THE DYNAMICS OF ALGEBRAIC ZACTIONS

KLAUS SCHMIDT

1. ALGEBRAIC Z% ACTIONS AND THEIR DUAL MODULES

An algebraic Z%-action is an action a: n — o™ of Z¢, d > 1, by continuous
automorphisms of a compact abelian group X with Borel field B x and normalized
Haar measure Ax. Two algebraic Z%actions o and 3 on compact abelian groups X
and Y are algebraically conjugate if there exists a continuous group isomorphism
¢: X — Y with

o™ =p6" ¢ (1.1)
for every n € Z%. If the map ¢ in (1.1) is a homeomorphism then o and /3 are
topologically conjugate. Finally we call a and 8 measurably conjugate if there exists a
measure space isomorphism ¢: (X, Bx, Ax) — (Y, By, \y) satisfying (1.1) Ax-a.e.
for every n € Z.

In [4] and [13], Pontryagin duality was shown to imply a one-to-one correspondence
between algebraic Z%-actions (up to algebraic conjugacy) and modules over the

ring of Laurent polynomials Ry = Z[ulﬂ, . ,udﬂ] with integral coefficients in the
commuting variables uq, ..., ug (up to module isomorphism).

In order to explain this correspondence we write a typical element f € Ry as

F=Y cplmpum (1.2)

meZd

with 4™ = u]" -+ u]'® and cf(m) € Z for every m = (mq,...,mq) € Z%, where

cp(m) = 0 for all but finitely many m. If « is an algebraic Z%-action on a compact
abelian group X, then the additively-written dual group M = X is a module over
the ring R4 with operation

fra= 3 e(m)amia) (13)

meZ4

for f € Ry and a € M, where a™ is the automorphism of M = X dual to a™. In
particular,

U™ -0 = a™(a) (1.4)

for m € Z? and a € M. Conversely, any Rg-module M determines an algebraic Z?-
action oy on the compact abelian group X, = M with oy} dual to multiplication
by u™ on M for every m € Z% (cf. (1.4)). Note that X, is metrizable if and only
if its dual module M is countable.

Examples 1.1. (1) Let M = Ry. Since Rq is isomorphic to the direct sum ) ;. Z
of copies of Z, indexed by Z?, the dual group X = Ry is isomorphic to the Cartesian

product TZ" of copies of T = R/Z. We write a typical element z € TZ" as z = (zn)
1
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with z, € T for every n € Z% and choose the following identification of X L= fi;
and TZ": for every x € TZ" and f € Ry,

(z, f) = €™ Znezt c1(@)Tn (1.5)

where f is given by (1.2). Under this identification the Z%-action ag, on Xg, = T2
becomes the shift-action

(R, T)n = Tmin. (1.6)

(2) Let I C R4 be an ideal and M = Rg/I. Since M is a quotient of the additive
group R; by an ag,-invariant subgroup (i.e. by a submodule), the dual group
Xy = M is the closed ap,-invariant subgroup

Xpyr=1{r € Xg, =T%" . (x,f) =1 for every f eI}

= {x e TZ . Z ¢f(n)Tmin =0 (mod 1) (L.7)
neZ!  forevery f €1 and m € Zd},

and ap,/r is the restriction of the shift-action ag, in (1.6) to the shift-invariant
subgroup Xpg, /5 C TZ",
Conversely, let X C T = ]/?:1 be a closed subgroup, and let

Xt ={feRy:(x,f)=1 forevery z € X}

be the annihilator of X in 1/%71. Then X is shift-invariant if and only if X' is an
ideal in Ry.

The correspondence between algebraic Z%-actions o = apy; and Rg-modules M
yields a correspondence (or ‘dictionary’) between dynamical properties of ajs and
algebraic properties of the module M (cf. [16]). It turns out that some of the
principal dynamical properties of aip; can be expressed entirely in terms of the prime
ideals associated with the module M, where a prime ideal p C Ry is associated with
M if

p={f€Ry:f-a=0y}

for some a € M. The set of all prime ideals associated with M is denoted by asc(M);
if M is Noetherian, then asc(M) is finite.

Figure 1 on the facing page provides a small illustration of this correspondence;
all the relevant results can be found in [16]. In the third column we assume that the
Rj-module M = X defining « is of the form Ry/p, where p C Ry is a prime ideal,
and describe the algebraic condition on p equivalent to the dynamical condition on
a = ap,/p appearing in the second column. In the fourth column we consider a
countable Rj-module M and state the algebraic property of M corresponding to
the property of a = aps in the second column.

The notation in Figure 1 is as follows. In (1),

Velp) = {c€ (C~{0)?: f(c) =0 for every f € p}

is the variety of p, and S = {¢ € C : |¢| = 1}. From (2)—(4) it is clear that « is
ergodic if and only if o is ergodic for some n € Z9¢, and that « is mixing if and
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Property of « a=agr,/p a = an
(1) | o is expansive Ve(p)nsd = o M is Noetherian and ag,/, is
expansive for every p € asc(M)
(2) | a™ is ergodic for uf™ — 1 ¢C p for every k > 1 (xgd/p is ergodic for every
some n € Z¢ p € asc(M)
(3) | « is ergodic {u*™® —1:n €24} ¢ p for every agr,/p is ergodic for every
kE>1 p € asc(M)
(4) | « is mixing u™ — 1 ¢ p for every non-zero ap,/p is mixing for every
n ¢ z¢ p € asc(M)
(5) | « is mixing of every | Either p is equal to pRg for For every p € asc(M), QR /p 18
order some rational prime p, or mixing of every order )

pNZ= {0} and ag,/, is mixing

6 h(a) >0 p is principal and ag is h(ag > 0 for at least one
a/v /v
mixing p € asc(M)
(7) | h(er) < o0 p # {0} If M is Noetherian: p # {0} for
every p € asc(M)
8 « has completely h(afa/?y >0 h(agr > 0 for every
al/e
positive entropy (or p € asc(M)

is Bernoulli)

FIGURE 1: A POCKET DICTIONARY

only if o is ergodic for every nonzero n € Z4. In (5), a is mixing of order r > 2 if

, Jm N Ax (Qa Bz> EAX(B,)

[[n;—nj||—oo for 1<i<j<d
for all Borel sets B; C X,i=1,...,r. In (6)—(8), h(«) stands for the topological
entropy of a (which coincides with the metric entropy hy, («)). In [8] and [16] there
is an explicit entropy formula for algebraic Z?-actions. In the special case where
a = ag,/p for some prime ideal p C Ry this formula reduces to

h(a) = {Ilog M(f)| if p=(f) = fRq is principal,

0 otherwise,

0 if f=0,

is the Mahler measure of the polynomial f. Here ds denotes integration with respect
to the normalized Haar measure on the multiplicative subgroup S¢ c C¢.

For background, details and proofs of these and further results we refer to [16]
and the original articles cited there. The remainder of this note is devoted to two
particular problems: the higher order mixing behaviour and the conjugacy problem
for algebraic Z?-actions.

where M(f) = {exp(fsd log | f(s)] ds) if f+#0,

2. HIGHER ORDER MIXING PROPERTIES OF ALGEBRAIC Z%-ACTIONS

In this section we describe the connection between higher order mixing properties
of algebraic Z%actions and certain diophantine results on additive relations in fields
due to Mahler ([9]), Masser ([10], [5]) and Schlickewei, W. Schmidt and van der
Poorten ([1], [17]). In the discussion below we shall use the following elementary
consequence of Pontryagin duality:
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Lemma 2.1. Let a be an algebraic Z-action on a compact abelian group X with
dual module M. Then X is connected if and only if no prime ideal p € asc(M)
contains a nonzero constant, and X is zero-dimensional if and only if every p €
asc(M) contains a nonzero constant.

Let p C R4 be a prime ideal, and let o = apg,/, be the algebraic Z4%-action

with dual module M = Ry/p = X. If a is not mixing, then there exist Borel sets
B1, By C X and a sequence (ng, k > 1) in Z? with limy_. . ny = oo and

lim )\X(Bl n Oé_nkBg) =cC
k—o0

for some ¢ # Ax(B1)Ax(Bs). Fourier expansion implies that the latter condition is
equivalent to the existence of nonzero elements a1, as € M such that

ar +u™ ay =0
for infinitely many k& > 1. In particular,
(™ —=1)-a2=0 (2.1)

for some nonzero m € Z? (cf. Figure 1 (4)). A very similar argument shows that
« is not mixing of order r > 2 if and only if there exist elements aq,...,a, in M,
not all equal to zero, and a sequence ((ng), . ,ng)), k > 1) in (Z%)" such that
limy, oo [0{” — 0| = 0o for all i, j with 1 <i < j <, and with
(1) ("
uPk cap o+ u™ ca, =0 (2.2)
for every k > 1.
Below we shall see that higher order mixing of an algebraic Z%action o on
a compact abelian group X can break down in a particularly regular way (cf.
Examples 2.7 and 2.10). We call a nonempty finite subset S C Z¢ mizing under a

if
lim A a~"™B ) =[] \x(B 2.3
lim. X(QS ) = I (2.3
for all Borel sets B, C X, n € S, and nonmizing otherwise. If « is r-mixing, then
every set S C Z? with cardinality |S| = r is obviously mixing. The validity of the
reverse implication for algebraic Z?-actions is an open problem (cf. Problem 2.11
and Conjecture 2.12)
As in (2.3) one sees that a nonempty finite set S C Z¢ is nonmixing if and only
if there exist elements a, € M, n € S, not all equal to zero, such that

Z uF™ ay =0 (2.4)
nes
for infinitely many k& > 1.
The higher order mixing behaviour of an algebraic Z%action a with dual module
M is again completely determined by that of the actions ag,/, with p € asc(90).

Theorem 2.2. Let o be an algebraic Z%-action on a compact abelian group X with
dual module M = X.
(1) For every r > 2, the following conditions are equivalent:
(a) « is r-mizing,
(b) ag,/p is r-mizing for every p € asc(M).
(2) For every nonempty finite set S C Z%, the following conditions are equivalent:
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(a) S is a-mizing,
(b) S is ag,sp-mizing for every p € asc(M).

In order to exhibit the connection between mixing properties and additive relations
in fields we begin with a theorem by Mahler.

Theorem 2.3 ([9]). Let K be a field of characteristic 0, r > 2, and let x1, ..., ,

be nonzero elements of K. If we can find nonzero elements cy,...,c. such that the
equation
T
Z cixf =0
i=1

has infinitely many solutions k > 0, then there exist integers s > 1 and i,j with

1 <i<j<r such that zj = zj.

We denote by K the field of fractions of the integral domain Ry/p, choose a finite
set S = {ny,...,n.} C Z¢ with r > 2, and set x; = ™ for i = 1,...,r. In view
of Figure 1 (4)—(5), Lemma 2.1, (2.1), (2.4) and Theorem 2.2, Theorem 2.3 implies
(and is, in fact, equivalent to) the following statement:

Theorem 2.4 ([14]). Let a be a mizing algebraic Z4-action on a compact connected
abelian group X. Then every nonempty finite subset S C Z¢ is mizing.

If an algebraic Z%-action « is not mixing of every order, then there exists a
smallest integer r > 2 such that « is not r-mixing. As a consequence of Lemma 2.1
and (2.2) one obtains the equivalence of the Theorems 2.5 and 2.6 below.

Theorem 2.5 ([1], [17]). Let K be a field of characteristic 0 and G a finitely
generated multiplicative subgroup of K* = K ~ {0}. If r > 2 and (cq,...,¢,) €
(K*)", then the equation

> emi=0 (2.5)
i=1
has only finitely many solutions (x1,...,x,) € G" such that no sub-sum of (2.5)
vanishes.

Theorem 2.6 ([15]). Let a be a mizing algebraic Z%-action on a compact connected
abelian group X. Then « is mizing of every order.

The ‘absolute’ version of the S-unit theorem in [1] contains a bound on the
number of solutions of (2.5) without vanishing subsums which is expressed purely
in terms of the integer r and the rank of the group G (in our setting: the order of
mixing and the rank of the group Z<). This bound could be used, for example, to
obtain quite remarkable uniform statements on the speed of multiple mixing for all
irreducible and mixing algebraic Z%-actions (cf. Definition 3.1).

For algebraic Z%actions on disconnected groups the situation is considerably
more complicated due to the possible presence of nonmixing sets (cf. (2.3)).

Example 2.7 ([7]). Let p = (2,1 4+ u3 +u2) =2Ro + (1 +uy +u2)Re, M = Ry /p,
and let o = ays be the algebraic Z2?-action on X = X = M defined in Example
1.1 (2). Then « is mixing by Figure 1 (4), but not three-mixing.

Indeed, (14 uy 4+ uz)?" -a =0 for every n > 0 and a € M. For a = 1 + (2,1 +
u; + uz) € M our identification of M with X in Example 1.1 (2) implies that
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T(0,0) + T(2n,0) + T(0,2n) = 0 (mod 1) for every x € X andn > 0. For B={x € X :
T(0,0) = 0} it follows that

Bna ®"9(B)na"®?)(B) = Bna~®"9(B),
and hence that
Ax(BNa~ @ 0(B)na~®2)(B)) = Ax(BNa~"0(B)) =1/4
for every n > 0. If o were three-mixing, we would have that

lim Ax(BNa @ 9(B)na~©2")(B)) = A\x(B)> =1/8.
By comparing this with (2.3) we see that the set S = {(0,0), (1,0),(0,1)} C Z? is
nonmixing.

A mixing algebraic Z%action a on a disconnected compact abelian group X
has nonmixing sets if and only if it is not Bernoulli (cf. Figure 1 (8), [5] and [16,
Section 27]). In particular, if « is an ergodic algebraic Z?-action on a compact zero-
dimensional abelian group X with zero entropy, then o has nonmixing sets. The
description of the nonmixing sets of such an action « is facilitated by a Theorem of
Masser ([5], [10]), which should be seen as an analogue of Theorem 2.3 in positive
characteristic.

Theorem 2.8. Let K be an algebraically closed field of characteristicp > 0, r > 2,
and let (x1,...,2.) € (K*)". The following conditions are equivalent:

(1) There exists an element (cq,...,c.) € (K*)" such that

T

Zc,xf =0

i=1

for infinitely many k > 0;

(2) There exists a rational number s > 0 such that the set {x%,...,x}} is
linearly dependent over the algebraic closure F,, C K of the prime field
F, = 7/pZ.

Corollary 2.9. Let p C Ry be a prime ideal containing a rational prime p > 1,
and let o = ap,p, be the algebraic Z%-action on X = Xpr,/p defined in Example
1.1 (2). We denote by K = Q(Ra/p) D Ra/p the quotient field of Rq/p, write K
for its algebraic closure, and set , = u™ +p € Ry/p C K C K for every n € Z4.
If S C Z¢ is a nonempty finite set, then the following conditions are equivalent:
(1) S is not a-mizing;
(2) There exists a rational number s > 0 such that the set {z$,..., 25} C K is
linearly dependent over Fp CK.

Examples 2.10 ([5]). (1) In the notation of Examples 2.7 and 1.1 (2) we set
f=1+wu;+us+u?+ujuz+u3 € Ry and put p = (2, f) C Ra, M = Ry /p, a = ayy
and X = X,y = M. We claim that the set S = {(0,0),(1,0),(0,1)} is nonmixing.

In order to verify this we define {z,, : n € Z?} C K = Q(Rz/p) as in Corollary
2.9 and choose w € Fy, ¢ K with 1 4+ w + w? = 0. Since

f=1+wu +w?u) (1 + w?uy + wuy),

we obtain that z(g,0) +wz(1,0) + w2x(071) = 0, so that S is nonmixing by Corollary
2.9.
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Since the element W' = ﬁ +p € K satisfies that 1 + o’ + w'? = 0, we can

recover (2.4) from the fact that
(un +us) + (1 + u2)ui® + (1 +w)uz" € p
for every k£ > 0.

(2) Let g = 1+ uy + ug + u? + ugug + ud + u$ + udus + ugud + ud and q =
(2,9) C Rey, M = Ro/q, o = apy and X = Xy = M. We claim that the set
S =1{(0,0),(1,0),(0,1)} is again nonmixing.

In Example (1) above we used the fact that f is irreducible over F», but not over
F;. Here the polynomial g is irreducible over Fy; however, the polynomial g(u?,u3)
turns out to be divisible by 1+ u1 + uo, which can be translated into the statement

that the set {xéé%), xél/%), nggl)} is linearly dependent over Fj.

The main open question concerning higher order mixing is the following:

Problem 2.11. Let a be an algebraic Z%action on a compact abelian group X, and
let r > 2. If every subset S C Z% of cardinality r is mixing, is o 7-mixing?

A positive answer to Problem 2.11 would be equivalent to the following analogue
of Theorem 2.5 in characteristic p > 0:

Conjecture 2.12. Let K be an algebraically closed field of characteristic p >
0, G ¢ K* = K ~ {0} a finitely generated multiplicative group, v > 2, and
(c1y...,¢) € (KX)". Let us call a solution (z1,...,z,) € G" of the equation

ZciIi =0 (26)
i=1

regular if there exists a rational number s > 0 such that {x3,...,z}} is linearly
dependent over F, C K, and irregular otherwise.
Then the equation (2.6) has only finitely many irregular solutions.

3. CONJUGACY OF ALGEBRAIC Z% ACTIONS

Every algebraic Z%-action a with completely positive entropy is measurably
conjugate to a Bernoulli shift (cf. Figure 1 (8)). Since entropy is a complete invariant
for measurable conjugacy of Bernoulli shifts by [11], « is measurably conjugate to
the Z%-action

a?:n— o

for every A € GL(d,Z), since the entropies of all these actions coincide. In general,
however, o and o are not topologically conjugate.

Every algebraic Z?-action o with positive entropy has Bernoulli factors by [8]
and [12], and two such actions may again be measurably conjugate without being
algebraically or topologically conjugate. For zero entropy actions, however, there is
some evidence for a very strong form of isomorphism rigidity. Let us begin with a
special case.

Definition 3.1. An algebraic Z%-action a on a compact abelian group X is irreducible
if every closed, a-invariant subgroup Y C X is finite.
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Irreducibility is an extremely strong hypothesis: if « is mixing it implies that
o™ is Bernoulli with finite entropy for every nonzero n € Z%. If 8 is a second
irreducible and mixing algebraic Z%action on a compact abelian group Y such that
h(a®) = h(B™) for every n € Z%, then a® is measurably conjugate to 3® for every
n € Z%. However, if d > 1, then the actions o and 3 are generally nonconjugate.

Theorem 3.2 ([2], [6]). Let d > 1, and let o and [ be irreducible and mizing
algebraic Z%-actions on compact abelian groups X and Y, respectively. If ¢: X —
Y is a measurable conjugacy of o and 3, then ¢ is Ax-a.e. equal to an affine map
(a map ¢: X — Y affine if it is of the form ¢(x) = ¥(x) + y for every x € X,
where 1: X — Y is a continuous group isomorphism and y € Y.). In particular,
measurable conjugacy implies algebraic conjugacy.

If the irreducible actions o and 8 in Theorem 3.2 are of the form o = ag,/,
and 3 = ag,/q for some prime ideals p,q C Ry, then measurable conjugacy implies
that p = q. This allows the construction of algebraic Z?-actions with very similar
properties which are nevertheless measurably nonconjugate.

Example 3.3. Consider the algebraic Z2-actions a, o/, o/ on X = T® generated
by the matrices

01 0 2 1 0
A= ( 0 0 1) and B = ( 0 2 1) ,
-1 8 2 -1 8 4
-1 2 0 12 0
A/:(fl 1 1) and B’:(—l 3 1)7
-6 9 2 -6 9 4
" -3 4 0 " -1 4 0
A :(73 3 1) and B :(73 5 1),
-10 11 2 -10 11 4

respectively. In [2] it was shown that these actions are not measurably conjugate,
although it appears difficult to distinguish them with the usual invariants of measurable
conjugacy.

Example 3.4 (Nonconjugacy of Z2-actions with positive entropy). Let

f1=1+u1 +ui + ugug + u3,

f2 :1+u%+uQ+u1uQ+u§,
fg:l—i—ul—&—u%—i-uz—i—u%,

fo =14y +uf + uy + uyuy + u3,

in Ry, put p; = (2,]‘;) C Ry, J; = (4, fz) C RQ, M; = RQ/JZ', and define the
algebraic Z2-actions a; = Qp,g, on X; = Xpg,/y, as in Example 1.1 (2). Then
h(ag,/q) = log2 and h(ag,/p,) = 0, and [8, Theorem 6.5] implies that the Pinsker
algebra m(a;) of a; is the sigma-algebra By, /v, of Yi-invariant Borel sets in X,
where Y; = N7 and

Ni={ae€ M;:p;-a=0}=2M; = Ry/p;.

In other words, the Z2-action 3; induced by «; on the Pinsker algebra m(a;) is
measurably conjugate to ag, /p, -

Since any measurable conjugacy of a; and «; would map 7(«a;) to m(a;) and
induce a conjugacy of 3; and 3;, Theorem 3.2 implies that «; and a; are measurably
nonconjugate for 1 <1i < j < 4.
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The basic idea of the proof of Theorem 3.2 in [2] and [5] was suggested by
Thouvenot: if ¢: X — Y is a measurable conjugacy of a and (3, then there exists
a unique probability measure v on the graph I'(¢) = {(z,¢(x)) :z € X} C X xY
which projects to Ax and Ay, respectively, and which is invariant under the product-
action a x B: m +— o x 3% of Z% on X x Y. Since a x 3, acting on (X x Y,v),
is measurably conjugate both to a and to 3, the measure v is mixing and has
positive entropy under a™ x 8™ for every nonzero n € Z®. The proof of Theorem
3.2 consists of showing that v is a translate of the Haar measure of some closed
(o x B)-invariant subgroup of X x Y (this obviously implies that ¢ is affine). If X
and Y are connected, the relevant property of v follows from [3], and if X and YV
are zero-dimensional, the nonmixing sets of v provide the necessary tool in [6].

Since there are considerable difficulties in extending either of these techniques to
general algebraic Z%-actions with zero entropy, the following conjecture may seem
a little premature, but I would still like to risk stating it:

Conjecture 3.5. Let d > 1, and let a and 8 be mizing algebraic Z%-actions on
compact abelian groups X and Y, respectively. If h(a) = 0, and if ¢: X — Y is
a measurable conjugacy of a and (3, then ¢ is Ax-a.e. equal to an affine map. In
particular, measurable conjugacy implies algebraic conjugacy.
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