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1. INTRODUCTION

While classical ergodic theory deals largely with single ergodic transformations or flows
(i.e. with actions of N,Z,R+ or R on measure spaces), many of the lattice models in
statistical mechanics (such as dimer models) have multi-dimensional symmetry groups:
they carry actions of Zd or Rd with d > 1. However, the transition from Z- or R-actions
to multi-parameter ergodic theory presents considerable difficulties, even if one restricts
attention to actions of Zd with d ≥ 1 (as we shall do throughout this article).

To illustrate this point, compare the classical theory of topological Markov chains (cf.
e.g. [31]) with the complexities and undecidability problems arising in the study of cellular
automata and more general multi-dimensional shifts of finite type (cf. [3], [49] or [24]).
Even if undecidability is not an issue, multi-dimensional shift of finite type exhibit a
markedly more complicated behaviour than their classical relatives (cf. e.g. [10, 11, 36,
41]).

Another feature of the transition from d = 1 to d > 1 is that smooth Zd-actions with
d > 1 on compact manifolds have zero entropy, since individual elements of Zd act with
finite entropy. The powerful ideas and tools of smooth ergodic theory are thus of limited
use for Zd-actions. Furthermore, smooth Zd-actions are not exactly abundant: all known
examples arise from ‘algebraic’ constructions (commuting group translations, commuting
automorphisms of finite-dimensional tori or solenoids, or actions of Cartan subgroups of
semisimple Lie groups on homogeneous spaces). Again one should compare this with the
richness of examples in classical smooth ergodic theory which contributes so much to the
appeal of the subject.

Making a virtue out of necessity, let us briefly turn to commuting automorphisms of
finite-dimensional tori. Toral automorphisms are among the longest and most intensively
studied measure-preserving transformations (their investigation contributed much to the
formulation and understanding of fundamental dynamical concepts like hyperbolicity and
geometrical notions of entropy), and it came as a considerable surprise when Hillel Furstenberg
[19] proved in 1967 that unexpected things may happen if one studies not one, but two
commuting toral maps: he showed that the only closed infinite subset of the circle T =
R/Z which is simultaneously invariant under multiplication by 2 and by 3 is the circle
itself (this is a statement about commuting surjective homomorphisms of T, but it has an
immediate extension to commuting automorphisms of the 6-adic solenoid). In contrast,
each of the two maps consisting of multiplication by 2 and by 3, respectively, is very
easily seen to have many infinite closed invariant subsets. In connection with this result
Furstenberg asked the famous — and still unanswered — question whether Lebesgue
measure is the only nonatomic probability measure on T which is simultaneously invariant
under multiplication by 2 and by 3.

A partial answer to Furstenberg’s question was given by D. Rudolph in [38], where he
showed that Lebesgue measure is the only nonatomic probability measure on T which is
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ergodic under the N2-action generated by multiplication by 2 and by 3, and which has
positive entropy under at least one of these maps. The results by Furstenberg on invariant
sets and by Rudolph on invariant measures have subsequently been extended to commuting
toral and solenoidal automorphisms by D. Berend ([1, 2]), A. Katok and R. Spatzier ([22])
and M. Einsiedler and E. Lindenstrauss in [15].

In 1978, Ledrappier [30] presented another surprising example: two commuting automorphisms
of a compact abelian group such that the Z2-action generated by them is mixing, but not
mixing of higher order (the problem whether there exists a single finite measure preserving
transformation with this property is one of the famous unresolved questions in ergodic
theory).

These examples by Furstenberg and Ledrappier sparked off a systematic investigation
of Zd-actions by commuting automorphisms of compact groups (which will be referred to
as algebraic Zd-action throughout this article). A key ingredient of this study, which began
in 1989–1990 with the papers [25], [32], [39] and [40], is the connection of algebraic Zd-
actions with commutative algebra and arithmetical algebraic geometry. By combining ideas
and methods from these areas with standard tools of ergodic theory one can obtain a great
deal of insight into these actions and effectively resolve some rather difficult problems like
higher order mixing, entropy calculations or the Bernoulli property. For reasons of space
I will not discuss the very intriguing rigidity properties of algebraic Zd-actions (such as
scarcity of invariant probability measures and isomorphism rigidity). The interested reader
can pursue these topics in the papers [4, 5, 6, 15, 21, 22, 27]. Instead I will focus on
the many links between dynamics, algebra and arithmetic which become apparent in the
investigation of these actions.

These notes are an expanded and updated version of the lecture [43] by the author at the
Third European Congress of Mathematics in Barcelona.

I would like to end this introduction by thanking Michael Baake for bringing the reference
[50] to my attention.

2. ALGEBRAIC Zd-ACTIONS AND THEIR DUAL MODULES

Let α : n 7→ αn be an action of Zd, d ≥ 1, by continuous automorphisms of a compact
abelian group X with Borel field BX and normalized Haar measure λX . If β is a second
algebraic Zd-action on a compact abelian group Y , then β is an algebraic factor of α if
there exists a continuous surjective group homomorphism φ : X −→ Y with

φ · αn = βn · φ (2.1)

for every n ∈ Zd. The actions α and β are finitely equivalent if each of them is a finite-to-
one algebraic factor of the other. If the map φ in (2.1) is a group isomorphism then α and
β are algebraically conjugate. If φ is a measure-preserving isomorphism of the measure
spaces (X,BX , λX) and (Y,BY , λY ), and if (2.1) holds λX -a.e., then the actions α and β
are measurably conjugate.

In [25] and [40], Pontryagin duality was shown to imply a one-to-one correspondence
between algebraic Zd-actions (up to algebraic conjugacy) and modules over the ring of
Laurent polynomials Rd = Z[u±1

1 , . . . , u±1
d ] with integral coefficients in the commuting

variables u1, . . . , ud (up to module isomorphism). In order to explain this correspondence
we write a typical element f ∈ Rd as f =

∑
m∈Zd fmu

m with um = um1
1 · · ·umd

d and
fm ∈ Z for every m = (m1, . . . ,md) ∈ Zd, where fm = 0 for all but finitely many m.
A nonzero Laurent polynomial f ∈ Rd is irreducible if it cannot be written as f = f1f2

with fi ∈ Rd and fi 6= ±um for every m ∈ Zd and i = 1, 2.



ALGEBRA, ARITHMETIC AND MULTI-PARAMETER ERGODIC THEORY 3

If α is an algebraic Zd-action on a compact abelian groupX , then the additively-written
dual group M = X̂ is a module over the ring Rd with operation

f · a =
∑

m∈Zd

fmα̂m(a) (2.2)

for f ∈ Rd and a ∈ M , where α̂m is the automorphism of M = X̂ dual to αm. In
particular,

um · a = α̂m(a) (2.3)

for m ∈ Zd and a ∈M . Conversely, anyRd-moduleM determines an algebraic Zd-action
αM on the compact abelian group XM = M̂ with αm

M dual to multiplication by um on M
for every m ∈ Zd (cf. (2.3)). Note that XM is metrizable if and only if its dual module M
is countable.

Examples 2.1. (1) Let M = Rd. Since Rd is isomorphic to the direct sum
∑

Zd Z of
copies of Z, indexed by Zd, the dual group X = R̂d is isomorphic to the Cartesian product
TZd

of copies of T = R/Z. We write a typical element x ∈ TZd

as x = (xn) with xn ∈ T
for every n ∈ Zd and choose the identification

〈x, f〉 = e2πi
P

n∈Zd fnxn , x = (xn) ∈ TZd

, f =
∑
n∈Zd

fnu
n ∈ Rd, (2.4)

of XRd
= R̂d with TZd

. Under this identification the Zd-action αRd
on XRd

= TZd

becomes the shift-action
(αm
Rd
x)n = (σmx)n = xm+n. (2.5)

(2) For every f =
∑

n∈Zd fn ∈ Rd we denote by f(σ) : TZd −→ TZd

the group
homomorphism

f(σ) =
∑
n∈Zd

fnσ
n. (2.6)

Suppose that I ⊂ Rd is an ideal and M = Rd/I . Since M is a quotient of the additive
group Rd by an α̂Rd

-invariant subgroup (i.e. by a submodule), the dual group XM = M̂

is the closed αRd
-invariant subgroup

XRd/I = {x ∈ XRd
= TZd

: 〈x, f〉 = 1 for every f ∈ I}

=
{
x ∈ TZd

:
∑
n∈Zd

fnxm+n = 0 (mod 1)

for every f ∈ I and m ∈ Zd
}

=
⋂
f∈I

ker f(σ) (cf. (2.6)),

(2.7)

and αRd/I is the restriction of the shift-action σ = αRd
in (2.5) to the shift-invariant

subgroup XRd/I ⊂ TZd

. Conversely, let X ⊂ TZd

= R̂d be a closed subgroup, and let

X⊥ = {f ∈ Rd : 〈x, f〉 = 1 for every x ∈ X}

be the annihilator of X in R̂d. Then X is shift-invariant if and only if X⊥ is an ideal in
Rd.

Examples 2.2. (1) Let d = 1, c = 1+
√

5
2 , and let I = {f ∈ R1 : f(c) = 0}. Then I

is the principal ideal generated by the irreducible polynomial h(u) = u2 − u − 1 ∈ R1,
R1/I ∼= {f(c) : f ∈ R1} = Z[c],

XR1/I = {x = (xn) ∈ TZ : xn + xn+1 − xn+2 = 0 (mod 1) for every n ∈ Z},

and αR1/I is the shift (2.5) on XR1/I .
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We define a continuous group homomorphism φ : XR1/I −→ T2 by setting φ(x) =(
x0
x1

)
for every x = (xn) ∈ XR1/I . It is easy to see that φ is actually a group isomorphism,

and that φ ◦ αR1/I = β ◦ φ, where β is the linear automorphism of T2 defined by
the companion matrix Mh =

(
0 1
1 1

)
of the polynomial h. In other words, αR1/(h) is

algebraically conjugate to (the algebraic Z-action defined by) Mh.

(2) Let n ≥ 2, and let B ∈ GL(n,Z) be an irreducible matrix (irreducible means
that the characteristic polynomial h = χB ∈ R1 of B is irreducible). We write h as
h = h0 + h1u+ · · ·+ un and denote by

Mh =


0 1 0 ··· 0 0 0
0 0 1 ··· 0 0 0
...

. . .
...

0 0 0 1
−h0 −h1 ··· −hn−2 −hn−1


the companion matrix of h. Then B and Mh are conjugate in SL(n,Q), i.e. there exists an
nonsingular n× n integer matrix C with C ·Mh = B · C.

Denote by I = (h) ⊂ R1 the principal ideal generated by h and write αR1/(h) for
the shift on the subgroup XR1/(h) ⊂ TZ in (2.7). Exactly as in Example (1) we consider

the continuous group isomorphism φ : XR1/I −→ Tn given by φ(x) =
( x0

...
xn−1

)
and

observe that φ ◦ αR1/(h) = Mh ◦ φ, i.e. that αR1/(h) is algebraically conjugate to the toral
automorphism Mh.

The matrix C defines a continuous, finite-to-one linear group homomorphism ψ : Tn

−→ Tn with ψ ◦Mh = β ◦ ψ, where β is the linear automorphism of Tn defined by B. It
follows that β is a finite-to-one algebraic factor of αR1/(h). Similarly one sees that αR1/(h)

is a finite-to-one algebraic factor of β, i.e. that αR1/(f) and β are finitely equivalent.

(3) Let us call a polynomial h = h0 + · · ·+hn−1u
n−1 +hnu

n in R1 a unit polynomial
if |h0| = |hn| = 1. In Example (2) we saw that the automorphisms αR1/(h) arising from
unit polynomials h ∈ R1 are — up to finite equivalence — in one-to-one correspondence
with the toral automorphisms.

Can we find equally familiar models for polynomials inR1 which are not units? Consider,
for example, the polynomial h = 2− u. According to (2.7),

XR1/(h) = {x = (xn) ∈ TZ : xn+1 = 2xn for every n ∈ Z},

and the map φ : XR1/(h) −→ T defined by φ(x) = x0 for every x = (xn) ∈ XR1/(h)

satisfies that φ◦αR1/(h) = T2◦φ, there T2 : T −→ T is the surjective group homomorphism
consisting of multiplication by 2. In other words, multiplication by 2 is a ‘factor’ of
αR1/(h), and it is easy to see that αR1/(h) is — in an obvious sense — the ‘smallest’
extension of T2 to a group automorphism.

Since R1/(h) ∼= Z[1/2], the group of rational numbers whose denominator is a power
of 2, a little bit of classical harmonic analysis shows that

XR1/(h) = R̂1/(h) ∼= Ẑ[1/2] ∼= (R×Q2)/ι(Z[1/2]) ∼= (R× Z2)/ι(Z), (2.8)

where Qp and Zp denote the p-adic rationals and integers, respectively, and where ι denotes
diagonal embedding. Under the above isomorphism betweenXR1/(h) and (R×Q2)/ι(Z[1/2])
the shift αR1/(h) corresponds to diagonal multiplication by 2 on R×Q2.

For the polynomial h = 3− 2u we obtain a similar picture:

XR1/(h) = {x = (xn) ∈ TZ : 2xn+1 = 3xn for every n ∈ Z}
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and the map φ(x) = x0 defined above sends αR1/(h) to ‘multiplication by 3/2’ on T. As
in (2.8) we find that

XR1/(h) = R̂1/(h) ∼= Ẑ[1/6] ∼= (R×Q2 ×Q3)/ι(Z[1/6]) ∼= (R× Z2 × Z3)/ι(Z),

and that αR1/(h) corresponds to diagonal multiplication by 3/2 on the 6-adic solenoid
(R×Q2 ×Q3)/ι(Z[1/6]).

In order to understand the automorphism αR1/(h) for an arbitrary irreducible element
h ∈ R1 we cast our net a little wider and consider irreducible algebraic Zd-actions.

Definition 2.3. An algebraic Zd-action α on a compact abelian group X is irreducible if
every closed α-invariant subgroup Y ( X is finite.

Exercise 2.4. Let h ∈ R1 be an irreducible Laurent polynomial. Show that αR1/(h) is
irreducible. Show that this is no longer true if d ≥ 2.

The following description of all irreducible algebraic Zd-actions is taken from [40] and
[16].

Let K be an algebraic number field, i.e. a finite extension of Q. For every valuation v of
K, the completionKv ofK with respect to v is a locally compact, metrizable field. Choose
a Haar measure λv on Kv (with respect to addition) and denote by modKv

: Kv −→ R the
map satisfying

λv(aB) = modKv (a)λv(B) (2.9)

for every a ∈ Kv and every Borel set B ⊂ Kv . The restriction of modKv to K is a
valuation which is equivalent to v and is denoted by | · |v . We write P (K), P (K)

f , and P (K)
∞

for the sets of places, finite places and infinite places of K (the relevant terminology and
results can be found in [12] or [51]).

For every v ∈ P (K), the sets

Rv = {a ∈ Kv : |a|v ≤ 1}, R×v = {a ∈ Kv : |a|v = 1} (2.10)

are compact. If v is finite, then Rv is the unique maximal compact subring of Kv and is
also open, and the ideal

Pv = {a ∈ Kv : |a|v < 1} ⊂ Rv (2.11)

is open, closed and maximal. The set

oK =
⋂

v∈P (K)
f

{a ∈ K : |a|v ≤ 1} (2.12)

is the ring of integral elements in K.
Now suppose that d ≥ 1 and c = (c1, . . . , cd) ∈ (Q̄×)d, where Q̄ is the algebraic

closure of Q and Q̄× = Q̄ r {0}. We set K = Kc = Q(c1, . . . , cd) = Q[c±1
1 , . . . , c±1

d ]
and

Sc = P (K)
∞ ∪ {v ∈ P (K)

f : |ci|v 6= 1 for some i = 1, . . . , d}. (2.13)

The set Sc is finite by [51, Theorem III.3]. We denote by

ιc : K −→ Vc =
∏
v∈Sc

Kv (2.14)

the diagonal embedding a 7→ (a, . . . , a), a ∈ K, and put

Rc = {a ∈ K : |a|v ≤ 1 for every v ∈ P (K) r Sc} ⊃ oK . (2.15)
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The set Vc is a locally compact algebra over K with respect to coordinate-wise addition,
multiplication and scalar multiplication, and ιc(Rc) is a discrete, co-compact, additive
subgroup of Vc, and we put

Yc = Vc

/
ιc(Rc). (2.16)

According to [42, (7.6)] we may identify Yc with the dual group of Rc, i.e.

Yc = R̂c. (2.17)

By definition,
ci ∈ R×c = {a ∈ Rc : a−1 ∈ Rc} (2.18)

for every 1 ≤ i ≤ d. We put, for every n = (n1, . . . , nd) ∈ Zd,

cn = cn1
1 · · · c

nd

d , (2.19)

write every a ∈ Vc as a = (av) = (av, v ∈ S) with av ∈ Kv for every v ∈ S, and define
a Zd-action β̄c on Vc by setting

β̄n
c a = ιc(cn)a = (cnav) (2.20)

for every a = (av) ∈ Vc and n ∈ Zd. As β̄n
c (ιc(Rc)) = ιc(Rc) for every n ∈ Zd, β̄c

induces an algebraic Zd-action βc on the compact abelian group Yc in (2.16) by

βn
c (a+ ιc(Rc)) = β̄n

c a+ ιc(Rc) (2.21)

for every n ∈ Zd and a ∈ Vc, whose dual action β̂c : n 7→ β̂n
c is given by

β̂n
c b = cnb (2.22)

for every n ∈ Zd and b ∈ Rc = Ŷc (cf. (2.17)).
Before stating a description of all irreducible algebraic Zd-actions up to finite algebraic

equivalence we recall two basic dynamical notions.

Definition 2.5. Let α be an algebraic Zd-action on a compact abelian group X with
normalized Haar measure λX . The action α is ergodic if λX(B) ∈ {0, 1} for every α-
invariant Borel set B ⊂ X . The action α is mixing

lim
n→∞

λX(B1 ∩ αnB2) = λX(B1) · λX(B2)

for all Borel sets B1, B2 ∈ X .

Theorem 2.6 ([40], [16]). Suppose that α is an algebraic Zd-action, d ≥ 1, on an infinite
compact connected abelian group X . Then α is irreducible if and only if it is finitely
equivalent to the algebraic Zd-action βc on Yc for some c = (c1, . . . , cd) ∈ (Q̄×)d (cf.
(2.21)–(2.22)).

Suppose that α is irreducible.

(1) The following conditions are equivalent.
(a) α is ergodic,
(b) βc is ergodic,
(c) At least one of the algebraic numbers ci, i = 1, . . . , d, is not a root of unity.

(2) The following conditions are equivalent.
(a) α is mixing,
(b) βc is mixing,
(c) For every nonzero n ∈ Zd, cn 6= 1.

Example 2.7. If d = 1 and c = 2, then Rc = Z[1/2] and βc is multiplication by 2 on
(R×Q2)/ιc(Z[1/2]) (This is, in fact, Example 2.2).
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3. A DICTIONARY

The discussion in the Section 2 yields, for every ideal I ⊂ Rd and, more generally,
for every Rd-module M , an algebraic Zd-action (which will, in general, obviously not
be irreducible). The correspondence between algebraic Zd-actions α = αM and Rd-
modules M yields a correspondence (or ‘dictionary’) between dynamical properties of
αM and algebraic properties of the module M (cf. [42]). It turns out that some of the
principal dynamical properties of αM can be expressed entirely in terms of the prime ideals
associated with the module M , where a prime ideal p ⊂ Rd is associated with M if

p = {f ∈ Rd : f · a = 0M}

for some a ∈ M . The set of all prime ideals associated with M is denoted by asc(M); if
M is Noetherian, then asc(M) is finite.

Figure 1 provides a small illustration of this correspondence; all the relevant results can
be found in [42]. In the third column we assume that the Rd-module M = X̂ defining α is
of the form Rd/p, where p ⊂ Rd is a prime ideal, and describe the algebraic condition on
p equivalent to the dynamical condition on α = αRd/p appearing in the second column. In
the fourth column we consider a countable Rd-module M and state the algebraic property
of M corresponding to the property of α = αM in the second column.

Property of α α = αRd/p α = αM

(1) α is expansive VC(p) ∩ Sd = ∅ M is Noetherian and αRd/p is
expansive for every p ∈ asc(M)

(2) αn is ergodic for some
n ∈ Zd

ukn − 1 /∈⊂ p for every k ≥ 1 αn
Rd/p is ergodic for every

p ∈ asc(M)

(3) α is ergodic {ukn − 1 : n ∈ Zd} 6⊂ p for every
k ≥ 1

αRd/p is ergodic for every
p ∈ asc(M)

(4) α is mixing un− 1 /∈ p for every non-zero n ∈ Zd αRd/p is mixing for every
p ∈ asc(M)

(5) α is mixing of every
order

Either p is equal to pRd for some
rational prime p, or p ∩ Z = {0} and
αRd/p is mixing

For every p ∈ asc(M), αRd/p is
mixing of every order

(6) h(α) > 0 p is principal and αRd/p is mixing h(αRd/p) > 0 for at least one
p ∈ asc(M)

(7) h(α) <∞ p 6= {0} IfM is Noetherian: p 6= {0} for every
p ∈ asc(M)

(8) α has completely
positive entropy (or is
Bernoulli)

h(αRd/p) > 0 h(αRd/p) > 0 for every p ∈ asc(M)

FIGURE 1: A POCKET DICTIONARY

The notation in Figure 1 is as follows. In (1),

VC(p) = {c ∈ (C r {0})d : f(c) = 0 for every f ∈ p}

is the variety of p, and S = {c ∈ C : |c| = 1}. From (2)–(4) in Figure 1 it is clear that α
is ergodic if and only if αn is ergodic for some n ∈ Zd, and that α is mixing if and only if
αn is ergodic for every nonzero n ∈ Zd. In (5), α is mixing of order r ≥ 2 if

lim
n1,...,nr∈Zd

‖ni−nj‖→∞ for 1≤i<j≤d

λX

( r⋂
i=1

α−niBi

)
=

r∏
i=1

λX(Bi)
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for all Borel sets Bi ⊂ X, i = 1, . . . , r. In (6)–(8), h(α) stands for the topological entropy
of α (which coincides with the metric entropy hλX

(α)). For background, details and proofs
of these and further results we refer to [42] and the original articles cited there.

The following sections are devoted to two specific notions appearing in Figure 1: the
entropies and the mixing behaviour of algebraic Zd-actions.

4. ENTROPY AND MAHLER MEASURE

In [32] and [42] there is an explicit entropy formula for algebraic Zd-actions. In the
special case where α = αRd/p for some prime ideal p ⊂ Rd this formula reduces to

h(α) =

{
| log M(f)| if p = (f) = fRd is principal,
0 otherwise,

where

M(f) =

{
exp
(∫

Sd log |f(s)| ds
)

if f 6= 0,
0 if f = 0,

is the Mahler measure of the polynomial f . Here ds denotes integration with respect to
the normalized Haar measure on the multiplicative subgroup Sd ⊂ Cd. This connection
between entropy and Mahler measure is intriguing for a number of reasons (cf. e.g. [13,
14]).

For our first result on entropy we recall that an element f ∈ Rd is a generalized
cyclotomic polynomial if it is of the form f = umc(un) for some m,n ∈ Zd, where
n 6= 0 and c(·) is a cyclotomic polynomial in a single variable. The following proposition,
taken from [7], [29] and [45], is a direct extension of Kronecker’s theorem [28] (cf. also
[42]).

Proposition 4.1. Let f ∈ Rd, d ≥ 1. Then h(αRd/(f)) = log M(f) = 0 if and only if ±f
is a product of generalized cyclotomic polynomials.

The following examples are taken from [8] and [46] (cf. also [42]). Recall that a character
(mod q) is a homomorphism χ : Z 7−→ Z with χ(0) = 0, χ(1) = 1, χ(m + q) = χ(m),
and χ(mm′) = χ(m)χ(m′) for all m,m′ ∈ Z. The symbols χq, q = 3, 4, will denote the
unique non-trivial characters (mod q) given by

χ3(m) =


0 if m ≡ 0 (mod 3),
1 if m ≡ 1 (mod 3),
−1 if m ≡ 2 (mod 3),

χ4(m) =


0 if m ≡ 0 (mod 2),
1 if m ≡ 1 (mod 4),
−1 if m ≡ 3 (mod 4).

The L-function L(s, χ) associated with a character χ is defined by

L(s, χ) =
∞∑
n=1

χ(n)
ns

=
∏

p prime

(
1− χ(p)

ps

)−1

.

Examples 4.2. (1) Let k ∈ Z, and let fk = u1 + u2 + k ∈ R2. Then

h(αR2/(fk)) = log M(fk) =


0 if k = 0,
3
√

3
4π L(2, χ3) if |k| = 1,

log |k| if |k| ≥ 2,
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(2) Let k ∈ Z, and let fk = (u1 + u2)2 + k ∈ R2. Then

h(αR2/(fk)) = log M(fk) =



0 if k = 0,
3
√

3
2π L(2, χ3) if |k| = 1,

1
2 log 2 + 2

πL(2, χ4) if |k| = 2,
2
3 log 3 +

√
3
π L(2, χ3) if |k| = 3,

log |k| if |k| ≥ 4,

(3) Let f = 1 + u1 + u2 + u3 ∈ R3. Then

h(αR3/(f)) = log M(f) =
7

2π2
ζ(3),

where ζ(3) =
∑∞
n=1 n

−3.

According to Figure 1 (8), all the actions in Example 4.2 with positive entropies are
Bernoulli.

The connection between Mahler measure and entropy extends beyond algebraic Zd-
actions. Certain dimer models in statistical mechanics also have topological entropies
which are Mahler measures. Why this is so is something of a mystery at this stage.

Examples 4.3. (1) Let f = 4− u1 − u−1
1 − u2 − u−1

2 ∈ R2. Then

h(αR2/(f)) = log M(f) = 4 · h(σD),

where σD is the shift-action of Z2 on the space of ‘dimers’ consisting of all infinite
configurations of exact pairings of elements in Z2 of the form

(cf. [20]). In [9] is was shown that this dimer model is Bernoulli with respect to its unique
measure of maximal entropy. Since entropy is a complete invariant for measurable conjugacy
of Zd-actions by [23] or [37], αR2/(f) is measurably conjugate to the ‘even’ shift-action of
Z2 on the space of dimers, furnished with its measure of maximal entropy (the even shift
action consists of all shifts by even amounts in the horizontal and vertical direction). In
[47] a computational reason for this coincidence of entropies was given, but there is still
no satisfactory explanation for the connection between these systems.

(2) This example was pointed out to me by M. Baake. Let f = 3 − u1 − u−1
1 − u2 −

u−1
2 + u1u2 + u−1

1 u−1
2 ∈ R2. Then

h(αR2/(f)) = log M(f) = h(σ∆),

where σ∆ is the shift-action of Z2 on the space X∆ of ‘ground states’ of the triangular
antiferromagnetic lattice, i.e. the closed, shift-invariant subsetX∆ ⊂ {1,−1}Z2

consisting
of all configurations which have at least two distinct symbols ±1 on the vertices of each
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triangle in the infinite triangular lattice

(cf. [50]). The action αR2/(f) is Bernoulli by Figure 1 (8). Is the action σ∆ Bernoulli with
respect to its (presumably unique) measure of maximal entropy? If so, is there a ‘natural’
connection between these two measurably conjugate Z2-actions?

5. HIGHER ORDER MIXING AND ADDITIVE RELATIONS IN FIELDS

In this section we describe the connection between higher order mixing properties of
algebraic Zd-actions and certain diophantine results on additive relations in fields due to
Kurt Mahler ([33]), Masser ([34], [26]) and Schlickewei, W. Schmidt and van der Poorten
([18], [48]). In the discussion below we shall use the following elementary consequence of
Pontryagin duality:

Lemma 5.1. Let α be an algebraic Zd-action on a compact abelian group X with dual
module M . Then X is connected if and only if no prime ideal p ∈ asc(M) contains a
nonzero constant, and X is zero-dimensional if and only if every p ∈ asc(M) contains a
nonzero constant.

Let p ⊂ Rd be a prime ideal, and let α = αRd/p be the algebraic Zd-action with dual
module M = Rd/p = X̂ . If α is not mixing, then there exist Borel sets B1, B2 ⊂ X and
a sequence (nk, k ≥ 1) in Zd with limk→∞ nk =∞ and

lim
k→∞

λX(B1 ∩ α−nkB2) = c

for some c 6= λX(B1)λX(B2). Fourier expansion implies that the latter condition is
equivalent to the existence of nonzero elements a1, a2 ∈M such that

a1 + unk · a2 = 0

for infinitely many k ≥ 1. In particular,

(um − 1) · a2 = 0 (5.1)

for some nonzero m ∈ Zd (cf. Figure 1 (4)). A very similar argument shows that α is not
mixing of order r ≥ 2 if and only if there exist elements a1, . . . , ar in M , not all equal to
zero, and a sequence ((n(1)

k , . . . ,n(r)
k ), k ≥ 1) in (Zd)r such that limk→∞ ‖n(i)

k −n(j)
k ‖ =

∞ for all i, j with 1 ≤ i < j ≤ r, and with

un
(1)
k · a1 + · · ·+ un

(r)
k · ar = 0 (5.2)

for every k ≥ 1.
Below we shall see that higher order mixing of an algebraic Zd-action α on a compact

abelian group X can break down in a particularly regular way (cf. Examples 5.7 and 5.10).
We call a nonempty finite subset S ⊂ Zd mixing under α if

lim
k→∞

λX

(⋂
n∈S

α−knBn

)
=
∏
n∈S

λX(Bn) (5.3)
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for all Borel sets Bn ⊂ X, n ∈ S, and nonmixing otherwise. If α is r-mixing, then every
set S ⊂ Zd with cardinality |S| = r is obviously mixing. The reverse implication for
algebraic Zd-actions is the subject of Theorem 5.11.

As in (5.3) one sees that a nonempty finite set S ⊂ Zd is nonmixing if and only if there
exist elements an ∈M, n ∈ S, not all equal to zero, such that∑

n∈S
ukn · an = 0 (5.4)

for infinitely many k ≥ 1.
The mixing behaviour of an algebraic Zd-actionαwith dual moduleM is again completely

determined by that of the actions αRd/p with p ∈ asc(M).

Theorem 5.2. Let α be an algebraic Zd-action on a compact abelian group X with dual
module M = X̂ .

(1) For every r ≥ 2, the following conditions are equivalent:
(a) α is r-mixing,
(b) αRd/p is r-mixing for every p ∈ asc(M).

(2) For every nonempty finite set S ⊂ Zd, the following conditions are equivalent:
(a) S is α-mixing,
(b) S is αRd/p-mixing for every p ∈ asc(M).

In order to exhibit the connection between mixing properties and additive relations in
fields we begin with a celebrated theorem by Kurt Mahler.

Theorem 5.3 ([33]). Let K be a field of characteristic 0, r ≥ 2, and let x1, . . . , xr be
nonzero elements of K. If we can find nonzero elements c1, . . . , cr such that the equation

r∑
i=1

cix
k
i = 0

has infinitely many solutions k ≥ 0, then there exist integers s ≥ 1 and i, j with 1 ≤ i <

j ≤ r such that xsi = xsj .

We denote by K the field of fractions of the integral domain Rd/p, choose a finite set
S = {n1, . . . ,nr} ⊂ Zd with r ≥ 2, and set xi = uni for i = 1, . . . , r. In view of Figure
1 (4)–(5), Lemma 5.1, (5.1), (5.4) and Theorem 5.2, Theorem 5.3 implies (and is, in fact,
equivalent to) the following statement:

Theorem 5.4 ([39]). Let α be a mixing algebraic Zd-action on a compact connected
abelian group X . Then every nonempty finite subset S ⊂ Zd is mixing.

If an algebraic Zd-action α is not mixing of every order, then there exists a smallest
integer r ≥ 2 such that α is not r-mixing. As a consequence of Lemma 5.1 and (5.2) one
obtains the equivalence of the Theorems 5.5 and 5.6 below.

Theorem 5.5 ([18], [48]). Let K be a field of characteristic 0 and G a finitely generated
multiplicative subgroup of K× = K r {0}. If r ≥ 2 and (c1, . . . , cr) ∈ (K×)r, then the
equation

r∑
i=1

cixi = 0 (5.5)

has only finitely many solutions (x1, . . . , xr) ∈ Gr such that no sub-sum of (5.5) vanishes.

Theorem 5.6 ([44]). Let α be a mixing algebraic Zd-action on a compact connected
abelian group X . Then α is mixing of every order.
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The ‘absolute’ version of the S-unit Theorem 5.5 in [18] and [17] contains a bound
on the number of solutions of (5.5) without vanishing subsums which is expressed purely
in terms of the integer r and the rank of the group G (in our setting: the order of mixing
and the rank of the group Zd). This bound could be used, for example, to obtain quite
remarkable uniform statements on the speed of multiple mixing for all irreducible and
mixing algebraic Zd-actions (cf. Definition 2.3).

For algebraic Zd-actions on disconnected groups the situation is considerably more
complicated due to the possible presence of nonmixing sets (cf. (5.3)).

Example 5.7 ([30]). Let p = (2, 1 + u1 + u2) = 2R2 + (1 + u1 + u2)R2, M = R2/p,
and let α = αM be the algebraic Z2-action on X = XM = M̂ defined in Example 2.1 (2).
Then α is mixing by Figure 1 (4), but not three-mixing.

Indeed, (1+u1+u2)2n ·a = 0 for every n ≥ 0 and a ∈M . For a = 1+(2, 1+u1+u2) ∈
M our identification of M with X̂ in Example 2.1 (2) implies that x(0,0) + x(2n,0) +
x(0,2n) = 0 (mod 1) for every x ∈ X and n ≥ 0. For B = {x ∈ X : x(0,0) = 0} it
follows that

B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B) = B ∩ α−(2n,0)(B),

and hence that

λX(B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B)) = λX(B ∩ α−(2n,0)(B)) = 1/4

for every n ≥ 0. If α were three-mixing, we would have that

lim
n→∞

λX(B ∩ α−(2n,0)(B) ∩ α−(0,2n)(B)) = λX(B)3 = 1/8.

By comparing this with (5.3) we see that the set S = {(0, 0), (1, 0), (0, 1)} ⊂ Z2 is
nonmixing.

A mixing algebraic Zd-actionα on a disconnected compact abelian groupX has nonmixing
sets if and only if it is not Bernoulli (cf. Figure 1 (8), [26] and [42, Section 27]). In
particular, if α is an ergodic algebraic Zd-action on a compact zero-dimensional abelian
group X with zero entropy, then α has nonmixing sets. The description of the nonmixing
sets of such an action α is facilitated by a Theorem of D. Masser ([26], [34]), which should
be seen as an analogue in positive characteristic of Theorem 5.3.

Theorem 5.8. Let K be an algebraically closed field of characteristic p > 0, r ≥ 2, and
let (x1, . . . , xr) ∈ (K×)r. The following conditions are equivalent:

(1) There exists an element (c1, . . . , cr) ∈ (K×)r such that
r∑
i=1

cix
k
i = 0

for infinitely many k ≥ 0;
(2) There exists a rational number s > 0 such that the set {xs1, . . . , xsr} is linearly

dependent over the algebraic closure F̄p ⊂ K of the prime field Fp = Z/pZ.

Corollary 5.9. Let p ⊂ Rd be a prime ideal containing a rational prime p > 1, and let
α = αRd/p be the algebraic Zd-action on X = XRd/p defined in Example 2.1 (2). We
denote by K = Q(R2/p) ⊃ R2/p the quotient field of Rd/p, write K̄ for its algebraic
closure, and set xn = un + p ∈ Rd/p ⊂ K ⊂ K̄ for every n ∈ Zd. If S ⊂ Zd is a
nonempty finite set, then the following conditions are equivalent:

(1) S is not α-mixing;
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(2) There exists a rational number s > 0 such that the set {xs1, . . . , xsr} ⊂ K̄ is
linearly dependent over F̄p ⊂ K.

Example 5.10 ([26]). In the notation of Examples 5.7 and 2.1 (2) we set f = 1+u1 +u2 +
u2

1 +u1u2 +u2
2 ∈ R2 and put p = (2, f) ⊂ R2,M = R2/p, α = αM andX = XM = M̂ .

We claim that the set S = {(0, 0), (1, 0), (0, 1)} is nonmixing.
In order to verify this we define {xn : n ∈ Z2} ⊂ K = Q(R2/p) as in Corollary 5.9

and choose ω ∈ F̄2 ⊂ K̄ with 1 + ω + ω2 = 0. Since

f = (1 + ωu1 + ω2u2)(1 + ω2u1 + ωu2),

we obtain that x(0,0) + ωx(1,0) + ω2x(0,1) = 0, so that S is nonmixing by Corollary 5.9.
Since the element ω′ = 1+u1

u1+u2
+ p ∈ K satisfies that 1 +ω′ +ω′

2 = 0, we can recover
(5.4) from the fact that

(u1 + u2) + (1 + u2)u3k
1 + (1 + u1)u3k

2 ∈ p

for every k ≥ 0.

In the paper [35] David Masser proved a (somewhat technical) analogue of the S-unit
Theorem 5.5 for fields with positive characteristic, which has the following remarkable
dynamical consequence.

Theorem 5.11. Let α be an algebraic Zd-action on a compact abelian group X , and let
r ≥ 2. If every subset S ⊂ Zd of cardinality r is mixing, then α is r-mixing.

The significance of Theorem 5.11 is that it reduces the difficult dynamical problem of
determining the precise order of mixing to the slightly more manageable problem of finding
nonmixing sets of small cardinality (cf. Corollary 5.9). The latter problem is investigated
in [26].
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