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Abstract

In our paper [5], in proving the general case of our theorem, a result from
[3] on embedding of infinitely divisible measures on certain Lie groups with
compact center was used. An error has been found in the proof in [3]. In
this context we show in this note that the proof of the theorem in [5] can be
completed without recourse to the result from [3].

1 Introduction

Let A be a locally compact abelian group and let P (A) denote the semigroup of
probability measures on A, with the convolution product. Given µ ∈ P (A), a
λ ∈ P (A) is said to be an affine k-th root of µ (where k is any natural number)
if there exists a continuous automorphism ρ of A such that ρk = I (the identity
transformation) and λ ∗ ρ(λ) ∗ ρ2(λ) ∗ · · · ∗ ρk−1(λ) = µ, and µ is said to be affinely
infinitely divisible (on A) if it has affine k-th roots for all k. We recall also that
µ ∈ P (A) is said to be infinitely divisible if, for every natural number k, µ admits a
k-th (convolution) root. The following is the main theorem from [5]:

Theorem 1.1. Every affinely infinitely divisible probability measure on a connected
abelian Lie group A is infinitely divisible on A.

In [5], after various preparatory results, the theorem is first proved for A = IRn

for any n, and then for a general A as above, namely A = TTm × IRn for some m
and n. In the proof of the general case a theorem from [3] on the embeddability
of infinitely divisible probability measures on a class of Lie groups with compact
(nontrivial) center is used. It turns out that the proof in [3] has an error; see [4] for
details. In this context we describe here a modified proof of Theorem 1.1 as above.

As in [5] let S be the maximal torus in A, B the subgroup of A containing S
and such that B/S is the vector subspace of A/S spanned by (suppµ)S/S, V a
vector subgroup of B such that B is the direct product of S and V . Let Γ be the
group of automorphisms of B acting trivially on S, Θ the subgroup of Γ consisting

1



of automorphisms whose factor action on B/S is trivial, and ∆ the subgroup of Γ
consisting of automorphisms leaving V invariant. Then the arguments in [5], until
the penultimate paragraph of the proof show that there exists a compact subgroup
K of ∆ such that µ is infinitely divisible on BΘK. From this point the next step is
to prove that there exists a periodic one-parameter subgroup φ of ΘK such that µ
is infinitely divisible on Bφ; this would enable, together with Corollary 4.2 of [5] to
conclude that µ is infinitely divisible on B. To achieve this, in [5] we had appealed
to a result from [3] on the embeddability of infinitely divisible measures on groups
of the form BΘK as above, but the proof of that result is found to have an error.

We shall therefore now proceed as follows. Let M be a minimal closed subgroup
of ΘK of the form UC with U a vector subspace of Θ, and C a compact subgroup
of ΘK (not necessarily contained in K), such that µ is infinitely divisible on BM =
BUC; such a subgroup exists, by considerations of dimension and the number of
connected components. If M0 is the connected component of the identity in M then
BM0 is a subgroup of finite index in BM , and an argument as in the penultimate
paragraph of [5] shows that µ, which is infinitely divisible on BM , would also be
infinitely divisible on BM0. The minimality condition on M therefore shows that
M0 = M , namely M is connected. Hence C is also connected.

Now let H be the subgroup of M consisting of all elements whose action on B
leaves µ invariant. Then H is a closed subgroup, and by Lemma 2.2 of [5] µ is
infinitely divisible on BH. A priori one does not know at this stage whether H is
a semidirect product of a subspace of Θ with a compact subgroup, so one can not
conclude immediately that H = M . We shall however show that H is compact, and
hence H = M = C.

We note firstly that if Q is a closed subgroup of M such that every element x of
M which is of finite order can be expressed as hyh−1 for some h ∈ H and y ∈ Q,
then µ is infinitely divisible on BQ. This may be seen as follows: Let k be any
natural number, and ν be a k-th root of µ on BM . Then it has the form ν = λx
where λ is a probability measure on B and x ∈M is such that xk = e, the identity
element; see [5]. Now let x be expressed as hyh−1, with h ∈ H and y ∈ Q as above.
Then (h−1νh)k = h−1µh = µ, since µ is h-invariant. Thus h−1νh is a k-th root
of µ. On the other hand, h−1νh = (h−1λh)(h−1xh) = (h−1λh)y, so its support is
contained in BQ. This shows that µ is infinitely divisible on BQ, as claimed.

We now return to the subgroup M = UC as above. The vector subspace U
can be decomposed under the conjugation action of C as U0 ⊕ U1 such that U0 is
pointwise fixed and U1 contains no nonzero fixed points. Then M is a direct product
of M1 = U1C and U0. Since suppµ ⊂ B ⊂ BM1 and BM/BM1 is a vector group,
it follows that for every root λ of µ on BM , suppλ is contained in BM1, and hence
that µ infinitely divisible on BM1. By the minimality of M we get therefore that
M1 = M ; thus U0 is trivial and the action of C on U has no nonzero fixed point.

Consider now the subgroup UH (the closure of UH). It is of the form UC ′ for
some compact subgroup C ′ of C, and so by the minimality condition on M we get
that M = UH. We note that H ∩ U is normalised by H and U , and hence the
preceding conclusion implies that it is a normal subgroup of M . Let W = H ∩ U .
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Then W can be expressed as a direct product of its identity component W 0 with a
discrete subgroup D which is invariant under the action of C. Since C is connected
and its action on U has no nontrivial fixed point, it follows that D is trivial, and
hence W is a vector subspace of U . We can now express U as U = W⊕W ′ where W ′

is a C-invariant subspace of U . It can be verified, using elementary linear algebra,
that if τ is an affine automorphism of W of the form w 7→ σ(w) +w0 for all w ∈ W ,
where σ is an automorphism of W and w0 ∈ W , and if τ is of finite order then τ and
σ are conjugate as affine automorphisms, by a translation from W . Using this we see
that every element x of UC which has finite order can be expressed as hyh−1, with
h ∈ W ⊂ H and y ∈ W ′C. Therefore by the remark above µ is infinitely divisible
on BW ′C, and hence by the minimality condition on M we have M = W ′C. Thus,
in the notation as above, H ∩ U is trivial.

Let R be the (solvable) radical of (the connected Lie group) M and H0 be the
connected component of the identity in H. Since R contains U , H0R is normalised
by U . It is also normalised by H, and since UH is dense in M it follows that H0R is
a normal Lie subgroup of M . Since M/R is a semisimple Lie group this implies that
H0R/R is closed, and furthermore M/R can be expressed as M1(H

0R/R), where
M1 is a compact connected normal subgroup of M/R such that M1 ∩ (H0R/R) is
finite. Let T be a maximal torus in the compact group H0R/R and let M ′ be the
closed subgroup of M containing R and such that M ′/R = M1T . By the conjugacy
of maximal tori (see [6], Chapter 5, Theorem 15) in H0R/R we get that every x
in M can be expressed as hyh−1 for some h ∈ H0, and y ∈ M ′. Therefore, by our
observation above, µ is infinitely divisible on BM ′, and hence by the minimality
condition on M we have M ′ = M . Thus M/R = M ′/R = M1T , and since M/R is
semisimple we see that T must be trivial. Therefore H0 is a solvable Lie group.

Let P be the connected component of the identity in HR. Since H0 is solvable,
by a theorem of L. Auslander (see [7], Theorem 8.2.4) P is solvable. As the subgroup
P is normalised by UH and as the latter is dense in M , it follows that P is normal
in M . As M/R is a semisimple Lie group and P/R is a connected solvable normal
subgroup, it follows that P = R. This implies that HR is closed and R is open in
HR. Also, as R contains U , HR has the form UC ′ for some compact subgroup C ′

of C. Since µ is infinitely divisible on BH ⊂ BHR, the minimality condition on
M now implies that M = HR. Also, since M is connected and R is open in HR
we further get that M = R. Thus M is solvable, and hence the compact connected
subgroup C is abelian. Since H ∩U is trivial this further implies that H is abelian.

Now let p : M → C be the canonical projection homomorphism, and H ′ = p(H).
Then H ′ is a dense subgroup of C. Since C is an abelian group and its action on U
has no nonzero fixed point, it follows that the set of elements of C whose action on
U admits a nonzero fixed point is a proper closed subset of C. Therefore there exists
h′ ∈ H ′ whose action on U has no nonzero fixed point. Let h ∈ H be such that
p(h) = h′. Then there exists a u ∈ U such that uhu−1 = h′. The centraliser of h′ in
M is compact and hence the preceding conclusion implies that the centraliser of h
in M is compact. As H is abelian this shows that H is compact. As µ is infinitely
divisible on BH the minimality condition on M now implies that H = M = C.
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Since C is compact there exists a vector subgroup V of B such that V is invariant
under the action of C and B = SV , a direct product. Hence BC is a direct product
of S and V C, which shows in particular that it is a linear Lie group, namely a Lie
group with a faithful finite-dimensional representation. Therefore by the general
embedding theorem in [2] we get that µ, which is infinitely divisible on BC, is
embeddable on BC; the group involved here being a direct product of a group of
rigid motions and a compact abelian group, embeddability in this case can also be
obtained along the lines of the (simpler) proof in [1] for measures on the group of
affine automorphisms of IRn, n ≥ 1.

As in the argument in [5] for the vector group case we now deduce, from the
embeddability of µ on BC, that there exists a periodic one-parameter subgroup
φ of C such that µ is infinitely divisible (in fact embeddable) on Bφ. Then by
Corollary 4.2 of [5] µ is infinitely divisible on B; this proves of the theorem.
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