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Teil 1

Locally Convex Spaces
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1. Seminorms

In this chapter we will introduce the adequate notion of distance on vector spaces
and discuss its elementary properties.

1.1 Basics

1.1.1 Motivation and definitions.

All vector spaces we are going to consider will have as BASE FIELD K either R or

C.

Distance functions d on vector spaces E should additionally be TRANSLATION
INVARIANT, ie. d(z,y) = d(a + z,a + y) is fulfilled for all z,y,a € E. Then
d(z,y) = d(0,y — z) =: p(y — x) (if we choose a := —x),s0d: Ex E —> R is
already determined by the mapping p: £ — R.

The triangle inequality d(z, z) < d(x,y) + d(y, z) for d translates into the
SUBADDITIVITY:  p(x +¥y) < p(z) + p(y).
Regarding the scalar multiplication we should probably require d(Az, Ay) = Ad(z,y)
for A > 0, i.e.
RT-HOMOGENEITY: p(Ax) = Ap(z) forall \e RT := {teR:¢ >0} and x € E.

Note that this has p(0) = p(2-0) = 2p(0) and hence p(0) = 0 as consequence, so
also the homogeneity p(0x) = p(0) = 0 = 0p(z) for A := 0 holds. However, we can
not expect the homogeneity for all A\ € K, because then p would be linear: In fact,

p(@) +p(y) = plx +y) = p(—((—2) + (—y))) = —p((—z) + (~y))
> —(p(—z) + p(~y)) = p(z) + p(y).

A function p : E — R is called SUBLINEAR if it is subadditive and R*-homogeneous.
Note that this is the case if and only if

p(0) =0 and p(z + X\ -y) < p(z) + Ap(y) Yo,y € E YA > 0.
Related to subadditivity is convexity: A function p: E — R is called CONVEX (see
20, 4.1.16]) if
p(Az+ (1 =N y) <Ap(@)+ (1-A)p(y) foral0< A< landallz,y€E,
so the function lies below each of its chords. By induction this is equivalent to
p(z Ai xz) < 2 Aip(x;) for all n e N, x; € E and A; > 0 with Z A= 1.
i=1 i=1 i=1

For twice-differentiable functions f : R — R one shows in analysis (see [20, 4.1.17])
that these are convex if and only if f” > 0 holds:
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1.1 Basics 1.2.1

(«<) From f” = 0 follows the Mean Value Theorem that f’ is monotonously in-
creasing, because W = f"(&) = 0 for some £ between xg and x1. So let
2o < 21,0 < A < 1land z = g + A(x; — x0). Again by the Mean Value The-
orem, & € [xg,x] and & € [x,x1] exist with f(x) — f(xo) = f'(&) (x — x0) and
f(@1) = f(x) = /(&) (21 — 2), s0

Af(z1) + (1= A) fzo) — flz) =

=1 =X (f(zo) = f(2)) + A (f(z1) = f(2))
=(1-=X\)f( )($0—$)+/\f(§1)($1—33)
= (1=X) f'(&) (=A(x1 —z0)) + X f'(€&1) (1 = X) (21 — 20))

=212 (F(&) - F(80)) (@1~ 20) 2 0,

i.e. f is convex.

(=) Let f be convex. Then for zo <z < z1 with A := =20 resp. A := 2=t
fl@) ~ flao) _ f(e1) —~ flao) _ f(1) — f(a)
r—x9 = Ti—-xo . x—-xz

Thus f'(zg) < % < f'(x1), i.e. f’ is increasing monotonously. Thus, we

have f”(IO) = hmm\.xo F@1)=f(z0) = 0.

Tr1—xo
In the definition of “sublinearly” we may replace “subadditive” equivalently by
“convex”:

(<) We put A := 3 and get

plr+y)=2p (T) <2 (;p(x) + ;p(y)> = p(z) + p(y).
(=) Then
p(Mc +(1=A) y) <p(Az) +p((1=A)y) = Ap(x) + (1 =) p(y)-

The symmetry d(z,y) = d(y,z) of d translates into the SYMMETRY: p(x) = p(—x)
for all x € E. Together with the R*-homogeneity, this is therefore equivalent to the
following homogeneity: p(Az) = |A| p(x) for x € E and X € R.

A function p : E — R is called SEMINORM (for short SN) if it is subadditive and
POSITIVELY HOMOGENEOUS, i.e. p(Az) = |A\| p(z) holds for z € E and A € K.

A seminorm is therefore a sublinear mapping which fullfills additionally p(Az) =
p(z) for all z € E and |A| = 1. Note that multiplication with a complex number of
absolute value 1 is usually interpreted as a rotation.

Every seminorm p fulfills p > 0, because 0 = p(0) < p(z) + p(—=x) = 2p(x).

A seminorm p is called NORM if additionally p(z) = 0 = z = 0 holds. A NORMED
SPACE is a vector space together with a norm, cf. [22, 5.4.2].

1.2 Important norms

1.2.1 Definition. co-norm.
The SUPREMUM or co-norm is defined by
| flloo := sup{|f(z)] : x € X},

where f: X — K is a bounded function on a set X, cf. [20, 2.2.5].
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1.2 IMPORTANT NORMS 1.2.4

The distance d, which we looked at in application [18, 1.3] on the vector space
C(I,R), was just given by d(uy,us) := ||u; — ua|«w, see also [20, 4.2.8]

1.2.2 Examples.
The following vector spaces are normed spaces with respect to the co-norm:

1. For each set X the space B(X) of all bounded functions X — K;

2. For each compact space X the space C'(X) of all continuous functions X —
K;

3. For each topological space X the space C(X) of all bounded continuous
functions X — K;

4. For each locally compact space X the space Cy(X) of all continuous functions
X — K vanishing at oo, i.e. those functions f : X — K for which there is a
compact set K € X for each € > 0, s.t. |f(x)| < e for all x ¢ K;

5. If you use (roughly speeking) the maximum of the co-norms of the deriva-
tives, then for each compact manifold M also the space C™ (M) of the n-times
continuously differentiable functions M — K becomes a normed space;

On the other hand, we can not use reasonable norms on any of the following spaces:

6. C(X) for general non-(pseudo-)compact X,
The space C* (M) of the smooth functions for manifolds M,
C™(M) for non compact manifolds M,

© »© 3

The space H(G) of holomorphic (i.e., complex differentiable) functions for
domains G < C.

1.2.3 The variation norm.

Let f: I — K be a function and Z = {0 = 2y < -+ < z,, = 1} a partition of
I =[0,1]. Then one denotes the variation of f on Z by

V(f.2) = 3 (@) = flwia)l,
i=1
cf. [22, 6.5.11]. The (total) VARIATION of a function is
V(1) = s V(/, 2).

With BV (I) we denote the space of all functions with BOUNDED VARIATION, i.e.
those functions f for which V(f) < oo holds. It is easy to verify that BV () is a
vector space, and V' is a seminorm on BV (I) which vanishes exactly on the constant
functions.

1.2.4 Definition. p norm.
For 1 < p < o0, the p-NORM is defined by

1= ([ |f<x>ﬂdx)’l’ |

where |f|P : X — K is an integrable function. For p = 2 this is a continuous
analogue of the Euclidean norm

|zlle :=

for x € R™ or € C™ (here the absolute value in |z;|? is necessary).
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1.2 IMPORTANT NORMS 1.2.7

The formula (f|g) := { f(z) g() dx generalizes the inner product {.|.) on K".

Clearly || fgl1 < ||flleo - |g]1 holds. In order to use the inner product for measureing
angles, the inequality of Cauchy-Schwarz |fgl1 < | f]2 - |g]2 is necessary, see [18,
6.2.1]. A common generalization is the

1.2.5 Hoélder inequality.

1 1 )
(KAl < Mgl < 1flp - lgly for -+ o =T with 1 <p,g <o

See [23, 5.30). 1 1
resp. flfgl < (ffl”)p <J Iglq>q

Proof. Let first | f|, =1 = |g|;- Then |f(z) g(x )| < If(x)‘ + ‘g(l)l , because log is
concave (i.e. — log is convex, because log” (z) = — = < O) and thus log(al/P-bl/q) =
%logaJr%logb < 10g(%a b) for a := |f(z)? andb lg(z)]9, i.e. av-bi < %a—l—%b.
By integration we get

||f||p lgld 1 1

HMM—ju Pl Dl

Let a := | f], and 8 := |g]4 be arbltrary (unequal to 0). Then we can apply the
first part on fj := éf and gg := %g and get

1
ab If 9l = [fogolh < T=[f gl < [flp- lglq-

The remaining inequality [(f[g)| = | f gl < §|f[1g] = [f gl is obvious.

1.2.6 Minkowski inequality.

If +glp < |flp +lglp, i-e |-Ip is a seminorm
See [20, 2.2.4], [21, 2.72], [23, 5.37).
Proof. With % + % = 1 we have

W+g%=fﬁ+g?<fmU#gW*+va+m“1

<[ flp I + 9P Mg + gl - [(F +9)" g (Holder Inequality)
[

(§1F+gl®—Day1/a
P

= (IFl» + Hng) |Lf gl since g = o1

1F +alp=1f +alp" " < £l + lgly. O

1.2.7 Examples.

1. The space C(I) of all continuous functions is a normed space with respect
to the p-norm.

2. On the space R(I) of all Riemann-integrable functions, however, the p-norm
is not a norm but only a seminorm, since a function f which vanishes except
at most finitely many points, nevertheless fulfills || f||, = 0.
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1.2 IMPORTANT NORMS 1.3.3

3. Also ¢P is a normed space, where /P denotes the space of sequences n — x,, €
K, which are p-summable, i.e. for which ZZO=1 |z, |P < oo holds. This space
can be identified (via f(t) := z, for n <t < n + 1) with left-continuous
staircase functions f : {t : t = 0} — K having jumps in at most points in N.

1.3 Elementary properties of seminorms

1.3.1 Lemma. Reverse triangle inequality.

Each seminorm p : E — R fulfills the REVERSE TRIANGLE INEQUALITY

Ip(1) — p(x2)| < p(@1 — 22).

Proof. The following applies:

We now want to give a more geometric description of seminorms p. The idea is to
examine the level surfaces p~1(c).
1.3.2 Definition. Balls.
Let p: F — R be a mapping and ¢ € R. Then we put
Pec:=1{z:p(x) <c} and pg.:={x:p(x)<c},

and call this (if p is sublinear) the OPEN and the CLOSED p-BALL AROUND 0 WITH
RADIUS c. .

1.3.3 Lemma. Balls of sublinear mappings.

For each sublinear mapping 0 < p: E — R and ¢ > 0, p<. and p<. are conver
absorbing subsets of E. We have p<. = c¢-p<1 as well as p<. = ¢-p<1, and further
p(x) =c-inf{A>0:z€ X pg.}.

So we may recover the mapping p from the unit ball p<;.

A set A € E is called CONVEX (see [22, 5.5.17]), if >} | A;x; € A follows from
A; = 0 with Z?zl A = 1 and z; € A. It suffices to asssume this for n = 2, because
for n < 2 it is obvious and from n = 2 it follows for all n > 2 by induction:

n+1 n s
Z Xi i = A1 Tpgr + (1= Apg1) Z # ;.
- An+41

i=1 i=1
A set A is called ABSORBENT if Ve e EIA>0:z€ \- A.
Proof. For ¢ > 0 we have:
pee=tople) <ch = {w:p(%) = Tpw) <1}
=fey:ply) sy =c{y:ply) <1} =c-pa
and analogously for p_..

The convexity of p<. = p~1{A : A < ¢} and p. = p~ X : X\ < ¢} immediately
follows from the easy-to-see property that inverse images of intervals, being un-
bounded from below, under convex functions are convex.
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1.3 ELEMENTARY PROPERTIES OF SEMINORMS 1.3.6

To see that p<. = ¢- p<y is absorbent for ¢ > 0, it is sufficient to put ¢ = 1: Let

x € E be arbitrary. If p(z) = 0, then & € p<y. Otherwise, z € p(z) - p<1 holds
1

because x = p(x) - y, where y := ﬁx and p(y) = p(mx) = ﬁp(:c) = 1.

Hence also the superset p~. 2 p</2 is absorbent.

Because of following equivalences for A > 0 we have p(z) = inf{A > 0: 2z € A -pa1}:
TEX p<1 =p<r = p(z) <A,

hence
infid>0:zeAp}=mf{A>0:A=p()} =px). O

1.3.4 Lemma. Balls of seminorms.

For each seminormp: E — R and ¢ > 0, p.. and p<. are absorbent and absolutely
convex and

p(x) = inf{)\ >0:x€N psy =p<)\}.
A subset A € FE is called BALANCED, if for all z € A and |[A\| =l also A\-z € A
holds.
More generally, a subset A € FE is called ABSOLUTELY CONVEX if it follows from
z; € Aand \; € K with 3" | |\;| =1 that X, ; \; z; € A holds.
Sublemma.
A set A is absolutely convex if and only if it is convexr and balanced.
Proof. (=) is clear, because every convex combination is also an absolutely convex
combination and for |[A| = 1 also Az is an absolutely convex combination. Note

that for this it is sufficient to have absolutely convexity for n = 2, because that for
n = 1 it follows from A\; 1 = A1 21 + 021.

(<) Let 31", [\i| = 1, then

iAil'i: Z Az = Z |Ai||;1$¢€A,
i=1 o

Ai#0 Ai#0
holds because of “if = 1 and therefore, because of the balancedness Iiilxi € A,
and therefore, because of the convexity, also >, |\ &—Z‘xz € A holds. O

This proof shows that even for “absolutely convex” it is enough to ask this for the
case n = 2.

Proof of the lemma . Because of the previous lemma and the sublemma,
only balancing is to be shown, and this is obvious because of the positive homo-
geneity of p. O
1.3.5 Definition. Minkowski functional.

We now want to construct from sets A related seminorms p. For this we define the
MINKOWSKI FUNCTIONAL P 4:

x> pa(z) =inf{A\>0:2e - A} e Ru {400} for each z € E.
Then py(x) < oo holds if and only if z lies in the cone {X € R: A > 0} - A generated
by A.

1.3.6 Lemma. From balls to seminorms.
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1.3 ELEMENTARY PROPERTIES OF SEMINORMS 1.3.7

Let A be convex and absorbent. Then the Minkowski functional of A is a well-defined
sublinear mapping p :==pa =0 on E, and for A > 0 we have:

P<x S A A S pn.
If A is also absolutely convex, then p is a seminorm.

So we can recover the set A almost from the function p.

Proof. Since A is absorbent, the cone is {A: A > 0} - A = E. So p is finite on E.
Furthermore, 0 € A holds, because 3IA > 0:0€ A A and thus 0 = % € A holds.
The function p is RT-homogeneous, because for A > 0 we have:
p(Az) =inf{u>0: Az e pA}
:inf{,u>0:xe§A} =inf{Av>0:2evA}=Xinf{r>0:2ecvA}
= Ap(x).
(p<x € A-A) Let p(z) = inf{u > 0:2 € pA} < A Then there is a 0 < pu < X with

repA=XAEAc XA, because 0 € A and thus £a = (1 - §)0+ £a € A for all
ae A

(M- A S pey) If z € A A, then by definition of p it is clear that p(z) < A, i.e. T € p<a.
The function p is subadditive because
plx) <\ ply) <p=zxerAyeunA
:aH—ye)\A-HLAé A+wA=plx+y)<A+p
= p(e+y) <inf{A + p:p(z) <A, ply) < pp = p@) +p(y),

holds, since for convex sets A and \; > 0 we have > | N\ A = (31, \)A: In
fact, z; € A implies >, \ijxz; = D, A - %xi =X %xl e (3, \i) - A, where
A= Z?Zl Ai, and thus ), )‘7 x; is a convex combination. Conversely, x € A implies
)z =3 hized, A

If A is additionally absolutely convex then p is a seminorm, because p(Ax) = p(z)
holds for all [A] =1 since A is balanced, so A A = A is fullfilled. O

1.3.7 Lemma. Comparison of seminorms.

For each two sublinear mappings p,q = 0:

D < ¢S DP<1 2G<1 S P<1 2¢<1-

Proof. (1 = 3) The following holds:

reqer = plx) <qz) <1l=xz€p.

(3 = 2) The following holds:

TEqea = q(r) <1
T 1 1
g (S) = Sqe) <<
=VA>1 q(}\) )\q(:z:) )\1<1
1

T x
=>Xeq<1§p<1:>xp($)=p<x)<1=>p(x)<)\
=plz) <inf{A: A>1} =1

= T € P<i1
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1.3 ELEMENTARY PROPERTIES OF SEMINORMS 1.4.1

(2 = 1) The following holds:

Let)\>Obes.t.0<q(x)<)\:q(§):%q(x)é%zl

X
3XEqSlE]Ogl

| 8

) <1, ie p(z) <A
<inf{A: A>q(x)} =qx) O

=

= p(z

~ >

1.4 Seminorms versus topology

1.4.1 Topologies generated by seminorms.

Motivation: The seminorms provide us, as in Analysis, with balls, which we want
to use for questions of convergence and continuity. For this the notion of a topology
has been developed:

In Analysis, we call O € R open if there is an d-neighborhood U < O for each a € O
(i.e. aset U :={z: |x — a|] < §} with § > 0).

This definition can be transfered almost literally to normed spaces (F, p):
O € FE is called OPEN :«< Va € O 36 > 0: {z : p(z — a) < 0} < O. Note that

{:plx—a)<d}=a+ps=a+0 p,
because p(z —a) <0 © x =a+y with y := 2z — a € p<s.
But important function spaces do not have a reasonable norm. For example, we can

no longer consider the supremum norm on C(R,R). But for each compact interval
K < R we may consider the supremum pg on K, i.e. px(f) := sup{|f(x)| : z € K}.

We call O € E OPEN with respect to a given family Py of seminorms on a vector
space F, if

YVae OIneNdpy,...,pn €Py, Ie>0:{z:pi(x—a)<efori=1,...,n} < O.

The family O := {O : O € FE ist open} defines then a topology on E, the so-called
TOPOLOGY GENERATED BY Py (unions of the so defined open sets are obviously
open again and the same applies for intersections of finitely many open sets, because
the union of finitely many sets, each consists of finite many seminorms, is finite and
the minimimum of the finitely many € > 0 is positive). Generally, a TOPOLOGY (see
[26, 1.1.1]) O on a set X is a set O of subsets of X, which fullfills the following two
conditions:

1. If F < O, then the union (JF = |Jye O belongs to O;
2. If F < O is finite, the intersection (| F = [z O is also in O.

Note that | J& = & and (& := X. The subsets O of X, which belong to O, are
also called OPEN SETS of the topology in the general case. A TOPOLOGICAL SPACE
is a set together with a topology.

The above construction is a general principle. One calls a subset Oy & O SUBBASIS
OF A TOPOLOGY O, if Va e O € O IF < Oy, finite: a € (F < O, cf. [26, 1.1.6].
In order to construct a topology O it is sufficient to specify a set Oy of subsets
of X, and then to designate O as the set of all O < X for which there is a finite
subset F < Og with x € (| F < O for each of the points # € O. One says, that the
topology O is generated by the sub-basis Oy.
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1.4 SEMINORMS VERSUS TOPOLOGY 1.4.2

The topology generated by Py is just the topology generated by sub-basis Oy :=
{a+p<c:a€E, pePy, >0}

(€) The topology generated by Py is obviously coarser or equal to that generated
by the sub-basis Oy, because all we have to do is to set all a; = a and ¢; = ¢.

(2) In fact, let O € E be open in the latter topology, i.e. Ya € O 3F < Oy, finite:
ae(F<O0.So3ay,...,an€ E, p1,...,pn € Py and €1, ...,&, > 0 with

ae{reFE:p(x—a;)<eg fori=1,...,n}<O.
If we put now € := min{e; — p;(a —a;) : i = 1,. n}, ie.
ae{reE p(r—a)<efori=1,.. }

Q{xEE:pi(xfai)\pi(x—a)+pi(a—ai)<€i fori=1,...,n} < O.

By a NEIGHBORHOOD U of a point a in a topological space X, one understands a
subset U € X for which an open set O € O exists with a e O € U.

A NEIGHBORHOOD(SUB)BASIS U of a point a in a topological space X is a set U of
neighborhoods U of a such that for each neighborhood O, a set (finitely many sets)
U; € U exists (exist), so that (1), U; < O, cf. [26, 1.1.7].

As in Analysis, a mapping f : X — Y between topological spaces is called CON-
TINUOUS at a € X, if the inverse image of each neighborhood (in a neighborhood
basis) of f(a) there is a neighborhood of a, cf. [26, 1.2.4]. Tt is called continuous, if
it is continuous in each point a € X, that is the case if and only if the inverse image
of each open set is open. It is easy to see that it is sufficient to check this condition
for the elements of a sub-basis.

Each seminorm p € Py is continuous for the topology generated by Py, because
if a € F and € > 0, then p(a + p<.) € {t : |t — p(a)| < €}, since z € p. =
Ip(a + x) — p(a)| < p(x) < . But also the addition + : F x E — E is continuous,
because (a1 + p<:) + (az + p<c) S (a1 + a2) + p<2e. In particular, the translations
x +— a + x are homeomorphisms.

The scalar multiplication - : K x E — FE is continuous. For A € K and a e k.
{pekK:|u— )\|<§1} {x: p(a:fa)<52}c{z plz—A-a) <e}if &) < and
b2 < 5(IAl + 5py)” 1 since

plp-z—=XA-a)=p((p=A) -+ A (z—a))

2p(a)

< fp—=Al-p(z) + Al p(z —a)
<61 (p(a) + p(x —a)) +[A] - 62
<01 - (pla) + 62) 4+ [A[ - 02 = 61 - p(a) + 02 - (61 + |A])

In particular, the homothetics  — A - z are homeomorphisms for A # 0.

So the topology generated by Py turns E into a TOPOLOGICAL VECTOR SPACE, i.e.
a vector space together with a topology with respect to which the addition and
the scalar multiplication are continuous. Moreover, E is even a LOCALLY CONVEX
VECTOR SPACE, i.e. there exists a 0-neighborhood basis consisting of (absolutely)
convex sets (namely, ()I_, (p;)<c), or a sub-basis consisting of (absolutely) convex
sets (namely, p—.).

1.4.2 Lemma. Continuity of seminorms.

1. A seminorm p: E— R on a topological vector space E is continuous if and
only if p<1 (or, equivalently, p<1) is a 0-neighborhood.
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1.4 SEMINORMS VERSUS TOPOLOGY 1.4.4

2. A seminorm p: E — R is continuous in the topology generated by Py if and
only if Ip1, ..., pn € Po, A > 0: p < A -max{p1,...,pn}.

Proof.
(=) Since p is continuous, 0 € p~H{t : t < 1} = p~; is open.
(<)
aca+e-pa={z:iplx—a)<eySp {t:|t—pla)| <e}
(=) If p is continuous, then p.; is a 0-neighborhood, so p1,...,p, € Py and
€ > 0 exist with

n n

P<1 =2 ﬂ(}%‘)q = ﬂ e(pi)<1 =€
i=1 i=1

= (ma'X{pla v 7pn})<6 =(q<1,

where ¢ := % -max{p1,...,Pn}. Thus p < q:= % -max{p1,...,pn} holds by .
(<) With p; also ¢ := X - max{p1,...,p,} is continuous, and thus p-1 2 g<1 is a

0-neighborhood, i.e. p continuous by . O

(pi)<1 = € (max{p1,...,pn})<1

-

i=1

1.4.3 Summary.

Let Py be a family of seminorms on a vector space E. Then the balls a + p~. :=
{xeE:plx—a) <e} withpe Py, e >0 and a € E form a sub-basis of a locally
convex topology. This so-called topology generated by Py is the coarsest topology
(i.e. with the fewest open sets) on E, for which all seminorms p € Py as well as all
translations x — a + x with a € E are continuous. With respect to this topology,
a seminorm p on E is continuous if and only if there are finite many seminorms
pi € Py and one K > 0, s.t.

p < K max{p1,...,pn}

1.4.4 Definition. Seminormed space.

By a SEMINORMED SPACE we therefore understand a vector space E together with
a set P of seminorms, which are just the continuous seminorms of the topology
generated by it, that is, with p;, ps € P also every seminorm p < p; + p2 is in P.

A set Py < P is called SUB-BASIS OF THE SEMINORMED SPACE (F, P), if it generates
the same topology as P, that is for any seminorm p in P finite many py,...,pn € Po
exist as well as a A > 0 with p < A - max{p1,...,pn}.

For any family Py of seminorms on E, we get a uniquely determined seminormed
space, which has Py as sub-basis of its seminorms, by using the family P of, with
respect to the topology generated by Py, continuous seminorms:

P = {p is a seminorm on E :3A > 0 3py,...,p, € Py with p < )\~max{p1,...,pn}}.

By the SEMINORMS OF THE SO OBTAINED SEMINORMED SPACE we understand all
seminorms belonging to the generating family Py. We would actually have to say
“seminorms of the given sub-basis of the seminormed space”, but that’s too long
for us.

By a COUNTABLY SEMINORMED SPACE we mean a seminormed space which has a
countable sub-basis Py of seminorms. We may then assume that Py = {p,, : n € N}
and the sequence (p,), is monotone increasing and will eventually dominate any
continuous seminorm p, that is there is an n € N with p < p,,. To achieve this,
replace the p,, with n - max{p1,...,pn}.
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1.4 SEMINORMS VERSUS TOPOLOGY 1.4.9

1.4.5 Definition. Convex hull.

The CONVEX HULL (A, of a subset A € E is the smallest convex subset of E
which includes A.

1.4.6 Lemma. Convex hull.
Let A€ E. Then the convex hull of A exists and is given by
(A i =ﬂ{K:A§K§E, K is conver }

:{Zn:)\iaiIneNvaiEA’/\i>0’Zn:)\i:1}'
i=1

i=1

Proof. Theset A:={K: A< K € E, K ist convex} is not empty, because E € A.
Consequently there exists [).A and obviously is itself convex and thus the minimal
element in A, i.e. (A, =[)A.

For the second description of the convex hull note that the set Ag := {22;1 i@ -
neN,a € A\ = 0,2 | A = 1} obviously includes A. It is convex, because let
x5 € Ao, ie. xT; = Z;n;l /\i,j Qj, 5 for n; € N, a5 € A, Aivj > 0 with Z:L;l /\i,j = 1.
Then for ;> 0 with 370, p1; = 1 we have:

nj

m m
DT = DL D Ni iy = Y Mg i i
i=1 =1 = ¥

i<n;
m ng m
with Y i hig = D 5 D g = Dl =1
i<n; j=1 =1 j=1
Since Ay is clearly contained in every set K € A, (A, = Ag holds. O

1.4.7 Definition. Absolutely-convex hull.

The ABSOLUTELY CONVEX HULL (A ). of a subset A € F is the smallest absolutely
convex subset of E that contains A, thus is the intersection of all these sets.

1.4.8 Lemma. Absolutely-convex hull.

Let A < E. Then the absolutely convex hull is given by
(Aakw = {A 1 Al = 1} - Ao,

so it is the convex hull of the balanced hull {\ : |A| = 1} - A.

Proof. It is only to be shown that the convex hull of a balanced set A is itself
balanced. So let |u| =1 and Y | \; a; € (A)ky, then

I Z)\iai = Zx\iuaie<A>kv, since p-a; € A. [
i=1

i=1

1.4.9 Lemma.

Each locally convex vector space E has a 0-neighborhood base of absolutely convex
sets.

Proof. Let U be a convex 0O-neighborhood. This is open without restriction of
generality, because its interior is also convex(!). Since the scalar multiplication {\ €
K: |\ =1} x E — E is continuous and 0- A = 0 holds, there exists a neighborhood
V € Kof A for each |A\| = 1 and a convex 0-neighborhood Uy € E with V\-U, € U.
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1.4 SEMINORMS VERSUS TOPOLOGY 1.5.2

Since {A € K : |\| = 1} is compact, finitely many exist Aq,..., A, with {A € K :
N =1} < U, Vi, Let Up := (), Uy,. Then Uy is a convex 0-neighborhood and
Upc U, :={NeK: |\ =1} Uy € U. The convex hull of the balanced set U is
thus an absolutely convex 0-neighborhood in U by . O

1.4.10 Remarks.

The topology of each locally convex vector space is generated by the set P of all
continuous seminorms:

(2) If O is open in the topology generated by P, then for every a € O finitely
many pi,...,pn € P and £ > 0 exist with ﬂz;l(a +e- (pi)<1) = {a: cpi(r—a) <
eVi=1,... ,n} < 0O, so O is also in the original topology open since the (p;)<1 are
0-neighborhoods.

(€) Conversely, let the latter be fulfilled, i.e. by there exists an absolutely
convex 0-neighborhood U with U € O — a for each a € O. Then p := py is a
continuous seminorm, because p<; 2 U is also a 0-neighborhood. Consequently,
a+p<1 € a+U < O holds, so O is also open in the topology generated by the
continuous seminorms.

Since we only have to use the Minkowski functionals of a O-neighborhood basis in
this argument, the following holds:

The topology of each locally convex vector space is already generated by the
Minkowski functionals of a 0-neighborhood basis consisting of absolutely convex
sets.

1.4.11 Corollary. Special 0-neighborhood basis.
Each locally convex vector space E has a 0-neighborhood basis consisting of closed

absolutely convex sets.

Proof. This is obvious because (py)<i/2 S U is closed. O

1.4.12 Summary.

Let E be a locally convex vector space and U a 0-neighborhood sub-basis consisting
of absolutely convex sets. Then the family {py : U € U} is a sub-basis of that
seminormed space, whose seminorms are exactly those being continuous with respect
to the given topology, these are exvactly those seminorms q for which q<1 is a 0-
neighborhood.

So we have a bijection between seminormed spaces and locally convex vector spaces,
and can work with topology or with seminorms on a fixed vector space as needed.

1.5 Convergence and continuity

1.5.1 Definition. Convergent sequence.

A sequence (z;); CONVERGES towards a in a topological space X if and only if for
each neighborhood U (of a sub-basis) of ¢ an index iy exists, such that z; € U for
all i > iy, cf. [26, 1.1.11].

1.5.2 Lemma. Convergent sequences.

A sequence (x;) converges in the underlying topology of a locally convex space with
sub-basis Py towards a if and only if p(x; —a) — 0 for all p € Py.
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1.5 CONVERGENCE AND CONTINUITY 1.5.6

Proof. (=) Since for a € E the translation y — y — a is continuous, z; — a —
a —a =0, and thus also p(x; — a) — p(0) = 0 for each continuous seminorm p.

(<) Let U be a neighborhood of a. Then there are finitely many seminorms p; € Py
and a ¢ > 0 with a +(j_, (p;)<c € U. Since p;(z; —a) — 0, for each j there exists
an i; with pj(x; —a) < € for i > i;. Let I be greater than all the finitely many ;.
Then z; € a + m;L=1(pj)<5 for 4 > I and thus also in U, i.e. x; — a. O

1.5.3 Lemma. Sequentially continuous mapping.

A mapping f : E — X of a countably seminormed space E into a topological space
X is continuous if and only if it is sequentially continuous, i.e. for each convergent
sequence x; — a also the image sequence f(x;) — f(a) converges.

See [20, 3.1.3].

Proof. (=) is clear, because of the above description of the convergent
sequences.

(<) indirectly: Suppose f~1(U) is not a neighborhood of a for a neighborhood U
of f(a). Let {p, : n € N} be a countable sub-basis of the seminorms of E. Then for
each n there is an z,, € F with pg(z, — a) < % for all K < n and f(z,) ¢ U. So
pr(z, —a) — 0 for n — o0, and thus also x,, — a according to the above lemma
. But since f(z,,) ¢ U, this is a contradiction to the sequential continuity of
I O

1.5.4 Definition. Net.

Since the above lemma does not hold for non-countably seminormed spaces , we
extend the notion of a sequence to:

A NET (GENERALIZED SEQUENCE or MOORE-SMITH SEQUENCE, see [26, 3.4.1]) is
a mapping x : I — X, where [ is a DIRECTED index set, i.e. a set together with
a relation <, which is transitive and has for any two elements i; and 75 in I also
a i€ I with i1 < ¢ and is < 4, see also [26, 3.4.1]. Exactly, as for sequences, one
defines the convergence of nets and shows thus also the first of the two lemmas
from above. Regarding the second lemma we have

1.5.5 Lemma. Continuity via nets.

A mapping f: E — X from a locally convex space to a topological space is contin-
wous if and only if for each convergent net x; — a the image net f(x;) — f(a). See
26, 3.4.3].

Proof. (=) is obvious, because if U is a f(a)-neighborhood and z; — a, then
Jig Vi = ig 2 ;€ fH(U), ie. f(x;) € U, that is f(z;) — f(a).

(<) Let U be a neighborhood basis of a. Then we use as index set I := {(U,u) : U €
U,u € U} with the order (U,u) < (U',u') <« U 2 U’ and as net on it the mapping
x : (U,u) — wu. Then, clearly, the net x converges to a, so by assumption also
fox towards f(a), i.e. for each f(a)-neighborhood V' exists an index (Up, up), s.t.
flw)yeViorallU € Uyand ue U. So f(Up) <V, that means f is continuous. [

1.5.6 Definition. Separatedness.

A locally convex space is called SEPARATED (or also Hausdorff, see [26, 3.4.4]), if
the limits of convergent sequences (or nets) are unique, this is the case if and only
if p(z) = 0 for all p € Py implies z = 0:
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1.5 CONVERGENCE AND CONTINUITY 1.6.3

(<) Let x; be a net converging to 2’ and x”. Then x; — 2’ converges towards 0 and
also towards a” — z’. Because of the continuity of p, p(z; —z") converges to p(0) =0
and also to p(z” — 2’). Because of the uniqueness of the limits in K, p(z” —z') =0
holds for all p, and thus, by assumption, " — 2’ = 0.

(=) Let p(x) = 0 for all p. Then the constant sequence (net) with value x converges
to both 0 and z, hence, by assumption, = = 0.

We are going to use the abbreviation LCS for separated locally convex spaces.

1.6 Normable spaces

1.6.1 Definition. Normable spaces and bounded sets.

One calls a separated lcs, which has a sub-basis consisting of a single (semi-)norm,
NORMABLE.

A set B < E is called BOUNDED if and only if p(B) is bounded for all p € Py, cf.
[20, 2.2.9]. That’s exactly the case when it gets absorbed by all 0-neighborhoods,
i.e. V 0-neighborhood U 3K >0: B< K - U:

(<) Let p be a continuous seminorm, then p<; is a 0-neighborhood, so by assump-
tion there is an K > 0 with B € K - p<1 = p<k, i.e. p is bounded on B by
K.

(=) Let U be a 0-neighborhood. Then there are finitely many seminorms p; € P
and an ¢ > 0 with ()_, (pi)<c € U. For each p; there is a K; > 0 with [p;(B)| < K;
so B < ﬂ?:l(pi)sKi S ﬂ?:l(pi)sKe = K -U, where K := % ~max{Ky,..., Kp}.

1.6.2 Theorem of Kolmogoroff.

A separated lcs is normable if and only if it has a bounded zero-neighborhood.

Proof. (=) Let p be a norm generating the structure. Then U := p<; is a 0-
neighborhood. For any continuous seminorm ¢ there exists an K > 0 with ¢ < K -p,
and thus ¢ is bounded on U by K. So U is bounded.

(<) Let U be a bounded zero neighborhood. Then there is a continuous seminorm
with p<; € U. Now let ¢ be any seminorm. Since U is bounded, there is a K > 0
with |¢(U)|] < K. So p<1 € U S g<k = (£9)<1 and therefore p > g, that is
g < K -p. Thus, {p} is a sub-basis of the seminorms of E and p is even a norm. [

1.6.3 Example. The pointwise convergence of continuous functions.

The pointwise convergence on C(I,R) can not be a normed space.

Proof. A sub-basis of seminorms for pointwise convergence is given by f — |f(x)]
for x € I. Suppose there is a bounded zero neighborhood B. Then finitely many
points x1,...x, € I and a € > 0 exist, s.t. B := {f : |f(z;)] <efori=1,...,n}
is bounded. Let zg ¢ {x1,...,2,}. Then the seminorm ¢ : f — |f(zg)| is not
bounded on B, because certainly there exists a (polynomial) f which vanishes on
{x1,...,2,}, but not on xg, and thus K - f € B, but ¢(K - f) = K - f(x¢) — oo for
K — ow. O

Analogously one shows that the uniform convergence on compact sets in the space
C(R,R) is not normable but yields a countably seminormed space. And similarly
for the uniform convergence in each derivative on C* (I, R).
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2. Linear mappings and completeness

In this chapter we examine the basic properties of linear mappings as well as the
notion of completeness and its relevance for power series. In particular, we apply this
to prove the inverse function theorem and the Weierstrass approximation theorem,
as well as for solving linear differential equations.

2.1 Continuous and bounded mappings

2.1.1 Lemma. Continuity of linear mappings.
For a linear mapping f : E — F between lcs’s are equivalent:

1. f is continuous;
< 2. f is continuous at 0;
< 3. For each (continuous) SN q of F, qo f is a continuous SN of E.

Proof. ( = ) q a continuous SN, f continuous linear = ¢ o f is a continuous
SN.

( = ) Let U be a 0-neighborhood of 0 = f(0) in F, without restriction of
generality U = (,{y : ¢;(y) < &} for SN’s ¢1,...,q, of F. Then f~*(U) = ,{z :
q;(f(x)) < e} =g o f)<e is open in E.

( = ) We have f(z) = f(x —a) + f(a), i.e. f = Ty o foT_,, where the

translations T, and T}, are continuous and the middle f is continuous at 0,
hence also the composition f is continuous at (T_,)~%(0) = a. O

2.1.2 Lemma. Continuity of multi-linear mappings.
An n-linear mapping f : E1 x ... x E, — F between lcs’s is continuous if and only

if it is continuous at 0.

Proof. Let first n = 2. For a; € E; and any neighborhood f (a1, a2) +W of f(a1,as2)
with absolutely convex W, 0-neighborhoods U; exist in E; with f(U; x Us) < %W,
because of the continuity of f at 0. Now choose a 0 < p < 1 with pa; € U; for
it =1,2. Then f((a1 + pUr) x (a2 + pUs)) < f(a1,a2) + W, because u; € U; is

flar + pur,az + puz) — f(ar,a2) = far, pug) + f(pur, az) + f(pu, puz)
—_— —
=f(pai,uz)  =f(ur,paz)  =p? f(ui,uz)
1 1
c - - W< W.
c 3W+ 3W—|— 3VV c W.
For n > 2, choose Uy, ...,U, analogously with (2" — 1) f(U; x ... xU,) < W. O

2.1.3 Definition. Bounded linear mappings.

A linear mapping is called BOUNDED if the image of each bounded set is bounded.
Warning: In the literature this notation is sometimes also used for the non-equivalent
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2.1 CONTINUOUS AND BOUNDED MAPPINGS 2.1.6

property to be bounded on some 0-neighborhood!

Note that bounded subsets of an LCS can not contain any ray a + Rt - v for v # 0,
since otherwise ¢ — p(a + tv) would be bounded on R™, say by K, > 0, for each
seminorm p of E, hence ¢t p(v) = p(tv) < p(a+tv) +p(—a) < K, +p(a) for all t > 0

by , hence p(v) =0, i.e. v = 0.

Consequently, a linear mapping f : E — F' is bounded as mapping from the set F
to I (i.e. f(F) € F is bounded), only if is the 0-map, because f(E) would then be
a bounded linear subspace, and thus f(E) = {0}.

2.1.4 Lemma. Bounded linear mappings.
For linear mappings f : E — F between lcs’s the following implications hold:

1. f is continuous;
= 2. f is sequentially continuous;
= 3. f is bounded.

Proof. (:> ) holds even for non-linear f by .

(=> ) Suppose f(B) is not bounded for some bounded set B € E. Then there
is a seminorm ¢ of F and a sequence b, € B, s.t. 0 < A\, := q(f(b,)) — 0.
The sequence /\%bn then converges to 0 (see the following lemma), so because of
the sequential continuity also f(%bn) = %f(bn) and thus also q(ﬁf(bn)) =
A—lnq(f(bn)) =1, a contradiction. ’ / O

Now the question arises of the validity of the converse to the implications in .

For (1 < 2) we have already answered this positively in for countably semi-
normed spaces.

For (2 < 3) we need some relationship between bounded and convergent sequences.
A simple fact is the following.

2.1.5 Lemma. Mackey-convergence.

Let {yn : n € N} € E be bounded in an les and p, — 0 in R. Then p,y, — 0.

Proof. By applying seminorms this is reduced to the corresponding result for R. Or
directly: Let U be an absolutely convex 0-neighborhood. Then {y,, : ne N} € K-U
for some K > 0 and thus p, y, € U for all |p,| < %, so for almost all n. O

In order to be able to deduce at least sequential continuity from boundedness, it
would be helpfull if the converse were true, i.e. if we could write any convergent
sequence (Z, ), in E as a product of a bounded sequence (y,), in E and a 0-sequence
pn in R. A sequence (z,), for which this holds, is called MACKEY 0-SEQUENCE or
MACKEY-CONVERCGENT towards 0, so if 30 < A, — o0, s.t. {\,z, : n € N} is
bounded.

Each Mackey 0-sequence (x,,), converges to 0 by Lemma applied to y, =
Ann. For normable spaces, the converse implication also holds, because x, — 0
implies 0 < A, — 00, where A, := m for x,, # 0 and A, := n otherwise, and

obviously {\,z, : n € N} is bounded in the norm by 1. More generally, this also
holds for countably seminormed spaces:

2.1.6 Lemma.

In countably seminormed spaces E, each sequence converging to 0 is even Mackey-
convergent to 0.
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2.1 CONTINUOUS AND BOUNDED MAPPINGS 2.1.8

Proof. Let {p; : k € N} be a monotonously increasing sub-basis of E and x,, — 0 a
0-sequence. The idea is to define for the countable many zero sequences (px(Zn))n

for k € N another zero sequence n — )\i > 0 converging slower towards 0.
n

~~
N
\\
1 S-S
\\
\\\\
P\ P2 s
12— ~ /1
13 — I
Ps
gz
0 [ N, N3 '

From pg(z,) — 0 for n — oo follows the existence of n; € N with p;(z,) <
% for all n > ng and all i < k. Without loss of generality k — ny is strictly
monotonously increasing. We define \,, := k for ngy1 > n = ng. Then, n — A,
is monotonously increasing, A, — o0, and for n = ng, pr(A\n n) = A\ppr(x,) =
Jok(zn) < jpj(es) < j% =1, where j > k is selected to be nj11 > n = n,. O

2.1.7 Corollary. Bornologicity of metrizable lcs.

Every countably seminormed space is bornological. Fven more holds: Multilinear
bounded mappings on countably seminormed spaces are continuous.

Where an lcs is called BORNOLOGICAL, if each bounded linear mapping on it is
continuous.
In we will give examples of lcs’s that are not bornological.

Proof. Because of , we only need to show the sequential continuity (at 0)

of each bounded m-linear mapping f. Let z,, — 0. By Lemma there exists
a sequence )\, — o0, so that A\, z, is bounded. Then, by assumption f(\, z,) =
A7 f(x,) is also bounded, and thus f(z,) is a (Mackey) O-sequence by [2.1.5] O

2.1.8 Lemma. Continuity in normed spaces.
For linear mappings f : E — F between normed spaces are equivalent:

1. f is continuous;
< 2. f is LIPSCHITZ, i.e. 3K > 0: | f(z) — f(y)| < K - |z — y|;

< 3. ||f|l < oo.

The OPERATOR NORM ||f|| on f is defined as follows (cf. [22, 5.4.10])
171 = sup{1f(@)] : |2l < 1} = sup{ | f()] : o] = 1} = sup { 4+ & 2 0}
= inf{K ) f (@) < K|z| for all w}

If [ is multi-linear, then f is continuous if and only if

Hf(‘rlv"'7xn)” L X ;é 0} < 0.
(ESY PR E

7] = sup{
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-2.1.7
Proof. ( < ) f is continuous — <= f is bounded on bounded sets (without

restriction of generality on {z : |z| < 1}, since f(B) € ¢- f({z : |z|| < 1}) for
BecAa:|z] <1}) < sup{|[f(2)] : =] <1} =: | f] < 0.

The following applies:

sup{| fz| : ||z = 1} <sup{|fz| : |z| <1} (because more elements)

< sup {'{ﬁ tx 0} (because | fz|| < |]:C|| for ||z|| < 1)
|fx] 1
< sup{|fz| : |z| =1}  (because el ||f(mm)“)»
so equality holds everywhere. Furthermore:
inf{K D fxl| < K - |z for all x} = inf{K : |Jij| < K for all ¢ # O}
—inf{K:sup{ﬁ:x;éO}éK}
x
= sup {fx T # 0}
|z

The mapping f is Lipschitz < {”HszHH tz# O} = {”ﬁi:gﬁ”” tT# y} is bounded.

The statement for multilinear mappings f is shown analogously. O

2.1.9 Corollary. Operator norm.
Let E and F be normed spaces, then the set
L(E,F):={f:E — F| f is linecar and bounded}

is a normed space with respect to the pointwise vector operations and the operator
norm as defined in | 2.1.8]. Furthermore: | idg | =1 and |f o g| < |f] - |g].
Proof. The following applies:

Vo o |(f + g)z| < [fz] + gzl < (11 + lgl) =] = 1f + gl < [ £+ lgll

Vo (A )zl = A fzl] = A f] = AL
Vo - [[(feg)zll < | f gl =] = [£ogll < fllgll. O

Attention | f o g| # [f] - |gll, e-g. f(z,y) := (2,0) and g(z,y) := (0,y).
2.1.10 Definition. Normed algebra.

A NORMED ALGEBRA is a normed space A along with a bilinear mapping e : Ax A —
A, which is associative, has a unit 1 and satisfies |1 = 1 as well as [aob|| < |al - [b].
One of the most important examples is L(F, E) =: L(E) for normed spaces E.

2.2 Completeness

2.2.1 Definition. Completeness.

An lcs F is called SEQUENTIALLY COMPLETE if every Cauchy sequence converges.
It is called COMPLETE when every Cauchy net converges. A net (or sequence) x; is
called Cavcny if z; —x; — 0 for 4,5 — o0, i.e.

Ve > 0 Vp Jig Vi, j > io : p(z; — x;) <e.
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A BANACH SPACE is a normed space that is (sequentially) complete.
A (sequentially) complete countably seminormed space is called FRECHET SPACE.

2.2.2 Lemma. Fréchet-spaces.

For each countably seminormed space and each everywhere positive A € £1 are equiv-
alent
1. It is complete;
< 2. It is sequentially complete;
< 3. Any absolutely convergent series converges;
< 4. For each bounded sequence (b,) the series Y, A\pbn converges;

< 5. FEach Cauchy sequence has a convergent subsequence.

A series )y, is called ABSOLUTELY CONVERGENT if for each continuous seminorm
p the series Y} p(z,) converges (absolutely) in R.

Proof. ( = ) is trivial.
( = ) Let >}, x, be absolutely convergent, then the partial sums of ] x,
form a Cauchy sequence, for p(}]z,) < > p(xy,), hence }, x, converges by .

( = ) Let the sequence (b,) be bounded and (A,) be absolutely summable.
Then Y, A, by, is absolutely summable, because Y, p(A, bn) < A1 - [|p © b So

this series converges by .

( = ) Let {py : n € N} be a monotonously increasing sub-basis of seminorms.
Let (z;) be a Cauchy sequence. Then:

Vk Ji Vi, § > i s pre(e; — ;) < A, (without loss of generality i < ix11)

1 1
= Dn (Ak(l‘ik+l - a?zk)> < Pk ()\k(xik“ - wm)) <lforn<k

1.

= i is bounded, where yy 1= x;, ,, — x5,
k

=

1
Ty, = Tiy + Z )\k)\—kyk converges.
k<j

( = ) Let (x;) be a Cauchy net and (p,,) a increasing sub-basis of seminorms.
Then:
1
Vk Jig Vi, 5 > ig : pr(a; — x;) < z (without loss of generality ix4+1 > if)

x4, is a Cauchy sequence

=
=

a convergent subsequence (xikl ); exists. Let 24 := lim T, and n < k
1

= Pl = o) S pr(@i — 20) S pr(mi — i)+ pr(@s, —20) <. O

el

~
<% for i>ip =limy pk (2, —Tiy, <%

2.2.3 Lemma. Completeness of the space of bounded mappings.
Let X be a set and E a (sequentially) complete lcs. Then the space
B(X,E):={f: X - E| f(X) is bounded in E},
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being seminormed by the family f — ||go f|o = sup{q(f(z)) : x € X} where q runs
through the seminorms of E, is also (sequentially) complete.

Its locally convex topology is that of uniform convergence.

Subsets B € B(X, E) are bounded if and only if they are uniformly bounded, i.e.
B(X)={f(x): feB,xe X} < E is bounded.

We will write B(X) instead of B(X,K). See also [20, 4.2.9].

Proof. Let f; be a Cauchy net in B(X, F). The point evaluations ev,, : B(X, E) —
E, f — f(x) are continuous (because of q(ev,(f)) = q¢(f(z)) < |go flls this follows
from ’ 2.1.1 ‘ and’ 1.4.3 ‘) and linear, hence f;(x) is a Cauchy net in F for each z € X,

and thus converges. Let f(z) := lim; f;(x), then for each continuous seminorm p on
E:

p(filz) = f(@) <p(fi(z) — f; (@) + p(f;(2) — f(z))
|po(fi— fj)”og +p(fi(2) = f(z) < 2¢

<e for i,j>i0(e,p) <e for j>ig(z,e,p)

<
<

for i > ip(e,p) (and j selected depending on x). So f; — f with respect to the
supremum norm constructed using p.

In case that was too short, again in more detail: Let € > 0.

(fi) is Cauchy = 3i¥i,j > io : [po (i = f;)|e < 5

fj — f pointwise = Va 3joVj > jo : p(f;(x) — f(z)) <
= JigVa Ijo > io Vi > oV > jo :

p(filx) = f(2)) < lpo (fi = fi)lw +p(fi(2) = fl2) <e

= Jig Vi > igVa : p(fi(z) — f(z)) <e
= JigVi > io: [po(fi— o <e¢

| ™

Furthermore,

p(f(@)) < p(f(2) = fi(x)) + p(fi(2) < [po (f = fi)lleo + [P0 fillo < o0,
hence f belongs to B(X, E).

The statement about the bounded subsets B € B(X, F) is proved as follows:

A set B< B(X, E) is bounded exactly when {|qo f|« : f € B} is bounded for each
seminorm ¢ of E, so {q(f(z)) : z € X, f € B} € R is bounded, i.e. B(X) := {f(z) :
feB,ze X} is bounded in E. O

2.2.4 Lemma. Subspaces of complete spaces.

Let E be a (sequentially) complete lcs, F a linear subspace with the restrictions p|p
of the seminorms p of E as a sub-basis. If F is (sequentially) closed in E, then F
is also (sequentially) complete

We will show in that in this situation the subspace F' carries the trace
topology of E. A subset Y of a topological space X is called CLOSED, respectively
SEQUENTIALLY CLOSED, if with each net, resp. sequence, (y;); in Y, which converges
in X, also the limit belongs to Y. It is easy to show that a subset is closed exactly
when its complement is open.

Proof. If (y;) is Cauchy in F, i.e. p|p(y; — y;) — 0 for each SN p of E, then
it is Cauchy in E, hence converges in E because of the completeness of E. Let
Yoo € E be its limit, then y, € F because of the closedness of F' and p|p(y; — yoo) =
p(Yi — Yoo) — 0, thus y; converges to Yo, in F. O
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2.2 COMPLETENESS 2.2.6

2.2.5 Corollary. Subspaces of the space of bounded mappings.

The spaces C(X) for compact X, as well as Cy(X) := C(X) n B(X) and Cy(X) :=
{feC(X):Ve>03K < X compact Vx ¢ K : |f(z)| < &} for general topological
spaces X, are all complete with respect to the supremum norm.

Proof. All we have to do is to show the sequentially closedness of the above sub-
spaces of B(X), which follows from the fact that the limit of any uniformly conver-
gent sequence of continuous functions is continuous, cf. [20, 4.2.8]:

Let f,, = fy be uniformly convergent and f,, be continuous for all n € N. For ¢ > 0
and xo € X choose n € N with | f,, — fuo|x < §, as well as, because of the continuity
of fn, a neighborhood U of x¢ with [f,(z) — fu(z0)| < § for all z € U. Then we
have for all x € U:

[foo (@) = foo(20)| < [foo () = fu(@)| + [ (@) = fu(20)| + [fn(w0) — fon(20)| < 3%-

If f, € Co(X), then also fo, € Co(X), because for ¢ > 0 there exists a ng with
[fn — follw < € for all n = ng and, because f,, € Cpy, there exists a compact
K < X with |fp,(2)] <e for x ¢ K. So

| Foo ()] < [ foo = Fonoll + | fng ()] < 2¢ for all z ¢ K.

Usually, Cy(X) is only considered for locally compact X, because in points zg € X
without compact neighborhood each function f € Cy(X) must vanish: If f(zq) # 0,
then we choose a compact set K with |f(z)| < %|f(zo)| for all z ¢ K and thus
K 2 {x:|f(z)| > 1| f(z0)|} would be a neighborhood of .

Each locally compact space X has a one-point compactification Xy, = X U {oo}
(see [26, 2.2.5]) and Cp(X) can then also be described as Cy(X) = {f € C(X) :
lim, . f(2) = 0} = {f € C(X.0) : f() = O}, 0

2.2.6 Example. Completeness of the space of the functions with bounded
variation.

BV (I,R) is a Banach space.

The variation seminorm V has as kernel
KerV :={f:V(f) =0} ={f: [ is constant}.
To get a separated space we have the following options:

e We add another seminorm to V', e.g. the supremum norm or even just f —
|£(0)|, which recognizes constant non-vanishing mappings. Equivalent, we
can also consider the sum or the maximum of V' with the additional seminorm
and get a normed space.

e We shrink the space of functions with bounded variation to BV (I,R) :=
{f: I >R:V(f) <oound f(0) = 0} in order to get rid of the constants
unequal 0.

e We factor out the kernel of the seminorm V' and get a vector space of equiv-
alence classes of functions with the seminorm induced by V' as norm.

Since Ker(V) is 1-dimensional, it does not really matter which of the 3 options we
pick, for other seminorms (see [18, 4.11.7]) this is not the case anymore.

Proof. Let BV(I,R) := {f : I > R : f(0) = 0und V(f) < o} and (f,)n be
a Cauchy sequence in BV (I,R). Because of |f(z)| < V(f,Z) < V(f) with Z =
{0, 2,1} and thus | fllec < V(f), the inclusion BV (I,R) — B(I,R) is continuous
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and thus f,, — fo converges uniformly. Furthermore, the convergence is also with
respect to V', because

< V(fa = Fm) + 2,1 = Fo) @)l + D (o = Foo) (@p1)| < 2,
k k

for all n > n(e) provided m > n(e) was selected in dependence of Z so that
[ frm (k) — fool(xk)] < ﬁ for all subdivision points x;, of Z.
(

Because of V(fx) < V(fwo — fn) + V(fn) we have f,, € BV(I,R). O

2.2.7 Corollary. Completeness of the space of bounded linear mappings.

Suppose E and F are locally convexr spaces. Then the set L(E,F) := {f : E —
F| f is linear and bounded} is a locally convex space with respect to the pointwise
vector operations and the seminorms of the form f — |qo f|g|w with all bounded
B < F and all SN’s q of F, see also ’ 5’.1.1‘ and’ 5’13‘ Its locally convex topology
is thus that of uniform convergence on bounded sets in E. If F is (sequentially)
complete, so is L(E, F).

Note that L(E, F') is a countably seminormed space if F' is one and, in addition, a
countable sub-basis of bounded sets exists in F, that is, a set B of bounded sets,
s.t. each bounded set B is included in a union of finitely many sets from B5.

Proof. Completeness: Let (f;) € L(E, F) be a Cauchy net. For each z € F, the
sequence f;(x) converges towards some f(z) € F. Furthermore, for every bounded
A € E, the net f;|4 is a Cauchy net in B(A, F'), thus converges to an f4 € B(A, F)
by . Since this also has to hold pointwise for « € A, we have fa(z) = f(x).
The mapping f is bounded because f(A) = f4(A) is bounded. It is linear because
fi converges pointwise towards f. Finally, f; — f in L(E, F) because for each A
the restrictions on A converge in B(A, F). O

If F =K, then we denote with E’ := L(F,K) the SPACE OF ALL BOUNDED LINEAR
FUNCTIONALS on F and with E* the SUBSPACE OF ALL CONTINUOUS LINEAR
FUNCTIONALS on F.

If f: E — Fis a bounded (resp. continuous) linear operator, we denote with
f*: F' — F (resp. f*: F* —» E*) the ADJOINT OPERATOR given by f*(¢)(z) :=

((f ().
2.2.8 Remark. Completeness of the space of the continuous functions.

Analogously, it is shown that C'(X, F) is (sequentially) complete, if it is supplied
with the topology of uniform convergence on compact sets, i.e. the seminorms
f = Ipo flkleo for compact K € X and continuous seminorms p of F, and F'
is (sequentially) complete and X is a KELLEY SPACE, i.e. is a Hausdorff space
where each set A < X, for which A n K < K is closed for all compact K < X,
itself is closed, because then a mapping f : X — F' is continuous if and only if it is
the restrictions f|x : K — F for all compact K < X.

Obviously, the limit of a net of continuous functions is continuous on all compact
sets, and because X is Kelley, it is continuous on X.
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3. Constructions

3.1 General initial structures

3.1.1 Motivational examples.

For compact spaces X we have made the space of the continuous functions C'(X,R)
by means of the supremum norm into a Banach space in ’ 1.2.2‘ and ’2.2.5 ‘ This
is no longer possible for non-compact X, as continuous functions on X need not
be bounded. But for every compact set K € X we can define a seminorm |_|x
by |fllx = |f|kllwo- By means of the family of these seminorms for all compact
K < X, we have made C(X,R) an lcs in .

Similarly, we proceeded in with L(E, F), by considering restriction mapping
ins*: f— fla, L(E,F) — B(A, F) for each bounded set A € E and as seminorms
g on L(E, F) the compositions f — [go f|alle for the seminorms F.

We now want to tease out the essentials from these constructions. The starting
point is a vector space F := C(X,R) (or L(E, F)) and a family of linear mapping
fx + E — Ef with values in lcs’s Fx := C(K,R) (or B(A, F)). The fx are in our
case given by fx : g — g|k. The goal now is to be able to make the space E as
canonically as possible into a locally convex space by means of this data.

3.1.2 Theorem on initial structures.

Given a point-separating family of linear mapping fr : E — Ex on a vector space
FE into lcs’s By.
The set

Py = U{po f& : p seminorm of Ex}

k

is a sub-basis of the coarsest structure of an lcs’s E, s.t. every fi is continuous.
We call this structure, the INITIAL STRUCTURE with respect to the mappings fx.
With this structure, E has the following universal property:
A linear mapping f : F — E from an lcs F' to E is continuous if and only if all of
the composites fr o f are.

B B

A
fA:f

F
Furthermore:
The topology of E is the initial one with respect to the family of mappings fi, i.e.
it 1s the coarsest so that all fy are continuous.
For nets (x;) in E and x € E we have: v; — x in E < Vk: fi(x;) — fr(z) in Ej.
Subsets B € E are bounded in E < Vk: fi(B) is bounded in Ej.
If the family of mappings fi is finite and the Ey are normable then so is E.
If this family is countable and the Ey are countably seminormed then so is E.
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Proof.

Sub-basis of the coarsest structure. The f; are continuous if and only if po f, is
a continuous seminorm on E for all (continuous) seminorms of Fy; consequently, the
locally convex topology on E generated by Py has the smallest family of seminorms
such that all fj are continuous.

Initial topology. Since all f; are continuous with respect to the topology generated
by the seminorms, the initial topology is coarser or equal to it.

Conversely, U = a + g, is an element of the sub-basis of the topology generated by
the seminorms g € Py. Then g = po fi for some k and some (continuous) seminorm
pof Ey. Thus, U =a+ q<e = {x: p(fu(z —a)) <e} ={z: fr(r) — fr(a) e p<c} =
(fx) " (fx(a) + p<c) is open (being an inverse image) in the initial topology with
respect to the f.

Universal property. For linear mappings f : F' — FE, the following holds:

f is continuous

0

VYqe Py : qo f is continuous

¢

Vk Vp seminorm of Ey : po fi o f is continuous

0

Vk : fi o f is continuous.

Convergent nets. For nets (z;) in E and x € E, the following holds:
r; > xin B
< VYgePy:q(x; —xz)—0
< Vk Vp seminorm of Ey, : p(fx(z;) — fr(z)) = (po fr)(x; —x) — 0
< Vk: fi(x;) > fr(x) in Eg.

Bounded sets. For subsets B € E the following holds:
B is bounded in E
< VYgePy:q(B) is bounded in K
< Vk Vp seminorm of Ey, : p(fx(B)) = (po fx)(B) is bounded in K
< Vk: fi(B) is bounded in E}.

Separatedness. Let g(x) = 0 for all ¢ € Py, i.e. p(fr(z)) = 0 for all k and all
(continuous) seminorms p of Ej. Because Ej is separated, fr(x) = 0 for all k.
Because the f; separate points, x = 0.

Cardinality of a sub-basis. By construction, the sub-basis of the seminorms of
E is countable provided those of the Fj are and the index set of the k is countable.
If the index set finite and all E}, are normable, the sub-basis of F is finite. If Py :=
{p1,...,pn} is a finite sub-basis of the seminorms of E, then {max{py,...,pn}} is
a sub-basis, and thus E normalizable. O

3.1.3 Examples of initial structures.

On several spaces E (e.g. C(X, F) and L(X, F)) of functions f : X — F, we have
considered the structure of the uniform convergence on certain subsets K < X.
This topology is exactly the initial topology induced by the restriction mappings
incly : E — B(K,F). A subset A € FE of functions is thus bounded exactly when
inclj; (A) < B(K,F) is bounded, so {f(z) : f € A,z € K} is bounded in F by
, i.e. A is uniformly bounded on the sets K.
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Somewhat more general, also the structure of C?(U, R™) is of this form, where one
has to consider the derivatives followed by restriction mappings

CP(U,R™) — CP~(U, L(R",...,R";R™)) - B(K,R™ ™).

So a subset of A < CP(U,R™) is bounded exactly when each derivative is uniformly
bounded on compact sets.

3.1.4 Corollary. Structure of subspaces.

Let F be a linear subspace of an lcs E. We provide F with the initial structure with
respect to the inclusion v : F' — E.

e The continuous seminorms on F are exactly the restrictions of those on E.
e The topology of F is the trace topology induced by E on F.
o A subset of F' is bounded if and only if it is so in E.

o A subspace of a (sequentially) complete space is (sequentially) complete if
and only if it is (sequentially) closed.

Proof.

Extending continuous seminorms. Let ¢ be a continuous seminorm of F' and let
Uy := g<1 be its open unit ball. By there are finitely many ¢; € Py := {p|r :
p is SN of E} and some K > 0 with ¢ < K - max{qy,...,qn}. Let p; be continuous
seminorms of F with (p;)|r = ¢; and put p := K - max{p1,...,pn}. Then p is a
continuous seminorm on F and ¢ < p|r holds. For the open unit ball U; := p.; we
have Uy n F = (p|r)<1 S g<1 = Up by . Let now U be the absolutely convex
hull of Uy u U;. Since Uy and U; are themselves absolutely convex, we have

U= {(1—t)u0—|—tu1 :u0€U0,U1 €U1,0<t< 1} = U Ut,
o<t<l1
where Uy := {(1 — t)ug + tuy : ug € Uy, uy € Up }.
Since Uy is open, Uy = U, e, (1 — t)uo +t Uy is also open in E for ¢ # 0.

We now want to show that Uy < | Jy.,<; Ur and hence U = | J,_,<, Us. As a side
result, we obtain that U is open. Let ug € Uy < F. Since Uy is open in F and
Uy n F is a O-neighborhood in F', a small 0 < t < 1 exists, s.t. tug € Uy n F and
(1 +t)up € Up. Thus ug = (1 —t) (1 4+ t) ug + ttug € U; for this ¢ > 0.
Furthermore, Uy = U n F holds: On the one hand Uy € U and Uy < F. On the
other hand, let w € U n F, then u € U, for some 0 <t < 1, i.e. u = (1 — t)ug + tug
with ug € Up and uq € Uy. So uy = %(uf (1 =1t)ug) € Uy n F < Uy and, since Uy is
convex, u = (1 — t)ug + tug € Uy holds.

Now let ¢ be the Minkowski functional py of U (see ) Then §|r is the
Minkowski functional of U n F' = Uy = ¢<1 and this matches with ¢ by .

The statement about the trace topology and bounded subsets follows directly from

Theorem .

Completeness of closed subspaces. We have already shown this in .

Closedness of complete subspaces. Let z; be a net (sequence) in z converging
towards E in F, then z; is a Cauchy net (Cauchy-sequence) in E, and thus the
net x; ; := x; — x; converges to 0 in E. By it also converges in F', which
means z; is a Cauchy net in F'. Since F is assumed to be (sequentially) complete,
x; converges towards some y in F', and because the inclusion is continuous, also in
E. Since F is separated, the two limits z and y must coincide, thus x =y e F. U
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3.1.5 Subspaces of the Banach space B(X), see Lemma .

Let X be a topological space. Thus Cy(X) := C(X) n B(X) is a closed subspace
of B(X) and hence itself a Banach space.

Furthermore, Cy(X) itself is a closed subspace of Cy(X), and thus a Banach space.

3.2 Products

3.2.1 Corollary. The structure of products.

Let Ey, be lcs’s and E = [], Ei, be their Cartesian PRODUCT, provided with the
wmitial structure with respect to the projections pry : E — Ej to the individual
factors.

e Then the topology of E is the product topology.

e The convergence is the coordinate (or componentwise) convergence.

o A set B is bounded in E if and only if it is contained in a product | [, By of
bounded sets By, € Ej.

e Any product of (sequentially) complete spaces is (sequentially) complete.

e A product of bornological space is again bornological if it does not consist of
too many factors; More precisely, if the index set is smaller than the first
measurable cardinal number. Whether such cardinal numbers exist depends
on the set theory used.

Proof.

Product topology and convergence. The product topology is by definition the
coarsest topology, s.t. the projections pr;, : E — E}, are continuous, so this is the
topology of the lcs £ by Theorem . Likewise, the statement about convergence
follows from this theorem. A basis of this topology is given by the products | [, Uy
with U, € Ej open and Uy = Ej apart from finite many indices k.

Bounded sets. A set B < E is bounded by if and only if By, := pr,(B) < Ej
is bounded for all k. Since always B < [ | j By, the desired statement follows, because

pri([ [; Bj) = By shows that [ [; B; is bounded.

Completeness. Let z; be a Cauchy net in F, then the k-th coordinate of the z;
forms a Cauchy net in Ey, by the continuity and linearity of pr;,, and thus converges
in Ej. Then, according to the description of the convergence, x; converges towards
the point « € E whose k-th coordinate is just lim; pry, (z;).

Bornologicity. The proof of this statement follows from the following Theorem

3.2.3 | together with Remark | 3.2.4|. O
g

3.2.2 Definition. Ulam-measures.

A ULAM MEASURE on a set J is a {0, 1}-valued measure on the power set P(.J), i.e.
a mapping p : P(J) — {0, 1} satisfying p(| ], o An) = Do #(Ay) for all pairwise
disjoint sets A,, < J.

It is called NON-TRIVIAL if p # 0, but p({j}) =0 for all j € J.

Obviously, a Ulam measure p is uniquely determined by F := p~1(1). For u # 0
this is a filter on J, because

« B¢ F, since p(@) = W@ U D) = 2 u(@) and hence u(g) = 0.
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e Let Ae Fand A< B< J. Then
1> u(B) = p(B\A) + p(A) = p(A) =1,
hence u(B) =1, i.e. Be F.
e Let us assumed indirectly that A, Be F and A n B ¢ F, then

1= p(A) = p(A\A N B) + (A n B) = n(A\An B)
and thus pu(A U B) = u(A\A N B) + u(B) =2 ¢ {0,1}.

Moreover, F is even an ULTRAFILTER, i.e. a maximal filter with respect to inclusion
(or equivalently, A € J = either A € F or A¢ := J\A € F): Otherwise A ¢ F and
A ¢ F and then u(J) = p(A) + p(A°) = 0 + 0 gives a contradiction to u(J) # 0.

Furthermore, F is a 0-FILTER, i.e. A, € F implies (), .y An € F: Otherwise,
Unen 4% = (Npen An)¢ € F and AS ¢ F for all n € N is a contradiction to
the o-(sub)additivity, i.e. p(AS) = 0 but p(|U, oy A%) # 0, because if B, := AS
and C, := By,\Uy-,, Bk, then J, B, = ||, C» and p(C,) < p(B,) = 0, but
1, Cn) # 0.

Conversely, if F is a d-ultrafilter on J, then 0 # u := xx : P(J) — {0,1} is a Ulam
measure: Namely, let A,, € J be pairwise disjoint. Due to the obvious monotony of
i, we only have to show that (| |,y An) = 1 implies the existence of a (unique)
n € N with u(A,) = 1. If u(A,) = 1 would hold for at least two n, then these would
satisfy A, € F and thus also their empty intersection. So let us assume indirectly
that pu(A4,) = 0 for all n € N, hence A, ¢ F and thus AS € F. Because of the
é-filter property, we would have (|, oy An)¢ = ey A% € F, ie. Upeny An ¢ F.
Hence p(|J,,eny An) = 0, a contradiction.

Note that the a Ulam measure p is non-trivial if and only if (| F = &:

It suffices to show j € (| F < u({j}) = 1:

pu{j}) =1={jle F=je Aforall Ae F, otherwise & = {j} n A e F. And vice
versa, u({j}) = 0 implies j ¢ A := {j}¢ € F, hence j ¢ [ F.

Moreover, (\F # @< ljeJ: F={Ac J:je A}: Let j€[)F. Since j ¢ {j}°
we have {j} € F by the ultrafilter property, hence F = {A < J: j € A}.

A cardinal number is called MEASURABLE if a non-trivial Ulam measure exists on it.
If measurable cardinal numbers exist, then, by results of [36] and [16] and [28], the
smallest measurable cardinal number m is INACCESSIBLE, i.e. g < m, furthermore,
c<m=2°<m,aswellask<mand ¢, <mforalliek = > _, ¢; <m, as the
following arguments show.

ick

1. Sublemma.

Let m be the smallest measurable cardinal and p be a Ulam measure on m. Then p
is k-additive for each cardinal k < m.

Proof. Let {A; : i € k} be a family of pairwise disjoint subsets of m with k£ < m.
and pu(| ;e Ai) # Dier 1(Ai). Obviously the set &' := {i € k : u(A;) > 0} has to be
countable, since otherwise there is some & > 0 such that {i : u(A;) < &} is infinite,
contradicting the o-additivity. Hence

Dn(Ai) = > u(Ay) = p(| | Ai) < 0, hence > u(A;) =0,

ick ek’ iek’ iek\k’
whereas u( | | Ai) = p(| | Ai) — n(| | A0) = p(|_|Ai) = D u(A) # 0.
i€k\k’ i€k ek’ i€k i€k
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We define a measure p’ on k by
W (B) = u(|_| A;) for BS k
i€B
This is obviously a Ulam-measure, since for any countable family of pairwise disjoint
B; € k, we have

Yo B) =Y 4y =n(L L 4)=n( L 4)=wlB.
€N ieN  jeB; ieN jeB; €l l;en Bi €N

And it is non-trivial, since p/({i}) = u(A;) = 0. A contradiction to the minimality
of m. O

2. Subcorollary.

Let m be the smallest measurable cardinal and k < m, then 2F < m.

Proof. Suppose 2* > m. By| 1 |it suffices to show that each measure x on m, which
is k-additive for all k < m, is trivial. Such a p induces a measure on the superset
2% > m. For each ordinal | < k and f € 2! let

U(f,0) = {g€ 2" g(j) = F() Vi <1 (e je D)}
Thus U(f,1) = {f} for I =k. For l < k and i € 2 := {0,1} let
U'(f,0) = {g € U(£,1) : g(1) = i}.
Then U(f,1) = U(f,1) L U(f, ).

By transfinite induction and succesive extension we will construct an element f €
2F with p(U(f|;,1)) = 1 for all I < k, and hence u({f}) = uw(U(f,k)) = 1, a

contradiction.
Note that f|o = & and U(f]o,0) = 2*, hence u(U(f|o,0)) = 1. Thus there is an
i € 2 such that u(U%(flo,0)) = 1, and we put f(0) := 1.

Let now 0 < < k. If [ is a limit ordinal, then by induction we have f already on

Uj<iJ = 1 such that u(U(f|;,7)) = 1 forall j < 1. Since U(fli,1) = ;- U(fl;:4)
the l-additivity implies u(U(f];,1)) = 1. Thus there is an f(I) := ¢ € 2 such that

w(U(fli, 1) = 1.

Otherwise, [ is a successor ordinal, i.e. [ = j7 + 1 for some j < | < k and by
induction hypothesis we have f € 27 with u(U(f,;)) = 1 and have defined f(j) with
w(UTG (f;,4)) = 1. Since U(f|;,1) = UG (f|;,7) there is again an f(l) := i € 2
such that p(U*(f|;,1)) = 1. O

3. Subcorollary.
Let m be the smallest measurable cardinal, and ¢; < m for alle i € k < m. Then
ek Ci < m.

Proof. Otherwise, m < )., ¢;, thus there are disjoint C; with |C;] < m and
m = | |;c, Ci- Let pu be a non-trivial Ulam-measure on m. By assumption pu({i}) = 0

for all ¢ € m, hence u(C;) = 0 by and hence pu(m) = >},., #(C;) = 0 again by
, thus p = 0. O
3.2.3 Theorem. Bounded functionals on products.

For sets J, the following statements are equivalent:

1. All bounded linear functionals on R7 := Hje,]R are continuous;

2. The only algebra homomorphisms R — R are pr; for je€J;
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3. All Ulam measures on J are trivial,
i.e. the cardinality of J is less than the smallest measurable cardinal.

(1]=]3]) is due to [29] and ([ 2]<]3]) is due to [12].

Proof. (<:) Let f: R — R be linear and bounded. We have to show that f
is continuous.

The set A := {j € J : f(e?) # 0} is finite, where e/ is the j-th unit vector in R”,
so all the coordinates are 0 except the j-th which is 1: Otherwise, pairwise distinct
Jjn € A exist for n € N with f(e/) # 0. Then {% en 1 n e N} is bounded in R”,

but f( 2y

g:T— f(a: xa), R - R4 < R’ — R is continuous (by | 3.4.6.3|) and h:= f — g
is bounded, linear, and vanishes on R) := {z e R/ : {j : z; # 0} ist finite}.

en) = n is unbounded, a contradiction to the boundedness of f. Thus

It suffices to show h = 0. Let us assume indirectly h # 0. We consider filters
contained in H := {I € J : hy := h|gr # 0}. The set {J} such a filter and the
union of a linearly ordered set of such filters is again such a filter. Thus, according
to Zorn’s lemma, there is a maximal filter F contained in H.

This mazimal filter F is an ultrafilter: Let I < J.
IfInA¢Hand I°n B ¢ H for some A,Be F,then C := An Be F < H, but
he = hrac + hienc =0, so C' ¢ H, a contradiction.

Thus, InAe Hforall Ae F,or I°n A e H for all A e F. Consider the filter
F={A cJ:3A € F with I n A € A’} generated by the trace of F to I. Then
FcF cHand IeF =F by maximality. So I € F or I¢ € F.

The filter F is a d-filter (thus defines a Ulam measure):

Let A,, € F be arbitrary and A =),y An-

Suppose Ay N A = ¢ for some A € F. Since B,, := A n ﬂk<n A € F < H there
exists a b" € RB» < R7 with |h(b"™)| = n. Because of Bn41 € By, and ), B, = &,
each ¢ € J is only in a finite number of B),’s, so b} = 0 for all but finitely many
n and thus {b" : n € N} < R’ is bounded, but {h(b”) : n € N} is unbounded, a
contradiction.

Thus, ApxnA # ¢ for all A € F and (as before) Ay, € F, because {ApnA: A€ F}
generates a filbter 7/ 2 F containing Ay and F is an ultrafilter.

Since Ulam measures are trivial on J by assumption (i.e. (| F # &), an i exists
with {i} € F € H, i.e. h(e") # 0, a contradiction to h|gwy = 0.

(=>) Let f : R/ — R be an algebra homomorphism. For each z € R/ there
is an ¢ with f(z) = x;, otherwise x — f(z) - 1 is invertible, so 0 # f(x — f(x) -
1) = f(z) — f(x) - f(1) = 0 is a contradiction. Therefore f is monotonous, since
to z,y € R7 an i € J exists with f(z) = z; and f(y) = ¥;, otherwise consider
(x — f(2))? + (y — f(y))?. Finally, f is bounded, because let B < R’ be bounded
and f(B) be unbounded. Then we find z" € B with |f( ™)| > 2™ and by replacing
2" with (z")? € B? we may assume 2" > 0. Hence 2* := Y, 22" € R/ converges

(cf. [2.2.2]) and
f<x0°>=f(Z %xu % 5e) = X g+ (X ge)
n>N n<N

n<N n>N
> Z )+0= > 1=N
n<N n<N

because of the monotonicity of f, a contradiction.
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By (1) the mapping f is continuous, so depends only on finitely many coordinates(!)
and thus is a point evaluation, because for ¢ # j we have 0 = flet-el) = fi. fi
with f* := f(e’), and hence only one of them can be non-zero.

(=>) Suppose there were a non-trivial Ulam measure p : P(J) — {0, 1}. Then
F = p~1(1) is a d-ultrafilter with (| F = . For given x € R’ we consider the
(image) filter F,, on R generated by the sets x(I) := {x; : i € I} with I € F. This is
a o-ultrafilter(!) on R and, since R only allows trivial Ulam measures p, (because
|R| = 2%0 is accessible!), there is a (unique) f, € R with {f,} € F,, i.e. 34, € F with
x(Ay) € {fz}, and for all A e F with A € A, we have J # z(A) € x(4s) € {fz},
ie. z(A) = {f.}

The mapping f : x — [, is an algebra homomorphism:

For z,y € R”, there exist A,, A, € F with {f,} = z(4;) and {f,} = y(4,) and
thus C := A, n Ay € F and z(C) = {f,} and y(C) = {f,}, so that

fry € (x-9)(C) S 2(C)-y(C) = {fu} - {fy} = {fo - fu}, Lo f@-y) = fz)- f(y)-
Furthermore, f1 € 1(J) = {1, : i € J} = {1}, hence f(1) = 1.

Because of , [ = pr; for some j € J. But, because of N F = &, thereisan A e F
with j ¢ A. Thus 1 = pr;(e?) = f(e/) = fe; € e/(A) = {0} is a contradiction. O

3.2.4 Remark. Bornologicity of function spaces.

We will show later (see also [14,S.281]) that R’ is bornological (or, equivalently,
just all bounded linear functionals on R’ are continuous, i.e. the cardinality of I is
not measurable), if and only if [],.; F; is bornological for all bornological spaces
E;.

More generally, a completely regular topological space X (rather than a discrete
set) is called REAL-COMPACT if the only algebra homomorphisms C(X,R) — R
are the point evaluations. This is the case if and only if it is a closed subspace of

a power, i.e. a product of the form RY, see [26, 2.5.2]. Thus, by a discrete
space is real-compact if and only if its cardinality is not measurable.

i€l

According to a theorem of [30] and [34], the space C'(X,R) is bornological for a
completely regular space X if and only if X is real-compact.

This can be generalized to some vector valued cases: Due to a theorem of [32], the
space C(X, E) is bornological for countably seminormed spaces E and completely
regular X if and only if X is real-compact.

Susanne Dierolf gave an example mentioned in [33], that C'(N,,, R()) is not bornolog-
ical for uncountable J, although the 1-point compactification Ny, of N is compact
and thus real-compact and R() is bornological, see .

3.2.5 Initial structures as subspaces of products.

Assume a point separating family of linear mapping f : E — Ej is given on a vector
space E with values in lcs’s Ej,. Then the initial structure on E is just given by the
embedding of E into the product [ [, Ej, which maps x € E to (fi(x))r € [ [, Ek-

For a topological Hausdorff space X, the space C(X,K) can be considered as a
subspace of the product | [, C(XK,K), with K running through the compact subsets
of X. The topology of C(X,K) is then of course that of the uniform convergence
on compact sets K < X. Note that this subspace is closed provided X is a Kelley
space, i.e. a set A is closed in X, when its intersection A n K is closed in K,
for all compact K < X. If there is a countable basis of the compact sets of X,
i.e. a countable family of compact sets K,,, so that each compact subset of X is
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contained in some K, then C(X,K) is a countably seminormed space. If X is a
locally compact and o-compact (i.e. a union of countably many compact subsets)
the C'(X,K) is a Fréchet space, i.e. a complete countably seminormed lcs.

Let G < C be open, then the space of the holomorphic functions H(G,C) is a
closed(!) subspace of C'(G,C) and thus itself a Fréchet space.

If I < R is a compact interval, then the space C*™(I,R) of the smooth functions
can be embedded by f — (f™),en as (because of [20, 4.2.11]) closed subspace in
[Len C(I,R). Thus, C*(I,R) is a Fréchet space. Its topology is that of uniform
convergence in each derivative separately. More generally, for each open set X <
R™, the space C*(X,R) can be made into a Fréchet space.

3.3 General final structures

3.3.1 Convergent power series as motivational example.

We now want to make the space F of the locally convergent power series into
an lcs. A power series Zf;o anz™ is uniquely determined by its coefficients a,,
and addition and scalar multiplication of convergent power series corresponds to
addition and scalar multiplication of their coefficients. So E obviously identifies
with {(a,) € CN : limsup,, ., |a,|"" < o0}.

A first approach would be to provide F with the initial structure as the subspace
of the product CN := [1,,en C, but unfortunately it is not closed, because the
polynomials (= finite sequences) are dense in CY (proof!). This structure is therefore
too coarse and on the other hand (a,), ~— limsup, . |a,|"™ is not a seminorm.
But if we consider the linear subspace E, of the power series with convergence
radius 1/(limsup,, ., |a,|'/") > r for r > 0, then we have a suitable norm, namely
(an)n — sup{la,|r™ : n € N}. So we can write E as union | J,.,E, of normed
spaces E,.. Now we want to make F into a (complete) lcs by means of the family
of inclusions f, : E. — FE in the most natural way possible. In particular, the
mapping f, : E, — FE should be continuous, i.e. for a continuous seminorms ¢ on
E, the composition g o f,. should be a continuous seminorm on FE,.

3.3.2 Theorem on final structures.

Let fi. : By, — E be a family of linear mappings of lcs’s into a vector space E. The
vector space E provided with the set

P = {p is a seminorm on E : Yk the seminorm p o fi is continuous on Ek}

is the not necessarily separated locally convex space that carries the finest structure,
s.t. each fi : By — E is continuous. We call this structure the FINAL STRUCTURE
with respect to the family of mappings f.

With this structure, E has the following universal property: A linear mapping
f+ E — F into a locally convex space F is continuous if and only if all of its
compositions are fo fi: By — F.

If all Ey, are bornological, so is E.

In general, neither the topology, nor the convergence, nor the bounded sets, nor the
separatedness have a direct description similar to that of initial structures.

Proof.

Finest structure. The mappings fi : Ex — E are continuous if and only if each
continuous SN of F belongs to P. So it remains to show that P describes a locally
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convex space. Let ¢ be a seminorm on FE, for which finite many ¢; € P exist and
an R >0, s.t. ¢ < R-max{qi,...,qn}. Then the same inequality also holds to the
compositions of ¢ and g; with fx, so ¢ o fi is a continuous seminorm on Fj, and
thus g belongs to P, so E together with P is a locally convex space by Lemma
, and the structure is the finest, s.t. all fi are continuous. This implies also

the desired universal property by means of .

fr f

E,——F——F
P
Al
R

Bornologicity. If f : E — F is a bounded linear mapping, then f o f is also
bounded, because continuous mappings (like fx) are bounded, according to Lemma

. Since Ej was assumed to be bornological, f o fi : Ex — F' is continuous.
Due to the universal property, f is continuous. O

Regarding the other properties that are not necessarily inherited, we restrict our
considerations to special cases.

3.3.3 Corollary. Quotient spaces.

Let E be an lcs and F a linear subspace. We provide the QUOTIENT SPACE E/F :=
{x + F :x € E} of the cosets x + F of F in E with the final structure with respect
to the canonical projection 7w : x — x + F, E — E/F. Then we have:

The les E/F carries the quotient topology, that is the finest topology, s.t.
7 : E — E/F is continuous. Furthermore, 7 is open.

The quotient space E/F is separated exactly when F is closed in E.

The continuous seminorms on E/F are precisely the mappings ¢ : x + F —
inf{q(z +y) : y € F}, where ¢ runs through the continuous seminorms of E.

If E is normable (or countably seminormed lcs) and F is closed, then E/F
is also normable (or countably seminormed lcs).

Regarding completeness we unfortunately have no general statement, but see .
Proof.

Continuous seminorms of E/F. To each seminorm ¢ on E we define a new
seminorm g by ¢r(x) := inf{g(z+vy) : y € F}. This infimum exists since ¢(z +y) >
0. We have that ¢ is a seminorm, because for A # 0 we have

qr(A\z) = inf{g(A\z +y) : y € F} = inf{qg(A(z + 1y)) : y € F'}
~inf{ Mgl +2):ze %F = F} = Mar(2)
and the subadditivity of ¢ follows from
gr(z1 +22) = inf{q(azl +a94y):yeF = F+F}

—inf{q(xl +To+ Y1 +y2) U1 eF,y2€F}

N

inf ({g(z1 +31) 91 € F} + {q(aa +32) : g € F))

inf{q(ml +y1):y1 € F} + inf{q(xg +yo) i ys € F}
qr(x1) + qr(x2).
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Furthermore, (¢gr)<1 S g<1 + F (in fact, even equality holds, and thus gp is the
Minkowski functional of g<; + F), because 1 > qp(z) = inf{q(x +y) : y € F} =
JyeF:qz+y)<l,sox=(r+y)+ (—y) withz+ye g and —ye —F = F.
If ¢ is continuous, also qp is continuous, because gr < ¢. Since qp is constant on
the cosets z + F' by construction, gr factors to a seminorm ¢ on E/F, which is also
continuous by construction of the final structure. Conversely, if ¢ is any continuous
seminorm on E/F, then ¢ := ¢ o7 is continuous seminorm on F, which is constant
on cosets « + F. So gr = ¢ and ¢ is the seminorm on E/F which is associated (by
the above construction) to g.

The statement about the cardinality of a sub-basis is now evident.

Quotient topology and openness of 7. A set V € E/F is by definition open in
the quotient topology if and only if 771(V) is open in E. We now show the equality
of the topologies and the openness of 7.

If U is open in E, then 7= }(7(U)) =U + F = |
V :=7(U) open in the quotient topology.

yer U Ty is open in E, and thus

If V € E/F is open in the quotient topology, then U := 7=1(V) is open in E. We
have to show that V is a neighborhood of each y € V' in the topology generated
by the seminorms. Then y = 7(x) and w.l.o.g. © = 0 because the topologies under
consideration are all translation invariant. There is a continuous seminorm g on F
with g<; € U and thus (gr)<1 € g<1 + F € U + F = U holds. Then §o; € V,
because

1>4z+F)=qr(z)=zeU=n'(V)=z+F=n)en(x (V) <V,
and thus V is a 0-neighborhood in the topology generated by the seminorms.

Conversely, if V € E/F is open in the topology generated by the seminorms, then
U:=7"1(V) < Eisopen in E and thus V is open in the quotient topology.

Separatedness. Let E/F be separated. Then
{0} = ﬂ{qil(()) : q is seminorm of E/F},

thus {0} € E/F is closed, and hence F = 7—1(0) S F is closed.

Conversely, let F' € FE be closed. Then F\F is open and, since 7 is an open mapping,
also m(E\F) = E/F\{0} is open. So {0} is closed in E/F. Thus, E/F is separated
because ¢(y) = 0 for all SN’s ¢ has as consequence that the constant sequence 0
converges to y and, since {0} is closed, y = 0 follows. O

3.3.4 Kernel of a seminorm.

If p: E — Ris aseminorm of an les E, then the kernel F' := Ker(p) := p~1(0) of p is
a closed linear subspace, because p(z) = 0 = p(y) implies p(Az) = |Alp(z) = [A|0 =
0 and 0 < p(xz + y) < p(x) + p(y) = 0+ 0 and pr = p, because p(z) — 0 = p(z) —
p(=y) < p(z +y) < px) +p(y) = p(z) + 0 for y € Ker(p). Thus, Ej, := E/Ker(p)
is a normed space with respect to p.

Thus, each lcs E is embeddable as a subspace in the product ]_[p E,,

with p running through the seminorms of E. EC I1.E
. . . . . q 4

The embedding is given by =z — (z + Ker(p)),. It is injective \

because F is separated. And FE carries the initial structure with l p Oy iprp

respect to this embedding since the p o pr), : ]_[q E,—-E,—->R

form a sub-basis of seminorms of the product.

R E,

p
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3.4 Finite dimensional lcs

3.4.1 Lemma. 1-dimensional lcs’s.

Let E be a 1-dimensional lcs and O # a € E, then the mapping f : K —> E, t — ta
is an isomorphism of lcs’s (i.e. a linear homeomorphism). Any linear isomorphism
of E with K is thus a homeomorphism.

Proof. Since {a} is a basis of the vector space E, the mapping f is bijective, and
each linear isomorphism f : K — FE looks like this with a := f(1). Because the
scalar multiplication is continuous, f is continuous. Since FE is separated, there is
a seminorm ¢ with g(a) > 1. Then |f~!(ta)| = |t| = ‘fl((t;)) < q(ta), ie. [f71 < q, s0
£~ ! is also continuous. O

3.4.2 Lemma. Continuous functionals.
Let E be an lcs and f: E — K a linear functional. Then:

1. f is continuous;
< 2. |f] x> |f(z)] is a continuous seminorm;
< 3. The kernel Ker(f) is closed.

If, on the other hand, f is not continuous, then Ker(f) is dense in E.
Proof. ( = ) Obvious, because |_| is a continuous norm on K.

( = ) Obvious, because Ker(f) = Ker(|f]).

( = ) It suffices to consider the case f # 0. Then f : E — K is surjective.
Since F := Ker(f) is closed, E/F is an lcs by . Because f|p = 0, the function
f factors over w: E — E/F to a linear mapping f : E/F — K.

E—— " E/ker(f)

Since f is surjective, the same holds for f Moreover, f is injective, because 0 =
f(r(x)) = f(z) = = € Ker(f) = n(x) = 0. So f is an isomorphism of lcs’s by
Lemma . Consequently, f = f o7 is continuous as a composition of continuous
mappings.

Let now f be not continuous, so Ker(f) is not closed. Let a € Ker(f)\ Ker(f).
Without loss of generality f(a) = 1. The mapping Ker(f)xK — E| (z,t) — x+tais
continuous, linear and its image is contained in the linear subspace Ker(f). However,
it is even onto, hence Ker(f) = E, because E 3y — (y— f(y) a, f(y)) € Ker(f) x K
is obviously right-inverse to it. O

3.4.3 Examples of linear discontinuous functionals.

Let E := C([0, 1], K) with the 1-norm. Then evy : E — K is linear, but not bounded
(= continuous) and Ker(evg) = {f € E : f(0) = 0} is thus dense, because we easily
find piecewise affine functions f, = 0 with { f,, = 1 and f,(0) = n.

Similarly, > : E — K is linear and not continuous (= bounded), where E is the
space of the finite sequences with the co-norm and Y : z — Zf=1 T

However, in order to find discontinuous linear functionals £ on Banach spaces, one
needs the axiom of choice. If one adds instead the axiom, that every subset of R is
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Lebesgue measurable, to set theory (see [35]), then every linear mapping between
Banach spaces is continuous (see [8]).

3.4.4 Corollary. Subspaces of co-dimension 1.

Let F be a closed subspace of an lcs E of co-dimension 1 (i.e. 3a € E\F, s.t. the
vector space E is generated by F U {a}).

Then F x K = E holds, where the isomorphism is given by (y,\) — y + Aa.

In partcular, there is a continuous linear functional f with ker f = F'.

Proof. The mapping (y,A) — y + Aa is clearly continuous. It is surjective since
the vector space E is generated by F' U {a}; and it is injective, because y + Aa = 0
with A #0 = a = fiy € F, a contradiction.

Now to the inverse map. For this we define a linear func-

F——>E—>E/F onal f: E — K by f(y + Aa) := A. The kernel of f
: ;i is I, hence is closed. Thus, f and also the desired in-
verse mapping F 3 ¢ — (x — f(x)a, f(z)) € F x K is

K continuous. O

I

3.4.5 Theorem of Tychonoff on finite dimensional lcs’s.
For every lcs E, the following statements are equivalent:

1. E is finite dimensional.
<2 Ex=K":=][;_K for some n € N. More precisely: Each linear isomor-
phism E =~ K" is also an isomorphism of lcs’s.
< 3. E is locally compact.
< 4. E has a precompact 0-neighborhood.

A topological space is called LOCALLY COMPACT if every point has a neighborhood
basis consisting of compact sets. For a Hausdorff space it is sufficient to find a
compact neighborhood for each point. And for an les this is equivalent to the
existence of a compact 0-neighborhood!

A subset K of an lcs is called PRECOMPACT if a finite set of F' exists for each 0-
neighborhood U with K € U + F = J,.p U + v, i.e. each 'uniform’ open covering
has a finite subcovering.

yeF

Proof. ( = ) We show by means of induction, with respect to the dimension
n, that every linear bijection K™ — FE is already a homeomorphism:

(n = 1) was already shown in Lemma [3.4.1]

(n + 1) Let f : K" — E be a linear bijection. Obviously, there is a natural
topological isomorphism & : K® x K =~ K"*!. Let now e"*! := k(0,1) € K®*1. Then
foklgn : K® - f(K") =: F is a linear bijection onto an lcs. So, by induction,
foklgn : K* — F is a homeomorphism. Since K" = [, K is complete, the same
is true for F', and thus F is closed in E, by Corollary . According to Corollary
(344 h:(y,\) =y + A f(e"™), F x K — E, is a homeomorphism and thus also
f=ho(foklgn xidg) ok ™ : K"l >2K"xK - F x K= E.

( = ) Is a direct sequence of the Theorem of Bolzano-Weierstrass (see [20,
3.3.4]) because then the unit cube in R™ is a compact 0-neighborhood.

( = ) Each compact set K is precompact as {U + x : @ € K} represents an
open covering.

( = ) Let U be a precompact (absolutely convex) 0-neighborhood. For the
0-neighborhood %U there exists a finite set F', s.t. U € F'+ %U and we may replace
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F by the generated finite-dimensional subspace, which we again denote F'. We now
want to show that F' is equal to E. Since F' is finite-dimensional, F' is complete
because of ( = )7 so F' is closed by Corollary . Now let’s look at the
canonical projection 7 : E — E/F. The precompact set U is also bounded: For each
(absolutely convex) 0-neighborhood W there is a finite set A with U € A + W,
and since W is absorbent and A is finite we find a K > 0, s.t. A € K- W, so
Uc (K +1)W. Thus, V :=#(U) is a bounded 0-neighborhood in E/F, so E/F is
normable by Theorem , the family Q%V is a 0-neighborhood basis and thus

N, 5=V = {0}. Furthermore we have V =n(U) S n(F+ 1 U) =0+ 17(U) =1 V.
From this we obtain by means of induction V € 5=V and thus V € (), oy 5V

{0}. Since V must be absorbent as 0-neighborhood, E/F = {0}, i.e. F = E. O

3.4.6 Corollary.

1. On K™, all norms and more generally all point-separating sets Py of semi-
norms are equivalent (that is, generate the same topology).

2. Let F be a finite dimensional subspace of some lcs E. Then F is closed and

consequently E/F separated (see also )

3. If f : E — F is a linear mapping of a finite dimensional lcs E into an lcs
F, then f is continuous.

4. If F is a closed subspace of an lcs E and F has finite co-dimension in E,
i.e. E/F is finite-dimensional, then E as lcs is isomorphic to F x (E/F).

Proof. Let p be a norm on K™, then according to Theorem of Tychonoff
(K™, p) is topologically isomorphic to (K™, ||_||e), so the norm p is equivalent to
the co-norm. Consequently, any two norms are equivalent.

Since F' is isomorphic to K™ and K™ is complete, F' is also complete, and thus
closed in E.

Without loss of generality £ = K™. Each linear f can be written as f(x) =
Sy pri(x) f(ex), where ey, are the standard unit vectors of K™. Since the projec-
tions pr;, are, by construction of the product, continuous, also f is continuous.

We consider the canonical projection = : F — E/F. Since it is surjective,
there exists a linear right-inverse f (We choose inverse images in F under 7 of a
basis in the finite dimensional space E/F). Since E/F is separated (F' is closed),
f is continuous by . Now the desired isomorphism E — F x (E/F) is given by
x> (x — f(m(x)),n(x)). Its inverse is (y, z) — y + f(2). O

3.5 Metrizable Ics

3.5.1 Lemma. Products of metric spaces.

Let E,, be normed spaces. Then the topology of E :=[], .x En is metrizable.

neN

Proof. We define a metric d on product E by the pointwise convergent series

=2 T e — |

This is well-defined, since % < 1, and (2%)” is summable, so by the

Hélder inequality the inner product d(z,y) = (5 n|(%)n> exists. The
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A-inequality holds, because t — l%rt = %l/t is monotonously growing and thus
the estimate
o B8 _ a+ B+ 2a8 - a+p+af - a+p S 7
l+a 148 l1+4+a+p+aB” 1+a+pB+af 14+a+8 1+

holds for v < a + 5.
<

It Hxi - yi”

L i — i 1 1 1 1 1
d(z,y) =3 . AT YN P WL [
(@,9) Z 20 T+ | — i Z 9i lzi—y H+Z 9i ontl Tom on—1

1 ; 1
sarr for all i < n, then d(z,y) < 57=r, because

7 i<n i>n

Conversely, let d(x,y) < for all ¢ < n, because

< = L
2"(n+1) ~ 24(n+1)

m, then |lz; — yil < &
1

Lz — il
5 T gl <Y<
lzi =gl _ 1
1+H$i—yiH = n+1
=n-|z; —yf <1

Thus d generates the same topology as the sub-basis {|| pr,,(z)| : n € N} of semi-
norms. O

3.5.2 Corollary. Characterization of metrizable lcs’s.

Let E be an lcs. Then the topology of E is metrizable if and only if E is a countably
seminormed lcs. For such lcs’s, a translation invariant metric generating the topol-
ogy is complete if and only if it is complete as locally convex topology. A Fréchet
space is nothing else but a complete metrizable lcs.

Proof. Let E be metrizable. Then the sets U, := {z : d(z,0) < 1} with n € N
form a 0-neighborhood basis. Consequently there are continuous seminorms p,, with
(pn)<1 € Up. These p, form a sub-basis: Namely, if p is a continuous seminorm,
then p; is a 0-neighborhood, so an n exists with (p,)<1 € U, € p<1, hence p,, = p

by [L3.7]

Conversely, if {p, : n € N} is a sub-basis of the seminorms of E, then F may be
considered as subspace of the product [ [,, £, as in , where E,, is the normed
space resulting from FE by factoring out the kernel of p,. According to Lemma
, this product is metrizable, and so is the subspace since it carries the trace

topology by .

Completeness. We only have to show that a sequence (z,,),, is Cauchy with respect
to the metric if and only if it is so with respect to the seminorms. However, since the
metric is translation invariant, the former means that for each € > 0, the difference
Ty — Tm € Ue :={y : d(y,0) < &} for n and m sufficiently large. Since the U, form
a 0-neighborhood basis, as well as the balls p_., this is equivalent to the inequality
p(x, — ) < € for n and m being sufficiently large for all p and all € > 0. O

3.5.3 Lemma. Quotients of Fréchet spaces.

Suppose F' is a closed subspace of a Fréchet space E, then E/F is a Fréchet space,
and every convergent sequence in E/F has a convergent lift.

Proof.

Lifts of convergent sequences. Let y, — y = 7(z) in E/F and let py < pri1
be a countable basis of the seminorms of E. So pr(y, —y) — 0, i.e. Ing € N
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Vn = ng: pe(yn — y) = inf{pp(a’ — x) : 7(2) = yn} < +. Without loss of generality,
k — ny is strictly monotonously increasing. For ny < n < ngy; we thus may choose
Ty € T H(yn) with pr(x, — ) < % This lifted sequence converges to x, since for
€ > 0 and seminorm p; we find k£ > j with % < ¢ and for each n > ny there exists
a k' > k with nyy < n < ng 41 and hence

i ) < prr( ) < 1 < ! <
Pj\Tn —T) S Pr/(Tn — X k"\k\E
Completeness. Let A, := ﬁ and (yn)nen be bounded in E/F'. Because of Lemma

, it suffices to show that >}, Any, converges to E/F. But since 5=y, — 0
in E/F, by the first part there exists a convergent and thus bounded sequence
z, € B with 7(x,) = Q%yn Since E is complete the series Zn Q%xn converges in

E, and because of the continuity of 7 the same holds for the series Y., 7(zxan) =
Zn ﬁyn O

3.6 Coproducts

3.6.1 Lemma. Structure of coproducts.

Let Ey, be lcs’s. By the COPRODUCT or DIRECT SUM of the Ej we understand the
vector space

E = ]_[Ek = {x = (xk)x € HEk sz = 0 for all but finitely many k}
k k

provided with the final structure with respect to the injections inj,, : Ey — E, which
map x € E), to the point injx(x), whose k-th component is x and all others are 0.
The coproduct is an lcs.

A sub-basis of the seminorms of E is formed by the seminorms p(x) := >, pr(zk),
where the py are the seminorms of Ey. Note that the sum makes sense since only
finite many summands are 0.

A set is bounded in | [, E; if it is already contained and bounded in a finite partial
sum.

The coproduct of (sequentially) complete space is (sequentially) complete.

The inclusion | [, Ex — [, Ex is continuous. And if the index set is finite, then
the coproduct will coincide with the product.

If the index set is countable, then the seminorms p(x) := sup{pg(zx) : k}, with
arbitrary seminorms py of Ey, form a sub-basis.

Proof.

Sub-basis of seminorms. For each k, let p; be a continuous seminorm on E}.
Then p(x) := >, pr(xy) is a well-defined seminorm on E. The composition with
inj, is poinj, = pi and thus continuous, so also p is continuous by the construction
of the final structure.

Conversely, let p be a continuous seminorm on E. Then py, := p|g, = poinj, is one
on Ey, and p(x) = p(>,. inj,(xx)) < X pr(zk). So these seminorms form a sub-basis
for E.

Separation is now clear.
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Countable index set. Since p(x) := supy, pr(zr) < X, Pr(zx), this p is a contin-
uous seminorm. Conversely, because of the Holder inequality

Zpk(xk) = Z %(Qkpk)(xk) < Sup{Qkpk(ajk) Kk} Z 2%7
k k A

So the suprema generate the same continuous seminorms as the sums do.

Finite index sets. In case of a finite index set, we have max{py,...,pn} as a basis
and this is also a basis for the product.

Continuous inclusion in the product. The projections pr; : [, Ex — Ej are
continuous because of the final structure, since the compositions with inj, are the
identity for 7 = k£ and 0 otherwise. Because of the universal property the inclusion
(pry)k = [ 1z Bk — [, Ex is also continuous.

Boundedness. A set that is bounded in a finite partial sum, is also bounded in
the total sum, since the inclusion is continuous.

Conversely, let B be bounded in E. Note first that any finite partial sum [ [, E
is a locally convex subspace of [ [, Ej, because (pry)iex : [ [ Ex = [lpex Ex =
[{1cx Ex provides a continuous linear right inverse to the inclusion [ [, ., Er —
L1 Ex — [ [; Ex- It suffices to show that K := {k : pr;(B) # {0}} is finite, because
B < [ ], pri(B). Suppose K would be infinite. We choose a countable subset of K
that we can identify with N. For each k € N we choose a matching point b* € B
with bﬁ # 0. Since E} is separated, a continuous seminorm pj exists on Ej with
pr(bf) = k € N. For the k ¢ N we choose py = 0. Let p(z) := >, pr(2x). Then
p is a continuous seminorm on E, and thus p(B) is bounded, in contradiction to
k = pi(bF) < p(b*) € p(B) for all k e N.

Completeness. We show sequential completeness first. Let (z™) be a Cauchy se-
quence. As such, it is bounded, i.e. contained in a finite partial sum. Since this
partial sum forms a locally convex subspace of | [, Ej, the sequence is a Cauchy
sequence in this finite sum = product, and thus it is convergent in the finite product

by and therefore also in F.

Now the completeness: Let (z°) be Cauchy in [ [, Ej. Then (z%) is Cauchy for each
j, so z* converges coordinatewise towards some z® € [ [, E¥. We have 2® € [ [, Ej:
In fact let K := {k : 2}° # 0}. Choose for k € K a continuous seminorm p; on Ej
with pp(z)?) > 1, put p := 0 for k ¢ K, and let p(x) := >, px(2r). Then there is
an ig with pg(z} — 21) < p(z’ — 27) < 1 for i,j > iy and all k. Consequently, also
pr(zh, — xf) < 1 for i > i and all k. Because of z* € [ [, Ej, we have 2} = 0 for
almost all k, so pi(z3°) < 1 for almost all k, hence the carrier K of 2% is finite.

Finally, 2 — 2% converges in [ | « Bk, because let p be a seminorm of the specified
sub-basis and let € > 0, then Y}, py(z}, — x]) =: 10(30Z —27) < ¢ for all i,j > io.
Hence for given i > i let K be the finite set {k : z}, — 2" # 0}, then p(z* — 2%) =
Ser Pre(@h — ) = lim; ¥, g pr(zh — 27) < €, i.e. 28 — 2 with respect to the
structure of [ [, Ej. O

3.6.2 Bornological vector spaces.

Let E carry the final structure with respect to a family of linear mapping fi : Ex —
FE whose images generate the vector space E. Then E can also be represented as
quotient of the coproduct | [, Ej:

Namely, let F' be the kernel of linear mapping >}, fr : [ [, Ex — E, which maps
x = (xp)r to D fr(zx). This mapping is surjective, because the images fi(Ey)
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generate the vector space E by assumption, and it is continuous because of the final
structure. Consequently we obtain a bijective (and because of the final structure of
the quotient) continuous mapping (] [, Ex)/F — E. This is even a homeomorphism
since F carries the final structure with respect to the mapping fx.

ot
anJ

F(—>HkEk*»' ]_[kEk

Let now E be an arbitrary lcs. For each bounded absolutely convex set B we may
consider the linear subspace Ep of E generated by B. Since B is by construction
absorbent in Epg, the Minkowski functional pg is a seminorm on Epg. It is even a
norm, because 0 = pp(z) = inf{\ > 0: z € AB} = 3\, — 0 with ﬁx € B, so

T = )\n%x — 0 by and consequently z = 0. Furthermore, the inclusion
Ep — F is bounded on the open unit ball € B, so it is even continuous, because

E is normed (and thus bornological by )

An les E carries the final structure with respect to all these inclusions Eg — E, if
and only if E is bornological:

(=) Namely, if f : F — F is a bounded linear mapping, then f|g, : Eg > E — F
is a bounded linear mapping on a normed space, i.e. continuous by . If £
carries the final structure with respect to subspaces Ep, f is continuous, i.e. F
bornological.

(<) Conversely, let E be bornological. The final structure on E with respect to the
mappings Ep — F is always finer or equal to the one given on E. So let’s consider
the identity f from E with the given structure to E with the final one. Let B € F
be bounded and without loss of generality absolutely convex. Then the inclusion
Ep — F is continuous and hence bounded with respect to the final structure on E.
Thus, f(B) is bounded, i.e. f is a bounded linear mapping, and since F is assumed
to be bornological, f is continuous. So the two structures coincide.

Consequently, the bornological vector spaces are exactly the quotients of coproducts
of normed spaces. Compare this with the dual description of lcs’s in .

3.6.3 Test functions and distributions.

A partial differential operator (PDO) is an operator of the form
D= Z a6 0%,
apeN™

where 0% denotes the iterated partial derivative of order o = (aq,...,am). We
restrict our considerations to the case of constant coefficents a, € K. Solving the
associated partial differential equation (PDE)

D(u) = f
amounts in finding for given functions f corresponding functions u.

The idea is, that the solution operator G : f — wu should be a kind of integral
operator, i.e. have the form

G(f):x— o Yz, y) fly) dy

for some (integral kernel) v : R™ x R™ — R. This is the continuous pendent to the
matrix representation G(f)(é) = >J;7:,; f; of a linear mapping G.
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Since D obviously commtes with partial derivatives, the same is to be expected for
the solution operator G. Partial integration yields that d;y + d2y = 0 and hence
~(x,y) depends only on the difference x — y, i.e. G could be writen as convolution
operator
GUf)y=y*frz—| Al@—y) fly)dy.
Rm
That G is inverse to D gives

f=D(G(f)) = D(y* f) = D(y) * f,
since partial derivatives commute with convolution. Thus § := D(v) should be
a neutral element for the convolution of functions. However such a function can-
not exist: Otherwise f : y — d(—y) - y? would yield 0 = f(0) = (5 » £)(0) =
§am 0(—y)? y? dy, hence §(—y) = 0 for almost all y # 0.

Nevertheless G : f — v« f should be a linear mapping between spaces of functions.
Since

(e )@ = |

where S defnoted the reflection g — (y — g(—y)) and T, the translation g — (y —

g(y — x)), it would be enough to determine f — (v f)(0) = ;.. v(—y) f(y) dy,
which seems to be a linear functional on some space of functions f. One calls such

a functional a DISTRIBUTION.

o — ) F(y) dy = j (S0 T)(1)(w) £ (y) dy,

m m

We have to figure out on which functions the distributions should act on, and
with respect to which topology they should be continuous. Of course, we want the
notion of distributions to be an extension of that of the functions, so at least we
should be able to think of continuous functions g € C(R™,R) as distributions by
g(f) == glf) == Sz 9(y) f(y) dy. But for the integral to make sense, the product
g- f must approach 0 sufficiently fast. Since g may grow arbitrarily fast, f must even
have compact support. As a first candidate for the space of test functions f, the
space of the continuous functions with compact support comes to ones mind. On it
we already met two structures, namely as subspace of the Fréchet space C(R™,R),
and as subspace of the Banach space B(R™,R). Is the linear functional f — {g|f)
continuous for any continuous function ¢? In particular we may choose g = 1, Then
lfny = SRM fn, and for the convergence of (g|f,) the uniform convergence (on
compact sets) of f, is not enough. Because of (., |f| < volume(supp(f)) - | .
only those sequence should converge in the test space which converges uniformly
and their supports are contained in a fixed compact set. Let Cx(R™,K) be the
space of the continuous functions from R™ to K, which have support within the
compact set K € R™. Then Ck(R™,K) provided with the uniform convergence
is a closed subspace of the space Cp(R™,K) of continuous bounded functions and
thus a Banach space. The space C.(R™, K) of all continuous functions with compact
support is then the union of these Banach spaces Cx (R™, R) where K runs through
all compact sets or just a basis of the compact sets (i.e. each compact set is contained
in one of the sets in the basis). So we may consider the final topology on it.

We then have to verify that the convergent sequences are really those that already
converge in one step Cx (R™,K), and that sequential continuity suffices.

Since we want to use distributions for solving differential equations, they have
to be differentiable. If two functions g and f are differentiable, then {d;g|f) =
—{g|d; f) as is shown by means of partial integration. So for a distribution f we could
define the partial derivative ;9 by 0;g(f) := —g(0;f). Hence our test functions
should be even smooth, and we need to do the same construction for C°(R™, R) =
Uk CZR™,R). The les CP(R™,R) defined in this way is also denoted D. The
corresponding notation for the Fréchet space C*(R™, R) is £.
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3.7 Strict inductive limits

3.7.1 Lemma. Structure of strict inductive limits.

Let a vector space E be given, which can be written as a union of an ascending
sequence E, of linear subspaces. Furthermore, suppose that the E,, are lcs in such
a way that E, is a closed locally convexr subspace of E, 1 for alln e N.

The space E with the final locally convex structure with respect to all inclusions
E,, — E is called STRICT INDUCTIVE LIMIT of the E,, and one writes E = h—I>nn E,.
We call the E,, the STEPS of the inductive limit.

Each seminorm of any E,, has a continuous extension to E.

Each E,, is a closed locally convex subspace of E. The space E is separated.

A set is bounded in E if and only if it is contained in some step and bounded there.
If all E,, are (sequentially) complete, then so is E.

Proof.

Continuation of the seminorms. Let p, be a seminorm of E,,. Since F, is a
subspace of E, 1, there is a continuous extension p,,; on E,.; by . By
induction we obtain a sequence of successive extensions py to Fjy for k = n. Let
Pk = PnlE, for k <mn and let p := J, pr. Then p is a seminorm on E and the trace
on each step Ey is pg. So p is continuous by the definition of the final structure.

It immediately follows that E is separated.

Steps as closed subspaces of FE. Since by the previous claim the continuous
seminorms of E,, are just the restrictions of the continuous SN’s of F, each step E,,
carries the trace topology of E. Let i — x; be a net in E,,, which converge towards
T in E. Because of E = | J,, Ej, there is a k > n with z, € Ej. Since E, 2 E,, is a
topological subspace of E, the net x; converges in E} towards x.,. By assumption,
however, F,, is closed in Ej, and thus is xo € E,,, i.e. E, is closed in E.

Boundedness. Let B € E be a bounded set. Because of the previous claim, it
suffices to show that B is contained in some step (it is bounded there automatically).
Suppose B & E,, for each n € N. We may choose b; € B\E; and n; with b, € E,,,.
Recursively we obtain a strictly monotonously increasing sequence (ny) and by €
E,, n(B\Fn,_,)- Let p; be a continuous seminorm on E,, with p;(b;) = 1, which
is possible because by ¢ F; so by # 0. We are looking inductively for continuous
seminorms py on E,, , with py |E%71 = pr—1 and pg(bx) = k: For this we consider the
subspace F of E,, generated by F,,, _, and by. Since b, ¢ E,,,_,, (£, \) = z+Aby by
is an isomorphism £, , x K = F. On F' we define the continuous seminorm

q by q(z + Abg) := pg—1(z) + k- |A|. By there is a continuous seminorm py,
on E,,, which extends g¢. Let, finally, p := |, px. Then p is a continuous seminorm
on E and p(b;) = k, a contradiction to the boundedness of B.

Sequential completeness. Let x,, be a Cauchy sequence in E. Then {z,, : n € N}
is bounded, thus included in some FE,, by what we have shown above. Since F,
is a locally convex subspace of F, x,, is a Cauchy sequence in it, thus converges
towards an x in F,, hence also in F.

Completeness. Since a Cauchy net (z;); is not necessarily bounded, we can not
conclude, as for sequences, that almost the entire net is already contained in one
step. But we now show that this is almost the case:

Claim: 3n YU abs.conv. 0-neighborhood Vi 3j > i3Jue U :x; +ue E,.
Suppose this were not the case, i.e. Vn U, iy, Vj > i, : (x; + Un) n B, = &.
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Without loss of generality 2U,4+1 < U,. The set U := |J, > Ui n E; is an
absolutely convex 0-neighborhood, because U n E,, 2 U, n E,. and hence the
restriction of the Minkowski functional of U to F,, is a continuous seminorm. Thus
an i exists, s.t. x; —x, € U for all 5,k > 7. Let n € N and j > i be choosen such
that x; € E,, and j > i,. Then there exists an m (without loss of generality m > n)
and uy, € Uy N E, for each k < m with ; —x; = >} jug. Then a; — Y7 up =
T + Z;nznﬂ u € E, n (z; + Uy), because of 2Uy41 < Uy. This is a contradiction
to (z; + Up) N E,, = .

We now consider the net (i,U) — x; + u € E,,, where j > ¢ and u € U are chosen
as in the claim and we use as index set the product of the original one and a 0-
neighborhood basis. This net is Cauchy in E,,, because for every 0-neighborhood V'
exists an absolutely convex 0-neighborhood U with U+ (U —U) = 3U € V and an ¢
such that for all ¢’,7” > i and all U’,U"” < U with corresponding j’, 7", v’ € U’, and
u” € U” we have zj; —xj» € U and thus zj; + v’ —xjv —u” = (xj —zjn) +u' —u" €
3U < V. Thus this new net converges towards an x, € F,. We claim that the
orginal net converges to x4, as well: For each 0-neighborhood W let V' be choosen
so that 3V € W. Then there exists an ¢ and a U (without loss of generality U < V)
with z, —x; € V for all k,j >4 and x; + u — x5 € V for the corresponding j > i
and ue U. Thus 2 — 2o =2 — 2+ 2 — 2 € V+H(V—-u) S V+V-VW
for all k > 1.

For a proof by means of filter see [14, S.86]. O

3.7.2 Example. The space of test functions.

We may now consider the space C(R™,R) of the smooth functions with compact
support as strict inductive limit D := lim O (R",R) of the steps CF(R",R) :=
{f e C*(R™",R) : Trg < K}, where K runs through a basis of the compact sets,

e.g. ({x : || < k})ken. This space is complete by and bornological by

because the C%(R™,R) are Fréchet spaces as closed subspaces of the Fréchet space

C*(R™,R). The continuous (= bounded = sequentially continuous, see [2.1.4])
linear functionals on D are called DISTRIBUTIONS.

A “discrete” version is the space KN = h_l'I)ln K™ of the finite sequences.

3.8 Completion

We now want to tackle the problem of what we can do when a space turns out to
be incomplete.

3.8.1 Definition. Completion.

By the COMPLETION of an les E, we understand a complete les F

together with a continuous linear mapping ¢ : £ — E, whichhas p_*_ f

the following universal property:

For each continuous linear mapping f : £ — F' into a complete X\ !
les F', there exists a unique continuous linear mapping f : E — F
with fo. = f.

3.8.2 Remark. Uniqueness of the completion.

The completion of any lcsE is unique up to isomorphisms. Namely let ¢; : E — E?
for i = 1,2 be two completions of E. Then there are unique continuous linear
maps i1 : E' — E? and iy : E? —» E! with I 041 = 13 and i1 0ts = ¢1. So
I3 011 0ty = 1 = id oLy, and because of the uniqueness of f also i3 o 77 = id.

andreas.kriegl@univie.ac.at © 1. Juli 2019 47



3.8 COMPLETION 3.8.3

3.8.3 Lemma. Neighborhood basis of completion.
Let E be a dense subspace of an lcs E.

e The continuous seminorms of E are exactly the unique extensions of those
of E.

o IfU is a 0-neighborhood bafis of E, then the closures {U : U e U} in E form
a 0-neighborhood basis of E.

e Each continuous linear mapping f : E — I into a complete lcs F' has a
unique continuous linear extension f : E — F.

e In addition, if E complete, then E — E is a completion of E.

Proof.

Seminorms. By , each continuous seminorm p of E has an extension p to
E. Since F is dense in F, p is uniquely determined.

0-neighborhood basis. It is enough to show p<i < p<r (Then we even have
equality, because p<1 S p<1 and thus p<g S p<y = Sl). So let p(Z) < 1. Since
E sits densely in E, there exists a net (x;) in E which converges to Z (consider
as index set {(V,x) : V ist neighborhood von & und x € V n E} with the ordering
(V,z) < (V',2") :« V 2 V' and as net the mapping (U, z) — z). In case p(Z) < 1,
we have z; € p<1 N E = p<«1 ﬁnally, ie. T € p<i. Otherw1se p(z;) # 0 for all

sufficiently large ¢ and thus y; := € p<1 and y; — p(w) =Z.

p(w )
Continuous extensions. Let f : E — F be continuous linear and & € E be
arbitrary. Since E' is dense in E, there is a net (z;) in E which converges to &
in E. Since f should be continuous, f( ) = f(hmZ x;) = limy f(xz) = lim; f(x;)
must hold. So there is at most one continuous extension f , and this has to be
given by f () = lim; f(x;). Since z; is a Cauchy net and f is uniformly continuous
(by linearity), the same holds for f(z;), and thus f(z;) converges because F' is
complete.

We define f(Z) as this limit and have to show that it does not depend on the
choice of the net. Let therefore z; be a second net in E, which converges towards
Z. We consider as an index set the product I x J with the product ordering, i.e.
(i,7) > (7', §") == (i > i")&(j > j') and as net the mapping (i,7) — x; j := x; — x;.
This net converges now towards lim; z; — lim; z; = £ — & = 0, thus the image net
f(zi;) = f(xs) — f(z;) converges towards f(0) = 0, on the other hand its limit
is just lim; ; f(z; ;) = lim; f(2;) — lim; f(2;), which means that the limit f(Z) is
unique.

The extension f is linear: Let £ and y in EN'7 then nets x; and y; exist in E with
x; — 2 and y; — g. So:

F(@+2g) = f(lima; + Aimy;) = f(hm(xi +Ay;))

= hrnf(avZ + \y;) = hmf(ml + Ay;) = hmf(xl) + A (y;)

Y]

= lim f(@i) + Mim f(y;) = f(2) + M ().

The extension f is continuous:
(Proof by means of seminorms) Let g be a continuous seminorm on F. Then g o f

is one on F, so by there is a continuous seminorm (;o\j” on E, which extends
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go f. We have 50\? = qof, since

(40 N@) = (g0 Nilima;) = lim (g f)(w:) = lim(go f)(,)
= q(lim f(2;)) = q(f(limz,)) = (¢ f)(#)

(Proof by means of 0-neighborhoods) Namely, let V' be a closed O—neighbgrhood
of F and U one of E with f(U) < V. Then U is a 0-neighborhood in E with

fO)ycflU)cv =V (Namely, let 7 € U, then there is a net z; in U < E which
converges to Z. So f(¥) = lim; f(z;) e V =V). O

3.8.4 Theorem. Existence of the completion.

Each lcs E has a completion v : E — E, which is unique up to isomorphisms. If £
is normable (or metrizable) then the same holds for E.

Proof. We first deal with the case that E is a normed space. So we are looking for a
complete space in which F can be embedded isometrically as a subspace. By ,
the dual space E' := L(F,K) is always complete, hence also the bidual E” := (E')’.
Now let’s consider the mapping ¢ : E — E”, given by (z) = ev, : ' — 2/(x). This
is clearly well-defined, linear and continuous, because
[e(@)] := sup{|e(2) ()] « "] = 1} < [l2].
—_—
|2 () 1< ]|l
Remains to show that ¢ is isometric. All it takes is to find for each z € F an
' € E' with 2/(z) = |z and |2’'| = 1. Geometrically this means that an affine
closed hyperplane H exists which contains x and is disjoint from the open ball
{y : |yl < |z|}, ie. is tangential to the unit sphere at x:
(=) The affine hyperplane H := {y : 2/(y) = |z|} satisfies z € H and ||z| = 2/(y) <
|#'[ ]l = [yl for each y € H.
(<) Conversely, let H be such a closed affine hyperplane, i.e. by there exists
0#a' e B and c € K with H = {y : 2/(y) = ¢}. Since 0 ¢ H we have ¢ # 0 and
thus without loss of generality ¢ = ||z|. Since x € H we have |z| = 2'(z) < |2/| |=]
ie. 1 < ||a'|. Suppose 1 < |z'| = sup{|2’(z)| : ||z]| = 1}. Then there exists a z with

[z] =1 and 2'(z) > 1, hence y := x”,ﬂ)z € H but ||y = J‘fﬂ) < ||#], a contradiction.
The existence of such a hyperplane will be shown in (see also |5.1.10|) by
means of the theorem of Hahn-Banach.

As E we now take the closure of image +(F) in E”. Then ¢ is an embedding from
E onto the dense subspace ((F) of the Banach space F, and thus is a completion

by Lemma .

Now the case of a general Ics E. By , E can be considered as the subspace of
a product of normed space E,. This, in turn, can be understood as the subspace of

the product of the completions E;, of the factors. So F is a subspace of a complete
Ics. For E we may now take the closure of F in this product. O

3.9 Complexification

3.9.1 Lemma. Complex vector spaces.

A wvector space E over R is a vector space over C if and only if an R-linear mapping
I: E — E exists which satisfies I2 = —id.
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Proof. If E is a vector space over C, then I is given by I(z) := ¢ x. Conversely, we
define (a +ib) -z :=a-x +b-I(x) and thus obtain a vector space over C. O

3.9.2 Corollary. Complex locally convex spaces.

An lcs E over R is an lcs over C if and only if there is a continuous R-linear
mapping I : E — E that satisfies I? = —id.

Proof. As seminorms of the complex vector space E we use the positively homo-
geneous (with respect to scalars in C) seminorms of the real lcs.

If p is a seminorm of the real Ics and A = a + i b € C, we define another seminorm
pa : © — p(Ax) of the real lcs. If E is a complex lcs, then the complex scalar
multiplication and in particular I is continuous, hence ¢ := p o I is a continuous
seminorm of the real lcs. We have

pa(z) = p((a +ib)z ):p(a$+bf( ) < lal p(z) + [b] ()

< la+iblv/p(x)? + q(x)? < |a+ib| (p(x) + q(x)).

Thus pc(x) := sup{px(z) : |\| = 1} defines a seminorm of the complex vector space
with p < pc < p + ¢. Consequently these seminorms of the complex vector space
define the same topology as the seminorms of the real Ics. O

3.9.3 Remark. Complexification.

We are now trying to produce a complex vector space from any real one. Note
that the complex vector spaces of complex-valued functions which belong to some
real vector space of real-valued functions, usually consist of pairs of functions of
the real vector space, namely the real and imaginary parts of the complex-valued
function. So, in general, we define the COMPLEXIFICATION E¢ of a real vector space
E as Ec := C®r F = E x E, and write the elements (z,y) € Ec as  + iy. The
multiplication with z = a + ib € C is then defined by z - (2 ® w) := (22') @ w, i.e.
(a+1ib) - (x+1iy) := (ax —by) + i(ay + bzx). Obviously, this makes E¢ into a complex
vector space and the mappings ¢ : £ — E¢, ¢ — x + 10 as well as Re : E¢c — F,
(x + iy) — x are R-linear.

The usual sub-basis of seminorms on the real lcs E x FE like (z,y) — p(x) + p(y),
like (x,y) — +/p(z)? + p(y)?, or like (z,y) — max{p(z),p(y)}, are not seminorms
for the complex vector space. To obtain such we consider the continuous seminorms
pz(w) := p(Re(zw)) for |z| = 1 and seminorms p of E and then define p¢ := sup{p, :
|z| = 1}. We have that pc is a well-defined real seminorm on E¢, because by the
Holder inequality for z = a + ¢ b we have

p.(x +iy) = P(me((a +ib)(z + zy))) —

= plaz — by) < |a|p(z) + [blp(y) < [2[v/p(2)? + p(y

It is even a complex seminorm, because pc(z w) = pc(w) obviously holds for all |z| =
1. Moreover, max{p(z),p(y)} < pc(z + iy) < p(z) + p(y), hence these seminorms
generate the topology of the product=coproduct.

Thus we can use as generating seminorms on E¢ the family of all pc, where p runs
through the continuous seminorms of F.

3.9.4 Proposition. Universality of the complexification.

Complezifying E — E¢c := C®Qr E := E x E provides the following isomorphisms
for vector spaces E and G over R as well as F' over C:
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1. First universal property:
Leo(Be, F) = La(E,F), h>hou, (f€:a+iy— f(2) +if(y) < [

The real-linear mappings f : E — F in each com- Ec ¢ E
plex vector space F' correspond in a bijective man-

ner to the complea-linear mappings f€ : Ec — F N /
by virtue of fCo1= f. r

2. Second universal property:
Le(F, Be) = Lu(F, E), h—Reoh, (fo: 2 f(@) = if(iz)) < f.

The real-linear mappings f : F — E on each com- Ec Re E
plex vector space F' correspond in a bijective man-

ner to the complex-linear mappings fc : F — Eg¢ k /
by virtue of Reo fc = f. F

3. Lp(E,G)c = Lp(E,Gc), f+ig — (sc > f(x)+ig(x)), (Reoh, Imoh) « h.

4. L]R(E,G)(C = LR(E(C,G),
friges (o+iy f@) = g)), (hor,~hoTow) <.

All these isomorphisms are C-linear with respect to the complex structures given on
Lr(F,E) byi-f:=fol and on Lgx(E,F) byi-f:=1of.

For lcs’s all isomorphisms are also homeomorphisms when we provide Ec with the
product structure.

If all spaces are Banach spaces, however, only the isomorphisms in and are
1sometries.

Proof. Obviously, the specified mappings are continuous, linear, and the compo-
sition on Lg(F, F') is the identity. Likewise it is so on L¢(Eg, F'), because h(x+iy) =
hiz) +ih(y) = (hou)(z) +i(hod)(y).

Let f : FF — E be a R-linear mapping. If a C-linear mapping fc : F — E¢
exists with Re o fc = f, then IJmo fc = —Reoio fc = —Reo fcoi = —foi
since Re(i(x +1iy)) = =Im(z +iy). So fc is uniquely defined and given by fc(z) =
Re fe(z) +iTIm fe(x) = f(x) —if(iz). In fact, this defines a C-linear mapping fc,
because it is obviously R-linear and fc(iz) = f(iz) — if(iix) = f(iz) + if(z) =
i(f(x) —if(iz)) =i fe(x).

That the universal property is also valid for continuous and for bounded linear
mappings can be seen as follows:

We have p o Re < pc, i.e. Re: E¢ — E is continuous, and conversely

(pc o fe)(2) = pe(f(2) — if(iz)) < V/p(f(2))? + p(f(i2))?,

hence fc¢ is continuous provided f is so.

The bijection Rey : Le(F, Ec) — Lg(F, E) is a topological linear isomorphism
because it is continuous and R-linear and its inverse map is given by f — f—i- f-i.
It is also C-linear if we consider Lg(F, E) as a complex vector space via ¢ - f :
x — f(ix), because (i - Rex(f))(z) = Rex(f)(ix) = Re(f(ix)) = Re(i f(z)) =
Re((i f)(z)) = (Rex (1 f)) ().

Obviously, the mappings given are continuous linear and inverse to each other.

The isomorphism Lg(Ec,G) =~ Lr(F, G)c of complex les’s is given by:
h — (z — h(z),z — —h(iz)) with inverse (f,g) — ((z +iy) — (f(z) — 9(v))),
because one composition results in h : (z +iy) — h(z) +h(iy) = h(x+iy) and the
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other in (f,g) = (z — f(z),x — —(—g(x))). The inverse mapping is also complex-
linear, because i-(f, g) = (—g, f) is mapped to (z,y) — —g(x)=f(y) = f(-y)—g(z).

The statement about isometries is shown in [3.9.6.2 | and [3.9.6.3 ] O

3.9.5 Corollary. Complexification of spaces of linear mappings.

For real vector space E and G we obtain:

L¢(Ge, Ec) == Lr(G, E¢)

~.o 12

Lr(Ge, B) == Lr(G, E)c

~

The diagonal isomorphism is given by

frige (a+iy— (F@) = 9) +i () + ().
For the dual space of any complex vector space F we have:

LR(F, R) = Lc(F, (C)

Proof.

3.9.6 Remarks. Isometric natural isomorphisms.

1. The complexification of R is isometric to C:
The complex norm |z +iy|c to ||(z,y)]|w is, by the Cauchy-Schwarz inequal-
ity [18, 6.2.1], given by
|z +iy|c :=sup{|Re((a+ib) - (x +iy))|e : |a +ib] =1} =
= sup{laz — byl a+b] = 1} = (@, )

2. The canonical isomorphism L¢(F, Ec) = Lgr(F, E) of | 3.9.4.2] is an isom-
etry for normed spaces: Because for absolutely convex bounded sets B < F
we have

sup{pc(fc(z)) : @ € B} = sup{p(Re(A fc(x))) : [A| = 1, = € B}
= sup{p(Re(fc(Az))): |\| =1, z € B}
= sup{p(f(y)) : y = Az e B}.
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3. The canonical isomorphism B(X,G)c = B(X, Gc) is an isometry, thus also

for C, £, ¢y and Lg(E,-) (this is| 3.9.4.3|): Let p be a seminorm on G and
h e B(X,G)c, then

sup{pc(h(2)) : 2 € X} = sup{p(Re(Ah(x))) 1w € X, ]\| = 1}
= sup{sup{p(iﬁe(}\ h)(x)):xze X}: |\ = 1}.
4. The canonical isomorphism (P (I, G)c = (P (I, Gc) is not an isometry for 1 <

p < 00: We choose I := 2 and G := R and consider (1,0)+1i(0,1) € 7(2,R)c.
The norm in £P(2,C) is then |(1,9)|, = 2%, while the one in (2, R)¢ is

1(1,0) + (0, 1)]c := sup{ume(a +ib—b+ia),:|atib = 1}

< sup{|(a, =b)[p : la +ib] = 1}
1

o) /") = max{1,20 75} < 27,

= max{1, (2

5. The complexified norm |_|c of a real Hilbert space (E,||-||) is not a Hilbert
space norm: indeed, for x = (1,0) and y = (0,4) in £*(2,R)c, the parallelo-
gram equality does not hold since |z|c =1 = |y|c but

Iz + ylc = sup{HiRe(a +ib,+(ia—0)|a:la+ib| = 1} —1.

6. For normed spaces, the canonical isomorphisms Lc(Ge, Fc) = Lr(G, Eg),
Lr(Gc, E) =~ Lg(G,E)¢c and Lg(G, E)c =~ L¢(Ge, Ec) are not isometries:
It is enough to show this for the middle one because of , Let F =R,

G :=(?(2), f :=pr, and g := pry. By we have
|f +iglc :=sup{|Re((a +ib) (f +ig))|: |a+ib] =1}
= sup{la f(z) —bg(x)| : [x]2 = 1, [a + ib] = 1}
=supflazy —bas| : [(z1,22)|2 = 1, [(a,0)]2 =1} <1
|z +iy — f(x) = g(y)| := sup{|f(z) —g(y)] : |z +iylc =1}
= sup{|z1 —vo| : |z +iylc =1} = 2,

by | 4| provided we choose © = (1,0) and y = (0,—1).

7. Not every complex lecs is the complezification of a real les: In [1], a complex
Banach space was constructed that is not C isomorphic to its complex conju-
gate E (i.e. E with the scalar multiplication e given by Nex := \-x). So, if
E~F®rC thenalso E~2F®RgC>~F Qg C ~ FE, where the isomorphism
i the middle is given by t @ A — z ® .

For vector spaces, on the other hand, this is true, because after choosing a
basis, we can interpret them as a complexification of the subspace of real
linear combinations.
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In this chapter, we use the Baire property and its generalizations to detect the
continuity of certain linear mappings.

4.1 Baire spaces

4.1.1 Measurable sets.

A 0-ALGEBRA A on a set X is a subset of the power set of X with the following
properties:

1. e A
2. Ae A= X\Ae A
3. F c A, countable = JF € A.
The pair (X,.A) is then called a MEASURE SPACE.

Furthermore, one still needs a MEASURE p on (X, .A), i.e. a mapping pu : A —
[0, +00], which is o-additive, i.e. F S A countable and pairwise disjunct = u(|J F) =

iaer 1(A).

Now define the space of the ELEMENTARY FUNCTIONS as the space generated by
Xa with A e A and p(A4) < oo.

A function f : X — R is called MEASURABLE if f~1(U) € A for all open U < R.
Since each open set U < R is a countable union of open intervals, each open interval
(a,b) is the intersection of (—0,b) N (a,+0), and (a, +0) = J, oy R\(—0,a + 1),
it suffices that f. € A for all c. On the other hand, of course, f~1(A) € A for every

Borel set A € R (see [4.1.3]).

A function is ELEMENTARY if it is measurable and takes only finitely many values.

4.1.2 Theorem. Pointwise limits of elementary functions.

Fach measurable function f : X — [0,400] is the pointwise limit of a monotonically
increasing sequence of elementary functions. If f is bounded, then the convergence
is uniformly. The measurable functions are the pointwise limits of sequences of ele-
mentary functions. The space of the measurable functions is closed under pointwise
limits of sequences . It is a vector space and closed under sup, inf, liminf, lim sup
and composition with continuous (or even Borel-measurable) functions.

Proof. Let f,, be measurable, and f := sup,, f,, everywhere finite. Then f is mea-
surable, because f<. = (), (fn)<c. Furthermore, limsup,, f,, = inf,, sup;~,, fr and
liminf, f, = sup,, infx>, fr measurable. So also lim,, f,, is measurable.
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Let now f be measurable. Since f = f* — f~ with f* = max(f,0) > 0 and
/= = max(—f,0) = 0, we may assume that f > 0. Then

£ Eif b < f(x) < B with k < n?
" if f(x) =0

an elementary function (Attention: u(f~1(a)) € o). And (f,), converges pointwise
from below towards f. O

4.1.3 Definition. Borel and Baire o-algebra.

Let X be a topological space. The o-algebra generated by the open (or equivalent
closed) sets is called BOREL ¢-ALGEBRA IN THE EXTENDED SENSE. The o-algebra
generated by the compact sets is called BOREL 0-ALGEBRA.

The Borel sets are exactly those Borel sets in the extended sense, which are con-
tained in a countable union compact sets. I.e. for o-compact spaces the Borel sets
coincide with the Borel sets in the extended sense.

By the BAIRE 0-ALGEBRA we mean the smallest o-algebra, s.t. all continuous real-
valued functions are measurable, i.e. is generated by the inverse images f~1(U) of
the open sets U < R under all f € C(X,R). The BAIRE SETS are the elements of
Baire o-algebra.

A function is called BAIRE-MEASURABLE (or Baire for short) if it is measurable
with respect to Baire o-algebra.

A BOREL MEASURE is a measure on the o-algebra of the Borel sets, which is finite
on the compact sets.

A BAIRE MEASURE is a measure on the g-algebra of the Baire sets, which is finite
on the compact Baire sets.

4.1.4 Theorem. Baire o-algebra.

Let X be a locally compact o-compact space. Then the Baire o-algebra is generated
by the compact Gg-sets.

If X is in addition metrizable, the Borel and Baire sets are the same.

The Baire-measurable functions are the elements of the sequential closure of the set
of continuous functions (with compact support) with respect to pointwise conver-
gence.

A Gs-SET is a subset that is a countable intersection of open sets.

Proof. (compact-G5 < Baire sets) Let K be a compact Gj set, so K = [, Uy,
with open U,. By the Lemma of Urysohn (see [26, 1.3]), there are continuous
functions f, : X — [0,1] with f,|x = 1 and f.|x\p, = 0. The sequence g, :=
min{fy,..., fn} € C(X,[0,1]) converges then pointwise and monotonously decreas-
ing towards X, because for each x ¢ K there exists an n with z ¢ U,,, i.e. f,(x) = 0.
Thus, x k is a Baire-measurable function by , and K := X;(l(l) is a Baire set.

(Baire sets € (kp-Gs)o-algebra) Since the Baire o-algebra is generated by the inverse

images of the [¢, +0) intervals with respect to all continuous functions (see ),
we only need to show that f~![c, +00) belongs to the o algebra generated by the
compact Gy sets . These inverse images are clearly closed G. Since X was assumed
to be o-compact, compact sets exist K,, with X = [ J,, K. Because local compact-
ness and Urysohn’s lemma (see [26, 1.3.1]), we find g, € C.(X, [0, 1]) with g, |k, =
1. Thus, however, f~*[c,+0) = |, foc N (gn)>1 and foe N (gn)s1 = (hn)so0 is a
compact Gs set, where h,, := min{f — ¢, g, — 1}.
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—F1 . . . Lo .
(C. ® < Baire functions) The subset of Baire-measurable functions is sequencially

closed with respect to pointwise convergence according to . Thus, the sequen-
tial closure of the continuous functions (with compact support) is included in the

Baire-measurable functions.

—Fl . . . .
(C. £ > Baire functions) let us now consider those sets A, for which the charac-

teristic function y 4 lies in the sequential closure of the continuous functions with
compact support. These form a o-algebra A, as the pointwise limit of x 4, is again
in the sequential closure. The compact Gs sets K are included in A because by
the first part of the proof xx is the pointwise limit of a sequence of continuous
functions (with compact support). Thus the Baire o-algebra is included in 4, and
hence the elementary Baire functions are in the sequential closure of the continu-
ous functions (with compact support). But since every measurable function is the

pointwise limit of a sequence of elementary functions (see ), the same holds
for all Baire-measurable functions.

If X is metrizable, then each closed set A is a G5 set, because A = (1), U, where
U, = {x:sup{d(w,a):aeA}<%}. O

4.1.5 Definition. Meager and nowhere dense sets.

A subset M < X of a topological space X is called NOWHERE DENSE if no point
in X has a neighborhood U in which M is dense (i.e. U € M), in short, when the
interior of the closure of M is empty, see [26, 3.2.1].

A subset is called MEAGER if it is a countable union nowhere dense sets. This is
exactly the case if it is contained in the countable union of closed sets with empty
interior, see [26, 3.2.1].

Proof. (=) Let M = |J,, Ny, then M < |J, N,,.

(«<) Let M <, An, then M =, (M n A,) and M n 4, € A,. O
Warning: Meager is not a property of the topological space M but depends essen-
tially on the surrounding space X: For example, {0} is nowhere dense in R, but of
course no meager in itself. However:

4.1.6 Lemma. Meager in subspaces.

If M is nowhere dense or meager in X then the same is true in each space Y which

contains X as topological subspace.

Proof. Let M be nowhere dense in X. Suppose M is not nowhere dense in Y, i.e.

there exists an openset U # @ in Y with U < M . ThenUnX M ~nX =M
and since U n X is open in X and M is nowhere dense in X we have U n X = ¢J.

However, since M is dense in M, its intersection with the non-empty open set
—Y . .
U < M is not empty, a contradiction.

The statement for meager sets obviously follows. O

4.1.7 Theorem of Osgood.

Any set of real-valued continuous functions which is pointwise bounded on a non-
meager set X is uniformly bounded on an open mon-empty subset.

See [26, 3.2.2]
Proof. Let F set the set of real-valued continuous functions on X. Let
Aﬁ]f = {x eX: ‘f($)| < k}
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Then Ay, is closed, and therefore also the set Ay := ﬂfe}- Ay i of points on which
the f’s are uniformly bounded by k. By assumption, X is not meager and clearly
X = {x :sup{|f(x)|: f e F} <0} = Jpey Ak, therefore there is an k£ € N and an
open non-empty set U with U € Ay, i.e. F is uniformly bounded by & on U. O

4.1.8 Theorem of Baire.

If a sequence of continuous real-valued functions converges on a topological space X
pointwise, then the set of points where the limit function is discontinuous is meager.

See 26, 3.2.3]

Proof. Let a sequence of continuous functions f, € C(X,R) converge pointwise
towards a function f: X — R.

Let Ap. :={z e X :|f(x) — fu(x)|] < e} and A, := [J,(Ar,c)° be the set of those
points where f is locally approximated by a fi up to €. Then both Ay . and A, are
increasing in ¢.

We claim that f is continuous in every point from (7)..,A: (and even equality
holds). If a € (.., Ac, then a € A, is for each € > 0, and thus for each ¢ >
0 there is an k € N with a € (Ax.)?, i.e. there is a neighborhood U(a) with
|f(z) — fu(x)] < e for all x € U(a)s. Since fj, is continuous we can choose U(a) so
small that | fx(z)— fr(a)| < e for all z € U(a). Thus, |f(z)— f(a)| < |f(x)— fr(x)|+
|fx(z) — fe(a)] + | fr(a) — f(a)| < 3¢ holds for all z € U(a), i.e. f is continuous at a.

So it remains to show that X\ (.., A is meager. Let Fy. := {x € X : Vn :
|fi(2) = fesn(z)| < €}. Then Fj . is closed, since the f; are continuous, and X =
Uken Fr,e» because the sequence of the f; converges pointwise. Furthermore, Fj, . <
Ay, e because f; converges pointwise towards f. So also the interior of Fy, . is included
in that of Ay ., and therefore: |, (Fic)° S Uy (Ak,c)® = A.. For each closed set A,
A\A? is closed and nowhere dense, so

X\Ae € X\JFoo)” = JEAJEro)?) =
k l k
:Uﬂ(E,E\(FkEO UFkE\er
I k =k

is meager, and 50 is J,,cn(X\A1/n) = X\ [Noog 4e- O

4.1.9 Definition. Baire spaces.

A topological space X is called BAIRE if one of the following equivalent conditions
holds (see [26, 3.2.3]):
1. Complements of meager subsets are dense,
i.e. M meager in X = X\M = X (or M° = &),
2. A, closed, A9 = & = (U,en 4n)° = I;
3. O, open, O, = X = (Mpen On) = X

Proof. ( = ) A, closed, A = & = M :=J,, A, meager = M° = (.

A open, A9 = & < O, := X\A, open, O,, = X. And (,,cyy An)° =
(UneNX\O) (XN Mery On)* = X\, O

(2] = [1) M meager = M = (J, N, with N,,” = &. 4, N, = M° c
(U, 40)° = @. -
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4.1.10 Lemma. Baire locally convex spaces.

A locally convex space is Baire if and only if it is not meager in itself.

Proof. (=) This direction holds for any topological space X # J, because let X
be a Baire space which is meager in itself, then the complement @ = X\ X would

be dense by , ie. X = .

(<) So let E be a locally convex space that is not meager in itself. Suppose E is not
Baire, i.e. by JA,, A, closed, A% = & and 3z : z € (|, 4n)?, ie. U, 4An
is a neighborhood of # and thus U := J,,(4, — ) = (U,, An) — is a neighborhood
of 0, hence absorbent. This makes

E={JrU=Jk(A, —2),
k,n

keN

meager because of (4, —z)° = A2 —x = . O

4.1.11 Baire-Hausdorff Category Theorem.

Every complete metric space is Baire.
Each (locally-)compact topological space is Baire, see [26, 3.2.4].

There are Baire metrizable lcs’s which are not complete, see [14, S.97].

Proof for complete metric spaces. Let M be meager, i.e. contained in Ufil A,
for closed sets A, with empty interiour. By we have to show that the
complement X\M =: M€ is dense in X. So let Uy := {z : d(z,z9) < ro} be an open
neighborhood of some point g € X with radius rg > 0. We construct inductively
open balls U, := {z : d(z,2,) < r,} with center z,, € U,_1\A, and radius 0 <
r, < T”T’l such that U,, € U,_1\A,. This is possible, since by assumption A¢ is
dense and U,,_; is an open neighborhood of x,,_1, hence an z,, exists in U,,_1 N A¢,
and we may choose the radius 0 < r,, < " such that U, = {z : d(z,z,) < r,} is
contained in this open set.

The sequence (z,,), is Cauchy, since for ¥’ > k > n we have

k' k-1 o
r
d(xk/,xk) < Z d(xj,xj_l) < Z Ty < Qjﬁn < Th-
j=k+1 =k j=k
Let zo := lim,, . Since 2, € Up_1 < U,, < U, for all n > m, and hence
T € Uy, € Ug\Ay, for all m > 0, ie. oo € Ug n (), A%, < Up n M©. O

4.1.12 Corollary of Weierstrass.
There are continuous functions on [—1,1] that are nowhere differentiable.
See [26, 3.2.5]
Proof. We consider C([—1,1],R) as a subspace of C'(R,R)
f(=1) forz<-1
f»—»f x> o fa) for |z| <1
f( for x > 1

Let M, := {f € C([-1,1],R) : 3t e [-1,1]¥0 < || < 1: [LEFHZIE ) < ) Then
M, is closed in C([—1,1],R) (because, if fr € M,, with fi — fs, then there are
|ti] < 1 and without loss of generality t; converging towards t,, which guarantees
fo € M,,). Furthermore, M,, is nowhere dense, because otherwise M,, contains a
neighborhood of a polynomial by the approximation theorem of Weierstrass. That
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can not be, because there are arbitrarily close curves, with anywhere arbitrarily
large increase (add to the polynomial a small sawtooth curve with sufficiently large
slope). So |J,, M, is meager and contains all the continuous functions that are
differentiable in at least one point. O

4.1.13 Remark. Consequences for Baire lcs.

The theorem of Baire garantees in particular for Fréchet spaces E (because

of ) that for each pointwise convergent sequence of continuous linear func-
tionals f,, : E — R, the limit function f is a continuous linear functional. In fact,
according to the theorem of Baire, f has to be continuous in the points of a dense
set, and thus at least in one point. But, as f clearly has to be linear, this garantees
the continuity everywhere.

The Theorem of Osgood gives us in particular for Fréchet spaces E, that
every pointwise bounded family F of continuous linear functionals is f : E — R
equi-continuous (see ) and thus bounded in L(E,R): In fact, according to the
theorem of Osgood, there exists a non-empty open set O on which F is uniformly
bounded (by K). Let € > 0. We choose an a € O, then for all z € O — a we have

[f(@)] < |f(z + a)l + [f(-a)|

sup{|f(y)| : y € O, f € F} +sup{[f(=a)| : f € F}
K+ K,

Thus F(U) < [—¢, €] for the O-neighborhood U := 7-%—(0 — a).

/

NN

Unfortunately, every (strictly) inductive limit of a truely increasing sequence of
Fréchet or, in particular, of Banach spaces is not Baire, because the closed steps
have empty interior, otherwise they would be absorbent and thus equal to the whole
space.

4.2 Uniform boundedness

Consequently, we should generalize these two continuity results from fur-
ther. Let F be a pointwise bounded family of continuous linear mappings f : £ —
F. We look for conditions such that each such family is equi-continuous, i.e. for
each (closed) 0-neighborhood V in F the set

U:= {er:f(x)eroraer]:} = ﬂ )
feF
is a O-neighborhood in E. This set is itself closed and absolutely convex as inter-
section of closed absolutely convex sets. And it is absorbent, because for x € E we
have that F(x) := {f(x) : f € F} is bounded in F, so there is an K > 0, with
F(z) € K-V, and thus z € K - U. Consequently, we define:

4.2.1 Definition. Barreled spaces.

A subset U of an Ics F is called a BARREL (german: Tonne), if it is closed, absolutely
convex, and absorbent.

An Ics E is called BARRELED (german: tonneliert) if each barrel is a 0-neighborhood;
this is exactly the case if each seminorm with closed unit ball is continuous, because
the barrels are exactly the unit balls of such seminorms: Let A be a barrel, then the
Minkowski functional p from A to is a seminorm with p.; € A < p<;. Since
A is assumed to be closed A = p<;: In fact, let 1 = p(z) = inf{A > 0: z € AA}, then
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An N\ land a, € A exist with z = A\, a,, and thus x = lim,, o = lim, 0 a, € A.
The converse, that closed unit balls of seminorms are barrels, is obvious.

So we proved the implication (1 = 3) of the following theorem:

4.2.2 Uniform Boundedness Principle.

Let E be a barreled lcs and F' an arbitrary lcs. Then for each set F of continuous
linear mappings f : E — F the following statements are equivalent

1. F is pointwise bounded,
i.e. for each x € E the set F(x) is bounded in F.
< 2. F is bounded in L(E,F),
i.e. for each bounded B € E, the set F(B) is bounded in F (see )
< 3. F s equi-continuous,
i.e. for each 0-neighborhood V of F there exists a 0-neighborhood U of E
with f(U) <V for all f e F.

Proof. We have already shown ( = ) in , because (. » ff(V)is a

barrel by .
The implications ( =|2|<= ) hold in general:

( = ) We have to show that F(B) is bounded in F for each bounded B < E. So
let V be a 0-neighborhood. Since F is equi-continuous, there exists a 0-neighborhood
U of E with f(U) € V for all f € F. Since B is bounded, a K > 0 exists with
B < K -U, and thus F(B) € F(K -U) <€ K -V, i.e. F(B) is bounded.

( = ) is obvious, since single points are bounded sets. O

4.2.3 The converse implication also holds.

I.e. a space with the equivalence of the properties from is barreled: Let U
be a barrel. Then {2’ € E* : |2/(U)| < 1} is a pointwise bounded set in E*. In
fact, U is absorbent, and thus is equi-continuous by assumption, i.e. there exists a
0-neighborhood V < E, s.t. [2/(V)] < 1 for all ' € E* with |2/(U)| < 1. It would
therefore be enough to show that V' < U. For this we need the Lemma of
Mazur, which is a corollary of the theorem of Hahn-Banach: If z ¢ U, a closed
absolutely convex set, then there exists a 2/ € E* with |2/(z)| > 1 and |2/(U)| < 1.

Those lcs’s E, for which the Uniform Boundedness Principle for countable sets F
holds, are called Rg-BARRELED, see [14, S.252]. The dual space of each metrizable
les’s has this property, but it is not always barreled.

4.2.4 Lemma. Heritability of barreledness.

Every Baire lcs is barreled.
Barreledness is inherited by final structures and products.

Proof. Let A be a barrel in a Baire lcs F, then E = |,y - 4, and thus there is
ann € N with n-A° = (n-A)° # . So there is an a € A. Then —a € A° and thus
0=1a—2lae A% ie Ais a O-neighborhood.

Let f; : E; — FE be a final family and all F; be barreled. Let ¢ : E — R be a
seminorm with closed unit ball, then the same holds for go f;, because (qo fi)<1 =
(fi)"(g<1). Thus q o f; is continuous, and so is q.

With respect to products see [14,S.223]. O

4.2.5 Corollary. Pointwise convergence is not bornological.
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The dual space E* of each barreled lcs E, which has bounded set B contained in
no finite dimensional subspace, is not bornological with respect to the topology of
pointwise convergence.

For example, this is satisfied for each infinite dimensional Banach space E.

Proof. Let B < E be bounded. Then the polar B° := {z’ € E* : Vx € B :
|z’ (x)| < 1} is an absolutely convex 0-neighborhood in E* and thus BORNIVOROUS
(i.e. absorbs bounded sets) in E*. Due to the Uniform Boundedness Principles,
the bounded sets in E* are exactly those which are bounded with respect to the
topology of pointwise convergence. So if this latter structure were bornological,
then B® would be one of its 0-neighborhoods, i.e. a finite set A € F would exist
with A° € B°. According to the bipolar theorem , we would have B <
(B%)o S (A%)0 = {A)closed,abs.conv.; 1-€. it would be contained in a finite dimensional
subspace, a contradiction to the assumption. O

4.2.6 Banach-Steinhaus Theorem.

The pointwise limit of a sequence of continuous linear mappings from a barreled
les E to an les F is a continuous linear mapping. ILe. for complete F, the space
LC(E,F):= L(E,F)nC(E, F), of the continuous linear mappings, is sequentially
complete with respect to pointwise convergence (but not necessarily complete).

Proof. Let f, : E — F be continuous linear mappings, such that f, converges
pointwise towards f. Then f is obviously linear and {f, : n € N} is pointwise
bounded. So by the Uniform Boundedness Principle it is equi-continuous, i.e.
for each (closed) 0-neighborhood V there exists a 0-neighborhood U with f,,(U) € V/
for all n. Then f(U) €V =V also holds, i.e. f is continuous. O

4.2.7 Corollary. Scalarly boundedness.

Every scalarly bounded set is bounded.

A set B c E is called sCALARLY BOUNDED if 2/(B) € K is bounded for all contin-
uous linear functionals =’ € E*.

Proof. Let E be first a normed space, then ¢ : E — E” is an isometry onto the
subspace ((E) by the theorem of Hahn-Banach (see , compare with the proof
of , or directly with ) The set «(B) is pointwise bounded, because
2’(B) is bounded for all 2’ € E’. Since E’ is a Banach space, ¢(B) is bounded

in L(E’,K) by the Uniform Boundedness Principle , so B ¢ FE is bounded
because ¢ is an isometry.

Now let B < E be scalarly bounded in some lcs E. We have to show that p(B) is
bounded for each continuous seminorm p of E. Let N := ker(p). Then E, := E/N is
a normed space, with respect to the seminorm p with pom = p, where 7 : £ — E,,
is the natural quotient mapping. We have that 7 (B) is scalarly bounded in the
normed space E,, because {(m(B)) = (£ o 7)(B) is bounded for each continuous
linear functional £ on E,. So 7(B) is bounded in the norm by the first part of the
proof, i.e. p(B) = p(w(B)) is bounded. O

4.2.8 Corollary. Separately continuous bilinear mappings.

Let 4 and Eo be metrizable lcs’s and Eo be barreled. Then each bilinear separately
continuous mapping f : E1 x Ey — F with values in any lcs F is continuous.
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This result also holds for barreled spaces with a countable basis of bornology, see
[14,/S.338].

Proof. Since E; and FE5 are metrizable lcs’s, it suffices by to show that f
is bounded. So let B; € E; be bounded for i € {1,2}. We consider the mapping
f: Bl — L(Ey, F), f(x1) : 2o — f(x1,22). This is well-defined, since f(z1,_)
is linear and continuous by assumption. It is also linear because f(_,z2) is linear.
Furthermore, f(B)) is pointwise bounded in L(Ey, F') because f(B1)(x2) = f(By x

{xo}) for x5 € E5. Since Fs is barreled, f(By x Bs) = f(B1)(Bs) < F is bounded.
O

4.2.9 Discontinuous but separatedly continuous natural bilinear forms.

For any lcs E¥ we consider the obviously bilinear evaluation mapping ev : E* x £ —
K, (z',x) — 2'(z). It is bounded, because if A € E* and B € E are both bounded,
then A(B) is bounded by the structure of E* € E' = L(E,K).

Suppose ev were continuous. Then 0-neighborhoods V < E* and U < E would
have to exist with |2'(z)| < 1 for all 2’ € V and = € U. Since V as 0-neighborhood
is absorbent, there exists a k > 0 with 2’ € k- V for each 2’ € E*, and hence 7’ is
bounded on U by k. Thus U is scalarly bounded and by even bounded in F,
hence E has to be normable by .

Note that for the arguments above it was not essential that we use the usual struc-
ture on E*, but this holds for any topological vector space structure. This indicates
that continuity is a too strong condition for nonlinear mappings, because the most
natural bilinear mapping is not continuous. Taking this remark into account, a
calculus has been developed for mappings between les’s, see [27].

Let’s look at the simplest special case of non-normable spaces E = RN = [IyR
or E = RV .= [ [y R. Because of the universal property of the final structure,
(RM)* = RN as vector space, where the action of z = (2,,), € RN to y = (yn)n €
R®™ is given by ev(x,y) = 3, & yn. Since each bounded set in R™ is bounded in
some finite dimensional RY, also the topology on (RM)* is just that of RY.

On the other hand, the dual space of RY is just R with the above evaluation
map, because for continuous linear z’ : RY — R there exists a 0-neighborhood, i.e.
an NeNand an e > 0, s.t. 2/({z € RY : |2,| < e forall n < N}) < [~1,1]. Let
p = inkl* : RN = RY and i : RN — RY, 2 — (2,0). Then p and i are continuous
and linear and |2/ (k- (x— (iop)(x)))| < 1 for all & > 0 and thus 2'(z) = 2/'(i(p(z))) =
(i*(2") o p)(x), where i*(z') = 2’ 0 € (RN) = RY, so (RY)’ is identifiable with
the union Jycy RN = RM. This is even a linear homeomorphism: A typical 0-
neighborhood in (RY)’ is given by the polar B° of B = {x € RY : |z;| < p;} for
some sequence p; > 0, hence

B° = {x’ e RM™ . ‘Zx;ul%

<1lVze B} = {x’ e RM Zul|x;| < 1},
N
=p(z’)
where p is a typical seminorm of R,

The evaluation map is bounded and thus separately continuous (since both factors
are bornological): In fact, if A € RY and B € R®™ are bounded, then B < RN
is bounded for some N and thus the finitely many non-vanishing coordinates of
y € B and the corresponding ones of x € A are bounded and hence also ev(z,y) =

Zf:o Ty Yn = 22[:0 Ty, Yn is bounded.
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The evaluation map is however not continuous, because if there were 0-neighborhoods
V < RY and U < R with ev(V x U) < [~1,1], then V can only control finitely
many coordinates, i.e. there is an n with R - e, € V. But since € > 0 exists with
€-en €U, we would have 1 = |ev(key,cey)| = k- € for all k, a contradiction.

4.2.10 Counterexample concerning the Uniform Boundedness Theorem.

Let E be the subspace of the finite sequences in the Banach space £*°, and f,, :
(Tr){Zy = 2p<n Tk Then {f,, : n € N} € L(E,R) is pointwise bounded, but not
bounded in L(E,R), because | f,| := sup{| X<, Tx| : (z1)72, € E and Vk : |zy| <
1} = n. Thus F is not barreled.

4.2.11 Lemma. Automatic boundedness of adjoint mappings.

LetT: E— F,S:F' — E' both be linear with y'(Tz) = S(y')(x), then T and S
are bounded linear mappings.

Proof. Let B € E be bounded. Then ¢'(TB) = S(y')(B) is bounded, i.e. TB is
scalarly bounded, thus T'B is bounded by the corollary in . Furthermore, if
A < F' is bounded, then (SA)(B) = A(TB) is bounded in K, i.e. SA is bounded
in E'. O

4.3 Closed and open mappings

We have seen that by the Banach Steinhaus Theorem the Baire property
has the continuity of certain linear mappings as consequence. We want to work
that out even further. Let f : £ — F be a mapping. The GRAPH of f is the
set graph(f) := {(z,y) € E x F : f(z) = y}. The graph is closed if and only if
graph(f) 3 (z;,¥i) — (Too,Yo0) = (T, Yoo) € graph(f), i.e. the existence of the
limits lim; z; and lim; f(z;) implies the equality f(lim;z;) = lim; f(z;). Clearly
this condition is formally weaker than the continuity of f, where the existence of
the 2nd limit is not presupposed. Nevertheless, we show the converse implication
under suitable assumptions:

4.3.1 Closed Graph Theorem.

Let E be a Baire lcs, F' a Fréchet space, and f : E — F a linear mapping whose
graph is closed in E x F. Then f is continuous.

Proof. We choose a 0-neighborhood basis (V,,), of F' consisting of closed and
absolutely convex sets with 2V,, < V,,_; and let A, := f_l(Vn). For each n we
have E = | J, .y k- An. Since E is presumed to be Baire, A,, contains a point x such
that z + U,, € A, is for a 0-neighborhood U,, of E. But then U,, = (z + U,) —x <
(x+Up,) — (x+U,) € 2A, < A, holds.

We claim that f(U,11) € V,—1 (hence f is continuous). Let x € U,,; € A,, S
Ay 4+ Upyo, ie. there is an xg € A, with z —zy € U, 2, and recursively we find zj, €
Anip with o — Zf:o x; € Upqoyr. Then Y, f(xy) satisfies the Cauchy condition,
because Zf:,f (x;) € Zf:,f Vosi C Z?:o 279 Vysk S Vagr—1. Since F is complete,
Y= ZZOZO f(xp) exists and is in V;,_1 because V,,_; is closed.

If F is in addition metrizable, we may assume that the U, form a 0-neighborhood
basis of FE, thus ], z; converges to x. The closedness of the graph then yields

fl@)=yeV,_1.
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In the general case of a Baire space E, we take any two symmetric (closed) 0-
neighborhoods U and V in E and F'. Since x — Zf:o ;i € Upyoyr S Apti+k S
Api14k + U, there exists an ay € Ay 145, with z — Zf:o zi€ap+U,ie x— (a;C +
Zf:o z;) € U. Then f(ax) € Vos14k is a O-sequence, hence y — f(ay, + Zf:o z;) =
(y— P f(x;)) — f(ax) € V for sufficiently large k. Therefore (z,y)+U x V meets

the graph of f at least at the point a +Zf:0 x;. Since the graph is closed, f(z) =y
holds. O

4.3.2 Remark. Webbed spaces.

One can summarize the essential property of sets V,, in F' more abstractly. For this
one calls a mapping V' on the set of finite sequences of natural numbers into the
absolutely convex subsets of an lcs’s F', a COMPLETING WEB if

L. V() = F;

2. For each finite sequence k := (ki,...,k,) and each k,i1 the inclusion
2V (k, kni1) € V(k) holds;

3. For each finite sequence k := (ky,...,k,) every point in V (k) is absorbed
by UaneN V(k, knt1);

4. And for each infinite sequence (k1,ko,...) and z, € V(kq,...k,) the series
D, Tn cOnVerges.

A lcs F is called WEBBED if it has a completing web V.

4.3.3 Lemma. Heritability of webbed spaces.
Every Fréchet space E is webbed.

Sequentially closed subspaces, countable products, separated quotients and countable
coproducts of webbed spaces are webbed.

The closed graph theorem also holds for functions from Baire into webbed spaces.

The Fréchet spaces are exactly the Baire webbed lcs’s.

Proof. Each Fréchet space F is webbed: To see this we only have to take a 0
neighborhood basis V;, as above and define V' (ky,... k) := V.

For subspaces, the trace is a complete web, and for quotients the image of such is
again one (see [14, S.90]).

For the remaining heritabilities see [14, S.91].

The above proof of the closed graph theorem can be transferred directly to webbed
spaces F' by [6] with the following changes (see [14,S.92]): We inductively choose
kn, € N so that V,, := V(kq,...,k,) does not have meager inverse image Ay :=
f~Y(V;,). This is possible because of property of webs. Now, one shows, as
in the proof of , the existence of 0-neighborhoods U,, € A,,_; with f(U,) <
V,.—1, showing the continuity of f.

For the last statement, see [14,S.94]. O

4.3.4 Remark.

Usually, the closed graph theorem is formulated more technically by specifying only
linear mappings f : G — F with closed graphs in £ x F' defined on a non-meager
subspace G € E. However, this version follows immediately from the above, because

G is then not even meager in itself by , thus is Baire by | 4.1.10 | and the graph
is then also closed in G x F', so the theorem applicable, where we need only
the weaker assumptions that G is Baire and the graph is closed in G x F.
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4.3.5 Open Mapping Theorem.

Let E be webbed, F a Baire lcs and f : E — F linear and surjective with closed
graph. Then f is an open mapping, i.e. the image of each open subset is open.

Proof. If f were bijective, we could use simply apply to fL.
In general, we consider the diagram:

graph(f) &——= FE x F

R

Ker(f) € E P
\ 7

A
N E/N

Since f has closed graph, the kernel N := Ker(f) = inj; ' (graph f) of f is closed.
Thus, with E also E/N is webbed by . We now consider the bijective mapping
f: E/N — F, [z] — f(x). If f has closed graph, the same holds for f, because
wxF : ExF — (E/N)xF is a quotient map (since open), and (7 x F)~!(graph f) =
graph f. Thus the inverse map f~' of f has closed graph in F x (E/N), since the
reflection (E/N) x F' — F x (E/N) is an isomorphism. Consequently, according to
the Closed Graph Theorem , the mapping f‘l : F— E/N is continuous, i.e.
f is open, and thus also f = fo 7 is an open mapping. O

4.3.6 Corollary. Quotient maps of Fréchet spaces.

Let E be a Fréchet space and f : E — F a continuous linear mapping with non-
meager image f(E) in F.

Then [ : E — F is surjective and even a quotient mapping, i.e. F =~ E/Ker(f).

Proof. In particular, f(FE) is not meager in itself by , so it is Baire by
and thus f : E — f(F) is an open (by ) and continuous surjective mapping,
hence a quotient map. Thus, f(F) =~ E/Ker(f) is also a Fréchet space, hence
complete and therefore closed in F. If f(E) # F, then f(F) would be nowhere
dense (because 0-neighborhoods are absorbent), a contradiction to the fact that
f(E) was assumed to be not meager. O

4.3.7 Corollary. Inverse functions between Fréchet spaces.

The inverse of a bijective continuous linear mapping between Fréchet spaces is con-
tinuous. O

We now want to examine continuity of linear mappings with values in spaces smooth
functions.

4.3.8 Corollary. Scalar continuity.

Let E be a Baire Ics, F' a webbed space and F a point separating family of continuous
linear functionals on F'. If g : E — F' is a linear mapping, all of whose compositions
fog: E— F — Kwith f € F are continuous, then g is continuous.

Proof. We can use the Closed Graph Theorem because we only have to show
that g(z) = y follows from z; — = and g(x;) — y. Since the f € F are continuous,

flg(@)) = (f o g)(lim; x;) = lim; (f o g)(wi) = f(lim; g(xi)) = f(y) is. And since the
f € F are point separating, we have g(z) = y. O
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4.3.9 Examples.

Clearly, the previous corollary also holds if F itself is not necessarily Baire, but
carries the final structure of Baire spaces.

In particular, this can be applied for the point evaluations instead of F on the
Fréchet spaces C™(U), CE(U) and &; as well as the strict inductive limits C.(X),
C™(U) and D of Fréchet spaces instead of E.

This way we easily verify that the mappings from [18, 4.9] and [18, 4.13.4]

1. T, S, 0* : D — D;

2. f-(0):D—>Dfor fe&;

3. o*(): D — & for p e D (see [18, 4.13.5]);

4. px():D—>Dforpel’
are continuous, and that the initial structure of C(U) and C*(U) on H(U) is
identical. In fact,

() - f(x) = (9(x) eva)(f);
= o(T2(5(f))) = (¢ o Te 0 S)(f)-

In the case where the target space is D, also the Closed Graph Theorem for
the Fréchet spaces C'2(R™) instead of the webbed space D can be used, provided
we keep track of the support: For example, Trg(p * f) € Trg ¢ + Trg f holds.

4.3.10 Remark.
The Closed Graph Theorem has the Uniform Boundedness Principle

for linear functionals on Baire spaces as easy consequence: Let F < E* be pointwise
bounded. Then the mapping ¢ : E — B(F,K), z — (f — f(x)) is a well-defined
linear mapping. The composition with ev; : B(F,K) — K is just f, so continuous.
Thus it follows that ¢ is continuous, because B(F,K) is a Banach space, and thus
there exists a 0-neighborhood U with |F(U)| = |«(U)(F)| < [0, 1].
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5. The Theorem of Hahn Banach

This chapter discusses the richness of the space of the continuous linear functionals
on locally convex spaces and the geometric separation properties that follow. We
will apply this to determine some dual spaces and also to questions of complex
analysis.

5.1 Extension theorems

Our first goal is to find as many linear functionals ¢ as possible, which should of
course be continuous, i.e. satisfy |¢| < ¢ for a (fixed) seminorm q. Absolute values
are difficult to evaluate and linear functionals and seminorms are hard to compare.
However, we have already introduced a common generalization, namely sublinear
functionals in . Thus, we first turn to the inequality ¢ < g for sublinear q.

5.1.1 Lemma. Minimal sublinear functions are linear.

A function on a real vector space E is minimal among the sublinear functions
E — R if and only if it is linear.

Proof. (<) Let £ : E — R be linear and ¢ : E — R sublinear and ¢ < ¢. Then:
0={(z)+l(—2z) = q(z) + q(—2) = q(0) = 0 = g(z) = —¢(-z)
= l(z) = q(x) = —q(—2x) = —l(—z) = L(z) = q(x) = {(x).

(=) Let p: E — R be minimal among the sublinear functions.

Suppose p is not additive, then a, b € F exist with p(a+b) < p(a)+p(b). We are now
trying to find a smaller sublinear function. Obviously, z — p(z +a) — p(a) is convex
and at the point b less than p. In order to obtain RT-homogeneity we consider
pa(x) := infi=o(p(x + ta) — tp(a)). Because of —p(—x) < p(z + ta) — tp(a), this
definition makes sense. Furthermore, p(x + ta) — tp(a) < p(z), i.e. p, < p and
Pa(b) < pla+b) — p(a) < p(b).

The function p, is RT-homogeneous, because for A > 0 we have:

pe(Ax) = inf (pOrx + ta) ~ tp(a)) = inf (p(\ (x + £ @) ~ tp(a))

inf A <p(:r +%a)— %p(a)) =X in%(p(x +sa)— sp(a)) =X pa(z).

t=0 5=

With z — p(x + ta) — p(ta) also p, is convex, a contradiction to minimality.
From the additivity and the RT-homogeneity follows also the R-linearity, because
p(—x) + p(x) = p(0) = 0 implies that p is odd. O

5.1.2 Corollary. Existence of linear minorants.

Let p : E — R be a sublinear function on a real vector space E. Then there exists
a linear f : E — R with f <p.
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Proof. We apply Zorn’s Lemma to the set
S :={¢ < p: q is sublinear}.

Let £ be a linearly ordered subset of S. Then infycr g =: g is a lower bound of L:
In fact, g is well-defined, otherwise an « € F would exist with £(z) unbounded
from below. But then there would be g, € L € S, s.t. ¢,(z) < —n and ¢, < gn—1
without loss of generality, consequently,

0= gn(0) < gn(®) + gu(=2) < =0+ go(=2) = Vn : go(—2x) = n,

would be a contradiction.

The infimum gy, is sublinear as infimum of sublinear functions.

So we may apply Zorn’s Lemma (or, as google translated it, the lemma of anger)
and get a minimal element g € S, which has to be linear according to the Lemma

[5.01) 5

5.1.3 Theorem of Hahn and Banach.

Let g : E — R be a sublinear function on a vector space E over R and f: F — R
be a linear function on a subspace F of E such that f < q|p. Then there is an
extension [ : E — R (i.e. f|p = f), which is linear and satisfies f < q on E.

Proof. We consider ¢ : z — infyep(g(x +y) — f(y)). Similar to the proof of ,
it follows that ¢ is well-defined (because ¢(x +y) — f(y) = —q(—x) +q(y) — f(y) =
—q(—x)), sublinear, and ¢ < ¢ (put y := 0).

By Corollary there is a linear f FE — R with f <gq.
For x € F we have f(z) <glz) < qlz—z)— f(—z) = f(a:) Thus f|r = f, because
as linear function f : F' — R has to be minimal by . O

5.1.4 Corollary.

Let E be a vector space over K € {R,C} and F a linear subspace. Let q be a
seminorm on E and f : F — K a linear function that satisfies |f| < q|r

Then there is an extension [ : E — K (i.e. flp = f), which is linear and satisfies
Ifl<gqonE.

Proof. First for K = R: Let ¢ be a seminorm and |f| < ¢|r. By there is a
linear f : F — R with f < ¢. But this implies |f| < ¢, because ffN(z) = f(fx) <
q(—z) = q(x).

Now, if the scalar field is C, then consider fg := Ref. We have fg < |f | q|r. So,
accordmg to what we have shown above, there is a R-linear extension fR EFE—->R
with fa < ¢. Let f be the C-linear function z > fR( ) — sz(z x) given by the
second universal property for the complexification C of R. Then f| F=
and SRe(f) = E < q.For z € E, let re’’ = f(m) be the polar representation With
r>0. Then R 3 |f(x)] = r = fle "z) = ﬁg(e—i%) < qle™z) = q(x). O

5.1.5 Corollary.

Let E be an lcs and F' a linear subspace of E. Each continuous linear functional
I+ F — K has a continuous linear extension f : E — K. :
If E is normed, then there is such an f, which additionally fulfills |f| = | f].

For bounded linear functions, this theorem is generally wrong.
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Proof. Since f is continuous, |f]| is a continuous seminorm on F. By there
is an extension to a continuous seminorm ¢ on E. By there is an extension
of f to a linear functional f : E — K, which fulfills | f| < ¢ and is thus continuous.

If, in addition, E is normed. Then we may choose x — | f| - || for ¢. So |f(z)| <
[£]l - |=|| holds, i.e. [f| = |flrll < [f] < |f]- Consequently, the desired equality
holds. O

5.1.6 Corollary. Dual vectors.

Let E be an lcs and {x1,...,x,} linearly independent and ¢; € K.
Then there exists an £ € E* with ((x;) = £; for allie {1,... n}.

Proof. Let F' be the linear subspace generated by {z1,...,2,}. A unique linear
functional can be defined on it by #¢(x;) := ¢;. This functional is continuous by
’3.4.6.3 ‘ By ’5.1.5 , a continuous extension ¢ to E exists, and this has also the
desired properties. O

5.1.7 Corollary. Complements of finite dimensional subspaces.

Every finite dimensional subspace of an lcs has a topological complement.

Compare this with | 3.4.6.4 | in case of finite codimension.

Proof. Let F be an n-dimensional subspace of E. We choose a basis {e1,...,e,}
of F. By there exist £ € E* with £4(e;) = 85 for all k,j € {1,...,n}. Thus
p(z) = Y0_, lk(x) ex defines a continuous linear mapping p : E — F satisfying
p|F = id. This provides a decomposition E =~ F @ ker p, where the isomorphism is
given by y + z < (y, 2) and = — (p(x),x — p(z)). O

5.1.8 Corollary. The functionals are points-separating.
On each lcs, the continuous linear functionals are points-separating.

Moreover, let F' be a closed linear subspace in an lcs E and a € E\F. Then there
is a L € E* with £|p =0 and £(a) = 1.
If E is normed, then £ € E* can be choosen s.t. ||¢| = 1/d(a, F).

If q is a seminorm of E with q|p = 0, then £ € E* can be choosen s.t. [¢| < q and
l(a) = q(a) instead of £(a) = 1.

Proof. We define a functional £ on F, :={z +ta:z € F,te K} by (x + ta) :=t,
i.e. with ¢|p = 0 and ¢(a) = 1. By , F, =~ F xK and therefore ¢ is continuous
and linear on Fy, hence by there is a continuous linear extension ¢ to E.

In particular, the continuous linear functionals are point-separating, because for
ay # az we have a := a; —ag ¢ F := {0}, hence they can be separated by an ¢ € E*.
If E is normed, then || < 1/d(a, F), because |{(z +ta)|-d(a, F) < [t|-|la—(=F)] =
|z + ta|. Even equality holds, because there are x,, € F with |a — x,| — d(a, F),
and thus 1 = l(a —z,,) < ||| - |Ja — xn| — ||| - d(a, F) < 1. By the extension
; 1l 1

¢ can be choosen s.t. [£]| = [[£] < m).

Finally let ¢ be a seminorm of E with ¢|r = 0, then we define ¢ : F,, — K by
lx +ta) = tq(a), so l(a) = g(a) and |¢] < ¢, because |[{(z + ta)| = [t|g(a) =
q(ta) = g(x+1ta). Thus, we can choose the extension £ by so that |[¢| <¢q. O

5.1.9 Corollary. The closure as intersection of kernels.
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If E is an lcs and F is a linear subspace, then the closure of F' is given by

F=(\{ker¢: te E* {|p = 0}.

See for a generalization.

Proof.
(<) Obviously, F < ker ¢ for all continuous linear functional ¢ € E* with /| = 0.

(2) Conversely, if a ¢ F, then there is a continuous linear functional £ : E — K with
¢(a) = 1 and ((F) = 0 by | 5.1.8]. Consequently, a ¢ (\{ker(: £ € E* (| = 0}. O

5.1.10 Corollary. Isometric embedding in the bidual.

Let E be normed and x € E, then |z| = max{[{(z)| : € € E*, ||| = 1} = |6(z)], i.e.
0: E — E** is an isometry.

Proof. [[§(z)| = sup{|d(z)(0)] : £ € E*, [[£] = 1}
———
()]
is valid because [£(z)| < |¢| - |||
holds, because by an £ € E* exists with |[¢| = 1/d(z,0) = 1/||z| and
(x) = 1. We replace this £ with ||z| - £ and thus get [¢| =1 and £(z) = |z|. O

=
<

~— —

(
(
¢

5.1.11 Corollary. The operator norm of the adjoint.
Let T : E — F be bounded and linear between normed spaces. Then |T*| = ||T.

Proof. We have
|T*( = sup{|T*(y*)| : |y*| = 1} = sup{sup{|T* (y*) ()| : |lz| = 1} : [y*| = 1}
= sup{|T*(y*)(2)| : |z = 1, ly*| = 1}
—_—
ly* (T (@)
= sup{sup{|0(T'(2))(y*)| : [y*|| = 1} : |z = 1} = sup{[|6(T'(2))] : lz[ = 1}

sup{|T(2)| : =] = 1} = [T]. O

5.1.12 Corollary. Separability of the dual space.
If the dual space of a normed space is separable, then the space itself is separable.

The converse does not hold, as the example (£1) = {* shows, see .

Proof. Let D* € E* be a countable >Iglense subset. For each z* € D* we choose an
x € E with |z| =1 and |z*(x)| = HLQH Let D be the set of these x’s for all z* in

D*. We claim that the linear subspace generated by D is dense. Because of
it suffices to show that every x* € E*, which vanishes on D, is already 0. So let
x* be such a functional. Since D* is dense in E*, there exists a sequence z; € D*
with ||« — 2*| — 0. Let x,, be the corresponding sequence in D. Then

|27, — ™| = sup{|(z}; — 2*)(2)| : =] = 1}

> |(a; — a)(@n)| = |27 (@n)| = gl23 ],

hence z¥ converges to 0, i.e. z* = 0. O
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5.2 Separation theorems

5.2.1 Separation theorems for convex sets.

Let A and B be disjoint convex not empty subsets of a real lcs E. Then there exists
a continuous linear functional f : B — R and a v € R, s.t. for all a € A and all
b € B the following holds:

1. If A is open, f(a) <~y < f(b) holds;
2. If A and B are open, f(a) <~ < f(b) holds;
3. If A is closed and B is compact, then f(a) <~y < f(b) holds.

Hence the affine hyperplane {z € F : f(z) = 7} separates the two sets, meaning
that they are on different sides of it.

Proof. The set U := A — B # (J is open, convex, and 0 ¢ U. We choose
w € U and put V := U — u with associated Minkowski functional ¢ := ¢y (which
is sublinear by ) Let further F' := {tu : t € R} and f : FF — R be given
by f(tu) := —t (well-defined, since u # 0). Then f|y < 0, because f(U) € R is
convex, —1 = f(u) € f(U) and 0 ¢ f(U). Consequently, f < g|r by |1.3.7], because
for v € F with ¢(v) <1 we have ve V = U —u, hence 0 > f(u+v) = f(v) — 1, i.e.
f(v) < 1. By Theorem of Hahn-Banach there exists an extension to a linear
functional on E (which we denote again by f) with f < ¢. Since W :=V n -V
is a O-neighborhood, f(w) < ¢(w) < 1 and —f(w) = f(—w) < g(—w) < 1 for all
w € W, we deduce that f is continuous. For x € U we have x —u € V € g<; and
thus 1 = q(z —u) = f(z —u) = f(z) + 1, ie. f(z) <0. Thus, f(a —b) <0, ie.
f(a) <5 :=1inf f(B) < f(b). Now if A is open, then also f(A) and thus f(a) < 7
for all a € A.

If, in addition, B is open, then, by analogous arguments, f(b) > ~ for all b € B.

If A is closed, there is an open absolutely convex 0-neighborhood U, for each
y ¢ A, sothat An (y+3U,) = . Since B is compact, there are finitely many
y; € B, sothat B < | J,(y;+U;) with U; := Uy, . Because of (y; +2U;)n(A+U;) = &,
the two open convex sets B+U = J, 4 +U; +U < |, ¥i +2U; and A+U < A+ U;
are disjoint, when U := (1), U;. So the claim follows from (2). O

5.2.2 Corollary. Separation of a point from a convex set.

Let E be an lcs, U a non-empty convex open subset, and F a linear subspace that
does not intersect U. Then there is a closed hyperplane H 2 F', which does not
intersect U.

Proof. Let’s first assume K = R. By for A := U and B := F we have
the existence of f € E* and v € R with f(a) < v < f(b) for all a € A and b € B.
Since b := 0 € F we have v < 0 and therefore U n Ker(f) = . Furthermore,
F < Ker(f), because f(y) # 0 implies f(y) < 0 or f(y) > 0 and thus f(—y) < 0,
but then f(ty) < v for a suitably chosen multiple, thus ty ¢ F'.

Let now K = C. By the first case, there is an R-linear f : E' — R with f(z) <0
forx € U and f|p =0. Then f: 2z — f(z) —i f(ix) is C-linear, with 0 ¢ f(U) and

F < Ker(f) (note that Ker(f) < Ker(f)). O

5.2.3 Corollary. The closure as intersection of half-spaces.

The closed convex hull of a subset of a real lcs is the intersection of all half-spaces

that contain it, cf. .
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A HALF-SPACE is a subset of a vector space of the form {z : f(z) < 7} with a
feE*and yeR.

Proof. This follows as ’ 5.1.9‘ using ’ 5.2.1.3 ‘ or ’ 5.2.4 ‘ instead of :

In fact, half-spaces are obviously closed and convex, so the closed convex hull of A
is included in this intersection. Let conversely b be not in the closed convex hull of
A. Then by there is a v € R and a continuous linear functional f : £ — R
with f(a) <y < f(b) for all a € A. So A is in the half-space {z : f(z) < 7} but b,
so b is not in the intersection of these. O

Next, a generalization of .

5.2.4 Lemma of Mazur.
Let A < E be a closed convex subset of an lcs E over K and b e E\A.
1. If K=R and 0 € A, then there is a continuous linear functional f : E — K
with f(b) > 1 and f(a) <1 for all a € A.

2. If A is absolutely convex, then there is a continuous linear functional f :
E — K with f(b) > 1 and |f(a)| <1 for alla e A.

Proof. |1|By|5.2.1.3 | for the compact set B := {b} thereisan f € E* and ay € R
with f(a) < < f(b) for all a € A. Because of 0 € A, we have 0 = f(0) < v and

thus g := % f: E — R is the desired functional with g(a) <1 < g(b) for all a € A.

If K = R, then this follows from the first part, because with a € A also —a € A
and thus — f(a) = f(—a) < 1, altogether |f(a)| < 1.

Let now K = C. By what we have just shown, there exists a continuous R-linear
f:E— Rwith|f(a)| <1< f(b) for alla € A. The 2r-periodic function t — f(e?'b)
assumes its maximum at some point 7 and there its derivative f(ie‘Tb) has to
vanish. Now let’s consider the C-linear continuous functional

frxe f(eiTx) —iflie' x).
We have f(b) = f(e'"b) —i0 > f(b) > 1 and for a € Alet f(a) = re'? be the polar
representation. Then 0 < r = |f(a)| = e7*? f(a) = f(e7"%a) = f(e'"e™"?a)—i0 <
1 since ¢’ (""g € A. O

5.3 Dual spaces of important examples

5.3.1 Lemma. The dual space of (P.

Let 1 < p < 0 and 1 + L =1, then (¢P) = (2. Furthermore, (c,)’ = £*. Note in
particular that co # EOC = (61) (co)”.

We will show in that ¢y can not be a dual space of a Banach space.

Proof. The ¢ : ¢4 — (¢P)’, given by = — (y — {z,y)), is a well-defined mapping
with [|e(2)]| < |z| because of Holder’s inequality.

1t (Y

(mcl\\ /\/Ck)k

We now show the surjectivity: Let A € (¢P). If an = € ¢9 exists with «(z) = A,
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then we would have xj, = «(x)(e¥) = A(e¥). So we define x;, := A(e¥). There are
An € (£P)" given by

M) = Al ) = A( D ™) = 3 e
kE<n k<n
Then A\, — X converges pointwise, since Y., yx eF — 5y converges in P (or in cy).
So A € (¢°)* by the Banach-Steinhaus Theorem and

Aly) = lim A\, ( —nlgn Zxkyk—Zxkyk—L ) (y).

n—00
k<n

Thus, | Y, 2k yk| < |A]| |yl, holds. For fixed n we define y € (7 by yj, := Ty, |z |72
in case z # 0 and k < n, and 0 otherwise. We have |yi|? = |xx|? and thus

1/
Ml = Y wny = Zxkyk NI IO D

k<n k<n k<n

So |z|q < |A| and x € £9. O

5.3.2 Generalization. The dual space of LP.
For1<p< o and % —|—% =1:LY(X) = (LP(X))* (Forp =1 only if X is o-finite).

For a proof, see e.g. [5, S.381].

5.3.3 Corollary. The dual space of C([0,1]).

The continuous functionals on C([0,1]) are exactly the Riemann-Stieltjes integrals
with functions of bounded variation as integrator.

Recall from analysis that, in analogy to Riemann-sums, the RIEMANN-STIELTJES
SUM of a function f with respect to another function g, a decomposition Z := {0 =
t; <--- <t, =1}, and an intermediate vector £ = {{1,...,&,} with t,_1 < & < t;,
are given by

Ry(f,2,¢): Zf& ti) — g(ti-1)).

The function f is called RIEMANN—STIELTJES INTEGRABLE with respect to g with
integral Séfdg, if the limit Séfdg i= lim|z|_,0 Ry(f, Z,€) exists, where |Z| :=

max{\ti — ti—1| 1< < n}

Proof. It can be easily shown (see [22, (.5.14]) that for continuous f and any
function g of bounded variation V(g) (see ) the Riemann-Stieltjes integral

Sé f dg exists and satisfies | S(l) fdg) < |flw-V(g). Consequently, g — (f +— S(l) fdg)
is a bounded linear mapping with norm less than or equal to 1.

Conversely, let now ¢ be a continuous linear functional on C([0,1]). We have to
find a function g, with £(f) = §, f dg for all continuous f. Note that §; x[o.« dg =
g(s) — g(0). Since the Riemann-Stieltjes integral remains unchanged, if one adds to
g a constant, e.g. adding —g(0), we may assume that g(0) = 0, and it is suggestive
to define g by g(s) := £(x,) with x5 := X[o,s]- Unfortunately, this definition does
not make sense for the time being because Yy is not continuous. However, according
to Theorem of Hahn-Banach, we may assume that ¢ has been extended norm
preserving to B([0,1]).

Claim: g is of bounded variation.
Let 0 = tg < --- < t, = 1 be a partition of [0,1], then we define f; := e~ %",
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where g(t;) — g(tk—1) = 7 €%, Finally, f is the step function that has value fx on
(tk—lvtk]a Le. f = ZZ:I fk(th - th—l)' Then f € B([07 1]) with ”f”OO <lis

161> 10O = | ] Fulote) = glte-1)| = D] lote) = g(tu—)
k=1 k=1

and thus |¢] = V(g).

Claim: For f € C([0,1]) we have ¢(f) = Sé fdg.

Let Z := {0 =ty < -+ < t, = 1} be a partition and & = {&,...,&,} be an
intermediate vector. With fz € B([0, 1]) we denote fz := > 17, (&) (Xtx — Xtr_1)-
Then f = lim|z | fz in B([0, 1]) and because £ is continuous we obtain

af) =¢( Jim f7) = lim Ufz) = lim z(i ) (X = X))

1Z|-0 |1Z|— 1z-0 \
-1 g(t d
‘Zl‘gtofk (tk—1) Jfg [

The mapping BV ([0, 1]) — C([0, 1])’, however, is not injective, even if one requests
g(0) = 0, see [2, S.121]: To force injectivity, you can request g(0) = 0 and g(z) =
g(z+) :=limp o g(z) forall 0 <z < 1.

5.3.4 Representation Theorem of Riesz. The dual space of C(K).

Let K be a compact space. Then the mapping p — (f — SK fdu) is an isometric
isomorphism from the space of the Baire measures onto C'(K)'.

Recall .

Without proof. It is easy to see that this mapping is an isometry. Difficult is to
show surjectivity, see [14,S.139].

A REGULAR BOREL MEASURE p is a signed measure u (i.e. a o-additive mapping)
on the Borel set algebra, which is regular, i.e.

14l(A) = sup{|p(K)| : K € A, K compact}
= inf{|u(U)|: U o A, A open Borel-measurable},

where the (positive) measure | u\ is defined by
|u|(A) := bup{z |w(Ay)|: Ape A A = UAn.An pairwise disjoint}
n

The variation norm is defined by ||p := |p|(X).

On compact spaces, the Baire measures are in bijective correspondence to the reg-
ular Borel measures, i.e. they can be uniquely extended from the Baire sets (see

[4.1.3)) to the Borel sets (see [4.1.3)).
5.3.5 Corollary. The dual space of C(X).
The dual space of C(X) for completely regular X consists of all the regular Borel

measures with support in compact subsets of X.

Proof. For each u e C(X)* there is a compact K € X and a C' > 0 with |u(f)] <
C||f|k|ls- Then, u factors to i € C(K)* via incl® : C(X) — C(K) (by virtue of
A(f) == p(f), where f e C(X) is any continuous extension of f € C(K)), so it is
given by by a regular Borel measure on K. O

5.3.6 Runge’s Approximation Theorem.
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Let K < C compact and A € C,,\K a set that meets every connected component of
Co\K. If f is holomorphic in a neighborhood of K then there are rational functions
with poles in A which converge uniformly on K towards f.

With Co, we denote the Riemann sphere, i.e. the one-point compactification Cu{oo}
of the plane C, see [19, 2.16,2.22]

Proof. We denote with R4 (K) := {%|x : p, ¢ sind polynomials, g (0) A} the
set of all rational functions on K with poles in A.

Let E := {f|x : f is holomorphic on a neighborhood of K} be the subspace of
C(K) formed by those functions which possess a holomorphic extension to a neigh-
borhood of K. We have to show that the closure of R4(K) contains the space FE.
Because of , it suffices to show that every p € C(K)* vanishing on R4 (K)
vanishes on all E' (According to Riesz’s representation theorem , such a p is
given by a regular signed Borel measure).

So let f|x bein E with f : U — C holomorphic on an open set U containing the K.
According to the CAUCHY INTEGRAL FORMULA (see [19, 3.28]) there are finitely
many C! curves (in fact, line segments) ¢, in U\K, such that

v L[ fw)
eI
for all z € K (see [6.21]).
nl ”1 1
- Yl J L) = X o [, S (e )

Ck

5.3.7 Sublemma.

Let p e C(K,C)* with K < C compact. Then a holomorphic function i : Cx-,\K —
C is given by

with derivatives

() () 1
(m)
w = fu(z — 2”71) forn >0
n!

Proof. Let the continuous r : (C\K) x K — C be defined by (w,z) — —1-, and
thus 7 : w — (ry : 2 — r(w, z)) is a continuous mapping C\K — C(K,C) (see
[26, 2.4.5]). Then also i = o7 is continuous. The mapping f : C\K — C is even

holomorphic, because

fi(w') = fi(w) 1
- . N f N
w' —w ,u(z (z—w’)(z—w)) plry) for w' — w,
so i’ (w) = p(r2). Inductively one shows (™ (w) = n! u(rn*1).

Because of r,, — 0 for w — o0, fi is extendable continuously to C,\K by fi(o0) := 0,
and thus, according to Riemann’s theorem [19, 3.31] on removable singularities, it
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is holomorphic on Cy,\K. As Taylor development of /i at oo - i.e. that of w — fi()
at 0 - we obtain:

o) =n(e-+ 215) = Lo (- 5))

Hence we have for the derivative

%ﬁ(") (0) = —,u(z — z"_1> O

Now we are able to complete the proof of Runge’s Theorem :
Because of |, (k) = 0, the Taylor development of fi is 0 for each a € A, and since
it is holomorphic and A meets all the components of C,\K, fi = 0 on C,\K and

thus u(f) = —>,_, 2%” SCk f(w) fi(w) dw = 0. O

5.3.8 Corollary. The polynomials lie dense.

If K is compact and C\K is connected, then each function being holomorphic on a
neighborhood of K can be approximated by a sequence of polynomials uniformly on
K.

Proof. For A := {0}, the rational function with poles in A are just the polynomials
by the fundamental theorem of algebra (see [19, 1.8]). O

5.3.9 Theorem. Dual space of H(U).

Let U < C be open. The dual space of the Fréchet space H(U) can be identified
with Ho(C,\U), the space of the germs of holomorphic functions f on C\U with
f(o0) = 0,

A GERM OF A FUNCTION on K is an equivalence class of functions locally defined
around K, where “equivalent” means that they conicide on a neighborhood of K.

Proof. Let [g] € Ho(C,,\U), i.e. g is holomorphic on a neighborhood W of the
compact set Co,\U. Without loss of generality, the boundary of W is parameterized

by finite many C'-curves cy, see , and ¢ still holomorphic on it. Then
polf) = [ @9z = [ 1@ dz
oW k YCk

defines a continuous linear functional on C'(U) 2 H(U). This definition depends
only on the germ [g] of g, because if W is a smaller neighborhood of C,,\U with
C parameterizable boundary in W, then both g and f are holomorphic on W\W;
and thus the integral of f - g over the boundary 0(W\W;) vanishes by the Cauchy

Integral Theorem | 6.20], but this is just the difference Sow [-9—=Sow, f- 9

Conversely, let € H(U)* and because of the Theorem of Hahn-Banach, w.l.o.g.,
e C(U,C)*. Then the support of u is a compact subset K € U, i.e. u € C(K,C)*.

The mapping fi : C,\K — C is holomorphic by the above sublemma and
because of the Cauchy integral formula we have (like in the proof of Runge’s theorem

5.3.6))
W) == o | flw) tw) dw for £ e HQO),
i ek

So u is given by an “inner product” with i€ Hy(C,\K). O
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5.4 Introduction to duality theory

5.4.1 Definition. Annihilators.

Let E be an lcs and let F' be a subspace. With F'° we denote the ANNIHILATOR of
Fin E* ie. F°:={{e E*: /(| = 0}. If E is a Hilbert space, we can identify E*
with E by [18, 6.2.10]. The set F° then coincides via ¢ : E — E*, z — (y — {(z,y))
with the orthogonal complement F* of F, because

reFreVYyeF:0={y,2)=1(2)(y) = 1z)|r =0 (z)e F°.

If G is a subspace of E*, then we denote with GG, the ANNIHILATOR of G in FE, i.e.
Go:={xeE:VgeG:0=g(zx) =4x)(9)} = ﬂ{kerg:geG}
={reE:ix)|c=0}={r:x)e G} =5"G),

where now 0 : ' — F** is the canonical injection.

5.4.2 Corollary. The closure as the bi-annihilator.

If E is an lcs and F is a subspace, then its closure is F = (F°),.

Proof. From follows:
F=(\{kert: f|p =0} = V{ker(: Le F°} = (F°),. O

5.4.3 Corollary. The kernel of the adjoint.

Let T : E — F be a continuous linear mapping between lcs’s.

Then (imgT)° = ker(T*) holds. Furthermore, imgT = (ker T*),.

Proof. The first equation holds since ¢’ € (imgT)° < Vz : 0 = ¢/ (Tx) = T*(y')(x)
< T*(y') =0, ie. ¢y € ker T*.

From follows imgT = ((imgT)°), = (ker T*),. O

5.4.4 Corollary. The dual space of quotients and subspaces.

Let F be a closed linear subspace of an lcs E. Then natural continuous linear bijec-
tions E*/F° — F* and (E/F)* — F° exist. For normed E these are isometries.

Proof. We dualize the sequence F <> E 5 E/F and get:
Ker* = F°
A

. Since 7 is surjective, 7* is injective and by
incl

() the Extension Theorem ¥ B¥ — F¥

e ot E* (E/F)* is surjective. Because Ker:/* = F°, there ex-

A ¥ ists a uniquely determined continuous linear

) / bijective map (1) : E*/F° — F* given by
x* + FO % (2*) = a*|p.

E*/F°

Because of v* o m* = (wo¢)* = 0, there is a unique determined continuous linear
mapping (2) : (E/F)* — F° given by £ — 7n*({) = on. Since ©* is injective, (2) is
injective and also surjective, because every y* € F° € E* vanishes on F' and thus
factorizes to an £ € (E/F)* with y* = Lo = 7*({).

If F is now normed, then with 7 and ¢ also 7#* and * are contractions and thus
also the two vertical mappings. For y* € F*| there is an «* € E* with |z*|| = |y*|
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and *(*) = y* by [5.15] Thus, [a* + F°| < 2% = y*| = [o*(@*)], ie.
(1) is an isometry. The same holds for (2) since 7* is an isometry because of
W(x+ F)| = |l(r(x+y))| = |7*0)(x+y)| <|7*@)| |z +y| for all y € F and thus
€] < |7*(€)| for £ € (E/F)*. O

5.4.5 Definition. Dual pairing.

A DUAL PAIRING is a bilinear mapping {_, .y : E x F' — K on the product of two
vector spaces, which is not degenerated, i.e. Vz : {z,y) = 0 implies y = 0 and
similarly for the variables exchanged.

So we may, for example, consider the elements y € F' via (_,y) as linear functionals
on E. By the WEAK TOPOLOGY o(E, F) on E we understand the initial topology
with respect to all of these functionals x — (x,y) for y € F.

A basis of seminorms is given by the functions = — |z, y)| with y € F.

We say that a structure of an lcs F' is COMPATIBLE with the dual pairing (E, F'), if
F is the space of the continuous linear functionals with respect to this structure, or,
more precisely, the natural mapping F' — E*, y — {_, y), is a well-defined bijection.

The topology o(F, F') is called weak because it is the weakest compatible topology:

5.4.6 Lemma. Compatibility of the weak topology.

Let (E, F) be a dual pairing. Then the vector space F is isomorphic to the space
E* of all linear functionals, which are continuous for the weak topology o(E, F') on
E. More specific, the natural mapping v : F — E*, y — (_,y) is a bijection.

Proof. The mapping ¢ is clearly well-defined, linear and injective because of the
non-degeneracy assumption. So all that remains to show is the surjectivity. Let

* . F — Kbe a linear functional on E which is continuous with respect to o(E, F),
i.e. there exist y1,...,y, € F with |2*(z)| < p(z) := max{[{z,y;)| : i =1,...,n}.
Let £; := «(y;) and £ := (¢1,...,4,) : E — K". Then ker(f) = (),,, ker£; < ker *
and hence z* factors uniquely as linear functional over ¢ : E — ((E) < K"
This factorization can be extended from the subspace ¢(E) to a linear functional
K" - K:

kerEC—>E*>>€ > K"

incl£ H
\

kerx*(—>E‘»x E)——K

Such a p is of the form p(z1,...,z,) = Zi:l i x; for some scalars p; € K. So
*:,uoﬁzz,?:lpi&=L<Z?:1,uiyi)EL(F). O

5.4.7 Bipolar Theorem.

Let (E, F) be a dual pairing, and A € E. Then (A°), is the o(E, F)-closure of the
absolutely convex hull of A. Where A° :={y e F : (x,y)| <1 for alle x € A} is the
POLAR of A; and analogously B, :={x € E : {z,y)| <1 for all y € B} for BS F.

Note that the polar A° defined here agrees for linear subspaces A with the anni-
hilator A° defined in , because Va € A : [a,y)| < 1 & Yae AVt > 0:
t- |<(l,y>| = |<t " a, y>| <1, ie. <a’7y> = 0.

Proof. (2) Obviously, the polar (A°), is o(E, F)-closed, absolutely convex, and
contains A.
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(S) Suppose = € E is not in the o(F, F')-closure of the absolutely convex hull of A.

By the Lemma of Mazur, there is an y € F with y(z) > 1 and |y(z)| < 1 for
all z in (the closure of the absolutely convex hull of) A. Soy € A% and = ¢ (A%),. O

5.4.8 Lemma.
The closure of convex sets with respect to compatible topologies.

Let A € E be conver and closed for a structure compatible with the dual pairing
(E,F). Then A is also closed for any other such structure.

Proof. In case K = R, we have that A is the intersection of the half-spaces con-
taining A by . Since this only involves the continuous linear functionals, A is
closed with respect to any compatible topology.

In case K = C, the real part of the dual pairing (_, ) : Ex F — C provides a pairing
{, or : ExF — R asreal vector spaces, because (z,y) = Re({z,y))+iIm((x,y)) =
(x,yor — i Re(iz,yy) = {x,y)r — i{z,iy)r. A structure on E as complex lcs is
compatible with the complex pairing if and only if it is with the real part, because
the C-linear mapping ¢ : E — L¢(F,C), x — {x,_) is surjective by if and
only if Reot : E — L¢(F,C) 5 Lg(F,R), z — Re({(x,_)) is so. So everything
follows from the real case. O

5.4.9 Theorem of Mackey.

A subset of an lcs E is bounded if and only if it is bounded with respect to some
(each) topology T being compatible with the dual pairing ev : E x E* — K.

Proof. We have shown in by means of the Theorem of Hahn-Banach and
the Uniform Boundedness Principle for Banach spaces that a set is bounded if and
only if it is bounded under all continuous linear functionals. This does not depend
on the compatible topology. O

5.4.10 Remark. Topologies of uniform convergence.

Let X be a set, F' an lcs and B a family of subsets of X. By the topology of UNIFORM
CONVERGENCE on the sets B € B on the space of all mappings X — F being
bounded on the sets in B, one understands the topology generated by seminorms
f=ll(po f)lBlw, with B runs through B and p runs through the seminorms of F'.

In particular, if X = E is an lcs over K and F' = K, and B is a set of bounded sets
in E which is closed under homotheties, i.e. A B € B with B € B and A > 0, then the
polars B° := {z* € E* : Vx € B : |z*(z)| < 1} with B € B form a 0-neighborhood
subbasis of the topology of uniform convergence on the sets B. If, in addition, B is
closed under unions, this is a 0-neighborhood basis.

In |5.1.10 | we have shown that the canonical mapping ¢ : £ — E** for normed
spaces E is an isometric embedding. We now want to examine to what extent this
translates to general Ics.

For the usual topology on L(E*,K) of uniform convergence on bounded subsets
B < E* the sets B° form a 0-neighborhood basis. Continuity of § would mean that
§~1(B°) = B, would have to be a 0-neighborhood and thus B < (B,)° would be
equi-continuous. At least for barreled E this is the case because of the Uniform

Boundedness Principles .

We now show that, when we use the topology of uniform convergence on each equi-
continuous subset B < E* on (E*)*, the mapping § : E — (E*)* is always an
embedding lcs’s.
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5.4.11 Corollary. Embedding in the bidual.

The topology on any lcs E is that of uniform convergence on equi-continuous subsets
of E*, i.e. the natural mapping E — E** is an embedding, provided we supply the
target space with the uniform convergence on equi-continuous subsets of E*.

Note that this natural mapping is not always continuous with respect to the usual
topology of uniform convergence on bounded sets, but is obviously bounded.

Proof. Let U be a closed absolutely convex 0-neighborhood in F. By , U

is also o(E, E*)-closed, so (U°), = U by the Bipolar Theorem |5.4.7]. Since U°
is clearly equi-continuous, U = (U°), is a 0-neighborhood of E with respect to
uniform convergence on equi-continuous sets.

Conversely, let V = A, = §71(A°) be a typical 0-neighborhood of E for the topology
of uniform convergence on equi-continuous sets A € E*. Then there is a closed
absolutely convex 0-neighborhood U in E with A € U°. Thus, V = A, 2 (U°), =
U, i.e. V is a 0-neighborhood of E. O

5.4.12 Theorem of Alaoglu-Bourbaki.

FEach equi-continuous subset of E* is relatively compact with respect to o(E*, E).

Proof. We have to show this only for polars U° of 0-neighborhoods U. We consider
the dual pairing (E, G), where G consists of all linear (not necessarily continuous)
functionals. Let us denote the polar with respect to this pairing by *. Then U®* < G
is closed and bounded (since U is absorbent) with respect to (G, E). The natural
mapping 6 : G — [ [ K, y — ({(&,9))zep is linear, injective, has a closed subspace
as image (the pointwise limit of linear mappings is linear) and is initial by definition
of the weak topology o(G, E). The image of U* is therefore compact because of the
Theorem of Tychonov (products of compact spaces are compact, see [26, 2.1.13])
and thus U* itself is (G, E)-compact. Because of E* < G, we have U° < U*® and
even equality is true, because y € U® is continuous (y~({t : [t| < e}) 2 U). So U°
is compact with respect to o(G, E). But since (G, F) induces on E* the topology
o(E*, E), everything is shown. O

5.4.13 Corollary. Normed spaces as subspaces of C(K).

The closed unit ball K in the dual space E* of a normed spacees E is o(E*, E)-
compact. Thus, E is isometrically isomorphic to a subspace of C(K), with an em-
bedding being given by § : E — E** — C(K), xz — (z* — 2*(z)). O

In , cf. , we will characterize the Banach algebras of the form C'(K) with
compact K.

By the unit ball is compact in the norm topology if and only if F is finite
dimensional. Thus for each infinite dimensional normed E the topology o(E*, E)
is strictly coarser than the norm topology.

5.4.14 Definition. Mackey topology.

Let (E, F) be a dual pairing. Then the MACKEY TOPOLOGY u(E, F) on E is the
topology of the uniform convergence on the o(F, F)-compact, absolutely convex
sets in F.

5.4.15 Theorem of Mackey-Arens.

A topology on E is compatible with the dual pairing (E, F) if and only if it lies
between the weak topology o(E, F') and the Mackey topology n(E, F).
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Proof. We first show the compatibility of u(E, F'). Let £ : E — K continuous linear
functional with respect to u(F, F). So there is a o (F, E)-compact absolutely convex
set K © F with [{(K,)| < 1. We consider as in the dual pairing (E,G),
where G 2 F denotes the space of all linear functionals on E. Since (G, E) induces
on F the topology o(F, E), K € F < G is also ¢(G, E)-compact and thus closed.
From the bipolar theorem it follows that K = (K,)* where * denotes the polar
with respect to (G, E). Obviously K, = K, and because of |[{(K,)| < 1 we have
le (K,)* =(K.)* =K CF,ie the u(E, F)-dual of E is included in F.

The converse inclusion immediately follows from the fact, that each y € F' is con-
tinuous even with respect to o(E, F') and therefore also with respect to u(E, F).

Let 7 be any compatible topology on E. Since all y € F' are thus continuous func-
tionals with respect to 7, it is finer than the weak topology o(E, F).

On the other hand, let U be a 0-neighborhood in E with respect to 7. Because
of , we may assume that U = K, with K € F t-equi-continuous abso-
lutely convex. Because of the Theorem of Alaoglu-Bourbaki the set K is
o(F, E)-compact, and thus U = K, is a 0-neighborhood with respect to the Mackey
topology u(E, F). O

5.4.16 Remark. Topologies on the dual space.

For each les E we consider the dual pairing F x F — K with F := E* and the
following types of subsets B € E* which in addition are assumed to be closed and
absolutely convex:

1. The absolutely convex hulls of finite subsets;
The equi-continuous ones;

The o(F, E)-compact ones;

The Banach discs;

The sets being uniformly bounded on bounded subsets of F,
i.e. the bounded sets in L(F,K);
6. The sets being bounded on each point in E, i.e. the o(F, E)-bounded ones.

Al

A set B © F is called BANACH DISK if it is absolutely convex, o(F, F)-bounded
and the normed space Fg (see ) is complete.

Lemma.

Let A and B be two families of bounded subsets of E that are invariant by forma-
tion of subsets, absolutely convexr hulls, closures, and twofold sums (and thus finite
unions and homotheties). Then the induced topologies on F' of uniform convergence
on these sets are the same if and only if A = B holds.

Proof. For B € B, B° is a 0-neighborhood of the associated topology, so an A € A
exists with A° € B° and thus B € (B°), € (A°), = (A)closed abs.conv. € A, hence
Be A. O

The corresponding topologies on E of uniform convergence on the respective sets
in F have as neighborhood basis of 0 just the (o(E, F')-closed absolutely convex)
polars of the sets listed. So these topologies are

1. The weak topology o(E, F') by definition;

The original topology from E to ;

The Mackey topology u(F, F') by definition;

This has no common name;

The one with the bornivorous (see ) barrels as 0-neighborhood basis;

CUk
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6. The one with the barrels (see ) as O-neighborhood basis.

For the last two topologies, we use the following;:

B, absorbs A < (A, B) is bounded, i.e. B is uniformly bounded on A:

In fact, A< K B, « [{(A,B)| < K.

Therefore, the polars of the sets in (6) and (5) are just the barrels, resp. the bor-
nivorous barrels:

The polar B, of a set B, being bounded on all finite/bounded sets, absorbs all
these sets by what we have just shown. Conversely, for each (bornivorous) barrel
A= (A%, (by ) the polar A° is bounded on finite (bounded) sets what we
have just shown.

We now want to show that the mentioned topologies are successively stronger in
the given order, or equivalently that the corresponding inclusions of the underlying
families of closed absolutely convex sets hold. For (1) = (2) and (5) = (6) this
is trivial, (2) = (3) is the Theorem of Alaoglu-Bourbaki. The remaining
implications (3) = (4) = (5) are shown in the following two results:

5.4.17 Lemma.

Each o(E, F)-compact absolutely convex set is a Banach disk.

Proof. Let (z,), be a Cauchy sequence in Ep. Then sup,, pp(x,) < o and thus
there is a K > 0 with z,, € K B for all n. Since K B is also o(F, F')-compact,
there exists a o(F, F')-accumulation point x4 € K B of (2,),. For ¢ > 0 we have
pB(Tm—x,) < € for sufficiently large n and m and therefore ., € x,, +& B. Because
Zn +€ B is also o(E, F)-closed and x4 is an accumulation point of (2, )m,, we have
Zoo € Ty, + € B, and thus pp(ze — x,) < € for these n. So x, — x4 converges in
Ep. O

5.4.18 Banach-Mackey Theorem.

Each barrel absorbs each Banach disk.
Moreover, Banach disks in F' = E* are uniformly bounded on bounded sets in E.

Proof. Let B < F be a Banach disk, meaning that B is absolutely convex, o(E, F)-
bounded and the normed space Ep := (B)yr, considered with the Minkowski
functional pg : Egp — R, is complete. Let ¢+ : Eg ~— E be the natural linear
inclusion.

Furthermore, let A € FE be a barrel, i.e. absolutely convex, o(F, F)-closed and
absorbent. Then the Minkowski functional p4 on (A)yr = E is a well-defined
seminorm. Let F 4 be the quotient space E/ker(ps) and 7 : E — E4 the canonical
linear surjection. The seminorm p4 factorizes over w: E — E4 to anorm E4 — R
and this we can uniquely extend to the norm p,4 on the completion E\A.

Obviously, A € 7= 1(7A) S (pa)<i. Moreover, equality holds, because 1 = pa(z) =
inf{\ > 0: 2z € X A} implies the existence of a sequence A, \, 1 with z € \,; A and
thus A > im — z. Since A is closed with respect to o(FE, F'), we finally get x € A.

Let us now show the continuity and thus the boundedness of the composition

Ep - (E,0(E,F)) —%> E4 < Ey4.
By it sufficies to find a point-separating family of continuous linear func-
tionals £ on E:; for which the composition lomoi: FEp — K is continuous.

Each y € A° < F satisfies {x € E : {x,y)| < 1} 2 A = (pa)<1 and thus |z —
{z,y)| < pa for the associated linear functional. Thus this functional factorizes
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over 7w : ¥ — FE4 to a contraction F4 — K and thus has a continuous extension
7 : B4 — K. The composition jomor = yor: Eg — K is continuous (= bounded)
because B is o(FE, F')-bounded.

Remains to show that these § act point-separating on E\;;. Let 0 # T € E’\;l, ie.
pa(Z) > 0. Then there is an = € E with pa(& — n(z)) < 1pa(z) =1 § > 0. We
therefore have p4(z) = pa(w(z)) > §. By the Lemma | 5.2.4.2 | of Mazur there is a
y € A° € F with y(§) > 1. The associated 7 : Ex — K thus fulfills |§| < px and
3 (x)) = y(x) > 8. So
[9(2)| = [g(m(x)] = [9(& — 7 (2))| = [y(2)| — pa(Z —7(x)) > 6 -6 =0

The second part of the theorem is shown as follows: Let B € F be a Banach disk
and C' € E bounded. Then C is pointwise bounded on F' by and thus C° € F

is a barrel by | 5.4.16 |. Because of the first part, a K > 0 exists with B € K C°, i.e.
B is bounded on C' by K. O

5.4.19 Remark.

For § : E — (E*)* being continuous with respect to the topology of the uniform
convergence on sets B € E* we need, by what has been shown in | 5.4.10 |, that the
B, = §1(B°) are 0-neighborhoods and hence B < (B,)° are equi-continuous.

Moreover, § is an embedding under this assumption:

5.4.20 Corollary. Barreledness and bidual.

The topology of any lcs E is that of uniform convergence on pointwise bounded sets
of E* if and only if E is barreled.

1t is that of uniform convergence on all bounded sets of E* < L(E,K), if and only
if E is infra-barreled.

In both cases, it is also equal to u(E, E*).

An lcs is called INFRA-BARRELED or also QUASI-BARRELED if every bornivorous bar-
rel is a 0-neighborhood. Note that (by the following lemma) obviously all bornolog-
ical as well as all barreled lcs’s are infra-barreled.

Related to this is also the notion ULTRA-BORNOLOGICAL, i.e. when each absolutely
convex set, which absorbs Banach-disks, is a 0-neighborhood. Obviously, ultra-
bornological spaces are bornological and according to | 5.4.18 | they are also barreled.

abs.conv, absorbs Ban.disks

o

closed, abs.conv, absorbing abs.conv, bornivorous

\/

closed, abs.conv, bornivorous

Proof. Because of ’ 5.4.16.5‘ and ’5.4.16.6 , the (bornivorous) barrels form a zero
neighborhood basis of the said topologies of uniform convergence, which concide
with the (weaker) original one of E precisely if those barrels are 0-neighborhoods,
i.e. the space is (infra-) barreled.

Since p(E, E*) lies between the topology of E and that of the uniform convergence
on the bounded sets by |5.4.16 |, equality holds in these cases. O
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Lemma.

An les E is bornological if and only if all bornivorous absolutely convex subsets are
0-neighbprhoods.

Proof. (<) Let f : E — F be a bounded linear mapping and V' be an absolutely
convex O-neighborhood in F. Then f~*(V) is absolutely convex and bornivorous,
since for each bounded set B there is some K > 0 with f(B) € KV, ie. B C
K f~Y(V). Thus f~1(V) is a 0-neighborhood and hence f is continuous.

(=) Let U be absolutely convex and bornivorous. Then the linear subspace Ey
generated by U is F and we may consider the corresponding Minkowski functional
py and form the normed space F := E/ker(py) with norm py. The natural linear
map 7 : ' — F is bounded, since for each bounded B < FE there is some K > 0
with B € KU and hence py is bounded on B by K, i.e. py(n(B)) is bounded.
Since E' is assumed to be bornological, the map 7 is continuous, and hence U 2
(pv)<1 = 7 Y((pv)<1) is a O-neighborhood. O

5.4.21 Definition. Reflexivity.

Alcs E is called (REFLEXIVE) SEMIREFLEXIVE if the canonical mapping ¢ : E — E**
is surjective (is a topological isomorphism).

5.4.22 Proposition. Semireflexivity.
[14,[S.227] For lcs’s E are equivalent:

1. E is semireflexive;
2. (E*,u(E*,E)) is barreled;
3. Fach bounded set is o(E, E*)-relative-compact;

4. (E,o(E, E*)) is QUASI-COMPLETE, meaning every bounded and closed subset
is complete.

Proof.

(@) Since, by | 5.4.15 |, u(E*, E) is the finest topology on E* with dual space

E and the natural topology of uniform convergence on the bounded sets in F is finer
(o(E, E*)-compact sets are obviously bounded), E is semireflexive if and only if

these two topologies coincide. By applied to (E*, u(E*, E)), this is exactly
the case when p(E*, F) is barreled, because by the pointwise(=scalarly)
bounded sets of (E*, u(E*, E))* = E are just the bounded sets and the topology
of uniform convergence on them is the natural topology on E*.

((:)) The two topologies considered in (@) coincide by the Lemma in
5.4.16 |if and only the bounded closed absolutely convex sets are o (E, E*)-compact.
Since the closed absolutely convex hull of each bounded set is obviously bounded,

this condition is equivalent to .

(@) The bounded sets in £ are bounded in [ [z« K, so relatively compact
there, and thus pre-compact in E with respect to o(F, E*). Precompact sets are
compact if and only if they are complete, see [26, 3.5.9]. O

5.4.23 Proposition. Reflexivity.

[14,[S.227] For lcs’s E are equivalent:

1. E is reflexive;
2. E is semi-reflexive and infra-barreled;
3. Each bounded set is o(E, E*)-relative-compact and E is infra-barreled;
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4. FE is semi-reflexive and barreled.

Proof. (@) since E — E** is an embedding if and only if F is infra-barreled

by [5:020]

(:) If E is reflexive, then E is even barreled: For this we have to show

that all barrels in E are bornivorous and by this is exactly the case when
all o(E*, E)-bounded subsets A are bounded in E*, i.e. are uniformly bounded
on bounded (absolutely convex) subsets B. Because of we may assume
that B is o(E, E*)-complete and thus Ep is a Banach space (namely, let (x,,) be a
Cauchy sequence in Fg, then (w.l.o.g.) z, € B. Then (z,,) is also o(F, E*)-Cauchy,
hence o(E, E*)-convergent towards x4 € E. For each ¢ > 0 and sufficiently large
n and m we have z, — x,, € €B, hence z, — o, € B, i.e. &, — Ty in Ep).
Now we consider the natural inclusion 15 : Ep ~— E and obtain, by the uniform
boundedness principle , that (tp)*(A) < (Fp)* is bounded, i.e. A is bounded
on B.

(4]=[3]=[2]) follows from [5.4.22]. O

5.5 Compact sets revisited

5.5.1 Theorem of Krein-Milman.

Let K be a compact convex subset of an lcs. Then K is the closed convex hull of its
EXTREMAL POINTS

Ext(K) :={a€ K : K\{a} is conver }
={aeK: Vz,ye K V0<t<l:a=tz+(1—t)y=2=0a=y}

Proof. We may assume, without loss of generality, that K # ¢§. The two descrip-
tions of extremal points are equivalent because K\{a} is convex if and only if all
z,ye K withz #a,y#a,and all 0 <t <1 are: tz + (1 —t)y # a, or equivalent:
tr+ (1 —t)y =a =z =aodery = a. Because of tx + (1 —t)y = a, however,
x = a and y = a are equivalent.

The essential part of the proof consists in proving that Ext(K) is not empty. For
this, we call in addition a subset A € K EXTREMAL in K, if

Ve,ye K YO<t<l:tzx+(1—t)ye A=x,ye A
Any one-point set {a} is extremal if and only if a is an extremal point. Let

& :={Ac K: Ais extremal in K, closed (=compact) and convex}.

There are extremal points. Obviously, £ is closed under forming intersections.
We now want to apply Zorn’s Lemma to & := E\{}. The finite intersections
of each linearly ordered subset £L < &; are not empty, so because of the finite
intersection property of compact sets (i.e. if each finite intersection is not empty,
then so is the whole intersection) the entire intersection is in &. According to the
Lemma of Zorn, there is (for each B € &) a minimal element A € & (with A € B).
We claim that A is a singleton. Let x,y € A. If  # y, then by there is a
continuous linear functional f: E — R with f(x) # f(y).

Claim. If A€ & and f € E* then Ay := An f~'(sup f(A)) € &:
Since f is continuous and A is compact, the supremum M := sup f(A) is obtained,
so the closed set Ay is not empty. It is convex since f is linear and A is convex.
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Remains to show that Ay is extremal in A. Let z,y € A and 0 < t < 1 with
z=tx+ (1 —t)ye Ay. Because of f(x), f(y) < M we have

M = f(z) =t f(z)+ (1 —1t)f(y)
=tfle)=M-Q1-1)fy) 2A-1—-t))M=tM=>1tf(x)
= f(z) = M and analogously f(y) = M = z,y € Ay.

Since Ay is extremal in the extremal subset A of K, it is so in K.

Due to the minimality of A, A = Ay follows. This is a contradiction because f is
not constant on {z,y} < A.

Now let B be the closed convex hull of Ext(K). Obviously, Ext(K) € B < K holds.
Assuming B # K, then there is an a € K\B and thus a continuous linear f : £ — R

with f(b) < f(a) for all be B by [5.2.4], so B n K = &. Because of f € E* and
K € & we obtain K € &, as shown above, and by the first part an extremal point

be Ky of K exists, i.e. be Ext(K) n Ky € Bn Ky = (&, a contradiction. O

5.5.2 Corollary.

Neither co nor L*(R) are dual spaces of normed spaces.

Proof. If a Banach space F is topologically isomorphic to the dual space of a
normed space F, its closed unit ball must be contained in a multiple of the dual ball
of F. So it is an o(E, F')-closed subset of the o(FE, F')-compact (by the Theorem
of Alaoglu-Bourbaki) dual ball. So it is itself o(E, F)-compact, and has
extremal points according to the Theorem of Krein-Milman. However, this
is not the case for ¢o or L*(R):

Let x = (z1)x € co with |z[ < 1. Then there is a k with || < 1 and by choosing
an € > 0 with |x| + € < 1 we have for the two points

. x; for j # k
N .
xpte forj=k

1
2

Let [f] € L'(R) with ||f[1 < 1. Without loss of the generality | f[1 # 0. Then there
is a measurable subset X in R with 0 < § Xo |f] < |If]1- Then the analog inequality
holds for X; := R\Xy. Now t; := ||f|x,|I/|f] > 0 and ¢; f; :== f - xx, for i = 0,1.
Then | filly = | fl1, fo # f # f1, f =tofo + 11 f1 and to +¢; = 1. So f is not an
extremal point. O

z=2(xt +27), 2t #x # 2~ and ||z%| < 1. So z is not an extremal point.

Another important theorem about compact convex sets is the following

5.5.3 Fixed-point Theorem by Brouwer-Schauder-Tychonoff.

Let K be a non-empty compact convex subset of an lcs E and f : K — K a
continuous mapping. Then f has a fized-point x € K.

Proof. In algebraic topology (see also [11] or [17, 9.2] or [24, 7.6.13] or exercise [25,
7.63]), Brouwer’s fixed-point theorem tells us that this holds for finite dimensional
E.

Now for lcs’s E: Compare this with the exercises [25, 7.65] and [25, 7.66]. We
show the existence of a fixed-point under the weaker assumption that K < E is
closed, convex and non-empty, f : K — K is continuous and f(K) is relatively
compact. For each closed absolutely convex 0-neighborhood U there exists a finite
set My € f(K) € K with f(K) € My + U. Furthermore, there exists a continuous
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partition {hY; : y € My} of unity with respect to the metric pyy, which is subordinate
to the covering {y + U : y € My}, eg. g, : v — max{0,1 — py(z — y)} and
WG = 9t/ Ysenr, 96- Then fu := 3 o (b o f) -y is a continuous mapping into
the convex hull Ky of My and

pulf@) = fo@) = po( Y W (F@)- (f) - 1))

yeMy
< DL M(f@) pu(fl@)—y) < ) h(f(@) = 1.
flz)ey+U yeMu

According to Brouwer’s fixed-point theorem, fy : Ky — Ky € f(K) n (My)vr
has a fixed-point xy € Ky.

The set {x — f(x) : x € K} is closed, because if lim; x; — f(x;) = z, then ¢ — f(x;)
has an accumulation value y € f(K) and thus x := z + y is an accumulation value
of i — x;. Therefore, z € K and x — f(x) = z, because [ is continuous.

Let us assume f has no fixed-point, then 0 would not be in the closed set {z— f(z) :
x € K}, so there would be an absolutely convex closed 0-neighborhood U with
x — f(x) ¢ U for all z € K. Because of zy — f(zv) = (fu — f)(zy) € U this is a
contradiction. O

5.5.4 Fixed-point Theorem of Kakutani. [31] and [4].

Let K € R™ be a non-empty, convexr and compact subset, and f : K — 25 =~ P(K)
a convez-valued mapping with closed graph {(z,y) :y € f(z)} € K x K and f(z) #
& forall x € K.

Then f has a fized-point, i.e. 3x € K: x € f(x).

Proof. Since the graph of f is closed, f(z) = {z} x f(x) = graph(f) n {z} x K is
closed. Furthermore, f is semicontinuous from above, i.e. U open = {x : f(z) € U}
open, otherwise there would be a net x; — zo, with f(zs) € U and y; € f(z;) € K
with y; ¢ U. Since K is compact, (y;) has an accumulation point y., and, since the
graph is closed, yo € f(zs) S U, hence y; € U for some i, a contradiction.

Since K is (pre)compact there exists for each absolutely convex 0-neighborhood
U a finite set My < K with K € My + U and thus as in the proof of a
subordinate partition {h{; : £ € My} of unity. For x € My we choose y, € f(z)
and thus define a continuous mapping fy : K — K by fu(z) := Z%MU hi (2) Yo
which has a fixed-point xyy € K by . In particular, for U we can use the balls
with radius % and denote the corresponding fy with f, and My with M,,. The
sequence of the associated fixed-points x,, € K has an accumulation point .. We
show that x, is a fixed-point of f. Since f is semicontinuous from above, there is
for each € > 0 an open d-neighborhood Us(zs) of 2 , s.t. f(x) S f(xy) + Ue for
all z € Us(xg) N K.

Claim: f,,(Us_1/n(70) N K) S f(2) + Ue for 1/n < 0:

Let z € Us_1/n(20) N K, i, [z — 2| < 0 — % Because of K € My + U, there
exists z for # € M, with |z — z| < L. For each such z € My (with z € z + U)
|t — 20| < |z —2| + |2 — 20| < 6, ie. € Us(zs) n K and thus y, € f(z) <
f(xx) + Ue. Since this holds for all x € My with hf;(z) # 0 (i.e. z € x + U) we have
fu(z) = Zze]\/fu hir(2) Yz € fze) + Ue.

For sufficiently large n we have x, € Usj(ryo) n K and thus x, = fu(z,) €
f(zg) + Ue. So the accumulation point x4 € f(xq) + Use for each € > 0.

Suppose 2o ¢ f(zx). Then p := d(ze, f(2)) > 0, Le. 2 ¢ f(zs) + U, for a
sufficiently small p > 0, a contradiction. O
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5.5.5 Fixed-point Theorem of Kakutani for locally convex spaces. [7] and
[9].

Let K € E be a non-empty, convex and compact subset of an lcs E and f : K —
2K ~ P(K) a conver-valued mapping with closed graph and f(z) # & for all
ze Ks.

Then f has a fized-point, i.e. 3x € K: x € f(x).

Proof. Let U a 0-neighborhood basis of absolutely convex closed sets. For U € U
let Ky :={zeK:ze f(x)+U}={zeK:3qye f(x):x—yeU}.

The set Ky is closed, because Ay := {(z,y) : z —y € U} is a closed neighborhood
of the diagonal in K x K and thus pry(Ay n graph(f)) = Ky is compact, hence
closed.

We have Ky # J: For a finite My < K we have K € My +U. Let A be the convex
hull of My and f4 : A — 24 given by z +— (f(z) + U) n A. Then, f4 satisfies the
assumptions of (because of K € My + U, (f(z) + U) n A is not empty and
graph(fa) = (graph(f) + {0} x U) n (A x A) is closed because graph(f) is compact
and {0} x U is closed), and thus there exists an z € (f(z) + U) n K, i.e. Ky # &.
The family Ky has the finite intersection property (by monotonicity), so there

exists g € (), Ku. Suppose xg ¢ f(zo), i.e. 3U: ¢ ¢ f(z0) + U, a contradiction to
o € KU. O

Remark.

Obviously, Kakutani’s Fixed-point Theorem conversely implies the Fixed-

point Theorem by Brouwer-Schauder-Tychonoff. The former has among oth-
ers applications in the form of a minimax theorem in game theory and thus in
mathematical economics.

5.5.6 Lemma. Approximability of linear functionals.

Let E be an lcs, A < E absolutely conver and f : E — K linear. Then f|a is
continuous if and only if Ve > 0 Ja* € E* Ve e A: |[{(f —a*,z)| <e.

Proof. (<) is obvious because the uniform limit of continuous functions is contin-
uous.

(=) Let F := (A) be the linear span of A supplied with the Minkowski functional
g4 as seminorm. Let ¢ > 0. Since f| 4 is continuous, there exists an absolutely convex
0-neighborhood U < E with |[(f,y)| < e for all y € An U, i.e. max{qa,qu}<1 <

(£1f])<1 and thus [(f,y)| < e max{qa,qu}(y) < e (qa(y) + au(y)) for all y € F by
. We put ¢ :=¢eq4 and ¢ := eqp. For (z,y) € E x F we thus have
—P(x) < Y(=y) + o(—y) =, —y — ¥(@) = YY) + ey) + {f,9) — ¥(z)
<@ —y) + iy +ey)

and therefore p : z — inf{yp(x — y) + {f,y) + ¢(y) : y € F} is well-defined and
satisfies both p(z) < ¢¥(x) = equ(x) Vo € E and p(y) < {f,y) + eqa(y) Yy € F.
Since p is sublinear, there exists a linear z* : E — K with 2* < p by m Due to
the above inequalities, * € E* and (z* — f,y) < e Vy € A and since A is balanced
also (f —a*,yy = (a* — f,—y) < ¢ holds for all y € A. This proves the theorem in
case K = R.

Let now K = C. For a linear function f : E — C being continuous on A we have
f(x) = fr(x) — i fr(ix), where fg := Reo f: E — R. Because of the real case,
there is a continuous R-linear z* : E — R with |[(fg — 2*,2)| < ¢ for all x € A.
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Let 2* : ¢ — x*(x) —ia*(ix). Then 2* : F — C is continuous and C-linear with

(f — )] <V F & = V2. o

5.5.7 Proposition. Grothendieck’s Completion Theorem.

The completion of an lcs E can be described as
E = {f : BE* — K linear : flyo is o(E*, E)-continuous Y 0-neighborhoods U < E}

supplied with the topology of the uniform convergence on the polars U°.

Proof. We will use .

(E' is complete) because uniform limits of continuous functions are continuous.

(E < E) Because of E =~ (E* o(E*,E))* < E, we can think of E as a linear
subspace of E, and, by , E carries the topology of uniform convergence on
U° = E* by virtue of this embedding, i.e. the trace topology induced by E.

(E is dense in F) Let f € E. Then f : F := E* — K is linear. For each (absolutely
convex) 0-neighborhood U in E, the set A := U? is absolutely convex in E*. For
each € > 0 there is by Lemma an z* € F* = (E*,0(E*, E))* >~ E, with
|[{f —ax* 2)| < eforall x € A, i.e. f can be approximated in the topology of the
uniform convergence on the U° by z* € E, i.e. F is dense in E. O
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6. Spectral and Representation Theory for Banach
Algebras

Preliminary remarks

The goal of spectral theory is to find to a given linear operator T a representation
which is as explicit and invariant as possible. In the 1-dimensional situation, each
linear operator T : K — K is a multiplication operator of the form T : z — X -z,
where the slope A is given by A := T'(1). In the finite-dimensional case, an analogue
would be the matrix representation obtained by choosing a basis, and, in the infinite-
dimensional case, the representation as an integral operator by an integral kernel.
On the one hand, these representations are as explicit as possible, but on the other
hand they are not invariant under change of basis (rotations). An invariant approach
is to find as many non-trivial linear subspaces (i.e. EIGENSPACES) on which T" acts
as multiplication by some A € K (the corresponding EIGENVALUE).

The eigenspace for the eigenvalue A is therefore given by the kernel of T'— A-id. And
this kernel is non-trivial iff 7 — X - id is not injective, which for finite dimensional
E is equivalent to being not invertible, i.e. det(T"— A - id) = 0. So the eigenvalues
A are the zeros of the characteristic polynomial x — det(T — z - id).

The existence of sufficiently many such subspaces should now mean that the opera-
tor is already uniquely given by the restrictions to these subspaces. In linear algebra
we learn that this is achievable for normal operators on complex finite-dimensional
Hilbert spaces, i.e. any such operator is diagonalizable. So up to the isomorphism
E =~ CY™E given by (zz)r — Dk Trek, where (er)r is a basis of eigenvectors, T
acts as multiplication operators (xx)r — (AxZk)g. Since for normal operators we
may choose the ey to form an orthonormal system, we have T'(x) = >, Ai{x, ek ex,
where )\; denotes the eigenvalues corresponding to ey.

But what about infinite-dimensional spaces? For self adjoint compact operators T
on Hilbert spaces, we have seen in [18, 6.5.4] that the eigenvalues form a sequence
Ar for which there exists an orthonormal basis of eigenvectors e, and T'(x) =

>k Ak, ex e, This is even true for normal compact operators, see .

Examples of operators being not compact.

1. The left-shift operator T : ¢2(N,C) — ¢?(N,C) is defined by T : (z1)x=0 —
(k+1)k=0. The equation T'(z) = Az is in coordinates the system of equations
(Tr41 = ATr)r=0. The only possible solution is = (A¥ 2¢)>0 which is in ¢2 for
IA| <1 and thus ) is an eigenvalue. For |A| = 1 and z¢ # 0, = ¢ £2, i.e. ), is not an
eigenvalue. So, the set of eigenvalues is the open unit disk in C, and thus no longer
countable, hence T is not representable as series like above.

Since 1 — S is invertible with inverse ZZC:O S* provided S is a linear operator
with || < 1 (cf. [6.2.1]), we have that A — T = A(1 — 1T) is invertible for each

Al > |T] = 1 (cf. ) Moreover, the set of invertible operators is open (see
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[6.2.2]), hence A\ — T is not invertible < [A| < 1. So we see that for |A| = 1 the
operator A — T is injective but not invertible.

2. The adjoint operator T%* : (2(N,C) — ¢?(N,C) to T is the right-shift operator
T* : (x9,21,...) — (0,20, 21,...), because

a0 [ee]
<T*(l'),y> = 2 Th—1 Yk = Z Tk Yk+1 = <va(y)>

k=1 k=0
Since T* is an isometry, it follows from 7%z = Az for an = # 0 that |A| = 1 and
thus from 0 = Axg, xg = Axq, ... recursively that xzy = 0 for all k. So T* has no
eigenvalues at all.
As before, it follows that for each |A\| > 1, the mapping A — T* is invertible. Let us
assume that A —T* is invertible for some |A| < 1 and let S be its inverse. Then S*
is an inverse of (A\—T*)* = A\—T, a contradiction to what was said about 7. Hence
A —T* is not invertible < |A| < 1. Note however that T is not normal, because

ToT* =id # (id—pry) =T* o T.

3. Next, consider the unitary (right-)shift operator T : ¢2(Z,C) — ¢*(Z,C) defined
by T : (zk)kez — (Tk—1)kez. Then again only A with |A\| = 1 might be eigenvalues.
But no such A can be an eigenvalue, because the equation T'(x) = A x is equivalent
to the system (zx_1 = Ay )pez. Hence |zx_1| = |xy| for all k and thus x ¢ ¢2 for
x # 0. Thus T has no eigenvalues at all.

Obviously T is invertible with inverse 7! being the left-shift. Moreover, A — T is
invertible for each |A| > 1 = ||T| as before and also for each || < 1, because

A-=T) ' =((A\T'—id)T) =T O\ —id) !

On the other hand, for |A| = 1, the mapping A—T is not invertible, because the stan-
dart unit vector e is not in the image: Let (A—T')(x) = eq, then Aay—x,_1 = 0 for
k # 0. So |zk| = |xg—1] for k # 0 and thus = 0, a contradiction to Azg—x_1 = 1.
The Fourier series development F : L?([—7,7],C) —=— (?(Z,C) from [18, 6.3.5]
conjugates the operator 7" into the multiplication operator M; with f : z — e,
because in [18, 5.4.4] we have shown F(M;g) = T(Fg). The unit circle S* con-
sists exactly of those A € C for which A — T is not invertible and 7" is up to the
isomorphism F a multiplication operator on L?(S!,C) ~ L*([-m, 7], C).

So we see that the notion eigenvalue in infinite dimensions is too strict. The (in
finite dimensions equivalent) condition “A\ — T is not invertible” seems to be more
suitable. Such an A is called a SPECTRAL VALUE of T, and the set of all spectral
values is denoted the SPECTRUM o (T)).

In case the lcs F on which the operator T' acts is not normable, even this notion is
a too weak one and there is no reasonable spectral theory for operators on lcs’s:

4. Consider for example the space E of all (z3)rez € CZ, for which z;, = 0
for k sufficiently small. We provide E with the strictly inductive limit structure
lim E, =~ CZ-) x C19 x CZ+ with steps E,, := {(zk)kez : xx = 0 for k <

—>n——00

n} = CN. Let T be the left-shift (z3)rez — (Tx+1)rez, which is obviously a contin-
uous linear bijective operator because T|g, : E, — E,_1 is an isomorphism and
by the closed graph theorem the inverse of T'|g, is continuous as well.

Note that E* = C% x C{% x C%+) ~ E, via the reflection (x3) — (2_g)x, and
the right-shift T* corresponds to the left-shift 7" under this isomorphism, i.e. T is
self adjoint with respect to the pairing (_,_): E x E —» K, (z,y) — >, Try—k.
Now T — X -id is invertible for all A € C, because for y € F, the equation
T(z) — A -2 = y has a unique solution z € E,1 < E. It can be recursively
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calculated from zg11 = Axk + Yk, since Tx11 = Axg and thus xx1 = 0 holds for
kE<nand z,.; = Z?;& N1y, ;. Hence the spectrum of T is empty.

In contrast to eigenvalues, one immediately sees that for the above definitions of
spectral values and spectrum of T, the vectors in E play no essential role. It suffices
to be able to form the expressions T — A - id in order to question the invertibility
of these expressions. For the former, T" should be in a vector space, and for the
latter, this vector space should be an algebra with unit. In order to be able to
control invertibility well, the absolutely convergent geometric series Z?:o T* should
converge, i.e. T should lie in a Banach algebra. So we will develop spectral theory
for elements of abstract Banach algebras (see [18, 3.2.9]). Let’s recall the most
important examples:

6.1 Examples.

1. For each Banach space E, L(E) := L(E, E) is a Banach algebra with 1 with
respect to the composition as multiplication, see [18, 3.2.9]

2. For each compact space X, C'(X,K) is a commutative Banach algebra with 1
with respect to the pointwise multiplication. More generally, this also holds
for the space B(X,K) of the bounded functions on a set X, see .

3. Thus, the Banach space L*(X,Q, u) is, for each o-finite measurable space
(X,Q, ), also a commutative Banach algebra with 1 with respect to the
pointwise operations, see [18, 4.12.3].

4. Furthermore, ¢!(N) and ¢1(Z) are commutative Banach algebras with 1 with
respect to convolution.

6.2 Remark about the invertibility in a Banach algebra.

We have shown in [18, 3.3.1] the following facts for the invertible elements a €
Inv(A) of Banach Algebras A with unit 1:

1. For [la— 1| <1 we have a € Inv(A4) and a~! = 3,° (1 —a)*, the absolutely
convergent geometric series.

2. If ap € Inv(A) and |a—ag| < B ,1” then by () alsoa = (aag') ag € Inv(A);
in particular, Inv(A) is open in A.

3. If ay ag = az a1 € Inv(A), then aj,as € Inv(A).
This holds in every semigroup, because a; as is invertible with inverse b :=
(a1az)™. Then ajasb =1=bajas = bayay, so r := ay b is a right inverse
to a; and [ := bas is a left inverse to a1, thus r = la;r =1, i.e. r = [ is the
(unique) two-sided inverse to a;.

4. The mapping inv : Inv(4) — Inv(4), a — a~*

and its derivative is inv'(a)(h) = —a~tha~t.

One obtains the derivative by differentiating the implicit equation a™* a = 1:
Let us denote with mult : A x A — A the bilinear multiplication. Then, by
differentiating of 1 = mult o(inv, id) at the point a € Inv(A) in the direction
h, we obtain

0 = 0 mult(inv(a), id(a)) (inv'(a)(h)) + 02 mult(inv(a),id(a)) (id'(a)(h))
= mult(inv’(a )(h) 1d(a)) + mult(inv(a), id(h))
=inv/(a)(h) -a+a ' h

, is (complex-)differentiable

1
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and thus inv'(a)(h) = inv'(a)(h) -a-a"t' = —a=! - h-a . That inv is
differentiable with this derivative can also be calculated directly as follows:

l(a+h)"'—at+atha | B Ha_l <(1 +haH7 -1+ ha_l) H

il - HhH
- |(ha=") |
R Y
k=2
< [a™ "Rl Y ARl la™ Dk a2
k=0
< ||a) a3 ! 0 for h — 0
< [Rffla™" W—’ or i1 —

Before introducing the spectral theory of Banach algebras, let us consider what we
can do if the algebra in question does not satisfy all the axioms of a Banach algebra.

6.3 Completion

Examples of incomplete algebras.

1. The polynomials on a compact subset K € R constitute, with respect to the
00 norm, a non-complete sub-algebra of C'(K).

2. The continuous functions on R with compact support form a non-complete
Banach algebra with respect to the 1-norm and convolution. Likewise the
continuous functions on S*.

3. The finite-dimensional operators on a Hilbert space H form an incomplete
subalgebra of L(H).

Proposition.

Let A be a normed algebra, i.e. a normed space with an algebra structure e, so that
|lzoy| < || |y|. Then there is a (up to isomorphy) a unique Banach algebra A and
an isometric embedding v : A — A (i.e. Yo € A : |u(z)| = |z|) with the following
ungversal property:

where f andf are continuous algebra homomorphisms and B is a complete algebra.

Proof. Let A be a normed algebra. Then, by , there is a Banach space A with
the universal extension property for continuous linear mappings. We now want to
extend the multiplication p: A x A — A to a mapping [i : A x A — A. For this we
consider the associated mapping i : A — L(A, A). The natural isometric mapping
: A — A provides us with an isometry L(AF) ~ (/T E) for each Banach space
E Therefore we obtain an isometric embedding L(A, A) =% L(A, A) =~ (/T A)
L.e. we may consider [ as a continuous mapping (contractlon) from A to L(A, A).
By the universal property this has an extension i A L(A A). The associated
mapping i : A x A — Ais then the desired multiplication on A, since all necessary
(continuous) equations hold on the dense subspace A x A and thus everywhere.
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Note that the essential point is, that multi-linear continuous mappings F; x ... x
E,, — F are uniquely extendable to such on Fy x ... x E,, — F.

Now to the universal property.

Since we know that | f| = | |, we only have to show that f is multiplicative:
f(ﬂ(d> B)) = f(/l(hinamhglbm» = f(h fi(an, b)) = o f(/](anv b))

Remark.

The completion in the above examples is:

. The Banach algebra of all continuous functions according to the Theorem
[18, 3.4.1] of Weierstrass;

. The Banach algebra L' with the convolution, since the C, functions are
dense, see [18, 1.13.9];

. The compact operators according to [18, 6.4.8].

6.4 Adjunction of a unit

Examples of algebras without unit.

1. LY(R) and L'(S*) with the convolution. The unit would be the delta distri-
bution.

2. The algebra of compact operators on an infinite-dimensional Hilbert space.
The unit would be the identity.

3. For each locally compact space X the algebra Cy(X), of at oo vanishing
continuous functions. The unit would be the constant function 1.

Proposition.

Let A be a Banach algebra without 1. Then there is a (up to isomorphy unique)
Banach algebra Ay with unit and an isometric embedding ¢ : A — Ay with the
following universal property:

ACHAl

f
XVl

B

where f and f1 are continuous algebra homomorphisms, B is a Banach algebra with
unit, and fi respects the units.

Proof. Let A be a Banach algebra (not necessary with 1). Let 4; := A@ K. The
multiplication is defined by (a @A) ¢ (b@® ) := (a @ b+ pa + Ab) @ Au. Then it is
easy to calculate that A; is an algebra with 1 = 0@ 1,and ¢t : A —> Ay, a— a@®0 is
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an algebra homomorphism. We define a norm on 4; by |a @ A| := ||a| + |A|. Then
[1] = o] + 1] = 1 and
[(a@A) e (bDp)| = [(aeb+pat+Ab)@Aul = llaeb+ pa+ M| + [Au|
< lall - 1ol + Ll - flal + 1AL ol + [A] - [ul
= (lal + A - (ol + lxl)
= lla@A-[6® pl.

Now to the universal property:
An f; making the diagram commutative must satisfy f1(a®\) = fi(a)+A- f1(1) =
f(a) + A. And the f; defined by it is multiplicative, because:

filla®@a)- 0@ p) = fi((ab+ Ab+ pa) @ Au) = flab+ Ab+ pa) + Au
= f(a) F(O) + A f(b) + p fla) + A = (f(a) + A) (f(b) + )
= fila®a)- f1(b® p).
Since ¢ is an isometry, |f] = |fi o] < Ifil - ol = |fi] holds. On the other
hand, [[fi] = sup{|f(a) + A| : Jla @ Al < 1} < sup{|f][{a] + [A] = [a] + |A] <
1} < max{|f],1}. So f is a contraction (or continuous) if and only if f; is it.

Note, however, that |f| = | fi| does not apply: Let e.g. f = 0, then f; = pry, and
If] = 1. O

Remark.

With respect to the above examples:

. A Banach algebra with 1, which includes L' (G), is the algebra of the regular
Borel measures on G with convolution, see [5, 193]. This can be identified
with Co(G)* because of Ries’s Theorem . The convolution corresponds
to the mapping (p,v) — (f — (u®v)(fom)), where m : G x G — G denotes
the multiplication and p ® v is the extension from (f,g) — u(f)v(g) to
Co(G X G) 2 C()(G) X Co(G)

. The operators of the form 1+ K with compact K are the so-called Fredholm
operators, see [5, Chapt.XI] and .

. The algebra Cy(X); consists of those continuous functions f on X, for which
lim,_, 4 f(x) exists, these are exactly the restrictions of continuous functions
on the 1-point compactification X, of X, i.e. Co(X); = C(Xy).

Next, let’s examine how much the continuity condition |z e y| < |z| - |y|| can be
weakend.

6.5 Proposition (Submultiplicity).

Let A be a Banach space and an associative algebra with 1, s.t. the multiplication
uw:Ax A — A is separately continuous. Then there is an equivalent norm that
turns A into a Banach algebra. On elements x with |z e y|| < ||z| - |ly| for all y it
coincides with the given norm.

Proof. Without restriction of generality |1| = 1, otherwise replace |_|| with m [I-II-

We have that p is continuous by , ie ||u| :=sup{|z oyl : |z <1,|y| <
1} < oo. We consider the mapping L : A — L(A, A), which assigns to each z € A

the left multiplication L, : A — A, y — z e y. Because of |L,| = sup{||z e y| :
lyl < 1} < |pf - ||=], L has values in L(A, A) and is a continuous linear mapping
A — L(A, A). For each Banach space A, however, L(A, A) is a Banach algebra (see
[18, 3.2.9]). The mapping L is also an algebra homomorphism, because L, ez, (y) =
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(21 022) oy = 710 (22 0) = (Ls, © Luy)(y). Puthermore, |L,| = sup{|v » y] -
ly] <1} = |z e 1] = |z| because ||1| = 1. So L is a homeomorphism of A onto
its image Ao in L(A, A), i.e. Ag is also complete and thus closed in L(A, A) and
thus L : A — Ay is a topological algebra isomorphism onto the Banach algebra Aj.
Note that this the norm || can be replaced by the equivalent but submultiplicative
norm z — | Lg || := sup{|z e y : [y] < 1}.

If the inequality |z e y| < ||z| - |y| is valid for all y for a z € A, then its norm is not
changed because it follows ||L.| < [|z|| and |z| < | L.| holds always. O

6.6 Complexification of real Banach algebras

Examples of real algebras.

1. For each compact space X, C'(X;R) is a real commutative Banach algebra.

2. For every real Banach space E, L(F) is a real Banach algebra.
In we discussed the complexification F¢ := CQr F =~ E x E of real Banach

spaces E. The multiplication of z = 2 + iy € C with w = u+ v := (u,v) € E¢ was
given by (z +iy)(u+iv) := (zu—yv)+i(xv+yu) and the norm by

pe(w) == max{|Re(zw)|| : |2| = 1} = max{|zu —yv| : 2? +y* = 1}.
In we had two universal properties that told us that for every complex
Banach space G the maps
Rey : Le(G, Ec) — Lr(G, E)
*: Le(Ee, G) — Lr(E,G)

are topological linear isomorphisms, and the former even an insometry. In the se-
quence we had in for real Banach spaces a commutative diagram of topolog-

ical linear isomorphisms:

E(C7F(C)

/

Lr(Ec, F) Lr(E, Ft)
,F)c
z h(z)—ih(iz) (x+iy— h(z)+ih(y

\

\
/

h%'_)f (z— f(x
hot—iholou f+ig Reoh—1Reoloh

The mappings going to the lower left are isometries and the diagonal isomorphism
Lg(E, F)c —=> Le(Ec, Fr) is given by f+ig — (z+iy — (f(z) —g(y)) +i (f(y) +
9(x))).

Proposition (Complexification).
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Let A be a real Banach algebra (with 1). Then there is a (up to isomorphy a unique)
complex Banach algebra Ac (with 1 and) with the following universal property:

A Ag
\N!Vfc
B

where B is any complexr Banach algebra, f is a continuous R-algebra homomor-
phism (which preserves 1), and fc is a continuous C-algebra homomorphism (which
preserves 1).

Proof. Obviously, A¢ as a vector space should just be the complexification of the
real Banach space A. We now need to extend the multiplication g : Ax A — Atoa
bilinear mapping uc : Ac X Ac — Ac. So we also need the universal property of the
complexification of a Banach space for continuous bilinear mappings. For this we
again consider the linear contraction i : A — Lr(A4, A) € Lr(A, A)c = Lc(Ac, Ac),
with 21 — (xa @i ys — p(x1,22) @i p(r1,y2)). Because of the universal property,
this has a complex-linear extension (fi)¢ : Ac — L¢(Ac, Ac), which is given by:

1 @iy — (xz @iys — (e, w2) — p(y1,y2)) @i (w1, y2) + M(y1,:ﬂ2))>~
The associated mapping puc : Ac x Ac — Ac,

(71 @iy, w2 Diys) — (w1, 2) — p(yr1,y2)) @i (w1, y2) + p(ys, v2))

is then the desired multiplication. The following simple calculation shows the asso-
ciativity (and obviously 1 € A c Ac is a unit):

((901 Diys)e (2 (—Bin)) o (r3@iys)

= ((1’1952 —Y1y2) @i (z1y2 + ylxz)) o (23D iys)

= ((9613?2 — y1y2)zs — (T1y2 + y1$2)y3> @1 ((331932 — Y1Y2)y3 + (2192 + y1x2)$3>
= (217273 — T1Y2y3 — Y172Y3 — Y1y273) @i (T172Y3 + T1Y2T3 + Y1T2T3 — Y1Y2Y3)-
Note that Ac is commutative if A is it.
The norm p¢ defined in is generally not submultiplicative. Let A = R? with

the multiplication of C =~ R? and the Euclidean norm. Then for w := (é)@i ((1)) € Ac
the identity

wee= (o) = () e () () -2 () e () -2

holds and since
pe(w) = max{‘ (fy) ‘ cx? 4yt = 1} =1

we obtain a contradiction:

pe(wew) =2pc(w) =2 > 1 = pe(w)?.
Therefore, none of the remaining isomorphisms in the rhombic diagram can be an
isometry either. For, if one of them were an isometry, then also all others because of
the commutativity, and therefore fi : A — L¢(Ac, Ac) would be a contraction and
thus also (ft)¢ : Ac — Le(Ac, Ac) one, ie. |uc| < 1, i.e. pc were submultiplicative.

However, we are able to find an equivalent submultiplication extension of the norm
from A to Ac. Namely let ||_|c be the equivalent submultiplicative norm for pc
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existing by . It agrees with pc on A and thus with p := |_|, because for
a€eAc Ac, we Ac and |z| = 1 we have

pz(aw) := p(Re(z aw)) = plaRe(z w)) < p(a) p(Re(z w))
< pc(a) pe(w)
and thus pc(a - w) < pe(a) - pe(w).

Now to the universal property: Let fc be the unique C-linear extension. Then f¢
is also an algebra homomorphism, because

Je((ur @ivy) o (u2 ®ivy))
= fe((uiug — v1v2) @i (urvs + viuz))
= f(urug — v1v2) + @ f(urve + viuz)
= fu1)f(uz) = f(v1)f(v2) + 4 f(ur) f(v2) + i flvr) fu2)
= (flur) + i f(v1)) - (f(u2) + i f(v2))
= fe(ur ®@ivy) - fe(ug @ive). O

Remark.
The complexifications of the above examples are obviously the following:
C(X,R)c =~ C(X,C)
Lr(E, E)c = Lc(Ec, Ec)
From now on, we can assume that all Banach algebras are over C, have a unit, and
satisfy [la - b < a] - [b] and 1] = 1.

Let us return to spectral theory. As we have already indicated, we give the following

6.7 Definition.
Let A be a Banach algebra with 1 and a € A. Then one calls the set
ca(a) :=oc(a):={AeC: 1 —ais not invertible in A}
the SPECTRUM of a. The complement
pla) i= C\o(a) = {0} U (C\o(a),

in the 1-point compactification Co, := C U {0} of C is called RESOLVENT SET of a
and the mapping

_ -1
raipla) > A, Aro (Al —a) for A #
0 for A = o0

is called RESOLVENT FUNCTION of a. Note that the definition r,(c0) := 0 is reason-
able because of

a0 = 101 =0 = o5 1= S0
-mlS Go) T 35
1 1 1

= — = — 0 for |A] — o0
AL L= al A= el
Examples.

1. Let A = C(X,C). Then f € A is invertible if and only if 0 ¢ f(X). Conse-
quently, o(f) ={AeC:0e A= f)(X)}={ eC: ) e f(X)} = f(X).

andreas.kriegl@univie.ac.at © 1. Juli 2019 99



PRELIMINARY REMARKS 6.8

2. Let A= L(E) := L(E, E). Then a € A is invertible by the open mapping the-
orem if and only if a is bijective. So o(a) := {A € C : X id —a is not bijective}.

We want to prove the holomorphy of 7, : Co 2 p(a) — A. For this and for the
following we need some tools from Complex Analysis.

Recap from complex analysis

In this section we summarize the required results from complex analysis (cf. [19]).
Let F be a sequentially complete lcs. The classical theorems refer to the case F = C
and we will first outline the proofs for this case. We will sketch how to get the
vector-valued results at the end of this section.

6.8 Differential forms and line integrals.

Let E and F be lcs’s and U < E be open. An F-valued 1-FORM on U € FE is a
mapping w: E2U — L(E, F) (see [22, 6.5.3]).

If w is continuous, ¢ : [a,b] — U is a Cl-curve, and F is sequentially complete, then
the LINE INTEGRAL is well-defined by the vector-valued Riemann integral

[ wa<c<t>><c’<t>> dte P

(see [22, 6.5.6]). This is invariant under reparametrizations of ¢ and for normed
spaces F and F'

[, <=0 s wle@liwn: sw O]k

c P te[a,b] te[a,b]

holds. As is well known, this definition can be extended to RECTIFIABLE CURVES in
normed spaces using the vector-valued RIEMANN-STIELTJES INTEGRAL, and then
.0l < (b— a) - sup{lw(e(®)] : t € [a,b]} - V (c), where

n
V()= Sup{z le(tr) — clte-)| ca =ty <ty < - < t, = b}
k=1

is the TOTAL VARIATION of ¢ (see [22, 6.5.10]).

Each differentiable mapping f : £ 2 U — F between Banach spaces E and F' has
as derivative f': E 2 U — L(E, F) (see [22, (6.1.4]) a 1-form which is also denoted
by df and is called the TOTAL DIFFERENTIAL of f. If f is affine, df is constant.

Because of the Theorem of Schwarz (see [22, 6.3.11]), this differential form satisfies
the following symmetry condition for f e C2:

(df)' () (v)(w) = f"(x)(v,w) = f"(2)(w, v) = (df)'(2)(w)(v),
i.e. df is closed in the following sense: A continuously differentiable 1-form w is called
CLOSED if its OUTER DERIVATIVE dw : E 2 U — L(E,L(E,F)) = L(E,E; F), de-
fined by dw(z) (v, w) = w'(z)(v)(w) —'(x)(w)(v), vanishes. Instead of “w is closed”
one also says that the INTEGRABILITY CONDITION w'(z)(v)(w) = w’(z)(w)(v) holds.

Conversely, for star shaped or, more generally, for simple connected sets U, one
can show that each closed 1-form w : U — L(E, F) is EXACT, i.e. a differentiable
mapping f: E DU — F exists with df = w (see [22, (6.5.4]).

As a consequence, the line integral of closed 1-forms is locally independent on the
curve and therefore coincides on homotopic curves, where two curves ¢y and ¢y
are called HOMOTOPIC if a continuous mapping H : [0,1] x [a,b] — U exists with
H(j,t) = ¢;(t) for all j € {0,1} and all ¢ € [a, b].
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6.9 Holomorphic functions.

A mapping f : C 2 U — F is called C-DIFFERENTIABLE or (more frequently)
HOLOMORPHIC if the following limit exists for all z € U

iy e JEtw) = f(z)
Fz) = Calgrio w

We will write H(U, F) (and H(U) in case F' = C) for the vector space of all
holomorphic mappings f : U — F. If f : C 2 U — F is holomorphic, then f is
also R-differentiable as mapping fr from U < R? into the real vector space Fg
and the R-derivative (fr)’(z) € Lr(R?, Fr) is then even C-linear and coincides with
w— f'(z) - w (where we let the skalar multiplication act from the right), because
e tw) - f(2) = f(z) - wlF flz+w) - f(2)

im = lim
Jwl—0 lwle w—0 w

e F.

=0.
F

- 1'(2)

But the converse implication also holds (see [19, 2.5]):

The C-linearity of the derivative (fg)’(z) € Lr(R?, F) of a R-differentiable mapping
f:C 22U — F means that (fg)'(z) is given by multiplication w = 1-w —
(fe)'(2)(1 - w) = (fr)'(2)(1) - w. If we put f'(2) := (fr)'(2)(1) € F then

i G+ 0) = 1)~ (o) @ (w)] _

= lim H flz+w) = f(2) = f(2) w H
= ool Jul =0 w
= UI}E})Hf(Z + wu)) - f(Z) _ f/(Z) ‘, hence f/(Z) _ gino W

For F' = C we can also describe the C-linearity of the derivative in real coordinates
as follows: To do this, we decompose f into real and imaginary part, i.e. f = g+1ih,
and w = (u,v) = u + iv. Then,

B(z) L(z) a b
"(2)=| ¢ g =:
(f]R) ( ) ((M(Z) Bg(z)> (C d)

oz

is C-linear if and only if

()= a) ()= (2 a)- () - G

holds for all uw + iv € C, i.e. (by means of coefficient comparison) iff d = @ and
¢ = —b holds. These are exactly the CAUCHY-RIEMANN DIFFERENTIAL EQUATIONS
(see [19, 2.6])

dg dh 09  0h

T W w

If f:C2U — F, thenw : U —> L(C,F), defined by w(z) := f(z) - dz, is
an Fgr-valued 1-form, where dz denotes the (constant) derivative of the C-linear
function id : z — z. Here the multiplication f(z) - dz is given by the mapping
FxL(C,C) -» L(C,F), (y,T) — (2 — T(z) -y). With slight abuse of notation one
uses the same symbol dz for the 1-form U — L(C, C) and its value id € L(C,C). If f
is holomorphic, then the 1-form z — f(z)dz is closed, because its (real) derivative
at the point z is given by v — (w — f’(z) -v-w), and hence is symmetric in v and
w (see [19, 3.5]).

Let dx and dy denote the (constant) derivatives of the R-linear functions Re : z =
x+iy— xand IJm : ¢ + iy — y, i.ed basis in the real vector space Lg(C,R).
Then obviously dz = dx + i dy and analogously dz = dx — i dy, where dZ denotes
the derivative of z — z. So {dz,dz} is also a basis of the complex vector space
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Lg(C,R)¢ = Lg(C, C) which is equivalent to the standard basis {dz, dy}. For each
R-differentiable f : C 2 U — C we have

4= Lyar s Liyay

Consequently, df(z) must have also a matrix representation with respect to the

basis {dz,dz}. And one denotes the corresponding coefficients in analogy by %]zc and

of

55, 1.6

Lies e

Because of 2dx = dz + dz and 2idy = dz — dz, we can also easily calculate these
coefficients (the so-called Wirtinger derivatives):

af of
df =
787fdz+dz+67fdz—d2
ox 2 dy 2

(0f Of > de 4 L (3f Of >
oz ay oz (3y
%,_/ %,_/

of 2

dffa

d+

[~

oz o

o _1(o _, 90
0z 2 \ox Z@y

o_1(e, .0
0z 2\ oz oy )’

Since dz is C-linear and dz is conjugated C-linear, f is holomorphic if and only if
_f =0 (see [19, 2.11]). Likewise, f is ANTI-HOLOMORPHIC, i.e. f holomorphic, if

5 f f,i of af\ .
af = = dz (az>d +(az>dz.

=,/ =0, because
6.10 Cauchy Integral Theorem.

a

that is

Q)

If f: C 22U — F is holomorphic and cy and ¢y are two curves I — U being
homotopic in U relative 0I = {0,1} (i.e. the homotopy satisfies H(j,t) = c;(t) in
addition to H(s, k) = cj(k) for all j,k € {0,1} and all t and s), then

LO f(z)dz = Ll f(z)dz

In particular, if c : S — U is a closed curve, which is homotopic in U to a constant
curve (i.e. is called 0-HOMOTOPIC), then §_ f(z)dz = 0.

See [19, 3.18] and [19, 3.23].
Proof. The first part is a consequence of the closedness of the 1-form z — f(z) dz

For the second part, note that from a (free) homotopy H between ¢ and a constant
curve konst,, a homotopy relatively {0, 1} of ¢ with the concatenation of the curves
¢ :t— H(t,1), the constant curve konst, and the reversed curve t — H(1 —t,1),
can be constructed. So § f(2)dz = §_ f(2)dz—§_ f(2)dz=0. O

6.11 Winding number.
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If ¢ is a closed C'-curve in C\{z}, then

1 1
ind.(z) 1= —

2m ), w — 2

dw

is called the winding number (or revolution number) of ¢ at z, see [19, 3.24]. For a
circle ¢ : t — z + r 2™ with center z and radius r we obviously get

1 1 1 (! 2mire?mit
ind.(z) = — = | = dt
inde(2) 21 J, w—z YT o g Tre’mit

1
:f ldt =1.
0
1

Since w — —— is holomorphic on C\{z}, this integral is homotopy invariant and
therefore constant for z varying in a connected component of C\c(S!): In fact

1 1 1 1
indc(zs) = p f dw = — — dw
27 ), w — zs 27 J., w

for each curve s — 2z, in C\c(S?), where c;(t) := ¢(t) — 25 describes a homotopy.

For a closed curve ¢, which in C\{z} is homotopic to the k-fold traversed circle,
consequently ind.(z) = k holds. In Algebraic Topology (see [17, 2.17]) it is shown
that the winding number is a topological invariant, which means is well-defined
even for closed continuous curve, is homotopy invariant, and has values in Z < C.
Furthermore, it is shown that every closed curve in C\{z} is homotopic to the
ind.(z)-fold traversed unit circle with center z.

6.12 Cauchy Integral Formulas.

Let f:C2U — F be holomorphic, K a closed disc in U and z in the interior of
K. Then

16 ey R A COR

21 Jog w—2z

where 0K denotes the positively parameterized (i.e. indpi(z) = +1) boundary of
K.

Furthermore, f is infinitely often C-differentiable and
|
wy o P )
06 = o | .
holds for each p € N.

See [19, 3.28).

Proof. Let g(w) := % Then g is holomorphic on U\{z} and bounded on

K since f is differentiable at z. According to the Cauchy Integral Theorem
S:x9 = Ssi. 9, where K. is a disc of radius ¢ > 0 at z. Now use | §, g| <

2me|glx |0 — 0 for € — 0 to obtain get 0= §,,. g = §, {U(i”z) dw — f(z) - 2mi.

That f is often infinitely differentiable follows by interchanging the derivative with
the integral:

P P
o) = (L) L[ L0 gy Ly (L)L
dz ) 2mi Jop w—z 21t Jox dz) w—z

I (O
- LK (w I -

2mi —z)ptl

6.13 Cauchy Estimate.
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Let f:C 2 U — F be holomorphic and K be a disc with radius r and center z in
U. Then:
()

n!

_ Wloxllo
rn

In particular, the Taylor series at the point z of f is uniformly convergent on K to
I

See [19, 3.30].

Proof. The inequality follows by estimating the integral, and the absolute and

uniform convergence of the Taylor series, by considering a slightly larger disc Kg
with radius R > r as follows:

1; L) < ) WW < Wlscalo 3 (&)

That the Tayler series converges to f uniformly on K follows by the integral formula

of Cauchy:

m 1 flw) 1 © )
QWZJKRw—zdwm aKRI;OW(Z 20)" dw
> fw) S 7 (z0)
g Z—ZO 2’/TZ J‘KR (w — Zo)k+1 dw kZ::O(z_ Zo)k 5 0 0

6.14 Identity Theorem.

Let f: C 2 U — F be holomorphic on the open connected set U and vanishing on
a convergent not finally constant sequence in U. Then f = 0.

See [19, 4.7].

Proof. By means of induction this follows for (the coefficients of a) convergent
power series at the limit point of the sequence, so f is 0 locally around the limit
point. Hence a maximal open connected set W < U exists on which f vanishes.
However, it must also be closed in U and thus agree with U. O

6.15 Removable Singularity.

Let z e U and f : U\{z} — F be holomorphic and near z be locally bounded. Then

f has a holomorphic extension to all of U.

See also [19, 3.31].

Proof. Let K be a disc around z in U on which f is bounded. Let 2’ € K\{z}. As

in the proof of the Cauchy Integral Formula , it is shown that for the function
w Which is bounded on K and is holomorphic on U\{z, '}, we have:

P’d

0= f(ww 5= ) dw = Sox 3;(“;, dw — f(2') 2mi. The integral on the right side is
holomorphlc with respect to 2’ in the interior of K, so the same holds for f. O

6.16 Theorem of Liouville.
Let f : C — F be holomorphic and bounded, then f is constant.

See [19, 3.42].

Proof. By 1f(2)] < | TH‘” for all r > 0 and all z € C, so f' =0 and thus f is
constant. O
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6.17 Maximum Modulus Principle.

Let f : C2U — F be holomorphic and not constant on the open and connected set
U. Then z — | f(z)| does not attain its supremum.

See [19, 3.41].

Proof. Let F' = C. Suppose there is a maximum at zg € U, i.e. |f(2)| < |f(20)| for
all z € U. We first show that this implies the constancy of z — |f(2)|. Assuming
this were not the case, then there would be a z; € U with |f(z0)| > |f(21)]. Since U
is connected, we can connect zg wich z; by a curve t — z;. We choose ty maximal
with |f(2¢,)| = |f(20)|- Then there are arbitrary close to z¢, points z; with |f(zo)| >
| f(2¢)]- We choose a circle K < U at z;, whose periphery contains such a point z,.
Then |f(zt,)| < |f(20)] and |f(2)| < |f(20)] for all z € dK. From the Cauchy
Integral Formula we obtain |f(z,)| < |f(z0)|, a contradiction.

If the constant |f| is 0 we are done. Otherwise, by differentiating the constant |f|?
we obtain.

0= 5 e = D fer 4 - S <0 - (2

Since |f| # 0, we conclude 0 = % = f'(z), hence f is constant. O

6.18 Differentiable structure of C,,, holomorphy at co.

In order to be able to speak about differentiability of functions such as r, on
open subsets of Co,, we have to provide Co, with a differentiable structure (see [19,
2.18,2.19]). We identify C, with the unit sphere S? := {(y,t) e CxR : |y|>+¢*> = 1}
in CxR = R3. The embedding of C in S is given by the inverse to the stereographic
projection with the North Pole N := (0,0,1) € S? as center onto the equatorial
plane C x {0} =~ C. The North Pole itself corresponds to the point o0 € Cy. The
basic proportionality theorem (or intercept theorem) z : 1 =y : (1 — ¢) shows that
the stereographic projection is given by
CXRDSQ\{N}S(y,t)'—»z=%yngCx{O}
and its inverse is

py:Corzm— (22,]2]2 —1) e C x R,

|22+ 1
because the second intersection point of the sphere with the straight line ¢t —
2
z + t(N — z) through N and z is given by the solution ¢ = }j?% of the equation

L=tN+(1—-t)2|> =2+ (1122

So this provides one “chart” for S?. We can also define another chart now around
N by analogously using the inverse ¢_ of the stereographic projection (y,t) —
(y,—t) — %Hy with respect to the South Pole S := —N.

Using these charts we transfer the definition of differentiability to functions f :
S? 2 U — F by requesting that the two compositions f o ; : C 2 wgl(U) —
U — F for j € {+,—} are differentiable. It should be checked, however, that
for points (x,t) € S? in temperate latitudes, i.e. those in ¢, (C) n ¢_(C), the
differentialiability of f o, at ¢ '(z,t) is equivalent to that of fop_ at p='(z,t).
Because of fop_ = (fopy)o (3011 o @_), it is enough to show that the chart
change ;' o p_ : C\{0} — C\{0} is differentiable. This is given by

1 9 1 2z z 1
o D e T e T T
1+]z]?
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This is the reflection at the unit circle, as can also be easily seen by means of ele-

mentary geometrical considerations. This mapping is smooth and anti-holomorphic,

so we should compose the second chart yet with the conjugation C — C, z — Z to
1

get the holomorphic mapping z — - as a new chart change.

In summary, this means that a mapping f : C,, 2 U — F' is called holomorphic if
both flc : Cn U — F and z — f(1) is holomorphic {z € C: 1 € U} — F. See also
19, 2.18).

6.19 Chains and cycles.

Since we want to use not only discs but general compact sets K < C, we have to
replace closed curves with something more general, namely so-called 1-CHAINS; i.e.
formal linear combinations ¢ := >}, k; ¢; of curves ¢; : [0,1] — U with coefficients
k; € Z. The set of all 1-chains forms an Abelian group (all mappings C([0,1],U) —
Z with finite support) with respect to the componentwise addition. The BOUNDARY
dc of a 1-chain is a 0-chain, i.e. a formal linear combination of points, which is
defined as follows dc := >}, kj (¢;(1) —¢;(0)). A 1-chain c is called CYCLE if dc = 0.
This is in particular the case when all ¢ are closed curves. The subset formed by
all cycles is a subgroup of 1-chains. One extends the line integral of 1-forms w to

1-chains ¢ by linearity, i.e.
f w = Z k; J w
c ] Cj

and defines the winding number of 1-cycles ¢ again by

. 1 1
ind.(z) := 7 | o dw

for all z ¢ img(c) := |, ¢;[0,1].

A 1-cycle ¢ is called 0-HOMOLOGOUS in U if ind.(z) = 0 for all z ¢ U. Two cycles
¢1 and ¢y are called HOMOLOGOUS in U if ¢; — ¢z is 0-homologous, i.e. ind,, (z) =
ind,, (z) for all z ¢ U.

Note that two closed curves that are homotopic in U are also homologous because of
the homotopy invariance of the winding number. The converse implication does not
hold, since homotopy is not commutative. Let us now generalize Cauchy’s Integral

Theorem and Cauchy’s Integral Formula .

6.20 Generalized Cauchy Integral Theorem and Integral Formula.

Let f: C2U — F be holomorphic. For any two homologous cycles ¢; and co in U

we have
J f(z)dz = J f(z)d=.

If ¢ is a 0-homologous cycle in U, then

1 fw)

f(2) indc(2) = 5t | W= dw for all z € U\ img(c).

Proof. First we prove the second part. For this we consider the mapping ¢ :
(z,w) — % for z # w and ¢ : (z,2) — f'(z). We have that ¢ : U xU —» F
is continuous (and indeed even holomorphic, according to Hartogs’ Theorem and
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Theorem on removable singularities). For z € U let h(z) := 5= {_¢(z,w) dw.
In particular, for z € U\ img(c), we get

_ Sfw) f(z) J 1
h<z)_2mf —z 2mi Cw—zdw
= — 7f w) dw — f(z) ind.(2).
27 ), w— 2 ’
So we have to show that h = 0. It is easy to see that h : U — F' can be holomor-
phically extended to C by

h(z) := 1 (S

omi ) w2 dw for z € Uy := {z ¢ img(c) : ind.(z) = 0} 2 C\U.

Since this integral goes to 0 for z — o0, h is bounded and thus according to the
Theorem of Liouville identical to h(oo) = 0.

Now for the first part. It suffices to show that SC f(2)dz = 0 for the 0-homologous
cycle ¢ := ¢1 — co. For z € U\ img(c) let f,(w) := (w—z) f(w). Then, by the second
part,

0 = f.(2) ind.(2) = % {;(fi =5 f fw)dw O

6.21 Lemma. Captureing holes.

Let U < C be open and K € U compact. Then, a 1-cycle ¢ = Zj ¢; of smooth closed
curves ¢; exists in U\K so that ind.(z) € {0,1} holds for all z ¢ img(c). Let the
interior and exterior of ¢ be defined by

inn(c) := {z ¢ img(c) : ind.(z) = 1}
out(c) := {z ¢ img(c) : ind.(z) = 0}.

Then K < inn(c) € U, or equivalently, C\U < out(c) € C\K
Such a cycle is called a JORDAN SYSTEM.

Proof. Let 0 < 26 < d(K,C\U). We consider straight lines parallel to the axes with
distance § between them. Let Ry, ..., R,, be those (finite many) squares (with side
length ¢) which meet (the compact set) K. The boundary dR; of R; is a broken
line which we orient positively.

For z € R; we have d(z,K) < /26 and thus R; < U. Let ci,...,c, be those
edges that belong to exactly one of the R;. Then Y;'_; SCk w=3", SaRJ_ w for each
continuous 1-form w on U;nzl OR;, because the other edges belong to two of the R;
with opposite orientation.

We have that the image of ¢, is included in U\ K, otherwise the two adjacent squares
would meet K and thus be in U, a contradiction to the choice of ¢y.

For fe H(U) and z € K\ J; 0R;, w — ﬁw( z) dw is a continuous 1-form on | J 0R;
and thus

| fw) SO | f(w)
kgl%ifckw—z Z2f zdw'

We have

21 OR; w—z

1 f(w) dw = {O for z ¢ R;
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by the Cauchy Integral Formula . Since z is an inner point in exactly one of

the R;, we have
L[ fw)
= — | —=duw.
1) 1;1 2m Jck w—z v

Since both sides are continuous for z € K, this equation holds for all of K.

If we investigate the intersection of K with the 4 squares with a common vertices,
we see that ¢ := Zj ¢; is a cycle, hence a finite sum of closed polygons.

For z € K we have 1 = 31", 55§ 1 dw = indc(2), i.e. K < inn(c).
If z¢ U, then —L_dw =0 for all j and thus ind.(z) = 0, i.e. inn(c) cU. O
0I5 w—z

To obtain these theorems from complex analysis for vector-valued functions, one
can successfully use the following lemma.

6.22 Lemma.

Let F be a sequentially complete lcs. Then f: C 2 U — F is holomorphic if and
only if lo f:C2U — F — C is holomorphic for all £ € F*.

Proof. (=) is obvious, because £ € F*, as linear continuous mapping, commutes
with limits and difference quotient formation.

(<) The following holds:

€<f(2)—f(0) f(w)—f(0)>_(KOf)(Z)—(fOf)(O) (£o f)(w) = (£0 £)(0)

z w

z w

_ j (Co fY(tz) — (Co fy(tw)dt

0
= (2 —w) L J;) t(Lo f) (tw +ts(z — w)) dsdt.

Since £ o f is holomorphic, £ o f is 2 times continuously differentiable and thus the
integrand is uniformly bounded for ¢, s € [0, 1] and z,w near 0. So also the integral
is bounded locally in z and w near 0, and thus

1 (f(Z)—f(O) B f(w)—f(0)>

z—w z w
: f()—F(0) _ f(w)—f(0)

is scalarly bounded and even bounded by . So the net - — - —
0 converges for w,z — 0, i.e. w — w is a Cauchy net and consequently
converges (since each subsequence converges), i.e. f is holomorphic. O

By means of this lemma, all of the above mentioned results from complex analysis
can be transferred to the vector-valued case.

E.g., for the Theorem of Liouville this goes as follows: Let f : C — F be
holomorphic and bounded. Then £ o f : C — C is holomorphic and bounded, i.e.
according to the classical theorem constant, for all £ € F'*. Since these £ are point-
separating, f itself is constant.

For the Cauchy integral theorem and the integral formula ’ 6.12

note:
e<£f>-—Leofandzof-—wofy

Let now A be a complex Banach algebra with 1.

, and [ 6.20

Y

6.23 Lemma.
Forae A:
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1. If € p(a), then dist(\,o(a)) = ||(A —a) 7Y~
2. For A\, € p(a), we have the resolvent equality:
To(A) —re(p
P 20 () ) = i) ra ).
—p
Proof. () Let A € p(a) and |u| < |(A —a)~!|~. Then A\ + p € p(a) and thus
dist(A,o(a)) = |(A —a)~!|~! holds, because A + y — a is invertible by since
[A+p—a)—(A=a)| =l < |(A—a)~ "~

() Withz:=A—aand y:=pu—a

1 -1

ra(A) —ro(p) =2 —y P =27 (y—a)y
=A—a)'w-Np-—a)=E-ANA-a) " (p—0a)
= (/’L - /\) Ta()‘) Ta(,u)' O

6.24 Theorem.

Let a € A. Then the spectrum o(a) of a is compact and non-empty. The resolvent
function is holomorphic from the open subset p(a) of the Riemannian sphere Co to

A.

Proof. For [A| > [a|: A1 —a = A(1 — fa) and |1 — (1 — $a)| = |3a| = % <1,
hence 1 — ta is invertible by , and so is A1 —a = A(1— ta), i.e. A€ p(a). So
o(a) € {\:|A|] <|a|} and is therefore bounded.

We have p(a) nC := {A e C: A1—a € Inv(A4)}. Since the affine mapping A — A1—a
is continuous, its inverse image of the open set Inv(A) is also open. So p(a) N C is
open in C.

Consequently, o(a) = C\(p(a) n C) is closed and bounded in C, i.e. compact.
So o(a) is also compact in Cg,, and thus p(a) = Cy\o(a) is open in Cq,.

The mapping A — (A1 —a) — (A1 —a)~! is, considered as composition of an affine
mapping with a (by ) complex-differentiable mapping, a complex differen-
tiable mapping 7, : p(a) " C — inv(A) € A and, by the Chain Rule, we obtain for
the derivative:

N =inv'Al —a) - 1=-AN—a)'1(A—a)t=-N—a)"2

a

If one does not want to use the complex differentiability of the inversion, then this
can also easily be calculated by means of resolvent equation | 6.23.2 |.
For the holomorphy at oo we have to study the mapping z — % — ra(%) near 0.

For z # 0 this is holomorphic because p(a) is a neighborhood of co and because
of im, 5 74(2) = 0 =: r,(0) (see ) we have that r, is holomorphic at 0 by
. Directly one sees this also from the fact that for ||z al| < 1 (i.e. for |z]| < m)
this mapping can be developed into a convergent power series:

NN T S
_ i(za)k = gozk“ak-

It only remains to show that the spectrum is not empty:

el
Il
o
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Otherwise, 7, : C, — A would be a holomorphic (hence bounded) function on the
whole C,, and thus according to the theorem of Liouville constant. Because
of r4(0) = 0, we would have r, = 0 ¢ Inv(A), a contradiction. O

6.25 Lemma and Definition.
The SPECTRAL RADIUS r(a) of a € A is
r(a) := max{|z| : z € o(a)}.

We have:

— T n|1l/n
(@) = lim o,

Proof. Since 7, : p(a) — A is holomorphic by , z + 14(2) is holomorphic
for 1 € p(a), so the Taylor series Yo 2" la* of this function converges in the
interior of the largest disc contained in {z : 1 € p(a)}. This has by definition radius
inf{|z] : L ¢ p(a)} = m = ﬁ Since this power series is divergent for
1

Timn o %/an

|z| > (moreover, the radius of convergence is lim, .o {/[a"]), we

1 1 : T n :
have 7 < T ] e r(a) = lim, o {/|a™| (and even equality holds).
It remains to show that this limit superior is even a limit. By means of the inequality
[a™T™| < ||a™]| [a™]| one can show this directly, see [11, 169]. Another proof goes
as follows:

For z € o(a) we have z —a ¢ Inv(A). Since 2" —a™ = (z —a) ("1 +2"2a+--- +
za" 2 +a"1) and the two factors commute with each other, 2™ — a™ ¢ Inv(A) by

16.2.3] i.e. [2|* < [la”| by and thus |z| < |a”|'/". Thus r(a) < inf, [a™|"/" <

lim,, [a"||"" < r(a). O

Functional Calculus

Remark.

In finite-dimensional spectral theory, the algebra {p(T') : p ist ein polynomial} plays
an important role for operators T'. Just think of the Theorem of Cayley-Hamilton
and the role that the minimal polynomial plays. In infinite dimensions polynomials
will probably not suffice. The most obvious generalization is convergent power series.
We have shown in [18, 3.2.10] that the convergence for all |z| < R of a power series
f(z) == X5, frz" with fi € C coefficient also implies the convergence of the
series f(a) := >~ fra® in A for all @ € A with |a| < R. So this works if the
radius of convergence is greater than |a|. However, the series f(a) := Y, fi a®
will converge (absolutely) by the root test (see [20, 2.5.10]) even if the radius of
convergence is greater than lim,, . [a™[™ = r(a) (in fact, limy, &/|fx|[a*] < 1 =
(@) = limg a5 < L)
holomorphic function on an open disc containing o(a).

. Under these assumptions, z — f(z) has to be a

We now want to try to define f(a) also for functions f that are holomorphic on an
arbitrary neighborhood of o(a). We can no longer use the power series expansion,
because it only needs to converge in the interior of the largest disk in the domain
of f. To get a definition of f(a) also in this case, we first give another description
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of f(a) for power series f with radius of convergence R > |a|. According to the
Cauchy Integral Formula ,
f(z) =

holds where ¢ is a parameterized circle with radius » < R. Thus we expect that

T o J flw ~duw,

where the integral makes sense, since the circle ¢ has values in p(a) and thus (w —
a)~1 is well-defined for all w € img(c).

Because of the Cauchy Integral Formula 2m §
gously we should have ﬁ SC wh(w—a)~t dw = a*. This is indeed the case, because

[ fw)

27 J, w — 2

3

k
W Jyy = zF hence analo-
CcC Ww—=z

-1
1 k 11 k—1 1 _ w1 j
57 | v (w—a)" dw = 57 cw 1 - dw = 271'2 Z —a’ dw
1 e}
= k=(+1) 4 ) J— gk
QWZZ;)(JCw w)e “
27ri6i
So
1 1 [ ¢
f0) = 3= | Fw) (w=a) 1dw—m£]§0fkwk<w—a> ! dw
. g, 5,
= f —ka(w—a) Ldw = fra®
im0 2T k=0

This definition of f(a) as line integral now also makes sense if ¢ is not necessarily
a circle, but is any 1-chain ¢ in p(a) " U and f e H(U). So we define as follows:

6.26 Definition.
Let a € A and f: U — C be holomorphic on an open neighborhood U of K := o(a)

in C. Then put
Ld A,
2m J flw we

for some Jordan cycle ¢ as in .

Lemma.

This definition does not depend on the choice of the 1-chain c.

Proof. Let c = 3.7, ¢j and d = 3] | d; be two Jordan cycles as in Lemma [6.21]
With ¢,,4; for j € {1,...,m} we denote the reversely parametrized curve d;. For
z ¢ U\o(a) either z ¢ U or z € o(a). In the first case Z T"indg, (2) = ind(z) —
indg4(z) = 0—0 = 0 and in the second Z"Jrlm ind,, (z) = indc(z )—mdd( )=1-1=0.
SoT := 37 " ¢; is a cycle of closed curves in U\c(a) and for all z ¢ U\o'(a) we have
indr(z) = 0 and since w — f(w) (w — a)~! is holomorphic on U\c(a), it follows

from Cauchy’s Integral Theorem that

0= | flw) =)t au - j F(w) (w — )~ dw - L f(w) (w—a) " dw. O
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6.27 Germs

As we have just seen, f(a) does not depend on the selection of the Jordan cycle ¢
in U\o(a), hence f1(a) = f2(a) in case f1 and f5 coincide on some U neighborhood
of K := o(a). So we need the following

Definition.

Let K < C be compact. Under a HOLOMORPHIC GERM on K we understand an
equivalence class of holomorphic functions f defined on open neighborhoods vccC
of K. The equivalence relation is given as follows: f1 : Uy — C and f5 : Uy — C are
called equivalent if an open neighborhood U < Uy nUs; of K exists with f1|y = fa|u.
With H(K) := H(K,C) we denote the set of all holomorphic germs on K. This is
a C-algebra when we define the algebra operations via the representatives.

The mapping H(U,C) — H(K), f — [f], is injective, provided each connected
component of U contains at least one point from K, because then it follows from the
uniqueness theorem that any two holomorphic functions on U that coincide on
a neighborhood of K are already identical. We can assume without loss of generality
that all considered neighborhoods U have this property, and thus that the Fréchet
space H (U, C) is a linear subspace of H (K, C). By definition, H(K) is the union of
these subspaces, and we can therefore provide H (K') with the final structure.

6.28 Theorem (Holomorphic Functional Calculus).

For a € A the mapping [f] — f(a) given by defines the uniquely determined
continuous algebra homomorphism H(o(a)) — A, which maps id to a, i.e. extends

the evaluation Y, frz* — Y, fra® of polynomials.

Proof. First the existence statement
According to the above lemma, f(a) := 27” §. flw —a)~ ! dw is well-defined and
does not depend on the choice of ¢ and the reprebentatlve of the germ f.

Obviously, f — f(a) is linear.

We show that this is also an algebra homomorphism. Let f and g be two holomor-
phic functions defined on an open U 2 o(a). Let A be a fitting Jordan cycle in U
and T be such a cycle in inn(A). Then:

4772 (J flw dw) (JA 9(2) (Z—a)ldz>

iz | | 1w @07 -0
6232 47r2f J f(w)g(z) )_—;a(z) dz dw

J flw (J 9(2) dz> (w—a)~t dw+
f(w) -1
+47r2 Ag(z)<rz_wdw (z —a)" " dz.
For all z € img(A) < out(T"), according to Cauchy’s theorem , Sr J;gg dw =0
For all w € img(T) < inn(A) 9) 12 — 27i g(w) holds, so

A z—w

f@)gla) = 5= | — ) dw = (fg)(a).

fla)g(a)
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Now to the continuity. We only have to show that f — f(a), H(U) — A is contin-
uous, or, because H(U) is a Fréchet space with respect to the uniform convergence
on each compact subset of U, that this mapping is bounded. Let F < H(U) be
bounded. Then F is uniformly bounded on the image of ¢, so there is a constant
K with | flimg(e)|cc < K for all f € F. Furthermore, 74(img(c)) is compact, so
bounded and consequently there is a constant K; with |(w —a)~!| < K; for all
w € img(c). Therefore, | f(a)| < 5 K K1 L(c), and thus {f(a) : f € F} is bounded.

Let f(z) = X% fr 2* be a polynomial, or more generally a power series that con-
verges on a neighborhood of o(a). Then f(a) = Y., fra*, as we have shown
above.

Now for the uniqueness statement:

Let 7 be such an algebra-homomorphism. As algebra-homomorphism which maps
id to a, 7(f) = f(a) holds for all polynomials f € C|[z].

Let next f = g be a rational function with poles outside o(a). So we may as-
sume that ¢ is a polynomial not vanishing on o(a), and thus % € H(o(a)). But
then 1 = 7(1) = T(q%) = 7(q) T(%) holds, so T(%) = 7(q)~! and therefore (L) =
7(p) - 7(¢)~" = p(a) -q(a)~" = £(a) = f(a) holds.

Let finally f € H(o(a)) be arbitrary, i.e. w.lo.g. f € H(U,C) for some open neigh-
borhood U of o(a). Let K < U be a compact set containing o(a) in the interior.

According to Runge’s Approximation Theorem , there exists a sequence of
rational functions f,, with poles outside K, which uniformly converges to K towards
f. Then the germs [f,] converge towards that of f, and the continuity statement

implies f(a) = lim f,,(a) = im7(f,) = 7(f). O
6.29 Spectral Mapping Theorem.
For f € H(o(a)) the equation o(f(a)) = f(o(a)) holds.

Proof. Let f € H(U) with open U 2 o(a).
(2) For given z € o(a) we have that

FE=1W)  for % -
g cw zZ—w

1'(2) forw =z

is a holomorphic function on U. Suppose f(z) ¢ o(f(a)). Then (z — a)g(a) =
f(2) — f(a) would be invertible and since the two factors commute with each other,
also z — a would be invertible by , i.e. z ¢ o(a), a contradiction.

(€) Conversely, let z ¢ f(o(a)). Then g : w — (z — f(w))~! is a holomorphic
function on the neighborhood U\ f~1(2) of o(a) with 1 = g(a) (z— f(a)). So z— f(a)

would be invertible by , ie. z¢ o(f(a)). O

6.30 Lemma.
Let A be a Banach algebra and a,be A. Then o(ab) U {0} = o(ba) U {0}.
Proof. We have to show that A —ab € inv(A) <« A —ba € inv(A4) for all A # 0.

Without loss of generality, A = 1 and 1 — ab are invertible with u := (1 — ab)~*.
We claim that 1 — ba is invertible and (1 —ba)™! =1+ bua:

(I-ba)(l1+bua)=1—ba+bua—babua=1+b(-1+u—abdbu)a
=14b((1—ab)u—1)a=1

(I+bua)(l1—-ba)=14+bua—ba—buaba=1+b(u—1—uab)a
=1+bu(l—ab)—1)a=1. 0O
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6.31 Definition. Commutant.

We denote the set of elements, which commute with all b in a set B < A, as
COMMUTANT B¥ := {z € A: xb = bz Vb e B} of B. In algebra one calls this also
the CENTRALIZER of B in A.

We have that B — B* is an antitone mapping on the power set of A and B; < B
< By C Bf, because both sides mean Vby,bs : by € B1,by € By = by by = b by.

Thus, B € (B*)* =: B** because of B* < B*.

In addition, B¥ = B*** always holds, since B € B** implies B¥ 2 (B**)*¥ and, on
the other hand, B¥ < (B*)** holds.

Note that B¥ is a closed (with respect to any topology for which the multiplication
is separately continuous) subalgebra of A for each subset B € A, because x1 22 b =
X1 bCC2 = bl‘l Z9.

Furthermore B¥ = B¥, where B; denotes the closure of the subalgebra generated by
B in a topology with respect to which the multiplication is separately continuous.

Obviously, B is commutative if and only if B € B* holds. Thus, for commutative B
also B** is commutative, because B € B* = B* < B* = Bk < BFFk = (BFF)k,

6.32 Corollary.

For f € H(o(a)) we have that f(a) commutes with all b€ A commuting with a, i.e.
f(a) € {a}**. Moreover, {f(a): f € H(o(a))}¥ = {a}*.

Proof. Because of Runge’s Approximation Theorem , {a}F = {f(a) : f €
H(o(a))}* (for polynomials f this is obvious. It follows easily (c.f.[6.28]) that this
also holds for rational functions with poles outside o(a)) and thus f(a) € {a}** for
all f e H(o(a)). O

In the finite-dimensional case one uses the decomposition of the characteristic poly-
nomial into prime factors to obtain a direct sum decomposition (diagonal block
description) of the operator. We can now transfer this to elements of a Banach
algebra. However, since we do not have a space available for these elements to op-
erate on and hence we can not restrict the summands to invariant subspaces, the
spectrum of the summands contains 0.

6.33 Corollary.

Letae A and o(a) = K7 1 Ks a decomposition into closed disjoint sets. Then there
is an idempotent e € {a}** (i.e. €2 = ¢) and for a; := ae and az := a (1 — ) we
have a = a1 + a2, a1 as = 0 = ag a1, and o(a;) = K; U {0} for j € {1,2}.

Proof. The idea of the proof is to first show this for the inverse image id € H(o(a))
under the algebra homomorphism H(c(a)) — {a}** < A from and then
apply this homomorphism. For j € 1,2, let U; be two disjoint open neighborhoods
of K;. Then the characteristic function xy, € H(U; u Usz). So e := xy,(a) € A
is well-defined. By , e commutes with all b commuting with a, in particular,
with a itself. Moreover, e is idempotent because of X%h = xvu, . Furthermore, 1 —e =
(1—xv,)(a) = xv,(a). Wehave 1 =e+ (1 —¢) and e(l —¢) =e—e? =e—e =0,
so all claimed equations hold for a; := ae = ea and az :=a(l —e) = (1 — e)a.
Moreover o(a;) = o((id-xv,)(a)) = (id -xv,) (K1 v Ka) = id(K;) u {0} = K; u {0}

by the Spectral Mapping Theorem . O
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Dependency of the spectrum on the algebra

Let A be a Banach algebra and B a Banach subalgebra with a € B. Then obviously
pp(a) € pa(a) and thus o4(a) S op(a). We now want to investigate to what extent
the two spectra can be different. First, a rather typical example.

6.34 Example for the dependence of the spectrum on the algebra.

Let A := C(dD, C) and B the Banach subalgebra generated by the identity a : z — z.
Then o 4(a) = 0D and op(a) = D:

By we have 04(a) = a(dD) = dD. Because |a|s = 1, op(a) < D. Suppose
op(a) = D. Then thereisa A e Dand abe B with (A—a)b=1,i.e. (A—2)b(z) =1
for all z € . Since b € B, there exists a sequence of polynomials b,, which converges
on JD uniformly towards b. By the Maximum Modulus Principle , the b, form

a Cauchy sequence in C(D), thus converge uniformly towards a b € C(ID), which
is thus holomorphic on D and coincides with b on JD. In the same way, we obtain
(A= 2)bn(2) =1 — 0 uniformly for z € D, so (A — 2)b(z) = 1 holds for all z € D.

For z := A, we therefore get the contradiction 0 = (A — A)b(A\) = 1. So op(a) =D
holds.

6.35 Definition.

Let K < C be compact. Then the polynomial convex hull K of K is defined by:
K :={z€C:|p(2)| < |plkVp € C[z]},

i.e. the set of all points on which no polynomial attains larger absolute values than

on K. The set K is called POLYNOMIAL CONVEX if K = K.

The complement C,\ K has as open subset of Cy, only countable many components:
Namely the unbounded component in C (i.e. the component in Co, which contains
o0) together with the bounded components in C, the so-called HOLES of K.

Lemma.

Let K < C be compact. Then, the complement (C\IA( off( is the unbounded compo-

nent of the complement C\K of K. So K is obtained by filling in all holes of K.
And K is polynomial convez if and only if the complement of K is connected.

Proof. Let C\K = Uy, L |_|k;éoo Uy be the partition into the connected components.
Let Uy, be the unbounded component and L := C\Uy, = K U |_|k#OO Us..

We claim L € K: R R
Because of L = K L |_|k;éoc U, and K < K it is enough to show U, < K for k # 0.
According to the Maximum Modulus Principle it is enough to show Uy < K,
so let z € OUy, = Up\Uy < C\Uy. Since z ¢ U; also for j # k (since U; is open and
disjoint to Uy), we conclude that x € K holds.
Suppose L < K:

1

Let z € K \L. Then w + - is a holomorphic function on a neighborhood of
L. Since C\L = Uy, is connected, there exists a sequence of polynomials p, with

SUD e, |Pn (W) — wl_z| — 0 by Runge’s Approximation Theorem . Let ¢y, :
w — (w— z) pp(w). Since z € K we obtain

1=10—1] = |gn(2) — 1| < sup{|gn(w) — 1| : w e K} = sup{|gn(w) — 1| : w € K}
< sup{|gn(w) — 1| :we L} — 0,

a contradiction. O
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6.36 Theorem.

Let A be a Banach algebra, B a Banach subalgebra, and a € B. Then og(a) is
obtained by completely filling up some holes of 0 4(a). In particular:

1. op(a) 2 o4(a).
dop(a) S doal(a).

2.
8. op(a) = oa(a).
4.

If B is generated as Banach algebra by a, then op(a) = o4(a).

Proof. () is obvious because an inverse to z — a in B is also one in A.

() Let z € dog(a) and suppose z ¢ oa(a), ie. (z —a)~! € A exists. Since
z € dop(a), there exists a sequence z, ¢ op(a) (ie. (2, —a)~! € B exists) with
2, — z and, by continuity of the inversion for A, (z, —a)™! — (z — a)~!. Since B
is closed, we have (z —a)~! € B, i.e. z ¢ op(a) 2 dog(a), a contradiction. Thus
z € doy(a), because the interior of o4 (a) has be in the interior of op(a) 2 op(a)
and thus in C\dop(a).

() U/B\(a) =) U/A\@) holds because of o5(a) 2 g4(a). Suppose 3zp € Uy, := op(a)n

(Co\oa(a)). Let z : [0,1] — Uyp S Cy be a curve in the, by lemma in [6.35],
unbounded connected component Uy, connecting zy with o0 and ¢ := sup{t : z(t) €

U/B\(a) = op(a) U] ly.o Uk} Then z(to) € op(a) and is not in the interior of o(a),
hence zp € dop(a) S doa(a) € oa(a), a contradiction.

() By , op € dp = 04 always holds. Suppose there were an z € 74\opg. Then
(2 —a)~' € B < A. Since B is the closure of the polynomials in a, there exists a
sequence of polynomials p,, with p,(a) — (z —a)™!. Let g, : w — (2 — w) pp(w).
Then ¢, (a) = (2 —a)pn(a) = (z—a) (2 —a)~! = 1 holds. By the Spectral Mapping

Theorem we have 04 ((¢, —1)(a)) = (gn — 1)(0a(a)) and thus, by ,
J4(a) = 1 > ralan(@) = 1) i= sup{Jw| : w € 04 (gu(a) ~ 1) = au(oa(a)) — 1}

= sup{|qn(w) —1|:we O’A(a)} = |qn(z) — 1] =1,

since z € 0 4(a), a contradiction to ¢,(a) — 1.

Remains to show that in general og(a) is obtained by completely filling up some
holes of o 4(a):

Let U be a hole of o4. Then U = Uy u Uy, where Uy :=U nop =U n (op\dop),
because dog € doq € 04 € C\U by , and Uy := U n pp. Thus, U; and U, are
open and disjoint. Since U is connected as a hole, one of the two sets is empty, so
the hole U is completely contained in op or in the complement pp. O

Commutative Banach algebras

We now want to develop a duality theory for Banach algebras A. Instead of the linear
functionals we should probably use Banach algebra homomorphisms A — C. So we
start by studying algebra homomorphisms. Since continuity of linear functionals
can be described by closedness of the kernel by 7 we should in particular
study the kernels of algebra homomorphisms.

6.37 Definition (Ideals).
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A subset I € A of a (Banach) algebra A is called an IDEAL if I is a linear subspace
and with i€ / and a € A also iae I and ai€ I.

An ideal is called TRUE IDEAL, if I # A, or equivalent if 1 ¢ I, or further equivalent
inv(A) n I = &: The directions (<) are obvious. Conversely, let i € I be invertible
in A and a € A arbitrary, then a =i tiae I.

The kernel of each algebra homomorphism is obviously a true ideal (because of
f(1) = 1), and conversely, each ideal I — A of an algebra A defines an algebra
structure on A/I such that the canonical map 7 : A — A/I with kernel I is an
algebra homomorphism: For the projection 7 : A — A/I to become an algebra
homomorphism, one has to define the multiplication in A/I by (a+1)-(b+ 1) :=
a-b+ 1. Since [ is an ideal, this definition makes sense, because (a + ) - (b+ j) =
a-b+a-j+i-b+i-jea-b+A-I+1-A+I1-Ica-b+1fori,jel.

An ideal I in A is called maximal if it is maximal among all true ideals with respect
to the inclusion.

Lemma.

The maximal ideals of a commutative algebra are exactly the kernels of surjective
algebra homomorphisms with values in divisional algebras (i.e. where each element
unequal to 0 is invertible).

Proof. Let f : A — B be a surjective algebra homomorphism (between not nec-
essary commutative algebras) and let every 0 # b € B be invertible. Then ker f
is a maximal ideal, because if I > ker f is an ideal, then it is easy to see that
f(I) # {0} is an ideal in B, thus contains an invertible element b = f(¢) with i € I.
Let f(a) =b"1. Then f(1 —ai)=0,ie. lekerf+ai< I, s01=A.

Conversely, let I ¢ A be a maximal ideal. And let 7 : A — A/I be the canonical
mapping. Furthermore, let 0 % b € A/I. Then there is an a € A\I with w(a) = b. Let
I, be the ideal generated by I and a. Because of the commutativity I, = I + Aa.
The maximality of I implies 1 € I, i.e. there are 1€ [ and @’ € A with 1 =i+ d’a,
hence 1 =0+ m(a’) b in A/I and thus b is invertible. O

6.38 Theorem of Gelfand-Mazur.
Let A be a Banach algebra with inv(A) = A\{0} (i.e. a division algebra). Then
A={A1:2eC} =C.

Proof. Let a € A. Then o(a) # . Let z € o(a), i.e. z1 — a has no inverse, thus
z1l—a=0,ie.aeCl. O
6.39 Proposition. Automatic continuity.

Let A be a Banach algebra and f : A — C be an algebra homomorphism. Then f is

continuous and | f|| = 1.

Proof. Since f(1) = 1 we only have to show that |f(a)| < |a| for all a € A:
Suppose |f(a)| > |a|, then f(a)-1—a is invertible and hence also f(f(a)-1—a) =0,
a contradiction. O
6.40 Lemma.
Let A be an Abelian Banach algebra. Then there is a bijection
Alg(A,C) 2 {I: I is a mazimal ideal in A}
f = ker(f)
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Here, the algebra homomorphism f : A — C associated to a mazximal ideal I is
determined by f(a) -1 = w(a), where w denotes the canonical projection A — A/I.

Proof. (—) is well-defined by the lemma in .

(«) Let now I be a maximal ideal. Then Inv(A) N1 = & and, since inv(A) is open,
also Inv(A) n I = &. Since I obviously is an ideal, it follows from the maximality

that I =1, i.e. I is closed.

Claim. For every closed true ideal I < A the Banach space A/I is a Banach algebra.

By [6.37], (a+ I)- (b+I) := a-b+ I defines a multiplication that makes A/I into
an algebra and 7 : A — A/I into an algebra homomorphism. The quotient norm is
submultiplicative, because

[(a+1)-(o+ D] =a-b+1]
inf{a-b+i|:iel}

<inf{la-b+k|:k=a-j+i-b+i-jwithi,jel}
= inf{|(a+14)-(b+3)|:4,5¢€l}
< inf{a+i|- b+ 4] :i,5 €T}

=inf{la+i|:ie I} -inf{|b+j|:jel}

la+ 1] -6+ 1]

We have |1 4 I| = inf{|[1 4+ i : i € I} < |1 4 0| = 1. Suppose |1 + I|| < 1. Then
[1+1]=]1+D? <|1+1]|*><]|1+ 1| would be a contradiction.

Since I is maximal and A is Abelian, A/I is a division algebra by , and

thus A/T = C-1 = C by . So f: A — A/I = C is the required algebra
homomorphimus with f(a) -1 = 7(a).

Obviously, the two mappings are inverse to each other, because on the one hand
ker(f) = ker(7) = I and on the other hand, two algebra homomorphisms f; and f5
of A — B haveing the same kernel are identical, because f2(a) = fa(a — f1(a)1) +

f2(fi(a) 1) = fi(a) f2(1) = fi(a), since a — fi(a) 1 € ker(f1) = ker(f2). O

6.41 Lemma. Abelization of Banach algebras.

Let A be a Banach algebra. With A’ we denote the closed ideal of A generated by
{ab—ba : a,be A}. Then Appe := A/A’ is a commutative Banach algebra and the
natural projection A — A ape; 15 a Banach algebra homomorphism with the following
universal property: To each Banach algebra homomorphism f: A — B with values
in a commutative Banach algebra B exists a unique Banach algebra homomorphism
favel : Aaper — B which makes following diagram commutative:

A = AAbel

ELS
f yA vu.ifAbez

B

Proof. We have shown in the proof of that A/A’ is a Banach algebra, because
A’ is a closed ideal. Obviously, A/A’ is commutative, because (a + A’) (b + A’) —
b+ A)(a+ A) = (ab—ba) + A < A’. So let B be a commutative Banach
algebra and f : A — B be a Banach algebra homomorphism. Then f(ab — ba) =
f(a) f(b) — f(b) f(a) = 0 and, as f is continuous, also A’ < ker f. So f factors to
a unique continuous linear mapping fape; 1= f : AJA" — B. We have that f is
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an algebra homomorphism, because f((a + A') (b+ A')) = f(ab+ A’) = f(ab) =

fa) f(b) = fla+ A) f(b+ A). H

6.42 From Alg(A,C) back to A

We now want to find out to which extent one can recover the algebra A from the
set Alg(A, C) of all algebra homomorphisms A — C.

Since all of these homomorphisms factor over the Abelization, we can at most
recapture Abelian Banach algebras from their C-valued homomorphisms. Let’s look
first at our typical example A := C (X, C) of a commutative Banach algebra and try
to describe the algebra homomorphisms A — C as explicitly as possible. Obviously,
every x € X defines such a homomorphism ev, : A — C by ev,(f) = f(«). This
assignment § : x — ev, is injective, since the continuous functions f : X — C on
compact spaces X are point separating (a special case of the Lemma of Urysohn).

The mapping 6 : X — Alg(A,C) is onto:

Let ¢ : A — C be an algebra homomorphism. We are searching for a point z € X
with p(f) = f(z) for all f € A. Let I := ker ¢. For each f € I we consider the closed
zero set f~1(0) = {x € X : f(x) = 0}. This is not empty, otherwise f would be
invertible in A, i.e. 1 € I. This family of zero sets has the finite intersection property,
because f~1(0) N g=1(0) = (ff + gg)~(0) and with f,g € I also ff + gg is in the
ideal. Since X is compact, () ;.; f710) # &. Solet x € f71(0) for all f € I. For any
f e Awehave f—p(f) 1€ I = ker(ip) and thus 0 = (f — p(f) 1)(z) = f(z) — #(f),

ie. p = evg.

Thus we can identify the points of X with the C-valued algebra homomorphisms
on A := C(X,C). If we want to recover the algebra A, then we have to provide
Alg(A,C) with a Hausdorff topology such that the mapping X — Alg(A,C) is
continuous (then it is automatically a homeomorphism since X is compact). So
x; — x should imply ev,, — ev, in Alg(A,C). Pointwise at f € A this is valid,
because ev,, (f) = f(z;) — f(x).

We have thus shown the following:

Proposition.

Let X be a compact Hausdorff space and A := C(X,C). If we consider Alg(A,C)
with the topology the pointwise convergence, i.e. as subspace of C4 = [ 1,4 C, then
the mapping 0 : X — Alg(A,C) = Alg(C(X,C),C) is a homeomorphism.

More generally, a completely regular topological space is called a REAL-COMPACT,
if this mapping § : X — Alg(A,C) = Alg(C(X,C),C) is a homeomorphism, see
26, 2.5].

Consequently, for the Banach algebra A := C'(X,C) we obtain an isomorphism

5% : C(Alg(4,C),C) =~ C(X,C) = A.
Note that (6%)~! : A — C(Alg(A,C),C) is given by 6 : a — eva(: ¢ — ¢(a)),
because

(0% 0 0)(f)(x) = 6*(6(f))(x) = 6(f)(d()) = 6(x)(f) = f(=)

We want to generalize this as far as possible to arbitrary (commutative) Banach
algebras A. For this we supply the so-called SPECTRUM o(A) := Alg(4,C) of A
again with the topology of pointwise convergence. If we can prove the compactness
of o(A), then C(c(A),C) is a Banach algebra with respect to the topology of
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uniform convergence and 6 : A — C(0(A),C), a — ev,(: ¢ — p(a)) is a well-
defined algebra homomorphism, which we will now examine in more detail.

6.43 Gelfand’s Representation Theorem.

Let A be a commutative Banach algebra. Then its spectrum o(A) := Alg(A,C) =
is a compact Hausdorff space with respect to the topology of pointwise convergence.
The GELFAND TRANSFORMATION

G=06:A—-C(X,C)=C(Alg(A4,C),C), a eve(: ¢ p(a))
is a Banach algebra homomorphism with the radical of A as its kernel
ker(G) = Rad(4) := ﬂ{] : I is a mazimal ideal of A}.
For a € A the identities oa(a) = oc(x,c)(G(a)) and |G(a)|w = r(a) hold.

Proof. Obviously, X := Alg(4,C) is closed in C*, because X 3 ¢; — ¢ implies
p(ab) = limp;(ab) = limp;(a) p;(b) = lim; @;(a) lim; ;(b) = ¢(a) p(b) and sim-
ilarly one shows the linearity of (. Furthermore, X is bounded in C#, because

Ipr,(¢)| = |p(a)| < |a for a € A and ¢ € X by |[6.39] Hence, by Tychonoff’s
Theorem, X is compact.

The mapping G has values in C(X,C), because ¢; — ¢ in X < C4 implies that
G(a)(pi) = pi(a) = ¢(a) = G(a)(p).
Obviously, G is an algebra homomorphism since evy, oG = ¢ is one for all p € X.
For the kernel of G, the following holds:
acekerG<=0=G(a) = Vpe X :0=G(a)(p) = p(a)
<a€ ﬂ ker ¢ = ﬂI—Rad( ),
peX
where the last intersection is over all maximal ideals I of A.

Now to the statement o 4(a) = o¢(x,c)(G(a)) about the spectra for a € A:

Note that oc(x,c)(G(a)) = {Q(a)(cp) o(a) : ¢ € X} holds by .

(2) Let z = p(a) € o¢(x,c)(G(a)), then ¢(a) 1 —a € ker ¢ and thus is not invertible,
ie. z = p(a) € ca(a).

(S) Now let z € o4(a), i.e. z1 — a is not invertible. Then the ideal A - (21 — a)
generated by z1—a is a true ideal. Thus, according to the Lemma of Zorn, there is
a maximal ideal I containing z 1 —a. Let ¢ : A — C be the algebra homomorphism
with kernel I. Then 0 = (21 —a) = z — p(a), i.e. z € oo (x,0)(G(a)).

Consequently, we obtain the following estimate for the norms:

[G(a)]o0 := sup{|G(a)(p)| = lp(a)| : p € X}
= sup{|z| : 2 € o0(x,0)(9(a)) = 0a(a)} = r(a) < [al. O

A commutative Banach algebra is called SEMISIMPLE if Rad(A4) = {0}, i.e. the
Gelfand homomorphism is injective.

Because of o(a) = 0(G(a)) = {p(a) : ¢ € 0(A)} the mapping ev, : 0(A) — o(a) is
onto and by definition of the topology on ¢(A) it is also continuous, because ¢; — ¢
pointwise implies that ev,(p;) = ¢;(a) = p(a) = evy(p). Since o(A) = Alg(A4,C)
is compact, ev, : 0(A) — o(a) is a quotient mapping.

6.44 Proposition.
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Let A be a Banach algebra generated by some a € A as Banach algebra, i.e.
{p(a) : p e C[z]} is dense in A.

) evg ) ¥
Then the mapping C(0(4),C) ( ~) C(o(a),C)
evg 1 0(A) := Alg(A,C) — o(a) -
is a homeomorphism and the diagram to the right T T(”U(Q)
commutes. A<————— H(o(a)).

evg

Proof. The quotient mapping ev, : o(4) — o(a) is in addition injective and
thus a homeomorphism, because for ¢; € Alg(A,C) with ¢;(a) = p2(a) we have
v1(p(a)) = p2(p(a)) for all polynomials p € C[z] and, since the set {p(a) : p € C[z]}
is dense in A by assumption, ¢; = o holds.

Since all arrows in the diagram are continuous algebra homomorphisms and C\o (a)

is connected by |6.36 ], i.e. C[z] is dense in H(c(a)) by |5.3.8], it suffices to prove

the commutativity of the diagram on id : z — z:

(eva)*(id [o(a)) () = (idoeva)(p) = id(p(a)) = ¢(a) = G(a)(p) = G(id(a))(¢). O

Example.

Let

a={(5 %) asech

be the 2-dimensional commutative Banach subalgebra of L(C?) which is generated

01 . .
by T = (0 0). The only eigenvalue of T is 0, so 0(A) = o(T) = {0} by [6.44].

So there is a unique algebra homomorphism ¢ : A — C and it suffices p(T") = 0.
One can see this directly as well: Let ¢ € 0(A), hence an algebra homomorphism
A — C. Then ¢(T)? = ¢(T?) = »(0) = 0 and thus

a b
ga(o a) =pal+bT) =a.

Therefore the only maximal ideal in A is ker(¢) = C - T and hence Rad(A) =
ker(p) # {0}, i.e. A is not semisimple. Moreover, G : A — C(0(A),C) = C is the

mapping
a b . a b\
0 a Ylo o) ="

A continuous generalization of the last example is given as follows. Let

Example.

(K f)(x) = f ka.y) f(y) dy = fk<x,y>f<y> dy

with measurable integral kernel k € L ([0,1]?) and k(x,y) = 0 for z < y. Then
K : L?[0,1] — L?[0,1] is a so-called Volterra operator with norm || K| < ||k||s and
furthermore || K™| < % |E[% . For all this see [18, 3.5.5]. Consequently, |K™|"/" <
[¥le _, 0. Thus, the spectral radius r(K) equals 0, and hence o(K) = {0}, i.e. the

Vnl
Banach algebra generated by K has exactly one maximal ideal (namely the closure

of {p(K) : p e C[z] und p(0) = 0}) by and is therefore not semisimple.

Example.
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The Gelfand homomorphism G is generally not onto:

Let A be the closure of the polynomials in C'(dD,C), i.e. the Banach subalgebra
of C(dD,C) generated by the identity a : z — z. Then according to Proposition
o(A) = Alg(A,C) =~ o4(a) = D by . If G would have dense image in
C(0(A),C), then also the composite with C[z] € H(ca(a)) — A, and by
also C[z] € H(D) — C(D, C), which is not the case (uniform limits of sequences of
polynomials must be holomorphic on D).

As a first application of the Gelfand transformation we prove the existence of the
Stone-Cech compactification:

6.45 Stone-Cech compactification.

For each topological space X there exists a compact space 5X, the so-called STONE-
CECH COMPACTIFICATION and a continuous mapping 6 : X — BX with the follow-
ing universal property:

X— %  .B3X

\ I
! L F

K

where K is compact and both f and f are continuous.

Proof. Let A := C3(X,C) be the Banach algebra of bounded continuous func-
tions on X with the co-norm and pointwise operations. Let X := Alg(A,C). The
mapping 6x : X — X, x — ev, is continuous according to the definition of the
topology of pointwise convergence on Alg(A,C).

Let now K be any compact space. By , 0 : K — Alg(C(K,C),C) is a
homeomorphism. Each continuous f : X — K induces an algebra homomorphism
f*:C(K,C) - C(X,C), g — go f and, since K is compact, it has values in the
subalgebra Cy(X, C).

5
By dualizing again we obtain a continuous mapping X — Alg(C’b(X ,C),C)
[0 Alg(Cy(X, C),C) — Alg(C(K,C),C) and thus ; - -
a continuous mapping f : A1~g(Cb(X7(C),(C) - K L
with § o f = f**. This fulfills f 0§ = f, because K —6>A1g(C(K, C),0C)

(00 fod)(x)(h) = (f** 0d)(x)(h) = f*(d(z))(h) = 6(x)(f*(h)) = (f*(h))(x)
= h(f(x)) = 6(f(x))(h) = (60 f)(x)(h).
For the uniqueness of f, it is enough to show the denseness of the image of § : X —
BX. Let p € X = Alg(Cy(X,C),C). A typical neighborhood of ¢ is described by
U:={¢:|(—9)(fi)]<eforl<i<n}

with finite many f1,..., f, € Cp(X,C) and given € > 0. We have to find an z € X
with ev, € U. Consider the function

n

Fe= 2= 1P = D3(fi = o(f) 1) (fi — 2(fi) 1) € Gy(X, C).
i=1

i=1
Obviously, ¢(f) = 0. Suppose ev, ¢ U for all z € X and hence f(x) > £2 for all
z € X and thus also % € Cb(X,C), i.e. f € ker(yp) is invertible, a contradiction. O
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7. Representation theory for C*-algebras

Basics about C*-algebras

We now want to find those commutative Banach algebras A for which the Gelfand
homomorphism G : A — C(Alg(A,C),C) from is an isomorphism.

Note that the pointwise conjugation C(X,C) — C(X,C), f + f defines an in-
volution, i.e. a conjugated linear isometry whose square is the identity and which
satisfies f - g = f-g. Because of f- f = |f|?, we have in addition |f - f| = | f||* for
the co-norm.

More generally, the conjugation on L*(X, A, u) for o-finite measure spaces (X, A, u)
also has these properties.

7.1 Definition.

A C*-ALGEBRA is a Banach algebra A along with an INVOLUTION, i.e. a conjugated
linear mapping (_)* : A — A, with (a-b)* = b*-a™ and (a*)* = a, which additionally
satisfies ||a|? < |a* - al|. One also says for the last condition that |_| is a *-NORM.
If A has a 1 then 1* =1, because 1* = 1* - 1 = 1* . 1** = (1* . 1)* = 1** = 1.

A algebra homomorphism between C*-algebras which intertwines with their in-
volutions # is called *-HOMOMORPHISM. We will show in that continuity is
automatical.

For each complex Hilbert space H # {0} the Banach algebra L(H) with the adjoint
(O* : L(H) — L(H) is a non-commutative C*-algebra:

|f2l? = {fa, foy = (F* fo,a) < [ f* fall - o] < UFFSFL- 2 = 117 < 1 £

7.2 Lemma.

Let A be a C*-algebra (possibly without 1) and a € A. Then

la*|| = lla| = max{flaz] : || < 1} = max{|za] : || < 1}

and |a*-af* = Jal* = Jla - a*|.

Proof. We have |a|? < |a*al| < |a*|]a|, hence ||la|| < |a*|. If we replace a by

b:=a* then we get |[a*|| < |a**| = |a| and |a|? = ||a* - a|. Moreover,

la-a*| = [6* -0l = o> = a*|* = |a].
Let o := sup{|laz| : |z]| < 1} < sup{|a|||z] : |z| < 1} = |la|. For z := ﬁa* we
have ||z|| = 1 by the first part and |az| = mﬂa -a*|| = |al|, thus |a|| = « and the
supremum is a maximum. O

7.3 Corollary (Adjunction of a unit).

Let A be an C*-algebra without 1, then Ay := {L, + X\-id : a € A, XA € C} with
L, : b— ab defines a subalgebra of L(A), which, with respect to (L, + X -id)* :=
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Lys + X\ -id, is a C*-algebra and the canonical mapping : A — Ay, a — Lg is an
isometry with the following universal property:

A(—>A1

Ell
Ny

B

where f and fi are x-homomorphisms, B is a C*-algebra with 1, and fi preserves
the unit.

Compare this with . However, the norm defined there is not a * norm.

Proof. We have to show that the operator norm turns A; into a C*-algebra. That
Ay is an algebra is clear because of (L, + A -id) (Lp + p1+id) = LapsAbtpa + A - id.
The star defined by (L, + A-id)* := Lgx + A -id is an involution on A;. So we only
have to verify the C*-condition.
Let a € A and A € C. For each € > 0 there is an € A with |z| = 1 and
|Lo +X-id|? —e? < |az + Az|®* = [(az + A2)* (az + \2)|

= |(z*a* + A2*) (az + \2)|

< ¥ (a* +X) (a +X) 2|

< 1|(Lg + A+ id)*(Lg + A-id)| 1

<|(Lg + A-1d)*| - ||Lg + A -id .

The universal property follows immediately, as a #-homomorphism f : A — B
has as its only possible 1-preserving extension f(Lq + A -id) = f(a) + X - 1. This
extension is indeed an algebra homomorphism because of the above expression for
the product. It is also a *-homomorphism, due to f((Lq+A-id)*) = f(Lgx +A-id) =
fla*)+X-1= fa)* +(\-1)* = (f(Ly + X-id))*. O

7.4 Definition.

Let A be a C*-algebra and a € A.

The element a is called HERMITIAN (or SELF ADJOINT) :< a = a*.
The element a is called NORMAL :< a*a = aa*.

The element a is called UNITARY :< a*a =1 = aa™.

Example.

For a € A := C(X,C) with compact X the following holds:
1. a is automatically normal.
2. a is Hermitian < o(a) = a(X) < R.
3. a is unitary < o(a) = a(X) < SL.

7.5 Lemma.

Let H be a Hilbert space. Then the continuous linear operators T € L(H) correspond
in a bijective and isometric manner to the continuous sesqui-linear forms b : H X
H — C by virtue of the relation

b(z,y) = Tz,y) Yo,y € H.
Moreover, T is self adjoint if and only if b is conjugate-symmetric, and T is positive

if and only if b is positive.

Proof. Let H be the Hilbert space conjugate to H, i.e. it differs from H only in
the definition of scalar multiplication A~a := A - a. According to Riesz’s Theorem
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[18, 6.2.9], ¢ : H — F*, x — {(x,_y is a surjective C-linear isometry, and hence
also ty : L(H,H) — L(H, F*) ~ L(H, H;C). The latter space is just that of the
continuous sesqui-linear forms on H. Via this isometry the T' € L(H, H) correspond
tob: Hx H— C given by b(x,y) := (Tx,y). Thus T is self adjoint if and only if
b(z,y) = {Tx,yy =<z, Tyy = (Ty,x) = by, x), i.e. b is conjugated symmetric; and
similarly for positivity. O

7.6 Proposition.
Letb: H x H — C be sesqui-linear. Then the following holds:
1. The parallelogram equation:
blx+y,z+y)+blzx—yx—y) =2 (b(x,m) + b(y,y)) Va,y e H.
2. The polarization equation:
4b(1’,y) = b($+y7$+y) - b(l’—y,l’—y)
+ib(z+iy,x+iy) —iblzx —iy,x —iy),
that means b is already uniquely determined by its values on the diagonal
{(z,2) 1z € H}.
3.b=0< Vxe H:bz,z)=0.
4. b is conjugated symmetric < Yx € H : b(z,z) € R.
5. If b is positive (i.e. b(x,x) = 0 for all x € H), then the Cauchy Schwarz
inequality holds:

bz, y)|* < b(x,2) by, y) Yo,y € H.
Note that () implies that an operator B € L(H) is the 0 operator if and only if

the associated sesqui-linear form b vanishes on the diagonal, i.e. Vx € H : Bx | =x.
In the real case this is obviously wrong]!

Proof. () follows by expanding the left hand side, as was shown in [18, 6.2.2].
() follows by expansion using the sesqui-linearity.
() follows immediately from the polarization equation ()

() The sesqui-linear form (z,y) — b(x,y) — b(y, z) vanishes by () if and only
if it vanishes on (z, z) for all z, i.e. b(z,z) € R for all z.

() That’s what we have shown in [18, 6.2.1]. O

7.7 Proposition.
Let H be a Hilbert space and a € L(H), then:

1. a is Hermitian < Yx € H : {ax,z) € R.
2. a is normal < Vx € H : ||laz| = |a*x].
3. a*a=1<Vre H: |ax| = |z|
< Va,y e H : {ax,ay) ={x,y), i.e. a is an isometry.
4. a s unitary < a is a surjective isometry.

Proof. () The operator a is Hermitian if and only if the conjugated linear form

b(x,y) := {ax,y) is conjugated symmetric by . This is the case by if and

only if b(z, z) = {ax, x) is real for all z.

() By we have that a is normal, i.e. b := a*a — aa® = 0, exactly if
0 = {(bh,hy = {(a*a — aa*)h,h) = |ah|? — |a*h|? for all h € H.
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() We have a*a =1 < Va,y € H : {x,y) = (a*az,y) = {ax,ay) and because of
the polarization-equation, resp. | 7.6.3 ], this is equivalent to Va € H : |z|* = |az|>.
() (=) aa* =1 implies directly the surjectivity of a.

(«<) a*a =1 implies aa®a = a = 1 a and thus aa® = 1 by the surjectivity of a. O

7.8 Lemma.
Let A be a C*-algebra and a € A.

1. If a is invertible, then so is a* and (a*)~! = (a=1)* holds.

More generally, o(a*) = o(a) for all a € A.

2. We have a unique decomposition a = Re(a) + i Im(a),

where Re(a) := % and Im(a) := a}f* are Hermitian.
3. The element a is normal < Re(a) Im(a) = Tm(a) Re(a).

4. If a is Hermitian, then |a| = r(a).

Proof. () Applying the involution to a™ta = 1 = aa™? yields a* (a7 1)* =1 =
(a=Y)* a*. Thus, A — a is invertible if and only if A — a* = (A — a)* is it.

() Let a = a1 +ias be a decomposition into Hermitian elements a; and as. Then

a* = ay —iag and thus a1 = Re(a) and az = Im(a).
On the other hand obviously a = Re(a) +iIm(a) and (Re(a))* = “**2“** = Re(a)
as well as (Jm(a))* = “*__gj* = Jm(a).

() We have a* = Re(a) — i Im(a), hence
a*a = (Re(a))? —iIm(a) Re(a) + i Re(a) Im(a) + (Im(a))? and
aa* = (Re(a))? + i Im(a) Re(a) — i Re(a) Im(a) + (Im(a))?.
Thus a*a = aa® < Im(a) Re(a) = Re(a) Im(a).

or Hermitian a the equation ||a°| = ||[a™a| = ||a olds and thus induction
4 1) For H iti he equati 2 * 2 hold d thus by inducti

Ja?"| = a]?". Hence r(a) = lim,, [a" [ = lim, a2 [2" = |a]. -

Spectral Theory of Abelian C*-Algebras

We now want to study the Gelfand homomorphism for C*-algebras. For this we
first have to study the C-valued algebra homomorphisms.
7.9 Lemma.
Let A be an C*-algebra and f : A — C an algebra homomorphism.
Then f is a #-homomorphism.
Proof. We first show that f preserves self-adjointness. So let a* =a€ A and t € R.
Because of ||f|| =1 by we have
[fla+it) <[a+it]> =[(a+it)*(a+it)] = |(a—it)(a+it)]
= lla® +¢*| < [la]* + .
If f(a) = @ +if is the decomposition in real and imaginary parts, we obtain:
lal> +#* = |fa+it)? = la+i(B+)|* =a®+ (B+1)* =a® + 2 + 26t + 7,

hence |a]? = a? + B2 + 2Bt. If B # 0 then t — +00 yields a contradiction. Thus
B=0,ie. f(a)=aeR.
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Now let a € A be arbitrary. Since f(Re(a)) and f(Im(a)) are real by what has been
shown above, we have

7.8.2

fa®) f(Re(a) —iTm(a)) = f(Re(a)) —i f(Im(a)) = f(Re(a)) + i f(Im(a))

= f(Re(a) +1TIm(a)) = f(a). O

7.10 Theorem of Gelfand-Naimark.

The Gelfand homomorphism G : A — C(Alg(A,C),C) is a (x-)isomorphism for
exactly those Banach algebras A, which can be made into a commutative C*-algebra
by some involution.

Proof. ( =) If G is an isomorphism of Banach algebras, we can use it to pull back
the involution f — f of C(Alg(X,C),C) to A and thus make A into a commutative
C*-algebra.

(«) Conversely, let A be a commutative C*-algebra. Then G(a*)(f) = f(a*) =
f(a) = G(a)(f) holds for all f e Alg(A,C) by , so G is a *-homomorphism.

By we have |G(a)|s = r(a) < |a| for all a € A and for Hermitian elements a
we have equality by [ 7.8.4 ] In particular, |G(a)|2 = [G(a)* G(a)|x = [G(a*a)|w =

[a*a| = |a|? for all a € A, i.e. G is an isometry and thus injective.

Since G has as isometry closed image, it is sufficient for surjectivity to show the
denseness of the image. The subalgebra G(A) of C(X,C) with X := Alg(A4,C)
contains the constants and is closed under conjugation. It is also points-separating:
Let ¢1 # @2 be in X = Alg(A4,C), then by definition there is an a € A with
G(a)(p1) = p1(a) # a(a) = G(a)(p2). Thus G(A) is dense by the Theorem [18,
3.4.3] of Stone-Weierstraf. O

Résumé.

So one can calculate with elements of any C*-algebra as if they were continuous
functions on a compact space, as long as one stays inside a commutative subalgebra.

7.11 Remark.

For each set X, the space A := B(X,C) of all bounded C-valued functions on X is
a commutative C*-algebra, thus is by isomorphic to C(c(A),C) via Gelfand

homomorphism. The spectrum o(A) is the Stone-Cech compactification 5X of the
discrete space X because A = B(X,C) = Cp(X,C) and thus X = o(Cp(X,C)) =

o(A4) by [6.45]

In particular, 0({*) = 0(B(N,C)) = pN, cf. [26, 2.1.15,2.1.16].

7.12 Proposition.

Let A be generated as C*-algebra by a normal a € A. Then the following diagram
is commutative.

(eva)*

C(Alg(4,C),C) =—=C(o(a),C)

GT~ T()am

A C[z, 7).

Proof. Since a is normal, the dense subalgebra {p(a,a*) : p € C|[z, ]} is commuta-
tive and thus also A itself. So by , G is an isomorphism.
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That ev, : Alg(A,C) — o(a) is a homeomorphism can be seen as in the proof of
(Attention: A need not be generated as Banach algebra by a):

Because of the remark after , ev, : 0(A) — o(a) is surjective, and from
p1(a) = ga(a) follows p1(p(a, a®)) = p(p1(a), p1(a)*) = p(p2(a), p2(a)*) = pa(p(a, a*))
for all p € C[z, Z] and finally ¢ = @9, since {p(a,a*) : p € C[z,Z]} is dense in A.

Since all occurring mappings are x-homomorphisms, and C[z,Zz] is generated by
the identity as =-algebra, it suffices to check the commutativity on id : z — z, this

already happened in Proposition O

In contrast to Banach algebras, the spectrum of an element of a C*-algebra does
not depend on the algebra:

7.13 Proposition.
Let A be a C*-algebra, B be a C*-subalgebra, and b€ B. Then op(b) = c4(b).

Proof. Let’s start with a Hermitian b € B and let C*(b) be the Banach subalgebra
of B generated by b. Since this is an Abelian C*-algebra, ocx ) (b) = {@(b) : ¢ €

Alg(C*(b),C)} = R by and . By Theorem we have

O’B(b> < UC*(b)(b) ZER adc*(b)(b) < 803(17) < O'B(b)
and thus op(b) = oo+ 3 (b). The same works for A, so op(b) = oo ) (b) = ga (D).

Now let b € B be arbitrary. It remains to show that the invertibility of b in A
implies the invertibility in B, i.e. Inv(B) = Inv(A) n B. So let ab = 1 = ba for
some a € A. Then (b*b)(aa*) = b*(ba)a* = b*a* = (ab)* = 1* = 1 and analogously
(aa™)(b*b) = 1. Since b*b is Hermitian and invertible in A, it follows from the first
part that b*b is also invertible in B and because of the uniqueness of the inverse,
aa* isin B. So a = al = a(a*b*) = (aa™*)b* € B. O

Corollary.
Let a € A be normal. Then ||a| = r(a) holds.

Proof. Because the C*-algebra C*(a) generated by a is commutative, |a| =
IG(a)| e = r(a) by [7.10] and [ 6.43]. O

7.14 Definition.

Let A be a C*-algebra and a € A normal. Then we define by means of and
a s-isometry p : C(c(a),C) — C*(a) < A, called FUNCTION(AL) CALCULUS
for a, by the composite

(eva)*

C(Alg(C*(a),C),C) =—— Clacx(a)(a),C)

o~

C*(a) < C(oa(a),C)

p

where C*(a) denotes the (commutative) C*-subalgebra of A generated by a.

Theorem (Function Calculus).
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Let A be a C*-algebra and a € A normal. Then the function calculus is the unique
x-isometry p : C(o(a),C) = C*(a) < A which extends the Riesz function calculus

from , i.e. the following diagram commutes.

o (a)

H(o(a)) C(o(a),C)
RA\ /

Proof. Since p was obtained by composing C*-isomorphisms, p is also a (not nec-

essarily surjective) #-isometry. Due to Proposition , p coincides with the Riesz
calculus on the subspace C[z] of polynomials. Since the Riesz function calculus is

uniquely defined by , the triangle commutes.

Now to the uniqueness. Let p : C(o(a),C) — A be any #-homomorphism that
extends the Riesz calculus. For each f € C(o(a),C) there exists, according to The-
orem [18, 3.4.1] of Stone-Weierstraf}, a sequence of polynomials f,, : R> — C which
converges uniformly on o(a) towards f. We have C[Re(z),Im(z)] =~ C|z,z], by
Re(z) = 222 and Im(z) = 242. Onid : z — z the Riesz function calculus and hence
pis given by p(id) = a and thus p is uniquely determined as #-homomorphism on the
x-algebra C[z,Z] generated by id. Because of continuity, p is uniquely determined

on C(o(a),C). O

Corollary.

Let A be a C*-algebra and a € A normal.
1. a is Hermitian < o(a) < R.
2. a is unitary < o(a) < S*.

This generalizes the example in .

Proof. Since a is normal, we have the *-homomorphism p : C(o(a), C)—=> C*(a) =
A. Thus:

() p(id) = a = a* = p(id) < id = id on o(a), i.e. o(a) < R.

(2)) p(d) p(id) = a*a =1 = p(1) = |id|> =id id = 1 on o(a), i.e. o(a) € S'. O

7.15 Spectral Mapping Theorem.

Let A be a C*-algebra and a € A normal. Then for each f € C(o(a),C) the equation
o(f(a)) = f(o(a)).

Proof. Let p : C(o(a),C) = C*(a) < A be the function calculus f — f(a). Since
p is an s-isomorphism,

o) [7.14] () [6.7.1] /

o(f(a)) = aa(p(f)) acx(a)(p (0(a)). O

7.16 Corollary.

Let a € A be normal and f € C(o(a),C). Then f(a) is in the double commutant
{a,a*}** of {a,a*}. Equivalently, {a,a*}* = {f(a): f € C(c(a),C)}*.

Cf.[6.32] and [8.15].

Proof. According to the Theorem [18, 3.4.1] of Stone-Weierstrafl the subalgebra
{p(a,a*) : p € C[z,Z]} generated by {a,a*} is (because @ is normal) dense in
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{f( ): feC(o(a),C)}, so {a,a*}* = {f(a) : f € C(o(a),C)}* by the remarks in
, and thus f(a) € {a,a*}** for all f € C(o(a),C). O

Applications to Hermitian elements

We will now give some applications of the function calculus to normal elements of
C*-algebras.

7.17 Definition.
We denote with Re(A) := {a € A : a = a*} the linear subspace of all Hermitian
elements. We have seens in that A = Re(A) ®i- Re(A).

An a € Ais called POSITIVE and we write a > 0 if a is Hermitian and o(a) < [0, +0).
The set of positive elements will be denoted A+ An fe C(X, C) is positive if and

only if Vo € X : f(x) = 0, because o(f) X) by

We write a > b for Hermitian elements a and bifa—b>
For a € Re(A) and f,g € C(o(a),R) with f = g we have f(a) = g(a), because

o(f(a) — g(a) = o((f — g)(@)) = (f — g)(o(a)) € By by [715] In particular,

la| = a, because by o(a) < [—|al, |a]] we have [a] = id |+ (a).

7.18 Proposition (Positive and negative parts).

Let a € Re(A). Then there are unique elements ay, a_ € A, witha = a; —a_ and
ara_ =0=a_ay.

Proof. The idea is to play this back to a € C(X).

Existence: Let id4 (¢) := max{£t,0}. Then id+ € C(R,C) with id = idy —id_ and
id; id— = 0. The Spectral Mapping Theorem implies a4 = id4(a) = 0

and a = id(a) = (idy —id_)(a) = ay — a_ as well as aya_ = idy(a) id_(a) =
(id+ id-)(a) = 0(a) = 0.
Uniqueness: Let a = b, —b_ be a second decomposition with by > 0and b b_ =0 =

b_b,. The Banach subalgebra generated by {a,,a_,by,b_} is a commutative C*-
algebra, because ab; = (by —b_)by = by by = by (by —b_) = bya and thus ayby =

bray by . And analogously for a+b_ = b_ay. By this subalgebra is

isomorphic to C'(X,C) for some compact space X and there the decomposition of
R-valued functions into positive and negative parts is unique, i.e. by = a4. O]

7.19 Proposition (Roots).
Letae Ay and1 < n € N, then there is a unique element ¥/a € A, witha = (¥/a)".

Proof. As in the proof of we use the function calculus to define {/a by
{/a := f(a) with f : t + 3/t and, because of , f(a) commutes with each other
“n-th root” b of a since these commute with " = a. Because of Theorem of
Gelfand-Naimark and the uniqueness of n-th positive root for 0 < a € C(o(a),C),
the uniqueness of ¥/a follows. O
7.20 Lemma.

For a € Re(A) are equivalent:

1. a >0,
2. [t —al <t forallt = |al;
3. [t —all <t for somet = |a.
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This description avoids the spectrum, which behaves complicated on sums and
products.

Proof. ( = ) Let a > 0 and ¢t > |al, then 0 <t —s < ¢t for all s € o(a) <
[0, ]a|]. Consequently, via function calculus | 7.14], [t — a| = [t —id[|oo < [t]oo = ¢

(2] = [3]) is trivial.
( = ) Because of a = a*, C*(a) is Abelian, and hence by isomorphic

to C(X,C) where X := o(a). Thus, by assumption, |t — s| < ¢ for some ¢t > |a
and all s € o(a) € R. No such s can be negative, otherwise we would have |t — s| >
t—s>t. O

Corollary.
The set A, of all positive elements of a C*-algebra is a closed cone.

Here we understand by a CONE K a convex subset K < A, which satisfies \a € K
for 0 # a € K and A € R if and only if A > 0.

Proof. We first show that A, is closed. So let a, € A, with a, — a. Then,
because of the continuity of #, also a is Hermitian. And |a,, — |a, || < |lax| implies

la — a]| < |al, ie.a=>0by[7.20]

Ifae Ay and A = 0, then obviously Aa € A, by . Furthermore Ay n(—Ay) =
{0}, because a € A, implies a = a* and o(a) < [0,+0) and a € —A, implies

o(a) € (—0,0]. So o(a) = {0} and [a| = r(a) = 0 by | 7.8.4], i.e. a = 0.
So if A\a € Ay with A <0, then Aae€ AL n (—A;) = {0} because of —Xa € Ay, i.e.
a = 0.

It remains to show that with a,be A, alsoa+be Ay:
We have |Jaf + [b] — (a+b)] < [la|—a] + |[b] ~b] < Jal + [b] and Jal +p] > a-+b],
sobyalsoaerZ(). O

Remark.

For a,be A, we haveabe A, < ab="ba:

In fact, ab € Re(4) « ab = (ab)* = b*a* = ba. And under these equivalent
conditions, according to function calculus, w.l.o.g. a,b € C(X,R,) and thus also
ab>=0.

7.21 Corollary.
Leta; € Ay forie{l,...,n} withay +---+a, =0. Then a; =0 for all i.

Proof. By we have —a; = ag+---+a, =0.S0a; € Ay n(—A;) = {0} and,
because of symmetry, all a; = 0. O

7.22 Corollary.
For a € A are equivalent:
1. a>=0;

2. a=0b* for some b e Re(A);

3. a=ax*x for some x € A.
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Proof. ( => ) is forn = 2.

. Let b € Re(A) and a = b%. Because of the Spectral Mapping Theorem
(a) =o(b?)=0c()?2c{t?:teR} =[0,+0),s0a€e Ay.

( = ) is obvious by z := b.
( = ) So let a = x*x with x € A. Then obviously a* = a. Let a = ay —a_

be the decomposition in positive and negative parts by . We have to show:
a_ = 0. Let x,/a_ = b+ ic be the decomposition into real and imaginary parts

by . Then (z/a—)*(z /a=) = (b—ic)(b+ic) = b* + c* + i(bc — cb) but
also (z,/a-)*(z,/a") = Ja—z*x /a- = \Ja_(ay —a_),/a— = —(a_)*. The

uniqueness of decomposition in real and imaginary parts implies thus: b¢c = ¢b and

b2 + c® + (a_)? = 0. Because of ( = ) we have b2,¢2,(a_)? > 0 and thus

(a_)* =0 by . Finally the positive element a_ = 0 because of the uniqueness
of the root. O

Corollary.

Let H be a Hilbert space and a € L(H).
Then a is positive if and only if {ax,x) =0 for all z € H.

Ct.[7.7].

Proof. (=) If a > 0, then a = b*b for some b € L(H) by . So {ax,x) =
b*br,xy =<(bz,bx) = |bx|? = 0.

(<) By we have ¢ = a* and it remains to show o(a) < [0, +0). For ¢t < 0
[(a—t)h)* = [ah|* — tah, hy — th, ah) + | ]
= [ah|? + 2(=t){ah, by + t*|n]* = 0 + 0 + ¢*|A]>.

holds. Thus ker(a—t) = {0}, the image img(a—t) is closed and a continuous inverse
b to a —t is uniquely determined on it. We extend this by b|(img(s—¢))- = 0 and get
bo(a—t)=1and thus 1 = (bo(a—1t))* = (a—¢t)* 0b* = (a —t) ob*. So a — ¢ has
both a left and a right inverse and is thus invertible (see ), ie.t¢o(a). O

7.23 Proposition.

For the elements of each C*-algebra, the following holds:

1. a < b implies x*ax < z*bx.
2. 0 < a < b and a invertible implies b invertible and 0 < % < é

Proof. () We have b —a > 0 and thus 3y : b — a = y*y by . Hence,
x*br — x*ax = ¥ (b — a)x = (yx)*(yx) = 0, i.e. 2*br > r*ax.

() Playing everything back to continuous functions on o(b) < [0, |b]]] shows the
following special commutative cases:

3. If b = 0 is invertible, then L'>0and vbis invertible;

4. If b > 1, then b is 1nvert1ble and + ;<L

Because of 0 < b — a we have 0 < (i)*(b - a)ﬁ = ﬁbﬁ —1=:b;—1by

and [1] So b =1 and is invertible with ;~ < 1 by |4 ] Then b = \/ab1/a is also
invertible and 0 < \%ﬁ%} = (\/15)*1711 7 S (%l)*l L =1 by and |3 O

7.24 Proposition (Polar decomposition).
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Let Hy and Hs be two Hilbert spaces and a € L(Hy, Ha). Then there is a unique
positive |a| € L(Hy) and a unique partial isometry u € L(Hy, Hy) with a = u o |a|
and keru = (img |a|)*.

Furthermore: ker a = ker |a| = keru, imga = imgu, and img |a| = (ker |a|)*.

A w e L(Hy, Hy) is called a PARTIAL ISOMETRY if |ier(yyr is an isometry. The
subspace with iniu := (keru)’ on which u acts isometrically, is called INITIAL
SPACE of u. The space finu := imgu = imgwu is called FINAL SPACE of u.

The positive element |a| is also defined for a in an abstract C*-algebra by |a| :=

va*a by .
Proof. Existence: We define |a| := va*a = 0. For h € H; we have

lah| = Cah, ahy = (a*ah, by = |al*h, k) = (lal, |a]h) = ||alA]*.

"Therefore7 l.<er|a| = kera and the mapping.u : H, u - I,
img|a| — imga, given by wu(|alh) := ah, is a
well-defined isometry. Hence may be extended to JA J\

an isometry u : img|a| — imga. And, if we put .
U|kera = 0 also to a partial isometry with a = u |a| img |a| ~imga

because (kera)t = (ker|a|)* = img |a| by | 5.4.3|. \ /
H,y

Thus ker |a| = ker a = keru and img a = img u.

lle:e

Uniqueness: Let a = wp with 0 < p € L(H;) and partial isometry w € L(H;, Hs)
with ker w = (imgp)*.

We claim that w*w is the orthogonal projection onto iniw := (ker w):

We have a surjective isometry wy := ’U}|(kerw)L tinfw — finw, so wfw; = 1 holds
by . With respect to the orthogonal decompositions H; := iniw @ ker w and
Hy = finw @ (finw)*, we have

%
w= (181 8) , w* = (%1 8) , and thus w*w = (wi“owl 8) = ((1) 8)
is the orthogonal projection onto iniw := (kerw)® = (imgp)t+ = imgp.
Now a*a = pw*wp = p?, i.e. p = |a| because of the uniqueness of the positive root
la| := Va*a by . Furthermore, wla| = wp = a = ulal, i.e. w = u holds on
img |a| = imgp, and imgp = (imgp)*+ = (kerw)* = (keru)*, thus w = u holds
because keru = (img|a|)* = (imgp)* = ker w. O

Ideals and quotients of C'*-algebras

Our goal is also to handle non-commutative C*-algebras A. According to the The-
orem of Gelfand-Naimark we can describe the commutative ones completely
by their algebra-homomorphisms f : A — C. However, for general A, the algebra
homomorphisms f : A — C factor over the Abelization A — A/A’ = Aapel, thus
provide too little information about A. Instead, we should discuss algebra homor-
phisms f : A — B into more general C*-algebras B (such as B = L(H)) instead of

C, and thus ideals I := ker(f), which are not necessarily maximal (see )

7.25 Lemma. Closed ideals are invariant under function calculus.
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Let I be a closed (one-sided) ideal of a C*-algebra A.
If a € I is Hermitian and f € C(o(a),C) with f(0) =0, then f(a) eI
In particular, ay, a—, |a| and +/|a| are I.

Proof. Without loss of the generality I # A. Then 0 € o(a), because by
a € I must not be invertible. Since a is assumed to be Hermitian, o(a) < R holds.
Let now f, be a sequence of polynomials converging on o(a) uniformly towards
f. Since f,(0) — f(0) = 0, we may replace f, by f, — fn(0) and thus assume,
without loss of generality, that f,(0) = 0, i.e. g, : t — f”T(t)
thus fn(a) = a- gn(a) € I. Since I is closed, f(a) € I

is a polynomial and

All the elements a4, a_, |a|] and 4/|a| are represented by means of function calculus
as f(a) with f(0) = 0 and thus belong to I by the first part. O

7.26 Theorem (Approximating unit).

Let I be an ideal in a C*-algebra A. Then there is a monotonously increasing net
j—u;in I with0<wu; <1 and |au; —a| — 0 for each a € I.

Proof. Let J := {j : & # j < I,j finite} be the index set for the net partially
ordered by inclusion. For j € J let v; := »_ - cz*z > 0. Obviously, v; € I and for
J < j wehave vy —v; =3 o x¥r =0, le vy <vj

Let u; := v](m + v]) = fiy5(vj), where fi(s) := 5 for s > 0 and t > 0.
Since 0 < fi(s) < 1 we have 0 < u; < 1 and w; € I since I is an ideal. If
0 <t <tand 0 < u <, then fi(v/) < fr(v) and fi(u) < fi(u'), because
on the one hand fi(s) < fv(s) for all s > 0, ie fi(u") < fy(u'), and on the

other hand ¢t < ¢ + v < t + ' and thus t_&u, < t+u by | 7.23.2 | and consequently
frlu) = uply = 1—tm- < 1 -t = u/'7 = fi(w/). Allin all, u; < uy for
jei.

Remains to show the convergence. Since

W”‘”@W“>l(m )Qﬂ ) ‘G&ﬁ*@l'

we obtain
D@y = 1) ;= 1) = (; = 1)(X o) (uy = 1) = ;= oy (u; = 1)
xE] TEJ
-2
1 1 S
— i ith = .
|ﬂ2J<UI+%> it o) = e
| —
91/151(v3)
The derivative g, at s is 1(t + s)72 — 2s(t + )73 = (t+s)3 So the maximum is

attained at s = ¢ and g,(s) < gi(t) = 4; for s > 0 and ¢ > 0. For a € j, therefore,

(aluy — 1)*(alu; 1)) < Doy aluy — D)*aluy — 1)) = rzguys(oy) < 7. S0
la(u; — 1) = ll(a(u; — 1))*(a(u; —1))| < 5 and hence [lau; — af — 0. O
Corollary.

Let I be a closed ideal of a C*-algebra A.
Then I is *-closed, i.e. a€ I = a™ € I.

Proof. Let a € I. Because of Theorem , there exists a net u; € I with
0 <u; <1and |ufa* —a*| = |au; —a] — 0. Since u; > 0 we have u; = u} and

thus u} a* = u; a* € I and hence also a* € 1. O
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Lemma.

Let I be a closed ideal of a C*-algebra A and j — wu; an approzimating unit.
Then a+I|a/r = lim; |a — auj|a for each a € A.
Proof. Because of u; € I also au; € I and thus ||a — au;| > inf{|a —y|| : y € I} =:
|a + I|. Hence inf; |a — au;| = |a + I].
Let y € I, then |yu; —y| — 0 and thus

T — auy | = Tl — au — |yt — y1) < T o — ang; — g + ]

= lim|(a+y) — (a+y)yl < la+y -Tm |l -] < Jla+yl,

since0 <1—u; <1=|[l—uj|]|<l:Infact, wve Aand \e Rwith0 <w <\ =

A—o(w) =o(A—w) SR" = g(w) € (=0, \] "R = [0,A] = A = r(w) = |w].
Thus lim; |a — au;| < |a + I]| := inf{la +y|| : y € I}.

Hence, lim; |a — au,;| = |a + I]. O

7.27 Proposition.

Let I be a closed ideal in a C*-algebra A.
Then A/I is an C*-algebra and w: A — A/I is a =-homomorphism.

Proof. We already know that A/I is a Banach algebra, see the claim in .

Since I is #-closed by the corollary in , * induces an involution on A/I by
(a+ID)*:=a*+ 1

To prove the C*-property of the quotient norm we use the lemma in :
For y € I we have

la+1]? = lim |la — au; I = lim | {a — au;)* (a — au;) |

=(1-u;)a*a(l-u;)

= lim (1 - uj)(a*a+y)(1 —u;)|  (because |[y(1 — u;)| — 0)

< Ja*a+y| (because |1 — ;] < 1)

= la+1I*< lIelg l[a*a +y|| = |a*a+ I| = |[(a + )*(a+I)]. O
y

7.28 Theorem.

Let f : A — B be a =-homomorphism between C*-algebras.
Then f is continuous with || f|| = 1 and its image img(f) is closed.
If, in addition, f is injective, then f is an isometry.

Proof. (|f| = 1) For a € A we have o(f(a)) < o(a), because b(a—A) =1 = (a—A)b
implies £(b) (f(a)—A) = (f(a)=A) £(b), i.e. p(a) € p(f(a)). So r(f(a)) < r(a). If we
apply this to the Hermitian element a*a, we obtain, because of and because
f(Red) € ReB: |f(a)|* = [f(a)*fla)] = |f(a*a)| = r(f(a*a)) < r(a*a) =

|a*al = |a]?. So ||f| < 1. Since f preserves the unit, | f| = 1 holds.
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Let now f be injective and a be Hermitian. Then

also f(a) is Hermitian with o(f(a)) € o(a) € R A

and the nearby diagram commutes because of the

naturality of the function calculus (in fact, JA

f¥* oG = Go f and ev,of* —evf y)- So also c f

incl® is injective and thus, according to the Lem- T NTP
f

*
—
&
Q
*
—~
—~
Q
~—
~—

ma of Urysohn, o(f(a)) = o(a). Consequently, by

s lall = r(a) = r(f(a)) = [f(a)]. o(a)) 2L C(o(f(a)))
Let a € A be arbitrary now. Then ||a|? = |a*a| = ||f( *a)| = [|f(a)*f(a)| =
[£(a)|?, ie. f is an isometry.

Finally, let f be arbitrary. By , f then induces an injective *-homomorphism
A/ker f — B which is an isometry by the previous part. Thus img(f) is closed. O

7.29 The closed ideals of C(X,C).
Let X be a topological space. We consider the two mappings
A {feC(X,C): fla =0}
{zeX:fx)=0Vfel}—1I
These describe a (GALOIS CONNECTION, i.e. they are antiton between the two sets
{A: Ac X}and {I: 1 < C(X,C)} being partially ordered by inclusion, and satisfy
IC®(A)=Vfel: fed(A),ie fla=0

< VfelVaeA: f(a) =

<Vae AVfel: f(a)=0

<VaeA:ae¥(I)

< AcCU(I).

{A:dcx}2 {1 1 C0(X,0), {

Each Galois connection induces a bijection between the image of ® and image of ¥
given by U : img(P) — img(V) with inverse ® : img(¥) — img(P):

From the above equivalence immediately follows I < ®(¥ (1)) and A < U(P(A))
for all I and A, and hence ®(A) € (U (P(A))) < ®(A) for I := ®(A) by applying
®. So ® o ¥ = id holds on img(®) and ¥ o & = id on img(¥) by symmetry.

Proposition.

Let X be compact. Then the closed ideals of C(X,C) are in bijective relationship
with the closed subsets of X. To each I from C(X,C) is assigned the closed subset
U():={xeX: f(x) =0Vfel} of X. And conversely, to each subset A of X is
assigned the closed ideal ®(A) := {f € C(X,C) : fla = 0} of C(X,C).
Furthermore, C(X,C)/I =~ C(¥(I),C).

Proof. It only remains to show that the image of ® consists of the closed ideals of
C(X,C) and that of ¥ consists of the closed subsets of X.

Well-definedness. It is obvious that the images consist of closed sets, because
U(I) = Nser F7H0)and ®(A) = {f : 0= f(a) = 6(a)(f)Vae A} = (),c40(a)"(0),
where § : X — Alg(C(X,C),C) is the homeomorphism from . Since the
d(a) : C(X,C) — C are algebra homomorphisms, ®(A) is an ideal.

U is onto. Let A = X be closed. We have A € U(P(A)) < X by the above. Suppose
A # U(P(A)). According to Urysohn’s Lemma, there is an f € C(X,[0,1]) with
fla=0and flg@(ay) # 0, which means f € ®(A) but f ¢ &(V(®(A))) = ®(A), a
contradiction.
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® is onto. Conversely, let I < C(X,C) be a closed ideal. Then C(X,C)/T is a
commutative C*-algebra by , which is isomorphic to C(Y, C) for some compact

space Y by . The canonical quotient mapping thus induces a *-homomorphism
m:C(X,C) - C(X,C)/I = C(Y,C). We have m = a* in terms of the continuous
mapping « : Y — X given by

Alg(C(Y,C),C) —~ > Alg(C(X,C),C)

because

(5004)(y)(f) = (70 0)()(f) = (7*(6(y)))(f)
= (6(y) om)(f) = 6(y)(x(f)) = 7(f)(y)-
Thus, I = ker(r) = ker(a®) = {f : 0 = o*(f) = foa} = {f: flagy) = 0} =

O (a(Y)), i.e. I €img(P).

Finally, incl* : C(X,C) — C(¥(I),C) is a continuous and (by Urysohn’s Lemma)
surjective mapping with ker(incl*) = {f € C(X,C) : flory = 0} = (Y1) = I,

i.e. C(X,C)/I = C(¥(I),C) by [7.28]. O

7.30 Proposition.

Let I be a closed ideal in A := L(H) with I # {0}.
Then I contains the ideal K(H) of all compact operators on H.

We will show in that this is the only non-trivial closed ideal provided H
is separable. The quotient algebra L(H)/K(H) is called CALKIN ALGEBRA. The
operators whose cosets are invertible in the Calkin algebra are called FREDHOLM
OPERATORS, see [5].

Proof. Let 0 # a € I. Then there is an « # 0 with a(z) # 0. Let e, f € H be
arbitrary with e # 0. Then b : h — <\|2H6"‘>x and ¢ : h — S a(x»f are continuous

la()]?
linear operators with b(e) = x and b|,. = 0 and c(a(x)) = f. So bac € I is given
by h > (h,e)f, i.e. maps the vector e to f and e to 0.

It follows easily that all finite-dimensional operators T" are in I, because they can
be written as h — 3.7 (h, e;)f; with certain e;, f; € H:

In fact, let {f1,..., fn} be an orthonormal basis for the finite dimensional image of
T. Then T'(h) can be written as T'(h) = Y., T;(h) f;, where T;(h) = (T(h), fiy =
Chy T*(f;))- Let {eq, ..., en} be an (orthonormal) basis of the image of T*oT', hence
T*(fi) = X tigej w1th tij € C. Thus

ZT Z(h T(f)) fi = <h Zt y ej>f1
_Z<h €J>Zt73 i

Since I is closed, it contains all compact operators because they are contained in
the closure of the finite-dimensional ones (by [18, 6.4.8]). O
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Cyclic representations of C'*-algebras

We want to investigate the structure of non-commutative C*-algebras. For commu-
tative C*-algebras we have seen in that the s-homomorphisms into C fully
describe the algebra, and thus we obtained an isometric *-homomorphism onto
C(X,C) for a suitable compact space X. Our typical example for non-commutative
C*-algebras is L(H) for Hilbert spaces H. It is therefore reasonable to investigate
x-homomorphisms A — L(H).

7.31 Definition (Representations and invariant subspaces).

Let A be a C*-algebra. A REPRESENTATION of A (on a Hilbert space H) is a
#-homomorphism p : A — L(H).

Two representations p; : A — L(H;) with ¢ € {1,2} are called EQUIVALENT if a
surjective isometry U : Hy — H exists that interwines the actions, i.e. Ya € A :
pa(a) o U = U o py(a).

The ORTHOGONAL SUM of a family of representations {p; : A — L(H;)}ies is the
representation p := @, p; : A — L(H) on the Hilbert space

Hi= @H; = {h=(h) e [ Hi: |n? = Y il < 0},

el el i€l
given by p(a)(h) = (pi(a)(hi))icr-
A subset N € H is called INVARIANT SUBSET for the representation, if p(a)(N) € N
forall a € A. If N is an invariant closed linear subspace of H, then the representation
p: A — L(H) induces a representation py : A — L(N), defined by py(a) :=
p(a)|n. For each h € H the ORBIT p(A)h is an invariant linear subspace.

If N is an invariant linear subspace, obviously the closure N and its orthogonal
complement N+ are also invariant (in fact, h € N* = (p(a)h, k) = (h, p(a*)k) = 0
for all k € N, because for those we have p(a*)k € N).

Furthermore, p is equivalent to the orthogonal sum of p|5 and p|x+.

A representation p : A — L(H) is called IRREDUCIBLE if there are exactly(!) two
closed invariant subspaces, namely {0} # H.

It is now suggestive to attempt to decompose the representation space H of a
representation p into invariant subspaces N so that they can not be further decom-
posed, i.e. the restriction py is irreducible, and to write p up to equivalence as the
orthogonal sum of these irreducible representations, However, this is generally not
possible. To decompose every representation into simple representations we need a
weaker notion than irreducibility, namely cyclicity:

An h € H is called CYCLIC VECTOR if the orbit p(A)h of h is dense in H.

A representation p: A — L(H) is called cycLic if it has a cyclic vector.
Obviously, every vector h # 0 of an irreducible representation is a cyclic vector,
and thus the representation is cyclic.

Main example of a cyclic representation.

For a o-finite measure space (X, A, )
p: L7(X) = L(L*(X)), p(H)9)=1"g

defines a representation, because

Chyp(F*)(9)) = <hy f - g) = L h-f-gdu=<h-f,g)="<p(f)(h),g)=<hp(f)*(9))
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This representation s cyclic:
If 4(X) < oo, we may use h := yx € L?(X) as the cyclic vector, since by [18,
4.12.5] even the elementary functions g € L*(X) are dense in L2, also p(L*) - h =
{gh:ge L®} = L® is dense in L.

If u(X) = oo, then we choose a decomposition X = | | A, with pu(A4,) < o and
put b= \/ﬁx,%. Then h € L? is a cyclic vector, because each f € L? is
approximated by f- Xy, _ 4, = Zp<n [ X4, In L? by the Lebesgue Theorem [18,
2

4.11.12] on Dominated Convergence (in fact, [f|> = |f — f - x,_, a,[* — 0 ptw.)

and these partial sums can be approximated by the first part by {g-h : g € L*(X)}.
However, this representation p : L®(X) — L(L?(X)) of an Abelian C*-algebra is
irreducible by only if L?(X) = C, i.e. u is a point measure d, for some a € X.

For a positive Borel measure pu on a compact space X, this induces a representation
plecxe) : C(X,C) — L(L*(X)), p(f)(9) := [ - g.

7.32 Theorem.

Each representation of a C*-algebra is equivalent to an orthogonal sum of cyclic
representations.

Proof. Let M be the set of all subsets M < H\{0} with p(A)hy L p(A)hs for
all hy,ho € M with hy # ho. By means of Zorn’s Lemma we obtain a maximal
element M € M with respect to the inclusion. Suppose the subspace {p(A)M) of
H generated by p(A)M is not dense. Let k # 0 be an element of its orthogonal
complement. Then {p(a)k, p(b)hy = {k, p(a*b)h) = 0 for all a,be A and h e M, i.e.
p(A)k L p(A)h, a contradiction to maximality.

For h € H, let Hj, be the invariant subspace p(A)h of H and pj the restriction
of the representation to this subspace. Obviously, pp is cyclic with cyclic vector
h. Furthermore, U : @, Hn — H, x = (x5) — Y}, ¥p, is a surjective (because
(p(A)M) is dense) isometry (by Pythagoras), with respect to which @, ,, pn is
equivalent to p. O

7.33 From cyclic representations to positive functionals.

So we should study cyclic representations more closely. Let p : A — L(H) be a
(cyclic) representation with a (cyclic) vector h € H. Then

[iASCT, f(a) = (pla)h, ),
is a bounded linear functional with | f| = |h||?, because for |a| < 1 also |p(a)| < 1

by [7.28 ] and therefore |f(a)| = [(p(a)h, h)| < |p(a)h] -] < [h]? and f(1) = |h[>.

This functional will probably carry a great deal of information of the representation.

Each continuous linear functional f : A — C on a C*-algebra A defines a sesqui-
linear form g : A x A — C by g(a,b) := f(b*a). For the above f, this provides a
positive (and thus Hermitian) form because

g(a,a) = f(a*a) = {p(a*a)h, hy = {p(a)h, p(a)h) = [ p(a)h]* = 0.
Consequently, we define:

Definition. Positive functionals and states.

A linear functional f : A — C on a C*-algebra is called POSITIVE if f(a) = 0 for all
a € Ay, i.e. the associated sesqui-linear form ¢ : (a,b) — f(b*a) is positive. Such
an f is MONOTONE, i.e. a < b implies f(a) < f(b).

The functional f is called STATE if it is positive and | f| = 1.
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Proposition.

A linear functional f : A — C on a C*-algebra is positive if and only if | f| = f(1)
(and thus is bounded).

Proof. (=) For Hermitian x we have x < |z| (see ) and thus f(z) < f(|z|) =
||| f(1).

For arbitrary « we obtain by the Cauchy Schwarz inequality for g: (x,y) —
f(y*z) the inequality

[f(@)* = lg(z, DI* < g(w,2) g(1,1) = f(z¥2) f(1) < |2*2] f(1)* = (F(1) =])?,
ie. | fll < f(1). Because of |f(1)| = f(1) - |1]| equality holds.

(<) For this we assume, without loss of generality, that 1 = | f| = f(1). Because
of we have to show f(a*a) = 0. We have o(a*a) < [0, [la*a|]. This interval
is the intersection of all discs A\g + Kg := A + {A € C : |\| < R} with R > 0,
Ao € C containing it. It is therefore sufficient to show f(a*a) — Ao € K for these
Ao € C and R > 0. This is indeed the case, because |f(a*a) — Ao = |f(a*a —

20)| < |fllla*a — Xo|| = 1-r(a*a — Ag) < R by the Corollary in , since
o(a*a — Ng) = o(a*a) — A\g € Kg. O

Example.

The positive linear functionals on C(X,C) are exactly the positive Baire measures,
and the states are exactly the probability measures p, i.e. u(X) = 1.

7.34 Extension theorem for positive functionals and for states.

Let A be a C*-algebra and B a C*-subalgebra of A.
Then any positive functional and any state of B can be extended to one on A.

Proof. Let f : B — C be a positive functional, so by it is a linear functional
with [|f|| = f(1). By Corollary of the Theorem of Hahn-Banach there exists

a linear extension f : A — C with | f|| = | f]| = f(1) = f(1). Consequently, f is also
a positive functional. O

7.35 Reconstruction of the representation from the positive functional.

Let p: A — L(H) be a cyclic representation of a C*-algebra A. We want to try to
recover this representation from the functional f : a — {p(a)h, h), where h should
be a cyclic vector.

First we reconstruct the Hilbert space H: Let U : A — H be the continuous lin-
ear mapping a — p(a)h. It has dense image because h is cyclic. Furthermore:
{U(a),U(d)) = {p(a)h, p(b)h) = {p(b*a)h,h) = f(b*a). Thus the kernel of U is the
set Iy :={ae A: f(a*a) = 0} and H is isometrically isomorphic to the completion
Hy of A/1, = img(U) with respect to the norm |la + I¢[? := f(a*a).

kerU = I; > A —> img(U) —— H

NG
N 2|0 =
A

A/l —— Hy
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Now we reconstruct the representation p: ~
The representation p¢ induced on Hy¢ by p via U is given by

Ulps(@)(b+1p)) == p(a)(U (b + I1)) = p(a)(U (b)) = p(a)(p(b)h) = p(ab)h
= Ul(ab) = U(ab + Iy).
Hence ps(a) : b+ Iy — ab+ Iy is induced by the left multiplication with a on A.
The cyclic vector h € H obviously corresponds via U to hy := 1+ Iy € Hy.

Let now f: A — C an arbitrary positive functional on some C*-algebra, which we
assume to be commutative for now, i.e. without loss of generality A = C(X) :=

C(X,C) for some compact space X. According to Riesz’s Theorem , flg) =
§+ 9du for a positive Baire measure 1 and all g € C'(X).

Thus f(g*g) = §x Ggdp =: |g||3 and hence

Iy = {g 0= flg*9) gdp = \IgH%} = {g €eC(X):9=0 u-a~e~}7
i.e. the completion Hy of C(X)/I; is isomorphic to L(X, u).

The induced representation p; is nothing else but the representation of C(X) on
L?(X, i) by multiplication. So we have shown the following:

Proposition.

Up to equivalence, the cyclic representations of the commutative C*-algebras C(X)
are exactly the representations C(X) — L(L*(pn)) by multiplication for Baire mea-
sures ph on X. O

Now let’s generalize this to arbitrary C*-algebras:

7.36 Theorem (Gelfand-Naimark-Segal).

Let A be a C*-algebra. Then there exists a bijection between equivalence classes of
cyclic representations with distinguished cyclic (normed) vectors and positive linear
functionals (states) on A. This assignment is given as follows:

(—) To a representation p : A — L(H) with cyclic vector h one associates the
positive linear functional f = f, 5 : a — {p(a)h, h) on A.

() For a positive linear functional f : A — C one considers the subspace Iy :=
{a € A: f(a*a) = 0} and the completion Hy of A/Iy with respect to the
sesqui-linear form {a + Ip,b+ Iy := f(b*a). The associated representation
pr:A— L(Hy) is given by pg(a)(b+ Iy) :==ab+ I and hy := 14+ If is a
distinguished cyclic vector.

Proof. (<) This was shown in |7.33]
(—) Let f : A — C be a positive linear functional and g : (a,b) — f(b*a) be the
associated positive sesqui-linear form. Then

Iy = {a : f(a*a) = g(a,a) = O} = {a : g(a,b) =0 for all beA}

is a closed linear subspace, where the equation holds since |g(a, b)|* < g(a,a) g(b,b).
Consequently, g factors to a positive-definite sesqui-linear form g on A/;, given by
gla + If,b+ If) := g(a,b) = f(b*a). Let Hy be the Hilbert space obtained by
completing A/;, with respect to g. For = € Iy,

glaw,b) = f(b*az) = f((a*b)*x) = g(x,a*b) =0,
hence al;y < Iy, and thus

pf:AX(A/]f)HA/]f, (a,b+If)l—>CLb+If
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is a well-defined bilinear mapping. We have to show the continuity of b+1y — ab+1Iy
with respect to the norm ||b + I¢||? := f(b*D):

lab + I¢|* = f(b*a*ab) < [al® F(6*b) = [lal* b + I¢],
because a*a < |a*a| and thus b* a*ab < b* |a*a| b = |a|? b*b by | 7.23.1 |.
As we easily see, py induces an algebra-homomorphism py : A — L(Hy) by ex-
tending it to the completion Hy of A/;,. This mapping py : A — L(Hy) is even a
x-homomorphism, because

3(psr(@ @ + 1),y + 1) = Glaz + Iy + 1) = glaw,y)

= gla,a*y) = gz + 1,05 (@*)(y + I1) )
Moreover, hy := 1+ Iy is a cyclic vector for py, because its orbit ps(A4) (1 + If) =
{a+1If:ae A} = A/;, is dense in Hy by construction.

(pG f) Any f coincides with the functional a — g(ps(a)(hs), hf) = gla+ Iy, 1+
Ir) = f(1*a) = f(a) associated to p; and hy.

(pOf) Let p: A — L(H) be a representation with cyclic vector h and associated
f=fon:a—<{pla)h,h). In we have shown that the representation py, : A —
L(Hy) constructed from it is isomorphic via the surjective isometry U to p. O

7.37 Definition. The space of all states.

Let stat(A) be the space of all states f : A — C supplied with the topology of
pointwise convergence.

Proposition.

Let A be a C*-algebra. Then the space stat(A) of all states is a compact convex
subspace of the unit sphere of A* and |al| = max{f(a) : f € stat(A)} forallae Ay.

Proof. The space {f € A* : |f| < 1 = f(1)} of all states (|f(1)] < ||f] is always
valid) is obviously a closed convex set in the unit ball of A* with respect to the
topology of pointwise convergence, thus also compact according to .

Let C*(a) be the commutative C*-subalgebra of A generated by a > 0. Since
la| = r(a) € o(a) < [0,]a]] the composite f : C*(a) = C(o(a),C) —1Ls C is an
algebra homomorphism with f(a) = |al| and ||f|| < 1 = f(1). Thus, f is a state on
C*(a) and hence can be extended to a state f: A — C by .

On the other hand, states f clearly satisty |f(a)| < ||f]|[la| = |a- O

7.38 Theorem.

Each C*-algebra A has a FAITHFUL (i.e. injective and thus isometric by )
representation p : A — L(H) on some Hilbert space H.

If A is separable, the representation can be choosen cyclic, see [5, S.259], [3, S.265].
Proof. Let H = @ jcyyara Hy and p(a) := @ jegrara pf(a). Then p: A — L(H) is
a representation.

It is faithful: Let p(a) = 0 and thus py(a) = 0 for all f € stat(A). Since a*a > 0

by [7.22], there is a state f : A — C with f(a*a) = |a*a| = |a|*> by [7.37].

The cyclic vector h € Hy belonging to the representation p; fulfills |4 = 1 and
f(b) = {ps(b)h,hyn, for all be A. In particular, |a|? = f(a*a) = {ps(a*a)h, h) =
(or(@h.py(a)h) = [os(@h]* = 0, 50 a = 0. o
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Irreducible representations of C*-algebras

So we should study (invariant) closed subspaces of H more closely. Any such sub-
space can be described as the image of an orthogonal projection. We need the
following two lemmas.

7.39 Lemma.

Let H be a Banach space and P € L(H) be IDEMPOTENT, i.e. P2 = P (with other
words, P is a PROJECTION). Then:

1. 1 — P is also idempotent;

2. img P = ker(1 — P) and ker P = img(1 — P);

3. H=img P ®ker P;

4. For Ae L(H): Po A= Ao P < imgP and ker P are A-invariant.

Proof. (1)) (1-P)?=1-2P+P>=1-2P+P=1-P.

(2) heimgP < h = Pk with k€ H & Ph = P*k = Pk = h < h € ker(1 — P).
Further, img(1 — P) = ker P follows by .

() img P n ker P = {0} because h € img P implies Ph = h, and Ph = 0 for
h € ker P. Each h € H can be written as h = Ph + (1 — P)h, with Ph € img P and
(1= P)heimg(l — P) = ker P.

() (=) This holds for arbitrary P € L(H):

We have A(imgP) = A(P(H)) = P(A(H)) € P(H) = imgP, ie. imgP is A-
invariant, and P(A(ker P)) = A(P(ker P)) = 0, i.e. ker P is also A-invariant.

(<) Let now P be a projection with A-invariant kernel and image. For x € H we
have x = z¢+x1 by () with z¢ € ker P and x1 € img P and thus Azg € ker P and
Az, € img P, i.e. P(Axg) = 0 = A(0) = A(Pxg) and P(Axy) = Az, = A(Pxy),
altogether thus (P o A)(z) = (Ao P)(x). O

7.40 Lemma.
For Hilbert spaces H and idempotent P € L(H) t.f.a.e.:
1. P is an orthogonal projection, i.e. ker P = (img P)*;
< 2. ker P 1 img P;
< 3. |P| €1, i.e. P is a contraction;
< 4. P>0, i.e. P is positive;
< 5. P* =P, i.e. P is Hermitian;
< 6. P*P = PP*, i.e. P is normal.

Proof. ( = ) is trivial.

( = ) |h|? = | Ph|* + |h — Ph|? because img P 5 Ph L h — Ph € ker P. Thus
| PRl < |[R].

(3] = [4]) We have h — Ph = (1 — P)h € img(1 — P) = ker P. For h € ker P+,
therefore, 0 = (h — Ph,h) = ||h|?> — (Ph,h) holds, and thus ||h|?> = (Ph,h) <
| PRI |h]l < |[h]]?. Hence | Ph| = |[h] and [h—Ph|?* = |[h|*—2%e((Ph, hy) + [ Ph|* =
0 for such h, i.e. (ker P)* € ker(1 — P) = img P.

Let h = hg + hy with hg € ker P and hy € (kerP)l c img P. Consequently,
(Ph,hy = (Phy,ho + h1) = (h1,h1) = 0, i.e. P > 0 by the corollary in [7.22].
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(4]=[5)) and ((5]=[6)) are trivial.
(@ = ) Because of |Ph| = |P*h| for normal P by , ker P = ker(P*) =

(img P)*- by [5.4.3]. O

7.41 Theorem.
For each #-closed subset A < L(H) t.f.a.e.:
1. The set A is irreducible;
< 2. The commutant A* consists only of the multiples of the identity;
=3 PeA*, 0<P<1=3\e[0,1]: P=X-id;
< 4. The only orthogonal projections in A* are 0 and 1.

Proof. ( = ) If b e A%, then kerb is an invariant subspace by |7.39.4 | and

thus equal to {0} or H, i.e. b is injective or b = 0. So the C*-subalgebra A* of L(H)
has no zero divisors: In fact, let b1, by € A* with b1by = 0 and b; # 0, hence b is
injective and thus by = 0. Let 0 # b € A* be Hermitian, then C(o(b)) = C*(b) < A*
has no zero divisors and thus o(b) is one-pointed, so C*(b) = C - 1. Since by
each a € A¥ can be written as Re(a) + i Im(a) with Hermitian elements
Re(a),Im(a) € A¥ (because A is *-closed), we have A% = C - 1.

( = ) is trivial because it follows from 0 < P=X-1<1that 0 < A < 1.

( = ) For orthogonal projections P we have 0 < P < |P| < 1 by ,

’ 7.17‘ and ’ 7.40.3 ‘ Since P? = P we get A2 = ), hence ) € {0,1}.

( = ) Let IV be a closed A-invariant subspace of H and let P be the orthogonal
projection onto N. Then img P = N and ker P = N1t are both A-invariant and

thus P e A* by[7.39.4] i.e. P =id or P = 0 by[4], hence N = {0} or N = H. O

7.42 Corollary.

If A< L(H) is a commutative *-closed irreducible subset, then H is 1-dimensional.

Proof. Since A is commutative, A = A* = C by . Hence every linear subspace
is invariant. Since A is irreducible, H has to be 1-dimensional. O

Corollary.
The irreducible representations of commutative C*-algebras A are given up to equiv-
alence exactly by the algebra homomorphisms A — L(C,C) =~ C.

Proof. According to the previous corollary, the representation space H of any
irreducible representation of A is necessary isomorphic to C and thus the represen-
tation p is given by the algebra-homomorphism f :=ev;op: A - L(C,C) =~ C by

7] 5
7.43 Proposition.
Let f be a positive functional on a C*-algebra A and p: A — L(H) the (by )

associated representation with distinguished cyclic vector h. Then there exists a
bijection
{Pep(A)kgL(H):0<P<1}g{geA*;0<g<f}
which is uniquely determined by the relation
g(a) =<{P(p(a)h),h) for allae A
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Proof. Let U : A — H be the continuous linear mapping a — p(a)h With dense
image. It satisfies (Ua, Ub) = {p(a)h, p(b)h) = {p(b*a)h,h) = f(b*a) by

(—) Let P € p(A)¥ with 0 < P < 1. Then gp : a — {(P(p(a)h),h) is a positive
linear functional, because

gp(a*a) = (P(p(a*a))h,h) = {(P o p(a®))(p(a)h), h)

= {(p(a®) o P)(p(a)h),h) = {p(a)* (P(p(a)h)), hy

={(P(p(a)h), p(a)hy = (P(Ua),Uay = 0, since P = 0.
We have gp < f, because by the second corollary in

gp(a*a) =(P(Ua),Uay < (Ua,Ua) = f(a*a), since P < 1

(«) Let g € A* with 0 < g < f. Then (a,b) — g(b*a) is a positive sesqui-
linear form on A, which vanishes on kerU = {a € A : f(a*a) = 0} by g < f,
hence factors over H/ker U (see ) to a continuous positive sesquilinear form

(compare with ) And, since imgU is dense in H it extends to a uniquely

determined positive sesqui-linear form g : H x H — C, which corresponds by
to a positive Py € L(H).

We have P, < 1, because (PyUa,Ua) = §(Ua,Ua) = g(a*a) < f(a*a) = (Ua,Ua).
Finally, P, € p(A)*, because p(a) U(b) = U(ab) for a € A:
((Pg 0 p(a))(Ub),Uc) = (Py(U(ab)),Uc) = g(c*ab)
= g((a¥c)*b) = (Py(Ub), U(a*c)) = (Py(Ub), p(a)* (Uc))
= {(p(a) o Py)(UD), (Uc)).
(g— P g) For 0 < g < f,let P:= P,. Then
gp(a) := (Py(p(a)h), hy = (Py(Ua),UL) = g(1*a) = g(a).
(P g~ P)For 0 < P <1inp(A)* and g := gp we have:
(Py(Ua),Ub) = gp(b*a) = (P(p(b*a)h), h) = (P(p(a)h), p(b)h) = (P(Ua), Ub),
hence P, = P. O

7.44 Theorem.
For each state f: A — C on a C*-algebra A t.f.a.e.:
1. The representation associated to f is irreducible;
2. For each 0 < g < f there exists a 0 < A < 1 with g = \f;
3. The functional f is an extremal point (see ) of stat(A).

Proof. Let p: A — L(H) be the representation associated to f with cyclic vector
h.

( < ) By | 7.41.3 |, pis irreducible if and only if every P € p(A)* with0 < P < 1
is a multiple of the identity. By , these P uniquely correspond to the g € A*
with 0 < g < f and A - id corresponds to A - f.
(=>) Let f = Ag+ (1 — A\)h with states g and h and 0 < A < 1. Then 0 <
g < fand thus A\g = u f for some 0 < u < 1 by () Because of f(1) =1 = g(1)
we obtain A = p and hence g = f and thus also h = f, i.e. f is an extremal point.
( = ) Let 0 < g < f and without loss of generality g # 0 and g # f. Then
0<f-g#0,500<|f—gl=(f-9)1)=f(1)—9g(1) and thus 0 < X := |g] =
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g(1) < f(1) = 1. The functionals fo := ;g = 0 and fi := 55 (f —g) = 0 are states

because fo(1) = @ =land fi(1) = %ﬁ’\(l) = 1,and clearly f = X fo+(1—X\) fi1,

so f = fo=fi by (3]), and thus g = X fo = A f. -

7.45 Theorem.

The irreducible representations of any C*-algebra are point separating.

Proof. Let a # 0. Then there is an extremal state f with f(a*a) > 0, otherwise the
continuous linear mapping evg#, : A* — C would vanish on Ext(stat(A)) and thus
also on its closed convex hull which, according to Krein-Millman , coincides
with the compact convex (by ) set stat(A). But we have seen in that
a state f : A — C exists with f(a*a) = |a*a| = |la|? # 0, a contradiction. Now
let p: A — L(H) be the irreducible representation according to with cyclic
vector h, which corresponds to the extremal state f : A — C. Then 0 # f(a*a) =
{p(a*a)h, hy = {p(a)h, p(a)h) = ||p(a)h?, i.e. p(a) # O. O

Group Representations

7.46 The group algebra.

Let G be a discrete (or, in particular, a finite group). We want to solve the following
universal problem: We are looking for a K-algebra K(G) and a homomorphism
d : G — K(G) with respect to the multiplication of the algebra, s.t. for each
homomorphism 7 : G — A into an algebra A a unique algebra homomorphism
7 : K(G) — A exists with 70§ = 7, i.e. the following diagram commutes:

K(G)

In order to achieve this, we first solve the universal problem of finding a K-vector
space K(G) and a mapping § : G — K(G) for the set G, so that for each mapping
7 : G — A with values in a K-vector space a unique linear mapping 7 : K(G) — A
with 7 o § = 7 exists, i.e. the following diagram commutes:

The solution for K(G) is the free vector space [ [ K = @, K with the injective
mapping 6 : G — [ [ K, 6; := 6(t) := (0])sec, where 07 :=1 for t = s and 0 else.
The elements f € K(G) := [[,K can be written uniquely as finite sum f =
Diec f(t)0y, ie. K(G) can be identified with the space of all functions f: G — K
with finite support.

The mapping 7 is given by

) =7 (D 108) = X £ 760 = 3 10 7(0).

teG teG teG

It is easy to see that this vector space also has the universal property for multi-linear
mappings, i.e. every mapping 7 : G X --- x G — A with values in a K-vector space
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corresponds to a multi-linear mapping 7 : K(G) x ... x K(G) — A with 7o (§ x

-x 0) =7 given by 7(f,..., f") =20 e fHt) e f(E) T, ).
If we apply this to the multiplication G x G — G =% K(G), we obtain a bilinear
mapping * : K(G) x K(G) — K(G), which is given by

Fra=(Z108) (Zos) - PRCECREL
=2 g(s) dis =), > f()g

r ts=r

i.e. by

= > fH)gls) =D FB) gt r).

ts=r t

Because of the universal property, this multiplication * is associative (since the
multiplication in G is it) and d. is a unit, where e € G is the neutral element of the
group. So K(G) is an associative algebra with unit.

If 7: G — A is a group homomorphism, it is easy to see that T becomes an algebra
homomorphism, and vice versa.

7.47 Representations of G on K(G).

The group homomorphism ¢ : G — K(G) also provides a representation A of G on
the vector space K(G), i.e. a group homomorphism A : G — L(K(G)), defined by
A#)(f) := M(f) := 6 » f. This representation can also be expressed differently:

AB)(f) = 8% f="0% Y f(s)8s = D f(5) 6 %5y

seG seG
= 2 F(8) b1s = X F(E1r) 6 = fo by = (L=1)*(f),
seG reG

where ¢; denotes the so-called LEFT-TRANSLATION on the group G, which is defined
by 4;(s) := ts. This £ is a group homomorphism of G into the set of all bijections
on G.

If 7: K(G) — L(H) is a representation, G —>K( L(H)

and 7 := 700 : G - K(G) — L(H) is the .

associated representation of G, then the (£=1)" =M (%
G

adjacent diagram is commutative: K(G) L(H)

(T()x 0 T)(f) = 7(t) 0 7(f) = 7(6(£)) o 7(f)

7.48 From K(G) to L'(G).
We do not want to remain purely algebraic and instead would like to have a universal
property for continuous Banach algebra homomorphisms. For this we have to supply
K(G) with a norm. The p-norms | f[, := (X,cq |f(£)F) e satisfy:

1 1 1
Fralle <|flp-llgllgif =+===-+1.
1> gl < 1F1p - gl P

In particular, the completion of K(G) with respect to the 1-norm is a Banach algebra
with unit

LNG) = {f: G =K |fl = X 1F(®)] < ).

teG
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Note that these are really the integrable functions with respect to the counting
measure p: A3 4 1.

As we saw in and together with , algebra homomorphisms are

often automatically continuous and even contractions. The associated algebra ho-
momorphism 7 : K(G) — A with values in a Banach algebra is a contraction (and
thus can be extended to L'(G)) if and only if |7(¢)| < 1 for all t € G. However,
because of 1 = [[1] = [(e)| = [r(&) 7t~ < =) |7, I7O] = sy = 1
also holds, so 7 has values in U(A) := {a € inv(A) : |a| = 1 = |a~!|}, the set of
all invertible elements in the unit sphere of A. If A = L(H) for a Banach space H,
then U(H) := U(L(H)) is the set of all bijective isometric unitary operators in the
case of a Hilbert space H by 7 because |a| =1 = [la™!| implies

laz] < flaf 2] = [2] = |a~ az] < Ja™* | Jaz] = Jaz].

So we have shown the following:

Proposition.

Let G be a discrete group. Then § : G — LY(G) is a group homomorphism into a
Banach algebra which induces a bijection

84 : Hom(LY(G), L(H)) =~ Hom(G,U(H))
for each Banach space H, where Hom(L'(G), L(H)) is the set of contractionary
algebra homomorphisms and Hom(G,U(H)) is the group of homomorphisms into

U(H):={a€ L(H) : a is an invertible isometry}

denoted. The elements p of the first set are called REPRESENTATIONS of the Ba-
nach algebra L*(G) on H and the elements T of the second set are called UNITARY
REPRESENTATIONS of the group G on H. The bijection is given by

7(t) := p()
p(f) =D F()7(®).
teG

7.49 The left-regular representations of L'(G) and the involution.

The representation of K(G) on the vector space K(G), given by the convolution,
induces well-defined representations (the so-called LEFT-REGULAR REPRESENTA-
TIONS) A of L'(G) on the Banach spaces LP(G), which can be obtained by com-
pleting K(G) with respect to the p-norm. Because the equation | f*g|, < [ f]1 |9,
states that the representations are contractions. By composing with § : G — L(G)
we therefore obtain representations A of G on the Banach spaces LP(G).

In case p = 2, H := L?(G) is a Hilbert space and thus L(H) is a C*-algebra. We now
also want to try to make L!(G) a C*-algebra so that the left-regular representation
A : LY(G) — L(L*(G)) is a *-homomophism, i.e.

)1, ko) = () *ha, hay = (ha, M f)ho)

is satisfied for all f € L'(G) and hy, hy € L?(G). If we choose hy := &, and hy := §;
we obtain

FH(E) = (¥ % 0,00y = (f*)ha, ho)
= (hi, N(f)ha) = (01, f % 8y = (F % 6,) (1) = (D).
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and a corresponding calculation with general h; and ho shows that \ : LY(G) —
L(L?(G)) with this definition of f* is a *-homomorphism. Obviously, ()* is an iso-
metric involution (i.e. is conjugated-linear, idempotent, and an anti-homomorphism).
However, L'(G) is not a C*-algebra, as the following example shows for G := Z.

Example.

For the discrete group G = Z and f*(k) := f( k) we have
Ef ) f(k Zf F(k+ ).

Now let f be real-valued and concentrated on {—1,0, 1}, then f** f is concentrated
on {—2,—1,0,1,2} and has the following values:

—2 ’—’ﬂf—l

—1 = fofai+fafo
ffxfi20 = fafa+fofot fiifa

+1 = 1 fo+ fofm

+2 = [ fn

Consequently,
£ % flle =21 fe1 foal + 20 ol [fo1 + foal + =2 + fo? + fd?

and
1 £ = F=1® + fo? + fa1® + 2| fer foal + 21 fo fo1] + 21 fo f4al-
If fo #0and f_1- fi1 <O then ||f** f|1 < HfH%

In summary, we have shown the following:

Proposition.

For each discrete group G, the space L*(G) is a B*-ALGEBRA, i.e. a Banach algebra
with an involution *, which is an isometry but does not necessarily satisfy || f* f|| =

|£|2. The involution on L*(G) is given by f*(t) := f(t=1). O

Lemma.
Let p: B — A be an x-homomorphism from a B*-algebra into a C*-algebra, then

p 15 a contraction.

Proof.

[o(HIZ = lp(f)* p(H) = r(p(F)* p(f)) = r(p(£* )
r(f* O << 1A < 1P B

7.50 Corollary.

The unitary representations of any discrete group G on a Hilbert space H correspond
ezactly to the x-homomorphisms of the B¥-algebra L*(G) by L(H).

Hom(G,U(H)) = Hom(L'(G), L(H))

Proof. Each *-homomorphism p : L*(G) — L(H) is a contraction according to the
lemma above and thus induces a unitary representation 7 : G — U(H) by
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Conversely, let 7 : G — U(H) be a unitary representation and p : L'(G) — L(H)
the algebra homomorphism p: f — >, f(t)7(t) associated to it by . Then

p(f*) = D fE () = Y, Fls)r(s) ™!
teG seG
= Y T = (X F)7(s) = el
seG seG
i.e. p a *-homomorphism. O

7.51 The Haar measure on locally compact groups.

We want to transfer all this as far as possible to LOCALLY COMPACT GROUPS, i.e.
groups G, which are additionally locally compact Hausdorff spaces, and for which
the multiplication G x G — G and the inversion G — G are continuous. To construct
L'(G) we need a distinguished measure p on G. We want the left-multiplication
¢ (given by ¢, - s = ts) to induce a representation A\ of G on LP(G) (given by
As(f)(t) := (f o ly—1)(t) = f(s7't)). So, in particular for p = 1 and f > 0, the
following should hold:

j M) dut) = (D] = 1 = j F(8) dp(t).
G G

Thus the measure should be left-invariant, i.e. u(sA) = p(A) for all measurable
A. In fact, it can be shown that such a measure p (the so-called HAAR MEASURE)
always exists on GG, and that it is unique up to a constant positive factor, provided
one additionally requires that u(U) > 0 for all open U # . For a proof of this
statement, see [13, S.185]. For G = R and G = S! it is the usual Lebesgue measure
and for G = Z it is the counting measure. We generally write SG f(t) dt instead of

§. £(t) dp(t) for f e LY(G) = L'(G, p).

Definition (Convolution).

With LP(G) := LP(G, ), we denote the Banach space of all equivalence classes of
p-integrable functions with respect to the Haar measure p.

The convolution of two functions is defined analogously to the discrete case by
(o)) = [ gt tsyar= | pstow
It provides a bilinear mapping L*(G) x LP(G) — LP(G) with | f *g|, < | fl1 - |9l

(see [13, 20.19)).

The convolution of functions in L'(G) is associative and thus L!'(G) is a Banach
algebra and the convolution induces representations A of L*(G) on LP(G), the so-
called LEFT-REGULAR REPRESENTATIONS defined by A(f)(g) := f * g. To see the
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associativity, we use the Theorem of Fubini in the following way:

((f +g) * B)(r) = quwmr>m

f J () g(s™ ) h(t~ ) dsdt

fJf (s7't)h(t'r) dt ds (t = su)

:fff@ﬂwh”‘WM%

ff (g*h)(s~tr)ds
* (g h))(r).

Since L!(G) has no unit (see [18, 4.7.7]), the group homomorphism 6 : G — L'(G)
from the discrete case no longer exists.

Nevertheless, we still have a counterpart to the left-regular representation X of
L'(G) on LP(G), namely the unitary representation A : G — L(LP(Q)), t — (f —
foli—1), which is induced by the left translation ¢. So there is hope to put represen-
tations of L!(G) in bijective relationship to unitary representations of G. Since G is

no longer discrete, we should make continuity assumptions on the representations
of G.

7.52 Proposition (Unitary Representations).

Let 7: G — U(H) be a group homomorphism into the group of bijective isometries
of a Banach space H, then t.f.a.e.:
1. The mapping 7": G x H — H is continuous;
< 2. The sequence T(t) — 1 converges pointwise for t — e;

< 3. The mapping T : G — U(H) is conlinuous, with respect to the pointwise
convergence on U(H);

< 4. The mapping 77: G x H — H is separately continuous.

A mapping 7 : G — U(H) with the above equivalent properties is called UNITARY
REPRESENTATION of the group G on the Banach space H.

Proof. ( = ) is trivial.
( = [3]) Because 7(t) = 7(ttg'te) = 7(tty') o 7(to), T(t) — 7(to) converges
pointwise for tt51 — e, ie. for t = ttg' tg — ety = to.

( = ) Assuming that 7 has values in U(H) < L(H), 77t,-) is always con-
tinuous. Conversely, 7(_,h) = evy o7 is continuous for all h € H if and only if
7 : G — U(H) is continuous with respect to the pointwise convergence, because
this is just the initial topology with respect to evy, : L(H) — H for h € H.

( = ) Let to € G, hy € H and € > 0. Then, because of the continuity of
7, ho), there is a neighborhood U of ty in G, s.t. |7(¢)ho — 7(to)ho|| < & for all
t € U. Consequently,
I (£)h = 7(to)hol < [7(O)h — 7()holl + |7 (t)ho — 7(t0)hol
< |[7@Ih = holl + [7(t)ho — 7(t0)hol|
<le+e=2¢

holds for all [h — hg| <eand te U. O
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Obviously, a mapping 7 : G — L(H) that is continuous with respect to the operator-
norm on L(H) is also continuous with respect to the coarser topology of pointwise
convergence. The fact that the converse implication does not hold is shown by the
following
Lemma (Continuity of the left translation).
The mapping

A:G - ULYNG)) € LILNG)), Ns(f):=foly

induced by the left translation ¢ is a unitary representation of G on L*(Q). It is not
continuous with respect to the operator norm on L(L'(QG)).

The right translation also induces a group homomorphism G — L(LY(G)), but
which does not have values in U(LY(Q)), so it is not a unitary representation.

Proof. Let t € G, f € L'(G) and € > 0. Then there is a g € C.(G) with || f—g[ly < .

Since g € C. (let K := Trgg), g is uniformly continuous, i.e. there exists a 1-
neighborhood U with |g(s) — g(r)| < Gy for rs1 e U. Let s € V := tU. Then
s=tuforaueU and (t71r)(s7'r)~! =t71s = u e U holds and thus
g = Niglh = | lo(s7r) — gt )] dr
{r:s—lreK or t—lreK}
<— (sK UtK) < =

Since the Haar measure is left-invariant and thus [Asf — Asgl1 = [f — g1 < 5, we
have for s € V:

Asf = Akl < IAs(F = 9l + [Asg = Aegl + Mg = Pl < e

The following example shows that mapping A : G — U(L'(G)) is not continuous
with respect to the operator norm: Let G = R. Suppose there were an § > 0, s.t.
[A(t) — A(0)|| < 1 for [t| < 6. Then, for the characteristic function f of (0,4], the
supports of f = A(0)f and A(d)f would be disjoint and thus |[A(§)f — A(0)f]; =
IA@) fllx + [AMO) fllx = 2] f]x > [ f]1, a contradiction.

For the right translation, note that
flst)y=f(¢ s H) ™) = SfEs7h) = S(M(SH)(s),
where Sf(t) := f(t~!) denotes the reflection and . O

Lemma.

The representation G — L(LY(G)), s — (f = fs(t — f(ts))) by right multiplication
is also continuous with respect to the topology of pointwise convergence.

Proof. By the lemma above A\sf — f converges for s — e and each f € L'(G),
hence also A(s) - A f* — A(e) - f* = f*, whereby A denotes the modulus function
to be defined in and * the involution which will be defined in . We have

(A(s) - Asf*)(8) = A(s) - f*(s71) = Als) - A(sTMt) - f((s710)71)

= A(t) - fo(t71) = (fo)*(2).
Thus

Ifs = fla=(fs)* = f*|1 = |A(s) - Asf* — f*[1 > 0 for s > e. [
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7.53 The modulus function

The failure of right-invariance of the Haar measure can be described as follows:

Lemma.

Let the modulus A be defined by

thsdu Jf )Ydu(t) for all f € LY(G), seR.

Then A : G — (R*,-) is a continuous group homomorphism.

Proof. See [13, p196]. Because of the denseness of the subspace generated by the
positive continuous functions with compact support it is sufficient to consider such
functions. Let p : Ce(G) — C be defined by ps(f) := §, f(ts) du(t). Then g is also
a left-invariant measure on G. Consequently, there is a positive number A(s) with
ws(f) = A(s) u(f). Furthermore, we have, where f; denotes the right-translated
function s — f(st):

(ft)s(r) = fi(rs) = f((rs)t) = f(r(st)) = fae(r)
and thus

Alts) p(f) = plfes) = p((fo)e) = A(t) u(fs) = A) Als) p(f)-

Let U be a relatively compact 1-neighborhood in G, furthermore let f # 0 and w be

continuous positive functions with compact support on G with w(Trg(f) - U ) =
{1}. Because of the uniform continuity of f, every ¢ > 0 has a l-neighborhood

V < U with |f(st) — f(s)] < E#*E((f)) for all t € V and all s € G. Thus
[AE) = 1 u(f) = [u(fe) — u(F)

|f(st) = f(s)l ds

<]
steTrg f or seTrg f
= s = pelds < ents),
sew—1(1)

ie. |A(t)— 1] <eforalteV. O

Each discrete, each Abelian, and each compact group G is UNIMODULAR, i.e. A = 1,
equivalently, the Haar measure is also right-invariant: For discrete G, the counting
measure is obviously right-invariant, for Abelian G this is trivial, and for compact
G the image under A is a compact subgroup of (R, -), which is equal to {1}.

With respect to the reflection S : f +— (t — f(t~1)), the following holds:

7.54 Lemma.
For f e L'(G):

f £(t) du(t) j At dp(t).
Proof. Let v(f) := §, A(t) f(t) du(t) = p(A - Sf). Then
vOT) = f A() f(s~ ) d f A F((t3)™) du(t)

f A(ts) A(s™) £((ts) 1) du(t) = As™) u((A - S1).)
1) A(s) p(A - Sf) = v(f).
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So v is left-invariant and obviously v(U) > 0 for U # ¢, so ¢ > 0 exists with
v = cu. For ¢ > 0 we choose a function g e C (@) with g = Sg and Trg(g) < {t:
|A(t) — 1] < €}. Thus |g(t) — A(t)g(t)| < £g(t) and therefore

=0 ] 4 U o Hf “J sel=a] ol

hence |1 —¢| < ¢, i.e.¢=1.So

ff ) dp(t) JA f N du(t). O

Remark.

One could analogously to the discrete case, define the convolution as

(f *2 9)( J f(r (s = tr)
— A Lf(t‘ Vgltr)di by

— A L A(t) () gt~ r) dt

=A(r)H(AF) *9)(r),
ile. A-(f*2g)=(A-f)*g.

For this second convolution we can not expect associativity, because
A-((frag)x2h) =(A-(frag))xh=((A-f)xg)*h
=(A-f)x(gxh) =A-(fr2(gxh)) #A-(fx2(g*2h)).

7.55 The involution on L'(G).

As in the discrete case, we try to provide L (G) with an involution #, so that the left-
regular representation on L?(G) is a #-representation, i.e. (hy, fxha) = (f*xhy, h).
We have

(ha, f > ho) :J hy(r) J F(t) hao(t=1r) dtdr

thl (ts) f(t) ho(s) dt ds

[r54] J J A(t)hy(t™1s) f(t71) ho(s) dtds
G JG

and

(F* % hay ha) = Jff ) b (t4s) Toa(s) dit ds,
consequently we put f*(t) := A(t) f(t~1), cf. | 7.49|.
Lemma.

The space L*(G) is a B¥-ALGEBRA (without unit) with involution given by f*(t) :=

A@)f(E1).
Proof. Because of | 7.54], | f*1 = | f]: and
(f5)*@) = A@) f*(E1) = A A f(E) 1) = fO).
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Furthermore:

***5: * *715 — *S % /p—1
(g% * F*)(s) Lguw<t Mt‘Lg(Wf@)ﬁ

:J A(st) g(t=Ls~ 1) A1) f(t) dt
G

@fﬂ@ﬁ*y%ﬁ=qwﬁ@ 0
G

As a partial replacement for a unit we have:

7.56 Proposition (Approximating unit).

Let f € LY(G) and ¢ > 0. Then there is a (compact) neighborhood U of e, so that
for all 0 < g e LY(G) with SGg =1 and gle\v = 0 we have

Ifxg—fli<e

In particular, there is an approxvimating unit for L'(G), i.e. a net i — wu; with
|ui]| =1 as well as f xu; — f and u; * f — f for all f € LY(G).

Proof. Let g be as indicated. Then it is easy to see that f * g is defined everywhere

and lies in L'(G). Since §, A(t) g(¢t~1) dt = §, g(t dt—lby
(f*g)(s) — stt (') dt — JA

J(f@ﬂ-—A@)f@Dg@’Utﬁ

-

=:F(s,t)
holds. We have F(s,t) = f(st) (1—A(t)) g(t=1) + (f(st) — f(s)) A(t) g(t1), conse-
quently
= L [E(s.t)ds < | felli [1 =A@ g(t™) + [ fi = Fli A@®) g(t™)
=A@ [l 1= A®1gE™") + 1fe = fli A@) gt
= (I =A@+ 1= fl) A@) g,
Now let € > 0. We choose a symmetric neighborhood of e in U

5 5
[£lL 11 —A®)] < 3 and ||fy — fll1 < 3 for all t € U.

Now let g be as assumed. Since g = 0 outside is U™ = U, we obtain 0 < k <
e A S(g). Thus k € L'(G) and by Fubini we have

1fxg— 1l =LUGF(s,t>dt]ds<f J |F(s,t)|dtds=JGL|F<S,t)\dsdt
=fk(t) fA t—efg(t)dt=5.
G G

To obtain an approximating unit, we choose now the index set to be the neigh-
borhood basis of the unit (consisting of compact symmetric neighborhoods) and
for each such neighborhood i := U the corresponding weighted characteristic func-

tion ﬁ xu as u;. Then, according to above calculation, f * u; — f holds to all
f € LYG). Because of |[uf]| = |u;| = 1, Trg(u}) = Trg(w;)™! = U1 = U and
uf(t) = A)u;(t~1) = 0 also g * uf — g is valid for all g € L'(G) and thus

K3

uix [ o= (f**uf)* — (f5)* = f. -
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7.57 Theorem.

The left reqular representation A of L*(G) on L*(Q) is an injective x-homomorphism
and a contraction.

Proof. We have just choosen # so that A : L'(G) — L(L?*(@)) is a #-homomorphism.
It is injective, because 0 = A(f)(g) = f * g for all g € L?(G) implies f  u; = 0
and since by 0 = f *u; — f we have f = 0. In we have shown that every
x-homomorphism from a B*-algebra B (with unit) into a C*-algebra A is a con-
traction. This even holds for B*-algebras B without unit, because By := B® C is
the associated Banach algebra with unit by . By virtue of (x @ 2)* :=2* @z
it is a B*-algebra with unit. And every s-homomorphism p : B — A extends to a
unique, #-homomorphism p; : By — A by virtue of p1(z @ 2) := p(x) + z. So p; is
a contraction and thus also p := p1|p. O

7.58 Lemma.

With A(G), we denote the C*-algebra generated by the image of the left-reqular
representation of L'(G) on L*(G). Each representation of the C*-algebra A(G)
induces a x-representation of L*(G). The commutants of these two representations

agree, and thus irreducibility is synonymous for them by .

Proof. Note that A(G) is the closure of {f*(_)+t: f € L}(G),t € C} in L(L*(Q)).

Let ¢ : A(G) — L(H) be a representation and p := @ o\ : LY(G) — A(G) — L(H)
the corresponding representation of L!(G), then:

T commutes with p(f) = o(f * (_)) for all f e L'(G)
< T commutes with p(f) +t = o(f (1) +t) for all fe L'(G) and t e C
< T commutes with ¢(a) for all a € A(G). O

7.59 Comparison of the representations of G and of L!(G)

For locally compact groups G we are now trying G LY(G)
to relate unitary representations 7 : G — U(H)

and representations p : L'(G) — L(H) with each ! !
other. U(H) —— L(H)

(—) In the discrete case we had p(f) := >},c f(t)7(t). In the general case, we ex-
pect p(f) = §, f(t)7(t)dt € L(H). Since unitary representations 7 need not be

continuous with respect to the operator norm by , the integral in L(H) does
not exist, but §, f(¢) 7(t)hdt € H exists for each h € H, and thus we define

o(F)h = L F() r(Ohdt e H for fe LNG) and he H.

(<) Conversely, in the discrete case we had 7 = pod, i.e. 7(t) = p(d;). In general,
we do not have a unit §, € L*(G) but only an approximate unit u; € L'(G), which
we can use instead of d.. So instead of §; = 0; * 6. = A¢(de) we should use A;(u;)
and put 7(t) := lim; p(A\(u;)), for which we have to show the existence of the limit.

Another possibility is to use the identity 7(t)x 0 p = po A for t € G of the discrete
case, i.e. 7(t) o p(f) = p(Aef). This clearly fixes 7 on p(L'(G))H. If L'(G) had a
unit and p preserved it, then p(L'(G))H = H and 7 would be fixed. However, since
L' (G) has no unit, representations p : L'(G) — L(H) may be DEGENERATED, where

andreas.kriegl@univie.ac.at © 1. Juli 2019 156



GROUP REPRESENTATIONS 7.59

an algebra homomorphism is called p : A — L(H) NON-DEGENERATED if p(A)H

generates a dense subspace of H. If p is a *-homomorphism, this is equivalent to
p(A)h =0 = h = 0, because

=<k, a®)h

p(a™)h)

(p(A)H) is dense in H < (Va € A,Vk e H {p(a)k,h) = O) =h=0
= (p(A)h= 0= h=0).

The space N := {h € H : p(A)h = 0} is clearly invariant, hence also N+ and
p = p|nL+0|n, where p|n is not degenerated. So we have no significant restriction
when we consider only non-degenerate representations of L'(G).

Now to the existence of lim; p(A(u;)). For the composition with p(f) we obtain:
p(Ae(ui)) o p(f) = p(Ae(wi) * ) = p(Ae(ui * £)) = p(Ae(f)),

since u; » f — f in L'(G) and thus (p o \)(u; * f) — (p o A¢)(f). Since p is
a contraction, ||p(A¢(uw;))| < |Ae(w;)|| = Jui]| = 1 holds, and thus lim; p(A¢(u;))
exists pointwise not only on image of p(f) but on all of H. And so 7(t) € L(H) is
well-defined by

7(t) := lim p(A(u;)) pointwise on H

and |7(¢)]| < 1 and 7(t) o p(f) = p(Af) for all f € L'(G). Because of the last

equation, we also see that 7(¢) does not depend on the choice of approximating

unit u;.

Theorem.

For locally compact groups G and Hilbert spaces H we have a bijection
Hom(G,U(H)) = Hom(L'(G), L(H))

between the set of unitary representations 7 of G on H and those of non-degenerated
representations p of L*(G) on H, i.e. the non-degenerated algebra homomorphisms
which commute with =, or equivalent, are contractions. We have

G = | 0 G kyd ke H,f e LYG),
G
7(t) = lim p(A\u;) Vte G,
j
where u; is an approzimating unit of L*(G).

Furthermore, 7(t) is uniquely determined by the identity T(t)s o p = po A.
The irreducible representations also correspond to each other.

Proof. (—) Let 7 : G — L(H) be a unitary representation. As mentioned in the
introduction we aim to define p by

h—ff (t)hdt e H for f e L'(G) and h € H.
To do so, we consider the sesqui-linear form
by (k) = L F() (), .
Obviously, [|bs(h, k)| < | fll1 |I#] |%]| holds. So there is a unique operator p(f) €

L(H) with {p(f)h,k) = bs(h,k) and [p(f)| < [fl:1. It is easy to see that p :
L'(G) — L(H) is a linear mapping.
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Furthermore, p is multiplicative because
(olf * g)h, k) = J f f(s t) ds (T (t)h, k) dt
= f f(s)f g(s1t) (T (t)h, k) dt ds (Fubini)
G G
_ f f(s)f o) (st kydtds (s~ 1)
G G
- f f(s)f o(8) (D), 7() k) dt ds
G G
= [ septam s ds = | ) )plah b ds
G G
= {p(f)p(9)h, k).
We claim that p is a #-representation (and thus a contraction):
Co(f)*h, k) = <h, p(f)ky = {p(f)k, by = by (k, )
= f f) {r(t)k, h)ydt = f Ft){hy Tk dt
G G

:jAmﬂfw@JWﬂ@ﬁ:jfﬂw@wm@ﬁ
G G
(7). k.

= {p(f

The representation p is not degenerated: Let h € H with |h| = 1. Because of
(r(1)h,hy = |h|?> = 1 and because t — 7(t)h is continuous, a neighborhood U of
the unit exists in G with [(7(t)h,h) — 1] < § for all t € U. Let f € L'(G) with
f=0,§,f=1and Trg(f) < U. Then

Qﬁ%ﬁ%ﬂzff@@whwﬁ—fﬂﬂﬁzfﬂﬂWmmw—Uﬁ

and thus [{p(f)h, h)—1| < () [<r(t)h, hy—=1|dt < 1§, f(t)dt = L, ie.{p(f)h, by #
0.

(«+) Let p : LY(G) — L(H) be a non-degenerate contractionary algebra homo-
morphism. As stated in the introduction, 7(t) € L(H) exists as pointwise limit
lim; p(A¢(u;)) and complies with |[7(¢)[| < 1 and 7(t)x o p = p o A;. Because of
the non-degeneracy of p, the last equation immediately implies that 7(1) = 1 and
7(t1t2) = 7(t1) o 7(t2) hold. Consequently, 7(¢t~!) = 7(¢)~! and thus 7 : G — U(H)
is a group homomorphism.

We next show that 7 is a unitary representation, i.e. 7(t) — 1 converges pointwise
for t — e. In fact, A\sf — f and thus p(f)h = lim; p(As f)h = lims(7(¢) o p(f))h. So

7(&)(p(f)h) — p(f)h and, since the vectors p(f)h generate a dense linear subspace
and |7(t)| < 1, we obtain 7(¢t) — 1 pointwise.

To show that the mappings are inverse to each other, on the one hand, we need to
show the equation

o)k = L FO O kYt Yhik e H, f e LNG),

where 7 is the unitary representation associated with p. Both sides represent con-
tinuous linear functionals with respect to f. It suffice for ||| =1 = |k|, € > 0 and
characteristic functions f = x4 of Baire sets A with finite Haar measure to show
that

ottty | s cronsal<e | s
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There is a neighborhood U of e € G with [p(g)h — h| < e for all g = 0 with g =1
and Trg(g) € U, because one may approximate h by a linear combination of finite

many p(fi)h; With |hi| < 1 and choose U by [7.56], s.t. [p(g) o p(f:) — p(fi)] <
lg * fi = fil < % for all i.

Let A7'Ac U for the moment. If ;(A) = 0, then nothing is to be shown. Let
a = p(A) > 0 and g := éf Then ¢ is bounded and g > 0 and SGg(t) dt =
1. For t € A the function A\,—1g has compact support in U, because for ¢’ ¢ U
we have t' ¢ A7'A, ie. At/ n A = &, and thus \-1g(t) = g(tt') = Lf(tt) =
Lya(tt’) = 0. So |7t )p(g)h — || = [p(A-19)h — h| < e. Since 7(t) is unitary,
lp(g)h —7(&)R|]| = |7(t) ((t) " p(g)h —h)| < 6 holds From f = ag = x4 it follows
that {p(f)h, k) = f(t) (T (t)h, kydt = § ,{(p(g) — 7(t)) h, k) dt. So the special case
is proven.

Let now f = xa with u(A) < o0 and let W be a neighborhood of e with W=1W <
U. Without loss of generality, W is a Baire set. Let ¢,, be a sequence in G with
A € U,en tnW (cover A with a sequence of compact sets and eacho of them by
finitely many translates of W). Let A, := Ant,W. Then A = J, .y An and A,
are Baire sets with A,1A, < (W=, 1)(t,W) = W=1W < U. Without loss of
generality, these sets are disjoint (replace A,, with A,\ Uj<n ;). Let fn = xa,
and s, 1=, f;. For each f;, the desired equation holds, so

Dok = | s @h@ﬂﬁzth@fﬂ ) r(t)h, ydr)|

Jjsn

Z ij dtfsjcsn(t)dt

due to linearity. Since s; /' f pointwise, ||s; — f||1 — 0 holds because of the Theorem
[18, 4.11.10] of Beppo Levi and thus the desired equation also follows for f.

For the other composition, let p be the representation associated to 7. Then
GODIE = [ 2ef () Thyds = [ 7(7%8) (o) b s
G G
:f F(8) ()b kyds (- 1s o s)
G

L F(8) T (s)h, ()" k) ds = {p(f)h, 7(8)*k) = (T () p(f)h, k),
(

ie. pod=7(t)sop.
Thus 7 is the unitary representation associated to p.

Finally, p(L'(G))* = 7(G)* holds, from which the statement about irreducibility

follows by means of :

If T e L(H) commutes with all 7(¢), then
<mum@=@mmwm=ﬁj@@mmWMﬁ
=ffﬁwﬁmm@ﬁ=jfm@ﬁﬁm@a=@qwmm
G G

i.e. T commutes with p(f) for each f e L(G).
Conversely, T € L(H) converges with p(f) for each f € L*(G). Let u; be an ap-
proximating unit of L*(G). Then

Tr(t) p(ui) = T p(Ae(wi)) = p(Ae(us))T = 7(t) pus) T

and since p(u;) — 1 pointwise, T'7(t) = 7(¢) T follows. O
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Corollary (Gelfand-Raikov 1955).

The irreducible unitary representations of a locally compact group are point sepa-
rating, i.e. for each e # s € G, such a representation p exists on a Hilbert space H
with p(s) # 1.

Proof.

S h———a

G LY(G) =2~ A(G) = L(L*(G))

I s
U(H) > L(H)

Let s # e in G. Then there is a f € C.(G) € LY(G) with f(s7!) # f(e) and thus
Aof # f. Let h := \;f — f # 0 € L'(G). Because the representation of L!(G) is
injective on L?(G) by , we have 0 # a := h * (L) € A(G). So by there is
an irreducible representation ¢ : A(G) — L(H) with ¢(a) # 0. The representation
p: LY(G) - A(G) — L(H) is thus irreducible, i.e. is cyclic and therefore non-
degenerated and p(h) # 0. So also the associated representation 7 from G on L(H)
is irreducible and because of p(Asf) — p(f) = p(Asf — f) = p(h) = ¢(a) # 0, we
have 7(s) 0 p(f) = p(Aaf) # plf), 50 7(5) # 1. 0

7.60 Corollary (Irreducible representations in the Abelian case).

Let G be a locally compact Abelian group. Then the irreducible unitary represen-
tations are exactly the CHARACTERS, i.e. the continuous group homomorphisms
7: G — SY. The irreducible non-degenerate =-representations of L*(G) are exactly
the C-valued algebra homomorphisms 0 # p : L*(G) — C. And the bijection

Hom(G, S') =~ Hom(L'(G), C)\{0}
of is given for f € LY(G) by
o) = | rra
G

Proof. If G is Abelian, then the same holds for L(G).

According to , the irreducible unitary representations 7 of G correspond ex-
actly to the non-degenerate irreducible representations p of L'(G), and these are

1-dimensional by , ie. H=C.

Since the pointwise convergence on L(C) coincides with the norm convergence, the
irreducible unitary representations of G are just the continuous group homomor-
phisms 7: G — U(C) = S™.

The non-degenerate representations of L'(G) on C are, by , just the contrac-
tionary algebra homomorphisms p : L!'(G) — C that are surjective. According to

[6.39], every C-valued algebra homomorphism on a Banach algebra with unit has
norm 1. Hence every C-valued algebra homomorphism p on a Banach algebra A
(without unit) is a contraction, because p; : A; — C is an algebra homomorphism

on Ay := A®C by and thus is |[p| = ||p1]all < |p1] = 1. A scalar-valued linear
mapping p is surjective if and only if p # 0.

The injection from is clearly given by

o) = jG F(t) () dt
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in the case of H = C. O

7.61 The character group.

As in , one shows that Hom(L!(G),C) is a compact space with respect to
pointwise convergence (there we used , but L!(G) has no unit, however we have
assumed | f| < 1 for all f € Hom(L(G), C)). Consequently, Hom(L!(G), C)\{0} is a
locally compact space, and the bijection from also makes Hom(G, St) a locally
compact space. It can be shown that this topology on Hom(G, S') is precisely that
of uniform convergence on compact subsets of G. Obviously, Hom(G, S1) is a group

~

with respect to pointwise multiplication, and it is easy to see that G := Hom(G, S*)
is a topological group, the so-called CHARACTER GROUP of G, of all continuous
group homomorphisms G — S!, the so-called CHARACTERS. We will now switch
the variables in the homeomorphism

F G — Hom(L}(G),©)\{0} € Hom(L'(G).C), 7> (f = L £t (1) d).
i.e. consider the associated mapping
LNG) — O(@.0). [ (7 L F(6) (1) d).

This is an *-homomorphism because F(7) is a *-homomorphism for all 7 € G. To
get a more familiar from for it, we compose this with the #*-isomorphism

inv* : C(G,C) = C(G,C), g~ (1 g(7) = g(l))

i
and get the following #-homomorphism F:

Theorem. Fourier transformation.

Let G be a locally compact Abelian group and G its character group. Then there is
a #-homomorphism

F:LYG) - O(G,C), fH(THLf(t)@dt). O

Theorem of Parseval.

The Fourier transformation of a function f € L!(G) thus provides a function F(f) :
G — C. This does not have to be integrable, see [18, 5.4.7]. However, if we restrict
the Fourier transform to L' (G) n L?(G), it has values in L'(G) n Co(G) < L*(G) n

~

L?(G), and with proper normalization of the Haar measure on G' and G, it is an
isometry with respect to the 2-norm. Because of the denseness of L'(G) n L*(G),
it can be extended to a surjective isometry

F: LX(G) = L2(Q).

This is the theorem of Parseval.

7.62 Pontryagin’s Duality Theorem.

The mapping 6 : G — G"", g — evy is a group homeomorphism.

For a proof, see [13, Vol.2].

7.63 Example.
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Let G := R. Then t — (s — €*) is a group homeomorphism from R onto the
character group G = Hom(R, S'). With respect to this isomorphism, the Fourier

transform looks like follows
+0 R
F(f)(s) = f(t)e " dt for fe L'(R) and se R =R

[}

Compare this with the Fourier transform from [18, 8.1.2].

Proof. Let ¢ : R — S! be a continuous group homomorphism. Then there is a
d > 0 with Sg o(z) dx =: a > 0 because of p(0) = 1. Hence
z+0

a-p(x) = p(z) f p(y) dy = E ez +y)dy = f ¢(z) dz.

0 T

Since a # 0 we have ¢(z) = % Si” ©(y) dy, hence ¢ is differentiable and

1oy i PE ) — (@) (b)) —9(0) _ /
¢'(z) = lim Y = p(z) lim h = ¢(2) ¢'(0).
So p(z) = e (07 bhecause p(0) = 1. Because of 1 = |p(z)] = | (07| we have
©'(0) € iR, ie. p(x) = € for a s € R. Consequently, Hom(R, S') ~ (R, +), and
with respect to this isomorphism we have F(f)(s) = §; f(z) e™"** dx. O
Example.
Let G := S'. Then k — (z — 2*) is a group homeomorphism from Z onto the

character group G= Hom(S!, S1). With respect to this isomorphism and the iden-
tification L1(S') =~ L![—x, 7], the Fourier transform looks like follows

F(f)(k) L v ft)e ™ at for fe L'([~n,7]) and k € Z = S,

T o o

Compare this to the Fourier coefficients in [18, 5.4].

Proof. We have h : t + €%, a continuous surjective group homomorphism on
R — S So h* : Hom(S%, S') — Hom(R,S') =~ R defines an injective group
homomorphism. Namely, s € R is in the image if and only if  — e¥% is 27-
periodic, i.e. s € Z. Thus Hom(S!, S!) =~ Z and with respect to this homomorphism
and h* : L*(S') =~ L[—m, x|, F looks like follows:

F(f)(k) L ft)ye ™ dt. O

:27T

—T

Example.

Let G := Z. Then a — (k — a*) is a group homeomorphism from S! onto the
character group G = Hom(Z, S'). With respect to this isomorphism, the Fourier
transform looks like follows

+00
F(f)a)= > f(kya™* for fe L'(Z) and ae §* = Z.

k=—0o0

Cf. the Fourier series in [18, 5.4].

Proof. Each group homomorphism ¢ : Z — S! is uniquely determined by its value
a := (1) € S, because p(k) = @(Z?Zl 1) = ¢(1)*. Consequently, G =~ S'. With
respect to this isomorphism, F now looks like follows:

F(f)a) = f(kya* DO

keZ
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7.64 Theorem of Wiener.

Let f(t) := Yy [ €% be an absolutely convergent Fourier series. If f vanishes

nowhere, then also % can be developed into an absolutely convergent Fourier series.

Proof by Gelfand. We have A := L!(Z,C), a commutative Banach algebra with
unit with respect to the convolution. By and the last example in , the
algebra homomorphisms p € o(A) := Alg(A,C) are described by the a € S! =~
Hom(Z, S1) =: Zvia p: f Y wez fr a™F. The Gelfand transformation

G:A—C(0(A),C), fevi(:p—p(f))

from thus maps f € LY(Z,C) onto a — >, _, fra* up to this isomorphism,
so it is F. We have F(f) € C(S*,C) = Cor(R,C). As an element of Co, (R, C) we
have F(f)(t) := Yy fr € F. If F(f) vanishes nowhere, then 1/F(f) € C2x(R, C)
is also in the image of the Gelfand transform (and thus an absolutely convergent
Fourier series) because if G(f) vanishes nowhere, then p(f) = G(f)(p) # 0 for all
p € Alg(A,C) and thus 0 ¢ o(G(f)) = o(f), i.e. f is invertible in A and obviously
1= G(F1f) = G(F 1) G(F) holds, s0 G(f 1) = 5.

~ -7.63 ~
LNZ,C) —I = C(Z,C) ———= C(S',C) —== C2:(R, C)

A——— C(Alg(4,C),C) 0
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8. Spectral theory for normal operators

Let N € L(H) be a normal operator, then the C*-subalgebra C*(N) generated by N

is commutative and thus by isomorphic to C(X,C), where X := o(N) < Cis
compact. The inverse of the Gelfand Isomorphism G thus provides a representation

p:C(X,C)—=> C*(N)< L(H),

the function calculus from . An in-depth investigation of this representation
should provide us also with essential information about normal operators. So we
start deepening our study of representations of Abelian C*-algebras.

Representations of Abelian ('*-algebras and spectral measures

In this section, X is a compact space and H is a Hilbert space.

The irreducible =-representations of C'(X,C) are 1-dimensional by , ie. are
algebra homomorphisms p : C(X,C) — C by . By these are exactly the
point evaluations ev, with = € X. More generally, according to Riesz’s theorem
theorem , the continuous linear functionals C(X,C) — C correspond exactly
to the regular complex Borel measures on X. The o-algebra B(X) of all Borel sets is

by definition generated by the compact (equivalent, open or closed sets), see .
A regular complex Borel measure on X is a o-additive mapping p : B(X) — C which
satisfies

|| (A) = sup{|u|(K) : K € A, K compact}.

The absolute value |u| of a complex measure u is the positive measure defined by
0 0
|p|(B) := sup{ Z |w(Bp)| : Bn € B,B = |_| B,,, B, pairwise disjoint}.
n=0 n=0

The isometric isomorphism
C(X,0)* ~ M(X) := {u : 14 is a regular complex Borel measure on X},

is defined by (f — § f(z)du(z)) < p and conversely u(B) := §, xp(z)du(x),
where we have to extend the functional C'(X,C) — C to the measurable and gen-
erally not continuous functions xp.

The variation norm on M (X) is defined by |ul := |u|(X).

In analogy to the Riesz representation theorem , a general representation
p: C(X,C) — L(H) should be of the form p(f) = { f(x)dP(x) for some kind of
“measure” P with values in L(H) and hence should extend to Borel,(X).

8.1 Representations of Borel, give ortho-projection valued measures.

Let p : Borel,(X) — L(H) be a #-representation of the algebra Borel,(X) of
bounded Borel-measurable functions X — C, furthermore, x : B(X) — Borel,(X)
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the mapping which assigns to each B € B(X) the characteristic function xp and
P:=pox:B(X)— Borely(X) — L(H). Since Xp,~B, = XB, ' XB, We have

P(Bl) o P(BQ) = P(Bl N BQ) = P(BQ) o P(Bl)
In particular, P(B) = P(B n B) = P(B)?, i.e. P(B) is idempotent, and P(B)* =
p(xB)* = p(xB) = p(xB) = P(B), i.e. P(B) is an ortho-projection.

Orthogonal projections P € L(H) are in bijective relationship to closed subspaces
E € H, via E = imgP = (ker P)*, because the unique orthogonal projection
P e L(H) with image E is given by = — 1, where x = 1 + z2 is the unique
orthogonal decomposition of H in £ @ EL.

We have the partial ordering of “being a subset” for closed subspaces and the one
from for positive operators and in particular for orthogonal projections. We
now relate these two orderings to each other.
8.2 Lemma. Description of the ordering.
For two orthogonal projection P, and Py t.f.a.e.:
1. Pl < PQ,'

< 2. |Piz|? < ||Pex|? for all x;

< 3. ker P, 2 ker Py;

< 4. img P, € img Ps;

< 5. Pl =P1 OP2,‘
Proof. ( < ) By [7.22] Pi < Py & (Piz,x) < (Px,x) for all z, and
(Pjz,x)y = (P}x,x) = (Pj, Py = | Pz
( = ) is obvious.
(3]« [4]) holds because img P; = (ker P;)*.

( = ) We have x = xg + x; with 29 € ker P, € ker P; and x; € (ker P,)* =
1mgP2 Thus7 (P1 OPQ)[L' = Pl(PQ(SCo) + Pg(xl)) = Pl(xl) = Pl(l'() + 1’1) = Pl(x)

(5]=[2)) We have |Piz| = | Po(Poa)| < | Po] | Poa] < 1| Poc]. O

8.3 Lemma. Description of orthogonality.

Let Py and Py be two orthogonal projections. Then img P; 1 img Py, < Pyo P, = 0.

Proof. img P; | img P, < img P, < (img P;)* =ker P, & P o P, = 0. O
Next, let’s examine which operations on orthogonal projections correspond to the
formation of the intersection and to the orthogonal sum of subspaces.

8.4 Lemma. Description of orthogonal sums.

Let P; be orthogonal projections with pairwise orthogonal images. Then the orthog-
onal projection on the closed subspace @), img P; generated by | J; img P; is given by
> Pi. This sum converges pointwise, but not with respect to the operator norm.

Proof. Let E; := img P; = (ker P;)*. Then the closed subspace of H generated by
\U; Ei is given by

DE: = {Zh chie By and Y [hy)? < oo}.
i 7 [
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In fact, on the one hand ), h; converges because of the theorem [18, 6.2.3] of
Pythagoras (| X, hi|? = X, |h:]*) and on the other hand @), E; is a closed subspace
containing all F;.

Each h € H can be uniquely written as h = hy + Y, h; with h, € (P, Ei)*
and Y h; € @, E;. We have P;(h) = 0, Pi(h;) = h; and Pi(h;) = 0 for ¢ #
j. Consequently, (ZzeF Pi)h = Dephi — 2, hi holds for the net of the finite
partial sums. Le. the finite sums ), . P; converge pointwise towards the orthogonal
projection h = hy + >, h; — >, h; with image @), E;.

Since [|P;| = 1 the sum )}, P; does not converge in the norm. O

For the intersection we have the following pendant.

8.5 Lemma. Description of the intersection.

Let 1 < i < n be pairwise commuting orthogonal projections P;. Then the orthogonal
projection onto ﬂl img P; is given by PpoPyo...0P,.

Proof. It suffices to show this statement for n = 2, because the rest follows by
induction. Because of the commutativity (Py o ;)2 = PLoPyo Pio Py = (P)?0
(P2)2 = P1 OP2 and (Pl OPQ)* = (Pg)* o (Pl)* = PQOPl = Pl OPQ, i.e. P1 OP2 is an
orthogonal projection with img(P; o Py) € img P;. Because of the commutativity
img(P; o Py) = img(Py o P;) € img P», hence img(P; o Py) € img P; N img Ps.
Let conversely h € img Py n img Py. Then (P) o Po)h = Py(Pyh) = Pi(h) = h, ie.
h € img(P; o Py). O

8.6 Example. The representation given by multiplication.

Let 1 be a Borel measure on a compact space X and p : f — My be the represen-
tation of L*(u) on L?(p) by multiplication operators My : g — f - g.

P

The mapping B — P(B) := p(xp) is 0-ADDITIVE B(X) > L(L2(u))
in the following sense: By < B(X), countable,
pairwise disjoint = P(| |z, B) = Xpes, P(B), IX TP

where the sum converges pointwise. Borel, (X, C) L™(p)

Proof. We have already seen in that all P(B) are orthogonal projections and
that P(B; n By) = P(Bjy) o P(Bs). Thus, for disjoint B; and Bs, the images of
P(B;) and P(Bs) are normal to each other by . The image of P(B) is obviously
{g€ L*(1) : g|x\5 = 0}. And with gp := x5 - g we obtain:

img(P( || B)) = {9e L2 : glxium, = 0} = { X 98 € L2() : gl = 0}

BeBg BeBg

— @ img P(B) img( >, P(B)).

BeBy BeBy
Hence P(LlBeBO B) = ZBEBO P(B) O

8.7 Definition. Spectral-measure.

We call a mapping P : B(X) — L(H) defined on the Borel algebra (or any o-algebra
B of a space X) a SPECTRAL MEASURE on X with respect to the Hilbert space H
if:

1. The operator P(B) is an orthogonal projection for each B € B:

2. P(X)=1and P(g) =0.
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3. By < B, countable, pairwise disjoint = P(|_|zcp, B) = X pcp, £(B) point-
wise.

Note that by , in the case of H = C, the spectral measures are the {0, 1}-valued
measures.

8.8 Lemma. Basics about spectral measures.
For spectral measures P the following statements are valid:
1. If By n By = J, then img P(B;) 1 img P(Bs).
2. We have P(By n By) = P(By) o P(Bs).
3. The spectral measure P is monotone.
4

. For h,k € H the function B — Py, ;,(B) := (P(B)h, k) gives a complex Borel
measure on X with total variation | Py k|| < |h| |kll. In particular, Py is a
positive Borel measure.

Proof. ( ) Let B; and Bs be disjoint. Suppose the images of P, := P(Bj) and
P, := P(B3) are not normal to each other, i.e. P,o P; # 0 by . Let x € img P,
with Pz # 0. Then

[(Py+ Po)z|? = (& + Pz, x + Paxy = 2] + 3| Pea|* > |z,

so P + P
contradiction.
() Now let By and By be arbitrary and P; := P(B;\Bz), Py := P(B3\Bj) and
Py := P(B1n B3). Then Py, P, and P; are by () pairwise orthogonal projections.
Furthermore, by ,

P(By) = P((B1\B2) u (B1 n B2)) = P1 + P,

P(Bs) = P((B2\B1) u (B1 n Ba)) = P, + R,

P(B; u By) is not an orthogonal projection by [7.40.3|, a

Folglich ist
P(Bl)OP(BQ) = (P1+P0)O(P2+P0)

7.3
:P1OP2+P00P2+P10PO+POQPO0+0+0+P0
:P(BlﬁBQ)

2
(3)) Let By € By, ie. By = By n By and thus P(B;) = P(By n By) = P(By) o
P(B,), i.e. P(By) < P(Bs) by [8.2]

() We have that p := P} 1 is a complex Borel measure, because from P(| |, B;)h =
> P(B;)h for pairwise disjoint Borel sets B,,, the o additivity of ;1 follows:

w(LIBi) = (P(LUB)hk) = (S PBIR k) = Y(P(BIR ) = Y u(B.).
We have |p(B;)| = a; u(Bj) with a; € S* < C. Hence
DB = Y ai(PBh ) = (Y0, PB)hk ) <Y 0, P(B,)h| [k
and, since the P(B;)h are pairwise orthogonal,

[N asP(Bon] = Y lasP(Bonl? = [N P|" = [P (L] B)A" <12
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Thus > [(Bj)| < [Pl [E], ie. [ul :=sup{X; [n(Bs)[} < [A][[K]- 0

8.9 Definition. Operator topologies.
We will use the following topologies on L(H):

1. The NORM TOPOLOGY, i.e. the topology of uniform convergence on the unit
ball (or on bounded sets) of H. A generating norm is the operator norm
|7 = sup{|| Tz « =] < 1};

2. The STRONG OPERATOR TOPOLOGY (SOT), namely the pointwise conver-
gence on h € H. It has as subbasis the seminorms T — ||T'(h)| for all h € H;

3. The WEAK OPERATOR TOPOLOGY (WOT), namely the pointwise conver-
gence with respect to the weak topology o(H, H') on H. It has as subbasis
the seminorms T — [{Th, k)| for all h,k € H.

Lemma.

The involution * is continuous with respect to the WOT. The composition is sepa-
rately continuous with respect to the WOT and also with respect to the SOT.

Proof. We have (T*h, k) = (h,Tky = (Tk,h) and therefore {T;*h,ky — (T*h, k)
converges provided (T;k, hy — (Tk,h) for all h,k € H.

We have ((T' o S)h, k) = (T(Sh), k) and therefore with T; — T also T;0 S > T o S
converges with respect to the WOT.

Finally, (STh,k) = (Th,S*k) and thus {ST;h,k) — {(STh,k) converges for all
h,k e H if T; — T with respect to the WOT.

If T, — T in the SOT, then T;(Sh) — T(Sh) for he H,ie. T; 08 — T o S in the

SOT and further T;h — Th and thus S(T;h) — S(Th), i.e. SoT; — SoT in the
SOT. O

We aim at constructing a representation p of C'(X,C) and, more generally, of
Borel, (X, C) for a given spectral measure P on X by

o(f) = L{ f(z)dP(z) for f € Borely(X,C).

In order for this to make sense, we have to give a meaning to this integral. We first
consider the integral of bounded measurable functions with respect to a complex
Borel measure p on X.

8.10 Proposition. C-Integration.

1. Denseness of the elementary functions in Borely (X, C) with respect to ||| s -
For each bounded Borel measurable function f : X — C and € > 0 there
exists a decomposition of X in finitely many Borel-measurable sets Bj, s.t.

sup{|/(z) — F(@)|: w4’ € Bj} < for all .

2. Approxzimation of the integral by a sum:
If u is a C-valued Borel measure on X then any f € Borely (X, C) is integrable
with respect to p. Moreover, for e > 0, the B; choosen as in (1), and z; € B
we have:

UX fdp— Zf(wj)N(Bj)‘ <e|pl
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3. Embedding of Borely (X, C) into M(X,C)’:
The Banach space Borely(X) := Borel, (X, C) of all bounded Borel-measurable
functions on X considered with the supremum norm embeds by virtue of the
mapping f — (u— § f(x)du(z)) isometrically into M(X,C)" = C(X,C)".
Where M(X) := M(X,C) is the Banach space of the regular C-valued Borel
measures with respect to the variation norm.

4. Weak denseness of C(X,C) in Borely(X,C):
For each f € Borely(X) there exists a net of continuous functions f; € C(X)
with | filew < |flw and fi — f with respect to o(M(X)', M (X)), i.e.
Sy fidp — §y fdup for all pe M(X).

Proof. () Let f € Borely(X) and € > 0. We choose a covering of {z € C: |z| <

[ flo} with finite many open balls U; with radius § and centers z;. Let By :

F7HU\U; <k f~1(U;). Then the B; form a decomposition of X into measurable
sets and for x, 2" € B; the following holds:

[f(2) = @) < [f(@) = 2] + |25 = f@)] <

For any fixed choosen x; € B; and all x € B; we have

(£ =2 #@)xs, ) @) = 1£(2) = fl@)] <& hence | =3 fw))xa,

+

DO ™

< e
0

() Now let 11 be a C-valued Borel measure and z; € B; arbitrary. Then
[ 35 rasc, duf = [ ) ()|
X i
< D FE)RBHI < 1 F oo D5 10BH] < |f o Il
J J
Thus, because of | f—32; f(z;)xB;|» < €, the function f is integrable and § fdp =

lim § >; f(z;)xB; by Lebesgue’s Theorem [18, 4.11.12] on dominated convergence.
In particular,

[ an] <1510 1l

and
‘ffdu—Zf(xj)M(Bj)‘ = U(f—zf(wﬂ’”@f) Z
< Hf—Zf(mj)XBj

[l < &gl
0

(3)) Because of ‘Sfdﬂ‘ < | f]oo [ 2], the mapping f — (u+— § f dp) is a contraction

Borel,(X) — M(X)'. In order to show that this is even an isometry, let € > 0.
Then there is an z € X with |f(x)| = | f|x — €. Let py be the point measure of =,
ie. py(B) = 1if x € B and 0 otherwise. Then [, | = 1 and thus |u — § fdu| =

1§ fdpa| = 1f(@)] = [ flo — e

() Without loss of generality, let |f|| < 1. Then this is a consequence of the
following lemma for F := C(X,C). O
8.11 Lemma.

Let E be a normed space.
Then the 1-ball of E is dense in the 1-ball of E" with respect to o(E", E’).
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Proof. Let B be the o(E”, E')-closure of the 1-ball of E in E”. We have to show that
the 1-ball of E” is included in B. Suppose not, then let z” € E"\B with ||z”| < 1.

By the separation theorem there exists an 2/ € (E”,0(E",E’))’ = E' and a
o € R with

Re((@',2)) < a < Re({z',2")) for all z € B.

Without loss of generality a = 1, because 0 is in the 1-ball of E we have 0 < « and
we can divide the inequality by a and replace ' by ém’ .

For ||z| < 1 we choose X € St so that (z/,2) = X [(2/,x)|. Then Az € B and thus
|Kz', 2)| = Re(A{(z', 2)) = Re((a', Az)) < 1,

hence |z'| <1 and
1 <Re((@’,2")) < o', 2") < '] [|2"] < 1

yields a contradiction. O

8.12 Corollary. Operator-valued integration.
Let P : B(X) — L(H) be a spectral measure.

1. Operator-valued integral:
For each f € Borel,(X,C) there is a unique operator

denoted J fdP = f f(z)dP(x) e L(H)
X X
and determined by <( f fdp)h, k> - f FdPyy, for all h,k e H.
X X

2. Approxzimation of the integral by a sum:
For f € Borely(X,C) and € > 0 let {B1,..., B} be a decomposition of X

as in | 8.10.1| and x; € B; be chosen arbitrary. Then the following estimate
holds:

[ rar= Y ) i) <
X iz
3. Representation of Borel,(X,C) on H:

p : Borely(X,C) — L(H), given by f r—»f fdPp,
b's

is a =-representation of the Abelian C*-algebra Borel,(X,C) of all bounded
measurable functions on X . It is continuous with regard to o(M(X)', M (X))
on Borely(X,C) and the WOT on L(H). By restriction, we also get a -
representation of C(X,C).

Proof. ([ 1]) By[8.8.4] and [8.10.2], b(h, k) := {, f dPy . € C is well-defined for all
h,ke H and b is a sesquilinear form with [ < | f[« by [8.10.3]. So by there

is a unique bounded operator, which we denote with { « JdP, such that

<(J fdP) h’k> = b(h, k) :f fdPyy, forall h, ke H.
X X
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() Let now a decomposition {By, ..., By} of X be given as in|8.10.1 |. For z; € B;
and all h, k € H we have

K(L fdp) h, k> — JZ: F(z;){P(B;)h, k>‘ _ UX FdPyy — JZ: flz;) Ph,k(Bj)‘

<e||Puxl (by[8.10.2])
<elh| k] (by [8.84]).

HJX fdP =Y f(x;) P(By)| <<

() We only show the multiplicativity in detail because the remaining algebraic
properties are easier to show. Let f; and fs be measurable and € > 0. We choose a
decomposition {Bi, ..., B, } of X into Borel sets and z; € Bj, such that sup{|f(z)—

f(@)] :z,2’ € Bj} <eforall fe{fi,f2,fifo}andall je{l,...,n}. Bythen

|[ 5P =350 P3| << for £ & (1, 1)

Consequently,

Since the images of P(B;) are orthogonal to each other,
\(;f(wj)P(BthH:ZIf(xj) DA = 3 e P01
< U115 1P A = HmeHZP a
— 1% \P(|7|Bj)h = LI Il

and by thus
|| 4P| <111

By means of the triangle inequality we obtain:

M fi fadP (J f1ap) (J f2ap)|
< HL fi fodP — Zfl(%') fa(z)) P(Bj)H

+ Zfl () fa(x;) P (Z Fiz;) P j)> (ZfQ(mj)P(Bj))H
canen| e ]
St rtm- [ nae-|[

Because of P(B;) o P(Bj/) = P(Bj n Bj:) = P(J) = 0 for j # j, the second term
is 0. And because of | 3}, f(z;) P(B;j)| < [fl« for f € {fi1, fo} we have finally

HJfledP ffldP fodP | <@+ 1Al + 1 f2le):

Since e > 0 was arbitrary, { fi fodP = (§ f1 dP) (§ f2 dP) follows.

andreas.kriegl@univie.ac.at © 1. Juli 2019 171



REPRESENTATIONS OF ABELIAN C*-ALGEBRAS AND SPECTRAL MEASURES 8.13

The *-homomorphism property follows from
|Fap= X Py = (L) P5) =~ ([ £ap)”

The weak continuity holds, since for f; — f in o(Borely, M (X)), i.e.§ fdu — § fdp
for all e M(X), and in particular for p := P, we have

<<ijdP)h,k>:ijdPM—»ffdPM:<<deP)h,k>,

hence § fj dP — { f dP with respect to the WOT. O

8.13 Theorem (Counterpart to the representation theorem of Riesz).

Let X be a compact space and H a Hilbert space.
Then the =-representations p of C(X,C) on H are in bijection to the spectral mea-
sures P on X with respect to H via the relation

o(f) = JX F(@)dP(z) for all f € C(X,C).

In short:
Hom(C(X,C), L(H)) = M(X, L(H)),
where M (X, L(H)) denotes the set of all spectral measures on X with respect to H.

Proof. (p — P) This is .

(p — P) As for the Riesz representation theorem we extend p first to a representa-
tion p of Borel, (X, C) to get the spectral measure P as P := p o x afterwards:

p

(0> §) O(X) ¢ L(H) % £()
4
Since Borel,(X) can be considered \
as a subspace of C'(X)” by [8.10], )
it makes sense to use the bidual 9 Borel, (X) 3 T
mapping "
kk " "
C(X)” 4 L(H)//
E

Unfortunately the space L(H) is not reflective and we can only
hope to find a retraction (i.e. a left inverse) 7 for the canonical /
embedding ¢ : L(H) — L(H)".

The canonical embedding 0 : E < E” of a Banach space E into its C 6
bidual space has the following property: evy od = ¢ holds for each
l e FE’, because (evy0d)(z) = eve(d(x)) = 0(x)(¢) = £(z). eve

E//

L(H) For h,k € H, let the linear functional ¢,
L(H) — C be defined by 5, x(T) :={Th, k).

We have [0, 4(T)| = KTh, K] < |T)| 1] [k]. Thus
lh 1 is continuous with |[£5, & < |[A]| | &

The searched for 7 has to fulfill ¢, o7 = evy, ,,
and is obviously uniquely determined this proper-
ty because the functionals ¢}, ;, separate points.

This condition means that the following holds for all ¥ € L(H)":
(r(W)h, k) = (bhr 0 T)(V) = (eve, ) (V) = U(lhk).
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In fact, by , a continuous linear operator 7(¥) is defined by this implicite
equation, because (h, k) — ¥(¢}, ;) is obviously a sesqui-linear form with |U (¢}, ;)| <
[ 6kl < @] B kL. So |7(®)] < |W], ie. 7 : L(H)" — L(H) is a contraction
and clearly linear.

Sideremark: For Banach spaces E and F, one has more generally a 7 : L(E, F)" —
L(E,F"), which, composed with 6 : L(E,F) — L(E,F)", yields the inclusion
0« : L(E,F) — L(E,F"). This 7 is associated with the 3-linear form

L(E,F)" x Ex F' - L(E,F)" x L(E,F) - C,

which is described by the bilinear mapping E x F' — L(E,F)’, which in turn is
associated to E x F' x L(E,F) > F' x Ex L(E,F) —> F' x F — C.

So we obtained the following commutative diagram:

C(X) - - L(H)
RS Lhk
5 Borely(X) C T
/ o e\k
C(X)// ,l)** L(H)//
Where p := (7 © p™*)|goren, (x) defines a linear extension of p that satisfies [p] <

|Top™| <o <1-1=1

Furthermore, pp, 1 := £5 1 0p is a continuous linear functional on C'(X), and thus can
be considered as regular Borel measure. The lower triangle commutes, because for
¢:=lh 1 € L(H) the following holds: (ev, 0p**)(®) = eve(p™*(®)) = p**(P)(¢) =
D(p*(0)) = ®(Lop) = evyop(P). Thus the inner parallelogram commutes and hence

GUIE =t o D)(F) = eV o () L £(2) dpn

Therefore p is also continuous from o(Borel,(X), M (X)) to L(H) with the WOT.
Since C'(X) is dense in C(X)” = M(X)' by with respect to the topology
o(M(X),M(X)), it is also dense in Borel,(X) with respect to the trace topology
o(Borely(X), M(X)).

Now we use this to show the multiplicativity of p:

Let f € Borel,(X). By there is a net f; € C(X), with § f; du — § f dy for all
w€ M(X). Since with g € Borel,(X) and p € M(X) also g u defined by (g p)(f) :=
§s fgdulies in M(X) (because gpu : C(X) —L— Borely(X) — M(X)' - C is
continuous by ), fi g — f g holds in the weak topology o(Borel,(X), M (X))
and thus p(f; g) — p(f g) with respect to the WOT. In particular, if g € C(X),
then o(fi g) = p(fig) = p(fi) o p(g) — p(f) o p(g) with respect to the WOT, since
the composition is continuous in the first variable with respect to the WOT by
. Consequently, g(fg) = p(f) o p(g). If g € Borely(X) is now arbitrary, then
5(i9) = #(a ) = i(g)  p(fs) — i) © (f) in the WOT, since the composition
is also continuous in the second variable with respect to the WOT by . So
plg f) = plg) o p(f).

In order to show that p is a =-representation, it remains to prove the *-homomorphy:
Let f € Borely(X) and f; € C(X) be a net as before. For 1 € M (X), let the measure
7 be defined by 1i(B) = pu(B). Then, with respect to the WOT, p(f;) — 4(f), and
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hence p(f;)* — p(f)* by . On the other hand: Because of { f;du = § fidp —
§ fdip = § f du for each measure i, we have p(f;)* = p(f;) — p(f),i.e. p(f)* = p(f).
(p — P) We claim that B — P(B) := p(xp) defines a spectral measure P:

By we know that P(B) is an orthogonal projection, P(X) = 1, and we have
P(B1 n B2) = p(xB, - XB,) = P(B1) o P(B2) and P(B1 u Ba) = p(xB, + XB,) =
P(B;) + P(Bz). All that remains to prove is the o-additivity.

Let B; be pairwise disjoint Borel sets, Bs,, := | J.., B;j and h € H. Then

i>n

HP(D Bk)h — i P(Bk)hH2 - HP(B>n)h + P(|i| Bk)h - P(|i| Bk)hH2
k=1 k=1 k=1 k=1
= |P(B=p)h|? = {(P(Bsn)h, h)
={p(XBoy )by = Ch (P (XB>n))
= phn(Bsn) = Z fnn(

ji>n

because pp 1, as a measure, is obviously o-additive. So P is a spectral measure.

(p — p— P — p) For each representation p with associated spectral measure
P := pox we have to show that { f dP = p(f) holds for all f e C(X):

Let f € Borel,(X) be arbitrary, ¢ > 0 and B, 3 z; as in | 8.10.1 |, hence

Hf— i f(xj)XBj "

<E.

Because of || <1 and |8.12.2, it follows that

| o(F =3 o) xB)H+H2m By) - [ 1ap| <2

Jj=1
s0 p(f) = § f dP.

() — f fap| <

(P~ p— p— P)Let P: B(X)— L(H) be a spectral measure with representation
p : Borely(X,C) — L(H) associated by |8.12.3], i.e. £, x(p(f)) = §x fd(lni o P)

for all f € Borely(X,C) and h,k € H by |8.12.2|. In particular, 5 1 ((5 0 x)(B)) =
§y xBd(lhx o P) = £y (P(B)), and since the £}, ; separate operators, po x = P.
Remains show, that p is the unique extension of p|¢(x,c), which holds, since p is

continuous from U(Borelb(X (C) M (X)) into the WOT by and C(X,C) is

dense in o(Borel, (X, C)’ )) by O

Spectral theory for normal operators

Remark.

Let H be a finite-dimensional Hilbert space. Then the spectral theorem of linear
algebra says that every normal operator N can be diagonalized. In particular, there
is an orthonormal basis consisting of eigenvectors u; to eigenvalues \;. Thus

= N(Z<x, u2>u1> = Z)\i {x, ) uy.

In the infinite-dimensional case, a corresponding theorem has to look different,
since a normal operator does not need to have eigenvalues, such as for example the
multiplication operator N = M;q with the identity on L?[0,1]: Let A f(¢) = t f(¢)
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a.e. for some f € L?[0,1]. Then (A —t) f(¢) = 0 a.e. and thus f =0 a.e., i.e. f =0
in L2[0,1].

However, one can also rewrite the finite-dimensional theorem as follows. For each
eigenvalue A € o(N), let P\ be the orthogonal projection onto the eigenspace

ker(N — X). Then
x) = Z)\i (e uiyu; = Z Z il ui) uy

X =\
—Z)\ Z (xyuiyu; = Z A Py\(x
A=A Aeo (N

Let’s generalize this to Hilbert spaces and for this we have to simplify {IN, N*}¥:

8.14 Fugledge-Putnam Theorem.

Let N1 and No be normal operators on Hy and Hs. If T € L(Hy, Hy) intertwines
the operator Ny with Ny (i.e. T Ny = NoT), it also intertwines Ni* with N.

Proof. No T =T Ny = p(N2) T = T p(N;) for each polynomial p and, furthermore,
for every entire function p € H(C,C). In particular,

T = exp(—izZN2) T exp(izNy).

Since exp(X +Y) = exp(X)exp(Y), if X and Y commute with each other, and
since the IN; are normal, we have

f(2) := exp(—izN3) T exp(izN;y')
= exp(—izNy) exp(—izN2) T exp(izN1) exp(izN;')
= exp(—i(zNy + zN3)) T exp(i(zNy + zN7)).
For each z € C, both zNJ 4+ ZNy and ZN; + zN;* are Hermitian operators, so
exp(—i(zN5 +ZN3)) and exp( (ZN1 + zN7")) are unitary (for (exp(iA))* exp(iA) =

exp(—iA*)exp(iA) = exp(i(A — A)) = 1) and hence ||f(z)| < ||T"]. The bounded
mapping f : C — L(Hy, Hy) is holomorphic, thus according to Liouville’s Theorem

it is constant, and in particular

0= f'(0) = —i N5 exp(0) T exp(0) + i exp(0) T Ny exp(0) = i (T Ny — NS T). O

8.15 Spectral theorem (for normal bounded operators).

Let N be a normal operator on a Hilbert space H.
Then there is a unique spectral measure P on o(N), such that N has the following
SPECTRAL DECOMPOSITION

N = J 24P

If U # & is relatively open in o(N), then P(U) # 0.
Furthermore SU(N) fdP e {N}** for all f € Borely(¢(N),C), resp.

(N, N*}¥ — {N}* = {P(B) : Be B(a(N))}" = {J fdP: fe Borelb(a(N))}k
o(N)

Function calculus: f — f(N) :

Soeu
the C*-algebra Borely(o(N),C) on H,
to the topology o (Borely(a(N)), M (o(N
and maps id to N.

f dP(z), is the unique representation of
hi

w ch is additionally continuous with respect
))) on Borely(o(N)) and the WOT on L(H),
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Proof. Existence of P:
N € L(H), normal

:
Alp: C(c(N),C) —=> C*(N) < L(H), a representation with p(id) = N

-
3P : B(c(N)) — L(H), a spectral measure with N = zdP(z)
o(N)

315 : Borely(o(N),C) — L(H), a weakly continuous representation.

Here § fdP = p(f) for all continuous f by , thus in particular §zdP(z) =
{id dP = p(id) = N.

Uniqueness of P: Each spectral measure P on o(N) with N = SU(N) zdP(z)

corresponds by to a unique #-representation p : f — SU(N) fdP of C(o(N))
with p(id) = N, i.e. the unique function calculus from .

Continuity of the function calculus: This follows from |8.12.3 |.

Uniqueness of the function calculus: Let p be any representation as claimed.
Because of the uniqueness of the function calculus ’ 6.28 ‘ and ’ 7.14 |, this coincides
with f — f(N) for all f € C(o(N)). Because of the continuity with respect to
o(Borely, M) and the denseness of C(X) by , this coincides with { f dP also
for all f € Borel,.

Non-degeneracy of P: Let now U # (J be open in o(N). Then there is a contin-
uous function f # 0 on o(N) with 0 < f < xy. Hence, P(U) = p(xv) = p(f) # 0
by [8.8.3],[8.12.2] and [ 7.14], so P is not degenerated.

U

Commutator identities:
{P(B): Be B} & {f(N): f eBorel,} <2 {f(N): feC} Cﬁ {N, N*}kk

The inclusion in the middle is WOT-dense according to ’ 8.10.4 ‘ and’ 8.12.3 |, and the

inclusion on the left is dense in the operator norm according to | 8.12.2 |. Since the
composition is separately continuous with respect to these topologies according to
7 all sets to the left of {N, N*}** have the same commutant {N, N*}* = {N}*

by [7.16 | and [8.14]. O

Definition. Support of a measure.

Let o be a regular Borel measure on X and U € X an open set. One says that p
vanishes on U, if { fdpu = 0 holds for all f € C.(X) with flx\v = 0. Equivalently,
it is sufficient to request this (as with distributions in [18, 4.13.3]) for all f €
C.(X) with support supp(f) € U, because if f|x\y = 0, then h,, f — f converges
uniformly and supp(h, f) € U, where continuous functions h,, € C(X,[0,1]) are
choosen by Tietze-Urysohn so that supp(h,) € U and h, = 1 on {z : |f(z)| = }.

The union of all open sets U with this property has the same property (i.e. there is
a largest set among them), because the (compact) support of f is already covered
by finite many such U and thus f can be written as f = > . h; f by means of a
subordinate partition {h;}; of unity. Since {h; f du = 0, the same holds for f.

The complement of the largest open set U with the above property is called the
SUPPORT supp(u) of .

andreas.kriegl@univie.ac.at © 1. Juli 2019 176



SPECTRAL THEORY FOR NORMAL OPERATORS 8.17

Note that for the spectral measure P of a normal N € L(H),

@ =((|

o

N fdP)h,k> _ L(N) FdPy,

for all h,k € H and f € Borely(c(N)). In particular, (f|,n)(N)h, k) = § f dPpy
holds for all h,k € H and f € Borel,(C), as Py is a measure on o(N) and hence
can be considered as a measure on C with support included in o (V).

8.16 Lemma.

Let E be a Banach space and T € L(E). If o(T) = K; u Ky with disjoint closed
Ky and Ky, then a decomposition E = E1 @ Ey into invariant subspaces E; of T
exists, s.t. o(T|g,;) = Kj.

Soif o(T) is discrete (and therefore finite), we find a decomposition E = @/\EU(T) E)
in invariant subspaces for which T'|g, has spectrum {\}.

Proof. Let p € H(o(T),C) be the holomorphic germ with p = j locally at K; for
j €{0,1} as in . Then P := p(T) € {T}** (by ) is idempotent. Thus,
E; := img(P) and Ey := img(1 — P) = ker(P) is invariant under {T}* 2 {T'} by
739.1]

Let Tj := T'|g,;. Then T' — X is invertible in L(E) if and only if T — A is invertible
in L(E;) for j = 0 and j = 1, and thus K; UKy = o(T) = 0(T1) vo(Tp): In fact an
inverse B to T — X belongs to {T'}*, hence has to keep the subspaces Ej-invariant
by because P e {T}F* < {B}*.
(o(T;) < K)Let)\¢K and w.log i =1
fby f:2z+— fz locally around K; and b,

(A — 2)f(z) = p(2) and thus (A — T) f(T) = p(T
under all occurring operators, the restriction 7; of
O'(Tl) o Kl.

Because of Ky 1 Ko = o(T1) u o(Ty) we obtain o(T7) = Ky and o(Tp) = Ko. O

. We define the holomorphic germ
v f = 0 locally around K. Then
) = P. Since F; is invariant

T to F; satisfies A ¢ o(T}), 1

8.17 Proposition.

Let N be a mormal operator on a Hilbert space H with spectral measure P and
A€ o(N). Then img(P({\})) = ker(N — X). Thus, X is an eigenvalue of N if and
only if P({\}) # 0 and then P({\}) is the orthogonal projection onto the eigenspace
of \.

Proof. (<) We have (2 — A) - x(n; = 0 and therefore (N — X) P({A}) = 0, i.e.
img(P({A})) < ker(N — A).
(2) For h € ker(N — \),

0=[(N = Xh[* = (N = Xh, (N = X)hy = (N = N)*(N = A)h, h)

_ J'Z PP () B

and, since p := Py = (P(_)h,h) is a positive measure by , therefore
supp(p) < {z € C : |z = AP = 0} = {A} (In fact: A ¢ supp(f) = [f(2)| <
Clz= A2 =0 < |{ fdul < {|f|du < C {|z—APdu(z) = 0) and thus | P((X})h|> =
PUADR Ry = p(fA}) = (o (N)) = L(§, () APYR By = [B]?, i h € img P({A}).

O
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Spectral theory of compact operators

8.18 Lemma.

Let E and F be Banach spaces. An operator T € L(E, F) is compact if and only if
its adjoint operator T* € L(F*, E*) is it.

Proof. (=) This is [18, 6.4.13]

(<) Let T* be compact. Then T** is compact by the first part, and thus also its
restriction T' to £ < E** and F < F**. O

8.19 Lemma.

Let T be a compact operator, 0 # X € C. Then X is an eigenvalue if and only if
inf{|[(T = M| : [n] =1} = 0.

Proof. (=) is clear, because then a h 0 exists with Th = Ah.

(<) By assumption, there is a sequence h,, € FE with ||h,| = 1 and |(T—A)h,| — 0.
Since T' is compact, we may assume that y := lim, Th,, exists. Therefore h,, =
+((A=T)hy, + Thy,) — +y and consequently 1 = |+y| = \Tl\Hva i.e. y # 0. Due to
Th, — T(%y) = %Ty7 %Ty = y holds, i.e. A is an eigenvalue of T' with eigenvector
Y- O

8.20 Lemma.

Let T be a compact operator on a Banach space E and 0 # X € o(T). Then X is an
eigenvalue of T or T*.

Proof. Indirectly. Suppose A is neither eigenvalue of T' € L(E) nor of T* € L(E*).
By the previous lemma there exists a ¢ > 0 with |(T"— A)h| = c|h| for all
he E.So T — )\ is a homeomorphism onto its image, and thus this is complete and
therefore closed. Because A is not an eigenvalue of the Banach space adjoint T*,
N

img(T — A\) = img(T — \) (ker(T — )\)*)o;(ker(T* —A)o = {0} = E,
holds because T — T* is C-linear! Thus, (T'— \) : E — E is bijective and because
of (T — Mh| = ¢||h]| (or by the open mapping theorem), the inverse mapping
(T — \)~1 is also continuous, i.e. A ¢ o(T). O

8.21 Lemma.

Let F < E be a true closed subspace of a Banach space E and € > 0. Then there is
an x € E with |z| =1 and dist(z, F) > 1 — €.

Proof. Let d(x) := dist(z, F) := inf{|z — y| : y € F}. We choose z; € E\F. Then
there is a y; € F with 0 < d(z1) < ||z1 — 1] < (1 + €)d(z1). Let z := 21 — y1,
then d(xzg) = inf{|ze —y| : y € F} = inf{|lz1 —p1 —yl| : y € F} = d(z1) and
(I+e)d(ze) = (1 +¢e)d(z1) = |x1 — y1]| = |z2|| > 0. Finally let z := HI%H.TQ. Then
|z| = 1 and for y € F we have

1 1
=yl = | =z = y) = 5 o2 — l@ally)
2] 2]
1 1 1
Z - =z ———d =
(1 +¢) d(z2) H” ””QHyH (1 +¢) d(z2) (w2) = 772
>1—e. O
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8.22 Spectral theorem for compact operators on Banach spaces.

Let E be an infinite-dimensional Banach space and T € L(E) a compact operator.
Then 0€ o(T) and all 0 # A € o(T) are isolated in o(T') and eigenvalues of T with
finite-dimensional eigenspaces ker(T'— X). If there are infinitely many such \’s, then
they can be arranged in the form of a 0-sequence.

Proof. Claim: Fach sequence of pairwise distinct eigenvalues A, # 0 of T con-
verges towards 0:

For each m we choose an h,, € ker(T — A\,)\{0}. Let E, be the linear subspace
generated by {hi,...,h,}. This space is n-dimensional since the h,, are linear in-
dependent: Let )}, prhi = 0 be a linear combination of minimal length, then 0 =
(T — M) Qg thie) = 2pwq Mk (Ax — A1)hy is a contradiction to the minimality. By
the previous lemma there exist y, € E,, with |y,| =1 and d(y,, Fn—1) > %
Let yn =1 Xpcp ik Piee Then (T — Xp)yn = X, ke (Ak — An) hi, € B g and thus
for n > m:

1 1 1 1
T(— -T(— = — (T — ——(T — —
<>\n yn) (Am ym> \, ( /\n)yn X, ( Am)ym + Yn — Ym

1 1
= Yn + ()\ (T - /\n)yn - N (T - )\m)ym - Ym ) €EYn + Ep_1.
n N—

m

EE'IYL
€E, 1 €Em—1

Consequently,

1 1 . 1
HT ()\nyn> -T (/\mym> ' = dist(yn, Fn_1) > 7

Thus (T(5-yn))n has no convergent subsequence. But since 7' is compact, and
hence the images of bounded sets are relatively compact, (%yn)n can not have a
bounded subsequence. So | x=y,| = ﬁ — 0, i.e. Ay, — 0.

Claim: All0 # A e o(T) are isolated points of o(T).

If A, € o(T) with A\, # X converges to A # 0, according to , An is an eigenvalue
of T or T*. Without loss of generality, we can assume that all \, are eigenvalues
of T or all of T*. The previous claim yields — since also T* is compact by -
An — 0, a contradiction.

Claim: All0 # A€ o(T) are eigenvalues of T.

Since A is isolated, there exists by a closed invariant subspace E) of E,
s.t. T\ := T|g, has as spectrum {\}. So, T is an invertible (0 ¢ o(7T)) compact
operator and thus F) is finite-dimensional (because the image of the unit ball is
then a relatively-compact O-neighborhood). As a result, A € o(T)) is an eigenvalue
of T and thus of T.

Claim: The eigenspace ker(T — \) is finite-dimensional.
Since ker(T' — A) is a T-invariant closed subspace and X idyer(r—x) = Tlker(r—») is
compact, ker(T — )) is finite-dimensional. O

8.23 Lemma.

Let N be a normal operator on a Hilbert space with spectral measure P.
Then N is compact if and only if P({z € o(N) : |z| > €}) has finite-dimensional
image for all € > 0.
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Proof. (<) Let ¢ > 0 and B := {z € o(N) : |z2| < &} and P. := P(c(N)\Be).
Then for f: z+— zxp.(2) we have

N-NP. =N(1—P.) =N P(B.)
- [+ xw.21aP() = V)

So |[N = NP.| <|flo =sup{|z| : 2 € B.} < e. Since P. has finite-dimensional
image for each e, so does N P., and hence N is compact by [18, 6.4.8].

(=) Let N be compact and & > 0. Consider g : z — Ix,(n) p.(2) in Borel,(C).
Since N is compact, the same is true for

1
Ng(N) = fz 2 XU(N)\BE(Z) dP(z) = P..
Since P. is a projection, its image has to be finite-dimensional. O

8.24 Spectral theorem for compact normal operator on Hilbert spaces.

Let N be a compact and normal operator on a Hilbert space.

Then the eigenvalues unequal 0 of N form a finite or a convergent sequence A;.
The eigenspaces ker(N — X;) are finite-dimensional and pairwise orthogonal and
with respect to the orthogonal projections P; onto ker(N — \;) the following holds:

N =\P;.
J

Conversely, every operator N is compact and normal, provided it has a represen-
tation N = Zj AjPj with finite-dimensional orthogonal projections P; # 0 with
patrwise orthogonal images and pairwise different 0 # A; — 0. Then the \; are the
eigenvalues other than 0, and the images of the P; are the associated eigenspaces.

Proof. (=) According to the Spectral Theorem , a unique spectral mea-
sure P exists on o(N) with N = SU(N) zdP(z). By the Spectral Theorem

o(N) = {0,A1,A2,...} and each Ay is isolated and an eigenvalue. So by
P, := P({)\;}) is the orthogonal projection onto the eigenspace ker(N — ).
Now let € > 0, and let n be so large that [A\x| < § for & > n. Then the sets
Mt {0, Mgty Ao, ...} form a decomposition of o(N) into Borel sets
with |z — 2| < e for z,2" in the same set. Thus |[{ ) 2dP(z) — 3, AP —
0P({0, An+1,... })| <&, ie thesum >, A\; P converges towards N = SU(N) zdP(z).
Since the A; are pairwise distinct, the images of P; are pairwise orthogonal to .

(<) Since A; — 0 and, furthermore, |P;| < 1 for orthogonal projections P; and
the images of P; are orthogonal, it follows that the sum converges in the operator
norm because

2 2
[P = IR IR < ma{INf 5 = n} | () PR
j=n j=n j=n
< max{|\j[? : j > n} - ]
Its partial sums are assumed to be finite-dimensional operators, so IV is compact.
We have N* =37, A;Pj, hence N*N = NN* =3, |\j|*P; and thus N is normal.
Let A # 0 be an eigenvalue of N and h an associated eigenvector. So 0 # A\ h =
N(h) = >; AjP;j(h), hence at least on Py(h) # 0 and by , using the the or-
thogonality of the images of the P, we get A Py (h) = >3, Aj (P o P;)(h) = AePi(h).
Thus A = Ak, i.e. this k is unique and h = Py (h), i.e. ker(N — A\) € img Py.
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Conversely, h € img P, = h = Ph = N(h) = Zj X Pj(Pih) = Ay Pyh = \ih, ie.
h is an eigenvector with corresponding eigenvalue Ag. O

8.25 Spectral representation of Hermitian operators.

Let N be a Hermitian operator, P its spectral measure and p(t) := P({s € o(N) :
s < t}). Then p : R — L(H) is a monotonous, with respect to the SOT left-
continuous mapping with p() 0 for t < —||N| and p(t) = 1 fort = |N|.
Moreover, f(N S ), an operator valued Riemann-Stieltjes integral,

for eachfeC’( (N)).

Proof. Since t — {s € o(N) : s < t} is monotonously increasing, p : t — P({s €
o(N) : s < t}) is monotonously increasing by and because of o(N) € {s €
R:—|N| < s < |N|}, p(t) =0 by for t < —|N| and p(t) = 1 for t > |N|.
Because of the o additivity of P, p is left-continuous with respect to the SOT: In
fact, t, /" ty implies that (—0,tx) = (—00,t0) L | ;[ti—1,%:) is a decomposition
and thus with respect to the SOT

[e¢]
plte) = Pl(=90,te)] = P[(—o0, t0)] + Y, P([ti-1,t:))
i=1
o8]
= p(to) + Z(P(tz) = p(ti-1)) = lim p(t;).
= i—00
Now let f € C(o(N)), so there is a monotonously increasing sequence of ¢; € R
with |f(z) — f(2')| < e for t;_1 < z,2’ <t;. Then
ff )P(E) = B 1) Plt) = K 16) 016) = plt5-0)
a Riemann-Stieltjes sum for { f(z) dp(z). O

8.26 Corollary.

Let H be a separable Hilbert space. Then the only non-trivial closed ideal is that of
all compact operators.

Proof. Because of the Proposition every closed ideal I # {0} contains all
compact operators. Suppose it contains also a non-compact operator A. Then N :=
A* A is positive and non-compact: Otherwise, N = Zj A; P; with certain 0 < A; — 0
and orthogonal projections P; with pairwise orthogonal images by . Thus
|A| := VA*A = /N = 2. VAP would also be compact by , and hence
A=U|A| (by ) would be compact as well, a contradiction.

By , an € > 0 exists so that P, := P(c(N)\B:) = N g(N) € I has infinite-
dimensional image, where P is the spectral measure for N, B, := {z € o(N) : |z] <
e} =[0,e]no(N) and g(z) := L x,(n)\p.. Since H is separable, there is a surjective
isometry U : H — img(P.). Then 1 = U*U =U*P.U eI, ie. I = L(H). O

Normal operators as multiplication operators

An analogy to a diagonal operator would be a multiplication operator My : g — f-g,
which we will study now.

8.27 Diagonal operators.
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Let (X,Q, 1) be a o-finite measure space. Let f — My be the faithful and there-

fore isometric representation of L* (1) on L*(u), which was given in by the
multiplication operators My : g — f-g. Then we have:

1. The operator My is normal and (My)* = M.

2. We have o(My) = ess-img(f) := ({f(A) : Ae Q, u(X\A) = 0}.
3. The spectral measure P for My on o(My) is given by B — M, _ L8y
Proof. ((1]) We have (hy MFky = (Mgh,ky = § fhkdp = Shﬂdu = (h, Mk),,
ie. (Mf)* = Mf7 and therefore Mf o (Mf)* = Mf o Mf = M‘f‘z = (Mf)* o Mf.

() (S) Let A ¢ ess-img(f). Then there is an A € Q with u(X\A) = 0 and \ ¢ f(A),
i.e. there is an ¢ > 0 with |f(z) — A| = § for all x € A. We have g := 1 L* ()
and M, = (My — \)~!, hence X ¢ o(My).

(2) Conversely, let A € ess-img(f). For n € N, let A, := {z : [f(z) — A| > =}. Then
A, € Qwith 0 < u(X\A4,) < o because A ¢ f(A,). Smce (X,Q,p) i 1s o-finite, there
is a measurable A}, < X\A4,, with 0 < pu(A’) < co. We put f, := \/(T;XA . Then
fu € L2(u) with | ful = 1 and |(My = A ful® = 2§00 1f = AP dpe < 2. Hence
M/ — X is not an open mapping and thus A € o(Mjy).

() We choose a finite decomposition of the bounded set f(X) into Borel sets
Bj with 2,2’ € Bj = |z — 2/| < ¢ and pick z; € B;. Then the sets f~!(B;) form
a decomposition of X into measurable sets and for all x € f~1(B;) the estimate
(f =225 2ixs-1(8,)) (@) = | f(2) = 2| < € holds. Due to [ M| < |lg] for all g € L,

we obtam

Hf ijf 1(B;) ” < E.

HMf - ZZjMXf—l(Bj)
J

Therefore >}, 2; M. Xy-1(n,, COBVETges towards M 7 and also towards {zdP(z), where

P is the spectral measure defined by P(B) := fo—l(B)' O

8.28 Example.

In particular, if X = C and p = 0 is a reqular Borel measure with compact support
K := supp(p) < C, then we denote with N,, the multiplication operator Miq on
L2(u) with the identity id : C — C. The following holds:

1. N, is normal, and o(N,) = supp(u).

2. f(N,) is the multiplication operator My for each f € Borely(C).

3. The spectral measure P for N, is B — M,

Proof. () This follows from ’8.27.1 ‘ and ’8.27.2‘ because N, = M;q and since
ess-img(f) = f(supp(u)) for each continuous f (e.g. f :=id):

(=) We put K := supp(u). Since the characteristic function xc\x of the open set
C\K can be written as pointwise limit of a monotonous sequence of continuous
functions g, € C.(C) with g,|x = 0 (hence {g,dp = 0), we obtain u(C\K) =
SX(C\K dp = lim, Sgn dp = 0. Since f is continuous, the image f(K) is compact and
thus closed and therefore ess-img(f) € f(K) = f(supp(u)).

(2) Let A be any Borel set with u(C\A) = 0. Then for each 0 < g € C.(C)
with gla = 0 we have 0 < {gdp < |g]lw p(C\A) = 0. Thus the support of p
is contained in A, hence f(supp(u)) € f(A) < f(A) for each continuous f, i.e.
F(supp(p)) < ess-imgl(f).

andreas.kriegl@univie.ac.at © 1. Juli 2019 182



NORMAL OPERATORS AS MULTIPLICATION OPERATORS 8.30

() Because of the Spectral Theorem , we only have to show that f — M
has the characterising continuity properties:

So let f; — 0 in Borel,(K) with respect to the topology o(Borel,(K), M (K)). We
have to show that My — 0 in the WOT. Let h,k € L?(u). Then, by Cauchy-

Schwarz, hk € L'(u) and thus hk e M(K), therefore

(Mg, h, k) = J fi hkdp — 0.
K

() This immediately follows from | 8.27.3 | or from () because P(B) = xp(N,) =
M O

Xp*

We now want to show that every normal operator is unitary equivalent to a multi-
plication operator. Hence the following

8.29 Definition.

We transfer some notions of the representation theory of Abelian C*-algebras to
normal operators N € L(H) by considering the C*-subalgebra C*(N) < L(H)
generated by N and the associated representation py : C(o(N)) = C*(N) € L(H),
i.e. the function calculus from .

An h € H is called CYCLIC VECTOR for N, if it is one for the representation py,
ie. {p(N,N*)h:pe C[zZ]} is dense in H.

The normal operator N is called cycLIC if it has a cyclic vector.

Two normal operators Ny € L(H;) and Ny € L(H,) are called UNITARY EQUIVA-
LENT, if an isometric isomorphism U : H; — H exists with Ny o U = U o Ny, i.e.
No=UoN; oU L.

Lemma.

Two normal operators N1 € L(Hy) and Ny € L(Hs) are unitary equivalent if and
only if o(N1) = o(N3) and the associated representations py, and py, are unitary
equivalent:

Proof. (=) If N; — )\ is invertible, so0 is No— A = Uo (N7 —A)oU~!, and vice versa.
Hence the two spectra coincide. Furthermore, py, and f +— U o pn, (f) o U1 are
two #-representations of C(c(N3)), which both yield Ny on the identity. So they
agree, hence py, and py, are unitary equivalent via U.

(<) Let U : Hy — Hs be a surjective isometry with pn,(f) o U = U o pn, (f) for
all f e C(X), where X := g(Ny) = 0(Ns). Then, in particular, Ny o U = U o N;
for f:=id. O

8.30 Corollary.

Every normal operator is unitary equivalent to an orthogonal sum of cyclic opera-
tors.

Proof. Let N be a normal operator on H. By , H is an orthogonal sum of
closed invariant subspaces H; of the representation py : C(o(N)) — L(H), s.t. the
trace representations p; : f — pn(f)] u, are cyclic and py is unitary equivalent
to @j p; via the natural isometry U : @j H; — H. In particular, because of the
lemma in , N is unitary equivalent to @, N; via U, where the N; := N|p,
are cyclic operators. O

As for representation theory, we should first study cyclic operators.
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8.31 Proposition.

A normal operator N is cyclic if and only if a positive measure u exists on o(N), s.t.
N is unitary equivalent to the multiplication operator N,, on L*(u) by the identity.
The equivalence U is uniquely determined by the condition U(hg) = 1 for a fizved
cyclic vector hg, We have (= Py, 1., where P is the spectral measure of N.

PN

Borely(o(N),C) <—— C(0(N),C) —— L(H) H
\Lﬂ' leonju lU
L* () 7 L(L*(n)) L*(n)

Proof. By definition, a normal operator N € L(H) is cyclic if and only if the
representation py : C(o(N)) — L(H) is cyclic. By , such a representation
C(o(N)) is cyclic if and only if it is equivalent to the representation M on L?(u)
for some positive Borel measure p on ¢(N), where the unitary equivalence U :
L?(u) — H is uniquely determined by U(1) = hq for the given cyclic vector hg € H.
By , this is exactly the cases when N and N, = M;q are unitary equivalent.
We have Py, 1, = 14, because

ffdpho,ho (o (fho, hoy = pn (F)ULUTL) = U*pn(f)UL, 1)

= (WU pNn(HUL, 1) == (M;1,1) = deu- O

8.32 Remark. Unitary equivalent N,’s.

To determine the unitary equivalence classes of all cyclic operators, we need to de-
cide for which positive Borel measures p; on C with compact supports the operators
N,, and N,, are unitary equivalent.

Suppose there is a surjective isometry U : L2 (1) — L?(p2) with U N, U™ = N,
From the equivalence of N,,, and N,,, follows by that the two spectra o(Ny,) =
supp(p;) (by ) are the same (say K := o(N,;)) and that py, is uni-
tary equivalent to py, via U. Let f := U(1) € L?*(u2), i.e. |f|*> € L'(u2). Then
Ug=UMy1=MyU1l=gf forall ge C(K) and since U is an isometry we have
§191?dpr = §1g|?|f|? duo. Because of the uniqueness of the Riesz representation

we have p; = |f|? po, where |f|? € L' (uz).

This raises the question, which measures y; can be writen as f s with f € L!(us).

8.33 Theorem of Radon Nikodym.

Let (X, Q, p) be a o-finite measure space and v a C-valued measure on (X, Q). Then
t.fa.e.:

1. VBeQ: (u(B) =0 = v(B) =0);
<2 3felY(X,Qu): v(B) = Sdeu for all B € Q.

Under this equivalent assumptions, v is called ABSOLUTELY CONTINUOUS with re-
spect to u, the function f is called the RADON-NIKODYM DERIVATIVE, and is also
denoted by %' Furthermore f g € L*(u) for all g € L*(|v|) and we have:

fngZ Jgd—ydu.
dp
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For a proof, see [10, S505].

As a special case one shows for example in Analysis that — provided the derivative
g’ of g is Riemann-integrable — one has for Riemann-Stieltjes integrals:

| " f(a) dg(a) = | " f) o () e

8.34 Proposition.

Two positive measures on C with compact support are mutually absolutely contin-
uous (we then write p1 ~ pa) iff the multiplication operators N, on L*(u1) and
Ny, on L*(uz) are unitary equivalent.

Proof. (<) We have shown in that the unitary equivalence of N,, and N,
implies the mutual absolute continuity of measures p; and ps.

(=) Let the measures p1 and ps be mutually absolutely continuous and 0 < f :=
% € L'(uz) the Radon-Nikodym derivative. If g € L' (uy), then fge L'(us) and
§ fgdus = §gdur. So, if g € L?(p1), then |g|* € L'(u1), hence f|g|> € L' (u2) and

thus +/f |g| € L?(u2) and [v/fgl2 = |g]2, i.e. the mapping U : L (1) — L*(u2),

g — +/f g is an isometry. Since obviously £ - dpz 1, the multiplication with -

dpg  dp f
is the inverse to U. For g € L?(us) we have
_ o1 .
UN,U 1g=\/f-1d-ﬁ-g=1d-g=Nuzg
and hence UN,, U™' = N,,,. O

8.35 Theorem. Diagonalization of normal operators.

Let N be a normal operator on H. Then there is a measure space (X,Q, u) and
a function f € L®(X,Q,u), so that N is unitary equivalent to the multiplication
operator with f on L?(X,Q, ). If H is separable, then the measure i is o-finite.

Proof.
= 1H; < H, closed, invariant :
H >~ EBHZ and N ~ @Ni with N; := N|g, cyclic

= Jp; measure on X; := o(N;) € o(N) : N; ~ N,,.
Let X :=| |X;, B:={B < X :BnX;eB(X;)}, u(B) := Y (B n X;)
i

X, is an isometric isomorphism.

U: L2(X, B, 1) > DL (), 9~ |9

Let f:=| [idx,, Le. flx, :=id. Then @ N,, < M; and

?

FYW)n X; =W n X; € B(X;) for all open W € X, i.e. f is measurable;
f(X) = UXi < o(N), hence f is bounded, thus f e L*(X, B, ) and

N ~@Ni~ DN, 2 M.
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If H is separable, only countable many H; are non-zero. Thus X is o-finite because
w(X:) = pi(Xi) = P, op, (Xi) < ||hs|* = 1 for a normed cyclic vector h; by

and . O

8.36 Proposition.

Let Nj € L(H;) be normal operators, and B € L(Hy,Hs) so that BNy = Ny B.
Then img B is Ny-invariant, (ker B)* is Ny invariant, and Ni|(ker )+ and No
are unitary equivalent.

Proof. As in |7.39.4 |, we show the following:

1. For hy € H; we have NyBhy = 1 5 H,
BNjhy € img B. Thus also the \ /
closure of img B is Np-invariant.

2. We have BNyhy = NyBhy = (ker B)' = fmg B

No0 = 0 fqr eac]q hq € ker B, N1 er 5y iNQimgB Ny
thus ker B is Nj-invariant and

also Nj-invariant according to ker B)* > img B
the Fugledge-Putnam Theorem B
[8.14], so (ker B): is also Ni-
invariant. H, B H,

img B

N-

[

Hence the inner rectangle of this commuting diagram is well-defined.

3. Since B|xerp)yr is injective and img B|ker gyt =
img B, we may assume w.l.o.g. that B is injective with ~ H1

dense image. Let B = U |B| be the polar decomposition \

of B with the positive operator |B| = v/B*B and 1B %
imgU = img B = Hy, as well as (img|B|)* = ker|B| = Hy

kerU = ker B = {0}. Thus img |B| is dense in H; and N Nll

U : Hy — H, is a surjective isometry. Furthermore:

8.14
NQB:BN1:>B*N2*:N1*B*B*NQ:NlB* |B| \
= N, B*B=B*N,B=B*BN,
H1>—»H2

So |B]> = B*B € {Ni}* and by we have |B| = /[B? € {|B2}* <
({N1}*¥)** = {N;}*. Consequently,

NyU|B| =Ny B=BN, =U|B|N, =U N |B|,

o,

N2

i.e. NoU = U Ny on the dense image of | B|, hence everywhere. O

8.37 Corollary.

Similar normal operators are unitary equivalent. O

Two operators N; and N, are called SIMILAR, if No B = B N7 for some invertible
bounded linear mapping B.

8.38 Corollary.

Let A be a C*-subalgebra of L(H) which is additionally closed with respect to the
WOT. Then A is the closure with respect to the norm of the subspace generated by
the orthogonal projections in A.

andreas.kriegl@univie.ac.at © 1. Juli 2019 186



NORMAL OPERATORS AS MULTIPLICATION OPERATORS 8.39

Proof. We have to show that every a € A can be approzimated in the operator

norm by linear combinations of orthogonal projections P € A: Since A is a C*-

algebra also Re(a) = 1(a + a*) and Im(a) = % (a — a*) are in A. Thus w.Lo.g.

a € A is Hermitian. By , the Riemann-Stieltjes sums >, ¢;_1(ps; — pt;_,)
converge to a, where p; := P((—0,t)). So we only have to show that the orthogonal
projections p; are in A. The characteristic function x(_u ) is a pointwise limit of
a monotonously increasing sequence of continuous functions f, € C(R). Therefore
fn = X(—w,t) in the weak topology by the Theorem on Dominated Convergence
and hence A 2 C*(a) 3 fn(a) — X(—w,) (a) = p; converges in the WOT. O

Commutants and von Neumann algebras

Our goal is to determine for normal operators N € L(H) on Hilbert spaces H with
spectral measure P, the kernel and the image of the function calculus

px : Borely(o(N),C) — {NY* < L(H), fr> f(N):= J ) fdP

in order to obtain a faithful representation (a functional calculus) by factoring out
the kernel. Since the functional calculus is also continuous with respect to the WOT,
we should examine this topology more closely.

8.39 Lemma. Functionals being continuous with respect to operator
topologies.
Let £: L(H) — C be a linear functional. T.f.a.e.:

1. The functional £ is SOT-continuous;
< 2. The functional ¢ is WOT-continuous;
< 3. There are finite many h; and kj in H with {(T) = 3, (T'hy, k;).

Proof. ( =|2|<= ) is trivial.

( = ) Let ¢ be continuous with respect to the SOT. Then there are finite many
h; with [¢(T)] < Z;L=1 |Th;| for all T € L(H). Because of the Cauchy-Schwarz
inequality [18, 6.2.1], we have

n n n 1/2 n 1/2
D Thi| = Y1 AThy < Vi (X IThi2) T = (X IT(ah)I2)
j=1 Jj=1 j=1 j=1
If one replaces h; by /n h;, then for the seminorm

" 1/2
piT e (3 170)2)
j=1
we have |£(T)| < p(T).
L(H) T Hy —— @n H

% ~
x v lo

C
Let the linear mapping m : L(H) — @" H be given by n(T) := @, Th; and
Hy be its image, then p(T) = |x(T)||. Due to the implications 7(T) = 0 = 0 =
p(T) = [{(T)| = ¢T) = 0, ¢ factors over 7 to a linear functional ¢, : Hy — C
and |6y (7(T))| = |0(T)| < p(T) = |=(T)| holds, so £ is extendable by to
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a continuous linear functional on " H and there is a vector @;k; in the Hilbert
space " H with

UT) = lo(n(T)) = bo(n(T)) = (®;Th;,®;k;) = Z<Thj» kjy. O

J

8.40 Corollary. The closure with respect to operator topologies.

Let A be a convex subset of L(H), then the WOT-closure coincides with the SOT-
closure of A.

Proof. |8.39 | and [5.4.8]. O

8.41 Definition.
For n € N we define a C*-algebra homomorphism A" : L(H) — L(®" H) by

AMT) := DT : @_yhy = (hy)j_y = (Thy)jy.

Lemma.

Let A be a subalgebra of L(H) with unit.
Then the SOT-closure of A is given by all those T € L(H), s.t. for each finite n
each closed A™(A)-invariant subspace of @?:1 H is also A™T-invariant.

Proof. (<) Let T € L(H) be an operator in the SOT-closure of A. Then there is
a net T; € A which converges pointwise towards T. Now let E be a closed A™(A)-
invariant subspace of @?:1 H. This is then in particular A"T;j-invariant and thus
also A™T-invariant.

(2) T € L(H) satisfies the condition on the invariant subspaces. Let h; € H and
e > 0. We have to show the existence of an S € A, with |(T' — S)h;| < € for all
j€{l,...,n}. Let E be the closure of the linear subspace A™(A)(®;h;) =€ @" H.
Since A is an algebra, F is a A™(A)-invariant subspace, so is also A™T-invariant by
assumption. Since 1 € A, we have ®;h; € E and thus @,;Th; = (A"T)(®;h;) € E
and, since A"(A)(@®;h;) dense is in E, there is an S € A with > [(T' — S)h; I <
g2. O

8.42 Remark.
For A € L(H), the commutant A¥ is SOT-closed because of the lemma in , see

[6.31]

If A is closed with respect to #, then A* is a C*-algebra:

We only have to prove the #-closedness of A*. Let b e A* and a € A. Since a* € A,
we have b*a = (a*b)* = (ba*)* = ab*, so b* € A*.

Furthermore, a #-closed subset A is a maximal Abelian subset (or even C*-algebra)
if and only if A = AF holds:

(«<) Let A € B with Abelian B. Then B € B* ¢ A* = A, so A is maximal Abelian.
(=) Let A be Abelian, i.e. A < A*. Since A is #-closed, A* is a C*-algebra and
it suffices to show that fe(A*) < A. Let x € A* be Hermitian and A, be the
C*-algebra generated by A and z. Because of z € A* it is Abelian, and because of
the maximality we have z € A, = A.

8.43 Lemma.

Let A< L(H). Then
Akk _ (An)fl((AnA)kk)
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holds

Proof. The following holds:
t = (ti,j)i,j € (AnA)k = VYae AVZ,] : ti,j a = atm- <= VZ,] : ti,j € Ak,

because
tl,l tl,n a 0 t171a tl’na
tn,l cee tnm 0 a tn,l a ... tn,n a
a 0 tl,l tl,n atl,l atl}n
0 a tha - tnn atp1 ... Qtpgp
Consequently,

Ama e (A"A)* =Vt = (t; ;)i € (A"A)F : t A" (a) = A"(a) t

<:>Vt7;1j EAk :tm-a:atiyj <=>(1€Akk. O]

8.44 Double Commutant Theorem, by Neumann 1929.

Let A be a C*-subalgebra of L(H), then A% is the closure of A with respect to the

SOT or the WOT, i.e.

gk _ gSOT _ zWor

Proof.
(<)
8.43
T e A** AT e (A" A)F*
;e A"T' P = PA" for all P e (A"A)*
= A"T P = P A"T for all ortho-projections P € (A" A)*

Each closed A™ A-invariant subspace is A" T-invariant
—SsoT “wor
e 50T B2 o

(2) Being a commutant A** 2 A is closed with respect to SOT and by also

. —WOT  —SOT
with respect to WOT, so A =A < ARk, O

8.45 Definition.

A vON NEUMANN ALGEBRA A in L(H) is a C*-subalgebra, with A¥* = A, i.e. it is
closed with respect to the SOT (or WOT).

Therefore { N}** is the smallest (Abelian) von Neumann algebra containing the nor-

mal operator N. By this is the WOT-closure of C*(N) or also of {p(N, N*) :
p € C[z,Z]}, because this lies dense in C*(N).

8.46 Proposition.
Let (X,Q, 1) be a o-finite measure space and
Ay =AMy : f e L®(n)} € L(L*(n)),

be the subalgebra generated by the multiplication operators. Then A, = A%, hence
is an Abelian von Neumann algebra in L(L?(u)).
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If pis a finite measure, then the representation f — My, L®(u) — A, from
is a homeomorphism with respect to the weak topology o(L* (1), L* (1)) and
the WOT on A,.

Let p be a positive Borel measure on C with compact support. Then {Nﬂ}k = A#k

and thus {N,}** = A,,, i.e.

L2 (1) = Ay = (N, s L(L ()

Proof. (4, = Al’j) Since A, is Abelian, 4, < Aﬁ. Conversely, for a € Al’j we have
to show that a = My for some f e L*(n). W.lo.g. a # 0.

Let first u(X) < co. Then 1 € L2(u). For f := a(l) € L?*(u) we have a(g) =
a(My1) = My(al) = Myf = g f holds for ¢ € L*(u) < 2( ). So ||fgllz =
la(g)l2 < [al |gllz- In particular, for g := xx, with Xo := {z € X : [f(x)] = 2|a]}.
we obtain

lal?u(Xo) = llal® g* = la(g)|* = 1 glI* = L |fI? dp > 4 Jlal* p(Xo).

So u(Xo) = 0, ie. [f] € L®(u). Since a = My holds on the dense subspace L™ (1)
of L%(p), it holds on all of L?(p).

Let now X = | |, X,, with u(X,) < co. For B with u(B) < o, L?(u|lg) = {f €
L?(p) : f = 0 outside of B} is a-invariant because a(f) = a(xs - f) = x5 - a(f) €
L?(p|p) for f € L?(u|p) since a € Ak. Let ap be the restriction of a to L?(p|p). By
the first part there is an fp € L®(u|p) with ap = My,. We write f, for fx, and
define f :=| |, fn, i.e. flx, := fx,. Then f is a well-defined measurable function
on X and || fn]ew = | My, | = | < al. So | f[w < |al| and obviously a = M.

Let p again be a finite measure.

(Injectivity) We have f — Mj is injective since 1 € L?(p).

(Homeomorphy) Let f; € L*(u) be a net. Then this converges to 0 in the weak
topology o(L®, L') if and only if for all g € L*(p1) the following holds: § f; g dp — 0.
These g are exactly the products hy - ho with hq, he € L? (1), because by Holder’s
inequality hy-ha € L(11), and vice versa, both hy := 4/|g| and h; := sign(g) ho are in
L?(p). So the convergence statement is equivalent to (My, hq, ho) = § fiha hy dp —
0, i.e. to My, — 0 in the WOT on L(L?(p)).

({N,}* = A,*) Let p be a positive Borel measure on C with compact support X.

By [8.14] {N,}F = {N,, N}* = (M, : p e C[z,Z]}* = {M; : f e C(X)}*, since
the set of polynomials p € C[z,%] is dense in C(X). We may consider L'(u) as
subspace of C(X)’ via the isometry embedding LY (p) — C(X)', f — fdu: In fact,
1S9 fdul < gl |flh and [ fdul = |fdp|(X) = §1|fldu = | f]i. Thus, for each
f e L* = (L' there exists by Hahn-Banach a f e C(X)" with f|;1 = f. By ,
§:C(X) — o(C(X)",C(X)') has dense image and thus for given fi,..., f, € L'
and ¢ > 0 there is a g € C(X) with e > |(f — 8(¢9))(fi dp)| = |§ f fidu—§g fi dpl,
hence C(X) is dense in o(L*(u), L' (1)). And since f — My is a homeomorphism
o(L*, L") = (A, WOT), we have Af = {M; : f e L®(u)}* = {My : f e C(X)}F =
(NP =

Remark.

We aim at modifying the function calculus

p : Borely(o(N)) » L(H — J
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from so that it becomes a bijection. In order to achieve this, we first try
to find a Borel measure p on o(N), so that p factores over the quotient map 7 :
Borely(o(N),C) — L*(u) to an injective mapping

Borely(a(N)) i L*® ()

i.e. we should have kerp = kerm = {f : f = 0 p-a.e.} and, because of P = pox :
B(o(N)) — Borely(c(N)) — L(H), at least

{BeB(o(N)): P(B) = 0} = ker(P) = ker(po x) = x " (ker(p))

=x"'({f:f=0p-ae})
={BeB(e(N)): u(B) = 0}.

We therefore define:

8.47 Definition.

A SCALAR-VALUED SPECTRAL MEASURE for a normal operator NV is a measure p > 0
on o(N), which vanishes on exactly those Borel sets where the spectral measure of
N does.

A possibility to find such a measure is to take a vector h € H and consider puy, :=
Py, 5. For these

pn(B) := Pon(B) = (P(B)h,hy = | P(B)h|*.
holds. Thus, pup, is scalar-valued spectral measure if and only if
VB e B(o(N)): P(B)h=0= P(B) = 0.
This leads to the definition:
Let A< L(H). Then an h € H is called SEPARATING VECTOR for A, if
YVaeA:ah=0=a=0.

An h € H is a SEPARATING VECTOR for the normal operator N € L(H) if h is
separating for the von Neumann algebra {N}** generated by N.

8.48 Lemma.
Let h € H be a separating vector for a normal operator N and P its spectral measure.

Then the measure py, := Py is a scalar-valued spectral measure for N.

Proof. h separating for N :< h separating for {N}** 2 {P(B) : B} (because of

[8.15]), so VB € B(o(N)): (un(B) = |[P(B)h|?> = 0 = P(B) = 0), i.e. uy, is a
scalar-valued spectral measure for V. O

Cyclic versus separating vectors.

Let dim H > 1.

1. If A = L(H), then all h # 0 are cyclic vectors, but no h € H is separating.
2. If A = C, then A has no cyclic vectors, but each h # 0 is separating.
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Our next task is to prove the existence of separating vectors.

8.49 Lemma.

Let h be a cyclic vector for A. Then h is a separating vector for AF.

Proof. b € A* = kerb is A-invariant (in fact: ba(kerb) = ab(kerd) = {0}); Let
bh =0, i.e. he kerb = Ah C kerb = kerb = H, because Ah is dense = b = 0, i.e.
h is separating for A*. O

8.50 Corollary.
Let A< L(H) be Abelian. Then every cyclic vector of A is also separating.

Proof. Since A is Abelian, A < A* is valid and because h is separating for A* by

, it is also for the subset A. O

8.51 Corollary.

Let H be separable. Then each Abelian C*-subalgebra of L(H) has a separating
vector.

Proof. According to Zorn’s Lemma, A is contained in a maximal Abelian C*-
algebra. Since a separating vector is also separating for each subset, we may assume
without loss of generality that A is maximal Abelian and thus A = A* by .

By , an orthogonal decomposition H = @, H,, exists into A-invariant sub-

spaces H, with cyclic, and by , separating unit vectors h,, € H,. Since H
is separable, the index set is countable (i.e. without loss of generality N). Let

hoo 1=, \/%hn Then ||ho|® = Y, 5= = 1, hence hy, € H. Suppose ahq, = 0

for some a € A. Let P, be the orthogonal projection on H,. Since each H, is
A-invariant, P, € A¥ = A by |7.39.4 | and thus 0 = P,ahy = aPyhy = \/%ahm
hence a = 0, i.e. hy is separating. O

8.52 Corollary.
Let N € L(H) be normal and H be separable, then there is a separating vector for
N.

Proof. Since the set {N}** is Abelian by , it has a separating vector h by

[851] 0

This corollary is the reason we will from now on assume that:
all occurring Hilbert spaces are separable.

8.53 Localization of the function calculus.

Let H be separable and N € L(H) normal.

For h e H, let pup := Py, and Hj, be the closure  {N}**h s 0, > H
of {N}**h in H. This is obviously { N }**-invariant

hence also N-invariant and thus the restriction of N iN
N is an operator Nj, := N|g, € L(Hp). {N;kkh C I"\I/h C I

Lemma.
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We have the following commutative diagram consisting of x-homomorphisms:
Borel, (0(N)) —2X = {N}+k
mkl* Ph

v
Borely(0/(Ny)) —— {Np}*"* < L(H,)

Np

where py, : a — almg, is WOT-continuous.

Proof. (p;, : {N}** — L(H}), a — a|g,, is well-defined) This is obvious since
Hj, = {N}¥*h is obviously {N}**-invariant.

(pn is WOT-continuous) If a; — as in {N}** with respect to the WOT, then
{a;v,w) — {axpv,w) holds for all v,w € H, in particular, for those in H;, € H, i.e.
pn(ai) = ailm, — awlm, = prlaw) in L(H}p) with respect to the WOT.

(p({N}F*) © {Nu}#%) By [845], (N} = [p(N,N*): pe Cz,2]} . Le. for
a € {N}*F there exists a net of such polynomials p; with p;(N, N*) — a with respect
to the WOT. By the previous point, { Ny, }** 5 p;(Np, Nj¥) = pp(pi(N, N*)) — pp(a)
in the WOT, so py(a) € {N4}** by the Double Commutant Theorem | 8.44 |

(The diagram commutes) Let f € Borely(o(N)). By (compare with the proof
of ) there exists a net of polynomials p; € C[z,z] with {p;du — § fdu for
all w e M(o(N)). Since o(Ny) € o(N), this also holds for all y € M(a(Np)). By
both p; (N, N*) — f(N) and p;(Np, N;¥) — f(Ny) converge with respect to
the WOT. Because of p;(Nn, Ni) = pn(pi(N, N*)) — pn(f(N)) with respect to the
WOT, we obtain pp(f(N)) = f(Np). O

8.54 Lemma.

We have the following commutative diagram of #-homomorphisms:
Borely (0(Ny)) — s { Ny }oF - L(H),)

iﬂh ConjUh lg 7:lconjyh
M
L% () =——= {Npu, }** = L(L*(1un))

Where Uy, : Hy, — L*(up) is the unique bijective isometry from that inter-
changes Ny and Ny, and maps h to 1. Furthermore, conjy, :a — UnaU, ', The
mappings denoted by — are surjective and continuous and those with = are even
homeomorphisms with respect to o(Borely,, M), o(L*, L') and the WOT's.

Proof. (h is a cyclic vector for N,) Since {N}** is the closure of C*(N) in the
SOT by [8.44], we have {N}**h = ev,(C*(N)) < ev;(C*(N)) = C*(N)h and

C*(N)h < C*(Np)h, because for a € C*(N) there are polynomials p; € C[z,Zz]
with p;(N, N*) — a and thus ah = lim; p;(N, N*)h = lim p; (Ny, N )h € C*(Ny)h.
Thus C*(Np)h is dense in Hp, = {N}*¥¥], i.e. h is a cyclic vector of the restriction
Np,.

(The right arrow is a homeomorphism) By |8.31], u, := Py, is a measure on o(Np,)
so that N, is unitary equivalent to N,, on L?(u,) with respect to a bijective
isometry U = Uy : Hp — L*(up) being uniquely determined by Uj(h) := 1.

Conjugation a + U o a o U~! provides a #-isomorphism L(Hp) — L(L*(un)),
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which maps Nj, to N, and thus {N}** to {N,, }**. This is obviously also a
homeomorphism with respect to the WOT’s.

(The lower arrow is a homeomorphism) According to , f— My is a surjective
isometry L* — A, = {N,, }** and a homeomorphism with respect to o(L*, L!)
and the WOT.

(Commutativity) The surjective C*-homomorphism 7y, : f — [f] is continuous with
respect to o(Borely, M(a(Ny))) and o(L*®, L), because each g € L'(ju,) defines a
measure g djp,. Thus, py, and conj Ei oM omy, both have the characteristic properties

of the function calculus , hence they coincide. O

8.55 Lemma.

Let e € H be so that pe is a scalar-valued spectral measure for N. The measures p
being absolutely continuous with respect to p. are exactly the uy, for he H.

Proof. (<) Since p. is a scalar-valued spectral measure, p.(B) = 0 implies P(B) =
0 and thus py(B) = (P(B)h,h) = |P(B)h|? = 0.

(=) By the Theorem of Radon-Nikodym f := “/;Ti € L?(u.) exists. Let
h:=U;'f e H, where U, : H, — L?(j.) is the isometric isomorphism from .

For every Borel set B we have:

=) capl )
u(B) = fxB dp 22 f X F2djie = Moy f Foragny o (U My £.US P,

E= (o, (xe)UZ UM B2 (ow (x) U U D
= (P(B)h,h) = pp(B). O

8.56 Lemma.
All mappings denoted by — in the following diagram from are surjective.

Borel, (o(N)) — X { N}k

inkl*i th
"

Borely(0(Ny)) == {Np
PNy,

Proof. (Surjectivity below) This holds by .

(Surjectivity on the right) Because of the commutativity of the diagram and because
the path over the left lower vertex is surjective, p is also surjective.

(Surjectivity above) Let A := {f(N) : f € Borely(c(N))} be the image. Then A is
a C*-algebra by [8.15] and [ 7.28 | with C*(N) € A < {N}**. Because of it
suffices to show that A is WOT-closed:

So let f; € Borely(c(N)) be a net with f;(N) — a in the WOT. Then a €
{N}** by . Let h € H be arbitrary. Since py, is onto, there exists an f, €
Borely,(C) with a|g, = fn(Np). Since pp, : {N}** — { N, }** is continuous, f;(Ny) =
pr(fi(N)) — pn(a) = alm, = fa(Np) € {Np}** in the WOT and thus f; — fy, in
a(L®(un), L (ur)) by for each h. Due to Corollary , there is a separat-
ing vector e for {N}** and p. is a scalar-valued spectral measure for N by
with up being absolutely continuous with respect to u. by , ie. EI% € LY (pe)-
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Thus §, fidun = {5 fi% dpe — g fe% dpe = §g fedpn for each Borel set B.

On the other hand §, fi dun — §5 fadpn. Thus 0 = §5(fe — fu) dpn, ie. fo = fu
ph-a.e.. Since for each g € Hj, the measure p is absolutely continuous with respect

to up by , we have fo = fn pg-a.e. and hence (f,(Np)g,9) = {fn(N)g,9) =

§fndug = § fedpg = {fe(Nn)g, 9), i.e. fo(Np) = fe(Np) by and in particu-
lar ah = als, h = Fu(Nh = fo(Nw)h = pa, (fo) () = pv (f)(B) = Fo(N)h. Since
h € H was arbitrary, a = fe(N) holds. O

8.57 Lemma.

We have pn(f) € ker(pn) < f = 0 pp-a.e., i.e. pN|ier(r) : ker(m) — ker(pp) is
well-defined and surjective, where 7 := 7}, o incl®.

Proof. Let a € {N}** ie. a = f(N) = pn(f) for a f € Borel,(c(N)) by
Then:
ker(7r 5> ker(ph)
a = pn(f) € ker(pp)
pullback V(
< 0=pu(pn(f)) o (flo(vn)) Borely (o(N (N}
8.56
f|‘7(Nh) =0 Hh -2.€. ﬂ-ﬂ—hOinkI*i ph,i
8.28
f =0 py, -a.e., because supp(up) = o(NVg). L*(pp) =—= {Nh}kk

8.58 Proposition.
Let N be normal and e € H. Then t.f.a.e.:
1. The mapping pe : {N}** — {NYF* is a x-isomorphism (or at least injective);
< 2. VfeBorely(o(N)): f(N)=0< f =0 pe-a.c..
< 3. e is separating for {f(N) : f € Borely(c(N))} = {N}F*;

< 4. pe := P, is a scalar-valued spectral measure for N;

Proof. (=>) f(N)=0 pe(f(N)) =0 =0 pe-ae..
( = ) Let a € {N}** with ae = 0. By , f € Borely(a(N)) exists with

f(N) =a.800 = [ac|* = (a*ae,e) = {pn(|[*) e,e) = §|fPdPe,e) = [|fI* dpee.
And thus f = 0 pe-a.e.. Consequently 0 = f(N) = a by ()

(@)~ [2) s[5
( = ) By , pe is a surjective x-morphism. By , ker p, = {f(N) :

f =0 pe-a.e.}, so pe is also injective, because if f = 0 outside a Borel set B with
f1e(B) = 0, s0 P(B) = 0 by ([4]), then f(N) =, fdP = 0. O

Summary.

andreas.kriegl@univie.ac.at © 1. Juli 2019 195



COMMUTANTS AND VON NEUMANN ALGEBRAS 8.60

8.58
ker(m) ——> ker(p.) =——— {0}

“J

Borel,(c(N)) —2 {N}*F s L(H)
-8.56 Y
inkl* Pevz,

7| Borely(0(N,)) ——ss {N,}Fk - [(H,)

8.54
. N lconer 7Nlconjue

L% (fte) = {N,,, }** > L(L?(p1c))

~[8.46]

8.59 Theorem. Function calculus.

Let N be a normal operator on a separable Hilbert space H. Then there is an up to
equivalence unique scalar-valued spectral measure p for N.

The function calculus py from factorizes via Borel, (a(N)) ~ L(H)
7 : Borelp(o(IN)) = L*(u) to a well-defined (isomet- i N JA

ric) #-isomorphism p : L°(u) — {N}** which is also
a homeomorphism from the topology o(L®, L') to the o,
WOT. L% () =

lRis

. {N}kk

Proof. Obviously, all scalar-valued spectral measures are equivalent, i.e. mutually
absolutely continuous, because they have the same 0-sets by definition.

The functional calculus Borely(a(N)) — {N}¥* can be writen as composition be-
cause of ( <= ) in

Borely(0(N)) = L (pe) = {N, }** =~ {N}* = (N}** < L(H),

where the mapping p is defined as the composition L®(pe) = {N,, }** =~ {N }FF ~
{N}¥k. Thus it is a bijective *-homomorphism and a homeomorphism with respect
to o(L®, L') and the WOT by |8.46 | and | 8.56
o(L*, L) implies conversely that for h e H

, because f; — 0 with respect to

(N By = (Fi(Ny)ho By = in djin = f fifﬁdue 0,

since by for h € H the measure pj, is absolutely continuous with respect to
e, and thus by the Radon-Nikodym derivative fﬁh € L' (u.) exists.

O

8.60 Spectral Mapping Theorem.

Let H be a separable Hilbert space, N € L(H) a normal operator, P its spectral
measure, p a scalar-valued spectral measure for N, and finally f € L®(u).

Then the spectrum o(f(N)) of f(N) is the p-essential image of f € L* ().
Furthermore, Po f~1 is the spectral measure and o f~1 a scalar-valued for f(N).
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Proof. First the statement about the spectrum:

or)(f(N)) = o (F(N)) = oqn,yee (M)

= orn(2(n)(My) = p-ess-image(f).

ot
©

[ V)

Since f is measurable, f*P := Po f~! is a spectral measure on X := {z € C: |2] <
[flo} 2 f(a(N)) 2 o(f(N)). For € > 0 we choose a partition of X and thus of
o(f(N)) into Borel sets B; with |z — 2/| < ¢ for 2,2’ € B;. For f~1(B;) # & let
z; € f71(Bj) be choosen fixed and y; := f(x;). Then the f~}(B;) # & form a

partition of o(N) and thus by
)= [ zarr@|=|[ feape) - [ sarre)
bl o(N) b'e

<

[ 70876 = Ssen P8,

| S rPE) - [ 2arre)
< 2e, ’

hence equality holds and thus f*P is the spectral measure for f(N) by .

We have that f*u := po f~1 is a scalar-valued spectral measure of f(INV), because
0 — Pyowy(B) = f*P (B) = P(f~1(B)) if and only if 0 — u(f~1(B)) = f*u(B)
holds. O

Multiplicity Theory for Normal Operators

8.61 Theorem (Hellinger 1907).

Let N be a normal operator on a separable Hilbert space. Then there is a sequence
of measures pu, on C with compact supports and pny1 absolutely continuous with
respect to p, and

NN, ®N,,®....
Up to unitary equivalence, N is uniquely determined by the equivalence classes of
these measures.

Remark.

The measure 7 has to be a scalar-valued spectral measure for N: Because ®; N,,; —A
is invertible if and only if all N,; — A are, i.e. o(N) = (J; 0(Ny;) = |, supp(p;).
Furthermore, P(B) = 0 exactly when P;(B) = 0 for all j, i.e. B is an p; zero set.
However, since pj41 is absolutely continuous with respect to pu;, this is exactly the

case when uq(B) = 0.

Before turning to the proof, let us deduce a few variants. For the first we need the
following

8.62 Lemma.

Let v be an absolutely continuous measure with respect to another p measure. Then
there is a measurable set B, so that u|p and v are equivalent (i.e. are mutually
absolutely continuous).
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Proof. Let 0 < f := Z—Z € L'(n) be the Radon-Nikodym derivative. Furthermore,
let B := {x : f(z) # 0}. This measurable set is uniquely determined except for
a zero set p. For all measurable A we have: 0 = v(A) = {xadv = {xa fdu =
Spxafdu < plp(A) =0, ie vand ulp are equivalent. O

8.63 Corollary.

Let N be a normal operator on a separable Hilbert space and p a scalar spectral
measure for N. Then there is decreasing (a respect to the inclusion) sequence of

Borel sets B, < o(N) with By := o(N) and
NN, ®ONy, ®-...

Up to unitary equivalence, N is uniquely determined by the equivalence class of u
and the Borel sets up to u-zero-sets. O

Remark.

If H is finite-dimensional, then o(N) = {A1, ..., A, } is finite. By we have N =
@y Nk, where the N}, = N, 5, are cyclic diagonal operators on invariant subspaces
Hy < H. The entries on the diagonal of Ny must therefore be pairwise distinct, i.e.
all eigenvalues of Ny have multiplicity 1. Since p; is a scalar spectral measure for
N, the support of p must be the entire spectrum, i.e. the first summand o(Ny) =
o(N). The absolute continuity means that the respective spectrum becomes smaller,
i.e. the diagonal elements of N1 must be a subset of those of Ng. So the Ny are
the diagonal operators with pairwise distinct entries and exactly the eigenvalues of
N with multiplicity at least k.

Remark.

However, there is another representation. Let Ay be the set of eigenvalues with mul-
tiplicity k&, i.e. dimker(N—X\) = k for A € Ag. Let Ny, be the diagonal operator which
has A, as diagonal elements, each with multiplicity k. Then Nj, =~ A, %) .= @k Ay,
where Ay is a diagonal operator with A, as diagonal elements with multiplicity 1,
i.e. 0(Ax) = Ag. Thus,

N =~ Al ®A2(2) @Ag(g)

with 0(A4;) no(Ar) = & for j # k. The following theorem provides an infinite-
dimensional generalization.

8.64 Theorem.

Let N be a normal operator on a separable Hilbert space H. Then there are pairwise
singular measures i, [1, - .. and an isomorphism

U:H — L) @ L2 (1) @ L (112)® @ ...

which translates N into the sum of multiplication operators with z. Two operators
are unitary equivalent if and only if the corresponding measures are.

Two measures p; and po are called mutually SINGULAR, in case a decomposition
X = By u By exists with p1(B1) = 0 and ps(Bs) = 0.

Proof. Let i be a spectral measure for N and B,, the Borel subsets of o(N) obtained
by . Let Ay = ﬂ;’f:l B, and A,, := B,\Bp4+1 for 1 <n < 0. Let iy, 1= pla,
and v, := p|p, for 1 < n < 0. Since By, = (j_; Br U (By\Bpt1) U (Bnt1\Bnt2) U
=AU A, Ay UL, hence vy = o + i + fing1 + - .. and the measures
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Mooy fny fint1, - - . are pairwise singular. So N, = N, @ N, ®N,, .  ®.... Using

n I n+1
thus follows

NN, ®N,®...
> (Nyy ®Nyy N @) @ (N, ®Nyy ® Ny @ ... ) D - -
~ 1 2
=NPDeNVoNDe....

The uniqueness is up to the reader. O

Proof of the existence statement of Theorem . The idea of proof of

is to construct a decomposition of H into the orthogonal sum @ Hp, of
the cyclic subspaces generated by h, by selecting a sequence from h,,. This can
not be done by Zorn’s Lemma, since the absolutely continuity of the associated
measures can not be enforced. Inductive one could proceed as follows: Let e; € H
be a separating vector for { N}** as well as H, the closure of {N}**¢; and p(B) :=
|P(B)e1|?. In the next step we consider Ny := Nlgt. Again by there is a
separating vector e; € Hi- € H for {Ny}**. Let Hy be the closure of {Ny}**e,. Then
to 1= P, ., is absolutely continuous with respect to p; by . If we proceed by
induction, we can not guarantee that @ Hj, will fill all of H.

To ensure the termination after countable many steps, we choose an orthonormal
basis {f;} from H with fi = e;: We would like to choose the separating vector e,
for {N2}** so that the orthogonal projection f5 of fo onto Hi* lies in the closure of
Hoyin {Ny}**e,. Then we would have fo € Hy ®{f}} € Hi® H. And inductively we
would get f, € H1®--- @ Hy,,so H= @, H, woulf hold. To justify this particular
choice, we need the following lemma. O

8.65 Lemma.

Let N be a normal operator and e € H. Then there is a separating vector ey for
{N}** with e in the {N}**eq closure.

Proof. Let fy be a separating vector for {N}** and let P be the spectral measure
of N. We define u(B) := |[P(B)fo|? and denote the closure of {N}** fy by H,. We
have e =: ho + hl with h() € H() and hl € (H())J‘. Let U(B) = HP(B)h1H2 and H1
be the closure of {N}kkhl. Then both Hy and H; are invariant with respect to
N. Furthermore, Hy 1. H; and N|g, = N, and N|g, = N,. Since 7 is absolutely
continuous with respect to pu by , it follows that a Borel set B exists so that
n and v := p|p are mutually absolutely continuous by . So N|g, = N, by

. Let U : Hy® H; — L?*(u) @ L%(v) be the canonical isomorphism with
U(Nlgy ® N|g,)U™' = N, ® N,. Because of e = hg ® hy € Hy@® H; we have
Ue = eg@e;. Since hq is a cyclic vector for N| g, , e; is also one of N,, and therefore
e1 # 0 v-a.e..

We now want to show that an f € L?(u) exists, so that f@e; is a separating vector
of {N,® N, }** and eg @ e; is in the closure of {N, DN (fDer):

We define f(z) := eo(z) for z € B and f(z) := 1 otherwise. Let H be the closure
of {N,®NI*(fDer) ={g(fDer): ge L®(u)} (where the equality holds by
because p is a scalar-valued spectral measure for N,, @ N,). Let B¢ be the
complement of B, then: g xg®0 = g xpe(f@e1) forall g € L®(u). So L2 (| e )®0 <
H and thus (1 —e¢p) xp- @0 € H and finally eg@e; = f@er — (1—ep) xp- @0 € H.

On the other hand, it follows from g € L® () and 0 = g (f@ey) that g f = ge; =0
is p-a.e.. Since e; # 0 is v-a.e., g = 0 is p-a.e. on B. Since f = 1 on B¢ it follows
that also g = 0 is p-a.e. on B€. So f@e; is a separating vector of {N#@)Nu}kk. O
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Proof of the uniqueness statement of the theorem . Since v ~ p
implies that NV, = N, we only need to show the converse implication. Let N =
M, more precisely: Let U be a surjective isometry with UNU ™! = M. If e is
a separating vector for {N}** then f; := U(e;) is one for {M}**. Since u; and
vy are scalar-valued spectral measures for N and M, respectively, v; ~ p; follows
and thus N,, =~ N,,, ie. if H = ®,H,, and K = ®,K,, with N|g, = N, and
M|k, = N,,, then N|y, = M|g,. However, this isomorphism does not have to be
a restriction of U, i.e. we do not know wether U(H;) € K;. So we have to show
that N|g1 = M|go. This is done in the following Proposition . The result
then follows by means of induction. O

8.66 Proposition.
Let N, A and B be normal operators, N cyclic and N®A =~ N®B. Then A~ B.

Proof. Let Ne L(H), Ae L(Ha) and Be L(Hg). Andlet U : H®H, > H®Hp
be an isomorphism with U(N @ A)U‘1 = N @ B. We write U as matrix

Ul 1 Ul 2
U= s s
<U2,1 U2,2)
with Ul,l € L(H, H), U172 € L(HA,H), Ug)l € L(H, HB) and U272 € L(HA,HB).

Then
ux, UF
* _ 1,1 2.1
ve (Ul*,z Uz*,z)
and furthermore
N 0 N 0
NG—)A—(O A) andN@B—(O B)’

The equation U (N @ A) = (N @ B) U reads:

<U1’1N U1’2A> B <NU1}1 NULQ)

Us1N Us2A)  \BUsy BUsp

and U (N@ A)* = (N @ B)* U reads:
UiaN* Ui 2A*\  (N*Uin N*Uip
Uy N* UspA* )  \B*Uyy DB*Uss)’
The equations U*U =1 and UU™* =1 are:
Uﬁ1U1,1+U;1U2,1 U1*71U1,2+U2*71U272 . 1 0
U1*,2U1~,1 +U;2U2’1 U1*72U1’2+U2*}2U272 —\0 1

U171Uﬁ1+U172U{k’2 U1’1U2*’1+U1,2U2*72 . 1 0
U2)1U1*71 +U2’2U1*72 U2’1U2*)1 +U2’2U2*72 —\0 1

From equation (2,2) for N and for N* and it follows that (ker Us2)t is
A-invariant, (ker UQ*,Z)J- B-invariant, and A|erv,,)t = Bl e U, )L It suffices to
show that Alxerv,, = Blie, UF, because then A =~ B. If h € kerUs o € H 4, then

Uin U2\ (0 _ Ui2h

U2,1 U2’2 h 0 ’
Since U is an isometry it follows that U; 2 maps the kernel of Us s isometrically
to a closed subspace E of H. From the equations (1,2) for N and (1,2) for N*

and the fact that ker Us o is A-invariant, it follows that E is N-invariant. Thus, the
restriction of Uy 3 to ker Us o is an equivalence for Alyerv,, = N|E.
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Similarly, we obtain that U2*,1 maps the kernel of U;2 isometrically to a closed
subspace E, of H, which is N-invariant, and provides an equivalence B|,, uF, =
N|g,-

It remains to show E = Ey. If h € ker Uy 2, then U{’lel,gh = —U2*,1U272h = 0 by the
equation (1,2) for U*U and thus E = Uy 2(ker Us 2) < ker Uf,. On the other hand,
because of (1, 1) for UU* for f € ker Uy, the equation f = (U1 Uy +U12Uyy) f =
Ur2Uf5 f is valid. Because of (2,1) for UU* we have UsoUof = —Uz1Uf f =0,
and hence U}, f € ker Uy 5. Consequently, f € Uy 2(ker Uz 2) and thus E' = ker U, .
Analogously we obtain E := ker Uy ;. From equation (1,1) for N it follows that
Ui e {N}k7 and since N is cyclic, it follows from that Uy 1 is normal (because
{N,}¥ = A,) and hence E = ker Uiy =kerUpy = Ey. O
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9. Spectral theory for unbounded operators

Unbounded Operators

Quantum Mechanics .

In QUANTUM MECHANICS one wants to represent physical quantities as self ad-
joint operators on a separable Hilbert space. For the POSITION OPERATOR () and
the impulse operator P, the following version of the HEISENBERG UNCERTAINITY
PRINCIPLE [P, Q] := PQ — QP = ? has to hold, where i # 0 denotes the PLANK
QUANTUM.

So let P and @ be elements of a Banach algebra (A = L(H)) satisfying this commu-
tation relation. Induction immediately shows that P*Q = Q P* + k % PF=1 holds:

PIQ=PP"Q=P (Qphkﬁpkl)
1

ﬁpk
; .

= (QP+?> Pk+kﬁPk:QPk+1+(k+1)

i

For t € C, we obtain

PR () RN (D) k -
et Q_I;OTP Q—Z <QP +k;P >

k!

() T R (1) L itP

_ngo I P+i2 P =@+ th) et

Since €'t P is invertible, with inverse mapping e~***, we have that Q and Q + th

similar and thus they have the same spectrum. However, since the spectrum of

Q@ + th is that of @ shifted by th, the spectrum of @ would have to be all of C,

and thus @) can not be an element of a Banach algebra by , and hence, in

particular, not a bounded linear operator. A similar calculation shows that also P
can not be a bounded operator.

If we define the impulse operator P by (Pf)(z) := 24 f(z) and the position
operator @ by (Qf)(z) := z f(z), then

hd h d h h
[P.QIf @) = S (2 f(2) — v f(2) = 5 (f@) + 2 /@) 2 f(2)) = = f(a),

These operators are not defined for all f in the Hilbert space L?(RR), so we need an
extension of the notion “bounded linear operator” on Hilbert spaces.

9.1 Definition .

A LINEAR OPERATOR T : Hy v~ Hs between Hilbert spaces H; and H> is a linear
mapping T defined on a linear subspace dom T of Hy, the DOMAIN of T'. Particularly
important is the case where dom 7 is dense in H;, which we may assume without
loss of generality by replacing H; with the Hilbert space domT'. The sum T7 + 75 of
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two such operators T and T5 is defined on dom T} ndom T5 and the COMPOSITION
ToSon S~ t(domT).

An operator T: H; v Hj is called EXTENSION of T: Hy wo Hy if T 2 T, ie.
domT 2 domT and T|gomT =T

If T is bounded, then there is a bounded linear extension to the closure of dom T,
and if we put 7' = 0 on the orthogonal complement of dom 7', we obtain a bounded

linear extension to H;. The interesting non-globally defined operators are therefore
all unbounded.

However, the operators should have some continuity property, since otherwise we
would do only linear algebra. Therefore, we call an operator T : Hy v~»> Hs CLOSED
OPERATOR if its GRAPH graph(T') := {(z,Tz) : € dom T} is closed in Hy @ Hs.
An operator is called CLOSEABLE if it has a closed extension.

9.2 Proposition.
Let T : Hy v~~~ Hs be a linear operator. Then t.f.a.e.:

1. It is closeable;
< 2. The closure of its graph is the graph of a mapping;
< 3. (0,h) € graph T implies h = 0.

In this situation, the operator with the closure of graphT as graph is called the
CLOSURE of T'.

Not every operator is closeable. Let e.g. T : (2 v C defined by T((z,),) =
Yun @y on domT := {(zn)n : 2, 1 |zn| < c0}. Then also (0,1) = lim,(Le,,1) €
graphT', so this can not be a graph of a function.

Proof. ( = ) Let T 2 T be a closed operator. Therefore, the closure graphT
of the graph of T is a subset of graphT. Let (0,h) € graph T < graph T, then
h =T(0) = 0.

( = ) Let Hy := pry(graphT) = {h € Hy : 3k € Hy mit (h,k) € graphT}.
Then we have to show that for each h € Hy exactly one k € Hy exists with (h, k) €
graph T'. Let k; and ks be two such k. Then (0, k1 — ko) = (h, k1) — (h, k2) € graph T
and thus k1 — ko =0, i.e. k1 = ko.

( = ) Let graph T be the graph of a mapping 7. This mapping T has to be
linear because the closure of the linear subspace graph T is itself a linear subspace.
Furthermore, T is by construction closed and 7' < T'. O

Adjoint operator

9.3 Definition of the adjoint operator .

In order to define uniquely a vector T*k by the equation (Th,k) = {(h,T*k) we
need on the one hand that this holds for h in a dense subset, thus dom T has to be
dense, and on the other hand h — (Th, k) has to be a bounded linear functional
(on domT). So we define:

For a densely defined operator T : H; v~ Hsy, the ADJOINT OPERATOR T : Hy v
H, is the operator with domain

dom(T*) := {k € Hy : (T(.), k) is bounded linear on dom T},
which is defined by (Th, k) = (h, T*k) for all h € domT.
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9.4 Multiplication operator as an example.

Let (X,Q,u) be a o-finite measure space and A : X — C be an Q-measurable
function. Let D := {g € L?(u) : Ag € L?>(u)} and T(g) := Ag for all g € D. Then
T = M, is a closed densely defined operator. Its adjoint has the same domain D
and is given by T% := M

Let A, € {z : |A(z)| < n} with u(A,) < o and |J,, An, = X. Then L?(A,) € D,

because for A € L® and g € L? also A g € L? by the Holder inequality . Thus D is
dense.

Let now g, — g and Tg, — h in L2. Then A gi, — A g converges on A,, and on the
other hand also towards h, so Ag = h a.e. and thus g € D and (g,h) = (g9,Tg) €
graph T, i.e. the graph of T is closed.

We have that g — (\g,h) = { g Ah is bounded by the Theorem [18, 6.2.9] of Riesz
if and only if Ah € L?, i.e. he D. So domT* = D and

Ggy = [Agh= [ oXh = o. 3,

ie. T*h = M\h.

Diagonal operator.

Let, in particular, u be the counting measure on X = N. Then L?(X) = ¢? and
A: X — C is a sequence (\,),. The multiplication operator T has D := {h € {2 :
S M hie? = D [Mehyer)]? < 0} as domain and is given by Th := (A\phg)r =
Do Aklhy ex ey for all he D.

Position operator.

Let, in particular, u be the Lebesgue measure on X := R and A := idg. Then T is
the position operator of (1-dimensional) Quantum Mechanics.

We now show that 7' is the closure of T|¢x:

Since T is closed, we have to find for each f € domT = {f € L? : A\f € L?} a
sequence f, € CF, with (f,,Tf,) — (f,Tf):

Let p e C* with p = 1 on a neighborhood Uy of 0. Since C% is dense in L?, there
exist gp,h, € CL with h, — f and g, — T f. Therefore ph, — pf and both
sides vanish outside supp(p), so T'(phn) = Aph, — T(pf) = pTf. Moreover,
(1 —=p)gn — (1 — p)Tf and both sides vanish on Uy, so the functions %gn from
a sequence of C*-functions converging in L? towards %T f = (1-p)f. Finally,
fn = %gn + phyn € CL converges to (1 —p)f+p-f = fin L? and Tf, =
(L=p)gn+pThy > (1 =p)Tf+pTf=TFf.

9.5 Differentiation operator as an example.

Let
Dy := {f :[=1,1] = C: f is absolutely continuous, f' € L* and f(—1) =0 = f(l)}

and let Ty be defined by To(f) := i f' for all f € Dy. Note that the absolutely
continuous functions f are just the antiderivatives of the L!-functions.

Since the polynomials p with p(—1) = 0 = p(1) are in Dy, we have that Dy is dense
in L*[—1,1].
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The operator Ty is closed: Let f, € Do with (f,,if}) — (f,g) in L? ® L% Let
h(z) := —i {* | g(t) dt. Because of the Cauchy-Schwarz inequality (|1 < [1[2[-]2 =

V2| |l2), h is absolutely continuous and
o) = @)l = [ [ (7200 + i g0 ] < VR + gl = VR, ~ gl 0.

So f,, — h uniformly on [—1,1]. Since f,, — f in L?[—1, 1], we have that f = h a.e..
We can thus assume that f(z) = h(z) for all z, and thus f is absolutely continuous
and f, — f uniformly on [—1,1]. In particular, f(—1) = lim,, f,(-1) =lim, 0 =10
and analogously we have f(1) = 0. Furthermore, f’ = b’ = —i g € L?*[—1,1]. Hence
f € Do and (f,g) = (f,if") € graph Tp.

Let img Ty = {f': f € Do} = {h e L2[-1,1]: 0 = §* | h(z) dz = (h, 1>} — (1}t
Finally we have:

dom Ty = D :={g: g is absolutely continuous on [—1,1], and g’ € L*[~1,1]}
and TFg=1ig', t.e. Ty c T§:
(S) Let g € dom T and h := TFg. We put H(z) := S h(t) dt. By means of partial
integration, we obtain the following for each f € DO because of f(—=1)=0= f(1):

I 1 _,
@mw=@ﬁw=@®=ffhj[ﬂ@H@m

= f(x) H(x) J f(x —fl if(x)iH () da
= —{(Tof, ZH>.

So (Tof,g+iH)y =0 for all f e domT. Hence g +iH € (imgTp)* = {1}*+ = C,
i.e. ¢ := g+ 1 H is constant and thus ¢ = ¢ — i H is absolutely continuous, ¢’ =
—iH' =—ihel?and Tfg=h=1ig.

(2) Let g be absolutely continuous with ¢’ € L?. By means of partial integration
it follows for all h € Dy because of h(—1) = 0 = h(1) that (ih/,gy = —i {h g’ and
thus is continuous with respect to h, i.e. g € dom T*.

Note that the factor ¢ was necessary in order to get the same formula for T as for
To.

Example of an extension.

We now extend the domain Dy.
D = {f :[~1,1] — C: f is absolutely continuous, f' € L?[—1,1] and f(—1) = f(l)}
Let T} be given by the same formula as before, namely T} (f) = ¢ f’ for all f € D;.

Of course, T3 is also densely defined, because Dy € D;. As before, one shows that
T; is closed (this also follows from ) and that img Ty = {1}+.

This time, however, dom 7} = Dy = dom T and Ty g =ig/, i.e. Th =T}
(c )LetagalngedomT*andh—TlgandH ) :=§", h(t)dt. Then H(—1) = 0.

And, because of 1 € Dy, we now have H(1) = S h ={T}g,1) ={g9,711) = 0. By
partial integration and H(—1) =0 = H(1 ) we obtam again (T f,g+i H) = 0 for all
f € Dy. So, as before, g = ¢ — i H is absolutely continuous, ¢ = —i H' = —i h € L?
and Tffg=h=1ig.

(2) For g € Dy it follows by means of partial integration (because h(—1) = h(1)
and g(—1) = g(1)) that (ih’,g) = —i {h g’ and thus it is continuous in h € Dy, i.e.
g € domT*.
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The impulse operator on L*(R).
Let now
D := { f e L*[R) : f is locally absolutely continuous and f’ e L2}7
T(f) :=if forall feD.

This operator is also densely defined, because for each interval [a,b] and n € N
we consider the trapezoid function, which is 1 on [a, b] and vanishes outside of an
1/n-neighborhood. These functions are in D and their linear span is dense in LZ.

Claim: 7' = T* and hence T is closed by .
() Let g e domT* and T*g = h. Then ;i f'g = (T f,g9) = {f, h) = {3 f h for all
f € D. If we specifically choose a trapezoid function f, for f as above, then

a b+ L B
nf ig—nf i§=J.fnh.
a—1 b R

Multiplication with 4, conjugating, and passing to the limit for n — o0, yields
g(b) — g(a) = —i Szh for almost all @ and b, as the antiderivative t — G(t) =
Sé g(s) ds of a L2[0,b] < L]0, b] function is almost everywhere differentiable and has

1 1
g as derivative and thus lim,, . n S:i; g = lim, 0 W — G'(t) = g(b).

Because L? L} ., we have that g is locally absolutely continuous and ¢’ = —ih

almost everywhere. So g isin D and T*g=h =1ig'.

(2) Let g € D. Partial integration yields SZif’y =ifgl + SZ fig', and since fg
is integrable, we have liminf, ,_o o [(f ) (D) — (£ G)(a)| = 0, hence Sfiif’* =
Siz fig', le. gedomT* and T*g =1ig'.

Claim: T is the closure of T|cx. For this we have to show that for each f € D
functions f,, € C¥ exist with f,, — f and Tf, — Tf in L.

We first show that we find f,, € C* n L2. For this we choose a p € C* with p >0
and {, p = 1 and put p, : © — np(nz) and f, := p, x f. As in [18, 4.13.9], one
shows that | f, — fll2 = [pn * f — fll2 = 0 (see also [2, 55]) and p, x f € C*° n L?,
since p, € C® n L' and f € L% Furthermore, (p,, * f)’ = p, * f'. Since f’ € L%, we
have T, = £} € L2 and |Tf — Tfs = lpu» f' — 'ls — 0.

Let now f € C® n L? and choose p € CF with p(z) = 1 for |#|] < 1 and
pn() = %p(%) Let fn := pn - f. Then f, € CF and fy(x) = f(z) for |z < n.
So f, — f pointwise and since |f,(z)| < |f(z)|, because of the theorem about
dominated convergence, the convergence is also with respect to the 2-norm. Fur-
thermore, |T'fy, = T'fl2 < gy, - fl2+ 0w - f' = f'l2 < [Pl [ fll2 + lpn - f' = f'll2 <
s1o'leo - 1 fl2 + lon - £ = f'll2 — 0.

We will give a second proof of this fact in .

9.6 Remark.

Let T := Z\a\sm aq 0% be a linear partial differential operator of degree < m on
R™ i.e.
oled

with C"-functions a,. The transposed operator is given by

T ;v Z (—1)l10%(ay - v).

la]<m
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For u,v € C™ we have:
T(u)-v—u-T"(v) =divJ(u,v),

where J = (Jy,...,J,) is an n-tuple of bilinear partial differential operators J,, of
degree < m.

Proof. We the prove this for m = 2 only (the general case is analogous). Let
T:.= ZaLk 6j8k + ij 6j +c.
Jik J

We want to move the partial derivatives in the product T'(u) - v from u to v. Let’s
start first with a term of 1-st degree

bj E)ju U= aj(bj U’U) —Uu- (}j(bj ’U).
For the terms of 2-nd degree we obtain

a; 5 0j0ku - v = 0j(a;p Oru - v) — 0;(a;kv) - Opu

= 0j(a;k Opu-v) — 0k (0j(a;kv) - u) + 0j(ajrv) - u.

So,
T(u)-v=u- (2 0r0;(aj 1 v) — Eé’j(bj v) + cv)
Jik J
+Zaj(2aj,k Opu - v —Zu -Ok(agjv) +bju- v)
J k k
=:J;(u,v)

=u-T"(v) + Div J(u,v),
where J := (J1,...,J,) and J; is the following bilinear partial differential operator
of degree 1:

Jj(u,v) = Zamké’kuw—Zu-@k(ak’jv) +bju-v
k k

= Z(aﬂ"’“ Ot -V — Qg U - (?kv) — (2 Or(ar,;) — b]-> u- .
k k

The application of the divergence theorem thus provides

J T(u) -v—u-T(v) = J div J(u,v) = | {J(u,v),nap) volsg,
B B oB

where nap = (n;); denotes the outward facing unit normal to the surface 0B and
volyp the surface area element.

In particular, T'(u) := > ; 9j(ajk k) + cu with R-valued C?-functions a;y = ay,;
and c. Then a; , is exactly the coefficient in the general formula at the beginning of
the proof and by, = Zj d;(aj,k). The transposed operator in this situation is T* = T,
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because

T'(0) = Y, 050k (waze) = 2, 05(v Y dhans) + cv
k

3k J
=) (ajakv ajy + Opv djaj ), + v Opajy + 0;0ka; v)
J:k

— Z (ajv 6kak’j + v 6j(9kak,j) +cv

gk

= Z (@)1 050KV + 0jv Oraj k) + cv

Jik
=T(v).

Let the derivative a% in the “normal” direction be defined by

0
- = Zaj’k nj 6k.
on =
Then
J T(u) -v—u-T(v) = f div J(u,v) = J {(J(u,v),nop) volsp
B B oB

- LB Zjl (Zk: (aj”“ Ot~ v — g - akv)
_ (Z Or(an,j) — Eak(aw)) - v) n; volop
e

k

:LB(Z’:LL'U_U.(;Z) volap,

This integral vanishes if and only if the normal part of J(u,v)|sp vanishes, and, in
particular, if u|sp = 0 and either v|sp = 0 or %bB =0. O

We need the following description (of the graph) of T*:

9.7 Proposition.

Let T : Hy v~ Hy be densely defined and J : Hi @ Hy — Ho @ Hy be given by
J(f,9) = (=g, ). Then J is a bijective isometry and

graph T* = (J(graph T))*.

Proof. Obviously, J is a bijective isometry.

(€) Let g e domT* and f € dom T, then
{9, T*9), J(f, T f))y = (g, T )+ {T*g, [)=0.

(2) Let (g,h) € (J(graph T))*. For all f € domT we have 0 = {(g,h), (=Tf, f))
—g,Tf>+<{h, fy. Thus g € domT* and h = T*g.

[

9.8 Proposition.
Let T : Hy v~~~ Hs be a densely defined operator. Then:
1. T* is a closed operator.

2. T* is densely defined if and only if T is closeable.

3. If T is closeable then its closure is T**.
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Proof. () By , graph T* is an orthogonal complement hence closed, i.e. T*
is a closed operator.

For the rest, note that the mapping J is a bijective isometry with inverse J~! :
Hy® Hy — H, ® Ha, (g9, f) — (f,—9)-

() (<) We have to show that (domT*)*+ = {0}: For k € (domT*)* we have
9.7 - -
(k,0) € (graphT*)* (J(graph T))*+ = J(graphT) = J(graphT), i.e.
(0

,—k) = J1(k,0) € J-'J(graphT) = graphT. Since T is closeable, k = 0 by
9.2

(=) Let domT* be dense. Then T** = (T*)* is well-defined and is by () a
closed operator. We have T' < T** (so T** is a closed extension), because for all
fedomT g— (g, Tf)={T*g, f)is a well-defined bounded functional on dom T*,
ie. fedomT** and T**f =Tf.

() By applied to T*, we have graph T** = (J' graph T*)* where J' : Hy ®
Hy — H, @ H» is given by J'(g, f) := (= f.9) = —(f,—9) = =T (g, f)- So

B

graph T** = (—J ! graph T* ~1(Jgraph 7))+

L Isometr. (—J YJgraphT)**+ = “graph T = graphT. [

9.9 Corollary .

Let T be closed and densely defined. Then also T* is closed and densely defined and
T =T. O

9.10 Proposition.
Let T : Hy v~ Hs be densely defined. Then

(img T)* = ker T*.
If T is additionally closed, then

(img T*)* = ker T.

Proof. (<) If g 1L imgT, then {(Tf,g> = 0 = {f,0) holds for all f € domT. So
g €domT* and T*g = 0.
(2) Let g € ker T*. Then, for all f € domT, {(Tf,g) ={f,T*g) = {f,0) =0 holds.

By Corollary , we have T** = T for closed, densely defined T, and thus the
second equation follows from the first one. O

9.11 Theorem on closed image.
Let T : Hy v~~~ Hs be a densely defined, closed operator.
Then img T is closed if and only if imgT™* is it.

Proof. We first show that we may replace T by a bounded operator .S in the proof.
Let S : Hy x Hy 2 graphT — H; be the projection onto the 2-nd factor. We have
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the following commutative diagram:

H; 2> domT imgT < Hs
J251 %
pry graph T pry
.
H,® H;

We now show that the following holds for the image of the adjoint operator
S*: HY — (graphT)* = (H} @ HY)/(graph T)°
(¢*)"(img S*) = img T* ® Hy < Hy ® H.
(f*,9*) e (:*)" ' (img 5*)
ad (f*7g*)‘graphT =: L*(f*,g*) € imgS*
had Elh* € H;‘ : (f*,g*)|graphT = S*(h*)
< An* e HYVf edomT : (f*,g*)(f, Tf) = S*(h*)(f,Tf)

-

FE(f)+g*(Tf) h*(Tf)
< Jh* e HIVf edomT : f*(f) = (h* — g*)(Tf)
ie. h* — g* e domT*, T*(h* — g*) = f*

< Ah* e g* + dom T* : T*(h* — g*) = f*

< f* g*eimgT* ® Hy,
Where the last (<) follows by 3k* € dom T* : f* = T*k* now choose h* = g*+k*.
Because ¢ is a closed embedding, ¢* is a quotient map by |5.2.4], and thus img S*
is closed if and only if (:*)~!(img S*) = imgT* @ HJ, or equivalent img T*, is it.
Because of imgT" = img S it suffices to show the theorem for the bounded operator

S.

(=) Solet T : Hi — Hs be a bounded linear operator with closed image. Since the
adjoint of the inclusion imgT — Hj is surjective by Hahn-Banach, we may assume
without loss of generality that T is surjective. By the open mapping theorem, there
isad>0with {g:|g| <8 < {Tf:|f] <1} So thereisa fe T 1(g) for g€ Ho
with | f]| < ”%”. For all g* € HY we obtain

9% (@)l = |g*(TH = 1T*g* (NI < [FIT*g"] < @ 179

Consequently, |lg*|| =< § [T*g*|. So T* : Hf — Hf is injective and is a homeo-
morphism onto its image, so imgT* is closed.

Since T** = T by , the converse implication also holds. O
This theorem also holds for Banach spaces.

Proof for Banach spaces. (=) In the above proof we have used nowhere that
the spaces are Hilbert spaces.

(<) Solet T : H — Hj be a bounded linear operator and let T* : Hf — H have
closed image. We replace T by the operator Ty : Hy — imgT. Since T' = 1 o T,
where ¢ denotes the closed inclusion of imgT into Ha, we have T* = Tj* o t* and
* is surjective. So T} has the same closed image as T* and we just have to show
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that Ty is surjective. So let T' = T} without loss of generality, which means T has
denses image.

We have that T%* : Hf — Hf is injective, because T*¢g* = 0 implies (T'f, g*) =
{f,T*g*» = 0. Since the image of T is dense in Hs, we have g* = 0. By the open
mapping theorem, T* : H* — imgT* is a homeomorphism onto its closed image.
In order to show that T is surjective, we apply the Closed Graph Theorem to the
inverse S := T~ of the injective mapping T: Hi /xerneir — Ha as in the proof of
the theorem of open mappings.

H — L s img T H,

R

Hy/kerT

In the proof of the Closed Graph Theorem, we have used the non-meagerness of
G :=imgT only for showing that S is almost continuous, i.e. that

the closure of S™1({z : ||z|| < 0}) = T({x : |#| < §}) contains a zero-neighborhood
for all 6 > 0. Hence it is sufficient to show this.

Suppose there is a 6 > 0 so that the closure of the image of the ball {Tx : |z| < ¢}
does not contain a 0-neighborhood, i.e. Iy, ¢ {Tx : |z| < d} with y, — 0. Since
this closure is absolutely convex, by Mazur’s lemma there exists a continuous
linear functional f,, with fi,(yn) > sup|,j<s [fn(T%)] = supy, <5 [T*(fn)(z)|. Hence
IT* ful < %I ful lyn] and because of y, — 0 it follows that 7% can not be a
homeomorphism onto its image, a contradiction. O

Invertibility and spectrum

9.12 Definition .

Let T : Hy ~»> Hy be a linear operator. Then T is called BOUNDED INVERTIBLE
if a bounded linear operator S : Hy — H; exists with TS =1 and ST < 1, i.e.
ST =1 on domT (because dom(ST) = T~ *(dom(S)) = domT). Warning: This
definition is quite asymmetricall

9.13 Proposition .

Let T : Hy v~ Hs be a linear operator. Then T is bounded invertible if and only if
T is closed and T : domT — Hy is bijective. Under these assumptions, its inverse
1S unique.

We will denote the uniquely determined inverse of a bounded invertible operator T’
by T—1.

Proof. (=) Let S be a bounded inverse. Since ST < 1, we have kerT = {0}.
Because T'S = 1, we have imgT = Hs, i.e. T : domT — H, is bijective and
S : Hy — domT is its inverse, because TS = 1 and ST = 1 on dom7. So S is
unique. Finally, graphT = {(h,Th) : h € domT} = {(Sk,k) : k € Hy}. Since S is
bounded, this graph is closed.

(«) If T has the given properties, the inverse S : img7T = Hy — domT is a
well-defined linear mapping with graph S = {(k,Sk) : k € Ha} = {(Th,h) : h €
dom T'}. So this graph is closed and according to the Closed Graph Theorem S is
bounded. O
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Lemma.

Let T : Hy v~ Hy be a densely defined, closed operator. Then T is bounded invert-
ible if and only if T* is it. Under this condition we have (T~1)* = (T*)~!

Proof. (=) Let T be bounded invertible and S : Hy — domT < H; the bounded
inverse. Then S* € L(H}, H¥) is well-defined.

(8*T* < 1) Let k € dom(S* T*) = dom(T*). For g € dom S = Hy we have

(g, S* T* k) = (S g, T* k) ZL=22L (T S g, k) = (g, k)

(T*S* = 1) Let h € Hy. Then S*h € domT*, because f — (T f,S*hy =
(ST f,hy = {f,h) is bounded. Moreover, {f,T* S* hy = (T f,S*h) = (ST f,h) =
{f,hy holds for all f € domT, thus T* S* = 1.

(<) With T* also T** is bounded invertible because of (=), and T** = T by

[9.9]. O

9.14 Definition .
Let T': H v~ H be a linear operator. The resolvent set p(T") is the set

p(T) = {)\ € C:T — X is bounded invertible}.

The spectrum of 7" is the set o(T") = C\p(T). The resolvent set p(T') is now defined

as a subset of C and not of C,, since we will show in that every closed subset
of C appears as spectrum of some operator and if it is not bounded then it is not
closed in Cq.

9.15 Proposition.

Let T : H v~~~ H be a linear operator. Then o(T) is closed in C and the resolvent
function p(T) — L(H), z — (z —T)™1, is holomorphic.

Proof.
Let A\g € p(T) and (Ag — T)~! the bounded inverse. We use the Ansatz
1 1
()\—T)_l = (Ao—T)_l

T Ro-1) - (- N
= (Mo =T)7" 3 (o =N (o - T)_l)k

k=0

= Y oA (,\Of )" 1)k+1.

k=0

L= =2 (Ao —-T)""

This series converges absolutely for |Ag — A| < m and (A —T)~! has values
in img(A\o — T)~! = dom(\g — T) = dom T. We have

(o= 1)1 3 (o = N (Ao - T)‘l)k A=Xo+r—T)

k=0
7;;0 ’““(()\ )" ) +I§OA07 ()\fT) >k=1

on domT'. Analogously, it can be shown that on all of H the reverse composition
yields 1. So p(T') is open and the resolvent function can be developed locally into a
power series with coefficients in L(H). O

Remark .
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If T: H w~ H is a linear operator and A € C, then graph T is closed if and only if
the set graph(7 — \) obtained by shearing with (x,y) — (x,y — Ax) is closed. So
for non-closed operators the spectrum is all of C.

If T is defined as in example , then o(T) = {\, : n € N}, because every A, is

an eigenvalue and by o(T) is closed. Conversely, for p with ¢ := d(u, {\, :
n € N}) > 0 the mapping T — p, (zp)n — ((An — t)Tpn)n, is obviously injective and
closed. But it is also surjective, because each (y,), € £? has an inverse image given
by z, := ﬁyn since (ﬁ)n € (%,

Thus, any closed set A # J occurs as spectrum of some closed densely defined
linear operator T: One may choose decompositions of C into squares with side
length 2% and for each square which meets A an intersection point. So one obtains a
countable subset {\,, : n € N} being dense in A and we can choose the corresponding
multiplication operator as T

It may also occur that o(T) = . To see this let an S € L(H) with dense image
and o(S) = {0} be given (see example ) We put dom 7T := img S and T :=
S~!:imgS —» H. Then T is closed, densely defined and bounded invertible with
T-1 = S. We now show that all A # 0 are also in p(T'). For this we use the Ansatz

0 0
A=T)" i==T7" Y (AT = =9 > Ak gk
k=0 k

=0
as in This series converges absolutely in L(H) for all A by the root test,

because {/[XF SE[ = A |S¥|Y* — |A|r(S) = 0 by [6.25]. That it is an inverse to
A — T follows as in .

9.16 Example.

Let T € L(¢?(Z)) be given by (Tz),, := e " 2,_1, i.e. as composition of the shift
operator with the multiplication operator with n — e

Since all e,, € img T, we have that img T is dense in £2.

We now show o(T') = {0}, i.e. 0 = r(T) = limy, |T*|/* by [6.25]. Obviously,

(Tkx)n _ 6—7126—(n—1)2 . e—(n—k+1)2 Tk

and thus

2
[T 2l = Y (T @)l = Yfe e (b Okt g (T (e — k)

_ 2672((m+k)2+...+(m+1)2) |$m\2 < o (k=1)? |xm|2 for k = 2,

m
because (m+k)2+---+(m+1)2 = (m+k)2+(m+1)% = 2(m+k)(m+1)+(k—1)% >
_1)2
(k—1)2 S0 |T*| < e=* =V and r(T) = limp_eo [TF| V% = limpop e =7 = 0.
9.17 Proposition.
Let T : H v~ H be a closed, densely defined linear operator. Then:
1. Xe p(T) if and only if (T — A) : domT — H is bijective.

2. We have o(T*) = {\: A e o(T)}
and (T* — N7 = ((T — \)~H* for Xe p(T).
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Proof. By [9.13], T — \ is bounded invertible if and only if 7 — X is bijective from
dom(T — A\) = domT to H and the graph is closed. This shows ()

() The following holds:
A¢ o(T) < T — X is bounded invertible

9.13 _
[o13] T* — X = (T — \)* is bounded invertible
e ¢ o(T*)

and for such A\ we have (T* — \)~! = (T — \)*)~!

Symmetric and self adjoint operators

9.18 Definition .

An operator T : H v~ H is called SYMMETRIC if it is densely defined and satisfies
(Th,ky =<{h,Tk) for all h,k € domT.

Lemma.

Let

1@ = Y 5 (a100) -at2) + o))
J.k

be a 2-nd order partial differential operator with real C2-functions ¢ and ajk = Q. j
as coefficients. Then T is symmetric as operator with domT := CX(R™) < L?(R")
or, if G € R"™ is a bounded domain with smooth boundary 0G, also as operator T
with dom T := {f € C*(G) : floc = 0} < L?(G).

Proof. By , the transposed operator is 7% = T and satisfies

-[G T(u)-v= JGu T (v),

so for v = w also
awmw:Lﬂww:LuTw4WWm:@ww»

because T has real coeflicients. Thus T is symmetrical. We have

aij (ij,k(x) aau(m)) = aiam(x) . %u(x) + a; p(x) .

Tk €5
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and thus the formally adjoint differential operator 7% on v € C? is given by:

Z 6:%630 ( aj’k(x))

ov(z) Oaj ()
B Z <6xk0x in(T) + oxy, ox;

N ov(z) Oaj k() N &Qaj’k(x) v(x))

ox;  Oxy 0x0%;

Z < pry ) Qar; (@) + v(x) W) +c(z) v(z)

! oz, 0x 0%},
Zv(x)  ov(x) da, k(m))
= + : +
;; (a &vjaxk 0x; oxy, o) v(z)
=Tw)(z). O

9.19 Lemma .
Let T : H v~ H be densely defined. Then t.f.a.e.:

1. T is symmetrical;
< 2. TcT*
< 3. {Th,hyeR for all h e domT};

Proof. ( < )7 because
() < VgedomT :gedomT* and T*g =Ty
< VgedomT : f— (Tf,g)is bounded on domT
and VfedomT : {Tf,g)={f,Tg)
= (1),
because the second condition of the penultimate row obviously implies the first one.
(1)=[3)
(1)) = V¥f,gedomT : p(f,g) := (Tf,9) = (f,Tg) =0

< VfedomT:0=p(f,f)=LTf,—<Tf )
< VfedomT : {Tf, [)eR,

because of the polarization-equation for the sesqui-linear form p : domT x
domT — C. O

9.20 Definition.

For a symmetric operator T', dom T = dom T* might fail, see example . So we
call an operator T : H v~ H SELF ADJOINT if it is defined and satisfies T' = T*.
In particular, every self adjoint operator is symmetric. Corollary shows that
every self adjoint operator is closed.

Also, the adjoint of a symmetric operator does not have to be symmetric: In example

we saw that T o T} = Ty © Ty = T by . So we call a densely defined
operator T : H > H ESSENTIALLY SELF ADJOINT if T and T* are symmetric.
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Lemma.
Let T : H v~ H be a densely defined operator. Then:
1. The operator T is essentially self adjoint if and only if T* is self adjoint.

2. If T is symmetric, then T is closeable and its closure T** is also symmetric.

Proof. () (=) Since T is symmetric, T < T* holds. It easily follows T* >
(T*)* = T**. Since T* is symmetric, the converse inclusion also holds.

(«) If T* is self adjoint, then it is dense and thus T* = T** is the closure of T' by
[9.8.2] and [9.8.3

, so T' is also symmetric as restriction of T*.

() Since T is densely defined, T* makes sense. And because T' is symmetric,
domT < domT™* holds. So also T* is dense defined and thus 7%** is the closure of
T again by [9.8.2] and |9.8.3].

Since dom T' € dom T**, also T** is densely defined. Thus T*** makes sense. From
T < T* follows T* 2 T** and finally T** < T*** so T** is symmetrical. O

9.21 Proposition.
Let T : H v~ H be a symmetric operator.

1. If imgT s dense then T is injective.

2. If T is self adjoint and injective, then imgT is dense and T~ is also self
adjoint.

3. If domT = H, then T is self adjoint and T is bounded.
4. If imgT = H, T is self adjoint and T is bounded.

Proof. (1)) Let Th = 0, then 0 = (Th, k) = (h, Tk) for all k € dom T and because
imgT = T(domT) is dense, we have h = 0.

() Because of we have (img T')* = ker T* = ker T = {0}, i.e. img T is dense.
An operator S is self adjoint if and only if graph S = graph S* = (J graph S)* by

. Furthermore,
graph(T) = {(¢,T77'g) : g e dom(T™") = img T} = {(T'f, f) : f € dom T}
= J graph(-T).
Because of (—=T)* = —T* = —T it finally follows
(J graph T~1)* = (J J graph(~T))*

— J (7 graph(~T))*)

= J(graph(=T))

= graph(T 1),
and thus 7! is self adjoint.
() By 7 T € T* and, if domT = H, then T = T* and therefore closed by
. By the Closed Graph Theorem T is bounded.

() If imgT = H, then T is injective by () Let S := T~ ! with dom S = imgT =
H. We have that S is symmetric, because for f,ge dom S, i.e. f =Th and g =Tk
with h,k € dom T, we have (Sf,g) = (h,Tk) = (Th,k) = (f,Sg). By () Sisa
bounded self adjoint injective operator and by () T = S~ is self adjoint. O
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Spectrum of symmetric operators

We need to determine p(T) for symmetric 7. By , A € p(T) is for closed
T equivalent to the bijectivity of T'— X : domT — H, so we should determine
ker(T — \) and img(T — A).
9.22 Proposition.
Let T be symmetric and X = o + 1 8 with o, 8 € R. Then:

L (T =Nf1? = (T — ) f|? + B2 f|* for all f € domT.

2. For B # 0 we have ker(T — \) = {0}.

3. If T is closed and B # 0, then img(T — \) is closed.

Proof. () The following holds:
(T = Nf1* = (T —a)f —iB f|?
= [(T = a)f* + 2Re({(T — ) f,i BF)) + |8 fI?
= (T = a)fI* +283m((T — o) f, ) + B2 | £

Because of (T’ — a)f, fy ={T'f, f) — a| f|* € R we have ()
() follows directly from ()

() We have |(T — \)f[? = 82| f|?. Let now f, € domT with (T — \)f, —
g. Because of the inequality, f,, is a Cauchy sequence. Let f := lim, f,. Since
(fns (T = X)fn) € graph(T — ) and (fn, (T — X)fn) — (f,g), we conclude that
(f,g) € graph(T — X) because the graph of (T'— \) is closed, so g = (T — \)f €
img(T — ). O

9.23 Proposition.

Let T be a closed symmetric operator.
Then A — dimker(T* — \) s locally constant on C\R.

Here dim denotes the VECTOR SPACE DIMENSION, i.e. the cardinality of a HAMEL
BASIS. Note that by we have ker(T* — \) = (img(T — \))* and thus 7 — \ is
onto if and only if dimker(7T* — A\) = 0 is it.

Sublemma.
Let Hy and Hy be closed subspaces of H with Hy n HQJ- = {0}. Then dim H; <
dim HQ.

Proof. Let P be the orthonormal projection from H onto Hs. Because of H; n
Hi- = {0}, the restriction P|g, : H; — Ho is injective. Consequently, dim Hy >
dim P(H,) = dim H;. O

Proofof. Let A = a+ i with a, 8 € R and 3 # 0.
We claim that ker(T* — 1) n ker(T* — \)* = {0} for |\ — u| < |B]:
Supose this were not true. Then there is an f € ker(T* — ) N (ker(T* — X))+ with

If] = 1. By [9.10], f € (ker(T* — \))* = img(T — ) and, by [9.22.3], img(T — X)

is closed. So there is a g € dom T with f = (T — \)g. Since f € ker(T* — p1) we have
0={T* =) f.gp={f (T =gy ={f,(T = A+ A=T)g)
= |71+ (X = w){f, 9)-
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So1=|fI?=|XN—ull{f,g)| <|A—pul|g|- From |9.22.1]it follows that 1 = | f| =
(T~ Ngl = 181 lgl > > — 1 lg] > 1, a contradiction.

From the claim follows by means of the sublema that dim ker(7*—p) < dim ker(7*—
A)if (A = p| < 8] = [3m(A)]. If |X — p| < 3|B], then [Im(X) = Im(u)| < | — ul <
18] = 4[Im(N)|, i.e. [Im(p)| = 3[Im(N)], and thus also the other inequality holds
because of [ — Al < 1|Im(A)| < [Im(p)|. This shows that A — dimker(T* — A) is
locally constant on C\R. O

9.24 Theorem .

Let T : H ~~» H be a closed symmetric operator, then exactly one of the following
things happens:

1. o(T) € R;

2. o(T) ={AeC:TIm(N) = 0};

3. o(T) ={AeC:TIm(N\) <0};

4. o(T) =C.

Proof. Let C; := {A € C : £Im(A\) > 0} be the upper and lower open half-
plane. By [9.22.2| T — X is injective and has closed image for all A € C4 by

9.22.3 | Thus, by |9.17.1|, A € p(T) if and only if T'— X is surjective. Because

(img(T — A\))* = ker(T* — X) by [9.10], according to the previous theorem |9.23],
either C4+ no(T) = & or C4 < o(T) (and hence C4 < o(T), since o(T) is closed).

So either (), ie. o(T) n (Cy uC_) = &, or one of the other 3 cases, namely
o(T) e {C4,C}. O

9.25 Corollary .
Let T : H v~ H be a closed symmetric operator, then t.f.a.ce.:
1. T is self adjoint;
<2 0(T)cSR;
< 3. ker(T* — i) = {0} = ker(T™* +1).

Proof. ( = ) From T = T* and Jm()\) # 0, follows img(T — \)* = ker(T* —
A) = ker(T — X\) = {0} by |9.22.2|. Since img(T — )) is closed by [9.22.3|, T — \ :
domT — H is bijective and thus A € p(T') by [9.17.1 | So o(T) < R.

( = ) If o(T) € R, then +i € p(T), i.e. img(T +4) = H and thus ker(T™* £+ i) =
img(T F i)+ = {0}.

( = ) By [9.22.2 |, T £ is injective, and because img(T i)+ = ker(T* Fi) =
{0} by () and img(T — A) is closed by | 9.22.3 |, T'+ i is also surjective. Because of

, T + 4 is bounded invertible and according to the lemma in also T* Fi.
Let h € dom T*. Since T'+1 is invertible, f € dom T exists with (T+1i)f = (T* +1i)h.
But T* +4 2T + i and thus (T* +4)f = (T +4)f = (T* + i)h. Because T* + i is
injective, we have h = f € domT and hence T = T*. O

9.26 Corollary.

Let T : H v~ H be a closed symmetric operator.
If o(T) does not contain R, then T is self adjoint.

Proof. None of the cases | 2| - in can occur, so o(T) € R and T is self

adjoint by [9.25] O
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Symmetrical extensions

A symmetric operator T is not self adjoint if its domain strictly smaller than that
of T*. So we should examine symmetric extensions 7' of 7. In particular we are
interested in the question of whether a self adjoint extension exists. For each sym-
metric extension T of T we have T < T and thus T* < T*, ie. T< T < T* < T*.
Each symmetric extension of T' is therefore a restriction of T*.

Corollary suggests to study the eigenspaces of T* to eigenvalue +i for sym-
metric operators 7. Hence the following
9.27 Definition.

Let T : H v~~~ H be a closed symmetric operator. The DEFICIENCY-SUBSPACES of
T are the eigenspaces of T* with eigenvalue +i:

D, := (img(T +i))* = ker(T* — i) = {f e domT* : T*(f) = +i f},
D_ = (img(T —4))* = ker(T* + i) = {f e domT* : T*(f) = —i f}.
Furthermore, G+ are the following closed subspaces of H @ H:
Gy = {(f,+i[f): f € Dy} = graph(+i) n graph(T™)
G- :={(g9,—19g): g€ D_} = graph(—i) n graph(T¥).
The deficiency spaces are therefore also closed, because pr; : G4 — Dy is a linear
isomorphism with inverse f — (f, i f). The DIMENSIONS of D4 as Hilbert space,

i.e. the cardinality of a complete orthonormal basis, are denoted as DEFICIENCY
INDICES d .

Now for a symmetric operator 7' we want to determine the part of 7% that extends
beyond T'.

9.28 Lemma.

Let T be a closed symmetric operator, then
graph T* = graphT ® G+ ® G_ = graph (T ® (+i)|p, ® (—i)|D7).

In particular, domT* = domT @ D, @ D_ is a direct-sum decomposition in not
necessarily orthogonal subspaces.

Proof. We have G+ 1| graphT, because for f € Dy and he domT"
(h®Th, f® (i f)) = <h, ,)Fi(Th, f) = Fi{(T £i)h, f) =0,
because Dy = img(T £ 14)*.

We also have G, L G_, because (f ®if,g® (—ig)) = {f,g) — (i f,ig) = 0 for
feDyandge D_.

Since graphT @ G+ @ G_ < graphT* is obviously closed, it suffices to show that
this sum has a trivial orthogonal complement in graphT*: Let h € domT* with
h@®T*h 1 graph TOG DG _. Because hdT*h L graph T, we have 0 = (h@®T*h, f@
Tfy = <h, f) +{T*h,Tf) for all f € domT. Consequently, T*h € domT* and
(T*)?h = —h. So (T* —i)(T* +i)h = ((T*)?> +1)h = 0, and hence g := (T* +1i)h €
D, = ker(T* — i). Consequently, 0 = (h @ T*h,g ® igy = {h,g)y — i{T*h,g) =
—i{(T* +1i)h, gy = —i|(T* +i)h|?, hence (T* +i)h = 0, i.e. h € D_. For symmetry
reasons h € D, also holds. So h € Dy n D_ = {0}.

Since pr; : graph T* — dom 7™ is a linear bijection, the direct-sums decomposition
of dom T* immediately follows from that of graph T*. O
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9.29 Lemma.

Each symmetric operator T has a mazimal symmetric extensions. Every such ex-
tension T is closed. Each self adjoint operator is a mazimal symmetric operator.

Proof. The fact that each self adjoint operator 7" is maximally symmetric follows
immediately from the fact that every symmetric extension of T is a restriction of

T =T.
The existence of maximal symmetric extensions follows directly from Zorn’s Lemma.

Now let T be a maximal symmetric operator. Since, according to the lemma in
, the operator T** is a closed symmetric extension of T', we have T' = T**
and thus T is also closed. O

9.30 Lemma.

Let T : H v~ H be a closed symmetric operator. Then there is a bijection
{T ST :T closed, symm.} ~ {F <Dy ®D_:T*|p closed, symm.},

i.e. the closed symmetric extensions T of T are in bijective correspondance with
the subspaces F' of Dy @ D_ for which T*|r is a closed symmetric operator. This
relation between T and F' is given by:

graph T = graph T @ graph(T*|r).

Proof. (<) Let F be such a subspace. We put D := domT @ F' < domT™* and
T :=T*|p 2 T. Then T is symmetric, because for f = fy + f1 and g = go + 1
with fo,g0 € domT and f1,g1 € F' we have
(Tf,g) = <T*fo+T*f1.90 + 91)
= (T fo,90) + (T fo, 1) + {T* f1, 90) +{T*f1,91)

(By the symmetry of T' and of T*|r and the adjointness of T* zu T)

= {fo, Tgoy + {fo, T*g1) + {f1,Tg0) + {f1, T*g1)
= <f’ Tg>

By , graph T = graph T @ graph(T*|r) is an orthogonal decomposition, and
since both summands are closed, T is closed.

(—) Let T 2 T be closed and symmetrical. Then T < T < T* and thus graph T <
graphT < graphT* = graphT @ G+ ®G-. Let G := graphT n (G+ ®G-) and
F :=pr1(G) € (D+ ®D_) ndomT. Then T*|p = T|r is also symmetric and
because graph(T*|r) = G we deduce that T*|r is also closed.

For h@®Th € graph T < graph T*, we have h@Th = (f ®Tf) + k with f € domT
and k € Gy @ G_ by . And because T € T we have k € graphT and thus
k € G, thus graph T = graph T @ graph(T*|p).

The two assignments are inverse to each other, because if F' := pr; (graph Tn (Gy®
G1)) < Dy @ D_ is the subspace associated with extension T, then obviously
T =Tu T*|p = T*|domTer because of the last equation. And on the other
hand, if T = T*|qom Ter is the extension belonging to the subspace F, then G :=
graphT n (G4 ® G_) = graph(T*|r) and thus F = pr, (G). O

9.31 Theorem.
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Let T : H v~ H be a closed symmetric operator. Then there is a bijection
{T T :T closed, symm.} ~
>~ {U : U is part. iso. with initial space I < Dy and final space I_ < D_},

i.e. the closed symmetric extensions T of T are in bijection with the partial isome-
tries U with initial space I, < D, and final-space I_ < D_. This relation between
T and U 1s given by:

domT = {h+k+Uk:hedomT, ke l,}
T(h+k+Uk)=Th+ik—iUk.

For the deficiency indices we have d4 (T) + dim I+ = d4(T).

Proof. Because of it suffices to describe a bijection between subspaces F' of
D, ® D_ with T*|r symmetric and closed and the specified partial isometrics U.

(—) Let F be a subspace of Dy @ D_ with T*|r closed and symmetric. We want
to show that F' is the graph of a (unique) isometry U : I — I_ with I € D,. For
feFlet f=ft®f bethe direct sum decomposition with f* € D, . Furthermore,
let I1 := {f* : f € F}. Since T*|p is symmetric, 0 = (T*f, > — (f,T*f) =
GI* —if =, f5 4 > =+ fyif* —if )y = 2+, f+) = 2f~, £~ holds, so
IfH = f"]- I fr@® fi~ and f+ @ f2~ are two vectors from F < D, @ D_, then
0@ (f'~ — f?7) e F and thus |f'~ — f27| = 0| = 0 by what has just been shown,
i.e. f1= = f27. So F is the graph of the bijective isometry U : I, — I_ defined by

U(f*):=f"
We have that I, is closed: Let f,, € F with f7 — g*. Since |f,F =11 = 17—l

there exists an g~ with f,; — g¢g~. Obviously, f, = f;F + f, converges towards
gt + g~ =: g. Furthermore, T* f¥ = +i f* — +ig* holds. And it follows (g% +

97 )@ (ig* —ig™) € graph(T*|r) = graph(T*|p), i.e. g* € I'™.

(<) Let U be a partial isometry with initial space I, € D, and final-space I_ <
D_. We define F := graph Uiy :={g@Ug: g9l }c I, ®I_< D, ®D_.

Then T*|r is symmetrical, because Ug,Uh € I_ < D_ = ker(T* + i) for g,h €
I, € Dy = ker(T* —4) and thus

(I*(g+Ug),h+ Uhy = (T*g,h) +{T*g,Uhy + {T*Ug, h) + (T*Ug,Uh)
And similary one shows (g + Ug, T*(h + Uh)) = i{g,Uh)y — i{Ug, h).

Furthermore, T*|p is closed: For g, € I, with (g, + Ugn)® (ign — iU gn) — f@h,
we have that 2ig, = 7:(gn + Ugn) + (ign - iUg7L) —if +hand 20U g, = i(gn +
Ugn)—(ign—1U g,) — if —h hold. Thus, U(i f+h) =i f —h and for g := 2%(Zerh)
we have that f = g+ Ugand h =ig — iU g hold.

Obviously, the two assignments U < graph Uliniy = F are inverse to each other.
By we obtain the desired bijection with
domT :=domT & F = domT @ graph Uliniv
={h®k®U(k): hedomT, ke iniU}
T: =T 7= "h@®k®Uk - Th+ik—iUk).
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We finally show dy(T) +dim Iy = d(T): Let f € domT and g € I.. Then
(T+i)(f+g+Ug)=(T+i)f+ig—iUg+ig+iUg=(T+14)f + 2ig.

So we have the orthogonal decomposition img(T + 1) = img(T + i) ® I, and thus
img(T +i)* = img(T + i)* @ Iy. So d{(T) = dim(img(T + i)*) = dim(img(T +

i)Y)+dim(Iy) = dy (T)+dim I . Similarly one shows d_(T) = d_(T)—dim I_. [

9.32 Theorem.

Let T : H v~~~ H be a closed symmetric operator with deficiency indices d4 < o0.
Then:

1. T is a mazximal symmetric operator if and only if dy =0 or d_ = 0.

2. T is self-adjoint if and only if dy =0 =d_.

3. T has a self adjoint extension if and only if d = d_. In this case, the self

adjoint extensions are in bijective correspondance with the isometries from
Dy onto D_.

Proof. () is a direct corollary to , because only the trivial partial isometry
U = 0 exists, provided D, or D_ is equal to {0}.

() is a reformulation of .

() If T has a self adjoint extension T, then d4(T) = d4(T) — dim(I4), where
U : I — I_ is the associated bijective isometry. So dim(/;) = dim(/_) as well
as dy (T) = d_(T) by (), and thus d; (T) = d_(T'). Conversely, it follows from
d4 = d_ that a bijective isometry U : D, — U_ exists, and the associated extension
T thus satisfies dy (T) = dy (T) — dim(I;) = d_(T) — dim(I_) = d_(T), i.e. is self

adjoint by ([2]). O

9.33 Example.

Let Ty : f — if’ be the symmetric operator from Example . In order to
determine all closed symmetric extensions of Ty we have to specify D, and D_.

We have f e Dy if and only if f € dom T and +if = T§f =if’. So Dy = {z —

aet® : o e C} and dy = 1. All partial isometries U # 0 from D, to D_ are of form

Ux(z — €®)(x) = Xe™® with |A| = 1. Let
Dy = {m — f(z) +ae® + dae " :aeC, fe domTO}
T (a: — f(z) + ae®” + )\oze_z) () :=if'(x) + aie” —idae™ ™,

for f e domTj and a € C. By these are all true symmetric closed (self adjoint)
extensions of Ty. In particular, the domain

D, = {f+2a cosh : fedomTO,ae((f}
= {g e L? : g is absolutely continuous, ¢’ € L? g(—1) = g(l)}
Ti(9) = Ti(f + 2a,cosh) =i f +ia2sinh =ig,
is exactly the self adjoint extension of Tj in Example .

Let T' be a linear differential operator with real coefficients functions. Then dom T’
is invariant under conjugation and T'f = T f. We now want to show that symmetric
operators with such a property possess self adjoint extensions.

9.34 Corollary.
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Let T : H v~ H be a symmetric operator and J : H — H a conjugated linear
bounded operator (such as the conjugation for example) with J*> =1 and T o J <
JoT. Then T has a self adjoint extension.

Proof. From TJ < JT follows JT = JTJ? < J?TJ = TJ and thus T.J = JT.
Consequently, domT = dom(J o T) = dom(T o J) = J~'(domT) = J(DomT).
Since J is not linear, we need to define the adjoint J*: For h € H, the map-
ping f — <(h,Jf) is a bounded linear functional, so a unique J*h € H exists
with <h, Jf) = {(f,J*h). Obviously, J* is additive and conjugated linear since
Lf, T*ONh)Y = by JfY = Xh, Jf) = X f,J*h) = {f,\J*h). Because of J? = 1
also (J*)? = 1.

We next claim that J*T™* = T*J*.

Let h* € domT* and h € domT. Then (T Jh,h*) = (Jh,T*h*) = (J*T*h* h)
and thus (T'Jh,h*) = (JTh,h*) = {(J*h*,Th). Consequently, (J*T*h* h) =
(J*h* Th), i.e. J¥*h* € domT* and T*J*h* = J*T*h* and thus T*J* < J*T*.
Because of (J*)? = 1, equality follows as before.

Let now h* € ker(T* + 4). Then T*J*h* = J*T*h* = J*(Fih*) = +iJ*h*. So
J*(ker(T* + 1)) < ker(T* Fi). Because of (J*)? = 1, the other inclusion also holds,
so the two deficiency-spaces are via J* isomorphic as real lcs’s and thus also as
complex Hilbert spaces (Choose orthonormal basis and extend the bijection to a

linear isometry) and thus T has a self adjoint extension by , cf. . O

Cayley Transformation

For the Mobius transformation p : z — 2—;; we have: 0 — —1, 1 — —i, 00 — 1,
i — 0. Since Mobius transformations map straight lines to straight lines or circles,
pmaps Ru{oo} to D and thus the upper half-plane to the unit disk . The inverse
mapping is given by w — i%f—g, because % = w implies z(1 — w) = i (1 + w).
Since the spectrum of self adjoint operators is included in R and that of unitary
operator in p(R) = dD, this u should yield a correspondance between these classes

of operators. In fact, we have

9.35 Theorem (Cayley Transformation).

The closed symmetric operators T : H v~~~ H are in bijective correspondance to the
partial isometries U, for which (1 —U) iniU lies dense, i.e.

{T : H v~~~ H, closed, symm.} ~ {U € L(H) : U part. iso., (1 =U) iniU dense },
with respect to the relations:

U= (T—-4)(T+i) !

T=i(1+U)1-U)""

= iniU*

= finU" .

D(T)
D_(T)
This assignment is called the CAYLEY TRANSFORMATION, and the U belonging to
T is called the CAYLEY TRANSFORM of 7.

Proof.

(—) Let T be a closed symmetric operator. By |9.22.3 | img(T" =+ i) is closed, so
Di = img(T +1). By |9.22.2], ker(T + i) = {0}, so (T'+14)~" is well-defined on D+
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and (T +14) D+ = dom T = dom(7 —1) and thus the described U is a well-defined
operator.

domT

D+ img(T + z) > Z > img(T — i) = D+

If h e Di, then h = (T + i) f with a unique f € domT. So |Uh|? = (T —i)f|?* =

ITFI? + |£1? = (T + i) f]|?> = |h]? by | 9.22.1 | Hence U can be uniquely extended
to a partial isometry with iniU := (ker U)* = D+ and finU := imgU = D*.
We have (T +i)~' = 3-(1 = U) : Dy — domT, because (1 —U)h =h— (T —i)f
(T +i)f — (T —4)f = 2if for f € domT and h = (T + ).

Consequently, (1 —U)iniU = domT and thus is dense.

Furthermore, (1 + U)(T + i) = 2T, because (1 + U)(T +i)f = (T +4)f +
(T+4)f+(T—i)f = 2T, and consequently i(1+U)(1-U)"t = i(1+U) L (T +i) =
12T =T.

2

(«) Let now U be a partial isometry as stated. Then ker(1 — U) = {0}, because
Uf = f is valid for f € ker(1 — U) and thus |f| = |Uf], i.e. f € iniU. Since
U*U is the orthogonal projection on iniU (see ), f=U*Uf = U*f, so
feker(1-U*) =img(1-U)* = {0}, i.e. f =0, because img(1—U) 2 (1-U)iniU
is dense.

Let D := (1 —U) iniU. Then (1 —U)™! : D — iniU is well-defined. So T' :=
i(1+U)(1—U)"!is a well-defined operator with domain D.

iniU

D=(1-U) iU r > (1+U) iniU

Again (1 -U)™' = L(T +4): D — iniU, because for h € iniU and f = (1—U)h
we have (T +4)f =Tf +if =i(1 +U)h +i(1 —U)h = 2ih.
Consequently, iniU = img(T + i) = D4 (T)*.

Furthermore, (T' — i)(1 — U) = 2iU, since (T —i)(1 = U)h = i(1 + U)h — i(1 —
U)h = 2iU, and thus (T —i)(T + i)' = (T —i)5(1 —U) = 42U = U and
finU = img(T —14) = D_(T)*.

We have that T is closed: Let f, € (1 —U) iniU with f,, — f and Tf, — ¢
and let h, € iniU be so that (1 — U)h, = f,. Then Tf, = i(1l + U)h, and
thus 2ihn = (1 — U)hy + (1 + U)hy = ifu + Tfp — if + g =: 2ih € miU.
So fp=01-U)hy, - (1 —=U)h and Tf, = i(1 + U)h,, — i(1 + U)h, and thus
g=i(l+U)h=T(1—U)h=TF.

Furthermore, T is symmetrical: For f,ge D, let f = (1—U)hand g = (1 - U)k
with h,k € iniU. Then

Tf,g)=KQ+U)h,(1=U)k)=1i({h,k) +{Uh, k) —(h,Uk) — (Uh,Uk)).

Since h, k € iniU, we have (Uh,Uk) = {h, k), so (T f,g) = i({Uh, k) —<{(h,Uk)) and
analogously one shows (f,Tg) = —i{(1=U)h, (1 +U)k) = —i({(h,Uk)—(Uh, k)) =
(Tf,9- O

9.36 Corollary.
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The self adjoint operators are, via the Cayley transformation, in bijective corre-
spondance to the unitary operators, for which 1 is not an eigenvalue.

Proof. A symmetric closed operator is self adjoint by if and only if {0} = Dy,
i.e. by , if and only if for the associated partial isometry I+ = H holds, i.e. it is

unitary. Finally, we have seen in the proof of that the denseness of img(1—U)
implies the equation ker(1 —U) = {0} —i.e. 1 is not an eigenvalue of U. Conversely,
1 is not an eigenvalue of U and f | img(1—U), i.e. f € img(1—U)* = ker(1—U*).
SoU*f = fand thus Uf = UU*f = f,ie. feker(l—U) = {0}, soimg(l —U) =
(1 -U)(iniU) is dense. O

One can use the Cayley transformation to deduce from the spectral decomposi-
tion for bounded unitary operators also one for unbounded self adjoint operators.
However, in the next section we will develop more generally the spectral theory of
normal unbounded operators.

Unbounded normal operators

9.37 Definition .

A linear operator T' : H ~~» H is called NORMAL if it is densly defined, closed
and satisfies T* T = T T*. Obviously, any self adjoint operator is normal. The
multiplication operator T' in example is normal, but note that domT*T <
dom T holds.

9.38 Lemma .
For densely defined closed T, the following holds:
L. The graph of T'|qom(r+1) is dense in the graph of T'.
2. T*T is self adjoint (and, in particular, densely defined).
. 14+ T*T is bounded invertible, and for the inverse 0 < (1 +T*T)~1 < 1.
4. The operator T(1 +T*T)~! is a global contraction.

Proof. () 14+ T*T is surjective: Let J : H® H — H @ H be again defined by
J(h, k) = (—k,h). By we have H ® H = J graphT + graph T*. For h € H,
therefore, f € domT and g € domT* exist with (0,h) = J(f,Tf) + (9,T*g) =
(=Tf, f)+(9,T*g),i.e. 0= —-Tf+gand h= f+T*g=f+T*Tf = (1+T*T)f.
So img(1 + T*T) = H.

1+ T*T is injective: For f € domT*T we have Tf € domT* and |f + T*Tf|? =
IfI? + 2ITS|? + [T*Tf|? > | f]?. Hence ker(1 + T*T) = {0},

We have 0 < S := (1+T*T)~! < 1: From ||(1+T*T)f| = | f| for all f € domT*T
we deduce the inequality |Sh| < |h] for h = (1+T*T)f and S := (1+T*T)71, i.e.
|S|| < 1. Furthermore, (Sh,hy = {f,(1 + T*T)f) = | f|* + |Tf|* = 0, i.e. S = 0.

() Since T is closed, it suffices to show that for no vector g # 0 the vector
(9,Tg) € graphT is orthogonal to {(h,Th) : h € domT*T}. Let h € domT*T.
Then

0= <(97Tg)7 (thh)> = <97 h> + <Tg7Th> = <gv h> + <g’T*Th> = <g’ (1 + T*T)h>

(3)

So g 1L img(1 +T*T) == H and thus g = 0.

() It follows from () that domT*T is dense in dom 7" and hence in H. Let
figedomT*T ie. f,g € domT and Tf,Tg € domT*. Consequently, (T*Tf,g) =
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(Tf,Tgy = {f,T*Tg)y holds. So T*T is symmetrical. Furthermore, 1 + T*T has
a bounded inverse by (), so —1 ¢ o(T*T) and 1+ T*T is closed by and
therefore also T*T. Because of , T*T is self adjoint.

(4) Weput R := T(1+T*T)~' = TS : H — dom(T*T) < domT — H.Ifh = (1+
T*T)f with f € domT*T < domT, then |Rh|2 = |T'f|2 < |(1 + T*T)f|? = |h|?
by the proof of () So |R| < 1. O

9.39 Corollary.

For each normal operator T : H v H we have domT = domT™* and |Th| =
|T*h| for all h € domT. Normal operators do not have non-trivial normal exten-
sions.

Proof. If h € domT*T = domTT*, then Th € domT* and T*h € domT. So
ITh|2 = (T*Th, by = (TT*h, ky = | T*h|%

If f € domT, it follows from that a sequence h,, € domT*T exists with
(hnsThy) — (f,Tf),s0 |Th,—Tf| — 0. By the first part |T*h,—T*hy,| = |Th,—
Thyy| holds and thus there is an g € H with T*h,, — g. So (hn,T*h,) — (f,9)
holds. Because T™ is closed by , f e domT* and g = T*f. So domT <
dom T* and | Tf| = limy, |Thy| =, |T*ha| = gl = |T*].

By , T** =T and, by ’ 9.8.1 ‘ and ’ 9.8.2, also T* is normal, i.e. by the previous
part domT* € dom(7T*)* = domT < domT*, i.e. domT = dom T*.

Let now T 2 T be a normal extension. Then T* < T* and hence dom T < dom T
domT* € domT* = domT.So T =1T.

[

9.40 Remark.

Let S,51,52 : Hy v~ Hy and T,T1,T5 : Hy ~~> Hj, then
TioS+T508 = (T1 +T)0S;
ToS; +ToSycTo(S+ 52);
ToSi+ToSy=To(S;+5)if T is globally defined.

The first row follows from
dom((Ty + Ty) 0 S) = S~ (dom(Ty + T3)) = S~ (dom(T1) n dom(T3))
= S (dom(T})) N S~ (dom(T3))
= dom(7T; 0 S) ndom(Ty 0 S) = dom(T; 05 + T 0 S).
The second row follows from
dom(T 0S; + T 0S3) =dom(T 0S51) ndom(T o .53)
=S (domT) n Sy (domT)
< (81 + S2) ! (dom T) = dom(T o (S; + Sz)).

If T is globally defined then equality holds, because then S~!(domT) = dom S
for S € {S1, 52,51 + Sa}. Otherwise, the inclusion might be strict, as the example
S1 = id = —S5 shows, because then T o (S; + S3) = 0 is globally defined and
dom(T 0S; + T 0S3) =dom(T 0S;) ndom(T 0S3) = domT.

9.41 Lemma .
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Let H,, be Hilbert spaces and T,, € L(Hy,). Let H := @, H,, and @, T,, : H ~~»> H
be defined on D := {(hy) € @, Hn : 2, [Tnha|* < 0} by (hn)n — (Tohn)n-

Then @,, T, is a closed densely defined operator. Its adjoint is (B, Tn)* = P,, T,
and @,, T,, is normal if and only if all T,, are so.

For any second sequence of operators S,, € L(Hy) we have: (,, Ty) o (D,, Sn) <
@D,,(Th, 0 Sp). If additionally (|Sy|)n is bounded, then equality holds.

Proof. Obviously, D is a linear subspace and T' := @,, T}, is linear on D. Since
H,, € D for all n, D is dense in H.

Claim: T is closed.

Let h9) be a sequence in domT with (h9), Th)) — (h,g) in H @ H. Then for
the components we have (hgf ),Tnhg)) — (hp, gn). Since T, is bounded, we have
Tohn = gn and thus Y [Thha|? = X, [gn]? = [g|* < o, i.e. h € dom T, and
obviously Th = g, so T is closed.

Claim: T*((kn)n) = (TFkn)n for (kn)n € domT* = {(ky,) : >, | T¥kn|? < 0}.
(2) We have k € dom T* if and only if

hos (b, T*k) i= (Th, ky = > (Tyh, kiny = > (b, Tk )

is a bounded linear functional on dom T'. Because of the Cauchy-Schwarz inequality
this is the case for k with Y, |T¥k,|*> < oo. That T*k is given for such k by
T*k = (T*k,,), is obvious.

(€) For k € domT* there is an C > 0 with [{Th,k)| < C|h| and thus, with
hy = T¥k, for each finite partial sum Y | Tk, |? = Db, T¥ky) < C A/ | hal? =

Y | T#k, |2, we have Y. | Tk, |> < C2. Hence > [Tk, | < C2.
Now let S,, € L(H,) be a second sequence of operators, and let T := @, T, and
S :=@,, Sn. For
2 |hn? < o0,
hedom(ToS) =< h=(hn)n: X, [ISnhn|? < o0,
20 | Tn(Snhn)|? < 0

obviously h € dom(@,, (T, © Sy,)) and we have

(Do 80) 1) = (TwoSu)ha)) = (DT0) (Suhn)

n n

_ (EPT”) <<<—?Sn) h> - ((@Tn) ° (Qn-)sn)> h,

ie. (B, Tn) o (P, Sn) €@, (ThoS,).
If |Sy| is bounded, then because of the Cauchy-Schwarz inequality, the domain of
S =@, Sn is all of H and | S| = sup,, |Sy|. For h = (hy), € dom (P, (T}, 0 Sp)),
> |hnl? < oo implies the estimate >, [|Snhn[? < |S|2Y, [hn]? < o, so h €
dom(T o S) and hence we have equality.

n

If (—Dn T, is normal, obviously also the restrictions 7}, are normal.

Conversely, by ,

dom(T* oT) ={hedomT : Th € domT*}

S hn? < oo,
h = (hn)n: Zn HT;han = Zn HTnhn”2 < 0,
Zn HTnTrThnHQ = Zn HT:TnhnHQ <X

={hedomT*: T*h e domT}
= dom(T o T*),
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and both T* o T and T o T* are restrictions of @T¥ o T,, = @ T, o T;*. So T is
normal. O

9.42 Theorem .

Let P : B(X) — L(H) be a spectral measure as in . For a measurable function

f: X — C, consider a partition of X in measurable sets A, on which f is bounded
(e.g., Ay :i={ze X :n—1<|f(x)] <n}) We also use H, := P(A,)H and let
P, : B(A,) —» L(H,) be the spectral measure P,(A) := P(A)|g,, .

Then H = @f=1 H,, and with respect to this decomposition
J fdpP —@ f|A dP,,
is the normal operator
J FdP:h = (hp)n J fdP
n=1
with domain of definition
0
Dyi={heH: ZH(J fdp,) ok
n=1 Ay
and for h€ D¢ and k € H we have f € L'(| Py |) with

f\f|2dPhh) Ik]  and <(J JfaAP) bk ) = dephk

In partzcular, the operator SX fdP and its domain do not depend on the selection
of the A

<oo J |f|2dPhh<oo}

Proof. Since P(A) o P(A,) = P(An A,) = P(A,) o P(A), we have that H,, :=
P(A,)H is an P(A)-invariant subspace, and thus P, is a well-defined spectral
measure for H,. Because of 1 = P(X) = P(Ll,A,) = >, P(A,), we have H =
@,, Hy, and the orthogonal projection onto H, is given by h — h,, := P(A,)h.

Since f|a, is bounded, § a, [ Py is a well-defined bounded normal operator on

H, by . Thus, by , SX fdP = @, SAH fdP, is a normal unbounded

operator with domain Dy.

Next we show the claimed equation for Dy:
According to the spectral theory for bounded operators we have:

([ am) ol ([, sam)' (], samJnem)
S, Fram) oy = ([ PR )

:f P AP, = | 11 aPu

n

since for A € A,, we have:
Py p(A) = (P(A)h, h)
(P(Ap, nAnAp)h,hy = (P(A,)P(A)P(A,) hyh)
= (P(A) P(Ap)h, P(Ap)h) = (P(A) hp, By
(Pr(A) hipy ) = (Pr) iy h (D).
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From this follows the asserted equation on D;. And thus the domain of SX fdP is
independent of the choice of the partition into sets A,,.

Let now h € Dy and k € H. According to the Radon-Nikodym Theorem ,
there is a measurable function w with |u| = 1 and |Pj x| = u Py i, where |Pp | is
the variation of Py k. Let f<, := fl},_ A, = Sn_1 XA, f- We have both f<,, and
U f<, bounded and therefore:

= f‘fgn‘UdPh,k = <(J|f<n|“dp>h’k>

<|([ 17t uap)i] - 1ai

and further
H J|f<n|udP hH f\f<n|udP ,(f\fgn\udP>h>

~{([17=nP aPYnn) = [Ifzal? aPrs < [ 17 P

1/2
So §|f<n|d|Phi| < (S |f|? dPh7h> |k| for all n. Since |f<n| monotonously con-

verges pointwise towards |f|, it follows by means of the theorem of Beppo Levi on
monotone convergence that f € L'(| Py, x|) and the desired inequality

) 1/2
Jiftaeat< ([ 15ara) " ikl
X
Since f¢,, is bounded, also
<(Jf<n dP)h7k> = stn dPp i

holds by |8.12.1 | If h € Dy and k € H, it follows by the theorem on dominated
convergence that

Jfgn aPpp — ffdPh,k for n — oo.
On the other hand:

(stndP)hz (JEQ A/_f|A_,. de> (o hns0,..)
UA dep ,

J f dP U )
and since P(U?:1 Aj) — P(X) =1 in the SOT, finally follows

(([senar) ey = ([ rar) i)
(( £ap)ny = [ £apus

This also shows that the operator SX fdP is independent on the selection of the
partition in sets A,,. O

941

So

9.43 Proposition .

Let P : B(X) — L(H) be a spectral measure. For each measurable function f :
X — C a linear operator p(f) : H v~ H is defined by p(f) := §, fdP. Then for
measurable functions f,g: X — C holds:
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L p(f)* = p(f).

2. p(fg) 2 p(f) plg) and dom(p(f) p(g)) = Dg " Dy .
3. If g is bounded, so is p(f) p(g) = p(f 9)-

4. p(£)* p(f) = p(If1%)-

Proof. For given measurable functions f, g : X — C we choose a partition of X into
measurable sets A,, and define a spectral measure P, on A,, for H,, := P(A,)H as
n . Let p,, be the associated C*-representation of the bounded functions on
A, on H,. Then p(h) := @®,, pn(h) for h € {f, f. g, f-g}. For the C*-representation

pn, of course () - () holds with equality everywhere. Using we now obtain:

() because
= (@00) =@l =D = o(0)

() The inclusion is valid because

p(f) o pl9) = (D ralh) o (B ra9) = Dloalf) o pu(9) = Dloalf 9)

=p(f9). n

Furthermore, h € dom(p(f) o p(g)) holds exactly when h € dom(p(g)) =: D, and
p(g) h € dom(p(f)) =: Dy. The latter means that o0 > > |pn(f)(pn(g)h )H2 =

Zn ||pn(fg)hH2, le. h€ Dy,
() If g is bounded, then D, = H and thus dom(p(f)p(g)) = H n dom(p(fg)) =
dom(p(fg))-

Note that under this assumption, p(g f) = p(g) p(f) does not hold, in contrast to
what is stated in [5, X.4.10]. Namely, let e.g. ¢ = 0, then g f = 0 and Dy = H
but dom(p(g) p(f)) = Dy n Dyy = dom(p(f)) = H.

(4]) By (1)) and (2)). we have p(f)*op(f) = p(F)on(f) < p(1[?) and dom(p(f)*o
p(f)) = dom(p(f) © p(f)) = Dy N Djsp2. So it only remains to show D2 < Dy.
Let h = (hp)n € Dyygp2, ie. 2, | on(|f1?)hn||* < c0. Two-fold application of Cauchy-
Schwarz’s inequality shows

Z ”pn(f)hnﬂz Z<pn oo (f) s iy < Z lpn(f)* pr(f)n [ Fn |
< (S oattmal?) " ol < o

i.e. hEDf. ]

9.44 Theorem .

Let N : H v~~~ H be a normal operator on H.
Then there is a unique spectral measure P defined on the Borel sets of C, s.t.

1. N ={.zdP(z).
2. P(A) =0 if A~ o(N) = &.
3. If U < Cis open and U na(N) # & then P(U) # 0.
A If Ae L(H) with AN € NA and AN* € N*A,
then A (S(c fdP) c (SC fdP) A for all Borel functions f on C.
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The Fugledge-Putnam theorem is also valid for unbounded normal operators, and
thus the hypothesis AN* € N*A in () can be dropped.

About the idea of the proof : If N := {zdP(z), we could split C into annuli A,,.
Then H,, := P(A,)H would be invariant subspaces with H = @,, H,, and we could
compare N with the unbounded sum @, N|g,, .

Conversely, we should therefore find a decomposition H = @,, H,, into {N, N*}-
invariant subspaces H,, so that N,, := N|pg, is a bounded normal operator. By the
spectral theorem for bounded operators the spectral measures P, with N,, = {2 dP,
exist. We want to sum this up to get a spectral measure P for N.

The function f : z — ﬁ = (1 + zz)~! maps C to the interval (0,1]. The
annuli correspond to subintervals. So in order to find the spaces H,, without using
the not yet available spectral measure P of N, we consider the contraction S :=
(1+N*N)~1 > 0 from | 9.38 | and the images of its spectral projectors (which would

be Po f~1 by for bounded N) on subintervals of (0,1] < [0,1] 2 o(S).

Sublemma .

Let N : H v~ H be normal, S := (1+ N*N)~! and S = S(l)th(t) the spectral
representation.

Then SN NS and SNS=NSS.

If A is a Borel subset in [, 1] with0 < § < 1, then Ha := P(A)H is an {S, N, N*}-
invariant subset of dom N, furthermore S|g, is invertible and N|g, is a bounded

normal operator with |N|m,| < 4/3 — 1.

Proof. By [9.38.3] and [9.38.4

SNcCNS:

Let f e dom SN. Then g := Sf € imgS = dom N*N < dom N, ie. f = (1+N*N)g
and thus N*Ng = f —ge dom SN —dom N*N < dom N. Hence Ng € dom NN*
and consequently Nf = N(1 + N*N)g = Ng+ NN*Ng = (1+ NN*)Ng = (1 +
N*N)Ng, due to the normality of N. Finally SN f = S(1+ N*N)Ng = Ng = NS,
ie. SNcS NS.

Also SNS © NSS follows and, since dom NS = H by [9.38.4| and thus also
dom SNS =H,thus SNS=NGSS.

Let now A €[4, 1] be a Borel set.

, S and N S are global contractions.

Claim: S : Hx — Ha is an isomorphism.

s
Since S commutes with its spectral projectors H >——>dom N*N —— H
P(A), we have the nearby commutative diagram.
. . . P(A) P(A)
Consequently, S|p, has dense image in Ha since

. . S‘HA
S(Ha) = S(P(A)H) = P(A)(SH) is dense in Hp > > Ha
P(A)H = Ha because SH = dom N*N is dense
in H by [9.38.2].
5

H H

For h € Ha, we have h = P(A)h and hence

1
ISh|? = (S2P(A)h, by = <(J 2 ya dP) h, h> - f 12 dPy
0 A
> 2P (A) = (P&, by = 82 [
So S|, has closed image in Ha and since this is dense, S|, is an isomorphism.
We have Ha € dom N, because Ha = S(Ha) € img S = dom(N*N) < dom N.
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Claim: Ha is N-invariant.
Let h € Hr and g € Ha with h = Sg. Let R := NS € L(H). Then SR =

SNS =NSS = RS by the above and thus P(A) R = RP(A) by [8.15], so Ha
is R-invariant. Consequently, Nh =N Sg= Rge Ha.

Claim: Ha is N*-invariant.
If Ny := N*and S := (1 + NfNy)" L =1+ NN*)"t = (1+ N*N)~! = S. From
the previous claim follows that N*Hx = N1Ha € Ha.

It follows that the restriction N|g, is also normal.

Finally let h € Ha. Then, similar we obtain

NI = VPN ) = (57 = Dot = [ (4= 1)aPun() < AP} 1)

So [|N|mA| < 4/7—1. O

Proof of . As in the sublemma, let S := (1 + N*N)~! and R := NS.

Furthermore, S = S; t dP(t) is the spectral representation, and let P, := P(n—“, E]

and H,, := P,H forn >1.So 1 = P(c(9)) = P({0}) + X0, P,. Since ker S = {0},
A =0 is not an eigenvalue of S and thus P({0}) = 0 by , hence 1 =Y P,

n=1
and thus H = @,, Hy,. By the sublemma, H,, is an {INV, N*}-invariant subspace of
dom N and N, := N|g, is a bounded normal operator with || N, | < +/n.

So if A € o(N,,), then

L e (14 NEN)™) = o(Sm,) = o((S 0 P)ls,)

[ENE
_ o( <Jt N 110 dp(t))'m)
o[ txi a0 aP)

=ess—image({tx(n%1,%](t) :tea(S)}) by
< {txx () te (0,1} < {0} U [, 7],
Le.o(N,) = {AeC: n+1\1+\>\\2\ H=PeC:vnzN=vn-1=A

Now let P, : B(A,) — L(H,) be the spectral measure of N,, and let P be defined
on each Borel set A € C by

N

o0
@ (AnAy)

In order to show that P is a spectral measure, we first note that clearly P(X) = 1.
We have that P,(A n A,) is an orthogonal projection with image in H,, and thus
P(A) is an orthogonal projection in L(H). Since the H,, are pairwise orthogonal,
we have for Borel sets A;:
[ee] [e¢]
P(A) P(As) = ( Po(A1 A A) ) (@ (Ao A A ))

n=1 n=1

[e@] 0
@Pn(AlﬁA) AQ(’\A @ AlﬁAgﬂA)

n=

1
(Al M AQ)

n=1
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For h € H we obtain P(A)h = (Pn(A A An)hn)n If A, are pairwise disjoint Borel
sets, then >}, P(A;) converges pointwise to , and thus:

<(|z| Doty = g<p(|_|AmA)hn,h> g@pAM o)

=3 N PN O A by = DY Pu(Ay o D), B
n=1j=1 -0 j=1n=1
= S (P(Aj)h by = <Z P(A)hs )

Hence, P is o-additive.

(1) For h = (h,), € dom(D,, Ny,), we have ((hi, ..., hn,0,...), (Nih1, ..., Nuhy,0, ..

graph N (because of N,, := N|p,) and this expression converges to (h, (B,, Nn)h).
Since N is closed, h € dom N and Nh = (@,, N n)h. However, since both N and

@, N, are normal, N = @, N, = ®,, § 2dP,(z) =: § 2dP(z) by [9.39].

Claim: o(N) = U;_, o(Ny,).

Obviously, o(N) 2 Ji_, o(N,,) and, since (N is closed, this shows (2). Converse-
ly, let A ¢ | = o(N,). Then thereis a § > 0 with [A—z| = § forall z € [ J"_, 0(N,,).
So (N, —A)~"hand (N, —A) 7 = |z = (2 = A)7!|s < } exists for each n. Con-
sequently, @ZO:l(Nn — A)~!is a bounded operator and equal to (N — A)~71, i.e.
A ¢ o(N).

() The following holds: Ano(N)=F =VYVn:Ano(N,) = =VYn: P, (A)=0
= P(A) =0.

() If U is open and U no(N) # &, then the above claim implies that U no(N,,) #
& for an n. Since then P, (U) # 0 by , we also have P(U) # 0.

() Now let A € L(H) with AN € NAand AN* € N*A. Then A(1+N*N) < (1+
N*N)A by . So SA € AS, and since both sides are globally defined, SA = AS
holds. Thus, according to , A commutes with the spectral projections of S and,
in particular, H,, is invariant with respect to A. Thus, A, := A|lg, € L(H,) and
A, N, N An. So A, f(N,) = f(Ny,) Ay, holds for any bounded Borel function f.
By A(fx fdP) = (@, An) © (D, f(Na)) € D(An 0 f(Nn)) = D(F(Nn) 0

Ap,) = ((—Dn f(Ny))o (Q—)n An) = (§x f dP) Anow follows, since @,, Ay, is a bounded
operator. O

9.45 Theorem .

Let N : H v~ H be a normal operator on a separable Hilbert space H. Then there
is a o-finite measure space (X,Q, 1) and a Q-measurable function f : X — C, so
that N is unitary equivalent to My on L*(u).

Proof. We decompose N into the unbounded sum of bounded normal operators
N, as in the proof of . According to theorem , there are o-finite measure
spaces (X, Qp, 4 ) and bounded ,-measurable function f,,, so that NN,, is unitary-
equivalent to My, . Let X be the disjoint union of X,, and Q@ :={AC X : An X, €
Q,, for all n}. If A € Q then let u(A) := 37", 1, (AN X,). Furthermore, f : X — C
is defined by f|x, := fn. Then f is Q-measurable and N = @, N,, ~ P,, My, =
My on L*(X,Q,p). O
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9.46 Example.

We now want to find a unitary operator U, which transforms the impulse operator
P : f—if" into a multiplication operator. For this purpose we recall the Fourier
transform F : § — S from chapter [18, 8]. It was defined by

i) = | s@e s

and satisfied the Parseval equation

(FF.Fg) = 5-(f0)

To make it truly unitary, we modify it with a factor \/%, i.e. redefine

Fi) = == | 1w e v a.

Since F : § — S is a surjective isometry with inverse F~1f = S(Ff) (where S
denotes the reflection) and S is dense in L?, it can be extended to a unique unitary
operator F : L? — L2

For f € S, as we have seen in [18, 8.1.5], we have:

(PoF)f(y) = Z;ly\/;—ﬂ JR flx)e ™ do = \/% jR F(2) (=) 2 e d
= (FoQ)f(y),

where ) denotes the location operator. So we have P|s = FoQ|soF !, and since
P is the closure of P|c» by and thus also of P|s, and analogously @ is that
of Q|s by [9.4], we have P = Pls = Fo Qs o F L = FoQ|soF L = FoQoF L.
In fact, it is sufficient to show that @ is the closure of Q|s, because obviously P
contains the closure of P|s, i.e. the self adjoint operator Pls = FoQ|so F~ 1 =
FoQ|soF ' = FoQoF~'. Since self adjoint operators are maximally symmetric,
this has to be P.

Because F~! = SoF, we have conversely Q = F 1oPoF = SoFoPoS loF ! =
—FoSoStoPoF !'=—-FoPoF ! since

(SoF)fly) = LJ flx) e~ (=Y) gy — 1 f+oo F(z) e i=2)Y g
V21 Jr Vor J_o
1 -0

—izy l‘:L ) e Y dyp = o)
- | fem e - o | Sp@) e i = (Fos)1w

and

1-parameter groups and infinitesimal generators

Motivation.
In classical mechanics, the equation of motion is given by NEWTON’S LAW

Flz)=m- & (Force = mass x acceleration) .
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With the Ansatz ¢ := x and p := m4 (impulse = mass x velocity), this ordinary
2-nd order differential equation is converted into the following first order differential
equation:

) 1
q=—p
m
p=Flq)
If the field of force is a gradient field, i.e. F' = — Grad U, and the energy E (=Hamil-
2 2
ton function H) is defined as sum of the KINETIC ENERGY % = H;L and the
POTENTIAL ENERGY U(q), one obtains
E(q,p) = L Ulq)
2m
and %—5 = GradU = —F and if = Lp. So the energy is a MOTION INVARIANT,

ie. %E(p, q) = % D+ %—gq' = L F(q) — F(q) £ = 0, and the equation of motion is
equivalent to

. OF
=%
. 0E
P

If we translate this into quantum mechanics, p becomes the differential operator P =

%% : f — [/ and ¢ the multiplication operator () = x with the i(ientity.2 The energy
function then becomes the SCHRODINGER OPERATOR: S := — I (4L)" 4 U(z), or

in several variables
2

h
— A .
S o + Ul(x)

The corresponding equation of motion is the SCHRODINGER EQUATION

d
zfi%u = Su.

Of quite similar form is the heat conduction equation

%u = Au.

The wave equation % = Au can also be transformed into the form

i(2)- () ()

by means of the Ansatz v = Zu.

So we have to solve equations of the form 4 = Awu, a linear first order ordinary
differential equation. For bounded operators on Banach spaces the solution to [18,
3.5.1] is given by u(t) = u(0) et. The operators occurring in the above situations,
however, are partial differential operators of second order, i.e. not continuous op-
erators on Banach spaces. For Fréchet spaces like C®(R,R), however, the series
ett =% %A” does not have to converge. So we should take A as linear (un-
bounded) operators on L?, and define !4 for them.

Note that the Laplace operator is self adjoint. According to a result of [15], the

Schrodinger operator S = _%A + U(x) is essentially self adjoint under suitable

growth conditions on the potential U, see also [37, 253].
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Let ¢ — wuy(t) be the solution curve for the initial value u(0) = x of an ordinary
differential equation @ = A(u). Then the mapping U : (¢, ) — uy(t) obviously has
the following properties where it is defined :
U(0,z) =z
U(t+s,x) =U(t,U(s,x)).
It is also called the FLOW of the differential equation. If A is linear, then clearly
x +— U(t,z) is also linear, and thus U : R — L(H) is a curve with U(0) = 1 and

\4

lvf(t +s)=U(t)o (}(s) So we have a group homomorphism U:R — L(H). And

for all z € H, %T}(t)(w) = a%“r (t) = A(ug(t)) = (Ao (}(t))(w) holds. In particular,

A\
the pointwise derivative of the curve U at 0 is precisely A. We now want to transfer
this correspondance between operators and 1-parameter subgroups to unbounded
self adjoint operators.

9.47 Stone’s Theorem

Let S : H v~ H be self adjoint and S = szth(t) its spectral representa-
eitS .

tion. Since for t € R the mapping s — €'* is bounded on R, U(t) :=
J_roog e** dP(s) € L(H) exists. Furthermore, U(t)* = ¢~®% and thus U(t) o U(t)* =
et oe ™ =l =1and U(t)* o U(t) = e 5 0e¥ =1, i.e. U(t) is unitary.
Because of e* - e* = ¢*T% we have U(t) o U(s) = U(t + s). Furthermore U is SOT-
continuous, because |U(t)h — U(s)h| = |U(t — s+ s)h — U(s)h| = |U(s) (U(t —
s)h —h)| = |U(t — s)h — h|. So it suffice to show that |U(t)h — h|? = §; |e?** —
1|2dPy p(s) — 0 for t — 0. We have that P, is a finite measure on R, and for
every s € R |e!?® — 1|2 — 0 holds for ¢t — 0 and |e*?* — 1|2 < 4. So the theorem on
dominated convergence implies that U(t)h — h for ¢ — 0.

Theorem.

We have a bijection

{S : H v~ H, self adjoint} ~ {U :R — L(H), unitary representation }

V0
+oo o
Ut) := J e~ dP(t) for S = J tdP(t)
—o —00
iS = i U(t)h for hedom S := {h'3i| U(t)h}
i T g0 '

Proof. We have just shown that U is a unitary representation.
We have L(U(t) — 1) —i S = fi(5), where fi(s) := +(e?** —1) —is. So

t t
2

dPh’h(S).

2 its
ezta_l

HUOR=1)=iSH =15 - |

for h € dom S. For t — 0, we have 1(e’** —1) —is — 0 for all s € R because by the
Mean Value Theorem [e¢** — 1| < [s|. Thus |fi(s)| < tle"*® — 1| + |s| < 2|s]|. Since
id € L*(P, 1) by [9.42], we obtain lim; g 1(U(t) — 1)h = i Sh by the theorem of

dominant convergence.

Let D := {h € H:4|,_oU(t) h existiert in H} For h e D, Sh is defined by

—18

I

Sh:=—iL|,_oU(t)h.
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One sees immediately that S is a linear operator. According to the above, S is an
extension of S and thus also S is densely defined. For h, g € D we have:

<§h,g>:—i£< ()h h > hm<h g g> (h, S,

because U(t)* = U(t)~! = U(—t). So S is a symmetric extension of S and, since by

the self adjoint operator S is maximally symmetric, S = S and D = dom S
holds.

Let conversely U : R — U(H) be a unitary representation, D := {h € H :
3%|t=()U(t) h} and Sh := —i%h:(]U(t)h for he D.

Claim: D is dense in H.
In order to see this we define operators R,, by

Q0

Ryh = f e "U(L)hdt.
0

Since |U(t)h| = |h| and (t — e~t) € LY(RT), this integral is well-defined and

IR,k < § et |h|dt = —e~*||h|| [y = |h] holds. Obviously, R, : H — H is a

bounded linear operator with |R,| < 1.

We now want to show that the image of R, is completely contained in D. Let

h € H, then

—; (W) = 1) Buh = —*f e U+ ) hds + ff e U(2) hds
t t Jo t Jo
1 © i 0
——i | U har s | et U hds
t nt " t 0 n
e”t -1 © 1 nt
= —in J‘ e_qU(é)hdS—F?/an e—T‘+ntU(£)th
ent nt
=—in

nt

R h+ine™ L e "U(%)hdr.
0

For t — 0 we have
et —1

nt
So R,he D and SR, h=—in(R, —1)h

For the denseness of D, it suffices to show that R,h — h for arbitrary n — o0 and
h e H. We have

-1, -1 and—f e "U(L)hdr — e U(0)h = h.

a0 o0
R,h—h :f e*tU(%)hdt—J e~ hdt
0 0

_ JOO et (U(L)h — h) dt.

0
For € > 0, let 6 > 0 is be choosen so that |U(t)h — h| < € for all |¢t| < é. Then

o0
Rah= bl < | e Uk -] de
0

no o0
< f etedt+ f et (JU(L)R] + |h]) dt
0 nd

o0
<6+J e °2ds

néd
< 2¢,

£

if n = n(e, §) was choosen so large that SZO(S e *ds < 5.
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Claim: S is symmetric because
0= —it|i—olh, k)
= —igli=o(U()h, U(t)k)
{~igile=oU()h, U(0)k) — (U (0)h, —i g |s—oU (t)k)
= (Sh, k) — (h, Sk).

for h,ke D
By , S is closeable and we denote the closure of S again with S. By ,

we only have to show for self-adjointness that ker(S* + i) = {0}, or, equivalently,
that img(S +4) is dense. For this we calculate

(S+i)o(—iR) =i*(Ry — 1) —i*Ry =1,
hence S + i is surjective.
If we define analogously to R,, an operator T;, by T, h := SSO et U(—%)h dt, and
show S o T, =in (T, —1)h, we obtain

(S—i)o(iTy) =i*(Th — 1) —i*T) =1,

hence S — 7 is also surjective.
Let h € D. Then LUHEM=UOR _ 174y Y=L and since 4| ,_oU (s)h = limy_g 222 p
exists, this also holds for
U(t+s)h—=U(t)h

U(s)s— 1 U(s)—1

d .
g (Oh = limy

= lir% U(t) h
— U Sh).
On the other hand, U(HS)Z_U(t)h = U(ss)_l U(t) h, thus U(t)h € D and
%U(t) L Ul s)h—Uh . Uls) —1
s

s—0 S s—0

h =U(t) lim

s—0 S

Uit)h=iSU(t)h.
The previous calculation showed that for h € D = domS = dom(U(t)S) the
equation U(t) S h = i%U(t) h = SU(t)h holds, i.e. U(t)S < SU(t). This follows

also directly from .

Let V(t) := exp(i St). We have to show U = V. Let h € D. By the above we have

V(t)he D and
d

aV(t) h=iSV(t)h.
Similarly:
%U(t)h =iSU(t)h.
Therefore, t — h(t) := U(t) h — V(t) h is differentiable and
B(t)=iSU@#)h—iSV(t)h =i S h(t).
We have
LIn(0)[2 = LCh(e), A1)
— CLh(0), BB + hlE), £h()
=S h,hy+<h,iSh)
= i(Sh,hy —i(h,Sh) = 0.
Thus, h is constant, and thus h(t) = h(0) = 0 for all ¢, i.e. U(t)h = V(¢)h for all
he D and all t € R. Since D is dense, U = V. O
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9.48 Proposition.

The infinitesimal generator is bounded if and only if lims_q |U(t) — 1| = 0, d.e. U
18 morm continuous.

Proof. (=) This holds since |U(t)—1| = |expit T—1| = || SU(T)(e“s—l) dP(s)| =

s — € —1| o = supf{le’**—1] : s € o(T)} — 0 for t — 0 because o(7T') is bounded.

(<) Suppose [U(t) —1| — 0 for t — 0. Let 0 < ¢ < §. Then there is a t; > 0
with |U(t) — 1| < e for || < to. Because U(t) — 1 = SU(T)(e“‘S —1)dP(s), we
have sup{le’’* — 1| : s € o(T)} = |U(t) — 1| < ¢ for these t. For § depending on
e, therefore ts € |, .z |27 — 6,2mn + §[ =: G for all s € o(T) and |t| < to. Since
these intervals are disjoint components of G and the interval {ts : 0 < ¢ < to}
is contained in G for s € o(T), we have |ts| < ¢ for all |t| < . In particular,
too(T) < [—6,0]. And thus o(T) is bounded and hence T is bounded, because
T= SU(T) zdP(z) € L(H), since (z — z) is bounded on o (7). O

9.49 Theorem.

Let H be separable and U : R — L(H) be a unitary representation. If for all h,k € H
the mapping t — (U (t)h, k) is Lebesque-measurable, then U is SOT-continuous.

Proof. Let 0 < a < o0 and h,g € H. Then t — (U(t)h, g) is a bounded measurable
function on [0, a], so

JO KU, gl dt < an]|g]-
Therefore, h — §(U(t)h,g)dt is a bounded linear functional on H. So there is a
ga € H with (h, go) = §;{U(t)h, g)dt for all h € H and ||g.| < a|g].

We now claim that the linear span of {g, : g € H,a > 0} is dense in H.

In fact, if h € H is assumed to be orthogonal to all g,, then 0 = (h,g,) =
SoCU(t)h, gydt for alla > 0 and g € H. So {U(_)h, g) = 0 is almost everywhere on R.
Since H is separable, there exists a subset A < R of measure 0, s.t. (U(t)h,gy =0
for all ¢t ¢ A and g in a fixed countable dense subset of H. So |h| = |U(¢)h| = 0
for t ¢ A.

For s € R, now the following holds:
(h,U(5)gay = U(=8)h, ga)
J {U(t) s)h,gydt

L WUt = $)h, gyt
- [ wongpa

—S

— LG<U(t)h,g> dt =<h,ga)

So (h,U(8)gay — {h,gay for s — 0. Because {g, : a > 0,9 € H} is dense and because
of the uniform boundedness, U : R — B(H) is continuous at 0 with respect to the
WOT. Because of the group property, U is continuous with respect to the WOT
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everywhere. So U is also SOT-continuous. We have:
U0 — | = (U(t) = Dh, (U(t) = 1)k

={(U®#) - D)*U®) — Dh,h)

={(U(=t) = D)(U(t) = 1)h, h)

={(U(0) = U(=t) = U(t) + 1)h, h)

= —U(t)h = h,h) = U(=t)h — h, h)

—-04+0=0. O
Since self adjoint operators on separable Hilbert spaces can be represented as mul-
tiplication operators, one only needs to determine the 1-parameter subgroups of
these operators:
9.50 Proposition.
Let (X,Q, p) be a o-finite measure space and [ a real-valued Q-measurable function

on X. Let S := My on L?(u). Then exp(itS) = M,,, where e;(x) := exp(it f(x)).
Proof. We have dom M; = {h € L? : fh € L*}. So we just have to show that
%\t=oe”fh = ifh for all h € dom M. Pointwise, we have obviously

d ; . .

£|t=oe”f(”)h(m) = if(x)eh(z) = if (x)h(z).

To apply the theorem on dominated convergence, we need an upper bound for
CEAES h(z) —if(x)h(x)|* which we obtain as in the proof of with s = f(x):

t
eits -1 ‘2

h(z) —if(x)h(x)

h(zx) —ish(x)

eitf(m) —1 ‘2

t t
eits -1 ] 2
= ‘( " h(z) — zs) h(x)‘
= |fe(s)h(x)]?
< [2sh(x)? = 4] f(z)h(2) ],
and since f h € L? the proof is complete. O

9.51 Theorem.
Let P: f —if’ be defined on

D:= {f e L2(R) : f is locally absolutely continuous and f' € L2(R)}.
Thenl? 18 se)lf adjoint and the associated 1-parameter subgroup U is given by U(t)f :
x— f(x—t).

Proof. We have seen, that the Fourier transform F : L? — L2 is a unitary operator
which transforms P to Q, i.e. P = FQF!. By , the unitary 1-parameter
group Ug, associated to @ by Ug(t), is the multiplication with = — e, The
unitary 1-parameter group Up for P is thus given by Up(t) = FUq(t)F . We saw
in [18, 8.1.5] that the following holds for g € S

F(Uo(t)g)(y) = %27 j ¢ o) eI dy
- L ) e~ ==t go
N ng( ) d

=F(9)y—1)
= (Tt-}—g)(y)a
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where T; denotes the translation operator. Consequently, we have

Up(t)(f) = (FUQ()F ) f = F(Ut)(F 1)) = TW(FF'f) = Tif. O
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o(T)...spectrum of operator T', 92
p-norm, 7
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peci={z: px) < ch 9
r(a)...spectral radius of a, 110
0-homologous, 106
0-homotopic curves, 102
1-chains, 106

1-form, 100

absolutely continuous measures, 184
absolutely convergent sequence, 23
absolutely convex hull, 15

absolutely convex set, 10

absorbent set, 9

adjoint operator, 203

adjoint operator f*, 26

annihilator of a subset, 77

annihilator of a subset of the dual space, 77
anti-holomorphic function, 102

Baire o-algebra, 55

Baire measure, 55

Baire sets, 55

Baire space, 57
Baire-measurable function, 55
balanced set, 10

Banach disk, 81

Banach space, 23

barrel, 59

barreled lcs, 59

base field, 5

Borel o-algebra, 55

Borel o-algebra in the extended sense, 55
Borel measure, 55

bornivorous subset, 61
bornological lcs, 21

boundary of 1-chains, 106
bounded invertible operator, 211
bounded linear mapping, 19
bounded subset, 18

bounded variation, 7

Calkin algebra, 137

Cauchy integral formula, 75
Cauchy-net, 22

Cauchy-Riemann differential equations, 101
Cayley transform of an operator, 223
Cayley transformation, 223
centralizer, 114

character group, 161

characters, 160, 161

closeable operator, 203

closed p-ball around 0 with radius ¢, 9
closed 1-form, 100

closed operator, 203

closed subset of a topological space, 24
closure of an operator, 203
commutant, 114

compatible with dual pairing, 78
complete lcs, 22

completing web, 64

completion of a lcs, 47
complexification of a vector space, 50
composition, 203

cone in a vector space, 131
continuous mapping, 13

convergent sequence, 16

convex function, 5

convex hull, 15

convex set, 9

coproduct of lcs’s, 42

countably seminormed space, 14
cycle, 106

cyclic operator, 183

cyclic representation, 138

cyclic vector, 138, 183

deficiency indices, 219
deficiency-subspaces, 219
degenerated representation, 156
dimensions, 219

direct sum of lcs’s, 42

directed set, 17

distribution, 45

distributions, 47

domain, 202
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dual pairing, 78

eigenspaces, 91

eigenvalue, 91

elementary function, 54

elementary functions, 54

equivalent representation, 138
essentially self adjoint operator, 215
exact 1-form, 100

extension, 203

extremal points, 85

extremal subset, 85

faithful representation, 142

final space of a partial isometry, 133
final structure, 35

flow of an ODE, 236

Fréchet space, 23

Fredholm operators, 137
function(al) calculus, 128

Galois connection, 136
Gelfand transformation, 120
generalized sequence, 17
germ of a function, 76
graph of a mapping, 63
graph of an operator, 203

Haar measure, 150

half-space, 72

Hamel basis, 217

Heisenberg uncertainity principle, 202
Hermitian element, 124

holes of a subset, 115

holomorphic function, 101
holomorphic germ, 112

homologous, 106

homotopic curves, 100

ideal in an algebra, 117

idempotent, 143

inaccessible cardinal number, 31
infra-barreled lcs, 83

initial space of a partial isometry, 133
initial structure, 27

integrability condition, 100

invariant subset of a representation, 138

involution, 123
irreducible representation, 138

Jordan system, 107

Kelley space, 26
kinetic energy, 235

Ics .. .locally convex space, 18
left-regular representations, 148, 150
left-translation, 147

line integral, 100

linear operator, 202

Lipschitz mapping, 21

locally compact groups, 150

locally compact topological space, 39
locally convex vector space, 13

Mackey 0-sequence, 20

Mackey topology, 80
Mackey-convergent sequence, 20
meager subsets, 56

measurable cardinal number, 31
measurable function, 54
measure, 54

measure space, 54

Minkowski functional, 10
monotone functional on C*-algebra, 139
Moore-Smith sequence, 17
motion invariant, 235

neighborhood of a point, 13
neighborhood(sub)basis, 13
net, 17

Newton’s law, 234
non-degenerated representation, 157
non-trivial Ulam measure, 30
norm, 6

norm topology, 168
normable Ics, 18

normal element, 124

normal operator, 225
normed algebra, 22

normed space, 6

nowhere dense, 56

open p-ball around 0 with radius ¢, 9

open in a normed space, 12

open sets of a topology, 12

open with respect to a family of seminorms,
12

operator norm, 21

orbit, 138

orthogonal sum of representations, 138

outer derivative, 100

partial isometry, 133
Plank quantum, 202
polar of a subset, 78
polynomial convex subset, 115
position operator, 202
positive element, 130
positive functional, 139
positively homogeneous, 6
potential energy, 235
precompact subset, 39
product of les’s, 30
projection, 143

Quantum Mechanics, 202
quasi-barreled Ics, 83
quasi-complete Ics, 84
quotient space, 36

Radon-Nikodym derivative, 184
real-compact topological space, 34, 119
rectifiable curves, 100

reflexive lcs, 84

regular Borel measure, 74
representation of C*-lagebra, 138
representations of a Banach algebra, 148
resolvent function, 99

resolvent set, 99

reverse triangle inequality, 9
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Riemann-Stieltjes integrable, 73
Riemann-Stieltjes integral, 100
Riemann-Stieltjes sum, 73

scalar-valued spectral measure, 191
scalarly bounded subset, 61
Schrodinger equation, 235
Schrodinger operator, 235

unitary representation of a group, 151
unitary representations of a group, 148

variation norm, 7
vector space dimension, 217
von Neumann algebra, 189

weak operator topology (WOT), 168
weak topology, 78

self adjoint element, 124

self adjoint operator, 215

seminorm, 6

seminormed space, 14

seminorms of the so obtained seminormed
space, 14

semireflexive lcs, 84

semisimple Banach algebra, 120

separated locally convexspace, 17

separating vector, 191

sequentially closed subset of a topological
space, 24

sequentially complete Ics, 22

similar operators, 186

singular measures, 198

space of all bounded linear functionals, 26

spectral decomposition, 175

spectral measure, 166

spectral radius, 110

spectral value of an operator, 92

spectrum of a Banach algebra, 119

spectrum of a lement in a Banach algebra,
99

spectrum of an operator, 92

state, 139

steps of the inductive limit, 46

Stone-Cech compactification, 122

strict inductive limit of lcs’s, 46

strong operator topology (SOT), 168

sub-basis of the seminormed space, 14

subadditivity, 5

subbasis of a topology, 12

sublinear function, 5

subspace of all continuous linear functionals,
26

support of a measure, 176

supremum norm, 6

symmetric operator, 214

webbed Ics, 64

symmetry, 6

topological space, 12

topological vector space, 13
topology, 12

topology generated by seminorms, 12
total differential of a function, 100
total variation, 100

translation invariant metric, 5

true ideal, 117

Ulam measure, 30
ultra-bornological Ics, 83
ultrafilter, 31

uniform convergence, 79
unimodular group, 153

unitary element, 124

unitary equivalent operators, 183
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