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Teil I

Locally Convex Spaces
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1. Seminorms

In this chapter we will introduce the adequate notion of distance on vector spaces
and discuss its elementary properties.

1.1 Basics

1.1.1 Motivation and definitions.

All vector spaces we are going to consider will have as base field K either R or
C.

Distance functions d on vector spaces E should additionally be translation
invariant, i.e. dpx, yq “ dpa ` x, a ` yq is fulfilled for all x, y, a P E. Then
dpx, yq “ dp0, y ´ xq “: ppy ´ xq (if we choose a :“ ´x), so d : E ˆ E Ñ R is
already determined by the mapping p : E Ñ R.

The triangle inequality dpx, zq ď dpx, yq ` dpy, zq for d translates into the

subadditivity: ppx` yq ď ppxq ` ppyq.

Regarding the scalar multiplication we should probably require dpλx, λyq “ λdpx, yq
for λ ą 0, i.e.

R`-homogeneity: ppλxq “ λ ppxq for all λ P R` :“ tt P R : t ą 0u and x P E.

Note that this has pp0q “ pp2 ¨ 0q “ 2 pp0q and hence pp0q “ 0 as consequence, so
also the homogeneity pp0xq “ pp0q “ 0 “ 0 ppxq for λ :“ 0 holds. However, we can
not expect the homogeneity for all λ P K, because then p would be linear: In fact,

ppxq ` ppyq ě ppx` yq “ pp´pp´xq ` p´yqqq
?
“ ´ppp´xq ` p´yqq

ě ´ppp´xq ` pp´yqq “ ppxq ` ppyq.

A function p : E Ñ R is called sublinear if it is subadditive and R`-homogeneous.
Note that this is the case if and only if

pp0q “ 0 and ppx` λ ¨ yq ď ppxq ` λ ppyq @x, y P E @λ ą 0.

Related to subadditivity is convexity: A function p : E Ñ R is called convex (see
[20, 4.1.16]) if

p
`

λx` p1´ λq y
˘

ď λ ppxq ` p1´ λq ppyq for all 0 ď λ ď 1 and all x, y P E,

so the function lies below each of its chords. By induction this is equivalent to

p
`

n
ÿ

i“1

λi xi
˘

ď

n
ÿ

i“1

λi ppxiq for all n P N, xi P E and λi ą 0 with
n
ÿ

i“1

λi “ 1.

For twice-differentiable functions f : RÑ R one shows in analysis (see [20, 4.1.17])
that these are convex if and only if f2 ě 0 holds:
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1.1 Basics 1.2.1

(ð) From f2 ě 0 follows the Mean Value Theorem that f 1 is monotonously in-

creasing, because f 1px1q´f
1
px0q

x1´x0
“ f2pξq ě 0 for some ξ between x0 and x1. So let

x0 ă x1, 0 ă λ ă 1 and x “ x0 ` λpx1 ´ x0q. Again by the Mean Value The-
orem, ξ0 P rx0, xs and ξ1 P rx, x1s exist with fpxq ´ fpx0q “ f 1pξ0q px ´ x0q and
fpx1q ´ fpxq “ f 1pξ1q px1 ´ xq, so

λ fpx1q ` p1´ λq fpx0q ´ fpxq “

“ p1´ λq
`

fpx0q ´ fpxq
˘

` λ
`

fpx1q ´ fpxq
˘

“ p1´ λq f 1pξ0q px0 ´ xq ` λ f
1pξ1qpx1 ´ xq

“ p1´ λq f 1pξ0q
`

´λpx1 ´ x0q
˘

` λ f 1pξ1q
`

p1´ λq px1 ´ x0q
˘

“ λ p1´ λq
´

f 1pξ1q ´ f
1pξ0q

¯

px1 ´ x0q ě 0,

i.e. f is convex.

(ñ) Let f be convex. Then for x0 ă x ă x1 with λ :“ x´x0

x1´x0
resp. λ :“ x1´x

x1´x0
:

fpxq ´ fpx0q

x´ x0
ď
fpx1q ´ fpx0q

x1 ´ x0
ď
fpx1q ´ fpxq

x1 ´ x
.

Thus f 1px0q ď
fpx1q´fpx0q

x1´x0
ď f 1px1q, i.e. f 1 is increasing monotonously. Thus, we

have f2px0q “ limx1Œx0

f 1px1q´f
1
px0q

x1´x0
ě 0.

In the definition of “sublinearly” we may replace “subadditive” equivalently by
“convex”:
pðq We put λ :“ 1

2 and get

ppx` yq “ 2 p

ˆ

x` y

2

˙

ď 2

ˆ

1

2
ppxq `

1

2
ppyq

˙

“ ppxq ` ppyq.

pñq Then

p
´

λx` p1´ λq y
¯

ď ppλxq ` ppp1´ λq yq “ λ ppxq ` p1´ λq ppyq.

The symmetry dpx, yq “ dpy, xq of d translates into the symmetry: ppxq “ pp´xq
for all x P E. Together with the R`-homogeneity, this is therefore equivalent to the
following homogeneity: ppλxq “ |λ| ppxq for x P E and λ P R.

A function p : E Ñ R is called seminorm (for short SN) if it is subadditive and
positively homogeneous, i.e. ppλxq “ |λ| ppxq holds for x P E and λ P K.

A seminorm is therefore a sublinear mapping which fullfills additionally ppλxq “
ppxq for all x P E and |λ| “ 1. Note that multiplication with a complex number of
absolute value 1 is usually interpreted as a rotation.

Every seminorm p fulfills p ě 0, because 0 “ pp0q ď ppxq ` pp´xq “ 2 ppxq.

A seminorm p is called norm if additionally ppxq “ 0 ñ x “ 0 holds. A normed
space is a vector space together with a norm, cf. [22, 5.4.2].

1.2 Important norms

1.2.1 Definition. 8-norm.

The supremum or 8-norm is defined by

}f}8 :“ supt|fpxq| : x P Xu,

where f : X Ñ K is a bounded function on a set X, cf. [20, 2.2.5].
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1.2 Important norms 1.2.4

The distance d, which we looked at in application [18, 1.3] on the vector space
CpI,Rq, was just given by dpu1, u2q :“ }u1 ´ u2}8, see also [20, 4.2.8]

1.2.2 Examples.

The following vector spaces are normed spaces with respect to the 8-norm:

1. For each set X the space BpXq of all bounded functions X Ñ K;

2. For each compact space X the space CpXq of all continuous functions X Ñ

K;

3. For each topological space X the space CbpXq of all bounded continuous
functions X Ñ K;

4. For each locally compact spaceX the space C0pXq of all continuous functions
X Ñ K vanishing at 8, i.e. those functions f : X Ñ K for which there is a
compact set K Ď X for each ε ą 0, s.t. |fpxq| ă ε for all x R K;

5. If you use (roughly speeking) the maximum of the 8-norms of the deriva-
tives, then for each compact manifold M also the space CnpMq of the n-times
continuously differentiable functions M Ñ K becomes a normed space;

On the other hand, we can not use reasonable norms on any of the following spaces:

6. CpXq for general non-(pseudo-)compact X,

7. The space C8pMq of the smooth functions for manifolds M ,

8. CnpMq for non compact manifolds M ,

9. The space HpGq of holomorphic (i.e., complex differentiable) functions for
domains G Ď C.

1.2.3 The variation norm.

Let f : I Ñ K be a function and Z “ t0 “ x0 ă ¨ ¨ ¨ ă xn “ 1u a partition of
I “ r0, 1s. Then one denotes the variation of f on Z by

V pf,Zq :“
n
ÿ

i“1

|fpxiq ´ fpxi´1q|,

cf. [22, 6.5.11]. The (total) variation of a function is

V pfq :“ sup
Z
V pf,Zq.

With BV pIq we denote the space of all functions with bounded variation, i.e.
those functions f for which V pfq ă 8 holds. It is easy to verify that BV pIq is a
vector space, and V is a seminorm on BV pIq which vanishes exactly on the constant
functions.

1.2.4 Definition. p norm.

For 1 ď p ă 8, the p-norm is defined by

}f}p :“

ˆ
ż

X

|fpxq|pdx

˙
1
p

,

where |f |p : X Ñ K is an integrable function. For p “ 2 this is a continuous
analogue of the Euclidean norm

}x}2 :“

g

f

f

e

n
ÿ

i“1

|xi|2

for x P Rn or x P Cn (here the absolute value in |xi|
2 is necessary).
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1.2 Important norms 1.2.7

The formula xf |gy :“
ş

X
fpxq gpxq dx generalizes the inner product x.|.y on Kn.

Clearly }fg}1 ď }f}8 ¨ }g}1 holds. In order to use the inner product for measureing
angles, the inequality of Cauchy-Schwarz }fg}1 ď }f}2 ¨ }g}2 is necessary, see [18,
6.2.1]. A common generalization is the

1.2.5 Hölder inequality.

|xf |gy| ď }fg}1 ď }f}p ¨ }g}q for
1

p
`

1

q
“ 1 with 1 ď p, q ď 8

See [23, 5.36].

resp.

ż

|fg| ď

ˆ
ż

|f |p
˙

1
p
ˆ
ż

|g|q
˙

1
q

Proof. Let first }f}p “ 1 “ }g}q. Then |fpxq gpxq| ď |fpxq|p

p `
|gpxq|q

q , because log is

concave (i.e. ´ log is convex, because log2pxq “ ´ 1
x2 ă 0) and thus logpa1{p ¨b1{qq “

1
p log a` 1

q log b ď logp 1
pa`

1
q bq for a :“ |fpxq|p and b :“ |gpxq|q, i.e. a

1
p ¨b

1
q ď 1

pa`
1
q b.

By integration we get

}f g}1 “

ż

|f g| ď
}f}pp
p
`
}g}qq
q
“

1

p
`

1

q
“ 1.

Let α :“ }f}p and β :“ }g}q be arbitrary (unequal to 0). Then we can apply the
first part on f0 :“ 1

αf and g0 :“ 1
β g and get

1

αβ
}f g}1 “ }f0 g0}1 ď 1 ñ }f g}1 ď }f}p ¨ }g}q.

The remaining inequality |xf |gy| “ |
ş

f ḡ| ď
ş

|f | |ḡ| “ }f g}1 is obvious.

1.2.6 Minkowski inequality.

}f ` g}p ď }f}p ` }g}p, i.e. } }p is a seminorm

See [20, 2.2.4], [21, 2.72], [23, 5.37].

Proof. With 1
p `

1
q “ 1 we have

}f ` g}pp “

ż

|f ` g|p ď

ż

|f | |f ` g|p´1 `

ż

|g| |f ` g|p´1

ď }f}p ¨ }pf ` gq
p´1}q ` }g}p ¨ }pf ` gq

p´1}q
looooooomooooooon

p
ş

|f`g|pp´1qqq1{q

(Hölder Inequality)

“ p}f}p ` }g}pq ¨ }f ` g}
p{q
p since q “

p

p´ 1
ñ

}f ` g}p “ }f ` g}
pp1´ 1

q q

p ď }f}p ` }g}p.

1.2.7 Examples.

1. The space CpIq of all continuous functions is a normed space with respect
to the p-norm.

2. On the space RpIq of all Riemann-integrable functions, however, the p-norm
is not a norm but only a seminorm, since a function f which vanishes except
at most finitely many points, nevertheless fulfills }f}p “ 0.
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1.2 Important norms 1.3.3

3. Also `p is a normed space, where `p denotes the space of sequences n ÞÑ xn P
K, which are p-summable, i.e. for which

ř8

n“1 |xn|
p ă 8 holds. This space

can be identified (via fptq :“ xn for n ď t ă n ` 1) with left-continuous
staircase functions f : tt : t ě 0u Ñ K having jumps in at most points in N.

1.3 Elementary properties of seminorms

1.3.1 Lemma. Reverse triangle inequality.

Each seminorm p : E Ñ R fulfills the reverse triangle inequality:

|ppx1q ´ ppx2q| ď ppx1 ´ x2q.

Proof. The following applies:

ppx1q ď ppx1 ´ x2q ` ppx2q ñ ppx1q ´ ppx2q ď ppx1 ´ x2q

and pp´xq “ ppxq ñ ppx2q ´ ppx1q ď ppx2 ´ x1q “ ppx1 ´ x2q

ñ |ppx1q ´ ppx2q| ď ppx1 ´ x2q

We now want to give a more geometric description of seminorms p. The idea is to
examine the level surfaces p´1pcq.

1.3.2 Definition. Balls.

Let p : E Ñ R be a mapping and c P R. Then we put

păc :“ tx : ppxq ă cu and pďc :“ tx : ppxq ď cu,

and call this (if p is sublinear) the open and the closed p-ball around 0 with
radius c. .

1.3.3 Lemma. Balls of sublinear mappings.

For each sublinear mapping 0 ď p : E Ñ R and c ą 0, pďc and păc are convex
absorbing subsets of E. We have pďc “ c ¨ pď1 as well as păc “ c ¨ pă1, and further
ppxq “ c ¨ inftλ ą 0 : x P λ ¨ pďcu.

So we may recover the mapping p from the unit ball pď1.

A set A Ď E is called convex (see [22, 5.5.17]), if
řn
i“1 λi xi P A follows from

λi ě 0 with
řn
i“1 λi “ 1 and xi P A. It suffices to asssume this for n “ 2, because

for n ă 2 it is obvious and from n “ 2 it follows for all n ą 2 by induction:

n`1
ÿ

i“1

λi xi “ λn`1 xn`1 ` p1´ λn`1q

n
ÿ

i“1

λi
1´ λn`1

xi.

A set A is called absorbent if @x P E Dλ ą 0 : x P λ ¨A.

Proof. For c ą 0 we have:

pďc “ tx : ppxq ď cu “
!

x : p
´x

c

¯

“
1

c
ppxq ď 1

)

“ tc y : ppyq ď 1u “ c ¨ ty : ppyq ď 1u “ c ¨ pď1

and analogously for păc.

The convexity of pďc “ p´1tλ : λ ď cu and păc “ p´1tλ : λ ă cu immediately
follows from the easy-to-see property that inverse images of intervals, being un-
bounded from below, under convex functions are convex.
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1.3 Elementary properties of seminorms 1.3.6

To see that pďc “ c ¨ pď1 is absorbent for c ą 0, it is sufficient to put c “ 1: Let
x P E be arbitrary. If ppxq “ 0, then x P pď1. Otherwise, x P ppxq ¨ pď1 holds
because x “ ppxq ¨ y, where y :“ 1

ppxqx and ppyq “ pp 1
ppxqxq “

1
ppxqppxq “ 1.

Hence also the superset păc Ě pďc{2 is absorbent.

Because of following equivalences for λ ą 0 we have ppxq “ inftλ ą 0 : x P λ ¨ pď1u:

x P λ ¨ pď1 “ pďλ ô ppxq ď λ,

hence

inftλ ą 0 : x P λ pď1u “ inftλ ą 0 : λ ě ppxqu “ ppxq.

1.3.4 Lemma. Balls of seminorms.

For each seminorm p : E Ñ R and c ą 0, păc and pďc are absorbent and absolutely
convex and

ppxq “ inf
!

λ ą 0 : x P λ ¨ pď1 “ pďλ

)

.

A subset A Ď E is called balanced, if for all x P A and |λ| “ 1 also λ ¨ x P A
holds.

More generally, a subset A Ď E is called absolutely convex if it follows from
xi P A and λi P K with

řn
i“1 |λi| “ 1 that

řn
i“1 λi xi P A holds.

Sublemma.

A set A is absolutely convex if and only if it is convex and balanced.

Proof. pñq is clear, because every convex combination is also an absolutely convex
combination and for |λ| “ 1 also λx is an absolutely convex combination. Note
that for this it is sufficient to have absolutely convexity for n “ 2, because that for
n “ 1 it follows from λ1 x1 “ λ1 x1 ` 0x1.

pðq Let
řn
i“1 |λi| “ 1, then

n
ÿ

i“1

λi xi “
ÿ

λi‰0

λi xi “
ÿ

λi‰0

|λi|
λi
|λi|

xi P A,

holds because of
ˇ

ˇ

ˇ

λi
|λi|

ˇ

ˇ

ˇ
“ 1 and therefore, because of the balancedness λi

|λi|
xi P A,

and therefore, because of the convexity, also
ř

λi‰0 |λi|
λi
|λi|

xi P A holds.

This proof shows that even for “absolutely convex” it is enough to ask this for the
case n “ 2.

Proof of the lemma 1.3.4 . Because of the previous lemma and the sublemma,
only balancing is to be shown, and this is obvious because of the positive homo-
geneity of p.

1.3.5 Definition. Minkowski functional.

We now want to construct from sets A related seminorms p. For this we define the
Minkowski functional pA:

x ÞÑ pApxq :“ inftλ ą 0 : x P λ ¨Au P RY t`8u for each x P E.

Then pApxq ă 8 holds if and only if x lies in the cone tλ P R : λ ą 0u ¨A generated
by A.

1.3.6 Lemma. From balls to seminorms.
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1.3 Elementary properties of seminorms 1.3.7

Let A be convex and absorbent. Then the Minkowski functional of A is a well-defined
sublinear mapping p :“ pA ě 0 on E, and for λ ą 0 we have:

păλ Ď λ ¨A Ď pďλ.

If A is also absolutely convex, then p is a seminorm.

So we can recover the set A almost from the function p.

Proof. Since A is absorbent, the cone is tλ : λ ą 0u ¨A “ E. So p is finite on E.

Furthermore, 0 P A holds, because Dλ ą 0 : 0 P λA and thus 0 “ 0
λ P A holds.

The function p is R`-homogeneous, because for λ ą 0 we have:

ppλxq “ inf tµ ą 0 : λx P µAu

“ inf
!

µ ą 0 : x P
µ

λ
A
)

“ inftλ ν ą 0 : x P ν Au “ λ inftν ą 0 : x P νAu

“ λ ppxq.

ppăλ Ď λ ¨ Aq Let ppxq “ inftµ ą 0 : x P µAu ă λ. Then there is a 0 ă µ ď λ with
x P µA “ λ µ

λA Ď λA, because 0 P A and thus µ
λa “ p1 ´

µ
λ q 0 ` µ

λa P A for all
a P A.

pλ ¨A Ď pďλq If x P λA, then by definition of p it is clear that ppxq ď λ, i.e. x P pďλ.

The function p is subadditive because

ppxq ă λ, ppyq ă µñ x P λA, y P µA

ñ x` y P λA` µA
!
“ pλ` µqAñ ppx` yq ď λ` µ

ñ ppx` yq ď inftλ` µ : ppxq ă λ, ppyq ă µu “ ppxq ` ppyq,

holds, since for convex sets A and λi ą 0 we have
řn
i“1 λiA “ p

řn
i“1 λiqA: In

fact, xi P A implies
ř

i λi xi “
ř

i λ ¨
λi
λ xi “ λ ¨

ř

i
λi
λ xi P p

ř

i λiq ¨ A, where

λ :“
řn
i“1 λi, and thus

ř

i
λi
λ xi is a convex combination. Conversely, x P A implies

p
řn
i“1 λiqx “

ř

i λi x P
ř

i λiA.

If A is additionally absolutely convex then p is a seminorm, because ppλxq “ ppxq
holds for all |λ| “ 1 since A is balanced, so λA “ A is fullfilled.

1.3.7 Lemma. Comparison of seminorms.

For each two sublinear mappings p, q ě 0:

p ď q ô pď1 Ě qď1 ô pă1 Ě qă1.

Proof. p1 ñ 3q The following holds:

x P qă1 ñ ppxq ď qpxq ă 1 ñ x P pă1.

p3 ñ 2q The following holds:

x P qď1 ñ qpxq ď 1

ñ @λ ą 1 : q
´x

λ

¯

“
1

λ
qpxq ď

1

λ
1 ă 1

ñ
x

λ
P qă1 Ď pă1 ñ

1

λ
ppxq “ p

´x

λ

¯

ă 1 ñ ppxq ă λ

ñ ppxq ď inftλ : λ ą 1u “ 1

ñ x P pď1
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1.3 Elementary properties of seminorms 1.4.1

p2 ñ 1q The following holds:

Let λ ą 0 be s.t. 0 ď qpxq ă λñ q
´x

λ

¯

“
1

λ
qpxq ď

λ

λ
“ 1

ñ
x

λ
P qď1 Ď pď1

ñ p
´x

λ

¯

ď 1, i.e. ppxq ď λ

ñ ppxq ď inftλ : λ ą qpxqu “ qpxq

1.4 Seminorms versus topology

1.4.1 Topologies generated by seminorms.

Motivation: The seminorms provide us, as in Analysis, with balls, which we want
to use for questions of convergence and continuity. For this the notion of a topology
has been developed:

In Analysis, we call O Ď R open if there is an δ-neighborhood U Ď O for each a P O
(i.e. a set U :“ tx : |x´ a| ă δu with δ ą 0).

This definition can be transfered almost literally to normed spaces pE, pq:
O Ď E is called open :ô @a P O Dδ ą 0: tx : ppx´ aq ă δu Ď O. Note that

tx : ppx´ aq ă δu “ a` păδ “ a` δ ¨ pă1,

because ppx´ aq ă δ ô x “ a` y with y :“ x´ a P păδ.

But important function spaces do not have a reasonable norm. For example, we can
no longer consider the supremum norm on CpR,Rq. But for each compact interval
K Ď R we may consider the supremum pK on K, i.e. pKpfq :“ supt|fpxq| : x P Ku.

We call O Ď E open with respect to a given family P0 of seminorms on a vector
space E, if

@a P O Dn P N Dp1, . . . , pn P P0, Dε ą 0 : tx : pipx´ aq ă ε for i “ 1, . . . , nu Ď O.

The family O :“ tO : O Ď E ist openu defines then a topology on E, the so-called
topology generated by P0 (unions of the so defined open sets are obviously
open again and the same applies for intersections of finitely many open sets, because
the union of finitely many sets, each consists of finite many seminorms, is finite and
the minimimum of the finitely many ε ą 0 is positive). Generally, a topology (see
[26, 1.1.1]) O on a set X is a set O of subsets of X, which fullfills the following two
conditions:

1. If F Ď O, then the union
Ť

F “
Ť

OPF O belongs to O;

2. If F Ď O is finite, the intersection
Ş

F “
Ş

OPF O is also in O.

Note that
Ť

H “ H and
Ş

H :“ X. The subsets O of X, which belong to O, are
also called open sets of the topology in the general case. A topological space
is a set together with a topology.

The above construction is a general principle. One calls a subset O0 Ď O subbasis
of a topology O, if @a P O P O DF Ď O0, finite: a P

Ş

F Ď O, cf. [26, 1.1.6].
In order to construct a topology O it is sufficient to specify a set O0 of subsets
of X, and then to designate O as the set of all O Ď X for which there is a finite
subset F Ă O0 with x P

Ş

F Ď O for each of the points x P O. One says, that the
topology O is generated by the sub-basis O0.
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The topology generated by P0 is just the topology generated by sub-basis O0 :“
ta` păε : a P E, p P P0, ε ą 0u.
(Ď) The topology generated by P0 is obviously coarser or equal to that generated
by the sub-basis O0, because all we have to do is to set all ai “ a and εi “ ε.
(Ě) In fact, let O Ď E be open in the latter topology, i.e. @a P O DF Ď O0, finite:
a P

Ş

F Ď O. So Da1, . . . , an P E, p1, . . . , pn P P0 and ε1, . . . , εn ą 0 with

a P tx P E : pipx´ aiq ă εi for i “ 1, . . . , nu Ď O.

If we put now ε :“ mintεi ´ pipa´ aiq : i “ 1, . . . , nu, i.e.

a P tx P E : pipx´ aq ă ε for i “ 1, . . . , nu

Ď tx P E : pipx´ aiq ď pipx´ aq ` pipa´ aiq ă εi for i “ 1, . . . , nu Ď O.

By a neighborhood U of a point a in a topological space X, one understands a
subset U Ď X for which an open set O P O exists with a P O Ď U .
A neighborhood(sub)basis U of a point a in a topological space X is a set U of
neighborhoods U of a such that for each neighborhood O, a set (finitely many sets)
Ui P U exists (exist), so that

Ş

i Ui Ď O, cf. [26, 1.1.7].

As in Analysis, a mapping f : X Ñ Y between topological spaces is called con-
tinuous at a P X, if the inverse image of each neighborhood (in a neighborhood
basis) of fpaq there is a neighborhood of a, cf. [26, 1.2.4]. It is called continuous, if
it is continuous in each point a P X, that is the case if and only if the inverse image
of each open set is open. It is easy to see that it is sufficient to check this condition
for the elements of a sub-basis.

Each seminorm p P P0 is continuous for the topology generated by P0, because
if a P E and ε ą 0, then ppa ` păεq Ď tt : |t ´ ppaq| ă εu, since x P păε ñ
|ppa ` xq ´ ppaq| ď ppxq ă ε. But also the addition ` : E ˆ E Ñ E is continuous,
because pa1 ` păεq ` pa2 ` păεq Ď pa1 ` a2q ` pă2ε. In particular, the translations
x ÞÑ a` x are homeomorphisms.

The scalar multiplication ¨ : K ˆ E Ñ E is continuous. For λ P K and a P E:
tµ P K : |µ´ λ| ă δ1u ¨ tx : ppx´ aq ă δ2u Ď tz : ppz ´ λ ¨ aq ă εu if δ1 ă

ε
2ppaq and

δ2 ă
ε
2 p|λ| `

ε
2ppaq q

´1, since

ppµ ¨ x´ λ ¨ aq “ pppµ´ λq ¨ x` λ ¨ px´ aqq

ď |µ´ λ| ¨ ppxq ` |λ| ¨ ppx´ aq

ď δ1 ¨ pppaq ` ppx´ aqq ` |λ| ¨ δ2

ď δ1 ¨ pppaq ` δ2q ` |λ| ¨ δ2 “ δ1 ¨ ppaq ` δ2 ¨ pδ1 ` |λ|q

ď
ε

2
`
ε

2

ˆ

|λ| `
ε

2ppaq

˙´1

¨

ˆ

|λ| `
ε

2ppaq

˙

“ ε.

In particular, the homothetics x ÞÑ λ ¨ x are homeomorphisms for λ ‰ 0.

So the topology generated by P0 turns E into a topological vector space, i.e.
a vector space together with a topology with respect to which the addition and
the scalar multiplication are continuous. Moreover, E is even a locally convex
vector space, i.e. there exists a 0-neighborhood basis consisting of (absolutely)
convex sets (namely,

Şn
i“1ppiqăε), or a sub-basis consisting of (absolutely) convex

sets (namely, păε).

1.4.2 Lemma. Continuity of seminorms.

1. A seminorm p : E Ñ R on a topological vector space E is continuous if and
only if pă1 (or, equivalently, pď1) is a 0-neighborhood.
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2. A seminorm p : E Ñ R is continuous in the topology generated by P0 if and
only if Dp1, . . . , pn P P0, λ ą 0: p ď λ ¨maxtp1, . . . , pnu.

Proof.
1 (ñ) Since p is continuous, 0 P p´1tt : t ă 1u “ pă1 is open.

(ð)

a P a` ε ¨ pă1 “ tx : ppx´ aq ă εu Ď p´1tt : |t´ ppaq| ă εu.

2 (ñ) If p is continuous, then pă1 is a 0-neighborhood, so p1, . . . , pn P P0 and
ε ą 0 exist with

pă1 Ě

n
č

i“1

ppiqăε “
n
č

i“1

ε ppiqă1 “ ε
n
č

i“1

ppiqă1 “ ε pmaxtp1, . . . , pnuqă1

“ pmaxtp1, . . . , pnuqăε “ qă1,

where q :“ 1
ε ¨maxtp1, . . . , pnu. Thus p ď q :“ 1

ε ¨maxtp1, . . . , pnu holds by 1.3.7 .
(ð) With pi also q :“ λ ¨maxtp1, . . . , pnu is continuous, and thus pă1 Ě qă1 is a

0-neighborhood, i.e. p continuous by 1 .

1.4.3 Summary.

Let P0 be a family of seminorms on a vector space E. Then the balls a ` păε :“
tx P E : ppx ´ aq ă εu with p P P0, ε ą 0 and a P E form a sub-basis of a locally
convex topology. This so-called topology generated by P0 is the coarsest topology
(i.e. with the fewest open sets) on E, for which all seminorms p P P0 as well as all
translations x ÞÑ a ` x with a P E are continuous. With respect to this topology,
a seminorm p on E is continuous if and only if there are finite many seminorms
pi P P0 and one K ą 0, s.t.

p ď K maxtp1, . . . , pnu.

1.4.4 Definition. Seminormed space.

By a seminormed space we therefore understand a vector space E together with
a set P of seminorms, which are just the continuous seminorms of the topology
generated by it, that is, with p1, p2 P P also every seminorm p ď p1 ` p2 is in P.

A set P0 Ď P is called sub-basis of the seminormed space pE,Pq, if it generates
the same topology as P, that is for any seminorm p in P finite many p1, . . . , pn P P0

exist as well as a λ ą 0 with p ď λ ¨maxtp1, . . . , pnu.

For any family P0 of seminorms on E, we get a uniquely determined seminormed
space, which has P0 as sub-basis of its seminorms, by using the family P of, with
respect to the topology generated by P0, continuous seminorms:

P :“
!

p is a seminorm on E :Dλ ą 0 Dp1, . . . , pn P P0 with p ď λ ¨maxtp1, . . . , pnu
)

.

By the seminorms of the so obtained seminormed space we understand all
seminorms belonging to the generating family P0. We would actually have to say
“seminorms of the given sub-basis of the seminormed space”, but that’s too long
for us.

By a countably seminormed space we mean a seminormed space which has a
countable sub-basis P0 of seminorms. We may then assume that P0 “ tpn : n P Nu
and the sequence ppnqn is monotone increasing and will eventually dominate any
continuous seminorm p, that is there is an n P N with p ď pn. To achieve this,
replace the pn with n ¨maxtp1, . . . , pnu.
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1.4 Seminorms versus topology 1.4.9

1.4.5 Definition. Convex hull.

The convex hull xAykv of a subset A Ď E is the smallest convex subset of E
which includes A.

1.4.6 Lemma. Convex hull.

Let A Ď E. Then the convex hull of A exists and is given by

xAy kv “
č

tK : A Ď K Ď E, K is convex u

“

!

n
ÿ

i“1

λiai : n P N, ai P A, λi ě 0,
n
ÿ

i“1

λi “ 1
)

.

Proof. The set A :“ tK : A Ď K Ď E, K ist convexu is not empty, because E P A.
Consequently there exists

Ş

A and obviously is itself convex and thus the minimal
element in A, i.e. xAykv “

Ş

A.

For the second description of the convex hull note that the set A0 :“ t
řn
i“1 λiai :

n P N, ai P A, λi ě 0,
řn
i“1 λi “ 1u obviously includes A. It is convex, because let

xj P A0, i.e. xj “
řnj
i“1 λi,j ai,j for nj P N, ai,j P A, λi,j ě 0 with

řnj
i“1 λi,j “ 1.

Then for µj ě 0 with
řm
j“1 µj “ 1 we have:

m
ÿ

j“1

µj xj “
m
ÿ

j“1

µj

nj
ÿ

i“1

λi,j ai,j “
ÿ

i,j
iďnj

µj λi,j ai,j

with
ÿ

iďnj

µj λi,j “
m
ÿ

j“1

µj

nj
ÿ

i“1

λi,j “
m
ÿ

j“1

µj 1 “ 1.

Since A0 is clearly contained in every set K P A, xAykv “ A0 holds.

1.4.7 Definition. Absolutely-convex hull.

The absolutely convex hull xAyakv of a subset A Ď E is the smallest absolutely
convex subset of E that contains A, thus is the intersection of all these sets.

1.4.8 Lemma. Absolutely-convex hull.

Let A Ď E. Then the absolutely convex hull is given by

xAyakv “ xtλ : |λ| “ 1u ¨Aykv,

so it is the convex hull of the balanced hull tλ : |λ| “ 1u ¨A.

Proof. It is only to be shown that the convex hull of a balanced set A is itself
balanced. So let |µ| “ 1 and

řn
i“1 λi ai P xAykv, then

µ ¨
n
ÿ

i“1

λi ai “
n
ÿ

i“1

λi µai P xAykv, since µ ¨ ai P A.

1.4.9 Lemma.

Each locally convex vector space E has a 0-neighborhood base of absolutely convex
sets.

Proof. Let U be a convex 0-neighborhood. This is open without restriction of
generality, because its interior is also convex(!). Since the scalar multiplication tλ P
K : |λ| “ 1uˆE Ñ E is continuous and 0 ¨λ “ 0 holds, there exists a neighborhood
Vλ Ď K of λ for each |λ| “ 1 and a convex 0-neighborhood Uλ Ď E with Vλ ¨Uλ Ď U .
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1.4 Seminorms versus topology 1.5.2

Since tλ P K : |λ| “ 1u is compact, finitely many exist λ1, . . . , λn with tλ P K :
|λ| “ 1u Ď

Ťn
i“1 Vλi . Let U0 :“

Şn
i“1 Uλi . Then U0 is a convex 0-neighborhood and

U0 Ď U1 :“ tλ P K : |λ| “ 1u ¨ U0 Ď U . The convex hull of the balanced set U1 is

thus an absolutely convex 0-neighborhood in U by 1.4.8 .

1.4.10 Remarks.

The topology of each locally convex vector space is generated by the set P of all
continuous seminorms:
(Ě) If O is open in the topology generated by P, then for every a P O finitely
many p1, . . . , pn P P and ε ą 0 exist with

Şn
i“1

`

a ` ε ¨ ppiqă1

˘

“
 

x : pipx ´ aq ă

ε @i “ 1, . . . , n
(

Ď O, so O is also in the original topology open since the ppiqă1 are
0-neighborhoods.

(Ď) Conversely, let the latter be fulfilled, i.e. by 1.4.9 there exists an absolutely
convex 0-neighborhood U with U Ď O ´ a for each a P O. Then p :“ pU is a
continuous seminorm, because pď1 Ě U is also a 0-neighborhood. Consequently,
a ` pă1 Ď a ` U Ď O holds, so O is also open in the topology generated by the
continuous seminorms.

Since we only have to use the Minkowski functionals of a 0-neighborhood basis in
this argument, the following holds:

The topology of each locally convex vector space is already generated by the
Minkowski functionals of a 0-neighborhood basis consisting of absolutely convex
sets.

1.4.11 Corollary. Special 0-neighborhood basis.

Each locally convex vector space E has a 0-neighborhood basis consisting of closed
absolutely convex sets.

Proof. This is obvious because ppU qď1{2 Ď U is closed.

1.4.12 Summary.

Let E be a locally convex vector space and U a 0-neighborhood sub-basis consisting
of absolutely convex sets. Then the family tpU : U P Uu is a sub-basis of that
seminormed space, whose seminorms are exactly those being continuous with respect
to the given topology, these are exactly those seminorms q for which qď1 is a 0-
neighborhood.

So we have a bijection between seminormed spaces and locally convex vector spaces,
and can work with topology or with seminorms on a fixed vector space as needed.

1.5 Convergence and continuity

1.5.1 Definition. Convergent sequence.

A sequence pxiqi converges towards a in a topological space X if and only if for
each neighborhood U (of a sub-basis) of a an index iU exists, such that xi P U for
all i ě iU , cf. [26, 1.1.11].

1.5.2 Lemma. Convergent sequences.

A sequence pxiq converges in the underlying topology of a locally convex space with
sub-basis P0 towards a if and only if ppxi ´ aq Ñ 0 for all p P P0.
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1.5 Convergence and continuity 1.5.6

Proof. pñq Since for a P E the translation y ÞÑ y ´ a is continuous, xi ´ a Ñ
a´ a “ 0, and thus also ppxi ´ aq Ñ pp0q “ 0 for each continuous seminorm p.

pðq Let U be a neighborhood of a. Then there are finitely many seminorms pj P P0

and a ε ą 0 with a`
Şn
j“1ppjqăε Ď U . Since pjpxi´ aq Ñ 0, for each j there exists

an ij with pjpxi ´ aq ă ε for i ě ij . Let I be greater than all the finitely many ij .
Then xi P a`

Şn
j“1ppjqăε for i ě I and thus also in U , i.e. xi Ñ a.

1.5.3 Lemma. Sequentially continuous mapping.

A mapping f : E Ñ X of a countably seminormed space E into a topological space
X is continuous if and only if it is sequentially continuous, i.e. for each convergent
sequence xi Ñ a also the image sequence fpxiq Ñ fpaq converges.

See [20, 3.1.3].

Proof. pñq is clear, because of the above description 1.5.2 of the convergent
sequences.

pðq indirectly: Suppose f´1pUq is not a neighborhood of a for a neighborhood U
of fpaq. Let tpn : n P Nu be a countable sub-basis of the seminorms of E. Then for
each n there is an xn P E with pkpxn ´ aq ă 1

n for all k ď n and fpxnq R U . So
pkpxn ´ aq Ñ 0 for n Ñ 8, and thus also xn Ñ a according to the above lemma

1.5.2 . But since fpxnq R U , this is a contradiction to the sequential continuity of
f .

1.5.4 Definition. Net.

Since the above lemma does not hold for non-countably seminormed spaces , we
extend the notion of a sequence to:
A net (generalized sequence or Moore-Smith sequence, see [26, 3.4.1]) is
a mapping x : I Ñ X, where I is a directed index set, i.e. a set together with
a relation ă, which is transitive and has for any two elements i1 and i2 in I also
a i P I with i1 ă i and i2 ă i, see also [26, 3.4.1]. Exactly, as for sequences, one
defines the convergence of nets and shows thus also the first of the two lemmas
from above. Regarding the second lemma we have

1.5.5 Lemma. Continuity via nets.

A mapping f : E Ñ X from a locally convex space to a topological space is contin-
uous if and only if for each convergent net xi Ñ a the image net fpxiq Ñ fpaq. See
[26, 3.4.3].

Proof. pñq is obvious, because if U is a fpaq-neighborhood and xi Ñ a, then
Di0 @i ě i0 : xi P f

´1pUq, i.e. fpxiq P U , that is fpxiq Ñ fpaq.

pðq Let U be a neighborhood basis of a. Then we use as index set I :“ tpU, uq : U P
U , u P Uu with the order pU, uq ă pU 1, u1q ô U Ě U 1 and as net on it the mapping
x : pU, uq ÞÑ u. Then, clearly, the net x converges to a, so by assumption also
f ˝ x towards fpaq, i.e. for each fpaq-neighborhood V exists an index pU0, u0q, s.t.
fpuq P V for all U Ď U0 and u P U . So fpU0q Ď V , that means f is continuous.

1.5.6 Definition. Separatedness.

A locally convex space is called separated (or also Hausdorff, see [26, 3.4.4]), if
the limits of convergent sequences (or nets) are unique, this is the case if and only
if ppxq “ 0 for all p P P0 implies x “ 0:
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pðq Let xi be a net converging to x1 and x2. Then xi´x
1 converges towards 0 and

also towards x2´x1. Because of the continuity of p, ppxi´x
1q converges to pp0q “ 0

and also to ppx2 ´ x1q. Because of the uniqueness of the limits in K, ppx2 ´ x1q “ 0
holds for all p, and thus, by assumption, x2 ´ x1 “ 0.
pñq Let ppxq “ 0 for all p. Then the constant sequence (net) with value x converges
to both 0 and x, hence, by assumption, x “ 0.

We are going to use the abbreviation lcs for separated locally convex spaces.

1.6 Normable spaces

1.6.1 Definition. Normable spaces and bounded sets.

One calls a separated lcs, which has a sub-basis consisting of a single (semi-)norm,
normable.

A set B Ď E is called bounded if and only if ppBq is bounded for all p P P0, cf.
[20, 2.2.9]. That’s exactly the case when it gets absorbed by all 0-neighborhoods,
i.e. @ 0-neighborhood U DK ą 0 : B Ď K ¨ U :
pðq Let p be a continuous seminorm, then pď1 is a 0-neighborhood, so by assump-
tion there is an K ą 0 with B Ď K ¨ pď1 “ pďK , i.e. p is bounded on B by
K.

pñq Let U be a 0-neighborhood. Then there are finitely many seminorms pi P P0

and an ε ą 0 with
Şn
i“1ppiqďε Ď U . For each pi there is a Ki ą 0 with |pipBq| ď Ki,

so B Ď
Şn
i“1ppiqďKi Ď

Şn
i“1ppiqďK ε “ K ¨ U , where K :“ 1

ε ¨maxtK1, . . . ,Knu.

1.6.2 Theorem of Kolmogoroff.

A separated lcs is normable if and only if it has a bounded zero-neighborhood.

Proof. pñq Let p be a norm generating the structure. Then U :“ pď1 is a 0-
neighborhood. For any continuous seminorm q there exists an K ą 0 with q ď K ¨p,
and thus q is bounded on U by K. So U is bounded.

pðq Let U be a bounded zero neighborhood. Then there is a continuous seminorm
with pď1 Ď U . Now let q be any seminorm. Since U is bounded, there is a K ą 0
with |qpUq| ď K. So pď1 Ď U Ď qďK “ p 1

K qqď1 and therefore p ě 1
K q, that is

q ď K ¨ p. Thus, tpu is a sub-basis of the seminorms of E and p is even a norm.

1.6.3 Example. The pointwise convergence of continuous functions.

The pointwise convergence on CpI,Rq can not be a normed space.

Proof. A sub-basis of seminorms for pointwise convergence is given by f ÞÑ |fpxq|
for x P I. Suppose there is a bounded zero neighborhood B. Then finitely many
points x1, . . . xn P I and a ε ą 0 exist, s.t. B :“ tf : |fpxiq| ă ε for i “ 1, . . . , nu
is bounded. Let x0 R tx1, . . . , xnu. Then the seminorm q : f ÞÑ |fpx0q| is not
bounded on B, because certainly there exists a (polynomial) f which vanishes on
tx1, . . . , xnu, but not on x0, and thus K ¨ f P B, but qpK ¨ fq “ K ¨ fpx0q Ñ 8 for
K Ñ8.

Analogously one shows that the uniform convergence on compact sets in the space
CpR,Rq is not normable but yields a countably seminormed space. And similarly
for the uniform convergence in each derivative on C8pI,Rq.
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2. Linear mappings and completeness

In this chapter we examine the basic properties of linear mappings as well as the
notion of completeness and its relevance for power series. In particular, we apply this
to prove the inverse function theorem and the Weierstrass approximation theorem,
as well as for solving linear differential equations.

2.1 Continuous and bounded mappings

2.1.1 Lemma. Continuity of linear mappings.

For a linear mapping f : E Ñ F between lcs’s are equivalent:

1. f is continuous;

ô 2. f is continuous at 0;

ô 3. For each (continuous) SN q of F , q ˝ f is a continuous SN of E.

Proof. p 1 ñ 3 q q a continuous SN, f continuous linear ñ q ˝ f is a continuous
SN.

p 3 ñ 2 q Let U be a 0-neighborhood of 0 “ fp0q in F , without restriction of

generality U “
Ş

ity : qipyq ă εu for SN’s q1, . . . , qn of F . Then f´1pUq “
Ş

itx :
qipfpxqq ă εu “

Ş

ipqi ˝ fqăε is open in E.

p 2 ñ 1 q We have fpxq “ fpx ´ aq ` fpaq, i.e. f “ Tfpaq ˝ f ˝ T´a, where the
translations T´a and Tfpaq are continuous and the middle f is continuous at 0,

hence also the composition f is continuous at pT´aq
´1p0q “ a.

2.1.2 Lemma. Continuity of multi-linear mappings.

An n-linear mapping f : E1ˆ . . .ˆEn Ñ F between lcs’s is continuous if and only
if it is continuous at 0.

Proof. Let first n “ 2. For ai P Ei and any neighborhood fpa1, a2q`W of fpa1, a2q

with absolutely convex W , 0-neighborhoods Ui exist in Ei with fpU1 ˆU2q Ď
1
3W ,

because of the continuity of f at 0. Now choose a 0 ă ρ ă 1 with ρ ai P Ui for
i “ 1, 2. Then fppa1 ` ρU1q ˆ pa2 ` ρU2qq Ď fpa1, a2q `W , because ui P Ui is

f
`

a1 ` ρ u1, a2 ` ρ u2

˘

´ f
`

a1, a2

˘

“ fpa1, ρ u2q
looooomooooon

“fpρ a1,u2q

` fpρ u1, a2q
looooomooooon

“fpu1,ρ a2q

` fpρ u1, ρ u2q
loooooomoooooon

“ρ2 fpu1,u2q

Ď
1

3
W `

1

3
W `

1

3
W ĎW.

For n ą 2, choose U1, . . . , Un analogously with p2n ´ 1q fpU1 ˆ . . .ˆ Unq ĎW .

2.1.3 Definition. Bounded linear mappings.

A linear mapping is called bounded if the image of each bounded set is bounded.
Warning: In the literature this notation is sometimes also used for the non-equivalent
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2.1 Continuous and bounded mappings 2.1.6

property to be bounded on some 0-neighborhood!
Note that bounded subsets of an LCS can not contain any ray a`R` ¨ v for v ‰ 0,
since otherwise t ÞÑ ppa ` t vq would be bounded on R`, say by Kp ą 0, for each
seminorm p of E, hence t ppvq “ pptvq ď ppa` tvq`pp´aq ď Kp`ppaq for all t ą 0

by 1.3.1 , hence ppvq “ 0, i.e. v “ 0.

Consequently, a linear mapping f : E Ñ F is bounded as mapping from the set E
to F (i.e. fpEq Ď F is bounded), only if is the 0-map, because fpEq would then be
a bounded linear subspace, and thus fpEq “ t0u.

2.1.4 Lemma. Bounded linear mappings.

For linear mappings f : E Ñ F between lcs’s the following implications hold:

1. f is continuous;

ñ 2. f is sequentially continuous;

ñ 3. f is bounded.

Proof. ( 1 ñ 2 ) holds even for non-linear f by 1.5.5 .

( 2 ñ 3 ) Suppose fpBq is not bounded for some bounded set B Ď E. Then there
is a seminorm q of F and a sequence bn P B, s.t. 0 ă λn :“ qpfpbnqq Ñ 8.
The sequence 1

λn
bn then converges to 0 (see the following lemma), so because of

the sequential continuity also fp 1
λn
bnq “

1
λn
fpbnq and thus also qp 1

λn
fpbnqq “

1
λn
qpfpbnqq “ 1, a contradiction.

Now the question arises of the validity of the converse to the implications in 2.1.4 .

For p1 ð 2q we have already answered this positively in 1.5.3 for countably semi-
normed spaces.
For p2 ð 3q we need some relationship between bounded and convergent sequences.
A simple fact is the following.

2.1.5 Lemma. Mackey-convergence.

Let tyn : n P Nu Ď E be bounded in an lcs and ρn Ñ 0 in R. Then ρnyn Ñ 0.

Proof. By applying seminorms this is reduced to the corresponding result for R. Or
directly: Let U be an absolutely convex 0-neighborhood. Then tyn : n P Nu Ď K ¨U
for some K ą 0 and thus ρn yn P U for all |ρn| ď

1
K , so for almost all n.

In order to be able to deduce at least sequential continuity from boundedness, it
would be helpfull if the converse were true, i.e. if we could write any convergent
sequence pxnqn in E as a product of a bounded sequence pynqn in E and a 0-sequence
ρn in R. A sequence pxnq, for which this holds, is called Mackey 0-sequence or
Mackey-convergent towards 0, so if D0 ď λn Ñ 8, s.t. tλnxn : n P Nu is
bounded.

Each Mackey 0-sequence pxnqn converges to 0 by Lemma 2.1.5 applied to yn :“
λnxn. For normable spaces, the converse implication also holds, because xn Ñ 0
implies 0 ď λn Ñ 8, where λn :“ 1

}xn}
for xn ‰ 0 and λn :“ n otherwise, and

obviously tλnxn : n P Nu is bounded in the norm by 1. More generally, this also
holds for countably seminormed spaces:

2.1.6 Lemma.

In countably seminormed spaces E, each sequence converging to 0 is even Mackey-
convergent to 0.
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2.1 Continuous and bounded mappings 2.1.8

Proof. Let tpk : k P Nu be a monotonously increasing sub-basis of E and xn Ñ 0 a
0-sequence. The idea is to define for the countable many zero sequences ppkpxnqqn
for k P N another zero sequence n ÞÑ 1

λn
ą 0 converging slower towards 0.

0

1

1�2

1�3

n1 n2 n3

p1 p2 p3

p1

p2

p3

1�Λ

1�Λ

1�Λ

From pkpxnq Ñ 0 for n Ñ 8 follows the existence of nk P N with pipxnq ď
1
k for all n ě nk and all i ď k. Without loss of generality k ÞÑ nk is strictly
monotonously increasing. We define λn :“ k for nk`1 ą n ě nk. Then, n ÞÑ λn
is monotonously increasing, λn Ñ 8, and for n ě nk, pkpλn xnq “ λn pkpxnq “
j pkpxnq ď j pjpxnq ď j 1

j “ 1, where j ě k is selected to be nj`1 ą n ě nj .

2.1.7 Corollary. Bornologicity of metrizable lcs.

Every countably seminormed space is bornological. Even more holds: Multilinear
bounded mappings on countably seminormed spaces are continuous.

Where an lcs is called bornological, if each bounded linear mapping on it is
continuous.
In 4.2.5 we will give examples of lcs’s that are not bornological.

Proof. Because of 1.5.3 , we only need to show the sequential continuity (at 0)

of each bounded m-linear mapping f . Let xn Ñ 0. By Lemma 2.1.6 there exists
a sequence λn Ñ 8, so that λn xn is bounded. Then, by assumption fpλn xnq “

λmn fpxnq is also bounded, and thus fpxnq is a (Mackey) 0-sequence by 2.1.5 .

2.1.8 Lemma. Continuity in normed spaces.

For linear mappings f : E Ñ F between normed spaces are equivalent:

1. f is continuous;

ô 2. f is Lipschitz, i.e. DK ą 0 : }fpxq ´ fpyq} ď K ¨ }x´ y};

ô 3. }f} ă 8.

The operator norm ||f || on f is defined as follows (cf. [22, 5.4.10])

}f} :“ sup
 

}fpxq} : }x} ď 1
(

“ sup
 

}fpxq} : }x} “ 1
(

“ sup
!

}fpxq}
}x} : x ‰ 0

)

“ inf
!

K : }fpxq} ď K}x} for all x
)

If f is multi-linear, then f is continuous if and only if

}f} :“ sup

"

}fpx1, . . . , xnq}

}x1} . . . }xn}
: xi ‰ 0

*

ă 8.
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2.1 Continuous and bounded mappings 2.2.1

Proof. p 1 ô 3 q f is continuous
2.1.7
ô f is bounded on bounded sets (without

restriction of generality on tx : }x} ď 1u, since fpBq Ď c ¨ fptx : }x} ď 1uq for
B Ď c ¨ tx : }x} ď 1u) ô supt}fpxq} : }x} ď 1u “: }f} ă 8.

The following applies:

supt}fx} : }x} “ 1u ď supt}fx} : }x} ď 1u (because more elements)

ď sup

"

}fx}

}x}
: x ‰ 0

*

(because }fx} ď
}fx}

}x}
for ||x|| ď 1q

ď supt}fx} : }x} “ 1u (because
}fx}

}x}
“ }fp

1

}x}
xq}q,

so equality holds everywhere. Furthermore:

inf
!

K : }fx} ď K ¨ }x} for all x
)

“ inf

"

K :
}fx}

}x}
ď K for all x ‰ 0

*

“ inf

"

K : sup

"

}fx}

}x}
: x ‰ 0

*

ď K

*

“ sup

"

}fx}

}x}
: x ‰ 0

*

.

The mapping f is Lipschitz ô
!

}fz}
}z} : z ‰ 0

)

“

!

}fx´fy}
}x´y} : x ‰ y

)

is bounded.

The statement for multilinear mappings f is shown analogously.

2.1.9 Corollary. Operator norm.

Let E and F be normed spaces, then the set

LpE,F q :“ tf : E Ñ F | f is linear and boundedu

is a normed space with respect to the pointwise vector operations and the operator

norm as defined in 2.1.8 . Furthermore: } idE } “ 1 and }f ˝ g} ď }f} ¨ }g}.

Proof. The following applies:

@x : }pf ` gqx} ď }fx} ` }gx} ď p}f} ` }g}q }x} ñ }f ` g} ď }f} ` }g}

@x : }pλ fqx} “ |λ| }fx} ñ }λ f} “ |λ| }f}

@x : }pf ˝ gqx} ď }f} }g} }x} ñ }f ˝ g} ď }f} }g}.

Attention }f ˝ g} ‰ }f} ¨ }g}, e.g. fpx, yq :“ px, 0q and gpx, yq :“ p0, yq.

2.1.10 Definition. Normed algebra.

A normed algebra is a normed space A along with a bilinear mapping ‚ : AˆAÑ
A, which is associative, has a unit 1 and satisfies }1} “ 1 as well as }a‚b} ď }a}¨}b}.
One of the most important examples is LpE,Eq “: LpEq for normed spaces E.

2.2 Completeness

2.2.1 Definition. Completeness.

An lcs E is called sequentially complete if every Cauchy sequence converges.
It is called complete when every Cauchy net converges. A net (or sequence) xi is
called Cauchy if xi ´ xj Ñ 0 for i, j Ñ8, i.e.

@ε ą 0 @p Di0 @i, j ą i0 : ppxi ´ xjq ă ε.
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2.2 Completeness 2.2.3

A Banach space is a normed space that is (sequentially) complete.
A (sequentially) complete countably seminormed space is called Fréchet space.

2.2.2 Lemma. Fréchet-spaces.

For each countably seminormed space and each everywhere positive λ P `1 are equiv-
alent

1. It is complete;

ô 2. It is sequentially complete;

ô 3. Any absolutely convergent series converges;

ô 4. For each bounded sequence pbnq the series
ř

n λnbn converges;

ô 5. Each Cauchy sequence has a convergent subsequence.

A series
ř

n xn is called absolutely convergent if for each continuous seminorm
p the series

ř

n ppxnq converges (absolutely) in R.

Proof. p 1 ñ 2 q is trivial.

p 2 ñ 3 q Let
ř

n xn be absolutely convergent, then the partial sums of
ř

n xn

form a Cauchy sequence, for pp
ř

xnq ď
ř

ppxnq, hence
ř

n xn converges by 2 .

p 3 ñ 4 q Let the sequence pbnq be bounded and pλnq be absolutely summable.
Then

ř

n λn bn is absolutely summable, because
ř

n ppλn bnq ď }λ}1 ¨ }p ˝ b}8. So

this series converges by 3 .

p 4 ñ 5 q Let tpn : n P Nu be a monotonously increasing sub-basis of seminorms.
Let pxiq be a Cauchy sequence. Then:

@k Dik @i, j ě ik : pkpxi ´ xjq ď λk (without loss of generality ik ď ik`1q

ñ pn

ˆ

1

λk
pxik`1

´ xikq

˙

ď pk

ˆ

1

λk
pxik`1

´ xikq

˙

ď 1 for n ď k

ñ
1

λk
yk is bounded, where yk :“ xik`1

´ xik

4
ñ xij “ xi0 `

ÿ

kăj

λk
1

λk
yk converges.

p 5 ñ 1 q Let pxiq be a Cauchy net and ppnq a increasing sub-basis of seminorms.
Then:

@k Dik @i, j ą ik : pkpxi ´ xjq ď
1

k
(without loss of generality ik`1 ą ikq

ñ xik is a Cauchy sequence

5
ñ a convergent subsequence pxikl ql exists. Let x8 :“ lim

l
xikl and n ď k

ñ pnpxi ´ x8q ď pkpxi ´ x8q ď pkpxi ´ xikq
loooooomoooooon

ď 1
k for iąik

` pkpxik ´ x8q
loooooomoooooon

“liml pkpxik´xikl
qď 1

k

ď
2

k
.

2.2.3 Lemma. Completeness of the space of bounded mappings.

Let X be a set and E a (sequentially) complete lcs. Then the space

BpX,Eq :“ tf : X Ñ E | fpXq is bounded in Eu,
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2.2 Completeness 2.2.4

being seminormed by the family f ÞÑ }q ˝ f}8 “ suptqpfpxqq : x P Xu where q runs
through the seminorms of E, is also (sequentially) complete.
Its locally convex topology is that of uniform convergence.
Subsets B Ď BpX,Eq are bounded if and only if they are uniformly bounded, i.e.
BpXq “ tfpxq : f P B, x P Xu Ď E is bounded.

We will write BpXq instead of BpX,Kq. See also [20, 4.2.9].

Proof. Let fi be a Cauchy net in BpX,Eq. The point evaluations evx : BpX,Eq Ñ
E, f ÞÑ fpxq are continuous (because of qpevxpfqq “ qpfpxqq ď }q ˝f}8 this follows

from 2.1.1 and 1.4.3 ) and linear, hence fipxq is a Cauchy net in E for each x P X,
and thus converges. Let fpxq :“ limi fipxq, then for each continuous seminorm p on
E:

p
`

fipxq ´ fpxq
˘

ď p
`

fipxq ´ fjpxq
˘

` p
`

fjpxq ´ fpxq
˘

ď }p ˝ pfi ´ fjq}8
loooooooomoooooooon

ăε for i,jąi0pε,pq

` p
`

fjpxq ´ fpxq
˘

loooooooomoooooooon

ăε for jąi0px,ε,pq

ď 2ε

for i ą i0pε, pq (and j selected depending on x). So fi Ñ f with respect to the
supremum norm constructed using p.

In case that was too short, again in more detail: Let ε ą 0.

pfiq is Cauchy ñ Di0 @i, j ą i0 : }p ˝ pfi ´ fjq}8 ă
ε

2

fj Ñ f pointwise ñ @x Dj0 @j ą j0 : ppfjpxq ´ fpxqq ă
ε

2
ñ Di0 @x Dj0 ą i0 @i ą i0 @j ą j0 :

p
`

fipxq ´ fpxq
˘

ď }p ˝ pfi ´ fjq}8 ` p
`

fjpxq ´ fpxq
˘

ă ε

ñ Di0 @i ą i0 @x : p
`

fipxq ´ fpxq
˘

ă ε

ñ Di0 @i ą i0 : }p ˝ pfi ´ fq}8 ď ε

Furthermore,

ppfpxqq ď p
`

fpxq ´ fipxq
˘

` ppfipxqq ď }p ˝ pf ´ fiq}8 ` }p ˝ fi}8 ă 8,

hence f belongs to BpX,Eq.

The statement about the bounded subsets B Ď BpX,Eq is proved as follows:
A set B Ď BpX,Eq is bounded exactly when t}q ˝ f}8 : f P Bu is bounded for each
seminorm q of E, so tqpfpxqq : x P X, f P Bu Ď R is bounded, i.e. BpXq :“ tfpxq :
f P B, x P Xu is bounded in E.

2.2.4 Lemma. Subspaces of complete spaces.

Let E be a (sequentially) complete lcs, F a linear subspace with the restrictions p|F
of the seminorms p of E as a sub-basis. If F is (sequentially) closed in E, then F
is also (sequentially) complete

We will show in 3.1.4 that in this situation the subspace F carries the trace
topology of E. A subset Y of a topological space X is called closed, respectively
sequentially closed, if with each net, resp. sequence, pyiqi in Y , which converges
in X, also the limit belongs to Y . It is easy to show that a subset is closed exactly
when its complement is open.

Proof. If pyiq is Cauchy in F , i.e. p|F pyi ´ yjq Ñ 0 for each SN p of E, then
it is Cauchy in E, hence converges in E because of the completeness of E. Let
y8 P E be its limit, then y8 P F because of the closedness of F and p|F pyi´ y8q “
ppyi ´ y8q Ñ 0, thus yi converges to y8 in F .
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2.2 Completeness 2.2.6

2.2.5 Corollary. Subspaces of the space of bounded mappings.

The spaces CpXq for compact X, as well as CbpXq :“ CpXqXBpXq and C0pXq :“
tf P CpXq : @ε ą 0 DK Ď X compact @x R K : |fpxq| ď εu for general topological
spaces X, are all complete with respect to the supremum norm.

Proof. All we have to do is to show the sequentially closedness of the above sub-
spaces of BpXq, which follows from the fact that the limit of any uniformly conver-
gent sequence of continuous functions is continuous, cf. [20, 4.2.8]:
Let fn Ñ f8 be uniformly convergent and fn be continuous for all n P N. For ε ą 0
and x0 P X choose n P N with }fn´f8}8 ă

ε
3 , as well as, because of the continuity

of fn, a neighborhood U of x0 with |fnpxq ´ fnpx0q| ă
ε
3 for all x P U . Then we

have for all x P U :

|f8pxq ´ f8px0q| ď |f8pxq ´ fnpxq| ` |fnpxq ´ fnpx0q| ` |fnpx0q ´ f8px0q| ă 3
ε

3
.

If fn P C0pXq, then also f8 P C0pXq, because for ε ą 0 there exists a n0 with
}fn ´ f8}8 ă ε for all n ě n0 and, because fn0

P C0, there exists a compact
K Ď X with |fn0

pxq| ď ε for x R K. So

|f8pxq| ď }f8 ´ fn0
} ` |fn0

pxq| ă 2ε for all x R K.

Usually, C0pXq is only considered for locally compact X, because in points x0 P X
without compact neighborhood each function f P C0pXq must vanish: If fpx0q ‰ 0,
then we choose a compact set K with |fpxq| ď 1

2 |fpx0q| for all x R K and thus

K Ě tx : |fpxq| ą 1
2 |fpx0q|u would be a neighborhood of x0.

Each locally compact space X has a one-point compactification X8 “ X Y t8u

(see [26, 2.2.5]) and C0pXq can then also be described as C0pXq “ tf P CpXq :
limxÑ8 fpxq “ 0u – tf P CpX8q : fp8q “ 0u.

2.2.6 Example. Completeness of the space of the functions with bounded
variation.

BV pI,Rq is a Banach space.

The variation seminorm V has as kernel

KerV :“ tf : V pfq “ 0u “ tf : f is constantu.

To get a separated space we have the following options:

‚ We add another seminorm to V , e.g. the supremum norm or even just f ÞÑ
|fp0q|, which recognizes constant non-vanishing mappings. Equivalent, we
can also consider the sum or the maximum of V with the additional seminorm
and get a normed space.

‚ We shrink the space of functions with bounded variation to BV pI,Rq :“
tf : I Ñ R : V pfq ă 8 und fp0q “ 0u in order to get rid of the constants
unequal 0.

‚ We factor out the kernel of the seminorm V and get a vector space of equiv-
alence classes of functions with the seminorm induced by V as norm.

Since KerpV q is 1-dimensional, it does not really matter which of the 3 options we
pick, for other seminorms (see [18, 4.11.7]) this is not the case anymore.

Proof. Let BV pI,Rq :“ tf : I Ñ R : fp0q “ 0 und V pfq ă 8u and pfnqn be
a Cauchy sequence in BV pI,Rq. Because of |fpxq| ď V pf, Zq ď V pfq with Z “

t0, x, 1u and thus }f}8 ď V pfq, the inclusion BV pI,Rq ãÑ BpI,Rq is continuous
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2.2 Completeness 2.2.8

and thus fn Ñ f8 converges uniformly. Furthermore, the convergence is also with
respect to V , because

V pfn ´ f8, Zq ď V pfn ´ fm, Zq ` V pfm ´ f8, Zq

ď V pfn ´ fmq `
ÿ

k

|pfm ´ f8qpxkq| `
ÿ

k

|pfm ´ f8qpxk´1q| ă 2ε,

for all n ą npεq provided m ą npεq was selected in dependence of Z so that
|fmpxkq ´ f8pxkq| ď

ε
2|Z| for all subdivision points xk of Z.

Because of V pf8q ď V pf8 ´ fnq ` V pfnq we have f8 P BV pI,Rq.

2.2.7 Corollary. Completeness of the space of bounded linear mappings.

Suppose E and F are locally convex spaces. Then the set LpE,F q :“ tf : E Ñ

F | f is linear and boundedu is a locally convex space with respect to the pointwise
vector operations and the seminorms of the form f ÞÑ }q ˝ f |B}8 with all bounded

B Ď E and all SN’s q of F , see also 3.1.1 and 3.1.3 . Its locally convex topology
is thus that of uniform convergence on bounded sets in E. If F is (sequentially)
complete, so is LpE,F q.

Note that LpE,F q is a countably seminormed space if F is one and, in addition, a
countable sub-basis of bounded sets exists in E, that is, a set B of bounded sets,
s.t. each bounded set B is included in a union of finitely many sets from B.

Proof. Completeness: Let pfiq P LpE,F q be a Cauchy net. For each x P E, the
sequence fipxq converges towards some fpxq P F . Furthermore, for every bounded
A Ď E, the net fi|A is a Cauchy net in BpA,F q, thus converges to an fA P BpA,F q

by 2.2.3 . Since this also has to hold pointwise for x P A, we have fApxq “ fpxq.
The mapping f is bounded because fpAq “ fApAq is bounded. It is linear because
fi converges pointwise towards f . Finally, fi Ñ f in LpE,F q because for each A
the restrictions on A converge in BpA,F q.

If F “ K, then we denote with E1 :“ LpE,Kq the space of all bounded linear
functionals on E and with E˚ the subspace of all continuous linear
functionals on E.
If f : E Ñ F is a bounded (resp. continuous) linear operator, we denote with
f˚ : F 1 Ñ E1 (resp. f˚ : F˚ Ñ E˚) the adjoint operator given by f˚p`qpxq :“
`pfpxqq.

2.2.8 Remark. Completeness of the space of the continuous functions.

Analogously, it is shown that CpX,F q is (sequentially) complete, if it is supplied
with the topology of uniform convergence on compact sets, i.e. the seminorms
f ÞÑ }p ˝ f |K}8 for compact K Ď X and continuous seminorms p of F , and F
is (sequentially) complete and X is a Kelley space, i.e. is a Hausdorff space
where each set A Ď X, for which A X K Ď K is closed for all compact K Ď X,
itself is closed, because then a mapping f : X Ñ F is continuous if and only if it is
the restrictions f |K : K Ñ F for all compact K Ď X.

Obviously, the limit of a net of continuous functions is continuous on all compact
sets, and because X is Kelley, it is continuous on X.
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3. Constructions

3.1 General initial structures

3.1.1 Motivational examples.

For compact spaces X we have made the space of the continuous functions CpX,Rq
by means of the supremum norm into a Banach space in 1.2.2 and 2.2.5 . This
is no longer possible for non-compact X, as continuous functions on X need not
be bounded. But for every compact set K Ď X we can define a seminorm } }K

by }f}K :“ }f |K}8. By means of the family of these seminorms for all compact

K Ď X, we have made CpX,Rq an lcs in 2.2.5 .

Similarly, we proceeded in 2.2.7 with LpE,F q, by considering restriction mapping
ins˚ : f ÞÑ f |A, LpE,F q Ñ BpA,F q for each bounded set A Ď E and as seminorms
q on LpE,F q the compositions f ÞÑ }q ˝ f |A}8 for the seminorms F .

We now want to tease out the essentials from these constructions. The starting
point is a vector space E :“ CpX,Rq (or LpE,F q) and a family of linear mapping
fK : E Ñ EK with values in lcs’s EK :“ CpK,Rq (or BpA,F q). The fK are in our
case given by fK : g ÞÑ g|K . The goal now is to be able to make the space E as
canonically as possible into a locally convex space by means of this data.

3.1.2 Theorem on initial structures.

Given a point-separating family of linear mapping fk : E Ñ Ek on a vector space
E into lcs’s Ek.
The set

P0 :“
ď

k

tp ˝ fk : p seminorm of Eku

is a sub-basis of the coarsest structure of an lcs’s E, s.t. every fk is continuous.
We call this structure, the initial structure with respect to the mappings fk.
With this structure, E has the following universal property:
A linear mapping f : F Ñ E from an lcs F to E is continuous if and only if all of
the composites fk ˝ f are.

E
fk // Ek

F

f

OO

fk˝f

>>

Furthermore:
The topology of E is the initial one with respect to the family of mappings fk, i.e.
it is the coarsest so that all fk are continuous.
For nets pxiq in E and x P E we have: xi Ñ x in E ô @k: fkpxiq Ñ fkpxq in Ek.
Subsets B Ď E are bounded in E ô @k: fkpBq is bounded in Ek.
If the family of mappings fk is finite and the Ek are normable then so is E.
If this family is countable and the Ek are countably seminormed then so is E.
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Proof.

Sub-basis of the coarsest structure. The fk are continuous if and only if p˝fk is
a continuous seminorm on E for all (continuous) seminorms of Ek; consequently, the
locally convex topology on E generated by P0 has the smallest family of seminorms
such that all fk are continuous.

Initial topology. Since all fk are continuous with respect to the topology generated
by the seminorms, the initial topology is coarser or equal to it.
Conversely, U “ a`qăε is an element of the sub-basis of the topology generated by
the seminorms q P P0. Then q “ p˝fk for some k and some (continuous) seminorm
p of Ek. Thus, U “ a` qăε “ tx : ppfkpx´ aqq ă εu “ tx : fkpxq ´ fkpaq P păεu “
pfkq

´1pfkpaq ` păεq is open (being an inverse image) in the initial topology with
respect to the fk.

Universal property. For linear mappings f : F Ñ E, the following holds:

f is continuous

ô @q P P0 : q ˝ f is continuous

ô @k @p seminorm of Ek : p ˝ fk ˝ f is continuous

ô @k : fk ˝ f is continuous.

Convergent nets. For nets pxiq in E and x P E, the following holds:

xi Ñ x in E

ô @q P P0 : qpxi ´ xq Ñ 0

ô @k @p seminorm of Ek : ppfkpxiq ´ fkpxqq “ pp ˝ fkqpxi ´ xq Ñ 0

ô @k : fkpxiq Ñ fkpxq in Ek.

Bounded sets. For subsets B Ď E the following holds:

B is bounded in E

ô @q P P0 : qpBq is bounded in K
ô @k @p seminorm of Ek : ppfkpBqq “ pp ˝ fkqpBq is bounded in K
ô @k : fkpBq is bounded in Ek.

Separatedness. Let qpxq “ 0 for all q P P0, i.e. ppfkpxqq “ 0 for all k and all
(continuous) seminorms p of Ek. Because Ek is separated, fkpxq “ 0 for all k.
Because the fk separate points, x “ 0.

Cardinality of a sub-basis. By construction, the sub-basis of the seminorms of
E is countable provided those of the Ek are and the index set of the k is countable.
If the index set finite and all Ek are normable, the sub-basis of E is finite. If P0 :“
tp1, . . . , pNu is a finite sub-basis of the seminorms of E, then tmaxtp1, . . . , pNuu is
a sub-basis, and thus E normalizable.

3.1.3 Examples of initial structures.

On several spaces E (e.g. CpX,F q and LpX,F q) of functions f : X Ñ F , we have
considered the structure of the uniform convergence on certain subsets K Ď X.
This topology is exactly the initial topology induced by the restriction mappings
incl˚K : E Ñ BpK,F q. A subset A Ď E of functions is thus bounded exactly when
incl˚KpAq Ď BpK,F q is bounded, so tfpxq : f P A, x P Ku is bounded in F by

2.2.3 , i.e. A is uniformly bounded on the sets K.
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Somewhat more general, also the structure of CppU,Rmq is of this form, where one
has to consider the derivatives followed by restriction mappings

CppU,Rmq Ñ Cp´jpU,LpRn, . . . ,Rn;Rmqq Ñ BpK,Rn
j
¨mq.

So a subset of A Ď CppU,Rmq is bounded exactly when each derivative is uniformly
bounded on compact sets.

3.1.4 Corollary. Structure of subspaces.

Let F be a linear subspace of an lcs E. We provide F with the initial structure with
respect to the inclusion ι : F ãÑ E.

‚ The continuous seminorms on F are exactly the restrictions of those on E.

‚ The topology of F is the trace topology induced by E on F .

‚ A subset of F is bounded if and only if it is so in E.

‚ A subspace of a (sequentially) complete space is (sequentially) complete if
and only if it is (sequentially) closed.

Proof.

Extending continuous seminorms. Let q be a continuous seminorm of F and let

U0 :“ qă1 be its open unit ball. By 1.4.2.2 there are finitely many qi P P0 :“ tp|F :
p is SN of Eu and some K ą 0 with q ď K ¨maxtq1, . . . , qNu. Let pi be continuous
seminorms of E with ppiq|F “ qi and put p :“ K ¨ maxtp1, . . . , pNu. Then p is a
continuous seminorm on E and q ď p|F holds. For the open unit ball U1 :“ pă1 we

have U1 XF “ pp|F qă1 Ď qă1 “ U0 by 1.3.7 . Let now U be the absolutely convex
hull of U0 Y U1. Since U0 and U1 are themselves absolutely convex, we have

U “
!

p1´ tqu0 ` tu1 : u0 P U0, u1 P U1, 0 ď t ď 1
)

“
ď

0ďtď1

Ut,

where Ut :“ tp1´ tqu0 ` tu1 : u0 P U0, u1 P U1u.
Since U1 is open, Ut “

Ť

u0PU0
p1´ tqu0 ` t U1 is also open in E for t ‰ 0.

We now want to show that U0 Ď
Ť

0ătď1 Ut and hence U “
Ť

0ătď1 Ut. As a side
result, we obtain that U is open. Let u0 P U0 Ď F . Since U0 is open in F and
U1 X F is a 0-neighborhood in F , a small 0 ă t ď 1 exists, s.t. t u0 P U1 X F and
p1` tqu0 P U0. Thus u0 “ p1´ tq p1` tqu0 ` t t u0 P Ut for this t ą 0.

Furthermore, U0 “ U X F holds: On the one hand U0 Ď U and U0 Ď F . On the
other hand, let u P U X F , then u P Ut for some 0 ă t ď 1, i.e. u “ p1´ tqu0 ` tu1

with u0 P U0 and u1 P U1. So u1 “
1
t pu´ p1´ tqu0q P U1 X F Ď U0 and, since U0 is

convex, u “ p1´ tqu0 ` tu1 P U0 holds.

Now let q̃ be the Minkowski functional pU of U (see 1.3.5 ). Then q̃|F is the

Minkowski functional of U X F “ U0 “ qă1 and this matches with q by 1.3.3 .

The statement about the trace topology and bounded subsets follows directly from

Theorem 3.1.2 .

Completeness of closed subspaces. We have already shown this in 2.2.4 .

Closedness of complete subspaces. Let xi be a net (sequence) in x converging
towards E in F , then xi is a Cauchy net (Cauchy-sequence) in E, and thus the

net xi,j :“ xi ´ xj converges to 0 in E. By 3.1.2 it also converges in F , which
means xi is a Cauchy net in F . Since F is assumed to be (sequentially) complete,
xi converges towards some y in F , and because the inclusion is continuous, also in
E. Since E is separated, the two limits x and y must coincide, thus x “ y P F .
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3.1.5 Subspaces of the Banach space BpXq, see Lemma 2.2.3 .

Let X be a topological space. Thus CbpXq :“ CpXq X BpXq is a closed subspace
of BpXq and hence itself a Banach space.

Furthermore, C0pXq itself is a closed subspace of CbpXq, and thus a Banach space.

3.2 Products

3.2.1 Corollary. The structure of products.

Let Ek be lcs’s and E “
ś

k Ek be their Cartesian product, provided with the
initial structure with respect to the projections prk : E Ñ Ek to the individual
factors.

‚ Then the topology of E is the product topology.

‚ The convergence is the coordinate (or componentwise) convergence.

‚ A set B is bounded in E if and only if it is contained in a product
ś

k Bk of
bounded sets Bk Ď Ek.

‚ Any product of (sequentially) complete spaces is (sequentially) complete.

‚ A product of bornological space is again bornological if it does not consist of
too many factors; More precisely, if the index set is smaller than the first
measurable cardinal number. Whether such cardinal numbers exist depends
on the set theory used.

Proof.

Product topology and convergence. The product topology is by definition the
coarsest topology, s.t. the projections prk : E Ñ Ek are continuous, so this is the

topology of the lcs E by Theorem 3.1.2 . Likewise, the statement about convergence
follows from this theorem. A basis of this topology is given by the products

ś

k Uk
with Uk Ď Ek open and Uk “ Ek apart from finite many indices k.

Bounded sets. A set B Ď E is bounded by 3.1.2 if and only if Bk :“ prkpBq Ď Ek
is bounded for all k. Since always B Ď

ś

j Bj , the desired statement follows, because

prkp
ś

j Bjq “ Bk shows that
ś

j Bj is bounded.

Completeness. Let xi be a Cauchy net in E, then the k-th coordinate of the xi
forms a Cauchy net in Ek, by the continuity and linearity of prk, and thus converges
in Ek. Then, according to the description of the convergence, xi converges towards
the point x P E whose k-th coordinate is just limi prkpxiq.

Bornologicity. The proof of this statement follows from the following Theorem

3.2.3 together with Remark 3.2.4 .

3.2.2 Definition. Ulam-measures.

A Ulam measure on a set J is a t0, 1u-valued measure on the power set PpJq, i.e.
a mapping µ : PpJq Ñ t0, 1u satisfying µp

Ů

nPNAnq “
ř8

n“1 µpAnq for all pairwise
disjoint sets An Ď J .
It is called non-trivial if µ ‰ 0, but µptjuq “ 0 for all j P J .

Obviously, a Ulam measure µ is uniquely determined by F :“ µ´1p1q. For µ ‰ 0
this is a filter on J , because

‚ H R F , since µpHq “ µpH
Ť

Hq “ 2 ¨ µpHq and hence µpHq “ 0.
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‚ Let A P F and A Ď B Ď J . Then

1 ě µpBq “ µpBzAq ` µpAq ě µpAq “ 1,

hence µpBq “ 1, i.e. B P F .

‚ Let us assumed indirectly that A,B P F and AXB R F , then

1 “ µpAq “ µpAzAXBq ` µpAXBq “ µpAzAXBq

and thus µpAYBq “ µpAzAXBq ` µpBq “ 2 R t0, 1u.

Moreover, F is even an ultrafilter, i.e. a maximal filter with respect to inclusion
(or equivalently, A Ď J ñ either A P F or Ac :“ JzA P F): Otherwise A R F and
Ac R F and then µpJq “ µpAq ` µpAcq “ 0` 0 gives a contradiction to µpJq ‰ 0.

Furthermore, F is a δ-filter, i.e. An P F implies
Ş

nPNAn P F : Otherwise,
Ť

nPNA
c
n “ p

Ş

nPNAnq
c P F and Acn R F for all n P N is a contradiction to

the σ-(sub)additivity, i.e. µpAcnq “ 0 but µp
Ť

nPNA
c
nq ‰ 0, because if Bn :“ Acn

and Cn :“ Bnz
Ť

kănBk, then
Ť

nBn “
Ů

n Cn and µpCnq ď µpBnq “ 0, but
µp
Ť

n Cnq ‰ 0.

Conversely, if F is a δ-ultrafilter on J , then 0 ‰ µ :“ χF : PpJq Ñ t0, 1u is a Ulam
measure: Namely, let An Ď J be pairwise disjoint. Due to the obvious monotony of
µ, we only have to show that µp

Ů

nPNAnq “ 1 implies the existence of a (unique)
n P N with µpAnq “ 1. If µpAnq “ 1 would hold for at least two n, then these would
satisfy An P F and thus also their empty intersection. So let us assume indirectly
that µpAnq “ 0 for all n P N, hence An R F and thus Acn P F . Because of the
δ-filter property, we would have p

Ť

nPNAnq
c “

Ş

nPNA
c
n P F , i.e.

Ť

nPNAn R F .
Hence µp

Ť

nPNAnq “ 0, a contradiction.

Note that the a Ulam measure µ is non-trivial if and only if
Ş

F “ H:
It suffices to show j P

Ş

F ô µptjuq “ 1:
µptjuq “ 1 ñ tju P F ñ j P A for all A P F , otherwise H “ tjuXA P F . And vice
versa, µptjuq “ 0 implies j R A :“ tjuc P F , hence j R

Ş

F .

Moreover,
Ş

F ‰ H ô D!j P J : F “ tA Ď J : j P Au: Let j P
Ş

F . Since j R tjuc

we have tju P F by the ultrafilter property, hence F “ tA Ď J : j P Au.

A cardinal number is called measurable if a non-trivial Ulam measure exists on it.
If measurable cardinal numbers exist, then, by results of [36] and [16] and [28], the
smallest measurable cardinal number m is inaccessible, i.e. ℵ0 ă m, furthermore,
c ă m ñ 2c ă m, as well as k ă m and ci ă m for all i P k ñ

ř

iPk ci ă m, as the
following arguments show.

1. Sublemma.

Let m be the smallest measurable cardinal and µ be a Ulam measure on m. Then µ
is k-additive for each cardinal k ă m.

Proof. Let tAi : i P ku be a family of pairwise disjoint subsets of m with k ă m.
and µp

Ů

iPk Aiq ‰
ř

iPk µpAiq. Obviously the set k1 :“ ti P k : µpAiq ą 0u has to be
countable, since otherwise there is some ε ą 0 such that ti : µpAiq ă εu is infinite,
contradicting the σ-additivity. Hence

ÿ

iPk

µpAiq “
ÿ

iPk1

µpAiq “ µp
ğ

iPk1

Aiq ă 8, hence
ÿ

iPkzk1

µpAiq “ 0,

whereas µp
ğ

iPkzk1

Aiq “ µp
ğ

iPk

Aiq ´ µp
ğ

iPk1

Aiq “ µp
ğ

iPk

Aiq ´
ÿ

iPk

µpAiq ‰ 0.
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We define a measure µ1 on k by

µ1pBq :“ µp
ğ

iPB

Aiq for B Ď k

This is obviously a Ulam-measure, since for any countable family of pairwise disjoint
Bi Ď k, we have

ÿ

iPN
µ1pBiq “

ÿ

iPN
µp

ğ

jPBi

Ajq “ µ
´

ğ

iPN

ğ

jPBi

Aj

¯

“ µ
´

ğ

jP
Ů

iPN Bi

Aj

¯

“ µ1p
ğ

iPN
Biq.

And it is non-trivial, since µ1ptiuq “ µpAiq “ 0. A contradiction to the minimality
of m.

2. Subcorollary.

Let m be the smallest measurable cardinal and k ă m, then 2k ă m.

Proof. Suppose 2k ě m. By 1 it suffices to show that each measure µ on m, which
is k-additive for all k ă m, is trivial. Such a µ induces a measure on the superset
2k ě m. For each ordinal l ď k and f P 2l let

Upf, lq :“
!

g P 2k : gpjq “ fpjq @j ă l (i.e. j P l)
)

.

Thus Upf, lq “ tfu for l “ k. For l ă k and i P 2 :“ t0, 1u let

U ipf, lq :“ tg P Upf, lq : gplq “ iu.

Then Upf, lq “ U0pf, lq \ U1pf, lq.

By transfinite induction and succesive extension we will construct an element f P
2k with µpUpf |l, lqq “ 1 for all l ď k, and hence µptfuq “ µpUpf, kqq “ 1, a
contradiction.

Note that f |0 “ H and Upf |0, 0q “ 2k, hence µpUpf |0, 0qq “ 1. Thus there is an
i P 2 such that µpU ipf |0, 0qq “ 1, and we put fp0q :“ i.

Let now 0 ă l ď k. If l is a limit ordinal, then by induction we have f already on
Ť

jăl j “ l such that µpUpf |j , jqq “ 1 forall j ă l. Since Upf |l, lq “
Ş

jăl Upf |j , jq

the l-additivity implies µpUpf |l, lqq “ 1. Thus there is an fplq :“ i P 2 such that
µpU ipf |l, lqq “ 1.

Otherwise, l is a successor ordinal, i.e. l “ j ` 1 for some j ă l ď k and by
induction hypothesis we have f P 2j with µpUpf, jqq “ 1 and have defined fpjq with
µpUfpjqpf |j , jqq “ 1. Since Upf |l, lq “ Ufpjqpf |j , jq there is again an fplq :“ i P 2
such that µpU ipf |l, lqq “ 1.

3. Subcorollary.

Let m be the smallest measurable cardinal, and ci ă m for alle i P k ă m. Then
ř

iPk ci ă m.

Proof. Otherwise, m ď
ř

iPk ci, thus there are disjoint Ci with |Ci| ă m and
m “

Ů

iPk Ci. Let µ be a non-trivial Ulam-measure on m. By assumption µptiuq “ 0

for all i P m, hence µpCiq “ 0 by 1 and hence µpmq “
ř

iPk µpCiq “ 0 again by

1 , thus µ “ 0.

3.2.3 Theorem. Bounded functionals on products.

For sets J , the following statements are equivalent:

1. All bounded linear functionals on RJ :“
ś

jPJ R are continuous;

2. The only algebra homomorphisms RJ Ñ R are prj for j P J ;
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3. All Ulam measures on J are trivial,
i.e. the cardinality of J is less than the smallest measurable cardinal.

( 1 ô 3 ) is due to [29] and ( 2 ô 3 ) is due to [12].

Proof. ( 1 ð 3 ) Let f : RJ Ñ R be linear and bounded. We have to show that f
is continuous.

The set A :“ tj P J : fpejq ‰ 0u is finite, where ej is the j-th unit vector in RJ ,
so all the coordinates are 0 except the j-th which is 1: Otherwise, pairwise distinct
jn P A exist for n P N with fpejnq ‰ 0. Then t n

fpejn q e
jn : n P Nu is bounded in RJ ,

but fp n
fpejn q e

jnq “ n is unbounded, a contradiction to the boundedness of f . Thus

g : x ÞÑ fpx ¨χAq, RJ � RA ãÑ RJ Ñ R is continuous (by 3.4.6.3 ) and h :“ f ´ g

is bounded, linear, and vanishes on RpJq :“ tx P RJ : tj : xj ‰ 0u ist finiteu.

It suffices to show h “ 0. Let us assume indirectly h ‰ 0. We consider filters
contained in H :“ tI Ď J : hI :“ h|RI ‰ 0u. The set tJu such a filter and the
union of a linearly ordered set of such filters is again such a filter. Thus, according
to Zorn’s lemma, there is a maximal filter F contained in H.

This maximal filter F is an ultrafilter: Let I Ď J .
If I X A R H and Ic X B R H for some A,B P F , then C :“ A X B P F Ď H, but
hC “ hIXC ` hIcXC “ 0, so C R H, a contradiction.
Thus, I X A P H for all A P F , or Ic X A P H for all A P F . Consider the filter
F 1 :“ tA1 Ď J : DA P F with I X A Ď A1u generated by the trace of F to I. Then
F Ď F 1 Ď H and I P F 1 “ F by maximality. So I P F or Ic P F .

The filter F is a δ-filter (thus defines a Ulam measure):
Let An P F be arbitrary and A8 :“

Ş

nPNAn.
Suppose A8 X A “ H for some A P F . Since Bn :“ A X

Ş

kďnAk P F Ď H there

exists a bn P RBn Ď RJ with |hpbnq| ě n. Because of Bn`1 Ď Bn and
Ş

nBn “ H,
each i P J is only in a finite number of Bn’s, so bni “ 0 for all but finitely many
n and thus tbn : n P Nu Ď RJ is bounded, but thpbnq : n P Nu is unbounded, a
contradiction.
Thus, A8XA ‰ H for all A P F and (as before) A8 P F , because tA8XA : A P Fu
generates a filter F 1 Ě F containing A8 and F is an ultrafilter.

Since Ulam measures are trivial on J by assumption (i.e.
Ş

F ‰ H), an i exists
with tiu P F Ď H, i.e. hpeiq ‰ 0, a contradiction to h|RpJq “ 0.

( 1 ñ 2 ) Let f : RJ Ñ R be an algebra homomorphism. For each x P Rj there
is an i with fpxq “ xi, otherwise x ´ fpxq ¨ 1 is invertible, so 0 ‰ fpx ´ fpxq ¨
1q “ fpxq ´ fpxq ¨ fp1q “ 0 is a contradiction. Therefore f is monotonous, since
to x, y P RJ an i P J exists with fpxq “ xi and fpyq “ yi, otherwise consider
px ´ fpxqq2 ` py ´ fpyqq2. Finally, f is bounded, because let B Ď RJ be bounded
and fpBq be unbounded. Then we find xn P B with |fpxnq| ą 2n and by replacing
xn with pxnq2 P B2 we may assume xn ě 0. Hence x8 :“

ř

n
1

2nx
n P RJ converges

(cf. 2.2.2 ) and

fpx8q “ f
´

ÿ

nďN

1

2n
xn `

ÿ

nąN

1

2n
xn

¯

“
ÿ

nďN

1

2n
fpxnq ` f

´

ÿ

nąN

1

2n
xn

¯

ě
ÿ

nďN

1

2n
fpxnq ` 0 ě

ÿ

nďN

1 ě N,

because of the monotonicity of f , a contradiction.
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By (1) the mapping f is continuous, so depends only on finitely many coordinates(!)
and thus is a point evaluation, because for i ‰ j we have 0 “ fpei ¨ ejq “ f i ¨ f j

with f i :“ fpeiq, and hence only one of them can be non-zero.

( 2 ñ 3 ) Suppose there were a non-trivial Ulam measure µ : PpJq Ñ t0, 1u. Then

F :“ µ´1p1q is a δ-ultrafilter with
Ş

F “ H. For given x P RJ we consider the
(image) filter Fx on R generated by the sets xpIq :“ txi : i P Iu with I P F . This is
a δ-ultrafilter(!) on R and, since R only allows trivial Ulam measures µx (because
|R| “ 2ℵ0 is accessible!), there is a (unique) fx P R with tfxu P Fx, i.e. DAx P F with
xpAxq Ď tfxu, and for all A P F with A Ď Ax we have H ‰ xpAq Ď xpAxq Ď tfxu,
i.e. xpAq “ tfxu.

The mapping f : x ÞÑ fx is an algebra homomorphism:
For x, y P RJ , there exist Ax, Ay P F with tfxu “ xpAxq and tfyu “ ypAyq and
thus C :“ Ax XAy P F and xpCq “ tfxu and ypCq “ tfyu, so that

fx¨y P px ¨ yqpCq Ď xpCq ¨ ypCq “ tfxu ¨ tfyu “ tfx ¨ fyu, i.e. fpx ¨ yq “ fpxq ¨ fpyq.

Furthermore, f1 P 1pJq “ t1i : i P Ju “ t1u, hence fp1q “ 1.

Because of 2 , f “ prj for some j P J . But, because of
Ş

F “ H, there is an A P F
with j R A. Thus 1 “ prjpe

jq “ fpejq “ fej P e
jpAq “ t0u is a contradiction.

3.2.4 Remark. Bornologicity of function spaces.

We will show later (see also [14, S.281]) that RI is bornological (or, equivalently,
just all bounded linear functionals on RI are continuous, i.e. the cardinality of I is
not measurable), if and only if

ś

iPI Ei is bornological for all bornological spaces
Ei.

More generally, a completely regular topological space X (rather than a discrete
set) is called real-compact if the only algebra homomorphisms CpX,Rq Ñ R
are the point evaluations. This is the case if and only if it is a closed subspace of

a power, i.e. a product of the form RJ , see [26, 2.5.2]. Thus, by 3.2.3 a discrete
space is real-compact if and only if its cardinality is not measurable.

According to a theorem of [30] and [34], the space CpX,Rq is bornological for a
completely regular space X if and only if X is real-compact.

This can be generalized to some vector valued cases: Due to a theorem of [32], the
space CpX,Eq is bornological for countably seminormed spaces E and completely
regular X if and only if X is real-compact.

Susanne Dierolf gave an example mentioned in [33], that CpN8,RpJqq is not bornolog-
ical for uncountable J , although the 1-point compactification N8 of N is compact

and thus real-compact and RpJq is bornological, see 3.3.2 .

3.2.5 Initial structures as subspaces of products.

Assume a point separating family of linear mapping fk : E Ñ Ek is given on a vector
space E with values in lcs’s Ek. Then the initial structure on E is just given by the
embedding of E into the product

ś

k Ek, which maps x P E to pfkpxqqk P
ś

k Ek.

For a topological Hausdorff space X, the space CpX,Kq can be considered as a
subspace of the product

ś

K CpK,Kq, with K running through the compact subsets
of X. The topology of CpX,Kq is then of course that of the uniform convergence
on compact sets K Ď X. Note that this subspace is closed provided X is a Kelley
space, i.e. a set A is closed in X, when its intersection A X K is closed in K,
for all compact K Ď X. If there is a countable basis of the compact sets of X,
i.e. a countable family of compact sets Kn, so that each compact subset of X is
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contained in some Kn, then CpX,Kq is a countably seminormed space. If X is a
locally compact and σ-compact (i.e. a union of countably many compact subsets)
the CpX,Kq is a Fréchet space, i.e. a complete countably seminormed lcs.

Let G Ď C be open, then the space of the holomorphic functions HpG,Cq is a
closed(!) subspace of CpG,Cq and thus itself a Fréchet space.

If I Ă R is a compact interval, then the space C8pI,Rq of the smooth functions
can be embedded by f ÞÑ pf pnqqnPN as (because of [20, 4.2.11]) closed subspace in
ś

nPN CpI,Rq. Thus, C8pI,Rq is a Fréchet space. Its topology is that of uniform
convergence in each derivative separately. More generally, for each open set X Ď

Rm, the space C8pX,Rq can be made into a Fréchet space.

3.3 General final structures

3.3.1 Convergent power series as motivational example.

We now want to make the space E of the locally convergent power series into
an lcs. A power series

ř8

n“0 anz
n is uniquely determined by its coefficients an,

and addition and scalar multiplication of convergent power series corresponds to
addition and scalar multiplication of their coefficients. So E obviously identifies
with tpanq P CN : lim supnÑ8 |an|

1{n ă 8u.

A first approach would be to provide E with the initial structure as the subspace
of the product CN :“

ś

nPN C, but unfortunately it is not closed, because the
polynomials (= finite sequences) are dense in CN (proof!). This structure is therefore
too coarse and on the other hand panqn ÞÑ lim supnÑ8 |an|

1{n is not a seminorm.
But if we consider the linear subspace Er of the power series with convergence
radius 1{plim supnÑ8 |an|

1{nq ą r for r ą 0, then we have a suitable norm, namely
panqn ÞÑ supt|an| r

n : n P Nu. So we can write E as union
Ť

rą0Er of normed
spaces Er. Now we want to make E into a (complete) lcs by means of the family
of inclusions fr : Er Ñ E in the most natural way possible. In particular, the
mapping fr : Er Ñ E should be continuous, i.e. for a continuous seminorms q on
E, the composition q ˝ fr should be a continuous seminorm on Er.

3.3.2 Theorem on final structures.

Let fk : Ek Ñ E be a family of linear mappings of lcs’s into a vector space E. The
vector space E provided with the set

P :“
!

p is a seminorm on E : @k the seminorm p ˝ fk is continuous on Ek

)

is the not necessarily separated locally convex space that carries the finest structure,
s.t. each fk : Ek Ñ E is continuous. We call this structure the final structure
with respect to the family of mappings fk.
With this structure, E has the following universal property: A linear mapping
f : E Ñ F into a locally convex space F is continuous if and only if all of its
compositions are f ˝ fk : Ek Ñ F .
If all Ek are bornological, so is E.

In general, neither the topology, nor the convergence, nor the bounded sets, nor the
separatedness have a direct description similar to that of initial structures.

Proof.

Finest structure. The mappings fk : Ek Ñ E are continuous if and only if each
continuous SN of E belongs to P. So it remains to show that P describes a locally
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convex space. Let q be a seminorm on E, for which finite many qi P P exist and
an R ą 0, s.t. q ď R ¨maxtq1, . . . , qNu. Then the same inequality also holds to the
compositions of q and qi with fk, so q ˝ fk is a continuous seminorm on Ek, and
thus q belongs to P, so E together with P is a locally convex space by Lemma

1.4.2 , and the structure is the finest, s.t. all fk are continuous. This implies also

the desired universal property by means of 2.1.1 .

Ek
fk //

p˝fk   

E
f //

p

��

F

q
��

R

Bornologicity. If f : E Ñ F is a bounded linear mapping, then f ˝ fk is also
bounded, because continuous mappings (like fk) are bounded, according to Lemma

2.1.4 . Since Ek was assumed to be bornological, f ˝ fk : Ek Ñ F is continuous.
Due to the universal property, f is continuous.

Regarding the other properties that are not necessarily inherited, we restrict our
considerations to special cases.

3.3.3 Corollary. Quotient spaces.

Let E be an lcs and F a linear subspace. We provide the quotient space E{F :“
tx` F : x P Eu of the cosets x` F of F in E with the final structure with respect
to the canonical projection π : x ÞÑ x` F , E Ñ E{F . Then we have:

‚ The lcs E{F carries the quotient topology, that is the finest topology, s.t.
π : E Ñ E{F is continuous. Furthermore, π is open.

‚ The quotient space E{F is separated exactly when F is closed in E.

‚ The continuous seminorms on E{F are precisely the mappings q̃ : x` F ÞÑ
inftqpx` yq : y P F u, where q runs through the continuous seminorms of E.

‚ If E is normable (or countably seminormed lcs) and F is closed, then E{F
is also normable (or countably seminormed lcs).

Regarding completeness we unfortunately have no general statement, but see 3.5.3 .

Proof.

Continuous seminorms of E{F . To each seminorm q on E we define a new
seminorm qF by qF pxq :“ inftqpx`yq : y P F u. This infimum exists since qpx`yq ě
0. We have that qF is a seminorm, because for λ ‰ 0 we have

qF pλxq “ inf
 

qpλx` yq : y P F
(

“ inf
 

qpλpx` 1
λyqq : y P F

(

“ inf
!

|λ| qpx` zq : z P
1

λ
F “ F

)

“ |λ| qF pxq

and the subadditivity of qF follows from

qF px1 ` x2q “ inf
!

qpx1 ` x2 ` yq : y P F “ F ` F
)

“ inf
!

qpx1 ` x2 ` y1 ` y2q : y1 P F, y2 P F
)

ď inf
´

tqpx1 ` y1q : y1 P F u ` tqpx2 ` y2q : y2 P F u
¯

“ inf
 

qpx1 ` y1q : y1 P F
(

` inf
 

qpx2 ` y2q : y2 P F
(

“ qF px1q ` qF px2q.
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Furthermore, pqF qă1 Ď qă1 ` F (in fact, even equality holds, and thus qF is the
Minkowski functional of qă1 ` F ), because 1 ą qF pxq “ inftqpx ` yq : y P F u ñ
Dy P F : qpx` yq ă 1, so x “ px` yq ` p´yq with x` y P qă1 and ´y P ´F “ F .
If q is continuous, also qF is continuous, because qF ď q. Since qF is constant on
the cosets x`F by construction, qF factors to a seminorm q̃ on E{F , which is also
continuous by construction of the final structure. Conversely, if q̃ is any continuous
seminorm on E{F , then q :“ q̃ ˝ π is continuous seminorm on E, which is constant
on cosets x` F . So qF “ q and q̃ is the seminorm on E{F which is associated (by
the above construction) to q.

The statement about the cardinality of a sub-basis is now evident.

Quotient topology and openness of π. A set V Ď E{F is by definition open in
the quotient topology if and only if π´1pV q is open in E. We now show the equality
of the topologies and the openness of π.

If U is open in E, then π´1pπpUqq “ U ` F “
Ť

yPF U ` y is open in E, and thus

V :“ πpUq open in the quotient topology.

If V Ď E{F is open in the quotient topology, then U :“ π´1pV q is open in E. We
have to show that V is a neighborhood of each y P V in the topology generated
by the seminorms. Then y “ πpxq and w.l.o.g. x “ 0 because the topologies under
consideration are all translation invariant. There is a continuous seminorm q on E
with qă1 Ď U and thus pqF qă1 Ď qă1 ` F Ď U ` F “ U holds. Then q̃ă1 Ď V ,
because

1 ą q̃px` F q “ qF pxq ñ x P U “ π´1pV q ñ x` F “ πpxq P πpπ´1pV qq Ď V,

and thus V is a 0-neighborhood in the topology generated by the seminorms.

Conversely, if V Ď E{F is open in the topology generated by the seminorms, then
U :“ π´1pV q Ď E is open in E and thus V is open in the quotient topology.

Separatedness. Let E{F be separated. Then

t0u “
č

tq´1p0q : q is seminorm of E{F u,

thus t0u Ď E{F is closed, and hence F “ π´1p0q Ď E is closed.
Conversely, let F Ď E be closed. Then EzF is open and, since π is an open mapping,
also πpEzF q “ E{F zt0u is open. So t0u is closed in E{F . Thus, E{F is separated
because qpyq “ 0 for all SN’s q has as consequence that the constant sequence 0
converges to y and, since t0u is closed, y “ 0 follows.

3.3.4 Kernel of a seminorm.

If p : E Ñ R is a seminorm of an lcs E, then the kernel F :“ Kerppq :“ p´1p0q of p is
a closed linear subspace, because ppxq “ 0 “ ppyq implies ppλxq “ |λ|ppxq “ |λ|0 “
0 and 0 ď ppx ` yq ď ppxq ` ppyq “ 0 ` 0 and pF “ p, because ppxq ´ 0 “ ppxq ´
pp´yq ď ppx ` yq ď ppxq ` ppyq “ ppxq ` 0 for y P Kerppq. Thus, Ep :“ E{Kerppq
is a normed space with respect to p̃.

Thus, each lcs E is embeddable as a subspace in the product
ś

pEp,

with p running through the seminorms of E.
The embedding is given by x ÞÑ px ` Kerppqqp. It is injective
because E is separated. And E carries the initial structure with
respect to this embedding since the p̃ ˝ prp :

ś

q Eq Ñ Ep Ñ R
form a sub-basis of seminorms of the product.

E �
� //

p

��
πp

!! !!

ś

q Eq

prp
����

R Ep
p̃

oo
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3.4 Finite dimensional lcs

3.4.1 Lemma. 1-dimensional lcs’s.

Let E be a 1-dimensional lcs and 0 ‰ a P E, then the mapping f : KÑ E, t ÞÑ t a
is an isomorphism of lcs’s (i.e. a linear homeomorphism). Any linear isomorphism
of E with K is thus a homeomorphism.

Proof. Since tau is a basis of the vector space E, the mapping f is bijective, and
each linear isomorphism f : K Ñ E looks like this with a :“ fp1q. Because the
scalar multiplication is continuous, f is continuous. Since E is separated, there is

a seminorm q with qpaq ě 1. Then |f´1ptaq| “ |t| “ qptaq
qpaq ď qptaq, i.e. |f´1| ď q, so

f´1 is also continuous.

3.4.2 Lemma. Continuous functionals.

Let E be an lcs and f : E Ñ K a linear functional. Then:

1. f is continuous;

ô 2. |f | : x ÞÑ |fpxq| is a continuous seminorm;

ô 3. The kernel Kerpfq is closed.

If, on the other hand, f is not continuous, then Kerpfq is dense in E.

Proof. p 1 ñ 2 q Obvious, because | | is a continuous norm on K.

p 2 ñ 3 q Obvious, because Kerpfq “ Kerp|f |q.

p 3 ñ 1 q It suffices to consider the case f ‰ 0. Then f : E Ñ K is surjective.

Since F :“ Kerpfq is closed, E{F is an lcs by 3.3.3 . Because f |F “ 0, the function

f factors over π : E Ñ E{F to a linear mapping f̃ : E{F Ñ K.

E
π // //

f �� ��

E{ kerpfq
zz

f̃

–

zzzz
K

Since f is surjective, the same holds for f̃ . Moreover, f̃ is injective, because 0 “
f̃pπpxqq “ fpxq ñ x P Kerpfq ñ πpxq “ 0. So f̃ is an isomorphism of lcs’s by

Lemma 3.4.1 . Consequently, f “ f̃ ˝π is continuous as a composition of continuous
mappings.

Let now f be not continuous, so Kerpfq is not closed. Let a P KerpfqzKerpfq.
Without loss of generality fpaq “ 1. The mapping KerpfqˆKÑ E, px, tq ÞÑ x`t a is

continuous, linear and its image is contained in the linear subspace Kerpfq. However,

it is even onto, hence Kerpfq “ E, because E Q y ÞÑ py´ fpyq a, fpyqq P KerpfqˆK
is obviously right-inverse to it.

3.4.3 Examples of linear discontinuous functionals.

Let E :“ Cpr0, 1s,Kq with the 1-norm. Then ev0 : E Ñ K is linear, but not bounded
(= continuous) and Kerpev0q “ tf P E : fp0q “ 0u is thus dense, because we easily
find piecewise affine functions fn ě 0 with

ş

fn “ 1 and fnp0q “ n.

Similarly,
ř

: E Ñ K is linear and not continuous (= bounded), where E is the
space of the finite sequences with the 8-norm and

ř

: x ÞÑ
ř8

n“1 xn.

However, in order to find discontinuous linear functionals E on Banach spaces, one
needs the axiom of choice. If one adds instead the axiom, that every subset of R is
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Lebesgue measurable, to set theory (see [35]), then every linear mapping between
Banach spaces is continuous (see [8]).

3.4.4 Corollary. Subspaces of co-dimension 1.

Let F be a closed subspace of an lcs E of co-dimension 1 (i.e. Da P EzF , s.t. the
vector space E is generated by F Y tau).
Then F ˆK – E holds, where the isomorphism is given by py, λq ÞÑ y ` λ a.
In partcular, there is a continuous linear functional f with ker f “ F .

Proof. The mapping py, λq ÞÑ y ` λ a is clearly continuous. It is surjective since
the vector space E is generated by F Y tau; and it is injective, because y` λ a “ 0
with λ ‰ 0 ñ a “ ´ 1

λy P F , a contradiction.

F
� � // E // //

f !!

E{F

–

��
K

Now to the inverse map. For this we define a linear func-
tional f : E Ñ K by fpy ` λ aq :“ λ. The kernel of f
is F , hence is closed. Thus, f and also the desired in-
verse mapping E Q x ÞÑ px ´ fpxq a, fpxqq P F ˆ K is
continuous.

3.4.5 Theorem of Tychonoff on finite dimensional lcs’s.

For every lcs E, the following statements are equivalent:

1. E is finite dimensional.

ô 2. E – Kn :“
śn
k“1 K for some n P N. More precisely: Each linear isomor-

phism E – Kn is also an isomorphism of lcs’s.

ô 3. E is locally compact.

ô 4. E has a precompact 0-neighborhood.

A topological space is called locally compact if every point has a neighborhood
basis consisting of compact sets. For a Hausdorff space it is sufficient to find a
compact neighborhood for each point. And for an lcs this is equivalent to the
existence of a compact 0-neighborhood!

A subset K of an lcs is called precompact if a finite set of F exists for each 0-
neighborhood U with K Ď U ` F “

Ť

yPF U ` y, i.e. each ’uniform’ open covering
has a finite subcovering.

Proof. p 1 ñ 2 q We show by means of induction, with respect to the dimension
n, that every linear bijection Kn Ñ E is already a homeomorphism:

(n = 1) was already shown in Lemma 3.4.1 .

(n + 1) Let f : Kn`1 Ñ E be a linear bijection. Obviously, there is a natural
topological isomorphism k : KnˆK – Kn`1. Let now en`1 :“ kp0, 1q P Kn`1. Then
f ˝ k|Kn : Kn Ñ fpKnq “: F is a linear bijection onto an lcs. So, by induction,
f ˝ k|Kn : Kn Ñ F is a homeomorphism. Since Kn “

śn
i“1 K is complete, the same

is true for F , and thus F is closed in E, by Corollary 3.1.4 . According to Corollary

3.4.4 , h : py, λq ÞÑ y ` λ fpen`1q, F ˆKÑ E, is a homeomorphism and thus also

f “ h ˝ pf ˝ k|Kn ˆ idKq ˝ k
´1 : Kn`1 – Kn ˆKÑ F ˆK – E.

p 2 ñ 3 q Is a direct sequence of the Theorem of Bolzano-Weierstrass (see [20,
3.3.4]) because then the unit cube in Rn is a compact 0-neighborhood.

p 3 ñ 4 q Each compact set K is precompact as tU ` x : x P Ku represents an
open covering.

p 4 ñ 1 q Let U be a precompact (absolutely convex) 0-neighborhood. For the

0-neighborhood 1
2U there exists a finite set F , s.t. U Ď F ` 1

2U and we may replace
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F by the generated finite-dimensional subspace, which we again denote F . We now
want to show that F is equal to E. Since F is finite-dimensional, F is complete

because of p 1 ñ 2 q, so F is closed by Corollary 3.1.4 . Now let’s look at the
canonical projection π : E � E{F . The precompact set U is also bounded: For each
(absolutely convex) 0-neighborhood W there is a finite set A with U Ď A `W ,
and since W is absorbent and A is finite we find a K ą 0, s.t. A Ď K ¨ W , so
U Ď pK ` 1qW . Thus, V :“ πpUq is a bounded 0-neighborhood in E{F , so E{F is

normable by Theorem 1.6.2 , the family 1
2nV is a 0-neighborhood basis and thus

Ş

n
1

2nV “ t0u. Furthermore we have V “ πpUq Ď πpF ` 1
2 Uq “ 0` 1

2 πpUq “
1
2 V .

From this we obtain by means of induction V Ď 1
2nV and thus V Ď

Ş

nPN
1

2nV “

t0u. Since V must be absorbent as 0-neighborhood, E{F “ t0u, i.e. F “ E.

3.4.6 Corollary.

1. On Km, all norms and more generally all point-separating sets P0 of semi-
norms are equivalent (that is, generate the same topology).

2. Let F be a finite dimensional subspace of some lcs E. Then F is closed and

consequently E{F separated (see also 5.1.7 ).

3. If f : E Ñ F is a linear mapping of a finite dimensional lcs E into an lcs
F , then f is continuous.

4. If F is a closed subspace of an lcs E and F has finite co-dimension in E,
i.e. E{F is finite-dimensional, then E as lcs is isomorphic to F ˆ pE{F q.

Proof. 1 Let p be a norm on Km, then according to Theorem 3.4.5 of Tychonoff
pKm, pq is topologically isomorphic to pKm, } }8q, so the norm p is equivalent to
the 8-norm. Consequently, any two norms are equivalent.

2 Since F is isomorphic to Km and Km is complete, F is also complete, and thus
closed in E.

3 Without loss of generality E “ Km. Each linear f can be written as fpxq “
řn
k“1 prkpxq fpekq, where ek are the standard unit vectors of Kn. Since the projec-

tions prk are, by construction of the product, continuous, also f is continuous.

4 We consider the canonical projection π : E Ñ E{F . Since it is surjective,
there exists a linear right-inverse f (We choose inverse images in E under π of a
basis in the finite dimensional space E{F ). Since E{F is separated (F is closed),

f is continuous by 3 . Now the desired isomorphism E Ñ F ˆ pE{F q is given by
x ÞÑ px´ fpπpxqq, πpxqq. Its inverse is py, zq ÞÑ y ` fpzq.

3.5 Metrizable lcs

3.5.1 Lemma. Products of metric spaces.

Let En be normed spaces. Then the topology of E :“
ś

nPNEn is metrizable.

Proof. We define a metric d on product E by the pointwise convergent series

dpx, yq :“
8
ÿ

n“0

1

2n
¨
}xn ´ yn}

1` }xn ´ yn}
.

This is well-defined, since }xn´yn}
1`}xn´yn}

ď 1, and p 1
2n qn is summable, so by the

Hölder inequality the inner product dpx, yq “ xp 1
2n qn|p

}xn´yn}
1`}xn´yn}

qny exists. The
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∆-inequality holds, because t ÞÑ t
1`t “

1
1`1{t is monotonously growing and thus

the estimate
α

1` α
`

β

1` β
“

α` β ` 2αβ

1` α` β ` αβ
ě

α` β ` αβ

1` α` β ` αβ
ě

α` β

1` α` β
ě

γ

1` γ
.

holds for γ ď α` β.

If }xi ´ yi} ď
1

2n`1 for all i ď n, then dpx, yq ď 1
2n´1 , because

dpx, yq “
ÿ

i

1

2i
¨
}xi ´ yi}

1` }xi ´ yi}
ď

ÿ

iďn

1

2i
¨}xi´yi}`

ÿ

iąn

1

2i
¨1 ď 2¨

1

2n`1
`

1

2n
¨1 “

1

2n´1
.

Conversely, let dpx, yq ď 1
2npn`1q , then }xi ´ yi} ď

1
n for all i ď n, because

1

2i
¨
}xi ´ yi}

1` }xi ´ yi}
ď dpx, yq ď

1

2npn` 1q
ď

1

2ipn` 1q

ñ
}xi ´ yi}

1` }xi ´ yi}
ď

1

n` 1

ñ n ¨ }xi ´ yi} ď 1.

Thus d generates the same topology as the sub-basis t}prnpxq} : n P Nu of semi-
norms.

3.5.2 Corollary. Characterization of metrizable lcs’s.

Let E be an lcs. Then the topology of E is metrizable if and only if E is a countably
seminormed lcs. For such lcs’s, a translation invariant metric generating the topol-
ogy is complete if and only if it is complete as locally convex topology. A Fréchet
space is nothing else but a complete metrizable lcs.

Proof. Let E be metrizable. Then the sets Un :“ tx : dpx, 0q ă 1
nu with n P N

form a 0-neighborhood basis. Consequently there are continuous seminorms pn with
ppnqă1 Ď Un. These pn form a sub-basis: Namely, if p is a continuous seminorm,
then pă1 is a 0-neighborhood, so an n exists with ppnqă1 Ď Un Ď pă1, hence pn ě p

by 1.3.7 .

Conversely, if tpn : n P Nu is a sub-basis of the seminorms of E, then E may be

considered as subspace of the product
ś

nEn as in 3.3.4 , where En is the normed
space resulting from E by factoring out the kernel of pn. According to Lemma

3.5.1 , this product is metrizable, and so is the subspace since it carries the trace

topology by 3.1.4 .

Completeness. We only have to show that a sequence pxnqn is Cauchy with respect
to the metric if and only if it is so with respect to the seminorms. However, since the
metric is translation invariant, the former means that for each ε ą 0, the difference
xn ´ xm P Uε :“ ty : dpy, 0q ă εu for n and m sufficiently large. Since the Uε form
a 0-neighborhood basis, as well as the balls păε, this is equivalent to the inequality
ppxn ´ xmq ă ε for n and m being sufficiently large for all p and all ε ą 0.

3.5.3 Lemma. Quotients of Fréchet spaces.

Suppose F is a closed subspace of a Fréchet space E, then E{F is a Fréchet space,
and every convergent sequence in E{F has a convergent lift.

Proof.

Lifts of convergent sequences. Let yn Ñ y “ πpxq in E{F and let pk ď pk`1

be a countable basis of the seminorms of E. So p̃kpyn ´ yq Ñ 0, i.e. Dnk P N
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@n ě nk: p̃kpyn ´ yq “ inftpkpx
1 ´ xq : πpx1q “ ynu ă

1
k . Without loss of generality,

k ÞÑ nk is strictly monotonously increasing. For nk ď n ă nk`1 we thus may choose
xn P π

´1pynq with pkpxn ´ xq ă 1
k . This lifted sequence converges to x, since for

ε ą 0 and seminorm pj we find k ě j with 1
k ď ε and for each n ě nk there exists

a k1 ě k with nk1 ď n ă nk1`1 and hence

pjpxn ´ xq ď pk1pxn ´ xq ă
1

k1
ď

1

k
ď ε.

Completeness. Let λn :“ 1
4n and pynqnPN be bounded in E{F . Because of Lemma

2.2.2 , it suffices to show that
ř

n λnyn converges to E{F . But since 1
2n yn Ñ 0

in E{F , by the first part there exists a convergent and thus bounded sequence
xn P E with πpxnq “

1
2n yn. Since E is complete the series

ř

n
1

2nxn converges in

E, and because of the continuity of π the same holds for the series
ř

n πp
1

2nxnq “
ř

n
1

4n yn.

3.6 Coproducts

3.6.1 Lemma. Structure of coproducts.

Let Ek be lcs’s. By the coproduct or direct sum of the Ek we understand the
vector space

E :“
ž

k

Ek :“
!

x “ pxkqk P
ź

k

Ek : xk “ 0 for all but finitely many k
)

provided with the final structure with respect to the injections injk : Ek Ñ E, which
map x P Ek to the point injkpxq, whose k-th component is x and all others are 0.
The coproduct is an lcs.
A sub-basis of the seminorms of E is formed by the seminorms ppxq :“

ř

k pkpxkq,
where the pk are the seminorms of Ek. Note that the sum makes sense since only
finite many summands are 0.
A set is bounded in

š

iEi if it is already contained and bounded in a finite partial
sum.
The coproduct of (sequentially) complete space is (sequentially) complete.
The inclusion

š

k Ek Ñ
ś

k Ek is continuous. And if the index set is finite, then
the coproduct will coincide with the product.
If the index set is countable, then the seminorms ppxq :“ suptpkpxkq : ku, with
arbitrary seminorms pk of Ek, form a sub-basis.

Proof.

Sub-basis of seminorms. For each k, let pk be a continuous seminorm on Ek.
Then ppxq :“

ř

k pkpxkq is a well-defined seminorm on E. The composition with
injk is p˝ injk “ pk and thus continuous, so also p is continuous by the construction
of the final structure.

Conversely, let p be a continuous seminorm on E. Then pk :“ p|Ek “ p ˝ injk is one
on Ek, and ppxq “ pp

ř

k injkpxkqq ď
ř

pkpxkq. So these seminorms form a sub-basis
for E.

Separation is now clear.
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Countable index set. Since ppxq :“ supk pkpxkq ď
ř

k pkpxkq, this p is a contin-
uous seminorm. Conversely, because of the Hölder inequality

ÿ

k

pkpxkq “
ÿ

k

1

2k
p2kpkqpxkq ď supt2kpkpxkq : ku ¨

ÿ

k

1

2k
,

So the suprema generate the same continuous seminorms as the sums do.

Finite index sets. In case of a finite index set, we have maxtp1, . . . , pNu as a basis
and this is also a basis for the product.

Continuous inclusion in the product. The projections prj :
š

k Ek Ñ Ej are
continuous because of the final structure, since the compositions with injk are the
identity for j “ k and 0 otherwise. Because of the universal property the inclusion
pprkqk :

š

k Ek Ñ
ś

k Ek is also continuous.

Boundedness. A set that is bounded in a finite partial sum, is also bounded in
the total sum, since the inclusion is continuous.
Conversely, let B be bounded in E. Note first that any finite partial sum

š

kPK Ek
is a locally convex subspace of

ś

k Ek, because pprkqkPK :
ś

k Ek Ñ
ś

kPK Ek “
š

kPK Ek provides a continuous linear right inverse to the inclusion
š

kPK Ek Ñ
š

k Ek Ñ
ś

k Ek. It suffices to show that K :“ tk : prkpBq ‰ t0uu is finite, because
B Ď

ś

k prkpBq. Suppose K would be infinite. We choose a countable subset of K
that we can identify with N. For each k P N we choose a matching point bk P B
with bkk ‰ 0. Since Ek is separated, a continuous seminorm pk exists on Ek with
pkpb

k
kq “ k P N. For the k R N we choose pk “ 0. Let ppxq :“

ř

k pkpxkq. Then
p is a continuous seminorm on E, and thus ppBq is bounded, in contradiction to
k “ pkpb

k
kq ď ppbkq P ppBq for all k P N.

Completeness. We show sequential completeness first. Let pxnq be a Cauchy se-
quence. As such, it is bounded, i.e. contained in a finite partial sum. Since this
partial sum forms a locally convex subspace of

š

k Ek, the sequence is a Cauchy
sequence in this finite sum = product, and thus it is convergent in the finite product

by 3.2.1 and therefore also in E.

Now the completeness: Let pxiq be Cauchy in
š

k Ek. Then pxijq is Cauchy for each

j, so xi converges coordinatewise towards some x8 P
ś

k E
k. We have x8 P

š

k Ek:
In fact let K :“ tk : x8k ‰ 0u. Choose for k P K a continuous seminorm pk on Ek
with pkpx

8
k q ą 1, put pk :“ 0 for k R K, and let ppxq :“

ř

k pkpxkq. Then there is

an i0 with pkpx
i
k ´ xjkq ď ppxi ´ xjq ď 1 for i, j ą i0 and all k. Consequently, also

pkpx
i
k ´ x8k q ď 1 for i ą i0 and all k. Because of xi P

š

k Ek, we have xik “ 0 for
almost all k, so pkpx

8
k q ď 1 for almost all k, hence the carrier K of x8 is finite.

Finally, xi Ñ x8 converges in
š

k Ek, because let p be a seminorm of the specified

sub-basis and let ε ą 0, then
ř

k pkpx
i
k ´ xjkq “: ppxi ´ xjq ď ε for all i, j ą i0.

Hence for given i ą i0 let K be the finite set tk : xik ´ x
8
k ‰ 0u, then ppxi ´ x8q “

ř

kPK pkpx
i
k ´ x8k q “ limj

ř

kPK pkpx
i
k ´ xjkq ď ε, i.e. xi Ñ x8 with respect to the

structure of
š

k Ek.

3.6.2 Bornological vector spaces.

Let E carry the final structure with respect to a family of linear mapping fk : Ek Ñ
E whose images generate the vector space E. Then E can also be represented as
quotient of the coproduct

š

k Ek:
Namely, let F be the kernel of linear mapping

ř

k fk :
š

k Ek � E, which maps
x “ pxkqk to

ř

k fkpxkq. This mapping is surjective, because the images fkpEkq
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generate the vector space E by assumption, and it is continuous because of the final
structure. Consequently we obtain a bijective (and because of the final structure of
the quotient) continuous mapping p

š

k Ekq{F Ñ E. This is even a homeomorphism
since E carries the final structure with respect to the mapping fk.

Ej
fj //

� _

injj

��

E

F �
� // š

k Ek
// //

ř

k fk

88 88

p
š

k Ekq{F

OO

OOOO

Let now E be an arbitrary lcs. For each bounded absolutely convex set B we may
consider the linear subspace EB of E generated by B. Since B is by construction
absorbent in EB , the Minkowski functional pB is a seminorm on EB . It is even a
norm, because 0 “ pBpxq “ inftλ ą 0 : x P λBu ñ Dλn Ñ 0 with 1

λn
x P B, so

x “ λn
1
λn
x Ñ 0 by 2.1.5 and consequently x “ 0. Furthermore, the inclusion

EB � E is bounded on the open unit ball Ď B, so it is even continuous, because

EB is normed (and thus bornological by 2.1.7 ).

An lcs E carries the final structure with respect to all these inclusions EB � E, if
and only if E is bornological:
(ñ) Namely, if f : E Ñ F is a bounded linear mapping, then f |EB : EB Ñ E Ñ F

is a bounded linear mapping on a normed space, i.e. continuous by 2.1.7 . If E
carries the final structure with respect to subspaces EB , f is continuous, i.e. E
bornological.
(ð) Conversely, let E be bornological. The final structure on E with respect to the
mappings EB � E is always finer or equal to the one given on E. So let’s consider
the identity f from E with the given structure to E with the final one. Let B Ď E
be bounded and without loss of generality absolutely convex. Then the inclusion
EB � E is continuous and hence bounded with respect to the final structure on E.
Thus, fpBq is bounded, i.e. f is a bounded linear mapping, and since E is assumed
to be bornological, f is continuous. So the two structures coincide.

Consequently, the bornological vector spaces are exactly the quotients of coproducts

of normed spaces. Compare this with the dual description of lcs’s in 3.3.4 .

3.6.3 Test functions and distributions.

A partial differential operator (PDO) is an operator of the form

D “
ÿ

αkPNm
aαB

α,

where Bα denotes the iterated partial derivative of order α “ pα1, . . . , αmq. We
restrict our considerations to the case of constant coefficents aα P K. Solving the
associated partial differential equation (PDE)

Dpuq “ f

amounts in finding for given functions f corresponding functions u.

The idea is, that the solution operator G : f ÞÑ u should be a kind of integral
operator, i.e. have the form

Gpfq : x ÞÑ

ż

Rm
γpx, yq fpyq dy

for some (integral kernel) γ : RmˆRm Ñ R. This is the continuous pendent to the
matrix representation Gpfqpiq “

ř

j γi,j fj of a linear mapping G.
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Since D obviously commtes with partial derivatives, the same is to be expected for
the solution operator G. Partial integration yields that B1γ ` B2γ “ 0 and hence
γpx, yq depends only on the difference x´ y, i.e. G could be writen as convolution
operator

Gpfq “ γ ‹ f : x ÞÑ

ż

Rm
γpx´ yq fpyq dy.

That G is inverse to D gives

f “ DpGpfqq “ Dpγ ‹ fq “ Dpγq ‹ f,

since partial derivatives commute with convolution. Thus δ :“ Dpγq should be
a neutral element for the convolution of functions. However such a function can-
not exist: Otherwise f : y ÞÑ δp´yq ¨ y2 would yield 0 “ fp0q “ pδ ‹ fqp0q “
ş

Rm δp´yq
2 y2 dy, hence δp´yq “ 0 for almost all y ‰ 0.

Nevertheless G : f ÞÑ γ ‹f should be a linear mapping between spaces of functions.
Since

pγ ‹ fqpxq “

ż

Rm
γpx´ yq fpyq dy “

ż

Rm
pS ˝ Txqpγqpyq fpyq dy,

where S defnoted the reflection g ÞÑ py ÞÑ gp´yqq and Tx the translation g ÞÑ py ÞÑ
gpy ´ xqq, it would be enough to determine f ÞÑ pγ ‹ fqp0q “

ş

Rm γp´yq fpyq dy,
which seems to be a linear functional on some space of functions f . One calls such
a functional a distribution.

We have to figure out on which functions the distributions should act on, and
with respect to which topology they should be continuous. Of course, we want the
notion of distributions to be an extension of that of the functions, so at least we
should be able to think of continuous functions g P CpRm,Rq as distributions by
gpfq :“ xg|fy :“

ş

Rm gpyq fpyq dy. But for the integral to make sense, the product
g ¨f must approach 0 sufficiently fast. Since g may grow arbitrarily fast, f must even
have compact support. As a first candidate for the space of test functions f , the
space of the continuous functions with compact support comes to ones mind. On it
we already met two structures, namely as subspace of the Fréchet space CpRm,Rq,
and as subspace of the Banach space BpRm,Rq. Is the linear functional f ÞÑ xg|fy
continuous for any continuous function g? In particular we may choose g “ 1, Then
xg|fny “

ş

Rm fn, and for the convergence of xg|fny the uniform convergence (on

compact sets) of fn is not enough. Because of
ş

Rm |f | ď volumepsupppfqq ¨ }f}8,
only those sequence should converge in the test space which converges uniformly
and their supports are contained in a fixed compact set. Let CKpRm,Kq be the
space of the continuous functions from Rm to K, which have support within the
compact set K Ď Rm. Then CKpRm,Kq provided with the uniform convergence
is a closed subspace of the space CbpRm,Kq of continuous bounded functions and
thus a Banach space. The space CcpRm,Kq of all continuous functions with compact
support is then the union of these Banach spaces CKpRm,Rq where K runs through
all compact sets or just a basis of the compact sets (i.e. each compact set is contained
in one of the sets in the basis). So we may consider the final topology on it.

We then have to verify that the convergent sequences are really those that already
converge in one step CKpRm,Kq, and that sequential continuity suffices.

Since we want to use distributions for solving differential equations, they have
to be differentiable. If two functions g and f are differentiable, then xBig|fy “
´xg|Bify as is shown by means of partial integration. So for a distribution f we could
define the partial derivative Big by Bigpfq :“ ´gpBifq. Hence our test functions
should be even smooth, and we need to do the same construction for C8c pRm,Rq “
Ť

K C
8
K pRm,Rq. The lcs C8c pRm,Rq defined in this way is also denoted D. The

corresponding notation for the Fréchet space C8pRm,Rq is E .
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3.7 Strict inductive limits

3.7.1 Lemma. Structure of strict inductive limits.

Let a vector space E be given, which can be written as a union of an ascending
sequence En of linear subspaces. Furthermore, suppose that the En are lcs in such
a way that En is a closed locally convex subspace of En`1 for all n P N.
The space E with the final locally convex structure with respect to all inclusions
En Ñ E is called strict inductive limit of the En and one writes E “ lim

ÝÑn
En.

We call the En the steps of the inductive limit.
Each seminorm of any En has a continuous extension to E.
Each En is a closed locally convex subspace of E. The space E is separated.
A set is bounded in E if and only if it is contained in some step and bounded there.
If all En are (sequentially) complete, then so is E.

Proof.

Continuation of the seminorms. Let pn be a seminorm of En. Since En is a

subspace of En`1, there is a continuous extension pn`1 on En`1 by 3.1.4 . By
induction we obtain a sequence of successive extensions pk to Ek for k ě n. Let
pk :“ pn|Ek for k ă n and let p :“

Ť

k pk. Then p is a seminorm on E and the trace
on each step Ek is pk. So p is continuous by the definition of the final structure.

It immediately follows that E is separated.

Steps as closed subspaces of E. Since by the previous claim the continuous
seminorms of En are just the restrictions of the continuous SN’s of E, each step En
carries the trace topology of E. Let i ÞÑ xi be a net in En, which converge towards
x8 in E. Because of E “

Ť

k Ek, there is a k ě n with x8 P Ek. Since Ek Ě En is a
topological subspace of E, the net xi converges in Ek towards x8. By assumption,
however, En is closed in Ek and thus is x8 P En, i.e. En is closed in E.

Boundedness. Let B Ď E be a bounded set. Because of the previous claim, it
suffices to show that B is contained in some step (it is bounded there automatically).
Suppose B Ę En for each n P N. We may choose b1 P BzE1 and n1 with b1 P En1

.
Recursively we obtain a strictly monotonously increasing sequence pnkq and bk P
Enk X pBzEnk´1

q. Let p1 be a continuous seminorm on En1
with p1pb1q “ 1, which

is possible because b1 R E1 so b1 ‰ 0. We are looking inductively for continuous
seminorms pk on Enk , with pk|Enk´1

“ pk´1 and pkpbkq “ k: For this we consider the

subspace F of Enk generated by Enk´1
and bk. Since bk R Enk´1

, px, λq ÞÑ x`λ bk by

3.4.4 is an isomorphism Enk´1
ˆK – F . On F we define the continuous seminorm

q by qpx` λ bkq :“ pk´1pxq ` k ¨ |λ|. By 3.1.4 there is a continuous seminorm pk
on Enk , which extends q. Let, finally, p :“

Ť

k pk. Then p is a continuous seminorm
on E and ppbkq “ k, a contradiction to the boundedness of B.

Sequential completeness. Let xn be a Cauchy sequence in E. Then txn : n P Nu
is bounded, thus included in some En by what we have shown above. Since En
is a locally convex subspace of E, xn is a Cauchy sequence in it, thus converges
towards an x8 in En, hence also in E.

Completeness. Since a Cauchy net pxiqi is not necessarily bounded, we can not
conclude, as for sequences, that almost the entire net is already contained in one
step. But we now show that this is almost the case:

Claim: Dn @Uabs.conv. 0-neighborhood @i Dj ą i Du P U : xj ` u P En.
Suppose this were not the case, i.e. @n DUn Din @j ą in : pxj ` Unq X En “ H.
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Without loss of generality 2Un`1 Ď Un. The set U :“
Ť

n

řn
i“0 Ui X Ei is an

absolutely convex 0-neighborhood, because U X En Ě Un X En. and hence the
restriction of the Minkowski functional of U to En is a continuous seminorm. Thus
an i exists, s.t. xj ´ xk P U for all j, k ą i. Let n P N and j ą i be choosen such
that xi P En and j ą in. Then there exists an m (without loss of generality m ě n)
and uk P Uk X Ek for each k ď m with xi ´ xj “

řm
k“0 uk. Then xi ´

řn
k“1 uk “

xj `
řm
k“n`1 uk P En X pxj ` Unq, because of 2Uk`1 Ď Uk. This is a contradiction

to pxj ` Unq X En “ H.

We now consider the net pi, Uq ÞÑ xj ` u P En, where j ą i and u P U are chosen
as in the claim and we use as index set the product of the original one and a 0-
neighborhood basis. This net is Cauchy in En, because for every 0-neighborhood V
exists an absolutely convex 0-neighborhood U with U`pU´Uq “ 3U Ď V and an i
such that for all i1, i2 ą i and all U 1, U2 Ď U with corresponding j1, j2, u1 P U 1, and
u2 P U2 we have xj1 ´xj2 P U and thus xj1 `u

1´xj2 ´u
2 “ pxj1 ´xj2q`u

1´u2 P
3U Ď V . Thus this new net converges towards an x8 P En. We claim that the
orginal net converges to x8 as well: For each 0-neighborhood W let V be choosen
so that 3V ĎW . Then there exists an i and a U (without loss of generality U Ď V )
with xk ´ xj P V for all k, j ą i and xj ` u ´ x8 P V for the corresponding j ą i
and u P U . Thus xk ´ x8 “ xk ´ xj ` xj ´ x8 P V ` pV ´ uq Ď V ` V ´ V Ď W
for all k ą i.

For a proof by means of filter see [14, S.86].

3.7.2 Example. The space of test functions.

We may now consider the space C8c pRn,Rq of the smooth functions with compact
support as strict inductive limit D :“ lim

ÝÑK
C8K pRn,Rq of the steps C8K pRn,Rq :“

tf P C8pRn,Rq : Trg Ď Ku, where K runs through a basis of the compact sets,

e.g. ptx : |x| ď kuqkPN. This space is complete by 3.7.1 and bornological by 3.3.2
because the C8K pRn,Rq are Fréchet spaces as closed subspaces of the Fréchet space

C8pRn,Rq. The continuous (= bounded = sequentially continuous, see 2.1.4 )
linear functionals on D are called distributions.

A “discrete” version is the space KpNq “ lim
ÝÑn

Kn of the finite sequences.

3.8 Completion

We now want to tackle the problem of what we can do when a space turns out to
be incomplete.

3.8.1 Definition. Completion.

By the completion of an lcs E, we understand a complete lcs Ẽ
together with a continuous linear mapping ι : E Ñ Ẽ, which has
the following universal property:
For each continuous linear mapping f : E Ñ F into a complete
lcs F , there exists a unique continuous linear mapping f̃ : Ẽ Ñ F
with f̃ ˝ ι “ f .

E
ι //

f ��

Ẽ

f̃

��
F

3.8.2 Remark. Uniqueness of the completion.

The completion of any lcsE is unique up to isomorphisms. Namely let ιi : E Ñ Ei

for i “ 1, 2 be two completions of E. Then there are unique continuous linear
maps ι̃1 : E1 Ñ E2 and ι̃2 : E2 Ñ E1 with ι̃2 ˝ ι1 “ ι2 and ι̃1 ˝ ι2 “ ι1. So
ι̃2 ˝ ι̃1 ˝ ι2 “ ι2 “ id ˝ι2, and because of the uniqueness of f̃ also ι̃2 ˝ ι̃1 “ id.
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3.8.3 Lemma. Neighborhood basis of completion.

Let E be a dense subspace of an lcs Ẽ.

‚ The continuous seminorms of Ẽ are exactly the unique extensions of those
of E.

‚ If U is a 0-neighborhood basis of E, then the closures tŪ : U P Uu in Ẽ form

a 0-neighborhood basis of Ẽ.

‚ Each continuous linear mapping f : E Ñ F into a complete lcs F has a
unique continuous linear extension f̃ : Ẽ Ñ F .

‚ In addition, if Ẽ complete, then E ãÑ Ẽ is a completion of E.

Proof.

Seminorms. By 3.1.4 , each continuous seminorm p of E has an extension p̃ to

Ẽ. Since E is dense in Ẽ, p̃ is uniquely determined.

0-neighborhood basis. It is enough to show p̃ď1 Ď pď1 (Then we even have
equality, because pď1 Ď p̃ď1 and thus pď1 Ď p̃ď1 “ p̃ď1). So let p̃px̃q ď 1. Since

E sits densely in Ẽ, there exists a net pxiq in E which converges to x̃ (consider
as index set tpV, xq : V ist neighborhood von x̃ und x P V X Eu with the ordering
pV, xq ă pV 1, x1q :ô V Ě V 1 and as net the mapping pU, xq ÞÑ x). In case p̃px̃q ă 1,
we have xi P p̃ď1 X E “ pď1 finally, i.e. x̃ P pď1. Otherwise, ppxiq ‰ 0 for all
sufficiently large i and thus yi :“ xi

ppxiq
P pď1 and yi Ñ

x̃
p̃px̃q “ x̃.

Continuous extensions. Let f : E Ñ F be continuous linear and x̃ P Ẽ be
arbitrary. Since E is dense in Ẽ, there is a net pxiq in E which converges to x̃

in Ẽ. Since f̃ should be continuous, f̃px̃q “ f̃plimi xiq “ limi f̃pxiq “ limi fpxiq

must hold. So there is at most one continuous extension f̃ , and this has to be
given by f̃px̃q “ limi fpxiq. Since xi is a Cauchy net and f is uniformly continuous
(by linearity), the same holds for fpxiq, and thus fpxiq converges because F is
complete.
We define f̃px̃q as this limit and have to show that it does not depend on the
choice of the net. Let therefore xj be a second net in E, which converges towards
x̃. We consider as an index set the product I ˆ J with the product ordering, i.e.
pi, jq ą pi1, j1q :ô pi ą i1q&pj ą j1q and as net the mapping pi, jq ÞÑ xi,j :“ xi ´ xj .
This net converges now towards limi xi ´ limj xj “ x̃ ´ x̃ “ 0, thus the image net
fpxi,jq “ fpxiq ´ fpxjq converges towards fp0q “ 0, on the other hand its limit

is just limi,j fpxi,jq “ limi fpxiq ´ limj fpxjq, which means that the limit f̃px̃q is
unique.
The extension f̃ is linear: Let x̃ and ỹ in Ẽ, then nets xi and yj exist in E with
xi Ñ x̃ and yj Ñ ỹ. So:

f̃px̃` λỹq “ f̃
`

lim
i
xi ` λ lim

j
yj
˘

“ f̃
`

lim
i,j
pxi ` λyjq

˘

“ lim
i,j

f̃pxi ` λyjq “ lim
i,j

fpxi ` λyjq “ lim
i,j

fpxiq ` λfpyjq

“ lim
i
fpxiq ` λ lim

j
fpyjq “ f̃px̃q ` λf̃pỹq.

The extension f̃ is continuous:
(Proof by means of seminorms) Let q be a continuous seminorm on F . Then q ˝ f

is one on E, so by 3.1.4 there is a continuous seminorm Ćq ˝ f on Ẽ, which extends
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q ˝ f . We have Ćq ˝ f “ q ˝ f̃ , since

Čpq ˝ fqpx̃q “ Čpq ˝ fqplim
i
xiq “ lim

i

Čpq ˝ fqpxiq “ lim
i
pq ˝ fqpxiq

“ qplim
i
fpxiqq “ qpf̃plimxiqq “ pq ˝ f̃qpx̃q

(Proof by means of 0-neighborhoods) Namely, let V be a closed 0-neighborhood

of F and U one of E with fpUq Ď V . Then Ū is a 0-neighborhood in Ẽ with

f̃pŪq Ď fpUq Ď V̄ “ V (Namely, let x̃ P Ū , then there is a net xi in U Ď E which

converges to x̃. So f̃px̃q “ limi fpxiq P V̄ “ V ).

3.8.4 Theorem. Existence of the completion.

Each lcs E has a completion ι : E Ñ Ẽ, which is unique up to isomorphisms. If E
is normable (or metrizable) then the same holds for Ẽ.

Proof. We first deal with the case that E is a normed space. So we are looking for a

complete space in which E can be embedded isometrically as a subspace. By 2.2.7 ,
the dual space E1 :“ LpE,Kq is always complete, hence also the bidual E2 :“ pE1q1.
Now let’s consider the mapping ι : E Ñ E2, given by ιpxq “ evx : x1 ÞÑ x1pxq. This
is clearly well-defined, linear and continuous, because

}ιpxq} :“ supt|ιpxqpx1q|
loooomoooon

|x1pxq|ď}x1}¨}x}

: }x1} “ 1u ď }x}.

Remains to show that ι is isometric. All it takes is to find for each x P E an
x1 P E1 with x1pxq “ }x} and }x1} “ 1. Geometrically this means that an affine
closed hyperplane H exists which contains x and is disjoint from the open ball
ty : }y} ă }x}u, i.e. is tangential to the unit sphere at x:
(ñ) The affine hyperplane H :“ ty : x1pyq “ }x}u satisfies x P H and }x} “ x1pyq ď
}x1} }y} “ }y} for each y P H.

(ð) Conversely, let H be such a closed affine hyperplane, i.e. by 3.4.4 there exists
0 ‰ x1 P E1 and c P K with H “ ty : x1pyq “ cu. Since 0 R H we have c ‰ 0 and
thus without loss of generality c “ }x}. Since x P H we have }x} “ x1pxq ď }x1} }x},
i.e. 1 ď }x1}. Suppose 1 ă }x1} “ supt|x1pzq| : }z} “ 1u. Then there exists a z with

}z} “ 1 and x1pzq ą 1, hence y :“ }x}
x1pzqz P H but }y} “ }x}

x1pzq ă }x}, a contradiction.

The existence of such a hyperplane will be shown in 5.2.2 (see also 5.1.10 ) by
means of the theorem of Hahn-Banach.

As Ẽ we now take the closure of image ιpEq in E2. Then ι is an embedding from

E onto the dense subspace ιpEq of the Banach space Ẽ, and thus is a completion

by Lemma 3.8.3 .

Now the case of a general lcs E. By 3.3.4 , E can be considered as the subspace of
a product of normed space Ep. This, in turn, can be understood as the subspace of

the product of the completions ĂEp of the factors. So E is a subspace of a complete

lcs. For Ẽ we may now take the closure of E in this product.

3.9 Complexification

3.9.1 Lemma. Complex vector spaces.

A vector space E over R is a vector space over C if and only if an R-linear mapping
I : E Ñ E exists which satisfies I2 “ ´ id.
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Proof. If E is a vector space over C, then I is given by Ipxq :“ i x. Conversely, we
define pa` i bq ¨ x :“ a ¨ x` b ¨ Ipxq and thus obtain a vector space over C.

3.9.2 Corollary. Complex locally convex spaces.

An lcs E over R is an lcs over C if and only if there is a continuous R-linear
mapping I : E Ñ E that satisfies I2 “ ´ id.

Proof. As seminorms of the complex vector space E we use the positively homo-
geneous (with respect to scalars in C) seminorms of the real lcs.
If p is a seminorm of the real lcs and λ “ a` i b P C, we define another seminorm
pλ : x ÞÑ ppλxq of the real lcs. If E is a complex lcs, then the complex scalar
multiplication and in particular I is continuous, hence q :“ p ˝ I is a continuous
seminorm of the real lcs. We have

pλpxq “ pppa` i bqxq “ ppa x` b Ipxqq ď |a| ppxq ` |b| qpxq

ď |a` i b|
a

ppxq2 ` qpxq2 ď |a` i b| pppxq ` qpxqq.

Thus pCpxq :“ suptpλpxq : |λ| “ 1u defines a seminorm of the complex vector space
with p ď pC ď p ` q. Consequently these seminorms of the complex vector space
define the same topology as the seminorms of the real lcs.

3.9.3 Remark. Complexification.

We are now trying to produce a complex vector space from any real one. Note
that the complex vector spaces of complex-valued functions which belong to some
real vector space of real-valued functions, usually consist of pairs of functions of
the real vector space, namely the real and imaginary parts of the complex-valued
function. So, in general, we define the complexification EC of a real vector space
E as EC :“ C bR E “ E ˆ E, and write the elements px, yq P EC as x ` i y. The
multiplication with z “ a ` ib P C is then defined by z ¨ pz1 b wq :“ pzz1q b w, i.e.
pa` ibq ¨ px` iyq :“ pax´ byq` ipay` bxq. Obviously, this makes EC into a complex
vector space and the mappings ι : E Ñ EC, x ÞÑ x ` i 0 as well as Re : EC Ñ E,
px` iyq ÞÑ x are R-linear.

The usual sub-basis of seminorms on the real lcs E ˆ E like px, yq ÞÑ ppxq ` ppyq,

like px, yq ÞÑ
a

ppxq2 ` ppyq2, or like px, yq ÞÑ maxtppxq, ppyqu, are not seminorms
for the complex vector space. To obtain such we consider the continuous seminorms
pzpwq :“ ppRepzwqq for |z| “ 1 and seminorms p of E and then define pC :“ suptpz :
|z| “ 1u. We have that pC is a well-defined real seminorm on EC, because by the
Hölder inequality for z “ a` i b we have

pzpx` iyq “ p
´

Re
`

pa` ibqpx` iyq
˘

¯

“

“ ppax´ byq ď |a|ppxq ` |b|ppyq ď |z|
a

ppxq2 ` ppyq2.

It is even a complex seminorm, because pCpz wq “ pCpwq obviously holds for all |z| “
1. Moreover, maxtppxq, ppyqu ď pCpx ` iyq ď ppxq ` ppyq, hence these seminorms
generate the topology of the product=coproduct.

Thus we can use as generating seminorms on EC the family of all pC, where p runs
through the continuous seminorms of E.

3.9.4 Proposition. Universality of the complexification.

Complexifying E ÞÑ EC :“ C bR E :“ E ˆ E provides the following isomorphisms
for vector spaces E and G over R as well as F over C:
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1. First universal property:

LCpEC, F q – LRpE,F q, h ÞÑ h ˝ ι,
´

fC : x` i y ÞÑ fpxq ` i fpyq
¯

Ð f .

The real-linear mappings f : E Ñ F in each com-
plex vector space F correspond in a bijective man-
ner to the complex-linear mappings fC : EC Ñ F
by virtue of fC ˝ ι “ f .

EC

fC
  

E
ιoo

f��
F

2. Second universal property:

LCpF,ECq – LRpF,Eq, h ÞÑ Re ˝ h,
´

fC : x ÞÑ fpxq ´ ifpixq
¯

Ð f .

The real-linear mappings f : F Ñ E on each com-
plex vector space F correspond in a bijective man-
ner to the complex-linear mappings fC : F Ñ EC
by virtue of Re ˝ fC “ f .

EC
Re // E

F

fC

``

f

??

3. LRpE,GqC – LRpE,GCq, f`i g ÞÑ
´

x ÞÑ fpxq`i gpxq
¯

, pRe˝h, Im˝hqÐ h.

4. LRpE,GqC – LRpEC, Gq,

f ` i g ÞÑ
´

x` i y ÞÑ fpxq ´ gpyq
¯

, ph ˝ ι,´h ˝ I ˝ ιqÐ h.

All these isomorphisms are C-linear with respect to the complex structures given on
LRpF,Eq by i ¨ f :“ f ˝ I and on LRpE,F q by i ¨ f :“ I ˝ f .
For lcs’s all isomorphisms are also homeomorphisms when we provide EC with the
product structure.

If all spaces are Banach spaces, however, only the isomorphisms in 2 and 3 are
isometries.

Proof. 1 Obviously, the specified mappings are continuous, linear, and the compo-
sition on LRpE,F q is the identity. Likewise it is so on LCpEC, F q, because hpx`i yq “
hpxq ` i hpyq “ ph ˝ ιqpxq ` i ph ˝ ιqpyq.

2 Let f : F Ñ E be a R-linear mapping. If a C-linear mapping fC : F Ñ EC
exists with Re ˝ fC “ f , then Im ˝ fC “ ´Re ˝ i ˝ fC “ ´Re ˝ fC ˝ i “ ´f ˝ i
since Repipx` iyqq “ ´Impx` iyq. So fC is uniquely defined and given by fCpxq “
Re fCpxq ` i ImfCpxq “ fpxq ´ ifpixq. In fact, this defines a C-linear mapping fC,
because it is obviously R-linear and fCpixq “ fpixq ´ ifpiixq “ fpixq ` ifpxq “
ipfpxq ´ ifpixqq “ i fCpxq.

That the universal property is also valid for continuous and for bounded linear
mappings can be seen as follows:
We have p ˝Re ď pC, i.e. Re : EC Ñ E is continuous, and conversely

ppC ˝ fCqpzq “ pCpfpzq ´ ifpizqq ď
a

ppfpzqq2 ` ppfpizqq2,

hence fC is continuous provided f is so.
The bijection Re˚ : LCpF,ECq Ñ LRpF,Eq is a topological linear isomorphism
because it is continuous and R-linear and its inverse map is given by f ÞÑ f´ i ¨f ¨ i.
It is also C-linear if we consider LRpF,Eq as a complex vector space via i ¨ f :
x ÞÑ fpi xq, because pi ¨ Re˚pfqqpxq “ Re˚pfqpi xq “ Repfpi xqq “ Repi fpxqq “
Reppi fqpxqq “ pRe˚pi fqqpxq.

3 Obviously, the mappings given are continuous linear and inverse to each other.

4 The isomorphism LRpEC, Gq – LRpE,GqC of complex lcs’s is given by:

h ÞÑ
`

x ÞÑ hpxq, x ÞÑ ´hpi xq
˘

with inverse pf, gq ÞÑ
`

px ` i yq ÞÑ pfpxq ´ gpyqq
˘

,
because one composition results in h : px` iyq ÞÑ hpxq`hpi yq “ hpx` i yq and the
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other in pf, gq “
`

x ÞÑ fpxq, x ÞÑ ´p´gpxqq
˘

. The inverse mapping is also complex-
linear, because i¨pf, gq “ p´g, fq is mapped to px, yq ÞÑ ´gpxq´fpyq “ fp´yq´gpxq.

The statement about isometries is shown in 3.9.6.2 and 3.9.6.3 .

3.9.5 Corollary. Complexification of spaces of linear mappings.

For real vector space E and G we obtain:

LCpGC, ECq
„

1

„ 2

LRpG,ECq

„ 3

LRpGC, Eq
„

4
LRpG,EqC

gg

The diagonal isomorphism is given by

f ` i g ÞÑ
´

x` i y ÞÑ
`

fpxq ´ gpyq
˘

` i
`

fpyq ` gpxq
˘

¯

.

For the dual space of any complex vector space F we have:

LRpF,Rq – LCpF,Cq.

Proof.

f ` i g
4
ÞÝÑ

´

x` i y ÞÑ
`

fpxq ´ gpyq
˘

¯

2
ÞÝÑ

´

x` i y ÞÑ
`

fpxq ´ gpyq
˘

` i
`

fpyq ` gpxq
˘

¯

f ` i g
3
ÞÝÑ

´

x ÞÑ fpxq ` i gpxq
¯

1
ÞÝÑ

´

x` i y ÞÑ
`

fpxq ´ gpyq
˘

` i
`

fpyq ` gpxq
˘

¯

3.9.6 Remarks. Isometric natural isomorphisms.

1. The complexification of R is isometric to C:
The complex norm }x`i y}C to }px, yq}8 is, by the Cauchy-Schwarz inequal-
ity [18, 6.2.1], given by

}x` i y}C :“ supt}Reppa` i bq ¨ px` i yqq}8 : |a` i b| “ 1u “

“ supt|a x´ b y| : |a` i b| “ 1u “ }px, yq}2.

2. The canonical isomorphism LCpF,ECq – LRpF,Eq of 3.9.4.2 is an isom-

etry for normed spaces: Because for absolutely convex bounded sets B Ď F
we have

suptpCpfCpxqq : x P Bu “ suptppRepλ fCpxqqq : |λ| “ 1, x P Bu

“ suptppRepfCpλxqqq : |λ| “ 1, x P Bu

“ suptppfpyqq : y “ λx P Bu.
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3. The canonical isomorphism BpX,GqC – BpX,GCq is an isometry, thus also

for C, `8, c0 and LRpE, q (this is 3.9.4.3 ): Let p be a seminorm on G and

h P BpX,GqC, then

suptpCphpxqq : x P Xu “ sup
!

ppRepλhpxqqq : x P X, |λ| “ 1
)

“ sup
!

suptppRepλhqpxqq : x P Xu : |λ| “ 1
)

.

4. The canonical isomorphism `ppI,GqC – `ppI,GCq is not an isometry for 1 ď
p ă 8: We choose I :“ 2 and G :“ R and consider p1, 0q`ip0, 1q P `pp2,RqC.

The norm in `pp2,Cq is then }p1, iq}p “ 2
1
p , while the one in `pp2,RqC is

}p1, 0q ` ip0, 1q}C :“ sup
!

}Repa` i b,´b` i aq}p : |a` i b| “ 1
)

ď supt}pa,´bq}p : |a` i b| “ 1u

“ maxt1, p2
1

2p{2
q1{pu “ maxt1, 2

1
p´

1
2 u ă 2

1
p .

5. The complexified norm } }C of a real Hilbert space pE, } }q is not a Hilbert
space norm: indeed, for x “ p1, 0q and y “ p0, iq in `2p2,RqC, the parallelo-
gram equality does not hold since }x}C “ 1 “ }y}C but

}x˘ y}C “ sup
!

}Repa` i b,˘pi a´ bqq}2 : |a` i b| “ 1
)

“ 1.

6. For normed spaces, the canonical isomorphisms LCpGC, ECq – LRpG,ECq,
LRpGC, Eq – LRpG,EqC and LRpG,EqC – LCpGC, ECq are not isometries:

It is enough to show this for the middle one because of 3.9.5 . Let E :“ R,

G :“ `2p2q, f :“ pr1 and g :“ pr2. By 3.9.4.4 we have

}f ` i g}C :“ supt}Reppa` i bq pf ` i gqq} : |a` ib| “ 1u

“ supt|a fpxq ´ b gpxq| : }x}2 “ 1, |a` ib| “ 1u

“ supt|a x1 ´ b x2| : }px1, x2q}2 “ 1, }pa, bq}2 “ 1u ď 1

}x` i y ÞÑ fpxq ´ gpyq} :“ supt|fpxq ´ gpyq| : }x` i y}C “ 1u

“ supt|x1 ´ y2| : }x` i y}C “ 1u ě 2,

by 4 provided we choose x “ p1, 0q and y “ p0,´1q.

7. Not every complex lcs is the complexification of a real lcs: In [1], a complex
Banach space was constructed that is not C isomorphic to its complex conju-
gate Ē (i.e. E with the scalar multiplication ‚ given by λ ‚ x :“ λ̄ ¨ x). So, if
E – F bR C then also Ē – F bR C – F bR C – E, where the isomorphism
in the middle is given by xb λ ÞÑ xb λ̄.

For vector spaces, on the other hand, this is true, because after choosing a
basis, we can interpret them as a complexification of the subspace of real
linear combinations.
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4. Baire property

In this chapter, we use the Baire property and its generalizations to detect the
continuity of certain linear mappings.

4.1 Baire spaces

4.1.1 Measurable sets.

A σ-algebra A on a set X is a subset of the power set of X with the following
properties:

1. H P A;

2. A P Añ XzA P A;

3. F Ă A, countable ñ
Ť

F P A.

The pair pX,Aq is then called a measure space.

Furthermore, one still needs a measure µ on pX,Aq, i.e. a mapping µ : A Ñ

r0,`8s, which is σ-additive, i.e. F Ď A countable and pairwise disjunctñ µp
Ť

Fq “
ř

APF µpAq.

Now define the space of the elementary functions as the space generated by
χA with A P A and µpAq ă 8.

A function f : X Ñ R is called measurable if f´1pUq P A for all open U Ď R.
Since each open set U Ď R is a countable union of open intervals, each open interval
pa, bq is the intersection of p´8, bq X pa,`8q, and pa,`8q “

Ť

nPN Rzp´8, a` 1
n q,

it suffices that făc P A for all c. On the other hand, of course, f´1pAq P A for every

Borel set A Ď R (see 4.1.3 ).

A function is elementary if it is measurable and takes only finitely many values.

4.1.2 Theorem. Pointwise limits of elementary functions.

Each measurable function f : X Ñ r0,`8s is the pointwise limit of a monotonically
increasing sequence of elementary functions. If f is bounded, then the convergence
is uniformly. The measurable functions are the pointwise limits of sequences of ele-
mentary functions. The space of the measurable functions is closed under pointwise
limits of sequences . It is a vector space and closed under sup, inf, lim inf, lim sup
and composition with continuous (or even Borel-measurable) functions.

Proof. Let fn be measurable, and f :“ supn fn everywhere finite. Then f is mea-
surable, because fďc “

Ş

npfnqďc. Furthermore, lim supn fn “ infn supkěn fk and
lim infn fn “ supn infkěn fk measurable. So also limn fn is measurable.
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Let now f be measurable. Since f “ f` ´ f´ with f` “ maxpf, 0q ě 0 and
f´ “ maxp´f, 0q ě 0, we may assume that f ě 0. Then

fn :“

#

k
n if k

n ď fpxq ă k`1
n with k ă n2

n if fpxq ě n.

an elementary function (Attention: µpf´1paqq ­ă 8). And pfnqn converges pointwise
from below towards f .

4.1.3 Definition. Borel and Baire σ-algebra.

Let X be a topological space. The σ-algebra generated by the open (or equivalent
closed) sets is called Borel σ-algebra in the extended sense. The σ-algebra
generated by the compact sets is called Borel σ-algebra.

The Borel sets are exactly those Borel sets in the extended sense, which are con-
tained in a countable union compact sets. I.e. for σ-compact spaces the Borel sets
coincide with the Borel sets in the extended sense.

By the Baire σ-algebra we mean the smallest σ-algebra, s.t. all continuous real-
valued functions are measurable, i.e. is generated by the inverse images f´1pUq of
the open sets U Ď R under all f P CpX,Rq. The Baire sets are the elements of
Baire σ-algebra.

A function is called Baire-measurable (or Baire for short) if it is measurable
with respect to Baire σ-algebra.

A Borel measure is a measure on the σ-algebra of the Borel sets, which is finite
on the compact sets.
A Baire measure is a measure on the σ-algebra of the Baire sets, which is finite
on the compact Baire sets.

4.1.4 Theorem. Baire σ-algebra.

Let X be a locally compact σ-compact space. Then the Baire σ-algebra is generated
by the compact Gδ-sets.
If X is in addition metrizable, the Borel and Baire sets are the same.
The Baire-measurable functions are the elements of the sequential closure of the set
of continuous functions (with compact support) with respect to pointwise conver-
gence.

A Gδ-set is a subset that is a countable intersection of open sets.

Proof. (compact-Gδ Ď Baire sets) Let K be a compact Gδ set, so K “
Ş

n Un
with open Un. By the Lemma of Urysohn (see [26, 1.3]), there are continuous
functions fn : X Ñ r0, 1s with fn|K “ 1 and fn|XzUn “ 0. The sequence gn :“
mintf1, . . . , fnu P CpX, r0, 1sq converges then pointwise and monotonously decreas-
ing towards χK , because for each x R K there exists an n with x R Un, i.e. fnpxq “ 0.

Thus, χK is a Baire-measurable function by 4.1.2 , and K :“ χ´1
K p1q is a Baire set.

(Baire sets Ď xkp-Gδyσ-algebra) Since the Baire σ-algebra is generated by the inverse

images of the rc,`8q intervals with respect to all continuous functions (see 4.1.1 ),

we only need to show that f´1rc,`8q belongs to the σ algebra generated by the
compact Gδ sets . These inverse images are clearly closed Gδ. Since X was assumed
to be σ-compact, compact sets exist Kn with X “

Ť

nKn. Because local compact-
ness and Urysohn’s lemma (see [26, 1.3.1]), we find gn P CcpX, r0, 1sq with gn|Kn “
1. Thus, however, f´1rc,`8q “

Ť

n fěc X pgnqě1 and fěc X pgnqě1 “ phnqě0 is a
compact Gδ set, where hn :“ mintf ´ c, gn ´ 1u.
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(Cc
Flg
Ď Baire functions) The subset of Baire-measurable functions is sequencially

closed with respect to pointwise convergence according to 4.1.2 . Thus, the sequen-
tial closure of the continuous functions (with compact support) is included in the
Baire-measurable functions.

(Cc
Flg

Ě Baire functions) let us now consider those sets A, for which the charac-
teristic function χA lies in the sequential closure of the continuous functions with
compact support. These form a σ-algebra A, as the pointwise limit of χAn is again
in the sequential closure. The compact Gδ sets K are included in A because by
the first part of the proof χK is the pointwise limit of a sequence of continuous
functions (with compact support). Thus the Baire σ-algebra is included in A, and
hence the elementary Baire functions are in the sequential closure of the continu-
ous functions (with compact support). But since every measurable function is the

pointwise limit of a sequence of elementary functions (see 4.1.2 ), the same holds
for all Baire-measurable functions.

If X is metrizable, then each closed set A is a Gδ set, because A “
Ş

n Un, where

Un :“
!

x : suptdpx, aq : a P Au ă 1
n

)

.

4.1.5 Definition. Meager and nowhere dense sets.

A subset M Ď X of a topological space X is called nowhere dense if no point
in X has a neighborhood U in which M is dense (i.e. U Ď M), in short, when the
interior of the closure of M is empty, see [26, 3.2.1].

A subset is called meager if it is a countable union nowhere dense sets. This is
exactly the case if it is contained in the countable union of closed sets with empty
interior, see [26, 3.2.1].

Proof. pñq Let M “
Ť

nNn, then M Ď
Ť

nNn.

pðq Let M Ď
Ť

nAn, then M “
Ť

npM XAnq and M XAn Ď An.

Warning: Meager is not a property of the topological space M but depends essen-
tially on the surrounding space X: For example, t0u is nowhere dense in R, but of
course no meager in itself. However:

4.1.6 Lemma. Meager in subspaces.

If M is nowhere dense or meager in X then the same is true in each space Y which
contains X as topological subspace.

Proof. Let M be nowhere dense in X. Suppose M is not nowhere dense in Y , i.e.

there exists an open set U ‰ H in Y with U ĎM
Y

. Then UXX ĎM
Y
XX “M

X

and since U XX is open in X and M is nowhere dense in X we have U XX “ H.

However, since M is dense in M
Y

, its intersection with the non-empty open set

U ĎM
Y

is not empty, a contradiction.

The statement for meager sets obviously follows.

4.1.7 Theorem of Osgood.

Any set of real-valued continuous functions which is pointwise bounded on a non-
meager set X is uniformly bounded on an open non-empty subset.

See [26, 3.2.2]

Proof. Let F set the set of real-valued continuous functions on X. Let

Af,k :“ tx P X : |fpxq| ď ku.
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Then Af,k is closed, and therefore also the set Ak :“
Ş

fPF Af,k of points on which
the f ’s are uniformly bounded by k. By assumption, X is not meager and clearly
X “ tx : supt|fpxq| : f P Fu ă 8u “

Ť

kPNAk, therefore there is an k P N and an
open non-empty set U with U Ď Ak, i.e. F is uniformly bounded by k on U .

4.1.8 Theorem of Baire.

If a sequence of continuous real-valued functions converges on a topological space X
pointwise, then the set of points where the limit function is discontinuous is meager.
.

See [26, 3.2.3]

Proof. Let a sequence of continuous functions fn P CpX,Rq converge pointwise
towards a function f : X Ñ R.

Let Ak,ε :“ tx P X : |fpxq ´ fkpxq| ď εu and Aε :“
Ť

kpAk,εq
o be the set of those

points where f is locally approximated by a fk up to ε. Then both Ak,ε and Aε are
increasing in ε.

We claim that f is continuous in every point from
Ş

εą0Aε (and even equality
holds). If a P

Ş

εą0Aε, then a P Aε is for each ε ą 0, and thus for each ε ą
0 there is an k P N with a P pAk,εq

0, i.e. there is a neighborhood Upaq with
|fpxq ´ fkpxq| ď ε for all x P Upaqs. Since fk is continuous we can choose Upaq so
small that |fkpxq´fkpaq| ď ε for all x P Upaq. Thus, |fpxq´fpaq| ď |fpxq´fkpxq|`
|fkpxq´ fkpaq|` |fkpaq´ fpaq| ď 3ε holds for all x P Upaq, i.e. f is continuous at a.

So it remains to show that Xz
Ş

εą0Aε is meager. Let Fk,ε :“ tx P X : @n :
|fkpxq ´ fk`npxq| ď εu. Then Fk,ε is closed, since the fi are continuous, and X “
Ť

kPN Fk,ε, because the sequence of the fi converges pointwise. Furthermore, Fk,ε Ď
Ak,ε because fi converges pointwise towards f . So also the interior of Fk,ε is included
in that of Ak,ε, and therefore:

Ť

kpFk,εq
o Ď

Ť

kpAk,εq
o “ Aε. For each closed set A,

AzAo is closed and nowhere dense, so

XzAε Ď Xz
ď

k

pFk,εq
o “

ď

l

pFl,εz
ď

k

pFk,εq
oq “

“
ď

l

č

k

pFl,εzpFk,εq
oq Ď

ď

l“k

pFk,εzpFk,εq
oq

is meager, and so is
Ť

nPNpXzA1{nq “ Xz
Ş

εą0Aε.

4.1.9 Definition. Baire spaces.

A topological space X is called Baire if one of the following equivalent conditions
holds (see [26, 3.2.3]):

1. Complements of meager subsets are dense,
i.e. M meager in X ñ XzM “ X (or Mo “ H),

2. An closed, Aon “ H ñ p
Ť

nPNAnq
o “ H;

3. On open, On “ X ñ p
Ş

nPNOnq “ X.

Proof. p 1 ñ 2 q An closed, Aon “ H ñ M :“
Ť

nAn meager ñ Mo “ H.

p 2 ô 3 q An open, Aon “ H ô On :“ XzAn open, On “ X. And p
Ť

nPNAnq
o “

p
Ť

nPNXzOnq
o “ pXz

Ş

nPNOnq
o “ Xz

Ş

nOn.

p 2 ñ 1 q M meager ñ M “
Ť

nNn with Nn
o
“ H. An :“ Nn ñ Mo Ď

p
Ť

nAnq
o “ H.
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4.1.10 Lemma. Baire locally convex spaces.

A locally convex space is Baire if and only if it is not meager in itself.

Proof. (ñ) This direction holds for any topological space X ‰ H, because let X
be a Baire space which is meager in itself, then the complement H “ XzX would

be dense by 4.1.9.1 , i.e. X “ H.

(ð) So let E be a locally convex space that is not meager in itself. Suppose E is not

Baire, i.e. by 4.1.9.2 DAn, An closed, Aon “ H and Dx : x P p
Ť

nAnq
o, i.e.

Ť

nAn
is a neighborhood of x and thus U :“

Ť

npAn´xq “ p
Ť

nAnq´x is a neighborhood
of 0, hence absorbent. This makes

E “
ď

kPN
k U “

ď

k,n

kpAn ´ xq,

meager because of pAn ´ xq
o “ Aon ´ x “ H.

4.1.11 Baire-Hausdorff Category Theorem.

Every complete metric space is Baire.
Each (locally-)compact topological space is Baire, see [26, 3.2.4].

There are Baire metrizable lcs’s which are not complete, see [14, S.97].

Proof for complete metric spaces. Let M be meager, i.e. contained in
Ť8

n“1An
for closed sets An with empty interiour. By 4.1.9.1 we have to show that the
complement XzM “: M c is dense in X. So let U0 :“ tx : dpx, x0q ă r0u be an open
neighborhood of some point x0 P X with radius r0 ą 0. We construct inductively
open balls Un :“ tx : dpx, xnq ă rnu with center xn P Un´1zAn and radius 0 ă
rn ă

rn´1

2 such that Un Ď Un´1zAn. This is possible, since by assumption Acn is
dense and Un´1 is an open neighborhood of xn´1, hence an xn exists in Un´1XA

c
n

and we may choose the radius 0 ă rn ă
rn´1

2 such that Un “ tx : dpx, xnq ď rnu is
contained in this open set.

The sequence pxnqn is Cauchy, since for k1 ą k ą n we have

dpxk1 , xkq ď
k1
ÿ

j“k`1

dpxj , xj´1q ď

k1´1
ÿ

j“k

rj ă
8
ÿ

j“k

rn
2j´n

ď rn.

Let x8 :“ limn xn. Since xn P Un´1 Ď Um Ď Um for all n ą m, and hence
x8 P Um Ď U0zAm for all m ą 0, i.e. x8 P U0 X

Ş

mA
c
m Ď U0 XM

c.

4.1.12 Corollary of Weierstrass.

There are continuous functions on r´1, 1s that are nowhere differentiable.

See [26, 3.2.5]

Proof. We consider Cpr´1, 1s,Rq as a subspace of CpR,Rq

f ÞÑ f̃

¨

˚

˝

: x ÞÑ

$

’

&

’

%

fp´1q for x ă ´1

fpxq for |x| ď 1

fp1q for x ą 1

˛

‹

‚

Let Mn :“ tf P Cpr´1, 1s,Rq : Dt P r´1, 1s @0 ă |h| ď 1 : | f̃pt`hq´f̃ptqh | ď nu. Then
Mn is closed in Cpr´1, 1s,Rq (because, if fk P Mn with fk Ñ f8, then there are
|tk| ď 1 and without loss of generality tk converging towards t8, which guarantees
f8 P Mn). Furthermore, Mn is nowhere dense, because otherwise Mn contains a
neighborhood of a polynomial by the approximation theorem of Weierstrass. That
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can not be, because there are arbitrarily close curves, with anywhere arbitrarily
large increase (add to the polynomial a small sawtooth curve with sufficiently large
slope). So

Ť

nMn is meager and contains all the continuous functions that are
differentiable in at least one point.

4.1.13 Remark. Consequences for Baire lcs.

The theorem 4.1.8 of Baire garantees in particular for Fréchet spaces E (because

of 4.1.11 ) that for each pointwise convergent sequence of continuous linear func-
tionals fn : E Ñ R, the limit function f is a continuous linear functional. In fact,
according to the theorem of Baire, f has to be continuous in the points of a dense
set, and thus at least in one point. But, as f clearly has to be linear, this garantees
the continuity everywhere.

The Theorem 4.1.7 of Osgood gives us in particular for Fréchet spaces E, that
every pointwise bounded family F of continuous linear functionals is f : E Ñ R
equi-continuous (see 4.2.2 ) and thus bounded in LpE,Rq: In fact, according to the
theorem of Osgood, there exists a non-empty open set O on which F is uniformly
bounded (by K). Let ε ą 0. We choose an a P O, then for all x P O ´ a we have

|fpxq| ď |fpx` aq| ` |fp´aq|

ď supt|fpyq| : y P O, f P Fu ` supt|fp´aq| : f P Fu
ď K `K´a.

Thus FpUq Ď r´ε, εs for the 0-neighborhood U :“ ε
K`K´a

pO ´ aq.

Unfortunately, every (strictly) inductive limit of a truely increasing sequence of
Fréchet or, in particular, of Banach spaces is not Baire, because the closed steps
have empty interior, otherwise they would be absorbent and thus equal to the whole
space.

4.2 Uniform boundedness

Consequently, we should generalize these two continuity results from 4.1.13 fur-
ther. Let F be a pointwise bounded family of continuous linear mappings f : E Ñ
F . We look for conditions such that each such family is equi-continuous, i.e. for
each (closed) 0-neighborhood V in F the set

U :“
!

x P E : fpxq P V for all f P F
)

“
č

fPF
f´1pV q

is a 0-neighborhood in E. This set is itself closed and absolutely convex as inter-
section of closed absolutely convex sets. And it is absorbent, because for x P E we
have that Fpxq :“ tfpxq : f P Fu is bounded in F , so there is an K ą 0, with
Fpxq Ď K ¨ V , and thus x P K ¨ U . Consequently, we define:

4.2.1 Definition. Barreled spaces.

A subset U of an lcs E is called a barrel (german: Tonne), if it is closed, absolutely
convex, and absorbent.
An lcs E is called barreled (german: tonneliert) if each barrel is a 0-neighborhood;
this is exactly the case if each seminorm with closed unit ball is continuous, because
the barrels are exactly the unit balls of such seminorms: Let A be a barrel, then the

Minkowski functional p from A to 1.3.6 is a seminorm with pă1 Ď A Ď pď1. Since
A is assumed to be closed A “ pď1: In fact, let 1 “ ppxq “ inftλ ą 0 : x P λAu, then
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4.2 Uniform boundedness 4.2.5

λn Œ 1 and an P A exist with x “ λn an and thus x “ limnÑ8
x
λn
“ limnÑ8 an P A.

The converse, that closed unit balls of seminorms are barrels, is obvious.

So we proved the implication p1 ñ 3q of the following theorem:

4.2.2 Uniform Boundedness Principle.

Let E be a barreled lcs and F an arbitrary lcs. Then for each set F of continuous
linear mappings f : E Ñ F the following statements are equivalent

1. F is pointwise bounded,
i.e. for each x P E the set Fpxq is bounded in F .

ô 2. F is bounded in LpE,F q,

i.e. for each bounded B Ď E, the set FpBq is bounded in F (see 3.1.3 ).

ô 3. F is equi-continuous,
i.e. for each 0-neighborhood V of F there exists a 0-neighborhood U of E
with fpUq Ď V for all f P F .

Proof. We have already shown p 1 ñ 3 q in 4.1.13 , because
Ş

fPF f
´1pV q is a

barrel by 1 .

The implications p 1 ð 2 ð 3 q hold in general:

p 2 ð 3 qWe have to show that FpBq is bounded in F for each bounded B Ď E. So
let V be a 0-neighborhood. Since F is equi-continuous, there exists a 0-neighborhood
U of E with fpUq Ď V for all f P F . Since B is bounded, a K ą 0 exists with
B Ď K ¨ U , and thus FpBq Ď FpK ¨ Uq Ď K ¨ V , i.e. FpBq is bounded.

p 1 ð 2 q is obvious, since single points are bounded sets.

4.2.3 The converse implication also holds.

I.e. a space with the equivalence of the properties from 4.2.3 is barreled: Let U
be a barrel. Then tx1 P E˚ : |x1pUq| ď 1u is a pointwise bounded set in E˚. In
fact, U is absorbent, and thus is equi-continuous by assumption, i.e. there exists a
0-neighborhood V Ď E, s.t. |x1pV q| ď 1 for all x1 P E˚ with |x1pUq| ď 1. It would

therefore be enough to show that V Ď U . For this we need the Lemma 5.2.4 of
Mazur, which is a corollary of the theorem of Hahn-Banach: If x R U , a closed
absolutely convex set, then there exists a x1 P E˚ with |x1pxq| ą 1 and |x1pUq| ď 1.

Those lcs’s E, for which the Uniform Boundedness Principle for countable sets F
holds, are called ℵ0-barreled, see [14, S.252]. The dual space of each metrizable
lcs’s has this property, but it is not always barreled.

4.2.4 Lemma. Heritability of barreledness.

Every Baire lcs is barreled.
Barreledness is inherited by final structures and products.

Proof. Let A be a barrel in a Baire lcs E, then E “
Ť

nPN n ¨A, and thus there is
an n P N with n ¨Ao “ pn ¨Aqo ‰ H. So there is an a P A0. Then ´a P A0 and thus
0 “ 1

2a´
1
2a P A

0, i.e. A is a 0-neighborhood.

Let fi : Ei Ñ E be a final family and all Ei be barreled. Let q : E Ñ R be a
seminorm with closed unit ball, then the same holds for q ˝ fi, because pq ˝ fiqď1 “

pfiq
´1pqď1q. Thus q ˝ fi is continuous, and so is q.

With respect to products see [14, S.223].

4.2.5 Corollary. Pointwise convergence is not bornological.
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The dual space E˚ of each barreled lcs E, which has bounded set B contained in
no finite dimensional subspace, is not bornological with respect to the topology of
pointwise convergence.
For example, this is satisfied for each infinite dimensional Banach space E.

Proof. Let B Ď E be bounded. Then the polar Bo :“ tx1 P E˚ : @x P B :
|x1pxq| ď 1u is an absolutely convex 0-neighborhood in E˚ and thus bornivorous
(i.e. absorbs bounded sets) in E˚. Due to the Uniform Boundedness Principles,
the bounded sets in E˚ are exactly those which are bounded with respect to the
topology of pointwise convergence. So if this latter structure were bornological,
then Bo would be one of its 0-neighborhoods, i.e. a finite set A Ď E would exist

with Ao Ď Bo. According to the bipolar theorem 5.4.7 , we would have B Ď

pBoqo Ď pA
oqo “ xAyclosed,abs.conv., i.e. it would be contained in a finite dimensional

subspace, a contradiction to the assumption.

4.2.6 Banach-Steinhaus Theorem.

The pointwise limit of a sequence of continuous linear mappings from a barreled
lcs E to an lcs F is a continuous linear mapping. I.e. for complete F , the space
LCpE,F q :“ LpE,F qXCpE,F q, of the continuous linear mappings, is sequentially
complete with respect to pointwise convergence (but not necessarily complete).

Proof. Let fn : E Ñ F be continuous linear mappings, such that fn converges
pointwise towards f . Then f is obviously linear and tfn : n P Nu is pointwise

bounded. So by the Uniform Boundedness Principle 4.2.2 it is equi-continuous, i.e.
for each (closed) 0-neighborhood V there exists a 0-neighborhood U with fnpUq Ď V
for all n. Then fpUq Ď V “ V also holds, i.e. f is continuous.

4.2.7 Corollary. Scalarly boundedness.

Every scalarly bounded set is bounded.

A set B Ă E is called scalarly bounded if x1pBq Ď K is bounded for all contin-
uous linear functionals x1 P E˚.

Proof. Let E be first a normed space, then ι : E Ñ E2 is an isometry onto the

subspace ιpEq by the theorem of Hahn-Banach (see 5.1.10 , compare with the proof

of 3.8.4 , or directly with 5.1.10 ). The set ιpBq is pointwise bounded, because
x1pBq is bounded for all x1 P E1. Since E1 is a Banach space, ιpBq is bounded

in LpE1,Kq by the Uniform Boundedness Principle 4.2.2 , so B Ď E is bounded
because ι is an isometry.

Now let B Ă E be scalarly bounded in some lcs E. We have to show that ppBq is
bounded for each continuous seminorm p of E. Let N :“ kerppq. Then Ep :“ E{N is
a normed space, with respect to the seminorm p̃ with p̃ ˝ π “ p, where π : E Ñ Ep
is the natural quotient mapping. We have that πpBq is scalarly bounded in the

normed space Ep, because ˜̀pπpBqq “ p˜̀˝ πqpBq is bounded for each continuous

linear functional ˜̀ on Ep. So πpBq is bounded in the norm by the first part of the
proof, i.e. ppBq “ p̃pπpBqq is bounded.

4.2.8 Corollary. Separately continuous bilinear mappings.

Let E1 and E2 be metrizable lcs’s and E2 be barreled. Then each bilinear separately
continuous mapping f : E1 ˆ E2 Ñ F with values in any lcs F is continuous.
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This result also holds for barreled spaces with a countable basis of bornology, see
[14, S.338].

Proof. Since E1 and E2 are metrizable lcs’s, it suffices by 2.1.7 to show that f
is bounded. So let Bi Ď Ei be bounded for i P t1, 2u. We consider the mapping
f̌ : E1 Ñ LpE2, F q, f̌px1q : x2 ÞÑ fpx1, x2q. This is well-defined, since fpx1, q
is linear and continuous by assumption. It is also linear because fp , x2q is linear.
Furthermore, f̌pB1q is pointwise bounded in LpE2, F q because f̌pB1qpx2q “ fpB1ˆ

tx2uq for x2 P E2. Since E2 is barreled, fpB1 ˆ B2q “ f̌pB1qpB2q Ď F is bounded.

4.2.9 Discontinuous but separatedly continuous natural bilinear forms.

For any lcs E we consider the obviously bilinear evaluation mapping ev : E˚ˆE Ñ
K, px1, xq ÞÑ x1pxq. It is bounded, because if A Ď E˚ and B Ď E are both bounded,
then ApBq is bounded by the structure of E˚ Ď E1 “ LpE,Kq.
Suppose ev were continuous. Then 0-neighborhoods V Ď E˚ and U Ď E would
have to exist with |x1pxq| ď 1 for all x1 P V and x P U . Since V as 0-neighborhood
is absorbent, there exists a k ą 0 with x1 P k ¨ V for each x1 P E˚, and hence x1 is

bounded on U by k. Thus U is scalarly bounded and by 4.2.7 even bounded in E,

hence E has to be normable by 1.6.2 .
Note that for the arguments above it was not essential that we use the usual struc-
ture on E˚, but this holds for any topological vector space structure. This indicates
that continuity is a too strong condition for nonlinear mappings, because the most
natural bilinear mapping is not continuous. Taking this remark into account, a
calculus has been developed for mappings between lcs’s, see [27].

Let’s look at the simplest special case of non-normable spaces E “ RpNq :“
š

N R
or E “ RN :“

ś

N R. Because of the universal property of the final structure,

pRpNqq˚ “ RN as vector space, where the action of x “ pxnqn P RN to y “ pynqn P
RpNq is given by evpx, yq “

ř

n xn yn. Since each bounded set in RpNq is bounded in

some finite dimensional RN , also the topology on pRpNqq˚ is just that of RN.

On the other hand, the dual space of RN is just RpNq with the above evaluation
map, because for continuous linear x1 : RN Ñ R there exists a 0-neighborhood, i.e.
an N P N and an ε ą 0, s.t. x1ptx P RN : |xn| ă ε for all n ď Nuq Ď r´1, 1s. Let
p “ inkl˚ : RN � RN and i : RN Ñ RN, x ÞÑ px, 0q. Then p and i are continuous
and linear and |x1pk ¨px´pi˝pqpxqqq| ď 1 for all k ą 0 and thus x1pxq “ x1pipppxqqq “
pi˚px1q ˝ pqpxq, where i˚px1q “ x1 ˝ i P pRN q1 – RN , so pRNq1 is identifiable with
the union

Ť

NPN RN “ RpNq. This is even a linear homeomorphism: A typical 0-
neighborhood in pRNq1 is given by the polar Bo of B “ tx P RN : |xi| ď µiu for
some sequence µi ą 0, hence

Bo “
!

x1 P RpNq :
ˇ

ˇ

ˇ

ÿ

i

x1iµi
xi
µi

ˇ

ˇ

ˇ
ď 1 @x P B

)

“

!

x1 P RpNq :
ÿ

i

µi|x
1
i|

looomooon

“:ppx1q

ď 1
)

,

where p is a typical seminorm of RpNq.

The evaluation map is bounded and thus separately continuous (since both factors
are bornological): In fact, if A Ď RN and B Ď RpNq are bounded, then B Ď RN
is bounded for some N and thus the finitely many non-vanishing coordinates of
y P B and the corresponding ones of x P A are bounded and hence also evpx, yq “
ř8

n“0 xn yn “
řN
n“0 xn yn is bounded.
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The evaluation map is however not continuous, because if there were 0-neighborhoods
V Ď RN and U Ď RpNq with evpV ˆ Uq Ď r´1, 1s, then V can only control finitely
many coordinates, i.e. there is an n with R ¨ en P V . But since ε ą 0 exists with
ε ¨ en P U , we would have 1 ě | evpk en, ε enq| “ k ¨ ε for all k, a contradiction.

4.2.10 Counterexample concerning the Uniform Boundedness Theorem.

Let E be the subspace of the finite sequences in the Banach space `8, and fn :
pxkq

8
k“1 ÞÑ

ř

kďn xk. Then tfn : n P Nu Ď LpE,Rq is pointwise bounded, but not
bounded in LpE,Rq, because }fn} :“ supt|

ř

kďn xk| : pxkq
8
k“1 P E and @k : |xk| ď

1u “ n. Thus E is not barreled.

4.2.11 Lemma. Automatic boundedness of adjoint mappings.

Let T : E Ñ F , S : F 1 Ñ E1 both be linear with y1pTxq “ Spy1qpxq, then T and S
are bounded linear mappings.

Proof. Let B Ď E be bounded. Then y1pTBq “ Spy1qpBq is bounded, i.e. TB is

scalarly bounded, thus TB is bounded by the corollary in 4.2.7 . Furthermore, if
A Ď F 1 is bounded, then pSAqpBq “ ApTBq is bounded in K, i.e. SA is bounded
in E1.

4.3 Closed and open mappings

We have seen that by the Banach Steinhaus Theorem 4.2.6 the Baire property
has the continuity of certain linear mappings as consequence. We want to work
that out even further. Let f : E Ñ F be a mapping. The graph of f is the
set graphpfq :“ tpx, yq P E ˆ F : fpxq “ yu. The graph is closed if and only if
graphpfq Q pxi, yiq Ñ px8, y8q ñ px8, y8q P graphpfq, i.e. the existence of the
limits limi xi and limi fpxiq implies the equality fplimi xiq “ limi fpxiq. Clearly
this condition is formally weaker than the continuity of f , where the existence of
the 2nd limit is not presupposed. Nevertheless, we show the converse implication
under suitable assumptions:

4.3.1 Closed Graph Theorem.

Let E be a Baire lcs, F a Fréchet space, and f : E Ñ F a linear mapping whose
graph is closed in E ˆ F . Then f is continuous.

Proof. We choose a 0-neighborhood basis pVnqn of F consisting of closed and
absolutely convex sets with 2Vn Ď Vn´1 and let An :“ f´1pVnq. For each n we
have E “

Ť

kPN k ¨An. Since E is presumed to be Baire, An contains a point x such

that x`Un Ď An is for a 0-neighborhood Un of E. But then Un “ px`Unq ´ x Ď
px` Unq ´ px` Unq Ď 2An Ď An´1 holds.

We claim that fpUn`1q Ď Vn´1 (hence f is continuous). Let x P Un`1 Ď An Ď
An`Un`2, i.e. there is an x0 P An with x´x0 P Un`2, and recursively we find xk P

An`k with x ´
řk
i“0 xi P Un`2`k. Then

ř

k fpxkq satisfies the Cauchy condition,

because
řk`p
i“k fpxiq P

řk`p
i“k Vn`i Ď

řp
j“0 2´jVn`k Ď Vn`k´1. Since F is complete,

y :“
ř8

k“0 fpxkq exists and is in Vn´1 because Vn´1 is closed.

If E is in addition metrizable, we may assume that the Un form a 0-neighborhood
basis of E, thus

ř

k xk converges to x. The closedness of the graph then yields
fpxq “ y P Vn´1.
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In the general case of a Baire space E, we take any two symmetric (closed) 0-

neighborhoods U and V in E and F . Since x ´
řk
i“0 xi P Un`2`k Ď An`1`k Ď

An`1`k`U , there exists an ak P An`1`k, with x´
řk
i“0 xi P ak`U , i.e. x´

`

ak`
řk
i“0 xi

˘

P U . Then fpakq P Vn`1`k is a 0-sequence, hence y ´ f
`

ak `
řk
i“0 xi

˘

“
`

y´
řk
i“0 fpxiq

˘

´fpakq P V for sufficiently large k. Therefore px, yq`U ˆV meets

the graph of f at least at the point ak`
řk
i“0 xi. Since the graph is closed, fpxq “ y

holds.

4.3.2 Remark. Webbed spaces.

One can summarize the essential property of sets Vn in F more abstractly. For this
one calls a mapping V on the set of finite sequences of natural numbers into the
absolutely convex subsets of an lcs’s F , a completing web if

1. V pHq “ F ;

2. For each finite sequence k :“ pk1, . . . , knq and each kn`1 the inclusion
2V pk, kn`1q Ď V pkq holds;

3. For each finite sequence k :“ pk1, . . . , knq every point in V pkq is absorbed
by

Ť

kn`1PN V pk, kn`1q;

4. And for each infinite sequence pk1, k2, . . . q and xn P V pk1, . . . knq the series
ř

n xn converges.

A lcs F is called webbed if it has a completing web V .

4.3.3 Lemma. Heritability of webbed spaces.

Every Fréchet space E is webbed.

Sequentially closed subspaces, countable products, separated quotients and countable
coproducts of webbed spaces are webbed.

The closed graph theorem also holds for functions from Baire into webbed spaces.

The Fréchet spaces are exactly the Baire webbed lcs’s.

Proof. Each Fréchet space E is webbed: To see this we only have to take a 0
neighborhood basis Vn as above and define V pk1, . . . , knq :“ Vn.
For subspaces, the trace is a complete web, and for quotients the image of such is
again one (see [14, S.90]).
For the remaining heritabilities see [14, S.91].
The above proof of the closed graph theorem can be transferred directly to webbed
spaces F by [6] with the following changes (see [14, S.92]): We inductively choose
kn P N so that Vn :“ V pk1, . . . , knq does not have meager inverse image Ak :“

f´1pVnq. This is possible because of property 4.3.2.3 of webs. Now, one shows, as

in the proof of 4.3.1 , the existence of 0-neighborhoods Un Ď An´1 with fpUnq Ď

Vn´1, showing the continuity of f .
For the last statement, see [14, S.94].

4.3.4 Remark.

Usually, the closed graph theorem is formulated more technically by specifying only
linear mappings f : G Ñ F with closed graphs in E ˆ F defined on a non-meager
subspace G Ď E. However, this version follows immediately from the above, because

G is then not even meager in itself by 4.1.6 , thus is Baire by 4.1.10 and the graph

is then also closed in GˆF , so the theorem 4.3.1 applicable, where we need only
the weaker assumptions that G is Baire and the graph is closed in Gˆ F .
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4.3 Closed and open mappings 4.3.8

4.3.5 Open Mapping Theorem.

Let E be webbed, F a Baire lcs and f : E Ñ F linear and surjective with closed
graph. Then f is an open mapping, i.e. the image of each open subset is open.

Proof. If f were bijective, we could use simply apply 4.3.1 to f´1.
In general, we consider the diagram:

graphpfq �
� // E ˆ F

Kerpfq �
� //

?�

OO

E
f //

π ## ##

?�
inj1

OO

F

N E{N

OO f̃

OOOO

Since f has closed graph, the kernel N :“ Kerpfq “ inj´1
1 pgraph fq of f is closed.

Thus, with E also E{N is webbed by 4.3.3 . We now consider the bijective mapping

f̃ : E{N Ñ F , rxs ÞÑ fpxq. If f has closed graph, the same holds for f̃ , because

πˆF : EˆF Ñ pE{NqˆF is a quotient map (since open), and pπˆF q´1pgraph f̃q “

graph f . Thus the inverse map f̃´1 of f̃ has closed graph in F ˆ pE{Nq, since the
reflection pE{NqˆF Ñ F ˆpE{Nq is an isomorphism. Consequently, according to

the Closed Graph Theorem 4.3.1 , the mapping f̃´1 : F Ñ E{N is continuous, i.e.

f̃ is open, and thus also f “ f̃ ˝ π is an open mapping.

4.3.6 Corollary. Quotient maps of Fréchet spaces.

Let E be a Fréchet space and f : E Ñ F a continuous linear mapping with non-
meager image fpEq in F .
Then f : E Ñ F is surjective and even a quotient mapping, i.e. F – E{Kerpfq.

Proof. In particular, fpEq is not meager in itself by 4.1.6 , so it is Baire by 4.1.10

and thus f : E Ñ fpEq is an open (by 4.3.5 ) and continuous surjective mapping,
hence a quotient map. Thus, fpEq – E{Kerpfq is also a Fréchet space, hence
complete and therefore closed in F . If fpEq ‰ F , then fpEq would be nowhere
dense (because 0-neighborhoods are absorbent), a contradiction to the fact that
fpEq was assumed to be not meager.

4.3.7 Corollary. Inverse functions between Fréchet spaces.

The inverse of a bijective continuous linear mapping between Fréchet spaces is con-
tinuous.

We now want to examine continuity of linear mappings with values in spaces smooth
functions.

4.3.8 Corollary. Scalar continuity.

Let E be a Baire lcs, F a webbed space and F a point separating family of continuous
linear functionals on F . If g : E Ñ F is a linear mapping, all of whose compositions
f ˝ g : E Ñ F Ñ K with f P F are continuous, then g is continuous.

Proof. We can use the Closed Graph Theorem 4.3.1 because we only have to show
that gpxq “ y follows from xi Ñ x and gpxiq Ñ y. Since the f P F are continuous,
fpgpxqq “ pf ˝ gqplimi xiq “ limipf ˝ gqpxiq “ fplimi gpxiqq “ fpyq is. And since the
f P F are point separating, we have gpxq “ y.
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4.3 Closed and open mappings 4.3.10

4.3.9 Examples.

Clearly, the previous corollary also holds if E itself is not necessarily Baire, but
carries the final structure of Baire spaces.
In particular, this can be applied for the point evaluations instead of F on the
Fréchet spaces CnpUq, C8K pUq and E ; as well as the strict inductive limits CcpXq,
Cnc pUq and D of Fréchet spaces instead of E.

This way we easily verify that the mappings from [18, 4.9] and [18, 4.13.4]

1. Tx, S, B
α : D Ñ D;

2. f ¨ p q : D Ñ D for f P E ;

3. ϕ ‹ p q : D Ñ E for ϕ P D1 (see [18, 4.13.5]);

4. ϕ ‹ p q : D Ñ D for ϕ P E 1

are continuous, and that the initial structure of CpUq and C8pUq on HpUq is
identical. In fact,

pevx ˝Tyqpfq “ fpx´ yq “ evx´ypfq;

pevx ˝Sqpfq “ fp´xq “ ev´xpfq;

pevx ˝B
αqpfq “ Bαfpxq;

evxpg ¨ fq “ gpxq ¨ fpxq “ pgpxq evxqpfq;

evxpϕ ‹ fq “ ϕpTxpSpfqqq “ pϕ ˝ Tx ˝ Sqpfq.

In the case where the target space is D, also the Closed Graph Theorem 4.3.1 for
the Fréchet spaces C8K pRmq instead of the webbed space D can be used, provided
we keep track of the support: For example, Trgpϕ ‹ fq Ď Trgϕ` Trg f holds.

4.3.10 Remark.

The Closed Graph Theorem 4.3.1 has the Uniform Boundedness Principle 4.2.2
for linear functionals on Baire spaces as easy consequence: Let F Ă E˚ be pointwise
bounded. Then the mapping ι : E Ñ BpF ,Kq, x ÞÑ pf ÞÑ fpxqq is a well-defined
linear mapping. The composition with evf : BpF ,Kq Ñ K is just f , so continuous.
Thus it follows that ι is continuous, because BpF ,Kq is a Banach space, and thus
there exists a 0-neighborhood U with |FpUq| “ |ιpUqpFq| Ď r0, 1s.
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5. The Theorem of Hahn Banach

This chapter discusses the richness of the space of the continuous linear functionals
on locally convex spaces and the geometric separation properties that follow. We
will apply this to determine some dual spaces and also to questions of complex
analysis.

5.1 Extension theorems

Our first goal is to find as many linear functionals ` as possible, which should of
course be continuous, i.e. satisfy |`| ď q for a (fixed) seminorm q. Absolute values
are difficult to evaluate and linear functionals and seminorms are hard to compare.
However, we have already introduced a common generalization, namely sublinear

functionals in 1.1.1 . Thus, we first turn to the inequality ` ď q for sublinear q.

5.1.1 Lemma. Minimal sublinear functions are linear.

A function on a real vector space E is minimal among the sublinear functions
E Ñ R if and only if it is linear.

Proof. pðq Let ` : E Ñ R be linear and q : E Ñ R sublinear and q ď `. Then:

0 “ `pxq ` `p´xq ě qpxq ` qp´xq ě qp0q “ 0 ñ qpxq “ ´qp´xq

ñ `pxq ě qpxq “ ´qp´xq ě ´`p´xq “ `pxq ñ qpxq “ `pxq.

pñq Let p : E Ñ R be minimal among the sublinear functions.
Suppose p is not additive, then a, b P E exist with ppa`bq ă ppaq`ppbq. We are now
trying to find a smaller sublinear function. Obviously, x ÞÑ ppx`aq´ppaq is convex
and at the point b less than p. In order to obtain R`-homogeneity we consider
papxq :“ inftą0pppx ` t aq ´ t ppaqq. Because of ´pp´xq ď ppx ` t aq ´ t ppaq, this
definition makes sense. Furthermore, ppx ` t aq ´ t ppaq ď ppxq, i.e. pa ď p and
papbq ď ppa` bq ´ ppaq ă ppbq.
The function pa is R`-homogeneous, because for λ ą 0 we have:

papλxq “ inf
tě0

´

ppλx` t aq ´ t ppaq
¯

“ inf
tě0

´

ppλ px` t
λ aqq ´ t ppaq

¯

“ inf
tě0

λ
´

ppx` t
λ aq ´

t
λ ppaq

¯

“ λ ¨ inf
sě0

´

ppx` s aq ´ s ppaq
¯

“ λ ¨ papxq.

With x ÞÑ ppx` taq ´ pptaq also pa is convex, a contradiction to minimality.
From the additivity and the R`-homogeneity follows also the R-linearity, because
pp´xq ` ppxq “ pp0q “ 0 implies that p is odd.

5.1.2 Corollary. Existence of linear minorants.

Let p : E Ñ R be a sublinear function on a real vector space E. Then there exists
a linear f : E Ñ R with f ď p.
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5.1 Extension theorems 5.1.5

Proof. We apply Zorn’s Lemma to the set

S :“ tq ď p : q is sublinearu.

Let L be a linearly ordered subset of S. Then infqPL q “: q8 is a lower bound of L:
In fact, q8 is well-defined, otherwise an x P E would exist with Lpxq unbounded
from below. But then there would be qn P L Ď S, s.t. qnpxq ď ´n and qn ď qn´1

without loss of generality, consequently,

0 “ qnp0q ď qnpxq ` qnp´xq ď ´n` q0p´xq ñ @n : q0p´xq ě n,

would be a contradiction.
The infimum q8 is sublinear as infimum of sublinear functions.
So we may apply Zorn’s Lemma (or, as google translated it, the lemma of anger)
and get a minimal element q P S, which has to be linear according to the Lemma

5.1.1 .

5.1.3 Theorem of Hahn and Banach.

Let q : E Ñ R be a sublinear function on a vector space E over R and f : F Ñ R
be a linear function on a subspace F of E such that f ď q|F . Then there is an

extension f̃ : E Ñ R (i.e. f̃ |F “ f), which is linear and satisfies f̃ ď q on E.

Proof. We consider q̃ : x ÞÑ infyPF pqpx` yq´ fpyqq. Similar to the proof of 5.1.1 ,
it follows that q̃ is well-defined (because qpx` yq ´ fpyq ě ´qp´xq ` qpyq ´ fpyq ě
´qp´xq), sublinear, and q̃ ď q (put y :“ 0).

By Corollary 5.1.2 there is a linear f̃ : E Ñ R with f̃ ď q̃ ď q.

For x P F we have f̃pxq ď q̃pxq ď qpx´ xq ´ fp´xq “ fpxq. Thus f̃ |F “ f , because

as linear function f : F Ñ R has to be minimal by 5.1.1 .

5.1.4 Corollary.

Let E be a vector space over K P tR,Cu and F a linear subspace. Let q be a
seminorm on E and f : F Ñ K a linear function that satisfies |f | ď q|F .

Then there is an extension f̃ : E Ñ K (i.e. f̃ |F “ f), which is linear and satisfies

|f̃ | ď q on E.

Proof. First for K “ R: Let q be a seminorm and |f | ď q|F . By 5.1.3 there is a

linear f̃ : E Ñ R with f̃ ď q. But this implies |f̃ | ď q, because ´f̃pxq “ f̃p´xq ď
qp´xq “ qpxq.

Now, if the scalar field is C, then consider fR :“ Ref . We have fR ď |f | ď q|F . So,

according to what we have shown above, there is a R-linear extension ĂfR : E Ñ R
with ĂfR ď q. Let f̃ be the C-linear function x ÞÑ ĂfRpxq ´ iĂfRpi xq given by the

second universal property 3.9.4.2 for the complexification C of R. Then f̃ |F “ f

and Repf̃q “ ĂfR ď q. For x P E, let r eiϑ “ f̃pxq be the polar representation with

r ě 0. Then R Q |f̃pxq| “ r “ f̃pe´iϑxq “ ĂfRpe
´iϑxq ď qpe´iϑxq “ qpxq.

5.1.5 Corollary.

Let E be an lcs and F a linear subspace of E. Each continuous linear functional
f : F Ñ K has a continuous linear extension f̃ : E Ñ K.
If E is normed, then there is such an f̃ , which additionally fulfills }f̃} “ }f}.

For bounded linear functions, this theorem is generally wrong.
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5.1 Extension theorems 5.1.9

Proof. Since f is continuous, |f | is a continuous seminorm on F . By 3.1.4 there

is an extension to a continuous seminorm q on E. By 5.1.4 there is an extension

of f to a linear functional f̃ : E Ñ K, which fulfills |f̃ | ď q and is thus continuous.

If, in addition, E is normed. Then we may choose x ÞÑ }f} ¨ }x} for q. So |f̃pxq| ď

}f} ¨ }x} holds, i.e. }f} “ }f̃ |F } ď }f̃} ď }f}. Consequently, the desired equality
holds.

5.1.6 Corollary. Dual vectors.

Let E be an lcs and tx1, . . . , xnu linearly independent and `i P K.
Then there exists an ` P E˚ with `pxiq “ `i for all i P t1, . . . , nu.

Proof. Let F be the linear subspace generated by tx1, . . . , xnu. A unique linear
functional can be defined on it by `pxiq :“ `i. This functional is continuous by

3.4.6.3 . By 5.1.5 , a continuous extension ` to E exists, and this has also the
desired properties.

5.1.7 Corollary. Complements of finite dimensional subspaces.

Every finite dimensional subspace of an lcs has a topological complement.

Compare this with 3.4.6.4 in case of finite codimension.

Proof. Let F be an n-dimensional subspace of E. We choose a basis te1, . . . , enu

of F . By 5.1.6 there exist `k P E
˚ with `kpejq “ δk,j for all k, j P t1, . . . , nu. Thus

ppxq :“
řn
k“1 `kpxq ek defines a continuous linear mapping p : E Ñ F satisfying

p|F “ id. This provides a decomposition E – F ‘ ker p, where the isomorphism is
given by y ` zÐ py, zq and x ÞÑ pppxq, x´ ppxqq.

5.1.8 Corollary. The functionals are points-separating.

On each lcs, the continuous linear functionals are points-separating.

Moreover, let F be a closed linear subspace in an lcs E and a P EzF . Then there
is a ` P E˚ with `|F “ 0 and `paq “ 1.

If E is normed, then ` P E˚ can be choosen s.t. }`} “ 1{dpa, F q.

If q is a seminorm of E with q|F “ 0, then ` P E˚ can be choosen s.t. |`| ď q and
`paq “ qpaq instead of `paq “ 1.

Proof. We define a functional ` on Fa :“ tx` t a : x P F, t P Ku by `px` t aq :“ t,

i.e. with `|F “ 0 and `paq “ 1. By 3.4.4 , Fa – F ˆK and therefore ` is continuous

and linear on Fa, hence by 5.1.5 there is a continuous linear extension ˜̀ to E.

In particular, the continuous linear functionals are point-separating, because for
a1 ‰ a2 we have a :“ a1´a2 R F :“ t0u, hence they can be separated by an ` P E˚.

If E is normed, then }`} ď 1{dpa, F q, because |`px` taq| ¨dpa, F q ď |t| ¨ }a´p´x
t q} “

}x ` ta}. Even equality holds, because there are xn P F with }a ´ xn} Ñ dpa, F q,

and thus 1 “ `pa´ xnq ď }`} ¨ }a´ xn} Ñ }`} ¨ dpa, F q ď 1. By 5.1.5 the extension
˜̀ can be choosen s.t. }˜̀} “ }`} ď 1

dpa,F q q.

Finally let q be a seminorm of E with q|F “ 0, then we define ` : Fa Ñ K by
`px ` t aq :“ t qpaq, so `paq “ qpaq and |`| ď q, because |`px ` t aq| “ |t| qpaq “

qpt aq “ qpx`t aq. Thus, we can choose the extension ˜̀by 5.1.4 so that |˜̀| ď q.

5.1.9 Corollary. The closure as intersection of kernels.
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5.1 Extension theorems 5.1.12

If E is an lcs and F is a linear subspace, then the closure of F is given by

F “
č

tker ` : ` P E˚, `|F “ 0u.

See 5.2.3 for a generalization.

Proof.
(Ď) Obviously, F Ď ker ` for all continuous linear functional ` P E˚ with `|F “ 0.

(Ě) Conversely, if a R F , then there is a continuous linear functional ` : E Ñ K with

`paq “ 1 and `pF q “ 0 by 5.1.8 . Consequently, a R
Ş

tker ` : ` P E˚, `|F “ 0u.

5.1.10 Corollary. Isometric embedding in the bidual.

Let E be normed and x P E, then }x} “ max
 

|`pxq| : ` P E˚, }`} “ 1
(

“ }δpxq}, i.e.
δ : E Ñ E˚˚ is an isometry.

Proof. }δpxq} “ supt|δpxqp`q|
looomooon

|`pxq|

: ` P E˚, }`} “ 1u

pěq is valid because |`pxq| ď }`} ¨ }x}.

pďq holds, because by 5.1.8 an ` P E˚ exists with }`} “ 1{dpx, 0q “ 1{}x} and
`pxq “ 1. We replace this ` with }x} ¨ ` and thus get }`} “ 1 and `pxq “ }x}.

5.1.11 Corollary. The operator norm of the adjoint.

Let T : E Ñ F be bounded and linear between normed spaces. Then }T˚} “ }T }.

Proof. We have

}T˚} “ supt}T˚py˚q} : }y˚} “ 1u “ suptsupt|T˚py˚qpxq| : }x} “ 1u : }y˚} “ 1u

“ supt|T˚py˚qpxq|
looooomooooon

|y˚pT pxqq|

: }x} “ 1, }y˚} “ 1u

“ suptsupt|δpT pxqqpy˚q| : }y˚} “ 1u : }x} “ 1u “ supt}δpT pxqq} : }x} “ 1u

“
5.1.10
“““““““ supt}T pxq} : }x} “ 1u “ }T }.

5.1.12 Corollary. Separability of the dual space.

If the dual space of a normed space is separable, then the space itself is separable.

The converse does not hold, as the example p`1q1 “ `8 shows, see 5.3.1 .

Proof. Let D˚ Ď E˚ be a countable dense subset. For each x˚ P D˚ we choose an

x P E with }x} “ 1 and |x˚pxq| ě }x˚}
2 . Let D be the set of these x’s for all x˚ in

D˚. We claim that the linear subspace generated by D is dense. Because of 5.1.9
it suffices to show that every x˚ P E˚, which vanishes on D, is already 0. So let
x˚ be such a functional. Since D˚ is dense in E˚, there exists a sequence x˚n P D

˚

with }x˚n ´ x
˚} Ñ 0. Let xn be the corresponding sequence in D. Then

}x˚n ´ x
˚} “ supt|px˚n ´ x

˚qpxq| : }x} “ 1u

ě |px˚n ´ x
˚qpxnq| “ |x

˚
npxnq| ě

1
2}x

˚
n},

hence x˚n converges to 0, i.e. x˚ “ 0.
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5.1 Extension theorems 5.2.3

5.2 Separation theorems

5.2.1 Separation theorems for convex sets.

Let A and B be disjoint convex not empty subsets of a real lcs E. Then there exists
a continuous linear functional f : E Ñ R and a γ P R, s.t. for all a P A and all
b P B the following holds:

1. If A is open, fpaq ă γ ď fpbq holds;

2. If A and B are open, fpaq ă γ ă fpbq holds;

3. If A is closed and B is compact, then fpaq ă γ ă fpbq holds.

Hence the affine hyperplane tx P E : fpxq “ γu separates the two sets, meaning
that they are on different sides of it.

Proof. 1 The set U :“ A ´ B ‰ H is open, convex, and 0 R U . We choose
u P U and put V :“ U ´ u with associated Minkowski functional q :“ qV (which

is sublinear by 1.3.6 ). Let further F :“ tt u : t P Ru and f : F Ñ R be given
by fpt uq :“ ´t (well-defined, since u ‰ 0). Then f |U ă 0, because fpUq Ď R is

convex, ´1 “ fpuq P fpUq and 0 R fpUq. Consequently, f ď q|F by 1.3.7 , because
for v P F with qpvq ă 1 we have v P V “ U ´ u, hence 0 ą fpu` vq “ fpvq ´ 1, i.e.

fpvq ă 1. By Theorem 5.1.3 of Hahn-Banach there exists an extension to a linear
functional on E (which we denote again by f) with f ď q. Since W :“ V X ´V
is a 0-neighborhood, fpwq ď qpwq ď 1 and ´fpwq “ fp´wq ď qp´wq ď 1 for all
w P W , we deduce that f is continuous. For x P U we have x ´ u P V Ď qď1 and
thus 1 ě qpx ´ uq ě fpx ´ uq “ fpxq ` 1, i.e. fpxq ď 0. Thus, fpa ´ bq ď 0, i.e.
fpaq ď γ :“ inf fpBq ď fpbq. Now if A is open, then also fpAq and thus fpaq ă γ
for all a P A.

2 If, in addition, B is open, then, by analogous arguments, fpbq ą γ for all b P B.

3 If A is closed, there is an open absolutely convex 0-neighborhood Uy for each
y R A, so that A X py ` 3Uyq “ H. Since B is compact, there are finitely many
yi P B, so that B Ď

Ť

ipyi`Uiq with Ui :“ Uyi . Because of pyi`2UiqXpA`Uiq “ H,
the two open convex sets B`U “

Ť

i yi`Ui`U Ď
Ť

i yi`2Ui and A`U Ď A`Ui
are disjoint, when U :“

Ş

i Ui. So the claim follows from (2).

5.2.2 Corollary. Separation of a point from a convex set.

Let E be an lcs, U a non-empty convex open subset, and F a linear subspace that
does not intersect U . Then there is a closed hyperplane H Ě F , which does not
intersect U .

Proof. Let’s first assume K “ R. By 5.2.1.1 for A :“ U and B :“ F we have
the existence of f P E˚ and γ P R with fpaq ă γ ď fpbq for all a P A and b P B.
Since b :“ 0 P F we have γ ď 0 and therefore U X Kerpfq “ H. Furthermore,
F Ď Kerpfq, because fpyq ‰ 0 implies fpyq ă 0 or fpyq ą 0 and thus fp´yq ă 0,
but then fptyq ă γ for a suitably chosen multiple, thus ty R F .

Let now K “ C. By the first case, there is an R-linear f : E Ñ R with fpxq ă 0

for x P U and f |F “ 0. Then f̃ : x ÞÑ fpxq ´ i fpi xq is C-linear, with 0 R f̃pUq and

F Ď Kerpf̃q (note that Kerpf̃q Ď Kerpfq).

5.2.3 Corollary. The closure as intersection of half-spaces.

The closed convex hull of a subset of a real lcs is the intersection of all half-spaces

that contain it, cf. 5.1.9 .
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5.2 Separation theorems 5.3.1

A half-space is a subset of a vector space of the form tx : fpxq ď γu with a
f P E˚ and γ P R.

Proof. This follows as 5.1.9 using 5.2.1.3 or 5.2.4 instead of 5.1.8 :
In fact, half-spaces are obviously closed and convex, so the closed convex hull of A
is included in this intersection. Let conversely b be not in the closed convex hull of

A. Then by 5.2.1.3 there is a γ P R and a continuous linear functional f : E Ñ R
with fpaq ă γ ă fpbq for all a P A. So A is in the half-space tx : fpxq ď γu but b,
so b is not in the intersection of these.

Next, a generalization of 5.1.8 .

5.2.4 Lemma of Mazur.

Let A Ď E be a closed convex subset of an lcs E over K and b P EzA.

1. If K “ R and 0 P A, then there is a continuous linear functional f : E Ñ K
with fpbq ą 1 and fpaq ď 1 for all a P A.

2. If A is absolutely convex, then there is a continuous linear functional f :
E Ñ K with fpbq ą 1 and |fpaq| ď 1 for all a P A.

Proof. 1 By 5.2.1.3 for the compact set B :“ tbu there is an f P E˚ and a γ P R
with fpaq ă γ ă fpbq for all a P A. Because of 0 P A, we have 0 “ fp0q ă γ and
thus g :“ 1

γ f : E Ñ R is the desired functional with gpaq ă 1 ă gpbq for all a P A.

2 If K “ R, then this follows from the first part, because with a P A also ´a P A
and thus ´fpaq “ fp´aq ď 1, altogether |fpaq| ď 1.

Let now K “ C. By what we have just shown, there exists a continuous R-linear
f : E Ñ R with |fpaq| ď 1 ă fpbq for all a P A. The 2π-periodic function t ÞÑ fpei tbq
assumes its maximum at some point τ and there its derivative fpi ei τ bq has to
vanish. Now let’s consider the C-linear continuous functional

f̃ : x ÞÑ fpei τxq ´ i fpieiτxq.

We have f̃pbq “ fpei τ bq´ i 0 ě fpbq ą 1 and for a P A let f̃paq “ r ei ϑ be the polar

representation. Then 0 ď r “ |f̃paq| “ e´i ϑ f̃paq “ f̃pe´i ϑaq “ fpei τ e´i ϑ aq´i 0 ď
1 since ei pτ´ϑqa P A.

5.3 Dual spaces of important examples

5.3.1 Lemma. The dual space of `p.

Let 1 ď p ă 8 and 1
p `

1
q “ 1, then p`pq1 “ `q. Furthermore, pcoq

1 “ `1. Note in

particular that c0 ‰ `8 “ p`1q1 “ pc0q
2.

We will show in 5.5.2 that c0 can not be a dual space of a Banach space.

Proof. The ι : `q Ñ p`pq1, given by x ÞÑ py ÞÑ xx, yyq, is a well-defined mapping
with }ιpxq} ď }x} because of Hölder’s inequality.

`q
� � ι //
o�

incl   

p`pq1

pevek qk}}
KN

We now show the surjectivity: Let λ P p`pq1. If an x P `q exists with ιpxq “ λ,
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then we would have xk “ ιpxqpekq “ λpekq. So we define xk :“ λpekq. There are
λn P p`

pq1 given by

λnpyq :“ λpy|t1,...,nuq “ λ
´

ÿ

kďn

yk e
k
¯

“
ÿ

kďn

yk xk.

Then λn Ñ λ converges pointwise, since
ř

k yk e
k Ñ y converges in `p (or in c0).

So λ P p`pq˚ by the Banach-Steinhaus Theorem 4.2.6 and

λpyq “ lim
nÑ8

λnpyq “ lim
nÑ8

ÿ

kďn

xk yk “
8
ÿ

k“0

xk yk “: ιpxqpyq.

Thus, |
ř

k xk yk| ď }λ} }y}p holds. For fixed n we define y P `p by yk :“ x̄k |xk|
q´2

in case xk ‰ 0 and k ď n, and 0 otherwise. We have |yk|
p “ |xk|

q and thus

ÿ

kďn

|xk|
q “

ÿ

kďn

xk yk “
8
ÿ

k“0

xk yk ď }λ} }y}p “ }λ}
´

ÿ

kďn

|xk|
q
¯1{p

So }x}q ď }λ} and x P `q.

5.3.2 Generalization. The dual space of Lp.

For 1 ď p ă 8 and 1
p `

1
q “ 1: LqpXq “ pLppXqq˚ (For p “ 1 only if X is σ-finite).

For a proof, see e.g. [5, S.381].

5.3.3 Corollary. The dual space of Cpr0, 1sq.

The continuous functionals on Cpr0, 1sq are exactly the Riemann-Stieltjes integrals
with functions of bounded variation as integrator.

Recall from analysis that, in analogy to Riemann-sums, the Riemann-Stieltjes
sum of a function f with respect to another function g, a decomposition Z :“ t0 “
t1 ă ¨ ¨ ¨ ă tn “ 1u, and an intermediate vector ξ “ tξ1, . . . , ξnu with ti´1 ă ξi ă ti,
are given by

Rgpf, Z, ξq :“
n
ÿ

i“1

fpξiq ¨ pgptiq ´ gpti´1qq.

The function f is called Riemann-Stieltjes integrable with respect to g with

integral
ş1

0
f dg, if the limit

ş1

0
f dg :“ lim|Z|Ñ0Rgpf, Z, ξq exists, where |Z| :“

maxt|ti ´ ti´1| : 1 ď i ď nu.

Proof. It can be easily shown (see [22, 6.5.14]) that for continuous f and any

function g of bounded variation V pgq (see 1.2.3 ) the Riemann-Stieltjes integral
ş1

0
f dg exists and satisfies |

ş1

0
f dg| ď }f}8 ¨V pgq. Consequently, g ÞÑ pf ÞÑ

ş1

0
f dgq

is a bounded linear mapping with norm less than or equal to 1.

Conversely, let now ` be a continuous linear functional on Cpr0, 1sq. We have to

find a function g, with `pfq “
ş1

0
f dg for all continuous f . Note that

ş1

0
χr0,ss dg “

gpsq´ gp0q. Since the Riemann-Stieltjes integral remains unchanged, if one adds to
g a constant, e.g. adding ´gp0q, we may assume that gp0q “ 0, and it is suggestive
to define g by gpsq :“ `pχsq with χs :“ χr0,ss. Unfortunately, this definition does
not make sense for the time being because χs is not continuous. However, according

to Theorem 5.1.5 of Hahn-Banach, we may assume that ` has been extended norm
preserving to Bpr0, 1sq.

Claim: g is of bounded variation.
Let 0 “ t0 ă ¨ ¨ ¨ ă tn “ 1 be a partition of r0, 1s, then we define fk :“ e´iϕk ,
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where gptkq´ gptk´1q “ rk e
iϕk . Finally, f is the step function that has value fk on

ptk´1, tks, i.e. f “
řn
k“1 fkpχtk ´ χtk´1

q. Then f P Bpr0, 1sq with }f}8 ď 1 is

}`} ě |`pfq| “
ˇ

ˇ

ˇ

n
ÿ

k“1

fkpgptkq ´ gptk´1qq

ˇ

ˇ

ˇ
“

n
ÿ

k“1

ˇ

ˇgptkq ´ gptk´1q
ˇ

ˇ

and thus }`} ě V pgq.

Claim: For f P Cpr0, 1sq we have `pfq “
ş1

0
f dg.

Let Z :“ t0 “ t0 ă ¨ ¨ ¨ ă tn “ 1u be a partition and ξ “ tξ1, . . . , ξnu be an
intermediate vector. With fZ P Bpr0, 1sq we denote fZ :“

řn
k“1 fpξkqpχtk ´χtk´1

q.
Then f “ lim|Z|Ñ0 fZ in Bpr0, 1sq and because ` is continuous we obtain

`pfq “ `
´

lim
|Z|Ñ0

fZ

¯

“ lim
|Z|Ñ0

`pfZq “ lim
|Z|Ñ0

`
´

n
ÿ

k“1

fpξkq pχtk ´ χtk´1
q

¯

“ lim
|Z|Ñ0

n
ÿ

k“1

fpξkq pgptkq ´ gptk´1qq “

ż 1

0

f dg.

The mapping BV pr0, 1sq Ñ Cpr0, 1sq1, however, is not injective, even if one requests
gp0q “ 0, see [2, S.121]: To force injectivity, you can request gp0q “ 0 and gpxq “
gpx`q :“ limtŒ0 gpxq for all 0 ă x ă 1.

5.3.4 Representation Theorem of Riesz. The dual space of CpKq.

Let K be a compact space. Then the mapping µ ÞÑ pf ÞÑ
ş

K
f dµq is an isometric

isomorphism from the space of the Baire measures onto CpKq1.

Recall 4.1.3 .

Without proof. It is easy to see that this mapping is an isometry. Difficult is to
show surjectivity, see [14, S.139].

A regular Borel measure µ is a signed measure µ (i.e. a σ-additive mapping)
on the Borel set algebra, which is regular, i.e.

|µ|pAq “ supt|µpKq| : K Ď A,K compactu

“ inft|µpUq| : U Ą A,A open Borel-measurableu,

where the (positive) measure |µ| is defined by

|µ|pAq :“ sup
!

ÿ

n

|µpAnq| : An P A, A “
ď

n

An.An pairwise disjoint
)

The variation norm is defined by }µ} :“ |µ|pXq.

On compact spaces, the Baire measures are in bijective correspondence to the reg-
ular Borel measures, i.e. they can be uniquely extended from the Baire sets (see

4.1.3 ) to the Borel sets (see 4.1.3 ).

5.3.5 Corollary. The dual space of CpXq.

The dual space of CpXq for completely regular X consists of all the regular Borel
measures with support in compact subsets of X.

Proof. For each µ P CpXq˚ there is a compact K Ď X and a C ą 0 with |µpfq| ď
C }f |K}8. Then, µ factors to µ̃ P CpKq˚ via incl˚ : CpXq Ñ CpKq (by virtue of

µ̃pfq :“ µpf̃q, where f̃ P CpXq is any continuous extension of f P CpKq), so it is

given by 5.3.4 by a regular Borel measure on K.

5.3.6 Runge’s Approximation Theorem.
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Let K Ă C compact and A Ď C8zK a set that meets every connected component of
C8zK. If f is holomorphic in a neighborhood of K then there are rational functions
with poles in A which converge uniformly on K towards f .

With C8 we denote the Riemann sphere, i.e. the one-point compactification CYt8u
of the plane C, see [19, 2.16,2.22]

Proof. We denote with RApKq :“ tpq |K : p, q sind polynomials, q´1p0q Ď Au the

set of all rational functions on K with poles in A.
Let E :“ tf |K : f is holomorphic on a neighborhood of Ku be the subspace of
CpKq formed by those functions which possess a holomorphic extension to a neigh-
borhood of K. We have to show that the closure of RApKq contains the space E.

Because of 5.1.9 , it suffices to show that every µ P CpKq˚ vanishing on RApKq

vanishes on all E (According to Riesz’s representation theorem 5.3.5 , such a µ is
given by a regular signed Borel measure).

So let f |K be in E with f : U Ñ C holomorphic on an open set U containing the K.
According to the Cauchy integral formula (see [19, 3.28]) there are finitely
many C1 curves (in fact, line segments) ck in UzK, such that

fpzq “
n
ÿ

k“1

1

2πi

ż

ck

fpwq

w ´ z
dw

for all z P K (see 6.21 ). So

µpfq “
n
ÿ

k“1

1

2πi
µ
´

z ÞÑ

ż

ck

fpwq

w ´ z
dw

¯

“

n
ÿ

k“1

1

2πi

ż

ck

fpwq µ
´

z ÞÑ
1

w ´ z

¯

loooooooomoooooooon

“:´µ̃pwq

dw.

5.3.7 Sublemma.

Let µ P CpK,Cq˚ with K Ď C compact. Then a holomorphic function µ̃ : C8zK Ñ

C is given by

µ̃pwq :“ µ
´

z ÞÑ
1

z ´ w

¯

with derivatives

µ̃pnqpwq

n!
“ µ

´

z ÞÑ
1

pz ´ wqn`1

¯

for w P CzK

µ̃pnqp8q

n!
“ ´µ

´

z ÞÑ zn´1
¯

for n ą 0

Proof. Let the continuous r : pCzKq ˆK Ñ C be defined by pw, zq ÞÑ 1
z´w , and

thus ř : w ÞÑ prw : z ÞÑ rpw, zqq is a continuous mapping CzK Ñ CpK,Cq (see
[26, 2.4.5]). Then also µ̃ “ µ ˝ ř is continuous. The mapping µ̃ : CzK Ñ C is even
holomorphic, because

µ̃pw1q ´ µ̃pwq

w1 ´ w
“ µ

´

z ÞÑ
1

pz ´ w1qpz ´ wq

¯

Ñ µpr2
wq for w1 Ñ w,

so µ̃1pwq “ µpr2
wq. Inductively one shows µ̃pnqpwq “ n!µprn`1

w q.

Because of rw Ñ 0 for w Ñ8, µ̃ is extendable continuously to C8zK by µ̃p8q :“ 0,
and thus, according to Riemann’s theorem [19, 3.31] on removable singularities, it
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is holomorphic on C8zK. As Taylor development of µ̃ at 8 - i.e. that of w ÞÑ µ̃p 1
w q

at 0 - we obtain:

µ̃pwq “ µ
´

z ÞÑ
1

z ´ w

¯

“
1

w
µ
´

z ÞÑ
´

1´
z

w

¯´1¯

“ ´
1

w

8
ÿ

n“0

µ
´

z ÞÑ
´ z

w

¯n¯

“ ´

8
ÿ

n“0

1

wn`1
µpz ÞÑ znq.

Hence we have for the derivative

1

n!
µ̃pnqp8q “ ´µ

´

z ÞÑ zn´1
¯

Now we are able to complete the proof of Runge’s Theorem 5.3.6 :
Because of µ|RApKq “ 0, the Taylor development of µ̃ is 0 for each a P A, and since
µ̃ is holomorphic and A meets all the components of C8zK, µ̃ “ 0 on C8zK and
thus µpfq “ ´

řn
k“1

1
2πi

ş

ck
fpwq µ̃pwq dw “ 0.

5.3.8 Corollary. The polynomials lie dense.

If K is compact and CzK is connected, then each function being holomorphic on a
neighborhood of K can be approximated by a sequence of polynomials uniformly on
K.

Proof. For A :“ t8u, the rational function with poles in A are just the polynomials
by the fundamental theorem of algebra (see [19, 1.8]).

5.3.9 Theorem. Dual space of HpUq.

Let U Ď C be open. The dual space of the Fréchet space HpUq can be identified
with H0pC8zUq, the space of the germs of holomorphic functions f on C8zU with
fp8q “ 0.

A germ of a function on K is an equivalence class of functions locally defined
around K, where “equivalent” means that they conicide on a neighborhood of K.

Proof. Let rgs P H0pC8zUq, i.e. g is holomorphic on a neighborhood W of the
compact set C8zU . Without loss of generality, the boundary of W is parameterized

by finite many C1-curves ck, see 6.21 , and g still holomorphic on it. Then

µgpfq :“

ż

BW

fpzq gpzq dz “
ÿ

k

ż

ck

fpzq gpzq dz

defines a continuous linear functional on CpUq Ě HpUq. This definition depends
only on the germ rgs of g, because if W1 is a smaller neighborhood of C8zU with
C1 parameterizable boundary in W , then both g and f are holomorphic on W zW1

and thus the integral of f ¨ g over the boundary BpW zW1q vanishes by the Cauchy

Integral Theorem 6.20 , but this is just the difference
ş

BW
f ¨ g ´

ş

BW1
f ¨ g.

Conversely, let µ P HpUq˚ and because of the Theorem of Hahn-Banach, w.l.o.g.,
µ P CpU,Cq˚. Then the support of µ is a compact subset K Ď U , i.e. µ P CpK,Cq˚.

The mapping µ̃ : C8zK Ñ C is holomorphic by the above sublemma 5.3.7 and
because of the Cauchy integral formula we have (like in the proof of Runge’s theorem

5.3.6 )

µpfq “ ´
ÿ

k

1

2πi

ż

ck

fpwq µ̃pwq dw for f P HpUq,

So µ is given by an “inner product” with µ̃ P H0pC8zKq.
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5.4 Introduction to duality theory

5.4.1 Definition. Annihilators.

Let E be an lcs and let F be a subspace. With F o we denote the annihilator of
F in E˚, i.e. F o :“ t` P E˚ : `|F “ 0u. If E is a Hilbert space, we can identify E˚

with E by [18, 6.2.10]. The set F o then coincides via ι : E Ñ E˚, x ÞÑ py ÞÑ xx, yyq
with the orthogonal complement FK of F , because

x P FK ô @y P F : 0 “ xy, xy “ ιpxqpyq ô ιpxq|F “ 0 ô ιpxq P F o.

If G is a subspace of E˚, then we denote with Go the annihilator of G in E, i.e.

Go :“ tx P E : @g P G : 0 “ gpxq “ δpxqpgqu “
č

tker g : g P Gu

“ tx P E : δpxq|G “ 0u “ tx : δpxq P Gou “ δ´1pGoq,

where now δ : F Ñ F˚˚ is the canonical injection.

5.4.2 Corollary. The closure as the bi-annihilator.

If E is an lcs and F is a subspace, then its closure is F “ pF oqo.

Proof. From 5.1.9 follows:

F “
č

tker ` : `|F “ 0u “
č

tker ` : ` P F ou “ pF oqo.

5.4.3 Corollary. The kernel of the adjoint.

Let T : E Ñ F be a continuous linear mapping between lcs’s.
Then pimg T qo “ kerpT˚q holds. Furthermore, img T “ pkerT˚qo.

Proof. The first equation holds since y1 P pimg T qo ô @x : 0 “ y1pTxq “ T˚py1qpxq
ô T˚py1q “ 0, i.e. y1 P kerT˚.

From 5.4.2 follows img T “ ppimg T qoqo “ pkerT˚qo.

5.4.4 Corollary. The dual space of quotients and subspaces.

Let F be a closed linear subspace of an lcs E. Then natural continuous linear bijec-
tions E˚{F o Ñ F˚ and pE{F q˚ Ñ F o exist. For normed E these are isometries.

Proof. We dualize the sequence F
ι

ãÑ E
π
� E{F and get:

Ker ι˚ “ F o
kK

incl

yy
F˚ E˚

ι˚oooo

{{{{

pE{F q˚oo
π˚

oo

p2q

OO

E˚{F o

p1q

OO

Since π is surjective, π˚ is injective and by

the Extension Theorem 5.1.5 ι˚ : E˚ Ñ F˚

is surjective. Because Ker ι˚ “ F o, there ex-
ists a uniquely determined continuous linear
bijective map p1q : E˚{F o Ñ F˚ given by
x˚ ` F o ÞÑ ι˚px˚q “ x˚|F .

Because of ι˚ ˝ π˚ “ pπ ˝ ιq˚ “ 0, there is a unique determined continuous linear
mapping p2q : pE{F q˚ Ñ F o given by ` ÞÑ π˚p`q “ ` ˝π. Since π˚ is injective, (2) is
injective and also surjective, because every y˚ P F o Ď E˚ vanishes on F and thus
factorizes to an ` P pE{F q˚ with y˚ “ ` ˝ π “ π˚p`q.

If E is now normed, then with π and ι also π˚ and ι˚ are contractions and thus
also the two vertical mappings. For y˚ P F˚, there is an x˚ P E˚ with }x˚} “ }y˚}
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and ι˚px˚q “ y˚ by 5.1.5 . Thus, }x˚ ` F o} ď }x˚} “ }y˚} “ }ι˚px˚q}, i.e.
(1) is an isometry. The same holds for (2) since π˚ is an isometry because of
|`px` F q| “ |`pπpx` yqq| “ }π˚p`qpx` yq| ď }π˚p`q} }x` y} for all y P F and thus
}`} ď }π˚p`q} for ` P pE{F q˚.

5.4.5 Definition. Dual pairing.

A dual pairing is a bilinear mapping x , y : E ˆ F Ñ K on the product of two
vector spaces, which is not degenerated, i.e. @x : xx, yy “ 0 implies y “ 0 and
similarly for the variables exchanged.

So we may, for example, consider the elements y P F via x , yy as linear functionals
on E. By the weak topology σpE,F q on E we understand the initial topology
with respect to all of these functionals x ÞÑ xx, yy for y P F .

A basis of seminorms is given by the functions x ÞÑ |xx, yy| with y P F .

We say that a structure of an lcs E is compatible with the dual pairing xE,F y, if
F is the space of the continuous linear functionals with respect to this structure, or,
more precisely, the natural mapping F Ñ E˚, y ÞÑ x , yy, is a well-defined bijection.

The topology σpE,F q is called weak because it is the weakest compatible topology:

5.4.6 Lemma. Compatibility of the weak topology.

Let xE,F y be a dual pairing. Then the vector space F is isomorphic to the space
E˚ of all linear functionals, which are continuous for the weak topology σpE,F q on
E. More specific, the natural mapping ι : F Ñ E˚, y ÞÑ x , yy is a bijection.

Proof. The mapping ι is clearly well-defined, linear and injective because of the
non-degeneracy assumption. So all that remains to show is the surjectivity. Let
x˚ : E Ñ K be a linear functional on E which is continuous with respect to σpE,F q,
i.e. there exist y1, . . . , yn P F with |x˚pxq| ď ppxq :“ maxt|xx, yiy| : i “ 1, . . . , nu.
Let `i :“ ιpyiq and ` :“ p`1, . . . , `nq : E Ñ Kn. Then kerp`q “

Ş

iďn ker `i Ď kerx˚

and hence x˚ factors uniquely as linear functional over ` : E Ñ `pEq Ď Kn.
This factorization can be extended from the subspace `pEq to a linear functional
µ : Kn Ñ K:

ker ` �
� //

� _

incl

��

E
` // // `pEq

��

� � // Kn

µ

��
kerx˚ �

� // E
x˚// // x˚pEq �

� // K

Such a µ is of the form µpx1, . . . , xnq “
řn
i“1 µi xi for some scalars µi P K. So

x˚ “ µ ˝ ` “
řn
i“1 µi `i “ ι

´

řn
i“1 µi yi

¯

P ιpF q.

5.4.7 Bipolar Theorem.

Let xE,F y be a dual pairing, and A Ď E. Then pAoqo is the σpE,F q-closure of the
absolutely convex hull of A. Where Ao :“ ty P F : |xx, yy| ď 1 for alle x P Au is the
polar of A; and analogously Bo :“ tx P E : |xx, yy| ď 1 for all y P Bu for B Ď F .

Note that the polar Ao defined here agrees for linear subspaces A with the anni-

hilator Ao defined in 5.4.1 , because @a P A : |xa, yy| ď 1 ô @a P A @t ą 0 :
t ¨ |xa, yy| “ |xt ¨ a, yy| ď 1, i.e. xa, yy “ 0.

Proof. pĚq Obviously, the polar pAoqo is σpE,F q-closed, absolutely convex, and
contains A.
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pĎq Suppose x P E is not in the σpE,F q-closure of the absolutely convex hull of A.

By the Lemma 5.2.4 of Mazur, there is an y P F with ypxq ą 1 and |ypzq| ď 1 for
all z in (the closure of the absolutely convex hull of) A. So y P Ao and x R pAoqo.

5.4.8 Lemma.
The closure of convex sets with respect to compatible topologies.

Let A Ď E be convex and closed for a structure compatible with the dual pairing
xE,F y. Then A is also closed for any other such structure.

Proof. In case K “ R, we have that A is the intersection of the half-spaces con-

taining A by 5.2.3 . Since this only involves the continuous linear functionals, A is
closed with respect to any compatible topology.

In case K “ C, the real part of the dual pairing x , y : EˆF Ñ C provides a pairing
x , yR : EˆF Ñ R as real vector spaces, because xx, yy “ Repxx, yyq`i Impxx, yyq “
xx, yyR ´ iRepixx, yyq “ xx, yyR ´ ixx, i yyR. A structure on E as complex lcs is
compatible with the complex pairing if and only if it is with the real part, because

the C-linear mapping ι : E Ñ LCpF,Cq, x ÞÑ xx, y is surjective by 3.9.4.2 if and

only if Re ˝ ι : E Ñ LCpF,Cq
–
Ñ LRpF,Rq, x ÞÑ Repxx, yq is so. So everything

follows from the real case.

5.4.9 Theorem of Mackey.

A subset of an lcs E is bounded if and only if it is bounded with respect to some
(each) topology τ being compatible with the dual pairing ev : E ˆ E˚ Ñ K.

Proof. We have shown in 4.2.7 by means of the Theorem of Hahn-Banach and
the Uniform Boundedness Principle for Banach spaces that a set is bounded if and
only if it is bounded under all continuous linear functionals. This does not depend
on the compatible topology.

5.4.10 Remark. Topologies of uniform convergence.

Let X be a set, F an lcs and B a family of subsets of X. By the topology of uniform
convergence on the sets B P B on the space of all mappings X Ñ F being
bounded on the sets in B, one understands the topology generated by seminorms
f ÞÑ }pp ˝ fq|B}8, with B runs through B and p runs through the seminorms of F .

In particular, if X “ E is an lcs over K and F “ K, and B is a set of bounded sets
in E which is closed under homotheties, i.e. λB P B with B P B and λ ą 0, then the
polars Bo :“ tx˚ P E˚ : @x P B : |x˚pxq| ď 1u with B P B form a 0-neighborhood
subbasis of the topology of uniform convergence on the sets B. If, in addition, B is
closed under unions, this is a 0-neighborhood basis.

In 5.1.10 we have shown that the canonical mapping δ : E Ñ E˚˚ for normed
spaces E is an isometric embedding. We now want to examine to what extent this
translates to general lcs.

For the usual topology on LpE˚,Kq of uniform convergence on bounded subsets
B Ď E˚ the sets Bo form a 0-neighborhood basis. Continuity of δ would mean that
δ´1pBoq “ Bo would have to be a 0-neighborhood and thus B Ď pBoq

o would be
equi-continuous. At least for barreled E this is the case because of the Uniform

Boundedness Principles 4.2.2 .

We now show that, when we use the topology of uniform convergence on each equi-
continuous subset B Ď E˚ on pE˚q˚, the mapping δ : E Ñ pE˚q˚ is always an
embedding lcs’s.
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5.4.11 Corollary. Embedding in the bidual.

The topology on any lcs E is that of uniform convergence on equi-continuous subsets
of E˚, i.e. the natural mapping E Ñ E˚˚ is an embedding, provided we supply the
target space with the uniform convergence on equi-continuous subsets of E˚.

Note that this natural mapping is not always continuous with respect to the usual
topology of uniform convergence on bounded sets, but is obviously bounded.

Proof. Let U be a closed absolutely convex 0-neighborhood in E. By 5.4.8 , U

is also σpE,E˚q-closed, so pUoqo “ U by the Bipolar Theorem 5.4.7 . Since Uo

is clearly equi-continuous, U “ pUoqo is a 0-neighborhood of E with respect to
uniform convergence on equi-continuous sets.

Conversely, let V “ Ao “ δ´1pAoq be a typical 0-neighborhood of E for the topology
of uniform convergence on equi-continuous sets A Ď E˚. Then there is a closed
absolutely convex 0-neighborhood U in E with A Ď Uo. Thus, V “ Ao Ě pU

oqo “

U , i.e. V is a 0-neighborhood of E.

5.4.12 Theorem of Alaoğlu-Bourbaki.

Each equi-continuous subset of E˚ is relatively compact with respect to σpE˚, Eq.

Proof. We have to show this only for polars Uo of 0-neighborhoods U . We consider
the dual pairing xE,Gy, where G consists of all linear (not necessarily continuous)
functionals. Let us denote the polar with respect to this pairing by ‚. Then U‚ Ď G
is closed and bounded (since U is absorbent) with respect to σpG,Eq. The natural
mapping δ : GÑ

ś

E K, y ÞÑ pxx, yyqxPE is linear, injective, has a closed subspace
as image (the pointwise limit of linear mappings is linear) and is initial by definition
of the weak topology σpG,Eq. The image of U‚ is therefore compact because of the
Theorem of Tychonov (products of compact spaces are compact, see [26, 2.1.13])
and thus U‚ itself is σpG,Eq-compact. Because of E˚ Ď G, we have Uo Ď U‚ and
even equality is true, because y P U‚ is continuous (y´1ptt : |t| ď εuq Ě εU). So Uo

is compact with respect to σpG,Eq. But since σpG,Eq induces on E˚ the topology
σpE˚, Eq, everything is shown.

5.4.13 Corollary. Normed spaces as subspaces of CpKq.

The closed unit ball K in the dual space E˚ of a normed spacees E is σpE˚, Eq-
compact. Thus, E is isometrically isomorphic to a subspace of CpKq, with an em-
bedding being given by δ : E Ñ E˚˚ Ñ CpKq, x ÞÑ px˚ ÞÑ x˚pxqq.

In 7.10 , cf. 6.43 , we will characterize the Banach algebras of the form CpKq with
compact K.

By 3.4.5 the unit ball is compact in the norm topology if and only if E is finite
dimensional. Thus for each infinite dimensional normed E the topology σpE˚, Eq
is strictly coarser than the norm topology.

5.4.14 Definition. Mackey topology.

Let xE,F y be a dual pairing. Then the Mackey topology µpE,F q on E is the
topology of the uniform convergence on the σpF,Eq-compact, absolutely convex
sets in F .

5.4.15 Theorem of Mackey-Arens.

A topology on E is compatible with the dual pairing xE,F y if and only if it lies
between the weak topology σpE,F q and the Mackey topology µpE,F q.
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Proof. We first show the compatibility of µpE,F q. Let ` : E Ñ K continuous linear
functional with respect to µpE,F q. So there is a σpF,Eq-compact absolutely convex

set K Ď F with |`pKoq| ď 1. We consider as in 5.4.12 the dual pairing xE,Gy,
where G Ě F denotes the space of all linear functionals on E. Since σpG,Eq induces
on F the topology σpF,Eq, K Ď F Ď G is also σpG,Eq-compact and thus closed.
From the bipolar theorem it follows that K “ pK‚q

‚ where ‚ denotes the polar
with respect to xG,Ey. Obviously Ko “ K‚ and because of |`pKoq| ď 1 we have
` P pKoq

‚ “ pK‚q
‚ “ K Ď F , i.e. the µpE,F q-dual of E is included in F .

The converse inclusion immediately follows from the fact, that each y P F is con-
tinuous even with respect to σpE,F q and therefore also with respect to µpE,F q.

Let τ be any compatible topology on E. Since all y P F are thus continuous func-
tionals with respect to τ , it is finer than the weak topology σpE,F q.
On the other hand, let U be a 0-neighborhood in E with respect to τ . Because

of 5.4.11 , we may assume that U “ Ko with K Ď F τ -equi-continuous abso-

lutely convex. Because of the Theorem 5.4.12 of Alaoğlu-Bourbaki the set K is
σpF,Eq-compact, and thus U “ Ko is a 0-neighborhood with respect to the Mackey
topology µpE,F q.

5.4.16 Remark. Topologies on the dual space.

For each lcs E we consider the dual pairing E ˆ F Ñ K with F :“ E˚ and the
following types of subsets B Ď E˚ which in addition are assumed to be closed and
absolutely convex:

1. The absolutely convex hulls of finite subsets;

2. The equi-continuous ones;

3. The σpF,Eq-compact ones;

4. The Banach discs;

5. The sets being uniformly bounded on bounded subsets of E,
i.e. the bounded sets in LpE,Kq;

6. The sets being bounded on each point in E, i.e. the σpF,Eq-bounded ones.

A set B Ď F is called Banach disk if it is absolutely convex, σpF,Eq-bounded

and the normed space FB (see 3.6.2 ) is complete.

Lemma.

Let A and B be two families of bounded subsets of E that are invariant by forma-
tion of subsets, absolutely convex hulls, closures, and twofold sums (and thus finite
unions and homotheties). Then the induced topologies on F of uniform convergence
on these sets are the same if and only if A “ B holds.

Proof. For B P B, Bo is a 0-neighborhood of the associated topology, so an A P A
exists with Ao Ď Bo and thus B Ď pBoqo Ď pA

oqo “ xAyclosed,abs.conv. P A, hence
B P A.

The corresponding topologies on E of uniform convergence on the respective sets
in F have as neighborhood basis of 0 just the (σpE,F q-closed absolutely convex)
polars of the sets listed. So these topologies are

1. The weak topology σpE,F q by definition;

2. The original topology from E to 5.4.11 ;

3. The Mackey topology µpE,F q by definition;

4. This has no common name;

5. The one with the bornivorous (see 4.2.5 ) barrels as 0-neighborhood basis;
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6. The one with the barrels (see 4.2.1 ) as 0-neighborhood basis.

For the last two topologies, we use the following:
Bo absorbs A ô xA,By is bounded, i.e. B is uniformly bounded on A:
In fact, A Ď KBo ô |xA,By| ď K.
Therefore, the polars of the sets in (6) and (5) are just the barrels, resp. the bor-
nivorous barrels:
The polar Bo of a set B, being bounded on all finite/bounded sets, absorbs all
these sets by what we have just shown. Conversely, for each (bornivorous) barrel

A “ pAoqo (by 5.4.7 ) the polar Ao is bounded on finite (bounded) sets what we
have just shown.

We now want to show that the mentioned topologies are successively stronger in
the given order, or equivalently that the corresponding inclusions of the underlying
families of closed absolutely convex sets hold. For p1q ñ p2q and p5q ñ p6q this

is trivial, p2q ñ p3q is the Theorem 5.4.12 of Alaoğlu-Bourbaki. The remaining
implications p3q ñ p4q ñ p5q are shown in the following two results:

5.4.17 Lemma.

Each σpE,F q-compact absolutely convex set is a Banach disk.

Proof. Let pxnqn be a Cauchy sequence in EB . Then supn pBpxnq ă 8 and thus
there is a K ą 0 with xn P KB for all n. Since KB is also σpE,F q-compact,
there exists a σpE,F q-accumulation point x8 P KB of pxnqn. For ε ą 0 we have
pBpxm´xnq ă ε for sufficiently large n and m and therefore xm P xn`εB. Because
xn` εB is also σpE,F q-closed and x8 is an accumulation point of pxmqm, we have
x8 P xn ` εB, and thus pBpx8 ´ xnq ď ε for these n. So xn Ñ x8 converges in
EB .

5.4.18 Banach-Mackey Theorem.

Each barrel absorbs each Banach disk.
Moreover, Banach disks in F “ E˚ are uniformly bounded on bounded sets in E.

Proof. Let B Ď E be a Banach disk, meaning that B is absolutely convex, σpE,F q-
bounded and the normed space EB :“ xByVR, considered with the Minkowski
functional pB : EB Ñ R, is complete. Let ι : EB � E be the natural linear
inclusion.

Furthermore, let A Ď E be a barrel, i.e. absolutely convex, σpE,F q-closed and
absorbent. Then the Minkowski functional pA on xAyVR “ E is a well-defined
seminorm. Let EA be the quotient space E{ kerppAq and π : E � EA the canonical
linear surjection. The seminorm pA factorizes over π : E � EA to a norm EA Ñ R
and this we can uniquely extend to the norm ĂpA on the completion ĂEA.

Obviously, A Ď π´1pπAq Ď ppAqď1. Moreover, equality holds, because 1 ě pApxq “
inftλ ą 0 : x P λAu implies the existence of a sequence λn Œ 1 with x P λnA and
thus A Q 1

λn
xÑ x. Since A is closed with respect to σpE,F q, we finally get x P A.

Let us now show the continuity and thus the boundedness of the composition

EB ´
ιÑ pE, σpE,F qq ´πÑ EA ãÑ ĂEA.

By 4.3.8 it sufficies to find a point-separating family of continuous linear func-

tionals ˜̀ on ĂEA for which the composition ˜̀˝ π ˝ i : EB Ñ K is continuous.

Each y P Ao Ď F satisfies tx P E : |xx, yy| ď 1u Ě A “ ppAqď1 and thus |x ÞÑ
xx, yy| ď pA for the associated linear functional. Thus this functional factorizes
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over π : E � EA to a contraction EA Ñ K and thus has a continuous extension

ỹ : ĂEA Ñ K. The composition ỹ ˝ π ˝ ι “ y ˝ ι : EB Ñ K is continuous (= bounded)
because B is σpE,F q-bounded.

Remains to show that these ỹ act point-separating on ĂEA. Let 0 ‰ x̃ P ĂEA, i.e.
ĂpApx̃q ą 0. Then there is an x P E with ĂpApx̃ ´ πpxqq ă 1

2 ĂpApx̃q “: δ ą 0. We

therefore have pApxq “ ĂpApπpxqq ą δ. By the Lemma 5.2.4.2 of Mazur there is a

y P Ao Ď F with ypxδ q ą 1. The associated ỹ : ĂEA Ñ K thus fulfills |ỹ| ď ĂpA and
ỹpπpxqq “ ypxq ą δ. So

|ỹpx̃q| ě |ỹpπpxqq| ´ |ỹpx̃´ πpxqq| ě |ypxq| ´ĂpApx̃´ πpxqq ą δ ´ δ “ 0

The second part of the theorem is shown as follows: Let B Ď F be a Banach disk

and C Ď E bounded. Then C is pointwise bounded on F by 4.2.7 and thus Co Ď F

is a barrel by 5.4.16 . Because of the first part, a K ą 0 exists with B Ď K Co, i.e.
B is bounded on C by K.

5.4.19 Remark.

For δ : E Ñ pE˚q˚ being continuous with respect to the topology of the uniform

convergence on sets B Ď E˚ we need, by what has been shown in 5.4.10 , that the

Bo “ δ´1pBoq are 0-neighborhoods and hence B Ď pBoq
o are equi-continuous.

Moreover, δ is an embedding under this assumption:

5.4.20 Corollary. Barreledness and bidual.

The topology of any lcs E is that of uniform convergence on pointwise bounded sets
of E˚ if and only if E is barreled.

It is that of uniform convergence on all bounded sets of E˚ Ď LpE,Kq, if and only
if E is infra-barreled.

In both cases, it is also equal to µpE,E˚q.

An lcs is called infra-barreled or also quasi-barreled if every bornivorous bar-
rel is a 0-neighborhood. Note that (by the following lemma) obviously all bornolog-
ical as well as all barreled lcs’s are infra-barreled.

Related to this is also the notion ultra-bornological, i.e. when each absolutely
convex set, which absorbs Banach-disks, is a 0-neighborhood. Obviously, ultra-

bornological spaces are bornological and according to 5.4.18 they are also barreled.

abs.conv, absorbs Ban.disks

closed, abs.conv, absorbing
' �

5.4.18

44

abs.conv, bornivorous
7 W

jj

closed, abs.conv, bornivorous
7 W

jj

' �

44

Proof. Because of 5.4.16.5 and 5.4.16.6 , the (bornivorous) barrels form a zero
neighborhood basis of the said topologies of uniform convergence, which concide
with the (weaker) original one of E precisely if those barrels are 0-neighborhoods,
i.e. the space is (infra-) barreled.

Since µpE,E˚q lies between the topology of E and that of the uniform convergence

on the bounded sets by 5.4.16 , equality holds in these cases.
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Lemma.

An lcs E is bornological if and only if all bornivorous absolutely convex subsets are
0-neighbprhoods.

Proof. (ð) Let f : E Ñ F be a bounded linear mapping and V be an absolutely
convex 0-neighborhood in F . Then f´1pV q is absolutely convex and bornivorous,
since for each bounded set B there is some K ą 0 with fpBq Ď K V , i.e. B Ď

K f´1pV q. Thus f´1pV q is a 0-neighborhood and hence f is continuous.
(ñ) Let U be absolutely convex and bornivorous. Then the linear subspace EU
generated by U is E and we may consider the corresponding Minkowski functional
pU and form the normed space F :“ E{ kerppU q with norm p̃U . The natural linear
map π : E Ñ F is bounded, since for each bounded B Ď E there is some K ą 0
with B Ď K U and hence pU is bounded on B by K, i.e. p̃U pπpBqq is bounded.
Since E is assumed to be bornological, the map π is continuous, and hence U Ě

ppU qă1 “ π´1ppp̃U qă1q is a 0-neighborhood.

5.4.21 Definition. Reflexivity.

A lcs E is called (reflexive) semireflexive if the canonical mapping ι : E Ñ E˚˚

is surjective (is a topological isomorphism).

5.4.22 Proposition. Semireflexivity.

[14, S.227] For lcs’s E are equivalent:

1. E is semireflexive;

2. pE˚, µpE˚, Eqq is barreled;

3. Each bounded set is σpE,E˚q-relative-compact;

4. pE, σpE,E˚qq is quasi-complete, meaning every bounded and closed subset
is complete.

Proof.

( 1 ô 2 ) Since, by 5.4.15 , µpE˚, Eq is the finest topology on E˚ with dual space
E and the natural topology of uniform convergence on the bounded sets in E is finer
(σpE,E˚q-compact sets are obviously bounded), E is semireflexive if and only if

these two topologies coincide. By 5.4.20 applied to pE˚, µpE˚, Eqq, this is exactly

the case when µpE˚, Eq is barreled, because by 4.2.7 the pointwise(=scalarly)
bounded sets of pE˚, µpE˚, Eqq˚ “ E are just the bounded sets and the topology
of uniform convergence on them is the natural topology on E˚.

( 1 ô 3 ) The two topologies considered in ( 1 ô 2 ) coincide by the Lemma in

5.4.16 if and only the bounded closed absolutely convex sets are σpE,E˚q-compact.
Since the closed absolutely convex hull of each bounded set is obviously bounded,

this condition is equivalent to 3 .

( 3 ô 4 ) The bounded sets in E are bounded in
ś

E˚ K, so relatively compact
there, and thus pre-compact in E with respect to σpE,E˚q. Precompact sets are
compact if and only if they are complete, see [26, 3.5.9].

5.4.23 Proposition. Reflexivity.

[14, S.227] For lcs’s E are equivalent:

1. E is reflexive;

2. E is semi-reflexive and infra-barreled;

3. Each bounded set is σpE,E˚q-relative-compact and E is infra-barreled;
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4. E is semi-reflexive and barreled.

Proof. ( 1 ô 2 ) since E Ñ E˚˚ is an embedding if and only if E is infra-barreled

by 5.4.20 .

( 1 ñ 4 ) If E is reflexive, then E is even barreled: For this we have to show

that all barrels in E are bornivorous and by 5.4.16 this is exactly the case when
all σpE˚, Eq-bounded subsets A are bounded in E˚, i.e. are uniformly bounded

on bounded (absolutely convex) subsets B. Because of 5.4.22.4 we may assume
that B is σpE,E˚q-complete and thus EB is a Banach space (namely, let pxnq be a
Cauchy sequence in EB , then (w.l.o.g.) xn P B. Then pxnq is also σpE,E˚q-Cauchy,
hence σpE,E˚q-convergent towards x8 P E. For each ε ą 0 and sufficiently large
n and m we have xn ´ xm P εB, hence xn ´ x8 P εB, i.e. xn Ñ x8 in EB).
Now we consider the natural inclusion ιB : EB � E and obtain, by the uniform

boundedness principle 4.2.2 , that pιBq
˚pAq Ď pEBq

˚ is bounded, i.e. A is bounded
on B.

( 4 ñ 3 ñ 2 ) follows from 5.4.22 .

5.5 Compact sets revisited

5.5.1 Theorem of Krein-Milman.

Let K be a compact convex subset of an lcs. Then K is the closed convex hull of its
extremal points

ExtpKq :“ ta P K : Kztau is convex u

“ ta P K : @x, y P K @0 ă t ă 1 : a “ tx` p1´ tqy ñ x “ a “ yu.

Proof. We may assume, without loss of generality, that K ‰ H. The two descrip-
tions of extremal points are equivalent because Kztau is convex if and only if all
x, y P K with x ‰ a, y ‰ a, and all 0 ă t ă 1 are: t x` p1´ tq y ‰ a, or equivalent:
t x ` p1 ´ tq y “ a ñ x “ a oder y “ a. Because of t x ` p1 ´ tq y “ a, however,
x “ a and y “ a are equivalent.

The essential part of the proof consists in proving that ExtpKq is not empty. For
this, we call in addition a subset A Ď K extremal in K, if

@x, y P K @0 ă t ă 1 : t x` p1´ tq y P Añ x, y P A.

Any one-point set tau is extremal if and only if a is an extremal point. Let

E :“ tA Ď K : A is extremal in K, closed (=compact) and convexu.

There are extremal points. Obviously, E is closed under forming intersections.
We now want to apply Zorn’s Lemma to E0 :“ EztHu. The finite intersections
of each linearly ordered subset L Ď E0 are not empty, so because of the finite
intersection property of compact sets (i.e. if each finite intersection is not empty,
then so is the whole intersection) the entire intersection is in E0. According to the
Lemma of Zorn, there is (for each B P E0) a minimal element A P E0 (with A Ď B).

We claim that A is a singleton. Let x, y P A. If x ‰ y, then by 5.1.6 there is a
continuous linear functional f : E Ñ R with fpxq ‰ fpyq.

Claim. If A P E0 and f P E˚ then Af :“ AX f´1psup fpAqq P E0:
Since f is continuous and A is compact, the supremum M :“ sup fpAq is obtained,
so the closed set Af is not empty. It is convex since f is linear and A is convex.
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Remains to show that Af is extremal in A. Let x, y P A and 0 ă t ă 1 with
z “ tx` p1´ tqy P Af . Because of fpxq, fpyq ďM we have

M “ fpzq “ t fpxq ` p1´ tq fpyq

ñ t fpxq “M ´ p1´ tq fpyq ě p1´ p1´ tqqM “ tM ě t fpxq

ñ fpxq “M and analogously fpyq “M ñ x, y P Af .

Since Af is extremal in the extremal subset A of K, it is so in K.

Due to the minimality of A, A “ Af follows. This is a contradiction because f is
not constant on tx, yu Ď A.

Now let B be the closed convex hull of ExtpKq. Obviously, ExtpKq Ď B Ď K holds.
Assuming B ‰ K, then there is an a P KzB and thus a continuous linear f : E Ñ R
with fpbq ă fpaq for all b P B by 5.2.4 , so B XKf “ H. Because of f P E˚ and
K P E0 we obtain Kf P E0, as shown above, and by the first part an extremal point
b P Kf of K exists, i.e. b P ExtpKq XKf Ď B XKf “ H, a contradiction.

5.5.2 Corollary.

Neither c0 nor L1pRq are dual spaces of normed spaces.

Proof. If a Banach space E is topologically isomorphic to the dual space of a
normed space F , its closed unit ball must be contained in a multiple of the dual ball
of F . So it is an σpE,F q-closed subset of the σpE,F q-compact (by the Theorem

5.4.12 of Alaoğlu-Bourbaki) dual ball. So it is itself σpE,F q-compact, and has

extremal points according to the Theorem 5.5.1 of Krein-Milman. However, this

is not the case for c0 or L1pRq:
Let x “ pxkqk P c0 with }x}8 ď 1. Then there is a k with |xk| ă 1 and by choosing
an ε ą 0 with |xk| ` ε ď 1 we have for the two points

x˘ : j ÞÑ

#

xj for j ‰ k

xk ˘ ε for j “ k

x “ 1
2 px

` ` x´q, x` ‰ x ‰ x´ and }x˘} ď 1. So x is not an extremal point.

Let rf s P L1pRq with }f}1 ď 1. Without loss of the generality }f}1 ‰ 0. Then there
is a measurable subset X0 in R with 0 ă

ş

X0
|f | ă }f}1. Then the analog inequality

holds for X1 :“ RzX0. Now ti :“ }f |Xi}{}f} ą 0 and ti fi :“ f ¨ χXi for i “ 0, 1.
Then }fi}1 “ }f}1, f0 ‰ f ‰ f1, f “ t0 f0 ` t1 f1 and t0 ` t1 “ 1. So f is not an
extremal point.

Another important theorem about compact convex sets is the following

5.5.3 Fixed-point Theorem by Brouwer-Schauder-Tychonoff.

Let K be a non-empty compact convex subset of an lcs E and f : K Ñ K a
continuous mapping. Then f has a fixed-point x P K.

Proof. In algebraic topology (see also [11] or [17, 9.2] or [24, 7.6.13] or exercise [25,
7.63]), Brouwer’s fixed-point theorem tells us that this holds for finite dimensional
E.

Now for lcs’s E: Compare this with the exercises [25, 7.65] and [25, 7.66]. We
show the existence of a fixed-point under the weaker assumption that K Ď E is
closed, convex and non-empty, f : K Ñ K is continuous and fpKq is relatively
compact. For each closed absolutely convex 0-neighborhood U there exists a finite
set MU Ď fpKq Ď K with fpKq ĎMU `U . Furthermore, there exists a continuous
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partition thyU : y PMUu of unity with respect to the metric pU , which is subordinate
to the covering ty ` U : y P MUu, e.g. gyU : x ÞÑ maxt0, 1 ´ pU px ´ yqu and
hyU :“ gyU{

ř

zPMU
gzU . Then fU :“

ř

yPMU
phyU ˝ fq ¨ y is a continuous mapping into

the convex hull KU of MU and

pU pfpxq ´ fU pxqq “ pU

´

ÿ

yPMU

hyU pfpxqq ¨ pfpxq ´ yq
¯

ď
ÿ

fpxqPy`U

hyU pfpxqq ¨ pU pfpxq ´ yq ď
ÿ

yPMU

hyU pfpxqq “ 1.

According to Brouwer’s fixed-point theorem, fU : KU Ñ KU Ď fpKq X xMU yVR

has a fixed-point xU P KU .

The set tx´ fpxq : x P Ku is closed, because if limi xi ´ fpxiq “ z, then i ÞÑ fpxiq

has an accumulation value y P fpKq and thus x :“ z ` y is an accumulation value
of i ÞÑ xi. Therefore, x P K and x´ fpxq “ z, because f is continuous.

Let us assume f has no fixed-point, then 0 would not be in the closed set tx´fpxq :
x P Ku, so there would be an absolutely convex closed 0-neighborhood U with
x ´ fpxq R U for all x P K. Because of xU ´ fpxU q “ pfU ´ fqpxU q P U this is a
contradiction.

5.5.4 Fixed-point Theorem of Kakutani. [31] and [4].

Let K Ď Rm be a non-empty, convex and compact subset, and f : K Ñ 2K – PpKq
a convex-valued mapping with closed graph tpx, yq : y P fpxqu Ď K ˆK and fpxq ‰
H for all x P K.
Then f has a fixed-point, i.e. Dx P K: x P fpxq.

Proof. Since the graph of f is closed, fpxq – txu ˆ fpxq “ graphpfq X txu ˆK is
closed. Furthermore, f is semicontinuous from above, i.e. U open ñ tx : fpxq Ď Uu
open, otherwise there would be a net xi Ñ x8 with fpx8q Ď U and yi P fpxiq Ď K
with yi R U . Since K is compact, pyiq has an accumulation point y8 and, since the
graph is closed, y8 P fpx8q Ď U , hence yi P U for some i, a contradiction.

Since K is (pre)compact there exists for each absolutely convex 0-neighborhood

U a finite set MU Ď K with K Ď MU ` U and thus as in the proof of 5.5.3 a
subordinate partition thxU : x P MUu of unity. For x P MU we choose yx P fpxq
and thus define a continuous mapping fU : K Ñ K by fU pzq :“

ř

xPMU
hxU pzq yx

which has a fixed-point xU P K by 5.5.3 . In particular, for U we can use the balls

with radius 1
n and denote the corresponding fU with fn and MU with Mn. The

sequence of the associated fixed-points xn P K has an accumulation point x8. We
show that x8 is a fixed-point of f . Since f is semicontinuous from above, there is
for each ε ą 0 an open δ-neighborhood Uδpx8q of x8 , s.t. fpxq Ď fpx8q ` Uε for
all x P Uδpx8q XK.

Claim: fnpUδ´1{npx8q XKq Ď fpx8q ` Uε for 1{n ă δ:

Let z P Uδ´1{npx8q X K, i.e. }z ´ x8} ă δ ´ 1
n . Because of K Ď MU ` U , there

exists z for x P Mn with }z ´ x} ă 1
n . For each such x P MU (with z P x ` U)

}x ´ x8} ď }x ´ z} ` }z ´ x8} ă δ, i.e. x P Uδpx8q X K and thus yx P fpxq Ď
fpx8q`Uε. Since this holds for all x PMU with hxU pzq ‰ 0 (i.e. z P x`U) we have
fnpzq “

ř

xPMU
hxU pzq yx P fpx8q ` Uε.

For sufficiently large n we have xn P Uδ{2px8q X K and thus xn “ fnpxnq P
fpx8q ` Uε. So the accumulation point x8 P fpx8q ` U2ε for each ε ą 0.

Suppose x8 R fpx8q. Then ρ :“ dpx8, fpx8qq ą 0, i.e. x8 R fpx8q ` Uρ for a
sufficiently small ρ ą 0, a contradiction.
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5.5.5 Fixed-point Theorem of Kakutani for locally convex spaces. [7] and
[9].

Let K Ď E be a non-empty, convex and compact subset of an lcs E and f : K Ñ

2K – PpKq a convex-valued mapping with closed graph and fpxq ‰ H for all
x P Ks.
Then f has a fixed-point, i.e. Dx P K: x P fpxq.

Proof. Let U a 0-neighborhood basis of absolutely convex closed sets. For U P U
let KU :“ tx P K : x P fpxq ` Uu “ tx P K : Dy P fpxq : x´ y P Uu.

The set KU is closed, because ∆U :“ tpx, yq : x´ y P Uu is a closed neighborhood
of the diagonal in K ˆK and thus pr1p∆U X graphpfqq “ KU is compact, hence
closed.

We have KU ‰ H: For a finite MU Ď K we have K ĎMU`U . Let A be the convex
hull of MU and fA : A Ñ 2A given by x ÞÑ pfpxq ` Uq X A. Then, fA satisfies the

assumptions of 5.5.4 (because of K ĎMU ` U , pfpxq ` Uq XA is not empty and
graphpfAq “ pgraphpfq` t0uˆUqX pAˆAq is closed because graphpfq is compact
and t0u ˆ U is closed), and thus there exists an x P pfpxq ` Uq XK, i.e. KU ‰ H.

The family KU has the finite intersection property (by monotonicity), so there
exists x0 P

Ş

U KU . Suppose x0 R fpx0q, i.e. DU : x0 R fpx0q `U , a contradiction to
x0 P KU .

Remark.

Obviously, Kakutani’s Fixed-point Theorem 5.5.5 conversely implies the Fixed-

point Theorem 5.5.3 by Brouwer-Schauder-Tychonoff. The former has among oth-
ers applications in the form of a minimax theorem in game theory and thus in
mathematical economics.

5.5.6 Lemma. Approximability of linear functionals.

Let E be an lcs, A Ď E absolutely convex and f : E Ñ K linear. Then f |A is
continuous if and only if @ε ą 0 Dx˚ P E˚ @x P A: |xf ´ x˚, xy| ď ε.

Proof. (ð) is obvious because the uniform limit of continuous functions is contin-
uous.

(ñ) Let F :“ xAyvs be the linear span of A supplied with the Minkowski functional
qA as seminorm. Let ε ą 0. Since f |A is continuous, there exists an absolutely convex
0-neighborhood U Ď E with |xf, yy| ă ε for all y P A X U , i.e. maxtqA, qUuă1 Ď

p 1
ε |f |qă1 and thus |xf, yy| ď ε maxtqA, qUupyq ď ε pqApyq ` qU pyqq for all y P F by

1.3.7 . We put ϕ :“ ε qA and ψ :“ ε qU . For px, yq P E ˆ F we thus have

´ψpxq ď ψp´yq ` ϕp´yq ´ xf,´yy ´ ψpxq “ ψpyq ` ϕpyq ` xf, yy ´ ψpxq

ď ψpx´ yq ` xf, yy ` ϕpyq

and therefore p : x ÞÑ inftψpx ´ yq ` xf, yy ` ϕpyq : y P F u is well-defined and
satisfies both ppxq ď ψpxq “ ε qU pxq @x P E and ppyq ď xf, yy ` ε qApyq @y P F .

Since p is sublinear, there exists a linear x˚ : E Ñ K with x˚ ď p by 5.1.2 . Due to
the above inequalities, x˚ P E˚ and xx˚ ´ f, yy ď ε @y P A and since A is balanced
also xf ´ x˚, yy “ xx˚ ´ f,´yy ď ε holds for all y P A. This proves the theorem in
case K “ R.

Let now K “ C. For a linear function f : E Ñ C being continuous on A we have
fpxq “ fRpxq ´ i fRpi xq, where fR :“ Re ˝ f : E Ñ R. Because of the real case,
there is a continuous R-linear x˚ : E Ñ R with |xfR ´ x˚, xy| ď ε for all x P A.
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Let x̃˚ : x ÞÑ x˚pxq ´ i x˚pi xq. Then x̃˚ : E Ñ C is continuous and C-linear with
|xf ´ x̃˚, xy| ď

?
ε2 ` ε2 “

?
2 ε.

5.5.7 Proposition. Grothendieck’s Completion Theorem.

The completion of an lcs E can be described as

Ê :“
!

f : E˚ Ñ K linear : f |Uo is σpE˚, Eq-continuous @0-neighborhoods U Ď E
)

supplied with the topology of the uniform convergence on the polars Uo.

Proof. We will use 3.8.3 .

(Ê is complete) because uniform limits of continuous functions are continuous.

(E Ď Ê) Because of E – pE˚, σpE˚, Eqq˚ Ď Ê, we can think of E as a linear

subspace of Ê, and, by 5.4.11 , E carries the topology of uniform convergence on

Uo Ď E˚ by virtue of this embedding, i.e. the trace topology induced by Ê.

(E is dense in Ê) Let f P Ê. Then f : F :“ E˚ Ñ K is linear. For each (absolutely
convex) 0-neighborhood U in E, the set A :“ Uo is absolutely convex in E˚. For

each ε ą 0 there is by Lemma 5.5.6 an x˚ P F˚ “ pE˚, σpE˚, Eqq˚ –vs E, with
|xf ´ x˚, xy| ď ε for all x P A, i.e. f can be approximated in the topology of the

uniform convergence on the Uo by x˚ P E, i.e. E is dense in Ê.
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6. Spectral and Representation Theory for Banach
Algebras

Preliminary remarks

The goal of spectral theory is to find to a given linear operator T a representation
which is as explicit and invariant as possible. In the 1-dimensional situation, each
linear operator T : K Ñ K is a multiplication operator of the form T : x ÞÑ λ ¨ x,
where the slope λ is given by λ :“ T p1q. In the finite-dimensional case, an analogue
would be the matrix representation obtained by choosing a basis, and, in the infinite-
dimensional case, the representation as an integral operator by an integral kernel.
On the one hand, these representations are as explicit as possible, but on the other
hand they are not invariant under change of basis (rotations). An invariant approach
is to find as many non-trivial linear subspaces (i.e. eigenspaces) on which T acts
as multiplication by some λ P K (the corresponding eigenvalue).

The eigenspace for the eigenvalue λ is therefore given by the kernel of T´λ ¨ id. And
this kernel is non-trivial iff T ´ λ ¨ id is not injective, which for finite dimensional
E is equivalent to being not invertible, i.e. detpT ´ λ ¨ idq “ 0. So the eigenvalues
λ are the zeros of the characteristic polynomial x ÞÑ detpT ´ x ¨ idq.

The existence of sufficiently many such subspaces should now mean that the opera-
tor is already uniquely given by the restrictions to these subspaces. In linear algebra
we learn that this is achievable for normal operators on complex finite-dimensional
Hilbert spaces, i.e. any such operator is diagonalizable. So up to the isomorphism
E – CdimE , given by pxkqk ÞÑ

ř

k xkek, where pekqk is a basis of eigenvectors, T
acts as multiplication operators pxkqk ÞÑ pλkxkqk. Since for normal operators we
may choose the ek to form an orthonormal system, we have T pxq “

ř

k λkxx, ekyek,
where λk denotes the eigenvalues corresponding to ek.

But what about infinite-dimensional spaces? For self adjoint compact operators T
on Hilbert spaces, we have seen in [18, 6.5.4] that the eigenvalues form a sequence
λk for which there exists an orthonormal basis of eigenvectors ek, and T pxq “
ř

k λkxx, ekyek. This is even true for normal compact operators, see 8.24 .

Examples of operators being not compact.

1. The left-shift operator T : `2pN,Cq Ñ `2pN,Cq is defined by T : pxkqkě0 ÞÑ

pxk`1qkě0. The equation T pxq “ λx is in coordinates the system of equations
pxk`1 “ λxkqkě0. The only possible solution is x “ pλk x0qkě0 which is in `2 for
|λ| ă 1 and thus λ is an eigenvalue. For |λ| ě 1 and x0 ‰ 0, x R `2, i.e. λ, is not an
eigenvalue. So, the set of eigenvalues is the open unit disk in C, and thus no longer
countable, hence T is not representable as series like above.
Since 1 ´ S is invertible with inverse

ř8

k“0 S
k provided S is a linear operator

with }S} ă 1 (cf. 6.2.1 ), we have that λ ´ T “ λp1 ´ 1
λT q is invertible for each

|λ| ą }T } “ 1 (cf. 6.25 ). Moreover, the set of invertible operators is open (see

andreas.kriegl@univie.ac.at c© 1. Juli 2019 91



Preliminary remarks

6.2.2 ), hence λ ´ T is not invertible ô |λ| ď 1. So we see that for |λ| “ 1 the
operator λ´ T is injective but not invertible.

2. The adjoint operator T˚ : `2pN,Cq Ñ `2pN,Cq to T is the right-shift operator
T˚ : px0, x1, . . . q ÞÑ p0, x0, x1, . . . q, because

xT˚pxq, yy “
8
ÿ

k“1

xk´1 ¨ yk “
8
ÿ

k“0

xk ¨ yk`1 “ xx, T pyqy.

Since T˚ is an isometry, it follows from T˚x “ λx for an x ‰ 0 that |λ| “ 1 and
thus from 0 “ λx0, x0 “ λx1, . . . recursively that xk “ 0 for all k. So T˚ has no
eigenvalues at all.
As before, it follows that for each |λ| ą 1, the mapping λ´ T˚ is invertible. Let us
assume that λ´ T˚ is invertible for some |λ| ď 1 and let S be its inverse. Then S˚

is an inverse of pλ´T˚q˚ “ λ´T , a contradiction to what was said about T . Hence
λ´ T˚ is not invertible ô |λ| ď 1. Note however that T is not normal, because

T ˝ T˚ “ id ‰ pid´pr0q “ T˚ ˝ T.

3. Next, consider the unitary (right-)shift operator T : `2pZ,Cq Ñ `2pZ,Cq defined
by T : pxkqkPZ ÞÑ pxk´1qkPZ. Then again only λ with |λ| “ 1 might be eigenvalues.
But no such λ can be an eigenvalue, because the equation T pxq “ λx is equivalent
to the system pxk´1 “ λxkqkPZ. Hence |xk´1| “ |xk| for all k and thus x R `2 for
x ‰ 0. Thus T has no eigenvalues at all.
Obviously T is invertible with inverse T´1 being the left-shift. Moreover, λ´ T is
invertible for each |λ| ą 1 “ }T } as before and also for each |λ| ă 1, because

pλ´ T q´1 “ ppλT´1 ´ idqT q´1 “ T´1 pλT´1 ´ idq´1

On the other hand, for |λ| “ 1, the mapping λ´T is not invertible, because the stan-
dart unit vector e0 is not in the image: Let pλ´T qpxq “ e0, then λxk´xk´1 “ 0 for
k ‰ 0. So |xk| “ |xk´1| for k ‰ 0 and thus x “ 0, a contradiction to λx0´x´1 “ 1.
The Fourier series development F : L2pr´π, πs,Cq ´–Ñ `2pZ,Cq from [18, 6.3.8]

conjugates the operator T into the multiplication operator Mf with f : x ÞÑ eix,
because in [18, 5.4.4] we have shown FpMf gq “ T pFgq. The unit circle S1 con-
sists exactly of those λ P C for which λ ´ T is not invertible and T is up to the
isomorphism F a multiplication operator on L2pS1,Cq – L2pr´π, πs,Cq.

So we see that the notion eigenvalue in infinite dimensions is too strict. The (in
finite dimensions equivalent) condition “λ´ T is not invertible” seems to be more
suitable. Such an λ is called a spectral value of T , and the set of all spectral
values is denoted the spectrum σpT q.

In case the lcs E on which the operator T acts is not normable, even this notion is
a too weak one and there is no reasonable spectral theory for operators on lcs’s:

4. Consider for example the space E of all pxkqkPZ P CZ, for which xk “ 0
for k sufficiently small. We provide E with the strictly inductive limit structure
lim
ÝÑnÑ´8

En – CpZ´q ˆ Ct0u ˆ CZ` with steps En :“ tpxkqkPZ : xk “ 0 for k ă

nu – CN. Let T be the left-shift pxkqkPZ ÞÑ pxk`1qkPZ, which is obviously a contin-
uous linear bijective operator because T |En : En Ñ En´1 is an isomorphism and
by the closed graph theorem the inverse of T |En is continuous as well.
Note that E˚ “ CZ´ ˆ Ct0u ˆ CpZ`q – E, via the reflection pxkqk ÞÑ px´kqk, and
the right-shift T˚ corresponds to the left-shift T under this isomorphism, i.e. T is
self adjoint with respect to the pairing x , y : E ˆ E Ñ K, px, yq ÞÑ

ř

k xky´k.
Now T ´ λ ¨ id is invertible for all λ P C, because for y P En the equation
T pxq ´ λ ¨ x “ y has a unique solution x P En`1 Ă E. It can be recursively
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calculated from xk`1 “ λxk ` yk, since xk`1 “ λxk and thus xk`1 “ 0 holds for

k ă n and xn`k “
řk´1
j“0 λ

j´1 yn`j . Hence the spectrum of T is empty.

In contrast to eigenvalues, one immediately sees that for the above definitions of
spectral values and spectrum of T , the vectors in E play no essential role. It suffices
to be able to form the expressions T ´ λ ¨ id in order to question the invertibility
of these expressions. For the former, T should be in a vector space, and for the
latter, this vector space should be an algebra with unit. In order to be able to
control invertibility well, the absolutely convergent geometric series

ř8

k“0 T
k should

converge, i.e. T should lie in a Banach algebra. So we will develop spectral theory
for elements of abstract Banach algebras (see [18, 3.2.9]). Let’s recall the most
important examples:

6.1 Examples.

1. For each Banach space E, LpEq :“ LpE,Eq is a Banach algebra with 1 with
respect to the composition as multiplication, see [18, 3.2.9]

2. For each compact space X, CpX,Kq is a commutative Banach algebra with 1
with respect to the pointwise multiplication. More generally, this also holds

for the space BpX,Kq of the bounded functions on a set X, see 2.2.3 .

3. Thus, the Banach space L8pX,Ω, µq is, for each σ-finite measurable space
pX,Ω, µq, also a commutative Banach algebra with 1 with respect to the
pointwise operations, see [18, 4.12.3].

4. Furthermore, `1pNq and `1pZq are commutative Banach algebras with 1 with
respect to convolution.

6.2 Remark about the invertibility in a Banach algebra.

We have shown in [18, 3.3.1] the following facts for the invertible elements a P
InvpAq of Banach Algebras A with unit 1:

1. For }a´ 1} ă 1 we have a P InvpAq and a´1 “
ř8

k“0p1´ aq
k, the absolutely

convergent geometric series.

2. If a0 P InvpAq and }a´a0} ă
1

}a´1
0 }

then by ( 1 ) also a “ pa a´1
0 q a0 P InvpAq;

in particular, InvpAq is open in A.

3. If a1 a2 “ a2 a1 P InvpAq, then a1, a2 P InvpAq.

This holds in every semigroup, because a1 a2 is invertible with inverse b :“
pa1 a2q

´1. Then a1 a2 b “ 1 “ b a1 a2 “ b a2 a1, so r :“ a2 b is a right inverse
to a1 and l :“ b a2 is a left inverse to a1, thus r “ l a1 r “ l, i.e. r “ l is the
(unique) two-sided inverse to a1.

4. The mapping inv : InvpAq Ñ InvpAq, a ÞÑ a´1, is (complex-)differentiable
and its derivative is inv1paqphq “ ´a´1 h a´1.
One obtains the derivative by differentiating the implicit equation a´1 a “ 1:
Let us denote with mult : Aˆ A Ñ A the bilinear multiplication. Then, by
differentiating of 1 “ mult ˝pinv, idq at the point a P InvpAq in the direction
h, we obtain

0 “ B1 multpinvpaq, idpaqq pinv1paqphqq ` B2 multpinvpaq, idpaqq pid1paqphqq

“ multpinv1paqphq, idpaqq `multpinvpaq, idphqq

“ inv1paqphq ¨ a` a´1 ¨ h
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and thus inv1paqphq “ inv1paqphq ¨ a ¨ a´1 “ ´a´1 ¨ h ¨ a´1. That inv is
differentiable with this derivative can also be calculated directly as follows:

}pa` hq´1 ´ a´1 ` a´1 h a´1}

}h}
“

›

›

›
a´1

´

p1` h a´1q´1 ´ 1` h a´1
¯
›

›

›

}h}

ď }a´1}
ÿ

kě2

}ph a´1qk}

}h}

ď }a´1} }h}
ÿ

kě0

p}h} }a´1}qk }a´1}2

ď }h} }a´1}3
1

1´ }h} }a´1}
Ñ 0 for hÑ 0

Before introducing the spectral theory of Banach algebras, let us consider what we
can do if the algebra in question does not satisfy all the axioms of a Banach algebra.

6.3 Completion

Examples of incomplete algebras.

1. The polynomials on a compact subset K Ď R constitute, with respect to the
8 norm, a non-complete sub-algebra of CpKq.

2. The continuous functions on R with compact support form a non-complete
Banach algebra with respect to the 1-norm and convolution. Likewise the
continuous functions on S1.

3. The finite-dimensional operators on a Hilbert space H form an incomplete
subalgebra of LpHq.

Proposition.

Let A be a normed algebra, i.e. a normed space with an algebra structure ‚, so that

}x‚y} ď }x}¨}y}. Then there is a (up to isomorphy) a unique Banach algebra rA and

an isometric embedding ι : A Ñ rA (i.e. @x P A : }ιpxq} “ }x}) with the following
universal property:

A �
� //

f ��

rA

f̃D!

��
B

where f and f̃ are continuous algebra homomorphisms and B is a complete algebra.

Proof. Let A be a normed algebra. Then, by 3.8.4 , there is a Banach space rA with
the universal extension property for continuous linear mappings. We now want to

extend the multiplication µ : AˆAÑ A to a mapping rµ : rAˆ rAÑ rA. For this we
consider the associated mapping µ̌ : AÑ LpA,Aq. The natural isometric mapping

ι : AÑ rA provides us with an isometry LpA,Eq – Lp rA,Eq for each Banach space

E. Therefore we obtain an isometric embedding LpA,Aq ´ι˚Ñ LpA, rAq – Lp rA, rAq.

I.e. we may consider µ̌ as a continuous mapping (contraction) from A to Lp rA, rAq.

By the universal property this has an extension rµ̌ : rA Ñ Lp rA, rAq. The associated

mapping rµ : rAˆ rAÑ rA is then the desired multiplication on rA, since all necessary
(continuous) equations hold on the dense subspace AˆA and thus everywhere.
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Note that the essential point is, that multi-linear continuous mappings E1 ˆ . . .ˆ

En Ñ F are uniquely extendable to such on ĂE1 ˆ . . .ˆ ĂEn Ñ rF .

Now to the universal property.
Since we know that }f} “ }f̃}, we only have to show that f̃ is multiplicative:

f̃pµ̃pã, b̃qq “ f̃pµ̃plim
n
an, lim

m
bmqq “ f̃plim

n,m
µ̃pan, bmqq “ lim

n,m
f̃pµ̃pan, bmqq

“ lim
n,m

fpµpan, bmqq “ lim
n,m

fpanq ¨ fpbmq “ lim
n
fpanq ¨ lim

m
fpbmq

“ lim
n
f̃panq ¨ lim

m
f̃pbmq “ f̃plim

n
anq ¨ f̃plim

m
bmq

“ f̃pãq ¨ f̃pb̃q.

Remark.

The completion in the above examples is:

1 . The Banach algebra of all continuous functions according to the Theorem
[18, 3.4.1] of Weierstrass;

2 . The Banach algebra L1 with the convolution, since the Cc functions are
dense, see [18, 4.13.9];

3 . The compact operators according to [18, 6.4.8].

6.4 Adjunction of a unit

Examples of algebras without unit.

1. L1pRq and L1pS1q with the convolution. The unit would be the delta distri-
bution.

2. The algebra of compact operators on an infinite-dimensional Hilbert space.
The unit would be the identity.

3. For each locally compact space X the algebra C0pXq, of at 8 vanishing
continuous functions. The unit would be the constant function 1.

Proposition.

Let A be a Banach algebra without 1. Then there is a (up to isomorphy unique)
Banach algebra A1 with unit and an isometric embedding ι : A Ñ A1 with the
following universal property:

A �
� //

f   

A1

f1D!

��
B

where f and f1 are continuous algebra homomorphisms, B is a Banach algebra with
unit, and f1 respects the units.

Proof. Let A be a Banach algebra (not necessary with 1). Let A1 :“ A ‘ K. The
multiplication is defined by pa ‘ λq ‚ pb ‘ µq :“ pa ‚ b ` µa ` λbq ‘ λµ. Then it is
easy to calculate that A1 is an algebra with 1 “ 0‘ 1, and ι : AÑ A1, a ÞÑ a‘ 0 is
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an algebra homomorphism. We define a norm on A1 by }a‘ λ} :“ }a} ` |λ|. Then
}1} “ }0} ` |1| “ 1 and

}pa‘ λq ‚ pb‘ µq} “ }pa ‚ b` µa` λbq ‘ λµ} “ }a ‚ b` µa` λb} ` |λµ|

ď }a} ¨ }b} ` |µ| ¨ }a} ` |λ| ¨ }b} ` |λ| ¨ |µ|

“ p}a} ` |λ|q ¨ p}b} ` |µ|q

“ }a‘ λ} ¨ }b‘ µ}.

Now to the universal property:
An f1 making the diagram commutative must satisfy f1pa‘λq “ f1paq`λ ¨f1p1q “
fpaq ` λ. And the f1 defined by it is multiplicative, because:

f1ppa‘ αq ¨ pb‘ µqq “ f1ppa b` λ b` µaq ‘ λµq “ fpab` λb` µaq ` λµ

“ fpaq fpbq ` λ fpbq ` µ fpaq ` λµ “ pfpaq ` λq pfpbq ` µq

“ f1pa‘ αq ¨ f1pb‘ µq.

Since ι is an isometry, }f} “ }f1 ˝ ι} ď }f1} ¨ }ι} “ }f1} holds. On the other
hand, }f1} “ supt}fpaq ` λ} : }a ‘ λ} ď 1u ď supt}f} }a} ` |λ| : }a} ` |λ| ď
1u ď maxt}f}, 1u. So f is a contraction (or continuous) if and only if f1 is it.
Note, however, that }f} “ }f1} does not apply: Let e.g. f “ 0, then f1 “ pr2 and
}f1} “ 1.

Remark.

With respect to the above examples:

1 . A Banach algebra with 1, which includes L1pGq, is the algebra of the regular
Borel measures on G with convolution, see [5, 193]. This can be identified

with C0pGq
˚ because of Ries’s Theorem 5.3.4 . The convolution corresponds

to the mapping pµ, νq ÞÑ pf ÞÑ pµbνqpf ˝mqq, where m : GˆGÑ G denotes
the multiplication and µ b ν is the extension from pf, gq ÞÑ µpfq νpgq to
C0pGˆGq Ě C0pGq ˆ C0pGq.

2 . The operators of the form 1`K with compact K are the so-called Fredholm

operators, see [5, Chapt.XI] and 8.26 .

3 . The algebra C0pXq1 consists of those continuous functions f on X, for which
limxÑ8 fpxq exists, these are exactly the restrictions of continuous functions
on the 1-point compactification X8 of X, i.e. C0pXq1 – CpX8q.

Next, let’s examine how much the continuity condition }x ‚ y} ď }x} ¨ }y} can be
weakend.

6.5 Proposition (Submultiplicity).

Let A be a Banach space and an associative algebra with 1, s.t. the multiplication
µ : A ˆ A Ñ A is separately continuous. Then there is an equivalent norm that
turns A into a Banach algebra. On elements x with }x ‚ y} ď }x} ¨ }y} for all y it
coincides with the given norm.

Proof. Without restriction of generality }1} “ 1, otherwise replace } } with 1
}1} } }.

We have that µ is continuous by 4.2.8 , i.e. }µ} :“ supt}x ‚ y} : }x} ď 1, }y} ď
1u ă 8. We consider the mapping L : A Ñ LpA,Aq, which assigns to each x P A
the left multiplication Lx : A Ñ A, y ÞÑ x ‚ y. Because of }Lx} “ supt}x ‚ y} :
}y} ď 1u ď }µ} ¨ }x}, L has values in LpA,Aq and is a continuous linear mapping
AÑ LpA,Aq. For each Banach space A, however, LpA,Aq is a Banach algebra (see
[18, 3.2.9]). The mapping L is also an algebra homomorphism, because Lx1‚x2

pyq “
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px1 ‚ x2q ‚ y “ x1 ‚ px2 ‚ yq “ pLx1
˝ Lx2

qpyq. Futhermore, }Lx} “ supt}x ‚ y} :
}y} ď 1u ě }x ‚ 1} “ }x} because }1} “ 1. So L is a homeomorphism of A onto
its image A0 in LpA,Aq, i.e. A0 is also complete and thus closed in LpA,Aq and
thus L : AÑ A0 is a topological algebra isomorphism onto the Banach algebra A0.
Note that this the norm } } can be replaced by the equivalent but submultiplicative
norm x ÞÑ }Lx} :“ supt}x ‚ y} : }y} ď 1u.

If the inequality }x ‚ y} ď }x} ¨ }y} is valid for all y for a x P A, then its norm is not
changed because it follows }Lx} ď }x} and }x} ď }Lx} holds always.

6.6 Complexification of real Banach algebras

Examples of real algebras.

1. For each compact space X, CpX;Rq is a real commutative Banach algebra.

2. For every real Banach space E, LpEq is a real Banach algebra.

In 3.9.3 we discussed the complexification EC :“ CbR E – E ˆE of real Banach
spaces E. The multiplication of z “ x` i y P C with w “ u` i v :“ pu, vq P EC was
given by px` i yqpu` i vq :“ pxu´ y vq ` i px v ` y uq and the norm by

pCpwq :“ maxt}Repz wq} : |z| “ 1u “ maxt}xu´ y v} : x2 ` y2 “ 1u.

In 3.9.4 we had two universal properties that told us that for every complex
Banach space G the maps

Re˚ : LCpG,ECq Ñ LRpG,Eq

ι˚ : LCpEC, Gq Ñ LRpE,Gq

are topological linear isomorphisms, and the former even an insometry. In the se-

quence we had in 3.9.5 for real Banach spaces a commutative diagram of topolog-
ical linear isomorphisms:

LCpEC, FCq

Re˚

ww

ι˚

''
–

��

LRpEC, F q

–

''

LRpE,FCq

–

ww
LRpE,F qC

z ÞÑ hpzq ´ i hpi zq px` i y ÞÑ hpxq ` i hpyqq

h

''

77

px` i y ÞÑ fpxq ´ gpyqq px ÞÑ fpxq ` i gpxqq h

ww

gg

h ˝ ι´ i h ˝ I ˝ ι f ` i g

gg 77

Re ˝ h´ iRe ˝ I ˝ h

The mappings going to the lower left are isometries and the diagonal isomorphism
LRpE,F qC´

–Ñ LCpEC, FCq is given by f` i g ÞÑ px` i y ÞÑ pfpxq´gpyqq` i pfpyq`
gpxqqq.

Proposition (Complexification).
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Let A be a real Banach algebra (with 1). Then there is a (up to isomorphy a unique)
complex Banach algebra AC (with 1 and) with the following universal property:

A �
� //

f   

AC

fCD!

��
B

where B is any complex Banach algebra, f is a continuous R-algebra homomor-
phism (which preserves 1), and fC is a continuous C-algebra homomorphism (which
preserves 1).

Proof. Obviously, AC as a vector space should just be the complexification of the
real Banach space A. We now need to extend the multiplication µ : AˆAÑ A to a
bilinear mapping µC : ACˆAC Ñ AC. So we also need the universal property of the
complexification of a Banach space for continuous bilinear mappings. For this we
again consider the linear contraction µ̌ : AÑ LRpA,Aq Ď LRpA,AqC – LCpAC, ACq,
with x1 ÞÑ px2 ‘ i y2 ÞÑ µpx1, x2q ‘ i µpx1, y2qq. Because of the universal property,
this has a complex-linear extension pµ̌qC : AC Ñ LCpAC, ACq, which is given by:

x1 ‘ i y1 ÞÑ

´

x2 ‘ i y2 ÞÑ
`

µpx1, x2q ´ µpy1, y2q
˘

‘ i
`

µpx1, y2q ` µpy1, x2q
˘

¯

.

The associated mapping µC : AC ˆAC Ñ AC,

px1 ‘ i y1, x2 ‘ i y2q ÞÑ
`

µpx1, x2q ´ µpy1, y2q
˘

‘ i
`

µpx1, y2q ` µpy1, x2q
˘

is then the desired multiplication. The following simple calculation shows the asso-
ciativity (and obviously 1 P A Ă AC is a unit):
´

px1 ‘ i y1q ‚ px2 ‘ i y2q

¯

‚ px3 ‘ i y3q

“

´

px1x2 ´ y1y2q ‘ i px1y2 ` y1x2q

¯

‚ px3 ‘ i y3q

“

´

px1x2 ´ y1y2qx3 ´ px1y2 ` y1x2qy3

¯

‘ i
´

px1x2 ´ y1y2qy3 ` px1y2 ` y1x2qx3

¯

“ px1x2x3 ´ x1y2y3 ´ y1x2y3 ´ y1y2x3q ‘ i px1x2y3 ` x1y2x3 ` y1x2x3 ´ y1y2y3q.

Note that AC is commutative if A is it.

The norm pC defined in 3.9.3 is generally not submultiplicative. Let A “ R2 with

the multiplication of C – R2 and the Euclidean norm. Then for w :“
`

1
0

˘

‘i
`

0
1

˘

P AC
the identity

w ‚ w “
´

ˆ

1

0

˙2

´

ˆ

0

1

˙2
¯

‘ 2 i

ˆ

1

0

˙ˆ

0

1

˙

“ 2
´

ˆ

1

0

˙

‘ i

ˆ

0

1

˙

¯

“ 2w

holds and since

pCpwq :“ max

"
›

›

›

›

ˆ

x

´y

˙
›

›

›

›

: x2 ` y2 “ 1

*

“ 1

we obtain a contradiction:

pCpw ‚ wq “ 2 pCpwq “ 2 ą 1 “ pCpwq
2.

Therefore, none of the remaining isomorphisms in the rhombic diagram can be an
isometry either. For, if one of them were an isometry, then also all others because of
the commutativity, and therefore µ̌ : AÑ LCpAC, ACq would be a contraction and
thus also pµ̌qC : AC Ñ LCpAC, ACq one, i.e. }µC} ď 1, i.e. pC were submultiplicative.

However, we are able to find an equivalent submultiplication extension of the norm
from A to AC. Namely let } }C be the equivalent submultiplicative norm for pC
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existing by 6.5 . It agrees with pC on A and thus with p :“ } }, because for
a P A Ď AC, w P AC and |z| “ 1 we have

pzpawq :“ ppRepz awqq “ ppaRepz wqq ď ppaq ppRepz wqq

ď pCpaq pCpwq

and thus pCpa ¨ wq ď pCpaq ¨ pCpwq.

Now to the universal property: Let fC be the unique C-linear extension. Then fC
is also an algebra homomorphism, because

fCppu1 ‘ i v1q ‚ pu2 ‘ i v2qq

“ fCppu1u2 ´ v1v2q ‘ i pu1v2 ` v1u2qq

“ fpu1u2 ´ v1v2q ` i fpu1v2 ` v1u2q

“ fpu1qfpu2q ´ fpv1qfpv2q ` i fpu1qfpv2q ` i fpv1qfpu2q

“ pfpu1q ` i fpv1qq ¨ pfpu2q ` i fpv2qq

“ fCpu1 ‘ i v1q ¨ fCpu2 ‘ i v2q.

Remark.

The complexifications of the above examples are obviously the following:

CpX,RqC – CpX,Cq
LRpE,EqC – LCpEC, ECq

From now on, we can assume that all Banach algebras are over C, have a unit, and
satisfy }a ¨ b} ď }a} ¨ }b} and }1} “ 1.

Let us return to spectral theory. As we have already indicated, we give the following

6.7 Definition.

Let A be a Banach algebra with 1 and a P A. Then one calls the set

σApaq :“ σpaq :“ tλ P C : λ 1´ a is not invertible in Au

the spectrum of a. The complement

ρpaq :“ C8zσpaq “ t8u Y pCzσpaqq,
in the 1-point compactification C8 :“ CY t8u of C is called resolvent set of a
and the mapping

ra : ρpaq Ñ A, λ ÞÑ

#

pλ 1´ aq´1 for λ ‰ 8

0 for λ “ 8

is called resolvent function of a. Note that the definition rap8q :“ 0 is reason-
able because of

}rapλq} “ }pλ 1´ aq´1} “
1

|λ|

›

›

›

›

p1´
1

λ
aq´1

›

›

›

›

“
1

|λ|

›

›

›

8
ÿ

n“0

ˆ

1

λ
a

˙n
›

›

›
ď

1

|λ|

8
ÿ

n“0

›

›

›

›

1

λ
a

›

›

›

›

n

“
1

|λ|

1

1´ } 1
λa}

“
1

|λ| ´ }a}
Ñ 0 for |λ| Ñ 8

Examples.

1. Let A “ CpX,Cq. Then f P A is invertible if and only if 0 R fpXq. Conse-
quently, σpfq “ tλ P C : 0 P pλ´ fqpXqu “ tλ P C : λ P fpXqu “ fpXq.
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2. Let A “ LpEq :“ LpE,Eq. Then a P A is invertible by the open mapping the-
orem if and only if a is bijective. So σpaq :“ tλ P C : λ id´a is not bijectiveu.

We want to prove the holomorphy of ra : C8 Ě ρpaq Ñ A. For this and for the
following we need some tools from Complex Analysis.

Recap from complex analysis

In this section we summarize the required results from complex analysis (cf. [19]).
Let F be a sequentially complete lcs. The classical theorems refer to the case F “ C
and we will first outline the proofs for this case. We will sketch how to get the
vector-valued results at the end of this section.

6.8 Differential forms and line integrals.

Let E and F be lcs’s and U Ď E be open. An F -valued 1-form on U Ď E is a
mapping ω : E Ě U Ñ LpE,F q (see [22, 6.5.3]).

If ω is continuous, c : ra, bs Ñ U is a C1-curve, and F is sequentially complete, then
the line integral is well-defined by the vector-valued Riemann integral

ż

c

ω :“

ż b

a

ωpcptqqpc1ptqq dt P F

(see [22, 6.5.6]). This is invariant under reparametrizations of c and for normed
spaces E and F

›

›

›

ż

c

ω
›

›

›

F
ď pb´ aq ¨ sup

tPra,bs

}ωpcptqq}LpE,F q ¨ sup
tPra,bs

}c1ptq}E .

holds. As is well known, this definition can be extended to rectifiable curves in
normed spaces using the vector-valued Riemann-Stieltjes integral, and then
}
ş

c
ω} ď pb´ aq ¨ supt}ωpcptqq} : t P ra, bsu ¨ V pcq, where

V pcq :“ sup
!

n
ÿ

k“1

}cptkq ´ cptk´1q} : a “ t0 ď t1 ď ¨ ¨ ¨ ď tn “ b
)

is the total variation of c (see [22, 6.5.10]).

Each differentiable mapping f : E Ě U Ñ F between Banach spaces E and F has
as derivative f 1 : E Ě U Ñ LpE,F q (see [22, 6.1.4]) a 1-form which is also denoted
by df and is called the total differential of f . If f is affine, df is constant.

Because of the Theorem of Schwarz (see [22, 6.3.11]), this differential form satisfies
the following symmetry condition for f P C2:

pdfq1pxqpvqpwq “ f2pxqpv, wq “ f2pxqpw, vq “ pdfq1pxqpwqpvq,

i.e. df is closed in the following sense: A continuously differentiable 1-form ω is called
closed if its outer derivative dω : E Ě U Ñ LpE,LpE,F qq – LpE,E;F q, de-
fined by dωpxqpv, wq “ ω1pxqpvqpwq´ω1pxqpwqpvq, vanishes. Instead of “ω is closed”
one also says that the integrability condition ω1pxqpvqpwq “ ω1pxqpwqpvq holds.

Conversely, for star shaped or, more generally, for simple connected sets U , one
can show that each closed 1-form ω : U Ñ LpE,F q is exact, i.e. a differentiable
mapping f : E Ě U Ñ F exists with df “ ω (see [22, 6.5.4]).

As a consequence, the line integral of closed 1-forms is locally independent on the
curve and therefore coincides on homotopic curves, where two curves c0 and c1
are called homotopic if a continuous mapping H : r0, 1s ˆ ra, bs Ñ U exists with
Hpj, tq “ cjptq for all j P t0, 1u and all t P ra, bs.
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6.9 Holomorphic functions.

A mapping f : C Ě U Ñ F is called C-differentiable or (more frequently)
holomorphic if the following limit exists for all z P U

f 1pzq :“ lim
CQwÑ0

fpz ` wq ´ fpzq

w
P F.

We will write HpU,F q (and HpUq in case F “ C) for the vector space of all
holomorphic mappings f : U Ñ F . If f : C Ě U Ñ F is holomorphic, then f is
also R-differentiable as mapping fR from U Ď R2 into the real vector space FR
and the R-derivative pfRq

1pzq P LRpR2, FRq is then even C-linear and coincides with
w ÞÑ f 1pzq ¨ w (where we let the skalar multiplication act from the right), because

lim
}w}Ñ0

}fpz ` wq ´ fpzq ´ f 1pzq ¨ w}F
}w}C

“ lim
wÑ0

›

›

›

›

fpz ` wq ´ fpzq

w
´ f 1pzq

›

›

›

›

F

“ 0.

But the converse implication also holds (see [19, 2.5]):
The C-linearity of the derivative pfRq

1pzq P LRpR2, F q of a R-differentiable mapping
f : C Ě U Ñ F means that pfRq

1pzq is given by multiplication w “ 1 ¨ w ÞÑ

pfRq
1pzqp1 ¨ wq “ pfRq

1pzqp1q ¨ w. If we put f 1pzq :“ pfRq
1pzqp1q P F then

0 “ lim
}w}Ñ0

}fpz ` wq ´ fpzq ´ pfRq
1pzqpwq}

}w}
“ lim
}w}Ñ0

›

›

›

fpz ` wq ´ fpzq ´ f 1pzq ¨ w

w

›

›

›

“ lim
wÑ0

›

›

›

fpz ` wq ´ fpzq

w
´ f 1pzq

›

›

›
, hence f 1pzq “ lim

wÑ0

fpz ` wq ´ fpzq

w
.

For F “ C we can also describe the C-linearity of the derivative in real coordinates
as follows: To do this, we decompose f into real and imaginary part, i.e. f “ g` i h,
and w “ pu, vq “ u` i v. Then,

pfRq
1pzq “

˜

Bg
Bx pzq

Bg
By pzq

Bh
Bx pzq

Bh
By pzq

¸

“:

ˆ

a b
c d

˙

is C-linear if and only if
ˆ

bu´ av
du´ cv

˙

“

ˆ

a b
c d

˙

¨ i

ˆ

u
v

˙

“ i

ˆ

a b
c d

˙

¨

ˆ

u
v

˙

“

ˆ

´cu´ dv
au` bv

˙

holds for all u ` iv P C, i.e. (by means of coefficient comparison) iff d “ a and
c “ ´b holds. These are exactly the Cauchy-Riemann differential equations
(see [19, 2.6])

Bg

Bx
“
Bh

By
,

Bg

By
“ ´

Bh

Bx
.

If f : C Ě U Ñ F , then ω : U Ñ LpC, F q, defined by ωpzq :“ fpzq ¨ dz, is
an FR-valued 1-form, where dz denotes the (constant) derivative of the C-linear
function id : z ÞÑ z. Here the multiplication fpzq ¨ dz is given by the mapping
F ˆLpC,Cq Ñ LpC, F q, py, T q ÞÑ pz ÞÑ T pzq ¨ yq. With slight abuse of notation one
uses the same symbol dz for the 1-form U Ñ LpC,Cq and its value id P LpC,Cq. If f
is holomorphic, then the 1-form z ÞÑ fpzq dz is closed, because its (real) derivative
at the point z is given by v ÞÑ pw ÞÑ f 1pzq ¨ v ¨wq, and hence is symmetric in v and
w (see [19, 3.5]).

Let dx and dy denote the (constant) derivatives of the R-linear functions Re : z “
x ` i y ÞÑ x and Im : x ` i y ÞÑ y, i.eȧ basis in the real vector space LRpC,Rq.
Then obviously dz “ dx ` i dy and analogously dz̄ “ dx ´ i dy, where dz̄ denotes
the derivative of z ÞÑ z̄. So tdz, dz̄u is also a basis of the complex vector space

andreas.kriegl@univie.ac.at c© 1. Juli 2019 101



Recap from complex analysis 6.11

LRpC,RqC – LRpC,Cq which is equivalent to the standard basis tdx, dyu. For each
R-differentiable f : C Ě U Ñ C we have

dfpzq “
Bf

Bx
pzq dx`

Bf

By
pzq dy.

Consequently, dfpzq must have also a matrix representation with respect to the

basis tdz, dz̄u. And one denotes the corresponding coefficients in analogy by Bf
Bz and

Bf
Bz̄ , i.e.

df “
Bf

Bz
dz `

Bf

Bz̄
dz̄.

Because of 2 dx “ dz ` dz̄ and 2i dy “ dz ´ dz̄, we can also easily calculate these
coefficients (the so-called Wirtinger derivatives):

df “
Bf

Bx
dx`

Bf

By
dy

“
Bf

Bx

dz ` dz̄

2
`
Bf

By

dz ´ dz̄

2i

“
1

2

ˆ

Bf

Bx
´ i

Bf

By

˙

loooooooomoooooooon

“
Bf
Bz

dz `
1

2

ˆ

Bf

Bx
` i

Bf

By

˙

loooooooomoooooooon

“
Bf
Bz̄

dz̄,

that is

B

Bz
“

1

2

ˆ

B

Bx
´ i

B

By

˙

B

Bz̄
“

1

2

ˆ

B

Bx
` i

B

By

˙

.

Since dz is C-linear and dz̄ is conjugated C-linear, f is holomorphic if and only if
B
Bz̄ f “ 0 (see [19, 2.11]). Likewise, f is anti-holomorphic, i.e. f holomorphic, if
B
Bz f “ 0, because

df̄ “
Bf̄

Bz
dz `

Bf̄

Bz̄
dz̄ “

ˆ

Bf

Bz̄

˙

dz `

ˆ

Bf

Bz

˙

dz̄.

6.10 Cauchy Integral Theorem.

If f : C Ě U Ñ F is holomorphic and c0 and c1 are two curves I Ñ U being
homotopic in U relative BI “ t0, 1u (i.e. the homotopy satisfies Hpj, tq “ cjptq in
addition to Hps, kq “ cjpkq for all j, k P t0, 1u and all t and s), then

ż

c0

fpzq dz “

ż

c1

fpzq dz.

In particular, if c : S1 Ñ U is a closed curve, which is homotopic in U to a constant
curve (i.e. is called 0-homotopic), then

ş

c
fpzq dz “ 0.

See [19, 3.18] and [19, 3.23].

Proof. The first part is a consequence of the closedness of the 1-form z ÞÑ fpzq dz.

For the second part, note that from a (free) homotopy H between c and a constant
curve konstx a homotopy relatively t0, 1u of c with the concatenation of the curves
c1 : t ÞÑ Hpt, 1q, the constant curve konstx and the reversed curve t ÞÑ Hp1´ t, 1q,
can be constructed. So

ş

c
fpzq dz “

ş

c1
fpzq dz ´

ş

c1
fpzq dz “ 0.

6.11 Winding number.
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If c is a closed C1-curve in Cztzu, then

indcpzq :“
1

2πi

ż

c

1

w ´ z
dw

is called the winding number (or revolution number) of c at z, see [19, 3.24]. For a
circle c : t ÞÑ z ` r e2πi t with center z and radius r we obviously get

indcpzq “
1

2πi

ż

c

1

w ´ z
dw “

1

2πi

ż 1

0

2πi r e2πi t

r e2πi t
dt

“

ż 1

0

1 dt “ 1.

Since w ÞÑ 1
w´z is holomorphic on Cztzu, this integral is homotopy invariant and

therefore constant for z varying in a connected component of CzcpS1q: In fact

indcpzsq “
1

2πi

ż

c

1

w ´ zs
dw “

1

2πi

ż

cs

1

w
dw

for each curve s ÞÑ zs in CzcpS1q, where csptq :“ cptq ´ zs describes a homotopy.

For a closed curve c, which in Cztzu is homotopic to the k-fold traversed circle,
consequently indcpzq “ k holds. In Algebraic Topology (see [17, 2.17]) it is shown
that the winding number is a topological invariant, which means is well-defined
even for closed continuous curve, is homotopy invariant, and has values in Z Ď C.
Furthermore, it is shown that every closed curve in Cztzu is homotopic to the
indcpzq-fold traversed unit circle with center z.

6.12 Cauchy Integral Formulas.

Let f : C Ě U Ñ F be holomorphic, K a closed disc in U and z in the interior of
K. Then

fpzq “
1

2πi

ż

BK

fpwq

w ´ z
dw,

where BK denotes the positively parameterized (i.e. indBKpzq “ `1) boundary of
K.

Furthermore, f is infinitely often C-differentiable and

f ppqpzq “
p!

2πi

ż

BK

fpwq

pw ´ zqp`1
dw.

holds for each p P N.

See [19, 3.28].

Proof. Let gpwq :“ fpwq´fpzq
w´z . Then g is holomorphic on Uztzu and bounded on

K since f is differentiable at z. According to the Cauchy Integral Theorem 6.11
ş

BK
g “

ş

BKε
g, where Kε is a disc of radius ε ą 0 at z. Now use }

ş

Kε
g} ď

2πε}g|K}8 Ñ 0 for εÑ 0 to obtain get 0 “
ş

BK
g “

ş

BK
fpwq
w´z dw ´ fpzq ¨ 2πi.

That f is often infinitely differentiable follows by interchanging the derivative with
the integral:

f ppqpzq “

ˆ

d

dz

˙p
1

2πi

ż

BK

fpwq

w ´ z
dw “

1

2πi

ż

BK

fpwq

ˆ

d

dz

˙p
1

w ´ z
dw

“
p!

2πi

ż

BK

fpwq

pw ´ zqp`1
dw.

6.13 Cauchy Estimate.
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Let f : C Ě U Ñ F be holomorphic and K be a disc with radius r and center z in
U . Then:

›

›

›

›

f pnqpzq

n!

›

›

›

›

ď
}f |BK}8

rn
.

In particular, the Taylor series at the point z of f is uniformly convergent on K to
f .

See [19, 3.30].

Proof. The inequality follows by estimating the integral, and the absolute and
uniform convergence of the Taylor series, by considering a slightly larger disc KR

with radius R ą r as follows:
›

›

›

ÿ

k

wk

k!
f pkqpzq

›

›

›
ď
ÿ

k

|r|k
}f pkqpzq}

k!
ď }f |KR}8

ÿ

k

´ r

R

¯k

.

That the Tayler series converges to f uniformly on K follows by the integral formula

6.12 of Cauchy:

fpzq “
6.12
“““““

1

2πi

ż

BKR

fpwq

w ´ z
dw “

1

2πi

ż

BKR

8
ÿ

k“0

fpwq

pw ´ z0q
k`1

pz ´ z0q
k dw

“

8
ÿ

k“0

pz ´ z0q
k 1

2πi

ż

BKR

fpwq

pw ´ z0q
k`1

dw “
6.12
“““““

8
ÿ

k“0

pz ´ z0q
k f
pkqpz0q

k!

6.14 Identity Theorem.

Let f : C Ě U Ñ F be holomorphic on the open connected set U and vanishing on
a convergent not finally constant sequence in U . Then f “ 0.

See [19, 4.7].

Proof. By means of induction this follows for (the coefficients of a) convergent
power series at the limit point of the sequence, so f is 0 locally around the limit
point. Hence a maximal open connected set W Ď U exists on which f vanishes.
However, it must also be closed in U and thus agree with U .

6.15 Removable Singularity.

Let z P U and f : Uztzu Ñ F be holomorphic and near z be locally bounded. Then
f has a holomorphic extension to all of U .

See also [19, 3.31].

Proof. Let K be a disc around z in U on which f is bounded. Let z1 P Kztzu. As

in the proof of the Cauchy Integral Formula 6.12 , it is shown that for the function

w ÞÑ fpwq´fpz1q
w´z1 , which is bounded on K and is holomorphic on Uztz, z1u, we have:

0 “
ş

BK
fpwq´fpz1q

w´z1 dw “
ş

BK
fpwq
w´z1 dw ´ fpz1q 2πi. The integral on the right side is

holomorphic with respect to z1 in the interior of K, so the same holds for f .

6.16 Theorem of Liouville.

Let f : CÑ F be holomorphic and bounded, then f is constant.

See [19, 3.42].

Proof. By 6.13 |f 1pzq| ď }f}8
r for all r ą 0 and all z P C, so f 1 “ 0 and thus f is

constant.
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6.17 Maximum Modulus Principle.

Let f : C Ě U Ñ F be holomorphic and not constant on the open and connected set
U . Then z ÞÑ }fpzq} does not attain its supremum.

See [19, 3.41].

Proof. Let F “ C. Suppose there is a maximum at z0 P U , i.e. |fpzq| ď |fpz0q| for
all z P U . We first show that this implies the constancy of z ÞÑ |fpzq|. Assuming
this were not the case, then there would be a z1 P U with |fpz0q| ą |fpz1q|. Since U
is connected, we can connect z0 wich z1 by a curve t ÞÑ zt. We choose t0 maximal
with |fpzt0q| “ |fpz0q|. Then there are arbitrary close to zt0 points zt with |fpz0q| ą

|fpztq|. We choose a circle K Ď U at zt0 whose periphery contains such a point zt1 .
Then |fpzt1q| ă |fpz0q| and |fpzq| ď |fpz0q| for all z P BK. From the Cauchy

Integral Formula 6.12 we obtain |fpzt0q| ă |fpz0q|, a contradiction.

If the constant |f | is 0 we are done. Otherwise, by differentiating the constant |f |2

we obtain.

0 “
B

Bz̄
pf ¨ f̄qpzq “

Bfpzq

Bz̄
¨ f̄pzq ` fpzq ¨

Bf̄pzq

Bz̄
“ 0` fpzq ¨

ˆ

Bf

Bz

˙

Since |f | ‰ 0, we conclude 0 “ Bf
Bz “ f 1pzq, hence f is constant.

6.18 Differentiable structure of C8, holomorphy at 8.

In order to be able to speak about differentiability of functions such as ra on
open subsets of C8, we have to provide C8 with a differentiable structure (see [19,
2.18,2.19]). We identify C8 with the unit sphere S2 :“ tpy, tq P CˆR : |y|2`t2 “ 1u
in CˆR “ R3. The embedding of C in S2 is given by the inverse to the stereographic
projection with the North Pole N :“ p0, 0, 1q P S2 as center onto the equatorial
plane C ˆ t0u – C. The North Pole itself corresponds to the point 8 P C8. The
basic proportionality theorem (or intercept theorem) z : 1 “ y : p1´ tq shows that
the stereographic projection is given by

Cˆ R Ą S2ztNu Q py, tq ÞÑ z “
1

1´ t
y P C – Cˆ t0u

and its inverse is

ϕ` : C Q z ÞÑ
1

|z|2 ` 1
p2z, |z|2 ´ 1q P Cˆ R,

because the second intersection point of the sphere with the straight line t ÞÑ

z ` tpN ´ zq through N and z is given by the solution t “ |z|2´1
|z|2`1 of the equation

1 “ }tN ` p1´ tq z}2 “ t2 ` p1´ tq2|z|2.

So this provides one “chart” for S2. We can also define another chart now around
N by analogously using the inverse ϕ´ of the stereographic projection py, tq ÞÑ
py,´tq ÞÑ 1

1`ty with respect to the South Pole S :“ ´N .

Using these charts we transfer the definition of differentiability to functions f :
S2 Ě U Ñ F by requesting that the two compositions f ˝ ϕj : C Ě ϕ´1

j pUq Ñ

U Ñ F for j P t`,´u are differentiable. It should be checked, however, that
for points px, tq P S2 in temperate latitudes, i.e. those in ϕ`pCq X ϕ´pCq, the
differentialiability of f ˝ϕ` at ϕ´1

` px, tq is equivalent to that of f ˝ϕ´ at ϕ´1
´ px, tq.

Because of f ˝ ϕ´ “ pf ˝ ϕ`q ˝ pϕ
´1
` ˝ ϕ´q, it is enough to show that the chart

change ϕ´1
` ˝ ϕ´ : Czt0u Ñ Czt0u is differentiable. This is given by

z ÞÑ
1

|z|2 ` 1
p2z,´p|z|2 ´ 1qq ÞÑ

1

1´ 1´|z|2

1`|z|2

2z

|z|2 ` 1
“

z

|z|2
“

1

z
.
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This is the reflection at the unit circle, as can also be easily seen by means of ele-
mentary geometrical considerations. This mapping is smooth and anti-holomorphic,
so we should compose the second chart yet with the conjugation CÑ C, z ÞÑ z to
get the holomorphic mapping z ÞÑ 1

z as a new chart change.

In summary, this means that a mapping f : C8 Ě U Ñ F is called holomorphic if
both f |C : CX U Ñ F and z ÞÑ fp 1

z q is holomorphic tz P C : 1
z P Uu Ñ F . See also

[19, 2.18].

6.19 Chains and cycles.

Since we want to use not only discs but general compact sets K Ď C, we have to
replace closed curves with something more general, namely so-called 1-chains, i.e.
formal linear combinations c :“

ř

j kj cj of curves ci : r0, 1s Ñ U with coefficients

ki P Z. The set of all 1-chains forms an Abelian group (all mappings Cpr0, 1s, Uq Ñ
Z with finite support) with respect to the componentwise addition. The boundary
Bc of a 1-chain is a 0-chain, i.e. a formal linear combination of points, which is
defined as follows Bc :“

ř

j kj pcjp1q ´ cjp0qq. A 1-chain c is called cycle if Bc “ 0.
This is in particular the case when all c are closed curves. The subset formed by
all cycles is a subgroup of 1-chains. One extends the line integral of 1-forms ω to
1-chains c by linearity, i.e.

ż

c

ω “
ÿ

j

kj

ż

cj

ω

and defines the winding number of 1-cycles c again by

indcpzq :“
1

2πi

ż

c

1

w ´ z
dw

for all z R imgpcq :“
Ť

j cjr0, 1s.

A 1-cycle c is called 0-homologous in U if indcpzq “ 0 for all z R U . Two cycles
c1 and c2 are called homologous in U if c1 ´ c2 is 0-homologous, i.e. indc1pzq “
indc2pzq for all z R U .

Note that two closed curves that are homotopic in U are also homologous because of
the homotopy invariance of the winding number. The converse implication does not
hold, since homotopy is not commutative. Let us now generalize Cauchy’s Integral

Theorem 6.10 and Cauchy’s Integral Formula 6.12 .

6.20 Generalized Cauchy Integral Theorem and Integral Formula.

Let f : C Ě U Ñ F be holomorphic. For any two homologous cycles c1 and c2 in U
we have

ż

c1

fpzq dz “

ż

c2

fpzq dz.

If c is a 0-homologous cycle in U , then

fpzq indcpzq “
1

2πi

ż

c

fpwq

w ´ z
dw for all z P Uz imgpcq.

Proof. First we prove the second part. For this we consider the mapping ϕ :

pz, wq ÞÑ fpwq´fpzq
w´z for z ‰ w and ϕ : pz, zq ÞÑ f 1pzq. We have that ϕ : U ˆ U Ñ F

is continuous (and indeed even holomorphic, according to Hartogs’ Theorem and
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Theorem 6.15 on removable singularities). For z P U let hpzq :“ 1
2πi

ş

c
ϕpz, wq dw.

In particular, for z P Uz imgpcq, we get

hpzq “
1

2πi

ż

c

fpwq

w ´ z
dw ´

fpzq

2πi

ż

c

1

w ´ z
dw

“
1

2πi

ż

c

fpwq

w ´ z
dw ´ fpzq indcpzq.

So we have to show that h “ 0. It is easy to see that h : U Ñ F can be holomor-
phically extended to C by

hpzq :“
1

2πi

ż

c

fpwq

w ´ z
dw for z P U1 :“ tz R imgpcq : indcpzq “ 0u Ě CzU.

Since this integral goes to 0 for z Ñ 8, h is bounded and thus according to the

Theorem 6.16 of Liouville identical to hp8q “ 0.

Now for the first part. It suffices to show that
ş

c
fpzq dz “ 0 for the 0-homologous

cycle c :“ c1´ c2. For z P Uz imgpcq let fzpwq :“ pw´ zq fpwq. Then, by the second
part,

0 “ fzpzq indcpzq “
1

2πi

ż

c

fzpwq

w ´ z
dw “

1

2πi

ż

c

fpwq dw

6.21 Lemma. Captureing holes.

Let U Ď C be open and K Ď U compact. Then, a 1-cycle c “
ř

j cj of smooth closed

curves cj exists in UzK so that indcpzq P t0, 1u holds for all z R imgpcq. Let the
interior and exterior of c be defined by

innpcq :“ tz R imgpcq : indcpzq “ 1u

outpcq :“ tz R imgpcq : indcpzq “ 0u.

Then K Ď innpcq Ď U , or equivalently, CzU Ď outpcq Ď CzK.
Such a cycle is called a Jordan system.

Proof. Let 0 ă 2δ ă dpK,CzUq. We consider straight lines parallel to the axes with
distance δ between them. Let R1, . . . , Rm be those (finite many) squares (with side
length δ) which meet (the compact set) K. The boundary BRj of Rj is a broken
line which we orient positively.

For z P Rj we have dpz,Kq ă
?

2δ and thus Rj Ď U . Let c1, . . . , cn be those
edges that belong to exactly one of the Ri. Then

řn
k“1

ş

ck
ω “

řm
j“1

ş

BRj
ω for each

continuous 1-form ω on
Ťm
j“1 BRj , because the other edges belong to two of the Ri

with opposite orientation.

We have that the image of ck is included in UzK, otherwise the two adjacent squares
would meet K and thus be in U , a contradiction to the choice of ck.

For f P HpUq and z P Kz
Ť

j BRj , w ÞÑ
1

2πi
fpwq
w´z dw is a continuous 1-form on

Ť

BRj
and thus

n
ÿ

k“1

1

2πi

ż

ck

fpwq

w ´ z
dw “

m
ÿ

j“1

1

2πi

ż

BRj

fpwq

w ´ z
dw.

We have

1

2πi

ż

BRj

fpwq

w ´ z
dw “

#

0 for z R Rj

fpzq for z P Rj
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by the Cauchy Integral Formula 6.12 . Since z is an inner point in exactly one of
the Rj , we have

fpzq “
n
ÿ

k“1

1

2πi

ż

ck

fpwq

w ´ z
dw.

Since both sides are continuous for z P K, this equation holds for all of K.

If we investigate the intersection of K with the 4 squares with a common vertices,
we see that c :“

ř

j cj is a cycle, hence a finite sum of closed polygons.

For z P K we have 1 “
řn
k“1

1
2πi

ş

ck
1

w´z dw “ indcpzq, i.e. K Ď innpcq.

If z R U , then
ş

BRj
1

w´z dw “ 0 for all j and thus indcpzq “ 0, i.e. innpcq Ď U .

To obtain these theorems from complex analysis for vector-valued functions, one
can successfully use the following lemma.

6.22 Lemma.

Let F be a sequentially complete lcs. Then f : C Ě U Ñ F is holomorphic if and
only if ` ˝ f : C Ě U Ñ F Ñ C is holomorphic for all ` P F˚.

Proof. pñq is obvious, because ` P F˚, as linear continuous mapping, commutes
with limits and difference quotient formation.

pðq The following holds:

`

ˆ

fpzq ´ fp0q

z
´
fpwq ´ fp0q

w

˙

“
p` ˝ fqpzq ´ p` ˝ fqp0q

z
´
p` ˝ fqpwq ´ p` ˝ fqp0q

w

“

ż 1

0

p` ˝ fq1pt zq ´ p` ˝ fq1pt wq dt

“ pz ´ wq

ż 1

0

ż 1

0

t p` ˝ fq2ptw ` tspz ´ wqq ds dt.

Since ` ˝ f is holomorphic, ` ˝ f is 2 times continuously differentiable and thus the
integrand is uniformly bounded for t, s P r0, 1s and z, w near 0. So also the integral
is bounded locally in z and w near 0, and thus

1

z ´ w

ˆ

fpzq ´ fp0q

z
´
fpwq ´ fp0q

w

˙

is scalarly bounded and even bounded by 4.2.7 . So the net fpzq´fp0q
z ´

fpwq´fp0q
w Ñ

0 converges for w, z Ñ 0, i.e. w ÞÑ
fpwq´fp0q

w is a Cauchy net and consequently
converges (since each subsequence converges), i.e. f is holomorphic.

By means of this lemma, all of the above mentioned results from complex analysis
can be transferred to the vector-valued case.
E.g., for the Theorem 6.16 of Liouville this goes as follows: Let f : C Ñ F be
holomorphic and bounded. Then ` ˝ f : C Ñ C is holomorphic and bounded, i.e.
according to the classical theorem constant, for all ` P F˚. Since these ` are point-
separating, f itself is constant.

For the Cauchy integral theorem 6.10 and the integral formula 6.12 , and 6.20 ,
note:

`

ˆ
ż

c

f

˙

“

ż

c

` ˝ f and ` ˝ f 1 “ p` ˝ fq1.

Let now A be a complex Banach algebra with 1.

6.23 Lemma.

For a P A:
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1. If λ P ρpaq, then distpλ, σpaqq ě }pλ´ aq´1}´1.

2. For λ, µ P ρpaq, we have the resolvent equality:

rapλq ´ rapµq

λ´ µ
“ ´rapλq rapµq “ ´rapµq rapλq.

Proof. ( 1 ) Let λ P ρpaq and |µ| ă }pλ ´ aq´1}´1. Then λ ` µ P ρpaq and thus

distpλ, σpaqq ě }pλ´ aq´1}´1 holds, because λ` µ´ a is invertible by 6.2.2 since

}pλ` µ´ aq ´ pλ´ aq} “ |µ| ă }pλ´ aq´1}´1.

( 2 ) With x :“ λ´ a and y :“ µ´ a

rapλq ´ rapµq “ x´1 ´ y´1 “ x´1 py ´ xq y´1

“ pλ´ aq´1 pµ´ λq pµ´ aq´1 “ pµ´ λq pλ´ aq´1 pµ´ aq´1

“ pµ´ λq rapλq rapµq.

6.24 Theorem.

Let a P A. Then the spectrum σpaq of a is compact and non-empty. The resolvent
function is holomorphic from the open subset ρpaq of the Riemannian sphere C8 to
A.

Proof. For |λ| ą }a}: λ 1 ´ a “ λp1 ´ 1
λaq and }1 ´ p1 ´ 1

λaq} “ }
1
λa} “

}a}
|λ| ă 1,

hence 1´ 1
λa is invertible by 6.2.1 , and so is λ 1´ a “ λp1´ 1

λaq, i.e. λ P ρpaq. So
σpaq Ď tλ : |λ| ď }a}u and is therefore bounded.

We have ρpaqXC :“ tλ P C : λ 1´a P InvpAqu. Since the affine mapping λ ÞÑ λ 1´a
is continuous, its inverse image of the open set InvpAq is also open. So ρpaq X C is
open in C.

Consequently, σpaq “ Czpρpaq X Cq is closed and bounded in C, i.e. compact.

So σpaq is also compact in C8, and thus ρpaq “ C8zσpaq is open in C8.

The mapping λ ÞÑ pλ 1´aq ÞÑ pλ 1´aq´1 is, considered as composition of an affine

mapping with a (by 6.2.4 ) complex-differentiable mapping, a complex differen-
tiable mapping ra : ρpaq X CÑ invpAq Ď A and, by the Chain Rule, we obtain for
the derivative:

r1apλq “ inv1pλ 1´ aq ¨ 1 “ ´pλ´ aq´1 1 pλ´ aq´1 “ ´pλ´ aq´2.

If one does not want to use the complex differentiability of the inversion, then this

can also easily be calculated by means of resolvent equation 6.23.2 .

For the holomorphy at 8 we have to study the mapping z ÞÑ 1
z ÞÑ rap

1
z q near 0.

For z ‰ 0 this is holomorphic because ρpaq is a neighborhood of 8 and because

of limzÑ8 rapzq “ 0 “: rap8q (see 6.7 ) we have that ra is holomorphic at 0 by

6.15 . Directly one sees this also from the fact that for }z a} ă 1 (i.e. for |z| ă 1
}a} )

this mapping can be developed into a convergent power series:

ra

ˆ

1

z

˙

“

ˆ

1

z
´ a

˙´1

“

ˆ

1

z
p1´ z aq

˙´1

“ z p1´ z aq´1

“ z
8
ÿ

k“0

pz aqk “
8
ÿ

k“0

zk`1 ak.

It only remains to show that the spectrum is not empty:
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Otherwise, ra : C8 Ñ A would be a holomorphic (hence bounded) function on the

whole C8 and thus according to the theorem 6.16 of Liouville constant. Because
of rap8q “ 0, we would have ra “ 0 R InvpAq, a contradiction.

6.25 Lemma and Definition.

The spectral radius rpaq of a P A is

rpaq :“ maxt|z| : z P σpaqu.

We have:

rpaq “ lim
nÑ8

}an}1{n.

Proof. Since ra : ρpaq Ñ A is holomorphic by 6.24 , z ÞÑ rap
1
z q is holomorphic

for 1
z P ρpaq, so the Taylor series

ř8

k“0 z
k`1ak of this function converges in the

interior of the largest disc contained in tz : 1
z P ρpaqu. This has by definition radius

inft|z| : 1
z R ρpaqu “

1
supt|w|:wPσpaqu “

1
rpaq . Since this power series is divergent for

|z| ą 1

limnÑ8
n
?
}an}

(moreover, the radius of convergence is limnÑ8
n
a

}an}), we

have 1
rpaq ď

1

limnÑ8
n
?
}an}

, i.e. rpaq ě limnÑ8
n
a

}an} (and even equality holds).

It remains to show that this limit superior is even a limit. By means of the inequality
}an`m} ď }an} }am} one can show this directly, see [11, 169]. Another proof goes
as follows:

For z P σpaq we have z´ a R InvpAq. Since zn´ an “ pz´ aq pzn´1` zn´2 a` ¨ ¨ ¨ `
z an´2 ` an´1q and the two factors commute with each other, zn ´ an R InvpAq by

6.2.3 , i.e. |z|n ď }an} by 6.2.1 and thus |z| ď }an}1{n. Thus rpaq ď infn }a
n}1{n ď

limn }a
n}1{n ď rpaq.

Functional Calculus

Remark.

In finite-dimensional spectral theory, the algebra tppT q : p ist ein polynomialu plays
an important role for operators T . Just think of the Theorem of Cayley-Hamilton
and the role that the minimal polynomial plays. In infinite dimensions polynomials
will probably not suffice. The most obvious generalization is convergent power series.
We have shown in [18, 3.2.10] that the convergence for all |z| ă R of a power series
fpzq :“

ř8

k“0 fkz
k with fk P C coefficient also implies the convergence of the

series fpaq :“
ř8

k“0 fk a
k in A for all a P A with }a} ă R. So this works if the

radius of convergence is greater than }a}. However, the series fpaq :“
ř8

k“0 fk a
k

will converge (absolutely) by the root test (see [20, 2.5.10]) even if the radius of

convergence is greater than limnÑ8 }a
n}1{n “ rpaq (in fact, limk

k
a

|fk| }ak} ă 1 ô

rpaq “ limk }a
k}1{k ă 1

limk |fk|1{k
). Under these assumptions, z ÞÑ fpzq has to be a

holomorphic function on an open disc containing σpaq.

We now want to try to define fpaq also for functions f that are holomorphic on an
arbitrary neighborhood of σpaq. We can no longer use the power series expansion,
because it only needs to converge in the interior of the largest disk in the domain
of f . To get a definition of fpaq also in this case, we first give another description

andreas.kriegl@univie.ac.at c© 1. Juli 2019 110



Functional Calculus 6.26

of fpaq for power series f with radius of convergence R ą }a}. According to the

Cauchy Integral Formula 6.20 ,

fpzq “
1

2πi

ż

c

fpwq

w ´ z
dw,

holds where c is a parameterized circle with radius r ă R. Thus we expect that

fpaq “
1

2πi

ż

c

fpwq pw ´ aq´1 dw,

where the integral makes sense, since the circle c has values in ρpaq and thus pw ´
aq´1 is well-defined for all w P imgpcq.

Because of the Cauchy Integral Formula 6.20 1
2πi

ş

c
wk

w´z dw “ zk, hence analo-

gously we should have 1
2πi

ş

c
wkpw´aq´1 dw “ ak. This is indeed the case, because

1

2πi

ż

c

wkpw ´ aq´1 dw “
1

2πi

ż

c

wk´1

ˆ

1´
1

w
a

˙´1

dw “
1

2πi

ż

c

wk´1
8
ÿ

j“0

1

wj
aj dw

“
1

2πi

8
ÿ

j“0

´

ż

c

wk´pj`1q dw
¯

loooooooooomoooooooooon

2πiδjk

aj “ ak

So

fpaq “
1

2πi

ż

c

fpwq pw ´ aq´1 dw “
1

2πi

ż

c

8
ÿ

k“0

fkw
k pw ´ aq´1 dw

“

8
ÿ

k“0

fk
1

2πi

ż

c

wk pw ´ aq´1 dw “
8
ÿ

k“0

fk a
k

This definition of fpaq as line integral now also makes sense if c is not necessarily
a circle, but is any 1-chain c in ρpaq X U and f P HpUq. So we define as follows:

6.26 Definition.

Let a P A and f : U Ñ C be holomorphic on an open neighborhood U of K :“ σpaq
in C. Then put

fpaq :“
1

2πi

ż

c

fpwq pw ´ aq´1 dw P A,

for some Jordan cycle c as in 6.21 .

Lemma.

This definition does not depend on the choice of the 1-chain c.

Proof. Let c “
řn
j“1 cj and d “

řm
j“1 dj be two Jordan cycles as in Lemma 6.21 .

With cn`j for j P t1, . . . ,mu we denote the reversely parametrized curve dj . For

z R Uzσpaq either z R U or z P σpaq. In the first case
řn`m
j“1 indcj pzq “ indcpzq ´

inddpzq “ 0´0 “ 0 and in the second
řn`m
j“1 indcj pzq “ indcpzq´inddpzq “ 1´1 “ 0.

So Γ :“
řn`m
j“1 cj is a cycle of closed curves in Uzσpaq and for all z R Uzσpaq we have

indΓpzq “ 0 and since w ÞÑ fpwq pw ´ aq´1 is holomorphic on Uzσpaq, it follows

from Cauchy’s Integral Theorem 6.20 that

0 “

ż

Γ

fpwq pw ´ aq´1 dw “

ż

c

fpwq pw ´ aq´1 dw ´

ż

d

fpwq pw ´ aq´1 dw.
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6.27 Germs

As we have just seen, fpaq does not depend on the selection of the Jordan cycle c
in Uzσpaq, hence f1paq “ f2paq in case f1 and f2 coincide on some U neighborhood
of K :“ σpaq. So we need the following

Definition.

Let K Ď C be compact. Under a holomorphic germ on K we understand an
equivalence class of holomorphic functions f defined on open neighborhoods U Ď C
of K. The equivalence relation is given as follows: f1 : U1 Ñ C and f2 : U2 Ñ C are
called equivalent if an open neighborhood U Ď U1XU2 of K exists with f1|U “ f2|U .
With HpKq :“ HpK,Cq we denote the set of all holomorphic germs on K. This is
a C-algebra when we define the algebra operations via the representatives.

The mapping HpU,Cq Ñ HpKq, f ÞÑ rf s, is injective, provided each connected
component of U contains at least one point from K, because then it follows from the

uniqueness theorem 6.14 that any two holomorphic functions on U that coincide on
a neighborhood of K are already identical. We can assume without loss of generality
that all considered neighborhoods U have this property, and thus that the Fréchet
space HpU,Cq is a linear subspace of HpK,Cq. By definition, HpKq is the union of
these subspaces, and we can therefore provide HpKq with the final structure.

6.28 Theorem (Holomorphic Functional Calculus).

For a P A the mapping rf s ÞÑ fpaq given by 6.26 defines the uniquely determined
continuous algebra homomorphism Hpσpaqq Ñ A, which maps id to a, i.e. extends
the evaluation

ř

k fkz
k ÞÑ

ř

k fka
k of polynomials.

Proof. First the existence statement:
According to the above lemma, fpaq :“ 1

2πi

ş

c
fpwq pw´aq´1 dw is well-defined and

does not depend on the choice of c and the representative of the germ f .

Obviously, f ÞÑ fpaq is linear.

We show that this is also an algebra homomorphism. Let f and g be two holomor-
phic functions defined on an open U Ě σpaq. Let Λ be a fitting Jordan cycle in U
and Γ be such a cycle in innpΛq. Then:

fpaq gpaq “ ´
1

4π2

ˆ
ż

Γ

fpwq pw ´ aq´1 dw

˙ ˆ
ż

Λ

gpzq pz ´ aq´1 dz

˙

“ ´
1

4π2

ż

Γ

ż

Λ

fpwq gpzq pw ´ aq´1 pz ´ aq´1 dz dw

“
6.23.2
“““““““ ´

1

4π2

ż

Γ

ż

Λ

fpwq gpzq
rapwq ´ rapzq

z ´ w
dz dw

“ ´
1

4π2

ż

Γ

fpwq

ˆ
ż

Λ

gpzq

z ´ w
dz

˙

pw ´ aq´1 dw`

`
1

4π2

ż

Λ

gpzq

ˆ
ż

Γ

fpwq

z ´ w
dw

˙

pz ´ aq´1 dz.

For all z P imgpΛq Ď outpΓq, according to Cauchy’s theorem 6.20 ,
ş

Γ
fpwq
z´w dw “ 0.

For all w P imgpΓq Ď innpΛq,
ş

Λ
gpzq
z´w dz “ 2πi gpwq holds, so

fpaq gpaq “
1

2πi

ż

Γ

fpwq gpwq pw ´ aq´1 dw “ pf gqpaq.
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Now to the continuity. We only have to show that f ÞÑ fpaq, HpUq Ñ A is contin-
uous, or, because HpUq is a Fréchet space with respect to the uniform convergence
on each compact subset of U , that this mapping is bounded. Let F Ď HpUq be
bounded. Then F is uniformly bounded on the image of c, so there is a constant
K with }f |imgpcq}8 ď K for all f P F . Furthermore, rapimgpcqq is compact, so

bounded and consequently there is a constant K1 with }pw ´ aq´1} ď K1 for all
w P imgpcq. Therefore, }fpaq} ď 1

2π KK1 Lpcq, and thus tfpaq : f P Fu is bounded.

Let fpzq “
ř

k fk z
k be a polynomial, or more generally a power series that con-

verges on a neighborhood of σpaq. Then fpaq “
ř8

k“0 fk a
k, as we have shown

above.

Now for the uniqueness statement:
Let τ be such an algebra-homomorphism. As algebra-homomorphism which maps
id to a, τpfq “ fpaq holds for all polynomials f P Crzs.
Let next f “ p

q be a rational function with poles outside σpaq. So we may as-

sume that q is a polynomial not vanishing on σpaq, and thus 1
q P Hpσpaqq. But

then 1 “ τp1q “ τpq 1
q q “ τpqq τp 1

q q holds, so τp 1
q q “ τpqq´1 and therefore τppq q “

τppq ¨ τpqq´1 “ ppaq ¨ qpaq´1 “
p
q paq “ fpaq holds.

Let finally f P Hpσpaqq be arbitrary, i.e. w.l.o.g. f P HpU,Cq for some open neigh-
borhood U of σpaq. Let K Ď U be a compact set containing σpaq in the interior.

According to Runge’s Approximation Theorem 5.3.6 , there exists a sequence of
rational functions fn with poles outside K, which uniformly converges to K towards
f . Then the germs rfns converge towards that of f , and the continuity statement
implies fpaq “ lim fnpaq “ lim τpfnq “ τpfq.

6.29 Spectral Mapping Theorem.

For f P Hpσpaqq the equation σpfpaqq “ fpσpaqq holds.

Proof. Let f P HpUq with open U Ě σpaq.
(Ě) For given z P σpaq we have that

g : w ÞÑ

#

fpzq´fpwq
z´w for w ‰ z

f 1pzq for w “ z

is a holomorphic function on U . Suppose fpzq R σpfpaqq. Then pz ´ aq gpaq “
fpzq´fpaq would be invertible and since the two factors commute with each other,

also z ´ a would be invertible by 6.2.3 , i.e. z R σpaq, a contradiction.

(Ď) Conversely, let z R fpσpaqq. Then g : w ÞÑ pz ´ fpwqq´1 is a holomorphic
function on the neighborhood Uzf´1pzq of σpaq with 1 “ gpaq pz´fpaqq. So z´fpaq

would be invertible by 6.2.3 , i.e. z R σpfpaqq.

6.30 Lemma.

Let A be a Banach algebra and a, b P A. Then σpa bq Y t0u “ σpb aq Y t0u.

Proof. We have to show that λ ´ a b P invpAq ô λ ´ b a P invpAq for all λ ‰ 0.
Without loss of generality, λ “ 1 and 1 ´ a b are invertible with u :“ p1 ´ a bq´1.
We claim that 1´ b a is invertible and p1´ b aq´1 “ 1` b u a:

p1´ b aq p1` b u aq “ 1´ b a` b u a´ b a b u a “ 1` b p´1` u´ a b uq a

“ 1` b pp1´ a bqu´ 1q a “ 1

p1` b u aq p1´ b aq “ 1` b u a´ b a´ b u a b a “ 1` b pu´ 1´ u a bq a

“ 1` b pu p1´ a bq ´ 1q a “ 1.

andreas.kriegl@univie.ac.at c© 1. Juli 2019 113



Functional Calculus 6.33

6.31 Definition. Commutant.

We denote the set of elements, which commute with all b in a set B Ď A, as
commutant Bk :“ tx P A : x b “ b x @b P Bu of B. In algebra one calls this also
the centralizer of B in A.

We have that B ÞÑ Bk is an antitone mapping on the power set of A and B1 Ď Bk2
ô B2 Ď Bk1 , because both sides mean @b1, b2 : b1 P B1, b2 P B2 ñ b1 b2 “ b2 b1.

Thus, B Ď pBkqk “: Bkk because of Bk Ď Bk.

In addition, Bk “ Bkkk always holds, since B Ď Bkk implies Bk Ě pBkkqk and, on
the other hand, Bk Ď pBkqkk holds.

Note that Bk is a closed (with respect to any topology for which the multiplication
is separately continuous) subalgebra of A for each subset B Ď A, because x1 x2 b “
x1 b x2 “ b x1 x2.

Furthermore Bk “ Bk1 , where B1 denotes the closure of the subalgebra generated by
B in a topology with respect to which the multiplication is separately continuous.

Obviously, B is commutative if and only if B Ď Bk holds. Thus, for commutative B
also Bkk is commutative, because B Ď Bk ñ Bkk Ď Bk ñ Bkk Ď Bkkk “ pBkkqk.

6.32 Corollary.

For f P Hpσpaqq we have that fpaq commutes with all b P A commuting with a, i.e.
fpaq P taukk. Moreover, tfpaq : f P Hpσpaqquk “ tauk.

Proof. Because of Runge’s Approximation Theorem 5.3.6 , tauk “ tfpaq : f P

Hpσpaqquk (for polynomials f this is obvious. It follows easily (c.f. 6.28 ) that this

also holds for rational functions with poles outside σpaq) and thus fpaq P taukk for
all f P Hpσpaqq.

In the finite-dimensional case one uses the decomposition of the characteristic poly-
nomial into prime factors to obtain a direct sum decomposition (diagonal block
description) of the operator. We can now transfer this to elements of a Banach
algebra. However, since we do not have a space available for these elements to op-
erate on and hence we can not restrict the summands to invariant subspaces, the
spectrum of the summands contains 0.

6.33 Corollary.

Let a P A and σpaq “ K1\K2 a decomposition into closed disjoint sets. Then there
is an idempotent e P taukk (i.e. e2 “ e) and for a1 :“ a e and a2 :“ a p1 ´ eq we
have a “ a1 ` a2, a1 a2 “ 0 “ a2 a1, and σpajq “ Kj Y t0u for j P t1, 2u.

Proof. The idea of the proof is to first show this for the inverse image id P Hpσpaqq

under the algebra homomorphism Hpσpaqq Ñ taukk Ď A from 6.28 and then
apply this homomorphism. For j P 1, 2, let Uj be two disjoint open neighborhoods
of Kj . Then the characteristic function χU1

P HpU1 Y U2q. So e :“ χU1
paq P A

is well-defined. By 6.32 , e commutes with all b commuting with a, in particular,

with a itself. Moreover, e is idempotent because of χ2
U1
“ χU1

. Furthermore, 1´e “

p1´ χU1qpaq “ χU2paq. We have 1 “ e` p1´ eq and ep1´ eq “ e´ e2 “ e´ e “ 0,
so all claimed equations hold for a1 :“ a e “ e a and a2 :“ a p1 ´ eq “ p1 ´ eq a.
Moreover σpajq “ σppid ¨χUj qpaqq “ pid ¨χUj qpK1 \K2q “ idpKjq Y t0u “ Kj Y t0u

by the Spectral Mapping Theorem 6.29 .
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Dependency of the spectrum on the algebra

Let A be a Banach algebra and B a Banach subalgebra with a P B. Then obviously
ρBpaq Ď ρApaq and thus σApaq Ď σBpaq. We now want to investigate to what extent
the two spectra can be different. First, a rather typical example.

6.34 Example for the dependence of the spectrum on the algebra.

Let A :“ CpBD,Cq and B the Banach subalgebra generated by the identity a : z ÞÑ z.
Then σApaq “ BD and σBpaq “ D:

By 6.7.1 we have σApaq “ apBDq “ BD. Because }a}8 “ 1, σBpaq Ď D. Suppose

σBpaq Ă D. Then there is a λ P D and a b P B with pλ´aq b “ 1, i.e. pλ´zq bpzq “ 1
for all z P BD. Since b P B, there exists a sequence of polynomials bn which converges

on BD uniformly towards b. By the Maximum Modulus Principle 6.17 , the bn form

a Cauchy sequence in CpDq, thus converge uniformly towards a b̃ P CpDq, which
is thus holomorphic on D and coincides with b on BD. In the same way, we obtain
pλ ´ zq bnpzq ´ 1 Ñ 0 uniformly for z P D, so pλ ´ zqb̃pzq “ 1 holds for all z P D.

For z :“ λ, we therefore get the contradiction 0 “ pλ´ λq b̃pλq “ 1. So σBpaq “ D
holds.

6.35 Definition.

Let K Ď C be compact. Then the polynomial convex hull K̂ of K is defined by:

pK :“ tz P C : |ppzq| ď }p|K}8@p P Crzsu,
i.e. the set of all points on which no polynomial attains larger absolute values than

on K. The set K is called polynomial convex if K “ pK.

The complement C8zK has as open subset of C8 only countable many components:
Namely the unbounded component in C (i.e. the component in C8 which contains
8) together with the bounded components in C, the so-called holes of K.

Lemma.

Let K Ď C be compact. Then, the complement Cz pK of pK is the unbounded compo-

nent of the complement CzK of K. So pK is obtained by filling in all holes of K.
And K is polynomial convex if and only if the complement of K is connected.

Proof. Let CzK “ U8\
Ů

k‰8 Uk be the partition into the connected components.
Let U8 be the unbounded component and L :“ CzU8 “ K \

Ů

k‰8 Uk.

We claim L Ď pK:
Because of L “ K \

Ů

k‰8 Uk and K Ď pK it is enough to show Uk Ď pK for k ‰ 8.

According to the Maximum Modulus Principle 6.17 it is enough to show BUk Ď K,

so let x P BUk “ UkzUk Ď CzUk. Since x R Uj also for j ‰ k (since Uj is open and
disjoint to Uk), we conclude that x P K holds.

Suppose L Ă pK:

Let z P pKzL. Then w ÞÑ 1
w´z is a holomorphic function on a neighborhood of

L. Since CzL “ U8 is connected, there exists a sequence of polynomials pn with

supwPL |pnpwq ´
1

w´z | Ñ 0 by Runge’s Approximation Theorem 5.3.8 . Let qn :

w ÞÑ pw ´ zq pnpwq. Since z P pK we obtain

1 “ |0´ 1| “ |qnpzq ´ 1| ď supt|qnpwq ´ 1| : w P pKu “ supt|qnpwq ´ 1| : w P Ku

ď supt|qnpwq ´ 1| : w P Lu Ñ 0,

a contradiction.
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6.36 Theorem.

Let A be a Banach algebra, B a Banach subalgebra, and a P B. Then σBpaq is
obtained by completely filling up some holes of σApaq. In particular:

1. σBpaq Ě σApaq.

2. BσBpaq Ď BσApaq.

3. {σBpaq “ {σApaq.

4. If B is generated as Banach algebra by a, then σBpaq “ {σApaq.

Proof. ( 1 ) is obvious because an inverse to z ´ a in B is also one in A.

( 2 ) Let z P BσBpaq and suppose z R σApaq, i.e. pz ´ aq´1 P A exists. Since

z P BσBpaq, there exists a sequence zn R σBpaq (i.e. pzn ´ aq´1 P B exists) with
zn Ñ z and, by continuity of the inversion for A, pzn ´ aq

´1 Ñ pz ´ aq´1. Since B
is closed, we have pz ´ aq´1 P B, i.e. z R σBpaq Ě BσBpaq, a contradiction. Thus
z P BσApaq, because the interior of σApaq has be in the interior of σBpaq Ě σBpaq
and thus in CzBσBpaq.

( 3 ) {σBpaq Ě {σApaq holds because of σBpaq Ě σApaq. Suppose Dz0 P U8 :“ {σBpaqX

pC8z{σApaqq. Let z : r0, 1s Ñ U8 Ď C8 be a curve in the, by lemma in 6.35 ,
unbounded connected component U8 connecting z0 with 8 and t0 :“ suptt : zptq P
{σBpaq “ σBpaq\

Ů

k‰8 Uku. Then zpt0q P σBpaq and is not in the interior of σBpaq,
hence z0 P BσBpaq Ď BσApaq Ď σApaq, a contradiction.

( 4 ) By 3 , σB Ď xσB “ xσA always holds. Suppose there were an z P xσAzσB . Then

pz ´ aq´1 P B Ď A. Since B is the closure of the polynomials in a, there exists a
sequence of polynomials pn with pnpaq Ñ pz ´ aq´1. Let qn : w ÞÑ pz ´ wq pnpwq.
Then qnpaq “ pz´aqpnpaq Ñ pz´aq pz´aq´1 “ 1 holds. By the Spectral Mapping

Theorem 6.29 we have σA
`

pqn ´ 1qpaq
˘

“ pqn ´ 1q
`

σApaq
˘

and thus, by 6.25 ,

}qnpaq ´ 1} ě rApqnpaq ´ 1q :“ sup
!

|w| : w P σApqnpaq ´ 1q “ qnpσApaqq ´ 1
)

“ sup
!

|qnpwq ´ 1| : w P σApaq
)

ě |qnpzq ´ 1| “ 1,

since z P {σApaq, a contradiction to qnpaq Ñ 1.

Remains to show that in general σBpaq is obtained by completely filling up some
holes of σApaq:
Let U be a hole of σA. Then U “ U1 \ U2, where U1 :“ U X σB “ U X pσBzBσBq,

because BσB Ď BσA Ď σA Ď CzU by 2 , and U2 :“ U X ρB . Thus, U1 and U2 are
open and disjoint. Since U is connected as a hole, one of the two sets is empty, so
the hole U is completely contained in σB or in the complement ρB .

Commutative Banach algebras

We now want to develop a duality theory for Banach algebrasA. Instead of the linear
functionals we should probably use Banach algebra homomorphisms AÑ C. So we
start by studying algebra homomorphisms. Since continuity of linear functionals

can be described by closedness of the kernel by 3.4.2 , we should in particular
study the kernels of algebra homomorphisms.

6.37 Definition (Ideals).
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A subset I Ď A of a (Banach) algebra A is called an ideal if I is a linear subspace
and with i P I and a P A also i a P I and a i P I.

An ideal is called true ideal, if I ‰ A, or equivalent if 1 R I, or further equivalent
invpAq X I “ H: The directions pðq are obvious. Conversely, let i P I be invertible
in A and a P A arbitrary, then a “ i´1 i a P I.

The kernel of each algebra homomorphism is obviously a true ideal (because of
fp1q “ 1), and conversely, each ideal I Ă A of an algebra A defines an algebra
structure on A{I such that the canonical map π : A Ñ A{I with kernel I is an
algebra homomorphism: For the projection π : A Ñ A{I to become an algebra
homomorphism, one has to define the multiplication in A{I by pa` Iq ¨ pb` Iq :“
a ¨ b` I. Since I is an ideal, this definition makes sense, because pa` iq ¨ pb` jq “
a ¨ b` a ¨ j ` i ¨ b` i ¨ j P a ¨ b`A ¨ I ` I ¨A` I ¨ I Ď a ¨ b` I for i, j P I.

An ideal I in A is called maximal if it is maximal among all true ideals with respect
to the inclusion.

Lemma.

The maximal ideals of a commutative algebra are exactly the kernels of surjective
algebra homomorphisms with values in divisional algebras (i.e. where each element
unequal to 0 is invertible).

Proof. Let f : A � B be a surjective algebra homomorphism (between not nec-
essary commutative algebras) and let every 0 ‰ b P B be invertible. Then ker f
is a maximal ideal, because if I Ą ker f is an ideal, then it is easy to see that
fpIq ‰ t0u is an ideal in B, thus contains an invertible element b “ fpiq with i P I.
Let fpaq “ b´1. Then fp1´ a iq “ 0, i.e. 1 P ker f ` a i Ď I, so I “ A.

Conversely, let I Ă A be a maximal ideal. And let π : A Ñ A{I be the canonical
mapping. Furthermore, let 0 ‰ b P A{I. Then there is an a P AzI with πpaq “ b. Let
Ia be the ideal generated by I and a. Because of the commutativity Ia “ I ` Aa.
The maximality of I implies 1 P Ia, i.e. there are i P I and a1 P A with 1 “ i` a1 a,
hence 1 “ 0` πpa1q b in A{I and thus b is invertible.

6.38 Theorem of Gelfand-Mazur.

Let A be a Banach algebra with invpAq “ Azt0u (i.e. a division algebra). Then
A “ tλ 1 : λ P Cu – C.

Proof. Let a P A. Then σpaq ‰ H. Let z P σpaq, i.e. z 1 ´ a has no inverse, thus
z 1´ a “ 0, i.e. a P C 1.

6.39 Proposition. Automatic continuity.

Let A be a Banach algebra and f : AÑ C be an algebra homomorphism. Then f is
continuous and }f} “ 1.

Proof. Since fp1q “ 1 we only have to show that |fpaq| ď }a} for all a P A:
Suppose |fpaq| ą }a}, then fpaq¨1´a is invertible and hence also fpfpaq¨1´aq “ 0,
a contradiction.

6.40 Lemma.

Let A be an Abelian Banach algebra. Then there is a bijection

AlgpA,Cq Õ
 

I : I is a maximal ideal in A
(

f ÞÑ kerpfq
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Here, the algebra homomorphism f : A Ñ C associated to a maximal ideal I is
determined by fpaq ¨ 1 “ πpaq, where π denotes the canonical projection AÑ A{I.

Proof. pÞÑq is well-defined by the lemma in 6.37 .

pÐ q Let now I be a maximal ideal. Then InvpAqXI “ H and, since invpAq is open,
also InvpAq X Ī “ H. Since Ī obviously is an ideal, it follows from the maximality
that I “ Ī, i.e. I is closed.

Claim. For every closed true ideal I Ÿ A the Banach space A{I is a Banach algebra.

By 6.37 , pa` Iq ¨ pb` Iq :“ a ¨ b` I defines a multiplication that makes A{I into
an algebra and π : AÑ A{I into an algebra homomorphism. The quotient norm is
submultiplicative, because

}pa` Iq ¨ pb` Iq} “ }a ¨ b` I}

“ inft}a ¨ b` i} : i P Iu

ď inft}a ¨ b` k} : k “ a ¨ j ` i ¨ b` i ¨ j with i, j P Iu

“ inft}pa` iq ¨ pb` jq} : i, j P Iu

ď inft}a` i} ¨ }b` j} : i, j P Iu

“ inft}a` i} : i P Iu ¨ inft}b` j} : j P Iu

“ }a` I} ¨ }b` I}

We have }1 ` I} “ inft}1 ` i} : i P Iu ď }1 ` 0} “ 1. Suppose }1 ` I} ă 1. Then
}1` I} “ }p1` Iq2} ď }1` I}2 ă }1` I} would be a contradiction.

Since I is maximal and A is Abelian, A{I is a division algebra by 6.37 , and

thus A{I “ C ¨ 1 – C by 6.38 . So f : A Ñ A{I – C is the required algebra
homomorphimus with fpaq ¨ 1 “ πpaq.

Obviously, the two mappings are inverse to each other, because on the one hand
kerpfq “ kerpπq “ I and on the other hand, two algebra homomorphisms f1 and f2

of AÑ B haveing the same kernel are identical, because f2paq “ f2pa´ f1paq 1q `
f2pf1paq 1q “ f1paq f2p1q “ f1paq, since a´ f1paq 1 P kerpf1q “ kerpf2q.

6.41 Lemma. Abelization of Banach algebras.

Let A be a Banach algebra. With A1 we denote the closed ideal of A generated by
tab´ ba : a, b P Au. Then AAbel :“ A{A1 is a commutative Banach algebra and the
natural projection AÑ AAbel is a Banach algebra homomorphism with the following
universal property: To each Banach algebra homomorphism f : AÑ B with values
in a commutative Banach algebra B exists a unique Banach algebra homomorphism
fAbel : AAbel Ñ B which makes following diagram commutative:

A
π //

f ��

AAbel

fAbel

D!

||
B

Proof. We have shown in the proof of 6.40 that A{A1 is a Banach algebra, because
A1 is a closed ideal. Obviously, A{A1 is commutative, because pa ` A1q pb ` A1q ´
pb ` A1q pa ` A1q “ pab ´ baq ` A1 Ď A1. So let B be a commutative Banach
algebra and f : A Ñ B be a Banach algebra homomorphism. Then fpab ´ baq “
fpaq fpbq ´ fpbq fpaq “ 0 and, as f is continuous, also A1 Ď ker f . So f factors to

a unique continuous linear mapping fAbel :“ f̃ : A{A1 Ñ B. We have that f̃ is

andreas.kriegl@univie.ac.at c© 1. Juli 2019 118



Commutative Banach algebras 6.42

an algebra homomorphism, because f̃ppa ` A1q pb ` A1qq “ f̃pa b ` A1q “ fpa bq “

fpaq fpbq “ f̃pa`A1q f̃pb`A1q.

6.42 From AlgpA,Cq back to A

We now want to find out to which extent one can recover the algebra A from the
set AlgpA,Cq of all algebra homomorphisms AÑ C.
Since all of these homomorphisms factor over the Abelization, we can at most
recapture Abelian Banach algebras from their C-valued homomorphisms. Let’s look
first at our typical example A :“ CpX,Cq of a commutative Banach algebra and try
to describe the algebra homomorphisms AÑ C as explicitly as possible. Obviously,
every x P X defines such a homomorphism evx : A Ñ C by evxpfq “ fpxq. This
assignment δ : x ÞÑ evx is injective, since the continuous functions f : X Ñ C on
compact spaces X are point separating (a special case of the Lemma of Urysohn).

The mapping δ : X Ñ AlgpA,Cq is onto:
Let ϕ : A Ñ C be an algebra homomorphism. We are searching for a point x P X
with ϕpfq “ fpxq for all f P A. Let I :“ kerϕ. For each f P I we consider the closed
zero set f´1p0q “ tx P X : fpxq “ 0u. This is not empty, otherwise f would be
invertible in A, i.e. 1 P I. This family of zero sets has the finite intersection property,
because f´1p0q X g´1p0q “ pff̄ ` gḡq´1p0q and with f, g P I also ff̄ ` gḡ is in the
ideal. Since X is compact,

Ş

fPI f
´1p0q ‰ H. So let x P f´1p0q for all f P I. For any

f P A we have f ´ϕpfq 1 P I “ kerpϕq and thus 0 “ pf ´ϕpfq 1qpxq “ fpxq´ϕpfq,
i.e. ϕ “ evx.

Thus we can identify the points of X with the C-valued algebra homomorphisms
on A :“ CpX,Cq. If we want to recover the algebra A, then we have to provide
AlgpA,Cq with a Hausdorff topology such that the mapping X Ñ AlgpA,Cq is
continuous (then it is automatically a homeomorphism since X is compact). So
xi Ñ x should imply evxi Ñ evx in AlgpA,Cq. Pointwise at f P A this is valid,
because evxipfq “ fpxiq Ñ fpxq.

We have thus shown the following:

Proposition.

Let X be a compact Hausdorff space and A :“ CpX,Cq. If we consider AlgpA,Cq
with the topology the pointwise convergence, i.e. as subspace of CA “

ś

aPA C, then
the mapping δ : X Ñ AlgpA,Cq “ AlgpCpX,Cq,Cq is a homeomorphism.

More generally, a completely regular topological space is called a real-compact,
if this mapping δ : X Ñ AlgpA,Cq “ AlgpCpX,Cq,Cq is a homeomorphism, see
[26, 2.5].

Consequently, for the Banach algebra A :“ CpX,Cq we obtain an isomorphism

δ˚ : CpAlgpA,Cq,Cq – CpX,Cq “ A.

Note that pδ˚q´1 : A Ñ CpAlgpA,Cq,Cq is given by δ : a ÞÑ evap: ϕ ÞÑ ϕpaqq,
because

pδ˚ ˝ δqpfqpxq “ δ˚pδpfqqpxq “ δpfqpδpxqq “ δpxqpfq “ fpxq

We want to generalize this as far as possible to arbitrary (commutative) Banach
algebras A. For this we supply the so-called spectrum σpAq :“ AlgpA,Cq of A
again with the topology of pointwise convergence. If we can prove the compactness
of σpAq, then CpσpAq,Cq is a Banach algebra with respect to the topology of
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uniform convergence and δ : A Ñ CpσpAq,Cq, a ÞÑ evap: ϕ ÞÑ ϕpaqq is a well-
defined algebra homomorphism, which we will now examine in more detail.

6.43 Gelfand’s Representation Theorem.

Let A be a commutative Banach algebra. Then its spectrum σpAq :“ AlgpA,Cq “: X
is a compact Hausdorff space with respect to the topology of pointwise convergence.
The Gelfand transformation

G “ δ : AÑ CpX,Cq “ C
`

AlgpA,Cq,C
˘

, a ÞÑ evap: ϕ ÞÑ ϕpaqq

is a Banach algebra homomorphism with the radical of A as its kernel

kerpGq “ RadpAq :“
č

tI : I is a maximal ideal of Au.

For a P A the identities σApaq “ σCpX,CqpGpaqq and }Gpaq}8 “ rpaq hold.

Proof. Obviously, X :“ AlgpA,Cq is closed in CA, because X Q ϕi Ñ ϕ implies
ϕpa bq “ limϕipa bq “ limϕipaqϕipbq “ limi ϕipaq limj ϕjpbq “ ϕpaqϕpbq and sim-
ilarly one shows the linearity of ϕ. Furthermore, X is bounded in CA, because

|prapϕq| “ |ϕpaq| ď }a} for a P A and ϕ P X by 6.39 . Hence, by Tychonoff’s
Theorem, X is compact.

The mapping G has values in CpX,Cq, because ϕi Ñ ϕ in X Ď CA implies that
Gpaqpϕiq “ ϕipaq Ñ ϕpaq “ Gpaqpϕq.

Obviously, G is an algebra homomorphism since evϕ ˝G “ ϕ is one for all ϕ P X.

For the kernel of G, the following holds:

a P kerG ô 0 “ Gpaq ô @ϕ P X : 0 “ Gpaqpϕq “ ϕpaq

ô a P
č

ϕPX

kerϕ “
č

I

I “ RadpAq,

where the last intersection is over all maximal ideals I of A.

Now to the statement σApaq “ σCpX,CqpGpaqq about the spectra for a P A:

Note that σCpX,CqpGpaqq “ tGpaqpϕq “ ϕpaq : ϕ P Xu holds by 6.7.1 .
(Ě) Let z “ ϕpaq P σCpX,CqpGpaqq, then ϕpaq 1´a P kerϕ and thus is not invertible,
i.e. z “ ϕpaq P σApaq.
(Ď) Now let z P σApaq, i.e. z 1 ´ a is not invertible. Then the ideal A ¨ pz 1 ´ aq
generated by z 1´a is a true ideal. Thus, according to the Lemma of Zorn, there is
a maximal ideal I containing z 1´a. Let ϕ : AÑ C be the algebra homomorphism
with kernel I. Then 0 “ ϕpz 1´ aq “ z ´ ϕpaq, i.e. z P σCpX,CqpGpaqq.

Consequently, we obtain the following estimate for the norms:

}Gpaq}8 :“ supt|Gpaqpϕq| “ |ϕpaq| : ϕ P Xu

“ supt|z| : z P σCpX,CqpGpaqq “ σApaqu “ rpaq ď }a}.

A commutative Banach algebra is called semisimple if RadpAq “ t0u, i.e. the
Gelfand homomorphism is injective.

Because of σpaq “ σpGpaqq “ tϕpaq : ϕ P σpAqu the mapping eva : σpAq Ñ σpaq is
onto and by definition of the topology on σpAq it is also continuous, because ϕi Ñ ϕ
pointwise implies that evapϕiq “ ϕipaq Ñ ϕpaq “ evapϕq. Since σpAq “ AlgpA,Cq
is compact, eva : σpAq Ñ σpaq is a quotient mapping.

6.44 Proposition.
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Let A be a Banach algebra generated by some a P A as Banach algebra, i.e.
tppaq : p P Crzsu is dense in A.

Then the mapping

eva : σpAq :“ AlgpA,Cq Ñ σpaq

is a homeomorphism and the diagram to the right
commutes.

CpσpAq,Cq Cpσpaq,Cq
–

pevaq
˚

oo

A

G

OO

Hpσpaqq.
eva

oo

p q|σpaq

OO

Proof. The quotient mapping eva : σpAq Ñ σpaq is in addition injective and
thus a homeomorphism, because for ϕj P AlgpA,Cq with ϕ1paq “ ϕ2paq we have
ϕ1pppaqq “ ϕ2pppaqq for all polynomials p P Crzs and, since the set tppaq : p P Crzsu
is dense in A by assumption, ϕ1 “ ϕ2 holds.

Since all arrows in the diagram are continuous algebra homomorphisms and Czσpaq
is connected by 6.36 , i.e. Crzs is dense in Hpσpaqq by 5.3.8 , it suffices to prove
the commutativity of the diagram on id : z ÞÑ z:

pevaq
˚pid |σpaqqpϕq “ pid ˝ evaqpϕq “ idpϕpaqq “ ϕpaq “ Gpaqpϕq “ Gpidpaqqpϕq.

Example.

Let

A :“

"ˆ

a b
0 a

˙

: a, b P C
*

.

be the 2-dimensional commutative Banach subalgebra of LpC2q which is generated

by T “

ˆ

0 1
0 0

˙

. The only eigenvalue of T is 0, so σpAq – σpT q “ t0u by 6.44 .

So there is a unique algebra homomorphism ϕ : A Ñ C and it suffices ϕpT q “ 0.
One can see this directly as well: Let ϕ P σpAq, hence an algebra homomorphism
AÑ C. Then ϕpT q2 “ ϕpT 2q “ ϕp0q “ 0 and thus

ϕ

ˆ

a b
0 a

˙

“ ϕpa 1` b T q “ a.

Therefore the only maximal ideal in A is kerpϕq “ C ¨ T and hence RadpAq “
kerpϕq ‰ t0u, i.e. A is not semisimple. Moreover, G : A Ñ CpσpAq,Cq – C is the
mapping

ˆ

a b
0 a

˙

ÞÑ ϕ

ˆ

a b
0 a

˙

“ a.

Example.

A continuous generalization of the last example is given as follows. Let

pKfqpxq :“

ż 1

0

kpx, yq fpyq dy “

ż x

0

kpx, yq fpyq dy

with measurable integral kernel k P L8pr0, 1s2q and kpx, yq “ 0 for x ă y. Then
K : L2r0, 1s Ñ L2r0, 1s is a so-called Volterra operator with norm }K} ď }k}8 and
furthermore }Kn} ď 1

n! }k}
n
8. For all this see [18, 3.5.5]. Consequently, }Kn}1{n ď

}k}8
n?
n!
Ñ 0. Thus, the spectral radius rpKq equals 0, and hence σpKq “ t0u, i.e. the

Banach algebra generated by K has exactly one maximal ideal (namely the closure

of tppKq : p P Crzs und pp0q “ 0u) by 6.44 and is therefore not semisimple.

Example.
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The Gelfand homomorphism G is generally not onto:
Let A be the closure of the polynomials in CpBD,Cq, i.e. the Banach subalgebra
of CpBD,Cq generated by the identity a : z ÞÑ z. Then according to Proposition

6.44 σpAq “ AlgpA,Cq – σApaq “ D by 6.34 . If G would have dense image in

CpσpAq,Cq, then also the composite with Crzs Ď HpσApaqq Ñ A, and by 6.44

also Crzs Ď HpDq Ñ CpD,Cq, which is not the case (uniform limits of sequences of
polynomials must be holomorphic on D).

As a first application of the Gelfand transformation we prove the existence of the
Stone-Čech compactification:

6.45 Stone-Čech compactification.

For each topological space X there exists a compact space βX, the so-called Stone-
Čech compactification and a continuous mapping δ : X Ñ βX with the follow-
ing universal property:

X
δ //

f   

βX

f̃

D!

}}
K

where K is compact and both f and f̃ are continuous.

Proof. Let A :“ CbpX,Cq be the Banach algebra of bounded continuous func-
tions on X with the 8-norm and pointwise operations. Let βX :“ AlgpA,Cq. The
mapping δX : X Ñ βX, x ÞÑ evx is continuous according to the definition of the
topology of pointwise convergence on AlgpA,Cq.

Let now K be any compact space. By 6.42 , δ : K Ñ AlgpCpK,Cq,Cq is a
homeomorphism. Each continuous f : X Ñ K induces an algebra homomorphism
f˚ : CpK,Cq Ñ CpX,Cq, g ÞÑ g ˝ f and, since K is compact, it has values in the
subalgebra CbpX,Cq.

By dualizing again we obtain a continuous mapping
f˚˚ : AlgpCbpX,Cq,Cq Ñ AlgpCpK,Cq,Cq and thus

a continuous mapping f̃ : AlgpCbpX,Cq,Cq Ñ K

with δ ˝ f̃ “ f˚˚. This fulfills f̃ ˝ δ “ f , because

X
δ //

f

��

AlgpCbpX,Cq,Cq

f˚˚

��
f̃

xx
K

δ

–
// AlgpCpK,Cq,Cq

pδ ˝ f̃ ˝ δqpxqphq “ pf˚˚ ˝ δqpxqphq “ f˚˚pδpxqqphq “ δpxqpf˚phqq “ pf˚phqqpxq

“ hpfpxqq “ δpfpxqqphq “ pδ ˝ fqpxqphq.

For the uniqueness of f̃ , it is enough to show the denseness of the image of δ : X Ñ

βX. Let ϕ P βX “ AlgpCbpX,Cq,Cq. A typical neighborhood of ϕ is described by

U :“
 

ψ : |pψ ´ ϕqpfiq| ă ε for 1 ď i ď n
(

with finite many f1, . . . , fn P CbpX,Cq and given ε ą 0. We have to find an x P X
with evx P U . Consider the function

f :“
n
ÿ

i“1

|fi ´ ϕpfiq 1|2 “
n
ÿ

i“1

pfi ´ ϕpfiq 1q pfi ´ ϕpfiq 1q P CbpX,Cq.

Obviously, ϕpfq “ 0. Suppose evx R U for all x P X and hence fpxq ě ε2 for all
x P X and thus also 1

f P CbpX,Cq, i.e. f P kerpϕq is invertible, a contradiction.
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7. Representation theory for C˚-algebras

Basics about C˚-algebras

We now want to find those commutative Banach algebras A for which the Gelfand

homomorphism G : AÑ CpAlgpA,Cq,Cq from 6.43 is an isomorphism.

Note that the pointwise conjugation CpX,Cq Ñ CpX,Cq, f ÞÑ f defines an in-
volution, i.e. a conjugated linear isometry whose square is the identity and which
satisfies f ¨ g “ f ¨ g. Because of f ¨ f “ |f |2, we have in addition }f ¨ f} “ }f}2 for
the 8-norm.

More generally, the conjugation on L8pX,A, µq for σ-finite measure spaces pX,A, µq
also has these properties.

7.1 Definition.

A C˚-algebra is a Banach algebra A along with an involution, i.e. a conjugated
linear mapping p q˚ : AÑ A, with pa¨bq˚ “ b˚¨a˚ and pa˚q˚ “ a, which additionally
satisfies }a}2 ď }a˚ ¨ a}. One also says for the last condition that } } is a ˚-norm.
If A has a 1 then 1˚ “ 1, because 1˚ “ 1˚ ¨ 1 “ 1˚ ¨ 1˚˚ “ p1˚ ¨ 1q˚ “ 1˚˚ “ 1.

A algebra homomorphism between C˚-algebras which intertwines with their in-

volutions ˚ is called ˚-homomorphism. We will show in 7.28 that continuity is
automatical.

For each complex Hilbert space H ‰ t0u the Banach algebra LpHq with the adjoint
p q˚ : LpHq Ñ LpHq is a non-commutative C˚-algebra:

}fx}2 “ xfx, fxy “ xf˚fx, xy ď }f˚fx} ¨ }x} ď }f˚f} ¨ }x}2 ñ }f}2 ď }f˚f}.

7.2 Lemma.

Let A be a C˚-algebra (possibly without 1) and a P A. Then

}a˚} “ }a} “ max
 

}a x} : }x} ď 1
(

“ max
 

}x a} : }x} ď 1
(

and }a˚ ¨ a}2 “ }a}2 “ }a ¨ a˚}.

Proof. We have }a}2 ď }a˚a} ď }a˚} }a}, hence }a} ď }a˚}. If we replace a by
b :“ a˚ then we get }a˚} ď }a˚˚} “ }a} and }a}2 “ }a˚ ¨ a}. Moreover,

}a ¨ a˚} “ }b˚ ¨ b} “ }b}2 “ }a˚}2 “ }a}2.

Let α :“ supt}a x} : }x} ď 1u ď supt}a} }x} : }x} ď 1u “ }a}. For x :“ 1
}a}a

˚ we

have }x} “ 1 by the first part and }ax} “ 1
}a}}a ¨ a

˚} “ }a}, thus }a} “ α and the

supremum is a maximum.

7.3 Corollary (Adjunction of a unit).

Let A be an C˚-algebra without 1, then A1 :“ tLa ` λ ¨ id : a P A, λ P Cu with
La : b ÞÑ a b defines a subalgebra of LpAq, which, with respect to pLa ` λ ¨ idq˚ :“
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La˚ ` λ̄ ¨ id, is a C˚-algebra and the canonical mapping ι : AÑ A1, a ÞÑ La is an
isometry with the following universal property:

A
� � //

f   

A1

f1D!

��
B

where f and f1 are ˚-homomorphisms, B is a C˚-algebra with 1, and f1 preserves
the unit.

Compare this with 6.4 . However, the norm defined there is not a ˚ norm.

Proof. We have to show that the operator norm turns A1 into a C˚-algebra. That
A1 is an algebra is clear because of pLa` λ ¨ idq pLb`µ ¨ idq “ La b`λb`µa` λµ ¨ id.
The star defined by pLa`λ ¨ idq

˚ :“ La˚ ` λ̄ ¨ id is an involution on A1. So we only
have to verify the C˚-condition.
Let a P A and λ P C. For each ε ą 0 there is an x P A with }x} “ 1 and

}La ` λ ¨ id }
2 ´ ε2 ď }a x` λx}2 “ }pa x` λxq˚ pa x` λxq}

“ }px˚a˚ ` λ̄ x˚q pa x` λxq}

ď }x˚} }pa˚ ` λ̄q pa` λqx}

ď 1 }pLa ` λ ¨ idq
˚pLa ` λ ¨ idq} 1

ď }pLa ` λ ¨ idq
˚} ¨ }La ` λ ¨ id }.

The universal property follows immediately, as a ˚-homomorphism f : A Ñ B
has as its only possible 1-preserving extension f̃pLa ` λ ¨ idq “ fpaq ` λ ¨ 1. This
extension is indeed an algebra homomorphism because of the above expression for
the product. It is also a ˚-homomorphism, due to f̃ppLa`λ¨idq

˚q “ f̃pLa˚`λ̄¨idq “

fpa˚q ` λ̄ ¨ 1 “ fpaq˚ ` pλ ¨ 1q˚ “ pf̃pLa ` λ ¨ idqq
˚.

7.4 Definition.

Let A be a C˚-algebra and a P A.
The element a is called Hermitian (or self adjoint) :ô a “ a˚.
The element a is called normal :ô a˚a “ a a˚.
The element a is called unitary :ô a˚a “ 1 “ a a˚.

Example.

For a P A :“ CpX,Cq with compact X the following holds:

1. a is automatically normal.

2. a is Hermitian ô σpaq “ apXq Ď R.

3. a is unitary ô σpaq “ apXq Ď S1.

7.5 Lemma.

Let H be a Hilbert space. Then the continuous linear operators T P LpHq correspond
in a bijective and isometric manner to the continuous sesqui-linear forms b : H ˆ

H Ñ C by virtue of the relation

bpx, yq “ xTx, yy @x, y P H.

Moreover, T is self adjoint if and only if b is conjugate-symmetric, and T is positive
if and only if b is positive.

Proof. Let H be the Hilbert space conjugate to H, i.e. it differs from H only in
the definition of scalar multiplication λ ¨ a :“ λ ¨ a. According to Riesz’s Theorem
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[18, 6.2.9], ι : H Ñ H
˚
, x ÞÑ xx, y is a surjective C-linear isometry, and hence

also ι˚ : LpH,Hq Ñ LpH,H
˚
q – LpH,H;Cq. The latter space is just that of the

continuous sesqui-linear forms on H. Via this isometry the T P LpH,Hq correspond
to b : H ˆH Ñ C given by bpx, yq :“ xTx, yy. Thus T is self adjoint if and only if

bpx, yq “ xTx, yy “ xx, Tyy “ xTy, xy “ bpy, xq, i.e. b is conjugated symmetric; and
similarly for positivity.

7.6 Proposition.

Let b : H ˆH Ñ C be sesqui-linear. Then the following holds:

1. The parallelogram equation:

bpx` y, x` yq ` bpx´ y, x´ yq “ 2
´

bpx, xq ` bpy, yq
¯

@x, y P H.

2. The polarization equation:

4 bpx, yq “ bpx` y, x` yq ´ bpx´ y, x´ yq

` i bpx` i y, x` i yq ´ i bpx´ i y, x´ i yq,

that means b is already uniquely determined by its values on the diagonal
tpx, xq : x P Hu.

3. b “ 0 ô @x P H : bpx, xq “ 0.

4. b is conjugated symmetric ô @x P H : bpx, xq P R.

5. If b is positive (i.e. bpx, xq ě 0 for all x P H), then the Cauchy Schwarz
inequality holds:

|bpx, yq|2 ď bpx, xq bpy, yq @x, y P H.

Note that ( 3 ) implies that an operator B P LpHq is the 0 operator if and only if
the associated sesqui-linear form b vanishes on the diagonal, i.e. @x P H : Bx K x.
In the real case this is obviously wrong!

Proof. ( 1 ) follows by expanding the left hand side, as was shown in [18, 6.2.2].

( 2 ) follows by expansion using the sesqui-linearity.

( 3 ) follows immediately from the polarization equation ( 2 ).

( 4 ) The sesqui-linear form px, yq ÞÑ bpx, yq ´ bpy, xq vanishes by ( 3 ) if and only
if it vanishes on px, xq for all x, i.e. bpx, xq P R for all x.

( 5 ) That’s what we have shown in [18, 6.2.1].

7.7 Proposition.

Let H be a Hilbert space and a P LpHq, then:

1. a is Hermitian ô @x P H : xax, xy P R.

2. a is normal ô @x P H : }ax} “ }a˚x}.

3. a˚a “ 1 ô @x P H : }ax} “ }x}
ô @x, y P H : xax, ayy “ xx, yy, i.e. a is an isometry.

4. a is unitary ô a is a surjective isometry.

Proof. ( 1 ) The operator a is Hermitian if and only if the conjugated linear form

bpx, yq :“ xax, yy is conjugated symmetric by 7.5 . This is the case by 7.6.4 if and
only if bpx, xq “ xax, xy is real for all x.

( 2 ) By 7.6.3 we have that a is normal, i.e. b :“ a˚a ´ a a˚ “ 0, exactly if

0 “ xbh, hy “ xpa˚a´ a a˚qh, hy “ }ah}2 ´ }a˚h}2 for all h P H.
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( 3 ) We have a˚a “ 1 ô @x, y P H : xx, yy “ xa˚a x, yy “ xa x, a yy and because of

the polarization-equation, resp. 7.6.3 , this is equivalent to @x P H : }x}2 “ }a x}2.

( 4 ) (ñ) a a˚ “ 1 implies directly the surjectivity of a.
(ð) a˚a “ 1 implies a a˚a “ a “ 1 a and thus a a˚ “ 1 by the surjectivity of a.

7.8 Lemma.

Let A be a C˚-algebra and a P A.

1. If a is invertible, then so is a˚ and pa˚q´1 “ pa´1q˚ holds.

More generally, σpa˚q “ σpaq for all a P A.

2. We have a unique decomposition a “ Repaq ` i Impaq,

where Repaq :“ a`a˚

2 and Impaq :“ a´a˚

2i are Hermitian.

3. The element a is normal ô Repaq Impaq “ ImpaqRepaq.

4. If a is Hermitian, then }a} “ rpaq.

Proof. ( 1 ) Applying the involution to a´1 a “ 1 “ a a´1 yields a˚ pa´1q˚ “ 1 “

pa´1q˚ a˚. Thus, λ´ a is invertible if and only if λ´ a˚ “ pλ´ aq˚ is it.

( 2 ) Let a “ a1` i a2 be a decomposition into Hermitian elements a1 and a2. Then
a˚ “ a1 ´ i a2 and thus a1 “ Repaq and a2 “ Impaq.

On the other hand obviously a “ Repaq` i Impaq and pRepaqq˚ “ a˚`a˚˚

2 “ Repaq

as well as pImpaqq˚ “ a˚´a˚˚

´2i “ Impaq.

( 3 ) We have a˚ “ Repaq ´ i Impaq, hence

a˚a “ pRepaqq2 ´ i ImpaqRepaq ` iRepaq Impaq ` pImpaqq2 and

a a˚ “ pRepaqq2 ` i ImpaqRepaq ´ iRepaq Impaq ` pImpaqq2.

Thus a˚a “ a a˚ ô ImpaqRepaq “ Repaq Impaq.

( 4 ) For Hermitian a the equation }a2} “ }a˚a} “ }a}2 holds and thus by induction

}a2n} “ }a}2
n

. Hence rpaq “ limn }a
n}1{n “ limn }a

2n}1{2
n

“ }a}.

Spectral Theory of Abelian C˚-Algebras

We now want to study the Gelfand homomorphism for C˚-algebras. For this we
first have to study the C-valued algebra homomorphisms.

7.9 Lemma.

Let A be an C˚-algebra and f : AÑ C an algebra homomorphism.
Then f is a ˚-homomorphism.

Proof. We first show that f preserves self-adjointness. So let a˚ “ a P A and t P R.

Because of }f} “ 1 by 6.39 we have

|fpa` i tq|2 ď }a` i t}2 “ }pa` itq˚pa` itq} “ }pa´ i tq pa` i tq}

“ }a2 ` t2} ď }a}2 ` t2.

If fpaq “ α` i β is the decomposition in real and imaginary parts, we obtain:

}a}2 ` t2 ě |fpa` i tq|2 ě |α` i pβ ` tq|2 “ α2 ` pβ ` tq2 “ α2 ` β2 ` 2βt` t2,

hence }a}2 ě α2 ` β2 ` 2βt. If β ‰ 0 then t Ñ ˘8 yields a contradiction. Thus
β “ 0, i.e. fpaq “ α P R.
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Now let a P A be arbitrary. Since fpRepaqq and fpImpaqq are real by what has been
shown above, we have

fpa˚q “
7.8.2
““““““ fpRepaq ´ i Impaqq “ fpRepaqq ´ i fpImpaqq “ fpRepaqq ` i fpImpaqq

“ fpRepaq ` i Impaqq “ fpaq.

7.10 Theorem of Gelfand-Naimark.

The Gelfand homomorphism G : A Ñ CpAlgpA,Cq,Cq is a (˚-)isomorphism for
exactly those Banach algebras A, which can be made into a commutative C˚-algebra
by some involution.

Proof. ( ñ) If G is an isomorphism of Banach algebras, we can use it to pull back
the involution f ÞÑ f̄ of CpAlgpX,Cq,Cq to A and thus make A into a commutative
C˚-algebra.

(ð) Conversely, let A be a commutative C˚-algebra. Then Gpa˚qpfq “ fpa˚q “

fpaq “ Gpaqpfq holds for all f P AlgpA,Cq by 7.9 , so G is a ˚-homomorphism.

By 6.43 we have }Gpaq}8 “ rpaq ď }a} for all a P A and for Hermitian elements a

we have equality by 7.8.4 . In particular, }Gpaq}28 “ }Gpaq˚ Gpaq}8 “ }Gpa˚aq}8 “
}a˚a} “ }a}2 for all a P A, i.e. G is an isometry and thus injective.

Since G has as isometry closed image, it is sufficient for surjectivity to show the
denseness of the image. The subalgebra GpAq of CpX,Cq with X :“ AlgpA,Cq
contains the constants and is closed under conjugation. It is also points-separating:
Let ϕ1 ‰ ϕ2 be in X “ AlgpA,Cq, then by definition there is an a P A with
Gpaqpϕ1q “ ϕ1paq ‰ ϕ2paq “ Gpaqpϕ2q. Thus GpAq is dense by the Theorem [18,
3.4.3] of Stone-Weierstraß.

Résumé.

So one can calculate with elements of any C˚-algebra as if they were continuous
functions on a compact space, as long as one stays inside a commutative subalgebra.

7.11 Remark.

For each set X, the space A :“ BpX,Cq of all bounded C-valued functions on X is

a commutative C˚-algebra, thus is by 7.10 isomorphic to CpσpAq,Cq via Gelfand

homomorphism. The spectrum σpAq is the Stone-Čech compactification βX of the
discrete space X because A “ BpX,Cq “ CbpX,Cq and thus βX “ σpCbpX,Cqq “
σpAq by 6.45 .

In particular, σp`8q “ σpBpN,Cqq “ βN, cf. [26, 2.1.15,2.1.16].

7.12 Proposition.

Let A be generated as C˚-algebra by a normal a P A. Then the following diagram
is commutative.

CpAlgpA,Cq,Cq Cpσpaq,Cq
–

pevaq
˚

oo

A

G –

OO

Crz, zs.evaoo

p q|σpaq

OO

Proof. Since a is normal, the dense subalgebra tppa, a˚q : p P Crz, z̄su is commuta-

tive and thus also A itself. So by 7.10 , G is an isomorphism.
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That eva : AlgpA,Cq Ñ σpaq is a homeomorphism can be seen as in the proof of

6.44 (Attention: A need not be generated as Banach algebra by a):

Because of the remark after 6.43 , eva : σpAq Ñ σpaq is surjective, and from
ϕ1paq “ ϕ2paq follows ϕ1pppa, a

˚qq “ ppϕ1paq, ϕ1paq
˚q “ ppϕ2paq, ϕ2paq

˚q “ ϕ2pppa, a
˚qq

for all p P Crz, z̄s and finally ϕ1 “ ϕ2, since tppa, a˚q : p P Crz, z̄su is dense in A.

Since all occurring mappings are ˚-homomorphisms, and Crz, zs is generated by
the identity as ˚-algebra, it suffices to check the commutativity on id : z ÞÑ z, this

already happened in Proposition 6.44

In contrast to Banach algebras, the spectrum of an element of a C˚-algebra does
not depend on the algebra:

7.13 Proposition.

Let A be a C˚-algebra, B be a C˚-subalgebra, and b P B. Then σBpbq “ σApbq.

Proof. Let’s start with a Hermitian b P B and let C˚pbq be the Banach subalgebra
of B generated by b. Since this is an Abelian C˚-algebra, σC˚pbqpbq “ tϕpbq : ϕ P

AlgpC˚pbq,Cqu Ď R by 6.43 and 7.9 . By Theorem 6.36 we have

σBpbq Ď σC˚pbqpbq “
σ Ď R
“““““ BσC˚pbqpbq Ď BσBpbq Ď σBpbq

and thus σBpbq “ σC˚pbqpbq. The same works for A, so σBpbq “ σC˚pbqpbq “ σApbq.

Now let b P B be arbitrary. It remains to show that the invertibility of b in A
implies the invertibility in B, i.e. InvpBq “ InvpAq X B. So let a b “ 1 “ b a for
some a P A. Then pb˚bqpaa˚q “ b˚pbaqa˚ “ b˚a˚ “ pabq˚ “ 1˚ “ 1 and analogously
paa˚qpb˚bq “ 1. Since b˚b is Hermitian and invertible in A, it follows from the first
part that b˚b is also invertible in B and because of the uniqueness of the inverse,
a a˚ is in B. So a “ a 1 “ apa˚b˚q “ paa˚qb˚ P B.

Corollary.

Let a P A be normal. Then }a} “ rpaq holds.

Proof. Because the C˚-algebra C˚paq generated by a is commutative, }a} “

}Gpaq}8 “ rpaq by 7.10 and 6.43 .

7.14 Definition.

Let A be a C˚-algebra and a P A normal. Then we define by means of 7.12 and

7.13 a ˚-isometry ρ : Cpσpaq,Cq Ñ C˚paq Ď A, called function(al) calculus
for a, by the composite

CpAlgpC˚paq,Cq,Cq CpσC˚paqpaq,Cq–

pevaq
˚

oo

C˚paq

G –

OO

CpσApaq,Cqρ
oo

where C˚paq denotes the (commutative) C˚-subalgebra of A generated by a.

Theorem (Function Calculus).
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Let A be a C˚-algebra and a P A normal. Then the function calculus is the unique
˚-isometry ρ : Cpσpaq,Cq – C˚paq Ď A which extends the Riesz function calculus

from 6.28 , i.e. the following diagram commutes.

Hpσpaqq

Riesz
##

p q|σpaq // Cpσpaq,Cq

ρ
zz

A

Proof. Since ρ was obtained by composing C˚-isomorphisms, ρ is also a (not nec-

essarily surjective) ˚-isometry. Due to Proposition 7.12 , ρ coincides with the Riesz
calculus on the subspace Crzs of polynomials. Since the Riesz function calculus is

uniquely defined by 6.28 , the triangle commutes.

Now to the uniqueness. Let ρ : Cpσpaq,Cq Ñ A be any ˚-homomorphism that
extends the Riesz calculus. For each f P Cpσpaq,Cq there exists, according to The-
orem [18, 3.4.1] of Stone-Weierstraß, a sequence of polynomials fn : R2 Ñ C which
converges uniformly on σpaq towards f . We have CrRepzq, Impzqs – Crz, zs, by
Repzq “ z`z

2 and Impzq “ z´z
2i . On id : z ÞÑ z the Riesz function calculus and hence

ρ is given by ρpidq “ a and thus ρ is uniquely determined as ˚-homomorphism on the
˚-algebra Crz, zs generated by id. Because of continuity, ρ is uniquely determined
on Cpσpaq,Cq.

Corollary.

Let A be a C˚-algebra and a P A normal.

1. a is Hermitian ô σpaq Ď R.

2. a is unitary ô σpaq Ď S1.

This generalizes the example in 7.4 .

Proof. Since a is normal, we have the ˚-homomorphism ρ : Cpσpaq,Cq´–Ñ C˚paq Ď
A. Thus:

( 1 ) ρpidq “ a “ a˚ “ ρpidq ô id “ id on σpaq, i.e. σpaq Ď R.

( 2 ) ρpidq ρpidq “ a˚a “ 1 “ ρp1q ô | id |2 “ id id “ 1 on σpaq, i.e. σpaq Ď S1.

7.15 Spectral Mapping Theorem.

Let A be a C˚-algebra and a P A normal. Then for each f P Cpσpaq,Cq the equation

σpfpaqq “ fpσpaqq.

Proof. Let ρ : Cpσpaq,Cq´–Ñ C˚paq Ď A be the function calculus f ÞÑ fpaq. Since
ρ is an ˚-isomorphism,

σpfpaqq “ σApρpfqq “
7.13
“““““ σC˚paqpρpfqq “

7.14
“““““ σpfq “

6.7.1
““““““ fpσpaqq.

7.16 Corollary.

Let a P A be normal and f P Cpσpaq,Cq. Then fpaq is in the double commutant
ta, a˚ukk of ta, a˚u. Equivalently, ta, a˚uk “ tfpaq : f P Cpσpaq,Cquk.

Cf. 6.32 and 8.15 .

Proof. According to the Theorem [18, 3.4.1] of Stone-Weierstraß the subalgebra
tppa, a˚q : p P Crz, zsu generated by ta, a˚u is (because a is normal) dense in
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tfpaq : f P Cpσpaq,Cqu, so ta, a˚uk “ tfpaq : f P Cpσpaq,Cquk by the remarks in

6.31 , and thus fpaq P ta, a˚ukk for all f P Cpσpaq,Cq.

Applications to Hermitian elements

We will now give some applications of the function calculus to normal elements of
C˚-algebras.

7.17 Definition.

We denote with RepAq :“ ta P A : a “ a˚u the linear subspace of all Hermitian

elements. We have seens in 7.8 that A “ RepAq ‘ i ¨RepAq.

An a P A is called positive and we write a ě 0 if a is Hermitian and σpaq Ď r0,`8q.
The set of positive elements will be denoted A`. An f P CpX,Cq is positive if and

only if @x P X : fpxq ě 0, because σpfq “ fpXq by 6.7.1 .

We write a ě b for Hermitian elements a and b if a´ b ě 0.
For a P RepAq and f, g P Cpσpaq,Rq with f ě g we have fpaq ě gpaq, because

σpfpaq ´ gpaqq “ σppf ´ gqpaqq “ pf ´ gqpσpaqq P R` by 7.15 . In particular,
}a} ě a, because by σpaq Ď r´}a}, }a}s we have }a} ě id |σpaq.

7.18 Proposition (Positive and negative parts).

Let a P RepAq. Then there are unique elements a`, a´ P A` with a “ a`´ a´ and
a`a´ “ 0 “ a´a`.

Proof. The idea is to play this back to a P CpXq.
Existence: Let id˘ptq :“ maxt˘t, 0u. Then id˘ P CpR,Cq with id “ id`´ id´ and

id` id´ “ 0. The Spectral Mapping Theorem 7.15 implies a˘ :“ id˘paq ě 0
and a “ idpaq “ pid`´ id´qpaq “ a` ´ a´ as well as a`a´ “ id`paq id´paq “
pid` id´qpaq “ 0paq “ 0.

Uniqueness: Let a “ b`´b´ be a second decomposition with b˘ ě 0 and b`b´ “ 0 “
b´b`. The Banach subalgebra generated by ta`, a´, b`, b´u is a commutative C˚-
algebra, because ab` “ pb`´b´qb` “ b`b` “ b`pb`´b´q “ b`a and thus a˘b` “

b`a˘ by 7.16 . And analogously for a˘b´ “ b´a˘. By 7.10 this subalgebra is
isomorphic to CpX,Cq for some compact space X and there the decomposition of
R-valued functions into positive and negative parts is unique, i.e. b˘ “ a˘.

7.19 Proposition (Roots).

Let a P A` and 1 ď n P N, then there is a unique element n
?
a P A` with a “ p n

?
aqn.

Proof. As in the proof of 7.18 we use the function calculus 7.14 to define n
?
a by

n
?
a :“ fpaq with f : t ÞÑ n

?
t and, because of 7.16 , fpaq commutes with each other

“n-th root” b of a since these commute with bn “ a. Because of Theorem 7.10 of
Gelfand-Naimark and the uniqueness of n-th positive root for 0 ď a P Cpσpaq,Cq,
the uniqueness of n

?
a follows.

7.20 Lemma.

For a P RepAq are equivalent:

1. a ě 0;

2. }t´ a} ď t for all t ě }a};

3. }t´ a} ď t for some t ě }a}.
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This description avoids the spectrum, which behaves complicated on sums and
products.

Proof. p 1 ñ 2 q Let a ě 0 and t ě }a}, then 0 ď t ´ s ď t for all s P σpaq Ď

r0, }a}s. Consequently, via function calculus 7.14 , }t´ a} “ }t´ id }8 ď }t}8 “ t.

p 2 ñ 3 q is trivial.

p 3 ñ 1 q Because of a “ a˚, C˚paq is Abelian, and hence by 7.14 isomorphic
to CpX,Cq where X :“ σpaq. Thus, by assumption, |t ´ s| ď t for some t ě }a}
and all s P σpaq Ď R. No such s can be negative, otherwise we would have |t´ s| ě
t´ s ą t.

Corollary.

The set A` of all positive elements of a C˚-algebra is a closed cone.

Here we understand by a cone K a convex subset K Ď A, which satisfies λa P K
for 0 ‰ a P K and λ P R if and only if λ ě 0.

Proof. We first show that A` is closed. So let an P A` with an Ñ a. Then,
because of the continuity of ˚, also a is Hermitian. And }an ´ }an}} ď }an} implies

}a´ }a}} ď }a}, i.e. a ě 0 by 7.20 .

If a P A` and λ ě 0, then obviously λ a P A` by 7.15 . Furthermore A`Xp´A`q “
t0u, because a P A` implies a “ a˚ and σpaq Ď r0,`8q and a P ´A` implies

σpaq Ď p´8, 0s. So σpaq “ t0u and }a} “ rpaq “ 0 by 7.8.4 , i.e. a “ 0.
So if λa P A` with λ ă 0, then λa P A` X p´A`q “ t0u because of ´λa P A`, i.e.
a “ 0.

It remains to show that with a, b P A` also a` b P A`:
We have

›

›}a}`}b}´pa`bq
›

› ď
›

›}a}´a
›

›`
›

›}b}´b
›

› ď }a}`}b} and }a}`}b} ě }a`b},

so by 3 also a` b ě 0.

Remark.

For a, b P A` we have a b P A` ô a b “ b a:
In fact, a b P RepAq ô a b “ pa bq˚ “ b˚ a˚ “ b a. And under these equivalent
conditions, according to function calculus, w.l.o.g. a, b P CpX,R`q and thus also
a b ě 0.

7.21 Corollary.

Let ai P A` for i P t1, . . . , nu with a1 ` ¨ ¨ ¨ ` an “ 0. Then ai “ 0 for all i.

Proof. By 7.20 we have ´a1 “ a2`¨ ¨ ¨`an ě 0. So a1 P A`Xp´A`q “ t0u and,
because of symmetry, all ai “ 0.

7.22 Corollary.

For a P A are equivalent:

1. a ě 0;

2. a “ b2 for some b P RepAq;

3. a “ x˚x for some x P A.
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Proof. p 1 ñ 2 q is 7.19 for n “ 2.

p 1 ð 2 q Let b P RepAq and a “ b2. Because of the Spectral Mapping Theorem

σpaq “ σpb2q “ σpbq2 Ď tt2 : t P Ru “ r0,`8q, so a P A`.

p 2 ñ 3 q is obvious by x :“ b.

p 3 ñ 1 q So let a “ x˚x with x P A. Then obviously a˚ “ a. Let a “ a` ´ a´

be the decomposition in positive and negative parts by 7.18 . We have to show:
a´ “ 0. Let x

?
a´ “ b ` i c be the decomposition into real and imaginary parts

by 7.8.2 . Then px
?
a´q

˚px
?
a´q “ pb ´ i cq pb ` i cq “ b2 ` c2 ` ipb c ´ c bq but

also px
?
a´q

˚px
?
a´q “

?
a´ x

˚x
?
a´ “

?
a´ pa` ´ a´q

?
a´ “ ´pa´q

2. The
uniqueness of decomposition in real and imaginary parts implies thus: b c “ c b and

b2 ` c2 ` pa´q
2 “ 0. Because of p 2 ñ 1 q we have b2, c2, pa´q

2 ě 0 and thus

pa´q
2 “ 0 by 7.21 . Finally the positive element a´ “ 0 because of the uniqueness

of the root.

Corollary.

Let H be a Hilbert space and a P LpHq.
Then a is positive if and only if xax, xy ě 0 for all x P H.

Cf. 7.7 .

Proof. pñq If a ě 0, then a “ b˚b for some b P LpHq by 7.22 . So xax, xy “

xb˚b x, xy “ xb x, b xy “ }b x}2 ě 0.

pðq By 7.7.1 we have a “ a˚ and it remains to show σpaq Ď r0,`8q. For t ă 0

}pa´ tqh}2 “ }ah}2 ´ txah, hy ´ txh, ahy ` t2}h}2

“ }ah}2 ` 2p´tqxah, hy ` t2}h}2 ě 0` 0` t2}h}2.

holds. Thus kerpa´tq “ t0u, the image imgpa´tq is closed and a continuous inverse
b to a´ t is uniquely determined on it. We extend this by b|pimgpa´tqqK “ 0 and get
b ˝ pa´ tq “ 1 and thus 1 “ pb ˝ pa´ tqq˚ “ pa´ tq˚ ˝ b˚ “ pa´ tq ˝ b˚. So a´ t has

both a left and a right inverse and is thus invertible (see 6.2.3 ), i.e. t R σpaq.

7.23 Proposition.

For the elements of each C˚-algebra, the following holds:

1. a ď b implies x˚ax ď x˚bx.

2. 0 ď a ď b and a invertible implies b invertible and 0 ď 1
b ď

1
a .

Proof. ( 1 ) We have b ´ a ě 0 and thus Dy : b ´ a “ y˚y by 7.22 . Hence,
x˚bx´ x˚ax “ x˚pb´ aqx “ pyxq˚pyxq ě 0, i.e. x˚bx ě x˚ax.

( 2 ) Playing everything back to continuous functions on σpbq Ď r0, }b}s shows the
following special commutative cases:

3. If b ě 0 is invertible, then 1
b ě 0 and

?
b is invertible;

4. If b ě 1, then b is invertible and 1
b ď 1.

Because of 0 ď b ´ a we have 0 ď p 1?
a
q˚pb ´ aq 1?

a
“ 1?

a
b 1?

a
´ 1 “: b1 ´ 1 by 3

and 1 . So b1 ě 1 and is invertible with 1
b1
ď 1 by 4 . Then b “

?
a b1

?
a is also

invertible and 0 ď 1
b “

1?
a

1
b1

1?
a
“ p 1?

a
q˚ 1
b1

1?
a
ď p 1?

a
q˚1 1?

a
“ 1

a by 1 and 3 .

7.24 Proposition (Polar decomposition).
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Let H1 and H2 be two Hilbert spaces and a P LpH1, H2q. Then there is a unique
positive |a| P LpH1q and a unique partial isometry u P LpH1, H2q with a “ u ˝ |a|
and keru “ pimg |a|qK.

Furthermore: ker a “ ker |a| “ keru, img a “ img u, and img |a| “ pker |a|qK.

A u P LpH1, H2q is called a partial isometry if u|kerpuqK is an isometry. The

subspace with iniu :“ pkeruqK on which u acts isometrically, is called initial
space of u. The space finu :“ img u “ img u is called final space of u.

The positive element |a| is also defined for a in an abstract C˚-algebra by |a| :“
?
a˚a by 7.19 .

Proof. Existence: We define |a| :“
?
a˚a ě 0. For h P H1 we have

}ah}2 “ xah, ahy “ xa˚ah, hy “ x|a|2h, hy “ x|a|h, |a|hy “
›

›|a|h
›

›

2
.

Therefore, ker |a| “ ker a and the mapping u :
img |a| Ñ img a, given by up|a|hq :“ ah, is a
well-defined isometry. Hence may be extended to
an isometry u : img |a| Ñ img a. And, if we put
u|ker a “ 0 also to a partial isometry with a “ u |a|

because pker aqK “ pker |a|qK “ img |a| by 5.4.3 .

Thus ker |a| “ ker a “ keru and img a “ img u.

H1
u // H2

img |a|
u

–
//

?�

OO

img a
?�

OO

H1

|a|

cccc

a

<< <<

Uniqueness: Let a “ w p with 0 ď p P LpH1q and partial isometry w P LpH1, H2q

with kerw “ pimg pqK.
We claim that w˚w is the orthogonal projection onto iniw :“ pkerwqK:
We have a surjective isometry w1 :“ w|pkerwqK : iniw Ñ finw, so w˚1w1 “ 1 holds

by 7.7.4 . With respect to the orthogonal decompositions H1 :“ iniw ‘ kerw and

H2 :“ finw ‘ pfinwqK, we have

w “

ˆ

w1 0
0 0

˙

, w˚ “

ˆ

w˚1 0
0 0

˙

, and thus w˚w “

ˆ

w˚1w1 0
0 0

˙

“

ˆ

1 0
0 0

˙

is the orthogonal projection onto iniw :“ pkerwqK “ pimg pqKK “ img p.
Now a˚a “ pw˚wp “ p2, i.e. p “ |a| because of the uniqueness of the positive root

|a| :“
?
a˚a by 7.19 . Furthermore, w|a| “ wp “ a “ u|a|, i.e. w “ u holds on

img |a| “ img p, and img p “ pimg pqKK “ pkerwqK “ pkeruqK, thus w “ u holds
because keru “ pimg |a|qK “ pimg pqK “ kerw.

Ideals and quotients of C˚-algebras

Our goal is also to handle non-commutative C˚-algebras A. According to the The-

orem 7.10 of Gelfand-Naimark we can describe the commutative ones completely
by their algebra-homomorphisms f : A Ñ C. However, for general A, the algebra
homomorphisms f : A Ñ C factor over the Abelization A � A{A1 “ AAbel, thus
provide too little information about A. Instead, we should discuss algebra homor-
phisms f : AÑ B into more general C˚-algebras B (such as B “ LpHq) instead of

C, and thus ideals I :“ kerpfq, which are not necessarily maximal (see 6.40 ).

7.25 Lemma. Closed ideals are invariant under function calculus.
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Let I be a closed (one-sided) ideal of a C˚-algebra A.
If a P I is Hermitian and f P Cpσpaq,Cq with fp0q “ 0, then fpaq P I.

In particular, a`, a´, |a| and
a

|a| are I.

Proof. Without loss of the generality I ‰ A. Then 0 P σpaq, because by 6.37
a P I must not be invertible. Since a is assumed to be Hermitian, σpaq Ď R holds.
Let now fn be a sequence of polynomials converging on σpaq uniformly towards
f . Since fnp0q Ñ fp0q “ 0, we may replace fn by fn ´ fnp0q and thus assume,

without loss of generality, that fnp0q “ 0, i.e. gn : t ÞÑ fnptq
t is a polynomial and

thus fnpaq “ a ¨ gnpaq P I. Since I is closed, fpaq P I.

All the elements a`, a´, |a| and
a

|a| are represented by means of function calculus
as fpaq with fp0q “ 0 and thus belong to I by the first part.

7.26 Theorem (Approximating unit).

Let I be an ideal in a C˚-algebra A. Then there is a monotonously increasing net
j ÞÑ uj in I with 0 ď uj ď 1 and }a uj ´ a} Ñ 0 for each a P I.

Proof. Let J :“ tj : H ‰ j Ď I, j finiteu be the index set for the net partially
ordered by inclusion. For j P J let vj :“

ř

xPj x
˚x ě 0. Obviously, vj P I and for

j Ď j1 we have vj1 ´ vj “
ř

xPj1zj x
˚x ě 0, i.e. vj ď vj1 .

Let uj :“ vj
`

1
|j| ` vj

˘´1
“ f1{|j|pvjq, where ftpsq :“ s

t`s for s ě 0 and t ą 0.

Since 0 ď ftpsq ď 1 we have 0 ď uj ď 1 and uj P I since I is an ideal. If
0 ă t1 ď t and 0 ď u ď u1, then ftpu

1q ď ft1pu
1q and ftpuq ď ftpu

1q, because
on the one hand ftpsq ď ft1psq for all s ě 0, i.e. ftpu

1q ď ft1pu
1q, and on the

other hand t ď t ` u ď t ` u1 and thus 1
t`u1 ď

1
t`u by 7.23.2 and consequently

ftpuq “ u 1
t`u “ 1 ´ t 1

t`u ď 1 ´ t 1
t`u1 “ u1 1

t`u1 “ ftpu
1q. All in all, uj ď uj1 for

j Ď j1.

Remains to show the convergence. Since

uj ´ 1 “ vj

ˆ

1

|j|
` vj

˙´1

´

ˆ

1

|j|
` vj

˙ˆ

1

|j|
` vj

˙´1

“ ´
1

|j|

ˆ

1

|j|
` vj

˙´1

.

we obtain
ÿ

xPj

pxpuj ´ 1qq˚pxpuj ´ 1qq “ puj ´ 1q
´

ÿ

xPj

x˚x
¯

puj ´ 1q “ puj ´ 1qvjpuj ´ 1q

“
1

|j|2
vj

ˆ

1

|j|
` vj

˙´2

looooooooomooooooooon

g1{|j|pvjq

with gtpsq :“
s

pt` sq2
.

The derivative g1t at s is 1pt ` sq´2 ´ 2spt ` sq´3 “ t´s
pt`sq3 . So the maximum is

attained at s “ t and gtpsq ď gtptq “
1
4t for s ě 0 and t ą 0. For a P j, therefore,

papuj ´ 1qq˚papuj ´ 1qq ď
ř

xPjpxpuj ´ 1qq˚pxpuj ´ 1qq “ 1
|j|2 g1{|j|pvjq ď

1
4|j| . So

}apuj ´ 1q}2 “ }papuj ´ 1qq˚papuj ´ 1qq} ď 1
4|j| and hence }auj ´ a} Ñ 0.

Corollary.

Let I be a closed ideal of a C˚-algebra A.
Then I is ˚-closed, i.e. a P I ñ a˚ P I.

Proof. Let a P I. Because of Theorem 7.26 , there exists a net uj P I with
0 ď uj ď 1 and }u˚j a

˚ ´ a˚} “ }a uj ´ a} Ñ 0. Since uj ě 0 we have uj “ u˚j and

thus u˚j a
˚ “ uj a

˚ P I and hence also a˚ P I.
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Lemma.

Let I be a closed ideal of a C˚-algebra A and j ÞÑ uj an approximating unit.
Then }a` I}A{I “ limj }a´ auj}A for each a P A.

Proof. Because of uj P I also auj P I and thus }a´ auj} ě inft}a´ y} : y P Iu “:
}a` I}. Hence infj }a´ auj} ě }a` I}.

Let y P I, then }yuj ´ y} Ñ 0 and thus

lim
j
}a´ auj} “ lim

j
p}a´ auj} ´ }yuj ´ y}q ď lim

j
}a´ auj ´ yuj ` y}

“ lim
j
}pa` yq ´ pa` yquj} ď }a` y} ¨ lim

j
}1´ uj} ď }a` y},

since 0 ď 1´ uj ď 1 ñ ||1´ uj || ď 1: In fact, w P A and λ P R with 0 ď w ď λ ñ
λ´ σpwq “ σpλ´ wq Ď R` ñ σpwq Ď p´8, λs X R` “ r0, λs ñ λ ě rpwq “ }w}.
Thus limj }a´ auj} ď }a` I} :“ inft}a` y} : y P Iu.

Hence, limj }a´ auj} “ }a` I}.

7.27 Proposition.

Let I be a closed ideal in a C˚-algebra A.
Then A{I is an C˚-algebra and π : AÑ A{I is a ˚-homomorphism.

Proof. We already know that A{I is a Banach algebra, see the claim in 6.40 .

Since I is ˚-closed by the corollary in 7.26 , ˚ induces an involution on A{I by
pa` Iq˚ :“ a˚ ` I.

To prove the C˚-property of the quotient norm we use the lemma in 7.26 :
For y P I we have

}a` I}2 “ lim
j
}a´ auj}

2 “ lim
j
} pa´ aujq

˚pa´ aujq
looooooooooomooooooooooon

“p1´ujqa˚ap1´ujq

}

“ lim
j
}p1´ ujqpa

˚a` yqp1´ ujq} pbecause }yp1´ ujq} Ñ 0q

ď }a˚a` y} pbecause }1´ uj} ď 1q

ñ }a` I}2 ď inf
yPI
}a˚a` y} “ }a˚a` I} “ }pa` Iq˚pa` Iq}.

7.28 Theorem.

Let f : AÑ B be a ˚-homomorphism between C˚-algebras.
Then f is continuous with }f} “ 1 and its image imgpfq is closed.
If, in addition, f is injective, then f is an isometry.

Proof. (}f} “ 1) For a P A we have σpfpaqq Ď σpaq, because bpa´λq “ 1 “ pa´λqb
implies fpbq pfpaq´λq “ pfpaq´λq fpbq, i.e. ρpaq Ď ρpfpaqq. So rpfpaqq ď rpaq. If we

apply this to the Hermitian element a˚a, we obtain, because of 7.8.4 and because

fpReAq Ď ReB: }fpaq}2 “ }fpaq˚fpaq} “ }fpa˚aq} “ rpfpa˚aqq ď rpa˚aq “
}a˚a} “ }a}2. So }f} ď 1. Since f preserves the unit, }f} “ 1 holds.
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Let now f be injective and a be Hermitian. Then
also fpaq is Hermitian with σpfpaqq Ď σpaq Ď R
and the nearby diagram commutes because of the

naturality of the function calculus 7.14 (in fact,
f˚˚ ˝ G “ G ˝ f and eva ˝f

˚ “ evfpaq). So also

incl˚ is injective and thus, according to the Lem-
ma of Urysohn, σpfpaqq “ σpaq. Consequently, by

7.8.4 , }a} “ rpaq “ rpfpaqq “ }fpaq}.

A // f // B

C˚paq
?�

OO

// f // C˚pfpaqq
?�

OO

Cpσpaqq

OO–
ρ

OOOO

incl˚ // Cpσpfpaqqq

OO–
ρ

OOOO

Let a P A be arbitrary now. Then }a}2 “ }a˚a} “ }fpa˚aq} “ }fpaq˚fpaq} “
}fpaq}2, i.e. f is an isometry.

Finally, let f be arbitrary. By 7.27 , f then induces an injective ˚-homomorphism
A{ker f � B which is an isometry by the previous part. Thus imgpfq is closed.

7.29 The closed ideals of CpX,Cq.
Let X be a topological space. We consider the two mappings

 

A : A Ď X
( Φ

Õ
Ψ

 

I : I Ď CpX,Cq
(

,

#

A ÞÑ tf P CpX,Cq : f |A “ 0u

tx P X : fpxq “ 0 @f P IuÐ I

These describe a Galois connection, i.e. they are antiton between the two sets
tA : A Ď Xu and tI : I Ď CpX,Cqu being partially ordered by inclusion, and satisfy

I Ď ΦpAq ô @f P I : f P ΦpAq, i.e. f |A “ 0

ô @f P I @a P A : fpaq “ 0

ô @a P A @f P I : fpaq “ 0

ô @a P A : a P ΨpIq

ô A Ď ΨpIq.

Each Galois connection induces a bijection between the image of Φ and image of Ψ
given by Ψ : imgpΦq Ñ imgpΨq with inverse Φ : imgpΨq Ñ imgpΦq:
From the above equivalence immediately follows I Ď ΦpΨpIqq and A Ď ΨpΦpAqq
for all I and A, and hence ΦpAq Ď ΦpΨpΦpAqqq Ď ΦpAq for I :“ ΦpAq by applying
Φ. So Φ ˝Ψ “ id holds on imgpΦq and Ψ ˝ Φ “ id on imgpΨq by symmetry.

Proposition.

Let X be compact. Then the closed ideals of CpX,Cq are in bijective relationship
with the closed subsets of X. To each I from CpX,Cq is assigned the closed subset
ΨpIq :“ tx P X : fpxq “ 0 @f P Iu of X. And conversely, to each subset A of X is
assigned the closed ideal ΦpAq :“ tf P CpX,Cq : f |A “ 0u of CpX,Cq.
Furthermore, CpX,Cq{I – CpΨpIq,Cq.

Proof. It only remains to show that the image of Φ consists of the closed ideals of
CpX,Cq and that of Ψ consists of the closed subsets of X.

Well-definedness. It is obvious that the images consist of closed sets, because
ΨpIq “

Ş

fPI f
´1p0q and ΦpAq “ tf : 0 “ fpaq “ δpaqpfq @a P Au “

Ş

aPA δpaq
´1p0q,

where δ : X Ñ AlgpCpX,Cq,Cq is the homeomorphism from 6.42 . Since the
δpaq : CpX,Cq Ñ C are algebra homomorphisms, ΦpAq is an ideal.

Ψ is onto. Let A Ď X be closed. We have A Ď ΨpΦpAqq Ď X by the above. Suppose
A ‰ ΨpΦpAqq. According to Urysohn’s Lemma, there is an f P CpX, r0, 1sq with
f |A “ 0 and f |ΨpΦpAqq ‰ 0, which means f P ΦpAq but f R ΦpΨpΦpAqqq “ ΦpAq, a
contradiction.
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Φ is onto. Conversely, let I Ď CpX,Cq be a closed ideal. Then CpX,Cq{I is a

commutative C˚-algebra by 7.27 , which is isomorphic to CpY,Cq for some compact

space Y by 7.10 . The canonical quotient mapping thus induces a ˚-homomorphism
π : CpX,Cq Ñ CpX,Cq{I – CpY,Cq. We have π “ α˚ in terms of the continuous
mapping α : Y Ñ X given by

AlgpCpY,Cq,Cq π˚ // AlgpCpX,Cq,Cq

Y

– δ

OO

α
// X

– δ

OO

because

α˚pfqpyq “ pf ˝ αqpyq “ fpαpyqq “ δpαpyqqpfq

“ pδ ˝ αqpyqpfq “ pπ˚ ˝ δqpyqpfq “ pπ˚pδpyqqqpfq

“ pδpyq ˝ πqpfq “ δpyqpπpfqq “ πpfqpyq.

Thus, I “ kerpπq “ kerpα˚q “ tf : 0 “ α˚pfq “ f ˝ αu “ tf : f |αpY q “ 0u “
ΦpαpY qq, i.e. I P imgpΦq.

Finally, incl˚ : CpX,Cq Ñ CpΨpIq,Cq is a continuous and (by Urysohn’s Lemma)
surjective mapping with kerpincl˚q “ tf P CpX,Cq : f |ΨpIq “ 0u “ ΦpΨpIqq “ I,

i.e. CpX,Cq{I – CpΨpIq,Cq by 7.28 .

7.30 Proposition.

Let I be a closed ideal in A :“ LpHq with I ‰ t0u.
Then I contains the ideal KpHq of all compact operators on H.

We will show in 8.26 that this is the only non-trivial closed ideal provided H
is separable. The quotient algebra LpHq{KpHq is called Calkin algebra. The
operators whose cosets are invertible in the Calkin algebra are called Fredholm
operators, see [5].

Proof. Let 0 ‰ a P I. Then there is an x ‰ 0 with apxq ‰ 0. Let e, f P H be

arbitrary with e ‰ 0. Then b : h ÞÑ xh,ey
}e}2 x and c : h ÞÑ xh,apxqy

}apxq}2 f are continuous

linear operators with bpeq “ x and b|eK “ 0 and cpapxqq “ f . So b a c P I is given
by h ÞÑ xh, eyf , i.e. maps the vector e to f and eK to 0.

It follows easily that all finite-dimensional operators T are in I, because they can
be written as h ÞÑ

řn
j“1xh, ejyfj with certain ej , fj P H:

In fact, let tf1, . . . , fnu be an orthonormal basis for the finite dimensional image of
T . Then T phq can be written as T phq “

řn
i“1 Tiphq fi, where Tiphq “ xT phq, fiy “

xh, T˚pfiqy. Let te1, . . . , emu be an (orthonormal) basis of the image of T˚˝T , hence
T˚pfiq “

ř

j ti,jej with ti,j P C. Thus

T phq “
n
ÿ

i“1

Tiphq fi “
ÿ

i

xh, T˚pfiqy fi “
ÿ

i

A

h,
ÿ

j

ti,j ej

E

fi

“
ÿ

j

xh, ejy
ÿ

i

ti,j fi.

Since I is closed, it contains all compact operators because they are contained in
the closure of the finite-dimensional ones (by [18, 6.4.8]).
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Cyclic representations of C˚-algebras

We want to investigate the structure of non-commutative C˚-algebras. For commu-

tative C˚-algebras we have seen in 7.10 that the ˚-homomorphisms into C fully
describe the algebra, and thus we obtained an isometric ˚-homomorphism onto
CpX,Cq for a suitable compact space X. Our typical example for non-commutative
C˚-algebras is LpHq for Hilbert spaces H. It is therefore reasonable to investigate
˚-homomorphisms AÑ LpHq.

7.31 Definition (Representations and invariant subspaces).

Let A be a C˚-algebra. A representation of A (on a Hilbert space H) is a
˚-homomorphism ρ : AÑ LpHq.

Two representations ρi : A Ñ LpHiq with i P t1, 2u are called equivalent if a
surjective isometry U : H1 Ñ H2 exists that interwines the actions, i.e. @a P A :
ρ2paq ˝ U “ U ˝ ρ1paq.

The orthogonal sum of a family of representations tρi : A Ñ LpHiquiPI is the
representation ρ :“

À

i ρi : AÑ LpHq on the Hilbert space

H :“
à

iPI

Hi :“
!

h “ phiq P
ź

iPI

Hi : }h}2 :“
ÿ

iPI

}hi}
2 ă 8

)

,

given by ρpaqphq “ pρipaqphiqqiPI .

A subset N Ď H is called invariant subset for the representation, if ρpaqpNq Ď N
for all a P A. If N is an invariant closed linear subspace of H, then the representation
ρ : A Ñ LpHq induces a representation ρN : A Ñ LpNq, defined by ρN paq :“
ρpaq|N . For each h P H the orbit ρpAqh is an invariant linear subspace.

If N is an invariant linear subspace, obviously the closure N and its orthogonal
complement NK are also invariant (in fact, h P NK ñ xρpaqh, ky “ xh, ρpa˚qky “ 0
for all k P N , because for those we have ρpa˚qk P N).
Furthermore, ρ is equivalent to the orthogonal sum of ρ|N and ρ|NK .

A representation ρ : A Ñ LpHq is called irreducible if there are exactly(!) two
closed invariant subspaces, namely t0u ‰ H.

It is now suggestive to attempt to decompose the representation space H of a
representation ρ into invariant subspaces N so that they can not be further decom-
posed, i.e. the restriction ρN is irreducible, and to write ρ up to equivalence as the
orthogonal sum of these irreducible representations, However, this is generally not
possible. To decompose every representation into simple representations we need a
weaker notion than irreducibility, namely cyclicity:

An h P H is called cyclic vector if the orbit ρpAqh of h is dense in H.
A representation ρ : AÑ LpHq is called cyclic if it has a cyclic vector.
Obviously, every vector h ‰ 0 of an irreducible representation is a cyclic vector,
and thus the representation is cyclic.

Main example of a cyclic representation.

For a σ-finite measure space pX,A, µq

ρ : L8pXq Ñ LpL2pXqq, ρpfqpgq :“ f ¨ g

defines a representation, because

xh, ρpf˚qpgqy “ xh, f ¨ gy “

ż

X

h ¨ f ¨ g dµ “ xh ¨ f, gy “ xρpfqphq, gy “ xh, ρpfq˚pgqy
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This representation is cyclic:
If µpXq ă 8, we may use h :“ χX P L2pXq as the cyclic vector, since by [18,
4.12.5] even the elementary functions g P L8pXq are dense in L2, also ρpL8q ¨ h “
tgh : g P L8u “ L8 is dense in L2.
If µpXq “ 8, then we choose a decomposition X “

Ů

nAn with µpAnq ă 8 and
put h :“

ř

n
1?

2nµpAnq
χAn . Then h P L2 is a cyclic vector, because each f P L2 is

approximated by f ¨ χŤ

kďn Ak
“
ř

kďn f ¨ χAk in L2 by the Lebesgue Theorem [18,

4.11.12] on Dominated Convergence (in fact, |f |2 ě |f ´ f ¨ χŤ

kďn Ak
|2 Ñ 0 ptw.)

and these partial sums can be approximated by the first part by tg ¨h : g P L8pXqu.

However, this representation ρ : L8pXq Ñ LpL2pXqq of an Abelian C˚-algebra is

irreducible by 7.42 only if L2pXq – C, i.e. µ is a point measure δa for some a P X.

For a positive Borel measure µ on a compact space X, this induces a representation
ρ|CpX,Cq : CpX,Cq Ñ LpL2pXqq, ρpfqpgq :“ f ¨ g.

7.32 Theorem.

Each representation of a C˚-algebra is equivalent to an orthogonal sum of cyclic
representations.

Proof. Let M be the set of all subsets M Ď Hzt0u with ρpAqh1 K ρpAqh2 for
all h1, h2 P M with h1 ‰ h2. By means of Zorn’s Lemma we obtain a maximal
element M P M with respect to the inclusion. Suppose the subspace xρpAqMy of
H generated by ρpAqM is not dense. Let k ‰ 0 be an element of its orthogonal
complement. Then xρpaqk, ρpbqhy “ xk, ρpa˚bqhy “ 0 for all a, b P A and h PM , i.e.
ρpAqk K ρpAqh, a contradiction to maximality.

For h P H, let Hh be the invariant subspace ρpAqh of H and ρh the restriction
of the representation to this subspace. Obviously, ρh is cyclic with cyclic vector
h. Furthermore, U :

À

hPM Hh Ñ H, x “ pxhq ÞÑ
ř

h xh, is a surjective (because
xρpAqMy is dense) isometry (by Pythagoras), with respect to which

À

hPM ρh is
equivalent to ρ.

7.33 From cyclic representations to positive functionals.

So we should study cyclic representations more closely. Let ρ : A Ñ LpHq be a
(cyclic) representation with a (cyclic) vector h P H. Then

f : AÑ C, fpaq :“ xρpaqh, hy,

is a bounded linear functional with }f} “ }h}2, because for }a} ď 1 also }ρpaq} ď 1

by 7.28 and therefore |fpaq| “ |xρpaqh, hy| ď }ρpaqh} ¨ }h} ď }h}2 and fp1q “ }h}2.
This functional will probably carry a great deal of information of the representation.

Each continuous linear functional f : A Ñ C on a C˚-algebra A defines a sesqui-
linear form g : A ˆ A Ñ C by gpa, bq :“ fpb˚aq. For the above f , this provides a
positive (and thus Hermitian) form because

gpa, aq “ fpa˚aq “ xρpa˚aqh, hy “ xρpaqh, ρpaqhy “ }ρpaqh}2 ě 0.

Consequently, we define:

Definition. Positive functionals and states.

A linear functional f : AÑ C on a C˚-algebra is called positive if fpaq ě 0 for all
a P A`, i.e. the associated sesqui-linear form g : pa, bq ÞÑ fpb˚aq is positive. Such
an f is monotone, i.e. a ď b implies fpaq ď fpbq.

The functional f is called state if it is positive and }f} “ 1.
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Proposition.

A linear functional f : AÑ C on a C˚-algebra is positive if and only if }f} “ fp1q
(and thus is bounded).

Proof. pñq For Hermitian x we have x ď }x} (see 7.17 ) and thus fpxq ď fp}x}q “
}x} fp1q.

For arbitrary x we obtain by the Cauchy Schwarz inequality 7.6.5 for g : px, yq ÞÑ
fpy˚xq the inequality

|fpxq|2 “ |gpx, 1q|2 ď gpx, xq gp1, 1q “ fpx˚xq fp1q ď }x˚x} fp1q2 “ pfp1q }x}q2,

i.e. }f} ď fp1q. Because of |fp1q| “ fp1q ¨ }1} equality holds.

pðq For this we assume, without loss of generality, that 1 “ }f} “ fp1q. Because

of 7.22 we have to show fpa˚aq ě 0. We have σpa˚aq Ď r0, }a˚a}s. This interval
is the intersection of all discs λ0 ` KR :“ λ0 ` tλ P C : |λ| ď Ru with R ą 0,
λ0 P C containing it. It is therefore sufficient to show fpa˚aq ´ λ0 P KR for these
λ0 P C and R ą 0. This is indeed the case, because |fpa˚aq ´ λ0| “ |fpa˚a ´

λ0q| ď }f} }a˚a ´ λ0} “ 1 ¨ rpa˚a ´ λ0q ď R by the Corollary in 7.13 , since
σpa˚a´ λ0q “ σpa˚aq ´ λ0 Ď KR.

Example.

The positive linear functionals on CpX,Cq are exactly the positive Baire measures,
and the states are exactly the probability measures µ, i.e. µpXq “ 1.

7.34 Extension theorem for positive functionals and for states.

Let A be a C˚-algebra and B a C˚-subalgebra of A.
Then any positive functional and any state of B can be extended to one on A.

Proof. Let f : B Ñ C be a positive functional, so by 7.33 it is a linear functional

with }f} “ fp1q. By Corollary 5.1.5 of the Theorem of Hahn-Banach there exists

a linear extension f̃ : AÑ C with }f̃} “ }f} “ fp1q “ f̃p1q. Consequently, f̃ is also
a positive functional.

7.35 Reconstruction of the representation from the positive functional.

Let ρ : AÑ LpHq be a cyclic representation of a C˚-algebra A. We want to try to
recover this representation from the functional f : a ÞÑ xρpaqh, hy, where h should
be a cyclic vector.

First we reconstruct the Hilbert space H: Let U : A Ñ H be the continuous lin-
ear mapping a ÞÑ ρpaqh. It has dense image because h is cyclic. Furthermore:
xUpaq, Upbqy “ xρpaqh, ρpbqhy “ xρpb˚aqh, hy “ fpb˚aq. Thus the kernel of U is the
set If :“ ta P A : fpa˚aq “ 0u and H is isometrically isomorphic to the completion
Hf of A{If – imgpUq with respect to the norm }a` If }

2 :“ fpa˚aq.

kerU “ If
� � // A

π "" ""

U // // imgpUq �
� // H

A{If
� � //

OO
– Ũ

OOOO

Hf

OO
– Ũ

OOOO

andreas.kriegl@univie.ac.at c© 1. Juli 2019 140



Cyclic representations of C˚-algebras 7.36

Now we reconstruct the representation ρ:
The representation ρf induced on Hf by ρ via Ũ is given by

Ũpρf paqpb` If qq :“ ρpaqpŨpb` If qq “ ρpaqpUpbqq “ ρpaqpρpbqhq “ ρpabqh

“ Upabq “ Ũpab` If q.

Hence ρf paq : b ` If ÞÑ ab ` If is induced by the left multiplication with a on A.

The cyclic vector h P H obviously corresponds via Ũ to hf :“ 1` If P Hf .

Let now f : AÑ C an arbitrary positive functional on some C˚-algebra, which we
assume to be commutative for now, i.e. without loss of generality A “ CpXq :“

CpX,Cq for some compact space X. According to Riesz’s Theorem 5.3.4 , fpgq “
ş

X
g dµ for a positive Baire measure µ and all g P CpXq.

Thus fpg˚gq “
ş

X
g g dµ “: }g}22 and hence

If “
!

g : 0 “ fpg˚gq g dµ “ }g}22

)

“

!

g P CpXq : g “ 0 µ-a.e.
)

,

i.e. the completion Hf of CpXq{If is isomorphic to L2pX,µq.

The induced representation ρf is nothing else but the representation of CpXq on
L2pX,µq by multiplication. So we have shown the following:

Proposition.

Up to equivalence, the cyclic representations of the commutative C˚-algebras CpXq
are exactly the representations CpXq Ñ LpL2pµqq by multiplication for Baire mea-
sures µ on X.

Now let’s generalize this to arbitrary C˚-algebras:

7.36 Theorem (Gelfand-Naimark-Segal).

Let A be a C˚-algebra. Then there exists a bijection between equivalence classes of
cyclic representations with distinguished cyclic (normed) vectors and positive linear
functionals (states) on A. This assignment is given as follows:

(ÞÑ) To a representation ρ : A Ñ LpHq with cyclic vector h one associates the
positive linear functional f “ fρ,h : a ÞÑ xρpaqh, hy on A.

(Ð) For a positive linear functional f : AÑ C one considers the subspace If :“
ta P A : fpa˚aq “ 0u and the completion Hf of A{If with respect to the
sesqui-linear form xa` If , b` If y :“ fpb˚aq. The associated representation
ρf : A Ñ LpHf q is given by ρf paqpb ` If q :“ ab ` If and hf :“ 1 ` If is a
distinguished cyclic vector.

Proof. (Ð) This was shown in 7.33 .

( ÞÑ) Let f : A Ñ C be a positive linear functional and g : pa, bq ÞÑ fpb˚aq be the
associated positive sesqui-linear form. Then

If :“
!

a : fpa˚aq “ gpa, aq “ 0
)

“

!

a : gpa, bq “ 0 for all b P A
)

is a closed linear subspace, where the equation holds since |gpa, bq|2 ď gpa, aq gpb, bq.
Consequently, g factors to a positive-definite sesqui-linear form g̃ on A{If given by
g̃pa ` If , b ` If q :“ gpa, bq “ fpb˚aq. Let Hf be the Hilbert space obtained by
completing A{If with respect to g̃. For x P If ,

gpa x, bq “ fpb˚axq “ fppa˚bq˚xq “ gpx, a˚bq “ 0,

hence a If Ď If , and thus

ρf : Aˆ pA{If q Ñ A{If , pa, b` If q ÞÑ a b` If
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is a well-defined bilinear mapping. We have to show the continuity of b`If ÞÑ ab`If
with respect to the norm }b` If }

2 :“ fpb˚bq:

}ab` If }
2 “ fpb˚a˚abq ď }a}2 fpb˚bq “ }a}2 }b` If }

2,

because a˚a ď }a˚a} and thus b˚ a˚a b ď b˚ }a˚a} b “ }a}2 b˚b by 7.23.1 .
As we easily see, ρf induces an algebra-homomorphism ρf : A Ñ LpHf q by ex-
tending it to the completion Hf of A{If . This mapping ρf : A Ñ LpHf q is even a
˚-homomorphism, because

g̃
´

ρf paqpx` If q, y ` If

¯

“ g̃pax` If , y ` If q “ gpax, yq

“ gpx, a˚yq “ g̃
´

x` If , ρf pa
˚qpy ` If q

¯

.

Moreover, hf :“ 1` If is a cyclic vector for ρf , because its orbit ρf pAq p1` If q “
ta` If : a P Au “ A{If is dense in Hf by construction.

(ρü f) Any f coincides with the functional a ÞÑ g̃pρf paqphf q, hf q “ g̃pa ` If , 1 `
If q “ fp1˚aq “ fpaq associated to ρf and hf .

(ρýf) Let ρ : A Ñ LpHq be a representation with cyclic vector h and associated

f “ fρ,h : a ÞÑ xρpaqh, hy. In 7.35 we have shown that the representation ρh : AÑ

LpHf q constructed from it is isomorphic via the surjective isometry Ũ to ρ.

7.37 Definition. The space of all states.

Let statpAq be the space of all states f : A Ñ C supplied with the topology of
pointwise convergence.

Proposition.

Let A be a C˚-algebra. Then the space statpAq of all states is a compact convex
subspace of the unit sphere of A˚ and }a} “ maxtfpaq : f P statpAqu for all a P A`.

Proof. The space tf P A˚ : }f} ď 1 “ fp1qu of all states (|fp1q| ď }f} is always
valid) is obviously a closed convex set in the unit ball of A˚ with respect to the

topology of pointwise convergence, thus also compact according to 5.4.13 .

Let C˚paq be the commutative C˚-subalgebra of A generated by a ě 0. Since
}a} “ rpaq P σpaq Ď r0, }a}s the composite f : C˚paq – Cpσpaq,Cq ´ev}a}

Ñ C is an
algebra homomorphism with fpaq “ }a} and }f} ď 1 “ fp1q. Thus, f is a state on

C˚paq and hence can be extended to a state f : AÑ C by 7.34 .

On the other hand, states f clearly satisfy |fpaq| ď }f} }a} “ }a}.

7.38 Theorem.

Each C˚-algebra A has a faithful (i.e. injective and thus isometric by 7.28 )

representation ρ : AÑ LpHq on some Hilbert space H.

If A is separable, the representation can be choosen cyclic, see [5, S.259], [3, S.265].

Proof. Let H “
À

fPstatAHf and ρpaq :“
À

fPstatA ρf paq. Then ρ : A Ñ LpHq is
a representation.

It is faithful: Let ρpaq “ 0 and thus ρf paq “ 0 for all f P statpAq. Since a˚a ě 0

by 7.22 , there is a state f : A Ñ C with fpa˚aq “ }a˚a} “ }a}2 by 7.37 .
The cyclic vector h P Hf belonging to the representation ρf fulfills }h} “ 1 and
fpbq “ xρf pbqh, hyHf for all b P A. In particular, }a}2 “ fpa˚aq “ xρf pa

˚aqh, hy “

xρf paqh, ρf paqhy “ }ρf paqh}
2 “ 0, so a “ 0.
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Irreducible representations of C˚-algebras

So we should study (invariant) closed subspaces of H more closely. Any such sub-
space can be described as the image of an orthogonal projection. We need the
following two lemmas.

7.39 Lemma.

Let H be a Banach space and P P LpHq be idempotent, i.e. P 2 “ P (with other
words, P is a projection). Then:

1. 1´ P is also idempotent;

2. imgP “ kerp1´ P q and kerP “ imgp1´ P q;

3. H “ imgP ‘ kerP ;

4. For A P LpHq: P ˝A “ A ˝ P ô imgP and kerP are A-invariant.

Proof. ( 1 ) p1´ P q2 “ 1´ 2P ` P 2 “ 1´ 2P ` P “ 1´ P .

( 2 ) h P imgP ô h “ Pk with k P H ô Ph “ P 2k “ Pk “ h ô h P kerp1´ P q.

Further, imgp1´ P q “ kerP follows by 1 .

( 3 ) imgP X kerP “ t0u because h P imgP implies Ph “ h, and Ph “ 0 for
h P kerP . Each h P H can be written as h “ Ph` p1´ P qh, with Ph P imgP and
p1´ P qh P imgp1´ P q “ kerP .

( 4 ) pñq This holds for arbitrary P P LpHq:
We have ApimgP q “ ApP pHqq “ P pApHqq Ď P pHq “ imgP , i.e. imgP is A-
invariant, and P pApkerP qq “ ApP pkerP qq “ 0, i.e. kerP is also A-invariant.

pðq Let now P be a projection with A-invariant kernel and image. For x P H we

have x “ x0`x1 by ( 3 ) with x0 P kerP and x1 P imgP and thus Ax0 P kerP and
Ax1 P imgP , i.e. P pAx0q “ 0 “ Ap0q “ ApPx0q and P pAx1q “ Ax1 “ ApPx1q,
altogether thus pP ˝Aqpxq “ pA ˝ P qpxq.

7.40 Lemma.

For Hilbert spaces H and idempotent P P LpHq t.f.a.e.:

1. P is an orthogonal projection, i.e. kerP “ pimgP qK;

ô 2. kerP K imgP ;

ô 3. }P } ď 1, i.e. P is a contraction;

ô 4. P ě 0, i.e. P is positive;

ô 5. P˚ “ P , i.e. P is Hermitian;

ô 6. P˚P “ PP˚, i.e. P is normal.

Proof. p 1 ñ 2 q is trivial.

p 2 ñ 3 q }h}2 “ }Ph}2 ` }h´ Ph}2 because imgP Q Ph K h´ Ph P kerP . Thus
}Ph} ď }h}.

p 3 ñ 4 q We have h ´ Ph “ p1 ´ P qh P imgp1 ´ P q “ kerP . For h P kerPK,

therefore, 0 “ xh ´ Ph, hy “ }h}2 ´ xPh, hy holds, and thus }h}2 “ xPh, hy ď
}Ph} }h} ď }h}2. Hence }Ph} “ }h} and }h´Ph}2 “ }h}2´2RepxPh, hyq`}Ph}2 “
0 for such h, i.e. pkerP qK Ď kerp1´ P q “ imgP .

Let h “ h0 ` h1 with h0 P kerP and h1 P pkerP qK Ď imgP . Consequently,

xPh, hy “ xPh1, h0 ` h1y “ xh1, h1y ě 0, i.e. P ě 0 by the corollary in 7.22 .
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p 4 ñ 5 q and p 5 ñ 6 q are trivial.

p 6 ñ 1 q Because of }Ph} “ }P˚h} for normal P by 7.7.2 , kerP “ kerpP˚q “

pimgP qK by 5.4.3 .

7.41 Theorem.

For each ˚-closed subset A Ď LpHq t.f.a.e.:

1. The set A is irreducible;

ô 2. The commutant Ak consists only of the multiples of the identity;

ô 3. P P Ak, 0 ď P ď 1 ñ Dλ P r0, 1s: P “ λ ¨ id;

ô 4. The only orthogonal projections in Ak are 0 and 1.

Proof. p 1 ñ 2 q If b P Ak, then ker b is an invariant subspace by 7.39.4 and

thus equal to t0u or H, i.e. b is injective or b “ 0. So the C˚-subalgebra Ak of LpHq
has no zero divisors: In fact, let b1, b2 P A

k with b1b2 “ 0 and b1 ‰ 0, hence b1 is
injective and thus b2 “ 0. Let 0 ‰ b P Ak be Hermitian, then Cpσpbqq – C˚pbq Ď Ak

has no zero divisors and thus σpbq is one-pointed, so C˚pbq “ C ¨ 1. Since by

7.8.2 each a P Ak can be written as Repaq ` i Impaq with Hermitian elements

Repaq, Impaq P Ak (because A is ˚-closed), we have Ak “ C ¨ 1.

p 2 ñ 3 q is trivial because it follows from 0 ď P “ λ ¨ 1 ď 1 that 0 ď λ ď 1.

p 3 ñ 4 q For orthogonal projections P we have 0 ď P ď }P } ď 1 by 7.40.4 ,

7.17 and 7.40.3 . Since P 2 “ P we get λ2 “ λ, hence λ P t0, 1u.

p 1 ð 4 q Let N be a closed A-invariant subspace of H and let P be the orthogonal

projection onto N . Then imgP “ N and kerP “ NK are both A-invariant and

thus P P Ak by 7.39.4 , i.e. P “ id or P “ 0 by 4 , hence N “ t0u or N “ H.

7.42 Corollary.

If A Ď LpHq is a commutative ˚-closed irreducible subset, then H is 1-dimensional.

Proof. Since A is commutative, A Ď Ak “ C by 7.41 . Hence every linear subspace
is invariant. Since A is irreducible, H has to be 1-dimensional.

Corollary.

The irreducible representations of commutative C˚-algebras A are given up to equiv-
alence exactly by the algebra homomorphisms AÑ LpC,Cq – C.

Proof. According to the previous corollary, the representation space H of any
irreducible representation of A is necessary isomorphic to C and thus the represen-
tation ρ is given by the algebra-homomorphism f :“ ev1 ˝ρ : AÑ LpC,Cq – C by

7.9 .

7.43 Proposition.

Let f be a positive functional on a C˚-algebra A and ρ : AÑ LpHq the (by 7.36 )

associated representation with distinguished cyclic vector h. Then there exists a
bijection

!

P P ρpAqk Ď LpHq : 0 ď P ď 1
)

–

!

g P A˚ : 0 ď g ď f
)

which is uniquely determined by the relation

gpaq “ xP pρpaqhq, hy for all a P A
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Proof. Let U : A Ñ H be the continuous linear mapping a ÞÑ ρpaqh with dense

image. It satisfies xUa,Uby “ xρpaqh, ρpbqhy “ xρpb˚aqh, hy “ fpb˚aq by 7.35 .

( ÞÑ) Let P P ρpAqk with 0 ď P ď 1. Then gP : a ÞÑ xP pρpaqhq, hy is a positive
linear functional, because

gP pa
˚aq “ xP pρpa˚aqqh, hy “ xpP ˝ ρpa˚qqpρpaqhq, hy

“ xpρpa˚q ˝ P qpρpaqhq, hy “ xρpaq˚pP pρpaqhqq, hy

“ xP pρpaqhq, ρpaqhy “ xP pUaq, Uay ě 0, since P ě 0.

We have gP ď f , because by the second corollary in 7.22

gP pa
˚aq “ xP pUaq, Uay ď xUa,Uay “ fpa˚aq, since P ď 1.

(Ð) Let g P A˚ with 0 ď g ď f . Then pa, bq ÞÑ gpb˚aq is a positive sesqui-
linear form on A, which vanishes on kerU “ ta P A : fpa˚aq “ 0u by g ď f ,

hence factors over H{ kerU (see 7.35 ) to a continuous positive sesquilinear form

(compare with 7.36 ). And, since imgU is dense in H it extends to a uniquely

determined positive sesqui-linear form g̃ : H ˆH Ñ C, which corresponds by 7.5
to a positive Pg P LpHq.

We have Pg ď 1, because xPgUa,Uay “ g̃pUa,Uaq “ gpa˚aq ď fpa˚aq “ xUa,Uay.

Finally, Pg P ρpAq
k, because ρpaqUpbq “ Upa bq for a P A:

xpPg ˝ ρpaqqpUbq, Ucy “ xPgpUpabqq, Ucy “ gpc˚abq

“ gppa˚cq˚bq “ xPgpUbq, Upa
˚cqy “ xPgpUbq, ρpaq

˚ pUcqy

“ xpρpaq ˝ PgqpUbq, pUcqy.

(g ÞÑ P ÞÑ g) For 0 ď g ď f , let P :“ Pg. Then

gP paq :“ xPgpρpaqhq, hy “ xPgpUaq, U1y “ gp1˚aq “ gpaq.

(P ÞÑ g ÞÑ P ) For 0 ď P ď 1 in ρpAqk and g :“ gP we have:

xPgpUaq, Uby “ gP pb
˚aq “ xP pρpb˚aqhq, hy “ xP pρpaqhq, ρpbqhy “ xP pUaq, Uby,

hence Pg “ P .

7.44 Theorem.

For each state f : AÑ C on a C˚-algebra A t.f.a.e.:

1. The representation associated to f is irreducible;

2. For each 0 ď g ď f there exists a 0 ď λ ď 1 with g “ λf ;

3. The functional f is an extremal point (see 5.5.1 ) of statpAq.

Proof. Let ρ : AÑ LpHq be the representation associated to f with cyclic vector
h.

p 1 ô 2 q By 7.41.3 , ρ is irreducible if and only if every P P ρpAqk with 0 ď P ď 1

is a multiple of the identity. By 7.43 , these P uniquely correspond to the g P A˚

with 0 ď g ď f and λ ¨ id corresponds to λ ¨ f .

p 2 ñ 3 q Let f “ λ g ` p1 ´ λqh with states g and h and 0 ă λ ă 1. Then 0 ď

λ g ď f and thus λ g “ µ f for some 0 ď µ ď 1 by ( 2 ). Because of fp1q “ 1 “ gp1q
we obtain λ “ µ and hence g “ f and thus also h “ f , i.e. f is an extremal point.

p 3 ñ 2 q Let 0 ď g ď f and without loss of generality g ‰ 0 and g ‰ f . Then
0 ď f ´ g ‰ 0, so 0 ă }f ´ g} “ pf ´ gqp1q “ fp1q ´ gp1q and thus 0 ă λ :“ }g} “
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gp1q ă fp1q “ 1. The functionals f0 :“ 1
λg ě 0 and f1 :“ 1

1´λ pf ´ gq ě 0 are states

because f0p1q “
gp1q
λ “ 1 and f1p1q “

fp1q´gp1q
1´λ “ 1, and clearly f “ λ f0`p1´λq f1,

so f “ f0 “ f1 by ( 3 ), and thus g “ λ f0 “ λ f .

7.45 Theorem.

The irreducible representations of any C˚-algebra are point separating.

Proof. Let a ‰ 0. Then there is an extremal state f with fpa˚aq ą 0, otherwise the
continuous linear mapping eva˚a : A˚ Ñ C would vanish on ExtpstatpAqq and thus

also on its closed convex hull which, according to Krein-Millman 5.5.1 , coincides

with the compact convex (by 7.37 ) set statpAq. But we have seen in 7.37 that

a state f : A Ñ C exists with fpa˚aq “ }a˚a} “ }a}2 ‰ 0, a contradiction. Now

let ρ : A Ñ LpHq be the irreducible representation according to 7.44 with cyclic
vector h, which corresponds to the extremal state f : A Ñ C. Then 0 ‰ fpa˚aq “
xρpa˚aqh, hy “ xρpaqh, ρpaqhy “ }ρpaqh}2, i.e. ρpaq ‰ 0.

Group Representations

7.46 The group algebra.

Let G be a discrete (or, in particular, a finite group). We want to solve the following
universal problem: We are looking for a K-algebra KpGq and a homomorphism
δ : G Ñ KpGq with respect to the multiplication of the algebra, s.t. for each
homomorphism τ : G Ñ A into an algebra A a unique algebra homomorphism
τ̃ : KpGq Ñ A exists with τ̃ ˝ δ “ τ , i.e. the following diagram commutes:

G
δ //

τ
��

KpGq

τ̃

D!

}}
A

In order to achieve this, we first solve the universal problem of finding a K-vector
space KpGq and a mapping δ : GÑ KpGq for the set G, so that for each mapping
τ : GÑ A with values in a K-vector space a unique linear mapping τ̃ : KpGq Ñ A
with τ̃ ˝ δ “ τ exists, i.e. the following diagram commutes:

G
δ //

τ
��

KpGq

τ̃

D!

}}
A

The solution for KpGq is the free vector space
š

GK “
À

GK with the injective
mapping δ : GÑ

š

GK, δt :“ δptq :“ pδst qsPG, where δst :“ 1 for t “ s and 0 else.
The elements f P KpGq :“

š

GK can be written uniquely as finite sum f “
ř

tPG fptqδt, i.e. KpGq can be identified with the space of all functions f : G Ñ K
with finite support.
The mapping τ̃ is given by

τ̃pfq :“ τ̃
´

ÿ

tPG

fptq δt

¯

“
ÿ

tPG

fptq τ̃pδtq “
ÿ

tPG

fptq τptq.

It is easy to see that this vector space also has the universal property for multi-linear
mappings, i.e. every mapping τ : Gˆ ¨ ¨ ¨ ˆGÑ A with values in a K-vector space
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corresponds to a multi-linear mapping τ̃ : KpGq ˆ . . . ˆ KpGq Ñ A with τ̃ ˝ pδ ˆ
. . . ˆ δq “ τ given by τ̃pf1, . . . , fnq :“

ř

t1,...,tnPG
f1pt1q ¨ ¨ ¨ ¨ ¨ f

nptnq τpt1, . . . , tnq.

If we apply this to the multiplication G ˆG Ñ G ´δÑ KpGq, we obtain a bilinear
mapping ‹ : KpGq ˆKpGq Ñ KpGq, which is given by

f ‹ g “
´

ÿ

t

fptq δt

¯

‹

´

ÿ

s

gpsq δs

¯

“
ÿ

t,s

fptq gpsq δt ‹ δs

“
ÿ

t,s

fptq gpsq δts “
ÿ

r

ÿ

ts“r

fptq gpsq δr,

i.e. by

pf ‹ gqprq :“
ÿ

ts“r

fptq gpsq “
ÿ

t

fptq gpt´1rq.

Because of the universal property, this multiplication ‹ is associative (since the
multiplication in G is it) and δe is a unit, where e P G is the neutral element of the
group. So KpGq is an associative algebra with unit.

If τ : GÑ A is a group homomorphism, it is easy to see that τ̃ becomes an algebra
homomorphism, and vice versa.

7.47 Representations of G on KpGq.
The group homomorphism δ : GÑ KpGq also provides a representation λ of G on
the vector space KpGq, i.e. a group homomorphism λ : G Ñ LpKpGqq, defined by
λptqpfq :“ λtpfq :“ δt ‹ f . This representation can also be expressed differently:

λptqpfq “ δt ‹ f “ δt ‹
ÿ

sPG

fpsq δs “
ÿ

sPG

fpsq δt ‹ δs

“
ÿ

sPG

fpsq δts “
ÿ

rPG

fpt´1rq δr “ f ˝ `t´1 “ p`t´1q˚pfq,

where `t denotes the so-called left-translation on the group G, which is defined
by `tpsq :“ t s. This ` is a group homomorphism of G into the set of all bijections
on G.

If τ̃ : KpGq Ñ LpHq is a representation,
and τ :“ τ̃ ˝δ : GÑ KpGq Ñ LpHq is the
associated representation of G, then the
adjacent diagram is commutative:

G
δ //

`t

��

KpGq τ̃ //

p`t´1 q
˚
“λt

��

LpHq

τptq˚

��
G

δ // KpGq
τ̃
// LpHq,

pτptq˚ ˝ τ̃qpfq “ τptq ˝ τ̃pfq “ τ̃pδptqq ˝ τ̃pfq

“ τ̃pδptq ‹ fq “ τ̃pf ˝ `t´1q “ τ̃pλtpfqq “ pτ̃ ˝ λtqpfq.

7.48 From KpGq to L1pGq.

We do not want to remain purely algebraic and instead would like to have a universal
property for continuous Banach algebra homomorphisms. For this we have to supply

KpGq with a norm. The p-norms }f}p :“
`
ř

tPG |fptq|
p
˘1{p

satisfy:

}f ‹ g}r ď }f}p ¨ }g}q if
1

p
`

1

q
“

1

r
` 1.

In particular, the completion of KpGq with respect to the 1-norm is a Banach algebra
with unit

L1pGq :“
!

f : GÑ K : }f}1 :“
ÿ

tPG

|fptq| ă 8
)

.

andreas.kriegl@univie.ac.at c© 1. Juli 2019 147



Group Representations 7.49

Note that these are really the integrable functions with respect to the counting
measure µ : A ÞÑ

ř

gPA 1.

As we saw in 6.39 and 7.9 together with 7.28 , algebra homomorphisms are
often automatically continuous and even contractions. The associated algebra ho-
momorphism τ̃ : KpGq Ñ A with values in a Banach algebra is a contraction (and
thus can be extended to L1pGq) if and only if }τptq} ď 1 for all t P G. However,
because of 1 “ }1} “ }τpeq} “ }τptq τpt´1q} ď }τptq} }τpt´1q}, }τptq} ě 1

}τpt´1q}
ě 1

also holds, so τ has values in UpAq :“ ta P invpAq : }a} “ 1 “ }a´1}u, the set of
all invertible elements in the unit sphere of A. If A “ LpHq for a Banach space H,
then UpHq :“ UpLpHqq is the set of all bijective isometric unitary operators in the

case of a Hilbert space H by 7.4 , because }a} “ 1 “ }a´1} implies

}ax} ď }a} }x} “ }x} “ }a´1ax} ď }a´1} }ax} “ }ax}.

So we have shown the following:

Proposition.

Let G be a discrete group. Then δ : G Ñ L1pGq is a group homomorphism into a
Banach algebra which induces a bijection

δ˚ : HompL1pGq, LpHqq – HompG,UpHqq

for each Banach space H, where HompL1pGq, LpHqq is the set of contractionary
algebra homomorphisms and HompG,UpHqq is the group of homomorphisms into

UpHq :“ ta P LpHq : a is an invertible isometryu

denoted. The elements ρ of the first set are called representations of the Ba-
nach algebra L1pGq on H and the elements τ of the second set are called unitary
representations of the group G on H. The bijection is given by

τptq :“ ρpδtq

ρpfq :“
ÿ

tPG

fptqτptq.

7.49 The left-regular representations of L1pGq and the involution.

The representation of KpGq on the vector space KpGq, given by the convolution,
induces well-defined representations (the so-called left-regular representa-

tions) λ̃ of L1pGq on the Banach spaces LppGq, which can be obtained by com-
pleting KpGq with respect to the p-norm. Because the equation }f ‹ g}p ď }f}1 }g}p
states that the representations are contractions. By composing with δ : GÑ L1pGq
we therefore obtain representations λ of G on the Banach spaces LppGq.

In case p “ 2, H :“ LppGq is a Hilbert space and thus LpHq is a C˚-algebra. We now
also want to try to make L1pGq a C˚-algebra so that the left-regular representation

λ̃ : L1pGq Ñ LpL2pGqq is a ˚-homomophism, i.e.

xλ̃pf˚qh1, h2y “ xλ̃pfq
˚h1, h2y “ xh1, λ̃pfqh2y

is satisfied for all f P L1pGq and h1, h2 P L
2pGq. If we choose h1 :“ δe and h2 :“ δt

we obtain

f˚ptq “ xf˚ ‹ δe, δty “ xλ̃pf
˚qh1, h2y

“ xh1, λ̃pfqh2y “ xδ1, f ‹ δty “ pf ‹ δtqp1q “ fpt´1q.
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and a corresponding calculation with general h1 and h2 shows that λ̃ : L1pGq Ñ
LpL2pGqq with this definition of f˚ is a ˚-homomorphism. Obviously, p q˚ is an iso-
metric involution (i.e. is conjugated-linear, idempotent, and an anti-homomorphism).
However, L1pGq is not a C˚-algebra, as the following example shows for G :“ Z.

Example.

For the discrete group G “ Z and f˚pkq :“ fp´kq we have

pf˚ ‹ fqpkq “
ÿ

j

f˚pjq fpk ´ jq “
ÿ

j

fpjq fpk ` jq.

Now let f be real-valued and concentrated on t´1, 0, 1u, then f˚ ‹f is concentrated
on t´2,´1, 0, 1, 2u and has the following values:

f˚ ‹ f :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´2 ÞÑ f`1 f´1

´1 ÞÑ f0 f´1 ` f`1 f0

0 ÞÑ f´1 f´1 ` f0 f0 ` f`1 f`1

`1 ÞÑ f´1 f0 ` f0 f`1

`2 ÞÑ f´1 f`1

Consequently,

}f˚ ‹ f}1 “ 2 |f`1 f´1| ` 2 |f0| |f`1 ` f´1| ` f´1
2 ` f0

2 ` f`1
2

and

}f}1
2 “ f´1

2 ` f0
2 ` f`1

2 ` 2 |f`1 f´1| ` 2 |f0 f´1| ` 2 |f0 f`1|.

If f0 ‰ 0 and f´1 ¨ f`1 ă 0 then }f˚ ‹ f}1 ă }f}
2
1.

In summary, we have shown the following:

Proposition.

For each discrete group G, the space L1pGq is a B˚-algebra, i.e. a Banach algebra
with an involution ˚, which is an isometry but does not necessarily satisfy }f˚f} “

}f}2. The involution on L1pGq is given by f˚ptq :“ fpt´1q.

Lemma.

Let ρ : B Ñ A be an ˚-homomorphism from a B˚-algebra into a C˚-algebra, then
ρ is a contraction.

Proof.

}ρpfq}2 “ }ρpfq˚ ρpfq} “ rpρpfq˚ ρpfqq “ rpρpf˚ fqq

ď rpf˚ fq ď }f˚ f} ď }f˚} }f} ď }f}2

7.50 Corollary.

The unitary representations of any discrete group G on a Hilbert space H correspond
exactly to the ˚-homomorphisms of the B˚-algebra L1pGq by LpHq.

HompG,UpHqq – HompL1pGq, LpHqq

Proof. Each ˚-homomorphism ρ : L1pGq Ñ LpHq is a contraction according to the

lemma above and thus induces a unitary representation τ : G Ñ UpHq by 7.48 .
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Conversely, let τ : G Ñ UpHq be a unitary representation and ρ : L1pGq Ñ LpHq

the algebra homomorphism ρ : f ÞÑ
ř

tPG fptqτptq associated to it by 7.48 . Then

ρpf˚q “
ÿ

tPG

fpt´1qτptq “
ÿ

sPG

fpsqτpsq´1

“
ÿ

sPG

fpsqτpsq˚ “
´

ÿ

sPG

fpsqτpsq
¯˚

“ ρpfq˚,

i.e. ρ a ˚-homomorphism.

7.51 The Haar measure on locally compact groups.

We want to transfer all this as far as possible to locally compact groups, i.e.
groups G, which are additionally locally compact Hausdorff spaces, and for which
the multiplicationGˆGÑ G and the inversionGÑ G are continuous. To construct
L1pGq we need a distinguished measure µ on G. We want the left-multiplication
` (given by `t ¨ s “ ts) to induce a representation λ of G on LppGq (given by
λspfqptq :“ pf ˝ `s´1qptq “ fps´1tq). So, in particular for p “ 1 and f ě 0, the
following should hold:

ż

G

fps´1tq dµptq “ }λspfq}1 “ }f}1 “

ż

G

fptq dµptq.

Thus the measure should be left-invariant, i.e. µpsAq “ µpAq for all measurable
A. In fact, it can be shown that such a measure µ (the so-called Haar measure)
always exists on G, and that it is unique up to a constant positive factor, provided
one additionally requires that µpUq ą 0 for all open U ‰ H. For a proof of this
statement, see [13, S.185]. For G “ R and G “ S1 it is the usual Lebesgue measure
and for G “ Z it is the counting measure. We generally write

ş

G
fptq dt instead of

ş

G
fptq dµptq for f P L1pGq :“ L1pG,µq.

Definition (Convolution).

With LppGq :“ LppG,µq, we denote the Banach space of all equivalence classes of
p-integrable functions with respect to the Haar measure µ.

The convolution of two functions is defined analogously to the discrete case by

pf ‹ gqpsq :“

ż

G

fptq gpt´1sq dt “

ż

G

fpstq gpt´1q dt.

It provides a bilinear mapping L1pGq ˆLppGq Ñ LppGq with }f ‹ g}p ď }f}1 ¨ }g}p
(see [13, 20.19]).

The convolution of functions in L1pGq is associative and thus L1pGq is a Banach

algebra and the convolution induces representations λ̃ of L1pGq on LppGq, the so-

called left-regular representations defined by λ̃pfqpgq :“ f ‹ g. To see the
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associativity, we use the Theorem of Fubini in the following way:

ppf ‹ gq ‹ hqprq “

ż

G

pf ‹ gqptqhpt´1rq dt

“

ż

G

ż

G

fpsq gps´1tqhpt´1rq ds dt

“

ż

G

ż

G

fpsq gps´1tqhpt´1rq dt ds pt “ suq

“

ż

G

ż

G

fpsq gpuqhpu´1s´1rq du ds

“

ż

G

fpsq pg ‹ hqps´1rq ds

“ pf ‹ pg ‹ hqqprq.

Since L1pGq has no unit (see [18, 4.7.7]), the group homomorphism δ : GÑ L1pGq
from the discrete case no longer exists.

Nevertheless, we still have a counterpart to the left-regular representation λ̃ of
L1pGq on LppGq, namely the unitary representation λ : G Ñ LpLppGqq, t ÞÑ pf ÞÑ
f ˝`t´1q, which is induced by the left translation `. So there is hope to put represen-
tations of L1pGq in bijective relationship to unitary representations of G. Since G is
no longer discrete, we should make continuity assumptions on the representations
of G.

7.52 Proposition (Unitary Representations).

Let τ : GÑ UpHq be a group homomorphism into the group of bijective isometries
of a Banach space H, then t.f.a.e.:

1. The mapping τ
p

: GˆH Ñ H is continuous;

ô 2. The sequence τptq Ñ 1 converges pointwise for tÑ e;

ô 3. The mapping τ : G Ñ UpHq is continuous, with respect to the pointwise
convergence on UpHq;

ô 4. The mapping τ
p

: GˆH Ñ H is separately continuous.

A mapping τ : G Ñ UpHq with the above equivalent properties is called unitary
representation of the group G on the Banach space H.

Proof. p 1 ñ 2 q is trivial.

p 2 ñ 3 q Because τptq “ τpt t´1
0 t0q “ τpt t´1

0 q ˝ τpt0q, τptq Ñ τpt0q converges

pointwise for t t´1
0 Ñ e, i.e. for t “ t t´1

0 t0 Ñ e t0 “ t0.

p 3 ñ 4 q Assuming that τ has values in UpHq Ă LpHq, τ
p
pt, q is always con-

tinuous. Conversely, τ
p
p , hq “ evh ˝τ is continuous for all h P H if and only if

τ : G Ñ UpHq is continuous with respect to the pointwise convergence, because
this is just the initial topology with respect to evh : LpHq Ñ H for h P H.

p 4 ñ 1 q Let t0 P G, h0 P H and ε ą 0. Then, because of the continuity of
τ
p
p , h0q, there is a neighborhood U of t0 in G, s.t. }τptqh0 ´ τpt0qh0} ă ε for all

t P U . Consequently,

}τptqh´ τpt0qh0} ď }τptqh´ τptqh0} ` }τptqh0 ´ τpt0qh0}

ď }τptq} }h´ h0} ` }τptqh0 ´ τpt0qh0}

ď 1 ε` ε “ 2 ε

holds for all }h´ h0} ă ε and t P U .
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Obviously, a mapping τ : GÑ LpHq that is continuous with respect to the operator-
norm on LpHq is also continuous with respect to the coarser topology of pointwise
convergence. The fact that the converse implication does not hold is shown by the
following

Lemma (Continuity of the left translation).

The mapping

λ : GÑ UpL1pGqq Ď LpL1pGqq, λspfq :“ f ˝ `s´1

induced by the left translation ` is a unitary representation of G on L1pGq. It is not
continuous with respect to the operator norm on LpL1pGqq.

The right translation also induces a group homomorphism G Ñ LpL1pGqq, but
which does not have values in UpL1pGqq, so it is not a unitary representation.

Proof. Let t P G, f P L1pGq and ε ą 0. Then there is a g P CcpGq with }f´g}1 ă
ε
3 .

Since g P Cc (let K :“ Trg g), g is uniformly continuous, i.e. there exists a 1-
neighborhood U with |gpsq ´ gprq| ă ε

6µpKq for rs´1 P U . Let s P V :“ tU . Then

s “ tu for a u P U and pt´1rqps´1rq´1 “ t´1s “ u P U holds and thus

}λsg ´ λtg}1 “

ż

tr:s´1rPK or t´1rPKu

|gps´1rq ´ gpt´1rq| dr

ď
ε

6µpKq
µpsK Y tKq ď

ε

3
.

Since the Haar measure is left-invariant and thus }λsf ´ λsg}1 “ }f ´ g}1 ă
ε
3 , we

have for s P V :

}λsf ´ λtf}1 ď }λspf ´ gq}1 ` }λsg ´ λtg}1 ` }λtpg ´ fq}1 ă ε.

The following example shows that mapping λ : G Ñ UpL1pGqq is not continuous
with respect to the operator norm: Let G “ R. Suppose there were an δ ą 0, s.t.
}λptq ´ λp0q} ă 1 for |t| ď δ. Then, for the characteristic function f of p0, δs, the
supports of f “ λp0qf and λpδqf would be disjoint and thus }λpδqf ´ λp0qf}1 “
}λpδqf}1 ` }λp0qf}1 “ 2 }f}1 ą }f}1, a contradiction.

For the right translation, note that

fpstq “ fppt´1 s´1q´1q “ Sfpt´1 s´1q “ SpλtpSfqqpsq,

where Sfptq :“ fpt´1q denotes the reflection and 7.54 .

Lemma.

The representation GÑ LpL1pGqq, s ÞÑ pf ÞÑ fspt ÞÑ fptsqqq by right multiplication
is also continuous with respect to the topology of pointwise convergence.

Proof. By the lemma above λsf Ñ f converges for s Ñ e and each f P L1pGq,
hence also ∆psq ¨ λsf

˚ Ñ ∆peq ¨ f˚ “ f˚, whereby ∆ denotes the modulus function

to be defined in 7.53 and ˚ the involution which will be defined in 7.55 . We have
`

∆psq ¨ λsf
˚
˘

ptq “ ∆psq ¨ f˚ps´1tq “ ∆psq ¨∆ps´1tq ¨ fpps´1tq´1q

“ ∆ptq ¨ fspt´1q “ pfsq
˚ptq.

Thus

}fs ´ f}1 “ }pfsq
˚ ´ f˚}1 “ }∆psq ¨ λsf

˚ ´ f˚}1 Ñ 0 for sÑ e.
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7.53 The modulus function

The failure of right-invariance of the Haar measure can be described as follows:

Lemma.

Let the modulus ∆ be defined by
ż

G

fptsq dµptq “ ∆psq

ż

G

fptq dµptq for all f P L1pGq, s P R.

Then ∆ : GÑ pR`, ¨q is a continuous group homomorphism.

Proof. See [13, p196]. Because of the denseness of the subspace generated by the
positive continuous functions with compact support, it is sufficient to consider such
functions. Let µs : CcpGq Ñ C be defined by µspfq :“

ş

G
fptsq dµptq. Then µs is also

a left-invariant measure on G. Consequently, there is a positive number ∆psq with
µspfq “ ∆psqµpfq. Furthermore, we have, where ft denotes the right-translated
function s ÞÑ fpstq:

pftqsprq “ ftprsq “ fpprsqtq “ fprpstqq “ fstprq

and thus

∆ptsqµpfq “ µpftsq “ µppfsqtq “ ∆ptqµpfsq “ ∆ptq∆psqµpfq.

Let U be a relatively compact 1-neighborhood in G, furthermore let f ‰ 0 and ω be

continuous positive functions with compact support on G with ωpTrgpfq ¨ U
´1
q “

t1u. Because of the uniform continuity of f , every ε ą 0 has a 1-neighborhood

V Ď U with |fpstq ´ fpsq| ă ε µpfq
µpωq for all t P V and all s P G. Thus

|∆ptq ´ 1|µpfq “ |µpftq ´ µpfq|

ď

ż

stPTrg f or sPTrg f

|fpstq ´ fpsq| ds

“

ż

sPω´1p1q

|fpstq ´ fpsq| ds ď ε µpfq,

i.e. |∆ptq ´ 1| ď ε for all t P V .

Each discrete, each Abelian, and each compact group G is unimodular, i.e. ∆ “ 1,
equivalently, the Haar measure is also right-invariant: For discrete G, the counting
measure is obviously right-invariant, for Abelian G this is trivial, and for compact
G the image under ∆ is a compact subgroup of pR`, ¨q, which is equal to t1u.

With respect to the reflection S : f ÞÑ pt ÞÑ fpt´1qq, the following holds:

7.54 Lemma.

For f P L1pGq:
ż

G

fptq dµptq “

ż

G

∆ptq fpt´1q dµptq.

Proof. Let νpfq :“
ş

G
∆ptq fpt´1q dµptq “ µp∆ ¨ Sfq. Then

νpλsfq “

ż

G

∆ptq fps´1t´1q dµptq “

ż

G

∆ptq fpptsq´1q dµptq

“

ż

G

∆ptsq∆ps´1q fpptsq´1q dµptq “ ∆ps´1qµpp∆ ¨ Sfqsq

“ ∆ps´1q∆psqµp∆ ¨ Sfq “ νpfq.
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So ν is left-invariant and obviously νpUq ą 0 for U ‰ H, so c ą 0 exists with
ν “ c µ. For ε ą 0 we choose a function g P CcpGq with g “ Sg and Trgpgq Ď tt :
|∆ptq ´ 1| ă εu. Thus |gptq ´∆ptqgptq| ď ε gptq and therefore

ˇ

ˇ

ˇ
p1´ cq

ż

G

g
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

G

g ´ νpgq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

G

g ´

ż

G

∆ g
ˇ

ˇ

ˇ
ď ε|

ż

G

g|,

hence |1´ c| ď ε, i.e. c “ 1. So
ż

G

fptq dµptq “

ż

G

∆ptq fpt´1q dµptq.

Remark.

One could analogously to the discrete case, define the convolution as

pf ‹2 gqprq :“

ż

G

fprs´1q gpsq ds ps “ trq

“ ∆prq´1

ż

G

fpt´1q gptrq dt by

“ ∆prq´1

ż

G

∆ptq fptq gpt´1rq dt

“ ∆prq´1 pp∆ fq ‹ gqprq,

i.e. ∆ ¨ pf ‹2 gq “ p∆ ¨ fq ‹ g.

For this second convolution we can not expect associativity, because

∆ ¨ ppf ‹2 gq ‹2 hq “ p∆ ¨ pf ‹2 gqq ‹ h “ pp∆ ¨ fq ‹ gq ‹ h

“ p∆ ¨ fq ‹ pg ‹ hq “ ∆ ¨ pf ‹2 pg ‹ hqq ‰ ∆ ¨ pf ‹2 pg ‹2 hqq.

7.55 The involution on L1pGq.

As in the discrete case, we try to provide L1pGq with an involution ˚, so that the left-
regular representation on L2pGq is a ˚-representation, i.e. xh1, f ‹h2y “ xf

˚‹h1, h2y.
We have

xh1, f ‹ h2y “

ż

G

h1prq

ż

G

fptqh2pt´1rq dt dr

“

ż

G

ż

G

h1ptsq fptqh2psq dt ds

“
7.54
“““““

ż

G

ż

G

∆ptqh1pt
´1sq fpt´1qh2psq dt ds

and

xf˚ ‹ h1, h2y “

ż

G

ż

G

f˚ptqh1pt
´1sqh2psq dt ds,

consequently we put f˚ptq :“ ∆ptq fpt´1q, cf. 7.49 .

Lemma.

The space L1pGq is a B˚-algebra (without unit) with involution given by f˚ptq :“

∆ptqfpt´1q.

Proof. Because of 7.54 , }f˚}1 “ }f}1 and

pf˚q˚ptq “ ∆ptq f˚pt´1q “ ∆ptq∆pt´1q fppt´1q´1q “ fptq.
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Furthermore:

pg˚ ‹ f˚qpsq “

ż

G

g˚ptq f˚pt´1 sq dt “

ż

G

g˚pstq f˚pt´1q dt

“

ż

G

∆pstq gpt´1 s´1q∆pt´1q fptq dt

“ ∆psq

ż

G

fptq gpt´1 s´1q dt “ pf ‹ gq˚psq

As a partial replacement for a unit we have:

7.56 Proposition (Approximating unit).

Let f P L1pGq and ε ą 0. Then there is a (compact) neighborhood U of e, so that
for all 0 ď g P L1pGq with

ş

G
g “ 1 and g|GzU “ 0 we have

}f ‹ g ´ f}1 ď ε.

In particular, there is an approximating unit for L1pGq, i.e. a net i ÞÑ ui with
}ui} “ 1 as well as f ‹ ui Ñ f and ui ‹ f Ñ f for all f P L1pGq.

Proof. Let g be as indicated. Then it is easy to see that f ‹g is defined everywhere

and lies in L1pGq. Since
ş

G
∆ptq gpt´1q dt “

ş

G
gptq dt “ 1 by 7.54 ,

pf ‹ gqpsq ´ fpsq “

ż

G

fpstq gpt´1q dt´ fpsq

ż

G

∆ptq gpt´1q dt

“

ż

G

pfpstq ´∆ptq fpsqq gpt´1q
loooooooooooooooomoooooooooooooooon

“:F ps,tq

dt

holds. We have F ps, tq “ fpstq p1´∆ptqq gpt´1q` pfpstq´ fpsqq∆ptq gpt´1q, conse-
quently

kptq :“

ż

G

|F ps, tq| ds ď }ft}1 |1´∆ptq| gpt´1q ` }ft ´ f}1 ∆ptq gpt´1q

“ ∆ptq }f}1 |1´∆ptq| gpt´1q ` }ft ´ f}1 ∆ptq gpt´1q

“

´

}f}1 |1´∆ptq| ` }ft ´ f}1

¯

∆ptq gpt´1q.

Now let ε ą 0. We choose a symmetric neighborhood of e in U

}f}1 |1´∆ptq| ď
ε

2
and }ft ´ f}1 ď

ε

2
for all t P U.

Now let g be as assumed. Since g “ 0 outside is U´1 “ U , we obtain 0 ď k ď
ε∆Spgq. Thus k P L1pGq and by Fubini we have

}f ‹ g ´ f}1 “

ż

G

ˇ

ˇ

ˇ

ż

G

F ps, tq dt
ˇ

ˇ

ˇ
ds ď

ż

G

ż

G

|F ps, tq| dt ds “

ż

G

ż

G

|F ps, tq| ds dt

“

ż

G

kptq dt ď ε

ż

G

∆ptq gpt´1q dt “ ε

ż

G

gptq dt “ ε.

To obtain an approximating unit, we choose now the index set to be the neigh-
borhood basis of the unit (consisting of compact symmetric neighborhoods) and
for each such neighborhood i :“ U the corresponding weighted characteristic func-
tion 1

µpUq χU as ui. Then, according to above calculation, f ‹ ui Ñ f holds to all

f P L1pGq. Because of }u˚i } “ }ui} “ 1, Trgpu˚i q “ Trgpuiq
´1 “ U´1 “ U and

u˚i ptq “ ∆ptquipt´1q ě 0 also g ‹ u˚i Ñ g is valid for all g P L1pGq and thus
ui ‹ f “ pf

˚ ‹ u˚i q
˚ Ñ pf˚q˚ “ f .
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7.57 Theorem.

The left regular representation λ̃ of L1pGq on L2pGq is an injective ˚-homomorphism
and a contraction.

Proof. We have just choosen ˚ so that λ̃ : L1pGq Ñ LpL2pGqq is a ˚-homomorphism.

It is injective, because 0 “ λ̃pfqpgq “ f ‹ g for all g P L2pGq implies f ‹ ui “ 0

and since by 0 “ f ‹ ui Ñ f we have f “ 0. In 7.49 we have shown that every
˚-homomorphism from a B˚-algebra B (with unit) into a C˚-algebra A is a con-
traction. This even holds for B˚-algebras B without unit, because B1 :“ B ‘ C is

the associated Banach algebra with unit by 6.4 . By virtue of px ‘ zq˚ :“ x˚ ‘ z
it is a B˚-algebra with unit. And every ˚-homomorphism ρ : B Ñ A extends to a
unique, ˚-homomorphism ρ1 : B1 Ñ A by virtue of ρ1px‘ zq :“ ρpxq ` z. So ρ1 is
a contraction and thus also ρ :“ ρ1|B .

7.58 Lemma.

With ApGq, we denote the C˚-algebra generated by the image of the left-regular
representation of L1pGq on L2pGq. Each representation of the C˚-algebra ApGq
induces a ˚-representation of L1pGq. The commutants of these two representations

agree, and thus irreducibility is synonymous for them by 7.41 .

Proof. Note that ApGq is the closure of tf ‹ p q` t : f P L1pGq, t P Cu in LpL2pGqq.

Let ϕ : ApGq Ñ LpHq be a representation and ρ :“ ϕ ˝ λ̃ : L1pGq Ñ ApGq Ñ LpHq
the corresponding representation of L1pGq, then:

T commutes with ρpfq “ ϕpf ‹ p qq for all f P L1pGq

ô T commutes with ρpfq ` t “ ϕpf ‹ p q ` tq for all f P L1pGq and t P C
ô T commutes with ϕpaq for all a P ApGq.

7.59 Comparison of the representations of G and of L1pGq

For locally compact groups G we are now trying
to relate unitary representations τ : G Ñ UpHq
and representations ρ : L1pGq Ñ LpHq with each
other.

G

τ

��

L1pGq

ρ

��
UpHq

� � // LpHq

( ÞÑ) In the discrete case we had ρpfq :“
ř

tPG fptqτptq. In the general case, we ex-
pect ρpfq “

ş

G
fptq τptq dt P LpHq. Since unitary representations τ need not be

continuous with respect to the operator norm by 7.52 , the integral in LpHq does
not exist, but

ş

G
fptq τptqh dt P H exists for each h P H, and thus we define

ρpfqh :“

ż

G

fptq τptqh dt P H for f P L1pGq and h P H.

(Ð ) Conversely, in the discrete case we had τ “ ρ ˝ δ, i.e. τptq “ ρpδtq. In general,
we do not have a unit δe P L

1pGq but only an approximate unit ui P L
1pGq, which

we can use instead of δe. So instead of δt “ δt ‹ δe “ λtpδeq we should use λtpuiq
and put τptq :“ limi ρpλtpuiqq, for which we have to show the existence of the limit.

Another possibility is to use the identity τptq˚ ˝ ρ “ ρ ˝ λt for t P G of the discrete
case, i.e. τptq ˝ ρpfq “ ρpλtfq. This clearly fixes τ on ρpL1pGqqH. If L1pGq had a
unit and ρ preserved it, then ρpL1pGqqH “ H and τ would be fixed. However, since
L1pGq has no unit, representations ρ : L1pGq Ñ LpHqmay be degenerated, where
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an algebra homomorphism is called ρ : A Ñ LpHq non-degenerated if ρpAqH
generates a dense subspace of H. If ρ is a ˚-homomorphism, this is equivalent to
ρpAqh “ 0 ñ h “ 0, because

xρpAqHy is dense in H ô

´

@a P A,@k P H

“xk,ρpa˚qhy
hkkkkikkkkj

xρpaqk, hy “ 0
¯

ñ h “ 0

ô

´

ρpAqh “ 0 ñ h “ 0
¯

.

The space N :“ th P H : ρpAqh “ 0u is clearly invariant, hence also NK and
ρ :“ ρ|NK`0|N , where ρ|NK is not degenerated. So we have no significant restriction
when we consider only non-degenerate representations of L1pGq.

Now to the existence of limi ρpλtpuiqq. For the composition with ρpfq we obtain:

ρpλtpuiqq ˝ ρpfq “ ρpλtpuiq ‹ fq “ ρpλtpui ‹ fqq Ñ ρpλtpfqq,

since ui ‹ f Ñ f in L1pGq and thus pρ ˝ λtqpui ‹ fq Ñ pρ ˝ λtqpfq. Since ρ is
a contraction, }ρpλtpuiqq} ď }λtpuiq} “ }ui} “ 1 holds, and thus limi ρpλtpuiqq
exists pointwise not only on image of ρpfq but on all of H. And so τptq P LpHq is
well-defined by

τptq :“ lim
i
ρpλtpuiqq pointwise on H

and }τptq} ď 1 and τptq ˝ ρpfq “ ρpλtfq for all f P L1pGq. Because of the last
equation, we also see that τptq does not depend on the choice of approximating
unit ui.

Theorem.

For locally compact groups G and Hilbert spaces H we have a bijection

HompG,UpHqq – HompL1pGq, LpHqq

between the set of unitary representations τ of G on H and those of non-degenerated
representations ρ of L1pGq on H, i.e. the non-degenerated algebra homomorphisms
which commute with ˚, or equivalent, are contractions. We have

xρpfqh, ky “

ż

G

fptq xτptqh, ky dt @h, k P H, f P L1pGq,

τptq “ lim
j
ρpλtujq @t P G,

where uj is an approximating unit of L1pGq.
Furthermore, τptq is uniquely determined by the identity τptq˚ ˝ ρ “ ρ ˝ λt.
The irreducible representations also correspond to each other.

Proof. (ÞÑ) Let τ : G Ñ LpHq be a unitary representation. As mentioned in the
introduction we aim to define ρ by

ρpfqh :“

ż

G

fptq τptqh dt P H for f P L1pGq and h P H.

To do so, we consider the sesqui-linear form

bf ph, kq :“

ż

G

fptq xτptqh, ky dt.

Obviously, }bf ph, kq} ď }f}1 }h} }k} holds. So there is a unique operator ρpfq P
LpHq with xρpfqh, ky “ bf ph, kq and }ρpfq} ď }f}1. It is easy to see that ρ :
L1pGq Ñ LpHq is a linear mapping.
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Furthermore, ρ is multiplicative because

xρpf ‹ gqh, ky “

ż

G

ż

G

fpsq gps´1tq ds xτptqh, ky dt

“

ż

G

fpsq

ż

G

gps´1tq xτptqh, ky dt ds (Fubini)

“

ż

G

fpsq

ż

G

gptq xτpstqh, ky dt ds ps´1t ÞÑ tq

“

ż

G

fpsq

ż

G

gptq xτptqh, τpsq˚ky dt ds

“

ż

G

fpsqxρpgqh, τpsq˚ky ds “

ż

G

fpsqxτpsqρpgqh, ky ds

“ xρpfqρpgqh, ky.

We claim that ρ is a ˚-representation (and thus a contraction):

xρpfq˚h, ky “ xh, ρpfqky “ xρpfqk, hy “ bf pk, hq

“

ż

G

fptq xτptqk, hy dt “

ż

G

fptq xh, τptqky dt

“

ż

G

∆ptqfpt´1q xh, τpt´1qky dt “

ż

G

f˚ptq xτptqh, ky dt

“ xρpf˚qh, ky.

The representation ρ is not degenerated: Let h P H with }h} “ 1. Because of
xτp1qh, hy “ }h}2 “ 1 and because t ÞÑ τptqh is continuous, a neighborhood U of
the unit exists in G with |xτptqh, hy ´ 1| ď 1

2 for all t P U . Let f P L1pGq with

f ě 0,
ş

G
f “ 1 and Trgpfq Ď U . Then

xρpfqh, hy ´ 1 “

ż

G

fptq xτptqh, hy dt´

ż

G

fptq dt “

ż

U

fptq
`

xτptqh, hy ´ 1
˘

dt

and thus |xρpfqh, hy´1| ď
ş

U
fptq

ˇ

ˇxτptqh, hy´1
ˇ

ˇ dt ď 1
2

ş

U
fptq dt “ 1

2 , i.e. xρpfqh, hy ‰
0.

(Ð ) Let ρ : L1pGq Ñ LpHq be a non-degenerate contractionary algebra homo-
morphism. As stated in the introduction, τptq P LpHq exists as pointwise limit
limi ρpλtpuiqq and complies with }τptq} ď 1 and τptq˚ ˝ ρ “ ρ ˝ λt. Because of
the non-degeneracy of ρ, the last equation immediately implies that τp1q “ 1 and
τpt1t2q “ τpt1q ˝ τpt2q hold. Consequently, τpt´1q “ τptq´1 and thus τ : GÑ UpHq
is a group homomorphism.

We next show that τ is a unitary representation, i.e. τptq Ñ 1 converges pointwise
for tÑ e. In fact, λtf Ñ f and thus ρpfqh “ limt ρpλtfqh “ limtpτptq ˝ ρpfqqh. So
τptqpρpfqhq Ñ ρpfqh and, since the vectors ρpfqh generate a dense linear subspace
and }τptq} ď 1, we obtain τptq Ñ 1 pointwise.

To show that the mappings are inverse to each other, on the one hand, we need to
show the equation

xρpfqh, ky “

ż

G

fptq xτptqh, ky dt @h, k P H, f P L1pGq,

where τ is the unitary representation associated with ρ. Both sides represent con-
tinuous linear functionals with respect to f . It suffice for }h} “ 1 “ }k}, ε ą 0 and
characteristic functions f “ χA of Baire sets A with finite Haar measure to show
that

ˇ

ˇ

ˇ
xρpfqh, ky ´

ż

G

fptq xτptqh, ky dt
ˇ

ˇ

ˇ
ď ε

ż

G

fptq dt.
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There is a neighborhood U of e P G with }ρpgqh´h} ď ε for all g ě 0 with }g} “ 1
and Trgpgq Ď U , because one may approximate h by a linear combination of finite

many ρpfiqhi with }hi} ď 1 and choose U by 7.56 , s.t. }ρpgq ˝ ρpfiq ´ ρpfiq} ď
}g ‹ fi ´ fi}1 ă

ε
3 for all i.

Let A´1A Ď U for the moment. If µpAq “ 0, then nothing is to be shown. Let
α :“ µpAq ą 0 and g :“ 1

αf . Then g is bounded and g ě 0 and
ş

G
gptq dt “

1. For t P A the function λt´1g has compact support in U , because for t1 R U
we have t1 R A´1A, i.e. At1 X A “ H, and thus λt´1gpt1q “ gptt1q “ 1

αfptt
1q “

1
αχAptt

1q “ 0. So }τpt´1qρpgqh ´ h} “ }ρpλt´1gqh ´ h} ď ε. Since τptq is unitary,

}ρpgqh´ τptqh} “ }τptq
`

τptq´1ρpgqh´h
˘

} ď ε holds. From f “ α g “ χA it follows

that xρpfqh, ky ´
ş

G
fptq xτptqh, ky dt “

ş

A
xpρpgq ´ τptqqh, ky dt. So the special case

is proven.
Let now f “ χA with µpAq ă 8 and let W be a neighborhood of e with W´1W Ď

U . Without loss of generality, W is a Baire set. Let tn be a sequence in G with
A Ď

Ť

nPN tnW (cover A with a sequence of compact sets and eacho of them by
finitely many translates of W ). Let An :“ A X tnW . Then A “

Ť

nPNAn and An
are Baire sets with A´1

n An Ď pW´1tn
´1qptnW q “ W´1W Ď U . Without loss of

generality, these sets are disjoint (replace An with Anz
Ť

jănAj). Let fn :“ χAn
and sn :“

ř

jďn fj . For each fj , the desired equation holds, so

ˇ

ˇ

ˇ
xρpsnqh, ky ´

ż

G

snptq xτptqh, ky dt
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ÿ

jďn

´

xρpfjqh, ky ´

ż

G

fjptq xτptqh, ky dt
¯
ˇ

ˇ

ˇ

ď
ÿ

jďn

ε

ż

G

fjptq dt “ ε

ż

G

snptq dt.

due to linearity. Since sj Õ f pointwise, }sj´f}1 Ñ 0 holds because of the Theorem
[18, 4.11.10] of Beppo Levi and thus the desired equation also follows for f .

For the other composition, let ρ be the representation associated to τ . Then

xρpλtfqh, ky “

ż

G

λtfpsq xτpsqh, ky ds “

ż

G

fpt´1sq xτpsqh, ky ds

“

ż

G

fpsq xτptsqh, ky ds pt´1s ÞÑ sq

“

ż

G

fpsq xτpsqh, τptq˚ky ds “ xρpfqh, τptq˚ky “ xτptqρpfqh, ky,

i.e. ρ ˝ λt “ τptq˚ ˝ ρ.

Thus τ is the unitary representation associated to ρ.

Finally, ρpL1pGqqk “ τpGqk holds, from which the statement about irreducibility

follows by means of 7.41 :
If T P LpHq commutes with all τptq, then

xTρpfqh, ky “ xρpfqh, T˚ky “

ż

G

fptq xτptqh, T˚ky dt

“

ż

G

fptq xTτptqh, ky dt “

ż

G

fptq xτptqTh, ky dt “ xρpfqTh, ky,

i.e. T commutes with ρpfq for each f P L1pGq.
Conversely, T P LpHq converges with ρpfq for each f P L1pGq. Let ui be an ap-
proximating unit of L1pGq. Then

T τptq ρpuiq “ T ρpλtpuiqq “ ρpλtpuiqqT “ τptq ρpuiqT

and since ρpuiq Ñ 1 pointwise, T τptq “ τptqT follows.
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Corollary (Gelfand-Raikov 1955).

The irreducible unitary representations of a locally compact group are point sepa-
rating, i.e. for each e ‰ s P G, such a representation ρ exists on a Hilbert space H
with ρpsq ‰ 1.

Proof.

s h // a

G

τ
��

L1pGq

ρ
��

// λ̃ // ApGq

ϕyy

� � // LpL2pGqq

UpHq �
� // LpHq

Let s ‰ e in G. Then there is a f P CcpGq Ď L1pGq with fps´1q ‰ fpeq and thus
λsf ‰ f . Let h :“ λsf ´ f ‰ 0 P L1pGq. Because the representation of L1pGq is

injective on L2pGq by 7.57 , we have 0 ‰ a :“ h ‹ p q P ApGq. So by 7.45 there is
an irreducible representation ϕ : ApGq Ñ LpHq with ϕpaq ‰ 0. The representation
ρ : L1pGq Ñ ApGq Ñ LpHq is thus irreducible, i.e. is cyclic and therefore non-
degenerated and ρphq ‰ 0. So also the associated representation τ from G on LpHq
is irreducible and because of ρpλsfq ´ ρpfq “ ρpλsf ´ fq “ ρphq “ ϕpaq ‰ 0, we
have τpsq ˝ ρpfq “ ρpλsfq ‰ ρpfq, so τpsq ‰ 1.

7.60 Corollary (Irreducible representations in the Abelian case).

Let G be a locally compact Abelian group. Then the irreducible unitary represen-
tations are exactly the characters, i.e. the continuous group homomorphisms
τ : GÑ S1. The irreducible non-degenerate ˚-representations of L1pGq are exactly
the C-valued algebra homomorphisms 0 ‰ ρ : L1pGq Ñ C. And the bijection

HompG,S1q – HompL1pGq,Cqzt0u

of 7.59 is given for f P L1pGq by

ρpfq “

ż

G

fptq τptq dt.

Proof. If G is Abelian, then the same holds for L1pGq.

According to 7.59 , the irreducible unitary representations τ of G correspond ex-

actly to the non-degenerate irreducible representations ρ of L1pGq, and these are

1-dimensional by 7.42 , i.e. H “ C.

Since the pointwise convergence on LpCq coincides with the norm convergence, the
irreducible unitary representations of G are just the continuous group homomor-
phisms τ : GÑ UpCq “ S1.

The non-degenerate representations of L1pGq on C are, by 7.59 , just the contrac-

tionary algebra homomorphisms ρ : L1pGq Ñ C that are surjective. According to

6.39 , every C-valued algebra homomorphism on a Banach algebra with unit has
norm 1. Hence every C-valued algebra homomorphism ρ on a Banach algebra A
(without unit) is a contraction, because ρ1 : A1 Ñ C is an algebra homomorphism

on A1 :“ A‘C by 6.4 and thus is }ρ} “ }ρ1|A} ď }ρ1} “ 1. A scalar-valued linear
mapping ρ is surjective if and only if ρ ‰ 0.

The injection from 7.59 is clearly given by

ρpfq “

ż

G

fptq τptq dt
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in the case of H “ C.

7.61 The character group.

As in 6.43 , one shows that HompL1pGq,Cq is a compact space with respect to

pointwise convergence (there we used 6.39 , but L1pGq has no unit, however we have

assumed }f} ď 1 for all f P HompL1pGq,Cq). Consequently, HompL1pGq,Cqzt0u is a

locally compact space, and the bijection from 7.60 also makes HompG,S1q a locally

compact space. It can be shown that this topology on HompG,S1q is precisely that
of uniform convergence on compact subsets of G. Obviously, HompG,S1q is a group

with respect to pointwise multiplication, and it is easy to see that pG :“ HompG,S1q

is a topological group, the so-called character group of G, of all continuous
group homomorphisms G Ñ S1, the so-called characters. We will now switch
the variables in the homeomorphism

F̃ : pGÑ HompL1pGq,Cqzt0u Ď HompL1pGq,Cq, τ ÞÑ
´

f ÞÑ

ż

G

fptq τptq dt
¯

,

i.e. consider the associated mapping

L1pGq Ñ Cp pG,Cq, f ÞÑ
´

τ ÞÑ

ż

G

fptq τptq dt
¯

.

This is an ˚-homomorphism because F̃pτq is a ˚-homomorphism for all τ P pG. To
get a more familiar from for it, we compose this with the ˚-isomorphism

inv˚ : Cp pG,Cq – Cp pG,Cq, g ÞÑ
`

τ ÞÑ gpτq “ gp
1

τ
q
˘

and get the following ˚-homomorphism F :

Theorem. Fourier transformation.

Let G be a locally compact Abelian group and pG its character group. Then there is
a ˚-homomorphism

F : L1pGq Ñ Cp pG,Cq, f ÞÑ
´

τ ÞÑ

ż

G

fptq τptq dt
¯

.

Theorem of Parseval.

The Fourier transformation of a function f P L1pGq thus provides a function Fpfq :

ĜÑ C. This does not have to be integrable, see [18, 5.4.7]. However, if we restrict

the Fourier transform to L1pGqXL2pGq, it has values in L1p pGqXC0p pGq Ď L1p pGqX

L2p pGq, and with proper normalization of the Haar measure on G and pG, it is an
isometry with respect to the 2-norm. Because of the denseness of L1pGq X L2pGq,
it can be extended to a surjective isometry

F : L2pGq ´–Ñ L2p pGq.

This is the theorem of Parseval.

7.62 Pontryagin’s Duality Theorem.

The mapping δ : GÑ G^^, g ÞÑ evg is a group homeomorphism.

For a proof, see [13, Vol.2].

7.63 Example.
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Let G :“ R. Then t ÞÑ ps ÞÑ eitsq is a group homeomorphism from R onto the

character group Ĝ “ HompR, S1q. With respect to this isomorphism, the Fourier
transform looks like follows

Fpfqpsq “
ż `8

´8

fptq e´its dt for f P L1pRq and s P R – pR

Compare this with the Fourier transform from [18, 8.1.2].

Proof. Let ϕ : R Ñ S1 be a continuous group homomorphism. Then there is a

δ ą 0 with
şδ

0
ϕpxq dx “: a ą 0 because of ϕp0q “ 1. Hence

a ¨ ϕpxq “ ϕpxq

ż δ

0

ϕpyq dy “

ż δ

0

ϕpx` yq dy “

ż x`δ

x

ϕpzq dz.

Since a ‰ 0 we have ϕpxq “ 1
a

şx`δ

x
ϕpyq dy, hence ϕ is differentiable and

ϕ1pxq “ lim
hÑ0

ϕpx` hq ´ ϕpxq

h
“ ϕpxq lim

hÑ0

ϕphq ´ ϕp0q

h
“ ϕpxqϕ1p0q.

So ϕpxq “ eϕ
1
p0qx because ϕp0q “ 1. Because of 1 “ |ϕpxq| “ |eϕ

1
p0qx| we have

ϕ1p0q P iR, i.e. ϕpxq “ eisx for a s P R. Consequently, HompR, S1q – pR,`q, and
with respect to this isomorphism we have Fpfqpsq “

ş

R fpxq e
´isx dx.

Example.

Let G :“ S1. Then k ÞÑ pz ÞÑ zkq is a group homeomorphism from Z onto the

character group Ĝ “ HompS1, S1q. With respect to this isomorphism and the iden-
tification L1pS1q – L1r´π, πs, the Fourier transform looks like follows

Fpfqpkq “ 1

2π

ż `π

´π

fptq e´itk dt for f P L1pr´π, πsq and k P Z – xS1.

Compare this to the Fourier coefficients in [18, 5.4].

Proof. We have h : t ÞÑ eit, a continuous surjective group homomorphism on
R Ñ S1. So h˚ : HompS1, S1q Ñ HompR, S1q – R defines an injective group
homomorphism. Namely, s P R is in the image if and only if x ÞÑ eisx is 2π-
periodic, i.e. s P Z. Thus HompS1, S1q – Z and with respect to this homomorphism
and h˚ : L1pS1q – L1r´π, πs, F looks like follows:

Fpfqpkq “ 1

2π

ż π

´π

fptq e´itk dt.

Example.

Let G :“ Z. Then a ÞÑ pk ÞÑ akq is a group homeomorphism from S1 onto the

character group Ĝ “ HompZ, S1q. With respect to this isomorphism, the Fourier
transform looks like follows

Fpfqpaq “
`8
ÿ

k“´8

fpkq a´k for f P L1pZq and a P S1 – pZ.

Cf. the Fourier series in [18, 5.4].

Proof. Each group homomorphism ϕ : ZÑ S1 is uniquely determined by its value

a :“ ϕp1q P S1, because ϕpkq “ ϕp
řk
j“1 1q “ ϕp1qk. Consequently, pG – S1. With

respect to this isomorphism, F now looks like follows:

Fpfqpaq :“
ÿ

kPZ
fpkq a´k.
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7.64 Theorem of Wiener.

Let fptq :“
ř

kPZ fk e
ikt be an absolutely convergent Fourier series. If f vanishes

nowhere, then also 1
f can be developed into an absolutely convergent Fourier series.

Proof by Gelfand. We have A :“ L1pZ,Cq, a commutative Banach algebra with

unit with respect to the convolution. By 7.60 and the last example in 7.63 , the

algebra homomorphisms ρ P σpAq :“ AlgpA,Cq are described by the a P S1 –

HompZ, S1q “: pZ via ρ : f ÞÑ
ř

kPZ fk a
´k. The Gelfand transformation

G : AÑ CpσpAq,Cq, f ÞÑ evf p: ρ ÞÑ ρpfqq

from 6.43 thus maps f P L1pZ,Cq onto a ÞÑ
ř

kPZ fk a
´k up to this isomorphism,

so it is F . We have Fpfq P CpS1,Cq – C2πpR,Cq. As an element of C2πpR,Cq we
have Fpfqptq :“

ř

kPZ fk e
´ikt. If Fpfq vanishes nowhere, then 1{Fpfq P C2πpR,Cq

is also in the image of the Gelfand transform (and thus an absolutely convergent
Fourier series) because if Gpfq vanishes nowhere, then ρpfq “ Gpfqpρq ‰ 0 for all
ρ P AlgpA,Cq and thus 0 R σpGpfqq “ σpfq, i.e. f is invertible in A and obviously
1 “ Gpf´1fq “ Gpf´1qGpfq holds, so Gpf´1q “ 1

Gpfq .

L1pZ,Cq F // CppZ,Cq
7.63

–
//

7.60–

��

CpS1,Cq – // C2πpR,Cq

A
G

// CpAlgpA,Cq,Cq
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8. Spectral theory for normal operators

LetN P LpHq be a normal operator, then the C˚-subalgebra C˚pNq generated byN

is commutative and thus by 7.10 isomorphic to CpX,Cq, where X :“ σpNq Ď C is
compact. The inverse of the Gelfand Isomorphism G thus provides a representation

ρ : CpX,Cq ´–Ñ C˚pNq Ď LpHq,

the function calculus from 7.14 . An in-depth investigation of this representation
should provide us also with essential information about normal operators. So we
start deepening our study of representations of Abelian C˚-algebras.

Representations of Abelian C˚-algebras and spectral measures

In this section, X is a compact space and H is a Hilbert space.

The irreducible ˚-representations of CpX,Cq are 1-dimensional by 7.42 , i.e. are

algebra homomorphisms ρ : CpX,Cq Ñ C by 7.9 . By 6.42 these are exactly the
point evaluations evx with x P X. More generally, according to Riesz’s theorem

theorem 5.3.4 , the continuous linear functionals CpX,Cq Ñ C correspond exactly
to the regular complex Borel measures on X. The σ-algebra BpXq of all Borel sets is

by definition generated by the compact (equivalent, open or closed sets), see 4.1.3 .
A regular complex Borel measure onX is a σ-additive mapping µ : BpXq Ñ C which
satisfies

|µ|pAq “ supt|µ|pKq : K Ď A,K compactu.

The absolute value |µ| of a complex measure µ is the positive measure defined by

|µ|pBq :“ sup
!

8
ÿ

n“0

|µpBnq| : Bn P B, B “
8
ğ

n“0

Bn, Bn pairwise disjoint
)

.

The isometric isomorphism

CpX,Cq˚ –MpXq :“
!

µ : µ is a regular complex Borel measure on X
)

,

is defined by pf ÞÑ
ş

X
fpxq dµpxqqÐ µ and conversely µpBq :“

ş

X
χBpxq dµpxq,

where we have to extend the functional CpX,Cq Ñ C to the measurable and gen-
erally not continuous functions χB .
The variation norm on MpXq is defined by }µ} :“ |µ|pXq.

In analogy to the Riesz representation theorem 5.3.4 , a general representation
ρ : CpX,Cq Ñ LpHq should be of the form ρpfq “

ş

X
fpxq dP pxq for some kind of

“measure” P with values in LpHq and hence should extend to BorelbpXq.

8.1 Representations of Borelb give ortho-projection valued measures.

Let ρ : BorelbpXq Ñ LpHq be a ˚-representation of the algebra BorelbpXq of
bounded Borel-measurable functions X Ñ C, furthermore, χ : BpXq Ñ BorelbpXq
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the mapping which assigns to each B P BpXq the characteristic function χB and
P :“ ρ ˝ χ : BpXq Ñ BorelbpXq Ñ LpHq. Since χB1XB2

“ χB1
¨ χB2

we have

P pB1q ˝ P pB2q “ P pB1 XB2q “ P pB2q ˝ P pB1q.

In particular, P pBq “ P pB X Bq “ P pBq2, i.e. P pBq is idempotent, and P pBq˚ “
ρpχBq

˚ “ ρpχBq “ ρpχBq “ P pBq, i.e. P pBq is an ortho-projection.

Orthogonal projections P P LpHq are in bijective relationship to closed subspaces
E Ď H, via E “ imgP “ pkerP qK, because the unique orthogonal projection
P P LpHq with image E is given by x ÞÑ x1, where x “ x1 ` x2 is the unique
orthogonal decomposition of H in E ‘ EK.

We have the partial ordering of “being a subset” for closed subspaces and the one

from 7.17 for positive operators and in particular for orthogonal projections. We
now relate these two orderings to each other.

8.2 Lemma. Description of the ordering.

For two orthogonal projection P1 and P2 t.f.a.e.:

1. P1 ď P2;

ô 2. }P1x}
2 ď }P2x}

2 for all x;

ô 3. kerP1 Ě kerP2;

ô 4. imgP1 Ď imgP2;

ô 5. P1 “ P1 ˝ P2;

Proof. p 1 ô 2 q By 7.22 , P1 ď P2 ô xP1x, xy ď xP2x, xy for all x, and

xPjx, xy “ xP
2
j x, xy “ xPjx, P

˚
j xy “ }Pjx}

2.

p 2 ñ 3 q is obvious.

p 3 ô 4 q holds because imgPj “ pkerPjq
K.

p 3 ñ 5 q We have x “ x0 ` x1 with x0 P kerP2 Ď kerP1 and x1 P pkerP2q
K “

imgP2. Thus, pP1 ˝ P2qx “ P1pP2px0q ` P2px1qq “ P1px1q “ P1px0 ` x1q “ P1pxq.

p 5 ñ 2 q We have }P1x} “ }P1pP2xq} ď }P1} }P2x} ď 1 }P2x}.

8.3 Lemma. Description of orthogonality.

Let P1 and P2 be two orthogonal projections. Then imgP1 K imgP2 ô P1 ˝P2 “ 0.

Proof. imgP1 K imgP2 ô imgP2 Ď pimgP1q
K “ kerP1 ô P1 ˝ P2 “ 0.

Next, let’s examine which operations on orthogonal projections correspond to the
formation of the intersection and to the orthogonal sum of subspaces.

8.4 Lemma. Description of orthogonal sums.

Let Pi be orthogonal projections with pairwise orthogonal images. Then the orthog-
onal projection on the closed subspace

À

i imgPi generated by
Ť

i imgPi is given by
ř

i Pi. This sum converges pointwise, but not with respect to the operator norm.

Proof. Let Ei :“ imgPi “ pkerPiq
K. Then the closed subspace of H generated by

Ť

iEi is given by

à

i

Ei :“
!

ÿ

i

hi : hi P Ei and
ÿ

i

}hi}
2 ă 8

)

.
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In fact, on the one hand
ř

i hi converges because of the theorem [18, 6.2.3] of
Pythagoras (}

ř

i hi}
2 “

ř

i }hi}
2) and on the other hand

À

iEi is a closed subspace
containing all Ei.

Each h P H can be uniquely written as h “ hK `
ř

i hi with hK P p
À

iEiq
K

and
ř

i hi P
À

iEi. We have PiphKq “ 0, Piphiq “ hi and Piphjq “ 0 for i ‰

j. Consequently,
`
ř

iPF Pi
˘

h “
ř

iPF hi Ñ
ř

i hi holds for the net of the finite
partial sums. I.e. the finite sums

ř

iPF Pi converge pointwise towards the orthogonal
projection h “ hK `

ř

i hi ÞÑ
ř

i hi with image
À

iEi.

Since }Pi} “ 1 the sum
ř

i Pi does not converge in the norm.

For the intersection we have the following pendant.

8.5 Lemma. Description of the intersection.

Let 1 ď i ď n be pairwise commuting orthogonal projections Pi. Then the orthogonal
projection onto

Ş

i imgPi is given by P1 ˝ P2 ˝ . . . ˝ Pn.

Proof. It suffices to show this statement for n “ 2, because the rest follows by
induction. Because of the commutativity pP1 ˝ P2q

2 “ P1 ˝ P2 ˝ P1 ˝ P2 “ pP1q
2 ˝

pP2q
2 “ P1 ˝P2 and pP1 ˝P2q

˚ “ pP2q
˚ ˝ pP1q

˚ “ P2 ˝P1 “ P1 ˝P2, i.e. P1 ˝P2 is an
orthogonal projection with imgpP1 ˝ P2q Ď imgP1. Because of the commutativity
imgpP1 ˝ P2q “ imgpP2 ˝ P1q Ď imgP2, hence imgpP1 ˝ P2q Ď imgP1 X imgP2.
Let conversely h P imgP1 X imgP2. Then pP1 ˝ P2qh “ P1pP2hq “ P1phq “ h, i.e.
h P imgpP1 ˝ P2q.

8.6 Example. The representation given by multiplication.

Let µ be a Borel measure on a compact space X and ρ : f ÞÑMf be the represen-
tation of L8pµq on L2pµq by multiplication operators Mf : g ÞÑ f ¨ g.

The mapping B ÞÑ P pBq :“ ρpχBq is σ-additive
in the following sense: B0 Ď BpXq, countable,
pairwise disjoint ñ P p

Ů

BPB0
Bq “

ř

BPB0
P pBq,

where the sum converges pointwise.

BpXq P //
��
χ

��

LpL2pµqq

BorelbpX,Cq // // L8pµq

ρ

OO

Proof. We have already seen in 8.1 that all P pBq are orthogonal projections and
that P pB1 X B2q “ P pB1q ˝ P pB2q. Thus, for disjoint B1 and B2, the images of

P pB1q and P pB2q are normal to each other by 8.3 . The image of P pBq is obviously

tg P L2pµq : g|XzB “ 0u. And with gB :“ χB ¨ g we obtain:

img
`

P
´

ğ

BPB0

B
¯

˘

“

!

g P L2pµq : g|Xz
Ť

B0
“ 0

)

“

!

ÿ

BPB0

gB P L
2pµq : gB |XzB “ 0

)

“
à

BPB0

imgP pBq “
8.4
““““ img

`

ÿ

BPB0

P pBq
˘

.

Hence P p
Ů

BPB0
Bq “

ř

BPB0
P pBq.

8.7 Definition. Spectral-measure.

We call a mapping P : BpXq Ñ LpHq defined on the Borel algebra (or any σ-algebra
B of a space X) a spectral measure on X with respect to the Hilbert space H
if:

1. The operator P pBq is an orthogonal projection for each B P B:

2. P pXq “ 1 and P pHq “ 0.
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3. B0 Ď B, countable, pairwise disjoint ñ P p
Ů

BPB0
Bq “

ř

BPB0
P pBq point-

wise.

Note that by 1 , in the case of H “ C, the spectral measures are the t0, 1u-valued
measures.

8.8 Lemma. Basics about spectral measures.

For spectral measures P the following statements are valid:

1. If B1 XB2 “ H, then imgP pB1q K imgP pB2q.

2. We have P pB1 XB2q “ P pB1q ˝ P pB2q.

3. The spectral measure P is monotone.

4. For h, k P H the function B ÞÑ Ph,kpBq :“ xP pBqh, ky gives a complex Borel
measure on X with total variation }Ph,k} ď }h} }k}. In particular, Ph,h is a
positive Borel measure.

Proof. ( 1 ) Let B1 and B2 be disjoint. Suppose the images of P1 :“ P pB1q and

P2 :“ P pB2q are not normal to each other, i.e. P2 ˝ P1 ‰ 0 by 8.3 . Let x P imgP1

with P2x ‰ 0. Then

}pP1 ` P2qx}
2 “ xx` P2x, x` P2xy “ }x}

2 ` 3}P2x}
2 ą }x}2,

so P1 ` P2 “
8.7.3
““““““ P pB1 \ B2q is not an orthogonal projection by 7.40.3 , a

contradiction.

( 2 ) Now let B1 and B2 be arbitrary and P1 :“ P pB1zB2q, P2 :“ P pB2zB1q and

P0 :“ P pB1XB2q. Then P0, P1 and P2 are by ( 1 ) pairwise orthogonal projections.

Furthermore, by 8.7.3 ,

P pB1q “ P ppB1zB2q \ pB1 XB2qq “ P1 ` P0,

P pB2q “ P ppB2zB1q \ pB1 XB2qq “ P2 ` P0.

Folglich ist

P pB1q ˝ P pB2q “ pP1 ` P0q ˝ pP2 ` P0q

“ P1 ˝ P2 ` P0 ˝ P2 ` P1 ˝ P0 ` P0 ˝ P0 “
7.3
““““ 0` 0` 0` P0

“ P pB1 XB2q

( 3 ) Let B1 Ď B2, i.e. B1 “ B1 X B2 and thus P pB1q “ P pB1 X B2q
2
“ P pB1q ˝

P pB2q, i.e. P pB1q ď P pB2q by 8.2 .

( 4 ) We have that µ :“ Ph,k is a complex Borel measure, because from P p
Ů

iBiqh “
ř

i P pBiqh for pairwise disjoint Borel sets Bn, the σ additivity of µ follows:

µ
´

ğ

i

Bi

¯

“

A

P
´

ğ

i

Bi

¯

h, k
E

“

A

ÿ

i

P pBiqh, k
E

“
ÿ

i

xP pBiqh, ky “
ÿ

i

µpBiq.

We have |µpBjq| “ αj µpBjq with αj P S
1 Ď C. Hence

ÿ

j

|µpBjq| “
ÿ

j

αjxP pBjqh, ky “
A

ÿ

j

αjP pBjqh, k
E

ď

›

›

›

ÿ

j

αjP pBjqh
›

›

›
}k},

and, since the P pBjqh are pairwise orthogonal,
›

›

›

ÿ

j

αjP pBjqh
›

›

›

2

“
ÿ

j

}αjP pBjqh}
2 “

›

›

›

ÿ

j

P pBjqh
›

›

›

2

“

›

›

›
P
´

ğ

j

Bj

¯

h
›

›

›

2

ď }h}2.
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Thus
ř

j |µpBjq| ď }h} }k}, i.e. }µ} :“ supt
ř

j |µpBjq|u ď }h} }k}.

8.9 Definition. Operator topologies.

We will use the following topologies on LpHq:

1. The norm topology, i.e. the topology of uniform convergence on the unit
ball (or on bounded sets) of H. A generating norm is the operator norm
}T } :“ supt}Tx} : }x} ď 1u;

2. The strong operator topology (SOT), namely the pointwise conver-
gence on h P H. It has as subbasis the seminorms T ÞÑ }T phq} for all h P H;

3. The weak operator topology (WOT), namely the pointwise conver-
gence with respect to the weak topology σpH,H 1q on H. It has as subbasis
the seminorms T ÞÑ |xTh, ky| for all h, k P H.

Lemma.

The involution ˚ is continuous with respect to the WOT. The composition is sepa-
rately continuous with respect to the WOT and also with respect to the SOT.

Proof. We have xT˚h, ky “ xh, Tky “ xTk, hy and therefore xT˚i h, ky Ñ xT˚h, ky
converges provided xTik, hy Ñ xTk, hy for all h, k P H.

We have xpT ˝ Sqh, ky “ xT pShq, ky and therefore with Ti Ñ T also Ti ˝ S Ñ T ˝ S
converges with respect to the WOT.

Finally, xSTh, ky “ xTh, S˚ky and thus xSTih, ky Ñ xSTh, ky converges for all
h, k P H if Ti Ñ T with respect to the WOT.

If Ti Ñ T in the SOT, then TipShq Ñ T pShq for h P H, i.e. Ti ˝ S Ñ T ˝ S in the
SOT and further Tih Ñ Th and thus SpTihq Ñ SpThq, i.e. S ˝ Ti Ñ S ˝ T in the
SOT.

We aim at constructing a representation ρ of CpX,Cq and, more generally, of
BorelbpX,Cq for a given spectral measure P on X by

ρpfq :“

ż

X

fpxq dP pxq for f P BorelbpX,Cq.

In order for this to make sense, we have to give a meaning to this integral. We first
consider the integral of bounded measurable functions with respect to a complex
Borel measure µ on X.

8.10 Proposition. C-Integration.

1. Denseness of the elementary functions in BorelbpX,Cq with respect to } }8:
For each bounded Borel measurable function f : X Ñ C and ε ą 0 there
exists a decomposition of X in finitely many Borel-measurable sets Bj, s.t.

supt|fpxq ´ fpx1q| : x, x1 P Bju ď ε for all j.

2. Approximation of the integral by a sum:
If µ is a C-valued Borel measure on X then any f P BorelbpX,Cq is integrable
with respect to µ. Moreover, for ε ą 0, the Bj choosen as in (1), and xj P Bj
we have:

ˇ

ˇ

ˇ

ż

X

f dµ´
ÿ

j

fpxjqµpBjq
ˇ

ˇ

ˇ
ď ε }µ}.
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3. Embedding of BorelbpX,Cq into MpX,Cq1:
The Banach space BorelbpXq :“ BorelbpX,Cq of all bounded Borel-measurable
functions on X considered with the supremum norm embeds by virtue of the
mapping f ÞÑ pµ ÞÑ

ş

X
fpxq dµpxqq isometrically into MpX,Cq1 – CpX,Cq2.

Where MpXq :“MpX,Cq is the Banach space of the regular C-valued Borel
measures with respect to the variation norm.

4. Weak denseness of CpX,Cq in BorelbpX,Cq:
For each f P BorelbpXq there exists a net of continuous functions fi P CpXq
with }fi}8 ď }f}8 and fi Ñ f with respect to σpMpXq1,MpXqq, i.e.
ş

X
fi dµÑ

ş

X
f dµ for all µ PMpXq.

Proof. ( 1 ) Let f P BorelbpXq and ε ą 0. We choose a covering of tz P C : |z| ď
}f}8u with finite many open balls Uj with radius ε

2 and centers zj . Let Bk :“

f´1pUkqz
Ť

jăk f
´1pUjq. Then the Bj form a decomposition of X into measurable

sets and for x, x1 P Bj the following holds:

|fpxq ´ fpx1q| ď |fpxq ´ zj | ` |zj ´ fpx
1q| ď

ε

2
`
ε

2
“ ε.

For any fixed choosen xj P Bj and all x P Bi we have
ˇ

ˇ

ˇ

´

f ´
ÿ

j

fpxjqχBj

¯

pxq
ˇ

ˇ

ˇ
“ |fpxq ´ fpxiq| ď ε, hence

›

›

›
f ´

ÿ

j

fpxjqχBj

›

›

›

8
ď ε.

( 2 ) Now let µ be a C-valued Borel measure and xj P Bj arbitrary. Then
ˇ

ˇ

ˇ

ż

X

ÿ

j

fpxjqχBj dµ
ˇ

ˇ

ˇ
:“

ˇ

ˇ

ˇ

ÿ

j

fpxjqµpBjq
ˇ

ˇ

ˇ

ď
ÿ

j

|fpxjq| |µpBjq| ď }f}8
ÿ

j

|µpBjq| ď }f}8 }µ}.

Thus, because of }f´
ř

j fpxjqχBj }8 ď ε, the function f is integrable and
ş

X
f dµ “

lim
ş

X

ř

j fpxjqχBj by Lebesgue’s Theorem [18, 4.11.12] on dominated convergence.
In particular,

ˇ

ˇ

ˇ

ż

f dµ
ˇ

ˇ

ˇ
ď }f}8 }µ}

and
ˇ

ˇ

ˇ

ż

f dµ´
ÿ

j

fpxjqµpBjq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

´

f ´
ÿ

j

fpxjqχBj

¯

dµ
ˇ

ˇ

ˇ

ď

›

›

›
f ´

ÿ

j

fpxjqχBj

›

›

›

8
}µ} ď ε }µ}.

( 3 ) Because of
ˇ

ˇ

ˇ

ş

f dµ
ˇ

ˇ

ˇ
ď }f}8 }µ}, the mapping f ÞÑ pµ ÞÑ

ş

f dµq is a contraction

BorelbpXq Ñ MpXq1. In order to show that this is even an isometry, let ε ą 0.
Then there is an x P X with |fpxq| ě }f}8 ´ ε. Let µx be the point measure of x,
i.e. µxpBq “ 1 if x P B and 0 otherwise. Then }µx} “ 1 and thus }µ ÞÑ

ş

f dµ} ě
|
ş

f dµx| “ |fpxq| ě }f}8 ´ ε.

( 4 ) Without loss of generality, let }f} ď 1. Then this is a consequence of the
following lemma for E :“ CpX,Cq.

8.11 Lemma.

Let E be a normed space.
Then the 1-ball of E is dense in the 1-ball of E2 with respect to σpE2, E1q.
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Proof. Let B be the σpE2, E1q-closure of the 1-ball of E in E2. We have to show that
the 1-ball of E2 is included in B. Suppose not, then let x2 P E2zB with }x2} ď 1.

By the separation theorem 5.2.1 there exists an x1 P pE2, σpE2, E1qq1 “ E1 and a
α P R with

Repxx1, xyq ă α ă Repxx1, x2yq for all x P B.

Without loss of generality α “ 1, because 0 is in the 1-ball of E we have 0 ă α and
we can divide the inequality by α and replace x1 by 1

αx
1.

For }x} ď 1 we choose λ P S1 so that xx1, xy “ λ |xx1, xy|. Then λx P B and thus

|xx1, xy| “ Repλ̄ xx1, xyq “ Repxx1, λ xyq ă 1,

hence }x1} ď 1 and

1 ă Repxx1, x2yq ď |xx1, x2y| ď }x1} }x2} ď 1

yields a contradiction.

8.12 Corollary. Operator-valued integration.

Let P : BpXq Ñ LpHq be a spectral measure.

1. Operator-valued integral:
For each f P BorelbpX,Cq there is a unique operator

denoted

ż

X

f dP “

ż

X

fpxq dP pxq P LpHq

and determined by
A´

ż

X

f dP
¯

h, k
E

“

ż

X

f dPh,k for all h, k P H.

2. Approximation of the integral by a sum:
For f P BorelbpX,Cq and ε ą 0 let tB1, . . . , Bnu be a decomposition of X

as in 8.10.1 and xj P Bj be chosen arbitrary. Then the following estimate
holds:

›

›

›

ż

X

f dP ´
n
ÿ

j“1

fpxjqP pBjq
›

›

›
ď ε.

3. Representation of BorelbpX,Cq on H:

ρ : BorelbpX,Cq Ñ LpHq, given by f ÞÑ

ż

X

f dP,

is a ˚-representation of the Abelian C˚-algebra BorelbpX,Cq of all bounded
measurable functions on X. It is continuous with regard to σpMpXq1,MpXqq
on BorelbpX,Cq and the WOT on LpHq. By restriction, we also get a ˚-
representation of CpX,Cq.

Proof. ( 1 ) By 8.8.4 and 8.10.2 , bph, kq :“
ş

X
f dPh,k P C is well-defined for all

h, k P H and b is a sesquilinear form with }b} ď }f}8 by 8.10.3 . So by 7.5 there
is a unique bounded operator, which we denote with

ş

X
f dP , such that

A´

ż

X

f dP
¯

h, k
E

“ bph, kq “

ż

X

f dPh,k for all h, k P H.
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( 2 ) Let now a decomposition tB1, . . . , Bnu of X be given as in 8.10.1 . For xj P Bj
and all h, k P H we have

ˇ

ˇ

ˇ

A´

ż

X

f dP
¯

h, k
E

´

n
ÿ

j“1

fpxjq
@

P pBjqh, k
D

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

X

f dPh,k ´
n
ÿ

j“1

fpxjqPh,kpBjq
ˇ

ˇ

ˇ

ď ε }Ph,k} (by 8.10.2 )

ď ε}h} }k} (by 8.8.4 ).

Consequently,
›

›

›

ż

X

f dP ´
ÿ

j

fpxjqP pBjq
›

›

›
ď ε

( 3 ) We only show the multiplicativity in detail because the remaining algebraic
properties are easier to show. Let f1 and f2 be measurable and ε ą 0. We choose a
decomposition tB1, . . . , Bnu of X into Borel sets and xj P Bj , such that supt|fpxq´

fpx1q| : x, x1 P Bju ă ε for all f P tf1, f2, f1f2u and all j P t1, . . . , nu. By 2 then
›

›

›

ż

X

f dP ´
ÿ

j

fpxjqP pBjq
›

›

›
ă ε for f P tf1, f2, f1f2u.

Since the images of P pBjq are orthogonal to each other,
›

›

›

´

ÿ

j

fpxjqP pBjq
¯

h
›

›

›

2

“
ÿ

j

}fpxjqP pBjqh}
2 “

ÿ

j

|fpxjq|
2 }P pBjqh}

2

ď }f}28
ÿ

j

}P pBjqh}
2 “ }f}28

›

›

›

ÿ

j

P pBjqh
›

›

›

2

“ }f}28

›

›

›
P
´

ğ

j

Bj

¯

h
›

›

›

2

“ }f}28 }h}
2

and by 2 thus
›

›

›

ż

f dP
›

›

›
ď }f}8.

By means of the triangle inequality we obtain:
›

›

›

ż

f1 f2 dP ´
´

ż

f1 dP
¯ ´

ż

f2 dP
¯
›

›

›

ď

›

›

›

ż

X

f1 f2 dP ´
ÿ

j

f1pxjq f2pxjqP pBjq
›

›

›

`

›

›

›

ÿ

j

f1pxjq f2pxjqP pBjq ´
´

ÿ

j

f1pxjqP pBjq
¯ ´

ÿ

j

f2pxjqP pBjq
¯
›

›

›

`

›

›

›

ÿ

j

f1pxjqP pBjq
›

›

›
¨

›

›

›

ÿ

j

f2pxjqP pBjq ´

ż

f2 dP
›

›

›

`

›

›

›

ÿ

j

f1pxjqP pBjq ´

ż

f1 dP
›

›

›
¨

›

›

›

ż

f2 dP
›

›

›

Because of P pBjq ˝ P pBj1q “ P pBj XBj1q “ P pHq “ 0 for j ‰ j1, the second term
is 0. And because of }

ř

j fpxjqP pBjq} ď }f}8 for f P tf1, f2u we have finally

›

›

›

ż

f1 f2 dP ´
´

ż

f1 dP
¯ ´

ż

f2 dP
¯
›

›

›
ď εp1` }f1}8 ` }f2}8q.

Since ε ą 0 was arbitrary,
ş

f1 f2 dP “
`ş

f1 dP
˘ `ş

f2 dP
˘

follows.
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The ˚-homomorphism property follows from
ż

f dP ≈
ÿ

fpxjqP pBjq “
´

ÿ

fpxjqP pBjq
¯˚

≈
´

ż

f dP
¯˚

.

The weak continuity holds, since for fj Ñ f in σpBorelb,MpXqq, i.e.
ş

fj dµÑ
ş

f dµ
for all µ PMpXq, and in particular for µ :“ Ph,k we have

A´

ż

fj dP
¯

h, k
E

“

ż

fj dPh,k Ñ

ż

f dPh,k “
A´

ż

f dP
¯

h, k
E

,

hence
ş

fj dP Ñ
ş

f dP with respect to the WOT.

8.13 Theorem (Counterpart to the representation theorem of Riesz).

Let X be a compact space and H a Hilbert space.
Then the ˚-representations ρ of CpX,Cq on H are in bijection to the spectral mea-
sures P on X with respect to H via the relation

ρpfq “

ż

X

fpxq dP pxq for all f P CpX,Cq.

In short:

HompCpX,Cq, LpHqq –MpX,LpHqq,

where MpX,LpHqq denotes the set of all spectral measures on X with respect to H.

Proof. (ρÐ P ) This is 8.12 .

(ρ ÞÑ P ) As for the Riesz representation theorem we extend ρ first to a representa-
tion ρ̃ of BorelbpX,Cq to get the spectral measure P as P :“ ρ̃ ˝ χ afterwards:

(ρ ÞÑ ρ̃)

Since BorelbpXq can be considered

as a subspace of CpXq2 by 8.10 ,
it makes sense to use the bidual
mapping

ρ˚˚ : CpXq2 Ñ LpHq2.

CpXq
� � ρ //

_�

δ

��

� r

##

LpHq
_�

δ

��

id // LpHq

BorelbpXq
L l

{{
CpXq2

ρ˚˚ // LpHq2

τ
?

FF

Unfortunately the space LpHq is not reflective and we can only
hope to find a retraction (i.e. a left inverse) τ for the canonical
embedding δ : LpHq ãÑ LpHq2.
The canonical embedding δ : E ãÑ E2 of a Banach space E into its
bidual space has the following property: ev` ˝δ “ ` holds for each
` P E1, because pev` ˝δqpxq “ ev`pδpxqq “ δpxqp`q “ `pxq.

E

`

~~

� _

δ

��

C

E2
ev`

``

LpHq
id //

δ

$$

`:“`h,k

��

LpHq

`h,k

��

LpHq2

τ

::

ev`

��
C

For h, k P H, let the linear functional `h,k :
LpHq Ñ C be defined by `h,kpT q :“ xTh, ky.
We have |`h,kpT q| “ |xTh, ky| ď }T } }h} }k}. Thus
`h,k is continuous with }`h,k} ď }h} }k}.
The searched for τ has to fulfill `h,k ˝ τ “ ev`h,k ,
and is obviously uniquely determined this proper-
ty because the functionals `h,k separate points.

This condition means that the following holds for all Ψ P LpHq2:

xτpΨqh, ky “ p`h,k ˝ τqpΨq “ pev`h,kqpΨq “ Ψp`h,kq.
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In fact, by 7.5 , a continuous linear operator τpΨq is defined by this implicite
equation, because ph, kq ÞÑ Ψp`h,kq is obviously a sesqui-linear form with |Ψp`h,kq| ď
}Ψ} }`h,k} ď }Ψ} }h} }k}. So }τpΨq} ď }Ψ}, i.e. τ : LpHq2 Ñ LpHq is a contraction
and clearly linear.

Sideremark: For Banach spaces E and F , one has more generally a τ : LpE,F q2 Ñ
LpE,F 2q, which, composed with δ : LpE,F q ãÑ LpE,F q2, yields the inclusion
δ˚ : LpE,F q Ñ LpE,F 2q. This τ is associated with the 3-linear form

LpE,F q2 ˆ E ˆ F 1 Ñ LpE,F q2 ˆ LpE,F q1 Ñ C,

which is described by the bilinear mapping E ˆ F 1 Ñ LpE,F q1, which in turn is
associated to E ˆ F 1 ˆ LpE,F q Ñ F 1 ˆ E ˆ LpE,F q Ñ F 1 ˆ F Ñ C.

So we obtained the following commutative diagram:

CpXq
ρ //

_�

δ

��

s�

%%

µh,k

**

LpHq

`h,k
||

BorelbpXq
kK

xx

ρ̃

55

C

CpXq2
ρ˚˚

//

evµh,k

44

LpHq2

τ

OOOO

ev`h,k

bb

Where ρ̃ :“ pτ ˝ ρ˚˚q|BorelbpXq defines a linear extension of ρ that satisfies }ρ̃} ď
}τ ˝ ρ˚˚} ď }τ} }ρ} ď 1 ¨ 1 “ 1.
Furthermore, µh,k :“ `h,k˝ρ is a continuous linear functional on CpXq, and thus can
be considered as regular Borel measure. The lower triangle commutes, because for
` :“ `h,k P LpHq

1 the following holds: pev` ˝ρ
˚˚qpΦq “ ev`pρ

˚˚pΦqq “ ρ˚˚pΦqp`q “
Φpρ˚p`qq “ Φp` ˝ ρq “ ev`˝ρpΦq. Thus the inner parallelogram commutes and hence

xρ̃pfqh, ky “ p`h,k ˝ ρ̃qpfq “ evµh,kpfq “
8.10.3
“““““““

ż

X

fpxq dµh,k,

Therefore ρ̃ is also continuous from σpBorelbpXq,MpXqq to LpHq with the WOT.

Since CpXq is dense in CpXq2 “ MpXq1 by 8.11 with respect to the topology
σpMpXq1,MpXqq, it is also dense in BorelbpXq with respect to the trace topology
σpBorelbpXq,MpXqq.

Now we use this to show the multiplicativity of ρ̃:

Let f P BorelbpXq. By 8.10.4 there is a net fi P CpXq, with
ş

fi dµÑ
ş

f dµ for all
µ PMpXq. Since with g P BorelbpXq and µ PMpXq also g µ defined by pg µqpfq :“
ş

X
f g dµ lies in MpXq (because g µ : CpXq ´g¨Ñ BorelbpXq ãÑ MpXq1 ´

evµ
Ñ C is

continuous by 8.10.3 ), fi g Ñ f g holds in the weak topology σpBorelbpXq,MpXqq
and thus ρ̃pfi gq Ñ ρ̃pf gq with respect to the WOT. In particular, if g P CpXq,
then ρ̃pfi gq “ ρpfi gq “ ρpfiq ˝ ρpgq Ñ ρ̃pfq ˝ ρpgq with respect to the WOT, since
the composition is continuous in the first variable with respect to the WOT by

8.9 . Consequently, ρ̃pf gq “ ρ̃pfq ˝ ρpgq. If g P BorelbpXq is now arbitrary, then
ρ̃pfi gq “ ρ̃pg fiq “ ρ̃pgq ˝ ρpfiq Ñ ρ̃pgq ˝ ρ̃pfq in the WOT, since the composition

is also continuous in the second variable with respect to the WOT by 8.9 . So
ρ̃pg fq “ ρ̃pgq ˝ ρ̃pfq.

In order to show that ρ̃ is a ˚-representation, it remains to prove the ˚-homomorphy:
Let f P BorelbpXq and fi P CpXq be a net as before. For µ PMpXq, let the measure

µ be defined by µpBq “ µpBq. Then, with respect to the WOT, ρpfiq Ñ ρ̃pfq, and
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hence ρpfiq
˚ Ñ ρ̃pfq˚ by 8.9 . On the other hand: Because of

ş

fi dµ “
ş

fi dµ Ñ
ş

f dµ “
ş

f dµ for each measure µ, we have ρpfiq
˚ “ ρpfiq Ñ ρ̃pfq, i.e. ρ̃pfq˚ “ ρ̃pfq.

(ρ̃ ÞÑ P ) We claim that B ÞÑ P pBq :“ ρ̃pχBq defines a spectral measure P :

By 8.1 we know that P pBq is an orthogonal projection, P pXq “ 1, and we have
P pB1 X B2q “ ρ̃pχB1

¨ χB2
q “ P pB1q ˝ P pB2q and P pB1 \ B2q “ ρ̃pχB1

` χB2
q “

P pB1q ` P pB2q. All that remains to prove is the σ-additivity.
Let Bj be pairwise disjoint Borel sets, Bąn :“

Ť

jąnBj and h P H. Then

›

›

›
P
´

8
ğ

k“1

Bk

¯

h´
n
ÿ

k“1

P pBkqh
›

›

›

2

“

›

›

›
P pBąnqh` P

´

n
ğ

k“1

Bk

¯

h´ P
´

n
ğ

k“1

Bk

¯

h
›

›

›

2

“ }P pBąnqh}
2 “ xP pBąnqh, hy

“ xρ̃pχBąnqh, hy “ `h,hpρ̃pχBąnqq

“ µh,hpBąnq “
ÿ

jąn

µh,hpBjq Ñ 0,

because µh,k, as a measure, is obviously σ-additive. So P is a spectral measure.

(ρ ÞÑ ρ̃ ÞÑ P ÞÑ ρ) For each representation ρ with associated spectral measure
P :“ ρ̃ ˝ χ we have to show that

ş

f dP “ ρpfq holds for all f P CpXq:

Let f P BorelbpXq be arbitrary, ε ą 0 and Bj Q xj as in 8.10.1 , hence

›

›

›
f ´

n
ÿ

j“1

fpxjqχBj

›

›

›

8
ă ε.

Because of }ρ̃} ď 1 and 8.12.2 , it follows that

›

›

›
ρ̃pfq ´

ż

f dP
›

›

›
ď

›

›

›
ρ̃
´

f ´
n
ÿ

j“1

fpxjqχBj

¯
›

›

›
`

›

›

›

n
ÿ

j“1

fpxjqP pBjq ´

ż

f dP
›

›

›
ď 2ε,

so ρ̃pfq “
ş

f dP .

(P ÞÑ ρ ÞÑ ρ̃ ÞÑ P ) Let P : BpXq Ñ LpHq be a spectral measure with representation

ρ̃ : BorelbpX,Cq Ñ LpHq associated by 8.12.3 , i.e. `h,kpρ̃pfqq “
ş

X
f dp`h,k ˝ P q

for all f P BorelbpX,Cq and h, k P H by 8.12.2 . In particular, `h,kppρ̃ ˝ χqpBqq “
ş

X
χB dp`h,k ˝ P q “ `h,kpP pBqq, and since the `h,k separate operators, ρ̃ ˝ χ “ P .

Remains show, that ρ̃ is the unique extension of ρ̃|CpX,Cq, which holds, since ρ̃ is

continuous from σpBorelbpX,Cq1,MpXqq into the WOT by 8.12.3 and CpX,Cq is

dense in σpBorelbpX,Cq1,MpXqq by 8.10.4 .

Spectral theory for normal operators

Remark.

Let H be a finite-dimensional Hilbert space. Then the spectral theorem of linear
algebra says that every normal operator N can be diagonalized. In particular, there
is an orthonormal basis consisting of eigenvectors ui to eigenvalues λi. Thus

Npxq “ N
´

ÿ

i

xx, uiyui

¯

“
ÿ

i

λi xx, uiyui.

In the infinite-dimensional case, a corresponding theorem has to look different,
since a normal operator does not need to have eigenvalues, such as for example the
multiplication operator N “ Mid with the identity on L2r0, 1s: Let λ fptq “ t fptq
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a.e. for some f P L2r0, 1s. Then pλ´ tq fptq “ 0 a.e. and thus f “ 0 a.e., i.e. f “ 0
in L2r0, 1s.

However, one can also rewrite the finite-dimensional theorem as follows. For each
eigenvalue λ P σpNq, let Pλ be the orthogonal projection onto the eigenspace
kerpN ´ λq. Then

Npxq “
ÿ

i

λi xx, uiyui “
ÿ

λ

ÿ

i:λi“λ

λi xx, uiyui

“
ÿ

λ

λ
ÿ

i:λi“λ

xx, uiyui “
ÿ

λPσpNq

λPλpxq

Let’s generalize this to Hilbert spaces and for this we have to simplify tN,N˚uk:

8.14 Fugledge-Putnam Theorem.

Let N1 and N2 be normal operators on H1 and H2. If T P LpH1, H2q intertwines
the operator N1 with N2 (i.e. T N1 “ N2 T ), it also intertwines N˚1 with N˚2 .

Proof. N2 T “ T N1 ñ ppN2qT “ T ppN1q for each polynomial p and, furthermore,
for every entire function p P HpC,Cq. In particular,

T “ expp´izN2qT exppizN1q.

Since exppX ` Y q “ exppXq exppY q, if X and Y commute with each other, and
since the Nj are normal, we have

fpzq :“ expp´izN˚2 qT exppizN˚1 q

“ expp´izN˚2 q expp´izN2qT exppizN1q exppizN˚1 q

“ expp´ipzN˚2 ` zN2qqT exppipzN1 ` zN
˚
1 qq.

For each z P C, both zN˚2 ` zN2 and zN1 ` zN˚1 are Hermitian operators, so
expp´ipzN˚2 `zN2qq and exppipzN1`zN

˚
1 qq are unitary (for pexppiAqq˚ exppiAq “

expp´iA˚q exppiAq “ exppipA ´ Aqq “ 1) and hence }fpzq} ď }T }. The bounded
mapping f : CÑ LpH1, H2q is holomorphic, thus according to Liouville’s Theorem

6.16 it is constant, and in particular

0 “ f 1p0q “ ´iN˚2 expp0qT expp0q ` i expp0qT N˚1 expp0q “ i pT N˚1 ´N
˚
2 T q.

8.15 Spectral theorem (for normal bounded operators).

Let N be a normal operator on a Hilbert space H.
Then there is a unique spectral measure P on σpNq, such that N has the following
spectral decomposition

N “

ż

σpNq

z dP pzq.

If U ‰ H is relatively open in σpNq, then P pUq ‰ 0.
Furthermore

ş

σpNq
f dP P tNukk for all f P BorelbpσpNq,Cq, resp.

tN,N˚uk “ tNuk “
 

P pBq : B P BpσpNqq
(k
“

!

ż

σpNq

f dP : f P BorelbpσpNqq
)k

Function calculus: f ÞÑ fpNq :“
ş

σpNq
fpzq dP pzq, is the unique representation of

the C˚-algebra BorelbpσpNq,Cq on H, which is additionally continuous with respect
to the topology σpBorelbpσpNqq,MpσpNqqq on BorelbpσpNqq and the WOT on LpHq,
and maps id to N .
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Proof. Existence of P :

N P LpHq, normal

“
7.14
““““ñD!ρ : CpσpNq,Cq ´–Ñ C˚pNq Ď LpHq, a representation with ρpidq “ N

ð
8.13
““““ñD!P : BpσpNqq Ñ LpHq, a spectral measure with N “

ż

σpNq

z dP pzq

“
8.12
““““ñD!ρ̃ : BorelbpσpNq,Cq Ñ LpHq, a weakly continuous representation.

Here
ş

f dP “ ρpfq for all continuous f by 8.13 , thus in particular
ş

z dP pzq “
ş

id dP “ ρpidq “ N .

Uniqueness of P : Each spectral measure P on σpNq with N “
ş

σpNq
z dP pzq

corresponds by 8.13 to a unique ˚-representation ρ : f ÞÑ
ş

σpNq
f dP of CpσpNqq

with ρpidq “ N , i.e. the unique function calculus from 7.14 .

Continuity of the function calculus: This follows from 8.12.3 .

Uniqueness of the function calculus: Let ρ be any representation as claimed.

Because of the uniqueness of the function calculus 6.28 and 7.14 , this coincides
with f ÞÑ fpNq for all f P CpσpNqq. Because of the continuity with respect to

σpBorelb,Mq and the denseness of CpXq by 8.10.4 , this coincides with
ş

f dP also
for all f P Borelb.

Non-degeneracy of P : Let now U ‰ H be open in σpNq. Then there is a contin-
uous function f ‰ 0 on σpNq with 0 ď f ď χU . Hence, P pUq “ ρ̃pχU q ě ρpfq ‰ 0

by 8.8.3 , 8.12.2 and 7.14 , so P is not degenerated.

Commutator identities:

tP pBq : B P Bu �
� // tfpNq : f P Borelbu tfpNq : f P Cu

� �

7.16

//? _oo tN,N˚ukk

The inclusion in the middle is WOT-dense according to 8.10.4 and 8.12.3 , and the

inclusion on the left is dense in the operator norm according to 8.12.2 . Since the
composition is separately continuous with respect to these topologies according to

8.9 , all sets to the left of tN,N˚ukk have the same commutant tN,N˚uk “ tNuk

by 7.16 and 8.14 .

Definition. Support of a measure.

Let µ be a regular Borel measure on X and U Ď X an open set. One says that µ
vanishes on U , if

ş

f dµ “ 0 holds for all f P CcpXq with f |XzU “ 0. Equivalently,
it is sufficient to request this (as with distributions in [18, 4.13.3]) for all f P
CcpXq with support supppfq Ď U , because if f |XzU “ 0, then hn f Ñ f converges
uniformly and suppphn fq Ď U , where continuous functions hn P CpX, r0, 1sq are
choosen by Tietze-Urysohn so that suppphnq Ď U and hn “ 1 on tx : |fpxq| ě 1

nu.

The union of all open sets U with this property has the same property (i.e. there is
a largest set among them), because the (compact) support of f is already covered
by finite many such U and thus f can be written as f “

ř

i hi f by means of a
subordinate partition thiui of unity. Since

ş

hi f dµ “ 0, the same holds for f .

The complement of the largest open set U with the above property is called the
support supppµq of µ.
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Note that for the spectral measure P of a normal N P LpHq,

xfpNqh, ky “
A´

ż

σpNq

f dP
¯

h, k
E

“

ż

σpNq

f dPh,k

for all h, k P H and f P BorelbpσpNqq. In particular, xf |σpNqpNqh, ky “
ş

C f dPh,k
holds for all h, k P H and f P BorelbpCq, as Ph,k is a measure on σpNq and hence
can be considered as a measure on C with support included in σpNq.

8.16 Lemma.

Let E be a Banach space and T P LpEq. If σpT q “ K1 \ K0 with disjoint closed
K1 and K0, then a decomposition E “ E1 ‘ E0 into invariant subspaces Ej of T
exists, s.t. σpT |Ej q “ Kj.

So if σpT q is discrete (and therefore finite), we find a decomposition E “
À

λPσpT qEλ
in invariant subspaces for which T |Eλ has spectrum tλu.

Proof. Let p P HpσpT q,Cq be the holomorphic germ with p “ j locally at Kj for

j P t0, 1u as in 6.33 . Then P :“ ppT q P tT ukk (by 6.32 ) is idempotent. Thus,

E1 :“ imgpP q and E0 :“ imgp1 ´ P q “ kerpP q is invariant under tT uk Ě tT u by

7.39.4 .

Let Tj :“ T |Ej . Then T ´ λ is invertible in LpEq if and only if Tj ´ λ is invertible
in LpEjq for j “ 0 and j “ 1, and thus K1\K0 “ σpT q “ σpT1qYσpT0q: In fact an
inverse B to T ´ λ belongs to tT uk, hence has to keep the subspaces Ej-invariant

by 7.39.4 because P P tT ukk Ď tBuk.

(σpTiq Ď Ki) Let λ R Ki and w.l.o.g. i “ 1. We define the holomorphic germ
f by f : z ÞÑ 1

λ´z locally around K1 and by f “ 0 locally around K0. Then

pλ ´ zqfpzq “ ppzq and thus pλ ´ T q fpT q “ ppT q “ P . Since E1 is invariant
under all occurring operators, the restriction T1 of T to E1 satisfies λ R σpT1q, i.e.
σpT1q Ď K1.

Because of K1 \K0 “ σpT1q Y σpT0q we obtain σpT1q “ K1 and σpT0q “ K0.

8.17 Proposition.

Let N be a normal operator on a Hilbert space H with spectral measure P and
λ P σpNq. Then imgpP ptλuqq “ kerpN ´ λq. Thus, λ is an eigenvalue of N if and
only if P ptλuq ‰ 0 and then P ptλuq is the orthogonal projection onto the eigenspace
of λ.

Proof. pĎq We have pz ´ λq ¨ χtλu “ 0 and therefore pN ´ λqP ptλuq “ 0, i.e.
imgpP ptλuqq Ď kerpN ´ λq.

pĚq For h P kerpN ´ λq,

0 “ }pN ´ λqh}2 “ xpN ´ λqh, pN ´ λqhy “ xpN ´ λq˚pN ´ λqh, hy

“

ż

|z ´ λ|2 dxP pzqh, hy

and, since µ :“ Ph,h “ xP p qh, hy is a positive measure by 8.8.4 , therefore

supppµq Ď tz P C : |z ´ λ|2 “ 0u “ tλu (In fact: λ R supppfq ñ |fpzq| ď
C |z´λ|2 ñ 0 ď |

ş

f dµ| ď
ş

|f | dµ ď C
ş

|z´λ|2dµpzq “ 0) and thus }P ptλuqh}2 “
xP ptλuqh, hy “ µptλuq “ µpσpNqq “ xp

ş

σpNq
dP qh, hy “ }h}2, i.e. h P imgP ptλuq.
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Spectral theory of compact operators

8.18 Lemma.

Let E and F be Banach spaces. An operator T P LpE,F q is compact if and only if
its adjoint operator T˚ P LpF˚, E˚q is it.

Proof. pñq This is [18, 6.4.13]

pðq Let T˚ be compact. Then T˚˚ is compact by the first part, and thus also its
restriction T to E Ď E˚˚ and F Ď F˚˚.

8.19 Lemma.

Let T be a compact operator, 0 ‰ λ P C. Then λ is an eigenvalue if and only if
inft}pT ´ λqh} : }h} “ 1u “ 0.

Proof. pñq is clear, because then a h ‰ 0 exists with Th “ λh.
pðq By assumption, there is a sequence hn P E with }hn} “ 1 and }pT´λqhn} Ñ 0.
Since T is compact, we may assume that y :“ limn Thn exists. Therefore hn “
1
λ

`

pλ´ T qhn ` Thn
˘

Ñ 1
λy and consequently 1 “ } 1

λy} “
1
|λ|}y}, i.e. y ‰ 0. Due to

Thn Ñ T p 1
λyq “

1
λTy, 1

λTy “ y holds, i.e. λ is an eigenvalue of T with eigenvector
y.

8.20 Lemma.

Let T be a compact operator on a Banach space E and 0 ‰ λ P σpT q. Then λ is an
eigenvalue of T or T˚.

Proof. Indirectly. Suppose λ is neither eigenvalue of T P LpEq nor of T˚ P LpE˚q.

By the previous lemma 8.19 there exists a c ą 0 with }pT ´ λqh} ě c}h} for all
h P E. So T ´ λ is a homeomorphism onto its image, and thus this is complete and
therefore closed. Because λ is not an eigenvalue of the Banach space adjoint T˚,

imgpT ´ λq “ imgpT ´ λq “
5.4.3
““““““ pkerpT ´ λq˚qo “

!
“ pkerpT˚ ´ λqqo “ t0uo “ E,

holds because T ÞÑ T˚ is C-linear! Thus, pT ´ λq : E Ñ E is bijective and because
of }pT ´ λqh} ě c}h} (or by the open mapping theorem), the inverse mapping
pT ´ λq´1 is also continuous, i.e. λ R σpT q.

8.21 Lemma.

Let F Ă E be a true closed subspace of a Banach space E and ε ą 0. Then there is
an x P E with }x} “ 1 and distpx, F q ě 1´ ε.

Proof. Let dpxq :“ distpx, F q :“ inft}x ´ y} : y P F u. We choose x1 P EzF . Then
there is a y1 P F with 0 ă dpx1q ď }x1 ´ y1} ď p1 ` εq dpx1q. Let x2 :“ x1 ´ y1,
then dpx2q “ inft}x2 ´ y} : y P F u “ inft}x1 ´ y1 ´ y} : y P F u “ dpx1q and
p1` εq dpx2q “ p1` εq dpx1q ě }x1 ´ y1} “ }x2} ą 0. Finally let x :“ 1

}x2}
x2. Then

}x} “ 1 and for y P F we have

}x´ y} “
›

›

›

1

}x2}
x2 ´ y

›

›

›
“

1

}x2}

›

›

›
x2 ´ }x2} y

›

›

›

ě
1

p1` εq dpx2q

›

›

›
x2 ´ }x2} y

›

›

›
ě

1

p1` εq dpx2q
dpx2q ě

1

1` ε

ą 1´ ε.
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8.22 Spectral theorem for compact operators on Banach spaces.

Let E be an infinite-dimensional Banach space and T P LpEq a compact operator.
Then 0 P σpT q and all 0 ‰ λ P σpT q are isolated in σpT q and eigenvalues of T with
finite-dimensional eigenspaces kerpT´λq. If there are infinitely many such λ’s, then
they can be arranged in the form of a 0-sequence.

Proof. Claim: Each sequence of pairwise distinct eigenvalues λn ‰ 0 of T con-
verges towards 0:
For each n we choose an hn P kerpT ´ λnqzt0u. Let En be the linear subspace
generated by th1, . . . , hnu. This space is n-dimensional since the hn are linear in-
dependent: Let

ř

k µkhk “ 0 be a linear combination of minimal length, then 0 “
pT ´ λ1qp

ř

k µkhkq “
ř

ką1 µkpλk ´ λ1qhk is a contradiction to the minimality. By

the previous lemma 8.21 there exist yn P En with }yn} “ 1 and dpyn, En´1q ą
1
2 .

Let yn “:
ř

kďn µk hk. Then pT ´ λnqyn “
ř

kăn µk pλk ´ λnqhk P En´1 and thus
for n ą m:

T

ˆ

1

λn
yn

˙

´ T

ˆ

1

λm
ym

˙

“
1

λn
pT ´ λnqyn ´

1

λm
pT ´ λmqym ` yn ´ ym

“ yn `
´ 1

λn
pT ´ λnqyn

looooooomooooooon

PEn´1

´
1

λm
pT ´ λmqym

looooooooomooooooooon

PEm´1

´ ym
loomoon

PEm

¯

P yn ` En´1.

Consequently,
›

›

›

›

T

ˆ

1

λn
yn

˙

´ T

ˆ

1

λm
ym

˙
›

›

›

›

ě distpyn, En´1q ą
1

2
.

Thus pT p 1
λn
ynqqn has no convergent subsequence. But since T is compact, and

hence the images of bounded sets are relatively compact, p 1
λn
ynqn can not have a

bounded subsequence. So } 1
λn
yn} “

1
|λn|

Ñ8, i.e. λn Ñ 0.

Claim: All 0 ‰ λ P σpT q are isolated points of σpT q.

If λn P σpT q with λn ‰ λ converges to λ ‰ 0, according to 8.20 , λn is an eigenvalue
of T or T˚. Without loss of generality, we can assume that all λn are eigenvalues

of T or all of T˚. The previous claim yields – since also T˚ is compact by 8.18 –
λn Ñ 0, a contradiction.

Claim: All 0 ‰ λ P σpT q are eigenvalues of T .

Since λ is isolated, there exists by 8.16 a closed invariant subspace Eλ of E,
s.t. Tλ :“ T |Eλ has as spectrum tλu. So, Tλ is an invertible p0 R σpTλqq compact
operator and thus Eλ is finite-dimensional (because the image of the unit ball is
then a relatively-compact 0-neighborhood). As a result, λ P σpTλq is an eigenvalue
of Tλ and thus of T .

Claim: The eigenspace kerpT ´ λq is finite-dimensional.
Since kerpT ´ λq is a T -invariant closed subspace and λ idkerpT´λq “ T |kerpT´λq is
compact, kerpT ´ λq is finite-dimensional.

8.23 Lemma.

Let N be a normal operator on a Hilbert space with spectral measure P .
Then N is compact if and only if P ptz P σpNq : |z| ą εuq has finite-dimensional
image for all ε ą 0.

andreas.kriegl@univie.ac.at c© 1. Juli 2019 179



Spectral theory of compact operators 8.24

Proof. (ð) Let ε ą 0 and Bε :“ tz P σpNq : |z| ď εu and Pε :“ P pσpNqzBεq.
Then for f : z ÞÑ z χBεpzq we have

N ´N Pε “ N p1´ Pεq “ N P pBεq

“

ż

z χBεpzq dP pzq “ fpNq.

So }N ´ N Pε} ď }f}8 “ supt|z| : z P Bεu ď ε. Since Pε has finite-dimensional
image for each ε, so does N Pε, and hence N is compact by [18, 6.4.8].

(ñ) Let N be compact and ε ą 0. Consider g : z ÞÑ 1
zχσpNqzBεpzq in BorelbpCq.

Since N is compact, the same is true for

N gpNq “

ż

z
1

z
χσpNqzBεpzq dP pzq “ Pε.

Since Pε is a projection, its image has to be finite-dimensional.

8.24 Spectral theorem for compact normal operator on Hilbert spaces.

Let N be a compact and normal operator on a Hilbert space.
Then the eigenvalues unequal 0 of N form a finite or a convergent sequence λj.
The eigenspaces kerpN ´ λjq are finite-dimensional and pairwise orthogonal and
with respect to the orthogonal projections Pj onto kerpN ´ λjq the following holds:

N “
ÿ

j

λjPj .

Conversely, every operator N is compact and normal, provided it has a represen-
tation N “

ř

j λjPj with finite-dimensional orthogonal projections Pj ‰ 0 with
pairwise orthogonal images and pairwise different 0 ‰ λj Ñ 0. Then the λj are the
eigenvalues other than 0, and the images of the Pj are the associated eigenspaces.

Proof. pñq According to the Spectral Theorem 8.15 , a unique spectral mea-

sure P exists on σpNq with N “
ş

σpNq
z dP pzq. By the Spectral Theorem 8.22

σpNq “ t0, λ1, λ2, . . . u and each λk is isolated and an eigenvalue. So by 8.17
Pk :“ P ptλkuq is the orthogonal projection onto the eigenspace kerpN ´ λkq.
Now let ε ą 0, and let n be so large that |λk| ă

ε
2 for k ą n. Then the sets

tλ1u, . . . , tλnu, t0, λn`1, λn`2, . . . u form a decomposition of σpNq into Borel sets
with |z ´ z1| ď ε for z, z1 in the same set. Thus }

ş

σpNq
z dP pzq ´

ř

jďn λjPj ´

0P pt0, λn`1, . . . uq} ă ε, i.e. the sum
ř

j λjPj converges towards N “
ş

σpNq
z dP pzq.

Since the λj are pairwise distinct, the images of Pj are pairwise orthogonal to 8.8.1 .

pðq Since λj Ñ 0 and, furthermore, }Pj} ď 1 for orthogonal projections Pj and
the images of Pj are orthogonal, it follows that the sum converges in the operator
norm because

›

›

›

ÿ

jěn

λjPjh
›

›

›

2

“
ÿ

jěn

|λj |
2 }Pjh}

2 ď maxt|λj |
2 : j ě nu ¨

›

›

›

`

ÿ

jěn

Pj
˘

h
›

›

›

2

ď maxt|λj |
2 : j ě nu ¨ }h}2.

Its partial sums are assumed to be finite-dimensional operators, so N is compact.
We have N˚ “

ř

j λjPj , hence N˚N “ NN˚ “
ř

j |λj |
2Pj and thus N is normal.

Let λ ‰ 0 be an eigenvalue of N and h an associated eigenvector. So 0 ‰ λh “

Nphq “
ř

j λjPjphq, hence at least on Pkphq ‰ 0 and by 8.3 , using the the or-

thogonality of the images of the Pj , we get λPkphq “
ř

j λjpPk ˝Pjqphq “ λkPkphq.

Thus λ “ λk, i.e. this k is unique and h “ Pkphq, i.e. kerpN ´ λkq Ď imgPk.
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Conversely, h P imgPk ñ h “ Pkh ñ Nphq “
ř

j λjPjpPkhq “ λkPkh “ λkh, i.e.
h is an eigenvector with corresponding eigenvalue λk.

8.25 Spectral representation of Hermitian operators.

Let N be a Hermitian operator, P its spectral measure and pptq :“ P pts P σpNq :
s ă tuq. Then p : R Ñ LpHq is a monotonous, with respect to the SOT left-
continuous mapping with pptq “ 0 for t ď ´}N} and pptq “ 1 for t ě }N}.

Moreover, fpNq “
ş`8

´8
fptq dpptq, an operator valued Riemann-Stieltjes integral,

for each f P CpσpNqq.

Proof. Since t ÞÑ ts P σpNq : s ă tu is monotonously increasing, p : t ÞÑ P pts P

σpNq : s ă tuq is monotonously increasing by 8.8.3 and because of σpNq Ď ts P

R : ´}N} ď s ď }N}u, pptq “ 0 by 8.8.1 for t ă ´}N} and pptq “ 1 for t ě }N}.
Because of the σ additivity of P , p is left-continuous with respect to the SOT: In
fact, tn Õ t8 implies that p´8, t8q “ p´8, t0q \

Ů

irti´1, tiq is a decomposition
and thus with respect to the SOT

ppt8q “ P rp´8, t8qs “ P rp´8, t0qs `
8
ÿ

i“1

P prti´1, tiqq

“ ppt0q `
8
ÿ

i“1

ppptiq ´ ppti´1qq “ lim
iÑ8

pptiq.

Now let f P CpσpNqq, so there is a monotonously increasing sequence of tj P R
with |fpxq ´ fpx1q| ď ε for tj´1 ď x, x1 ď tj . Then

ż

fpzq dP pzq ≈
ÿ

j

fpxjqP prtj´1, tjqq “
ÿ

j

fpxjq ppptjq ´ pptj´1qq,

a Riemann-Stieltjes sum for
ş

fpzq dppzq.

8.26 Corollary.

Let H be a separable Hilbert space. Then the only non-trivial closed ideal is that of
all compact operators.

Proof. Because of the Proposition 7.30 every closed ideal I ‰ t0u contains all
compact operators. Suppose it contains also a non-compact operator A. Then N :“
A˚A is positive and non-compact: Otherwise, N “

ř

j λjPj with certain 0 ă λj Ñ 0

and orthogonal projections Pj with pairwise orthogonal images by 8.24 . Thus

|A| :“
?
A˚A “

?
N “

ř

j

a

λjPj would also be compact by 8.24 , and hence

A “ U |A| (by 7.24 ) would be compact as well, a contradiction.

By 8.23 , an ε ą 0 exists so that Pε :“ P pσpNqzBεq “ N gpNq P I has infinite-
dimensional image, where P is the spectral measure for N , Bε :“ tz P σpNq : |z| ď
εu “ r0, εsXσpNq and gpzq :“ 1

z χσpNqzBε . Since H is separable, there is a surjective
isometry U : H Ñ imgpPεq. Then 1 “ U˚U “ U˚PεU P I, i.e. I “ LpHq.

Normal operators as multiplication operators

An analogy to a diagonal operator would be a multiplication operator Mf : g ÞÑ f ¨g,
which we will study now.

8.27 Diagonal operators.
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Let pX,Ω, µq be a σ-finite measure space. Let f ÞÑ Mf be the faithful and there-

fore isometric representation of L8pµq on L2pµq, which was given in 8.6 by the
multiplication operators Mf : g ÞÑ f ¨ g. Then we have:

1. The operator Mf is normal and pMf q
˚ “Mf .

2. We have σpMf q “ ess-imgpfq :“
Ş

tfpAq : A P Ω, µpXzAq “ 0u.

3. The spectral measure P for Mf on σpMf q is given by B ÞÑMχf´1pBq
.

Proof. ( 1 ) We have xh,M˚
f ky “ xMfh, ky “

ş

f h k dµ “
ş

h f k dµ “ xh,Mfky,,

i.e. pMf q
˚ “Mf , and therefore Mf ˝ pMf q

˚ “Mf ˝Mf “M|f |2 “ pMf q
˚ ˝Mf .

( 2 ) (Ď) Let λ R ess-imgpfq. Then there is an A P Ω with µpXzAq “ 0 and λ R fpAq,

i.e. there is an δ ą 0 with |fpxq ´ λ| ě δ for all x P A. We have g :“ 1
f´λ P L

8pµq

and Mg “ pMf ´ λq
´1, hence λ R σpMf q.

(Ě) Conversely, let λ P ess-imgpfq. For n P N, let An :“ tx : |fpxq ´ λ| ą 1
nu. Then

An P Ω with 0 ă µpXzAnq ď 8 because λ R fpAnq. Since pX,Ω, µq is σ-finite, there
is a measurable A1n Ď XzAn with 0 ă µpA1nq ă 8. We put fn :“ 1?

µpA1nq
χA1n . Then

fn P L
2pµq with }fn}2 “ 1 and }pMf ´ λqfn}

2 “ 1
µpA1nq

ş

A1n
|f ´ λ|2 dµ ď 1

n2 . Hence

Mf ´ λ is not an open mapping and thus λ P σpMf q.

( 3 ) We choose a finite decomposition of the bounded set fpXq into Borel sets

Bj with z, z1 P Bj ñ |z ´ z1| ď ε and pick zj P Bj . Then the sets f´1pBjq form
a decomposition of X into measurable sets and for all x P f´1pBjq the estimate
|pf´

ř

j zjχf´1pBjqqpxq| “ |fpxq´zj | ď ε holds. Due to }Mg} ď }g}8 for all g P L8,
we obtain

›

›

›
Mf ´

ÿ

j

zjMχf´1pBjq

›

›

›
ď

›

›

›
f ´

ÿ

j

zjχf´1pBjq

›

›

›

8
ď ε.

Therefore
ř

j zjMχf´1pBjq
converges towards Mf and also towards

ş

z dP pzq, where

P is the spectral measure defined by P pBq :“Mχf´1pBq
.

8.28 Example.

In particular, if X “ C and µ ě 0 is a regular Borel measure with compact support
K :“ supppµq Ď C, then we denote with Nµ the multiplication operator Mid on
L2pµq with the identity id : CÑ C. The following holds:

1. Nµ is normal, and σpNµq “ supppµq.

2. fpNµq is the multiplication operator Mf for each f P BorelbpCq.
3. The spectral measure P for Nµ is B ÞÑMχ

B
.

Proof. ( 1 ) This follows from 8.27.1 and 8.27.2 because Nµ “ Mid and since
ess-imgpfq “ fpsupppµqq for each continuous f (e.g. f :“ id):
pĎq We put K :“ supppµq. Since the characteristic function χCzK of the open set
CzK can be written as pointwise limit of a monotonous sequence of continuous
functions gn P CcpCq with gn|K “ 0 (hence

ş

gn dµ “ 0), we obtain µpCzKq “
ş

χCzK dµ “ limn

ş

gn dµ “ 0. Since f is continuous, the image fpKq is compact and
thus closed and therefore ess-imgpfq Ď fpKq “ fpsupppµqq.
pĚq Let A be any Borel set with µpCzAq “ 0. Then for each 0 ď g P CcpCq
with g|A “ 0 we have 0 ď

ş

g dµ ď }g}8 µpCzAq “ 0. Thus the support of µ

is contained in A, hence fpsupppµqq Ď fpAq Ď fpAq for each continuous f , i.e.
fpsupppµqq Ď ess-imgpfq.
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( 2 ) Because of the Spectral Theorem 8.15 , we only have to show that f ÞÑ Mf

has the characterising continuity properties:
So let fj Ñ 0 in BorelbpKq with respect to the topology σpBorelbpKq,MpKqq. We
have to show that Mfj Ñ 0 in the WOT. Let h, k P L2pµq. Then, by Cauchy-

Schwarz, h k P L1pµq and thus h k µ PMpKq, therefore

xMfjh, ky “

ż

K

fj h k dµÑ 0.

( 3 ) This immediately follows from 8.27.3 or from ( 2 ) because P pBq “ χBpNµq “
Mχ

B
.

We now want to show that every normal operator is unitary equivalent to a multi-
plication operator. Hence the following

8.29 Definition.

We transfer some notions of the representation theory of Abelian C˚-algebras to
normal operators N P LpHq by considering the C˚-subalgebra C˚pNq Ď LpHq
generated by N and the associated representation ρN : CpσpNqq – C˚pNq Ď LpHq,

i.e. the function calculus from 7.14 .

An h P H is called cyclic vector for N , if it is one for the representation ρN ,
i.e. tppN,N˚qh : p P Crz, zsu is dense in H.

The normal operator N is called cyclic if it has a cyclic vector.

Two normal operators N1 P LpH1q and N2 P LpH2q are called unitary equiva-
lent, if an isometric isomorphism U : H1 Ñ H2 exists with N2 ˝ U “ U ˝N1, i.e.
N2 “ U ˝N1 ˝ U

´1.

Lemma.

Two normal operators N1 P LpH1q and N2 P LpH2q are unitary equivalent if and
only if σpN1q “ σpN2q and the associated representations ρN1 and ρN2 are unitary
equivalent:

Proof. pñq If N1´λ is invertible, so is N2´λ “ U ˝pN1´λq˝U
´1, and vice versa.

Hence the two spectra coincide. Furthermore, ρN2
and f ÞÑ U ˝ ρN1

pfq ˝ U´1 are
two ˚-representations of CpσpN2qq, which both yield N2 on the identity. So they
agree, hence ρN1

and ρN2
are unitary equivalent via U .

pðq Let U : H1 Ñ H2 be a surjective isometry with ρN2pfq ˝ U “ U ˝ ρN1pfq for
all f P CpXq, where X :“ σpN1q “ σpN2q. Then, in particular, N2 ˝ U “ U ˝ N1

for f :“ id.

8.30 Corollary.

Every normal operator is unitary equivalent to an orthogonal sum of cyclic opera-
tors.

Proof. Let N be a normal operator on H. By 7.32 , H is an orthogonal sum of
closed invariant subspaces Hj of the representation ρN : CpσpNqq Ñ LpHq, s.t. the
trace representations ρj : f ÞÑ ρN pfq|Hj are cyclic and ρN is unitary equivalent
to

À

j ρj via the natural isometry U :
À

j Hj Ñ H. In particular, because of the

lemma in 8.29 , N is unitary equivalent to
À

j Nj via U , where the Nj :“ N |Hj
are cyclic operators.

As for representation theory, we should first study cyclic operators.
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8.31 Proposition.

A normal operator N is cyclic if and only if a positive measure µ exists on σpNq, s.t.
N is unitary equivalent to the multiplication operator Nµ on L2pµq by the identity.
The equivalence U is uniquely determined by the condition Uph0q “ 1 for a fixed
cyclic vector h0, We have µ “ Ph0,h0 , where P is the spectral measure of N .

BorelbpσpNq,Cq

π

��

CpσpNq,Cq
ρN //_?

oo LpHq
��
konjU–
����

H

U

��
L8pµq

M
// LpL2pµqq L2pµq

Proof. By definition, a normal operator N P LpHq is cyclic if and only if the

representation ρN : CpσpNqq Ñ LpHq is cyclic. By 7.35 , such a representation

CpσpNqq is cyclic if and only if it is equivalent to the representation M on L2pµq
for some positive Borel measure µ on σpNq, where the unitary equivalence U :
L2pµq Ñ H is uniquely determined by Up1q “ h0 for the given cyclic vector h0 P H.

By 8.29 , this is exactly the cases when N and Nµ “ Mid are unitary equivalent.
We have Ph0,h0 “ µ, because

ż

f dPh0,h0
“

8.12
“““““ xρN pfqh0, h0y “ xρN pfqU1, U1y “ xU˚ρN pfqU1, 1y

“ xU´1ρN pfqU1, 1y “
7.35
“““““ xMf1, 1y “

ż

f dµ.

8.32 Remark. Unitary equivalent Nµ’s.

To determine the unitary equivalence classes of all cyclic operators, we need to de-
cide for which positive Borel measures µj on C with compact supports the operators
Nµ1 and Nµ2 are unitary equivalent.

Suppose there is a surjective isometry U : L2pµ1q Ñ L2pµ2q with U Nµ1 U
´1 “ Nµ2 :

From the equivalence ofNµ1
andNµ2

follows by 8.29 that the two spectra σpNµj q “

supppµjq (by 8.28.1 ) are the same (say K :“ σpNµj q) and that ρN1
is uni-

tary equivalent to ρN2
via U . Let f :“ Up1q P L2pµ2q, i.e. |f |2 P L1pµ2q. Then

U g “ U Mg 1 “Mg U 1 “ g f for all g P CpKq and since U is an isometry we have
ş

|g|2 dµ1 “
ş

|g|2|f |2 dµ2. Because of the uniqueness of the Riesz representation

5.3.4 we have µ1 “ |f |
2 µ2, where |f |2 P L1pµ2q.

This raises the question, which measures µ1 can be writen as f µ2 with f P L1pµ2q.

8.33 Theorem of Radon Nikodym.

Let pX,Ω, µq be a σ-finite measure space and ν a C-valued measure on pX,Ωq. Then
t.f.a.e.:

1. @B P Ω : pµpBq “ 0 ñ νpBq “ 0q;

ô 2. D!f P L1pX,Ω, µq: νpBq “
ş

B
f dµ for all B P Ω.

Under this equivalent assumptions, ν is called absolutely continuous with re-
spect to µ, the function f is called the Radon-Nikodym derivative, and is also
denoted by dν

dµ . Furthermore f g P L1pµq for all g P L1p|ν|q and we have:
ż

g dν “

ż

g
dν

dµ
dµ.
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For a proof, see [10, S505].

As a special case one shows for example in Analysis that – provided the derivative
g1 of g is Riemann-integrable – one has for Riemann-Stieltjes integrals:

ż b

a

fpxq dgpxq “

ż b

a

fpxq g1pxq dx.

8.34 Proposition.

Two positive measures on C with compact support are mutually absolutely contin-
uous (we then write µ1 „ µ2) iff the multiplication operators Nµ1 on L2pµ1q and
Nµ2

on L2pµ2q are unitary equivalent.

Proof. pðq We have shown in 8.32 that the unitary equivalence of Nµ1
and Nµ2

implies the mutual absolute continuity of measures µ1 and µ2.

pñq Let the measures µ1 and µ2 be mutually absolutely continuous and 0 ď f :“
dµ1

dµ2
P L1pµ2q the Radon-Nikodym derivative. If g P L1pµ1q, then f g P L1pµ2q and

ş

f g dµ2 “
ş

g dµ1. So, if g P L2pµ1q, then |g|2 P L1pµ1q, hence f |g|2 P L1pµ2q and
thus

?
f |g| P L2pµ2q and }

?
fg}2 “ }g}2, i.e. the mapping U : L2pµ1q Ñ L2pµ2q,

g ÞÑ
?
f g is an isometry. Since obviously dµ1

dµ2
¨
dµ2

dµ1
“ 1, the multiplication with 1?

f

is the inverse to U . For g P L2pµ2q we have

U Nµ1
U´1 g “

a

f ¨ id ¨
1
?
f
¨ g “ id ¨g “ Nµ2

g

and hence U Nµ1 U
´1 “ Nµ2 .

8.35 Theorem. Diagonalization of normal operators.

Let N be a normal operator on H. Then there is a measure space pX,Ω, µq and
a function f P L8pX,Ω, µq, so that N is unitary equivalent to the multiplication
operator with f on L2pX,Ω, µq. If H is separable, then the measure µ is σ-finite.

Proof.

8.30 ñ DHi ă H, closed, invariant :

H –
à

i

Hi and N „
à

Ni with Ni :“ N |Hi cyclic

8.31 ñ Dµi measure on Xi :“ σpNiq Ď σpNq : Ni „ Nµi .

Let X :“
ğ

Xi, B :“ tB Ď X : B XXi P BpXiqu, µpBq :“
ÿ

i

µipB XXiq

U : L2pX,B, µq Ñ
à

i

L2pµiq, g ÞÑ
ğ

g|Xi is an isometric isomorphism.

Let f :“
ğ

i

idXi , i.e. f |Xi :“ id . Then
à

i

Nµi
U
„Mf and

f´1pW q XXi “W XXi P BpXiq for all open W Ď X, i.e. f is measurable;

fpXq “
ď

i

Xi Ď σpNq, hence f is bounded, thus f P L8pX,B, µq and

N „
à

i

Ni „
à

i

Nµi
U
„Mf .
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If H is separable, only countable many Hi are non-zero. Thus X is σ-finite because

µpXiq “ µipXiq “ Phi,hipXiq ď }hi}
2 “ 1 for a normed cyclic vector hi by 8.8.4

and 8.31 .

8.36 Proposition.

Let Nj P LpHjq be normal operators, and B P LpH1, H2q so that BN1 “ N2B.

Then imgB is N2-invariant, pkerBqK is N1 invariant, and N1|pkerBqK and N2|imgB

are unitary equivalent.

Proof. As in 7.39.4 , we show the following:

1. For h1 P H1 we have N2Bh1 “

BN1h1 P imgB. Thus also the
closure of imgB is N2-invariant.

2. We have BN1h1 “ N2Bh1 “

N20 “ 0 for each h1 P kerB,
thus kerB is N1-invariant and
also N˚1 -invariant according to
the Fugledge-Putnam Theorem

8.14 , so pkerBqK is also N1-
invariant.

H1
B

//

N1

��

H2

N2

��

pkerBqK //B // //

N1|pkerBqK

��

2 R

cc

imgB

N2|imgB

��

- 


<<

pkerBqK //
B
// //

L l

{{

imgB� q

""
H1

B // H2

Hence the inner rectangle of this commuting diagram is well-defined.

3. Since B|pkerBqK is injective and imgB|pkerBqK “

imgB, we may assume w.l.o.g. that B is injective with
dense image. Let B “ U |B| be the polar decomposition

7.24 of B with the positive operator |B| “
?
B˚B and

imgU “ imgB “ H2, as well as pimg |B|qK “ ker |B| “
kerU “ kerB “ t0u. Thus img |B| is dense in H1 and
U : H1 Ñ H2 is a surjective isometry. Furthermore:

N2B “ BN1 ñ B˚N˚2 “ N˚1 B
˚ “

8.14
““““ñ B˚N2 “ N1B

˚

ñ N1B
˚B “ B˚N2B “ B˚BN1

H1
// B // //

N1

��

!!

|B| !! !!

H2

N2

��

H1

N1

��

== U

== ==

H1
!!

U

!! !!
H1

//
B

// //
==
|B|

== ==

H2

So |B|2 “ B˚B P tN1u
k and by 8.15 we have |B| “

a

|B|2 P t|B|2ukk Ď

ptN1u
kqkk “ tN1u

k. Consequently,

N2 U |B| “ N2B “ BN1 “ U |B|N1 “ U N1 |B|,

i.e. N2 U “ U N1 on the dense image of |B|, hence everywhere.

8.37 Corollary.

Similar normal operators are unitary equivalent.

Two operators N1 and N2 are called similar, if N2B “ BN1 for some invertible
bounded linear mapping B.

8.38 Corollary.

Let A be a C˚-subalgebra of LpHq which is additionally closed with respect to the
WOT. Then A is the closure with respect to the norm of the subspace generated by
the orthogonal projections in A.
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Proof. We have to show that every a P A can be approximated in the operator
norm by linear combinations of orthogonal projections P P A: Since A is a C˚-
algebra also Repaq “ 1

2 pa ` a˚q and Impaq “ 1
2i pa ´ a˚q are in A. Thus w.l.o.g.

a P A is Hermitian. By 8.25 , the Riemann-Stieltjes sums
ř

j tj´1pptj ´ ptj´1
q

converge to a, where pt :“ P pp´8, tqq. So we only have to show that the orthogonal
projections pt are in A. The characteristic function χp´8,tq is a pointwise limit of
a monotonously increasing sequence of continuous functions fn P CpRq. Therefore
fn Ñ χp´8,tq in the weak topology by the Theorem on Dominated Convergence
and hence A Ě C˚paq Q fnpaq Ñ χp´8,tqpaq “ pt converges in the WOT.

Commutants and von Neumann algebras

Our goal is to determine for normal operators N P LpHq on Hilbert spaces H with
spectral measure P , the kernel and the image of the function calculus

ρN : BorelbpσpNq,Cq Ñ tNukk Ď LpHq, f ÞÑ fpNq :“

ż

σpNq

f dP

in order to obtain a faithful representation (a functional calculus) by factoring out
the kernel. Since the functional calculus is also continuous with respect to the WOT,
we should examine this topology more closely.

8.39 Lemma. Functionals being continuous with respect to operator
topologies.

Let ` : LpHq Ñ C be a linear functional. T.f.a.e.:

1. The functional ` is SOT-continuous;

ô 2. The functional ` is WOT-continuous;

ô 3. There are finite many hj and kj in H with `pT q “
ř

jxThj , kjy.

Proof. p 1 ð 2 ð 3 q is trivial.

p 1 ñ 3 q Let ` be continuous with respect to the SOT. Then there are finite many
hj with |`pT q| ď

řn
j“1 }Thj} for all T P LpHq. Because of the Cauchy-Schwarz

inequality [18, 6.2.1], we have
n
ÿ

j“1

}Thj} “
n
ÿ

j“1

1 ¨ }Thj} ď
?
n ¨

´

n
ÿ

j“1

}Thj}
2
¯1{2

“

´

n
ÿ

j“1

}T p
?
nhjq}

2
¯1{2

.

If one replaces hj by
?
nhj , then for the seminorm

p : T ÞÑ
´

n
ÿ

j“1

}Thj}
2
¯1{2

we have |`pT q| ď ppT q.

LpHq
π // //

`
""

H0
� � //

`0

��

Àn
H

˜̀
0{{

C
Let the linear mapping π : LpHq Ñ

Àn
H be given by πpT q :“

À

j Thj and

H0 be its image, then ppT q “ }πpT q}. Due to the implications πpT q “ 0 ñ 0 “
ppT q ě |`pT q| ñ `pT q “ 0, ` factors over π to a linear functional `0 : H0 Ñ C
and |`0pπpT qq| “ |`pT q| ď ppT q “ }πpT q} holds, so `0 is extendable by 5.1.5 to
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a continuous linear functional on
Àn

H and there is a vector ‘jkj in the Hilbert
space

Àn
H with

`pT q “ `0pπpT qq “ ˜̀
0pπpT qq “ x‘jThj ,‘jkjy “

ÿ

j

xThj , kjy.

8.40 Corollary. The closure with respect to operator topologies.

Let A be a convex subset of LpHq, then the WOT-closure coincides with the SOT-
closure of A.

Proof. 8.39 and 5.4.8 .

8.41 Definition.

For n P N we define a C˚-algebra homomorphism ∆n : LpHq Ñ Lp
Àn

Hq by

∆npT q :“
n
à

T : ‘nj“1hj :“ phjq
n
j“1 ÞÑ pThjq

n
j“1.

Lemma.

Let A be a subalgebra of LpHq with unit.
Then the SOT-closure of A is given by all those T P LpHq, s.t. for each finite n
each closed ∆npAq-invariant subspace of

Àn
j“1H is also ∆nT -invariant.

Proof. (Ď) Let T P LpHq be an operator in the SOT-closure of A. Then there is
a net Ti P A which converges pointwise towards T . Now let E be a closed ∆npAq-
invariant subspace of

Àn
j“1H. This is then in particular ∆nTi-invariant and thus

also ∆nT -invariant.

(Ě) T P LpHq satisfies the condition on the invariant subspaces. Let hj P H and
ε ą 0. We have to show the existence of an S P A, with }pT ´ Sqhj} ă ε for all
j P t1, . . . , nu. Let E be the closure of the linear subspace ∆npAqp‘jhjq Ď

Àn
H.

Since A is an algebra, E is a ∆npAq-invariant subspace, so is also ∆nT -invariant by
assumption. Since 1 P A, we have ‘jhj P E and thus ‘jThj “ p∆

nT qp‘jhjq P E
and, since ∆npAqp‘jhjq dense is in E, there is an S P A with

ř

j }pT ´ Sqhj}
2 ă

ε2.

8.42 Remark.

For A Ď LpHq, the commutant Ak is SOT-closed because of the lemma in 8.9 , see

6.31 .

If A is closed with respect to ˚, then Ak is a C˚-algebra:
We only have to prove the ˚-closedness of Ak. Let b P Ak and a P A. Since a˚ P A,
we have b˚a “ pa˚bq˚ “ pba˚q˚ “ ab˚, so b˚ P Ak.

Furthermore, a ˚-closed subset A is a maximal Abelian subset (or even C˚-algebra)
if and only if A “ Ak holds:
(ð) Let A Ď B with Abelian B. Then B Ď Bk Ď Ak “ A, so A is maximal Abelian.
(ñ) Let A be Abelian, i.e. A Ď Ak. Since A is ˚-closed, Ak is a C˚-algebra and
it suffices to show that RepAkq Ď A. Let x P Ak be Hermitian and Ax be the
C˚-algebra generated by A and x. Because of x P Ak it is Abelian, and because of
the maximality we have x P Ax “ A.

8.43 Lemma.

Let A Ď LpHq. Then
Akk “ p∆nq´1pp∆nAqkkq

andreas.kriegl@univie.ac.at c© 1. Juli 2019 188



Commutants and von Neumann algebras 8.46

holds

Proof. The following holds:

t “ pti,jqi,j P p∆
nAqk ô @a P A@i, j : ti,j a “ a ti,j ô @i, j : ti,j P A

k,

because
¨

˚

˝

t1,1 . . . t1,n
...

. . .
...

tn,1 . . . tn,n

˛

‹

‚

¨

¨

˚

˝

a 0
. . .

0 a

˛

‹

‚

“

¨

˚

˝

t1,1 a . . . t1,n a
...

. . .
...

tn,1 a . . . tn,n a

˛

‹

‚

¨

˚

˝

a 0
. . .

0 a

˛

‹

‚

¨

¨

˚

˝

t1,1 . . . t1,n
...

. . .
...

tn,1 . . . tn,n

˛

‹

‚

“

¨

˚

˝

a t1,1 . . . a t1,n
...

. . .
...

a tn,1 . . . a tn,n

˛

‹

‚

.

Consequently,

∆na P p∆nAqkk ô @t “ pti,jqi,j P p∆
nAqk : t∆npaq “ ∆npaq t

ô @ti,j P A
k : ti,j a “ a ti,j ô a P Akk.

8.44 Double Commutant Theorem, by Neumann 1929.

Let A be a C˚-subalgebra of LpHq, then Akk is the closure of A with respect to the
SOT or the WOT, i.e.

Akk “ A
SOT

“ A
WOT

.

Proof.
(Ď)

T P Akk ð
8.43
““““ñ ∆nT P p∆nAqkk

:ô ∆nT P “ P ∆nT for all P P p∆nAqk

ñ ∆nT P “ P ∆nT for all ortho-projections P P p∆nAqk

“
7.39.4 , cf. 7.41
““““““““““““““ñ Each closed ∆nA-invariant subspace is ∆nT -invariant

ð
8.41
““““ñ T P A

SOT
“

8.40
“““““ A

WOT

(Ě) Being a commutant Akk Ě A is closed with respect to SOT and by 8.40 also

with respect to WOT, so A
WOT

“ A
SOT

Ď Akk.

8.45 Definition.

A von Neumann algebra A in LpHq is a C˚-subalgebra, with Akk “ A, i.e. it is
closed with respect to the SOT (or WOT).

Therefore tNukk is the smallest (Abelian) von Neumann algebra containing the nor-

mal operator N . By 8.44 this is the WOT-closure of C˚pNq or also of tppN,N˚q :
p P Crz, zsu, because this lies dense in C˚pNq.

8.46 Proposition.

Let pX,Ω, µq be a σ-finite measure space and

Aµ :“ tMf : f P L8pµqu Ď LpL2pµqq,

be the subalgebra generated by the multiplication operators. Then Aµ “ Aµ
k, hence

is an Abelian von Neumann algebra in LpL2pµqq.
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If µ is a finite measure, then the representation f ÞÑ Mf , L8pµq Ñ Aµ, from

8.27 is a homeomorphism with respect to the weak topology σpL8pµq, L1pµqq and

the WOT on Aµ.

Let µ be a positive Borel measure on C with compact support. Then tNµu
k “ Aµ

k

and thus tNµu
kk “ Aµ, i.e.

L8pµq //
M

–
// // Aµ “ tNµukk

� � // LpL2pµqq

Proof. (Aµ “ Akµ) Since Aµ is Abelian, Aµ Ď Akµ. Conversely, for a P Akµ we have
to show that a “Mf for some f P L8pµq. W.l.o.g. a ‰ 0.

Let first µpXq ă 8. Then 1 P L2pµq. For f :“ ap1q P L2pµq we have apgq “
apMg1q “ Mgpa1q “ Mgf “ g f holds for g P L8pµq Ď L2pµq. So }f g}2 “
}apgq}2 ď }a} }g}2. In particular, for g :“ χX0 with X0 :“ tx P X : |fpxq| ě 2}a}u.
we obtain

}a}2µpX0q “ }a}
2 }g}2 ě }apgq}2 “ }f g}2 “

ż

X0

|f |2 dµ ě 4 }a}2 µpX0q.

So µpX0q “ 0, i.e. rf s P L8pµq. Since a “ Mf holds on the dense subspace L8pµq
of L2pµq, it holds on all of L2pµq.

Let now X “
Ů

nXn with µpXnq ă 8. For B with µpBq ă 8, L2pµ|Bq – tf P
L2pµq : f “ 0 outside of Bu is a-invariant because apfq “ apχB ¨ fq “ χB ¨ apfq P
L2pµ|Bq for f P L2pµ|Bq since a P Akµ. Let aB be the restriction of a to L2pµ|Bq. By
the first part there is an fB P L

8pµ|Bq with aB “ MfB . We write fn for fXn and
define f :“

Ů

n fn, i.e. f |Xn :“ fXn . Then f is a well-defined measurable function
on X and }fn}8 “ }Mfn} “ }aXn} ď }a}. So }f}8 ď }a} and obviously a “Mf .

Let µ again be a finite measure.

(Injectivity) We have f ÞÑMf is injective since 1 P L2pµq.

(Homeomorphy) Let fi P L
8pµq be a net. Then this converges to 0 in the weak

topology σpL8, L1q if and only if for all g P L1pµq the following holds:
ş

fi g dµÑ 0.

These g are exactly the products h1 ¨ h2 with h1, h2 P L
2pµq, because by Hölder’s

inequality h1¨h2 P L
1pµq, and vice versa, both h2 :“

a

|g| and h1 :“ signpgqh2 are in

L2pµq. So the convergence statement is equivalent to xMfih1, h2y “
ş

fi h1 h2 dµÑ
0, i.e. to Mfi Ñ 0 in the WOT on LpL2pµqq.

(tNµu
k “ Aµ

k) Let µ be a positive Borel measure on C with compact support X.

By 8.14 , tNµu
k “ tNµ, N

˚
µ u

k “ tMp : p P Crz, zsuk “ tMf : f P CpXquk, since

the set of polynomials p P Crz, zs is dense in CpXq. We may consider L1pµq as
subspace of CpXq1 via the isometry embedding L1pµq ãÑ CpXq1, f ÞÑ f dµ: In fact,
|
ş

g f dµ| ď }g}8 }f}1 and }f dµ} :“ |f dµ|pXq “
ş

1 |f | dµ “ }f}1. Thus, for each

f P L8 “ pL1q1 there exists by Hahn-Banach a f̃ P CpXq2 with f̃ |L1 “ f . By 8.11 ,

δ : CpXq Ñ σpCpXq2, CpXq1q has dense image and thus for given f1, . . . , fn P L
1

and ε ą 0 there is a g P CpXq with ε ą |pf̃ ´ δpgqqpfi dµq| “ |
ş

f fi dµ´
ş

g fi dµ|,
hence CpXq is dense in σpL8pµq, L1pµqq. And since f ÞÑ Mf is a homeomorphism
σpL8, L1q – pAµ,WOTq, we have Akµ “ tMf : f P L8pµquk “ tMf : f P CpXquk “

tNµu
k.

Remark.

We aim at modifying the function calculus

ρ : BorelbpσpNqq Ñ LpHq, f ÞÑ

ż

σpNq

f dP
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from 8.15 so that it becomes a bijection. In order to achieve this, we first try
to find a Borel measure µ on σpNq, so that ρ factores over the quotient map π :
BorelbpσpNq,Cq Ñ L8pµq to an injective mapping

BorelbpσpNqq
π // //

ρ
&&

L8pµq
zz

zz
LpHq

i.e. we should have ker ρ “ kerπ “ tf : f “ 0 µ-a.e.u and, because of P “ ρ ˝ χ :
BpσpNqq Ñ BorelbpσpNqq Ñ LpHq, at least

tB P BpσpNqq : P pBq “ 0u “ kerpP q “ kerpρ ˝ χq “ χ´1pkerpρqq

“ χ´1ptf : f “ 0 µ -a.e.uq

“ tB P BpσpNqq : µpBq “ 0u.

We therefore define:

8.47 Definition.

A scalar-valued spectral measure for a normal operatorN is a measure µ ě 0
on σpNq, which vanishes on exactly those Borel sets where the spectral measure of
N does.

A possibility to find such a measure is to take a vector h P H and consider µh :“
Ph,h. For these

µhpBq :“ Ph,hpBq “ xP pBqh, hy “ }P pBqh}
2.

holds. Thus, µh is scalar-valued spectral measure if and only if

@B P BpσpNqq : P pBqh “ 0 ñ P pBq “ 0.

This leads to the definition:

Let A Ď LpHq. Then an h P H is called separating vector for A, if

@a P A : ah “ 0 ñ a “ 0.

An h P H is a separating vector for the normal operator N P LpHq if h is
separating for the von Neumann algebra tNukk generated by N .

8.48 Lemma.

Let h P H be a separating vector for a normal operator N and P its spectral measure.
Then the measure µh :“ Ph,h is a scalar-valued spectral measure for N .

Proof. h separating for N :ô h separating for tNukk Ě tP pBq : Bu (because of

8.15 ), so @B P BpσpNqq: pµhpBq “ }P pBqh}2 “ 0 ñ P pBq “ 0q, i.e. µh is a
scalar-valued spectral measure for N .

Cyclic versus separating vectors.

Let dimH ą 1.

1. If A “ LpHq, then all h ‰ 0 are cyclic vectors, but no h P H is separating.

2. If A “ C, then A has no cyclic vectors, but each h ‰ 0 is separating.
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Our next task is to prove the existence of separating vectors.

8.49 Lemma.

Let h be a cyclic vector for A. Then h is a separating vector for Ak.

Proof. b P Ak ñ ker b is A-invariant (in fact: bapker bq “ abpker bq “ t0u); Let
bh “ 0, i.e. h P ker b ñ Ah Ď ker b ñ ker b “ H, because Ah is dense ñ b “ 0, i.e.
h is separating for Ak.

8.50 Corollary.

Let A Ď LpHq be Abelian. Then every cyclic vector of A is also separating.

Proof. Since A is Abelian, A Ď Ak is valid and because h is separating for Ak by

8.49 , it is also for the subset A.

8.51 Corollary.

Let H be separable. Then each Abelian C˚-subalgebra of LpHq has a separating
vector.

Proof. According to Zorn’s Lemma, A is contained in a maximal Abelian C˚-
algebra. Since a separating vector is also separating for each subset, we may assume

without loss of generality that A is maximal Abelian and thus A “ Ak by 8.42 .

By 7.32 , an orthogonal decomposition H “
À

nHn exists into A-invariant sub-

spaces Hn with cyclic, and by 8.50 , separating unit vectors hn P Hn. Since H
is separable, the index set is countable (i.e. without loss of generality N). Let
h8 :“

ř8

n“1
1?
2n
hn. Then }h8}

2 “
ř8

n“1
1

2n “ 1, hence h8 P H. Suppose ah8 “ 0

for some a P A. Let Pn be the orthogonal projection on Hn. Since each Hn is

A-invariant, Pn P A
k “ A by 7.39.4 and thus 0 “ Pnah8 “ aPnh8 “

1?
2n
ahn,

hence a “ 0, i.e. h8 is separating.

8.52 Corollary.

Let N P LpHq be normal and H be separable, then there is a separating vector for
N .

Proof. Since the set tNukk is Abelian by 6.31 , it has a separating vector h by

8.51 .

This corollary is the reason we will from now on assume that:
all occurring Hilbert spaces are separable.

8.53 Localization of the function calculus.

Let H be separable and N P LpHq normal.

For h P H, let µh :“ Ph,h and Hh be the closure
of tNukkh in H. This is obviously tNukk-invariant
hence also N -invariant and thus the restriction of
N is an operator Nh :“ N |Hh P LpHhq.

tNukkh �
� // //

��

Hh
� � //

Nh

��

H

N

��
tNukkh

� � // // Hh
� � // H

Lemma.
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We have the following commutative diagram consisting of ˚-homomorphisms:

BorelbpσpNqq

inkl˚

��

ρN // tNukk

ρh

��
BorelbpσpNhqq ρNh

// tNhukk
� � // LpHhq

where ρh : a ÞÑ a|Hh is WOT-continuous.

Proof. (ρh : tNukk Ñ LpHhq, a ÞÑ a|Hh , is well-defined) This is obvious since

Hh “ tNukkh is obviously tNukk-invariant.

(ρh is WOT-continuous) If ai Ñ a8 in tNukk with respect to the WOT, then
xaiv, wy Ñ xa8v, wy holds for all v, w P H, in particular, for those in Hh Ď H, i.e.
ρhpaiq “ ai|Hh Ñ a8|Hh “ ρhpa8q in LpHhq with respect to the WOT.

(ρhptNu
kkq Ď tNhu

kk) By 8.45 , tNukk “ tppN,N˚q : p P Crz, zsu
WOT

, i.e. for

a P tNukk there exists a net of such polynomials pi with pipN,N
˚q Ñ a with respect

to the WOT. By the previous point, tNhu
kk Q pipNh, N

˚
h q “ ρhppipN,N

˚qq Ñ ρhpaq

in the WOT, so ρhpaq P tNhu
kk by the Double Commutant Theorem 8.44 .

(The diagram commutes) Let f P BorelbpσpNqq. By 8.11 (compare with the proof

of 8.13 ) there exists a net of polynomials pi P Crz, zs with
ş

pi dµ Ñ
ş

f dµ for
all µ P MpσpNqq. Since σpNhq Ď σpNq, this also holds for all µ P MpσpNhqq. By

8.15 both pipN,N
˚q Ñ fpNq and pipNh, N

˚
h q Ñ fpNhq converge with respect to

the WOT. Because of pipNh, N
˚
h q “ ρhppipN,N

˚qq Ñ ρhpfpNqq with respect to the
WOT, we obtain ρhpfpNqq “ fpNhq.

8.54 Lemma.

We have the following commutative diagram of ˚-homomorphisms:

BorelbpσpNhqq
ρNh // //

πh
����

tNhu
kk �
� //

��
–conjUh ����

LpHhq

��
8.31 ,– conjUh����

L8pµhq //
M

–, 8.46

// // tNµhu
kk �
� // LpL2pµhqq

Where Uh : Hh Ñ L2pµhq is the unique bijective isometry from 8.31 that inter-

changes Nh and Nµh and maps h to 1. Furthermore, conjUh : a ÞÑ Uh aU
´1
h . The

mappings denoted by � are surjective and continuous and those with – are even
homeomorphisms with respect to σpBorelb,Mq, σpL

8, L1q and the WOT’s.

Proof. (h is a cyclic vector for Nh) Since tNukk is the closure of C˚pNq in the

SOT by 8.44 , we have tNukkh “ evhpC˚pNqq Ď evhpC˚pNqq “ C˚pNqh and

C˚pNqh Ď C˚pNhqh, because for a P C˚pNq there are polynomials pi P Crz, zs
with pipN,N

˚q Ñ a and thus ah “ limi pipN,N
˚qh “ lim pipNh, N

˚
h qh P C

˚pNhqh.

Thus C˚pNhqh is dense in Hh “ tNukkh, i.e. h is a cyclic vector of the restriction
Nh.

(The right arrow is a homeomorphism) By 8.31 , µh :“ Ph,h is a measure on σpNhq

so that Nh is unitary equivalent to Nµh on L2pµhq with respect to a bijective
isometry U “ Uh : Hh Ñ L2pµhq being uniquely determined by Uhphq :“ 1.
Conjugation a ÞÑ U ˝ a ˝ U´1 provides a ˚-isomorphism LpHhq Ñ LpL2pµhqq,
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which maps Nh to Nµh and thus tNhu
kk to tNµhu

kk. This is obviously also a
homeomorphism with respect to the WOT’s.

(The lower arrow is a homeomorphism) According to 8.46 , f ÞÑMf is a surjective

isometry L8 Ñ Aµ “ tNµhu
kk and a homeomorphism with respect to σpL8, L1q

and the WOT.

(Commutativity) The surjective C˚-homomorphism πh : f ÞÑ rf s is continuous with
respect to σpBorelb,MpσpNhqqq and σpL8, L1q, because each g P L1pµhq defines a
measure g dµh. Thus, ρNh and conj´1

Uh
˝M˝πh both have the characteristic properties

of the function calculus 8.15 , hence they coincide.

8.55 Lemma.

Let e P H be so that µe is a scalar-valued spectral measure for N . The measures µ
being absolutely continuous with respect to µe are exactly the µh for h P H.

Proof. pðq Since µe is a scalar-valued spectral measure, µepBq “ 0 implies P pBq “
0 and thus µhpBq “ xP pBqh, hy “ }P pBqh}

2 “ 0.

pñq By the Theorem 8.33 of Radon-Nikodym f :“
b

dµ
dµe

P L2pµeq exists. Let

h :“ U´1
e f P He where Ue : He Ñ L2pµeq is the isometric isomorphism from 8.31 .

For every Borel set B we have:

µpBq “

ż

χB dµ “
8.33
“““““

ż

χB f
2 dµe “ xMχBf, fyL2pµeq “

8.31
“““““ xU´1

e MχBf, U
´1
e fyHe

“
8.54
“““““ xρNepχBqU

´1
e f, U´1

e fy “
8.53
“““““ xρN pχBqU

´1
e f, U´1

e fy

“ xP pBqh, hy “ µhpBq.

8.56 Lemma.

All mappings denoted by � in the following diagram from 8.53 are surjective.

BorelbpσpNqq

inkl˚

����

ρN // // tNukk

ρh
����

BorelbpσpNhqq
8.54

ρNh

// // tNhukk

Proof. (Surjectivity below) This holds by 8.54 .

(Surjectivity on the right) Because of the commutativity of the diagram and because
the path over the left lower vertex is surjective, ρh is also surjective.

(Surjectivity above) Let A :“ tfpNq : f P BorelbpσpNqqu be the image. Then A is

a C˚-algebra by 8.15 and 7.28 with C˚pNq Ď A Ď tNukk. Because of 8.45 it
suffices to show that A is WOT-closed:
So let fi P BorelbpσpNqq be a net with fipNq Ñ a in the WOT. Then a P

tNukk by 8.45 . Let h P H be arbitrary. Since ρNh is onto, there exists an fh P

BorelbpCq with a|Hh “ fhpNhq. Since ρh : tNukk Ñ tNhu
kk is continuous, fipNhq “

ρhpfipNqq Ñ ρhpaq “ a|Hh “ fhpNhq P tNhu
kk in the WOT and thus fi Ñ fh in

σpL8pµhq, L
1pµhqq by 8.46 for each h. Due to Corollary 8.52 , there is a separat-

ing vector e for tNukk and µe is a scalar-valued spectral measure for N by 8.48

with µh being absolutely continuous with respect to µe by 8.55 , i.e. Ddµhdµe
P L1pµeq.

andreas.kriegl@univie.ac.at c© 1. Juli 2019 194



Commutants and von Neumann algebras 8.58

Thus
ş

B
fi dµh “

ş

B
fi
dµh
dµe

dµe Ñ
ş

B
fe
dµh
dµe

dµe “
ş

B
fe dµh for each Borel set B.

On the other hand
ş

B
fi dµh Ñ

ş

B
fh dµh. Thus 0 “

ş

B
pfe ´ fhq dµh, i.e. fe “ fh

µh-a.e.. Since for each g P Hh the measure µg is absolutely continuous with respect

to µh by 8.55 , we have fe “ fh µg-a.e. and hence xfhpNhqg, gy “ xfhpNqg, gy “
ş

fh dµg “
ş

fe dµg “ xfepNhqg, gy, i.e. fhpNhq “ fepNhq by 7.6.3 and in particu-
lar ah “ a|Hhh “ fhpNhqh “ fepNhqh “ ρNhpfeqphq “ ρN pfeqphq “ fepNqh. Since
h P H was arbitrary, a “ fepNq holds.

8.57 Lemma.

We have ρN pfq P kerpρhq ô f “ 0 µh-a.e., i.e. ρN |kerpπq : kerpπq Ñ kerpρhq is

well-defined and surjective, where π :“ πh ˝ incl˚.

Proof. Let a P tNukk, i.e. a “ fpNq “ ρN pfq for a f P BorelbpσpNqq by 8.56 .
Then:

a “ ρN pfq P kerpρhq

ô 0 “ ρhpρN pfqq “
8.56
“““““ ρNhpf |σpNhqq

ð
8.54
““““ñ f |σpNhq “ 0 µh -a.e.

ð
8.28
““““ñ f “ 0 µh -a.e., because supppµhq “ σpNhq.

kerpπq
� _

��

// //

pullback

kerpρhq
� _

��
BorelbpσpNqq

ρN

8.56

// //

π“πh˝inkl˚

����

tNukk

ρh
����

L8pµhq //
–

8.54

// // tNhukk

8.58 Proposition.

Let N be normal and e P H. Then t.f.a.e.:

1. The mapping ρe : tNukk Ñ tNeu
kk is a ˚-isomorphism (or at least injective);

ô 2. @f P BorelbpσpNqq: fpNq “ 0 ô f “ 0 µe-a.e..

ô 3. e is separating for tfpNq : f P BorelbpσpNqqu “ tNu
kk;

ô 4. µe :“ Pe,e is a scalar-valued spectral measure for N ;

Proof. p 1 ñ 2 q fpNq “ 0 ð
( 1 )
“““ñ ρepfpNqq “ 0 ð

8.57
““““ñ f “ 0 µe-a.e..

p 2 ñ 3 q Let a P tNukk with ae “ 0. By 8.56 , f P BorelbpσpNqq exists with

fpNq “ a. So 0 “ }ae}2 “ xa˚ae, ey “ xρN p|f |
2q e, ey “ x

ş

|f |2dP e, ey “
ş

|f |2 dµe.

And thus f “ 0 µe-a.e.. Consequently 0 “ fpNq “ a by ( 2 ).

p 3 ñ 4 q is 8.48 .

p 4 ñ 1 q By 8.56 , ρe is a surjective ˚-morphism. By 8.57 , ker ρe “ tfpNq :
f “ 0 µe-a.e.u, so ρe is also injective, because if f “ 0 outside a Borel set B with

µepBq “ 0, so P pBq “ 0 by ( 4 ), then fpNq “
ş

B
f dP “ 0.

Summary.
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kerpπq
� _

��

8.57

// // kerpρeq
� _

��

8.58
t0u

BorelbpσpNqq

inkl˚

����

ρN

8.56

// //

π

��

tNukk

��
–, 8.58ρe
����

� � // LpHq

BorelbpσpNeqq
ρNe

8.54

// //

πe
����

tNeu
kk �
� //

��
– conjUe����

LpHeq

��
8.31 ,– conjUe����

L8pµeq //
M

–, 8.46

// // tNµeu
kk �
� // LpL2pµeqq

8.59 Theorem. Function calculus.

Let N be a normal operator on a separable Hilbert space H. Then there is an up to
equivalence unique scalar-valued spectral measure µ for N .

The function calculus ρN from 8.15 factorizes via
π : BorelbpσpNqq� L8pµq to a well-defined (isomet-
ric) ˚-isomorphism ρ : L8pµq Ñ tNukk, which is also
a homeomorphism from the topology σpL8, L1q to the
WOT.

BorelbpσpNqq

π
����

ρN
// LpHq

L8pµq //
ρ

–
// // tNukk
?�

OO

Proof. Obviously, all scalar-valued spectral measures are equivalent, i.e. mutually
absolutely continuous, because they have the same 0-sets by definition.

The functional calculus BorelbpσpNqq Ñ tNukk can be writen as composition be-

cause of ( 1 ð 3 ) in 8.58

BorelbpσpNqq
π
ÝÑ L8pµeq – tNµeu

kk – tNeu
kk – tNukk Ď LpHq,

where the mapping ρ is defined as the composition L8pµeq – tNµeu
kk – tNeu

kk –

tNukk. Thus it is a bijective ˚-homomorphism and a homeomorphism with respect

to σpL8, L1q and the WOT by 8.46 and 8.56 , because fi Ñ 0 with respect to

σpL8, L1q implies conversely that for h P H

xfipNqh, hy “ xfipNhqh, hy “

ż

fi dµh “

ż

fi
dµh
dµe

dµe Ñ 0,

since by 8.55 for h P H the measure µh is absolutely continuous with respect to

µe, and thus by 8.33 the Radon-Nikodym derivative dµh
dµe

P L1pµeq exists.

8.60 Spectral Mapping Theorem.

Let H be a separable Hilbert space, N P LpHq a normal operator, P its spectral
measure, µ a scalar-valued spectral measure for N , and finally f P L8pµq.
Then the spectrum σpfpNqq of fpNq is the µ-essential image of f P L8pµq.
Furthermore, P ˝ f´1 is the spectral measure and µ ˝ f´1 a scalar-valued for fpNq.
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Proof. First the statement about the spectrum:

σLpHqpfpNqq
7.13
“ σtNukkpfpNqq

8.59
“ σtNµukkpMf q

7.13
“ σLpL2pµqqpMf q

8.27
“ µ-ess-imagepfq.

Since f is measurable, f˚P :“ P ˝ f´1 is a spectral measure on X :“ tz P C : |z| ď
}f}8u Ě fpσpNqq Ě σpfpNqq. For ε ą 0 we choose a partition of X and thus of
σpfpNqq into Borel sets Bj with |z ´ z1| ă ε for z, z1 P Bj . For f´1pBjq ‰ H let
xj P f

´1pBjq be choosen fixed and yj :“ fpxjq. Then the f´1pBjq ‰ H form a

partition of σpNq and thus by 8.12.2
›

›

›
fpNq ´

ż

X

z d f˚P pzq
›

›

›
“

›

›

›

ż

σpNq

fpzq dP pzq ´

ż

X

z d f˚P pzq
›

›

›

ď

›

›

›

ż

σpNq

fpzq dP pzq ´
ÿ

j

fpxjqP pf
´1pBjqq

›

›

›

`

›

›

›

ÿ

j

yj f
˚P pBjq ´

ż

X

z d f˚P pzq
›

›

›

ď 2ε,

hence equality holds and thus f˚P is the spectral measure for fpNq by 8.15 .

We have that f˚µ :“ µ ˝ f´1 is a scalar-valued spectral measure of fpNq, because
0 “ PfpNqpBq “ f˚P pBq “ P pf´1pBqq if and only if 0 “ µpf´1pBqq “ f˚µ pBq
holds.

Multiplicity Theory for Normal Operators

8.61 Theorem (Hellinger 1907).

Let N be a normal operator on a separable Hilbert space. Then there is a sequence
of measures µn on C with compact supports and µn`1 absolutely continuous with
respect to µn and

N – Nµ1 ‘Nµ2 ‘ . . . .

Up to unitary equivalence, N is uniquely determined by the equivalence classes of
these measures.

Remark.

The measure µ1 has to be a scalar-valued spectral measure forN : Because‘jNµj´λ
is invertible if and only if all Nµj ´ λ are, i.e. σpNq “

Ť

j σpNµj q “
Ť

j supppµjq.

Furthermore, P pBq “ 0 exactly when PjpBq “ 0 for all j, i.e. B is an µj zero set.
However, since µj`1 is absolutely continuous with respect to µj , this is exactly the
case when µ1pBq “ 0.

Before turning to the proof, let us deduce a few variants. For the first we need the
following

8.62 Lemma.

Let ν be an absolutely continuous measure with respect to another µ measure. Then
there is a measurable set B, so that µ|B and ν are equivalent (i.e. are mutually
absolutely continuous).
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Proof. Let 0 ď f :“ dν
dµ P L

1pµq be the Radon-Nikodym derivative. Furthermore,

let B :“ tx : fpxq ‰ 0u. This measurable set is uniquely determined except for
a zero set µ. For all measurable A we have: 0 “ νpAq “

ş

χA dν “
ş

χA f dµ “
ş

B
χA f dµô µ|BpAq “ 0, i.e. ν and µ|B are equivalent.

8.63 Corollary.

Let N be a normal operator on a separable Hilbert space and µ a scalar spectral
measure for N . Then there is decreasing (a respect to the inclusion) sequence of
Borel sets Bn Ď σpNq with B1 :“ σpNq and

N – Nµ ‘Nµ|B2
‘ . . . .

Up to unitary equivalence, N is uniquely determined by the equivalence class of µ
and the Borel sets up to µ-zero-sets.

Remark.

If H is finite-dimensional, then σpNq “ tλ1, . . . , λnu is finite. By 8.61 we have N “
À

kNk, where the Nk – Nµ|Bk are cyclic diagonal operators on invariant subspaces

Hk Ď H. The entries on the diagonal of Nk must therefore be pairwise distinct, i.e.
all eigenvalues of Nk have multiplicity 1. Since µ1 is a scalar spectral measure for
N , the support of µ1 must be the entire spectrum, i.e. the first summand σpN1q “

σpNq. The absolute continuity means that the respective spectrum becomes smaller,
i.e. the diagonal elements of Nk`1 must be a subset of those of Nk. So the Nk are
the diagonal operators with pairwise distinct entries and exactly the eigenvalues of
N with multiplicity at least k.

Remark.

However, there is another representation. Let Λk be the set of eigenvalues with mul-
tiplicity k, i.e. dim kerpN´λq “ k for λ P Λk. Let Nk be the diagonal operator which

has Λk as diagonal elements, each with multiplicity k. Then Nk – Ak
pkq :“

Àk
Ak,

where Ak is a diagonal operator with Λk as diagonal elements with multiplicity 1,
i.e. σpAkq “ Λk. Thus,

N – A1 ‘A2
p2q ‘A3

p3q . . .

with σpAjq X σpAkq “ H for j ‰ k. The following theorem provides an infinite-
dimensional generalization.

8.64 Theorem.

Let N be a normal operator on a separable Hilbert space H. Then there are pairwise
singular measures µ8, µ1, . . . and an isomorphism

U : H Ñ L2pµ8q
p8q ‘ L2pµ1q ‘ L

2pµ2q
p2q ‘ . . .

which translates N into the sum of multiplication operators with z. Two operators
are unitary equivalent if and only if the corresponding measures are.

Two measures µ1 and µ2 are called mutually singular, in case a decomposition
X “ B1 \B2 exists with µ1pB1q “ 0 and µ2pB2q “ 0.

Proof. Let µ be a spectral measure forN andBn the Borel subsets of σpNq obtained

by 8.63 . Let ∆8 :“
Ş8

n“1Bn and ∆n :“ BnzBn`1 for 1 ď n ă 8. Let µn :“ µ|∆n

and νn :“ µ|Bn for 1 ď n ă 8. Since Bn “
Ş8

k“1Bk\pBnzBn`1q\pBn`1zBn`2q\

¨ ¨ ¨ “ ∆8 \∆n \∆n`1 \ . . . ,, hence νn “ µ8 ` µn ` µn`1 ` . . . and the measures
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µ8, µn, µn`1, . . . are pairwise singular. So Nνn – Nµ8 ‘Nµn ‘Nµn`1
‘ . . . . Using

8.63 thus follows

N – Nν1
‘Nν2

‘ . . .

– pNµ8 ‘Nµ1
‘Nµ2

‘ . . . q ‘ pNµ8 ‘Nµ2
‘Nµ3

‘ . . . q ‘ . . .

– N p8qµ8 ‘N p1qµ1
‘N p2qµ2

‘ . . . .

The uniqueness is up to the reader.

Proof of the existence statement of Theorem 8.61 . The idea of proof of

8.61 is to construct a decomposition of H into the orthogonal sum
À

Hhn of
the cyclic subspaces generated by hn by selecting a sequence from hn. This can
not be done by Zorn’s Lemma, since the absolutely continuity of the associated
measures can not be enforced. Inductive one could proceed as follows: Let e1 P H
be a separating vector for tNukk as well as H1 the closure of tNukke1 and µ1pBq :“

}P pBqe1}
2. In the next step we consider N2 :“ N |HK1 . Again by 8.52 there is a

separating vector e2 P H
K
1 Ď H for tN2u

kk. Let H2 be the closure of tN2u
kke2. Then

µ2 :“ Pe2,e2 is absolutely continuous with respect to µ1 by 8.55 . If we proceed by
induction, we can not guarantee that

À

Hk will fill all of H.

To ensure the termination after countable many steps, we choose an orthonormal
basis tfju from H with f1 “ e1: We would like to choose the separating vector e2

for tN2u
kk so that the orthogonal projection f 12 of f2 onto HK1 lies in the closure of

H2in tN2u
kke2. Then we would have f2 P H1‘tf

1
2u Ď H1‘H2. And inductively we

would get fn P H1‘ ¨ ¨ ¨‘Hn, so H “
À

nHn woulf hold. To justify this particular
choice, we need the following lemma.

8.65 Lemma.

Let N be a normal operator and e P H. Then there is a separating vector e0 for
tNukk with e in the tNukke0 closure.

Proof. Let f0 be a separating vector for tNukk and let P be the spectral measure
of N . We define µpBq :“ }P pBqf0}

2 and denote the closure of tNukkf0 by H0. We
have e “: h0 ` h1 with h0 P H0 and h1 P pH0q

K. Let ηpBq :“ }P pBqh1}
2 and H1

be the closure of tNukkh1. Then both H0 and H1 are invariant with respect to
N . Furthermore, H0 K H1 and N |H0

– Nµ and N |H1
– Nη. Since η is absolutely

continuous with respect to µ by 8.55 , it follows that a Borel set B exists so that

η and ν :“ µ|B are mutually absolutely continuous by 8.62 . So N |H1 – Nν by

8.34 . Let U : H0 ‘ H1 Ñ L2pµq ‘ L2pνq be the canonical isomorphism with

UpN |H0
‘ N |H1

qU´1 “ Nµ ‘ Nν . Because of e “ h0 ‘ h1 P H0 ‘ H1 we have
Ue “ e0‘e1. Since h1 is a cyclic vector for N |H1

, e1 is also one of Nν and therefore
e1 ‰ 0 ν-a.e..

We now want to show that an f P L2pµq exists, so that f ‘e1 is a separating vector
of tNµ ‘Nνu

kk and e0 ‘ e1 is in the closure of tNµ ‘Nνu
kkpf ‘ e1q:

We define fpzq :“ e0pzq for z P B and fpzq :“ 1 otherwise. Let H be the closure
of tNµ ‘ Nνu

kkpf ‘ e1q “ tg pf ‘ e1q : g P L8pµqu (where the equality holds by

8.59 because µ is a scalar-valued spectral measure for Nµ ‘ Nν). Let Bc be the

complement ofB, then: g χBc‘0 “ g χBcpf‘e1q for all g P L8pµq. So L2pµ|Bcq‘0 Ď
H and thus p1´ e0qχBc ‘0 P H and finally e0‘ e1 “ f ‘ e1´p1´ e0qχBc ‘0 P H.

On the other hand, it follows from g P L8pµq and 0 “ g pf ‘e1q that g f “ g e1 “ 0
is µ-a.e.. Since e1 ‰ 0 is ν-a.e., g “ 0 is µ-a.e. on B. Since f “ 1 on Bc it follows
that also g “ 0 is µ-a.e. on Bc. So f ‘ e1 is a separating vector of tNµ‘Nνu

kk.
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Proof of the uniqueness statement of the theorem 8.61 . Since ν „ µ
implies that Nν – Nµ we only need to show the converse implication. Let N –

M , more precisely: Let U be a surjective isometry with UNU´1 “ M . If e1 is
a separating vector for tNukk, then f1 :“ Upe1q is one for tMukk. Since µ1 and
ν1 are scalar-valued spectral measures for N and M , respectively, ν1 „ µ1 follows
and thus Nµ1

– Nν1
, i.e. if H “ ‘nHn and K “ ‘nKn with N |Hn “ Nµn and

M |Kn “ Nνn , then N |H1
–M |K1

. However, this isomorphism does not have to be
a restriction of U , i.e. we do not know wether UpH1q Ď K1. So we have to show

that N |HK1 – M |KK1 . This is done in the following Proposition 8.66 . The result
then follows by means of induction.

8.66 Proposition.

Let N , A and B be normal operators, N cyclic and N ‘A – N ‘B. Then A – B.

Proof. Let N P LpHq, A P LpHAq and B P LpHBq. And let U : H‘HA Ñ H‘HB

be an isomorphism with UpN ‘AqU´1 “ N ‘B. We write U as matrix

U “

ˆ

U1,1 U1,2

U2,1 U2,2

˙

with U1,1 P LpH,Hq, U1,2 P LpHA, Hq, U2,1 P LpH,HBq and U2,2 P LpHA, HBq.
Then

U˚ “

ˆ

U˚1,1 U˚2,1
U˚1,2 U˚2,2

˙

and furthermore

N ‘A “

ˆ

N 0
0 A

˙

and N ‘B “

ˆ

N 0
0 B

˙

.

The equation U pN ‘Aq “ pN ‘BqU reads:
ˆ

U1,1N U1,2A
U2,1N U2,2A

˙

“

ˆ

NU1,1 NU1,2

BU2,1 BU2,2

˙

.

and U pN ‘Aq˚ “ pN ‘Bq˚ U reads:
ˆ

U1,1N
˚ U1,2A

˚

U2,1N
˚ U2,2A

˚

˙

“

ˆ

N˚U1,1 N˚U1,2

B˚U2,1 B˚U2,2

˙

.

The equations U˚U “ 1 and UU˚ “ 1 are:
ˆ

U˚1,1U1,1 ` U
˚
2,1U2,1 U˚1,1U1,2 ` U

˚
2,1U2,2

U˚1,2U1,1 ` U
˚
2,2U2,1 U˚1,2U1,2 ` U

˚
2,2U2,2

˙

“

ˆ

1 0
0 1

˙

ˆ

U1,1U
˚
1,1 ` U1,2U

˚
1,2 U1,1U

˚
2,1 ` U1,2U

˚
2,2

U2,1U
˚
1,1 ` U2,2U

˚
1,2 U2,1U

˚
2,1 ` U2,2U

˚
2,2

˙

“

ˆ

1 0
0 1

˙

From equation p2, 2q for N and for N˚ and 8.36 it follows that pkerU2,2q
K is

A-invariant, pkerU˚2,2q
K B-invariant, and A|pkerU2,2qK – B|pkerU˚2,2q

K . It suffices to

show that A|kerU2,2
– B|kerU˚2,2

, because then A – B. If h P kerU2,2 Ď HA, then

ˆ

U1,1 U1,2

U2,1 U2,2

˙

¨

ˆ

0
h

˙

“

ˆ

U1,2h
0

˙

.

Since U is an isometry it follows that U1,2 maps the kernel of U2,2 isometrically
to a closed subspace E of H. From the equations p1, 2q for N and p1, 2q for N˚

and the fact that kerU2,2 is A-invariant, it follows that E is N -invariant. Thus, the
restriction of U1,2 to kerU2,2 is an equivalence for A|kerU2,2

– N |E .
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Similarly, we obtain that U˚2,1 maps the kernel of U˚2,2 isometrically to a closed

subspace E˚ of H, which is N -invariant, and provides an equivalence B|kerU˚2,2
–

N |E˚ .

It remains to show E “ E˚. If h P kerU2,2, then U˚1,1U1,2h “ ´U
˚
2,1U2,2h “ 0 by the

equation p1, 2q for U˚U and thus E “ U1,2pkerU2,2q Ď kerU˚1,1. On the other hand,

because of p1, 1q for UU˚ for f P kerU˚1,1, the equation f “ pU1,1U
˚
1,1`U1,2U

˚
1,2qf “

U1,2U
˚
1,2f is valid. Because of p2, 1q for UU˚ we have U2,2U

˚
1,2f “ ´U2,1U

˚
1,1f “ 0,

and hence U˚1,2f P kerU2,2. Consequently, f P U1,2pkerU2,2q and thus E “ kerU˚1,1.

Analogously we obtain E˚ :“ kerU1,1. From equation p1, 1q for N it follows that

U1,1 P tNu
k, and since N is cyclic, it follows from 8.46 that U1,1 is normal (because

tNµu
k “ Aµ) and hence E “ kerU˚1,1 “ kerU1,1 “ E˚.
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9. Spectral theory for unbounded operators

Unbounded Operators

Quantum Mechanics .

In Quantum Mechanics one wants to represent physical quantities as self ad-
joint operators on a separable Hilbert space. For the position operator Q and
the impulse operator P , the following version of the Heisenberg uncertainity
principle rP,Qs :“ PQ ´ QP “ }

i has to hold, where } ‰ 0 denotes the Plank
quantum.

So let P and Q be elements of a Banach algebra pA “ LpHqq satisfying this commu-
tation relation. Induction immediately shows that P kQ “ QP k ` k }

i P
k´1 holds:

P k`1Q “ P P kQ “ P

ˆ

QP k ` k
}
i
P k´1

˙

“

ˆ

QP `
}
i

˙

P k ` k
}
i
P k “ QP k`1 ` pk ` 1q

}
i
P k.

For t P C, we obtain

ei t P Q “
8
ÿ

k“0

pitqk

k!
P kQ “

8
ÿ

k“0

pitqk

k!

ˆ

QP k ` k
}
i
P k´1

˙

“ Q
8
ÿ

k“0

pitqk

k!
P k `

}
i

8
ÿ

k“1

pitqk

pk ´ 1q!
P k´1 “ pQ` t }q ei t P .

Since ei t P is invertible, with inverse mapping e´i t P , we have that Q and Q ` t }
similar and thus they have the same spectrum. However, since the spectrum of
Q ` t } is that of Q shifted by t }, the spectrum of Q would have to be all of C,

and thus Q can not be an element of a Banach algebra by 6.24 , and hence, in
particular, not a bounded linear operator. A similar calculation shows that also P
can not be a bounded operator.

If we define the impulse operator P by pPfqpxq :“ }
i
d
dx fpxq and the position

operator Q by pQfqpxq :“ x fpxq, then

rP,Qsfpxq “
}
i

d

dx
px fpxqq ´ x

}
i

d

dx
fpxq “

}
i

´

fpxq ` x f 1pxq ´ x f 1pxq
¯

“
}
i
fpxq.

These operators are not defined for all f in the Hilbert space L2pRq, so we need an
extension of the notion “bounded linear operator” on Hilbert spaces.

9.1 Definition .

A linear operator T : H1 ù H2 between Hilbert spaces H1 and H2 is a linear
mapping T defined on a linear subspace domT of H1, the domain of T . Particularly
important is the case where domT is dense in H1, which we may assume without
loss of generality by replacing H1 with the Hilbert space domT . The sum T1`T2 of
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two such operators T1 and T2 is defined on domT1XdomT2 and the composition
T ˝ S on S´1pdomT q.

An operator T̃ : H1 ù H2 is called extension of T : H1 ù H2 if T̃ Ě T , i.e.
dom T̃ Ě domT and T̃ |domT “ T .

If T is bounded, then there is a bounded linear extension to the closure of domT ,
and if we put T “ 0 on the orthogonal complement of domT , we obtain a bounded
linear extension to H1. The interesting non-globally defined operators are therefore
all unbounded.

However, the operators should have some continuity property, since otherwise we
would do only linear algebra. Therefore, we call an operator T : H1 ù H2 closed
operator if its graph graphpT q :“ tpx, Txq : x P domT u is closed in H1 ‘ H2.
An operator is called closeable if it has a closed extension.

9.2 Proposition.

Let T : H1 ù H2 be a linear operator. Then t.f.a.e.:

1. It is closeable;

ô 2. The closure of its graph is the graph of a mapping;

ô 3. p0, hq P graphT implies h “ 0.

In this situation, the operator with the closure of graphT as graph is called the
closure of T .

Not every operator is closeable. Let e.g. T : `2 ù C defined by T ppxnqnq :“
ř

n nxn on domT :“ tpxnqn :
ř

n n |xn| ă 8u. Then also p0, 1q “ limnp
1
nen, 1q P

graphT , so this can not be a graph of a function.

Proof. p 1 ñ 3 q Let T̃ Ě T be a closed operator. Therefore, the closure graphT

of the graph of T is a subset of graph T̃ . Let p0, hq P graphT Ď graph T̃ , then

h “ T̃ p0q “ 0.

p 2 ð 3 q Let H0 :“ pr1pgraphT q “ th P H1 : Dk P H2 mit ph, kq P graphT u.
Then we have to show that for each h P H0 exactly one k P H2 exists with ph, kq P
graphT . Let k1 and k2 be two such k. Then p0, k1´k2q “ ph, k1q´ph, k2q P graphT
and thus k1 ´ k2 “ 0, i.e. k1 “ k2.

p 1 ð 2 q Let graphT be the graph of a mapping T̃ . This mapping T̃ has to be
linear because the closure of the linear subspace graphT is itself a linear subspace.
Furthermore, T̃ is by construction closed and T Ď T̃ .

Adjoint operator

9.3 Definition of the adjoint operator .

In order to define uniquely a vector T˚k by the equation xTh, ky “ xh, T˚ky we
need on the one hand that this holds for h in a dense subset, thus domT has to be
dense, and on the other hand h ÞÑ xTh, ky has to be a bounded linear functional
(on domT ). So we define:
For a densely defined operator T : H1 ù H2, the adjoint operator T˚ : H2 ù

H1 is the operator with domain

dompT˚q :“
!

k P H2 : xT p q, ky is bounded linear on domT
)

,

which is defined by xTh, ky “ xh, T˚ky for all h P domT .
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9.4 Multiplication operator as an example.

Let pX,Ω, µq be a σ-finite measure space and λ : X Ñ C be an Ω-measurable
function. Let D :“ tg P L2pµq : λ g P L2pµqu and T pgq :“ λ g for all g P D. Then
T “ Mλ is a closed densely defined operator. Its adjoint has the same domain D
and is given by T˚ :“Mλ:

Let ∆n Ď tx : |λpxq| ď nu with µp∆nq ă 8 and
Ť

n ∆n “ X. Then L2p∆nq Ď D,
because for λ P L8 and g P L2 also λ g P L2 by the Hölder inequality . Thus D is
dense.

Let now gk Ñ g and Tgk Ñ h in L2. Then λ gk Ñ λ g converges on ∆n and on the
other hand also towards h, so λ g “ h a.e. and thus g P D and pg, hq “ pg, Tgq P
graphT , i.e. the graph of T is closed.

We have that g ÞÑ xλg, hy “
ş

g λ h is bounded by the Theorem [18, 6.2.9] of Riesz

if and only if λh P L2, i.e. h P D. So domT˚ “ D and

xλg, hy “

ż

λ g h “

ż

g λ h “ xg, λ hy,

i.e. T˚h “ λh.

Diagonal operator.

Let, in particular, µ be the counting measure on X “ N. Then L2pXq “ `2 and
λ : X Ñ C is a sequence pλnqn. The multiplication operator T has D :“ th P `2 :
ř

k |λk hk|
2 “

ř

k |λkxh, eky|
2 ă 8u as domain and is given by Th :“ pλkhkqk “

ř

k λkxh, ekyek for all h P D.

Position operator.

Let, in particular, µ be the Lebesgue measure on X :“ R and λ :“ idR. Then T is
the position operator of (1-dimensional) Quantum Mechanics.

We now show that T is the closure of T |C8c :

Since T is closed, we have to find for each f P domT “ tf P L2 : λ f P L2u a
sequence fn P C

8
c , with pfn, T fnq Ñ pf, Tfq:

Let ρ P C8c with ρ “ 1 on a neighborhood U0 of 0. Since C8c is dense in L2, there
exist gn, hn P C

8
c with hn Ñ f and gn Ñ Tf . Therefore ρ hn Ñ ρ f and both

sides vanish outside supppρq, so T pρ hnq “ λ ρhn Ñ T pρ fq “ ρ Tf . Moreover,
p1 ´ ρqgn Ñ p1 ´ ρqTf and both sides vanish on U0, so the functions 1´ρ

λ gn from

a sequence of C8c -functions converging in L2 towards 1´ρ
λ Tf “ p1 ´ ρq f . Finally,

fn :“ 1´ρ
λ gn ` ρ hn P C

8
c converges to p1 ´ ρq f ` ρ ¨ f “ f in L2 and Tfn “

p1´ ρq gn ` ρ Thn Ñ p1´ ρqTf ` ρ Tf “ Tf .

9.5 Differentiation operator as an example.

Let

D0 :“
!

f : r´1, 1s Ñ C : f is absolutely continuous, f 1 P L2 and fp´1q “ 0 “ fp1q
)

.

and let T0 be defined by T0pfq :“ i f 1 for all f P D0. Note that the absolutely
continuous functions f are just the antiderivatives of the L1-functions.

Since the polynomials p with pp´1q “ 0 “ pp1q are in D0, we have that D0 is dense
in L2r´1, 1s.
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The operator T0 is closed: Let fn P D0 with pfn, if
1
nq Ñ pf, gq in L2 ‘ L2. Let

hpxq :“ ´i
şx

´1
gptq dt. Because of the Cauchy-Schwarz inequality p} }1 ď }1}2 } }2 “

?
2 } }2q, h is absolutely continuous and

|fnpxq ´ hpxq| “
ˇ

ˇ

ˇ

ż x

´1

pf 1nptq ` i gptqq dt
ˇ

ˇ

ˇ
ď
?

2}f 1n ` i g}2 “
?

2}if 1n ´ g}2 Ñ 0.

So fn Ñ h uniformly on r´1, 1s. Since fn Ñ f in L2r´1, 1s, we have that f “ h a.e..
We can thus assume that fpxq “ hpxq for all x, and thus f is absolutely continuous
and fn Ñ f uniformly on r´1, 1s. In particular, fp´1q “ limn fnp´1q “ limn 0 “ 0
and analogously we have fp1q “ 0. Furthermore, f 1 “ h1 “ ´i g P L2r´1, 1s. Hence
f P D0 and pf, gq “ pf, if 1q P graphT0.

Let img T0 “ tf
1 : f P D0u “

!

h P L2r´1, 1s : 0 “
ş1

´1
hpxq dx “ xh, 1y

)

“ t1uK.

Finally we have:

domT˚0 “ D :“ tg : g is absolutely continuous on r´1, 1s, and g1 P L2r´1, 1su

and T˚0 g “ i g1, i.e. T0 Ă T˚0 :
pĎq Let g P domT˚0 and h :“ T˚0 g. We put Hpxq :“

şx

´1
hptq dt. By means of partial

integration, we obtain the following for each f P D0 because of fp´1q “ 0 “ fp1q:

xT0f, gy “ xf, T
˚
0 gy “ xf, hy “

ż 1

´1

f h “

ż 1

´1

fpxqH
1
pxq dx

“ fpxqHpxq
ˇ

ˇ

ˇ

1

x“´1
´

ż 1

´1

f 1pxqHpxq dx “ ´

ż 1

´1

if 1pxqiHpxq dx

“ ´xT0f, iHy.

So xT0f, g ` iHy “ 0 for all f P domT . Hence g ` iH P pimg T0q
K “ t1uKK “ C,

i.e. c :“ g ` iH is constant and thus g “ c ´ iH is absolutely continuous, g1 “
´iH 1 “ ´i h P L2 and T˚0 g “ h “ i g1.
pĚq Let g be absolutely continuous with g1 P L2. By means of partial integration
it follows for all h P D0 because of hp´1q “ 0 “ hp1q that xi h1, gy “ ´i

ş

h ḡ1 and
thus is continuous with respect to h, i.e. g P domT˚.

Note that the factor i was necessary in order to get the same formula for T˚0 as for
T0.

Example of an extension.

We now extend the domain D0.

D1 :“
!

f : r´1, 1s Ñ C : f is absolutely continuous, f 1 P L2r´1, 1s and fp´1q “ fp1q
)

Let T1 be given by the same formula as before, namely T1pfq “ i f 1 for all f P D1.

Of course, T1 is also densely defined, because D0 Ď D1. As before, one shows that

T1 is closed (this also follows from 9.8 ) and that img T1 “ t1u
K.

This time, however, domT˚1 “ D1 “ domT1 and T˚1 g “ i g1, i.e. T1 “ T˚1 :
pĎq Let again g P domT˚1 and h :“ T˚1 g and Hpxq :“

şx

´1
hptq dt. Then Hp´1q “ 0.

And, because of 1 P D1, we now have Hp1q “
ş1

´1
h “ xT˚1 g, 1y “ xg, T11y “ 0. By

partial integration and Hp´1q “ 0 “ Hp1q we obtain again xT1f, g`iHy “ 0 for all
f P D1. So, as before, g “ c´ iH is absolutely continuous, g1 “ ´iH 1 “ ´i h P L2

and T˚1 g “ h “ i g1.
pĚq For g P D1 it follows by means of partial integration (because hp´1q “ hp1q
and gp´1q “ gp1q) that xi h1, gy “ ´i

ş

h ḡ1 and thus it is continuous in h P D1, i.e.
g P domT˚.
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The impulse operator on L2pRq.

Let now

D :“
!

f P L2pRq : f is locally absolutely continuous and f 1 P L2
)

,

T pfq :“ i f 1 for all f P D.

This operator is also densely defined, because for each interval ra, bs and n P N
we consider the trapezoid function, which is 1 on ra, bs and vanishes outside of an
1{n-neighborhood. These functions are in D and their linear span is dense in L2.

Claim: T “ T˚ and hence T is closed by 9.8 .

pĎq Let g P domT˚ and T˚g “ h. Then
ş

R i f
1 g “ xT f, gy “ xf, hy “

ş

R f h for all
f P D. If we specifically choose a trapezoid function fn for f as above, then

n

ż a

a´ 1
n

i g ´ n

ż b` 1
n

b

i g “

ż

R
fn h.

Multiplication with i, conjugating, and passing to the limit for n Ñ 8, yields

gpbq ´ gpaq “ ´i
şb

a
h for almost all a and b, as the antiderivative t ÞÑ Gptq “

şt

0
gpsq ds of a L2r0, bs Ď L1r0, bs function is almost everywhere differentiable and has

g as derivative and thus limnÑ8 n
şt˘ 1

n

t
g “ limnÑ8

Gpt˘ 1
n q´Gptq

˘ 1
n

“ G1ptq “ gptq.

Because L2 Ď L1
loc, we have that g is locally absolutely continuous and g1 “ ´i h

almost everywhere. So g is in D and T˚g “ h “ i g1.

pĚq Let g P D. Partial integration yields
şb

a
i f 1g “ i f g|ba `

şb

a
f i g1, and since f g

is integrable, we have lim infaÑ´8,bÑ8 |pf gqpbq ´ pf gqpaq| “ 0, hence
ş`8

´8
i f 1g “

ş`8

´8
f i g1, I.e. g P domT˚ and T˚g “ i g1.

Claim: T is the closure of T |C8c . For this we have to show that for each f P D

functions fn P C
8
c exist with fn Ñ f and Tfn Ñ Tf in L2.

We first show that we find fn P C
8 X L2. For this we choose a ρ P C8c with ρ ě 0

and
ş

R ρ “ 1 and put ρn : x ÞÑ nρpnxq and fn :“ ρn ‹ f . As in [18, 4.13.9], one

shows that }fn ´ f}2 “ }ρn ‹ f ´ f}2 Ñ 0 (see also [2, 55]) and ρn ‹ f P C
8 X L2,

since ρn P C
8 X L1 and f P L2. Furthermore, pρn ‹ fq

1 “ ρn ‹ f
1. Since f 1 P L2, we

have Tfn “ f 1n P L
2 and }Tfn ´ Tf}2 “ }ρn ‹ f

1 ´ f 1}2 Ñ 0.
Let now f P C8 X L2 and choose ρ P C8c with ρpxq “ 1 for |x| ď 1 and
ρnpxq :“ 1

nρp
x
n q. Let fn :“ ρn ¨ f . Then fn P C

8
c and fnpxq “ fpxq for |x| ď n.

So fn Ñ f pointwise and since |fnpxq| ď |fpxq|, because of the theorem about
dominated convergence, the convergence is also with respect to the 2-norm. Fur-
thermore, }Tfn´Tf}2 ď }ρ

1
n ¨ f}2`}ρn ¨ f

1´ f 1}2 ď }ρ
1
n}8 ¨ }f}2`}ρn ¨ f

1´ f 1}2 ď
1
n}ρ

1}8 ¨ }f}2 ` }ρn ¨ f
1 ´ f 1}2 Ñ 0.

We will give a second proof of this fact in 9.46 .

9.6 Remark.

Let T :“
ř

|α|ďm aα B
α be a linear partial differential operator of degree ď m on

Rn, i.e.

pTuqpxq :“
ÿ

|α|ďm

aαpxq
B|α|

Bxα1
1 . . . Bxαnn

upxq.

with Cm-functions aα. The transposed operator is given by

T t : v ÞÑ
ÿ

|α|ďm

p´1q|α|Bαpaα ¨ vq.
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For u, v P Cm we have:

T puq ¨ v ´ u ¨ T tpvq “ div Jpu, vq,

where J “ pJ1, . . . , Jnq is an n-tuple of bilinear partial differential operators Jn of
degree ă m.

Proof. We the prove this for m “ 2 only (the general case is analogous). Let

T :“
ÿ

j,k

aj,k BjBk `
ÿ

j

bj Bj ` c.

We want to move the partial derivatives in the product T puq ¨ v from u to v. Let’s
start first with a term of 1-st degree

bj Bju ¨ v “ Bjpbj u vq ´ u ¨ Bjpbj vq.

For the terms of 2-nd degree we obtain

aj,k BjBku ¨ v “ Bjpaj,k Bku ¨ vq ´ Bjpaj,k vq ¨ Bku

“ Bjpaj,k Bku ¨ vq ´ Bk pBjpaj,k vq ¨ uq ` BkBjpaj,k vq ¨ u.

So,

T puq ¨ v “ u ¨
´

ÿ

j,k

BkBjpaj,k vq ´
ÿ

j

Bjpbj vq ` c v
¯

`
ÿ

j

Bj

´

ÿ

k

aj,k Bku ¨ v ´
ÿ

k

u ¨ Bkpak,j vq ` bj u ¨ v

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:Jjpu,vq

¯

“ u ¨ T tpvq `Div Jpu, vq,

where J :“ pJ1, . . . , Jnq and Jj is the following bilinear partial differential operator
of degree 1:

Jjpu, vq “
ÿ

k

aj,k Bku ¨ v ´
ÿ

k

u ¨ Bkpak,j vq ` bj u ¨ v

“
ÿ

k

´

aj,k Bku ¨ v ´ ak,ju ¨ Bkv
¯

´

˜

ÿ

k

Bkpak,jq ´ bj

¸

u ¨ v.

The application of the divergence theorem thus provides

ż

B

T puq ¨ v ´ u ¨ T tpvq “

ż

B

div Jpu, vq “

ż

BB

xJpu, vq, nBBy volBB,

where nBB “ pnjqj denotes the outward facing unit normal to the surface BB and
volBB the surface area element.

In particular, T puq :“
ř

j,k Bjpaj,k Bkq ` c u with R-valued C2-functions aj,k “ ak,j
and c. Then aj,k is exactly the coefficient in the general formula at the beginning of
the proof and bk “

ř

j Bjpaj,kq. The transposed operator in this situation is T t “ T ,
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because

T tpvq :“
ÿ

j,k

BjBkpv aj,kq ´
ÿ

j

Bj

´

v
ÿ

k

Bkak,j

¯

` c v

“
ÿ

j,k

˜

BjBkv aj,k ` Bkv Bjaj,k ` Bjv Bkaj,k ` BjBkaj,k v

¸

´
ÿ

j,k

pBjv Bkak,j ` v BjBkak,jq ` c v

“
ÿ

j,k

paj,k BjBkv ` Bjv Bkaj,kq ` c v

“ T pvq.

Let the derivative B
Bn in the “normal” direction be defined by

B

Bn
:“

ÿ

j,k

aj,k nj Bk.

Then
ż

B

T puq ¨ v ´ u ¨ T tpvq “

ż

B

div Jpu, vq “

ż

BB

xJpu, vq, nBBy volBB

“

ż

BB

ÿ

j

˜

ÿ

k

´

aj,k Bku ¨ v ´ ak,ju ¨ Bkv
¯

´

´

ÿ

k

Bkpak,jq ´
ÿ

k

Bkpak,jq
¯

u ¨ v

¸

nj volBB

“

ż

BB

´

Bu

Bn
¨ v ´ u ¨

Bv

Bn

¯

volBB ,

This integral vanishes if and only if the normal part of Jpu, vq|BB vanishes, and, in
particular, if u|BB “ 0 and either v|BB “ 0 or Bu

Bn |BB “ 0.

We need the following description (of the graph) of T˚:

9.7 Proposition.

Let T : H1 ù H2 be densely defined and J : H1 ‘ H2 Ñ H2 ‘ H1 be given by
Jpf, gq “ p´g, fq. Then J is a bijective isometry and

graphT˚ “ pJpgraphT qqK.

Proof. Obviously, J is a bijective isometry.

pĎq Let g P domT˚ and f P domT , then
@

pg, T˚gq, Jpf, T fq
D

“ ´xg, T fy ` xT˚g, fy “ 0.

pĚq Let pg, hq P pJpgraphT qqK. For all f P domT we have 0 “ xpg, hq, p´Tf, fqy “
´xg, Tfy ` xh, fy. Thus g P domT˚ and h “ T˚g.

9.8 Proposition.

Let T : H1 ù H2 be a densely defined operator. Then:

1. T˚ is a closed operator.

2. T˚ is densely defined if and only if T is closeable.

3. If T is closeable then its closure is T˚˚.
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Proof. ( 1 ) By 9.7 , graphT˚ is an orthogonal complement hence closed, i.e. T˚

is a closed operator.

For the rest, note that the mapping J is a bijective isometry with inverse J´1 :
H2 ‘H1 Ñ H1 ‘H2, pg, fq ÞÑ pf,´gq.

( 2 ) pðq We have to show that pdomT˚qK “ t0u: For k P pdomT˚qK we have

pk, 0q P pgraphT˚qK “
9.7
““““ pJpgraphT qqKK “ JpgraphT q “ JpgraphT q, i.e.

p0,´kq “ J´1pk, 0q P J´1JpgraphT q “ graphT . Since T is closeable, k “ 0 by

9.2 .

pñq Let domT˚ be dense. Then T˚˚ “ pT˚q˚ is well-defined and is by ( 1 ) a
closed operator. We have T Ď T˚˚ (so T˚˚ is a closed extension), because for all
f P domT g ÞÑ xg, Tfy “ xT˚g, fy is a well-defined bounded functional on domT˚,
i.e. f P domT˚˚ and T˚˚f “ Tf .

( 3 ) By 9.7 applied to T˚, we have graphT˚˚ “ pJ 1 graphT˚qK where J 1 : H2 ‘

H1 Ñ H1 ‘H2 is given by J 1pg, fq :“ p´f, gq “ ´pf,´gq “ ´J´1pg, fq. So

graphT˚˚ “ p´J´1 graphT˚qK “
9.7
““““ p´J´1pJ graphT qKqK

“
J´1 Isometr.
“““““““““““ p´J´1J graphT qKK “ ´ graphT “ graphT .

9.9 Corollary .

Let T be closed and densely defined. Then also T˚ is closed and densely defined and
T˚˚ “ T .

9.10 Proposition.

Let T : H1 ù H2 be densely defined. Then

pimg T qK “ kerT˚.

If T is additionally closed, then

pimg T˚qK “ kerT.

Proof. pĎq If g K img T , then xTf, gy “ 0 “ xf, 0y holds for all f P domT . So
g P domT˚ and T˚g “ 0.
pĚq Let g P kerT˚. Then, for all f P domT , xTf, gy “ xf, T˚gy “ xf, 0y “ 0 holds.

By Corollary 9.9 , we have T˚˚ “ T for closed, densely defined T , and thus the
second equation follows from the first one.

9.11 Theorem on closed image.

Let T : H1 ù H2 be a densely defined, closed operator.
Then img T is closed if and only if img T˚ is it.

Proof. We first show that we may replace T by a bounded operator S in the proof.
Let S : H1 ˆH2 Ě graphT Ñ H2 be the projection onto the 2-nd factor. We have
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the following commutative diagram:

H1 Ě domT
T // // img T Ď H2

graphT

S
99 99

_�

|Xι

��

ee

pr1

eeee

H1 ‘H2

pr1

dddd

pr2

:: ::

We now show that the following holds for the image of the adjoint operator

S˚ : H˚2 Ñ pgraphT q˚ “ pH˚1 ‘H
˚
2 q{pgraphT qo

pι˚q´1pimgS˚q “ img T˚ ‘H˚2 Ď H˚1 ‘H
˚
2 .

pf˚, g˚q P pι˚q´1pimgS˚q

ô pf˚, g˚q|graphT “: ι˚pf˚, g˚q P imgS˚

ô Dh˚ P H˚2 : pf˚, g˚q|graphT “ S˚ph˚q

ô Dh˚ P H˚2 @f P domT : pf˚, g˚qpf, Tfq
loooooooomoooooooon

f˚pfq`g˚pTfq

“ S˚ph˚qpf, Tfq
looooooomooooooon

h˚pTfq

ô Dh˚ P H˚2 @f P domT : f˚pfq “ ph˚ ´ g˚qpTfq

i.e. h˚ ´ g˚ P domT˚, T˚ph˚ ´ g˚q “ f˚

ô Dh˚ P g˚ ` domT˚ : T˚ph˚ ´ g˚q “ f˚

ô f˚, g˚ P img T˚ ‘H˚2 ,

Where the last pðq follows by Dk˚ P domT˚ : f˚ “ T˚k˚, now choose h˚ “ g˚`k˚.

Because ι is a closed embedding, ι˚ is a quotient map by 5.2.4 , and thus imgS˚

is closed if and only if pι˚q´1pimgS˚q “ img T˚ ‘H˚2 , or equivalent img T˚, is it.
Because of img T “ imgS it suffices to show the theorem for the bounded operator
S.

(ñ) So let T : H1 Ñ H2 be a bounded linear operator with closed image. Since the
adjoint of the inclusion img T Ñ H2 is surjective by Hahn-Banach, we may assume
without loss of generality that T is surjective. By the open mapping theorem, there
is a δ ą 0 with tg : }g} ď δu Ď tTf : }f} ď 1u. So there is a f P T´1pgq for g P H2

with }f} ď }g}
δ . For all g˚ P H˚2 we obtain

|g˚pgq| “ |g˚pTfq| “ |T˚g˚pfq| ď }f} }T˚g˚} ď
}g}

δ
}T˚g˚}.

Consequently, }g˚} “ď 1
δ }T

˚g˚}. So T˚ : H˚2 Ñ H˚1 is injective and is a homeo-
morphism onto its image, so img T˚ is closed.

Since T˚˚ “ T by 9.9 , the converse implication also holds.

This theorem also holds for Banach spaces.

Proof for Banach spaces. (ñ) In the above proof we have used nowhere that
the spaces are Hilbert spaces.

( ð) So let T : H1 Ñ H2 be a bounded linear operator and let T˚ : H˚2 Ñ H˚1 have

closed image. We replace T by the operator T1 : H1 Ñ img T . Since T “ ι ˝ T1,
where ι denotes the closed inclusion of img T into H2, we have T˚ “ T˚1 ˝ ι

˚ and
ι˚ is surjective. So T˚1 has the same closed image as T˚ and we just have to show
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that T1 is surjective. So let T “ T1 without loss of generality, which means T has
denses image.

We have that T˚ : H˚2 Ñ H˚1 is injective, because T˚g˚ “ 0 implies xTf, g˚y “
xf, T˚g˚y “ 0. Since the image of T is dense in H2, we have g˚ “ 0. By the open
mapping theorem, T˚ : H˚ Ñ img T˚ is a homeomorphism onto its closed image.
In order to show that T is surjective, we apply the Closed Graph Theorem to the
inverse S :“ T̃´1 of the injective mapping T̃ : H1{kernelT Ñ H2 as in the proof of
the theorem of open mappings.

H1
T // //

π $$ $$

img T �
� // H2

H1{ kerT

OO T̃
OOOO

In the proof of the Closed Graph Theorem, we have used the non-meagerness of
G :“ img T only for showing that S is almost continuous, i.e. that
the closure of S´1ptz : }z} ď δuq “ T ptx : }x} ď δuq contains a zero-neighborhood
for all δ ą 0. Hence it is sufficient to show this.

Suppose there is a δ ą 0 so that the closure of the image of the ball tTx : }x} ď δu

does not contain a 0-neighborhood, i.e. Dyn R tTx : }x} ď δu with yn Ñ 0. Since

this closure is absolutely convex, by Mazur’s lemma 5.2.4 there exists a continuous
linear functional fn with fnpynq ą sup}x}ďδ |fnpTxq| “ sup}x}ďδ |T

˚pfnqpxq|. Hence

}T˚fn} ă
1
δ }fn} }yn} and because of yn Ñ 0 it follows that T˚ can not be a

homeomorphism onto its image, a contradiction.

Invertibility and spectrum

9.12 Definition .

Let T : H1 ù H2 be a linear operator. Then T is called bounded invertible
if a bounded linear operator S : H2 Ñ H1 exists with T S “ 1 and S T Ď 1, i.e.
S T “ 1 on domT (because dompST q “ T´1pdompSqq “ domT ). Warning: This
definition is quite asymmetrical!

9.13 Proposition .

Let T : H1 ù H2 be a linear operator. Then T is bounded invertible if and only if
T is closed and T : domT Ñ H2 is bijective. Under these assumptions, its inverse
is unique.

We will denote the uniquely determined inverse of a bounded invertible operator T
by T´1.

Proof. pñq Let S be a bounded inverse. Since S T Ď 1, we have kerT “ t0u.
Because T S “ 1, we have img T “ H2, i.e. T : domT Ñ H2 is bijective and
S : H2 Ñ domT is its inverse, because T S “ 1 and S T “ 1 on domT . So S is
unique. Finally, graphT “ tph, Thq : h P domT u “ tpSk, kq : k P H2u. Since S is
bounded, this graph is closed.

pðq If T has the given properties, the inverse S : img T “ H2 Ñ domT is a
well-defined linear mapping with graphS “ tpk, Skq : k P H2u “ tpTh, hq : h P
domT u. So this graph is closed and according to the Closed Graph Theorem S is
bounded.
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Lemma.

Let T : H1 ù H2 be a densely defined, closed operator. Then T is bounded invert-
ible if and only if T˚ is it. Under this condition we have pT´1q˚ “ pT˚q´1.

Proof. pñq Let T be bounded invertible and S : H2 Ñ domT Ď H1 the bounded
inverse. Then S˚ P LpH˚1 , H

˚
2 q is well-defined.

pS˚ T˚ Ď 1q Let k P dompS˚ T˚q “ dompT˚q. For g P domS “ H2 we have

xg, S˚ T˚ ky “ xS g, T˚ ky “
S g P domT
““““““““““ xT S g, ky “ xg, ky.

pT˚ S˚ “ 1q Let h P H1. Then S˚h P domT˚, because f ÞÑ xT f, S˚hy “
xS T f, hy “ xf, hy is bounded. Moreover, xf, T˚ S˚ hy “ xTf, S˚hy “ xS T f, hy “
xf, hy holds for all f P domT , thus T˚ S˚ “ 1.

pðq With T˚ also T˚˚ is bounded invertible because of pñq, and T˚˚ “ T by

9.9 .

9.14 Definition .

Let T : H ù H be a linear operator. The resolvent set ρpT q is the set

ρpT q :“
!

λ P C : T ´ λ is bounded invertible
)

.

The spectrum of T is the set σpT q “ CzρpT q. The resolvent set ρpT q is now defined

as a subset of C and not of C8, since we will show in 9.15 that every closed subset
of C appears as spectrum of some operator and if it is not bounded then it is not
closed in C8.

9.15 Proposition.

Let T : H ù H be a linear operator. Then σpT q is closed in C and the resolvent
function ρpT q Ñ LpHq, z ÞÑ pz ´ T q´1, is holomorphic.

Proof.

Let λ0 P ρpT q and pλ0 ´ T q
´1 the bounded inverse. We use the Ansatz

pλ´ T q´1 :“
1

pλ0 ´ T q ´ pλ0 ´ λq
:“ pλ0 ´ T q

´1 1

1´ pλ0 ´ λq pλ0 ´ T q´1

:“ pλ0 ´ T q
´1

ÿ

kě0

pλ0 ´ λq
k
´

pλ0 ´ T q
´1

¯k

“
ÿ

kě0

pλ0 ´ λq
k
´

pλ0 ´ T q
´1

¯k`1

.

This series converges absolutely for |λ0´ λ| ă
1

}pλ0´T q´1}
and pλ´ T q´1 has values

in imgpλ0 ´ T q
´1 “ dompλ0 ´ T q “ domT . We have

pλ0 ´ T q
´1

ÿ

kě0

pλ0 ´ λq
k
´

pλ0 ´ T q
´1

¯k

pλ´ λ0 ` λ0 ´ T q

“ ´
ÿ

kě0

pλ0 ´ λq
k`1

´

pλ0 ´ T q
´1

¯k`1

`
ÿ

kě0

pλ0 ´ λq
k
´

pλ0 ´ T q
´1

¯k

“ 1

on domT . Analogously, it can be shown that on all of H the reverse composition
yields 1. So ρpT q is open and the resolvent function can be developed locally into a
power series with coefficients in LpHq.

Remark .
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If T : H ù H is a linear operator and λ P C, then graphT is closed if and only if
the set graphpT ´ λq obtained by shearing with px, yq ÞÑ px, y ´ λxq is closed. So
for non-closed operators the spectrum is all of C.

If T is defined as in example 9.4 , then σpT q “ tλn : n P Nu, because every λn is

an eigenvalue and by 9.15 σpT q is closed. Conversely, for µ with δ :“ dpµ, tλn :
n P Nuq ą 0 the mapping T ´ µ, pxnqn ÞÑ ppλn ´ µqxnqn, is obviously injective and
closed. But it is also surjective, because each pynqn P `

2 has an inverse image given
by xn :“ 1

λn´µn
yn since p 1

λn´µn
qn P `

8.

Thus, any closed set A ‰ H occurs as spectrum of some closed densely defined
linear operator T : One may choose decompositions of C into squares with side
length 1

2n and for each square which meets A an intersection point. So one obtains a
countable subset tλn : n P Nu being dense in A and we can choose the corresponding
multiplication operator as T .

It may also occur that σpT q “ H. To see this let an S P LpHq with dense image

and σpSq “ t0u be given (see example 9.16 ). We put domT :“ imgS and T :“

S´1 : imgS � H. Then T is closed, densely defined and bounded invertible with
T´1 “ S. We now show that all λ ‰ 0 are also in ρpT q. For this we use the Ansatz

pλ´ T q´1 :“ ´T´1
8
ÿ

k“0

pλT´1qk “ ´S
8
ÿ

k“0

λk Sk.

as in 9.15 This series converges absolutely in LpHq for all λ by the root test,

because k
a

}λk Sk} “ |λ| }Sk}1{k Ñ }λ} rpSq “ 0 by 6.25 . That it is an inverse to

λ´ T follows as in 9.15 .

9.16 Example.

Let T P Lp`2pZqq be given by pTxqn :“ e´n
2

xn´1, i.e. as composition of the shift

operator with the multiplication operator with n ÞÑ e´n
2

.

Since all en P img T , we have that img T is dense in `2.

We now show σpT q “ t0u, i.e. 0 “ rpT q “ limk }T
k}1{k by 6.25 . Obviously,

pT kxqn “ e´n
2

e´pn´1q2 ¨ ¨ ¨ e´pn´k`1q2 xn´k

and thus

}T kx}22 “
ÿ

n

|pT kxqn|
2 “

ÿ

n

ˇ

ˇ

ˇ
e´n

2

e´pn´1q2 ¨ ¨ ¨ e´pn´k`1q2 xn´k

ˇ

ˇ

ˇ

2

pm :“ n´ kq

“
ÿ

m

e´2ppm`kq2`¨¨¨`pm`1q2q |xm|
2 ď e´pk´1q2 |xm|

2 for k ě 2,

because pm`kq2`¨ ¨ ¨`pm`1q2 ě pm`kq2`pm`1q2 “ 2pm`kqpm`1q`pk´1q2 ě

pk ´ 1q2. So }T k} ď e´pk´1q2 and rpT q “ limkÑ8 }T
k}1{k “ limkÑ8 e

´
pk´1q2

k “ 0.

9.17 Proposition.

Let T : H ù H be a closed, densely defined linear operator. Then:

1. λ P ρpT q if and only if pT ´ λq : domT Ñ H is bijective.

2. We have σpT˚q “ tλ : λ P σpT qu
and pT˚ ´ λq´1 “ ppT ´ λq´1q˚ for λ P ρpT q.
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Proof. By 9.13 , T ´ λ is bounded invertible if and only if T ´ λ is bijective from

dompT ´ λq “ domT to H and the graph is closed. This shows ( 1 ).

( 2 ) The following holds:

λ R σpT q ô T ´ λ is bounded invertible

ð
9.13
““““ñ T˚ ´ λ “ pT ´ λq˚ is bounded invertible

ô λ R σpT˚q

and for such λ we have pT˚ ´ λq´1 “ ppT ´ λq˚q´1 “
9.13
“““““ ppT ´ λq´1q˚.

Symmetric and self adjoint operators

9.18 Definition .

An operator T : H ù H is called symmetric if it is densely defined and satisfies
xTh, ky “ xh, Tky for all h, k P domT .

Lemma.

Let

T puqpxq :“
ÿ

j,k

B

Bxj

ˆ

aj,kpxq
B

Bxk
upxq

˙

` cpxqupxq

be a 2-nd order partial differential operator with real C2-functions c and aj,k “ ak,j
as coefficients. Then T is symmetric as operator with domT :“ C8c pRnq Ď L2pRnq
or, if G Ď Rn is a bounded domain with smooth boundary BG, also as operator T
with domT :“ tf P C8pGq : f |BG “ 0u Ď L2pGq.

Proof. By 9.6 , the transposed operator is T t “ T and satisfies

ż

G

T puq ¨ v “

ż

G

u ¨ T tpvq,

so for v “ w also

xT puq, wy “

ż

G

T puq ¨ v “

ż

G

u ¨ Tv “ xu, T pvqy “ xu, T pwqy,

because T has real coefficients. Thus T is symmetrical. We have

B

Bxj

ˆ

aj,kpxq
B

Bxk
upxq

˙

“
B

Bxj
aj,kpxq ¨

B

Bxk
upxq ` aj,kpxq

B2

BxjBxk
upxq
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and thus the formally adjoint differential operator T˚ on v P C2 is given by:

T˚pvqpxq :“
ÿ

j,k

B2

BxkBxj

´

vpxq aj,kpxq
¯

´
ÿ

j

B

Bxj

´

vpxq
ÿ

k

B

Bxk
ak,jpxq

¯

` cpxq vpxq

“
ÿ

j,k

˜

B2vpxq

BxkBxj
aj,kpxq `

Bvpxq

Bxk

Baj,kpxq

Bxj

`
Bvpxq

Bxj

Baj,kpxq

Bxk
`
B2aj,kpxq

BxkBxj
vpxq

¸

´
ÿ

j,k

ˆ

Bvpxq

Bxj

Bak,jpxq

Bxk
` vpxq

B2ak,jpxq

BxjBxk

˙

` cpxq vpxq

“
ÿ

j,k

ˆ

aj,kpxq
B2vpxq

BxjBxk
`
Bvpxq

Bxj

Baj,kpxq

Bxk

˙

` cpxq vpxq

“ T pvqpxq.

9.19 Lemma .

Let T : H ù H be densely defined. Then t.f.a.e.:

1. T is symmetrical;

ô 2. T Ď T˚.

ô 3. xTh, hy P R for all h P domT ;

Proof. p 1 ô 2 q, because

p 2 q ô @g P domT : g P domT˚ and T˚g “ Tg

ô @g P domT : f ÞÑ xTf, gy is bounded on domT

and @f P domT : xTf, gy “ xf, Tgy

ô p 1 q,

because the second condition of the penultimate row obviously implies the first one.

p 1 ô 3 q

p 1 q ô @f, g P domT : ppf, gq :“ xTf, gy ´ xf, Tgy “ 0

ô @f P domT : 0 “ ppf, fq “ xTf, fy ´ xTf, fy

ô @f P domT : xTf, fy P R,

because of the polarization-equation 7.6 for the sesqui-linear form p : domT ˆ
domT Ñ C.

9.20 Definition.

For a symmetric operator T , domT “ domT˚ might fail, see example 9.5 . So we

call an operator T : H ù H self adjoint if it is defined and satisfies T “ T˚.

In particular, every self adjoint operator is symmetric. Corollary 9.8.1 shows that
every self adjoint operator is closed.

Also, the adjoint of a symmetric operator does not have to be symmetric: In example

9.5 we saw that T˚0 Ą T˚1 “ T1 Ą T0 “ T˚˚0 by 9.9 . So we call a densely defined
operator T : H ù H essentially self adjoint if T and T˚ are symmetric.
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Lemma.

Let T : H ù H be a densely defined operator. Then:

1. The operator T is essentially self adjoint if and only if T˚ is self adjoint.

2. If T is symmetric, then T is closeable and its closure T˚˚ is also symmetric.

Proof. p 1 q pñq Since T is symmetric, T Ď T˚ holds. It easily follows T˚ Ě
pT˚q˚ “ T˚˚. Since T˚ is symmetric, the converse inclusion also holds.
pðq If T˚ is self adjoint, then it is dense and thus T˚ “ T˚˚ is the closure of T by

9.8.2 and 9.8.3 , so T is also symmetric as restriction of T˚.

p 2 q Since T is densely defined, T˚ makes sense. And because T is symmetric,
domT Ď domT˚ holds. So also T˚ is dense defined and thus T˚˚ is the closure of
T again by 9.8.2 and 9.8.3 .

Since domT Ď domT˚˚, also T˚˚ is densely defined. Thus T˚˚˚ makes sense. From
T Ď T˚ follows T˚ Ě T˚˚ and finally T˚˚ Ď T˚˚˚, so T˚˚ is symmetrical.

9.21 Proposition.

Let T : H ù H be a symmetric operator.

1. If img T is dense then T is injective.

2. If T is self adjoint and injective, then img T is dense and T´1 is also self
adjoint.

3. If domT “ H, then T is self adjoint and T is bounded.

4. If img T “ H, T is self adjoint and T´1 is bounded.

Proof. ( 1 ) Let Th “ 0, then 0 “ xTh, ky “ xh, Tky for all k P domT and because
img T “ T pdomT q is dense, we have h “ 0.

( 2 ) Because of 9.10 we have pimg T qK “ kerT˚ “ kerT “ t0u, i.e. img T is dense.

An operator S is self adjoint if and only if graphS “ graphS˚ “ pJ graphSqK by

9.7 . Furthermore,

graphpT´1q “ tpg, T´1gq : g P dompT´1q “ img T u “ tpTf, fq : f P domT u

“ J graphp´T q.

Because of p´T q˚ “ ´T˚ “ ´T it finally follows

pJ graphT´1qK “ pJ J graphp´T qqK

“ J ppJ graphp´T qqKq

“ Jpgraphp´T qq

“ graphpT´1q,

and thus T´1 is self adjoint.

( 3 ) By 9.19 , T Ď T˚ and, if domT “ H, then T “ T˚ and therefore closed by

9.8 . By the Closed Graph Theorem T is bounded.

( 4 ) If img T “ H, then T is injective by ( 1 ). Let S :“ T´1 with domS “ img T “
H. We have that S is symmetric, because for f, g P domS, i.e. f “ Th and g “ Tk

with h, k P domT , we have xSf, gy “ xh, Tky “ xTh, ky “ xf, Sgy. By ( 3 ) S is a

bounded self adjoint injective operator and by ( 2 ) T “ S´1 is self adjoint.
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Spectrum of symmetric operators

We need to determine ρpT q for symmetric T . By 9.17 , λ P ρpT q is for closed
T equivalent to the bijectivity of T ´ λ : domT Ñ H, so we should determine
kerpT ´ λq and imgpT ´ λq.

9.22 Proposition.

Let T be symmetric and λ “ α` i β with α, β P R. Then:

1. }pT ´ λqf}2 “ }pT ´ αqf}2 ` β2}f}2 for all f P domT .

2. For β ‰ 0 we have kerpT ´ λq “ t0u.

3. If T is closed and β ‰ 0, then imgpT ´ λq is closed.

Proof. ( 1 ) The following holds:

}pT ´ λqf}2 “ }pT ´ αqf ´ i β f}2

“ }pT ´ αqf}2 ` 2RepxpT ´ αqf, i βfyq ` }β f}2

“ }pT ´ αqf}2 ` 2β ImpxpT ´ αqf, fyq ` β2}f}2.

Because of xpT ´ αqf, fy “ xTf, fy ´ α}f}2 P R we have ( 1 ).

( 2 ) follows directly from ( 1 ).

( 3 ) We have }pT ´ λqf}2 ě β2}f}2. Let now fn P domT with pT ´ λqfn Ñ
g. Because of the inequality, fn is a Cauchy sequence. Let f :“ limn fn. Since
pfn, pT ´ λqfnq P graphpT ´ λq and pfn, pT ´ λqfnq Ñ pf, gq, we conclude that
pf, gq P graphpT ´ λq because the graph of pT ´ λq is closed, so g “ pT ´ λqf P
imgpT ´ λq.

9.23 Proposition.

Let T be a closed symmetric operator.
Then λ ÞÑ dim kerpT˚ ´ λq is locally constant on CzR.

Here dim denotes the vector space dimension, i.e. the cardinality of a Hamel

basis. Note that by 9.10 we have kerpT˚ ´ λq “ pimgpT ´ λ̄qqK and thus T ´ λ is

onto if and only if dim kerpT˚ ´ λ̄q “ 0 is it.

Sublemma.

Let H1 and H2 be closed subspaces of H with H1 X HK2 “ t0u. Then dimH1 ď

dimH2.

Proof. Let P be the orthonormal projection from H onto H2. Because of H1 X

HK2 “ t0u, the restriction P |H1
: H1 Ñ H2 is injective. Consequently, dimH2 ě

dimP pH1q “ dimH1.

Proof of 9.23 . Let λ “ α` iβ with α, β P R and β ‰ 0.

We claim that kerpT˚ ´ µq X kerpT˚ ´ λqK “ t0u for |λ´ µ| ă |β|:
Supose this were not true. Then there is an f P kerpT˚ ´ µq X pkerpT˚ ´ λqqK with

}f} “ 1. By 9.10 , f P pkerpT˚ ´ λqqK “ imgpT ´ λq and, by 9.22.3 , imgpT ´ λq

is closed. So there is a g P domT with f “ pT ´λqg. Since f P kerpT˚´µq we have

0 “ xpT˚ ´ µqf, gy “ xf, pT ´ µqgy “ xf, pT ´ λ` λ´ µqgy

“ }f}2 ` pλ´ µqxf, gy.
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So 1 “ }f}2 “ |λ´ µ| |xf, gy| ď |λ´ µ| }g}. From 9.22.1 it follows that 1 “ }f} “

}pT ´ λqg} ě |β| }g} ą |λ´ µ| }g} ě 1, a contradiction.

From the claim follows by means of the sublema that dim kerpT˚´µq ď dim kerpT˚´
λq if |λ´ µ| ă |β| “ |Impλq|. If |λ´ µ| ă 1

2 |β|, then |Impλq ´ Impµq| ď |λ´ µ| ă
1
2 |β| “

1
2 |Impλq|, i.e. |Impµq| ě 1

2 |Impλq|, and thus also the other inequality holds

because of |µ´ λ| ă 1
2 |Impλq| ď |Impµq|. This shows that λ ÞÑ dim kerpT˚ ´ λq is

locally constant on CzR.

9.24 Theorem .

Let T : H ù H be a closed symmetric operator, then exactly one of the following
things happens:

1. σpT q Ď R;

2. σpT q “ tλ P C : Impλq ě 0u;

3. σpT q “ tλ P C : Impλq ď 0u;

4. σpT q “ C.

Proof. Let C˘ :“ tλ P C : ˘Impλq ą 0u be the upper and lower open half-

plane. By 9.22.2 , T ´ λ is injective and has closed image for all λ P C˘ by

9.22.3 . Thus, by 9.17.1 , λ P ρpT q if and only if T ´ λ is surjective. Because

pimgpT ´ λqqK “ kerpT˚ ´ λq by 9.10 , according to the previous theorem 9.23 ,

either C˘X σpT q “ H or C˘ Ď σpT q (and hence C˘ Ď σpT q, since σpT q is closed).

So either ( 1 ), i.e. σpT q X pC` Y C´q “ H, or one of the other 3 cases, namely

σpT q P tC˘,Cu.

9.25 Corollary .

Let T : H ù H be a closed symmetric operator, then t.f.a.e.:

1. T is self adjoint;

ô 2. σpT q Ď R;

ô 3. kerpT˚ ´ iq “ t0u “ kerpT˚ ` iq.

Proof. p 1 ñ 2 q From T “ T˚ and Impλq ‰ 0, follows imgpT ´ λqK “ kerpT˚ ´

λq “ kerpT ´ λq “ t0u by 9.22.2 . Since imgpT ´ λq is closed by 9.22.3 , T ´ λ :

domT Ñ H is bijective and thus λ P ρpT q by 9.17.1 . So σpT q Ď R.

p 2 ñ 3 q If σpT q Ď R, then ˘i P ρpT q, i.e. imgpT ˘ iq “ H and thus kerpT˚˘ iq “

imgpT ¯ iqK “ t0u.

p 3 ñ 1 q By 9.22.2 , T ˘ i is injective, and because imgpT ˘ iqK “ kerpT˚¯ iq “

t0u by ( 3 ) and imgpT ´λq is closed by 9.22.3 , T ˘ i is also surjective. Because of

9.13 , T ˘ i is bounded invertible and according to the lemma in 9.13 also T˚¯ i.
Let h P domT˚. Since T`i is invertible, f P domT exists with pT`iqf “ pT˚`iqh.
But T˚ ` i Ě T ` i and thus pT˚ ` iqf “ pT ` iqf “ pT˚ ` iqh. Because T˚ ` i is
injective, we have h “ f P domT and hence T “ T˚.

9.26 Corollary.

Let T : H ù H be a closed symmetric operator.
If σpT q does not contain R, then T is self adjoint.

Proof. None of the cases 2 – 4 in 9.24 can occur, so σpT q Ď R and T is self

adjoint by 9.25 .
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Symmetrical extensions

A symmetric operator T is not self adjoint if its domain strictly smaller than that
of T˚. So we should examine symmetric extensions T̃ of T . In particular we are
interested in the question of whether a self adjoint extension exists. For each sym-
metric extension T̃ of T we have T Ď T̃ and thus T̃˚ Ď T˚, i.e. T Ď T̃ Ď T̃˚ Ď T˚.
Each symmetric extension of T is therefore a restriction of T˚.

Corollary 9.25 suggests to study the eigenspaces of T˚ to eigenvalue ˘i for sym-
metric operators T . Hence the following

9.27 Definition.

Let T : H ù H be a closed symmetric operator. The deficiency-subspaces of
T are the eigenspaces of T˚ with eigenvalue ˘i:

D` :“ pimgpT ` iqqK “ kerpT˚ ´ iq “ tf P domT˚ : T˚pfq “ `i fu,

D´ :“ pimgpT ´ iqqK “ kerpT˚ ` iq “ tf P domT˚ : T˚pfq “ ´i fu.

Furthermore, G˘ are the following closed subspaces of H ‘H:

G` :“ tpf,`i fq : f P D`u “ graphp`iq X graphpT˚q

G´ :“ tpg,´i gq : g P D´u “ graphp´iq X graphpT˚q.

The deficiency spaces are therefore also closed, because pr1 : G˘ Ñ D˘ is a linear
isomorphism with inverse f ÞÑ pf,˘i fq. The dimensions of D˘ as Hilbert space,
i.e. the cardinality of a complete orthonormal basis, are denoted as deficiency
indices d˘.

Now for a symmetric operator T we want to determine the part of T˚ that extends
beyond T .

9.28 Lemma.

Let T be a closed symmetric operator, then

graphT˚ “ graphT ‘G` ‘G´ “ graph
´

T ‘ p`iq|D` ‘ p´iq|D´

¯

.

In particular, domT˚ “ domT ‘ D` ‘ D´ is a direct-sum decomposition in not
necessarily orthogonal subspaces.

Proof. We have G˘ K graphT , because for f P D˘ and h P domT :

xh‘ Th, f ‘ p˘i fqy “ xh, fy ¯ ixTh, fy “ ¯ixpT ˘ iqh, fy “ 0,

because D˘ “ imgpT ˘ iqK.

We also have G` K G´, because xf ‘ i f, g ‘ p´i gqy “ xf, gy ´ xi f, i gy “ 0 for
f P D` and g P D´.

Since graphT ‘ G` ‘ G´ Ď graphT˚ is obviously closed, it suffices to show that
this sum has a trivial orthogonal complement in graphT˚: Let h P domT˚ with
h‘T˚h K graphT‘G`‘G´. Because h‘T˚h K graphT , we have 0 “ xh‘T˚h, f‘
Tfy “ xh, fy ` xT˚h, Tfy for all f P domT . Consequently, T˚h P domT˚ and
pT˚q2h “ ´h. So pT˚´ iqpT˚` iqh “ ppT˚q2` 1qh “ 0, and hence g :“ pT˚` iqh P
D` “ kerpT˚ ´ iq. Consequently, 0 “ xh ‘ T˚h, g ‘ igy “ xh, gy ´ ixT˚h, gy “
´ixpT˚` iqh, gy “ ´i}pT˚` iqh}2, hence pT˚` iqh “ 0, i.e. h P D´. For symmetry
reasons h P D` also holds. So h P D` XD´ “ t0u.

Since pr1 : graphT˚ Ñ domT˚ is a linear bijection, the direct-sums decomposition
of domT˚ immediately follows from that of graphT˚.
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9.29 Lemma.

Each symmetric operator T has a maximal symmetric extensions. Every such ex-
tension T̃ is closed. Each self adjoint operator is a maximal symmetric operator.

Proof. The fact that each self adjoint operator T is maximally symmetric follows
immediately from the fact that every symmetric extension of T is a restriction of
T˚ “ T .

The existence of maximal symmetric extensions follows directly from Zorn’s Lemma.

Now let T̃ be a maximal symmetric operator. Since, according to the lemma in

9.20 , the operator T̃˚˚ is a closed symmetric extension of T̃ , we have T̃ “ T̃˚˚

and thus T̃ is also closed.

9.30 Lemma.

Let T : H ù H be a closed symmetric operator. Then there is a bijection
!

T̃ Ě T : T̃ closed, symm.
)

–

!

F ă D` ‘D´ : T˚|F closed, symm.
)

,

i.e. the closed symmetric extensions T̃ of T are in bijective correspondance with
the subspaces F of D` ‘D´ for which T˚|F is a closed symmetric operator. This

relation between T̃ and F is given by:

graph T̃ “ graphT ‘ graphpT˚|F q.

Proof. pÐq Let F be such a subspace. We put D :“ domT ‘ F Ď domT˚ and

T̃ :“ T˚|D Ě T . Then T̃ is symmetric, because for f “ f0 ` f1 and g “ g0 ` g1

with f0, g0 P domT and f1, g1 P F we have

xT̃ f, gy “ xT˚f0 ` T
˚f1, g0 ` g1y

“ xTf0, g0y ` xTf0, g1y ` xT
˚f1, g0y ` xT

˚f1, g1y

(By the symmetry of T and of T˚|F and the adjointness of T˚ zu T )

“ xf0, T g0y ` xf0, T
˚g1y ` xf1, T g0y ` xf1, T

˚g1y

“ xf, T̃ gy.

By 9.28 , graph T̃ “ graphT ‘ graphpT˚|F q is an orthogonal decomposition, and
since both summands are closed, T is closed.

pÑq Let T̃ Ě T be closed and symmetrical. Then T Ď T̃ Ď T˚ and thus graphT Ď

graph T̃ Ď graphT˚ “ graphT ‘ G` ‘ G´. Let G :“ graph T̃ X pG` ‘ G´q and

F :“ pr1pGq Ď pD` ‘ D´q X dom T̃ . Then T˚|F “ T̃ |F is also symmetric and
because graphpT˚|F q “ G we deduce that T˚|F is also closed.

For h‘ T̃ h P graph T̃ Ď graphT˚, we have h‘ T̃ h “ pf ‘ Tfq ` k with f P domT

and k P G` ‘ G´ by 9.28 . And because T Ď T̃ we have k P graph T̃ and thus

k P G, thus graph T̃ “ graphT ‘ graphpT˚|F q.

The two assignments are inverse to each other, because if F :“ pr1pgraph T̃XpG`‘

G1qq ă D` ‘ D´ is the subspace associated with extension T̃ , then obviously

T̃ “ T Y T˚|F “ T˚|domT‘F because of the last equation. And on the other

hand, if T̃ “ T˚|domT‘F is the extension belonging to the subspace F , then G :“

graph T̃ X pG` ‘G´q “ graphpT˚|F q and thus F “ pr1pGq.

9.31 Theorem.

andreas.kriegl@univie.ac.at c© 1. Juli 2019 220



Symmetrical extensions 9.31

Let T : H ù H be a closed symmetric operator. Then there is a bijection
!

T̃ Ě T : T̃ closed, symm.
)

–

–

!

U : U is part. iso. with initial space I` Ď D` and final space I´ Ď D´

)

,

i.e. the closed symmetric extensions T̃ of T are in bijection with the partial isome-
tries U with initial space I` Ď D` and final-space I´ Ď D´. This relation between
T̃ and U is given by:

dom T̃ “ th` k ` Uk : h P domT, k P I`u

T̃ ph` k ` Ukq “ Th` i k ´ i Uk.

For the deficiency indices we have d˘pT̃ q ` dim I˘ “ d˘pT q.

Proof. Because of 9.30 it suffices to describe a bijection between subspaces F of
D` ‘D´ with T˚|F symmetric and closed and the specified partial isometrics U .

pÑq Let F be a subspace of D` ‘D´ with T˚|F closed and symmetric. We want
to show that F is the graph of a (unique) isometry U : I` Ñ I´ with I˘ Ď D˘. For
f P F let f “ f`‘f´ be the direct sum decomposition with f˘ P D˘. Furthermore,
let I˘ :“ tf˘ : f P F u. Since T˚|F is symmetric, 0 “ xT˚f, fy ´ xf, T˚fy “
xif` ´ if´, f` ` f´y ´ xf` ` f´, if` ´ if´y “ 2ixf`, f`y ´ 2ixf´, f´y holds, so
}f`} “ }f´}. If f` ‘ f1´ and f` ‘ f2´ are two vectors from F Ď D` ‘D´, then
0‘pf1´´ f2´q P F and thus }f1´´ f2´} “ }0} “ 0 by what has just been shown,
i.e. f1´ “ f2´. So F is the graph of the bijective isometry U : I` Ñ I´ defined by
Upf`q :“ f´.

We have that I` is closed: Let fn P F with f`n Ñ g`. Since }f`n ´f
`
m} “ }f

´
n ´f

´
m},

there exists an g´ with f´n Ñ g´. Obviously, fn “ f`n ` f´n converges towards
g` ` g´ “: g. Furthermore, T˚f˘n “ ˘i f˘n Ñ ˘ig˘ holds. And it follows pg` `

g´q ‘ pig` ´ ig´q P graphpT˚|F q “ graphpT˚|F q, i.e. g` P I`.

pÐq Let U be a partial isometry with initial space I` Ď D` and final-space I´ Ď
D´. We define F :“ graphU |iniU :“ tg ‘ Ug : g P I`u Ď I` ‘ I´ Ď D` ‘D´.

Then T˚|F is symmetrical, because Ug, Uh P I´ Ď D´ “ kerpT˚ ` iq for g, h P
I` Ď D` “ kerpT˚ ´ iq and thus

xT˚pg ` Ugq, h` Uhy “ xT˚g, hy ` xT˚g, Uhy ` xT˚Ug, hy ` xT˚Ug, Uhy

“ ixg, hy ` ixg, Uhy ´ ixUg, hy ´ ixUg, Uhy

“ ixg, Uhy ´ ixUg, hy.

And similary one shows xg ` Ug, T˚ph` Uhqy “ ixg, Uhy ´ ixUg, hy.

Furthermore, T˚|F is closed: For gn P I` with pgn`Ugnq‘ pign´ i U gnq Ñ f ‘h,
we have that 2ign “ ipgn ` Ugnq ` pign ´ i U gnq Ñ if ` h and 2i U gn “ ipgn `
Ugnq´pign´i U gnq Ñ if´h hold. Thus, Upi f`hq “ i f´h and for g :“ 1

2i pif`hq
we have that f “ g ` Ug and h “ i g ´ i U g hold.

Obviously, the two assignments U Ø graphU |iniU “ F are inverse to each other.

By 9.30 we obtain the desired bijection with

dom T̃ :“ domT ‘ F “ domT ‘ graphU |iniU

“ th‘ k ‘ Upkq : h P domT, k P iniUu

T̃ :“ T˚|dom T̃ “ ph‘ k ‘ Uk ÞÑ Th` i k ´ i Ukq.
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We finally show d`pT̃ q ` dim I` “ d`pT q: Let f P domT and g P I`. Then

pT̃ ` iqpf ` g ` Ugq “ pT ` iqf ` ig ´ i U g ` ig ` i U g “ pT ` iqf ` 2ig.

So we have the orthogonal decomposition imgpT̃ ` iq “ imgpT ` iq ‘ I` and thus

imgpT ` iqK “ imgpT̃ ` iqK ‘ I`. So d`pT q “ dimpimgpT ` iqKq “ dimpimgpT̃ `

iqKq`dimpI`q “ d`pT̃ q`dim I`. Similarly one shows d´pT̃ q “ d´pT q´dim I´.

9.32 Theorem.

Let T : H ù H be a closed symmetric operator with deficiency indices d˘ ă 8.
Then:

1. T is a maximal symmetric operator if and only if d` “ 0 or d´ “ 0.

2. T is self-adjoint if and only if d` “ 0 “ d´.

3. T has a self adjoint extension if and only if d` “ d´. In this case, the self
adjoint extensions are in bijective correspondance with the isometries from
D` onto D´.

Proof. ( 1 ) is a direct corollary to 9.31 , because only the trivial partial isometry
U “ 0 exists, provided D` or D´ is equal to t0u.

( 2 ) is a reformulation of 9.25 .

( 3 ) If T has a self adjoint extension T̃ , then d˘pT̃ q “ d˘pT q ´ dimpI˘q, where
U : I` Ñ I´ is the associated bijective isometry. So dimpI`q “ dimpI´q as well

as d`pT̃ q “ d´pT̃ q by ( 2 ), and thus d`pT q “ d´pT q. Conversely, it follows from
d` “ d´ that a bijective isometry U : D` Ñ U´ exists, and the associated extension
T̃ thus satisfies d`pT̃ q “ d`pT q ´ dimpI`q “ d´pT q ´ dimpI´q “ d´pT̃ q, i.e. is self

adjoint by ( 2 ).

9.33 Example.

Let T0 : f ÞÑ if 1 be the symmetric operator from Example 9.5 . In order to
determine all closed symmetric extensions of T0 we have to specify D` and D´.
We have f P D˘ if and only if f P domT˚0 and ˘if “ T˚0 f “ if 1. So D˘ “ tx ÞÑ
αe˘x : α P Cu and d˘ “ 1. All partial isometries U ‰ 0 from D` to D´ are of form
Uλpx ÞÑ exqpxq “ λe´x with |λ| “ 1. Let

Dλ :“
!

x ÞÑ fpxq ` αex ` λαe´x : α P C, f P domT0

)

Tλ

´

x ÞÑ fpxq ` αex ` λαe´x
¯

pxq :“ if 1pxq ` αiex ´ i λαe´x,

for f P domT1 and α P C. By 9.31 these are all true symmetric closed (self adjoint)
extensions of T0. In particular, the domain

D1 “
 

f ` 2α cosh : f P domT0, α P C
(

“

!

g P L2 : g is absolutely continuous, g1 P L2, gp´1q “ gp1q
)

T1pgq “ T̃1pf ` 2α, coshq “ i f 1 ` i α 2 sinh “ i g1,

is exactly the self adjoint extension of T0 in Example 9.5 .

Let T be a linear differential operator with real coefficients functions. Then domT
is invariant under conjugation and Tf “ Tf . We now want to show that symmetric
operators with such a property possess self adjoint extensions.

9.34 Corollary.
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Let T : H ù H be a symmetric operator and J : H Ñ H a conjugated linear
bounded operator (such as the conjugation for example) with J2 “ 1 and T ˝ J Ď
J ˝ T . Then T has a self adjoint extension.

Proof. From TJ Ď JT follows JT “ JTJ2 Ď J2TJ “ TJ and thus TJ “ JT .
Consequently, domT “ dompJ ˝ T q “ dompT ˝ Jq “ J´1pdomT q “ JpDomTq.
Since J is not linear, we need to define the adjoint J˚: For h P H, the map-
ping f ÞÑ xh, Jfy is a bounded linear functional, so a unique J˚h P H exists
with xh, Jfy “ xf, J˚hy. Obviously, J˚ is additive and conjugated linear since
xf, J˚pλhqy “ xλh, Jfy “ λxh, Jfy “ λxf, J˚hy “ xf, λJ˚hy. Because of J2 “ 1
also pJ˚q2 “ 1.

We next claim that J˚T˚ “ T˚J˚.
Let h˚ P domT˚ and h P domT . Then xTJh, h˚y “ xJh, T˚h˚y “ xJ˚T˚h˚, hy
and thus xTJh, h˚y “ xJTh, h˚y “ xJ˚h˚, Thy. Consequently, xJ˚T˚h˚, hy “
xJ˚h˚, Thy, i.e. J˚h˚ P domT˚ and T˚J˚h˚ “ J˚T˚h˚, and thus T˚J˚ Ď J˚T˚.
Because of pJ˚q2 “ 1, equality follows as before.

Let now h˚ P kerpT˚ ˘ iq. Then T˚J˚h˚ “ J˚T˚h˚ “ J˚p¯i h˚q “ ˘iJ˚h˚. So
J˚pkerpT˚˘ iqq Ď kerpT˚¯ iq. Because of pJ˚q2 “ 1, the other inclusion also holds,
so the two deficiency-spaces are via J˚ isomorphic as real lcs’s and thus also as
complex Hilbert spaces (Choose orthonormal basis and extend the bijection to a

linear isometry) and thus T has a self adjoint extension by 9.31 , cf. 9.32 .

Cayley Transformation

For the Möbius transformation µ : z ÞÑ z´i
z`i we have: 0 ÞÑ ´1, 1 ÞÑ ´i, 8 ÞÑ 1,

i ÞÑ 0. Since Möbius transformations map straight lines to straight lines or circles,
µ maps RYt8u to BD and thus the upper half-plane to the unit disk D. The inverse
mapping is given by w ÞÑ i 1`w

1´w , because z´i
z`i “ w implies zp1 ´ wq “ i p1 ` wq.

Since the spectrum of self adjoint operators is included in R and that of unitary
operator in µpRq “ BD, this µ should yield a correspondance between these classes
of operators. In fact, we have

9.35 Theorem (Cayley Transformation).

The closed symmetric operators T : H ù H are in bijective correspondance to the
partial isometries U , for which p1´ Uq iniU lies dense, i.e.
!

T : H ù H, closed, symm.
)

–

!

U P LpHq : U part. iso., p1´ Uq iniU dense
)

,

with respect to the relations:

U “ pT ´ iq pT ` iq´1

T “ i p1` Uq p1´ Uq´1

D`pT q “ iniUK

D´pT q “ finUK.

This assignment is called the Cayley transformation, and the U belonging to
T is called the Cayley transform of T .

Proof.

pÑq Let T be a closed symmetric operator. By 9.22.3 , imgpT ˘ iq is closed, so

DK˘ “ imgpT ˘ iq. By 9.22.2 , kerpT ` iq “ t0u, so pT ` iq´1 is well-defined on DK`
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and pT ` iq´1DK` “ domT “ dompT ´ iq and thus the described U is a well-defined
operator.

domT
xx

T`i

xxxx

&&
T´i

&& &&
DK` imgpT ` iq //

U

–
// //

1
2i p1´Uq

88

imgpT ´ iq DK´

If h P DK`, then h “ pT ` iqf with a unique f P domT . So }Uh}2 “ }pT ´ iqf}2 “

}Tf}2 ` }f}2 “ }pT ` iqf}2 “ }h}2 by 9.22.1 . Hence U can be uniquely extended

to a partial isometry with iniU :“ pkerUqK “ DK` and finU :“ imgU “ DK´.

We have pT ` iq´1 “ 1
2i p1´Uq : DK` Ñ domT , because p1´Uqh “ h´ pT ´ iqf “

pT ` iqf ´ pT ´ iqf “ 2if for f P domT and h “ pT ` iqf .
Consequently, p1´ Uq iniU “ domT and thus is dense.

Furthermore, p1 ` UqpT ` iq “ 2T , because p1 ` UqpT ` iqf “ pT ` iqf ` Uh “
pT`iqf`pT´iqf “ 2Tf , and consequently ip1`Uqp1´Uq´1 “ ip1`Uq 1

2i pT`iq “
1
2 2T “ T .

pÐq Let now U be a partial isometry as stated. Then kerp1 ´ Uq “ t0u, because
Uf “ f is valid for f P kerp1 ´ Uq and thus }f} “ }Uf}, i.e. f P iniU . Since

U˚U is the orthogonal projection on iniU (see 7.24 ), f “ U˚Uf “ U˚f , so

f P kerp1´U˚q “ imgp1´UqK “ t0u, i.e. f “ 0, because imgp1´Uq Ě p1´Uq iniU
is dense.

Let D :“ p1 ´ Uq iniU . Then p1 ´ Uq´1 : D Ñ iniU is well-defined. So T :“
ip1` Uqp1´ Uq´1 is a well-defined operator with domain D.

iniUww
1´U

wwww

ip1`Uq

&& &&
D “ p1´ Uq iniU

T // // p1` Uq iniU

Again p1 ´ Uq´1 “ 1
2i pT ` iq : D Ñ iniU , because for h P iniU and f “ p1 ´ Uqh

we have pT ` iqf “ Tf ` if “ ip1` Uqh` ip1´ Uqh “ 2ih.
Consequently, iniU “ imgpT ` iq “ D`pT q

K.

Furthermore, pT ´ iqp1 ´ Uq “ 2iU , since pT ´ iqp1 ´ Uqh “ ip1 ` Uqh ´ ip1 ´
Uqh “ 2iU , and thus pT ´ iqpT ` iq´1 “ pT ´ iq 1

2i p1 ´ Uq “ 1
2i2iU “ U and

finU “ imgpT ´ iq “ D´pT q
K.

We have that T is closed: Let fn P p1 ´ Uq iniU with fn Ñ f and Tfn Ñ g
and let hn P iniU be so that p1 ´ Uqhn “ fn. Then Tfn “ ip1 ` Uqhn and
thus 2 i hn “ ip1 ´ Uqhn ` ip1 ` Uqhn “ ifn ` Tfn Ñ if ` g “: 2ih P iniU .
So fn “ p1 ´ Uqhn Ñ p1 ´ Uqh and Tfn “ ip1 ` Uqhn Ñ ip1 ` Uqh, and thus
g “ ip1` Uqh “ T p1´ Uqh “ Tf .
Furthermore, T is symmetrical: For f, g P D, let f “ p1 ´ Uqh and g “ p1 ´ Uqk
with h, k P iniU . Then

xTf, gy “ ixp1` Uqh, p1´ Uqky “ ipxh, ky ` xUh, ky ´ xh, Uky ´ xUh,Ukyq.

Since h, k P iniU , we have xUh,Uky “ xh, ky, so xTf, gy “ ipxUh, ky´ xh, Ukyq and
analogously one shows xf, Tgy “ ´ixp1´Uqh, p1`Uqky “ ´ipxh, Uky´xUh, kyq “
xTf, gy.

9.36 Corollary.
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The self adjoint operators are, via the Cayley transformation, in bijective corre-
spondance to the unitary operators, for which 1 is not an eigenvalue.

Proof. A symmetric closed operator is self adjoint by 9.32 if and only if t0u “ D˘,

i.e. by 9.35 , if and only if for the associated partial isometry I˘ “ H holds, i.e. it is

unitary. Finally, we have seen in the proof of 9.35 that the denseness of imgp1´Uq
implies the equation kerp1´Uq “ t0u – i.e. 1 is not an eigenvalue of U . Conversely,
1 is not an eigenvalue of U and f K imgp1´Uq, i.e. f P imgp1´UqK “ kerp1´U˚q.
So U˚f “ f and thus Uf “ UU˚f “ f , i.e. f P kerp1´Uq “ t0u, so imgp1´Uq “
p1´ UqpiniUq is dense.

One can use the Cayley transformation to deduce from the spectral decomposi-
tion for bounded unitary operators also one for unbounded self adjoint operators.
However, in the next section we will develop more generally the spectral theory of
normal unbounded operators.

Unbounded normal operators

9.37 Definition .

A linear operator T : H ù H is called normal if it is densly defined, closed
and satisfies T˚ T “ T T˚. Obviously, any self adjoint operator is normal. The

multiplication operator T in example 9.4 is normal, but note that domT˚T Ă

domT holds.

9.38 Lemma .

For densely defined closed T , the following holds:

1. The graph of T |dompT˚T q is dense in the graph of T .

2. T˚T is self adjoint (and, in particular, densely defined).

3. 1` T˚T is bounded invertible, and for the inverse 0 ď p1` T˚T q´1 ď 1.

4. The operator T p1` T˚T q´1 is a global contraction.

Proof. ( 3 ) 1 ` T˚T is surjective: Let J : H ‘H Ñ H ‘H be again defined by

Jph, kq “ p´k, hq. By 9.7 we have H ‘ H “ J graphT ` graphT˚. For h P H,
therefore, f P domT and g P domT˚ exist with p0, hq “ Jpf, Tfq ` pg, T˚gq “
p´Tf, fq` pg, T˚gq, i.e. 0 “ ´Tf ` g and h “ f `T˚g “ f `T˚Tf “ p1`T˚T qf .
So imgp1` T˚T q “ H.
1` T˚T is injective: For f P domT˚T we have Tf P domT˚ and }f ` T˚Tf}2 “
}f}2 ` 2}Tf}2 ` }T˚Tf}2 ě }f}2. Hence kerp1` T˚T q “ t0u.
We have 0 ď S :“ p1`T˚T q´1 ď 1: From }p1`T˚T qf} ě }f} for all f P domT˚T
we deduce the inequality }Sh} ď }h} for h “ p1`T˚T qf and S :“ p1`T˚T q´1, i.e.
}S} ď 1. Furthermore, xSh, hy “ xf, p1` T˚T qfy “ }f}2 ` }Tf}2 ě 0, i.e. S ě 0.

( 1 ) Since T is closed, it suffices to show that for no vector g ‰ 0 the vector
pg, Tgq P graphT is orthogonal to tph, Thq : h P domT˚T u. Let h P domT˚T .
Then

0 “ xpg, Tgq, ph, Thqy “ xg, hy ` xTg, Thy “ xg, hy ` xg, T˚Thy “ xg, p1` T˚T qhy.

So g K imgp1` T˚T q “
( 3 )
““““ H and thus g “ 0.

( 2 ) It follows from ( 1 ) that domT˚T is dense in domT and hence in H. Let
f, g P domT˚T , i.e. f, g P domT and Tf, Tg P domT˚. Consequently, xT˚Tf, gy “
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xTf, Tgy “ xf, T˚Tgy holds. So T˚T is symmetrical. Furthermore, 1 ` T˚T has

a bounded inverse by ( 3 ), so ´1 R σpT˚T q and 1 ` T˚T is closed by 9.13 and

therefore also T˚T . Because of 9.26 , T˚T is self adjoint.

( 4 ) We put R :“ T p1`T˚T q´1 “ TS : H Ñ dompT˚T q Ď domT Ñ H. If h “ p1`

T˚T qf with f P domT˚T Ď domT , then }Rh}2 “ }Tf}2 ď }p1` T˚T qf}2 “ }h}2

by the proof of ( 3 ). So }R} ď 1.

9.39 Corollary.

For each normal operator T : H ù H we have domT “ domT˚ and }Th} “
}T˚h} for all h P domT . Normal operators do not have non-trivial normal exten-
sions.

Proof. If h P domT˚T “ domTT˚, then Th P domT˚ and T˚h P domT . So
}Th}2 “ xT˚Th, hy “ xTT˚h, hy “ }T˚h}2.

If f P domT , it follows from 9.38.1 that a sequence hn P domT˚T exists with
phn, Thnq Ñ pf, Tfq, so }Thn´Tf} Ñ 0. By the first part }T˚hn´T

˚hm} “ }Thn´
Thm} holds and thus there is an g P H with T˚hn Ñ g. So phn, T

˚hnq Ñ pf, gq

holds. Because T˚ is closed by 9.8.1 , f P domT˚ and g “ T˚f . So domT Ď

domT˚ and }Tf} “ limn }Thn} “ limn }T
˚hn} “ }g} “ }T

˚f}.

By 9.9 , T˚˚ “ T and, by 9.8.1 and 9.8.2 , also T˚ is normal, i.e. by the previous
part domT˚ Ď dompT˚q˚ “ domT Ď domT˚, i.e. domT “ domT˚.

Let now T̃ Ě T be a normal extension. Then T̃˚ Ď T˚ and hence domT Ď dom T̃ “
dom T̃˚ Ď domT˚ “ domT . So T “ T̃ .

9.40 Remark.

Let S, S1, S2 : H1 ù H2 and T, T1, T2 : H2 ù H3, then

T1 ˝ S ` T2 ˝ S “ pT1 ` T2q ˝ S;

T ˝ S1 ` T ˝ S2 Ď T ˝ pS1 ` S2q;

T ˝ S1 ` T ˝ S2 “ T ˝ pS1 ` S2q if T is globally defined.

The first row follows from

domppT1 ` T2q ˝ Sq “ S´1pdompT1 ` T2qq “ S´1pdompT1q X dompT2qq

“ S´1pdompT1qq X S
´1pdompT2qq

“ dompT1 ˝ Sq X dompT2 ˝ Sq “ dompT1 ˝ S ` T2 ˝ Sq.

The second row follows from

dompT ˝ S1 ` T ˝ S2q “ dompT ˝ S1q X dompT ˝ S2q

“ S´1
1 pdomT q X S´1

2 pdomT q

Ď pS1 ` S2q
´1pdomT q “ dompT ˝ pS1 ` S2qq.

If T is globally defined then equality holds, because then S´1pdomT q “ domS
for S P tS1, S2, S1 ` S2u. Otherwise, the inclusion might be strict, as the example
S1 “ id “ ´S2 shows, because then T ˝ pS1 ` S2q “ 0 is globally defined and
dompT ˝ S1 ` T ˝ S2q “ dompT ˝ S1q X dompT ˝ S2q “ domT .

9.41 Lemma .
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Let Hn be Hilbert spaces and Tn P LpHnq. Let H :“
À

nHn and
À

n Tn : H ù H
be defined on D :“ tphnq P

À

nHn :
ř

n }Tnhn}
2 ă 8u by phnqn ÞÑ pTnhnqn.

Then
À

n Tn is a closed densely defined operator. Its adjoint is p
À

n Tnq
˚ “

À

n T
˚
n

and
À

n Tn is normal if and only if all Tn are so.

For any second sequence of operators Sn P LpHnq we have: p
À

n Tnq ˝ p
À

n Snq Ď
À

npTn ˝ Snq. If additionally p}Sn}qn is bounded, then equality holds.

Proof. Obviously, D is a linear subspace and T :“
À

n Tn is linear on D. Since
Hn Ď D for all n, D is dense in H.

Claim: T is closed.
Let hpjq be a sequence in domT with phpjq, Thpjqq Ñ ph, gq in H ‘ H. Then for

the components we have ph
pjq
n , Tnh

pjq
n q Ñ phn, gnq. Since Tn is bounded, we have

Tnhn “ gn and thus
ř

n }Tnhn}
2 “

ř

n }gn}
2 “ }g}2 ă 8, i.e. h P domT , and

obviously Th “ g, so T is closed.

Claim: T˚ppknqnq “ pT
˚
n knqn for pknqn P domT˚ “ tpknq :

ř

n }T
˚
n kn}

2 ă 8u.
(Ě) We have k P domT˚ if and only if

h ÞÑ xh, T˚ky :“ xTh, ky “
ÿ

n

xTnhn, kny “
ÿ

n

xhn, T
˚
n kny

is a bounded linear functional on domT . Because of the Cauchy-Schwarz inequality
this is the case for k with

ř

n }T
˚
n kn}

2 ă 8. That T˚k is given for such k by
T˚k “ pT˚n knqn is obvious.
(Ď) For k P domT˚ there is an C ą 0 with |xTh, ky| ď C }h} and thus, with

hn :“ T˚n kn for each finite partial sum
ř

}T˚n kn}
2 “

ř

xhn, T
˚
n kny ď C

a

ř

}hn}2 “

C
a

ř

}T˚n kn}
2, we have

ř

}T˚n kn}
2 ď C2. Hence

ř8

n“1 }T
˚
n kn}

2 ď C2.

Now let Sn P LpHnq be a second sequence of operators, and let T :“
À

n Tn and
S :“

À

n Sn. For

h P dompT ˝ Sq “

$

&

%

h “ phnqn :

ř

n }hn}
2 ă 8,

ř

n }Snhn}
2 ă 8,

ř

n }TnpSnhnq}
2 ă 8

,

.

-

obviously h P domp
À

npTn ˝ Snqq and we have
´

à

n

pTn ˝ Snq
¯

phq “
´

pTn ˝ Snqphnq
¯

n
“

´

à

n

Tn

¯´

Snphnq
¯

n

“

´

à

n

Tn

¯

ˆ

´

à

n

Sn

¯

h

˙

“

ˆ

´

à

n

Tn

¯

˝

´

à

n

Sn

¯

˙

h,

i.e. p
À

n Tnq ˝ p
À

n Snq Ď
À

npTn ˝ Snq.

If }Sn} is bounded, then because of the Cauchy-Schwarz inequality, the domain of
S “

À

n Sn is all of H and }S} “ supn }Sn}. For h “ phnqn P dom p
À

npTn ˝ Snqq,
ř

n }hn}
2 ă 8 implies the estimate

ř

n }Snhn}
2 ď }S}2

ř

n }hn}
2 ă 8, so h P

dompT ˝ Sq and hence we have equality.

If
À

n Tn is normal, obviously also the restrictions Tn are normal.

Conversely, by 9.39 ,

dompT˚ ˝ T q “ th P domT : Th P domT˚u

“

$

&

%

h “ phnqn :

ř

n }hn}
2 ă 8,

ř

n }T
˚
n hn}

2 “
ř

n }Tnhn}
2 ă 8,

ř

n }TnT
˚
n hn}

2 “
ř

n }T
˚
n Tnhn}

2 ă 8

,

.

-

“ th P domT˚ : T˚h P domT u

“ dompT ˝ T˚q,
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and both T˚ ˝ T and T ˝ T˚ are restrictions of
À

T˚n ˝ Tn “
À

Tn ˝ T
˚
n . So T is

normal.

9.42 Theorem .

Let P : BpXq Ñ LpHq be a spectral measure as in 8.7 . For a measurable function

f : X Ñ C, consider a partition of X in measurable sets ∆n on which f is bounded
(e.g., ∆n :“ tx P X : n ´ 1 ď |fpxq| ă nu). We also use Hn :“ P p∆nqH and let
Pn : Bp∆nq Ñ LpHnq be the spectral measure Pnp∆q :“ P p∆q|Hn .

Then H “
À8

n“1Hn and with respect to this decomposition
ż

X

f dP :“
8
à

n“1

ż

∆n

f |∆n
dPn,

is the normal operator
ż

X

f dP : h “ phnqn ÞÑ
8
à

n“1

´

ż

∆n

f dPn

¯

hn

with domain of definition

Df :“
!

h P H :
8
ÿ

n“1

›

›

›

´

ż

∆n

f dPn

¯

hn

›

›

›

2

ă 8

)

“

!

h :

ż

X

|f |2 dPh,h ă 8
)

and for h P Df and k P H we have f P L1p|Ph,k|q with
ż

X

|f | d|Ph,k| ď
´

ż

X

|f |2 dPh,h

¯1{2

}k} and
A´

ż

X

f dP
¯

h, k
E

“

ż

X

f dPh,k.

In particular, the operator
ş

X
f dP and its domain do not depend on the selection

of the ∆n.

Proof. Since P pΛq ˝ P p∆nq “ P pΛ X ∆nq “ P p∆nq ˝ P pΛq, we have that Hn :“
P p∆nqH is an P pΛq-invariant subspace, and thus Pn is a well-defined spectral
measure for Hn. Because of 1 “ P pXq “ P p

Ů

n ∆nq “
ř

n P p∆nq, we have H “
À

nHn and the orthogonal projection onto Hn is given by h ÞÑ hn :“ P p∆nqh.

Since f |∆n
is bounded,

ş

∆n
f dPn is a well-defined bounded normal operator on

Hn by 8.12 . Thus, by 9.41 ,
ş

X
f dP :“

À

n

ş

∆n
f dPn is a normal unbounded

operator with domain Df .

Next we show the claimed equation for Df :

According to the spectral theory 8.12 for bounded operators we have:
›

›

›

´

ż

f∆n dPn

¯

hn

›

›

›

2

“

A´

ż

∆n

f dPn

¯˚´
ż

∆n

f dPn

¯

hn, hn

E

“

A´

ż

∆n

f f dPn

¯

hn, hn

E

“

A´

ż

∆n

|f |2 dPn

¯

hn, hn

E

“

ż

∆n

|f |2 dpPnqhn,hn “

ż

∆n

|f |2 dPh,h,

since for Λ Ď ∆n we have:

Ph,hpΛq “ xP pΛqh, hy

“ xP p∆n X ΛX∆nqh, hy “ xP p∆nqP pΛqP p∆nqh, hy

“ xP pΛqP p∆nqh, P p∆nqhy “ xP pΛqhn, hny

“ xPnpΛqhn, hny “ pPnqhn,hnpΛq.
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From this follows the asserted equation on Df . And thus the domain of
ş

X
f dP is

independent of the choice of the partition into sets ∆n.

Let now h P Df and k P H. According to the Radon-Nikodym Theorem 8.33 ,
there is a measurable function u with |u| “ 1 and |Ph,k| “ uPh,k, where |Ph,k| is
the variation of Ph,k. Let fďn :“ f |Ů

kďn ∆k
“

řn
k“1 χ∆k

f . We have both fďn and
u fďn bounded and therefore:

ż

|fďn| d|Ph,k| “

ż

|fďn|u dPh,k “
A´

ż

|fďn|u dP
¯

h, k
E

ď

›

›

›

´

ż

|fďn|u dP
¯

h
›

›

›
¨ }k}.

and further
›

›

›

´

ż

|fďn|u dP
¯

h
›

›

›

2

“

A´

ż

|fďn|u dP
¯

h,
´

ż

|fďn|u dP
¯

h
E

“

A´

ż

|fďn|
2 dP

¯

h, h
E

“

ż

|fďn|
2 dPh,h ď

ż

|f |2 dPh,h.

So
ş

|fďn| d|Ph,k| ď
´

ş

|f |2 dPh,h

¯1{2

}k} for all n. Since |fďn| monotonously con-

verges pointwise towards |f |, it follows by means of the theorem of Beppo Levi on
monotone convergence that f P L1p|Ph,k|q and the desired inequality

ż

|f | d|Ph,k| ď
´

ż

X

|f |2 dPh,h

¯1{2

}k}.

Since fďn is bounded, also
A´

ż

fďn dP
¯

h, k
E

“

ż

fďn dPh,k

holds by 8.12.1 . If h P Df and k P H, it follows by the theorem on dominated
convergence that

ż

fďn dPh,k Ñ

ż

f dPh,k for nÑ8.

On the other hand:
´

ż

fďn dP
¯

h “

˜

à

jďn

ż

∆j

f |∆j dPj

¸

p. . . , hn, 0, . . .q

“

´

ż

f dP
¯

P
´

n
ď

j“1

∆j

¯

h “
9.41
“““““ P

´

n
ď

j“1

∆j

¯´

ż

f dP
¯

h,

and since P
´

Ťn
j“1 ∆j

¯

Ñ P pXq “ 1 in the SOT, finally follows

A´

ż

fďn dP
¯

h, k
E

Ñ

A´

ż

f dP
¯

h, k
E

.

So
A´

ż

X

f dP
¯

h, k
E

“

ż

X

f dPh,k.

This also shows that the operator
ş

X
f dP is independent on the selection of the

partition in sets ∆n.

9.43 Proposition .

Let P : BpXq Ñ LpHq be a spectral measure. For each measurable function f :
X Ñ C a linear operator ρpfq : H ù H is defined by ρpfq :“

ş

X
f dP . Then for

measurable functions f, g : X Ñ C holds:
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1. ρpfq˚ “ ρpfq.

2. ρpf gq Ě ρpfq ρpgq and dompρpfq ρpgqq “ Dg XDf g.

3. If g is bounded, so is ρpfq ρpgq “ ρpf gq.

4. ρpfq˚ ρpfq “ ρp|f |2q.

Proof. For given measurable functions f, g : X Ñ C we choose a partition of X into
measurable sets ∆n and define a spectral measure Pn on ∆n for Hn :“ P p∆nqH as

in 9.42 . Let ρn be the associated C˚-representation of the bounded functions on

∆n on Hn. Then ρphq :“
À

n ρnphq for h P tf, f , g, f ¨gu. For the C˚-representation

ρn of course ( 1 ) - ( 4 ) holds with equality everywhere. Using 9.41 we now obtain:

( 1 ) because

ρpfq˚ “
´

à

n

ρnpfq
¯˚

“
à

n

ρnpfq
˚ “

à

n

ρnpfq “ ρpfq.

( 2 ) The inclusion is valid because

ρpfq ˝ ρpgq “
´

à

n

ρnpfq
¯

˝

´

à

n

ρnpgq
¯

Ď
à

n

pρnpfq ˝ ρnpgqq “
à

n

pρnpf gqq

“ ρpf gq.

Furthermore, h P dompρpfq ˝ ρpgqq holds exactly when h P dompρpgqq “: Dg and
ρpgqh P dompρpfqq “: Df . The latter means that 8 ą

ř

n }ρnpfqpρnpgqhq}
2 “

ř

n }ρnpf gqh}
2, i.e. h P Df g.

( 3 ) If g is bounded, then Dg “ H and thus dompρpfqρpgqq “ H X dompρpfgqq “
dompρpfgqq.

Note that under this assumption, ρpg fq “ ρpgq ρpfq does not hold, in contrast to
what is stated in [5, X.4.10]. Namely, let e.g. g “ 0, then g f “ 0 and Dg f “ H
but dompρpgq ρpfqq “ Df XDgf “ dompρpfqq Ă H.

( 4 ) By ( 1 ) and ( 2 ), we have ρpfq˚˝ρpfq “ ρpfq˝ρpfq Ď ρp|f |2q and dompρpfq˚˝

ρpfqq “ dompρpfq ˝ ρpfqq “ Df X D|f |2 . So it only remains to show D|f |2 Ď Df .

Let h “ phnqn P D|f |2 , i.e.
ř

n }ρnp|f |
2qhn}

2 ă 8. Two-fold application of Cauchy-
Schwarz’s inequality shows

ÿ

}ρnpfqhn}
2 “

ÿ

xρnpfq
˚ρnpfqhn, hny ď

ÿ

}ρnpfq
˚ρnpfqhn} }hn}

ď

´

ÿ

}ρnp|f |
2qhn}

2
¯1{2

}h} ă 8,

i.e. h P Df .

9.44 Theorem .

Let N : H ù H be a normal operator on H.
Then there is a unique spectral measure P defined on the Borel sets of C, s.t.

1. N “
ş

C z dP pzq.

2. P pΛq “ 0 if ΛX σpNq “ H.

3. If U Ď C is open and U X σpNq ‰ H then P pUq ‰ 0.

4. If A P LpHq with AN Ď NA and AN˚ Ď N˚A,

then A
´

ş

C f dP
¯

Ď

´

ş

C f dP
¯

A for all Borel functions f on C.
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The Fugledge-Putnam theorem is also valid for unbounded normal operators, and

thus the hypothesis AN˚ Ď N˚A in ( 4 ) can be dropped.

About the idea of the proof : If N :“
ş

z dP pzq, we could split C into annuli ∆n.

Then Hn :“ P p∆nqH would be invariant subspaces with H “
À

nHn and we could
compare N with the unbounded sum

À

nN |Hn .

Conversely, we should therefore find a decomposition H “
À

nHn into tN,N˚u-
invariant subspaces Hn so that Nn :“ N |Hn is a bounded normal operator. By the
spectral theorem for bounded operators the spectral measures Pn with Nn “

ş

z dPn
exist. We want to sum this up to get a spectral measure P for N .
The function f : z ÞÑ 1

1`|z|2 “ p1 ` zzq´1 maps C to the interval p0, 1s. The

annuli correspond to subintervals. So in order to find the spaces Hn without using
the not yet available spectral measure P of N , we consider the contraction S :“

p1`N˚Nq´1 ě 0 from 9.38 and the images of its spectral projectors (which would

be P ˝ f´1 by 8.59 for bounded N) on subintervals of p0, 1s Ă r0, 1s Ě σpSq.

Sublemma .

Let N : H ù H be normal, S :“ p1 ` N˚Nq´1 and S “
ş1

0
t dP ptq the spectral

representation.
Then S N Ď N S and S N S “ N S S.
If ∆ is a Borel subset in rδ, 1s with 0 ă δ ă 1, then H∆ :“ P p∆qH is an tS,N,N˚u-
invariant subset of domN , furthermore S|H∆

is invertible and N |H∆
is a bounded

normal operator with }N |H∆} ď

b

1
δ ´ 1.

Proof. By 9.38.3 and 9.38.4 , S and N S are global contractions.

S N Ď N S:
Let f P domSN . Then g :“ Sf P imgS “ domN˚N Ď domN , i.e. f “ p1`N˚Nqg
and thus N˚Ng “ f ´ g P domSN ´ domN˚N Ď domN . Hence Ng P domNN˚

and consequently Nf “ Np1 `N˚Nqg “ Ng `NN˚Ng “ p1 `NN˚qNg “ p1 `
N˚NqNg, due to the normality ofN . Finally SNf “ Sp1`N˚NqNg “ Ng “ NSf ,
i.e. S N Ď N S.

Also S N S Ď N S S follows and, since domNS “ H by 9.38.4 and thus also
domSNS “ H, thus S N S “ N S S.

Let now ∆ Ď rδ, 1s be a Borel set.

Claim: S : H∆ Ñ H∆ is an isomorphism.

Since S commutes with its spectral projectors
P p∆q, we have the nearby commutative diagram.
Consequently, S|H∆ has dense image in H∆ since
SpH∆q “ SpP p∆qHq “ P p∆qpSHq is dense in
P p∆qH “ H∆ because SH “ domN˚N is dense

in H by 9.38.2 .

H // S // //

P p∆q
����

domN˚N �
� // H

P p∆q
����

H∆
//

S|H∆ //
� _

��

H∆� _

��
H // S // H

For h P H∆, we have h “ P p∆qh and hence

}Sh}2 “ xS2P p∆qh, hy “
A´

ż 1

0

t2 χ∆ dP
¯

h, h
E

“

ż

∆

t2 dPh,h

ě δ2Ph,hp∆q “ δ2xP p∆qh, hy “ δ2 }h}2.

So S|H∆
has closed image in H∆ and since this is dense, S|H∆

is an isomorphism.

We have H∆ Ď domN , because H∆ “ SpH∆q Ď imgS “ dompN˚Nq Ď domN .
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Claim: H∆ is N -invariant.
Let h P H∆ and g P H∆ with h “ S g. Let R :“ N S P LpHq. Then S R “

S N S “ N S S “ RS by the above and thus P p∆qR “ RP p∆q by 8.15 , so H∆

is R-invariant. Consequently, N h “ N S g “ Rg P H∆.

Claim: H∆ is N˚-invariant.
If N1 :“ N˚ and S1 :“ p1`N˚1 N1q

´1 “ p1`NN˚q´1 “ p1`N˚Nq´1 “ S. From
the previous claim follows that N˚H∆ “ N1H∆ Ď H∆.

It follows that the restriction N |H∆ is also normal.

Finally let h P H∆. Then, similar we obtain

}Nh}2 “ xN˚Nh, hy “ xpS´1 ´ 1qh, hy “

ż 1

δ

p 1
t ´ 1q dPh,hptq ď }h}

2 p 1
δ ´ 1q.

So }N |H∆
} ď

b

1
δ ´ 1.

Proof of 9.44 . As in the sublemma, let S :“ p1 ` N˚Nq´1 and R :“ NS.

Furthermore, S “
ş1

0
t dP ptq is the spectral representation, and let Pn :“ P p 1

n`1 ,
1
n s

and Hn :“ PnH for n ě 1. So 1 “ P pσpSqq “ P pt0uq`
ř8

n“1 Pn. Since kerS “ t0u,

λ “ 0 is not an eigenvalue of S and thus P pt0uq “ 0 by 8.17 , hence 1 “
ř8

n“1 Pn
and thus H “

À

nHn. By the sublemma, Hn is an tN,N˚u-invariant subspace of
domN and Nn :“ N |Hn is a bounded normal operator with }Nn} ď

?
n.

So if λ P σpNnq, then

1

1` |λ|2
P σpp1`N˚nNnq

´1q “ σpS|Hnq “ σppS ˝ Pnq|Hnq

“ σ

˜

´

ż

t ¨ χp 1
n`1 ,

1
n s
ptq dP ptq

¯

ˇ

ˇ

ˇ

ˇ

Hn

¸

Ď σ
´

ż

t χp 1
n`1 ,

1
n s
ptq dP ptq

¯

“ ess-imageptt χp 1
n`1 ,

1
n s
ptq : t P σpSquq by 8.60

Ď tt χp 1
n`1 ,

1
n s
ptq : t P p0, 1squ Ď t0u Y r 1

n`1 ,
1
n s,

i.e. σpNnq Ď tλ P C : 1
n`1 ď

1
1`|λ|2 ď

1
nu “ tλ P C :

?
n ě |λ| ě

?
n´ 1u “: ∆n.

Now let Pn : Bp∆nq Ñ LpHnq be the spectral measure of Nn and let P be defined
on each Borel set Λ Ď C by

P pΛq :“
8
à

n“1

PnpΛX∆nq.

In order to show that P is a spectral measure, we first note that clearly P pXq “ 1.
We have that PnpΛX∆nq is an orthogonal projection with image in Hn and thus
P pΛq is an orthogonal projection in LpHq. Since the Hn are pairwise orthogonal,
we have for Borel sets Λi:

P pΛ1qP pΛ2q “

´ 8
à

n“1

PnpΛ1 X∆nq

¯´ 8
à

n“1

PnpΛ2 X∆nq

¯

“

8
à

n“1

PnpΛ1 X∆nqPnpΛ2 X∆nq “

8
à

n“1

PnpΛ1 X Λ2 X∆nq

“ P pΛ1 X Λ2q.
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For h P H we obtain P pΛqh “
`

PnpΛX∆nqhn
˘

n
. If Λn are pairwise disjoint Borel

sets, then
ř

j P pΛjq converges pointwise to 8.4 , and thus:

A

P
´

8
ğ

j“1

Λj

¯

h, h
E

“

8
ÿ

n“1

A

Pn

´

8
ğ

j“1

Λj X∆n

¯

hn, hn

E

“

8
ÿ

n“1

A

8
ÿ

j“1

PnpΛj X∆nqhn, hn

E

“

8
ÿ

n“1

8
ÿ

j“1

xPnpΛj X∆nqhn, hny
loooooooooooomoooooooooooon

ě0

“

8
ÿ

j“1

8
ÿ

n“1

xPnpΛj X∆nqhn, hny

“

8
ÿ

j“1

xP pΛjqh, hy “
A

8
ÿ

j“1

P pΛjqh, h
E

.

Hence, P is σ-additive.

( 1 ) For h “ phnqn P domp
À

nNnq, we have
`

ph1, . . . , hn, 0, . . .q, pN1h1, . . . , Nnhn, 0, . . .q
˘

P

graphN (because of Nn :“ N |Hn) and this expression converges to
`

h, p
À

nNnqh
˘

.
Since N is closed, h P domN and Nh “ p

À

nNnqh. However, since both N and
À

nNn are normal, N “
À

nNn “
À

n

ş

z dPnpzq “:
ş

z dP pzq by 9.39 .

Claim: σpNq “
Ť8

n“1 σpNnq.

Obviously, σpNq Ě
Ť8

n“1 σpNnq and, since σpNq is closed, this shows (Ě). Converse-

ly, let λ R
Ť8

n“1 σpNnq. Then there is a δ ą 0 with |λ´z| ě δ for all z P
Ť8

n“1 σpNnq.
So pNn ´ λq

´1 and }pNn ´ λq
´1} “ }z ÞÑ pz ´ λq´1}8 ď

1
δ exists for each n. Con-

sequently,
À8

n“1pNn ´ λq´1 is a bounded operator and equal to pN ´ λq´1, i.e.
λ R σpNq.

( 2 ) The following holds: ΛXσpNq “ H ñ @n : ΛXσpNnq “ H ñ @n : PnpΛq “ 0
ñ P pΛq “ 0.

( 3 ) If U is open and UXσpNq ‰ H, then the above claim implies that UXσpNnq ‰

H for an n. Since then PnpUq ‰ 0 by 8.15 , we also have P pUq ‰ 0.

( 4 ) Now let A P LpHq with AN Ď NA and AN˚ Ď N˚A. Then Ap1`N˚Nq Ď p1`

N˚NqA by 9.40 . So SA Ď AS, and since both sides are globally defined, SA “ AS

holds. Thus, according to 8.15 , A commutes with the spectral projections of S and,
in particular, Hn is invariant with respect to A. Thus, An :“ A|Hn P LpHnq and
AnNn “ NnAn. So An fpNnq “ fpNnqAn holds for any bounded Borel function f .

By 9.41 , A
`ş

X
f dP

˘

“ p
À

nAnq ˝ p
À

n fpNnqq Ď
À

pAn ˝ fpNnqq “
À

pfpNnq ˝

Anq “ p
À

n fpNnqq˝p
À

nAnq “
`ş

X
f dP

˘

A now follows, since
À

nAn is a bounded
operator.

9.45 Theorem .

Let N : H ù H be a normal operator on a separable Hilbert space H. Then there
is a σ-finite measure space pX,Ω, µq and a Ω-measurable function f : X Ñ C, so
that N is unitary equivalent to Mf on L2pµq.

Proof. We decompose N into the unbounded sum of bounded normal operators

Nn as in the proof of 9.44 . According to theorem 8.35 , there are σ-finite measure
spaces pXn,Ωn, µnq and bounded Ωn-measurable function fn, so that Nn is unitary-
equivalent to Mfn . Let X be the disjoint union of Xn and Ω :“ t∆ Ď X : ∆XXn P

Ωn for all nu. If ∆ P Ω then let µp∆q :“
ř8

n“1 µnp∆XXnq. Furthermore, f : X Ñ C
is defined by f |Xn :“ fn. Then f is Ω-measurable and N “

À

nNn „
À

nMfn “

Mf on L2pX,Ω, µq.
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9.46 Example.

We now want to find a unitary operator U , which transforms the impulse operator
P : f ÞÑ i f 1 into a multiplication operator. For this purpose we recall the Fourier
transform F : S Ñ S from chapter [18, 8]. It was defined by

Ffpyq :“

ż

R
fpxq e´ixy dx

and satisfied the Parseval equation

xFf,Fgy “ 1

2π
xf, gy.

To make it truly unitary, we modify it with a factor 1?
2π

, i.e. redefine

Ffpyq :“
1
?

2π

ż

R
fpxq e´ixy dx.

Since F : S Ñ S is a surjective isometry with inverse F´1f “ SpFfq (where S
denotes the reflection) and S is dense in L2, it can be extended to a unique unitary
operator F : L2 Ñ L2.

For f P S, as we have seen in [18, 8.1.5], we have:

pP ˝ Fqfpyq “ i
d

dy

1
?

2π

ż

R
fpxq e´ixy dx “

1
?

2π

ż

R
fpxq p´i2qx e´ixy dx

“ pF ˝Qqfpyq,

where Q denotes the location operator. So we have P |S “ F ˝Q|S ˝F´1, and since

P is the closure of P |C8c by 9.6 and thus also of P |S , and analogously Q is that

of Q|S by 9.4 , we have P “ P |S “ F ˝Q|S ˝ F´1 “ F ˝Q|S ˝F´1 “ F ˝Q ˝F´1.
In fact, it is sufficient to show that Q is the closure of Q|S , because obviously P

contains the closure of P |S , i.e. the self adjoint operator P |S “ F ˝Q|S ˝ F´1 “

F ˝Q|S ˝F´1 “ F ˝Q˝F´1. Since self adjoint operators are maximally symmetric,
this has to be P .

Because F´1 “ S˝F , we have conversely Q “ F´1˝P ˝F “ S˝F ˝P ˝S´1˝F´1 “

´F ˝ S ˝ S´1 ˝ P ˝ F´1 “ ´F ˝ P ˝ F´1, since

pS ˝ Fqfpyq “ 1
?

2π

ż

R
fpxq e´ixp´yq dx “

1
?

2π

ż `8

´8

fpxq e´ip´xqy dx

“ ´
1
?

2π

ż ´8

`8

fp´xq e´ixy dx “
1
?

2π

ż

R
Sfpxq e´ixy dx “ pF ˝ Sqfpyq

and

pS ˝ P qfpyq “ P pfqp´yq “ i f 1p´yq “ ´i
d

dy
pf 1p´yqq “ ´pP ˝ Sqfpyq.

1-parameter groups and infinitesimal generators

Motivation.

In classical mechanics, the equation of motion is given by Newton’s law

F pxq “ m ¨ :x (Force = mass ˆ acceleration) .
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With the Ansatz q :“ x and p :“ m 9x (impulse = mass ˆ velocity), this ordinary
2-nd order differential equation is converted into the following first order differential
equation:

9q “
1

m
p

9p “ F pqq

If the field of force is a gradient field, i.e. F “ ´GradU , and the energy E (=Hamil-

ton function H) is defined as sum of the kinetic energy m} 9x}2

2 “
}p}2

2m and the
potential energy Upqq, one obtains

Epq, pq :“
|p|2

2m
` Upqq

and BE
Bq “ GradU “ ´F and BE

Bp “
1
mp. So the energy is a motion invariant,

i.e. d
dtEpp, qq “

BE
Bp 9p` BE

Bq 9q “ p
m F pqq ´F pqq pm “ 0, and the equation of motion is

equivalent to

9q “
BE

Bp

9p “ ´
BE

Bq
.

If we translate this into quantum mechanics, p becomes the differential operator P “
}
i
d
dx : f ÞÑ f 1 and q the multiplication operator Q “ x with the identity. The energy

function then becomes the Schrödinger operator: S :“ ´ }2

2m

`

d
dx

˘2
` Upxq, or

in several variables

S “ ´
}2

2m
∆` Upxq.

The corresponding equation of motion is the Schrödinger equation

i}
d

dt
u “ S u.

Of quite similar form is the heat conduction equation

d

dt
u “ ∆u.

The wave equation d2u
dt2 “ ∆u can also be transformed into the form

d

dt

ˆ

u
v

˙

“

ˆ

0 1
∆ 0

˙

¨

ˆ

u
v

˙

by means of the Ansatz v “ d
dtu.

So we have to solve equations of the form 9u “ Au, a linear first order ordinary
differential equation. For bounded operators on Banach spaces the solution to [18,
3.5.1] is given by uptq “ up0q et A. The operators occurring in the above situations,
however, are partial differential operators of second order, i.e. not continuous op-
erators on Banach spaces. For Fréchet spaces like C8pR,Rq, however, the series

et A “
ř

n
tn

n!A
n does not have to converge. So we should take A as linear (un-

bounded) operators on L2, and define et A for them.

Note that the Laplace operator is self adjoint. According to a result of [15], the

Schrödinger operator S “ ´ }2

2m∆ ` Upxq is essentially self adjoint under suitable
growth conditions on the potential U , see also [37, 253].
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Let t ÞÑ uxptq be the solution curve for the initial value up0q “ x of an ordinary
differential equation 9u “ Apuq. Then the mapping U : pt, xq ÞÑ uxptq obviously has
the following properties where it is defined :

Up0, xq “ x

Upt` s, xq “ Upt, Ups, xqq.

It is also called the flow of the differential equation. If A is linear, then clearly

x ÞÑ Upt, xq is also linear, and thus
_

U : R Ñ LpHq is a curve with
_

Up0q “ 1 and
_

Upt ` sq “
_

Uptq ˝
_

Upsq. So we have a group homomorphism
_

U : R Ñ LpHq. And

for all x P H, d
dt

_

Uptqpxq “ B
Btuxptq “ Apuxptqq “ pA ˝

_

Uptqqpxq holds. In particular,

the pointwise derivative of the curve
_

U at 0 is precisely A. We now want to transfer
this correspondance between operators and 1-parameter subgroups to unbounded
self adjoint operators.

9.47 Stone’s Theorem

Let S : H ù H be self adjoint and S “
ş`8

´8
t dP ptq its spectral representa-

tion. Since for t P R the mapping s ÞÑ eits is bounded on R, Uptq :“ eitS :“
ş`8

´8
eits dP psq P LpHq exists. Furthermore, Uptq˚ “ e´itS and thus Uptq ˝ Uptq˚ “

eitS ˝ e´itS “ e0 “ 1 and Uptq˚ ˝ Uptq “ e´itS ˝ eitS “ 1, i.e. Uptq is unitary.

Because of ez ¨ ew “ ez`w we have Uptq ˝ Upsq “ Upt` sq. Furthermore U is SOT-
continuous, because }Uptqh ´ Upsqh} “ }Upt ´ s ` sqh ´ Upsqh} “ }Upsq pUpt ´
sqh ´ hq} “ }Upt ´ sqh ´ h}. So it suffice to show that }Uptqh ´ h}2 “

ş

R |e
i t s ´

1|2 dPh,hpsq Ñ 0 for t Ñ 0. We have that Ph,h is a finite measure on R, and for
every s P R |ei t s ´ 1|2 Ñ 0 holds for tÑ 0 and |ei t s ´ 1|2 ď 4. So the theorem on
dominated convergence implies that UptqhÑ h for tÑ 0.

Theorem.

We have a bijection
!

S : H ù H, self adjoint
)

–

!

U : RÑ LpHq, unitary representation
)

via

Uptq :“

ż `8

´8

e´it dP ptq for S “

ż `8

´8

t dP ptq

i S :“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Uptqh for h P domS :“
!

h : D
d

dt
|t“0Uptqh

)

.

Proof. We have just shown that U is a unitary representation.
We have 1

t pUptq ´ 1q ´ i S “ ftpSq, where ftpsq :“ 1
t pe

i t s ´ 1q ´ i s. So
›

›

›

›

1

t
pUptqh´ hq ´ i S h

›

›

›

›

2

“ }ftpSqh}
2 “

ż

R

ˇ

ˇ

ˇ

ˇ

ei t s ´ 1

t
´ i s

ˇ

ˇ

ˇ

ˇ

2

dPh,hpsq.

for h P domS. For tÑ 0, we have 1
t pe

i t s´ 1q´ i sÑ 0 for all s P R because by the

Mean Value Theorem |ei s ´ 1| ď |s|. Thus |ftpsq| ď
1
t |e

i t s ´ 1| ` |s| ď 2|s|. Since

id P L2pPh,hq by 9.42 , we obtain limtÑ0
1
t pUptq ´ 1qh “ i S h by the theorem of

dominant convergence.

Let D :“
!

h P H : d
dt |t“0Uptqh existiert in H

)

. For h P D, S̃h is defined by

S̃h :“ ´i ddt |t“0Uptqh.
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One sees immediately that S̃ is a linear operator. According to the above, S̃ is an
extension of S and thus also S̃ is densely defined. For h, g P D we have:

xS̃h, gy “ ´i lim
tÑ0

AUptqh´ h

t
, g
E

“ lim
tÑ0

A

h,´i
Up´tqg ´ g

´t

E

“ xh, S̃gy,

because Uptq˚ “ Uptq´1 “ Up´tq. So S̃ is a symmetric extension of S and, since by

9.29 the self adjoint operator S is maximally symmetric, S̃ “ S and D “ domS
holds.

Let conversely U : R Ñ UpHq be a unitary representation, D :“ th P H :
D ddt |t“0Uptqhu and Sh :“ ´i ddt |t“0Uptqh for h P D.

Claim: D is dense in H.
In order to see this we define operators Rn by

Rnh :“

ż 8

0

e´t Up tn qh dt.

Since }Uptqh} “ }h} and pt ÞÑ e´tq P L1pR`q, this integral is well-defined and

}Rnh} ď
ş8

0
e´t }h} dt “ ´e´t }h} |8t“0 “ }h} holds. Obviously, Rn : H Ñ H is a

bounded linear operator with }Rn} ď 1.
We now want to show that the image of Rn is completely contained in D. Let
h P H, then

´
i

t
pUptq ´ 1qRnh “ ´

i

t

ż 8

0

e´s Upt` s
n qh ds`

i

t

ż 8

0

e´s Up sn qh ds

“ ´
i

t

ż 8

nt

e´pr´ntq Up rn qh dr `
i

t

ż 8

0

e´s Up sn qh ds

“ ´in
ent ´ 1

nt

ż 8

0

e´s Up sn qh ds` in
1

nt

ż nt

0

e´r`nt Up rn qh dr

“ ´i n
ent ´ 1

nt
Rnh` i n e

nt 1
nt

ż nt

0

e´r Up rn qh dr.

For tÑ 0 we have

ent ´ 1

nt
Ñ 1, ent Ñ 1 and

1

nt

ż nt

0

e´r Up rn qh dr Ñ e0 Up0qh “ h.

So Rnh P D and S Rn h “ ´i n pRn ´ 1qh.

For the denseness of D, it suffices to show that RnhÑ h for arbitrary nÑ8 and
h P H. We have

Rnh´ h “

ż 8

0

e´t Up tn qh dt´

ż 8

0

e´t h dt

“

ż 8

0

e´t pUp tn qh´ hq dt.

For ε ą 0, let δ ą 0 is be choosen so that }Uptqh´ h} ă ε for all |t| ď δ. Then

}Rnh´ h} ď

ż 8

0

e´t }Up tn qh´ h} dt

ď

ż nδ

0

e´t ε dt`

ż 8

nδ

e´t p}Up tn qh} ` }h}q dt

ď ε`

ż 8

nδ

e´s 2 ds

ď 2ε,

if n “ npε, δq was choosen so large that
ş8

nδ
e´s ds ď ε

2 .
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Claim: S is symmetric because

0 “ ´i ddt |t“0xh, ky

“ ´i ddt |t“0xUptqh, Uptqky

“ x´i ddt |t“0Uptqh, Up0qky ´ xUp0qh,´i
d
dt |t“0Uptqky

“ xSh, ky ´ xh, Sky.

for h, k P D

By 9.19 , S is closeable and we denote the closure of S again with S. By 9.25 ,
we only have to show for self-adjointness that kerpS˚ ˘ iq “ t0u, or, equivalently,
that imgpS ˘ iq is dense. For this we calculate

pS ` iq ˝ p´i R1q “ i2pR1 ´ 1q ´ i2R1 “ 1,

hence S ` i is surjective.

If we define analogously to Rn an operator Tn by Tnh :“
ş8

0
e´t Up´ t

n qh dt, and
show S ˝ Tn “ i n pTn ´ 1qh, we obtain

pS ´ iq ˝ pi T1q “ i2pT1 ´ 1q ´ i2T1 “ 1,

hence S ´ i is also surjective.

Let h P D. Then Upt`sqh´Uptqh
s “ UptqUpsq´1

s h and since d
ds |s“0Upsqh “ limsÑ0

Upsq´1
s h

exists, this also holds for

d

dt
Uptqh “ lim

sÑ0

Upt` sqh´ Uptqh

s

“ lim
sÑ0

Uptq
Upsq ´ 1

s
h “ Uptq lim

sÑ0

Upsq ´ 1

s
h

“ Uptqpi S hq.

On the other hand, Upt`sqh´Uptqhs “
Upsq´1

s Uptqh, thus Uptqh P D and

d

dt
Uptqh “ lim

sÑ0

Upt` sqh´ Uptqh

s
“ lim
sÑ0

Upsq ´ 1

s
Uptqh “ i S Uptqh.

The previous calculation showed that for h P D “ domS “ dompUptqSq the
equation UptqS h “ i ddtUptqh “ S Uptqh holds, i.e. UptqS Ď S Uptq. This follows

also directly from 9.43 .

Let V ptq :“ exppi S tq. We have to show U “ V . Let h P D. By the above we have
V ptqh P D and

d

dt
V ptqh “ i S V ptqh.

Similarly:
d

dt
Uptqh “ i S Uptqh.

Therefore, t ÞÑ hptq :“ Uptqh´ V ptqh is differentiable and

h1ptq “ i S Uptqh´ i S V ptqh “ i S hptq.

We have
d
dt}hptq}

2 “ d
dtxhptq, hptqy

“ x ddthptq, hptqy ` xhptq,
d
dthptqy

“ xi S h, hy ` xh, i S hy

“ ixSh, hy ´ ixh, Shy “ 0.

Thus, h is constant, and thus hptq “ hp0q “ 0 for all t, i.e. Uptqh “ V ptqh for all
h P D and all t P R. Since D is dense, U “ V .
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9.48 Proposition.

The infinitesimal generator is bounded if and only if limtÑ0 }Uptq ´ 1} “ 0, i.e. U
is norm continuous.

Proof. (ñ) This holds since }Uptq´1} “ } exp i t T´1} “ }
ş

σpT q
peits´1q dP psq} “

}s ÞÑ eits´1}8 “ supt|ei t s´1| : s P σpT qu Ñ 0 for tÑ 0 because σpT q is bounded.

pðq Suppose }Uptq ´ 1} Ñ 0 for t Ñ 0. Let 0 ă ε ă π
4 . Then there is a t0 ą 0

with }Uptq ´ 1} ă ε for |t| ď t0. Because Uptq ´ 1 “
ş

σpT q
pei t s ´ 1q dP psq, we

have supt|ei t s ´ 1| : s P σpT qu “ }Uptq ´ 1} ă ε for these t. For δ depending on
ε, therefore t s P

Ť

nPZ s2πn´ δ, 2πn` δr “: G for all s P σpT q and |t| ď t0. Since
these intervals are disjoint components of G and the interval tts : 0 ď t ď t0u
is contained in G for s P σpT q, we have |t s| ă δ for all |t| ď t0. In particular,
t0 σpT q Ď r´δ, δs. And thus σpT q is bounded and hence T is bounded, because
T “

ş

σpT q
z dP pzq P LpHq, since pz ÞÑ zq is bounded on σpT q.

9.49 Theorem.

Let H be separable and U : RÑ LpHq be a unitary representation. If for all h, k P H
the mapping t ÞÑ xUptqh, ky is Lebesgue-measurable, then U is SOT-continuous.

Proof. Let 0 ă a ă 8 and h, g P H. Then t ÞÑ xUptqh, gy is a bounded measurable
function on r0, as, so

ż a

0

|xUptqh, gy| dt ď a }h} }g}.

Therefore, h ÞÑ
şa

0
xUptqh, gy dt is a bounded linear functional on H. So there is a

ga P H with xh, gay “
şa

0
xUptqh, gy dt for all h P H and }ga} ď a }g}.

We now claim that the linear span of tga : g P H, a ą 0u is dense in H.
In fact, if h P H is assumed to be orthogonal to all ga, then 0 “ xh, gay “
şa

0
xUptqh, gy dt for all a ą 0 and g P H. So xUp qh, gy “ 0 is almost everywhere on R.

Since H is separable, there exists a subset ∆ Ă R of measure 0, s.t. xUptqh, gy “ 0
for all t R ∆ and g in a fixed countable dense subset of H. So }h} “ }Uptqh} “ 0
for t R ∆.

For s P R, now the following holds:

xh, Upsqgay “ xUp´sqh, gay

“

ż a

0

xUptqUp´sqh, gy dt

“

ż a

0

xUpt´ sqh, gy dt

“

ż a´s

´s

xUptqh, gy dt

Ñ

ż a

0

xUptqh, gy dt “ xh, gay

So xh, Upsqgay Ñ xh, gay for sÑ 0. Because tga : a ą 0, g P Hu is dense and because
of the uniform boundedness, U : RÑ BpHq is continuous at 0 with respect to the
WOT. Because of the group property, U is continuous with respect to the WOT
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everywhere. So U is also SOT-continuous. We have:

}Uptqh´ h}2 “ xpUptq ´ 1qh, pUptq ´ 1qhy

“ xpUptq ´ 1q˚pUptq ´ 1qh, hy

“ xpUp´tq ´ 1qpUptq ´ 1qh, hy

“ xpUp0q ´ Up´tq ´ Uptq ` 1qh, hy

“ ´xUptqh´ h, hy ´ xUp´tqh´ h, hy

Ñ 0` 0 “ 0.

Since self adjoint operators on separable Hilbert spaces can be represented as mul-
tiplication operators, one only needs to determine the 1-parameter subgroups of
these operators:

9.50 Proposition.

Let pX,Ω, µq be a σ-finite measure space and f a real-valued Ω-measurable function
on X. Let S :“Mf on L2pµq. Then exppi t Sq “Met , where etpxq :“ exppi t fpxqq.

Proof. We have domMf “ th P L2 : f h P L2u. So we just have to show that
d
dt |t“0e

itfh “ ifh for all h P domMf . Pointwise, we have obviously

d

dt
|t“0e

itfpxqhpxq “ ifpxqe0hpxq “ ifpxqhpxq.

To apply the theorem on dominated convergence, we need an upper bound for

| e
itfpxq

´1
t hpxq´ ifpxqhpxq|2 which we obtain as in the proof of 9.47 with s “ fpxq:

ˇ

ˇ

ˇ

eitfpxq ´ 1

t
hpxq ´ ifpxqhpxq

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

eits ´ 1

t
hpxq ´ ishpxq

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

´eits ´ 1

t
hpxq ´ is

¯

hpxq
ˇ

ˇ

ˇ

2

“ |ftpsqhpxq|
2

ď |2 s hpxq|2 “ 4|fpxqhpxq|2,

and since f h P L2 the proof is complete.

9.51 Theorem.

Let P : f ÞÑ if 1 be defined on

D :“
!

f P L2pRq : f is locally absolutely continuous and f 1 P L2pRq
)

.

Then P is self adjoint and the associated 1-parameter subgroup U is given by Uptqf :
x ÞÑ fpx´ tq.

Proof. We have seen, that the Fourier transform F : L2 Ñ L2 is a unitary operator

which transforms P to Q, i.e. P “ FQF´1. By 9.50 , the unitary 1-parameter

group UQ, associated to Q by UQptq, is the multiplication with x ÞÑ eitx. The
unitary 1-parameter group UP for P is thus given by UP ptq “ FUQptqF´1. We saw
in [18, 8.1.5] that the following holds for g P S

FpUQptqgqpyq “
1
?

2π

ż

R
eitx gpxq e´ixy dx

“
1
?

2π

ż

R
gpxq e´ixpy´tq dx

“ Fpgqpy ´ tq
“ pTtFgqpyq,
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where Tt denotes the translation operator. Consequently, we have

UP ptqpfq “ pFUQptqF´1qf “ FpUQptqpF´1fqq “ TtpFF´1fq “ Ttf.
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absolutely continuous measures, 184
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absolutely convex hull, 15
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adjoint operator, 203

adjoint operator f˚, 26
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bounded variation, 7

Calkin algebra, 137

Cauchy integral formula, 75
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Cauchy-Riemann differential equations, 101

Cayley transform of an operator, 223

Cayley transformation, 223

centralizer, 114
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characters, 160, 161

closeable operator, 203

closed p-ball around 0 with radius c, 9

closed 1-form, 100

closed operator, 203

closed subset of a topological space, 24

closure of an operator, 203

commutant, 114

compatible with dual pairing, 78

complete lcs, 22

completing web, 64

completion of a lcs, 47

complexification of a vector space, 50

composition, 203

cone in a vector space, 131

continuous mapping, 13

convergent sequence, 16

convex function, 5

convex hull, 15

convex set, 9

coproduct of lcs’s, 42

countably seminormed space, 14

cycle, 106

cyclic operator, 183

cyclic representation, 138

cyclic vector, 138, 183

deficiency indices, 219

deficiency-subspaces, 219

degenerated representation, 156

dimensions, 219

direct sum of lcs’s, 42

directed set, 17

distribution, 45

distributions, 47

domain, 202
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dual pairing, 78

eigenspaces, 91

eigenvalue, 91

elementary function, 54

elementary functions, 54

equivalent representation, 138

essentially self adjoint operator, 215

exact 1-form, 100

extension, 203

extremal points, 85

extremal subset, 85

faithful representation, 142

final space of a partial isometry, 133

final structure, 35

flow of an ODE, 236

Fréchet space, 23

Fredholm operators, 137

function(al) calculus, 128

Galois connection, 136

Gelfand transformation, 120

generalized sequence, 17

germ of a function, 76

graph of a mapping, 63

graph of an operator, 203

Haar measure, 150

half-space, 72

Hamel basis, 217

Heisenberg uncertainity principle, 202

Hermitian element, 124

holes of a subset, 115

holomorphic function, 101

holomorphic germ, 112

homologous, 106

homotopic curves, 100

ideal in an algebra, 117

idempotent, 143

inaccessible cardinal number, 31

infra-barreled lcs, 83

initial space of a partial isometry, 133

initial structure, 27

integrability condition, 100

invariant subset of a representation, 138

involution, 123

irreducible representation, 138

Jordan system, 107

Kelley space, 26

kinetic energy, 235

lcs . . . locally convex space, 18

left-regular representations, 148, 150

left-translation, 147

line integral, 100

linear operator, 202

Lipschitz mapping, 21

locally compact groups, 150

locally compact topological space, 39

locally convex vector space, 13

Mackey 0-sequence, 20

Mackey topology, 80

Mackey-convergent sequence, 20
meager subsets, 56

measurable cardinal number, 31

measurable function, 54
measure, 54

measure space, 54

Minkowski functional, 10
monotone functional on C˚-algebra, 139

Moore-Smith sequence, 17
motion invariant, 235

neighborhood of a point, 13

neighborhood(sub)basis, 13
net, 17

Newton’s law, 234

non-degenerated representation, 157
non-trivial Ulam measure, 30

norm, 6
norm topology, 168

normable lcs, 18

normal element, 124
normal operator, 225

normed algebra, 22

normed space, 6
nowhere dense, 56

open p-ball around 0 with radius c, 9
open in a normed space, 12

open sets of a topology, 12

open with respect to a family of seminorms,
12

operator norm, 21

orbit, 138
orthogonal sum of representations, 138

outer derivative, 100

partial isometry, 133

Plank quantum, 202

polar of a subset, 78
polynomial convex subset, 115

position operator, 202

positive element, 130
positive functional, 139

positively homogeneous, 6

potential energy, 235
precompact subset, 39

product of lcs’s, 30

projection, 143

Quantum Mechanics, 202
quasi-barreled lcs, 83
quasi-complete lcs, 84
quotient space, 36

Radon-Nikodym derivative, 184

real-compact topological space, 34, 119

rectifiable curves, 100
reflexive lcs, 84

regular Borel measure, 74
representation of C˚-lagebra, 138
representations of a Banach algebra, 148

resolvent function, 99
resolvent set, 99
reverse triangle inequality, 9
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Riemann-Stieltjes integrable, 73

Riemann-Stieltjes integral, 100

Riemann-Stieltjes sum, 73

scalar-valued spectral measure, 191

scalarly bounded subset, 61

Schrödinger equation, 235

Schrödinger operator, 235

self adjoint element, 124

self adjoint operator, 215

seminorm, 6

seminormed space, 14

seminorms of the so obtained seminormed

space, 14

semireflexive lcs, 84

semisimple Banach algebra, 120

separated locally convexspace, 17

separating vector, 191

sequentially closed subset of a topological

space, 24

sequentially complete lcs, 22

similar operators, 186

singular measures, 198

space of all bounded linear functionals, 26

spectral decomposition, 175

spectral measure, 166

spectral radius, 110

spectral value of an operator, 92

spectrum of a Banach algebra, 119

spectrum of a lement in a Banach algebra,

99

spectrum of an operator, 92

state, 139

steps of the inductive limit, 46

Stone-Čech compactification, 122

strict inductive limit of lcs’s, 46

strong operator topology (SOT), 168

sub-basis of the seminormed space, 14

subadditivity, 5

subbasis of a topology, 12

sublinear function, 5

subspace of all continuous linear functionals,

26

support of a measure, 176

supremum norm, 6

symmetric operator, 214

symmetry, 6

topological space, 12

topological vector space, 13

topology, 12

topology generated by seminorms, 12

total differential of a function, 100

total variation, 100

translation invariant metric, 5

true ideal, 117

Ulam measure, 30

ultra-bornological lcs, 83

ultrafilter, 31

uniform convergence, 79

unimodular group, 153

unitary element, 124

unitary equivalent operators, 183

unitary representation of a group, 151

unitary representations of a group, 148

variation norm, 7
vector space dimension, 217

von Neumann algebra, 189

weak operator topology (WOT), 168

weak topology, 78

webbed lcs, 64
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