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Abstract. We show that for certain classes of actions of Zd, d ≥
2, by automorphisms of the torus any measurable conjugacy has to
be affine, hence measurable conjugacy implies algebraic conjugacy;
similarly any measurable factor is algebraic, and algebraic and
affine centralizers provide invariants of measurable conjugacy. Using
the algebraic machinery of dual modules and information about
class numbers of algebraic number fields we construct various examples
of Zd-actions by Bernoulli automorphisms whose measurable orbit
structure is rigid, including actions which are weakly isomorphic
but not isomorphic. We show that the structure of the centralizer
for these actions may or may not serve as a distinguishing measure–
theoretic invariant.

1. Introduction; description of results

In the course of the last decade various rigidity properties have been
found for two different classes of actions by higher–rank abelian groups:
on the one hand, certain Anosov and partially hyperbolic actions of Zd

and Rd, d ≥ 2, on compact manifolds ([9, 10, 12]) and, on the other,
actions of Zd, d ≥ 2, by automorphisms of compact abelian groups
(cf. e.g. [8, 16]). Among these rigidity phenomena is a relative scarcity
of invariant measures which stands in contrast with the classical case
d = 1 ([11]).

In this paper we make the first step in investigating a different albeit
related phenomenon: rigidity of the measurable orbit structure with
respect to the natural smooth invariant measure.
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In the classical case of actions by Z or R there are certain natural
classes of measure–preserving transformations which possess such rigidity:
ergodic translations on compact abelian groups give a rather trivial
example, while horocycle flows and other homogeneous unipotent systems
present a much more interesting one [20, 21, 22]. In contrast to such
situations, individual elements of the higher–rank actions mentioned
above are Bernoulli automorphisms. The measurable orbit structure
of a Bernoulli map can be viewed as very “soft”. Recall that the
only metric invariant of Bernoulli automorphisms is entropy ([19]); in
particular, weak isomorphism is equivalent to isomorphism for Bernoulli
maps since it implies equality of entropies. Furthermore, description
of centralizers, factors, joinings and other invariant objects associated
with a Bernoulli map is impossible in reasonable terms since each of
these objects is huge and does not possess any discernible structure.

In this paper we demonstrate that some very natural actions of
Zd, d ≥ 2, by Bernoulli automorphisms display a remarkable rigidity of
their measurable orbit structure. In particular, isomorphisms between
such actions, centralizers, and factor maps are very restricted, and a
lot of algebraic information is encoded in the measurable structure of
such actions (see Section 5).

All these properties occur for broad subclasses of both main classes
of actions of higher–rank abelian groups mentioned above: Anosov
and partially hyperbolic actions on compact manifolds, and actions
by automorphisms of compact abelian groups. However, at present
we are unable to present sufficiently definitive general results due to
various difficulties of both conceptual and technical nature. Trying to
present the most general available results would lead to cumbersome
notations and inelegant formulations. To avoid that we chose to restrict
our present analysis to a smaller class which in fact represents the
intersection of the two, namely the actions of Zd, d ≥ 2, by automorphisms
of the torus. Thus we study the measurable structure of such actions
with respect to Lebesgue (Haar) measure from the point of view of
ergodic theory.

Our main purpose is to demonstrate several striking phenomena by
means of applying to specific examples general rigidity results which are
presented in Section 5 and are based on rigidity of invariant measures
developed in [11] (see [7] for further results along these lines including
rigidity of joinings). Hence we do not strive for the greatest possible
generality even within the class of actions by automorphisms of a torus.
The basic algebraic setup for irreducible actions by automorphisms of
a torus is presented in Section 3. Then we adapt further necessary
algebraic preliminaries to the special but in a sense most representative
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case of Cartan actions, i.e. to Zn−1–actions by hyperbolic automorphisms
of the n–dimensional torus (see Section 4).

The role of entropy for a smooth action of a higher–rank abelian
group G on a finite-dimensional manifold is played by the entropy
function on G whose values are entropies of individual elements of the
action (see Section 2.2 for more details) which is naturally invariant
of isomorphism and also of weak isomorphism and is equivariant with
respect to a time change.

In Section 6 we produce several kinds of specific examples of actions
by ergodic (and hence Bernoulli) automorphisms of tori with the same
entropy function. These examples provide concrete instances when general
criteria developed in Section 5 can be applied. Our examples include:

(i) actions which are not weakly isomorphic (Section 6.1),
(ii) actions which are weakly isomorphic but not isomorphic, such

that one action is a maximal action by Bernoulli automorphisms
and the other is not (Section 6.2),

(iii) weakly isomorphic, but nonisomorphic, maximal actions (Section
6.3).

Once rigidity of conjugacies is established, examples of type (i) appear
in a rather simple–minded fashion: one simply constructs actions with
the same entropy data which are not isomorphic over Q. This is not
surprising since entropy contains only partial information about eigenvalues.
Thus one can produce actions with different eigenvalue structure but
identical entropy data.

Examples of weakly isomorphic but nonisomorphic actions are more
sophisticated. We find them among Cartan actions (see Section 4).
The centralizer of a Cartan action in the group of automorphisms of
the torus is (isomorphic to) a finite extension of the acting group, and
in some cases Cartan actions isomorphic over Q may be distinguished
by looking at the index of the group in its centralizer (type (ii); see
Examples 2a and 2b). The underlying cause for this phenomenon is
the existence of algebraic number fields K = Q(λ), where λ is a unit,
such that the ring of integers OK 6= Z[λ]. In general finding even
simplest possible examples for n = 3 involves the use of data from
algebraic number theory and rather involved calculations. For examples
of type (ii) one may use some special tricks which allow to find some of
these and to show nonisomorphism without a serious use of symbolic
manipulations on a computer.

A Cartan action α of Zn−1 on Tn is called maximal if its centralizer in
the group of automorphisms of the torus is equal to α(Zn−1)×{±Id}. A
maximal Cartan action turns out to me maximal in the above sense: it
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cannot be extended to any action of a bigger abelian group by Bernoulli
automorphisms.

Examples of maximal Cartan actions isomorphic over Q but not
isomorphic (type (iii)) are the most remarkable. Conjugacy over Q
guarantees that the actions by automorphisms of the torus Tn arising
from their centralizers are weakly isomorphic with finite fibres. The
mechanism providing obstructions for algebraic isomorphism in this
case involves the connection between the class number of an algebraic
number field and GL(n,Z)–conjugacy classes of matrices in SL(n,Z)
which have the same characteristic polynomial (see Example 3). In
finding these examples the use of computational number–theoretic algorithms
(which in our case were implemented via the Pari-GP package) has been
essential.

One of our central conclusions is that for a broad class of actions of
Zd, d ≥ 2, (see condition (R) in Section 2.2) the conjugacy class of
the centralizer of the action in the group of affine automorphisms of
the torus is an invariant of measurable conjugacy. Let Zmeas(α) be the
centralizer of the action α in the group of measurable automorphisms.
As it turns out in all our examples but Example 3b, the conjugacy class
of the pair (Zmeas(α), α) is a distinguishing invariant of the measurable
isomorphism. Thus, in particular, Example 3b shows that there are
weakly isomorphic, but nonisomorphic actions for which the affine and
hence the measurable centralizers are isomorphic as abstract groups.

We would like to acknowledge a contribution of J.-P. Thouvenot to
the early development of ideas which led to this paper. He made an
important observation that rigidity of invariant measures can be used
to prove rigidity of isomorphisms via a joining construction (see Section
5.1).

2. Preliminaries

2.1. Basic ergodic theory. Any invertible (over Q) integral n × n
matrix A ∈ M(n,Z) ∩ GL(n,Q) determines an endomorphism of the
torus Tn = Rn/Zn which we denote by FA. Conversely, any endomorphism
of Tn is given by a matrix from A ∈M(n,Z)∩GL(n,Q). If, in addition,
detA = ±1, i.e. if A is invertible over Z, then FA is an automorphism
of Tn (the group of all such A is denoted by GL(n,Z)). The map FA
preserves Lebesgue (Haar) measure µ; it is ergodic with respect to µ
if and only if there are no roots of unity among the eigenvalues of
A, as was first pointed out by Halmos ([6]). Furthermore, in this case
there are eigenvalues of absolute value greater than one and (FA, λ)
is an exact endomorphism. If FA is an automorphism it is in fact
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Bernoulli ([14]). For simplicity we will call such a map FA an ergodic
toral endomorphism (respectively, automorphism, if A is invertible). If
all eigenvalues of A have absolute values different from one we will call
the endomorphism (automorphism) FA hyperbolic.

When it does not lead to a confusion we will not distinguish between
a matrix A and corresponding toral endomorphism FA.

Let λ1, . . . , λn be the eigenvalues of the matrix A, listed with their
multiplicities. The entropy hµ(FA) of FA with respect to Lebesgue
measure is equal to ∑

{i:|λi|>1}
log |λi|.

In particular, entropy is determined by the conjugacy class of the
matrix A over Q (or over C). Hence all ergodic toral automorphisms
which are conjugate over Q are measurably conjugate with respect to
Lebesgue measure.

Classification, up to a conjugacy over Z, of matrices in SL(n,Z),
which are irreducible and conjugate over Q is closely related to the
notion of class number of an algebraic number field. A detailed discussion
relevant to our purposes appears in Section 4.2. Here we only mention
the simplest case n = 2 which is not directly related to rigidity. In
this case trace determines conjugacy class over Q and, in particular,
entropy. However if the class number of the corresponding number field
is greater than one there are matrices with the given trace which are
not conjugate over Z. This algebraic distinctiveness is not reflected in
the measurable structure: in fact, in the case of equal entropies the
classical Adler–Weiss construction of the Markov partition in [1] yields
metric isomorphisms which are more concrete and specific than in the
general Ornstein isomorphism theory and yet not algebraic.

2.2. Higher rank actions. Let α be an action by commuting toral
automorphisms given by integral matrices A1, . . . , Ad. It defines an
embedding ρα : Zd → GL(n,Z) by

ρn
α = An1

1 . . . Andd ,

where n = (n1, . . . , nd) ∈ Zd, and we have

αn = Fρnα .

Similarly, we write ρα : Zd
+ → M(n,Z) ∩ GL(n,Q) for an action

by endomorphisms. Conversely, any embedding ρ : Zd → GL(n,Z)
(respectively, ρ : Zd

+ → M(n,Z) ∩ GL(n,Q)) defines an action by
automorphisms (respectively, endomorphisms) of Tn denoted by αρ.
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Sometimes we will not explicitly distinguish between an action and
the corresponding embedding, e.g. we may talk about “the centralizer
of an action in GL(n,Z)” etc.

Definitions. Let α and α′ be two actions of Zd (Zd
+) by automorphisms

(endomorphisms) of Tn and Tn′ , respectively. The actions α and α′

are measurably (or metrically, or measure–theoretically) isomorphic (or
conjugate) if there exists a Lebesgue measure–preserving bijection ϕ :
Tn → Tn′ such that ϕ ◦ α = α′ ◦ ϕ.

The actions α and α′ are measurably isomorphic up to a time change
if there exist a measure–preserving bijection ϕ : Tn → Tn′ and a C ∈
GL(d,Z) such that ϕ ◦ α ◦ C = α′ ◦ ϕ.

The action α′ is a measurable factor of α if there exists a Lebesgue
measure–preserving transformation ϕ : Tn → Tn′ such that ϕ ◦ α =
α′ ◦ ϕ. If, in particular, ϕ is almost everywhere finite–to–one, then α′

is called a finite factor or a factor with finite fibres of α.
Actions α and α′ are weakly measurably isomorphic if each is a

measurable factor of the other.
A joining between α and α′ is a measure µ on Tn × Tn′ = Tn+n′

invariant under the Cartesian product action α × α′ such that its
projections into Tn and Tn′ are Lebesgue measures. As will be explained
in Section 5, conjugacies and factors produce special kinds of joinings.

These measure–theoretic notions have natural algebraic counterparts.

Definitions. The actions α and α′ are algebraically isomorphic (or
conjugate) if n = n′ and if there exists a group automorphism ϕ :
Tn → Tn such that ϕ ◦ α = α′ ◦ ϕ.

The actions α and α′ are algebraically isomorphic up to a time change
if there exists an automorphism ϕ : Tn → Tn and C ∈ GL(d,Z) such
that ϕ ◦ α ◦ C = α′ ◦ ϕ.

The action α′ is an algebraic factor of α if there exists a surjective
homomorphism ϕ : Tn → Tn′ such that ϕ ◦ α = α′ ◦ ϕ.

The actions α and α′ are weakly algebraically isomorphic if each is
an algebraic factor of the other. In this case n = n′ and each factor
map has finite fibres.

Finally, we call a map ϕ : Tn → Tn′ affine if there is a surjective
continuous group homomorphism ψ : Tn → Tn′ and x′ ∈ Tn′ s.t.
ϕ(x) = ψ(x) + x′ for every x ∈ Tn.

As already mentioned, we intend to show that under certain condition
for d ≥ 2, measure theoretic properties imply their algebraic counterparts.
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We will say that an algebraic factor α′ of α is a rank–one factor if α′

is an algebraic factor of α and α′(Zd
+) contains a cyclic sub–semigroup

of finite index.
The most general situation when certain rigidity phenomena appear

is the following :

(R′): The action α does not possess nontrivial rank–one algebraic
factors.

In the case of actions by automorphisms the condition (R′) is equivalent
to the following condition (R) (cf. [27]):

(R): The action α contains a group, isomorphic to Z2, which consists
of ergodic automorphisms.

By Proposition 6.6 in [25], Condition (R) is equivalent to saying that
the restriction of α to a subgroup isomorphic to Z2 is mixing.

A Lyapunov exponent for an action α of Zd is a function χ : Zd → R
which associates to each n ∈ Zd the logarithm of the absolute value
of the eigenvalue for ρn

α corresponding to a fixed eigenvector. Any
Lyapunov exponent is a linear function; hence it extends uniquely to
Rd. The multiplicity of an exponent is defined as the sum of multiplicities
of eigenvalues corresponding to this exponent. Let χi, i = 1, . . . , k, be
the different Lyapunov exponents and let mi be the multiplicity of χi.
Then the entropy formula for a single toral endomorphism implies that

hα(n) = hµ(ρn
α) =

∑
{i:χi(n)>0}

miχi(n).

The function hα : Zd → R is called the entropy function of the action
α. It naturally extends to a symmetric, convex piecewise linear function
of Rd. Any cone in Rd where all Lyapunov exponents have constant sign
is called a Weyl chamber. The entropy function is linear in any Weyl
chamber.

The entropy function is a prime invariant of measurable isomorphism;
since entropy does not increase for factors the entropy function is also
invariant of a weak measurable isomorphism. Furthermore it changes
equivariantly with respect to automorphisms of Zd.

Remark. it is interesting to point out that the convex piecewise linear
structure of the entropy function persists in much greater generality,
namely for smooth actions on differentiable manifolds with a Borel
invariant measure with compact support.

2.3. Finite algebraic factors and invariant lattices. Every algebraic
action has many algebraic factors with finite fibres. These factors are
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in one–to–one correspondence with lattices Γ ⊂ Rn which contain the
standard lattice Γ0 = Zn, and which satisfy that ρα(Γ) ⊂ Γ. The
factor–action associated with a particular lattice Γ ⊃ Γ0 is denoted by
αΓ. Let us point out that in the case of actions by automorphisms such
factors are also invertible: if Γ ⊃ Γ0 and ρα(Γ) ⊂ Γ, then ρα(Γ) = Γ.

Let Γ ⊃ Γ0 be a lattice. Take any basis in Γ and let S ∈ GL(n,Q)
be the matrix which maps the standard basis in Γ0 to this basis.
Then obviously the factor–action αΓ is equal to the action αSραS−1 . In
particular, ρα and ραΓ

are conjugate over Q, although not necessarily
over Z. Notice that conjugacy over Q is equivalent to conjugacy over
R or over C.

For any positive integer q, the lattice 1
q
Γ0 is invariant under any

automorphism in GL(n,Z) and gives rise to a factor which is conjugate
to the initial action: one can set S = 1

q
Id and obtains that ρα = ρα 1

q Γ0
.

On the other hand one can find, for any lattice Γ ⊃ Γ0, a positive
integer q such that 1

q
Γ0 ⊃ Γ (take q the least common multiple of

denominators of coordinates for a basis of Γ). Thus α 1
q

Γ0
appears as a

factor of αΓ. Summarizing, we have the following properties of finite
factors.

Proposition 2.1. Let α and α′ be Zd–actions by automorphism of the
torus Tn. The following are equivalent.

(1) ρα and ρα′ are conjugate over Q;
(2) there exists an action α′′ such that both α and α′ are isomorphic

to finite algebraic factors of α′′;
(3) α and α′ are weakly algebraically isomorphic, i.e. each of them

is isomorphic to a finite algebraic factor of the other.

Obviously, weak algebraic isomorphism implies weak measurable isomorphism.
For Z–actions by Bernoulli automorphisms, weak isomorphism implies
isomorphism since it preserves entropy, the only isomorphism invariant
for Bernoulli maps. In Section 5 we will show that, for actions by toral
automorphisms satisfying Condition (R), measurable isomorphism implies
algebraic isomorphism. Hence, existence of such actions which are conjugate
over Q but not over Z provides examples of actions by Bernoulli maps
which are weakly isomorphic but not isomorphic.

2.4. Dual modules. For any action α of Zd by automorphisms of a
compact abelian groupX we denote by α̂ the dual action on the discrete
group X̂ of characters of X. For an element χ ∈ X̂ we denote X̂α,χ the

subgroup of X̂ generated by the orbit α̂χ.

Definition. The action α is called cyclic if X̂α,χ = X̂ for some χ ∈ X̂.
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Cyclicity is obviously an invariant of algebraic conjugacy of actions
up to a time change.

More generally, the dual group X̂ has the structure of a module
over the ring Z[u±1

1 , . . . , u±1
d ] of Laurent polynomials in d commuting

variables. Action by the generators of α̂ corresponds to multiplications
by independent variables. This module is called the dual module of
the action α (cf. [24, 25]). Cyclicity of the action corresponds to the
condition that this module has a single generator. The structure of the
dual module up to isomorphism is an invariant of algebraic conjugacy
of the action up to a time change.

In the case of the torus X = Tn which concerns us in this paper
one can slightly modify the construction of the dual module to make it
more geometric. A Zd-action α by automorphisms of the torus Rn/Zn

naturally extends to an action on Rn (this extension coincides with the
embedding ρα if matrices are identified with linear transformations).
This action preserves the lattice Zn and furnishes Zn with the structure
of a module over the ring Z[u±1

1 , . . . , u±1
d ]. This module is — in an

obvious sense — a transpose of the dual module defined above. In
particular, the condition of cyclicity of the action does not depend on
which of these two definitions of dual module one adopts.

2.5. Algebraic and affine centralizers. Let α be an action of Zd by
toral automorphisms, and let ρα(Zd) = {ρn

α : n ∈ Zd}. The centralizer
of α in the group of automorphisms of Tn is denoted by Z(α) and is
not distinguished from the centralizer of ρα(Zd) in GL(n,Z).

Similarly, the centralizer of α in the semigroup of all endomorphisms
of Tn (identified with the centralizer of ρα(Zd) in the semigroupM(n,Z)∩
GL(n,Q)) is denoted by C(α).

The centralizer of α in the group of affine automorphisms of Tn will
be denoted by ZAff (α).

The centralizer of α in the semigroup of surjective affine maps of Tn

will be denoted by CAff (α).

3. Irreducible actions

3.1. Definition. The action α on Tn is called irreducible if any nontrivial
algebraic factor of α has finite fibres.

The following characterization of irreducible actions is useful (cf. [2]).

Proposition 3.1. The following conditions are equivalent:

(1) α is irreducible;
(2) ρα contains a matrix with characteristic polynomial irreducible

over Q;
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(3) ρα does not have a nontrivial invariant rational subspace or,
equivalently, any α–invariant closed subgroup of Tn is finite.

Corollary 3.2. Any irreducible free action α of Zd
+, d ≥ 2, satisfies

condition (R′).

Proof. A rank one algebraic factor has to have fibres of positive dimension.
Hence the pre–image of the origin under the factor map is a union of
finitely many rational tori of positive dimension and by Proposition 3.1
α cannot be irreducible. �

3.2. Uniqueness of cyclic actions. Cyclicity uniquely determines an
irreducible action up to algebraic conjugacy within a class of weakly
algebraically conjugate actions.

Proposition 3.3. If α is an irreducible cyclic action of Zd, d ≥ 1, on
Tn and α′ is another cyclic action such that ρα and ρα′ are conjugate
over Q, then α and α′ are algebraically isomorphic.

For the proof of Proposition 3.3 we need an elementary lemma.

Lemma 3.4. Let ρ : Zd → GL(n,Z) be an irreducible embedding. The
centralizer of ρ in GL(n,Q) acts transitively on Zn \ {0}.

Proof. By diagonalizing ρ over C and taking the real form of it, one
immediately sees that the centralizer of ρ in GL(n,R) acts transitively
on vectors with nonzero projections on all eigenspaces and thus has a
single open and dense orbit. Since the centralizer over R is the closure
of the centralizer over Q, the Q-linear span of the orbit of any integer or
rational vector under the centralizer is an invariant rational subspace.
Hence any integer point other than the origin belongs to the single
open dense orbit of the centralizer of ρ in GL(n,R). This implies the
statement of the lemma. �

Proof of Proposition 3.3. Choose C ∈ M(n,Z) such that Cρα′C
−1 =

ρα. Let k, l ∈ Zn be cyclic vectors for ρα|Zn and ρα′ |Zn , respectively.
Now consider the integer vector C(l) and findD ∈ GL(n,Q) commuting

with ρα such that DC(l) = k. We have DCρα′C
−1D−1 = ρα. The

conjugacy DC maps bijectively the Z–span of the ρα′–orbit of l to Z–
span of the ρα–orbit of k. By cyclicity both spans coincide with Zn,
and hence DC ∈ GL(n,Z). �
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3.3. Centralizers of integer matrices and algebraic number fields.
There is an intimate connection between irreducible actions on Tn and
groups of units in number fields of degree n. Since this connection (in
the particular case where the action is Cartan and hence the number
field is totally real) plays a central role in the construction of our
principal examples (type (ii) and (iii) of the Introduction), we will
describe it here in detail even though most of this material is fairly
routine from the point of view of algebraic number theory.

Let A ∈ GL(n,Z) be a matrix with an irreducible characteristic
polynomial f and hence distinct eigenvalues. The centralizer of A in
M(n,Q) can be identified with the ring of all polynomials in A with
rational coefficients modulo the principal ideal generated by the polynomial
f(A), and hence with the field K = Q(λ), where λ is an eigenvalue of
A, by the map

(1) γ : p(A) 7→ p(λ)

with p ∈ Q[x]. Notice that if B = p(A) is an integer matrix then γ(B)
is an algebraic integer, and if B ∈ GL(n,Z) then γ(B) is an algebraic
unit (converse is not necessarily true).

Lemma 3.5. The map γ in (1) is injective.

Proof. If γ(p(A)) = 1 for p(A) 6= Id, then p(A) has 1 as an eigenvalue,
and hence has a rational subspace consisting of all invariant vectors.
This subspace must be invariant underA which contradicts its irreducibility.

�

Denote by OK the ring of integers in K, by UK the group of units
in OK , by C(A) the centralizer of A in M(n,Z) and by Z(A) the
centralizer of A in the group GL(n,Z).

Lemma 3.6. γ(C(A)) is a ring in K such that Z[λ] ⊂ γ(C(A)) ⊂ OK,
and γ(Z(A)) = UK ∩ γ(C(A)).

Proof. γ(C(A)) is a ring because C(A) is a ring. As we pointed out
above images of integer matrices are algebraic integers and images of
matrices with determinant ±1 are algebraic units. Hence γ(C(A)) ⊂
OK . Finally, for every polynomial p with integer coefficients, p(A) is
an integer matrix, hence Z[λ] ⊂ γ(C(A)). �

Notice that Z(λ) is a finite index subring of OK ; hence γ(C(A)) has
the same property.
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Remark. The groups of units in two different rings, say O1 ⊂ O2, may
coincide. Examples can be found in the table of totally real cubic fields
in [4].

Proposition 3.7. Z(A) is isomorphic to Zr1+r2−1 × F where r1 is
the number the real embeddings, r2 is the number of pairs of complex
conjugate embeddings of the field K into C, and F is a finite cyclic
group.

Proof. By lemma 3.6, Z(A) is isomorphic to the group of units in the
order γ(C(A)), the statement follows from the Dirichlet Unit Theorem
([3], Ch.2, §4.3). �

Now consider an irreducible action α of Zd on Tn. Denote ρα(Zd) by
Γ, and let λ be an eigenvalue of a matrix A ∈ Γ with an irreducible
characteristic polynomial. The centralizers of Γ inM(n,Z) andGL(n,Z)
coincide with C(A) and Z(A) correspondingly. The field K = Q(λ)
has degree n and we can consider the map γ as above. By Lemma 3.6
γ(Γ) ⊂ UK .

For the purposes of purely algebraic considerations in this and the
next section it is convenient to consider actions of integer n×n matrices
on Qn rather than on Rn and correspondingly to think of α as an action
by automorphisms of the rational torus Tn

Q = Qn/Zn.
Let v = (v1, . . . , vn) be an eigenvector of A with eigenvalue λ whose

coordinates belong to K. Consider the “projection” π : Qn → K
defined by π(r1, . . . rn) =

∑n
i=1 rivi. It is a bijection ([29], Prop. 8)

which conjugates the action of the group Γ with the action on K given
by multiplication by corresponding eigenvalues

∏d
i=1 λ

ki
i , k1, . . . , kd ∈

Z. Here A1, . . . , Ad ∈ Γ are the images of the generators of the action
α, and Aiv = λiv, i = 1, . . . , d. The lattice πZn ⊂ K is a module over
the ring Z[λ1, . . . , λd].

Conversely, any such data, consisting of an algebraic number field
K = Q(λ) of degree n, a d-tuple λ̄ = (λ1, . . . , λd) of multiplicatively
independent units in K, and a lattice L ⊂ K which is a module over
Z[λ1, . . . , λd], determine an Zd-action αλ̄,L by automorphisms of Tn up
to algebraic conjugacy (corresponding to a choice of a basis in the
lattice L). This action is generated by multiplications by λ1, . . . , λd
(which preserve L by assumption). The action αλ̄,L diagonalizes over C
as follows. Let φ1 = id, φ2, . . . , φn be different embeddings of K into C.
The multiplications by λi, i = 1, . . . , d, are simultaneously conjugate
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over C to the respective matrices(
λi 0 ... 0
0 φ2(λi) ... 0
... ... ... ...
0 0 ... φn(λi)

)
, i = 1, . . . , d.

We will assume that the action is irreducible which in many interesting
cases can be easily checked.

Thus, all actions αλ̄,L with fixed λ̄ are weakly algebraically isomorphic
since the corresponding embeddings are conjugate over Q (Proposition
2.1). Actions produced with different sets of units in the same field, say
λ̄ and µ̄ = (µ1, . . . , µd), are weakly algebraically isomorphic if and only
if there is an automorphism g of K such that µi = gλi, i = 1, . . . , d.
By Proposition 3.3 there is a unique cyclic action (up to algebraic
isomorphism) within any class of weakly algebraically isomorphic actions:
it corresponds to setting L = Z[λ1, . . . , λd]; we will denote this action
by αmin

λ̄ . Cyclicity of the action αmin
λ̄ is obvious since the whole lattice is

obtained from its single element 1 by the action of the ring Z[λ±1
1 , . . . , λ±1

d ].
Let us summarize this discussion.

Proposition 3.8. Any irreducible action α of Zd by automorphisms
of Tn is algebraically conjugate to an action of the form αλ̄,L. It is
weakly algebraically conjugate to the cyclic action αmin

λ̄ . The field K =
Q[λ1, . . . , λd] has degree n, and the vector of units λ̄ = (λ1, . . . , λd) is
defined up to an automorphism of K.

Apart from the cyclic model αmin
λ̄ there is another canonical choice

of the lattice L, namely the ring of integers OK . We will denote the
action αλ̄,OK by αmax

λ̄ . More generally, one can choose as the lattice L
any subring O such that Z[λ1, . . . , λd] ⊂ O ⊂ OK .

Proposition 3.9. Assume that O ) Z[λ1, . . . , λd]. Then the action
αλ̄,O is not algebraically isomorphic up to a time change to αmin

λ̄ . In
particular, if OK 6= Z[λ1, . . . , λd], then the actions αmax

λ̄ and αmin
λ̄ are

not algebraically isomorphic up to a time change.

Proof. Let us denote the centralizers in M(n,Z) of the actions αλ̄,O and
αmin
λ̄ by C1 and C2, respectively. The centralizer C1 contains multiplications

by all elements of O. For, if one takes any basis in O, the multiplication
by an element µ ∈ O takes elements of the basis into elements of O,
which are linear combinations with integral coefficients of the basis
elements; hence the multiplication is given by an integer matrix. On
the other hand any element of each centralizer is a multiplication by
an integer in K (Lemma 3.6).

Now assume that the multiplication by µ ∈ OK belongs to C2. This
means that this multiplication preserves Z[λ1, . . . , λd]; in particular,
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µ = µ·1 ∈ Z[λ1, . . . , λd]. Thus C2 consists of multiplication by elements
of Z[λ1, . . . , λd]. An algebraic isomorphism up to a time change has to
preserve both the module of polynomials with integer coefficients in the
generators of the action and the centralizer of the action in M(n,Z),
which is impossible. �

The central question which appears in connection with our examples
is the classification of weakly algebraically isomorphic Cartan actions
up to algebraic isomorphism.

Proposition 3.9 is useful in distinguishing weakly algebraically isomorphic
actions whenOK 6= Z[λ1, . . . , λd]. Cyclicity also can serve as a distinguishing
invariant.

Corollary 3.10. The action αλ̄,O is cyclic if and only if O = Z[λ1, . . . ,
λd].

Proof. The action αmin
λ̄ corresponding to the ring Z[λ1, . . . , λd] is cyclic

by definition since the ring coincides with the orbit of 1. By Proposition
3.3, if αλ̄,O were cyclic, it would be algebraically conjugate to αmin

λ̄ ,
which, by Proposition 3.9, implies that O = Z[λ1, . . . , λd]. �

The property common to all actions of the αλ̄,O is transitivity of the
action of the centralizer C(αλ̄,O) on the lattice. Similarly to cyclicity
this property is obviously an invariant of algebraic conjugacy up to a
time change.

Proposition 3.11. Any irreducible action α of Zd by automorphisms
of Tn whose centralizer C(α) in M(n,Z) acts transitively on Zn is
algebraically isomorphic to an action αλ̄,O, where O ⊂ OK is a ring
which contains Z[λ1, . . . , λd].

Proof. By Proposition 3.8 any irreducible action α of Zd by automorphisms
of Tn is algebraically conjugate to an action of the form αλ̄,L for a
lattice L ⊂ K. Let C be the centralizer of αλ̄,L in the semigroup of
linear endomorphisms of L. We fix an element β ∈ L with Cβ = L and
consider conjugation of the action αλ̄,L by multiplication by β−1; this is
simply αλ̄,β−1L. The centralizer of αλ̄,β−1L acts on the element 1 ∈ β−1L
transitively. By Lemma 3.6 the centralizer consists of all multiplications
by elements of a certain subring O ⊂ OK which contains Z[λ1, . . . , λd].
Thus 1 ∈ β−1L = O. �
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3.4. Structure of algebraic and affine centralizers for irreducible
actions. By Lemma 3.6, the centralizer C(α), as an additive group, is
isomorphic to Zn and has an additional ring structure. In the terminology
of Proposition 3.7, the centralizer Z(α) for an irreducible action α by
toral automorphisms is isomorphic to Zr1+r2−1 × F .

An irreducible action α has maximal rank if d = r1 + r2 − 1. In this
case Z(α) is a finite extension of α.

Notice that any affine map commuting with an action α by toral
automorphisms preserves the set Fix(α) of fixed points of the action.
This set is always a subgroup of the torus and hence, for an irreducible
action, always finite. The translation by any element of Fix(α) commutes
with α and thus belongs to ZAff (α). Furthermore, the affine centralizers
ZAff (α) and CAff (α) are generated by these translations and, respectively,
Z(α) and C(α).

Remark. Most of the material of this section extends to general irreducible
actions of Zd by automorphisms of compact connected abelian groups; a
group possessing such an action must be a torus or a solenoid ([25, 26]).
In the solenoid case, which includes natural extensions of Zd–actions by
toral endomorphisms, the algebraic numbers λ1, . . . , λd which appear
in the constructions are not in general integers. As we mentioned in
the introduction we restrict our algebraic setting here since we are able
to exhibit some of the most interesting and striking new phenomena
using Cartan actions and certain actions directly derived from them.
However, other interesting examples appear for actions on the torus
connected with not totally real algebraic number fields, actions on
solenoids, and actions on zero-dimensional abelian groups (cf. e.g. [16,
24, 25, 26]).

One can also extend the setup of this section to certain classes
of reducible actions. Since some of these satisfy condition (R) basic
rigidity results still hold and a number of further interesting examples
can be constructed.

4. Cartan actions

4.1. Structure of Cartan actions. Of particular interest for our
study are abelian groups of ergodic automorphisms of Tn of maximal
possible rank n − 1 (in agreement with the real rank of the Lie group
SL(n,R)).

Definition. An action of Zn−1 on Tn for n ≥ 3 by ergodic automorphisms
is called a Cartan action.
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Proposition 4.1. Let α be a Cartan action on Tn.

(1) Any element of ρα other than identity has real eigenvalues and
is hyperbolic and thus Bernoulli.

(2) α is irreducible.
(3) The centralizer of Z(α) is a finite extension of ρα(Zn−1).

Proof. First, let us point out that it is sufficient to prove the proposition
for irreducible actions. For, if α is not irreducible, it has a nontrivial
irreducible algebraic factor of dimension, say, m ≤ n − 1. Since every
factor of an ergodic automorphism is ergodic, we thus obtain an action
of Zn−1 in Tm by ergodic automorphisms. By considering a restriction
of this action to a subgroup of rank m−1 which contains an irreducible
matrix, we obtain a Cartan action on Tm. By Statement 3. for irreducible
actions, the centralizer of this Cartan action is a finite extension of
Zm−1, and thus cannot contain Zn−1, a contradiction.

Now assuming that α is irreducible, take a matrix A ∈ ρα(Zn−1)
with irreducible characteristic polynomial f . Such a matrix exists by
Proposition 3.1. It has distinct eigenvalues, say λ = λ1, . . . , λn. Consider
the correspondence γ defined in (1). By Lemma 3.6 for every B ∈
ρα(Zn−1) we have γ(B) ∈ UK , hence the group of units UK in K
contains a subgroup isomorphic to Zn−1. By the Dirichlet Unit Theorem
the rank of the group of units in K is equal to r1 + r2 − 1, where r1 is
the number of real embeddings and r2 is the number of pairs of complex
conjugate embeddings of K into C. Since r1 + 2r2 = n we deduce that
r2 = 0, so the field K is totally real, that is all eigenvalues of A,
and hence of any matrix in ρα(Zn−1), are real. The same argument
gives Statement 3, since any element of the centralizer of ρα(Zn−1)
in GL(n,Z) corresponds to a unit in K. Hyperbolicity of matrices in
ρα(Zn−1) is proved in the same way as Lemma 3.5. �

Lemma 4.2. Let A be a hyperbolic matrix in SL(n,Z) with irreducible
characteristic polynomial and distinct real eigenvalues. Then every element
of the centralizer Z(A) other than {±1} is hyperbolic.

Proof. Assume thatB ∈ Z(A) is not hyperbolic. AsB is simultaneously
diagonalizable with A and has real eigenvalues, it has an eigenvalue +1
or −1. The corresponding eigenspace is rational and A–invariant. Since
A is irreducible, this eigenspace has to coincide with the whole space
and hence B = ±1. �

Corollary 4.3. Cartan actions are exactly the maximal rank irreducible
actions corresponding to totally real number fields.
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Corollary 4.4. The centralizer Z(α) for a Cartan action α is isomorphic
to Zn−1 × {±1}.

We will call a Cartan action α maximal if α is an index two subgroup
in Z(α).

Let us point out that ZAff (α) is isomorphic Z(α) × Fix(α). Thus,
the factor of ZAff (α) by the subgroup of finite order elements is always
isomorphic to Zn−1. If α is maximal, this factor is identified with α
itself. In the next Section we will show (Corollary 5.4) that for a Cartan
action α on Tn, n ≥ 3 the isomorphism type of the pair (ZAff (α), α) is
an invariant of the measurable isomorphism. Thus, in particular, for a
maximal Cartan action the order of the group Fix(α) is a measurable
invariant.

Remark. An important geometric distinction between Cartan actions
and general irreducible actions by hyperbolic automorphisms is the
absence of multiple Lyapunov exponents. This greatly simplifies proofs
of various rigidity properties both in the differentiable and measurable
context.

4.2. Algebraically nonisomorphic maximal Cartan actions. In
Section 3.3 we described a particular class of irreducible actions αλ̄,O
which is characterized by the transitivity of the action of the centralizer
C(αλ̄,O) on the lattice (Proposition 3.11). In the case OK = Z[λ] there
is only one such action, namely the cyclic one (Corollary 3.10). Now
we will analyze this special case for totally real fields in detail and
show how information about the class number of the field helps to
construct algebraically nonisomorphic maximal Cartan actions. This
will in particular provide examples of Cartan actions not isomorphic
up to a time change to any action of the form αλ̄,O.

It is well–known that for n = 2 there are natural bijections between
conjugacy classes of hyperbolic elements in SL(2,Z) of a given trace,
ideal classes in the corresponding real quadratic field, and congruence
classes of primitive integral indefinite quadratic forms of the corresponding
discriminant. This has been used by Sarnak [23] in his proof of the
Prime Geodesic Theorem for surfaces of constant negative curvature
(see also [13]). It follows from an old Theorem of Latimer and MacDuffee
(see [17], [28], and a more modern account in [29]), that the first
bijection persists for n > 2. Let A a hyperbolic matrix A ∈ SL(n,Z)
with irreducible characteristic polynomial f , and distinct real eigenvalues,
K = Q(λ), where λ is an eigenvalue of A, and OK = Z[λ]. To each
matrix A′ with the same eigenvalues, we assign the eigenvector v =
(v1, . . . , vn) with eigenvalue λ: A′v = λv with all its entries in OK ,
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which can be always done, and to this eigenvector, an ideal in OK
with the Z–basis v1, . . . , vn. The described map is a bijection between
the GL(n,Z)–conjugacy classes of matrices in SL(n,Z) which have the
same characteristic polynomial f and the set of ideal classes in OK .
Moreover, it allows us to reach conclusions about centralizers as well.

Theorem 4.5. Let A ∈ SL(n,Z) be a hyperbolic matrix with irreducible
characteristic polynomial f and distinct real eigenvalues, K = Q(λ)
where λ is an eigenvalue of A, and OK = Z[λ]. Suppose the number
of eigenvalues among λ1, . . . , λn that belong to K is equal to r. If the
class number h(K) > r, then there exists a matrix A′ ∈ SL(n,Z) having
the same eigenvalues as A whose centralizer Z(A′) is not conjugate in
GL(n,Z) to Z(A). Furthermore, the number of matrices in SL(n,Z)
having the same eigenvalues as A with pairwise nonconjugate (in GL(n,Z))

centralizers is at least [h(K)
r

] + 1, where [x] is the largest integer < x.

Proof. Suppose the matrix A corresponds to the ideal class I1 with the
Z–basis v(1). Then

Av(1) = λv(1).

Since h(K) > 1, there exists a matrix A2 having the same eigenvalues
which corresponds to a different ideal class I2 with the basis v(2), and
we have

A2v
(2) = λv(2).

The eigenvectors v(1) and v(2) are chosen with all their entries in OK .
Now assume that Z(A2) is conjugate to Z(A). Then Z(A2) contains
a matrix B2 conjugate to A. Since B2 commutes with A2 we have
B2v

(2) = µ2v
(2), and since B2 is conjugate to A, µ2 is one of the roots

of f . Moreover, since B2 ∈ SL(n,Z) and all entries of v(2) are in K,
µ2 ∈ K. Thus µ2 is one of r roots of f which belongs to K.

From B2 = S−1AS (S ∈ GL(n,Z)) we deduce that µ2(Sv(2)) =
A(Sv(2)). Since I1 and I2 belong to different ideal classes, Sv(2) 6= kv(1)

for any k in the quotient field of OK , and since λ is a simple eigenvalue
for A, we deduce that µ2 6= λ, and thus µ2 can take one of the r − 1
remaining values.

Now assume that A3 corresponds to the third ideal class, i.e

A3v
(3) = λv(3),

and B3 commutes with A3 and is conjugate to A, and hence to B2.
Then B3v

(3) = µ3v
(3) where µ3 is a root of f belonging to the field

K. By the previous considerations, µ3 6= λ and µ3 6= µ2. An induction
argument shows that if the class number of K is greater than r, there
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exists a matrix A′ such that no matrix in Z(A′) is conjugate to A, i.e.
Z(A′) and Z(A) are not conjugate in GL(n,Z).

Since A′ has the same characteristic polynomial as A, continuing
the same process, we can find not more than r matrices representing
different ideal classes having centralizers conjugate to Z(A′), and the
required estimate follows. �

5. Measure–theoretic rigidity of conjugacies,
centralizers, and factors

5.1. Conjugacies. Suppose α and α′ are measurable actions of the
same group G by measure–preserving transformations of the spaces
(X,µ) and (Y, ν), respectively. If H : (X,µ) → (Y, ν) is a metric
isomorphism (conjugacy) between the actions then the lift of the measure
µ onto the graphH ⊂ X × Y coincides with the lift of ν to graphH−1.
The resulting measure η is a very special case of a joining of α and
α′: it is invariant under the diagonal (product) action α × α′ and its
projections to X and Y coincide with µ and ν, respectively. Obviously
the projections establish metric isomorphism of the action α × α′ on
(X × Y, η) with α on (X,µ) and α′ on (Y, ν) correspondingly.

Similarly, if an automorphism H : (X,µ) → (X,µ) commutes with
the action α, the lift of µ to graphH ⊂ X × X is a self-joining of
α, i.e. it is α × α–invariant and both of its projections coincide with
µ. Thus an information about invariant measures of the products of
different actions as well as the product of an action with itself may
give an information about isomorphisms and centralizers.

The use of this joining construction in order to deduce rigidity of
isomorphisms and centralizers from properties of invariant measures of
the product was first suggested in this context to the authors by J.-P.
Thouvenot.

In both cases the ergodic properties of the joining would be known
because of the isomorphism with the original actions. Very similar
considerations apply to the actions of semi–groups by noninvertible
measure–preserving transformations. We will use the following corollary
of the results of [11].

Theorem 5.1. Let α be an action of Z2 by ergodic toral automorphisms
and let µ be a weakly mixing α–invariant measure such that for some
m ∈ Z2, αm is a K-automorphism. Then µ is a translate of Haar
measure on an α–invariant rational subtorus.

Proof. We refer to Corollary 5.2’ from ([11], “Corrections...”). According
to this corollary the measure µ is an extension of a zero entropy measure
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for an algebraic factor of smaller dimension with Haar conditional
measures in the fiber. But since α contains a K-automorphism it does
not have non–trivial zero entropy factors. Hence the factor in question
is the action on a single point and µ itself is a Haar measure on a
rational subtorus. �

Conclusion of Theorem 5.1 obviously holds for any action of Zd, d ≥
2 which contains a subgroup Z2 satisfying assumptions of Theorem 5.1.
Thus we can deduce the following result which is central for our constructions.

Theorem 5.2. Let α and α′ be two actions of Zd by automorphisms
of Tn and Tn′ correspondingly and assume that α satisfies condition
(R). Suppose that H : Tn → Tn′ is a measure–preserving isomorphism
between (α, λ) and (α′, λ), where λ is Haar measure. Then n = n′ and
H coincides (mod 0) with an affine automorphism on the torus Tn, and
hence α and α′ are algebraically isomorphic.

Proof. First of all, condition (R) is invariant under metric isomorphism,
hence α′ also satisfies this condition. But ergodicity with respect to
Haar measure can also be expressed in terms of the eigenvalues; hence
α×α′ also satisfies (R). Now consider the joining measure η on graphH ⊂
Tn+n′ . The conditions of Theorem 5.1 are satisfied for the invariant
measure η of the action α× α′. Thus η is a translate of Haar measure
on a rational α×α′–invariant subtorus T′ ⊂ Tn+n′ = Tn×Tn′ . On the
other hand we know that projections of T′ to both Tn and Tn′ preserve
Haar measure and are one–to–one. The partitions of T′ into pre–images
of points for each of the projections are measurable partitions and
Haar measures on elements are conditional measures. This implies that
both projections are onto, both partitions are partitions into points,
and hence n = n′ and T′ = graph I, where I : Tn → Tn is an
affine automorphism which has to coincide (mod 0) with the measure–
preserving isomorphism H. �

Since a time change is in a sense a trivial modification of an action we
are primarily interested in distinguishing actions up to a time change.
The corresponding rigidity criterion follows immediately from Theorem
5.2.

Corollary 5.3. Let α and α′ be two actions of Zd by automorphisms
of Tn and Tn′, respectively, and assume that α satisfies condition (R).
If α and α′ are measurably isomorphic up to a time change then they
are algebraically isomorphic up to a time change.
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5.2. Centralizers. Applying Theorem 5.2 to the case α = α′ we
immediately obtain rigidity of the centralizers.

Corollary 5.4. Let α be an action of Zd by automorphisms of Tn

satisfying condition (R). Any invertible Lebesgue measure–preserving
transformation commuting with α coincides (mod 0) with an affine
automorphism of Tn.

Any affine transformation commuting with α preserves the finite
set of fixed points of the action. Hence the centralizer of α in affine
automorphisms has a finite index subgroups which consist of automorphisms
and which corresponds to the centralizer of ρα(Zd) in GL(n,Z).

Thus, in contrast with the case of a single automorphism, the centralizer
of such an action α is not more than countable, and can be identified
with a finite extension of a certain subgroup ofGL(n,Z). As an immediate
consequence we obtain the following result.

Proposition 5.5. For any d and k, 2 ≤ d ≤ k, there exists a Zd–
action by hyperbolic toral automorphisms such that its centralizer in the
group of Lebesgue measure–preserving transformations is isomorphic to
{±1} × Zk.

Proof. Consider a hyperbolic matrix A ∈ SL(k+ 1,Z) with irreducible
characteristic polynomial and real eigenvalues such that the origin is the
only fixed point of FA. Consider a subgroup of Z(A) isomorphic to Zd

and containing A as one of its generators. This subgroup determines an
embedding ρ : Zd → SL(k+ 1,Z). Since d ≥ 2 and by Proposition 4.2,
all matrices in ρ(Zd) are hyperbolic and hence ergodic, condition (R)
is satisfied. Hence by Corollary 5.4, the measure–theoretic centralizer
of the action αρ coincides with its algebraic centralizer, which, in turn,
and obviously, coincides with centralizer of the single automorphism
FA isomorphic to {±1} × Zk. �

5.3. Factors, noninvertible centralizers and weak isomorphism.
A small modification of the proof of Theorem 5.2 produces a result
about rigidity of factors.

Theorem 5.6. Let α and α′ be two actions of Zd by automorphisms
of Tn and Tn′ respectively, and assume that α satisfies condition (R).
Suppose that H : Tn → Tn′ is a Lebesgue measure–preserving transformation
such that H ◦ α = α′ ◦H. Then α′ also satisfies (R) and H coincides
(mod 0) with an epimorphism h : Tn → Tn′ followed by translation. In
particular, α′ is an algebraic factor of α.
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Proof. Since α′ is a measurable factor of α, every element which is
ergodic for α is also ergodic for α′. Hence α′ also satisfies condition
(R). As before consider the product action α × α′ which now by the
same argument also satisfies (R). Take the α × α′ invariant measure
η = (Id×H)∗λ on graphH. This measure provides a joining of α and
α′. Since (α× α′, (Id×H)∗λ) is isomorphic to (α, λ) the conditions of
Corollary 5.1 are satisfied and η is a translate of Haar measure on an
invariant rational subtorus T′. Since T′ projects to the first coordinate
one-to-one we deduce that H is an algebraic epimorphism (mod 0)
followed by a translation. �

Similarly to the previous section the application of Theorem 5.6 to
the case α = α′ gives a description of the centralizer of α in the group
of all measure–preserving transformations.

Corollary 5.7. Let α be an action of Zd by automorphisms of Tn

satisfying condition (R). Any Lebesgue measure–preserving transformation
commuting with α coincides (mod 0) with an affine map on Tn.

Now we can obtain the following strengthening of Proposition 2.1 for
actions satisfying condition (R) which is one of the central conclusions
of this paper.

Theorem 5.8. Let α be an action of Zd by automorphisms of Tn

satisfying condition (R) and α′ another Zd-action by toral automorphisms.
Then (α, λ) is weakly isomorphic to (α′, λ′) if and only if ρα and ρα′
are isomorphic over Q, i.e. if α and α′ are finite algebraic factors of
each other.

Proof. By Theorem 5.6, α and α′ are algebraic factors of each other.
This implies that α′ acts on the torus of the same dimension n and
hence both algebraic factor–maps have finite fibres. Now the statement
follows from Proposition 2.1. �

5.4. Distinguishing weakly isomorphic actions. Similarly we can
translate criteria for algebraic conjugacy of weakly algebraically conjugate
actions to the measurable setting.

Theorem 5.9. If α is an irreducible cyclic action of Zd, d ≥ 2, on Tn

and α′ is a non–cyclic Zd-action by toral automorphisms. Then α and
α′ are not measurably isomorphic up to a time change.

Proof. Since action α satisfies condition (R) (Corollary 3.2) we can
apply Theorem 5.8 and conclude that we only need to consider the
case when ρα and ρα′ are isomorphic over Q up to a time change. But
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then, by Proposition 3.3, α and α′ are not algebraically isomorphic up
to a time change and hence, by Corollary 5.3, they are not measurably
isomorphic up to a time change. �

Combining Proposition 3.9 and Corollary 5.3 we immediately obtain
rigidity for the minimal irreducible models.

Corollary 5.10. Assume that O ) Z[λ1, . . . , λd]. Then the action
αλ̄,O is not measurably isomorphic up to a time change to αmin

λ̄ . In
particular, if OK ) Z[λ1, . . . , λd], then the actions αmax

λ̄ and αmin
λ̄ are

not measurably isomorphic up to a time change.

6. Examples

Now we proceed to produce examples of actions for which the entropy
data coincide but which are not algebraically isomorphic, and hence by
Theorem 5.2 not measure–theoretically isomorphic.

6.1. Weakly nonisomorphic actions. In this section we consider
actions which are not algebraically isomorphic over Q (or, equivalently,
over R) and hence by Theorem 5.8 are not even weakly isomorphic.
The easiest way is as follows.

Example 1a. Start with any action α of Zd, d ≥ 2, by ergodic automorphisms
of Tn. We may double the entropies of all its elements in two different
ways: by considering the Cartesian square α×α acting on T2n, and by
taking second powers of all elements: αn

2 = α2n for all n ∈ Zd. Obviously
α×α is not algebraically isomorphic to α2, since, for example, they act
on tori of different dimension. Hence by Theorem 5.2 (α× α, λ) is not
metrically isomorphic to (α2, λ) either.

Now we assume that α contains an automorphism FA where A is
hyperbolic with an irreducible characteristic polynomial and distinct
positive real eigenvalues. In this case it is easy to find an invariant
distinguishing the two actions, namely, the algebraic type of the centralizer
of the action in the group of measure–preserving transformations. By
Corollary 5.4, the centralizer of α in the group of measure–preserving
transformations coincides with the centralizer in the group of affine
maps, which is a finite extension of the centralizer in the group of
automorphisms. By the Dirichlet Unit Theorem, the centralizer of Z(α2)
in the group of automorphisms of the torus is isomorphic to {±1} ×
Zn−1, whereas the centralizer of α × α contains the Z2(n−1)–action
by product transformations αn1 × αn2 , n1,n2 ∈ Zn−1. In fact, the
centralizer of α× α can be calculated explicitly:
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Proposition 6.1. Let λ be an eigenvalue of A. Then K = Q(λ) is a
totally real algebraic field. If its ring of integers OK is equal to Z[λ]
then the centralizer of α × α in GL(2n,Z) is isomorphic to the group
GL(2,OK), i.e. the group of 2 × 2 matrices with entries in OK whose
determinant is a unit in OK.

Proof. First we notice that a matrix in block form B = (X Y
Z T ) with

X, Y, Z, T ∈ M(n,Z) commutes with ( A 0
0 A ) if an only if X, Y, Z, T

commute with A and can thus be identified with elements ofOK . In this
case B can be identified with a matrix in M(2,OK). Since det (X Y

Z T ) =
det(XT −Y Z) = ±1 (cf. [5]), the norm of the determinant of the 2×2
matrix corresponding to B is equal ±1. Hence this determinant is a
unit in OK , and we obtain the desired isomorphism. �

It is not difficult to modify Example 1a to obtain weakly nonisomor-
phic actions with the same entropy on the torus of the same dimension.

Example 1b. For a natural number k define the action αk similarly
to α2: αn

k = αkn for all n ∈ Zd.
The actions α3×α and α2×α2 act on T2n, have the same entropies

for all elements and are not isomorphic.
As before, we can see that centralizers of these two actions are not

isomorphic. In particular, the centralizer of α3 × α is abelian since it
has simple eigenvalues, while the centralizer of α2 × α2 is not.

6.2. Cartan actions distinguished by cyclicity or maximality.
We give two examples which illustrate the method of Section 3.3. They
provide weakly algebraically isomorphic Cartan actions of Z2 on T3

which are not algebraically isomorphic even up to a time change (i.e. a
linear change of coordinates in Z2) by Proposition 3.9. These examples
utilize the existence of number fields K = Q(λ) and units λ̄ = (λ1, λ2)
in them for which OK 6= Z[λ1, λ2]. In each example one action has a
form αmin

λ̄ and the other αmax
λ̄ . Hence by Corollary 5.10 they are not

measurably isomorphic up to a time change
In other words, in each example one action, namely, αmin

λ̄ , is a cyclic
Cartan action, and the other is not.

We will also show that in these examples the conjugacy type of the
pair (Z(α), α) distinguishes weakly isomorphic actions. Let us point out
that a noncyclic action for example αmax

λ̄ may be maximal, for example
when fundamental units lie in a proper subring of OK . However in our
examples centralizers for the cyclic actions will be different and thus
will serve as a distinguishing invariant.
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The information about cubic fields is either taken from [4] or obtained
with the help of the computer package Pari-GP. Some calculations were
made by Arsen Elkin during the REU program at Penn State in summer
of 1999.

We construct two Z2–actions, α, generated by commuting matrices A
andB, and α′, generated by commuting matrices A′ andB′ inGL(3,Z).
These actions are weakly algebraically isomorphic by Proposition 3.8
since they are produced with the same set of units on two different
orders, Z[λ] and OK , but not algebraically isomorphic by Proposition
3.9. In these examples the action α is cyclic by Corollary 3.10 and will
be shown to be a maximal Cartan action. Thus Z(α) = α × {±Id}.
The action α′ is not maximal, specifically, Z(α′)/{±Id} is a nontrivial
finite extension of α′.

Example 2a. LetK be a totally real cubic field given by the irreducible
polynomial f(x) = x3 + 3x2 − 6x + 1, i.e. K = Q(λ) where λ is one
of its roots. The discriminant of K is equal to 81, hence its Galois
group is cyclic, and [OK : Z[λ]] = 3. The algebraic integers λ1 = λ and
λ2 = 2− 4λ− λ2 are units with f(λ1) = f(λ2) = 0. The minimal order
in K containing λ1 and λ2 is Z[λ1, λ2] = Z[λ], and the maximal order

is OK . A basis in fundamental units is ε = λ2+5λ+1
3

and ε−1, hence UK
is not contained in Z[λ].

With respect to the basis {1, λ, λ2} in Z[λ], multiplications by λ1

and λ2 are given by the matrices

A =
( 0 1 0

0 0 1
−1 6 −3

)
, B =

(
2 −4 −1
1 −4 −1
1 −5 −1

)
,

respectively (if acting from the right on row–vectors). A direct calculation
shows that this action is maximal.

With respect to the basis {−2
3

+ 5
3
λ + 1

3
λ2,−1

3
+ 7

3
λ + 2

3
λ2} in OK ,

multiplications by λ1 and λ2 are given by the matrices

A′ =
(

1 2 −1
−1 −2 2

2 5 −2

)
, B′ =

(
1 −1 −1
−1 −2 −1
−1 −4 −2

)
.

We have A′ = V AV −1, B′ = V BV −1 for V =
(

2 −2 −1
0 −3 0
1 −4 −2

)
. Since A is a

companion matrix of f , α = 〈A,B〉 has a cyclic element in Z3. If A′

also had a cyclic element m = (m1,m2,m3) ∈ Z3, then the vectors

m=(m1,m2,m3), mA′=(m1−m2+2m3,2m1−2m2+5m3,−m1+2m2−2m3)

m(A′)2=(−3m1+5m2−7m3,−7m1+12m2−16m3,5m1−7m2+12m3),
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would have to generate Z3 or, equivalently

det
(

m1 m2 m3
m1−m2+2m3 2m1−2m2+5m3 −m1+2m2−2m3
−3m1+5m2−7m3 −7m1+12m2−16m3 5m1−7m2+12m3

)
= 3m3

1 + 18m2
1m3 − 9m1m

2
2 − 9m1m2m3

+ 27m1m
2
3 + 3m3

2 − 9m2m
2
3 + 3m3

3 = 1.

This contradiction shows that A′ has no cyclic vector, and since B′ =
2− 4A′−A′2 , the action α′ is not cyclic. In this example both actions
α and α′ have a single fixed point (0, 0, 0), hence their linear and affine
centralizers coincide, and by Corollary 5.3 α and α′ are not measurably
isomorphic up to a time change.

The action α′ is not maximal because Z(α′) contains fundamental
units.

Example 2b. Let us consider a totally real cubic field K given by
the irreducible polynomial f(x) = x3− 7x2 + 11x− 1. Thus K = Q(λ)
where λ is one of its roots. In this field the ring of integers OK has basis
{1, λ, 1

2
λ2+ 1

2
} and hence [OK : Z[λ]] = 2. The fundamental units in OK

are {1
2
λ2−2λ+ 1

2
, λ−2}. We choose the units λ = λ1 = (1

2
λ2−2λ+ 1

2
)2

and λ2 = λ− 2 which are contained in both orders, OK and Z[λ].
In Z[λ] we consider the basis {1, λ, λ2} relative to which the multiplication

by λ1 is represented by the companion matrix A =
( 0 1 0

0 0 1
1 −11 7

)
and

multiplication by λ2 is represented by the matrix B =
(
−2 1 0

0 −2 1
1 −11 5

)
.

For OK with the basis {1, λ, 1
2
λ2 + 1

2
} multiplications by λ1 and λ2

are represented by the matrices A′ =
(

0 1 0
−1 0 2
−3 −5 7

)
and B′ =

(
−2 1 0
−1 −2 2
−3 −5 5

)
.

It can be seen directly that α and α′ are not algebraically conjugate
up to a time change since A′ is a square of a matrix from SL(3,Z): A′ =(

0 −2 1
−1 −5 3
−2 −9 6

)2

, while A is not a square of a matrix in GL(3,Z), which is

checked by reducing modulo 2. In this case it is also easily seen that the
action α′ is not cyclic since the corresponding determinant is divisible
by 2. The action α has 2 fixed points on T3: (0, 0, 0) and (1

2
, 1

2
, 1

2
),

while the action α′ has 4 fixed points: (0, 0, 0), (1
2
, 1

2
, 1

2
), (1

2
, 1

2
, 0), and

(0, 0, 1
2
). Hence the affine centralizer of α is Z(α)×Z/2Z, and the affine

centralizer of α′ is Z(α′)× (Z/2Z× Z/2Z).
By Lemma 4.2, the group of elements of finite order in ZAff (α) is

Z/2Z×Z/2Z and in ZAff (α′) it is Z/2Z×Z/2Z×Z/2Z. The indices of
each action in its affine centralizer are [ZAff (α) : α] = 4 and [ZAff (α′) :
α′] = 16.
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This gives two alternative arguments that the actions are not measurably
isomorphic up to a time change.

6.3. Nonisomorphic maximal Cartan actions. We find examples
of weakly algebraically isomorphic maximal Cartan actions which are
not algebraically isomorphic up to time change. For such an action
α the structure of the pair (Z(α), α) is always the same: Z(α) is
isomorphic as a group to α × {±Id}. The algebraic tool which allows
to distinguish the actions is described in Section 4.2. In particular due
to Theorem 4.5 we may conclude existence of such actions from certain
information about the class number and the Galois group.

LetA a hyperbolic matrixA ∈ SL(n,Z) with irreducible characteristic
polynomial f , and distinct real eigenvalues, K = Q(λ), where λ is
an eigenvalue of A. Nontrivial time changes in a Cartan action which
includesA exist only if another root belongs to the fieldQ(λ). (Proposition
3.8) For, the image B of A under such a time change must have the
same characteristic polynomial as A and hence γ(B) ∈ Q(λ) is the root
in question. For n = 3 this situation correspond to the Galois group of
the field being cyclic.

Example 3a. An example for n = 3 can be obtained from a totally
real cubic field with class number 2 and the Galois group S3. The class
number 2 guarantees that the actions obtained from two different ideal
classes are not isomorphic and the Galois group S3 guarantees that
there are no nontrivial time changes.

The smallest discriminant for such a field is 1957 ([4], Table B4), and
it can be represented as K = Q(λ) where λ is a unit in K with minimal
polynomial f(x) = x3 − 2x2 − 8x− 1. In this field the ring of integers
OK = Z[λ] and the fundamental units are λ1 = λ and λ2 = λ + 2.
Two actions are constructed with this set of units (fundamental, hence
multiplicatively independent) on two different lattices, OK with the
basis {1, λ, λ2}, representing the principal ideal class, and L with the
basis {2, 1+λ, 1+λ2} representing to the second ideal class. Notice that
the units λ1 and λ2 do not belong to L, but L is a Z[λ]-module. The

first action α is generated by the matrices A =
(

0 1 0
0 0 1
1 8 2

)
and B =

(
2 1 0
0 2 1
1 8 4

)
which represent multiplication by λ1 and λ2, respectively, on OK . The

second action α′ is generated by matrices A′ =
(
−1 2 0
−1 1 1
−5 9 2

)
and B′ =(

1 2 0
−1 3 1
−5 9 5

)
which represent multiplication by λ1 and λ2, respectively,

on L in the given basis. By Proposition 3.8 these actions are weakly
algebraically isomorphic. By Theorem 4.5 they are not algebraically
isomorphic. Since the Galois group is S3 there are no nontrivial time
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changes which produce conjugacy over Q. Therefore, but Theorem 5.2
the actions are not measurably isomorphic.

It is interesting to point out that for actions α and α′ the affine
centralizers ZAff (α) and ZAff (α′) are not isomorphic as abstract groups.
The action α has 2 fixed points on T3: (0, 0, 0) and (1

2
, 1

2
, 1

2
), while the

action α′ has a single fixed point (0, 0, 0). Hence ZAff (α) is isomorphic
to Z(α) × Z/2Z, ZAff (α′) is isomorphic to Z(α′). As abstract groups,
ZAff (α) ≈ Z2 × Z/2Z× Z/2Z and ZAff (α′) ≈ Z2 × Z/2Z.

Hence by Corollary 5.4 the measurable centralizers of α and α′

are not conjugate in the group of measure–preserving transformation
providing a distinguishing invariant of measurable isomorphism.

Example 3b. This example is obtained from a totally real cubic field
with class number 3, Galois group S3, and discriminant 2597. It can
be represented as K = Q(λ) where λ is a unit in K with minimal
polynomial f(x) = x3 − 2x2 − 8x + 1. In this field the ring of integers
OK = Z[λ] and the fundamental units are λ1 = λ and λ2 = λ + 2.
Three actions are constructed with this set of units on three different
lattices, OK with the basis {1, λ, λ2}, representing the principal ideal
class, L with the basis {2, 1 + λ, 1 + λ2} representing the second ideal
class, and L2 with the basis {4, 3 + λ, 3 + λ2} representing the third
ideal class.

Multiplications by λ1 and λ2 generate the following three weakly
algebraically isomorphic actions which are not algebraically isomorphic
by Theorem 4.5 even up to a time change, and therefore not measurably
isomorphic:

A =
( 0 1 0

0 0 1
−1 8 2

)
and B =

( 2 1 0
0 2 1
−1 8 4

)
;

A′ =
(
−1 2 0
−1 1 1
−6 9 2

)
and B′ =

(
1 2 0
−1 3 1
−6 9 4

)
;

A′′ =
(
−3 4 0
−3 3 1
−10 11 2

)
and B′′ =

(
−1 4 0
−3 5 1
−10 11 4

)
.

Each action has 2 fixed point in T3, (0, 0, 0) and (1
2
, 1

2
, 1

2
). Hence all

affine centralizers are isomorphic as abstract groups to Z2 × Z/2Z ×
Z/2Z.

Example 3c Finally we give an example of two nonisomorphic maximal
Cartan actions which come from the vector of fundamental units λ̄ =
(λ1, λ2) in a totally real cubic field K such that Z(λ1, λ2) 6= OK . Thus
the whole group of units does not generate the ring OK . Both actions
αmin
λ̄ and αmax

λ̄ of the group Z2 are maximal Cartan actions by Lemma
3.6. However by Corollary 3.10 the former is cyclic and the latter is not
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and hence they are not measurably isomorphic up to a time change by
Corollary 5.10.

For a specific example we pick the totally real cubic field K = Q(α)
with class number 1 discriminant 1304 given by the polynomial x3 −
x2 − 11x − 1. For this filed we have [OK : Z(α)] = 2. Generators

in OK can be taken to be {1, α, β = α2+1
2
}. Fundamental units are

λ1 = −α, λ2 = −5 + 14α + 10β = 14α + 5α2 ∈ Z[α]. Thus the
whole group of units lies in Z[λ]. To construct the generators for two
non–isomorphic action αmin

λ̄ and αmax
λ̄ we write multiplications by λ1

and λ2 in bases {1, α, α2} and {1, α, β}, correspondingly. The resulting
matrices are:

A =
(

0 −1 0
1 0 −1
1 11 1

)
B =

(
0 14 5
5 55 19
19 214 74

)
,

A′ =
(

0 −1 0
1 0 −2
0 −6 −1

)
B =

(
−5 14 10
−14 55 38
−30 114 79

)
.

The first action has only one fixed point, the origin; the second has
four fixed points (0, 0, 0), (1

2
, 1

2
, 1

2
), (1

2
, 1

2
, 0), and (0, 0, 1

2
). Thus we have

an example of two maximal Cartan actions of Z2 which have noniso-
morphic affine and hence measurable centralizers.
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