V there is a U € Y with V C U (“refinement”).

2. For all x € X there is an U, so that U, NV # () at most for finally many
V €V (“local finiteness”).

9.3 Theorem (Paracompact manifolds).
For Hausdorff C* manifolds M the following statements are equivalent:
1. M has C*° partitions of unity.

2. M s METRIZABLE, i.e. there is a metric that generates the topology.

3. M s paracompact, that is, for each open covering there is a local finite refine-
ment that still covers M.

4. Fach connected component is 0-COMPACT, meaning that it is the union of
countably many compact subsets.

5. Each connected component is LINDELOF, which means that there is a countable
subcovering for each open covering.

Remark (Other topological properties used in the literature).

Not all (continuous) Hausdorff C'°° manifolds possess the above properties, e.g. the
following “long ray” shows: Let  be the set of countable ordinals (that is, the
smallest uncountable ordinal),

_ 2 2 3 w w®
Q—{O,l,Q,...,w,w—i—1,...72w,...,w S W w W W }

We consider 2 x [0,1) \ {(0,0)}, provided with the lexicographic order, that is,
((a,t) < (B,9)) ©@ (e < Bor (¢ =p and t < s)). This “ray” can be made into
a C'°° manifold with the ordering topology, which is indeed Hausdorff, but not
paracompact, see [136, Vol.I, Appendix A].

For metric spaces the properties Lindelof, separabel and the 2nd countability axiom
(that is, existence of a countable basis of the topology) are known to be equivalent
(see [79, 3.3.1]).
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Often, for manifolds, only separability is assumed (e.g., [5] and [113]), but, by
modifying the Priifer surface, it was shown in [23] that there are non-metrizable
separable analytical surfaces:

The modified surface S of Priifer is the quotient of | | R?/ ., where
x=ua ift=1
xz,y;t) ~ (2',y;t) &y =19y and
(@938 ~ (@, y51) v=y {:By +t=21a'y +t andernfalls

This is a separable (Q? is dense) Hausdorff analytical surface, which does not satisfy
the 2nd countability axiom, because | |z{(0,0)} is uncountable and discrete.

t=1

——

—

t=0

i

(11
L]
L]
L1 ]
1]
1]
[T 11
[T 1]
[ 1]
L[]

On the other hand, sometimes (for example, [147], [74], and [19]), even the second
second countability axiom is presupposed for manifolds. However, this implies
that there are only countably many connected components and thus, e.g. Theorem
fails, as the foliation of the torus with irrational slope shows.

Proof of theorem .

(:>) Using C*° partitions of 1, we can glue local Riemann metrics into a global
Riemann metric. By [89, 32.3] this provides a topology generating metric d on the
connected components of M. Then

- {% for x and y in the same connected component

d(z,y) = .
1 for x and y in different connected components

defines a topology generating metric on all M.

(:) Let W be an open covering. Using the axiom of choice (see [79, 1.3.9])
we provide W with a well ordering <. For W € W and n € N, put W,, :=
Ueenrry, Uran(z) where Uy (z) is the open ball around x with radius r and
(1) VVW:x¢V
My, =czeX: (i) Vi<nVVeW:xz¢gV
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Then {W,, : W € W, n € N} is a local-finite refinement of W:
Refinement: W, C W, because Uy jon(x) C Usjon () € W for z € My,y,.
Covering: Let x € X, V :=min{W e W:z c W}, 3neN:Ugym(z) SV =
either (ii) and thus z € My, CV,, or x € W, fora j <n and W € W.
Local-finite: Let z € X and V :=min{W e W: In:z € W,,} then In:z €V,
and thus 3 j: Uy/os () CV,.
Claim: i > n+ j=VW €6 W : Uy jonts(x) N W; = 0.
Because of i >n, Yy € My, : y ¢ V, is by (ii) and thus d(y,z) > 2/27 because of
Usjoi(x) € Vi From n+j > j and i > j we conclude that

Uy jon+s () N Uy i (y) C Uy yoi(x) MUy 0i (y) = 0, Uy jan+i ()N W; = 0.
Claim: i < n + j=Uj jon+i(x) N W; # () for at most one W € W.
Let p € W; and p’ € W/ for W, W' € W, without restriction of generality W < W’;
ie. 3y € Mw, : p € Uyyoi(y) and thus Usjei(y) € W by (iii) and 3 y' € My ; -
P € Uyyoi(y') and thus y' ¢ W by (i). = d(y,y') = 3/2" = d(p,p') > d(y',y) —
d(p,y) —d(p',y') > 1/2" > 2/2"J in contradiction toh p,p’ € Uy jon+i ().

As a result, Uy jon+; (2) is met only by a finite number of W’s.

(:>) Let My be a connected component of M. There is a covering with

relatively compact sets (see Lemma ) This can, since My is paracompact, be
assumed to be local-finite. If I/ is such an covering, then:

{UelU:UnNW # 0} is finitefor every W € U,

because there is an V,, for every x € W, so that V, o meets only finitely U € U.
Since W is compact, there is a finite subcovering {V,,,...,V,, } of W. Let U € U
with UNW # (. Thus, there is an ¢ withU NV, # 0. For the finitely many 7 this
case only occurs for finitely many U € U, so

{UeU:Unw #0}
is finite.

We now choose a W7 € U. Let W5 be the union of those finitely many U € U,
whose intersection with Wy # ().

Now, let inductively W,, be the union of U € U whose intersection with W,,_; # (.
Every W; is the union of finitely many relatively compact sets, thus is relatively
compact itself. If W :=J, W,,, then W is open. We want to show that W = M.
For that it suffices to show that My \ W is open. So let ¢ W, then there is a
U e U with x € U. Clearly U N W = ) holds, otherwise there would be a n with
UNW, # 0, sthus x € U C W,,.1 C W. This is a contradiction.

Hence My = W U (Mo \ W), and W and My \ W are both open. Since My is open,
W or My \ W must be empty. But W # ), so Mo\ W =0, and so My = W. The

equation My = |J, W,, shows the o-compactness of Mj.

n

(:>) Let X be a connected component, i.e. X = J, cyy K, with compact K.
Each open covering U of X thus has a finite subcovering U,, of K,,. And so UneN U,
is a countable subcovering of X, i.e. X is Lindelof.

(:») In a proof for the existence of C'° partitions of unity was given using
as prerequisite Lindel6f and the existence of C'°° functions with arbitrarily small

carriers only. Also the latter assumption is satisfied here because of . O
This theorem is actually a proposition about locally compact Hausdorff spaces
(replacing C'*° partitions with continuous partitions in ) However, the proof of

( = ) can not be done as above, but ( = ) follows directly from the
Metrizability Theorem [79, 3.3.10] of Nagata and Smirnov and ( = ) holds
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obviously: Namely let &/ be an open covering and F an associated partition of
unity. Then for each € M there is an neighborhood U, so that I := {f € F :
supp f N U, # (0} is finite (this corresponds to the 2nd condition for a partition of
unity). Thus, ({z : f(z) > 0})ser is a local finite refinement of U/.

To conclude this excursion into topology, we make some remarks on dimension
theory (for more detailed explanations see [38]):
9.4 Definition (Covering dimension).

Let X a paracompact Hausdorff space. The COVERING DIMENSION of X is said to
be at most n (cov-dim X < n for short) if there is an open refinement of order n+ 1
for each open covering of X (U is said to be of ORDER n + 1 if the intersection of
any n + 2 different sets from U is always empty). By definition, cov-dim X = n <
cov-dim X < n but not cov-dim <n — 1.

9.5 Proposition (Properties of the covering dimension).
The following holds:
1. cov-dim [0, 1] = n.
2. If A is closed in X, then
cov-dim A < cov-dim X.
3. For any locally finite closed covering A of X :
cov-dim X < sup{cov-dimA: A € A}.

Without proof, see [38, S.295,268,278]

9.6 Corollary.

Each m-dimensional paracompact Hausdorff manifold M has cov-dim M = m.

Proof. M has an open covering by sets ¢((0,1)™), where ¢ are charts for M
which are defined on neighborhoods of [0,1]™. Since M is paracompact, there is
a locally finite refinement Y. If U~ := {V : V € U}, then U~ is a locally finite
closed covering. ¢~1(V) C [0,1]™. Since ¢ is homeomorphism and thus preserves
cov-dim, we get by :

—~

b

— )
cov-dim V' = cov-dim ¢ (V) < cov-dim [0, 1]™ m

)

(3) _
cov-dim M < sup{cov-dimV :V € V},
thus cov-dim M < m. Conversely, the following holds: If ¢ : [0,1]™ — M is a
chart, then ([0,1]™) is closed in M, so by :

2
cov-dim M > cov-dim ([0, 1]™) = cov-dim [0, 1]™ D .

Together, the claim follows: cov-dim M = m. O

9.7 Corollary.

Let M be a paracompact and connected Hausdorff manifold. If O is an open covering
of M, then p < dim(M) + 1 exists and a refinement of O of the form:

V={V":i<pneN}
such that V" N V™ =0 ¥V n #m.
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Proof. By , the covering dimension of M is equal to dim M, so there exists
a refinement @’ of order p < cov-dim M + 1 for the open covering O. Since M is
paracompact, there is a locally finite refinement O”, and since M is by Lin-
deldf, we can assume that this covering @” is countable. Thus, without restricting
the generality, O is a countable locally finite covering of order p.

We now show by induction on p that any such covering has a refinement of the
desired form.

For this we shrink the sets in O to obtain a smaller covering /. That is to say, we
construct U € Y with U C O for each O € O in such a way that the U still form
an covering.

This can be done inductively: Let O := {O,, : n € N}. Between M \ | J,,~, O, and
O (the former is closed, the later is open) we squeeze U; and U; and get a covering
{U1}U{0O,, : n > 1} (This can be done recursively because by a C* function
f exists with support in O; which is identical 1 on M \ U,,>1 On. Now we may
put Uy := {x : f(x) > 1/2}). In the second step, we find similarly a Us between

M\ Uy UJ,~5On and Oz; and so on.

Now let’s look at the two families:

V, := the set of intersections of each p of the O € O,
A, = the set of intersections of each p of the U for U € U

and denote their union with V,, :=JV, and A4, := JA,.

In the following image, the large disks are the sets in O, the small disks are those
in U, the dark (red/green/blue) “hexagons ”are those points which lie in exactly
one O € O, the points in the the next brighter stripes are in exactly 2 of the O’s,
the larger “triangles” are in exactly 3 of the O's (thus being the elements of V,)
and the white little “triangles” are the elements of A,,.

“','A“","A“',"A“",'A“","

"’A“',"A“‘v,'A“‘v"'A“v,"A“‘
I I

\‘"’IA\“V"A\""IA\“"IA\“"'I

The family V), consists of open disjoint sets, because if we assume that two different
members of V, have non-empty intersections, then at least p+1 of the O € O would
have a nonempty intersection, and that is a contradiction. As a result, V, C M is
open.

The family A, consists of closed sets and is locally finite, since the corresponding
elements of V, are disjoint. Thus, A, is itself closed as a locally finite union of
closed sets and A, C V), holds.

We now claim that ¢ is a countable local finite covering of M \ A, of order less
than p.
Assuming there are p sets in U whose intersection - restricted to M \ A4, - is not
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empty, then this intersection is also included in the intersection of the unrestricted
closures and is therefore contained in A, by construction. This is a contradiction.

Thus, by induction hypothesis, there exists a refinement of the form {V;* : i <
p, n € N} of U, which covers M \ A, and thus V" NV =0V i < pV n #m.

Together with the disjoint family V, =: {V;} : n € N}, these sets form the desired
refinement of O. O

9.8 Corollary (Finit Atlas).

Each connected, paracompact, smooth Hausdorff manifold of dimension m has an
atlas with at most m 4+ 1 charts.

Proof. Let O be an open covering of such a manifold M by images ¢(U) of charts
@ : U — M with open U in R™. Without restricting generality, O is countable
(since M is Lindelof), i.e.

O = {p;(U;) : i € N},
where we can assume the U; to be disjoint. By there is p < dim M + 1 and a
refinement of the form:

{0} :i<p, neN}
with OF N O™ = () for all n # m. To OF there is a diffeomorphic U* C R™, by
means of some chart ¢}'. We define now

Uur—Jor

x> ;i (z) € Of for z € U,

Pi
Thus, the ¢; are diffeomorphisms whose images cover M, i.e. {p; : 1 <i<p}isa
C* atlas. O

As a simple conclusion we will show in |11.11 | that every such manifold can be
realized as a submanifold of a R™ up to a diffeomorphism.
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III. Tangent space

In this chapter, we will transfer the notion of derivative to mappings between man-
ifolds. Since derivatives carry directional vectors to one another, they do not act
between the manifolds but between their tangent spaces, which we will introduce
now. As an application we will then discuss some simple infinitesimal properties
such as immersivity and submersivity of mappings. Under additional local and/or
global properties we get embeddings, fiber bundles and as a special case covering
maps.

10. Tangent space and derivatives

The derivative f/'(z) of a mapping f : R® — R™ at z is defined as the linear
approximation to the f function shifted to 0. This can not be readily transferred
to manifolds, because in order to speak about linear mappings f’(z) they must be
between vector spaces (and not like f between manifolds). Thus, first of all, we
need a linear approximation to a manifold M at point z € M. This should then
become the domain or range of the linear approximation of f at x.

10.1 Proposition (Description of the tangent space).

Let M be a submanifold of R™ and p € M. Then the following subsets of R™ are
identical:

1. im ¢'(0), where ¢ is a local parameterization of M with ¢(0) = p.

2. {d(0):¢: I — M smooth, ¢c(0) =p, I an open interval with 0 € I}.
3. ker f'(p), where f is a reqular equation describing M locally at p.
4

graph ¢’'(p) where M is locally described at p as a graph of function g with
p=(p.9(p))-
In particular, this subset is a linear subspace due to or and because of

it is independent on the choosen parameterization, the equation, and the mapping
describing it as graph.

Proof. (g) Let ¢'(0)(v) € im(¢'(0)) with v € R™. If we define a smooth
locally in M lying curve ¢ by

c(t) := (0 + tv)
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then we get ¢’(0) = ¢’(0)(v).

(g) We now consider ¢/(0) for a curve ¢ € C*°(I, M) with ¢(0) = p and a
locally regular equation f for M,

f'(p )((0)) = (fo0)(0)=0.
~— —~
c(0) 0
ie. (0) € ker f/(p)
(g) As we have already shown Cc Cc , it suffices to show that the
subspaces in and have the same dimension:
dimim ¢'(0) = dimR™ = m
dimker f'(p) = n — dimim f'(p) = m.
——

Rn—m

( = ) A parameterization of M is given by ¢(u) := (u, g(u)).
im¢'(p) = im(id, ¢'(p)) = {(v, ¢'(P)(v)) : v € R™} = graph¢'(p). ~ O

10.2 Definition (Tangent space and tangent mapping).

The subspace of R™ described in is called the TANGENT SPACE for M at the
point p and is denoted by T, M. Its elements are called TANGENT VECTORS.

For smooth f: M — N the TANGENT MAPPING of f at the point p € M is defined

by
T TpM — Tf(p)N
vl d(0) = (f o¢)'(0) fiir c € C*°(I, M) mit c¢(0) =p
This definition makes sense, i.e. does not depend on the choice of ¢, but only on ¢/(0):
Let ¢; and ¢ be two such curves with ¢} (0) = ¢4(0). For f:R™ D M — N C R"”
there is an open neighboorhood U(p) C R™ of p and a smooth mappping
FR™2U(p) = R* with flu = flu),

hence

% ’ analog

(foc1)(0) = (focr)(0) = f(p)(ch(0)) = f'(p)(ch(0)) (foc2)(0).

The tangent mapping T}, f is linear, because (T}, f)(c'(0)) = (foc)'(0) = f'(p)(c'(0)),
hence

T,f = f’(p)|TpM, where f is a local extension of f.

10.3 Example (Quadrics).

Let f : E — R be a quadratic (i.e. f(tr) = t2f(x) smooth form and ¢ # 0.
Then the quadric M := f~!(c) = {x € E : f(z) = ¢} is a submanifold of E,
because differentiating the homogeneity equation yields f'(tz)(tv) = t2f'(x)(v), i.e.
f'(tx)(v) = tf'(z)(v), and furthermore f”(tz)(tw,v) = tf"(z)(w,v), i.e. f'(z) =
f"(tz) = f”(0) for ¢ — 0. Thus, according to Taylor’s theorem, f(z) = b(x,x),
where b := 1 f”(0) is a symmetric quadratic form.

The derivative of f is f'(z)(v) = b(z,v)+b(v, z) = 2b(x,v) and thus surjective with
respect to v for each & € M, because 2b(z,x) = f(x) = ¢ # 0. The tangent space
of M at x is

T,M = {ve€ E:b(z,v) =0} = a*.

A first example of a quadric is the sphere S™ = f~1(1), where f(z) := |z|?.
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The special linear group SL(E) := {T € L(E) : det(T) = 1} (see [4.2]) has as a
tangent space at id € SL(E) the subspace {T' € L(E) : 0 = det’(id)(T) = spur(T)}
of the trace-free linear mappings.

The orthogonal group O(E) := {T € L(E) : T'T = id} (see [4.3]) has as tangent
space at id the subspace {T' € L(E) : 0 = f'(id)(T) = T* + T} of the skew-
symmetric (that is, anti-self-adjoint) linear mappings, where f is the quadratic
mapping f: T~ T'T.

More generally, for a bilinear non-degenerate form b : £ x E — R, the tangent
space at id of the group Oy(E) := {T € L(E) : b(Tx,Ty) = b(x,y)V z,y € E} =
{T € L(E) : T*BT = B} (with b(x,y) = (Bx,y)) treated in is the subspace
{T € L(E) : T*'B + BT = 0} of those linear mappings which are skew-symmetric
with respect to B.

For the groups G treated in , we obtain the following descriptions of the

tangent space at id € G (using det’(A)(B) = det(A) trace(A~!B) from [4.2]) in a
corresponding manner, from which we can easily read off the dimension of G.

G TldG dimR
GL(n) L(n) n?
GL¢(n) L¢(n) 2n2
GLH( ) LH(n) 4TL2
SL(n) {T € L(n) : tracer(T) = 0} n? — 1

SLc(n) {T € L¢(n) : tracec(T) = 0} 2(n? — 1)
SLy(n {T € Ly(n) : traceg(T) = 0} am? — 1
O(n), SO(n) {Te€Ln): T'+T =0} n(n —1)/2

O(n,k),SO(n, k) |{T € L(n) : T*I} + I, T = 0} n(n—1)/2
Oc( ),SO({)( ) {TEL(c(n) :Tt—l-T:O} n(n — 1)
U(n) {T € L¢(n) : T*+ T =0} n?
U(n, k) {T € L¢(n) :T*Ik—FIkT:O} n?
SU(n) {T € L¢(n) : T*+ T = 0, tracec(T) = 0} n? — 1
SU(n, k) {T € L¢(n) : T*Ix + I T = 0, tracec(T) = 0}{n? — 1
Q(n) {T € Ly(n) : T*+T =0} n(2n + 1)
Q(n, k‘) {T € LH(n) T, + I, T = 0} n(2n + 1)
Q_(n) {T € Ly(n) : T*i + T = 0} n(2n — 1)
Sp(2n) {TeL®2n):T"J+JT =0} n(2n + 1)
Spc(2n) {T € Le(2n) : T"J + JT =0} 2n(2n+ 1)

In detail, this means e.g. for O(n, k), that
<é g) € T.aO(n, k) C L(R* x R" %) &
- (A B)t.<—1 0>+(—1 0) _ (A B) 0
C D 0 1 0 1 C D
A"+ A=0, B'=C, D'+D=0
and for the Sp(2n), that

A B " on
(C D> € TiaSp(2n) C L(R" x R") &

(@ 5) 66 ) (2 B)-

sC'=C, -A'=D, B'=B.
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10.4 Lemma.

Chain Rule: For manifolds M, N, P and smooth mappings f,g with M EAY NN P,
we have

Tp(go f) =TrpygoTpf.
For the identity id : M — M we have
Tp(ldM) = idTpZM : TpM — TpM.
product rule: If f,g: M — R are smooth, then

T(f-9)=f®) Tpg+9)  Tpf

Theorem on inverse functions: A smooth mapping f is a local diffeomorphism
around p if and only if T, f is an isomorphism.

Proof. By extending all occurring functions smoothly to neighborhoods in the
surrounding vector spaces, the chain and product rules follow from the classical
versions, see [81, 6.1.9] and [81, 6.1.13]. Furthermore, the theorem about inverse
functions is only local in nature and therefore also a consequence of the classical
theorem . O

Unfortunately, we can not directly use the descriptions of the tangent space given
in for abstract manifolds, since we have used the surrounding vector space in
an essential way. So we need other (more abstract) descriptions. For this we pay
attention to the action of v € T, M on f € C*°(M,R) through f — T, f-v and give
the following

10.5 Definition (Derivation).

A mapping 9 : C*°(M,R) — R is called DERIVATION over p € M if it is linear and
fulfills the product rule, that is for f,g € C*°(M,R) and o € R we assume:

L. O(f+g)=0f +0g
2. daf)=«a-0f
3. 9(f-g)=0f-g(p) + f(p)- 99

With Der,(C*°(M,R),R) we denote the set of all derivations over p € M. With
respect to the pointwise operations, this is a vector space.

10.6 Theorem (Tangent vectors as derivatives).
The mapping
T,M x C*(M,R) - R
(v, ) = (Tpf)(v)
induces a linear isomorphism
T,M — Der,(C*(M,R),R)
U ema(f e o)
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For each smooth f : M — N the tangent mapping T, f of f corresponds via ®, to
the following mapping for derivations:

o]
T,M —

Der,(C>*(M,R),R) > 0

Tpf (Canl

D » .
Tj N —2—> Der;(,) (C*(N,R),R)> (g d(go f))=o f

Proof. Well-definedness: The mapping T,M x C>*(M,R) — R, (v,f) —
(Tpf)(v) is clearly bilinear, so it induces a linear map T,M — L(C*(M,R),R)
by v — (f — (T, f)(v)). This mapping has values in the space of derivations over
p, because let f,g: M — R be two smooth functions and let v € T, M then by the

product rule the following holds::
Ou(f - g9) =Tp(f - 9)(v) = fp) - (Tp9)(v) + g(p) - (Tp.f)(v).

Commutativity of the diagram: Let f: M — N be smooth and p € M. Then
the above diagram commutes since for v € T,M and g € C*(N,R) is (P o

Tp)(W)(9) = (T 9) (T f)(v)) = (Tp(go f))(v) = Pp(v)(gof), because § 1= Py (v)
acts on h € C°(M,R) by d(h) = (T,h)(v).

Locality of derivations: Each derivation 9 of C*°(M,R) over p € M is a local
operator, that is, the value 9(f) depends only on f € C*°(M,R) near p:
So let f1, fa € C°(M,R) with fi = fo near p. Let f := f; — fo and g € C*°(M,R)
be choosen such that g(p) = 1 and that the carrier of g is included in the set of x
with f(z) = 0. Then:
0=20(0)=09(g- f) =g(p)-0(f) + f(p) -0(9) = O(f)
~~

~—~
1 0

In particular, d(f) = 0 for all constant functions f, because 9(1) = 9(1-1) =
1-9(1) 4+ 0(1) - 1, thus 9(1) = 0.

Bijectivity for open submanifolds: First we want to prove the bijectivity of
® for the special case 0 = p € M with M C R™ open. If (e;)", is the standard
basis in R™, then each vector v € T,M = R™ can be developed in the basis as
v=7>,v'e;. Let us consider

& : T,M > v+ 8, € Der,(C™(M,R),R)

m

with 8, (f) := (T, )(v) = f'(p)(v) = >_(0:f)(p) - V',

=1

where 0; f is the i-th partial derivative of f, i.e.
@) () = &l,mg 0+ te') = f'(D)(€).

The derivation 0, is nothing else than “taking the directional derivative d, in direc-
tion v at p” and @ is injective, because the components of v can be reconstructed
uniquely from 9, by

m

By(pr;) =Y (0ipry)(p) v* =’

i=1 N——
di j
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Moreover, ® is also surjective, because for 9 € Dero(C*(U,R),R), f € C>(U,R)
and z near 0, the following holds:

f(x) — £(0) = / F(t) () dt = / SO @)t = Yo / (01 f)(t)dt
7 =1 < /)

=:h;(x)

and furthermore, because 0 is a local operator,

O(f) = B(f(0)) +0 (Z pr h) =0+ (9lr') 1a(0) +pr'(0) 0(h))

=wi (8;)(0) =0
=> v (3:£)(0).
=1
So 8(f) = 0u(f) = ®(v)(f) for all f.

Bijectivity in general: Now let M be a submanifold of R™ and ¢ a local param-
eterization of M centered at some point p € M. The following diagram shows that
®,, is an isomorphism:

Top

R™ = T,U

.

Dero(C*(U,R),R)

T,M < R™

%l
(incl™)*
Der,(C*>*(M,R),R)

R

IR

()"

o

Der,(C*(¢(U), R), R)

o

Where Ty is an isomorphism by and ; ®, is one because of the previous
case; (¢*)* : 0 — (f — O(f o)) is one because ¢ : U — ¢(U) is a diffeomorphism;
and finally (incl®)* is one, since derivations are local operators; So also @, is an
isomorphism, and thus the theorem proved. O

We can now use the theorem to define the tangent space of abstract manifolds
as follows:

10.7 Definition (Tangent space of abstract manifolds).
The TANGENT SPACE at p of an abstract manifold M is the vector space
T,M := Der,(C*(M,R),R).
Note that for submanifolds M C R", and in particular for open subsets, we have

replaced the tangent space T,M C R"™ defined in with a nonidentical but
canonically isomorphic vector space T,M C L(C*(M,R),R).

For f € C®°(M,N) and p € M, the linear map T,f = (f*)" : T,M — TN
defined by
9 ((Tpf)(a) g A(go f)) for & € T,M and g € C®(N,R)

is called the TANGENT MAP of f at p.

10.8 Basis for the tangent space.

If, as for mappings between R"’s, we want to describe the derivative of a mapping
between manifolds as a matrix (the Jacobi matrix) we need a basis. But even
if we have chosen a basis in the surrounding vector space, we still do not get a
distinguished basis of the tangent space (think, for example, of the sphere S?).
But we can proceed as follows. Let M be a manifold, p € M and ¢ a chart of
M centered at p. Then Typ : TyR™ — T, M is a linear isomorphism by
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and if M is a submanifold of R™, but also in the general case of an abstract
manifold, since is quite easy to show for them. The standard basis (e;)/*,
of R™ is mapped by the isomorphism ® : R™ = Dero(C*(U,R),R) of to
the basis of the partial derivatives (9;]o)7", in ToU. The isomorphism Ty further
maps this basis to a basis (97 |,)", in T, M, which is defined on f € C*°(M,R) by

O 1p(f) = (Top) (9ilo) (f) = (©)"(0ilo)(f) = Dilo (" (f)) = 0i(f 0 ©)(0),

i.e. by taking the partial derivative of the chart representation foy of f in direction
e; at 0= ¢ 1(p). In summary:

R

Rm

ToU Too T, M = Der,,(C*(M,R),R)

& | IR

Oilo (10 : £ = 0:(F 0 @)™ ()

In the case of a submanifold M C R", 97|, (0) := (Tow)(9ilo)=(di)(0) := ¢'(0)(e;)
(via the embedding T,,M — R™) is just the i-th partial derivative of the parame-
terization ¢ : U - M C R™.

If (ul,...,um) ===t : M D ¢(U) — U C R™ are the local coordinates associated
to ¢, we also write

0
ou’

p o7 lp

instead of 97|, € T,M = Der,(C>(M,R),R). This (uncommon) notation 9;
expresses better that this derivation depends on the chart ¢ and not, as one might
erroneously deduce from the notation %, only on the ith component u" of the
inverse function ¢! = (ul,...,u™) (see [10.10]). The name %, however, is the

more common and does not cause any problems if it is interpreted only as (%)i

and not as %
If o is not centered at p then, more generally,

o
du’

L, () =0 1,(f) = 0i(f o) (¢~ (p)) for f € CF(M,R)
and in particular

9
du’

L (@) = 0,(u! 0 0)(07 (p) = Bi(pr!) (07 (p) = 4,

because of the local nature of 2-

5.7 | the previous formula also holds for f := ul €
ul lp
C>=(p(U),R).

10.9 Transformation behavior of tangent vectors.

For g € C°(M,N) and p € M, let ¢! = u = (ul,...,u™) be local coordinates
of M at p and ¥y~ = v = (v!,...,0") local coordinates of N at g(p). We know
that Tpg : T,M — Ty, N is linear by and (% p) is a basis of T,M and
(% f(p)) is one of Ty, N by . What is the matrix representation [T},g] of
T,g with respect to these bases?
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Let g := 9! 0 g o ¢ be the chart representation of g. Since, according to the
definition of T,,g and because of and , the following diagram commutes

()'(0)

U——V Der(C*°(U,R),R) Dery(C*°(V,R),R)
® dJi = Totﬂl% 10.4 Towl%
MY N Der, (C* (M, R), R) — % Der, () (C(N,R), R)

the corresponding basis is mapped as follows:

@O y
ei 7 (0)(e:) == X; 3 (0) - ¢

Tog

0y ————= (Tog)(0;) == 3, 8:5° (0) - 0;

To<,9‘l\;u Tollflru
T,

r9

0f "= (T,)(0f) = X, 0ig (0) - Y

So for the components &' of tangent vectors ¢ = Y, & - 87 € T,M we get the
following:

(Tp9)(&) = (Tp9) (Z g - 8f> = ZfZ (Tp9)(9]) = Zfz : Z@igj(()) .a;/;
i i i j
= Z(Zgz ) 3@3‘(0)) .a;l’
]
The components 77 of n =37 - 8;# = (Tp9)(§) € Ty N are therefore given by
W= &g 0),
or in matrix notation

nt 0131 (0) ... 9,3%(0) &t

n" Ag"(0) ... 0ng"(0) &
i.e. is just multiplication with the Jacobi matrix of the coordinate representation
g=1v togopofy.

In particular, if we choose g = idj; and two charts ¢ and v centered at p € M,

then g is the chart change ¥~! o ¢ from coordinates (u',...,u™) := ¢! to coor-
dinates (v!,...,v™) = ¢! If we consider the above formula 97 = (T,id)(9{) =
(Tp9)(07) = 3=, 9:5%(0) - 8;” to be formally a multiplication of matrices, then

¥ g (0) ... Bg™(0) Y

o8, Omg*(0) ... Omg™(0) oy

Thus we get the basis (9;) formally from the basis (8;/’) by multiplying it with the

transposed Jacobian matrix of the inverse chart change 1)1 op = (p~to)~! from
© to .
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If we now use the notation % =07, % = 8}’ and gf, = a?u‘f and note that
of (f)(p) = (O)1p(f) = 9i(f o ) (¢~ (p)) and thus
9ig’(0) = (¥~ o g o)) (™ (p)) = Bi(v? o g o @) (¢ (p))
=07 (v 0 9)(p) = 52 (v 0 9) (),
then the above formula for g = id states that

0
ou?

; i ol 9
=07 = (1,0) (0) = 30 (0) 8 = Y 5 o
J J

(note the memo-technical advantage of this notation) or in (formal) matrix notation:

lé] dut ou™ lé]
ovt ovl t ovl oul
_9_ dul ou™ _90_
ovm ovm e Ovm oum™
and ) )
1 ov ov 1
n oul ces Dum §
m Hu™ Hu™ m
U el (L £

10.10 Example.

Be M = R3. We choose 3 different coordinate systems:

. . . 6 6 8
1. CARTESIAN COORDINATES (7,y¥, z) with associated basis vectors -, 390 Dz

2. CYLINDER COORDINATES (r, ¢, z) with associated basis vectors g, 6@, 8@.
r © z

3. SPHERICAL COORDINATES (R, ¢, 1) with associated basis vectors %, %, 6%.

For the Jacobi matrices of the chart change (2) — (1) we get: = r - cosp,y =
resing, z =z

or g 0z cosp —r-sing 0
9y Oy 9y | _ : .
or oy 0. | = |sing 7-cosg 0];
0z 0z 0z 0 0 1

For (3) — (2) we have: 7= R -cos¥, z = R -sinv
or or or

9R 0p 00 cos? 0 —R-sind
99  O¢ Do | _ 0 1 0 .
oR 9o o9 | — | | ;
Oz 0z 0z sindy 0 R-cosd

OR dp OV
And finally for (1) — (3):

R = /2?2 +y?2 + 22, p = arctan(y/x), ¥ = arctan(z/+/x2 + y?). The calculation

of the Jacobi matrix of this chart change is left to the reader as an exercise.

If we use new coordinates Z := z, 3 := x +y on R? instead of the Cartesian coordi-
nates x, y, then the respective first coordinates coincide, but not the corresponding

derivations
9o o w99 0,0
or Ox 0x 0Ox Oy 0% 0y 0z
<~ <~
=1 =1
So z2; depends not only on u’ but on u = (u',...,u™)!

There is also the possibility of describing the tangent space of an abstract manifold
more geometrically.
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10.11 Lemma (Tangent vectors via curves).

Let CP(R,M) :={c € C*(R, M) : ¢(0) = z} be the set of smooth curves through
x € M. For such a smooth curve ¢ and a smooth function f: M — R let 0.(f) :=
(foc)(0). Then c— 9, defines a surjective mapping

0: CP(R, M) — Der, (C*(M,R),R).
So we can identify Ty M with C° (R, M) /~, where ~ is the following equivalence
relation on C2°(R, M):
cp~ey & YVFeC®(M,R): (foc)(0)=(foc)(0).

The tangent mapping of a smooth function g : M — N looks like this in this
description:

(T:cg) (80) = agc>c~

This corresponds to the description of T, M for submanifolds of R™ in |10.1.2|.
However, it has the disadvantage of being unable to recognize the vector space
structure of T, M and the linearity of T .g.

Proof. The following calculation shows that J. is a derivation via x:

0./ +9) = (T +9)0¢) ©) = ((Fee)+ (500)) (0)
= (foe/(0)+(g00)(0) = 0. + g

)= ((noe) © = (Afo0) O
:/\fOC)( )= A-0.f
(f-9)0¢) 0= ((Foe)-(90)) (0)
=(foc) ( ) (900)( )+ (foc)(0)-(goc)(0)
In order to show that assignment ¢ — 0. is surjective, we choose local coordinates
o=t = (ul,...,u™) centered at x € M. Each element of T, M = Der, (C*°(M,R),R)

then has the form S0, &2 5.7 l2- We now define a (local) curve ¢ : R — M by
c(t) == (et .. te™), e ul(c(t)) :=t& for i = 1,...,m, then for f € C°(M,R):

(foe)© = ((fop)o(e o) (0) = (fo e O)((p™ o) (0)

=(fo@)(0)(&,....&™) =D _9i(f o @)(0)¢’

i=1
m m
) i 9
= Z ou’ =(f)€" = Z&laui
i=1 i=1
Thus, 0. is the given element of T, M, with the single flaw that ¢ is only locally
defined. However, since the above calculation depends only on the appearance of
c near 0, we can reparameterize ¢ so that nothing changes near 0, but ¢ remains
entirely in dom(yp).

A

x

The fact that T}, g has the given form is immediately apparent:
((1:9)00)) (F) = 2(f o9) = ((Fog)oc) (0) = (Fo(900)) (0) = goelf). O

Especially among physicists the following description of the tangent space is com-
mon:
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10.12 Lemma (Tangent vectors via coordinates).

Assume that for each local parameterization ¢ of M centered around x, there are
coordinates (5:;,)?;1 of a vector {, € R™ specified so that they transform correctly,
ie. £py = (3! 0 1)/ (0) - &,y for any two charts ¢y and @ with chart change
mapping 05 o @1, or in coordinates &, = >t 2 (3" 0 1)¥(0) - &1, Such a
coordinate scheme corresponds to a unique tangent vector in T, M and vice versa.

If g : M — N is a smooth function, T,g maps such a scheme {, € R™ to the
scheme ny € R™, with ny = (Y= 0 go¢)'(0) - &,.

Proof. Let &, € R™ be given for a local parameterization ¢ and let (u', ..., u™) :=
¢~ be the associated local coordinates. Then we define a derivation d¢ € T, M
by 0 := Y1t &L 6‘?”. This definition makes sense, that is, is independent of the
choice of the chart ¢, because the &, transform in the same way as the coefficients

of a derivation with respect to the basis (52;).

Conversely, the coefficients Sfp of a derivation 0 € T, M with respect to the basis
(%) belonging to ¢ = (ul,...,u™)~ !, form exactly one correctly transforming
coordinate scheme.

The fact that T,,g maps these schemes in the manner indicated follows immediately

from the coordinate representation of T, g with respect to bases (a%) and (%) of

TIM and TQ(I)N.

11. Immersions

In the remainder of this chapter, we will use the tangent mapping to study specific
properties of smooth mappings. In particular, we are interested in the correct
concept of “subobjects”and “quotient objects” of manifolds.

11.1 Definition (Immersions and submersions).
Let f € C*°(M, N), where M, N are manifolds. Then
f is IMMERSIVE :& T, f is injective V & € M;

f is SUBMERSIVE :& T, f is surjective V x € M;
[ is REGULAR :¢ rang(T f) is maximal (= min{dim T, M,dim Ty, N}) ¥ z.

Note that a mapping is immersive if and only if it is regular and dim M < dim NV
holds. Likewise, it is submersive if and only if it is regular and dim M > dim N
holds.

11.2 Rank-Theorem.

Let f € C*°(M,N) and r € N. Then rank(T,f) =r YV x € M if and only if there
is a chart ¢ centered at x for each x € M and a chart 1 centered at f(z), s.t. the
locally defined chart representation

P lofop R xR™ " 5 R" x R"™"

has the form (x,y) — (z,0).
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Note that, w.l.o.g. we may assume (by restricting ¢ to ¢~ 1(f~!(im))) that
f(im ) C im+ and thus the following diagram commutes:

. fim .
Mleap#lmng

4: :T@b

R™ D domyp —— > domy C R"
- 4 Y~ Tofop vE

By further shrinking dom ¢, we obtain the form domy = Wy x Wy C R" x R*™"
and domy NR" = W; (or even the form domy = Wy x W3 C R” x R™" using a
compactness argument on Wh).

Proof. (<) We have rank T}, f = rank Tp(¢ =1 o f 0 ) = rank((z,y) — (x,0)) = r.

(=) Without loss of generality, let M = R"™, N =R", =0, and f(z) = 0. The
idea of the proof is that f looks locally roughly like the derivative f/(0), and being
a linear map of rank r this is up to change of basis of the form (z,y) — (z,0):
Namely, let Fy := Bild(f’(0)), F» := Fi-, Es := Ker(f(0)), and E; := Ey. Then
r = rank(f’(0)) = dim(F}), and furthermore dim(E;) := m — dim(FEs) = dim(F})
and the component representation of f/(0) : By @ Es — Fy @ F» has the following

form:
ror= (5 o).

with invertible A € L(Ey, F1) and, if we write f = (f1, f2), then A = 8 f1(0,0).

We now try to use local diffeomorphisms to bring the map f to the desired shape.
For this we first consider a slightly modified variant of f, namely the smooth map
0 B ® FEy — Fy @ Ey given by o1t (21, 12) = (f1(21,22),72) (we will justify
the notation as inverse). The Jacobi matrix of ¢! in 0 looks like this:

= (4190 PI0) - (3 1)

So (¢~1)/(0) is invertible and because of the Inverse Function Theorem [2.2], ¢!
is a local diffeomorphism. If ¢ is the local diffeomorphism inverse to ¢! and
g := f o, then g = (g1, 92) has the following form

9(y1,92) = (1, 92(¥1,0)),
because
r = (21,72) = p(y1,92) =
y=(y1,92) = ¢ (1, 22) = (fi(z1, 22),22) =
y1 = fi(z1,22) = fi(e(y1,92)) = 91(y1,92)-

Furthermore, Rang ¢'(y) = Rang f/(¢(y)) = r holds, since ¢ is a local diffeomor-
phism. So in the component representation of ¢’(y)

9'(y) = (algj(y) 3292(y)>

the bottom right corner has to be d2g2(y) = 0 and thus ¢g2(y1, y2) = g2(y1,0).

In order to make the second component of g zero, we use ™' : 1 & F, = [, & F
(the notation as inverse will be also justified) defined by

Y (Y1, 92) = (Y1, 92 — g2(y1,0)).
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The component representation of (1»~1)/(z) is given by

i B id 0
@0 = (o0 1)

and thus ! is a local diffeomorphism, i.e. is really the inverse of some 1. Fur-
thermore

(v~ o fop)(y1,y2) =¥ (y1,92(y1,0))
= (y1,92(y1,0) — 92(¥1,0)) = (y1,0). O

11.3 Corollary (Characterization of diffeomorphisms).

For smooth mappings f the following holds:

f s diffeomorphism < f and T, f are bijective for all x € M.

Proof. (=) The mapping f is clearly bijective. That T, f is also bijective has
already been shown in .

(<) The mapping g := f~! is well-defined and continuous since f is open as local
diffeomorphism. By the Rank-Theorem , there are charts ¢ at = and ¢ at
f(x), such that f(im(y)) C im(x) and =1 o fop =id.

im(p4f>im1/)

u% ,/,Tm

R™ > dom ¢ 4. domy &= R™

Without restriction of generality we can therefore assume domy = dom¢. Thus
2z f71(2) = (p o 1)(z) is smooth on im1 and hence f is a diffeomorphism
since ¥~ restricted to im 1) is one. O

11.4 Characterization of Immersions.

We now want to try to find out which subsets M of manifolds N can be made
into manifolds such that the inclusion f :=incl: M — N is smooth and that the
tangent spaces T, M of M are mapped by T f bijectively onto subspaces of Ty, N,
i.e. f is an immersion. For this we have to try to express the property that f is an
immersion by using charts from N.

By the Rank-Theorem immersions look like inclusions incl : R™ < R" with
respect to suitable charts ¢ centered at € M and 1 centered at f(z) € N with
f(imy) € im¢ and dom¢ NR™ = dom . So flim, is bijective from im¢ to its
image

im(flim ) = f(imep) = ¢(incl(domp)) = ¢P(dom ¢y NR™) = y(R™),

and thus

¢ = flimy © flimg 09 = flim, 0¥ oincl = fli 1, 0 Ylwm.
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o=[f Loy |gn ¥
]Rn—m
dom(y)
dom(y) inj, dom(o)
-
0 R™ R™

Thus by appropriate choices of neighborhoods U, := im ¢ of z € M and charts
of N centered at f(x) we obtain an atlas ¢ := f|U o |gm for M and the chart
representalon of f then looks like the inclusion R™ < R”™. This shows the direction

= [2]) of the following

Proposition. Characterization of immersions.
For f € C*>*(M, N) the following statements are equivalent:
1. f is immersive;

2. Yax € M 3 U, open neighborhood of x in M and a chart ¢ centered at f(z) in
N, such that f\{]j oY|gm : domy NR™ — U, is a well-defined diffeomorphism
(and thus a chart for M );

3. f has locally a left-side inverse, that is ¥V x € M 3 U, open neighborhood of
xin M and 3 h: N 2 Vi) — M smooth with Vi 2 f(Uz) open and
h e} f = ldUl .

Proof. We just showed ( = )

( = ) Let ¢ := f|[}11 o ¢|gm : dom NR™ — U, be the diffeomorphism with
U, and 9 as in . By shrinking the chart i) we can achieve that dom is of the
form Wy x Wy € R™ x R"™™. Now we put V() := im¢ and h := o prj o™,
where pr; : R® = R™ x R*"™™ D W; x Wy — W; C R™ denotes the canonical
projection onto the first factor. Then h : Vy(,) — U, is smooth and
hofop=goprioyp™lofop=gpoproinch =¢=idop,
sohof=1id on imyp = U,.
= | 1) Because of ho f = id locally at x, the identity id = T} id = Ty ho T, f
holds SO T f is injective and thus f is an immersion.

11.5 Corollary.

Let f € C*°(M,N) be an immersion and g : P — M be a continuous mapping with
fog € C®(P,N). Then g is smooth.
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M-t N

CSQT /
fogeC™

P

Proof. Let z € P and x := g(z). There are U, and h : f(U,) € Vi) — M as

in |11.4.3|. Since g is continuous, g~!(U,) is an open neighborhood of z on which
g=(hof)og=ho(fog)issmooth. O

11.6 Remarks.

1. For [11.5], the continuity of g is essential: Let g : |—m, 7[ — |—m, 7| be defined
by
m—tfort>0

g:t— 0 fort=0
—nm—tfort<0
and the immersion f : (—m,7) — R? be defined by f(t) := (sint, —sin 2t).

Tt
-7

N %W

Then f o g is smooth, but g is not continuous, ergo also not smooth.

2. A manifold M, whose underlying set is a subset of a manifold N, is called
an IMMERSIVE SUBMANIFOLD, if the inclusion incl : M — N is an immersion.
An immersive submanifold is generally not a submanifold in the sense of ,

or more generally of | 11.10 || The mapping f : (—pi,pi) — R? from is an

injective immersion, but the immersive submanifold im(f) 2 (m,7) is not a
submanifold of R?.

3. The manifold structure of an immersive submanifold is generally not deter-

mined by that of N as shows: f and f o g induce two different manifold
structures on M = im(f).

11.7 Definition (Initial and final mappings).

Let f € C°(M,N). The map f is called INITIAL MAPPING :& for each mapping
g : P — M with the property that f o g is smooth, g itself is smooth.

The mapping f is called FINAL MAPPING :<> for each g : N — P with the property
that g o f is smooth, g itself is smooth.
11.8 Definition (Embedding).

Itis f : M — N smooth, then f is called EMBEDDING :< f is an injective immersion
and f: M — f(M) is a homeomorphism onto its image f(M) supplied with the
trace topology of V.

11.9 Proposition (Characterization of embeddings).

For f in C*(M,N), the following statements are equivalent:
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1. f is an embedding;

2. For each x € M, there is a chart 1) of N centered at f(x) so that f=1 o |gm :
dom ¥ NR™ — f=Y(im)) is a well-defined diffeomorphism (and thus a chart);

3. f has local left inverses in the following sense: ¥ x € M I h: Vi — M
smooth on an open neighborhood V() from f(x) in N with ho f = id on

S Vi)

Bild(p)=f1(Bild(y)) f N
_>
X

@=|f Loy |gm ¥
Rn—m
o dom(y)
dom(p) njq dom(op)
-
0 R™ R™

Note that the difference to the formulation of immersions in is only that the
image of the constructed charts ¢ is now all of f~1(im) and not just an open
neighborhood U, of z, i.e. im% Nim f may consist only of a part which looks like
R™ C R™.

Proof.
( = ) Let f be an embedding. Since f is an immersion, there exists, for x € M
by , an open U, C M and a chart ¢ centered at f(z), s.t.

f~toelgm : domy NR™ — U,

is a well-defined diffeomorphism. We want to achieve U, = f~!(im)) by resizing
dom. Since f is a homeomorphism onto its image, there exists an open W C
im4 with W Nim f = f(U,). Without loss of generality im¢ = W, hence U, =
f~(im), because

Up 225 (0 £)(U,) = 1 (W Nim f) = £ (im¢ Nim f) = £~ (im1p).

( = ) The same definition of h as in the corresponding proof of now
provides a left inverse on U, = f~!(im1)).

( = ) by f is immersive.

Furthermore, f is injective, otherwise there are x1 # zo with y := f(z1) = f(x2)
and a local left-inverse h : V;, — M as in . Then z; € f'(V,) and thus
x; = (ho f)(x;) = h(y) is independent of i, a contradiction.
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Finally, f is a homeomorphism onto its image: Let (x;); be a net in M for which
f(z;) converges to an f(zs). Let h: V — M be a local left inverse as in |3 | with
an open neighborhood V of f(x). Then f(z;) is finally in V' and thus z; finally
in f~1(V) and hence converges x; = (ho f)(z;) = h(f(z;)) = Mf(Too)) = Too. O

11.10 Definition (Submanifold).

A subset M of a manifold IV, which itself is a manifold and for which the inclusion
incl : M < N is an embedding (hence possesses the equivalent properties of )
is called (REGULAR) SUBMANIFOLD of N.

Any subset M C N having for each point x € M a chart ¢ of N centered at
x for which M Nimt = ¥(R™) holds, is itself a manifold of dimension m with
the smooth atlas formed by these restrictions ¢ |gm and, furthermore, the inclusion

incl : M — N is by construction and by [11.9.2 | an embedding. Thus M is a
regular submanifold of N.

This shows that the definition for regular submanifolds of N = R™ coincide with
that given in for submanifolds of R™, because charts ¢ of N = R™ asin|11.9.2

(i.e. with M Nime = ¢(R™)) are just local trivializations in the sense of .

The image f(M) of each embedding f : M — N is obviously a regular submanifold
of N and the embedding induces a diffeomorphism f: M — f(M):

By [11.92], f(M) nimy = Mt f(M) = N
Y(R™), ie. f(M) is a regular
submanifold with ¥|gm as charts j j JA
and f~1 is (locally) smooth. So £ (im ) f H(R™) € im
up to diffeomorphisms, embed- -~
dings are nothing else but the in- B 2 , mTme qup
clusion of regular submanifolds. Frovlem

dom ) NR™ = dom 1)

11.11 Whitney Embedding Theorem.

Let M be a connected o-compact (and thus paracompact) C* manifold of dimension
m. Then M can be embedded into some finite-dimensional vector space. Thus each
“abstract” manifold can be realized as a submanifold of some R™.

Proof. Let {¢; : 0 < i < m} be a finite atlas on (for an elementary proof of
without using dimension theory, see for example [19, S.73]). Furthermore,
let f; be a partition of unity subordinated to {im;} and let f : M — [~ ,(RxR™)
be the smooth mapping

m

T (fl(z)7fz(‘r)’l/)z_l(x))lzo .
In order to apply , we show the existence of local left-inverses g; : (R x

R™)™+1 DV, — M for an open covering {V; : 0 < i < m} of f(M).
Let

1
‘/’i = {(tvy) 2l > Oviyi S domw’i}a

9 Vi—= M, (ty)— ity y)
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Then g; o f = id on f~(V;), because

PV 32 (gio (@) = (JW)

fi(z) =¢i(y; () =z. O

11.12 Remarks.

1. By the proof of 7 m-dimensional manifolds can be embedded into R(m+1°.
But this also works for lower dimensional R™’s. Namely, M can be embedded
in R™, where
(i) for n = 2m + 1, the proof is relatively simple, see [65, S.55];

(ii) for n = 2m this is due to [153].

Conjecture: The minimum n = 2m — a(m) + 1, where a(m) is the number of
ones in the binary number development of m.

A related question is that about the minimum n for the existence of an immer-
sion M — R"?

(i) For n = 2m, the proof is relatively simple, see [65, S.24].

(ii) For n = 2m — 1, it is due to [153].

The conjecture that the minimum is n = 2m — «(m) was finally be proved for
compact manifolds in [30] and in general in [20].

2. The Rank-Theorem provides us in a simple way with more regular submani-
folds:
Let f € C°(M,N) with rank(T,.f) = r Vo € M. Then f~!(y) is a regular
submanifold of M for each y.
Proof. This is a local property, so without loss of generality we may assume
that M C R™ and N C R”™ are open. Then it follows from that f
looks locally like (z,y) — (,0), and thus the f~1(0) preimage looks like {0} x
R™". O

11.13 Corollary (Retracts are manifolds).
Let f € C°(M,M) with fo f=f. Then A:= f(M) is reqular submanifold, i.e.
smooth retracts of manifolds are again manifolds.

Proof. Note that z € A := f(M) holds if and only if f(z) = « holds: In fact
x=f(y) = f(x) = f(f(y)) = f(y) = x, and vice versa x = f(z) € f(M).
!

Let zp € Aand o : R DU - Uy Cc M M M
be a chart centered at zo. For all y in the J 1l J
; - (U) ===V ———>¢(U)
neighborhood V := f~1(p(U))Np(U) of zg ¥ ®
we have: wh= o b 7 o=
U<—2p"1(V) U

yef(M) < fly)=y
S (e ofop)eT W) = (¢ o fly) =7 (v)
& (i[d-F)(» ' (y) =0,
where f:=p o foyp:U D¢ (V) — U CR™ is the chart representation of f.
For z € f~1(¢™1(V)) we have:
(fof)z)=(p"tofopop™ofop)(z)=(p "o fPop)(z) =
= (¢ o fop)(z) = f(2),

i.e., without loss of generality, 0 € U C R™ is open and f : U — R™ satisfies
f(0) =0and fof = f. We have to show that id—f = 0 is a regular equation
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locally at 0O:

Obviously, rang(T.(id—f)) > rang(To(id—f)) =: r for all z close to 0. Con-
versely, from f o (id —f) = 0 it follows that T(iq _f)(z)f o (id =T.f) = 0 and thus
im(id =7 f) € Ker(T(iq —)(z)f). Thus locally

rang(TZ(id—f)) S dim Ker(T(id —f)(z)f) =m — dim im(T(id —f)(z)f) S
<m —dimim(Tpf) = dimim(id -Tp f) = r,

where we used the obvious equation ToR™ = im(Ty f) @ im(id =T} f) for the linear
projection Tg f.

Now use . O

11.14 Remark.

Conversely, it can be shown that each submanifold M of a manifold N is the retract
of an open set in N, see [86, 62.9] or [65, S.110]. Together with the embedding
theorem , this implies that connected o-compact manifolds are - up to dif-
feomorphisms - precisely the retracts of open subsets of finite-dimensional vector
spaces.

For f € C*°(M,N), the graph of f is defined as
graph(f) := {(z, f(z)) :x € M} C M x N.

It is a regular submanifold. The proof remains as an exercise. Note: graph(f) = M.

11.15 Sard’s Theorem.

The set of critical values of any smooth mapping between o-compact manifolds has
Lebesgue measure 0.

Definition.

Here we call a point * € M CRITICAL for a mapping f: M — N, if T, f : T,M —
Tf(z)N does not have maximal rank min{dim M,dim N}, i.e. f is not regular at
x. A point y € N is called a CRITICAL VALUE of f if a critical point x € f~1(y)
exists. Sometimes one only asks for critical points that T, f is not surjective, i.e.
rank(T, f) < dim N. At least for the Theorem of Sard it makes however no big
difference, because only in the case of dim M < dim N there are then more critical
values (namely all in the image), however, these also form a Lebesgue zero set

according to the corollary in | 11.16 |.

A set N C R" is called a LEBESGUE ZERO SET if for each £ > 0 a sequence of cubes
(or cubes or spheres) (Qp)ren exists with N C (J, oy Qr and D, oy |Qr| < &, where
we write |Q| for the volume of Q.

A subset N C M of a smooth manifold M is called a LEBESGUE ZERO SET if the
inverse image under each chart is a Lebesgue zero set.

The Theorem of Sard is also valid, if f € C"(M,N) with r > min{0,dim M —
dim N}. However, in [151] an C'! mapping f : R? — R was constructed which is
critical but not constant on an arc I. Thus, the graph of f is an surface S C R?
on which there is an arc f(I), so that the tangent plane at S is horizontal in each
point, but nevertheless f(I) does not have constant height. See also [19, S.58] and
[65, p.68].

11.16 Lemma.

Let U CR™ be open and N C U a Lebesgue zero set. Furthermore, let f: U — R™
be a C' map. Then f(N) is also a Lebesgue zero set.
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Proof. Since U is the union of countable many compact convex sets (e.g. the
spheres contained in U with rational coordinates of their center and rational radius)
and because the countable union of Lebesgue zero sets is again a Lebesgue zero set,
we may assume that N is contained in such a compact convex set K C U.

Because f: U — R™ is O, k := sup{|| f'(z)| : * € K} < 00. Let Q C K be a cube
with side length a. Then by the fundamental theorem of calculus

F(ar) — flzo)] = \/0 £ (o + tz1 — 30)) (@1 — 20) dt] < 5+ |21 — 0] < 5 @ /.

for all z1,z9 € Q. So f(Q) is contained in a cube with side length 2k a+/m and
volume (2ka+/m)™ = (2ky/m)™|Q|. The image of a countable covering with
cubes (which we may assume to be contained in K) of total volume smaller than

§ :=¢/(2ky/m)™ > 0 is thus contained in a covering with cubes of total volume
smaller than (2ky/m)™-§ =e. O

Thus, a subset N C M of a manifold is a Lebesgue zero set if and only if the inverse
images under the charts of a fixed atlas are Lebesgue zero sets.

Corollary.
If f:R* = R™ is C! and n < m, then f(R") is a Lebesgue zero set.

Proof. Apply the lemma in|11.16 | to f = fopr: R™ =R"xR™ " - R" - R™
and the Lebesque zero set N :=R"™ x {0} C R™. O

We need also the

11.17 Theorem of Fubini.

Let N C R"™ be compact and N N ({t} x R"™1) a Lebesque zero set in {t} x R*~!
for allt € R. Then N is a Lebesgue zero set in R™.

For a proof, see [19, S.59] or [82, 7.6.9].

Proof of the Theorem of Sard |11.15| Note that if there is a neighborhood
U, for each point z in a set X C R™, s.t. f(U, N X) is a Lebesgue zero set, then
J(X) = U,ex f(Uz N X) is also a Lebesgue zero set, because countably many of

the U, already cover X (which is Lindeloff by the proof of )

Hence it suffices to consider case f : R™ O U — R™. Let D be the set of critical
points. We make induction on m. For m = 0, this is trivial.

In the induction step we want to apply , however the set of critical values
is not compact, but the critical points are a countable union of compact sets,
because the set of points x, where the determinant of a fixed r x r submatrix of
f'(z) vanishes, is closed, i.e. is the countable union of their intersections with the
compact balls B, (x) for n € N, and the set of critical values thus is a countable
union of the compact images of all these compact sets (and hence applies).

Let

[e%

Dk;:{er:;? (x):Oforall|a|§k}~

The Dy, are closed and D O Dy D Dy DO ...

f(D\ D) is a Lebesgue zero set:
Let x € D\ D;. Without loss of generality %fl(z) # 0. Then h : U — R™,
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(xt,....2™) = (fi(x),2%,...,2™) is a local diffeomorphism and g := f o h~! has
the form

g: (fl(x),xz,...) — (xl,...,m”) = (fi(x),. .., fu(x))
g:(t,2? . a™) = (t g% (tx),...,g"(t,x)).

The hyperplane {t} x R™~1 = R™~1 is mapped into the hyperplane {t} x R"~! by
g, and the restriction g;(v) := (¢%(¢,7),...,9"(t,x)) of g to it has = as a critical
point if and only if (¢, z) is a critical point of g. By induction, the critical values of
g are a Lebesgue zero set, and according to Fubini’s theorem , also those of
g, but these are the ones of f = g o h because h is a local diffeomorphism.

f(Dg\ Dg11) is a Lebesgue zero set:
Let # € Dy \ Dyr1. Wlog. srpomdbo(2) # 0. Put w i= 528 Then

19z™1...02™k Oz™1..0x™k

w|p, = 0 and g—;‘i(x) # 0. Let h(x) := (w(z),z2,...,2m). Then h : U — R™ is
a local diffeomorphism (say between U, and h(U,)) with h(Dy) C {0} x R™~! C
R™. We consider the mapping g := foh~! : h(U,) — R" and its restriction
9o := gl{oyxrm-1. Since all partial derivatives of f of order < k vanish on D}, and
thus, in particular, those of order 1 of gg = fo h*1|{o}me71 vanish on h(U, N Dy),
we obtain that h(U, N Dy) is contained in the set of critical points of go. By
induction hypothesis f(U, N Dy) = go(h(U, N Dy)) is a Lebesgue zero set and hence
f(D*\ D*¥*1) is also one.

f(Dy) is a Lebesgue zero set for each k& > ™ — 1:
Let @ be a cube with side-length a. By the Taylor formula we get

1 Nk
|f(z+h)— f(z)] = ‘/O %ﬂk“)(xuh)(h,...,h) dt‘

: L1 —t)k .
<sup{lr V@ o e @) [T de bt < o upen

for all z € Dr N Q. We decompose @ into N™ cubes with side-length <. Let Q’

be such a smaller cube containing a point x € Dj. Then each point in Q' is of
the form = + h with |h| < £ and thus f(Q’) is contained in a cube of edge length

k+1yn
2T (%)kﬂ. All these cubes together have a total volume of at most N™ %
and for (k + 1)n > m this term converges to zero for N — oco. O

11.18 Retraction Theorem.

There is no continuous retraction D™ := {x € R" : |z| < 1} — S"~ 1.

A RETRACTION f to asubset Y C X is amapping f : X — Y which fulfills f|y = id,
i.e. a left inverse to the inclusion ¥ — X. More intuitively, a DEFORMATION
RETRACT from Y to X is defined to be a continuous mapping F : [0,1] x X — X
with the following properties:

o Vte[0,1] VyeY: F(t,y) =y.
e VzeX: F(0,z) ==
e VzeX: F(l,x)eY.

If put Fi(z) := F(t,z) with F; : X — X, then Fi|y = idy, Fy = idx, and
Fi : X — Y is a retraction.

Conversely, we can extend any retraction f : D® — S™~! C D" to a deformation
retract F(t,z) = (1 —t)z+t f(x).
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Proof. Suppose there were a retraction f.

We first want to show that w.l.o.g. f is C™:

Using f we get a retraction f; : R® — S"~! which is C°*° on a neighborhood of
Sl e.g.

o J @/ =a/lz] for 1/2 < [af
fi(z) : {f(Qgg) for |x| < 1/2.

By Exercise [98, EX5] (or the Stone-Weierstrass Theorem) there exists a smooth
function f; : R™ — R™ with || fo — fillec < 1. Now let

h € C®(R™,[0,1]) with h(z) = {

and fo(w) i= (1= h(z)) fi(z) + h(@) fo(x). Then

[fa(x) = fr(@)] = h(z) - |fa(2) = fr(@)] < [fa2(2) = Au(@)] <1 =[fi(z)] =
= f3(z) #0 for all z and f3(x) = f1(z) = /|| for |z| > 1.

Finally, fi(z) := fs(x)/|fs(z)| is the sought-after C*°-retraction. We call this
again f. By the Theorem of Sard , there exists a regular value y € S"~! of
f, and thus M := f~!(y) is a 1-dimensional submanifold of R (which intersects
S™=1 radially) and y € M N S""1. Let 2 € M be another intersection point
of the connected component of y in M with S"~! (It exists, since the connected
component of y is unbounded, hence homeomorphic to R (see [82, 7.6.12]) and thus
must leave D™ again because f~1(y) N D" is compact). Then f(z) = z # y gives a
contradiction to z € f~1(y). O

11.19 Brouwer’s fixed point theorem.

Every continuous f : D™ — D™ has at least one fized point.

Proof.

Suppose f : D" — D" has no
fixed point. Then a continuous
retraction r : D" — S"~1 can be
defined by mapping x € D" to the
intersection point of the straight
line from f(z) to = with §7~!
which is closer to x. A contrac-

tiction to , 0 209

Explicitly, r is given by:
r(z) == 2 — A(f(z) — z), where A > 0 and
0=1r(z)* = 1= f(z) - 2]* = 2\(z|f(2) — 2) + |2* - 1,

(@l f (@) — @) + V(o f(@) —2)? + [f(2) — 22 (1 = |2]?)
f () —af?

that is \ =
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12. Submersions

12.1 Proposition (Characterization of submersions).
Let f € C°(M,N), then
f is a submersion < f has local sections.

(ILe., Y x €M 3Usy) €N I g* € C°Up@m), M) : g°(f(2)) = 2 and fog” =id
on Ug (). So locally there exists a right inverse.)

Proof. (=) By the Rank-Theorem , charts ¢ exist around z and ¢ around
f(x), so that the following diagram commutes:

. f .
imp ———imy

LPT wT
R" x R™" =~ R™ D dom ¢ ——> dom¢ C R”

Here pry : R™ — R™ denotes the natural projection. If we now put Uy, := im(1))
and g% := ¢ oincly otp™1, then g% is smooth with ¢*(f(z)) = x and

fog®=fopoincoyp™! =¢oproincl oy~ =idy,,, .

(«<) Let U,y and g* be as assumed, then

Tf(:v) id = ide(l,)N = Tf(w)(f o gz) = Txf o Tf(w)gx = Txf is surjective. O

12.2 Corollary (Submersions are open and final).

Each submersion f : M — N is an open mapping. Fach surjective submersion f is
also final.

Proof. f is open: Let U C M be open and y € f(U), i.e. y := f(x) for some
xz € U. By there exists a y-neighborhood U, and a smooth ¢* : U, — M
with ¢”(y) = = and f o g* = idy,. Without loss of generality, U, C (¢®)~H(U).
Hence Uy = (f 0 ¢*)(Uy) C f(U) = f(U) is open.

f is final: Let g : N — P be such that go f is smooth. Since f is surjective, there is
an x € M with f(z) =y for each y € N. As before, by Jg° € C=(U,, M).
Hence

9|Uy =go(fog®)=(gof)og® is smooth,

so g is smooth everywhere. O

13. Fiber bundles

By the Rank-Theorem , for submersive maps f : P — M there are charts
p:R*"xR™™ ™D W; x Wy — Pand v : W; — M so that the chart representation
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13. FIBER BUNDLES 13.2

of f is given by pr; : Wi x Wy — Wj. The composition ¥ := ¢ o (! x id) :
imy x Wy — Wy x Wy — im ¢ is then a diffeomorphism such that fo ¥ = pry:

'
P )lmgﬂ ; WlXWQﬁimwXWQ
lf fimapl lprl \Lprl
M Jim ¢ = W, = im ¢

<
<

id
We will now get to know an even stronger property of mappings f:

13.1 Definition (Fiber bundle).

A smooth map p : P — M is called FIBER BUNDLE :< p is locally trivial, i.e.
V y € M exists an open neighborhood U C M and a TRIVIALIZATION ¥ of p over
U, that is a diffeomorphism ¥ : U x F — p~!(U) for some manifold F', such that
the following diagram commutes:

UxF

P<~——p ' (U)

pl,—1
\ P (\ -
U

M<——
The manifold F is called TYPICAL FIBER (On connected components of M, all fibers
are diffeomorphic).

&R

A COVERING MAP is a fiber bundle p with discrete typical fiber F'. This is the
smooth version of the definition we used in [86, 3.7] and in [91, 6.1].

13.2 Examples of fiber bundles.

1. For two manifolds M and F, the canonical projection pr; : M x F — M,
(z,y) — x is a fiber bundle with typical F' fiber. Such fiber bundles are called
GLOBALLY TRIVIAL (or just trivial, for short).

2. The projection Méb — St of the Mdbius strip to its centerline is a fiber bundle
with typical fiber (—1,1) 2 R and which is not globally trivial (i.e. not diffeo-
morphic to the cylinder). The restriction of this projection to the boundary of
the (closed) Mébiusstrip is up to diffeomorphisms S1 — S, 2 +— 22, which is a
2-fold covering map but obviously not trivial, since the domain S* is connected,
hence not diffeomorphic to S* x {—1,+1}.

3. The Hopf fibration: $% — S? is a fiber bundle with typical fiber S', see |3.7].

%
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Examples of covering maps are:

4. The map R — S! given by ¢ +— (cos g, sin ) is a countable covering map.

(O

5. The following mapping R x (—1,1) — Mob
(1 + tcos) cos(2¢)
(S:) — | (1+tcose)sin(2p)
tsin @
is a countable covering map. Its factors over the mapping
R x (—1,1) = S* x (=1,1), (¢,t) — (cosp,sing,t)
to a two-fold covering map of the Mobius strip by the cylinder S* x (—1,1):

R x (=1,1)
I

St x > Mo6b

(x,y,t) — ((1 + tx)(2? — y?), (1 + tac)Qxy,ty).

6. S™ — P x+— R -z is a two-fold covering map, see Exercise [86, 72.53].

7. 83 — SO(3) and S® x S3 — SO(4) are two-fold covering maps, see or
Exercise [86, 72.66] and [86, 72.67].
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IV. Vector fields

Ordinary differential equations are described on manifolds by vector fields. In order
to be able to speak of the smoothness of these, we need the tangent bundle as a
manifold, or better as a vector bundle, and we provide these two things in the
first two sections. The next two are devoted to the differential equations and their
solutions, the local flows. It then treats the Lie bracket as an obstruction to the
commutativity of the local flows of two vector fields. Finally, we generalize flows
to integral manifolds of subbundles and prove the Theorem of Frobenius on their
existence.

14. Tangent bundle

14.1 Motivation.

We want to treat ordinary differential equations of 1st order on manifolds. For
this we first consider the classical case: If a differential equation «/(t) = f(z(t)) is
given, where f : U — R" with open U C R"™, then there exists a locally defined
differentiable curve z : (a,b) — U being a solution with initial condition (0) = .

Our aim is to replace U by a manifold M. As solution curve z : (a,b) — M
we should get a differentiable curve in the manifold. Its derivative z/(t) at ¢ is
a tangent vector in T, M. The function f constituting the differential equation
must therefore map points x € M to tangent vectors at these points:

f:M3pe f(p) €T,M, ie. f:M— | | T,M,
peEM

where |_|p€M T,M denotes the disjoint union of all T, M with p € M.

14.2 Definition (Tangent bundle).

If M is a manifold, then the tangent space of M is defined by:
™™ = | | T,M = | ] {p} x T, M.
peM pEM
On TM, mp = {p} x T,M > (p,v) — p € M defines the so-called foot-point
mapping. FEach smooth f : M — N induces a mapping T'f : TM — TN, the so-
called tangent map of f, defined by (Tf)(p,v) := (f(p), Tpf(v)) using the tangent
maps Ty, f : TyM — Ty, N of f at p. Thus
Tflr,ar = Tpf : T,M 2 {p} x T,M 2 {f(p)} x Ty N 2= Ty(,) N
is linear on the fibers 7=1(p) = {p} x T,M = T,,M of .

If f: M —- N and g: N — P are smooth, then the chain rule from takes the
very simple form

T(gof)=TgoTf,
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14. TANGENT BUNDLE 14.4

as the following calculation shows:

(T(go f))(w0) = (g0 £)(@). Talg 0 f)(v))

10.4

(/). Ty (L))
(Tg o Tf)(w,0) = Tg(Tf(w,v)) = Tg(f(x), Tuf (v))

— (s(f @) Trna (1))
Furthermore, T'idy; = idras and (Tf)~1 = T(f~!) for diffeomorphisms f.

14.3 Remarks.

In order to request reasonable properties (in particular differentiability) of f : M —
TM, we need a smooth manifold structure on TM = | |, ,, T. M.

For the moment, let M = U C R™ be open. Then T, M = R™ (more precisely,
T,M = R™) and thus
T™M = | J {p} xR™ = M x R™.
peEM
For a smooth mapping f : R™ O U — V C R” the tangent mapping is T'f :
U xR™ — V x R” given by
(Tf)(z,0) = (f(2), f'(z)(v)).

Let next M be a submanifold of R™ and let ¢ : R™ O U — W N M be a local
parameterization. Then

TM = | J{p} x T,M C M xR" CR" x R" =R*>".
pEM
and Ty : R?™ D U x R™ = TU — TM, (x,v) — (p(x),¢ (z)(v)) is a local
parameterization of TM: It is defined on the open subset TU of R?™ and there
clearly C*°. Furthermore, its derivative at a point (z,v) € TU = U x R™ in
direction (w,h) € R™ x R™ is given by
(Te) (z,v)(w, h) = (¢'(z)(w) + 0, 9" (x)(w,v) + ¢ () (h)).

The Jacobi matrix of T'¢ at (z,v) thus is:

(252 o)

Since ¢ is regular, ¢’(x) is injective and thus the same is true for the Jacobi matrix
of Ty, i.e. Ty is regular.

Let f: M — N smooth and ¢ : R™ — M and v : R® — N be local parameteriza-
tions and, by what we have just shown, Tp and T are local parameterizations of
TM and T'N. The local representation of T'f with respect to these parametrizations
is:

(T) ™ o TfoTp=T(W ™) oTfoTp =Tt "o foyp).
Since the local representation V=1 o f o ¢ of f is smooth, the same holds for T'f.

Finally, if M is an abstract manifold then we should be able to define a smooth
atlas {Tp : TU = U x R™ — TM} of TM using the charts ¢ : R™ DU - M
of M. In fact, the same calculation as just before but for f = id,; shows that the
chart change (T%) "t o Ty = T (1)~ 0 ) is smooth.

14.4 Lemma (Tangent bundle as fiber bundle).
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14. TANGENT BUNDLE 14.6

For each manifold M, the tangent bundle TM ——— M 1is a fiber bundle.

Proof. We need to find local trivializations of TM —— M. Let ¢ : U — M a
chart for M. Then ¢ : U — ¢(U) C M is a diffeomorphism to an open subset of
M,and Ty : U x R™ =TU — TM is a chart for TM by . The image of Ty
is
im(Ty) ={(z,v) eTM :x €imp =V, ve T, M}
={(z,v) €eTM : x € V} =1} (V).

A trivialization ¥ := T o (¢! x R™) of 7 over V is now given by the following
diagram:

TM <~—77(V) TU U xR™ V x R™
Te ™ e LxR™
W\L ﬂ-l W\L prll prll
-1
M Vot U U~—" v O

Remark.

We have an additional structure on TM because the fibers T,M = 7~ 1(z) are
vector spaces and Ty : R™ = ToR™ — T, M is linear.

14.5 Definition (Vector bundle).
A fiber bundle p : E — M is called a VECTOR BUNDLE (VB, for short) if all

the fibers p~!(z) =: E, are vector spaces and for each xy € M there is an open
neighborhood U C M and a local trivialization ¥,
P (U) <—2——U xR

x pry
U

which is fiber-linear, i.e. ¥, := ¥(z,.) : R¥ — E, is linear for each z € U. Such a
local trivialization is called vector bundle chart.

A vector bundle E — M can be conceived as a family {E, : x € M} of vector
spaces, which is parameterized in a certain sense smoothly by M.

14.6 Proposition (The tangent bundle as vector bundle).
The tangent bundle TM — M of each manifold M is a vector bundle.

Proof. Let ¢ : R™ D U —== V C M be a local parameterization of M. Then,
by , we get a local trivialization ¥ for T'M as the top arrow in the following

commutative diagram:
/T\

TM|y <——U x R" —= V x R™
Ty id

©X
Tri \LPH \LPH
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Remains to show that v — ¥(z,v) of R™ — {a} x T, M = T,,M is linear. However,
this mapping

1yxid T

v (x,v) - ? (‘p_l(m)ﬂ]) ? (@(@_1(x))aT<p*1(I)@ : U) = T¢*1(I)(p v
———
=x

is Ti,-1(4) and thus clearly linear. O

14.7 Remarks.

1. For vector bundle charts vy : U x R¥ — p~3(U) and ¢y : V x R¥ — p~1(V)
the vector bundle chart change

Yotoy  (UNV)xRF »p~{(UNV) = (UNV) x RF
is of the form
(2,0) = ((pr oy 0 v (@, v), (bra ovy ! © v (@, v)).

=x =yu(x)v

The essential component (pryot);,' o 9y) : (UNV) x RF — R is described
by v i= (proothy! 0o y)Y : UNV — L(k, k) (note that ¥y,' o1y is fiber-
linear). This mapping ¢y y is called TRANSITION FUNCTION. It has values in
GL(k) C L(k, k) because the inverse to ¢y y(x) is Yyv ().

2. In the case of the tangent bundle TM — M, we obtain the transition functions

as follows:
Yi(z,v) = (2, Ty 10y pi - v) =
iz, w) = (2, (T myes) T w) =
(@, 5,3 (2) (v) = (b~ o) (w,0) = i~ (2, Ty, -1 ()05 - 0)
= (w i1 () Pi) 1'Tw,~*l<x>%'v)
= ( ; @i " 0 ®;) 'v) =
Yij(z) = *1(z)(301 Lopj)=(pitow)(pi (@) =

Pij=(pi top;) 0wt
So these transition functions are essentially the derivatives of the chart changes
;Lo for M.

3. The transition functions of vector bundles satisfy the cozykel equations:

YU, (T) 0 Yu,u, () = Yu,u, () for all x € Uy NU; N Us
Yuy(z) =idgn for all x € U

4. By construction, the mapping Yyy : (UNV)xRF - RF dvu (z,v) —
Yyu(z) - v, is smooth. We now claim that its smoothness is equivalent to
Yyy : UNV — GL(k) C L(k,k) being smooth. To prove this, we use the
smooth (bilinear) evaluation map ev : L(k, k) x RF — R* (A,v) — A-v.

(<) is valid since

v (UNV) x RF voxB e by o RF vy RF

(=) We have that ¥y : UNV — L(k, k) is C*°, provided ev, o9y is smooth
Vy € R*, where ev, : L(k, k) — R* is the mapping T ~ T(y): This is the case,
since

(evy 0o Pyu)(x) = Yyu(x) -y = dyvu(z,y).
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5. Now let M be a manifold and p : E — M a map defined on a set E such that a
family of fiber-preserving (i.e., poty = pry) bijective mappings ¢y : U x RF —
p~1(U) exists, where the corresponding U form an open covering of M and
the associated transition functions ¢y : UNV — GL(k) are well-defined and
smooth.

Then we can supply E with a unique manifold structure, such that p: £ — M
becomes a vector bundle with vector bundle charts 9.

As parameterizations of E we can use 1y o (¢ x R¥), where the 9y are the
given fiber-preserving mappings and ¢ are the charts of M.

E<—2p ' (U)=—U x R¥ <— W x RF "~ R™ x R*

Yu exR
pl | lprl lp lprl

- C m
M<~—— U =———U —W R

The chart change mapping of F are then

(%v o (w2 x R¥))™ o (o (p1 x RY)) = (93" 0 01,9 o (1 x RY)).
By construction, the vy are fiber bundle charts and we can turn the fibers F,
into vector spaces by making the v fiber-linear.

6. From we know that any manifold can be recovered from their chart
changes. For transition functions of a VB, we have a similar situation: Let
U be an open covering of M. A coherent family of transition functions, i.e. a
family of smooth functions vy : UNV — GL(k) for U,V € U that satisfies the
cozykel equations () defines a vector bundle being unique to isomorphisms.

In order to prove that, we define E, := {(U,w) : * € U € U, w € RF}/~,
where

(U,w) ~ (V,w') & w' =yy(x) - w.
Then E, is a vector space with ¢y (z) : w — [(U,w)] being a vector space
isomorphism R¥ — E,. The disjoint union

E=|]E =] {z}xE)

zeM reEM
is a vector bundle over M with the foot-point map p : E > (z,v) — = € M,
because Ely :=p~ ' (U) =, ey B» = U x R” via the trivialization ¢y defined
by ¢y (z,w) := (z, [(U,w)]). For the chart changing we have:
(1/)\;1 oYy )(z, w) = (m,w’) =
A (3’;, [(V7 wl)]) = ¢v($aw/) = wU(m’w) = ('T7 [(va)})v

hence w' = Yy y(x) - w.

14.8 Definition (Vector bundle homomorphisms).

If p: V- M and ¢ : W — N are vector bundles, then a smooth function f is
called a VECTOR BUNDLE HOMOMORPHISM over a smooth function f: M — N, if
the following diagram commutes and f; : V; — Wy, is linear Vo € M.

v—low
f
M—LonN

14.9 Definition (Vector subbundle).
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Let p: E— M, q: FF — M be two vector bundles, so that F, is linear subspace of
E, YVz e M. Then, gq: F — M is called a VECTOR SUBBUNDLE of p: £ — M if
there is a VB atlas {1y : U x R¥ — p~1(U)} for E, which maps U x R C U x R*
onto F|y for some | <k, ie. ¢y : UxRF¥ =2 E|y = p~*(U) and ¢|rr) : U x R =
Fly =q¢ (V).

F<\—) J 1(U) wu\;xm <R
\/q Yu
FE <—)p ) — U x Rk pry
TN
\ \ pry \\
M~<~—/—>2U
/ | /

U

This means that )y (x) maps the “constant” subspace R’ precisely onto Fj.

15. Vector fields

15.1 Definition (Sections of bundles).

A SECTION ¢ of a vector bundle (or fiber bundle) F—-2-+ M is a mapping o : M — E
that satisfies p oo = idy;. The sections of the tangent bundle TM — M are called
VECTOR FIELDS (VF, for short) on the manifold M.

The space of all smooth sections is denoted
C®(M & E) = {0 € C®°(M,E) :poo =id}
and also I'(E -2 M) or T'(E) for short, if the base space M and p is clear.
The set of all smooth vector fields on M is also denoted
X(M) := C°(M <™ TM).
Sections can be added pointwise and they can be multiplied pointwise by real-valued
functions f on M. Thus, C*°(M +f— E) is a vector space and even a module over

C>(M,R), that is a “vector space” over the ring C*°(M,R) (instead of over a
field), i.e

(f+9&=fE+98 f(E+n) = fE+ fn,
(f-9)€=flg-9), 1-£=¢

We want to do calculations with vector fields or more generally with sections of
vector bundles. For this we need local representations.

15.2 Local description of sections.
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Locally, a section s is given by a map 5 = (s',...,s%) : M — R* of the basis M
into the typical fiber R¥.

s(@) =—————11g" (s(2))

(z,5(x))

Y U xRk

Ny

S (id,3)
id

Ely

In particular, for the tangent bundle we get: The vector fields £ correspond locally
m

to maps ({fo)i:l : M — R™ whose form depends on the choice of the chart ¢:

Tpo(p 1 xR™)

TM|im<p = imp x R™
§|k _ A:’D)rl)

im(¢p)

We have seen in that for local coordinates (ul,...,u™) = ¢o=! on M the

derivations (0f|, = %|p,~~~aaﬁ|p = gow

Jum p) form a basis of T),M for each p in
the domain of definition of the chart ¢ and the isomorphism T o (¢! x R™)
maps the standard basis (z,€;) to 52 |,. Each vector field £ can thus be written
on U as & =31" £,0f, where 9 are the vector fields p — 7], = z2|,. The
subscript ¢ of the components 5; of & with respect to the basis 97 indicates the
dependence of these components on the basis, which in turn depends on ¢. In most
cases, however, we will omit this index as is commonly done. We can calculate

the components ¢ by applying £ = 3=, £€'52; to the local coordinate function u/:

Ew) = (X, € 50) (W) = 32,6767 = . So & = 32, &(u') 5.

15.3 Corollary.

A wvector field & is smooth if and only if all components Efa are smooth.

9

Proof. This follows immediately from the fact that the local sections &7

smooth, which in turn follows from the diagram

are

TMIU <22 v xR 224 7« g

U L 1% L U

because the section % on the far left corresponds to the constant section x +—»
(7, ') on the right. O

15.4 Examples of globally (none-)trivial vector bundles.
1. The tangent bundle of S™ C R"*! as a sub bundle of TR"™!|gn = S™ x R"T!
is given by T'S™ = {(z,v) € S™ x R*"™ : (z,v) = 0}. In particular, TS' =
{(z,y,u,v) : 22 +y?> = 1, 2u + yv = 0}, i.e. TS* =2 S x R using (z,y,t) —
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(z,y, —ty,tx). Thus, the tangent bundle of the S! is trivial, and indeed it is
the cylinder.

2. The projection of the Mdbius strip onto its center line S* is a VB whose fiber

is (—=1,1) =R,
However, this VB is not trivial, otherwise we would have a global trivialization
P:

SUxR—— Y o Méb =0 Meb

IR

L \/

with (S, 1) NSt = 1/1( ,1) N (St 0) = (. But there is no such mapping.

3. The tangent bundle 7'S? of the sphere. In order to answer the question of
whether it is also trivial, let us assume that there is a trivialization of % :
S? x R? — T'S?. With v(_,e1), one would have a continuous mapping which
maps each r € S? to a nonvanishing tangent vector, but such a map does not

exist (by the Hairy Ball Theorem | 29.11 |).

4. Since S3 carries a smooth group structure, T'S% =2 83 x R3 is a trivial vector
bundle via the tangent map of the left multiplication, see .

15.5 Definition (Linear independent vector fields).

A family of vector fields {&1,...,&,} on M is said to be LINEARLY INDEPENDENT
(everywhere) if {&;|, : 1 <i < k} is linearly independent in T, M for each p € M.

15.6 Remark (Parallelizable manifolds).

A manifold M is called PARALLELIZABLE if its tangent bundle is trivial. This is the
case iff it has m := dim M linearly independent vector fields everywhere: In fact,
if TM is trivial, that is

IR

M x R™

\/

then the & : = — ¥(z,e;) for 1 < i < m are linear independent vector fields.
Conversely, ¥(z, (v¥)™,) := >, v'&(x) defines a trivialization of TM if {&}7, is
linearly independent.

For example, S! has a linearly independent vector field because its tangent bundle
is trivial. The following theorem provides information on how many linearly in-
dependent vector fields exist on the higher-dimensional spheres (“how trivial their
tangent bundle is”).

15.7 Theorem (Linear independent vector fields on the spheres).

On S™, m linearly independent vector fields can be choosen if and only if n +1 =
24atb . ¢ with a € Ny, b € {0,1,2,3}, odd ¢, and m +1 < 8-a + 2°.

Without proof. The result was obtained by [36], [68] and [1].

The number of linearly independent vector fields on the spheres is related to the
structure of certain algebras:

15.8 Proposition.
Let b: RFL x R*+1 5 R be g bilinear mapping, such that
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1. b(v,x) =0 implies v =0 or x =0 (zero diviser free),

2. 3 vy € R* 1 such that b(vg, ) =2 V x € R (left unit).

Then k linearly independent vector fields exist on the S™.
Proof. If v € RE¥*! then the mapping R"*! — R"*! given by z + b(v,x), is
linear. Using the radial projection p : R**1\ {0} — S™ and the canonical inclusion

incl : S — R™*! a smooth vector field &, : S — T'S™ can be defined as follows:
& = Tpob(v,.)oincl. If {wg,vy,... v} are linearly independent in R**!  then

{&v,, . -&, } are linearly independent everywhere: Let
k k k
0= Nt lo = S ATop(b(vi,z)) = Twp(z /\ib(vi,x)>
i=1 i=1 i=1

The kernel of T, p is the line created by x in R**! =

k
= Z Aib(vi, ) = —Aox = —Agb(vg, x) for some Ay € R
=1

k k
jb(Z)\iUi,l’):Om—;?é% ZAim:O %)\ZZOVZ ]
=0 =0

15.9 Corollary.

1. The spheres S*, S3, and S7 are parallelizable:
As bilinear functions b : R x R — R which fulfill the properties (i),

(ii) of , the following R-algebra multiplications can be used:
n=1: CxC—C
n=3: HxH-—-H
n="7: Ox0— O, where O = R® are the Cayley numbers

(also called octaves or octonions).

By these are the only parallelizable spheres, because 24T . ¢ = 8a 4 2°
implies ¢ = 1 and furtheron a =0, i.e. n = 2% — 1 for b € {0,1,2, 3}.

2. Ifn is odd then S™ has a non-vanishing vector field. Forb: R? xR*+1 — R»*1,
where n+ 1 = 2k is for k € N, scalar multiplication with complex numbers can
be used:

C x C* — Ck, AL A = (AL AR
3. If G is a Lie group with neutral element e € G, then TG =2 G x T,G via the
isomorphism given by

€ = (W(S)aTLTr(ﬁ)*l : 6) = (W(é)aTﬂ(Oﬂ’(zs)*lag))a
for details see [86, (67.2].

16. Ordinary differential equations of first order

16.1 Definition (Integral curve).

Let £ € X(M) and I be an open interval with 0 € I. Then ¢ : I — M is called
INTEGRAL CURVE (or solution curve) of the vector field £ through p :&

c(0)=p and (t) =& fortel.
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16. ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 16.3

We will use the following classical existence and uniqueness theorem for the solution
of ordinary differential equations in vector spaces.

16.2 Theorem on ordinary differential equations.

Let E be a Euclidean vector space (or more generally a Banach space) and let
f:RXx E — FE be a smooth function. Then an open interval I C R exists around 0
and an open ball U around 0 in E, such that for all x € U there is a unique solution
¢y - I — E of the ordinary differential equation

L (t) = f(t,cx(t)) with c,(0) = .

x

Furthermore, (t,x) — cz(t) is smooth as mapping I x U — E.

Without proof. See, e.g. [81, 6.2.15] or [35, 10.8.1 und 10.8.2].

Now we can prove the following global version for manifolds.

16.3 Theorem about ordinary differential equations on manifolds.
If € € X(M), then:

1. For each p € M, there exists a uniquely determined maximum integral curve
cp : (t7,th) — M to & through p (i.e. any other integral curve is a restriction

of ¢p).
2. If th < oo, then hmt/‘tﬁ c(t) = oo follows, i.e. for any compact set of K C M,
c(t) is not in K for all t sufficiently close to t! .

3. The set U = {(t,p); t* <t < t8} C R x M is an open neighborhood of
{0} x M. The map FI* : U — M, defined by F1*(t,p) := c,(t), is C and is
called the local flow of the vector field. If ¢ := F1° (s,p) exists, then Fls(t +s,p)
exists if and only if Flg(tq) exists, and the two coincide. This equation is
also called “one-parameter subgroup property”, because for globally defined F1¢
it says: (F1°)Y : R — Diff (M) is a group homomorphism.

Proof. () Local existence and uniqueness: Without loss of generality, U C
R™ is open and £ : U — R™ is smooth. We are searching for a ¢ with ¢/(t) = &)
and ¢(0) = z. This is an ordinary differential equation whose local solutions exists
by and are unique because £ is locally Lipschitz. It is C'°°, since £ is smooth.

Global existence and uniqueness: Let ¢, ¢ be two integral curves. The
set {t > 0 : c1(t) = c2(t)} is a closed subset of domc¢; N domey. Suppose it is
not the whole set, then there is a t in the difference. Put ¢, := inf{0 < t €
dome; Ndomes : ¢p(t) # co(t)}. Clearly c¢1(tg) = ca(tg). Now, however, t —
c1(to +t) and t — ca(tp + t) are integral curves through c¢;(tg) = ca(to) and thus
coincide locally. This is a contradiction to the property of the infimum. Thus,
¢p = U{c : c is integral curve through p} is the well-defined uniquely determined
maximal integral curve through p. We put (t*,¢) := domc,.

() Because of , {0} x M C U and FI5(0,p) = ¢,(0) = p.

One-parameter subgroup property: Let q := Fl(s, p) exist, i.e. t < s < tﬂ, since the
maximal integral curve r — FI(r, p) with initial value p is defined for t* < r < ¢%.
The maximal integral curve ¢ — FI(¢,Fl(s,p)) with initial value ¢ is defined for
t2 <t < tl. Fort with ¥ < t+s < t§ alsot — Fl(t + s,p) is a solution
with initial value ¢ = Fl(s,p). So because of the maximality and uniqueness of
t — Fl(t,q) we get equality and t? < ¥ —s < —s <t} —s < t9. In particular,
Fl(—s, q) exists and agrees with F1(—s+s,p) = p. For symmetry reasons, it follows
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16. ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 16.4

that t* < t? + s and t{ + s < t*. Together this results in t. = t% + s and thus
F1(t + s,p) exists exactly when Fl(¢, q) exists and the two coincide.

We now show that U C R x M is open and Fl is C*° on it: For p € M let
I:= {t’ € [0,#%) : Flis locally around [0,#] x {p} defined and smooth}.

We indirectly show that I = [0,%}) (and analogous for ¢” ):

Suppose I C [0,t7). Let to := inf([0,¢%) \ I) and ¢ := Fl(to,p). For p € M there
is by an open neighborhood of (0,p) € R x M on which the flow Fl is defined
and smooth, thus ¢y > 0.

Furthermore, F1 is smooth on a neighborhood (—¢,¢) x W of (0, ¢), and because
of the continuity of ¢t — Fl(t,p) at to, a 0 < § < ¢ exists such that Fl(ty — d,p) is
contained in W. By construction of ¢y the flow F1 is smooth on a neighborhood
of [0,tg — ¢] x {p}. Thus, x — Fl(tp — d,z) maps a neighborhood of p smoothly
into W, and hence the composition (s,z) — Fl(s,Fl(tp — d,x)) is smooth on a
neighborhood of [0,d] x {p}. Because of the one-parameter subgroup property,
Fl(s,Fl(to—0,z)) = Fl(s+to—0d,x), i.e. Flis smooth locally around [tg — 4, o] X {p}.
Overall, Fl is smooth on a neighborhood of ([0, to—d8]U[to—9, to]) x{p} = [0, to] x {p},
and thus containing a neighborhood of ¢y in I, a contradiction to the assumption.

Fl (P, to)
Fl (p,to-5) g

() Let K C M compact. Suppose t,, — t < oo exist, such that p, = ¢,(t,) € K
for all n. Without loss of generality p, — poo € K holds (because K is compact).
By , a 0 > 0 exists such that the flow Fl(¢, ¢) is well-defined for |t| < § and ¢ near
Poo- For sufficiently large n let p,, be such values for g, i.e. Fl(¢, p,) is well-defined
for |t| < §. On the other hand:

FI(t, pn) = FI(t, ¢y (tn)) = FI(t, Fl(ty, p)) = FU(t + tn, p) = cp(t + L)

So ¢p(s) is well-defined not only for 0 < s < ¢! but also for s =t + t,, with [t| < &
and n sufficiently large, that is ¢, —6 < s < t,+4. Let n be so large that ¢, > t& —4.
Then ¢, is well-defined on [0,%) U (t,, — d,t, + ) 2 [0,¢" ], a contradiction to the
assumption that the solution curves are defined only up to ¢

Po

"3

Po*

16.4 Example (Exponential mapping).
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16. ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER

For T' € L(n,n), matrix multiplication T : S — T o S with T from left defines a
vector field on L(n,n). We are searching for the solution curve ¢ : R — L(n,n),
which msatisfies ¢/ (t) = Ti(c(t)) := T o ¢(t) with given ¢(0) = S € L(n,n). Define

=1
exp kz::k—

and show that the series is absolutely convergent. The solution of the above differ-
ential equation with initial value S is then c(t) = exp(tT') o S, and the global flow
is Fl1(¢, S) = exp(tT') o S, see Exercise [86, 72.50].

16.5 Definition (Complete vector fields).

A vector field &€ € X(M) is called complete if FI° is defined globally (i.e. on R x M).

16.6 Remarks.

1. From | 16.3.2 | follows directly:

If M is compact, then each vector field is complete.

2. If M has a non-compact connected component, then there are incomplete vector
fields, for example: M := R, £(x) := 1+ 22, ie. <(t) = 1 + ¢(t)%. For the
initial value ¢(0) = 0, the solution ¢(t) = tan(t) is then defined only for ¢ €

(—7/2,7/2).

3. Let M = R2?, &(n,y) := ya% and n(z,y) := (m2/2)8%. We claim that £ and 7
are complete:

FIE(t2,y) = (¢ + ty,y),

FI"(t;z,y) = (z,y + tx?/2), because

d

p FI¢(t;2,y) = (y,0) =y - aL +0- ay = ¢(Fl(t; x,y)) and analog for 7.
But £ 4+ 7 is not complete Let ¢(t) = (x(t),y(t)) be a solution curve of (£ +
My =Y +% 8y Then z'(t) = y(t) nd y'(t) = z(t)?/2, hence £a'(t)? =
20/ ()2"(t) = 22'(t)y'(t) = 2'(H)z(t)* = F2(t)*/3 = /(1)* = x(t)*/3 + C.

Solving the differential equation by separation of variables for the initial value
Y2 = x3/3 with x5 > 0 gives C' = 0 and hence z(t) = pry (FI°7(t; 20, y0)) =

1274\/1327% is not globally defined.

4. Let F1¢(p) := FI5(t,p). Because for small ¢ the flow FI¢ exists in an open
neighborhood of p and FI°, exists in an open neighborhood of FI(p), we get
by the 1-parameter subgroup property that locally (F15)~1 = FI°, for all small
t. So the flow Flf is a local diffeomorphism.

17. Lie bracket

In we saw that we identified T, M with Der,(C*°(M,R),R). Naunel‘y7 for local
’ € T,M on

coordinates (u',...,u™), the action of a tangent vector v =Y, v" 5%
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17. LIE BRACKET 17.1

f € C>(M,R) was given by:

(Z v' aiz ‘p) Z v aw ) and in particular

E v 8 9 |p(u?) = v?, because

o () = 4 0 ) ) = di(pr) (0™ (p) = 8.
We now want to see what happens when we vary the point p, hence we consider
the following mappings:
17.1 Proposition (Vector fields as derivations).
There is a bilinear mapping
X(M) x C®°(M,R) — C*(M,R),
(&)= & f =€) (:p &) €R).

This bilinear mapping induces an R linear isomorphism of X(M)
Der(C*(M,R)) := {9 € LC=(M,R)) : 0(f - 9) = 0(f) - g+ f - (o) }.

In addition: (f -&)-g = f-(€-g), i.e this isomorphism is even C(M,R)-
linear, where Der(C*° (M, R)) is made into a module over the commutative algebra
C>®(M,R) by (f-0)(g) := f-9(g) . Note that £ - f € C>°(M,R) whereas f - & is
the pointwise product in X(M).

Proof. We define:
) (@) = (E(N))(2) = &@)(f) = (T=f)(&(z)) = (prooT'f o §)(x).
So &(f) = pryoT'fo& € C°(M,R).

The assignment (&, f) — £(f) is linear in & because T, f is linear. It is linear in f
since £(x) € Der,, is linear.

The induced mapping f +— £(f) is a derivation because

E(fg9)(x) = E(2)(fg) = £(@)(f) - (=) + f(x) - E(x)(9)
=¢(f) ) - €(g)(2)
= (& £(9)) ()

)

(

(z) - g(x) + f(z
1)-9)@)+ (-
= (£(N g+ 1¢(9))().

The induced mapping X(M) — Der(C*(M,R)) is surjective:

Let 0 € Der(C*(M,R)) be given. We are looking for a vector field £ € X(M),
which fulfills £(z)(f) = (f)(z). So

&(z) := evy 00 € Der, (C*(M,R),R) =T, M.

Remains to show that £ is smooth. Note that 9 is a local operator, i.e. fly =0 =
Of|v for each open subset U C M: For z € U choose p € C*°(M,R) with p(z) =1

ansuppp € U Then 0= 9(0)(x) = D(p)(z) = A(p)(1)-0+1-01)(z) = ()2,
Let now (u',...,u™) be local coordinates. Then {(z) = >, &(x )zaul |-, and the

components

€'(z) = &(2)" = (evy 00)" = (evy 00)(u') = A(u')(x)
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17. LIE BRACKET 17.2

are smooth in x. Thus ¢ € X(M). That the two mappings £ <> O are inverse to
each other, is clear, because

€' (x) = (evy 00)(u') = O(u")(w) = & (u') = &'(x)
(f)(x) = &(x)(f) = (eva 0d)(f) = :

Finally, we show the C*°(M,R) linearity:

(f- O =(Ep-9= &) 9=1Fp) (& 9)
=fp)- (€ 9)p=Fp)-E9)p) = (f-E9)lp- O

17.2 Corollary (Space of vector fields as Lie algebra).
The assignment:
X(M) x X(M) — X(M),
(& n) = [&nl(: £ EM(S)) —n(E(f))),

defines a bilinear mapping that turns X(M) into a Lie algebra, i.e. the following
equations hold:

1. skew-symmetry: [£,n] + [n,€&] = 0;
2. “Jacobi Identity”: [&,[n, x]] + [, [x, &]] + [x, [€,m])] = 0O;
3. Additionally we have: [f&,gn] = fg-[§,n] + f€(g) -n—gn(f) - €.

Proof. We prove this for the space Der(A) of the derivations of an arbitrary
associative algebra A instead of C°°(M,R). For this we define the Lie bracket of

§,n € Der(A) by [¢,n] :=§on—nok.
Then [£, 7] € Der(A) holds, because obviously [£, 7] is linear and for f,g € A:

En(f-g9)=&M(f-9) —nE(f-9))

=&(f-n(9) +E(f) - 9) = n(f - £(9)) —n(€(f) - 9)
= [-&(9)) +£(N)nlg) +n(HE(g) +Em(f) -9
= f-n(&(9)) —n(H)Elg) = &(Fnlg) —n(E(f)) - g

= [-1&nl(g) +[&m(f) - 9

The mapping (£,n) — [&, n] is bilinear because the composition in L(A, A) is bilinear
and the subtraction in L(A, A) is linear.

It is skew-symmetric because

[§,n]=Eon—nof=—(no—Eon)=—[n¢]

and it satisfies the Jacobi equation because

(€, [, x1] + [0, D €11+ [ (€ ]
=[&mox—xon+nxof—Eox]+x,§on—nof]
=&o(mox—xomn) —(mox—xon)of

+mno(xo§—Eox)—(xo&—Eox)on
+xo(§on—nof)—(§on—nof)ox
=0
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17. LIE BRACKET 17.2

Finally we show point (3):

(IF-&g-mm) = (-0 ( = (g-me(f©)h) =
= (f-&)((g- ) h) ) ((f- &) (h))
= () (g-n(h) ~ )(f £(h)
= f-&(9) -n(h) + f g- f(n(h)
—g-n(f)-€(h) =g~ f-n(Eh))
= (f9-lem+7-€) - n—g-n(f)-€)(n). O

Remark.

The VB chart representation of [£, 7] looks as follows:

i 0 0] ilineari i 0
= {Zﬁ aui’z kauk] uzif 5" 5]

- Z(’fl kia i aik] +fl(auz '”k)%_”k(%'fi)aii)

B 8 .\ 0 . o 07
ZZ( g = 5 ) g S [ e ] =0

in fact:

8 9 a

5 5] = gur (s(fow)op™) =0 (ak(foso)ow’low>oso’l = 0,0k (fop)op™ .

So the coefficient of [£, 7] with respect to % is
k: agk
k 7 a0
(€ n)" = E <§ 5yt am)'

Conversely, this local formula can be used to define the Lie bracket. But we have
to check compatibility with chart changes. This is done as follows:

- -agf d
Z (5 L auz ) ﬁ

,out 0 o au d o 9
Zﬁ ou’ 8ul %770 B 61# B ( W£])> ol

; afJ : ;0 0w N\ 0
(zf (S Ge) -5 2 j Wsi) =

i,

> au5 S 0w 9
Zf 8u’8u3 ] +@8uinj)
0w o 0
zz: Z(aulauﬂ &+ oui 3u15])> Jul

;0 3
( oul 85’) oul
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17. LIE BRACKET 17.5

For open M C R"™, the following holds:
[&omlh =D (€on*le — 120" 2) = (") (2) (&) — (€9) (@) (n2)

(3

that is [¢, 7] (z) = 7'(2) - & — &'(2) M-

Example.

The Lie-bracket [£, 7] of the two complete vector fields £ and 7 from | 16.6.3 | is not
complete:

d 2
—cy1(t) = —ci(t)/2
(t) = <c1 t)) is a solution curve < (g 0 W
ca(t) w2 (t) = ci(t) - ca(t)

Thus ¢ (t) = 2(t+A)~! and ca(t) = (t+ A)?- B. The initial condition ¢(0) = (z,y)
results in A = % and B = g”z—y. Thus,

22 x
o) () = FIE ) = (525, 0+ 2P 52 ) = (s, (1 + t2/2)%)).

For t = —2, the flow is undefined, i.e. [¢,7] is not complete.

17.3 Definition (Relatedness of vector fields).

Let f : M — N be smooth. ™ N
A vector field £ € X(M) is called f-RELATED ¢ I
to a vector field n € X(N) :& T fof =no f. vl N YR

The vector field £ is f-related to n if and only if £(g o f) = n(g) o f for all smooth
g: N —R.

(=) &ge ) =&(go f) = (Tpf - &) 9 = 11w = 1(9)(f(p)) = (n(g) o f)(p)
() (Tfo)pg = (Tf-&)g = plgo f) = &g f)p) = (n(g) o f)(p) = n(g)(f(p)) =
£ )(9)-

17.4 Remark (Push-forward of vector fields).

For general f it is not possible to find a vector field f to which a given vector field
is related to. However, if f is a diffeomorphism, then f.€ := T'fofo f~! is a vector
field on N for each vector field & on M.

™™ TN
(I
M*f>N

The vector field £ is f-related to f.{ by construction. Conversely, one has the
following statement:

17.5 Lemma (Pull-back of vector fields).
Let f: M — N be an immersion, n € X(N) and 1y € im(T,f) for all p € M,
then 31 &(=: f*n) € X(M), s.t. € is f-related to n.

Proof. Since T}, f is injective, to each 7y, in im(7}, f) there is a unique preimage
&p € T, M. It remains to show that this vector field £ : M — T'M is smooth. Since
f is an immersion, according to , charts ¢ and v exist centered at p and f(p),
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17. LIE BRACKET 17.8

respectively, so that ¥V~ o f 0 ¢ = inclgm_,gn. Let & = Z«E@@f. It suffices to show
that the ffo : M — R are smooth. Since

(6;)? = &(pr; 090_1) = &p(pr; 07/)_1 of)=(Tfo&)(pr; O¢_1>
= N (p) (pr; ow_l) = (qup)f(p) = (772} o f)p is smooth in p,
it follows that ¢, is smooth locally around p. The f-relatedness follows directly
from the construction of &. O
17.6 Remark.

We have shown that vector fields can be transported using diffeomorphisms f:

™ TN ™ TN
ET Tf*ﬁ f*nT T’?
M—1 N M—1 o N

Here, f*n:=Tf lono f by and f.§ :==Tfo&o f~! by . Then the
following holds:

f(f ) =Tfo(f'moft =TfoTf onofoft=n
and analog f*(f.§) = &, ie. f*: X(N) - X(M) and f, : X(M) — X(N) are

inverse to each other for diffeomorphisms f.

17.7 Proposition.
Let vector fields & be f-related to n; for i =1,2. Then:
1. & 4+ & is f-related to m + na.
2. [&1,&2] is f-related to [n1,n2].
3. (go f) & is f-related to g -n, where g: N — R is smooth.

Proof.
follows from the linearity of 7}, f.

follows analogously, because of
(Tfo (o) )W) =T (s ®) &) = 9(f®) - ()&
=g(f(®) s = ((g ‘) o f) (p)-

follows because

[1,86](g0 f) =& (&2(g0 f) — &(&ilgo f))

&1 (n2(g) o f) — &2(mlg) o f)

(m(n2(9))) © f = (n2(m(9) o f = (Im.malg) o f. - O

17.8 Lemma.

Let f € C*°(M,N), £ € X(M), and n € X(N).
Then € is f-related to n < f o F1° = F1" o(id x f) locally at {0} x M.

Proof.

andreas.kriegl@univie.ac.at (© June 26, 2018 94



17. LIE BRACKET 17.10

(<) We have
Eli=of(FI15(t,p)) = Tf(FI*(L,p)'(0)) = Tf(,) and
41,0 F1"(t, f(p)) = n(Fl" (0, f(p))) =n(f(p).

(=) The curve FI"(_, f(p)) is the unique integral curve to n with start value f(p).
On the other hand, f o FI*(_, p) has value f(p) at t = 0 and by differentiating we
obtain:

(fo Flg(—7p))/(t) = Tf((Flg(—aP)) (t)) = (Tf - Olrep) = Ml pEe,p))-

The equality of the two terms now follows from the uniqueness of the integral curves
of 7. O

!’

17.9 Definition (Lie derivative).
1. For £ € X(M) the Lie derivative L¢ : C°(M,R) — C*°(M,R) in direction ¢
on functions f € C*(M,R) is defined by
7 (p $li=o(FI)* F(p) = &li=o(f 0 FIE)(1,1)).

2. For £ € X(M) the Lie derivative L¢ : X(M) — X(M) in direction £ on vector
fields n € X(M) is defined by

n (b Eli=o(FIE) 0(p) = im0 (TFIE, o7 0 FIF) (1))

Note that TFlg_t on o Flf : M — TM is locally a section for all ¢ near 0, and
thus ¢ — (T FI°, ono F15)(p) is a locally defined curve in the vector space oM
for each p (whereas t — (TFI°, on o FIS) is not a well-defined curve in X(M))
and thus the derivative £ |,_o(T FI¢, on o FI5)(p) is also in T, M.

The following theorem shows that we already know the Lie derivative of functions
and of vector fields.

17.10 Proposition (Descriptions of the Lie derivative).
1. For £ € X(M) and f € C*(M,R):
Lef =&f.
2. For&,me X(M):

Le(n) = [, n].
Proof. | 1| Since &, = c,(0) with ¢, := FI*(_,p) we get
(Lef)p = &i=o(F15)" f(p) = (f o FI(L,p))(0) = (£ 0 ¢,)'(0) = &(f) = (£f)yp-
Let o : R2 — R be locally defined by

a(t, $) := (Mlpre (o) (f © FI) = TFLE (e ) () = (TFIS o 0 FIE),.(f)-
Then
a(t,0) = TIFIE (¢,p) f= (nf)(Flg(ﬂp))
a(0,5) = n,(f o FIS)
= 010l(00) = &lmo(nf)(FIE(t,p)) = &(nf)
B20l(0,0) = 3 limo (1 (F o FIE(L,)) ) = mp (2 lemo (F 0 FIE(L,1)) ) = mplE),
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because 7, is linear. Thus
gili=oa(t, —t) = 01(0,0) — 820(0,0) = &, (nf) = mp(ES) = [€, ],
and % |i—oa(t, —t) = & |i=o(TFI, on o FL}), f = Le(n), f. O

17.11 Proposition.

The Lie bracket is an obstruction to the commutativity of the flows. More precisely,
this means:

1. We have [€,7] = 0 < FIs oF17 = F1" o F1¢ (These mappings are defined locally
for small t and s).

FIE(FLE(p))zF (I (p))

FI g (p) Fl i (p)

2. Let ¢ : R — M be defined locally by c(t) :== (F17,0F1°, o FI7 0 F1¢),. Then:
c(0) =p, ¢(0)=0, "(0) € T,M is well defined and ¢"(0) = 2[&,n],.

FI{(FIE(p))

FI S (FLT(FLE ()
Fl¢(p)

c(t)=FI " (FLS (FIT(FIE () p

Proof.
() (<) We have
FI; (F1"(s,p)) = (FI; o F17)(p) = (F1Z o FIf)(p) = F1"(s, F1; (p)),
that is FI$ o F17 = F1" o(1 x FI15)

17.8 -, ) ¢ ¢
7 is Fl;-related to n, i.e. T Fl; on =noFl;.

= n=TFI*,onoFL because (FI{)™' = FI*, is a local diffeomorphism

ot
= &N

= 0= E|t:077— E’t:OTFLtOWOFlt
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(=) From [£,n] = 0 we get:
%(T Flg—t SUN Flf)(p) = %L (T FI* Z(t+s) °N° Flf+s)(p)

— 4, (TFlitoTFlisonoFlgoFlf)(p)
:TFlE_t< d

o (TFIE o 0 FIE) (FIS (p)) )

(TFIE, of¢,n) o FI)(p) = 0

So TFI*, on o FI¢ = TFI5on o FI§ = 7 is constant in ¢, that is 1 o FI$ = TFI on.
Thus, 7 is Flf-related to n. By we finally obtain F17 o Flf = Flf oF17.

() Let ¢ : R — M be locally defined and C*°.
Then ¢’ : R — TM is the canonical lift of ¢. The

curve ¢’ : R — T(TM) can also be understood as R T(TM)
a lift of c. iﬂ'T]\/I
/
c=mpoc
- u}ic—ﬂMowMoc’/ R— > TM
¢ =mppmoc i
™M
If ¢/(0) = 0, then ¢”(0) can also be understood as
the derivation f — ¢”(0)f := (f o ¢)”(0): R——"—>M

This is linear and

¢"(0)(fg) = ((f9) 0 ¢)"(0) = ((foc) (g0 )" (0)
= (f2¢)"(0) (goc)(0) +2(f o) (0)

(9

= (¢"(0)f) 9(c(0)) + f(e(0) (" (0)g)-

So ¢’(0) acts as a derivation over ¢(0) = p, that is ¢/(0) € T, M.
Let ag(t, s) := (FI/ o F15)(p)

a1 (t, s) := (FI°, o FI" o FI5) (p)
as(t, s) == (F1", o F1¢ o FI7 o FI%) (p).

Then c(t) = as(t,t)
as(0,8) = ay (s, s)

a1(0,8) = ap(s, s).

If f € C°°(M,R), then:

O (foag)=(nf)oao
I(foar)=—({f)oa
O(foaz)=—(nf)oaw

9a(f 0 a0)(0, 5) = (£)(0(0, 5))

9a(f o a1)(0,s) = 01(f o ao)(s,s) + O2(f o a)(s, )

O2(f oan)(0,8) =01 (foar)(s,s)+ 0a(f oar)(s,s)
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= (0)f = (f o) (0) = Fli=o(f 0 a2)(t, 1)
= 01(f 0 a2)(0,0) + 9a(f 0 2)(0,0)
—(f)p + 1 (f o1)(0,0) + O2(f 0 a1)(0,0)
= —(nf)p — (€f)p + 01(f 0 a0)(0,0) + Da(f 0 0)(0,0) = 0
¢"(0)f = (f0¢)"(0) = ()*[i=0(f 0 az)(t,1)
= 97(f © @2)(0,0) + 20201 (f 0 2)(0,0) + 93 (f © a2)(0,0)

97 (f 02)(0,0) = 91 (—(nf) 0 a2)(0,0) = (—=n(—nf))a2(0,0) = (n(nf)),
9201 (f 0 a2)(0,0) = 02((—nf) o a2)(0,0)
= 01((=nf) 0 1)(0,0) + 02((=nf) 0 @1)(0,0)

(-
(-
= (§nf)p + 01 (=nf 0 @0)(0,0) + Ja(—nf © ap)(0,0)
= (&nf)p = (mf)p — (Enflp = —(mf)p

03 (f 0 @2)(0,0) = 97 (f 0 a1)(0,0) + 2018(f © @1)(0,0) + 83 (f 0 a1)(0,0)
81(foa1)( ,0) = (&1 )p
0201 (f 0 a1)(0,0) = 02((—£f) 0 a1)(0,0)
= 01(—¢{f 0 a0)(0,0) 4+ 02(—& f © ) (0,0)
—(n&f)p — (€€f)p
93 (f 0a1)(0,0) = 87 (f © @)(0,0) + 20201 (f © a0)(0,0) + 85 (f 0 a0)(0,0)
= (mf)p +2(Enf)p + (E5f)p

By collecting the results we finally obtain:

O)f =mmf —2mnf + EEF — 2 f — 28Ef +mmf + 2Enf + &£ f
=20nf —néf) =20 f. O

17.12 Proposition (Commutating flows are coming from charts).

Let {&}%_ | be linear independent vector fields on M with [£;,&;] =0V i,j. Then
there is a chart ¢, so that locally & = 8f fori=1...k.

Proof. Without loss of generality, M C R™ is open, p = 0 and &;(0) = e; for
i=1,...k Let

1y ooy tn) = FI8 (4, F1%2 (tg, .. F1% (£330, ... 0, tpg1s .- tn) - - -
®

- (Flfll o...oFlfj;)(o,...,o,tk+1,...tn).
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Then ¢(0) = p and ¢ is a local diffeomorphism because the partial derivatives for
i < k have the following form:

8i<,0(t1, e ,tn) = 321’

Fl§lo... oFlio .oFlfS)(O,...70,tk+17...tn)

_ 0 &i &1 i &k

=2 (Fl oFIS 0. . o FIf o...oFltk)(O,...,O,tkH,...tn)
1

_&((Fla oFIS* ..o FIE o...oFlf:)(O,...,O,tk+1,...tn)>

=&-( FIf'o. oFlf;j)( ..,0,tk+1,...tn))

where . means that the corresponding term is to be omitted.
So & = 820 is for i < k. For i > k and t; = --- = t;, = 0 the following holds:
Oilt,=00(0,...,0,t;,0,...,0) = (%)(O,...O,ti,o,...o) =e;.

Thus, ¢'(0) = idg~, because &(0) = e;, and 9f(q) = di(p)(p~1q) = &(q) fiir i <
k. O

17.13 Remarks.
1. The reverse holds as well: If ¢ is a chart then the Lie brackets of the basis

vector fields 97 vanish and thus their flows commute pairwise.
2. Let £ € X(M) with &, # 0. Then there is a chart ¢ with { = df for k =1
by 17 12]. Since 9y is obviously g-related to 8¢, we have @(F1% (¢, z)) =

Fl§ )) by and thus
Flf(t,p) = p(F1% (t, 07 (p) = (¢~ (p) + tea).

The flow of each non-stationary vector field is thus given up to diffeomorphisms
@ by the translation x — x + te; with constant velocity vector e;.

I

3. Let &, =0 (i.e. p is a zero of the vector field) and thus Flg(t,p) =p, ie. pbe
a fixed point (stationary point) of the local flow. Without loss of generality,
U CR™isopen and £ : U — R™ with £(0) = 0. Then &'(0) : R™ — R™ is
linear, and the Eigenvalues of £'(0) generically determine the local behavior of
the flow (see books on dynamical systems).

17.14 Proposition.

Let M C R? be a surface and X1, Xo pointwise linear independent vector fields on
M. Then there is a local parameterization ¢ of M with 0;p(u) parallel to X;(¢(u))
forie{l,2}.

For hypersurfaces in R™ with n > 3 the analogue proposition is wrong!

Direct proof. Let ¢ be a local parameterization of M and Y; := ¥~ !(X;) the
local vector fields on R? with T,¢ - Y;(v) = X;(3(v)). We are looking for a local
diffeomorphism h : R? — R?, (v!,v?) + (u',u?) with ¢ := 9 o h™! as desired,
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Le. 0jp(u) = Th-1® - (K1) (u) - €; parallel to X;(p(u)) = X;i(¥(h~H(u))) =
Th—1(wyt - Yi(h~'(u)). This means

0=(u)(v Z@kuj (v) for j # 1,

so W'(v) - Y;(v) is proportional to e;, because (h=1)(u) - e; = h'(h=t(u))~! - ¢; is
parallel to Y;(h~!(u)). The above partial differential equations of the form

O1u(v) - Y(v) + dau(v) - Y2(v) = 0
are solvable because if ¢ — v(t) is an integral curve of vector field Y, then

%“(v(t)) = Oru(v(t)) - (v1)'(t) + Bau(v) - (v*)'(1)

= Ou(v(t)) - Y (u(t)) + Bau(v(t)) - Y*(v(t)) = 0

for each solution u of the partial differential equation, i.e. u o v constant. Hence
u(F1¥ (t,v)) = u(v). Thus, if we specify u on a curve normal to Y, then u is locally
defined and satisfies this partial differential equation. O

Proof by means of commutating vector fields. Compare this to|17.12| Let
X1, X5 pointwise linearly independent. Then local functions exist with a; > 0

0 = [a1 X1, a2 Xs2] = ar1a2[X1, Xo] + a1X1(a2)Xs — asXo(a1) Xy

X1(a2)X _ Xz(al)X )
a9 2 aq !

= a1a2([X1,X2} +

and thus by |17.12| for £k = 2 a chart ¢ with 0;¢ = a;X; for i = 1,2: We have
[X1, X2] = b1 X7 + b2 X5 with smooth coefficients functions b and by and therefore

we have to solve only the partial differential equation of first order Xl(az) = by and

analogously L = —by, which is obviously possible, since by 17.12 for k=1
we find a chart @ with X = 8f and then %32) = by is an ordinary differential
equation with additional parameter. O

18. Integral manifolds

18.1 Remark.

We have seen in that integral curves of vector fields are not always globally
defined. Intuitively speaking, they are not defined for all ¢ € R because they escape
to “infinity” in finite time. Thus the solution curves are “too fast”, i.e. their velocity
vectors are too large. But we could make the flow global by reducing its speed.

More abstractly this means:

i. Instead of vector fields we consider one-dimensional subspaces E, C T, M V p €
M, i.e. vector subbundles.

ii. Instead of solution curves, we consider integral manifolds, i.e. 1-dimensional
submanifolds IV of M, for which T, N = E, holds. We can also consider these
concepts in the higher-dimensional case:
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18.2 Definition (Integral manifold).

Let E be a vector subbundle of 7 : TM — M (referred to as DISTRIBUTION in
the (older) literature). Then we understand by an INTEGRAL MANIFOLD N of
FE a connected manifold structure on a subset N C M such that the inclusion
incl : N — M is an immersion and Ty incl : T,N — E, is a bijection for each
peN.

18.3 Examples.

1. For one-dimensional vector subbundles, which are spanned locally by a vector
field, integral curves always exist for this vector field, and thus also integral
manifolds of the bundle.

For example: If a “constant” vector field at the torus has an irrational slope,
then each of its integral manifolds lies dense in the torus.

2. Note however, that the vector subbundles E is generally not spanned globally
by a VF. An example is the subbundle FE of the tangent bundle of M&bius strip
M consisting of all velocity vectors of curves in the fibers of M — S*.

3. In the multidimensional case, it is generally not true that each vector subbun-
dle has integral manifolds. Consider the following example:
M = R® with Epy. = ({Z5 + 55, 25 ) = {1, Ay) : A € R} C Ty )R,
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Suppose there exists an integral manifold N through (0,0, 0).

Since Eyy.) N ({0} x R?) = R - ey the

intersection N N ({0} x R?) is locally the

y-axes R - es.

Since E( y, - N(Rx {0} xR) = R-(1,0, o) %%

the intersection N N (R x {yo} x R) for @ @ @ @
fixed yo is locally near (0,yo,0) the line 2
(07y070) +R- (1707y0) = {(x,yo,myo) :

x € R}. Thus N locally at 0 contains %%éﬁﬁﬁgﬁ
{(z,y,2y) : x,y € R} and hence its tan- @d e © <=

gent space T(;,y ., N contains (0,1,x) Q&Q& i&

which lies in Er, . = {(A\ A y) : y@ 2 @@ ‘2
A € R} only for z = 0. Therefore &Q | R & < &
an integral manifold through 0 does not < - >
exist. o

18.4 Remark. Finding necessary conditions for integrability.

Suppose E is a subbundle of TM that has an integral manifold through each point.
Let p € M and let N be such an integral manifold through p. Furthermore, let &
and n be vector fields on M with &,,n, € E, for all x. Because of lemma ,
vector fields € and 7 exist on N, such that &, 7 are related to &, 7 with respect to
incl. Then [€,7] is a vector field on N which is incl-related to [£,7] by .
Thus we get [£,7], = Tincl [,7)], € E,.

18.5 Definition (Integrable subbundle).

A vector subbundle F of T'M is called INTEGRABLE :<> for every two smooth vector
fields &,mon M: &,,mp € E, Vp = [€,1]p, € EpV p.

Exercise: Show that the subset of | 18.3.3 | is not integrable.
Hint: Consider the two generating vector fields.

18.6 Local Integrability Theorem of Frobenius.

Let E be a vector subbundle of w: TM — M. Then E is integrable if and only if
for each p € M there exists an integral manifold through p (moreover, there is a
chart o centered at p, such that p(RF x {a}) is an integral manifold for each a).

The images p(R* x {a}) are called PLAQUES.

Proof. (<) We already showed that in .

(=) Without loss of generality, M C R™ is open and ¢ : M x R™ — M x R™
is a VB chart trivializing E C M x R™, that is 1, = ¥(z,.) : R¥ x {0} = E, is
an isomorphism for each z € M. By applying a rotation to M and hence to To M
we may assume that Eg = RF x {0} and by composing 1 with id x4/ ! we may
further assume that ¢y = id, in particular, prj ot)g o incly = id € GL(k). Thus,
pr;, oy, o incly, € GL(k) for all z close to 0.

We now want to represent each of the subspaces F, as a graph of a linear mapping
f. : RF — R™*  Because of graph(f.) := {(v,f(z)v) : v € RF} and E, =
{(L(w,0),9%(w,0)) : w € R¥} we need f,(v) = ¥?(w,0) with ¥}(w,0) = v for a
(uniquely determined) v € R* i.e. f: M — L(k,m — k) must be given by:

f o= F(2) = 62 0 (¥ [ga) ™! = Dryuy 0t 0 incly o(pry, oy o incly) 7,
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v=y3 (W, 0)

IRmk ]Rmk
)02 .01 S mgraph ()
/P
V4
RK RK
W |

What tells us integrability in this context?

For ¢ € X(M) we have: §, € E, & &, € graph f(p) © & = (&ilp,§2lp), with
F@)(Elp) = (&lp). Let &n : R™ — R™ = R™F x R with &, n, € E,. By
assumption €, n} € Ep, thus

= (l¢, [ n]1(p))) and on the other hand
' (p )( ( )) ( (»))
(" (p)((p ) (P) (n(p)), 12(p) (£(p)) — Eé(p)(n(p)))

(n (@) = & @) (), £ ) (ED) (m ) + £E) (0 (0) ()

- FO0) 6 ) - 16) (G 0nw) )
= (&m0 @), FE)& M) + B ED) (m @) = 1'@) (1)) (6 ()

For vy := &1(p) and vg := 11 (p) with vy, vy € RF we get:

f'(p)(v1, f(p)v1)v2 = f'(p)(va, f(p)va)vr.

We want to find a ¢ : R™ — R™ such that ¢(R¥ x {a}) is an integral manifold
for all a, i.e. (91¢)(2) : R* — E,(,) should be an isomorphism. Without loss of
generality (as will be seen), we further restrict the appearance of ¢ by the following
condition:

[5 n}( )

©(0,9) = (0,y), (919)(2) - v = (v, f((2))v).
If o(x,y) =: (¢1(2,y), p2(z,y)), then
(O1p1(2) - v,0192(2) - v) = O1p(2) - v = (v, fp(2)) - v)
= oi1(zy) =10, y) +z =2 = @(x,9) = (,92(2,9)) = (2, 9y(2)),
where g, (0) = y and g, (z) = f(z, g,(x)) has to hold.

Now everything follows from the following proposition: O

18.7 Theorem of Frobenius for total differential equations.
Let f : R™ = RF x R — L(k,n) be locally C*°. Then for each (xq,y0) € R™ there
is a local C™ mapping gz,.yo @ R¥ — R™ with Gro o (T)V = (2, 9y 0 ()0 and

Gzo.y0 (To) = yo if and only if f'(2)(v1, f(z)v1)ve is symmetric in vy, vs.
Further, the mapping (o, Yo, ) = G,y (€) 15 C™.

Remark.
Let {e1,...,e.} be abasis for R¥ and put f;(2) := f(2)e;. Then f(z)v = Zle fi(2)vt
and 9;g(x) = fi(x,g(x)) with 1 <i < k is a system of partial differential equations.

We will prove in a basis-free way. (A proof in coordinates can be found, for
example, in [136, Vol.I, S.254].)

Proof of . See [81, 6.5.1]. Let E = R¥ and F = R™~F,
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(=) For zp = (z0,y0) € E X F let g be a local solution of the above differential
equation with initial condition g(xo) = yo. Then ¢’ = f o (id, g) and by the chain
rule

9" (@0)(vr,v2) = (g') (@0) (v1)(v2) = evas ((9') (@0)(v1) ) = evuy ((F @ (id, 9))'(w0) (01) )
= evuu ( (@0, 9(20)) (v1, 9/ (@0)(v1)) ) = F'(z0) (w1, F(z0) (1) ) (v2)

Since ¢g”(x¢) is symmetric by the Theorem of Schwarz, thus the same hold for the
right side.

(<) Let (z0,y0) € E x F. We try to reduce the total differential equation to an
ordinary one by first examining what happens at x¢ in the direction of v € F.

For the moment we assume that a local solution g of the total differential equation
with initial value g(xg) = yo exists and put g(¢,v) := g(z¢ + tv). Then

0]
ag(ﬂv) =g'(zo +tv) v = f(wo + tv, g(xo + tv)) - v = f(xg + tv,g(t,v)) - v,
g(O7U) = g(.]?o) = Yo-

This is an ordinary differential equation for § which thus locally (i.e. for |t| < e,
lv]] < e with a certain € > 0) has a unique solution g, which depends smoothly on
(t,v,20,Yy0). From this we should get a solution g of the total differential equation
by taking g(x) := g(t,v) with tv := 2 — zy. Obviously t = 1 would be nice, but the
solution g need not exist till then. Thus we choose ¢ := € and hence v := *~*¢ and
g(z) == g(e, ==22) for ||z — zo]| < &2. Then we have to calculate ¢’(z)(w) and in
particular 02g. The idea is that

0 0
Oog(t,)(w) = 5= | __gltv+sw) = 5| gleo -+t + sw)

= ¢'(zo + tv)(tw) = f(xg + tv, g(zo + tv))(tw)
= f(wo + tv, g(t,v)) (tw)
should be valid. Thus we define k£ : R — F' by
k(t) := 02g(t,v)(w) — f(xo + tv, g(t,v))(tw).

Then we get k(0) = 02g(0,v)(w) — f(xzo + 0v,g(0,v))(0w) = 0 and, after applying
the chain rule, - where we omit for the sake of clarity the argument (¢,v) of g and
of its derivatives as well as the argument (xg + tv, g(t,v)) of f and its derivatives -

D k(t) = 2 (a1, 0)(w) ~ Flaro -+ 10,300, ) (0w
:%%g(t,u)(w)— (81f-v-tw—|—82f- %g-tw+f~w>
—— ~~
fzo +tv, g(t,v)) -v fo
= (31f-tw~v+82f~(82§~w)~v+f~w) - (f'-(v,f-v)-tw—i—f-w)

Int.Cond.

O f tw-v+0af - (02g-w)-v—f- (tw, f-tw)-v
=0of (Oag-w— f-tw)-v=0af k() v.

Since this is a linear differential equation (with non-constant coefficients) and k(0) =
0 we conclude k = 0. Thus, for g(x) := g(t,v) with ¢ := ¢ and v := =" we have

/() (w) = Bagle, =20) (Lw) = g (t, v) (L) = f(wo + to, 3(t,v)) (thw)
= f(2.9(e, =2) ) (w) = f(@,g(2))(w). O

18.8 Special cases.
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In particular we get (if f: R™ x R™ — L(m,n) only depends on one factor):
1. For f : R™ — L(m,n): f'(z)-v1-v2 = f'(z) vy vy & there is a local
g : R™ = R"™ with g(0) =0 and ¢'(z)v = f(x)v, that is ¢’ = f.

2. For f:R™ — L(m,n): f'(y)(f(y)vi)ve = f'(y)(f(y)va)v1 < there is a local
g:R™ x R" — R" with g,(0) =y and g, () = f(gy(x)).

18.9 Integrability Theorem of Frobenius, global version.
If E is an integrable subbundle of TM, then:

1. There is a manifold structure Mg on M such that the inclusion incl : Mg — M
is an immersion with T'incl(TMg) = E, i.e. Tincl : TMp — E C TM is
bijective.

2. Let f : N — M be smooth with Tf(TN) C E. Then f: N — Mg is smooth.

3. Each connected component of Mg is an initial submanifold of M, and is para-
compact if M 1is it.

4. If N is a connected integral manifold, then N is an open submanifold of a con-
nected component of Mg (hence the later ones are called MAXIMAL INTEGRAL
MANIFOLDS ).

In this situation, one speaks of the FOLIATION Mg induced by E on M. The
maximal integral manifolds are called LEAVES OF THE FOLIATION (Attention:
This is something different than the leaves of a covering).

Proof. By , there are charts , such that ¢ (R* x {a}) is an integral manifold
for each a, i.e. To(RF x {0}) = E,,) for all z € dom ¢.

///////%
|

7o (M)

AS)

b

=

RrR™

Let f : N — M be smooth with im(Tf) C E and f(p) € im¢, then f is locally in

some plagque o(R* x {a}): In fact, for f:= ¢! o f we have
im(T, f) = Tyaye "(imTof) € Timye (Epw) = R x {0 _
(T f) =Ty ( ) C Ty ( fgx)) ) {0} ~ im F C R x {a).
Ja: f(p) e R® x{a}

() The family
{¢|(ka{a}), p is trivializing for E as in , a € Rm_k}
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18. INTEGRAL MANIFOLDS 18.9

is an atlas on the set M :
For this we have to show that the chart changes are smooth maps defined on open
sets:

Consider @1, ¢2; a1, az and p € @1 (R” x {a1}) N2 (R x {az}). Since p1|®rx a1 :
RF x {a1} — M is an integral manifold, the image im(p1|grxx{a,})) is contained
locally in @2 (R* x {as}). So

-1
(¢2|(ka{a2})) O<<P1|(ka{a1}))
is well-defined locally and smooth as a restriction of ¢35 Lo .

We denote the so obtained manifold by Mg. The inclusion Mg < M is an immer-
sion because the inclusion R* x {a} < R™ is its chart representation. Moreover,
Tincl(Mg) = E since T,p(R* x {0}) = E,(,) for all z € dom¢.

() Let f: N — M be smooth and im(7T'f) C E. Then f lies locally in a plaque
©(R*F x {a}) and thus (¢|(ka{a}))71 o f is locally well-defined and smooth, i.e.
f: N — Mg is smooth.

() With M also Mg is paracompact: Without restricting generality, M is con-
nected and let C' be a connected component of Mg. By it suffices to show that
C is covered by countable many chart images (R x {a}), hence is o-compact.
Let A be a countable family of E-trivializing charts which covers M and let pg € C

be fixed and p € C arbitrary. Since a curve exists in C' connecting py and p, there
are finitely many charts ¢1,..., o, € A and some aq, ..., a,, such that:

po € p1(R x {a1}), p € pn(R* x {an}) and @i(R* x {a;}) N i1 (R x {air1}) # 0.

For given ¢;, ¢it1, a;, there are at most countably many
a;4+1 with

pi(R* x {ai}) N pip1 (R® x {air1}) #0,
because otherwise there would be a covering of ¢;(R* x
{a;}) Nim;+1 by uncountable many disjoint and (in
the topology induced by (@s|pix(a;3) ' (impi1) C R¥)
open sets ;1 (R* x {a}), which would give a contradic-
tion to the Lindeldf property.

Bild(¢i.1)

o (R¥xa )

v
WL

Thus there are only countably many finite sequences (p;, a;); that satisfy the condi-
tion ¢; (R* x {a;})Nir1(R¥ x {a;+1}) # 0. Each p € C is reached by an appropriate
sequence. So C' is covered by countably many chart images p(R* x {a}).

The connected component C is an initial submanifold: Let f : N — C C M be
smooth. Locally f has values in im ¢ and globally also in C'. However, since C' (as
a countable union of plaques) meets at most countably many plaques of ¢, f lies

locally in one plaque (different plaques are not connected in im ¢ with each other).
Thus im(Tf) € T(p(R¥ x {a})) = E|,®*x{a}), hence f : N — Mg is smooth by

B

() Let N — M be a connected integral manifold, then incl : N — Mg is
smooth by . Furthermore, incl : N — Mg is injective and immersive (since
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18. INTEGRAL MANIFOLDS 18.12

incl : N — M is so) and submersive (since T'incl : T,N — E,, is bijective), hence
a local diffeomorphism. Thus, incl : N — Mg is a diffeomorphism onto an open
subset of Mg. O

18.10 Proposition.

Let f : M — N be smooth and x — T, f have constant rank r. Then, ker(Tf) :=
Ll,cas ker(T,. f) is an integrable vector subbundle of TM, and the connected com-
ponents of the level sets f~1(q) are the mazimal integral manifolds for ker(Tf).

18.11 Definition (Riemannian manifold).

A RIEMANNIAN METRIC on a manifold M is a function g which associates to each
point x € M a positive definite symmetric bilinear form g, : T, M x T,, M — R such
that for any vector fields £, 7 € X(M) the mapping « — ¢, (2, 7.) from M to R is
smooth.

A RIEMANNIAN MANIFOLD is a manifold M together with a specified Riemannian
metric g.

If the metric is specified only up to multiples with smooth positive functions, then
one speaks of a CONFORMAL MANIFOLD.

Substituting the condition of positive definiteness by that of non-degeneracy, that
is, v = (v,-) and v — (-,v) are injective as mappings R™ — (R™)*, one obtains
the notion of a PSEUDO-RIEMANNIAN METRIC and the corresponding manifolds are
called PSEUDO-RIEMANNIAN MANIFOLDS. If the signature is -1, then one speaks of
a LORENTZIAN MANIFOLD.

If one considers complex manifolds and replaces the condition “bilinear form” by
“Hermitian form”, one speaks of HERMITIAN MANIFOLDS. The real part of the
Hermitian form is a Riemannian metric.

18.12 Definition (Length and distance).

Let (M, g) be a Riemannian manifold, then we can define the LENGTH OF TANGENT
VECTORS &, € T, M as |&| := \/g2(&x, &a)-

If ¢: [0,1] — M is a smooth curve in M, let the LENGTH of ¢ is defined by

L(c) = /01 \ e (¢'(1), € (1)) dt.

As one easily convinces oneself, we also have a metric dy : M x M — R in the
sense of topology for connected Riemannian manifolds (M, g):

dy(p, q) = inf{L(c) L€ OF(R, M); c(0) = p, ¢(1) = q}.

For each smooth immersive f : N — M the mapping (v, w) + gp) (Lo f v, To f-w)
for v,w € T, N defines a Riemannian metric f*g on N and it satisfies:
Ljg(c) = Ly(f o c) and thus
dg(f(2), f(y)) = inf{Ly(c) : c connects f(z) to f(y)}
< inf{Lg(f oc¢) : ¢ connects x to y}
= inf{Ly-4(c) : ¢ connects z to y}
=ds-4(x,y), hence

F({o s dpglw,w0) < v}) € {y s dyly, f(w0)) < 7}
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We now show that the metric d, generates the topology:

To see that the identity from the manifold M to the metric space (M, d,) is con-
tinuous, we use that for the chart representation ¢*g with respect to a chart
o :R™ DU — o(U) € M and for all  in a compact subset of U we have
the inequalities

M; - o? < (9*9)a(v,v) < M5 - |vf?
with some constants M7, My > 0, hence

o({w 1o - 2ol < MiQ}) Co({ s dpeg(w,20) < 2}) € {y s dy(y, p(w0) < 2}

and dy : M x M — R is continuous.

In fact: On the one hand {(¢*g),(w,w) : Jw| < 1,z in a compact set} is compact,
so bounded by some M3 and thus (¢*g).(v,v) = |v]? (¢*g).(w,w) < M2 |v|? with
v =: |[v|w. On the other hand,

M? = inf{(go*g)x(v,v)/|v\2 :v # 0,2 in a compact set} > 0,
otherwise, z,, and v,, # 0 exist with

(" 9w, (Wnywn) = (9" 9)z, (Umvn)/|vn‘2 — 0 for wy, == vy /|vn|.
and for accumulation points ., of z, and we of w, we have |ws| = 1 but
(792 (Woo, Wos) = 0.
Conversely, let ¢ : U — M be a chart centered at yo and V' a relatively compact
open neighborhood of 0 with V' C U. According to the above, there is an M; > 0
with M7 - [v]? < (¢*g)z(v,v) for all z € V. Let e > 0 with {z : My|z| <e} CV
and ¢ := ¢|y. Then dg-4(x,0) > M;|z| for all € V, because

/Wg <>>dt>Ml/|c )|t > My [e(1) ~ c(0)
for each smooth curve c: [0,1] — V. Finally,

{y:dy(y,y0) <e} Cp({zx €V : dgy(z,0) < e})
Co({z eV :Mlz| <e}) C o).

Otherwise, there is a smooth curve ¢ : [0,1] — M with ¢(0) = yo and Ly(c) < ¢,
but y = ¢(1) is not in the open set @({x € V : dz+y(2,0) < e€}). Now choose
to minimal with c¢(to) ¢ ¢({z € V : dg-g(x,0) < €}). Then c(t) € g({z € V :
dg=g(x,0) < €}) for all t < to and has a accumulation point =, in the compact
set {z €V i dpy(z,0) <e} CV CU for t — too. Thus, c(tes) = P(00) € p(U)
and hence ¢! o c|[o,+..] is a well-defined smooth curve in V' with

Lgg(¢7" 0 clioaal) = Lg(@ 0§71 0 €lio 1)) = Lg(Clio,rac)) < &
ie. dag((p71 0 ¢)(txo),0) < €, a contradiction.

It is interesting to actually find a shortest connection between two points. This is
a variation problem which we will address in paragraph [86, 57].
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VI. Differential Forms

In this chapter, we start with 1-forms and the necessary cotangent spaces. Then
we generalize these forms to differential forms of higher degree (in short: n forms).
After a motivational section, we put together the necessary multilinear algebra and
glue the tensor spaces constructed from the tangential and cotangent spaces to
form tensor bundles. As sections of the bundles of alternating tensors we obtain
the differential forms. We treat the most important operations on them: The outer
derivative, the Lie derivative, and the insertion homomorphism. In particular, we
will take a closer look at this for Riemannian manifolds. As an application we
introduce the De Rham cohomology.

19. Constructions and 1-forms

19.1 Motivation.

For path integrals in R™, the notion of 1-form is important because these are the
objects that can be integrated along curves (see [86, 3.10] or [81, 6.5.6]). We now
want to extend this concept to manifolds. Recall that a 1-form w on an open
subset M C R™ is a map w : M — L(R™,R). The path integral of w along a curve
¢: R — M is then defined as the usual Riemann integral of ¢t — w(c(t))(c'(¢)). On
a general manifold M the velocity vector ¢/(t) € Ty;)M and thus w(x) should be
in L(T,M,R) = (T,,M)* for each x € M.

19.2 Definition (1-forms).

By a 1-FORM on a manifold M we understand a mapping w which associates to
each point z € M a linear functional w(z) € (T, M)*.

Let f : M — R be a smooth function. Then we have a 1-form, the TOTAL DIFFEREN-
TIAL df of f, given by df (z)(v) := v(f) € R for all v € T, M = Der,(C*(M,R),R).

We now want to describe 1-forms in local coordinates. For this we need coordinates
in (T,M)*. If E is a m-dimensional vector space and (g;)!”, is a basis in E,
one obtains a basis (¢)"., for E*, the so-called DUAL BASIS, by specifying the
functionals g° on the basis (9;)71 by g'(g;) == 5;-, where 5;- is the Kronecker delta
symbol, i.e. §; :=1 and 5;- =0 for ¢ # j.

Now let (u',...,u™) be local coordinates on M. Then (% ») is a basis of T, M.
If we now calculate the total differential du® of the i-th coordinate functions u*, we
obtain:

du'lo(52712) = garle(u’) = 0;(u’ 0 ©) (™! (2)) = 9;(pr,) (0" (2)) = 35

So (du'|,)i™, is precisely the dual basis to the basis (32 |,)7; of T, M and du’[,(&,) =

& for &, = > 5;% € T, M. For the total differential df of a function f: M — R
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19. CONSTRUCTIONS AND 1-FORMS 19.3

we get

po

because df (2)(6:) = & (F) = (50, €580 ) () = s du' (&) 2 = (X2, Soed ) ().

19.3 Transformation behavior of vectors.

(Compare this with [86, 1.1] and ) In the following, let E be a finite-dimensional
vector space, G := (g;)™, be a basis in E, and 2' the components (coordinates) of
a point x in E with respect to G, i.e. x = 3./ x'g;. Let G := (g;); be a second
basis and Z7 the coordinates of  with respect to G. Let A be the isomorphism of
E, which maps the g; to g;. If one represents the vectors g; with respect to the
basis G, i.e. §; = Y.i", a’gi, then [A] := (a%); ; (where the upper index 7 numbers
the rows and the lower j the columns of the matrix) is

o the matrix representation [A]g ¢ of A with respect to the basis G for dom(A) =
E and for im(A) = E,

e and the matrix representation [id]g g of the identity with respect to the basis
G for dom(id) = E and the basis G for im(id) = E,

e and also the matrix representation [A]g s with respect to the basis G for
dom(A) = E and for im(A) = E.

In fact, the first two representations follow from [86, 1.1], according to which the
j-th column of the matrix representation of a linear mapping are the coefficients of
the image of the j-th basis vector with respect to the basis in the range space. On
the other hand, [A]g s = 1, because A(g;) = g; hence [A(g;)]g = (67);, and thus
[Algg =[Acidlgg = [Algg - lidlgg =1 [Alg.g = [Al-

Summarized: [A] = [A]g g = [A]g g = lid]g g and [A]g ¢ = 1.

For the transformation behavior of the components, we thus obtain:

[z]g =1 [z]g = [Alg g - [zlg = [A(@)]g = [Alg g - [zlg = [A] - [z]g
Conversely, A™1 : E — E'is given by A~': g; v g; with matrix representation
(A7 = [A]7! = (b))

Let E* := L(FE,R) denote the dual space to E and let G* := (¢")72, be the dual
basis to G = (g;)jx, defined by g'(g;) := d}. Each vector z* € E* can then be
written in the form * = Y"7" | z,¢", with coefficients z; = z*(g;) € R.

How do these coordinates transform now?

The matrix representation [1*]g. g. of the adjoint of a linear mapping T is the
transpose of the matrix representation (,)x,; := [T]g g of T, i.e. [T*]g. g« = [T]tgg,
because

() (g5) = 5'(T(0;) = 5 (3 thae) = S tha'(a0) = 1 = 3 tho (0.
k

k k

By applying this to the basis-transformation map A : g; — g;, we get

[A%ge g = [Al5 5 =1" =1, ie. A*(57) = ¢/
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and furthermore ¢/ = A*(g7) = Y., alg', because [A*]g. g. = [A]5 5 = [A]". And

thus the transformation behavior for the coordinates of dual vectors z* € E* is

Z:iigi:x Zﬂcgg —ijag = I; = Zang.
i J

Comparing the transformation formulas, we conclude that the components z; of
the dual vectors x* € E* transform like the basis vectors g; of the original space:

iJZZaéxi, §j22a§9i§ mizzbzi]‘, giZZbggj.

On the other hand, the components z* of a vector « € E transform like the vectors
of the dual basis ¢*:

S S Y
This fact also motivates the use of “upper” and “lower” indices: The component
vectors of dual vectors transform like the basis in the original space (they TRANS-

FORM COVARIANTLY), the dual basis and the component vectors in the original
space TRANSFORM CONTRAVARIANTLY.

However, compare that with the following

19.4 Definition (Co/Contra-variant functor).

By a FUNCTOR F on a category is meant an assignment which associates to each
space M another space F(M) and associates to each morphism f : M — N a
corresponding morphism F(f) between F(M) and F(N), such that F(idy) =
idz(ar) and F applied to the composition of two morphisms is the composition of
the associated morphisms.

One calls a functor F COVARIANT if F(f) runs in the same direction as f, that is
F(f): F(M) — F(N) for f: M — N. It is called CONTRAVARIANT if F(f) runs in
the opposite direction, that is 7(f) : F(N) — F(M) for f : M — N. In particular,
the dual-space functor (f : E — F) — (f* : F’* — E*) is contravariant.

19.5 Transformation behavior of 1-forms.

Let o~ = (ul,..., u™) and =1 = (v!,...,v™) be charts of a manifold M, and
let 07 = aui and a"’ 6‘2, be the (local) basis vector fields of the tangent bundle.
These are related accordmg to as follows:
0 " out 0
8;p|w Zad’ )¢ 9f|, or more classically —— 507 = 2 a:j 5
e = Za*" 1 8?|, or more classically 881 = 2 SZJ 8(?173
If aé. = 27“; and bg = gzj are the coefficients of the Jakobi-matrix of the chart

changes and the vector field ¢ has the representations ¢ = > &2 a7 = =S 597>
then
. out O (Ot 0
= J - = J[ 2
=X Y g = S(E (55))

= (= 8fUJW'—X:aW

and analogously 7 = Z y b;fj holds.
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For cotangent vectors we get the following transformation formulas because of

[19.3

du = —dvj Za dv?
J

vl = gzidui:Zb{dui.

i
Therefore, the components of the cotangent vectors transform covariantly, so sec-
tions in the cotangent bundle (i.e. 1-forms) are also called COVARIANT VECTOR
FIELDS.

19.6 Construction of the dual bundle.

In order to be able to talk about the smoothness of 1-forms, we have to turn the
disjoint union T*M := (TM)* := ||, (T M)* into a smooth manifold, or better,
a vector bundle. More generally, for an arbitrary vector bundle F —2— M, we
want to make the disjoint union E* := || .,,(E,)* into a vector bundle. Let
trivializations ¢ : U x R¥ —= E|y; of E over open sets U C M be given. We need
to construct trivializations
o | Y =U x (RF) = By = | | (B
zeU zeU
Fiber-wise, we may define ¢* as (¢*); = ((p2)*) "1 = ((pe) ™ H)* : (RF)* — (E,)*,
where (0.)* : (E.)* — (R¥)* denotes the adjoint mapping to the isomorphism
Vg - R* - F,.
Let ¢ : UNV — GL(RF) be the transition function for two vector bundle charts of
E. The transition functions ¥* belonging to the trivializations ¢* are then given
by
V(@) = (Y(2)") " € GL((RY)") = GL(R"),
where (x)* denotes the adjoint mapping to the linear isomorphism ¢ (z) : RF —
R*. Since A + A*, L(R* R!) — L((R))*, (R*)*), is linear, inversion A ~» A~!
of GL(R*) — GL(RF) is smooth, and ¢ : U NV — GL(R¥) is also smooth as a
transition function of vector bundle E, the same holds for the composition ¥*

GL(RF)
O -
UﬂV—w>GL(Rk)/1 \GL k)
- O
e

Thus, the 9* form a cocycle of transition functions for a smooth vector bundle
E* — M and the ¢* are the associated vector bundle charts. This vector bundle
E* — M is called the DUAL BUNDLE of E — M.

In the special case, where F — M is the tangent bundle TM — M, the dual bundle
T*M := (I'M)* — M is called COTANGENT BUNDLE of M.

The space C°(M+«+T*M) of the smooth sections of the cotangent bundle (i.e.
1-forms) is denoted Q(M).

19.7 Smooth 1-Forms.
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How to check whether a 1-form w is smooth? Well, this is the case locally around
a point x € M if and only if its representation with respect to a trivialization
T*M|y 2 U x R™ with « € U C M is smooth. By , the trivializations of
T*M are obtained by dualizing those of TM. To a chart ¢ : R™ D U — ¢(U) C
M with associated local coordinates (u!,...,u™) = o', the corresponding local

trivialization of TM — M in was given by
TM D T(p(U)) «Ze— TU 2 U x R™ «2>E"_ () x R™,

The standard basis (e;) in {z} x R™ corresponds to the basis (32 ) € TuM of
the directional derivatives. The dual mapping to Ti,-1(;)p : R™ — T, M thus maps
the dual basis (du’) of (T, M)* to the dual basis (e!) of (R™)* = R™. The local
trivialization of T7* M hence maps e’ to du?, and a 1-form w is smooth if and only if
all of its local coordinates (coefficients) w; - given by w = Y, w; du’ - are smooth.

19.8 Lemma (Sections of the dual bundle).

If p: E — M is a vector bundle, then we have the following descriptions for the
smooth sections of the dual bundle E* :=| |, (E;)* — M:

C¥(M+E")=T(E*—>M)={c € C°(M,E*): Yz :0(x) € E}}
>{sec C®(E,R): Va:s|g, € L(E;,R)}

= The space of vector bundle homomorphisms E — M x R over idy,.

Proof. We only need to show that the sections ¢ € C*(M<+E*) correspond
exactly to the fiber-wise linear smooth mappings s : £ — R.

If we define o <+ s by o(x) = s|g, =: $s, then this gives a correspondance between
the mappings o with graph {(z,0(x)) : 2 € M} C M x E* and s = ||,/ Sa-
Remains to show that o is smooth if and only if s is. This is a local property. Let
¢ : UxRF — E|yy be a vector bundle chart of p : E — M and ¢* : U x(R*)* — E*|ys
its associated chart of E* — M. Locally, o is given by & : U — (R*)* = L(R¥ R)
with o(2) = (¢*).(5(z)) = 6(x) o (p,) ' and s by 5:=s0¢p: U x R¥ = R. So
5(z,v) = sz(pz(v)) = o(x)(pz(v)) = a(z)(v). If o (and therefore also &) smooth,
then §: (z,v) — 5(z,v) = o(x)(v) = (evalo(G X idgr))(z, v) is also smooth.

Conversely: Let s be smooth, then also 3 is smooth and thus also eval, oG = 5(., v)
for each v. Hence & : U — L(R¥,R) is smooth, and so also o. O

19.9 Remark.

Next we want an algebraic description of smooth 1-forms, similarly as that for
smooth vector fields in . We can apply a 1-form w to a vector field £ pointwise
(since wy € (T, M)* = L(T,M,R) and &, € T, M) and get a function w(§) : M — R
with z — w,(&;). In local coordinates this looks as follows:

w:Zwidui; §:Z§ia‘zi
w(©) = (Y widu) (3¢ 5%) = Y wit? du' () = > wie',
% 7 1,7 %

So the resulting function w(§) is smooth if w and & are smooth. And clearly, the
mapping (w, &) — w(€) is bilinear as a map of Q' (M) x X(M) — C>°(M,R).

19.10 Lemma (Space of 1-forms as C°° (M, R)-linear mappings).
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The bilinear map Q*(M) x X(M) — C*(M,R) induces a C*(M,R)-linear iso-
morphism
QY (M) = Homee (ar,r) (X (M), C (M, R)),
where the space on the right-hand side consists of all C*°(M,R)-linear maps (i.e.
C (M, R)-module homomorphisms) from X(M) to C*(M,R).
Proof. Clearly, this bilinear mapping induces a linear mapping from Q!(M) into
the space L(X(M),C>(M,R)) of the linear mappings.
Each w € Q' (M) also acts C*°(M,R)-linearly on & € X(M), because
w(f e = wal(f - §a) = wa(f(2) - &) = f(2)  wa(&e) = (f - w(§))a

)-w
Furthermore, Q'(M) — Homeee (ar,r)(X(M),C°°(M,R)) is actually C°°(M,R)-
linear, because (f -w)(§)le = (f - w)a(&e) = (f(2)ws) (&) = [(2) - wa(&a) = f() -

Conversely, let w € Homgee (a7, (X(M), C(M,R)) be given.

Then w acts locally, that is, £ = 0 on U C M implies w(§) = 0 on U: For x € U we
choose f € C*°(M,R) with f(z) =1 and supp(f) CU. Then f-£ =0 and thus

0=w(0)=w(f-=fwE) = 0=/flz) w@)(r)=wE))

Moreover, w acts even point-wise, i.e. () = 0 implies w(€)(x) = 0, because

(z) = w(z §ia‘2i> Zfz (52)(z) =0.

Thus we may define a 1-form w by w(z)(&;) = w(€)(z), where & € X(M) is arbi-
trarily chosen such that £(z) = &,. The 1-form w is smooth, because locally

w = Zwi du® with w; = w(%).

That these two assignments are inverse to each other is obvious. O

Note that this proof can be generalized directly to one for
C™(M<+E") = Homge (a,r) (C™ (M <E), C* (M, R)).

19.11 Lemma (Pull-back of sections of dual bundles).

Letp: E— M and q: F — N be vector bundles and E f F

f: E — F avector bundle homomorphism with base

map fo. Then f* : C®(N+F*) = C®°(M«+FE*) is l qi

well-defined by VLI
5 (8)e - Vo = Sfy(2) - [(vz) for s € CF(NF*), x € M, and v, € E,.

Compare this with ’17.5‘ and ’17.4‘. Ifp: E=MxR — Mand q: F =
N x R — N are trivial bundles with f(z,t) = (fo(z),t), the just defined pullback
f* generalizes that for functions g € C*°(N,R), because then the isomorphism
C®(N,R) = C®(N«F*)isgiven by g —= (s : N 3y (F, v g(y)-v € F})).

Proof. We have to show that f*(s) is smooth. Using local trivializations reduces
the problem to trivial bundles. So let us consider bundles p : U x R¥ — U,
q:V xR — V, and mappings f : U — L(R¥,R?), fo: U — V,and s: V — (R?)*.
Then

f*(s)r c Vg 1= Sfo(w) : f(vz) = (5 o fO)(x) : fr(vz) - Comp((s © fO)(aj)afm) * Vg,
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19. CONSTRUCTIONS AND 1-FORMS 19.12

ie.
U f7(s) (Rk)*
(RH)* x L(R* RY)
commutes and f*(s) is smooth as a composite of two C* functions. O

19.12 Pull-back of 1-forms in local coordinates.

Let f: M — N be smooth and w € Q'(N). Then f*w € QY(M) is defined by

(Fu)e(©) = (T)w) @)©)

In particular, we have

I (dg)p(fp) = (dg)f(p) (Tpf : fp) = pro 'Tf(p)g : Tpf &y
=pry Tp(go f) & =d(go flp- &,
iLe. f*(dg)=d(go f)=d(f"g) for g € C™(N,R),
or even shorter: f*od=do f*.

W) (T f - &) for x € M and € € T, M.

We want to express f*w in local coordinates. Let (ul,...,u’) be local coordi-
nates around z € M and (v!,...,v?) local coordinates around y := f(z) € N.
Furthermore, let w = Zj w;j dv? be the coordinate representation of w at y and

frw=>n du® that of f*w at x. If we apply f*w to £ := a?ﬁ' "

)= () (] ) 2
o) w0

ovt i\ out |

then

9
i (Tt - ol

i

) (Frw)a (aul
g ,><;wjdvj)y( o

T.f - - -
wf(x)( f out|, ; oul s

F(Sw ) = X (S on o)

i J

Note that the path integral of [86, 3.10] of a 1-form w € Q(U) on an open set
U C R™ along a smooth curve ¢ : I — U is therefore just given by

/W_/sz ) da’ / Zwl —dt /Olc*(w).

Hence for an abstract manifold M, we can also define the PATH INTEGRAL fcw of
a 1-form w € QY(M) along a curve c: I — M by

We will generalize this definition further in section .

andreas.kriegl@univie.ac.at (© June 26, 2018 115



19. CONSTRUCTIONS AND 1-FORMS 20.3

20. Motivation for forms of higher order

20.1 The Riemannian metric as a tensor field.

In we defined Riemannian metrics as mappings which associate a bilinear
form g, : T,M x T, M — R to each x € M in such a way that x — ¢,(&, ),
M — R is smooth for every two smooth vector fields £, € X(M). If we write the
two vector fields by means of local coordinates (u!,...,u™) as & = > & 321 and

n=>,n 5=, we obtain
0
) J .
9 &z, M) = § & 771 Yz (61# auj) E du z du? ()2 gi,5(x),

where we put g; () = g, (52, 72 ). Note that (fw,nw) = dut(€)|, - du? ()], is a
bilinear mapping T, M x T, M — R, which we denote du‘|, ® du’|,. So locally we
have

9= gij du' ®du

2]

20.2 Hessian form.

If a function f : M — R has a local extremum at x € M, then T, f : T, M —
T¢)R = R is the zero mapping. In order to reverse this implication, we need the
2nd derivative: Let M be an open subset of R™, (or M a submanifold that we
replace with an open neighborhood and f an extension to it).

MxR™=TM-LL, TR=R xR
Tf(x,v) = (f(z), f'(x)(v))
M x R™ x R™ x R™ = T2M = T(TM) L T?R = R

T2 f (2,0 ,w) = (F(2), £/ (@)(0), @) w), () (0,0) + (@) (w))

For submanifolds M C R™ we have f”(x)(v,y) = pry(T?f(z,v;y,0)) provided
(x,v;y,0) is in the second tangent space T2M.

20.3 Example.
Second derivative of functions on the circle:
St={zcR?:|z| =1}
TS' = {(z,v) € (RH)? : |z| = 1, (z,v) = 0}
728" = {(z,v;y,w) € (R*)" : f2| = 1, {z,v) = (z,y) =0,
(y,v) + (z,w) = 0}

Thus, (z,v;y,0) € T?S* if and only if |[z| =1, v L 2, y L z, and v L y, thus only
ifv=0o0ry=0. Hence f"(x): T, M x T, M — R can not be meaningfully defined
on a general manifold.

If T, f = 0 however, then this is nevertheless possible. Let &,,n, € T, M and define

F (@) (Exyme) = n:(E(S)), where € is a vector field with £(z) = &,. Let us express &,
and 7, in local coordinates, Le. & =Y, €52, respectively 1, = '

Z gl auz
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.0
= (Svam)(Zeae)],
i O [ 06 Of .0 0
7277]2% <£ ou > Z Z(@ui aul 8uj (9Uif)r

3f
— Qi o 9S
E &'n Sud 8ul (), because Bl

Thus we have shown that the above definition is independent of the extension &
and yields the usual second derivative in local coordinates, provided f’(z) = 0.

Therefore f"(x): T,M x T, M — R is given under this condition by

f/l( thn 8u73u’ Zdu du] i !

8uié)uz
- <Z aujgui ' duj) ()
i

For short, f"(z) =Y, azif(m) dut|, @ du?|,. How does this expression trans-

x

=0.

x

1,J Oud Ou’ ) K X
form when changing from coordinates u' to new coordmates v?? We have dv* =
vt j o v vk
2 gur du? and 5 =5 0 5o gor- S0 gor (F) = X G duk and

02 0 0 0 ok of
outdud ()= ou? (W(f)> ~ out < - Oud 811")

(e (s
- ok Ouious | Oud - Out Ot/ Ovk

Z %k of ot ok 9%f
k

wious  Ovk + — oui  Oui  Ovlowk”

Thus,

Z du' ® du’ = Z dv' @ dv* + Z il o7 du ® du?
ou ‘8 J Ov 18 k o - ouidui | vk

and the second summand disappears at z, since we assumed |x =0.

20.4 Exact 1-forms.

For a smooth function f : M — R, with M C R™ open, ' : M — L(R™ R) is
smooth. Of course, one is interested whether the converse holds, i.e. under which
conditions on a 1-form w : M — L(R™,R) does there exist a function f : M — R
with w = f’. Such an w is called an EXACT 1-FORM. The special case
of the Frobenius Theorem provides an integrability condition (see also [81,
6.5.2]) for this:

Such an f exists locally < w'(z)(v1) - va — w'(z)(v2) - v1 = 0V v1,v2 € R™.

=:2dw(z)(v1,v2)

The just defined dw : M — L(R™,R™;R) is for fixed 2 € M alternating (=skew-
symmetric) and bilinear. So, if we denote the space of all bilinear alternating
functions F x E — F by alt(E F), then dw : M — L2, (R™ R) and one calls dw
a 2-FORM.
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20. MOTIVATION FOR FORMS OF HIGHER ORDER 21.2

In general, a mapping w : M — L¥ (R™ R) is called k-FORM, where L (E,F)
denotes the space of the alternating k-linear functions Ex...xE — F. If M = R™,
then the condition dw = 0 is sufficient to garantee a globally defined f : M — R
with w = f/. If M C R™, then this is not sufficient in general as the following

example shows.

20.5 Example.

We consider the 1-form

—Yv + Tw
W(x,y)(U,UI) = W

- 2_.2 "
on M :=R?\ {0} from [86, 3.10]. Because of a%(zhrny) = (52+y2)2 = %(W)’

we have dw = 0. Suppose there were an f with f' = w, i.e.

1@ 5) = (O1f(2,9), 021 (2,9)) = (x_fy xiy) -

If (z0,30) € S! is a point, where f attains a minimum on S!, then
o
(=)t ==

2_y0 2 3 "o
x5+ Yo T+ Yo

Y det o dy

ie. w(x,y) =——"-=d
( y) 1,2_|_y2 x2_|_y2

0= f"(20,y0)(—yo, o) =

=1, a contradiction.

For the form w we have dw = 0, but there is no antiderivative for w on M. This
discrepancy between forms w with dw = 0 and those of the form w = f' = df
can be used to identify topological properties of M (in our example, M was not
simply-connected). We will come to that later.

How should k-forms look like for arbitrary manifolds M?

Let w : z — w(x) be a 1-form, then dw would have to be a mapping dw : x — dw(z),
given on M, with values dw(z) : T, M x T,, M — R that are bilinear and alternating
(such a mapping is called 2-FORM). So (dw), € L2, (T.M,R). Analogously we
will define k forms. Let us now summarize the necessary basic facts of multilinear
algebra.

21. Multilinear algebra and tensors

21.1 Definition.

We first collect the (multi-)linear theory, for a more in-depth study see [53] and
[136, Vol.I, Cap.7]. In the following, E, F, etc. denote finite-dimensional vector
spaces over R. We use L¥(Ey, ..., Ey; F) (or L(E1, ..., Ey; F) for short) to denote
the SPACE OF k-LINEAR MAPPINGS Ey X ... x Ey — F. This is a vector space of
finite dimension dim(Ey) - ... - dim(Fy) - dim(F).

Let T: E; X ... x E, = R be k-linear and S : Fx41 X ... X Exy; — R be i-linear.
The TENSOR PRODUCT T'® S of T with S is the k 4 i-linear function defined as
follows:

TRS:E1 X...XEpi; —R
(T ®S8) (01, Vkgi) i =T(v1,. .o, 0%) S(Vkg1y -+ Vkts)
Completely analogous, one can also define the tensor product 71 ®- - -® T}, of several

multilinear functionals T;.

21.2 The tensor product of vector spaces.
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21. MULTILINEAR ALGEBRA AND TENSORS 21.3

For finite-dimensional vector spaces E1, ..., Ey, their tensor product is defined by
E\®---®Ey:=L*E;,...,E{;R).
Together with the k linear mapping
R :E1X..xXE,—>F® - QFE, (1, ...,00) 2 ® - Qxg,
where (11 @ -+ @ zk) (Y1, - Yk) = yi (1) - yg(n),

it solves the following universal problem:

Eix.. . xEBp—2 s E® 0K
3
k% linear
F/‘—'

If {eg 11 <i<dimE;} is a basis of Ej, then a basis of E1 ® --- ® Ey, is given by

{el, @ - @ef 11<iy <dimEy,...,1 <, < dimEy}.

Proof. We first show the statement about the basis. The set {e} ® --- ® efk :
i1,. .., ik} is linearly independent, because from »°, . pott el @-- @ef =0
the equation

0= (D writel @@k ) (el e
k

inyenin [ 1 k g1 K
! (ei1®”.®eik)(el""7ek)

Il
™

21,....ik
_ E Tl yeeyl Ji/.1 Ik kN ,
= u 1 k 61 (e“) ..... ek: (elk) /’le Jk
11,50k ! :
571 57k
i1 ik
follows by applying to (e1',...,e*).

This set is also generating for B3 @ --- ® Ej := L(EY,..., Ef;R), because every
k-linear p: Ef % ... x Ef — R can be described on (z!,...,2%) € B} x...x E} as

follows
pt, . k) :M(szlleil,_,_’z'ffkez:k)
i1 ik

:Zszlek ~M(e§1,...,62’“)
il ik

=S @) el (@) - el ek
il ik

_ Z Iuil,...,ik . (ezll R ® @fk)(xl, ... ,xk)
T1,enylk

where pit ik = ,u(ezf, e efc’“) cR.

Thus, each multilinear map p : F7 X ... X Ep — F can be unambiguously extended
to a linear map i : B4 ® -+ ® Ey, — F by defining its values on the basis

[j’(ezll PIOREE ®€fk) = ,u(ezlla"'ae?k)a

so that the specified triangle commutes. O

21.3 Remarks.
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21. MULTILINEAR ALGEBRA AND TENSORS 21.3

1. We get the following natural isomorphisms (the second one by induction):
(B1® - @ Ep)* 2 L(E,..., B R) 2 L(ETY, ..., El";R)
=E® - ®E]
(.(1RE)® - QE,) 2 L(E1® - ® Er_1)",E;R)
L(E1® - ® Ex_1)*; L(E;,R))
L(Ef®---® E;_1; L(EL,R))
(
(

IR

1

L E17 Ek laL(EkaR))
LEl? Ek 1)Ek7R)
=R QL

Il

By ® Fy = L(E!, B R) = L(ES, EfR) = By ® By
E, ®R = L(Ef,R;R) = L(E},R™) ~ L(E},R) = E* & F,
L(E,F) = L(E,F**) = L(E, L(F*,R)) ~ L(E, F*;R)
~ L(E™,F*R)=E*@F

L(Ey,... . B F) = LE1®- - @ Eg, F)
~F® - QE)QF2E @ - -QFE;®F.

2. For linear mappings T; : E; — F; there exists a linear mapping 77 ® -+ - ® T}, :
Fi1® - ®FE, — F; ® -+ ® Fj, which is uniquely determined by the following

diagram:
&
Fix..xbBy———FE® - QF
k-linear
T1><...><Tkllinear T1®--@Ty : linear
® \
Fy x...x I - PR - F.
k-linear

Here T} @ --- ® Ty, is given on the basis (e, ® - -+ ® efk) as follows:
(T1 &+ @ Ti) (el @...@efk) =Ti(e},) ® ~--®Tk(e’?)
- S5 0 KT
Ji

> (Tnz:---(Tk)z: Lo e ff

J1see5dk

3. We have the following relationships between the tensor products we have just
defined: For T; € E}, the following tensor products

1. T1®®Tk€L(E1,,Ek7R)%(E1®®Ek)* Of;
2N ® - ®T € Bf® - ®Ejf of[21.2}

37N® 9T :E® - ®E +R®--- @R by 2]
coincide up to the isomorphisms (E1®- - -®@E)* = Ef®- - -@F; and R®- - -@R =
R from .

4. QE =117 (Qi*, E) is a graded, associative algebra with 1, the so-called
TENSOR ALGEBRA over E. An algebra is called GRADED if A = ], Ar and
the multiplication restricts to Ap x A; in Ag4;. The elements w € Ay are
called HOMOGENEOUS OF DEGREE k. We put Q" E := X,co £ = R, because
[licg E* = {0} and every f : {0} — R is O-linear. The unity in &) E is then
1eR=QR’ECRE.

5. The tensor algebra has the following universal property: For each linear map
f:E — A, where A is an associative algebra with 1, there is a unique algebra
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21. MULTILINEAR ALGEBRA AND TENSORS 21.4

homomorphism f : & E — A, which coincide with f on ®1 E=F:

E->QEC—>QFE
f :

linear = "Alg-Homo
ya

A

21.4 Definition. Wedge product of alternating mappings.

By LY, (E,F) we denote the subspace of L¥(E, F) formed by the alternating k-
linear mappings, where a mapping 7' : E X ... x E — F is called ALTERNATING if
7**(T) := Ton* = sgn(m)-T holds for all permutations 7 € Sy, := {7 : {1,...,n} —
{1,...,n}: 7 is bijectiv}, i.e.

T(Vr(1)s -+ Vnky) = T(wom) =T(r"v) = (T on™)(v) = (ﬂ**(T)) (v)
= (sgn(w) - T)(v) =sgn(m) - T(vy,...,vk) Voi,...,vp € E,
where we consider (vy,...,v) as mapping v : {1,...,k} — E.
The projection alt : L¥(E, F) — L¥.(E,F) C L*(E, F), called ALTERNATOR, onto

this subspace is given by

1
alt(T) (v1, ..., vg) := o Z sgn(7) - T(Vr(1)s - -+ s Un (i) )s

’ TESE
i.e. alt(T) :% > sgu(r) - 7 (T).
" weSy

For alternating multilinear functionals 7" and S one defines the OUTER PRODUCT
or WEDGE-PRODUCT by:

(T AS) (v, vpss) 1= G alt(T © S) (v, -, o) =

= ﬁ ngnw . T(Uﬂ,(l), ey Uw(k)) . S(Uw(k+1)> [N 7v7r(k+i))

K

= ﬁ Z Z Sgn o sgnmy Sgn o - T(’Uo(ﬂ.l(l)), NN 7va(ﬂl(k)))'

1,72 o piecew.
“S(Vo(ma(kt1))s -+ » Vo (ma(kti)))

_ Z(_l)EJSk(O(j)—j) . T(Ua(l)a L ﬂ)a(k))'

o(l) < -+ < o(k)

1

-S(Ul,..., 00(1),...7 Ud(k)7...7vk+i).
In this calculation, we have decomposed the permutations = of {1,...,k + i}
uniquely as o o (m U my), where 71 is any permutation of {1,...,k}, mg is of

{k+1,...,k+ 14}, and o is one of {1,...,k + ¢}, which is strictly monotone in-
creasing on {1,...,k} and {k+1,...,k+i}. Soo(l) < --- < o(k) is the mono-
tone arrangement of {m(1),...,7w(k)} and o(k +1) < --- < o(k + 4) is that of
{r(k+1),...,7(k+1i)}. Thusm =0 to 7|1, ky and Ty = oo Tl et1,... hti} -
We have sgn(o) = (—1)>=+@=7) because in order to restore the natural order
of o(1),...,0(k + i) we have to exchange the o(j) — j many smaller numbers in
{o(k+1),...} with o(j) for all 1 < j <kE.

If T, S, and R are linear, then

(T A 8)(w,v) = T(w) S(v) — T(v) S(w) = det (TW) S<w>)
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and thus

2((T A S) A R)(w,v,u) =

= (T AS)(w,v) R(u) — (T AS)(v,w) R(u)

+ (T AS)(v,u) R(w) — (T A S)(w,u) R(v)

+ (T AS)(u,w) R(w) — (T A S)(u,v) R(w)

- (T(w) S(v) — T(v) S(w)) R(u) — (T(v) S(w) — T(w) S(v)) R(u)

+ (T(v) S(w) = T(w) S(©)) R(w) — (T(w) S(u) = T(u) S(w)) R(v)

+ (T(w) S(w) = T(w) S(w)) R(v) — (T(w) S©) = T(v) S(u) ) R(w)
S

I
[N}
=
£
W
=
=
&
4

Il
[N
o,
o
RS
e
SRS

Therefore, all factors disappear in the 3-fold product of 1-forms. This is the reason
for choosing the factor (]j;!)! , respectively ﬁ, see also|21.6.2 | Similar to the above
formula for T'A S, we can directly define a wedge product of several multilinear
alternating functionals.

Note that

TAS=(-1D)FSAT,
because
(T AS) (01, Vps) 1=

= % ngn(w) “T(Vr(1)s -+ Vn(k)) = SWn(ht1)s - - > Vn(hti))

= % ngn(ﬁl ©0) - T(Vrr(o(1))s -+ V' (0(k))) * S(Vnr (o (k+1))5 -+ - V' (0 (ki) )
= sgn(o) % Z sgn(m') - S(Urr()s -+ Vrr () - T(Vrr (1) - -+ V(i)

= (=DM (SAT)(v1, ..., V%si),

where m = 7’ 0 ¢ and o is the permutation that swaps block (1,...,k) with (k +
1,...,k+1) and has sign (—1)%, i.e.

, j+i forj<k
o(j) =" .
j—k forj>k.

21.5 Lemma (The outer product of a vector space).

The k-fold outer product of the vector space E is defined by /\kE = L];lt(E*,R)
and N : EX...x E — /\kE C ®"E = L*(E*,R) is the following alternating
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k-linear mapping:

A (v, .., 0k )'—>vl/\--~/\v;C with
(v1 A= Awg) (w?, ngn Yw™ D (v) - w™ R (gy)
= k! alt(vl @ - Qo) (wh, ..., wk),

also vy A+ Avg =kl alt(vy ® -+ - @ vg).

The outer product solves the following universal problem:

k
Ex...xE N E
3
k-linear, alt. - linear
ya

F

If {e;}, is a basis of E (i.e. m = dim E), then {e;; N---Nej 11 <ip < -+ <
i < m} is a basis of /\k E, so dim/\l€ E = (7). In particular for k = dim E the
vector ey N\ - -+ N\ e spans /\]C E and

(er A Ne)(wh, ..., wh) = ngn(ﬂ) wf(l) Cee w;:(k) = det(w?, ..., wk).

Proof. Themap A: Ex...x E— A" Eisgiven by Ex ... x E-25 Q" E —klalt
/\ E, therefore (e;, A- /\e,k)“< .<i, I a generating system for /\ E =Lk (E;R).

These vectors are also linearly independent, because
= ( Z it e A /\elk)(ejl,...,ej’“)
= Z uil,m’ik (e“ Ao A elk)( J1 . "ejk)

follows for j; < -+ < j.

Thus, each alternating multilinear map p: E X ... x E — F can be unambiguously
considered as linear map f : /\]c E — F by

/&‘(6111/\/\62) H’( 117"'7621)

so that the indicated triangle commutes. O

21.6 Remarks.
1. The following identities hold:

Lk (E (/\E F) and (/\ E) ~ [k (B,R) = Lk, (B, R /\E

2. For each linear mapping T : E — F there exists a linear mapping /\kT :
A" E — A" F which is uniquely determined by the following diagram:

Ex..xE-2sN'E

Tx...le JUARFT
\
Fx.. xF-2sA\'F
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This makes A" into a functor.
In fact, /\]c T is given on the basis (e;; A--- Ae;,) as follows:

k
(AT (ei, A+ Neiy) i=Tle,) A AT(es,)
= ZTijllfj1 /\...AZTikfjk
J1 Jk

= Z njlngkk fjl/\"’/\fjk

J1seesdk

. Jr(1) Jr (k)

- Z Tz'l Tzk fjwu) /\"'/\fjw(m
J1<-<jk ™

_ (1) Jn(k)

= Z ZTZIIT% bgn(ﬂ')fjl/\"'/\fjk
J1<<jr ™

= > det((T)ns) fi Ao A e
J1<-<UJk

3. For m = dim(E), the space A E := [~ A’ E is a graded-commutative asso-
ciative algebra with 1 € /\0 E :=R, the so-called OUTER ALGEBRA over E.
A graded algebra A = [], .y A is called GRADED-COMMUTATIVE if

a€A,beAj=a-b=(-1)"b-a.
We have dim(A E) =Y, (7) = 2™.

22. Vector bundle constructions

22.1 Definition (Tensor fields and differential forms).

Let M be an m-dimensional manifold and x € M. As vector space £ we now use
the tangential space T, M of M at x. Then E* = (T,,M)*, and we form the tensor
product

TM@-- T M (T,M)*®--- @ (T,M)* = LPTYTIM,..., T,M;R).

p times q times

The elements of this vector space are referred to as p-FOLD CONTRAVARIANT, g-
FOLD COVARIANT VECTORS or tensors. A basis of T, M is given by (%)}’;1, where

(ul,...,u™) are local coordinates around x of M. The dual basis of (T,,M)* we

have denoted (du®)™,. By , we get as basis of the tensor product:

(%Lil@'“@@fip ®duj1®---®duj‘?)

1yerbpod1seesfig =1,y
Analogously we form A¥(T,M)* = L¥ (T, M,R). The elements of this outer prod-
uct are called £ FORMS and
(du™ A~ Adu™) i, <. <i,
forms a basis.
Let us now vary the point x € M, so we consider mappings
wiMszr—wez)e T, MR- QT,MQ(T,M)"®- & (T,M)".

p times q times

These are called p-FOLD CONTRAVARIANT AND ¢-FOLD COVARIANT TENSOR FIELDS.
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22. VECTOR BUNDLE CONSTRUCTIONS 22.4

A mapping
w: M3z w(r) e ANT,M)*
is called DIFFERENTIAL FORM OF DEGREE k.

In order to be able to speak of the smoothness of a tensor field (or a differential
form) we should make the family of vector spaces

(T$M®---®TIM®(TIM)*®~-~®(TzM)*)

p times q times

xeM

into a manifold or even better a vector bundle over M.

We proceed here analogously to the construction of the cotangent bundle from the
tangent bundle.

22.2 Direct sum of vector bundles.

Let E -2+ M and F -4+ M be two vector bundles over M, and ¢ a trivialization
of E over U C M and ¢! one of F over the (w.lo.g.) same U. With ¥ :
UNV — GL(R*) and ¥ : UNV — GL(R!) we denote the transition functions
for two such vector bundle charts over U and V. We now make the disjoint union
E®F :=],cp(E: © F;) into a vector bundle. As vector bundle charts we use
fiber-wise
B = P g o RMI = RF @R =5 B, @ F,.
The transition functions YF®F : U NV — GL(R**!) are then given by

YEOF (1) .= P (x) ® 9T (2) € GL(R®) x GL(R') < GL(R**).

B
The matrix representation of YpFF (z) is <[¢ (@) 0 ) So YE®F is smooth

0 [f(2)
and hence EF ® F — M is a vector bundle, the so-called WHITNEY SUM of E and
F.

22.3 Tensor product of vector bundles.

Analogous to the direct sum, we make the disjoint union E® F :=| | ., (E, ® F;)
into a vector bundle, the so-called TENSOR PRODUCT of E and F'. As vector bundle
maps we use fiber-wise
(pIE®F = @f@@f :Rkl %Rk@)Rl —)g Ew®Fm
The transition functions ¥ : U NV — GL(R*) are then given by
YEOF (1) .= P (z) @ v (z) € GL(RM) c L(R* @ RL, RF @ RY).

The matrix representation of Z®F () is (ai3)(ij).(rs) by [21.3.2], where (a) is
the matrix of ¢ (x) and (b7) is that of »F (x). So YpFOF is smooth and EQ F — M
is a vector bundle.

22.4 Outer product of a vector bundle.

Finally, we make the disjoint union A” E :=||,.,, A" Es into a vector bundle, the
so-called p-FOLD OUTER PRODUCT of E. As vector bundle charts we use fiber-wise
P P P
N = NeF) RO = ARF =5 A\ B,

k

The transition functions pA" £ . UNV — GL(R(p)) are then given by

W B () = NP (@) € GLRG)) L(/\R’f,/\R’f).
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22. VECTOR BUNDLE CONSTRUCTIONS 23.1

The matrix representation of Yp/A” P (z) is (det((ag:)m))il<...<ip’j1<...<jp by |21.6.2|,
hence the transition functions are smooth and A” E a vector bundle.

More generally, one has the following construction:

22.5 Theorem (Functorial vector bundle constructions).

Let F be an assignment which associates a finite-dimensional vector space to each
family of (k +17) finite-dimensional vector spaces in a FUNCTORIAL way.

Functorial means that each (k+i) tuple of linear mappings
T; : F; — E; for j <k “contravariant in front variables”
T;: E; — F; for k <j “covariant in the back variables”

a linear mapping

.F(Tl,...,Tk_H') : .F(El,...,Ek_H‘) *)./_'.(Fl,...,Fk_H)

is associated, which is compatible with composition and identity and smoothly de-
pends on T, ..., This.

Then, for (k+1i) many vector bundles p; : E; — M a natural vector bundle structure
on ‘F(Ela cee Ek+i) = I_Ia, ‘F(E1|Iv s 7Ek+i|:c) is given.
An example of such a functor is the direct sum @; which, when applied to vector

bundles, yields the Whitney sum.

Another is the dual-space functor, which maps the tangent bundle 7 : TM — M
to the cotangent bundle T*M = || (T, M)* — M.

Other examples are the tensor product and the outer product, as well as combina-

tions of them, such as A* T*M = Lk (TM,R) = (/\k TM)*.

Proof. The vector bundle maps F(¢1,...,%r+;) are obtained from those for FE;
fiber-wise by the following formula:

f(wh v 7wk+i)|x =
= F(@03" o 007 (e, ki) )
= F(W1, .o thpgi)|e s FRN O RN 25 F(B 4y Eryils)

The associated transition functions are then the composition of the following three
mappings:

(V1]zs s Yrgile) s UNV = GLRM) x ... x GLRN*+)
inv x ... xid : GLRM) x ... x GLRN+) — GLRM) x ... x GLRNw+i)
F: GL(RNI) X ... X GL(RNk+i) - GL(J—_'(RNI, . ,RNICH)). O

23. Differential forms

23.1 Definition (Smooth tensor fields and differential forms).

The VECTOR SPACE OF THE SMOOTH p-FOLD CONTRAVARIANT AND ¢-FOLD CO-
VARIANT TENSOR FIELDS or in short p-¢ TENSOR FIELDS, i.e. the smooth sections
of the vector bundle

TM® - @TM(TM)*® - (TM)* = M
N———

p times q times
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is also denoted TJ(M) := C®(M+ Q" TM @ @‘T*M). In particular, the 0-0
tensor fields are just the real valued functions, the 1-0 tensor fields are the vector
fields and the 0-1 tensor fields are the 1-forms.
Locally, each tensor field ® can be written as
dim (M)
o= > e @ foed) @@ dult.

du'r

11y--05p

. P are smooth
J1s+++50q

We know that @ is smooth if and only if all components of ®
real-valued functions.

The VECTOR SPACE OF THE SMOOTH DIFFERENTIAL FORMS OF DEGREE p, i.e.
smooth sections of the vector bundle A”(TM)*, is denoted QP(M). Similarly to

we can describe this space differently:

OP(M) := O (M<— /P\(TM)*)

gCW(Me(/p\TM)*)
~ {W:;\TM—HR:%C e L(;\TxM,R)Va:}

p
={w: @TM —R:w, € L (TMR) ¥z}

Because of A" (TM)* = M xR, the space Q2°(M) of 0-forms coincides with C°° (M, R).
Each differential form w of degree k can be written locally as
w = Z Wiy, ip du™ A A du'.
i< <dg

Again, w is smooth if and only if all its local components w;;, .. ; smooth. Since

(duil/\~~~/\duik)( 0 0 )35—

g1’ ? Oudk
U U

i 9 ix 9
= sgn() du (8ujw<1>> e dut <8ujﬂ<k>>

_ {sgn(w) if a permutation 7 exists with jr ) = ix V £,

ik

0 otherwise,

we obtain the following formula for j; < -+ < jg:

) 2\ _ I i) (_90_ _9_
w(aujl,...,aujk)—< E Wiy i - AU Ao ANdu ) (aujl,...,aujk)

11 <...<tg

= Wji.. gk

23.2 Remark.

Because of

TMR - QT MQ(TM)* R - @ (T,M)* =

p times q times

~ L((T,M)*, ..., (TuM)*, Ty M, ... Ty M;R)

p times q times
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we can apply a p-q tensor field
o 11 5.00yt o o i i
=) Ol ® @ 5l @du’ © - @ dult
i17"~)ip
J1y--Jq

1

pointwise to p cotangent vectors w-,...,w? and ¢ tangential vectors &1, ...,&,:

Bwh, .. WP &, ) =

_ D1,eeeylp . o) J 1 r1 s o
- Z ‘bjl,...,jq (6ui1 ® ® du q)(Zwrldu ""’quq Busq)
Sq

’il,...,ip ™1
jl;-n’jq
_ 115--05lp 1 ¢r1 Sq §J
- Z (I)j17--~,jq ’ wT16i1 Tt 511(165(;
i1yeenip
jl:uqu
T1.-3Tp
S1,.-+38¢q
_ 11 5.00ylp 1 P J1 J
S el g
D1,eanylp
jlw-qu

Theorem (Tensor fields as C*°(M, R)-multilinear maps).

The mapping from above provides a linear isomorphism of the space of smooth p-q
tensor fields on M with the following space of C°°(M,R)-multilinear mappings:

TA(M) = Homeoo (arp) (21 (M), ..., X(M); C*(M,R))

Proof. We proceed analogously to the proof of | 19.11 |1 Obviously, each tensor
field ® acts on 1-forms w?, ... ,w? € QY(M) and on vector fields &1, ...,&, € X(M)
as C°°(M,R)-linear mapping, via

P(wh, ... WP &, o) (x) = O (wh(2),...,wP (), & (2),. .. Eq(2)),

and because of the local formula from above

1 i1y, i 1 i .
(w,. W&, ) = Y B Poewp Wl L

Q1,eeslp

we have ®(w!, ... wP &,..., &) € C°(M,R).

Conversely, let ® : QY(M) x ... x X(M) — C*°(M,R) be a C°°(M,R)-multilinear
map. If one of the vector fields or 1-forms ¢ locally vanishes around x € M, so
does ®(w!,... ,wP, &, .., &), because f € C*°(M,R) is chosen so that f =1 on
the carrier of that section ¢ and f(x) = 0. Then f-o = o and because of the
C> (M, R)-linearity we have

fI>(oJ1,...,wp,fl,...,fq)(a:) = f(x)~q)(wl,...,wp,fl,...,fq)(x) =0.

Thus, we obtain the local formula

1 P = E L T A =/ WY |
Q(w', ..., Wl &, ., &) = <I>j17___7jq Wiy et Wy SRR ZAR
i17"~)ip
J1y--Jq
. B1yeeylp o ; . .
with <I>j1,_“7jq = ®(557, - -, due), whose right-hand side at x depends only on the

value of the 1-forms and vector fields at this point. So
p(whzye oy Egla) = (! o WP 6, € ()

defines a smooth tensor field, the required inverse mapping to . O
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23.3 Theorem (Differential forms as C°°(M,R)-multilinear mappings).

There is a linear isomorphism of QF(M) with {w : X(M)x...xX(M) — C>=(M,R) :
w being k linear alternating and C*°(M,R) homogeneous }

Proof. (=) Obviously w(&1,...,&)|p = wp(&ilp, -, &klp) is k-linear and alternat-
ing.

Moreover, the mapping w is also C°°(M,R) homogeneous:

w(f & &k)lp = wp(fp &l -+ &klp) = F(P) wp(&alps - - - Eklp)
= f'w(gla"'vgkﬂp

(€15--,€k) w : .
Furthermore, M —t== s TM & @ TM R is smooth, that is
w(&1,..., &) € C(M,R).

(<) Letw: X(M)x...xX(M) — C*(M,R) be k-linear alternating and C*°(M, R)-
homogeneous. We have to show that w(&1,...,&k)|p depends only on &1p, ..., &lp,
because then we can define: wy(&ilp, .-, &klp) = w(&i, .., &k)lp-

Let & = 0 be locally at p, f € C°(M,R) with f(p) =0 and f = 1 where & # 0.
Then f - & = & holds and thus as before

w(flv v 7£1€)|;D = w(fglv v 7£]€)|p = f(p) w(gla v 75/6)‘]3 =0.
Let & = Y10, & 52 locally. Then

w(éi,. - &) ZW<Z§§%,§2,-~-,§/€> =Z§iw(%,€2w--,€k)

and since & |, = 0 all £, = 0 and thus w(&y, ..., &)|, = 0 holds.

Letw=>", wrdz! be a local representation of w, with dz! := dx™t A --- A dx'* for
I = (i1,... i) with 43 < --- < i. Then wi(p) = w(a%-l, cee Bxiik”p is smooth at

p, so w € QF(M). O

24. Differential forms on Riemannian manifolds

24.1 Remarks on duality.

For open M C R™ we can identify the tangent bundle and the cotangent bundle,
because TM = M x R™ and T*"M = M x (R™)*. Thus, both the vector fields
and the 1-forms on M coincide with mappings M — R™. For general manifolds
M, however, there is no such canonical isomorphism between T, M and (T, M)*.
We will now describe manifolds for which there is such a thing. In which way is
a finite-dimensional vector space E and its dual space E* isomorphic? Since they
have the same dimension, they are isomorphic. But to give such an isomorphism,
one uses a basis of E and takes as images the vectors of the dual basis of E*. If one
chooses another basis on E, then also the isomorphism changes (see below). So we
can not proceed like this on a manifold, because in T, M we have no distinguished
basis.

A second way to obtain such an isomorphism is to use an inner product (,-) on
E. Then this bilinear form induces a linear mapping f : £ — L(E,R) = E* given
by v — (v,-). This mapping is injective because V w : (v,w) =0 = v = 0. For
dimensional reasons, it is thus an isomorphism. The inverse mapping is denoted
b:=#"1:E* - E. For £ := bw and thus w = #¢ we have (bw,n) = (£,n) =
8(&)(n) = w(n).
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How does # look like in coordinates? Let (e;) be an orthonormal(!) basis of E and
(e') the corresponding dual basis. Then f(e;)(e;) = (e;, ej) = &;; = e'(ej), so 4
maps the basis (e;) to the dual basis (e?).

If (g;) is any basis of E and (g%) is the associated dual basis of E*, then:

8(9i)(gr) = (9i, g) =1 gi ke = Zgi,j g gr) =
J
8(9:) = Y giy¢’ and f(v) = ﬁ(z Uigi) =Y 0> g9 = Z(Z gi,jvi)gj
J i i J J i
If we denote with v® the coordinates of the vector v € E with respect to the basis

(9:) and with v; the coordinates of the associated dual vector §(v) € E* with respect
to the dual basis (g*), then
v =y gis0"
i

Let M C R" be a submanifold of R™. Then T, M is a subspace of R” and thus
inherits the usual inner product of R™. So (7, M)* is isomorphic to T, M by virtue of
the isomorphism # : T, M — (T, M)*. Hence we also obtain a fiber-linear bijection
of the bundles TM — M and T*M — M. In coordinates it is given by

) Cdu?
a7 T Zgl,]du
J

where g; ; := (g;, 9;) with g; := ‘Z and g’ = du’. Since the g; are smooth functions

M DU — R", all coefficients g; ;j : M O U — R are smooth, and hence T'M and
T*M are isomorphic.

Thus, also the smooth sections correspond to each other, i.e. X(M) = Q'(M). The
vector field corresponding to an exact 1-form df is called GRADIENT FIELD grad(f)
of f. For open submanifolds M C RM | the coordinate representation of grad(f) is

obtained from that of df by transposition, but this is not true for general manifolds
M.

24.2 Tensor fields on Riemannian manifolds.
We already know that Q°(M) = C°°(M,R). We want to describe Q!(M) now
differently. Let first E be a finite-dimensional vector space with an inner product.

Then we have the isomorphism f : F = E* v (v,-), by . Its inverse is
denoted b := #71. If (e;)™, is an orthonormal basis of E and (e?)™, is the dual

basis of E*, then:
ﬁ:x:inei EEHinei S

For Riemannian manifolds (M, g) we thus have isomorphisms f : T, M = (T,,M)*.
A Dbasis in the tangent space is given by %, and this is mapped by to
1(52) = > 9ii du?. More generally, ¢ € T, M corresponds to w € (T, M)* as
follows:

EZEE@ETwM%wzzi:widu e (T, M)*.

where w; = 33, i€, € = 32, 9"wj, gij = (5o, 5o )» and (g"7) = (gi,5) "
It follows that TM = T*M canonically, and thus the space of the vector fields
X (M) is canonically isomorphic to the space of the 1-forms Q! (M).

More generally Q" TM @ @ T*M = ®" 1 TM = Q" T*M and hence
THM) = T (M) = TP (M)
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24.3 Volume form.

Let E be a finite-dimensional, oriented linear space with an inner product. If
(€)™, is a positive oriented orthonormal basis of E, we define det € L}, (E;R) by
det(eq,...,en) := 1. To show that this definition does not depend on the chosen
basis, we choose arbitrary vectors g; € E' and consider the map A: E — E, which
maps e; to g; := > _; aje;. Then

det(g1,...,9m) = det(z a{lejl, . .7Za%”ejm)

j’VYL
= E al' .. alm det(ej,, ..., €j,.)
—_—
J1seeesdm
=0 if j1,...,Jm isn’t
a permutation of 1,...,m
— J(1) i(m -
= E alV o ad (™ sgn(f) det(eq, . . ., em)
. . —_——
7 permutation -1
- VAT
= det((a7)i;)-

Thus, if (g;); is an orthonormal positively oriented basis, then [A] € SO(n), hence
det(gla oo ;gm) = det[A] =1.

Since we want to apply this construction to the tangent space of an oriented Rie-
mannian manifold (where we do not have an orthonormal basis but only a positively
oriented basis (-2 5.7 )7), we also need a formula for the determinant for such a basis
(gj): For this, we again consider the inner products

o= ) = (Saten, D) = okl e i) = St
5

e. (gij)ij = [A- A'] and furthermore
det((gi.5)1,) = det([A] - [A]") = (det[A])?
and finally (because of det[A] > 0)

det(g1, ..., gm) = det[A] = | /det((g; ;)i ;) =t VG.

For each oriented (see [86, 34.3]) Riemannian manifold (M, g) of dimension m, we
have det € L7, (T, M,R) and we define the VOLUME FORM voly, € Q™ (M) of the
manifold by

volps (z) = det € L7}, (T M;R).

We want to calculate this volume form by means of local coordinates (ul, ..., u™).
The g; = 66 ori-
ented by using an orientation-preserving chart ¢ = (u!,...,u™)~! . Then vol =

voli,..m dul AL A du™ with

VOl(aulv"'vaSm) = (voly,....m -du’ /\.../\dum) (%,...,%)
=voli, .m ngn auﬂl ). -dum(%) =vol1,... m,
Or(1),1 Ox(m),m

since m must be the identity, see also . Because of the above calculation

VOl(aul,..., aum) det(g1, ..., gm) = VG

where G := det((gi,j)i,j) and g; ; 1= <gi,gj> = g(a‘zm aij )-
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We obtain the following isomorphism for orientable Riemannian manifolds of di-
mension m:

C®(M,R) =5 Q™(M), f+s f-voly.

25. Graded derivations

25.1 Lemma (Algebra of differential forms).
The space Q(M) := @, Q¥ (M) is a graded commutative algebra with respect to the

point-wise wedge product (see )

(aAB)g(&ay-- o Ehyi) =

1
= ngnﬂ 0 (Er(1ys 5 Enk)) B (Enit1)s - -+ s En(hti))s

for a € QF(M), B € QY (M) and &; € T, M. For paracompact manifolds M, this
algebra is generated by {f, df : f € C*°(M,R)}.

Note that f-w = f Aw for f € C®°(M,R) = Q°(M) and w € Q(M).

Proof. Since the fibers ATy M = @, /\k T M are graded commutative algebras,
QM) = C>®(M + ANT*M) is also a graded commutative algebra. Locally Q(M)
is generated by {f, df : f € C*°(M,R)}, because w = >3, _ _; wi, i du’* Ao A
du*. To get that globally, we use a finite atlas of M. For connected paracompact
manifolds, such an atlas exists by . We choose a partition {f1,..., fn} of
unity which is subordinate to the associated vector bundle atlas of T*M. Then
w=>;fijwand fjw =73 _ Wisi,indu™ A oA dutt, where (ul, ... u™)
are local coordinates on a neighborhood W of supp(f;), which have been extended
to global smooth functions on M and the coefficients wj,;,, .. 5, are global smooth
functions with carrier in W;. O

25.2 Pull-back of forms.

Let f : M — N be smooth, T},f : T,M — Ty N the tangential mapping and
(Tpf)* - T5 )N — Ty M its adjoint. If p is not determined by f(p), i.e. f is not
injective, or there fails to exist p with f(p) = ¢ for some ¢, i.e. f is not surjective,
then the (T, f)* cannot be collected into a mapping T f : T*N — T* M. However,

by [19.11],

k
N T AL AR TN
M—1 N

can be used to define
Qk (M) QF(N)
I Il
ok (Me (/\k TM) ) ~ O (Ne (/\’“ TN) )

The form f*(w) is called the PULL-BACK along f of w.

Iz

k
(F@lplE A= 7 &) = s (AT @ A A6
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or, by using the isomorphism ( k TpM) =~ LR (T,M;R),

(f*w) (150005 &k) 1= (Tpf'£1|p7"'7Tpf'§k|p)-

The so-defined f* : Q(N) — Q(M ) is an algebra homomorphism - as one easily
shows - and the following holds: (fjof2)* = fo*o f1* for the composite of mappingss

fi and fs.

By means of the ismorphism (/\k TM)* = /\k(T*M) one can define the pull-back
f* for wy, ..., wi € QM) equivalently by f*(wi A« Awg) := f*(w1) A+ Af*(wk),
where f*(w;) is the pulled-back 1-form defined in | 19.12 |

Let (u’)j”; be local coordinates on M and (v7)"_; local coordinates on N. Then
w € QF(N) can be written locally as

. . J1 Jk
E Wiy, AUV AN dUTE
J1<...<Jk

The pulled-back form must have a local representation of the form

Z Mt yin dutr AL A dute.

11<... <1k
We now calculate the local coefficients ;. ;, of f*(w):
* fé) 9
Miv,..hik (x) = f (w) (m7 U Dutk )

—sz)(/\Tf For '/\afik))
wf(x)( > det((m>t )fﬁilA Aava"’“)

ou't
J1<--<Jk
/U]s o f) 9 o
-5 (D) Yo (ot
J1<<Jk ’
(Vs o f)
= Y (22 Yy )
J1<<Jk ’
Thus
INOESEDY D Wi PRI At A A dut
iy <o <ig G1<<jr
1,00t =1...m j1,..., Jjr=1...n
vl HvI1
i i outt "' Qulk
A, ... vk
Wobei pﬁfk = det (M) = det
(uir, ... ulr) oia ouin
outl e ou'k
ovd 0 .
with - = —(v? o f),
out 6u1( 1)

25.3 Corollary (Pull-back of volume forms).

Let f : M — N smooth, dim M = m = dim N and (z*,...,2™) local coordinates
on M and (y',...,y™) such on N. Then:

f(g-dy* Ao ANdy™) = (go f) - det <(6(y]of)>m ) cdzt Ao A dz™.
ox? ij=1
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Proof. This is a special case of As m-form, f*(g-dy' A--- Ady™) =
o

81317""W) we

h-dx' A--- Adz™ for a smooth functlon h. By applying this to (
get:

0 0
h:f*(g«dyl/\.../\dym) <axl,...,axm>

25.2

A (g) - (dy' A Ndy™) (Tfa Tor f@x’”)

Oy o 0 Ayim o 9
:(gof).(dyl/\.../\dym) (ZW%M”ZWW)

1 Tm

0\ o) oo
yyim oxl 7 Oxm

~gof) Xt andy) (G

11,0 tm

m 3)0 ig m
= (g0 1)- Ll 22 (gof)-det((a(:‘j%cj”)“) 0

j=1

J=

25.4 Remark.
In particular, for f =id and g = 1 we get by :

1 m 83/] 1 m
dy” A+ Ndy™ = det B sdrs Ao ANda™.
,J

In we considered the commutative algebra A := C*°(M,R). We identified
the space Der(A) of its derivations with the space X(M) of the vector fields on M
and we found the structure of a Lie algebra on Der(A). We now want to apply

similar ideas to the graded commutative algebra A := Q(M) of differential forms
on M.

25.5 Definition (Graded derivation).

An mapping D : Q(M) — Q(M) is called GRADED DERIVATION OF DEGREE d, if
D is linear, for all k the summand QF(M) is mapped into Q4t*(M) and for all
w € QF(M) and n € Q(M) the product rule D(w An) = Dw An+ (=1)%Fw A Dn
holds.

With Derg(Q(M)) we denote the VECTOR SPACE OF ALL GRADED DERIVATIONS of
Q(M) of degree d, and with Der(€2(M)) we denote the direct sum [ [, Dery(Q(M)).
More generally, for a smooth mapping g : N — M, a map D : Q(M) — Q(N)
is called graded derivation over g*, if D is linear, for all k the summand QF (M)

is mapped into Q¥ (), and for all w € QF(M) and n € Q(M) the product rule
D(w A7) = D(w) Ag*(n) + (=1)4*g*(w) A Dn holds.

25.6 Lemma (Uniqueness of graded derivations).

Let g : N — M be smooth. Each graded derivation D : Q(M) — Q(N) over the
algebra homomorphism g* : Q(M) — Q(N) is uniquely determined by the values
D(f) and D(df) for all f € C*(M,R).

Proof. Since f and df generate the algebra Q(M), this immediately follows from
. However, if we do not want to use dimension theory here, we can also show
this as follows:

If we had two such derivations, we consider the difference D. We have to show:
Vf:D(f)=0,D(df)=0= D =0.
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We first claim that the derivation D is a local operator: In fact let w € Q(M) be
locally 0 around g(z). Then we choose a f € C*(M,R) with f(g(z)) = 1 and
fw =0, and get

0=D(0) = D(fw) = a(ﬁ/\g*(W) +9°(f)- D(w)
=0

And at x € N we have 0 = f(g(x)) - D(w)(z) = D(w)(x). Since D is a local and
linear operator, we may replace w by its local representation:

D(w) = D( Z Wiy ,ooniy QU A A duiP>

i< <ip
= Z (D((.uih__,,-p)/\g*(dui1 A Adu')
p . . .
# Y i) ) A ADY A A ) 0. D

25.7 Examples of graded derivations.

From follows that Dery(2(M)) = {0} for d < —1, because D(Q*(M)) C
QF4(M) = {0} for k + d < 0 and in particular for k € {0,1}.

We want to determine Der_; (Q2(M)) next. Let D : Q(M) — Q(M) be a graded
derivation of degree d = —1. Then D(C*(M,R)) = {0} and the linear mapping
Dod : C®(M,R) — QY (M) — QM) = C®(M,R) satisfies (D od)(f -g) =
D(g-df + f-dg) = D(g) Ndf + (=1)°%g- D(df) + D(f) ANdg + (-1)°*f - D(dg) =
(Dod)f-g+ f-(Dod)g, because of D(g) =0 = D(f). So Dod is a derivation on
C*°(M,R) and is thus given by a vector field &, i.e. D(f) =0 and D(df) = &(f) =
df (&) for all f € C*°(M,R). We will show in that we can define a graded
derivation i¢ of degree d = —1 by (igw) (&1, ..., &) == w(§, &1, - - -, &k) to each vector
field £ € X(M).

Now to Dero(Q2(M)). Let D : Q(M) — Q(M) be a graded derivation of degree
d = 0. Then D acts on Q°(M) = C>°(M, R) as derivation, so it is given there by a
vector field &, i.e.

D(f) = £(f) = Le(f) = % B (FI§)* f (see [17.9] and [17.10]) .

However, the last expression 4| —0 (FI5)*w also makes sense for w € (M) and we

will show in that this defines a derivation L¢ of degree d = 0 on Q(M) for each
vector field £ € X(M). We will also show in | 25.10 | that these are those derivations

of degree 0 which additionally satisfy D(df) = d(Df). To get a global formula for
Le¢, we differentiate the function w(&i, ..., &) (for w € QF(M) and & € X(M)) in
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the direction & at x € M and get:

(€ (et = 51| ((En ) O FI):
- % e 1 (155 6k)
- % g (TR TR o TRETFIS, )
=3 (1), (TR il TP ol )
9 (), () @)@, (1) (@) @)
:4;HﬂwWM@m»wmm

. iwm (6 (5 (€)@)...66(a)

t=0

(Lew)s (@a(a). .. (@)
k

+ Y wa(@(@), . 6 @), @),
i=1

and thus

k
‘wa(glv"'agk) 5 wgl» "agk Zw(flwuvfifla[gagi}a§i+la~"7§k>~

=1

In particular,

(Ledf)(n) =& (df () = df ([&;m) =€ (n- ) = [&m] - f=n-(&- f) =d&- f)n)
= (dLef)(n)-

Finally, we want to describe a distinguished derivation of degree d = 1. By ,
we hope that by considering the deviation of the derivative of a 1-form (or more
generally a k-form) from being symmetric, we are able to recognize whether the
form is the derivative of a function (or k — 1-form). First, we consider the case
where M = U is open in a vector space E. Then a k-form on U is a mapping
w:U — LE(E;R)

and its derivative is

W' U — L(E, L¥, (E;R)).
If we compose this with the alternator

L(E, Ly (E;R)) C L(E, L*(E;R)) = LM (E,R) -2 LB, R),
we get the deviation dw from w’(z) being symmetric for all x € U.

So
dw(x)(&os -+ -5 &k) k+1 o0 ngﬂ ) (§5(0)) (Ea(1)s - -+ Ea(k))

]' i
=771 ZZ:;— Y (@)(E)(Eor s & ).
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In order to obtain a global formula for d on arbitrary manifolds M we replace the

vectors &; € E with vector fields & € X(F) and differentiate w(&o, ..., .., &)
at the position z € M in direction &;(x) and obtain:

(w0, & 08) @O(E@) = @ EED (), -, G (@)
+ 3 w@)(e (@) - G,y Gla) )

2 w@) e &l0) o @) Gl

And inserting into the formula above yields

(k + 1)dw(z) (o, - - &) = é(—l)iw'(l’)(&(I))(Eo(x), G, &)
i W(Eor-- &) (@)
—; 1w (z)(& () - &(x),Eo), ..., & (@), ... &), ...)
—g 1) Lo(2) (€ (2) - (), o), -, &), (@)
Eﬂ(ivwgmmmzlwm

+Z 1+Jw Ezagj] go,...7'5,...,'5_]"7-“75/6))(33)'

1<j

Because of the annoying factor (k+1) we will replace dw by (k+1) dw in the future.

25.8 Lemma (Lie algebra of graded derivations).

The space Der(QU(M)) is a graded Lie algebra with respect to the pointwise vector
space operations and the graded commutator as Lie bracket:

[D1, Ds] := Dy o Dy — (—1)4%2 Dy 0 Dy for D; € Derg, (U(M))

In detail this means:

1. The bracket [-,-] : Derg, (Q(M)) x Derg,(Q(M)) — Derg, a4, (Q(M)) is bilinear
for all dy, ds.

2. It is GRADED ANTICOMMUTATIVE: [Dy, Do] + (—1)%192[Dy, D1] = 0.

3. [Do, "] is a graded derivation with respect to [-, ], i.e. the GRADED JACOBI IDEN-
TITY

[Do, [D1, Dal] = [[Do, D], Do] + (=1)%% [D1, [Dy, Do]]
holds, or equivalently it is cyclically symmetric

0 = (=1)%%[Dy, [Dy, Do]] + (=1)"%[Dy, [Da, Do]] + (—1)%% Dy, [Dy, D1]].
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Proof. We give the proof for any graded-commutative algebra A instead of Q(M).
Claim: [Dy, D3] € Derg, 14, (A) for D; € Derg, (A) for i =1, 2.

[Dy, Do) (X -Y) = (D1 0Dy — (~1)1% Dy o Dl)(X Y)
- D (DQX Y 4 (—1)%d X DQY)
_ (~1)hd2p, (DlX Y 4 (—1)rh X DlY)
=D1DyX .Y + (=1)n( =)D, X . DY
+(=1)"2DyX - DoY + (—1)*=Fh X . Dy DyY
— (—1)4%DyD X Y — (—1)hdetditnd ) x . DY
— (=1)hdetrdip, X . DY — (—1)hdetdiztdex . DDy
= [D1,D5]X - Y + (—=1)"a+d) X . [D) Dy]Y  for z := deg(X).

Clearly, [, ] is bilinear and graded anticommutative.
Remains to show the graded Jacobi identity:
[Do,[D1, D] = [[Do, D1}, D3] = (=1)**[Dy, [Do, D2]] =
= [Do, D1 D3 — (=1)%* Dy D1] — [Do Dy — (1) Dy Dy, D5
— (=1)%*% Dy, DgDy — (—1)%% Dy Dy
= DoD1 Dy — (=1)"1% Dy Dy Dy
_ (—1)lr+dz)do p Dy Dy (—1)adetde(di+d) o D) Dy
— DoD1 Dy + (—1)%1 Dy Dy D,
4 (=1)Wdo+d)da p, po Dy (—1)dodi+(dotdndz p, ) D
— (=1)®h Dy DyDy + (—1)dditdod2 ) Dy Dy
+ (—1)dodit(dotd)ds p Dy Py (—1)do(ditd2)+(do+dz)d D, o Dy
=0. [

25.9 Theorem (The basic graded derivations).
Let £ € X(M).
(te) By te(f) =0, te(df) ==& - f a graded derivation ¢ of degree —1, the insertion
operator is specified.
(Le) By Le(f) =€ f, Le(df) == d(€ - f) a graded derivation L¢ of degree 0 is
specified, the Lie derivative.
(d) By d(f) := df, d(df) := 0, a graded derivation d of degree +1, the outer
derivative, is specified.
Global formulas for these graded derivations are given for w € QF(M) and & €
X(M) by:
(Lfow)(é-h e 75]@71) = w(é_Oagh oo agkfl) fO’I" k 2 1

(‘Cﬁow)(é-h e 76/(7) = 60 : w(gla cee 75/@) - Zw(fla e afifh [§Oa§i]7§i+la DR 751@)
i=1
k
(dw)(g()a cee agkr) = Z(—l)zfz . w(goa .. 'azi—la v 757@)

=0
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+ ([ &) o G G ).

1<j

The graded commutators are given by the following table:

[Dh DQ} Ly /Cy] d
Le 0 —ten | —Le

Le | e Lien 0

d c, 0 0

If n € X(N) is related to & € X(M) with respect to a smooth mapping g : M — N,
i.e. Tgo & =mnog is satisfied, then

g o =teog", g-oLly=~Lcog", giod=dog
Furthermore:

tpew = frew, Lpew = fLew+df Ngw, (Lew)(z) = %|t:0(Flf)*w|m

Proof. The proof is done in 15 steps, where we use the global formulas as defintion
for 1¢, L¢, and d.

1. Claim. (cw € QF1(M):
Obviously, t¢w is alternating and k& — 1-linear and
ng(fflv s 7£k—1) = W(f, fgla cee agk—l) = fw(gagh .. agk,—l)
= frew(&ry-- -, Ep—1)-

2. Claim. ¢ € Der_;(Q(M)): Let a € Q! and 8 € Q! then

Lﬁo(a/\ﬂ)(f17...,§k+l) —
= (a/\ﬁ)(g(hgl)' "7§k+l)

I{i +1 'l' Z Sgn 571'(0); cee agﬂ(k)) ﬂ(g‘n(k-‘rl)a cee 7£w(k+l))

= Z Sgn(ﬂ_) a(gﬂ'(O)a cee 3671’(16)) ﬂ(fﬂ'(k)-‘rl)? cee 7£7T(k+l))

T piecewisel

= Z SgIl(ﬂ') a(fﬂ(O), cee )gﬂ(k‘)) 5(£w(k+1)a cee 3€Tl'(k‘+l))

7(0)=0

+ Z sgn(7) A&r(0)s - - > Enh)) BEaht1)s > Enlhoti))

m(k+1)=0

= (Lgoaw)(fl,...,fk+l>
+ ) (D sen(n) ey S ) Bos En k) - s (k)

7/ piecewiset

= (Lgoa AB+ (—1)k+1a A L505> (&1, &)

Where 7’ := 7o (k+1,k,...,1,0) is the permutation which maps 0 to 0, i + 1 to
m(2) for i <k, and i to 7(i) for ¢ > k + 1.
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3. Claim. dw € QF1(M):
Obviously dw is (k 4+ 1)-linear and alternating. The C°°(M,R) homogeneity is
shown as follows:

dw(féo,---, &) = (fo) - w(&1,---, &)
3 (1) folo, . 6 )

>0

+ Z Jw f£07§j] 507"'7,5_]"7"'7516)

7>1=0
+ Z 7’+] 5175]] f§0a-~-a,g\a-~-7,§_j‘a---7§k)
7>i>0
=f(§o-w(é,.-,&))
+Z 505"'a'g|a"'a£k)
i>0
+f Z 50?"')’5‘7"'75’6)
i>0
+f Z ]UJ gngj gOa"'vlf_j\v'”vgk)
7>1=0
+ Z 607607""’5‘7"'75]6)
7>i=0
+f Z H_jw 62)5]] 507-~-a,g\a-~-a,§_j‘a---7£k)
3>i>0
:f‘dw(§07--~,§k)
+Z g(ﬁ"'az;la"'agk’)
>0
- Z 607507"'7’57"'75’6)
7>1=0
:f"dw(g()a"',gk)'
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4. Claim. d(fw) =df Aw+ f - dw:
d(fo‘))(&% e 7516) =

—Z D ()€ G )
+Z Z+wa gzagj] gl»uwz""
Jj>i
—Z ng"a’g\?"'agk)
+fz 507“"'5‘7"'75]6)

+fz Z+Jw 6775] 617"'52?7"'5

7>

_Z dfgz . 507"'723"'7516)+f'dw(€07'~~~

(df Aw+ f-dw)(&,...,E).

5. Claim. d is a local operator:

—
NI

_
&

afk)

agk)

Let w|y =0 and x € U. Then there is an f € C*°(M,R) with Trg f C U, f(z) =

and df () = 0. Consequently, fw = 0 and thus

0= d(fw)(a)

6. Claim. d and ¢, satisfy the initial conditions:

df () Nw(z) + f(x) - dw

(z)

dw(z).

This follows immediately by inserting into the global formulas:

Lfo(f) =0
teo (df) = df (§o) = &o - f

0
=S g fla)+> =6 f
=0 (1}

d(df)(&0,&1) = &o - df (§1) — &1 - df (&o) +

=& (& f) =& (o f)—

7. Claim. d(du’) = 0, where du’ := du®* A--- A du®*1 for I := (iy,...i,_

") (525 520) = 2 (1) 5 (! (52

z+l
+ E : du dufi’ Oudl

>4

—1)"*df ([, &1))
[0, &1]- f =

..7m7...

)

= (), because [ai ai] =0 and dui(ai) are constant.

d(ZwIdu) Zdw;/\du +wy Ad(dul) -Z‘%"d A dul
I i1
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8. Claim. d € Der;(Q(M)): Let « =Y, aydul and B =3, 8, du’ then

d(a A pB) —Zd arBy du’ A du”)

Z 8(((;;?") dut A du® A du?
I1,J

Zf’m du’ A du’ /\ZﬂJdu +( ”lza,du AZ‘% du® A du?’

:da/\ﬁJr(f )ma/\dﬁ.

9. Claim. The formulas for the commutators of insertion operators ¢¢ and d hold:
Because of it is sufficient to check the “initial values”:

[te, Ly = 0 as this is a derivation of degree -2,
[d.d](f) = (dod— (=1)"dod)(f) = 2d(df) =0
[d, d)(df) = 2(d o d)(df) = 2d(d(df)) = 2d(0) = 0

10. Claim. The commutator [d, t¢] results in the global formula of L¢, so L¢ €
Derg(Q(M)):
([d’ Lﬁo]w)(glv s 7£k) = d(”fow)(gla s agk) - (_1)1'(_1)%0 (dw)(fl, e afk)

= Z(_l)z_lfl . Léow(gla ERE ’g‘a s 76/@)

+ Z (_1)i_1+j_1l’§0w([§i7£j]= ceey ,5\7 LR ’€_j‘7 v 75/(?)

0<i<y
+dw(£07§1a"'7§k’)
:_Z fO?"'?Z‘?"')fk)
i>0
+ Z H—]w 503[5155]]7'--5’5‘>'-'1,§_j\a -7519)
0<i<y
+Z 50)"‘a,g|7"'7§k)
>0
+ Z H_]w 57,75]] 607"'727-"7,5‘7-”76]@)
0<i<y
_50 wgla"wgk +Z jw 5055] 517"'a'§_j‘a"'7§k)

7>0

= (Cfow)(gh cee 7516)

11. Claim. The initial condition holds for L¢:
Le=dog+1god =
Le(f) = d(eef) + 1e(df) =0+ f
Le(df) = d(uedf) + 1e(d®f) = d(§ - f) +0.

andreas.kriegl@univie.ac.at © June 26, 2018 142



25. GRADED DERIVATIONS 25.9

12. Claim. The formulas for commutators with £¢ hold:
Again, all we need to do is check the initial values (or we use the Jacobi identity):

[Le,tn](f) = 0= 1en(f), because the degree is —1
(L, in)(df) = Le(n - f) = wn(d(€ - f))
=& f)=m-(§-f) =

(€ m(f) = ve,m(df)
[Le, Ly)(f)=E&-m-f—n- E f=1nf) =

ﬁ[én(f)

[Le, Lo](df) = Le(d(n - f)) — Ly(d(€ - f))
=d(&-n-f-n-& f)=d(&n] f) = Lienq(df)
[Le,d|(f) = Le(df) —d(€- f) =0
[Le, d](df) = Le(ddf) —d(d(€- f)) =

13. Claim. The relations involving g* hold:

For d we have the following:

(9" 0 )(F)(Ely) = 9" () (El,) == df\g »(Tg-&lp)
= d(f o 9)(&lp) = dg"(f)(€lp) = (dog*)(F) (&)
(9" 0 d)(df) = g"(ddf) = g"(0) = 0 = d*(g"f)
= d((dog")(f)) = d(g" e d)(f)) = (dog")(df).

d(
For « we have:

(9" oty)(df) = g"(df () = g"(n(f)) =n(f)og

17.3

or direct

(9" o ty)wp(&rs- -, &) = 9" (Lgw) (&1, - - -5 k)
= (tg@)lgp)(Tpg - E1lps - - Tpg - Eklp)
= wlgp) (Mg, Tpg - E1lps -+ Tpg - Eklp)
= w|g(p)(Tp9 “Elps Tpg - &ilps - - Tpg - Eklp)
= (g"w)p(lp, &1lps - - - lp)
= (te(g"w)) (&1, - - Ek)p
= (e o g )wp(&r,- - &k)-

For £ this follows by applying the commutation relation:

g'oL,=g"o(doty,+t,0d)
=g'odoi,+g oty od
:dog*obn—‘,—bfog*od
=dowog*+ic0dog”
=(dowg+tcod)og”
=Leog"
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14. Claim. The homogeneity formulas for ¢f¢ and Ly¢ hold:

Lpew(&1y - Eom1) = w(fE &, Gem1) = - w(& 6, €t)
= fruew(& o &-1)
Licw = [d,pelw = d(tpew) + tpe(dw)
=d(f - 1ew) + f - 1e(dw)
=df New+ f-d(tew) + f - te(dw)
=df New+ f- Lew.

15. Claim. L is the Lie derivative from :
Both sides define a derivation of degree 0, so it is enough to test on functions and
exact 1 forms:

Lli—o(FI5) f = Lli—of o FI; = £f = Lef,
li=o(FIE)™(df,) (mp) = atle=0(df Ve (T F1; n,)
= Gili=o(T FIf -n,) f = %hzodf(TFlf(??p)) = d)_omp(fo FIS)
= 1p (g li=o(f 0 F1)) = mp () = d(& ) ()
= Le(df) ().

This ends the proof of . O

25.10 The Frolicher-Nijenhuis and Nijenhuis-Richardson bracket.

We now want to describe general graded derivations in more detail. For this we
call a graded derivation D € Dery(2(M)) ALGEBRAIC, when it vanishes on the
0-forms Q°(M) = C>°(M,R). Obviously, the graded commutator of two algebraic
graded derivatiion is itself algebraic, so they form a graded Lie subalgebra. For
such derivations D,

D(f w) = D(f) Aw+ (=1)**f - D(w) = f - D(w)

holds. Consequently, D is a local operator and even tensorial, i.e. D(w), depends
only on w, (Remark: Apply d to local representations of w). By , D is uniquely
determined by Dlqiay : Q1 (M) — QFF1(M) C Q(M), and this is fiberwise an
element of

k+1 k+1 k+1
L(T;;M, A T;M) ~T, Mo \T;M=T,Me(\ T.M)* =
k+1
= [( \ LM T.M) = L5 (T M T, M)

which smoothly depends on x € M, i.e. is a vector-valued k 4 1 form

K € QLM TM) = ¢ (MeL (k/+\1 TM, TM))

k+1
SNoa (MeL (T*M, A T*M)).
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Conversely, let K € Q*+1(M;TM) be arbitrary. Then we can define an algebraic
derivation tx € Dery(Q(M)) by the following formula:

(rw) (X1, .. Xpr) =
1
= m ; sgn(o) W(K(Xa(1)7 cee 7Xa'(k+1))7 Xo‘(k+2)7 e 7Xa'(k+l))7
where w € QZ(M) with I > 1 and Xy,...,Xpy € X(M). One shows tgw €
QF(M) and 1x € Dery(Q(M)) as in [25.9.1 | and [25.9.2].
The mapping ¢ : Q*TY(M;TM) — Der,(Q(M)) defines a linear isomorphism
onto the Lie subalgebra of algebraic derivations, thus makes Q**1(M,TM) :=
ez Q5T (M, TM) itself a graded Lie algebra (whose bracket is also called NIJENHUIS-
RICHARDSON BRACKET.

We define a graded derivation Lx := [1x,d] for K € Q¥(M;TM). The mapping
L: QM;TM) — Der(2(M)) is injective because Lxf = [k, d|f = tx(df) £
d(tg f) =df o K for all f € C°(M,R).

{D: D|gw = 0} &= Dery (M) =< {D : [D,d] = 0}

; i

QFHL(M; T M) QF(M;TM)

Proposition.

Each D € Derg(2M)) has a unique representation D = if, + Lk with L €
QMY M;TM) and K € QF(M;TM). The image of L is the Lie subalgebra of
all D with [D,d] = 0. The mapping L thus induces a graded Lie algebra structure
(the FROLICHER-NIJENHUIS BRACKET) on Q*(M;TM).

Proof. For fixed vector fields X; € X(M), the assignment f — D(f)(X1,...,Xx)
describes a derivation C*°(M,R) — C*°(M,R). Consequently, there is a vec-
tor field K(X1,...,Xx) € X(M) with D(f)(X1,...,Xx) = K(X1,...,Xp)(f) =
df (K(X1,...,X%)). Obviously, K € QF(M;TM) and the defining equation for
K is D(f) = df o K = Lkg(f) for f € C°(M,R). So D — Lk is algebraic, i.e.
D =Lk + 1y for an L € QFY(M; TM). We have

0= [k, 0] = [tr, [d, d]] = [[ti, d], d] + (_1)k_1[d> [k, d]] =2[Lk,d|

Thus, 0 = [D,d] for D := Lk + ¢y, if and only if 0 = [¢1,d] = L1, i.e. L =0. The
uniqueness of K and L in the decomposition results from the injectivity of ¢ and £
and because 0 is the only algebraic derivation commuting with d. O

We have df o [X,Y] = Lixy1f = [Lx,Ly]f for the Frélicher Nijenhuis bracket
[X,Y] for X,Y € Q*(M,TM).
25.11 Differential forms on R3.

For open M C R™ we know that X(M) = C°(M,R™) by virtue of the mapping
E=21 % i (fi)™, = f, where 2’ are the standard coordinates. Likewise,
Qm(M) = C>~(M,R) by virtue of x : f -voly < f, with volps = dat A -+ A da™.
In summary, we have the following isomorphisms in case m = 3:

1. QO(R3) = C°(R3,R)

2. QY(R3) = C>°(R3,R?) via the basis dz!, dz?, dz?

3. Q2(R?) = C>°(R3,R?) via the basis dz? A dz3, dz3 A dxt, do! A dz?
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4. Q3(R3) = C>°(R3,R) via the basis dz' A dz? A dx3

How does d look like with respect to these bases?

O (R3,R) — 20 oo (R, R3) — 2% o 0oo(R3, R3) — Y oo (R3 | R)
| - %i .|
Q0 (R?) T QY(RY) . R?) T (R
/ (f1, f, f3) (f1, f2, f3) f
] ] ! ]
. f1 de?Ada®
f Zl fldxz +f2 dz® Adz? f dat Adz? Ada®

+f3 dz' Adx?
The operator d is given by the following formulas:

d: QOR®) of v df =Y Sldat

d: Q'R ) fida' = Y dfi nda' = GL dad A da
% 1,7
= (853 — 22y o N da® + (25 — 853) da® A da?
+(%—%)dw A da?

d: Q*(R?) ofy de? Nda® + fo da® A dat + f3 dat A da? —

— (Z %) dz' A da® A da®

It coincides up to the vertical isomorphisms from above with:

grad f := <6f ﬁ 3f)

Ozl’ 0x2’ Ox3
dfs 0f: 0fr  Ofs 0fs Ofq
o, .00 = (5 - 55 50— b ok~ 5
0 0 0
Aiv(fi, for f5) = g0 4 S0 O

From d? = 0 follow the well-known results from vector analysis:
(rotograd)f =0 and (divorot)(fi, f2, f3) = 0.

And the Poincaré Lemma | 26.5.6 | implies:
vot(f1, far f5) = 0= Jg, s.t. gradg = (fi, fa, fs) holds locally.
div(f1, f2, f3) = 0= 3 (g1, 92,93), s.t. rot(g1,92,93) = (f1, f2, f3) holds locally.

26. Cohomology

We now try to describe image of d : QF (M) — QF+1(M).
26.1 Definition of Cohomology.
Let d : Q(M) — Q(M) be the outer derivative.

1. Z¥(M) == {w € Q¥(M) : dw = 0}, the SPACE OF THE CLOSED DIFFERENTIAL
FORMS (or COCYCLES).
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2. B¥(M) = {dw : w € QF}(M)}, the SPACE OF THE EXACT DIFFERENTIAL
FORMS (or COBOUNDARIES).

3. HE(M) := Z¥(M)/B*(M), the k-TH DE-RHAM COHOMOLOGY of M. This is
well-defined, since B¥(M) C Z*(M) holds because of d o d = 0.

4. H(M) := @, H*(M), the DE-RHAM COHOMOLOGY of M.
5. br.(M) := dim(H*(M)) € NU {+oc}, the k-TH BETTI NUMBER.

6. far(t) ;== bit®, the POINCARE POLYNOMIAL. This is well-defined if all Betti
numbers are finite.

7. x(M) := fp(—1) =Y, (—1)*bs, the EULER CHARACTERISTIC OF A MANIFOLD
of M.

26.2 Definition (Cohomology functor).

If g : M — N smooth, then g*(dw) = d(g*w) for g* : Q(N) — Q(M) holds by
. Thus, the restrictions g* : Z¥(N) — Z¥(M) and g* : B¥(N) — B*(M)
exist and the following definition of a linear mapping

9" H(N) = H(M), [w] = [g7w].

makes sense

]\f Bk(M)C—>Zk(M)—>>Hk(M)
N Bk(N)C Zk(N) Hk(N)

26.3 Theorem (Cohomology axioms).
The cohomology has the following properties:
1. H({x}) =R, H*({x}) = 0 for k # 0 (DIMENSION AXIOM ).
2. f,g: M — N smooth, f ~g= f*=g" (HOMOTOPY AXIOM).
3. Let be M =], My = H*(M) =[], H*(M,) (DISIOINT UNION AXIOM).
4

. IfM =UUV is open with U,V C M, then there are linear maps dy that make
the following long sequence exact:

= HR (M) L gy @ BYNY) ZE, gRU N V) <2
e gkt (M) — HMYU) @ HFY(V) — BHFYYUNV) =

with the inclusions iy : U < UUV, iy : V>UUV, jy: UNV < U and
jv :UNV <= V. This sequence is called MAYER-VIETORIS SEQUENCE and Jy,
is called CONNECTING HOMOMORPHISM.

A sequence of linear mappings - - - ey B, i1y s called EXACT if im fr =
ker fr41 for all k.

Proof.
(1)) is obvious since Q*({x}) = {0} for k # 0 and Q°({x}) = C>({*},R) = R.

() Let H € C*°(M x R, N) be a (smooth) homotopy from f to g, i.e. H(z,0) =
f(x) and H(z,1) = g(z) for all z € M. For w € QF(N) we have H*w € QF(M x R).
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Let j: : M — M X R be defined by j:(z) := (x,t). Then Hojo= fand Hoj; =g
and thus

g = fT=Hog) = (Hojo)" = (ji —jo) o H".
For ¢ € QF(M x R) the mapping t — j;¢ € QF(M) is a smooth curve into Q* (M)

and thus
1

-k % d -k ! -k
Ui —do)e= | Sdrpdt= / Ji (Lep)dt,
0 0
where £ := 2 € X(M xR) denotes the unit vector field in direction {0} x R because
jt+s = F1§ O,jt for t,S eR =
d d

d
= v = - (Je+s) I S:O( s0Jt)"p
= A (e )e=si (] (F)e) =5 (Lep).
ds o t S t dS o S t

Thus we define a fiber integration I} by

1
I3 QF(M x R) — QF(M), I} () :=/ Jipdt.
0

Then
1

1 1
@or)ie) = d( [ great) = [ atiterie= [ giagar
= Iy (de) = (Ig o d)();
Gi=dshe = [ Gi(Lep)dt = B(Lee) = T3 ((dore + 160 d)g).

We now define the homotopy operator G : Q¥(N) — Q*=1(M) by G := I} o1c0 H*,
ie.

QF(N) 9= QF=L(M)

| d
QF(M x R) —= QF1(M x R)
Then
g =1 =01 —Jo)o H”
=I}o(dow+tcod)o H*
=(doljoue+1I5ote0d)oH*
=do(IfoteoH*)+(IjotgoH")od=doG+God.

and thus g*w — f*w = d(Gw) + G(dw) = d(Gw) is exact if dw = 0. So ¢g* — f* =0
H(N) — H(M).

() is obvious since QF( ], M,) =[], Q% (M, ) and d respects this decomposition.
() We show first that
0 QYU UY) _Gpaiy) Qk(U) @ QF (V) _du—iv_, QMU NV) =0

is exact.

The mapping f := (i;,4},) is clearly injective with im(i;, 43, ) = ker(j5; — ji)-

The mapping g := (jj; — ji/) is surjective: Let {hy,hy} be a partition of unity
subordinated to the covering {U, V'} and let ¢ € QUNV). With ¢y := hyp € Q(U)
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(and v |t\Teg(ny) = 0), respectively pv := —hyp € V) (and v v\ ig(hy) =
0), we have:

U — v )eu, ev) = euluvnv — evilvnvy = (hv + hou)e = ¢.

So the sequence is exact.

To get the long exact sequence in cohomology we can use the following general
result. O

26.4 Theorem.

Let 0 — C' =L C =4 C” — 0 be a short ezact sequence of CHAIN MAPPINGS,
that is C, C', and C" are CHAIN COMPLEXES (i.e. Z-graded vector spaces with
so-called BOUNDARY OPERATORS, that is linear operators 0 of degree +1 which
satisfy 0% = 0) and connecting linear maps f and g of degree 0 which intertwine
the boundary operators.

Then we obtain a long exact sequence in homology:

0. Hq(C/) H‘Z(f)}Hq(C) Hq(9) Hq(C”) De Hq+1(0/> Ha+1(f)

where the g-th HOMOLOGY Hy(C) of the chain complex C is defined as above by

Hq(C) = ker(ﬁq : Cq — Cq+1)/im(aq,1 : Cq,1 — Cq)

Proof. Consider the commutative diagram

0 o —L o2 0
al Bl 6l
0 c. —.c I, o 0
q+1 q+1 ¢l T

Let 0.[2"] == [(f~t 00 og™1)(2")] for 2" € C" with 92" = 0.

We show first that it is possible to choose elements in the corresponding inverse
images, and then we show that the resulting class does not depend on any of the
choices.

So let z; € C be a cycle, i.e. dz] = 0. Since g is % 9
onto we find z, € Cy with gz, = 2. Since g0z, = !
dgry = 0z = 0, we find x;; € Cp y with al al
fal = Oxg. And hence z,,, € f~19g™ 2]

? Ty h Oy 0
Furthermore fox;,, = Jfx,,, = 00z, = 0. ) 5
Since f is injective we get dx;; = 0 and hence ;
!/ . 1"
we may form the class [z; 1] =: Oi[2]]. ol 0
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Now the independence of all choices:

4 N N
Tg—1t Ty qg—1
\_ AN .,
4 N N N
Tq,Tq ! ¢ 2,2y
Oxg_1t =2y — Zy q
o — Og—1—Tq+Ty| >0
\_ NS AN .
4 N N N
Y
-/I;f1+17fi'lq+1| axq,aqu >0,0
N N
0 0 q+1
Y
—Tgiq T —0wy + 0T | >0
\_ NS AN /
C/ f C 9 C//
Let [2]] = [z,], ie. 3 @) : Oz y = 2z — Z]. Select x4,7, € Cy as before,
such that gz, = x; and gz, = ;. As before, we choose zj,7;.; € Cy y With
fry = 0zg and fZ;., = 07,. We have to show that [v} ;] = [Z];]. For this

we choose v,y € Cq_y with gz, 1 = 2 ;. Then gdr, 1 = dgry 1 = Ox; | =
zg =z, = g(zq4 — 74) and therefore an z € C, exists with fzj = 2, — 74 — 0vg_1.
Further, fOz) = 0fxy = 0(vq — Ty — Oxg—1) = 0xg — 0%¢ — 0 = f(2gq — Toyq)-

Since f is injective, we have zj,; — T[ ;= Oz, i.e. [z, 1] = [T 4]

Exactness at Hqy(C'):

(C) 02" = [ff 1097 2"] = [0g~12"] = 0.

(D) Let 92" =0 and 0 = f.[2'] = [f2'], i.e. a2 Oz = fz/. Then 2" := gz satisfies
0z = dgx = g0z = gf2' =0 and O.[2"] = [f 109~ tgx] = [f~10x] = [2'].
Exactness at H,(C):

(C) is obvious, since go f = 0.

(D) Let 9z = 0 with 0 = g.[z] = [g2], i.e. F2": 92" = gz. Then I x: gz = 2.
Therefore, gz = 02" = Ogx = gdx = I 2': fa' = 2 — 0x = fOx' = Ofzx’ =
d(z—0r)=0= 02’ =0 and f.[2'] = [fa'] = [z — 0x] = [2].

Exactness at H,(C"):

(C) We have 0.g.[2] = [f 109~ g2] = [f~10z] = [f~10] = 0.

(D) Let 92" = 0 and 0 = 0,[2""], i.e. Fa': 92’ = 2/, where 2/ € f~10g712" ie. Fa:
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gr =2" and fz' = Ox. Then d(z— fa’) = fz'— f(02') = 0 and g(x — fo') = 2" -0,

i.e.

gulz — fo'] = [2"]. -

26.5 Remarks.

1.

The De-Rham cohomology is uniquely determined by the properties of Propo-
sition | 26.3 |, see [146, Kap.5].

. For the 0-th cohomology we have:

H(M) = {f € C*°(M,R) : df = 0}
={f € C>®(M,R): f is locally constant} = R*,

where p is the number of connected components of M.

. Ifk<0ork>dimM then Q¥(M) = 0 and thus H*(M) = 0.

. Let M and N be HOMOTOPY EQUIVALENT, i.e. there are smooth mappings

f:M — Nand g: N - M with fog ~ idy and go f ~ idy. The
mappings H(f) := f*: H(N) — H(M) and H(g) := g* : H(M) — H(N) are
then inverse isomorphisms. For example, the open Mobius strip is homotopy
equivalent to the cylinder.

. In particular, if A C M is a DEFORMATION RETRACT, i.e. a homotopy h :

M xR — M exists with h(_, 1) = idps, h(M x {0}) C A, and h(_,0)|4 = ida,
then H(M) = H(A) holds. For example, the base space of any vector bundle
is a deformation retract of the total space (into which it is embedded as zero
section).

. If M is CONTRACTIBLE, i.e. a point p € M exists which is a deformation retract

of M, then H(M) = H({p}), i.e. any closed k-form (k # 0) is exact (this is
the promised POINCARE LEMMA). If M = R™ - or more general M C R™ is
star-shaped (with respect to 0) - then h : M xR — M, (z,t) — t -z, is a
contraction from M to a point, so M is contractible. Therefore, locally every
manifold is contractible.

. If M is simply connected, then H'(M) = 0. To show this, proceed as follows:

Let w € QY (M) with dw = 0. We want to find an f € Q°(M) = C*°(M,R)
with df = w. For this we choose a point zg € M and for every other point
x € M choose a curve ¢ which connects xg with x and define

)= [w=[ e

This definition does not depend on the choice of the curve, because the com-
position with a second reversed curve provides a closed curve ¢ which has to
be homotopic to the constant curve konst,,, so [¢*(w)] = [(konst,,)*(w)]. The
two forms on S' thus differ only by an exact form dg and thus

/cw B /01 ¢ (w) = /Ol(konst%)*(w) = /01 0=0.

Since locally a smooth f with df = w always exists by and fc df =
f(e(1)) = f(c(0)) holds, the above-defined f differs from it only by an additive
constant, hence is smooth as well and is the antiderivative we are looking for
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10.

11.

because

d

dfle(0) (' (0)) = (F o 0)'(0) =

t=0

1 1
we sy (tc(ts ds:/ —
_/ wotcts)ds= [ 2

N /0 we(0) (€(0)) ds + 0 = we()(c'(0))

d

= Wegrs)(t ' (ts)) ds

t=0

Let ... — F;, Ly E;+1 — ... be an exact sequence of finite-dimensional vector
spaces with E; = {0} for almost all ¢, then adding

dim E; = dim(ker T;) + dim(im(7;)) = dim(ker T;) 4+ dim(ker T;41)
yields the identity
> (1) dimE; =0
The Mayer-Vietoris sequence implies the following for the Euler characteristic:
XUUV)+x(UNV) =x(U)+x(V)

Since R™ is contractible, its Euler characteristic is that of a point, thus is 1 by

the dimension axiom . Furthermore, x(SY) = 2 because of | 26.3.3 |. By
, for each point * € M in an m-dimensional manifold M we have
X(M) = x(M\ {+}) + x(R™) = x(R™ \ {*})
M {+}) + x({}) = x(S™71)
M\ {#}) +1 = x(S™H).
For the spheres we thus get
X(S™) = x(R™) +1 = x(S™71) =2 —x(5™1)

and in particular x(S1) =2 — x(S°) = 0 and hence (M) = x(M \ {*}) +1 for
dim(M) = 2.

Compact 2-dimensional connected manifolds M, of genus g are obtained by
glueing g handles (by ) or g Mobius strips (by ) to S?, so recursivly
we have

in the non-orientable case:

X(Mg) = x((My—1 \ {¥}) U Mb) = x(My_1 \ {*}) + x( M8b) — x(5")
=x(My-1)-1=2—-(9-1)-1=2—g,

x(
x(

and in the orientable case:

X(Mg) = x((Mg_1 \ {*_,%4}) US' xR)
= x(My_1) =2+ x(S" xR) — x(S* U 5"
=X(Mg-1)—2=2-2(g—-1)-2=2-2

The Euler characteristic x of a manifold can also be calculated by triangulating
it, that is, decomposing it into simplexes. If v; is the number of simplexes of
dimension ¢, then: x = Zi(—l)i'yi. In particular, for each polyhedron, the
number of vertices minus the number of edges plus the number of faces is equal
to 2 = x(S?) (see algebraic topology).

Another way to calculate the Euler characteristic is through MORSE FUNC-
TIONS, that is, functions f : M — R whose critical points are not degenerated,
i.e. the Hessian matrix is definite. If S (f) denotes the number of critical points
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12.

13.

in which the Hessian matrix has exactly k negative eigenvalues, then the Morse
(in)equalities hold, see [65, S.161-162]

Br(M) < Br(f)
D (=1)RBe(f) = x(M).

k

More generally, for a vector field £ having only isolated zeros (e.g., the gradient
field of a Morse function), one can define an index ind, (£) at those points, see

29.27 | or [65, S.133]. And then x(M) = > ;(,)—oind (&) holds by a result of

Hopf, see |29.29 | or [65, S.164].

If there is a nowhere vanishing vector field, the Euler characteristic x (M) must
be 0. This proves the Hairy Ball Theorem |29.11 |.

Conversely, one can show that on every compact, oriented, continuous manifold
with x(M) = 0 there exists a vector field without zeros, see [65, S.137].

The cohomology of spheres S™ for n > 1 is:

R fork=0
HE(S™) = 0 forO<k<n

R fork=n

0 forn<k

So the Poincaré polynomial has the form: fen(t) = 1+ t" and - as we have

already seen in @ -, and the Euler characteristic is x(S**~1) = 0 and x(5*") =
2.

(i) H°(S™) = R follows from .
(i) H*(S™) = 0 for k > n always holds, cf. .

(iii) Remains to show: H*(S") =2 H¥1(S"H1) for 0 < k and H(S™) = 0 for
n>1and H'(S') =R.

We have S"t1 = U UV with U := {z € S"" : -1 < (z,a)} and V =
{z € S +1 > (x,a)} for fixed a € S, So UNV = S x R and thus
HUNV)=H(S") by . The Mayer-Vietoris sequence (for k& > 0) is

!
H*(U) © HY(V) = H*({x}) ® H"({+})
4
HY(UNV) = H (S
]
HMY U UV) = HHH (S
i
HkJrl(U) @ HkJrl(V) ~ Hk+1({*}) oy Hk+1({*})
+
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So H*(S™) -2~ H*+1(S"*1) for all k > 0. The beginning of the sequence looks

like this:
0
1
HO(S™1) =R
1
H°({+}) ® H({+}) 2 R?
1

HO(S™) = {
1
Hl(Sn+1)

1
0

R2 forn=0
R forn >0

Thus, H'(S') = R and H'(S"*!) = 0 for n > 0 because of 8]
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VII. Integration

In this chapter we develop the integration on oriented manifolds. The integrable ob-
jects are the differential forms of maximal degree. We prove the Theorem of Stokes
and introduce manifolds with boundary. In the case of an oriented Riemannian
manifold, we have a distinguished differential form of maximal degree, the volume
form. Finally, we use the integration to further analyze the cohomology.

27. Orientability

In order to be able to perform integrations on manifolds we need an orientation
concept, as, for example, the formula ff f=- fba f for the ordinary Riemann
integral over an interval [a, b] shows.

27.1 Definition (Orientability).

A manifold M is called ORIENTABLE :& there exists a compatible atlas A, such
that all the chart changes are orientation preserving, that is, the determinant of
their Jakobi matrix in each point is positive (cf. [86, 34.3]).

A vector bundle E — M is called ORIENTABLE :< a vector bundle atlas A exists
whose transition functions have values in GL (R") := {T € GL(n) : det(T) > 0}.

27.2 Proposition (Orientable vector bundles).
Let E — M be a vector bundle. The following statements are equivalent:

1. The vector bundle E — M is orientable.

2. An orientation can be choosen on each fiber E, and a vector bundle atlas, whose
vector bundle charts are fiberwise orientation preserving.

3. An orientation may be chosen on each fiber E, such that each vector bundle
chart over a connected domain is either fiberwise orientation preserving or ori-
entation reversing throughout.

Proof. ( = ) Let A be a vector bundle atlas whose transition functions are
fiberwise orientation preserving. We define an orientation on E, by taking the
induced orientation of R¥ for any VB chart ¢ € A around z. This is well-defined
and all VB-charts ¢» € A are orientation preserving, because if 1) would induce
a different orientation - thus be orientation reversing at x - then the transition
function ¢! o 1) would also be orientation reversing at x.

( = ) Let ¢ be any VB chart around z with connected domain and ¢ an

(orientation preserving) VB chart around z of the atlas A given by . The tran-
sition function ¢! o1 has values in GL(R¥) and therefore locally values in the
open subset GL; or GL_. Thus, % is either locally orientation preserving or is
local orientation-interchanging, and thus the same holds on the connected domain
of definition.
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( <= ) is clear.

( = ) The transition functions of orientation preserving VB charts are obvi-
ously orientiation preserving. O

27.3 Lemma (Orientable manifolds).

A manifold M is orientable < TM — M is an orientable vector bundle.

Proof. (=) The transition functions of the vector bundle atlas of TM — M
induced by M are exactly the derivatives of the chart changes of M.

(«=) Consider the VB atlas of TM — M induced by the charts of M and choose

an orientation on the fibers of TM as in |27.2.3|: If ¢ is a orientation reversing
vector bundle chart of TM — M induced by a chart ¢ of M, then replace ¢ by the
reparameterized chart 1 := @ o j, with j : R¥ — R¥,

-1 0 ... 0
. 0 +1
J =
: w0
0O ... 0 441

The resulting atlas on M then has only orientation preserving chart changes, so
provides an orientation on M. O

27.4 Example.

Let G be a Lie group, i.e. a manifold with a smooth group structure: Then TG — G
is a globally trivial vector bundle (see [86, 67.2]) and since each trivial vector bundle
is orientable, TG — G and G are orientable.

27.5 Remark.

If M; are orientable manifolds then obviously also [[ M; and [[ M; are orientable.
For example, all tori T" := (S1)" are orientable because S' is a Lie group.

The converse also holds, because open submanifolds of orientable manifolds are
obviously orientable (hence orientability of [ [, M; implies that of M;) and if M x N
is orientable and N # () then we choose a point y € N and a contractible (and thus
orientable) neighborhood V of y. Thus M x V is orientable as an open submanifold,
and we can coherently orient T, M using the orientations of T{, (M x V') = T, M x
T,V and of T,)V.

27.6 Definition (Transversal mappings).

Two smooth mappings f; : M; — N for i € {1,2} between manifolds are called
TRANSVERSAL if im(Ty, f1) + im(Ty, f2) = T,N for all (z1,22) € My x M, with
fi(z1) =y = fo(z2) €N.

If f5 is the inclusion of a submanifold, then f; is said to be TRANSVERSAL to M
in this situation, i.e. if im(T, f1) + T, M2 = T,N is y := f(x) € M, for all z € Ms.

If both f; are inclusions of submanifolds, they are said to intersect each other
TRANSVERSALLY in this situation, i.e. if T, M1 +T, My = T, N is for all x € M;NMs.

27.7 Example.

andreas.kriegl@univie.ac.at (© June 26, 2018 156



27. ORIENTABILITY 27.9

Let My := S' in N := R?, M := S', and
f M — N be as shown in the image.

It is not required for transversality that the
sum is a direct sum; For example, the iden-
tity f : M := N — N is transversal to
each submanifold My C N with im(7, f) N
Tp(ayMa = Ty (o) M2 # {0}.

transversal

nicht transversal

transversal

27.8 Proposition (Pull-back of manifolds).
Let f; € C®°(M;,N) for i€ {1,2} with f; being transversal to fa.
Then the PULL-BACK
My Xy My := My X (g, np) Ma = {(ml,xg) € My x My : fi(z1) = fg(xg)}

is a regular submanifold of My x My and has the
following universal property:

For each pair of smooth mappings g; : X — M; A

with fiogi = foogo, there exists a uniquely deter- My Xy My 5> Mo
mined smooth mapping g : X — My Xy My with lprl lfz

pr; 0g; = g. My —— >N
1

Proof. By , it suffices to describe M7 x 5 M locally by a regular equation. So
let (29,29) € My x y M. By replacing N locally at f1(29) = fa2(29) =: y by an open
subset in R™, we have the local equation f(x1,22) := fi(x1) — f2(a2) = 0 for the
pull-back, and it is regular because im(7\,0 ,0)f) = im(Tyo f1) +im(Thg f2) = Ty N.

By definition, f; o pry = f2 o pry holds on M; Xy Ms. The mapping g = (g1, g2) :
X — M x My is the only (smooth) mapping with pr, og = g;. Due to fi0g1 = fo0g
its has values in the submanifold M7 x y My and is therefore also smooth into the

pull-back by [11.5] O

By the tangent space T(y, 2,)(M1 Xy M) is ker T(y, o) f = {(v1,v2) €
Ty My X Ty, M 2 Tipy f1 - 01 = T, fo - 02}
27.9 Corollary (Inverse images of submanifolds).

Let f € C(M,N) be transversal to a regular submanifold K of N.
Then f~Y(K) is a regular submanifold of M and diffeomorphic to M x nx K.

In particular, the intersection M1 N Ms of two transversally intersecting submani-
folds My and My of N is itself a submanifold.

Proof. Obviously pr; : M xy K — f~*(K) C M is a bijection because
repry(MxyK)e JyeK: () e MxyK & flz)=ye K o xc fTHK)

MxyKe——— s MxK We have embeddings M x y K C M x K,

y MxK CMxN,and (M,f) : M —

T MXinC1£ M x N. Hence f~Y(K) = M xy K is a
(M, f)

FUE) € M C M. f M ox N regular submanifold of M by |11.10|. O

We now give an example showing that this result is “stronger” than |11.12.2 |
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27.10 The Mobius strip as a zero set.

Consider the Mébius strip Méb € R3. This can not be the zero set of a regular
R-valued function, otherwise the Mdbius strip would be orientable (see )
We now want to represent Mob as the inverse image of the embedding P! — P2
under a map from the full torus to P2, which is transversal to P!.

For this we use the following mapping;:

p: R x D* — full-torus C R®  where D? = {(t,s) € R? : t* + s* < 1}

¥ cos2¢(1 +t-cosp — s -singp)
p: |t ]~ |sin2p(14+t-cosp—s-singy)
S t-sinp+ s-cosp

This is the composite

@ @ @ cos 2¢(1 +1)
Uy . - Wy .
t]—> |t-cosp—s-sinp | =] —>|sin2p(1+1)
s t-sinp+s-cosp S S
with respected derivatives
1 0 0 —2sin2p(1 +1t) cos2p 0
U= |* cosp —sing and U, = | 2cos2¢(1+%) sin2p 0
* singp cosp 0 0 1

Thus p is a local diffeomorphism (even a covering map) with

p 1 (M6b) =R x (—1,1) x {0} (compare with )

The mapping p is also the composite

cos @ x
P\ epp? | sing . (2 = y*)(1 + tx — sy)
t — . =] 2zy - (1 +tx — sy)
S s s ty + sx

Since p = po (exp x D?) is a local diffeomorphism, exp x D? : R x D? — S! x D? is
a submersion (even the universal covering), and since p : S* x D? — full-torus C R3
is smooth and every point has two inverse images with respect to p, the mapping p
is a two-fold covering map. In addition, p~1(Méb) = St x (—1,1) x {0} holds.
Let now the smooth map f : S! x D? — 82 be given by

1
[z yst,s) — ﬁ(:z:,y,s)

then f=1(S1) = S! x (=1,1) x {0} = p—*(M&b), where St C S? is the equator
(s =0).
Since the canonical mapping ¢ : §? — P? is by definition a covering and

ﬁ(xay7t7s) :25(3317y1§t1a31)
= (z,y;t,5) = £(z1,915t1, 51)

1 1
= f(x,y;ts) = \/ﬁ (x7y78) = iﬁ (3317y1,51) = :tf(-rhyl;tlysl)

= Q(f(xayatas) :q(f<xl7yl;tlasl))v
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the mapping f : full-torus — P? and its restriction to M&b can be well-defined by
the following commutative diagram:

SIxRC— -~ R3\ {0}

S1xpr, \
R x D? 4>D2> St x D? 7 52
o \) /
1 f 1
St x (-1,1) x {0} > S
P1 ¢ D 13$ B $q|Sl q
.. fIMab
/ MOb >]P>1
2 VP2 7 \ 2
R x D* ———= full-torus >P

and

FH®Y =p(p (FHPY) = p((fop) 1 (PY) = pl(go f) 1 (PY))
=p(f Mg 1 (BY)) = p(f71(81) = p(S* x (~1,1) x {0}) = Mb.
Moreover, f is transversal to S' C 52: In fact, take v := (vo,v1,v2) € T(5,4,0)5% C
R3. Then v L (z,y,0) = f(x,v,t,0), that is (vo,v1) L (z,y), i.e. (vo,v1) € T(w,y)Sl.
Because of %Lszoﬁ =0) and %|5:0ﬁ =1 we have T(4 y.+,0)f(0,0;t,v2) =
(0, 0, ’Uz)7 SO Tf(x7y7t,0)52 = T(x,y,o)Sl + im T(x7y7t70)f.

Since q is a covering map, f is also transversal to P*. O

Now recall the concepts of vector bundles (see )7 vector bundle homomor-

phisms (see | 14.8 |) and vector subbundles (see [ 14.9 )).

27.11 Proposition (Image of a vector bundle monomorphism).

Letq: F — M andp: E— M be two VB, and f : F — E a VB-monomorphism
(i.e. a fiber-wise injective VB-homomorphism) over idyy, i.e. the following diagram
commutes:

F>—s f(F)—>F

f
Pl
\ e

M

In particular, every fibre-wise bijective VB-homomorphism is a VB-isomorphism.

Proof. Since locally both VB are trivial, we assume, without restriction of general-
ity, that F = M xR* and E = M xR!, and thus f : M x R¥ — M x R! has the form
f(z,v) = (z, fz(v)). Since f,, : R¥ — R! is injective and linear, we can further-
more assume f,, = incl : R¥ — R, Let pr be the projection R! = R¥ x RI=%F — R*
with kernel R'=* i.e. proincl = id € GL(k). As VB-chart on E we should use
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P M xRF x RF 5 (zy0,w) = (25 fo(v) + (0,w)) € M x R! because commuta-
tivity of the diagram

:TwlMX]RkX{O} T@b

M x RF x {0} = M x R¥ x RI=*,

IR

M x RF =—=—

implies that 1 trivializes the image of f, i.e. f(F) corresponds to M x R* x {0}. So
it remains to show that v is a local diffeomorphism: The mapping x — prof, is a
mapping from M to L(k, k) with zg — id, and thus has locally near xy values in the
open subset GL(k) C L(k, k). Without loss of generality, M is this neighborhood

of @g. Since z = f,(v) + (0,w) = pr(z) = (prof,)(v) = v = (profy)~"(pr()), the
inverse mapping to v is given by

v (2, 2) = (:c, ((pr ofy) ! opr)(z),z — fg:(((pr ofy) ! opr)(z))). O

27.12 Corollary (Tangent bundle of a submanifold).

Let incl : A C M be a regular submanifold.
Then (T'incl)(TA) 2 TA is a subbundle of the TM|4.

Proof.
TALEL (Tincl)(TA) > TM|, &L T
\ ) 4 o
Apply | 27.11 | to the VB-monomorphism T'incl : TA — TM]| 4. O

27.13 Corollary (Tangent bundles of sums and products).

The following diagrams describe vector bundle isomorphisms:

(HM) (Tpr )i HTM I_IM UTmcl LlTMZ
7TH1\/I1V\L H‘ITM7\L 7T[_| Z\/Iil I_]ﬂ']uii

27.14 Lemma (Pull-back bundle).

Letp: E - M be a VB and f : N — M be smooth. Then, on the pull-back
f*E := N x E, there exists a distinct VB structure f*p := pr, E—- N
for which p*f = pry|s+p : f*E — E is a fiberwise bijective VB-homomorphism
over f.

F
This bundle has the following universal property:

For any VB q : F — N and VB-homomorphism
f : F — E over f, there exists a unique VB-
homomorphism ft : F — f*E over idy, which
makes the adjacent diagram commutative:

Note that the fiber (f*E), := (f*p)~"'(z) of f*p : f*E — N over x € N is
given by {(z,v) : v € p~(f(x)) = Ef()} and is bijectively mapped to Ey(,) by
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p*f = pry, so f*E = |_|I€M E¢(y) can be considered as a reparametrization by
virtue of f : N — M of the bundle £ =| |,y B, .

Proof. Since p: E — M is submersive, f and p are transversal to each other and
thus f*E := N X F is a submanifold of N x E with the universal property for

smooth maps ¢ and f by [27.8]

In order to show that f*p : f*E — N is a fiber bundle, we need to find local
trivializations. For this purpose, let ¢ : U x R¥ — F |t be a local trivialization of
Ely.

Note that the pull-back of an open subset U C M under a smooth

map p : E — M is given by E|y = p~1(U), as a direct proof Ely ——E
of the universal property shows. Explicitly, the diffeomorphism ol »
p1(U) 2 U xy E is given by z — (p(2),2) and z < (u, 2), cf. v

[27.15), —

Furthermore, the pullback of a trivial bundle pr; : M X
R — M along f : N — M is the trivial bundle
pr; : N x R¥ — N, as a direct proof of the univer-
sal property also shows. Explicitly, the diffeomorphism iprl iprl
N xR¥ 22 N x5 (M xR¥) is given by (x,v) — (z, (f(z),v)) I

and (z,v) < (z, (y,v)).

.
N x RF 2B a1 « RE

Considering a rectangle which is split vertically into two

squares, with the right square being a pull-back, then the *e—>e0e——>e
rectangle is a pull-back if and only if the left square is one,
as a simple diagram chasing shows, see [88, 3.8.3] and [88,
3.8 1] o ——0 —>0
We apply all this now to inclof and f oincl:
FXRF
f_l(U)XRkNif*Ebc—l(U) E‘UNiUvX]R'If

p*f /

ffE——F
f*w @P
P N—>M P
o) - U
The fact that the constructed bundle chart as well as p*f and f* are fiber-linear
follows also from this diagram. O

27.15 Lemma (Restriction as a pull-back).
If p : E — M is a vector bundle and A is a regular submanifold of M, then
Ela:=p Y(A) Zincl* E holds.

Proof. Since p is a submersion it is transversal to A and hence p~1(A4) 2 Ex A =

incl* E by [27.9]. O

27.16 Lemma (Splitting exact vector bundle sequences).

Let E° - E' 25 E? be a short exact sequence of VB over a paracompact manifold
M, i.e. i and p are VB-homomorphisms over idy; and fiberwise i is injective, p is
surjective and im(i,) = ker(p,).

Then E' = E° ¢ E2.
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Proof. By , i: E° = E' induces an isomorphism onto a vector subbundle,
i.e. without loss of generality, ¢ is the inclusion of a subbundle.

We now construct a right-inverse vector bundle homomorphism j : E2 — E' to
p: B! - E%

Locally El|ly = U x R™ and E?|y = E°C . E! £ E?
U x R* for suitable m, k¥ € N. Under j JA j
the isomorphism i, the bundle E° cor- By € i o p By
responds to U x R™ x {0} for an n < m. <. :
Thus, the local representation of p in- %T %T J %T
duces an iSOmOI‘phLSHl U x R =~ U x R" (U — U x R™ U x Rk
U x {0} x R®™" — U x R* and its Xm;;ind TJ T
inverse is a local right inverse to p. ’ e
UxRm—™

By means of a partition of unity, which is subordinate to the covering with these
trivializing neighborhoods U, we can glue these local right-inverses and clearly get
a right-inverse j : E2 — E' to p. The isomorphism E° x; E2 = E' is then given
by (2°,2%) = i(2°) + j(2?) and has as inverse z — (i~1(z — j(p(2))), p(2)) because
z = j(p(2)) € Ker(p) = im(i). 0

27.17 Tangent bundle of a vector bundle.

We now want to examine the tangent bundle 7z : TE — E (the total space) of
a vector bundle p : F — M in more detail. In particular, we are interested in
T*M =T(TM).

Locally E is given by M x RF and thus TU x R’f — U x RF U x RF x RF
TE by T(M x R¥) = TM x R* x Rk, Ph

On the other hand, the pull-back \L\ l\ J
bundle p*(TM) = FE xp TM is

locally givt(an b})f TM x R* and the P (TM) E

pull-back p*(E) = E x s E locally by i

M x RF x RF.

*

p (E)

TM™M
™M

Thus, TE is locally isomorphic to (TM x RF) x;ymr (M x RF x R¥) and thus
to p*(TM) xg p*(E). In order to make these local isomorphisms global, we will
construct a natural short exact sequence p*(E) — TE — p*(T'M) of vector bundles

over E and then apply | 27.16 | to them.

pb

Theorem.

Letp: E— M a VB. Then there is a short exact sequence of VB over E:

E xy E =: p*(E) ey TE ™20y p*(TM) := E x5y TM.

Thus, according to |27.16 |, TE =2 (E xp E) xg (E Xy TM) 2 E X E X3 TM,
however no natural isomorphism exists, see | 27.19 |.
The image of vlg is called the VERTICAL SUBBUNDLE V E of TE and the image of

some right-inverse to (m,Tp) can be viewed as selection of a HORIZONTAL SUBBUN-
DLE of TE.
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Proof.

We can define a vector bundle homomorphism
(m,Tp) : TE — p*(T'M) by the adjacent diagram.
Locally TE is given by TM x RF x R* and p* (T M)
by (M xR¥) x, TM =2 TM xRF and Tp : TE —
TM by (§,v,w) — & Thus, (7, Tp) is described
locally by (£, v, w) — (&, v). In particular, (7, Tp)
is fiberwise surjective.

The fiberwise kernel of (7, Tp) over E consists of those vectors which are mapped
to 0 vectors by Tp, i.e. the tangent vectors to curves in the fibers p~!(z) of E.
Therefore, we define a VB-homomorphism (the so-called vertical lift) vlg : p*(E) =
Exy E —TE by p*(E) = E Xy E 3 (vg,wy) — %\tzovm +tw, € TE. With
respect to the local descriptions M x R¥ x R* of p*(E) and TM x R*¥ x R* of TE it
is given by (z,v,w) — %hzo(x,v + tw) = (04, v,w). Fiberwise it is thus injective
and

im((le)(Lv)) = {(Ow,v;w) tw e Rk} = ker((ﬂ',Tp)(m,))7

so the sequence is exact. O

27.18 Proposition.

Letp: E — M be a vector bundle. Then TE|y := 0*(TE) =2 E®QTM (canonically)
as vector bundles over M, where 0 : M — E denotes the zero section.

We will apply this in [86, 62.8] to E := TM — M and in [86, 62.9] to (TN)* — N.

Proof.
E

o\ \/\%> / \\
\ e
NN

i s

By restricting the exact sequence of VB over E from |27.17 | to the zero section,

we get by an exact sequence p*(E)|y — TE|y — p*(TM)|p of VB over
M. Because of po 0 = id in the side faces in the above diagram, p*(E)|y = F
and p*(T'M )|y = TM and a canonical right-inverse to T'p|rgy,, is given by T0, so
the sequence E — TE|y — TM splits canonically, that is TE|y &2 E ® TM as
bundles over M. O

M
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Moreover, Tp : TE — TM as well as

i s p*(TM) — TM are vector bundles TE TE
and (g, Tp) : TE — p*(TM) is a vector \\\
bundle homomorphism over T'M. (7, Tp

p(TM) ——>F

So we may ask, if the right-inverse of . W* i P ”i
27.17 | can also be choosen fiberwise linear M ey

TM — M
over TM.

27.19 Proposition. Linear connection of a vector bundle.

Let p: E — M be a vector bundle. An isomorphism TE = p*(E) xg p*(TM) is
equivalently described by each of the following mappings:

1. A horizontal lift, i.e. a vector bundle homomorphism C : p*(TM) — TE over
E being right-inverse to (w,Tp) : TE — p*(TM) = E xp TM and which is
also fiberwise linear over T M.

2. A linear connection, i.e. vector bundle homomorphism ® : TE — VE := p*(E)
over E being a left-inverse to the vertical lift vlg : VE — TE and which is
also fiberise linear over wpy : TM — M.

3. A connector, i.e. a vector bundle homomorphism K : TE — E over p and over
my with Kovlg =pry: Exy E—-TE — E.

4. A covariant derivation V : Q°(M; E) = I'(E) — I'(T*M ® E) = QY(M; E)
with V(f-s)=f-Vs+df ®s for all s €e T(E) and f € C*(M,R). (V may
be extended to a so-called outer covariant derivative 2*(M; E) — QU*tY(M; E)
with the same formula as in , see, e.g., [105, 37.29]).

5. A covariant derwative V : X(M) x T'(E) — T'(E), which is C*®(M,R)-linear in

the first variable and R-linear in the second variable, and satisfies Ve(f - s) =
[-Ves+&(f) s foralls e T(E) and f € C(M,R).

Proof. The morphisms in |1 |- are described by the following diagram:

E ? M TM=——=TM
b Tprz . TﬂMOTp TPT P%T K
M w p(B) e VEG—— = TE 25 (TM) v M
\LPH \LWE WE\L PH\L /
p p
E E E E

With respect to local trivializations E|y = U x R¥, TU = U x R™ and thus
T(Ely) = (Ely) x R™ x RF =2 U x R¥ x R™ x R¥, the mappings of the above
diagram have the following form

™M

/ ‘|A‘pr2 w:_wa(Vﬁ_y)_IﬁMOTp TPT pr2‘|A; X

N e - _ (75,Tp)
x (l‘,v; m,w) — (a?,v,O,w) < | (m,v,y,w) — (x,v;x,y) T

vlp w=w—I", (1)7y S A

\ I l I w:=0(v,y) I /

pry TR TE pry
P p
(z,v) (z,v) (z,v) (z,)

where T, : RF x R™ — R* is bilinear and z — T, is smooth.
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(1]e[2]) A short exact sequence E® — E' 25 E? splits (i.e. E' = B0 @ E?) if
and only if p has a right-inverse s, or if ¢ has a left-inverse ¢: The relation between
s and ¢ is given by q(z1) := i~ (21 — s(p(21))) and s(p(z2)) = 22 — i(q(22)).

(@) Since vlg : p*(E) — TFE is a VB isomorphism onto the vertical bundle,

a projection TE — VE := imvl is uniquely given by its second component K :
TE-2,VE=EoFE 22 .

(:>) Using the connector K : TE — E, we obtain a section Ves : M —5—
™™ T55 TE K5 Eof p: E — M for £ € X(M) and s € T(E), because
poVes=poKoTsof=molpoTsof =moTidof =7o& =id.

With respect to local trivializations E|y = U x R¥, we have TU = U x R™ and
thus T(E|y) = (Bly) x R™ x RF = U x RF x R™ x R¥. So V has the following
form:

(<:) We have (Vs)(&;) := (Ves)(x). Because of the C°°(M,R)-linearity of
&+ Vs, this defines Vs € Q' (M; E).

(<:) Any non-vertical vector ¢ € TE can be written as ¢ = T's - £ for some
EeT,M and s € T'(F) with x = mp(Tp - o) and s(z) = 7g(o) € E,. Because of
pos=1id, the vector £ = Tp(Ts- &) = Tp(o) is uniquely determined.

We define K (o) := (Vs)(§) € E, C E. This definition depends only on ¢ and not
on s: The required product rule implies that V is a local operator. Let a local
trivialization U x R*¥ & E|y be described by local sections g; : U 3 z + g;(x) € E,.
Thus s = Y, 5" - g; locally with certain coefficient functions §* € C*°(M,R). Then

Vs(©) = V(X5 9:)(©) = 2 (5'@) - Vaul©) + d5() - qu(a))-

and thus depends only on 5°(x) and on d5*(¢), i.e. only on T's - £ = 0.

With respect to local trivializations E|y = U x R¥, we have TU = U x R™ and
thus T(E|y) = (E|y) x R™ x RF 2 U x RF x R™ x R¥, Vs(¢) and thus K have the
following form:

o= (n,0,yw) =Ts-&  with & = (z,y) and s(x) = (z,5(z)),
(2,0,9,w) = Ts(@,y) = (2,5(2), 9,5 @)W), w=(@)y) = (5" (2)(y)):
T.(v,y) :i=— Zvi -Vgi(z,y) € R¥ is bilinear in v and y

(3

= Vs(§) = (z,—Tx(v,y) + §'(2)(y)) according to the above formula
K(z,v,y,w) = Vs(&) = (2,5 (2)(y) — Ta(v,y)) = (amw — Tz (v, y))

So we can extend K uniquely to VE (i.e. y = 0) using this local formula. Hence

Kovlp=pry: Exy E=2VECTE = E. O

27.20 Proposition.

Each vector bundle p : E — M is isomorphic to a vector subbundle of a trivial
bundle pry : M x R® — M with appropriate s € N.
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Proof.
M x R?®

* 7
(0 7TE7Tf|TE\M) pb f|]u xR?
e

EC ~E®TM = >TE|y "/ >TE T ~Rs xR®

CTE R

M M MC EC¢ R#
Let f : E — R® be an embedding (or just an immersion) of the manifold F into some
R?®. Then, T'f : TE — R® x R® is a vector bundle monomorphism over f : E — R®
and thus T'fov: E — TE|y — TE — R®* x R® is a vector bundle monomorphism
over M — E — R® so (p,prooT'for) : E— M xR* = (fo0)*(R® xR?) is a vector
bundle monomorphism over idy;. O

We will show in | 27.36 |) that such a vector bundle monomorphism exists already
for s = dim(E).

0

27.21 Corollary (Existence of inverse bundles). [65, p.100, 4.3.3].

Let E — M be a vector bundle of fiber dimension k over an m-dimensional mani-
fold. Then a vector bundle F' — M (with fiber dimension m) exists such that E® F
is a trivial bundle (with fiber dimension k +m).

Proof. Let ¢ : E — M x R® be a VB-monomorphism over idy; to |27.20| (or
27.36 | for s = k +m). For F it is sufficient to take p(E)* C M x R®. O

27.22 K-Theory.

For a fixed manifold M we consider the set of isomorphism classes of finite di-
mensional vector bundles over M. With respect to the Whitney sum F; @& E5
and the tensor product F; ® Es, they form a semiring with 0O-element [gy] and
l-element [e1], where &), denotes the trivial bundle pr; : M x RF — M. As in
the construction of Z from the semiring N, one looks at equivalence classes of
pairs (E,F) of vector bundles over M with respect to the equivalence relation
(E1,F1) = (Eq, Fy) :& E1 @ F» &2 Fy @ Ey and adds these by adding the rep-
resentants via (Eq, Fy) + (Ea2, F3) := (Ey & Es, Fy @ F) and multiplies them by
(El,Fl) . (EQ,FQ) = (E1 & E2 S5 F1 & FQ,El (9 F2 S5 F2 & El) I‘IOWQVGI‘7 since
isomorphic classes do not satisfy the (additive) cancellation rules (for example,
TS?@e; & ez 2 ey ®ey, but T'S? is not trivial, and since E — [(FE,0)]= is injec-
tive, the cancellation rule can not be valid on the image), we have to use the coarser
equivalence relation (B, F}) = (E2, F3) = 3 F : E1OF,dF = F1®FE>dF instead.
Then, the set of all &~ equivalence classes of pairs of vector bundles over M becomes
a commutative ring with 1, denoted K(M). With respect to the pull-back along
smooth mappings f : N — M, the assignment K becomes a contra-variant functor.
Vector bundles over 1-point manifolds M = {z} are vector spaces, and pairs of
such are ~-equivalent if and only if the difference in dimension of the components
is equal. So K({z}) £ Z.

A second possibility to determine the K-theory K (M) is to consider the equiv-
alence relation Fy ~ Ey & 3 k1,ka @ By @ e, = FEo @ eg,. The set of these
equivalence classes forms a commutative ring K (M) with respect to the addition
([B1]~s [E2]~) = [Er @ E2]~ and the multiplication ([E1]~, [E2]~) — [E1 ® Es]~.
The neutral element is obviously given by [eg]~. The additive inverse (see )
to [E]~ we find as follows: By there exists an s € N, s.t. E is isomorphic to
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a subset of ;5. Thus, E ® E+ = &, ~ ¢y holds, where E+ Eienotes the orthogonal
complementary bundle to this subbundle in €;. We have K ({z}) = {0}, which is
why K is called the reduced K theory.

We now describe a ring homomorphism K (M) — K(M):

Let given (Ey, F1). Then, as before, there is an s € N and an Fj- with F} @ F{- = e,
Thus (Ey, Fy) ~ (E; @ Fit,e,). We map this to [E; @ Fi-]~. This map is well
defined, because (E1,es,) = (Eo,¢s5,), that is 3 F : F1 @es, DF X Ey Geg, @ F,
implies By @e,, Pes E B De,, DFOF+ 2 By e, OFQFL 2 Ey®e,, ey, e
FEy ~ E5. This homomorphism is obviously surjective and its kernel consists exactly
of those classes [(F,eg)|~ for which E ~ ¢q, that is 3{,n e N: E @ ¢, = ¢,, thus
(E,e) = (E®e,er®e) = (en, €k41). The mapping (n,m) — (e, em) factors to a
ring monomorphism Z — K (M) with left inverses K (incl) : K(M) — K({z}) ® Z.
Thus, the kernel is isomorphic to Z, so the short exact sequence of Abelian groups
Z — K(M) — K (M) splits, i.e.

27.23 Definition (Universal vector bundle).

Let p : E — M be a vector bundle with fiber dimension k& (a so-called k-plane
bundle) over M and f : E — M X R® a vector bundle monomorphism as in
over idp;. We will show in that such a monomorphism exists if s > k + m.
From this we obtain a map g : M — G(k,s) (a so called CLASSIFYING MAPPING
for the vector bundle p : E — M) with values in the Gramann manifold of the
k-planes in R® by mapping z to the image of the mapping of f, : R*¥ =~ E, — RR*:
Since E is locally M x R, the mapping f has as local description a smooth mapping
M — Ly(k,S), z — f,, and hence the composite g with im : Ly (k,s) — G(k,s)
(see [98, 15.1]) is smooth.

Now consider the universal vector bundle E(k,s) — G(k,s), where

E(k,s) :={(e,v) € G(k,s) xR* : v € e},

a submanifold of the product (see [98, 20.7]), and the fibrewise bijective vector
bundle homomorphism

v:E— Ek,s), v~ (g(p(v)), fp(v)(v))»

which is obviously smooth into tyhe product and has values in F(k, s).

E—t s mxRre 22 R M xR 22 o Rs

J |

4 Y= E(k,s) > G(k, s) x R®

E, s g(z) := f.(E.) E

A

M —2 = G(k,s)

It is not hard to show that E = g*(E(k, s)) (see [98, 20.8]), hence the name universal
VB: By the universal property of the pull-back g*(E(k, s)) the VB-monomorphism
~ over g induces a VB-monomorphism (p,v) : E — G*(E(k, s)) over idys which is
easily seen to be fibrewise onto, hence a VB-isomorphism by .

We now wish to show that for s > m + k the formation of pull-backs provides a
bijection between homotopy classes of maps M — G(k, s) and isomorphism classes
of VB of fiber dimension &k over M.
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Since homotopies are mappings f : M x I — N we should treat vector bundles
over the (see ) manifold M x I (with boundary M x {0,1}). Of course, we
could also extend the homotopy to M x R — N in order to avoid manifolds with
boundary, but I := [0, 1] has the advantage of being compact.

27.24 Lemma. [65, p.89, 4.1.1].

Letp: E — M x1I be a vector bundle. Then for each x € M there is a neighborhood
U C M, so that E|yx is trivial.

Proof. Since I is compact, there exist 0 =ty < --- < t,, = 1 and neighborhoods
U; of z, such that E is trivial on a neighborhood of U; X [t;,t;11]. Let U := [ U;.
We show by induction on ¢ that F is also trivial on a neighborhood of U x [0, t,].
It suffices to consider case i = 2. So be ¢’ be trivializations along neighborhoods
of U x [tj,tj41]. On the intersection for j = 0 and j = 1 - a neighborhood of
U x {t1} - we can consider the transition function z — (p!)"1o@? € GL(k). We can
expand its germ (by inflating the domain of definition) to the germ of an mapping
g: U x [t1,t2] — GL(k). This allows us to extend ¢" by (z,v) — ¢'(z,g(2) - v) to
a trivialization on a neighborhood of U X [to, t2]. O

To achieve this result globally on M we need the following two results:

27.25 Lemma (Homotopy extension property for germs). [65, p.90, 4.1.3].

Let the adjacent commutative diagram be given with Ux{0}——=UxI
U C N open and{lQU closed in N.
Theqthereisanh:NxI%Mwithh|AX1:h|AX1 'l lh
and h|nxqoy = f- N x {0} —m
Proof. Let p: N — [0,1] be C*° with ;7 {01 ¢ UxI

pla = 1 and supp(p) € U. Then h :
N x I — M defined by

oo @0 fora¢supp(p) £ ¢ "
hz,1) = {h(w,p(m)t) forx eU N x {0} > N x1

R
satisfies the desired. O k; M

27.26 Globalization lemma. [65, p.53, 2.2.11].

Let X be a set and B a set of subsets of X that contains X and is closed under
taking unions. Furthermore, let ® be a functor of the inclusion-ordered category B
to the category of sets, so there is a mapping ®(By) — ®(B;) for Bs O By in B.
Assume that the functor is continuous, i.e. if B C B is linearly ordered, then

o(|JB) = lm &(B) := {:v e [ ®B):ep +%s a5 for all B' 2 B in B’};
BeB’ BeB’

0 7
1 Ax{0}AxI

and is locally extendable, i.e.

VeeX 3B, € BYBeB:®BUB,)—» ®(B) is onto and « € B.

Then ®(X) — ®(B) is onto for all B € B.
If the functor ® is in addition not triwvial, i.e. 3 B € B with ®(B) # 0, then
®(B) # 0 for each B € B.

Proof. Let By € B and yg € ®(By). Then M := {(B,y) : B C B € B, y €
®(B), y > yo} is partially ordered by (B1,y1) = (B2,y2) i< By C By and ya — ;1.
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Each linearly ordered subset M, of M, because of the continuity of ®, has a
maximal element (Beo, Yoo) With B := |J By, where By, := UMEMO pry (M) and

Yoo 1= (prz(M))MEMo € @B Bo ®(B) = ®(B)-

According to Zorn’s Lemma, there is a maximal element of M, which we again
refer to as (Beo, Yoo). Suppose By, C X. Let # € X \ By. Since @ is locally
extendable a B, € B exists with € B, and ®(BUB,) — ®(B) onto for all B € B.
Let B’ :== Bow U B, D Boo U{z} D By and ' be an inverse image in ®(B’) of
Yoo € P(Bws). Then (B, y’) contradicts the maximality.

If ®(By) # 0, then also ®(X) # () because ®(X) — ®(Byp) is onto, and hence
®(B) () for each B € B, since by assumption there is a mapping ®(X) —
d(B). O

27.27 Theorem. [65, p.90, 4.1.5].
Each vector bundle p : E — M x I is isomorphic to E|pry oy X 1.

In the following we will briefly write E|y; = insg(E) instead of E|px oy, if it is clear
that this pull-back is meant with respect to the insertion insg. The isomorphism in
the theorem can be chosen as identity on F|p;:

E = By x I = By x I
\ ® ‘ \)Sa—lxl ‘ \)
Elm > ¢ Elm ;1 ¢ Elm
M x 1 M x 1 M x 1
M M M

Proof. We consider a locally finite covering A with closed sets A C M, for which
E is trivial along a neighborhood of A x I: Coverings with such sets exist because
of and they can be chosen locally finite because M is paracompact. Let B
be the set of all (automatically closed, see [98, EX6]) unions of subsets of A.

For B € B, we consider pairs (f, B), where B C M is an open neighborhood of
B, and f: E|g,; = E|g x I is a VB isomorphism whose restriction to E|z, (o, is
the identity. With ®(B) we denote the set of germs of such VB isomorphisms, i.e.
the equivalence classes of such pairs, where (f1,B1) ~ (fa, By) if a neighborhood
B C B; N By of B exists with Jfilgxr = [f2lgx;- Obviously the functor @ is
continuous and it is locally extendable: Namely let A € A and B € B. Then we
have to show that ®(B U A) — ®(B) is onto, i.e. that the germ of a vector bundle
isomorphism f : E = E|j; x I over B x I can be extended to one over (BU A) x I.
Let f: Elz,; = E|z x I be the vector bundle isomorphism with open B D B. By
assumption, E| ;. ; = (fl x I) x R for an open A D A. In order to extend f to a
germ over (BU A) x I, it suffices to extend the restricted germ of f over (BNA) x I
to one over A. With E| 5, ; also E| 5, E| jrp)x > and E| j5 x I are trivial bundles,
and the restriction of f between the latter two bundles is a VB isomorphism, which
is thus described by a map g : (AN B) x I — GL(k) with g(z,0) = id V z. By
, its germ on (AN B) x I can be expanded to a map § : A x I — GL(k),
which in turn defines a VB isomorphism E| ;. ; = E; x I, that extends the germ
from f to (BN A) x I.

Because of | 27.24 | the functor @ is not trivial and hence, by | 27.26 |, ®(M) # () and
f:E — E|y x I is a VB-isomorphism for (each) (f, M) € ®(M). O
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27.28 Proposition (The pull-back is homotopy invariant). [65, p.97, 4.2.4].
Let fo, f1: N — M be homotopic and p: E — M be a vector bundle.
Then fiE = fiE as vector bundles over N.

Proof. Let H : N x I — M be a homotopy between f; and f;. For j € {0,1}, we
have H*E = (H*E)|nx sy x I = insi(H*E) x I = f#E x I by [27.27] and thus

REZ(LExDIN=(ffEx Dy ffE. O

27.29 Corollary. [65, p.97, 4.2.5].

Every vector bundle over a contractible space is trivial.

Proof. For contractible spaces M, the identity id on M is homotopic to a constant
mapping const,,. By [27.28 | E =id" E & consty FE = M X E, thus is trivial. [

27.30 Definition (Function space topologies).

For 0 < r < oo we need two types of topologies on the space C"(M,N) of C"-
mappings between manifolds M and N, which we assume to be o-compact:

The COARSE (or COMPACT OPEN) CT"-TOPOLOGY has as neighborhood basis of
f € C"(M,N) the sets
{ge C"(M,N):g(K)Cimy and Ve e K Vk <1
[ og0 )M (@) = ("o for) W) <},

where ¢ is a chart of M, 4 is one of N, K C im ¢ is compact with f(K) C im,
and € > 0.

The FINE or WHITNEY C"-TOPOLOGY has as neighborhood basis of f € C*° (M, N)
the sets

{gGCOO(M,N): 9(K;) Cimy; and Vi Ve e K; VE<r:

H “ogop)®( )_(w;lofwi)““)(x)u <€i}v

where @, are charts of M whose images form a locally finite family, ¢; are charts
of N, K; Cim y; are compact with f(K;) C im;, and €; > 0.

The coarse (resp. fine) C*°-topology on C°°(M,N) is defined as initial topology
with respect to the corresponding C"-topologies for r € N.

On C" (M, N), for 0 < r < 0o, the course C"-topology is completely-metrizable, see
[65, p.62, 2.4.4.a], and the fine C'°-topology has the Baire property, see [65, p.62,
2.4.4.b]. Recall that a subset B C X of a topological space X is called

e NOWHERE DENSE iff the interior of its closure is empty;

e MEAGER iff it is a countable union of nowhere dense subsets, or equivalently,
iff it is contained in the countable union of closed sets with empty interior;

e RESIDUAL iff it is the complement of a meager subset, or equivalently, if contains
a countable intersection of open and dense subsets of X.
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A topological space is called BAIRE iff every residual subset is dense, or equivalently,
iff every meager subset has empty interior.

27.31 Transversality Theorem of Thom. [65, p.74] or [47, 4.12].
Let M and N be smooth manifolds and L C N be a reqular submanifold.

1. Then, the set th(M, N) of the smooth mappings M — N being transversal to
L is residual and hence dense in C°(M, N) with respect to the coarse and also
the Whitney C*°-topologies.

2. If L is closed in N and A is a closed subset of M, then the set % (M, N) of
smooth mappings M — N being transversal to L along A is open and dense in
C>(M,N) with respect to the Whitney C*-topology and for compact A also
with respect to the coarse C*°-topology.

Here a mapping f € C*°(M, N) is called TRANSVERSAL to L along A if T,y N =
Ty L +imT, f for each x € A with f(x) € L. For the proof we need some
preparation:

27.32 Globalization lemma for denseness. [65, p..75, 3.2.2].

For manifolds M and N and r € N let a mapping ® be given, which associates to
each tuple (A, U, V') of open subsets U C M,V C N and closed A C M with A CU
a subset ® 4 (U, V) C C>®(U, V) with the following properties:

Functorality: For such tuples (A, U, V) and (A", U", V') with A’ C A, U’ C U and
V' CV we have {f|yr : f € Pa(U,V) und f(U') CV'} CD4(U', V).

Localization: For each tuple (A, U, V), we have that f € C*°(U,V) isin @4 (U, V)
if there are such tuples (A;,U;, Vi) and f; € ®4,(U;, Vi) with A C |, Ai and
f = fi on a neighborhood of A; for all i.

Local open and denseness: There are open coverings U of M andV of N, such
that for tuple each (A,U, V') as above but with A compact and U and V contained
in elements of U and V the set ®4(U,V) is open and dense in C*°(U, V) in the
coarse C"-topology.

Then for closed subsets A C M we have:
1. ®4(M,N) is open and dense in C*°(M,N) for the Whitney C"-topology.
2. If A is compact, then ® 4(M, N) is open (and dense) for the coarse C"-topology.

Proof. By assumption, open coverings Y of M and V of N exist with ®x (U, V) C
C>(U,V) open and dense with respect to the coarse topology provided K C U is
compact and U and V are contained in elements of &/ and V.

Openness: Let f € ®4(M,N). The sets UN f~1(V) with U € Y and V € V form
a covering of M and can therefore be refined to a locally finite countable covering
{U; : i € A} because of paracompactness, and if A is compact already a finite index
set A is enough to cover A. We may choose compact K; C U; which also cover A.
Let V; be the corresponding V € V with U; CU N f~4(V). Put

C:={ge€C®M,N):gly, € Pk,(U;,V;) for all i}.

Because of localization, C C ®4(M, N), and due to functorality, f € C. By the
openness of @k, (U;,V;) C C*(U;,V;) in the coarse C"-topology, C C ®4(M,N) C
C*(U,V) is also open in the coarse C"-topology (for finite A), respectively in the
Whitney C"-topology.
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Denseness Let f € C*°(M,N) and
C.= {geCoo(M,N):g(Ki) CViand ViVee K;, Yk <

|6 090 00® @)~ w0 Fo @) < i),

a typical neighborhood in the Whitney topology, i.e. y; are charts of M whose
images U; := im ; form a locally finite family and are w.l.o.g. subsets of elements
of U; the K; C U; are compact and w.l.o.g. a covering of A; v; are charts of V
with f(K;) C V; := im(¢);) and w.l.o.g. the V; are subsets of elements of V and
dom; C R™ are convex; and finally ¢; > 0.

For fixed i € A, let U := U; N f~4(V;), i.e. K; CU. Let p € C°(M,[0,1]) with
p = 1locally around K; and supp(p) compact in U. For g € C*°(U,V;) the mapping

. f(x) +p(x)(g(x) — f(z)) forxelU
T e {f(x) for x ¢ supp(p)

in well-defined in C*°(M, N), where we identified V; with the convex domain of ;.
If ¢ — f|v with respect to the coarse topology, then I'(g) — f in the Whitney
C"-topology because the net only varies on the compact set supp(p) € U. Since
Ok, (U,V;) is dense by the local denseness property, we may choose g € P, (U, V;)
close enough to f and hence I'(g) € C. Because of ¢ = T'(g) locally around
K;, we have I'(g) € ®k,(M,N) by the localization property. Thus, @k, (M, N)
is (open and) dense in C°(M, N) with respect to the Whitney topology, hence
N; ®x,(M,N) C ®4(M,N) is residual and thus dense by the Baire property (see
65, .62, 2.4.4.b)). O

27.33 Lemma. [65, p.76, 3.2.3].
Let K be a compact subset of a manifold M and 1 <r < oco. Then

mH}:(M, R"™) := {f € C>®(M,R") : f is transversal along K to RF C R"}
is open and dense in C°(M,R™) with respect to the coarse C"-topology.

Note that the same proof works for the closed half space {(z1,...,z;) € R¥ : 2y >
0} instead of R¥.

Proof. Let pr : R — R"/R* be the canonical projection. For € M, the map
f € C=(M,R") is transversal to R¥ along {z} if and only if f(z) ¢ R* or z is a
regular point of prof.

Openness: Let f be transversal to R* along K. Then every point z € K has a
neighborhood K, s.t. f(K,) NR¥ = () or each point in K, is a regular point of
prof. Thus there is a finite covering with such compact sets K;. The set of all
g € C>(M,R"), satisfying this condition on K;, is open in the coarse C''-topology
and contained in mﬂif (M,R™). So rh]l}}k (M,R™) =, mﬂfé (M,R™) is open.

i

Denseness: Let f € C°°(M,R™). Then, by Proposition of Sard, there is a
sequence y; — 0 in R™ for which pr(y;) is a regular value of prof. Then the sequence
of functions f; := f —y; € C°(M,R"™) converges to f in the coarse topology, and
fi is transversal to R* along K, because if fi(x) € R*, i.e. pr(f(z)) = pr(y;), then
x is a regular point of prof. O

Proof of |[27.31| Let L C N be a regular submanifold and closed for the
moment. Then

DU, V) =50, V) = {f € C*(U,V) : f is transversal along A to L N V}
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fulfills the requirements of :

Functorality: Let (A,U,V) and (A’,U’,V’) be corresponding tuples with A" C A,
U CUand V' CV.
Then obviously {f|y+ : f € M5 (U, V) und f(U') C V'} C 4 (U, V).

Localization: Let (A,U,V) as well as (A;,U;,V;) be corresponding tuples with
A C U, Ai. Furthermore, let f € C®(U,V) and f; € ®4,(U;,V;) with f = f;
locally around A;. Then f € ®4(U,V), because let f(z) € L for an « € A, then
xr € A; C U; for some i and im(7, f) = im(T% f;) together with Ty, (LNV) =
Ty, (2) (L N V;) generates Ty, V.

Local open and denseness: Let U C M open, V a chart that describes L as

submanifold or has empty intersection with it (i.e. w.l.o.g. V. C R"™ is open
and LNV = R¥NV) and let A C U be compact. According to Lemma [94,
27.33], rhﬁk (U,R™) is open and dense in C*° (U, R™) with respect to the coarse C"-
topology for 1 < r < 00, so also P4 (U, V) = mﬁk (U, V) = mﬁk(U, R™)NC>(U,V)
in the topological subspace C*(U, V') of C*°(U,R"™). Denseness can be seen as
follows: Approximate f € C*°(U,V) by some g € mﬁk(U, R™), which we may
assume to have locally around A values in V| and then modify g outside of A so
that it is still in this neighborhood of f but has there also values in V.

Thus, by | 27.32 |, the set mﬁ (M, N) is open and dense in the Whitney C"-topology
on C*°(M,N) and if A is compact also in the coarse one. Since the corresponding
C*>°-topologies are the union of these C"-topologies, the result follows for them as

well. This proves |27.31.2|.

If L is not closed, then we choose a countable family of compact submanifolds L;
with boundary (the image of compact balls under charts) with L = (J, L;. Then
ki (M, N) are open and dense in the Whitney topology by the first part of the
proof, so 5 (M, N) = N, M4 (M, N) is residual.

Concerning the coarse topology, we use a covering of A with countably many com-
pact sets of A;. Then M’ (M, N) = (; M} (M, N), where ' (M, N) C C*(M, N)
is open and dense in coarse topology ‘by what was shown above. O

27.34 Lemma. [19, p.160, 14.8].

Let f: M — R™ be continuous and, as germ on a closed subset A C M, smooth.
Then, arbitrarily close to f (in the fine C°-topology) there is a smooth mapping f
with f = f on A.

Proof. Let € : M — R be continuous with e(x) > 0 for all z. Let f be C*
on a neighborhood U, of A. For each z ¢ Alet U, :== {2’ €¢ M\ A: |f(a') —

f(z)] < e(z’)}, an open neighborhood of z. Let {p, : * € {o0} U (X \ A)} be a
partition of unity subordinated to the covering {Uso} U{U, : @ € M \ A} and let

fi=poo- f+zz7goopx~f( x). Clearly, f is C°, f = f on A, and for 2’ ¢ A:
) = 560 = ool + 3 0ala) 1) = 1) 3 )

TF#00

<Y 1) = @) pala’) < }:% —e(a). O

{z #0c0:2" €U}

The VB-monomorphisms ¢ : M x RF »—» M x R® obviously correspond bijectively
to the smooth mappings ¢V : M — L(k, s). For these the following holds:

27.35 Theorem. [65, p.78, 3.2.6].
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Let M be a m-dimensional manifold and A C M closed.
Then any smooth germ M 2 A — Ly(k,s) with s > m + k can be extended to a
smooth mapping M — Ly (k, s).

Proof. By the extension theorem of Tietze f can be extended to a continuous
mapping f : M — L(R¥ R*) =: L(k,s). By we may choose f smooth. For
x € Alet 2¢, == d(f(x), L(k,s)\ Li(k,s)) >0and U, == {y € M : |f(y) — f(z)| <
.} = f1(U.,(f(z))). There is a locally finite countable refinement by relatively
compact charts U;. Choose p € C*°(M,[0,1]) with p = 1 locally around A and
suppp C U, U; and choose compact subsets K; C U;, s.t. suppp C U, K;. We
have L(k,s)\ Li(k,s) = U, ), Lr(k, s), where L, (k, s) is a r(k + s —r)-dimensional
submanifold of L(k,s) by [3.8]. By [27.31.1] we find g : M — L(k,s) in the
Whitney-C%-neighborhood {g : |g(z) — f(z)| < &; V € K;} being transversal to
L,(k,s) for all » < k. Because of
dim L(k,s) —dim L.(k,s) = ks —r(k+s—r)=(k—7r)(s— 1)
>k—-—(k-1)(s=(k=1)=s—k+1>m+1>m

this is only possible if g does not meet the set | J,_, Lr(k,s), i.e. g(M) C Ly (k, s).
Thus §:=p- f + (1—=p)-g: M — Lg(k,s) is the desired mapping:

Infact, j=f=fonAand §=gon M\ U, K;. Whereas, for y € K; C U; C Uy,
we have also §(y) € Li(k, s) because

13(w) = f ()| < [(G=H W+ )= F (@) = A=p)I(g=H W) +1F(y)—f(@:)| < 2e5.
Note that on order that g is not only an extension of f|4 but even of the germ of

f along A, we only have to replace A by a closed neighborhood contained in the
domain of f. O

27.36 Proposition (Extending germs of VB-monos). [65, p.99, 4.3.1].

Let E — M be a vector bundle with fiber dimension k and m-dimensional base M.
Let furthermore, A be closed and U O A open in M and ¢ : E|ly — U x R® be
a VB-monomorphism with k +m < s. Then, there exists a VB-monomorphism
@ E— M x R® which coincides with ¢ on a neighborhood of A.

Proof. If E — M is trivial, then ¢ defines a mapping U — Li(k, s). Because of
s > m + k, there is an extension M — Ly(k,s) of the germ of this mapping by

27.35 | Thus, we get a VB-monomorphism E = M x R¥ »— M x R® over id;.

The general case follows by applying the globalization lemma : Namely, let
By be a locally finite covering of M by closed sets By C M, for which E|y, is
trivial for some neighborhood Uy of By. Let B be the set of all (automatically
closed) unions of sets from By. For B € B, let ®(B) be the set of germs of VB-
monomorphisms over B, i.e. there exists a neighborhood V' C M of B and a VB-
homomorphism @ : E|y — V x R® such that it coincides over a neighborhood
W C UUV of ANB with ¢. By shrinking U and V' we may assume that W =UNV
and hence ¢ on E|y extends via ¢ on E|y to a VB-monomorphism E|yyy — (U U
V) xR®: In fact, A’ := A\W and B’ := B\ W are disjoint closed subsests, so there
exist disjoint open neighborhoods U’ and V' by normality. Hence U” := U’ U W
and V" := V' UW are open neighborhoods of A and B (e.g. U" 2 A/UW =
(A\WYUW D A) and U"NV"=U'NVHIUW =0UW =W.

The functor @ is obviously not trivial and continuous. It is also locally extend-
able: Namely let z € By € By, i.e. E|y, is trivial for some neighborhood Uy of
By. Let B € B and ¢ € ®(B), i.e. ¢ has as representant a VB-monomorphism
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@ Elyuy — (VUU) x R?® for neighborhoods U of A and V' of B which extends
the germ ¢ : E|ly — U x R®. Since E|y, is trivial, we may extend the germ of
the VB-monomorphism ¢ over the closed set (AU B)N By to a VB-monomorphism
over Uy by the special case and as before we may assume that it agrees with ¢ on
the intersection of neighborhoods of AU B and of By, thus describes together with
@ the germ of a VB-homomorphism over AU B U By, i.e. an element in ®(B U By)
with image ¢ € ®(B).

Hence, the result follows from | 27.26 |. O

27.37 Proposition. [65, p.100, 4.3.2].

Let E — M x I be a vector bundle with fiber dimension k and m-dimensional M.
For s > k+m and i € {0,1}, let ¢; : Elpuqsy — (M x {i}) x R® be a VB-
monomorphism. Then there is an extension ¢ : E — M x I x R® of oo U1 to a
VB-monomorphism over M x I.

Proof. By |27.27|, we may extend each ¢; to a VB-monomorphism

E = E|yx i} x T =220 (M x {i}) x R® x T = (M x I) x R®.
This gives us an extension ¢ : E|y — U x R® to a VB-monomorphism over the
open neighborhood U := M x (I'\{3}) of A:= M x {0,1} C M x I. Its germ over
A can be extended into a global VB-monomorphism by | 27.36 |. O

27.38 Theorem. [65, p.100, 4.3.4].

Let M be an m-dimensional manifold.

For s > k+ m and each vector bundle E — M with fiber dimension k, there is a
classifying map g : M — G(k, s), i.e. E = g*(E(k, s)).

For s > k+m the assignment g — g*(E(k, s)) is a bijection between the homotopy
classes of maps g € C*°(M,G(k,s)) and isomorphism classes of vector bundles
E — M of fiber dimension k.

Proof. By|27.28 | taking the pull-back is a well-defined mapping g — ¢*(E(k, s))
for the corresponding classes, i.e. homotopic mappings induce isomorphic pull-
backs.

By | 27.36 | there exists a VB-monomorphism E — M x R® for s > m + k and thus
by | 27.23 | a classifying map g : M — G(k, s). This shows the surjectivity.

Injectivity: Let two bundles over M be isomorphic and g a classifying mapping
of one of the two bundles. Then, of course, this also classifies the other bundle.
Remains to show that each two classifying maps ¢° : M — G(k,s) of a vector
bundle E — M are homotopic. As such they induce VB-monomorphisms

901‘ B = (gl)*(E(kvs)) =M XG(k,s) E(kas) — M XG(k,s) G(kvs) xR*= M x R*
over M with g*(z) = im(¢f, ;). By the VB-monomorphism

@ U (ExI)|axqo1y = Ex{0,1} — (M x{0,1}) xR®* = ((M xI) xR®)|arx (0,1}
extends to a VB-monomorphism ¢ : E x I »— (M x I) x R® which induces a
homotopy g : M x I — G(k,s) between the g* by virtue of g(z,t) := im(p,,) :
E, = (E X I)(x,t) — ]RS) O

Now we return to the investigation of orientability.

27.39 Remarks.
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. If two of the following three vector bundles are orientable, so is the third one:

Ei— M, B - M, E1® Ey — M. From fiberwise orientations of two of these
bundles it is easy to construct an orientation on the third.

. Let Ey -4 E; -2 FE5 be a short exact sequence of vector bundles. If two of

the bundles are orientable, then also the third one (use that every short exact
sequence of vector bundles splits by |27.16|, that is F; = Ey @ E», and then

apply [1]).

If a vector bundle £ — M is orientable and f : N — M is smooth, then the
induced bundle f*(E) — N is orientable (choose the orientation of Ey(,) on

(f*(E))m = Ef(:c))'

If 2 of the following 3 objects are orientable, so is the third one: £ — M as a
vector bundle, FE as a manifold, M as a manifold: Use the short exact sequence
p*(E) - TE — p*(TM) from , as well as , , and the fact that
E — M is the 0 : M < E-induced bundle to p*(E) — E and TM — M is the
0 : M — E-induced bundle to p*(T'M) — E, so M is orientable (by ) if
and only if p*(TM) — E is it, and F if and only if p*(E) — E is.

E »*E E TM — p*(TM) —= TM
N
M—2 g2 N M—" g M
\_/ \_/
id id

. TM is always orientable as a manifold; but as a vector bundle TM — M is

orientable if and only if M is orientable as a manifold (by ):

In the case of E = TM and p = my;, the sequence from used in
is reduced to 7*(TM) — T(TM) — 7*(TM), so as a vector bundle T?M —
TM is isomorphic to 7*(TM) ® #*(TM) and the sum of identical bundles
is always orientable: If one chooses the same orientation on the fibers of the
two summands, this obviously results in an orientation on the sum, which is
independent on the respective choice.

27.40 Examples.

1.

Vector bundles with one-dimensional fibers are orientable if and only if they are
trivial (a trivialization is given by oriented unit (with respect to some metric)
vectors). The vector bundle Méb — S! is not orientable (since it is not trivial),
nor is the Mobius band as manifold after remark . All 1-dimensional
manifolds are orientable.

. Each complex vector bundle is orientable, because GL(C") C GL(R?") by

[86, 14.14] or also because GL(C™) is connected and contains the orientation
preserving identity. The tangent bundle of a complex manifold is a complex
vector bundle and therefore orientable. Thus, every complex manifold itself is

orientable according to .

A 2-dimensional manifold is orientable if and only if it carries a complex struc-
ture, see [29].

. Let E — M be a vector bundle with simply connected base manifold M, then

the vector bundle E — M is orientable (but not necessarily trivial as T'S? — S?
shows): Along curves in the basis we can prolong the orientation of the fibers
independently on the choosen curve, since the base space is simply connected.
In particular, any simply connected manifold is orientable.
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27.41 Lemma (Orientability of inverse images).

Let f: M — N be smooth and transversal to a reqular submanifold L C N. If M
and (TL)* — L are orientable, so is f~(L).

If L is a single point or both L and N are orientable, then the normal bundle
(TL)* — L is orientable.

Proof. By definition the fibers of the normal bundle (T'L)* are T, N/T, L for y € L,
so we have the short exact sequence TL < (T'N)|r — (T'L)* of VB over L.

If L and N are orientable, then also the bundles TL — L and TN — N and thus
by | 27.39.3 | also the pull-back bundle (T'N)|;, and finally (T'L)* — L as well by

2]

The special case for L = {y} follows, since (T'L)" is trivial as VB over the single-
point space and thus orientable, or also because we can replace N with an (oriented)
chart neighborhood.

TM r TN
</‘ 7
TM|f—1L TN‘L
— | |
T(f'L) & TL
\ M B
AR g

The map is T'(f~*L) — (I'M)|;-11, a VB monomorphism over f~'L and further-
more (T'M)|s-1p, KEN TN|, — (TL)* a VB epimorphism over f|;-1z: f~'L — L,
because for z € f~1(L), y = f(z) and @ € (TL); := T,N/T,L there exists a
w € T,N with @ = [w] and, because of transversality, there exist v € T, M and
v e TyL with w =T, f -v+v". So [Tf -v] = [Tof-v+v'] = [w] =w. Fiberwise
the kernel of this epimorphism is {v € T, M : [T, f -v] =0} ={v e T,M : T,,f -v €
TrwL} = (Tof) " (Tp) L) = To(f L) by [27.9]

Thus, T(f~'L) — (TM)|s-1p — f*((TL)*) is a short exact sequence of vector
bundles with orientable (according to ) vector bundles (T'M)|;-1;, and
f*((TL)*Y). Thus T(f~'L) — f~'L is orientaable, i.e. f~1(L) is orientable. O

27.42 Examples.

1. Each S™ is orientable by |27.41 |

2. All compact 2-dimensional manifolds in R? are orientable, see the Classification
Theorem and exercise [98, 1].

3. P! = §! is orientable. The projective surface P? contains a M&bius strip as an
open part, so it (and all the other surfaces of ) is not orientable. In general
P™ is orientable < n is odd, see ’6.12.5 ‘ and ’ 27.44.2 ‘

27.43 The orientation covering.

For manifolds M let M°" := {(p,w) : p € M, w is an orientation on T,M}. We
define an atlas A for M°" using charts ¢y : domyp — M, =z — (¢(x),tw),
where ¢ is a chart of M and w is the orientation induced by T'¢ from the default
orientation on R™. Then A is a C*° atlas on M°", because when ¢ and 1) are charts

andreas.kriegl@univie.ac.at (© June 26, 2018 177



27. ORIENTABILITY 28.1

of M, then 3011 o4 (and also (pjrl ot_, etc.) is defined precisely on the open set
{z € R™ : (¢~ 09))(x) is orientation preserving (reversing)} and coincides there
with ¢ =1 o1
7 € dom(p 0 h4)

& € dom(p ! o) s.t. Tpep and T(p-10y)(x) induce the same orientation

& x cdom(p o) st. (¢t ow) () is orientation preserving.
Obviously, pr; : M°" — M is a two-fold covering map of M, the so-called ORIEN-
TATION COVERING of M.

The manifold M°" is oriented, with the orientation on T{, ,yM°" = T),M being just
w.

Furthermore M is orientable & M°" = M x {—1,1}, i.e. is trivial:

(<) The embedding M — M x {—1,1} & M°" is open so with M°" also M can
be oriented.

(=) If M can be orientated, then there is a specified distinguished orientation wy,
on T,M. Thus (p,£1) — (p, £w,) provides a trivialization M x {—1,1} = M°".
27.44 Example.

(1) A two-fold twisted M&bius strip (i.e. a cylinder) is the orientation covering of
the Mobius strip.

(2) 8™ = (P™)°" for n odd.

28. Integration and the Theorem of Stokes

28.1 Proposition.

M is orientable < AY™MT*NT s trivial as a vector bundle.

Proof. Let m := dim M.

(=) It suffices to show the existence of a nowhere vanishing section w € Q" (M)
(which directly provides us with a global trivialization ® : M x R — A™T*M,
(x,t) — t - wy, of the one-dimensional bundle A™T*M — M). On the image U
of each orientation preserving chart (ul,...,u™)~! we can define wy € Q™(U) by
wU(%7 e Buim) := 1. Then wy(v1,...,vy,) > 0 for any positive oriented basis by

. We choose a covering U of M with such open sets U and associated wy, and
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let {fu : U € U} be a subordinated partition of unity. We define w € Q™ (M) by
w=73 yfu-wy € Q"(M). Then wy(vi,...,vy,) > 0 for every positive oriented
basis of T, M, thus, in particular, w, # 0.

(<) Ut d: M xR — A™T*M is a global VB isomorphism, then w := ®(_ x {1})
is a nowhere vanishing m-form. We orientate T, M by calling a basis (v;)I"; of
T, M positively oriented if w,(vy,...vy,) > 0. Let (ul,...,u™)~! be a chart with

. . . 9

connected domain. Since w does not vanish anywhere, wy, (Wv R 6um) # 0 and
hence w,, (%, e %) is positive everywhere or negative everywhere, the vector

bundle TM — M is orientable according to|27.2.3 | and hence also M is orientable
as manifold. O

28.2 Motivation.

We can not easily integrate functions f : M — R over a manifold M. Let us take a
look at the simplest case of 1-dimensional manifolds. If M is an interval in R with
boundary points a and b, then the usual Riemann integral [, f = f; f measures
the oriented surface below the graph of f. In order to be able to define the integral
for any (1-dimensional) manifold M, we definitely need an orientation on M. In
this section, therefore, all manifolds are assumed to be oriented. Furthermore, we
also have to be able to measure (infinitesimal) lengths (or volumes) on M. If M is
a Riemann manifold, then we can do so using the volume form voly,, which is in
the one-dimensional Riemann case the arc element.

On abstract manifolds we need a substitute for the volume element. In the 1-
dimensional case, this would be a 1-form w € Q'(M) (which does not vanish at any
point). Then we could define the integral fM f-wover M of f with respect to w.
But since f-w itself is a 1-form, it is sufficient (and necessary, since any form can be
written as f - w) to define [, w for arbitrary 1-forms w € Q*(M). If ¢ : [a,b] — M

is an orientation preserving global parameterization, then [, w := f; weey (E(t)) dt
is the path integral defined as usual.

On general oriented m-dimensional manifolds M we now want to define the integral
Sy w for any m-form w € Q™ (M) with compact support.

28.3 Definition (Integration of differential forms).

Let M be an oriented m-dimensional manifold and let w € Q™ (M) have compact
support.

1. If M = U C R™ is open then w can be written as
wzh ..., 2™ = f(zb, ... 2™ dat Ao A de™
with f € C*°(U,R). The integral is then defined as the usual Riemann integral:

/Mw _/f ™Y d(, ™),

Note that for orientation preserving diffeomorphisms g : R™ DV — U C R™:

/g(v)w = /Vg*(u)),

because if w = f dz' A -+ A dz™, then
(g* (W) (x) = (fog)(x) det(¢'(x)) dz* A--- Adax™
>0

by and hence the integrals coincide by the transformation formula for
multidimensional integrals, see e.g. [82, 7.5.10].
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2. If suppw C ¢(U) for an orientation preserving chart ¢ : R™ D U — ¢(U) C M,

then we define:
/ w::/ 0" (w).
M U

This definition makes sense, because let suppw C p(U)Ny(V) =: W for charts
¢ and 1 with orientation preserving chart change g := ¢~tow : =} (W) —
¢ Y(W). Then

* su ( *W) - _1(W) * *
/¢w>”¢ £ / ww:/ o (w) =
- o (W) g1 (W)

o v suP(W) ST W) [
=/ gew-[  ww [ v
O e T Y
pog)* (w

3. If suppw is arbitrary compact, we choose a finite open covering by chart neigh-
borhoods of suppw, as well as a partition of unity {h;}, which is subordinate
to this covering. Then each h; - w has its support contained in some chart, and
so we can define using :

foo= [ (r)e =5 [ e

Again, this definition makes sense, because if {g; } is a second partition of unity,

which is subordinate to a finite covering of the support with chart neighbor-
hoods. Then

21: Mhiw:zi:/l\/f(zj:gj)hiw:zi:zj:/nghiw:
- XJ:/M(Z hi)gyer = Z/ngw-

J

28.4 Remark (Densities).

If we want to integrate over non-orientable manifolds, we need something else than
m forms. For this we define a one-dimensional vector bundle vol (M) by using
x +— |dete’(x)| € GL(1) as transition functions for the chart changes ¢ of M.
Sections of vol(M) are called DENSITIES, which can then be integrated over M. If
M is orientable, then vol(M) = A™T* M.

28.5.

We now approach Stokes’s Theorem: According to the fundamental theorem of
Analysis (see, e.g., [81, 5.2.2]), f; f(z)dx = f(b) — f(a). In particular: fi)oo =
ff f"= f(0) if supp f is compact and a < inf(supp f).

Lemma (Theorem of Stokes for half-spaces).

Let H= H™" := {(t,z) : t < 0,2 € R™} be an (m+1)-DIMENSIONAL HALF SPACE.
The subset OH := {(0,z) : x € R™} 2 R™ is called the BOUNDARY of H.
For each m-form w on R™t1 with compact support we have

/dw:/ w::/ incl* w,
H OH oH

where incl : 0H — H denotes the inclusion.
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Proof. For w € Q™(R™*!) we have:

m
]
w:Zwidxo/\--J\ dx® N--- Ndx™;

1
dwfzza% dzd Ndz® A Adxt A Ada™ +0
i= 0] 0
awz

83;1 YodaO A Adz™ =

“ [ Ow; Fubini
= [ dw= -1) L d(20,... 2™ ==
[aw=3 0 [ Sha )

0
:/ </ %(mo,xl,...,zm) d:c0> dz',...,z™)
m —00 x

m ) +oo ) i ) —
+ Z(—l)’/H </ 8(; daﬁ’) d®, ...,z ™)
i=1 i

—o0
:/ wo(0,zt, ... 2™)d(zt, ..., 2™) 40,

where H; := {(t,z',...,z" ..., 2™) : t < 0} and the second summand is 0 because
supp w is compact. On the other hand,

/ w::/ incl® w
OH OH

—
[25:2] A’ ! m™)
Z . M) det (260t .

O0H ;,_

:/ wo(0,zt, ... a™) d(zt, ..., 2™) 40,

because

0 i m ;
1 f =
det(a(ac, R L )) :{ ort=0

Azt ..., xm) 0 otherwise O

Now we want to transfer these considerations to spaces that only locally look like
H:

28.6 Definition (Manifolds with boundry).

A (C°° MANIFOLD WITH BOUNDARY is a set
M together with an atlas A of injective maps
@ : U — M, where U C H is open in a closed
halfspace H = {(t,z) : t < 0,2 € R™F1},
and the chart changes 1) ~top : =1 (4(V)) —
¥~ (p(U)) are defined on open subsets of
half-spaces and are smooth.

A mapping between such subsets of half-spaces is called smooth if there is a smooth
extension to open subsets of R™. As usual, we assume that the final topology
induced by the atlas is Hausdorff and paracompact. The BOUNDARY of M (not in
the topological sense) is then defined as

OM :={p € M : 3, achart at p with ¢! (p) € OH}.
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Since the chart change is a local (diffeomorphism and thus) homeomorphism of R™,
it maps inner points (i.e. those in H \ OH) to inner points, and thus p € OM <
@ 1(p) € OH for each ¢ chart at p. The boundary OM is a manifold (without
boundary), with an atlas on M given by the restrictions p|sas of the charts ¢ of
M. One can define C*(M,N), TM, T*M, A*T*M and QF(M) as for manifolds
without boundaries.

28.7 Definition (Inner tangent vector).

A vector v € T,M := Der,(C*>(M,R)) is called an INNER TANGENT VECTOR if
p ¢ OM or Tpo™' v e Ty, H =R x R™ has 0-th component less than 0.

28.8 Lemma (Prolongation of manifolds with boundary).
Any manifold with boundary can be extended to a manifold without boundary, i.e.

is a submanifold of same dimension:

Proof sketch. Using a partition of unity one finds a VF on M, which consists
only of inner tangent vectors. By rescaling the vector field its flow can be made
global (see [86, 62.11]) and thus FI(1,.) : M — M \ OM is an embedding of M into
the manifold without boundary M \ oM. O

Simple examples of manifolds with boundary are the closed Mébius strip and the
closed ball.

28.9 Lemma (Orientability of the boundary).

The boundary of each oriented manifold with boundary is canonically oriented.
Proof. For this it suffices to call a basis (e;)[; of T,(0M) positively oriented, if

for an tangential vector ey pointing outwards (i.e. —eq is inner tangent vector) the
basis (e, ..., em) is positively oriented in T, M. O

28.10 Remark.

Let N be an oriented submanifold of codimension 1 of the (n+1) dimensional ori-
ented Riemannian manifold M, and let v, be the uniquely determined vector in
T.M for x € N, so that (vg,e1,...,e,) is a positively oriented orthonormal ba-
sis in T, M for an orthonormal basis (e1,...,e,) from T, N. In the case of the
canonically oriented boundary N = 0M of a manifold M with boundary, v is the
outward-pointing unit normal vector, see . If v is prolongated to a vector field
of the same name on the whole M, then

voly = inkl* (¢, (volys)) on N,

because voly(e1,...,en) =1 =voly (N, e1,...,6n) = (tuy volar)(er, ... en).

28.11 Theorem of Stokes.

Let M be an (n+1)-dimensional oriented manifold with canonically oriented bound-
ary OM. For every w € Q"(M) with compact support we have

/ dw:/ w::/ incl*w  ( where incl: M — M)
M oM oM
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Proof. Let {h;} be a partition of unity subordinated to a covering by chart neigh-
borhoods and put w; := h; - w. Then

28.3.3
w = Zwi, where suppw; C supp h; /8 w = Z/a Wy,
i M i

M
28.3.3
dw = Zdwi, where supp(dw;) C supp w; dw = Z dw.
i M M

Thus, the proof is reduced to the case already shown in , where suppw is in a
chart neighborhood, i.e. w.l.o.g. M is the half-space H"*! and w € Q*(R"*!). O

29. Applications of integration to cohomology

We now want to determine the highest cohomology H™ (M) for each m-dimensional
manifold M.

29.1 Definition. Cohomology with compact support.

By using the subspaces QF(M) := {w € QF(M) : suppw is compact} instead of
QF (M), we obtain the cohomology with compact support

ZE(M) := ker(d : QF(M) — QFF (M),

BY(M) :=1im(d : QF1(M) — QF (M),

HZ(M):= Z:(M)/BE(M).
Note that BX(M) C {dn € Q¥(M) : n € Q¥=Y(M)} for M = R™: For f € C=(R")
with 0 # f > 0, the differential form w := fdz! A--- Adz™ € Q7 (R") is exact by
the Poincaré Lemma | 26.5.6 |, but for no n € Q2~1(R") is dn = w, because by the
theorem | 28.11 | of Stokes 0 < [, w = [z, dn = [;n =0 would be a contradiction.
A direct generalization of this argument shows that for each m-dimensional ori-
entable manifold M there is an wy € Q'(M) = Z"(M) with [, wo = 1 and
wo & B™(M), i.e. H™(M) # 0.
We now want to show that H(M) 2 R for all such connected M by finding for each
we QM) anne QP (M) with w = ([, w)wo + dn, and thus [ : Q(M) - R

~

induces an isomorphism H"(M) =R, [w] — [,, w.

29.2 Lemma.

Let r : R™T1\ {0} — S™ be the retraction x Tay ond v € X(R™T1) the vector
field x — x. Then

(r*volgm)(x) = T Ly VOlgm-+1 ()

1 s . [
=0

Proof. Since, for x # 0, the tangential space T, R™*! is generated by T (||z| S™)
and v, it suffices to test both sides on vectors vy, ..., v,, from these two subspaces.

If v; = v, is for at least one 4, the left side is 0, because T, r-v = %\t:m‘(x—&—tm) =0
and also the right side:

1

Hx”TH VOlRm+1(Vx,...,Vz7...):0.

(LVVOIRm+1)z(...,Ui7...) = H.THTH
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Otherwise, if all v; € T, (||| S™), then T,r - v; = HTlHUi’ because 7| sm is mul-

tiplication with the factor HTll\ Thus both sides are the same, because by |28.10
(see also Exercise [98, 37])

28.10 i . :
volgm incl* (¢, (volgm+1)) = incl* (Z(fl)zx’ dz® AN A A dmm>
i=0
and hence
(r*volgm).(v1,...,0m) ==
1 1
= (VOIS’”)T T (71}17 R RTINT )
O\l i
1 m . [ —
= Tl (Z(—l)lrl(x) dz® A Adzt A A dxm)(vl, ce s Um)
i=0
1
= W(LV VOlgm+1 )z (V1, ..., V). O

29.3 Lemma. Integration with respect to polar coordinates.

Let B :={x € Rl ||z|| < 1} and f € C*°(B,R). Then

1
/ f :/ f volgm+1 :/ g volgm with g : x »—>/ t" f(tx)dt
B B sm 0

Proof. Let h: S™ x [0,1] — R be given by h(y,t) := t™ f(ty) and dt A volgm :=
pri(dt) A pri(volgm) € Qm+1(S™ x [0,1]). If we use the orientation induced by

dt A volgm # 0 (see ) on S™ x [0,1], then

/ g VOISm / / tm dt VOlSm = / h dt A VOISm .
Sm m Smx[0,1]

_h 7’
We have B\ {0} & x (0,1] by ¢ : z — (H%\I’ llz||) with inverse mapping
(y,t) = ty. With p(z ) = IIxII we get

—_ dz" and hence

.’E
3@” Hxll

(e A volsm) = ¢ (pr3(d) A pri (volsm) = (pr o) (d0) A (pr, )" (volsn)
p*(dt) A r*(volgm)

Ml ) 1 U o —

2 dat A —— Dt da® A A m
g I dz? N et E (=1)'a*da” A+ Adat A--- ANdx
3=0 i=0

1
0 m o __ 0 m
‘x”m-&-? E 2d2O A - ANdx 77Hx||mdx A« ANdx

)
©
o

and thus, for x # 0,
©*(h dt Avolgm)(x) = h(p(x)) *(dt Avolgm)(x)

= |lz||™ f(x) dz® A ANdx™ = f(x)dx® A A da™.

]
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So
f=Ilim ©*(h dt Avolgm) = lim / h dt A volgm
/B eNO JB\eB eNO Ju(B\eB)
= lim h dt A volgm :/ h dt A volgm 2/ g volgm . [
NGO Jgm x[e,1] Smx[0,1] m

29.4 Theorem.

For each connected orientable m-dimensional manifold M, the mapping [w] — fM w
is an isomorphism HI(M) = R.

Proof. We have to show that B]"(M) is the kernel of [,, : Q*(M) — R, i.e. for
each w € Q" (M) with [, w = 0 there exists an € Q7" (M) with w = dn.
Claim: The theorem is valid for M =R .

Let w € Q{(R) be such that [, w = 0. Because of the Poincaré Lemma |26.5.6 |,
there is an f € C*°(R,R) with w = df. Since suppw = supp f’ is compact, there is
an N, s.t. f is constant both on (—oco, —N] and [N, +00). Because of 0 = [, w =
Jodf = [T frtydt = [T f/(t)dt = f(N) — f(~N) we have f(N) = f(~N) and
hence g := f — f(N) € C° and w = dg.

Claim: If the theorem holds for S™, then also for R™*1,

Let w = fdaz® A--- Ada™ € QPFHR™!) be such that [p,,., w = 0 and, w.lo.g.
supp(w) C B := {x € R™*! : ||z|| < 1}. Because of the Poincaré Lemma ,
there is an n € Q™(R™T!) with w = dn. By exercise [98, 36], w.lo.g.

1 Ui o a—
n(x) = / t" f(tx) dt - E:(—l)lacZ dz® Ao A dxt Ao Ada™
0 i=0

m

(t= =) 1 [lz]| o —
Tl H$|m+1/ gmf(S:C)dS'Z(1)Z:E2dx0A"'/\de/\"'/\dzm
0

lall) ™ =
e
/O tmf (t”;C”) dt - (r* volgm )(z).

Let g : S™ — R be defined as in by g(z) = fol t™ f(tx) dt. There exists a
A€ Qm71(S™) with g volgm = d\ because the theorem is assumed to be valid for

S™ and
0:/ w:/f—/ gVOISm.
Rm+1 B m

Since f|gm+1\p = 0, we have

n(z) = /01 t"f (tx> dt - (r* volgm)(z) for ||z| > 1.

]
Son=(gor) r*volgm = r*(g volgm) = r*(d\) = d(r*\) on R™+1\ B.
Let h € C*°(R™*![0,1]) be such that & = 0 near 0 and hlgm+1\g = 1. Then
h-r*x € Qm~L(R™+1) and

w=dn=d(n—d(h-r*))) with (n —d(h- T*A))|Rm+1\3 =(n-— d(r*)\))|Rm,+1\B =0.

Claim: If the theorem holds for R™, then it does so for all m-dimensional connected
M.

Let wy € Q(M) be such that [wy = 1 and suppwy C im)g for a chart iy :
R™ — M. We show that for w € Q7 (M) there is an n € QT (M) with w =
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(Jyyw) - wo + dn. From this it follows in particular that w = dn for all w with
Jw=0.

First, consider the case suppw C im1) for some chart ¢ : R™ — M: There are
finitely many charts v, ...,%; : R™ — M with im; Nim; 11 # 0, where g is
the chart from above for wy and t; = 1. There are w; € Q7*(M) with suppw; C
imey;_1 Nime; and fwi = 1. Since the theorem is assumed to be valid for R™ =
im; 1, there exist 7; € Q™ 1(M) with suppn; C ime;_1 and w; — w;_1 = dn;.
Finally, there is, for ¢ := [w, also an m41 with w — cw; = diy1 . Consequently

l I
w=cw +dgy1=...=cwp —|—ch77¢ + dni41 = cwo —i—d(m+1 —|—ch).
i=1 i=1

Now, if w € Q7*(M) is arbitrary and {f;} is a partition of unity subordinated to a
covering with open sets diffeomorphic to R™, then f;w = c;wg + dn; for some n; €
Q1 (M) and thus w =Y, fiw = (3, ci)wo +d >, m; with [, w =" ¢; [}, wo+
I} A d>2;mi = > ;ci, where we only have to sum over the finitely many i with
f,-w # 0. O

29.5 Theorem (Highest cohomology).

For connected m-dimensional manifolds M without boundary, the following holds:

H™ (M) = {R if M is compact and orientable,

0 otherwise.

H™ (M) = R M z's. orientable,

0  otherwise.
Proof. According to , H™(M) =R for all orientable M and thus H™(M) =
H™(M) =R for all orientable compact M.

Next, let M be orientable but not compact:

Since M is not compact, a covering {im; : ¢ € N} exists by charts 1;, s.t. every
compact set meets only finitely many im1); (see ) and (by rearrangement we
may assume w.l.o.g. that) im; Nim; 11 # 0. Let {f; : i € N} be a subordinated
partition of unity. We again choose w; € Q7*(M) with supp w; C im ¢;Nim ;1 and
wai = 1. Now let w € Q™(M) s.t. suppw C im); for some j and put ¢ := wa.
Then, for i > j, there are n; € Q™ 1(M) with suppn; C im¢; and w = cw; + dn;

and cw;_1 = cw; + dn; for i > j by . Thus,

k oo
w:cwj+d77j:'~~:cwk+g dm:d(Zm):duj
i=j i=j

where p1; := Y77 1y is locally finite.

Now let w € Q™(M) be arbitrary. Then f;w is as before, so there is a u; €
Qm=Y(M) with fjw = du; and supp pu; C Ui;>; im¢; by what we have just shown.
So >, pj is locally finite and

=S S0

hence H™(M) = {0}.

Finally, let M be not orientable: 5 R
Let p: M — M be a two-folded covering and let x : M — M be the automorphism,
which exchanges the two points in each fiber.
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We put
Qk (M) == {w € QK (M) : x*w = +w}
QL (M) = {w € Qe (M) : X'w = +w}
HE () = {w € Q(31) : dw = 0} / {dy : n € Q4 (4))
HE (M) :={w € Qf (M) : dw = 0} / {dn : n € QL (M)}.
Claim:

QF(M) = QF (M) @ QF (M)
H*(M) = HY (M) @ H* (M)
p*: H¥(M) == H* (M)
and analogously for forms with compact supports:

Let w € QF(M), then
1
w= 5((w +xw) + (w— X*w)) € QF @ 0" where QF NQF = {0}
= QFM)=QF (M) e Qk (M) and
d(Qk) € Q5 because of x*(dw) = d(x*w) = +dw for w € QF
= HY(M) = H* (M) e HE (M).
The mapping p* : QF (M) — Qk~(]\2f) is injective (since p is a surjective submersion)
with image p*(QF(M)) = QF (M):
(€) holds, since x*p*w = (po x)*w = p'w.
(D) Let w € Q% (M) and let U C M be such that ply : U — p(U) is a diffeo-
morphism. Put &|,¢y := ((ply)~Y)*w. Then @ € QF(M) is well defined (because
X*w =w) and p*® = w.
Thus, p* : QF(M) = Qi(]\z) < QF(M) holds. Because of p* od = d o p* it
follows that p* : H*(M) = HJkr(J\Z/) < H*(M) and analogously p* : H* (M) -
H_’f_C(M) < H¥(M), which is the last statement claimed above.

We now apply this to the orientation covering M := M°" and the orientation
reversing automorphism x : (z,+0) ~ (x,F0). Let w € QF (M°"). Then

Jw =0, because [w = [x*w — [w. Thus, for the oriented
manifold M°", there exists an n € Q7 }(M°") with w = dn and hence w =
3w+ x*w) = J(dn + x*dn) = d(ny) with ny == $(n+ x*n) € QM)
ie [w] = [d(ny)] =0 e HY (M°). Thus, H(M) = HY .(M°") = {0}. And,
for compact M, also H™(M) = H»(M) = {0}. If, on the other hand, M
is not compact, then H™(M) = {0} follows from the orientable case, because
p*: H™(M) — H™(M°") = {0}. O

x orient.reversing

29.6 Example.

For the oriented two-fold covering map S™ — P" let y be the antipodal map
z — —x. Then H*(P") = H¥(S™) C H*(S™) because of the claim at the end of

the proof of and thus

for k =0 (because P" is connected)
for k ¢ {0,n} (because H*(S™) = 0)
for k = n even
for k =n odd

HE(P) = H* (P =

B e e R
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In fact, y is orientation preserving on S™ if and only if n is odd and thus |, gn Tw =
Jon X*w = (=1)"*" [5, wfor w € Q(S™), so as in the proof of [20.5] H7(S™) = 0 if
n is even; and H™(S™) = 0 for odd n and therefore H"(P™) = H? (S") = H"(S") =
R.

29.7 Fixed Point Theorem of Brouwer.

Let f : B" — B™ := {x € R" : ||z|| < 1} be smooth, then there is an x € B™ with
f@) = .

Proof. Indirectly: If f(z) # « for all x, then there is a smooth retraction r : B™ —
S"=1 ie. r|[gn-1 = idgn-1, namely let r(x) be the intersection point of the sphere
S7~1 with well-defined straight half-line from f(z) through z. For n = 1 this is
not possible because of the intermediate value theorem. For n > 1, we extend 7 to
a retraction of the same name r : R® — S"~! using the radial projection. Since
roincl = idgn-1 we have:

Hn—l(sn—l) r Hn—l(Rn) incl” Hn—l(sn—l)

I
>0
This is a contradiction. O
50.9 Definition (Degree of mappings).
Let M and N be connected compact and ori- H™(M) H™(f) H™(N)
ented manifolds of equal dimension m and i e
let f : M — N be smooth. The DEGREE R < deg f R

deg f € R of f is defined by the adjacent dia-

gram: deg ft——

e degs+ [w=degf- [l = [Hm (D)= [I776)= [ 1w

More generally, if M and N are oriented but not HT ()
necessarily compact manifolds of equal dimension H"(M) <—— H"(N)
m and f : M — N is smooth and PROPER (i.e. Iye deg § Jy=
the inverse image of compact sets is compact), we R < ® R
generalize the DEGREE deg f € R of a map via the

following diagram: degf-t<=—— 1t

Note that f*: QF(N) — QF(M) is well-defined for proper f and thus also H*(f) :

29.9 Proposition.

Let f : M — N be a proper smooth mapping between connected oriented m-
dimensional manifolds and y € N a regular value of f. Then

deg f = Z sign, f € Z,
zef~1(y)
where
. )+ if T f Ty M — Ty, N is orientation preserving,
sign,, f = -1 if T f : T, M — TyN is orientation reversing.
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Note that according to Sard’s theorem | 11.15 |, such a regular value y always exists,
and because f is proper, f~1(y) is finite.

Proof. Let f~'(y) = {z1,...,2,}. We choose pairwise disjoint open coordinate
neighborhoods U; of a;, s.t. f : U; — f(U;) is an orientation preserving or reversing
diffeomorphism. We want to make V := f(U;) independent of i and f=1(V) =
Ll; Ui. Let W C N, f(U;) be a compact neighborhood of y. Then W’ := f~*(W) \
U; Ui € M\ f~!(y) is compact and thus f(W’) is closed and does not contain y.
Let V.C W\ f(W') €N, f(U;) be a neighborhood of y. Then

FRV) ST WA SW) = FEW) N\ FHEW)) S fTH W) AW C UU

Because f(f~V NU;) C f(f~'V) C Vand V C f(f~'V NU;) we may replace
U; by f~(V)NU; and obtain even f(U;) = V. And since f~'V C J, U; we have
[V =vnUU =U, f'VNnU; and f~1(V) =, U; after the replacement.

\ \
\

/
ya
/
/

— U fuy)

Now let w € Q7*(N) with suppw € V C (), f(U;) and [,,w = 1. Then [w] is a
generator of H™(N) = R with supp f*(w) C f~%(V) C U, U; and

/Mf*w:Zi:/Uif*w:zizsignxif-/f(Ui)wzzi:signmf-/MW. O

29.10 Corollary.
1. deg(f o g) = deg(f) - deg(g).
2. f ~ g between compact manifolds = deg f = degg.

3. f is diffeomorphism = deg f = £1;
Furthermore, deg f = 1 & f is orientation preserving.

4. deg f #£0 = f is surjective.

Proof. since (f o g)* = g* o f*.

because then H*(f) = H*(g) by .

follows from [ 1] using deg f € Z by [29.9].

Let f be not surjective. Then deg(f) = 0 by [29.9], since every y € N\ f(M) is

a regular value. We can also see this directly by choosing w € Q™(N) s.t. suppw C
N\ f(M)and [yw=1. Sodegf=degf- [,,w= [, ffw=[,0=0 O

29.11 Hairy Ball Theorem.
Let £ € X(S?™). Then there is an x € S*™ with &(z) = 0.

Proof. Indirectly: Let £(x) # 0 for all 2. Then there is a homotopy between the
identity and the antipodal mapping o (for this we connect x with —x along the

(half) circle in direction £(x)) and thus 1 = deg(id) = deg(o) = —1 (see ), a

contradiction. O
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29.12 Mayer-Vietoris sequence for cohomology with compact support.

If M =U UV with open U,V C M, then there are linear maps 0y, which make the
following long sequence exact:

o HEU N V) Y gRU) e BE(V) e gRU U V) s

S MY UNY) - HYY U)o HFEY(V) - HMY (U UY) L

with the inclusions iy : U < UUV, iy : V <> UUV, juy : UNV < U and
Jv : UNV — V where the mappings iy;, ji;, etc. are given using extension by 0.

ct. [2634)

Proof. Because of , it suffices to show exactness of
0—=Q"UNV)—QfU)eQk(V)— QXU uV)—o.

Obviously, the first mapping is injective. The second is surjective, because w =
hyw + hyw, where {hy, hy } is a partition of unity, which is subordinate to {U, V'}.

The composition is obviously 0, and if if;(w1) + 4f,(w2) = 0, then suppw; =
supp(ipwi) = supp(if,ws) = suppws, hence w = wilpny € QU N V) and
Jji(w) = wr and j{, (w) = —wa. O

29.13 Remark.

The cohomology H} with compact supports is much harder to calculate than H*,
since the homotopy axiom does not hold for it. For example, R™ is homotopy-
equivalent to {0} and H?({0}) = H°({0}) = R but H?(R™) = {0}, because every
f € C*(R™) with df = 0 must be constant and thus equal to 0. Another example
is H2(S! x R) = R because the cylinder S x R is orientable and 2-dimensional,
but H2(S') = H%(S') = {0}.

29.14 Theorem. The long exact sequence of a pair.

Let N C M be a compact submanifold. Then there is a long exact sequence in
cohomology:

.. =HF(M\ N) — H¥Y(M) — HF(N) 2
Sy MY M\ N) — HY (M) — HFY(N) — .

Proof. Note, that
0— QF(M\ N) = QF(M) -2y OF(N) — 0

is not exact at QF(M), because ker(incl*) contains all w € QF(M) which vanish
on N, while the image of the extension operator QF(M \ N) — QF(M) consists of
those w € QF(M), which vanish on an neighborhood of N. Therefore we replace
QF(N) = QF(N) by QF(N C M), the space of germs on N C M of smooth k-
forms, ie. QYN C M) = Upyon Q¥(U)/ ~, where U runs through the open
neighborhoods of N in M and w; ~ ws 4> w; = wy on a neighborhood of N in M.
Then

0— QF(M\ N) = QF(M) -2 OF(N C M) =0
is obviously exact.
From the existence of a long exact sequence in cohomology follows:

...—= HY(M\ N) — HF(M) — HF(Q"(N C M)) % H- Y (M \ N) — ...
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Remains to show H(Q*(N C M)) = H(N): For this, let p : M D U — N
be a tubular neighborhood according to [86, 62.9], i.e. U is open in M and p
diffeomorphic to a vector bundle over N. If we choose a metricgonp : U — N, then
the sets U; := {€: g(£,€) < j%} form a neighborhood basis of N and 0* : H*(U;) —
H¥(N) is an isomorphism since U; is homotopy equivalent to N. The restriction
map QF(N € M) — QF(N) induces a mapping H*(Q*(N C M)) — H*(N),
which is surjective because the composition with H*(U;) — H*(Q*(N C M)) is an
isomorphism. It is also injective, because let [w] € Q¥(N C M) be a closed form
with representant w € QF(U;) and w|y € Q¥(N) exact. Thus incl*([w]) = [w|n] =0
and hence 0 = [w] € H*(U;), i.e. w is exact and consequently also [w] € Q¥(N C M)
is exact, so the cohomology class [[w]] of [w] in H*(Q2*(N C M)) vanishes. O

29.15 Corollary.

Let M be a manifold with compact boundary OM. Then there is a long exact
sequence:

.= HF(M\ OM) — HF(M) — HFOM) -2

ey HEL (M O\ OM) — HFY(M) — HFMY(OM) — ... O

29.16 Corollary.

HER™) = R fork=m .
0 fork#m>0
First proof. We apply |29.15 | to the closed unit ball M C R™. Then M \ OM =
R™ OM = S™~! and HF(M) = H¥(M) = H*({*}) = {0} for k > 0 and thus
29.15 | yields the exact sequence
0— H*(S™ ') 2 HIFYR™) -0 for k>0

starting with
0—R— H(S™™1) oy HLR™) -0

because H(R™) = 0, see | 29.13|. It follows that
{R for 1 < k=m

Hf(Rm) — Hk—l(sm—l)
0 forl<k#m

and

Hl(Rm)— R form=1
¢ "0 form>1. O

Second proof. (k= 0) we have already seen in |29.13 |.

(0 < k < n) We have w € QF(R") with dw = 0. According to the Poincaré lemma,
an n € QF~1(R") exists with dy = w. Let B be a ball with suppw C B. For k =1
the form 7 is therefore constant outside B, say ¢, and thus n — ¢ € Q2= 1(R") with
d(n—c) =dn=w. If k > 1, n|gn\ p is closed and, because of R™\ B = R"\ {0} and
H*Y(R™\ {0}) = H*1(8"1) = {0} by [26.5.13], there is an A\ € Q*~2(R" \ B)
with dA = n|gm\p. Let f € C*°(R",R) with f =1 on R"\ 2B and f = 0 on a
neighborhood of B. Then f A € Q¥~2(R") is well-defined and n—d(f \) € Q¥ 1(R")
has compact support in 2B with d(n — d(f \)) = dn = w. O

29.17 Preparation for the generalized curve theorem of Jordan.
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Let M C R™*! be a compact connected hypersurface. First we want to show that
R™F1\ M has at least 2 connected components. Let M be oriented for the moment.
The WINDING NUMBER of M with respect to p ¢ M is defined by

war(p) := deg(rp|ar), where rp : z — m(m -p), M—=S™

It is constant on the connected components of R™T1\ M: Namely, if t — p(t) is a
curve in R™ T\ M, then (t, ) — ) () is a homotopy and thus t — deg(rp)|ar) =
wpr(p(t)) is constant. Up to a diffeomorphism (with compact support), 0 € M and
M is locally around 0 a hyperplane v. We claim that wys(p) — was(q) = %1 for
p, q close to 0 on different sides of v and thus R™**\ M has at least two connected
components. In fact, [~1,1] 3 ¢ = r¢[an\foy is @ homotopy and for = € vt with
lz]] < d the image is a polar cap around v which degenerates for ¢ = 0 to the
equator and then mutates into the opposite polar cap.

0

We modify this homotopy to a homotopy H on the whole of M by keeping the
images of points close to 0 fixed near the pole v and not allowing the remaining
points to come close to the antipodal pole —v. Let y near —v be a regular value
for r,. Then, the end value H; : M — S™ of the homotopy has one inverse image
x (near 0) less than r,, and thus was(—v) = deg(r_,|a) = deg(H_1) = deg(H;) =
deg(ry|ar) — sign, (ry) = was(v) + 1 by [29.9]

Now let M and N be compact and connected but not necessarily orientable. We
define the MOD-2 DEGREE of f : M — N by degy(f) := > 1y 1 € Zs =
7./(2Z), where y is some regular value of f.

zef~

We have to show that this number modulo 2 does not depend on the choice of y.
For the moment, let fy and f; be smoothly homotopic via H : [0,1]x M C Rx M —
N and let y be a joint regular value of fy and f;. Without loss of generality,
H(t,z) = fi(z) for t near ¢ € {0,1} (replace H by (t,z) — H(h(t),z), with h
constant near 0 and near 1). By the proof of , all values close to regular
values are themselves regular (and have the same number of inverse images). Thus
we may assume (because of the Proposition of Sard) that y is a regular
value of H and also of fy and f;. Hence H~'(y) is a 1-dimensional submanifold of
R x M that intersects {0,1} x M transversely. The trace H '(y) N[0,1] x M is
thus a disjoint union of finitely many connected compact 1-dimensional manifolds
with boundary contained in 9([0,1] x M) = {0,1} x M and thus the total number
of boundary points {(i,x) : i € {0,1}, f;(x) = y} is even, so

oo1=— ) 1= ) 1 mod2

z€fy  (v) zefi H(y) zefit(y)

Now, if yg and y; are both regular values of f, then there exists a diffeotopy h
on N (i.e. a diffeomorphism which can be connected to the identity by means of
a homotopy consisting entirely of diffeomorphisms) with compact support which
maps yo to y1 (the equivalence classes of points with respect to diffeotopies are
open: consider the flow Flf of the vector field £ = f - a—‘zl with appropriate f with
compact support) and thus hy o f ~ f and y; = hq(yo) is a regular value of f and
of hy o f, hence |f~*(yo)| = |(h1 o £)"(y1)| = |f~*(y1)| mod 2 by what we have
previously shown.

Now, if we define the winding number wy;(p) € Zz as before, but with deg, instead
of deg, we can proceed in the proof as above and get w,(M) # wq(M) for points
locally on different sides of M.
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29. APPLICATIONS OF INTEGRATION TO COHOMOLOGY 29.21

29.18 Generalized Curve Theorem of Jordan.

Let M C R™! be a compact connected hypersurface. Then M is orientable and
R\ M has ezactly 2 connected components and M is the boundary of both. In
particular this holds for M = S™.

Proof. The cohomology sequence |29.14 | of the pair M C R"*! is by [29.16 | the

following:

— HIR"Y) — H*(M) = H}PH R\ M) — HIPH(R™) — H'H(M) —
\—,O_/ | — \T/
— ~R —
Thus, by [26.5.8 |, 1 + dim H*(M) = dim(H2T1(R"*!\ M) is the number of (by
29.17| at least 2) connected components of R\ M. So dim H"(M) > 1 and

thus M is orientable and dim H"*(M) = 1 by . Hence R™*1\ M has exactly
2 connected components.

Since, by the arguments in | 29.17 |, near x € M there are points in both connected
component of R\ M we get that M is the boundary of each component. O

29.19 Corollary.

Neither the projective plane nor the Klein bottle can be realized as a submanifold of
R3.

Proof. Otherwise they would be orientable by | 29.18 |. O

29.20 Example.

Even for orientable connected 2-dimensional manifolds M, the first cohomology
H'(M) need not be finite dimensional. Let e.g. U := C\Z C R? and V C C be
the union of the open balls around all z € Z with radius % Then UNV ~ |, S?

and thus the Mayer-Vietoris | 26.3.4 | sequence is
0—H(U)®0—-HY(UNV)-L50.

So HY(U) = HYUNV) = H'(|, S*) = [[, R = RZ.

29.21 Definition.

The cup PRODUCT U : H¥(M)x HJ (M) — HF+7(M) is defined by [a]U[3] := [aAS]
and orientable manifolds M the POINCARE DUALITY H¥(M) — H™ *(M)* is the
induced linear mapping via H"(M) = R.

A TRIANGULATION is a finite family {o; : i} of diffeomorphic images of the STAN-
DARD m-SIMPLEX A, := {z = (2°,...,2™) e R™*! : 3" 2 =1 and Vi:z' > 0},
st.o;Noj # 0= o;N 0; is a k-face of 0; and of o, where a k-FACE is the image
of the subset of A,, formed by setting m — k many coordinates z* to 0. It can be
shown with some effort that every smooth manifold has a triangulation, see [122]
or [154].
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3

A triangulation of the M&bius strip and the projective plane

29.22 Proposition.

Let M be a connected oriented manifold. Then the Poincaré duality is an isomor-
phism H* (M) —=— H™~F(M)*.

Proof (for triangulable manifolds). If M = U UV with open U and V, s.t. the
theorem for U, V and U NV holds, then by the Mayer-Vietoris sequence | 26.3.4
and the dual of Mayer-Vietoris sequence | 29.12 | for compact support

HYU)® HF-Y(V) = HYUNV) = HY(M) = H*(U)® H*(V) = HX(UNV)

! o |

HEPHU) @ HEPH(V)* = HF U NV)* = Hy(M)* = HL(U)* @ Hi(V)* = H{(UNV)*

we get the result for M by means of the following 5-Lemma |29.23 |, because as
exercise [98, EX30] shows the diagram to be commutative, and the dual of an
exact sequence is also exact (as one easily shows).
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To use this for a proof by in-
duction, we choose on each face
of the simplices of the triangu-
lation an “inner” point, e.g. the
barycenter. Recursively, we de-
fine a covering of M by disjoint
unions Uy of open contractible
subsets of M as follows:

Let Uy be the disjoint union
of suitably chosen contractible
neighborhoods of each vertex,
which does not contain any of the
other interior points.

The set U then consists of the
disjoint union of suitably chosen
open contractible neighborhoods
of the choosen points on the faces
of dimension k.

Explicitly, this can be achieved
by looking at all the simplices
that have the previously chosen
inner points as vertices, for as-
cending ordered faces of a sim-
plex of the triangulation.

Now we take as Uy the union of
all such “open” simplices which
have one of the original vertices
as a joint vertex.

And more generally, for Uy, we take the union of all such “open” simplices that
each have one of the inner points of a k-simplex as a vertex.
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29. APPLICATIONS OF INTEGRATION TO COHOMOLOGY 29.23

Obviously o C ;< U; for each (closed) k-simplex o and thus Jy_, Uy = M.
Furthermore, Uy = ||, R™ and, for k£ >0, Us "U,,, U; =L, SE=1 5 Rm—k+1,
Clearly, the Poincaré duality holds for R™ (because Ho(R™) = R = H*(R™)*

and 0 otherwise), and it follows by induction (using the Mayer-Vietoris sequence)
that it also holds for S™ x R¥ (See exercise [98, 1X29]). Since Hk(|_|j€J M;) =

[Les H*(M;) and Hf(ujeJ M;) = Dje, HE (M), it also holds for Uy, N Uj<r Uj
and thus by induction for |J;, U; and hence also for M = |, < gim(ar) Us- O

29.23 Five Lemma.

Let
/P P & ..y L LIy
flii f2l2 f3l f4l: fsl:
B, > By "> B, > B, "> By

be a commutative diagram with exact horizontal rows. If all but the middle vertical
arrow are isomorphisms, then also the middle one is an isomorphism.

Proof.
(f5 is injective)
fzaz = 0= 0=13f3a3 = fipzas
Ll p3a3 =0

exact at Az Jao:a = oa
- ———— 2 1 a3 = P2a2

= 0= faag = fapoaas = P foan

exact at B
=== I by : faas = Y101

f1 surj.

B Halzblzflal
= foaz = Yy fra1 = fapriaq
L = oran

exact at Asg
az = @aaz = papi1a; =0
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ai as a3 ——0 °
fli f2I fsl f4I
by P1 fz(ag) P2 0 P3 0 o

(f5 is surjective)
b3 EERINN ay : faaq = P3b3
t at B
== frpaan = Yafras = asby =0

f5 inj. paas =0

exact at Ay .
Jas:aqy = p3as

= Y3 fsaz = fapzas = fias = P3bs3
Sxact 2 B8 Sy : by — faaz = abo

fa surj.

= Hazlbnggag
= b3 = fzas + Paby = faaz + P2 faaz = f3(as + p2a2)

P2 ¥3 Ppa
) as as ay wa(aa)
fzi fSl f4i fsl
. by —2 > by —% (b)) — > 0 0

29.24 Proposition.

Let K be a triangulation of a compact manifold M and o; be the number of i-
simplices of IC. Then

X(M) = Z(—l)iai.

%

Proof. We use the open sets Up C M constructed in the proof of | 29.22 |, which are
disjoint unions of ay many sets diffeomorphic to R™ and for which the UyN|J i<k Uj

are disjoint unions of ay, many sets diffeomorphic to S¥ =t x R™~*+1 ~ Gk—1  Thuys,
for the Euler characteristic we get:

(U ) + o =x(J ) +xw0 ZZ (U ) +x(ven U v,)
i<k i<k i<k i<k

X(U Uj) +(1+ (=1 Hay.

i<k

So

and thus

v = x(|J U5) = x0) + 3 (~1)ia; = 3 (-1Vay. O

j<m j<m j<m
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29.25 Definition (Thom and Euler class of a vector bundle).

Let p : E — M be an oriented k-plane bundle over an m-dimensional compact
oriented connected manifold M. The cup product

U: H™(E) x HY(E) - H"*E)=R, [o]U[f] :=[aAj]

induces by ’ 29.21 ‘ and ’ 29.22 ‘ the Poincaré duality

HE(E) =5 H™(E)*, [8]— ([a]»—)/Eoz/\ﬁ).

Since 0 : M < E is a deformation retract with retraction p, H™ (M) = H™(E) via
[v] = [p*(7)] and thus

HYE)= H™E)* = H™(M)*
Vz’%E)a[mH (#mE)3 1)~ [ans) e (HMOD > blw [ 50)A5)
‘ E E '

By we have R = R* = H™(M)*, via 1~ [, (- H™(M) = R, )] = [, 7)-

Thus, there exists a unique class U(p) := [7] € HF(E), the so-called THOM CLASS
of the k-plane bundle p, defined by

/p*(*y)/\r:/ ~ for all [y] € H™(M).
E M

The EULER CLASS x(p) € H¥(M) of the k-plane bundle p is then defined by
x(p) == 0"(U(p)) = s™(U(p)),

where 0 : M < F is the 0-section, resp. s is any (obviously homotopic) section of
.

If p: E — M has a nowhere vanishing section s, then x(p) = (K - s)*(U(p)) = 0,
where K was chosen such that im(K - s) Nsupp(7) = @ for [r] = U(p).

29.26 Proposition.

Let M be a connected compact oriented m-dimensional manifold. Furthermore, let
p: E — M be an oriented k-plane bundle, and for x € M let j, : E, — E be the
inclusion of the fiber E, over x.

Then the Thom class U(p) = [r] is the unique element from HY(E) with [, ji(t) =
1 forallz e M, :

Proof. The Thom class [7] € H¥(E) is unquely defined by the implicite equation
Jpp*(u) AT = [, p for all p € Qm(M). Let W = R™ be an open subset of M
for which E|y is trivial, that is, w.l.o.g. E|lw = W x R¥ and p = pr;, as well as
Je : v = (x,v). Then there is a K > 0 with supp(7|,-1w)) € W x {v : [jv| <
K} and for the moment let supp(u) € W. The contraction H : W x I — W
from W to z € W induces a smooth homotopy H : W x RF x I — W x RF,
(y,v,t) — (H(y,t),v) with Hy = id and H; = (konst,, pry) = j, o pry. We have
supp(H*7) € H™Y(supp7|,-1w)) € {(y.v,t) : [[v]| < K}. Therefore, for X :=
G(1) € Q"1 (W x R¥), where G := I} o 1¢ o H* is the homotopy operator from the

proof of the homotopy axiom |26.3.2 | with & := %, we have supp(A) C {(y,v) :
[lv|l < K}, and thus

26.3.2

pry jp7 — 7 = (H1)"(7) — (Ho)"(7) (dG + Gd)(7) = dA.
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Thus (compare with the proof of or see exercise [98, X 20])

/ p*mw:/ prw(pr;jzr—w:/ u-/ i,
p~H (W) W xRk w Rk

because prj p A d\ = £d(pr} p A A) and hence fo]Rk prip Adh =0. As a result,
ka jx7 is independent on z € W and hence we denote this value by ka JrT.

Let W be a covering of M with trivializing open sets W as before and let { Ay :
W € W} be a subordinated partition of 1. Then

/Mu=/Ep*(u)AT= > /pl(W)p*(Awu)AT

wew

= Z/Awu-/ j*T=/M-/ JrT,
w Rk M Rk

wew
hence [p, j*7 = 1.

Uniqueness: For each U € H¥(E) there exists ¢ € R with U = ¢ - [1] because
HE(E) = R. If U has also the required property, then jiU = j*(c[r]) = ¢jZ[r] and
thus ¢ = 1 because of ¢ [, ji[r] = [ j;U=1= [, jil7]. O

29.27 Definition. Index of vector fields in isolated zeros.

Let £ be a vector field with isolated zero 0 on an open set U C R™. Then the INDEX
of £ at 0 is defined by

indg () = deg(r ofor: 8™ U\ {0} - R™\ {0} — Smfl),

where r(z) := HTIHI and ¢ : S < U\ {0} is the embedding of a sphere, contained

together with its interior in U \ (£71(0) \ {0}).

This index is invariant under diffeomorphisms: In fact, if & is a (for now) orientation
preserving diffeomorphism with h(0) = 0, then id is smooth homotopic to h'(0)
(since GL4(R™) is connected, see [103, 1.10]) and furthermore

h(tx)
H(xt) = — fort >0
K(0)(z) fort=0

is a smooth homotopy between h/(0) and h locally around 0. Thus r o & ~ r o h*¢
near 0 and thus deg(r o £ o1) = deg(r o h* o).

In order to obtain this also for non orientation preserving h it suffices to show this
in particular for the linear isometry h : (z',..., 2™~ a™) — (z!,... 2™ 1 —2™).
For this we have h*¢ = h™' o ¢ oh and thus roh*éor =roh tofohos =
hlgm 1 oro&oroh|gmr so

deg(r o h*€ o) = deg(hl5) s o0& or0hlgn 1)

deg(ro&ou).

The radial vector field x — x obviously has index 1 at 0. More generally, a linear
vector field £ at R™ which is diagonalizable with k negative and m—k positive eigen-
values has index (—1)*, because up to linear orientation preserving isomorphisms,
it is of the form

(1, oy Tm) = (=21, ooy —Thy Tt 1y - - -y Tom)
and restricted to S™~! has degree (—1)* (because, for example, e; is a regular value
of £ 01 =1 o0& o with single inverse image —e; and det(7T_., &|gm-1) = (—1)%).

For a vector field § with isolated zero z on a manifold we define the INDEX ind, §
as indg € for a chart representation & of £ centered at x.
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29.28 Proposition.

Let M be a compact oriented connected manifold and [u] € H™(M) with [, = 1.
Let £ € X(M) be a vector field with only isolated zeros. Then

X(mar i TM = M) = ( Y ind, 5) [u] € H™(M).
0

Proof. Let £71(0) =: {x1,...,2;} and W; be pairwise disjoint compact chart
neighborhoods centered at x; and diffeomorphic to the closed ball D := {v € R™ :
lv]] < 1}. So TMlw, = W; x R™ is trivial. We extend the norm on R™ to a
Riemannian metric g on M. Let [r] € H¥(T M) be the Thom class of mp : TM —
M and hence a K > 0 exists with supp(7) C {n, € TM : g(nz,n.) < K?}. Consider
the scalar multiplication K : TM — TM, £ — K&. Then

hence [7] = [K*7] by and K - supp(K*T) = supp(7). So we may assume
w.l.o.g. that supp(7) C {n, € TM : g(1z,nz) < 1}, i.e. K = 1.

Because of x(mpr) := £*([7]) by we have to show [, £*7 = Zweg_l(o) ind, &.
By stretching ¢ (which does not change ind, &) we achieve g(¢,,&,) > K? for all
y & U; Wi, i.e. supp(€*r) € € (supp7) C U, W;. Thus

/M ¢r= sz;/w &

and it is enough to show [i;, £*7 = ind,, .

For the sake of simplicity we omit the index 4 in the remainder of the proof and
denote with ¢ : D — «(D) =: W a chart centered at {z} := £71(0) N W and
Y =Tio(t7'xR™) : W xR™ — TM|w the corresponding VB-chart. Let 7 := 1*r
and let £ := ¢~ 1o be the representation of €. Then £*7 = £**1 = (o)*T = £*T.
In the proof of we have shown that prj j*7—7 = d\ fora A € Q™ 1(W xR™)
with supp(A) C {(,v) : [o]] < 1} because supp(7) =y~ (supp7) C {(3) : o] <
1}. For all y € OW = (S™~1) we have g(&,,&,) > 1 and thus £*A|aw = 0, hence

/Wf‘*pr;m—/wf‘*f:/Wf‘*dA:/ 2y 2] [ ea=0

Because of the Poincaré lemma [26.5.6 | for W = D C R™, j*7 = dp for some
p € Q™ HR™). Since the retraction r : R™\ {0} — S™~! C R™ is homotopic to
the identity we get

* K = ok * ek — ok * - * *
/§T=/§T=/§Pr2]x72/§Pr2dl) £ pryp
w w w w

= (W x 7“)"pr§,0=/ (proo(W xr)0&)*p
ow S(Sm-1)

:/ (roprQOEOL)*p:deg(roprzoéoﬂ-/ p=ind, -1,
Sm—1

Sm—1
because supp(7) C {(y,v) : ||v|| < 1} and thus

B I Y
p=| p== | dp= | jo7=| J.T= JaT L O
gm—1 8D D D m T, M
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29.29 Theorem of Poincaré-Hopf.

Let M be a compact oriented connected manifold and let £ € X(M) be a vector field
with isolated zeros only. Then

v = Y i - | )

ze€—1(0

Proof (for triangulable manifolds). For p € Q™ (M) with [,, =1, and for
each vector field £, with isolated zeros only, we have by | 29.28 | that

> ind & [u] = x(mar)

£~ 1(0)

> )indxﬁz/M > )indx&u:/Mx(WM)

z€€=1(0 z€€=1(0
is independent on £. Therefore, it is sufficient to find such some ¢ € X(M) with

X(M) = Z ind, €.

ze£~1(0)

and thus

We use a finite triangulation and, as in the proof of | 29.22 |, we choose an “inner”
point on each face simplex. By [29.24 |, x(M) = ;" ,(—1)*ay, where ay, denotes
the number of k-simplices. Recursively we choose a vector field £ with exactly these
points as zeros, so that on each k-simplex it has the choosen inner points as sink.

According to what is said in | 29.27 |, the index of £ in these inner points of the
k-simplices is just (—1)¥ and thus

Y ind €= (-1)Fap=x(M). O
k=0

z€£~1(0)
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