
INVARIANT COCYCLES HAVE ABELIAN RANGES

GERNOT GRESCHONIG AND KLAUS SCHMIDT

Abstract. Let R be a discrete nonsingular equivalence relation on a
standard probability space (X, S, µ), and let V be an ergodic strongly
asymptotically central automorphism of R. We prove that every V -
invariant cocycle c : R −→ G with values in a Polish group G takes
values in an abelian subgroup of G.

The hypotheses of this result are satisfied, for example, if A is a
finite set, X ⊂ AZ a closed, shift-invariant subset, V is the shift, µ a
shift-invariant and ergodic probability measure on X, ∆X the two-sided
tail-equivalence relation on X, R ⊂ ∆X a shift-invariant subrelation
which is µ-nonsingular, and c : R −→ G a shift-invariant cocycle.

1. Introduction

Let R be a discrete nonsingular ergodic equivalence relation on a stand-
ard probability space (X, S, µ) (for the definitions we refer to Section 2).
A measure-preserving automorphism V of (X, S, µ) is an automorphism of
(R,µ) if (V ×V )(R) = R. We consider Borel cocycles c : R 7−→ G on R tak-
ing values in a Polish group G which are invariant under an automorphism
V of R, i.e. which satisfy that c(V x, V x′) = c(x, x′) for all (x, x′) ∈ RXrN ,
where N ∈ S is a µ-null set.

If the automorphism V is weakly asymptotically central (Definition 2.1),
then every V -invariant cocycle has the following property: there exists a null
set N ∈ S such the closure H in G of the set {c(x, x′) : (x, x′) ∈ RXrN} is
a subgroup of G, and that c defines an ergodic skew product extension of R
by H (for locally compact abelian groups G this was proved in [7, Theorem
2.3], and for Polish groups in [3]). Since this kind of automatic ergodicity of
cocycles is an unusual property which has interesting applications in certain
probabilistic exchangeability and tail triviality results (cf. [3] and [6]–[8]),
one is led to ask whether this phenomenon can also occur nontrivially if the
group G is nonabelian.

In this paper we show that weakly asymptotically central automorph-
isms may have invariant cocycles with nonabelian ranges (Example 3.3 (2)),
but that a mild strengthening of the condition of weak asymptotic cent-
rality which, according to Theorem 2.5, is satisfied by the basic examples
of weakly asymptotically central automorphisms, forces the range of any
invariant cocycle to be abelian (Theorem 3.2). This indicates that in the
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nonabelian case one is naturally led to replacing the notion of a V -invariant
cocycle by that of a V -covariant pair of cocycles, as was done in [3] and [8].

2. Automorphisms of equivalence relations

Let (X, S) be a standard Borel space and Aut(X, S) the group of Borel
automorphisms of X. A Borel set R ⊂ X × X is a discrete Borel equival-
ence relation on X if R is an equivalence relation whose equivalence classes
R(x) = {y ∈ X : (x, y) ∈ R}, x ∈ X, are all countable.

Let R be a discrete Borel equivalence relation on X. The full group [R]
of R is the group of all W ∈ Aut(X, S) with Wx ∈ R(x) for every x ∈ X.
According to [2] there exists a countable subgroup Γ ⊂ [R] with

R = R[Γ] = {(γx, x) : γ ∈ Γ, x ∈ X}. (2.1)

Conversely, if Γ ⊂ Aut(X, S) is a countable group, then (2.1) defines a
discrete Borel equivalence relation R[Γ] on X.

From (2.1) it follows that the saturation

R(B) =
⋃
x∈B

R(x) =
⋃
γ∈Γ

γ(B) (2.2)

of every set B ∈ S lies in S, and we write

SR = {R(B) : B ∈ S} ⊂ S (2.3)

for the sigma-algebra of R-saturated Borel sets.
For every C ∈ S we write

RC = R ∩ (C × C) (2.4)

for the equivalence relation induced by R on C.
A sigma-finite measure µ on S is quasi-invariant under R (or R is µ-non-

singular) if µ(R(B)) = 0 for every B ∈ S with µ(B) = 0. The measure µ
is conservative under R if there exists, for every A ∈ S with µ(A) > 0, an
element (x, y) ∈ RA with x 6= y, and µ is ergodic under R (or R is µ-ergodic)
if either µ(B) = 0 or µ(X rB) = 0 for every B ∈ SR.

Finally we denote by

Aut(R) = {V ∈ Aut(X, S) : (V x, V y) ∈ R if and only if (x, y) ∈ R} (2.5)

the automorphism group of R. If µ is a probability measure on S which is
quasi-invariant under R we set

Aut(R,µ) = {V ∈ Aut(R) : µ is quasi-invariant under V }. (2.6)

Definition 2.1. Let R be a discrete Borel equivalence relation on a standard
Borel space (X, S) and µ a probability measure on S which is quasi-invariant
under R. An element V ∈ Aut(R,µ) is weakly asymptotically central if it
preserves µ and

lim
|n|→∞

µ(B4V nWV −nB) = lim
|n|→∞

µ(V −nB4WV −nB) = 0 (2.7)

for every W ∈ [R] and B ∈ S. The automorphism V is strongly asymptotic-
ally central if it preserves µ and

lim
|n|→∞

µ({x ∈ X : WV −nW ′V nx = V −nW ′V nWx}) = 1 (2.8)
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for all W,W ′ ∈ [R].

Remark 2.2. In [7]–[8] weakly asymptotically central automorphisms were
called asymptotically central. The terminology chosen here is consistent with
the weak and strong topology on the set of ergodic transformations: if V is
a weakly asymptotically central automorphism of (R,µ), then

lim
|n|→∞

µ(WV −nW ′V nB4V −nW ′V nWB) = 0 (2.9)

for every B ∈ S, i.e. W and V −nW ′V n commute asymptotically in the weak
topology. If V is strongly asymptotically central, then (2.8) shows that W
and V −nW ′V n commute asymptotically in the strong topology (note that,
although W and W ′ need not be measure-preserving, the distortions of µ
by the transformations W and V −nW ′V n, n ∈ Z, are bounded in the sense
that the measures µW and µV −nW ′V n are uniformly absolutely continuous
with respect to µ).

Proposition 2.3. Let R be a discrete Borel equivalence relation on a stand-
ard Borel space (X, S) and µ a probability measure on S which is quasi-
invariant and conservative under R. Then every strongly asymptotically
central automorphism V of (R,µ) is weakly asymptotically central.

Proof. Since µ is conservative, R(x) is infinite for µ-a.e. x ∈ X, and we can
find, for every B ∈ S, an element W ∈ [R] with µ(B4{x ∈ X : Wx = x}) =
0. Equation (2.8) implies that

lim
|n|→∞

µ(B4V −nW ′V nB) = 0

for every W ′ ∈ [R]. As B ∈ S is arbitrary this proves that V is weakly
asymptotically central. �

We continue with an example which shows that Proposition 2.3 fails
without the hypothesis of conservativity.

Example 2.4. (A strongly, but not weakly, asymptotically central auto-
morphism). Let X = T = R/Z with Borel field S and Lebesgue measure
µ,

R =
{(
x, x

)
,
(
x, x+ 1

2

)
: x ∈ X

}
,

and let V x = x + α be an irrational rotation on X. Then V ∈ Aut(R,µ),
µV −1 = µ, but V is not weakly asymptotically central: if Wx = x + 1

2 for
every x ∈ X, then W commutes with V , and

µ(B4V nWV −nB) = µ(B4WB) = 1
2

for every n ∈ Z, where B = [0, 1
4) ⊂ X. On the other hand, V is strongly

asymptotically central, since [R] is abelian.

We turn to the construction of explicit examples of strongly asymptotic-
ally central automorphisms. Here the following theorem is useful.

Theorem 2.5. Let Γ be a countable abelian group of Borel automorphisms
of a standard Borel space (X, S), and let V ∈ Aut(X, S) with V −1ΓV = Γ.

Suppose that R ⊂ R[Γ] is a V -invariant subrelation (i.e. V ∈ Aut(R))
and µ a V -invariant probability measure on S which is quasi-invariant under
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R. If V ∈ Aut(R,µ) is weakly asymptotically central and mixing then it is
strongly asymptotically central.

Proof. Let W,W ′ ∈ [R], and put, for every γ, γ′ ∈ Γ,

Cγ = {x ∈ X : Wx = γx}, C ′γ′ = {x ∈ X : W ′x = γ′x}.

We fix γ, γ′ ∈ Γ for the moment. Since V is weakly asymptotically central
so is V −1, and

lim
|n|→∞

µ(V −nW ′−1
V nCγ4Cγ) = lim

|n|→∞
µ(W−1V −nC ′γ′4V −nC ′γ′)

= lim
|n|→∞

µ(V −nW ′−1
V nW−1Cγ4W−1Cγ)

= lim
|n|→∞

µ(V −nW−1V nW ′−1
C ′γ′4W ′−1

C ′γ′) = 0.

(2.10)

Furthermore, if

x ∈ E(n) = Cγ ∩ V −nW ′−1
V nCγ ∩ V −nC ′γ′ ∩W−1V −nC ′γ′ ,

then

WV −nW ′V nx = γV −nγ′V nx = V −nγ′V nγx = V −nW ′V nWx,

since γ and V −nγ′V n lie in Γ and therefore commute. Equation (2.10) implies
that lim|n|→∞ µ((Cγ ∩V −nC ′γ′)rE(n)) = 0 and hence that, for every ε > 0,

µ({x ∈ Cγ ∩ V −nC ′γ′ : WV −nW ′V nx = V −nW ′V nWx}) ≥ µ(Cγ)µ(C ′γ′)− ε

for every n ∈ Z with |n| sufficiently large (depending on ε). By varying γ, γ′ ∈
Γ and ε > 0 we obtain that W and V −nW ′V n commute asymptotically as
|n| → ∞. Since W,W ′ ∈ [R] were arbitrary this shows that V is strongly
asymptotically central. �

Remark 2.6. If the equivalence relation R in Theorem 2.5 is ergodic then
every weakly asymptotically central automorphism V of (R,µ) is mixing by
Theorem 2.3 in [7].

Examples 2.7. (Examples of strongly asymptotically central automorph-
isms).

(1) Let A be a finite set, and let σ be the shift on the compact space
Y = AZ defined by

(σy)n = yn+1 (2.11)

for every y = (yn) ∈ Y . We denote by

∆Y = {(y, y′) ∈ Y × Y : yn 6= y′n for only finitely many n ∈ Z} (2.12)

the Gibbs (or two-sided tail) equivalence relation on Y .
Suppose that X ⊂ Y is a closed, shift-invariant subset, µ a shift-invariant

and mixing probability measure on X, and let ∆X = ∆Y ∩ (X ×X) be the
Gibbs relation on X. According to Lemma 2.3 in [8] there exists a shift-
invariant Borel set B ⊂ X with µ(B) = 1 such that the relation R =
∆B ∪{(x, x) : x ∈ X} ⊂ ∆X is µ-nonsingular and SR = S∆X , where S is the
Borel field of X (cf. (2.3)–(2.4)). We claim that the restriction V = σ|X of
σ to X is a strongly asymptotically central automorphism of (R,µ).
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In order to verify this we view µ as a shift-invariant probability measure
on Y and consider the shift-invariant equivalence relation

R′ = R ∪ {(y, y) : y ∈ Y } ⊂ ∆Y .

Then µ is shift-invariant and quasi-invariant under R′.
Since the exact nature of the set A is irrelevant, we may assume for con-

venience that A = Z/k = Z/kZ and Y = ZZ
/k for some k ≥ 2. Denote by

Γ =
∑

Z Z/k the countable dense abelian subgroup of Y consisting of all ele-
ments with only finitely many nonzero coordinates and note that ∆Y = R[Γ]
in the sense of (2.1). As σ−1Γσ = Γ and σ is obviously weakly asymptot-
ically central on (R′, µ) (cf. [7]–[8]), Theorem 2.5 implies that σ is strongly
asymptotically central on (R′, µ). This shows that the same is true for V on
(R,µ).

(2) Let α ∈ GL(k,Z) be a hyperbolic automorphism of the k-torus X =
Tk = Rk/Zk, k ≥ 2, and let S be the Borel field and

∆α(X) =
{
x ∈ X : lim

|n|→∞
αnx = 0

}
the homoclinic group of α. Theorem 4.2 in [5] shows that ∆α(X) is a count-
able dense subgroup of X, and we denote by

R(∆) = R[∆α(X)]

the homoclinic equivalence relation on X (cf. (2.1)).
Suppose that µ is an α-invariant probability measure on X. Following

Lemma 2.3 in [8] we choose an α-invariant Borel set B ⊂ X with µ(B) = 1
such that µ is quasi-invariant under R = R(∆)B ∪ {(x, x) : x ∈ X} ⊂
R(∆) and SR = SR(∆). We claim that α is a weakly asymptotically central
automorphism of (R,µ).

Indeed, let A ∈ S and y ∈ ∆α(X) be chosen so that A ∪ (A + y) ⊂ B.
Let C ⊂ A be a Borel set with µ(C) > 0, and write 1C for the indicator
function of C. For every k ≥ 1 we choose a continuous map fk : X −→ R
with 0 ≤ fk ≤ 1 and ‖fk − 1C‖1 =

∫
|fk − 1C | dµ < 1

k .
Our choice of B implies that 0 < dµTy

dµ <∞ µ-a.e. on A, where Tyx = x+y

is translation by y ∈ ∆α(X) onX. Since dµTαny

dµ = dµTy

dµ ◦α−n for every n ∈ Z,
we can find, for every ε > 0, a K ≥ 1 with

‖fk ◦ T−αny − 1C+αny‖1 =
∫
B
|fk − 1C | ·

(
dµTy
dµ

◦ α−n
)
dµ < ε

for every k ≥ K and n ∈ Z. As

lim
|n|→∞

‖fk − fk ◦ T−αny‖1 = 0

for every k ≥ 1 by continuity, we obtain that

lim
|n|→∞

µ(C4(C + αny)) = 0 (2.13)

for every Borel set C ⊂ A.
From (2.13) one concludes easily that

lim
|n|→∞

µ(C4αnWα−nC) = 0
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for every W ∈ [R] and C ∈ S, i.e. that α is weakly asymptotically central
on (R,µ). If µ is, in addition, mixing under α then Theorem 2.5 shows that
α is strongly asymptotically central.

(3) Let M be a smooth manifold, U ⊂ M an open set, φ : U −→ M a
C1-diffeomorphism onto its image, and X ⊂ U a compact locally maximal
hyperbolic φ-invariant subset (for terminology we refer to [4]). We fix a
metric δ on X and denote by

R(∆) =
{
(x, x′) ∈ X ×X : lim

|n|→∞
δ(φn(x), φn(x′)) = 0

}
the homoclinic equivalence relation of φ on X. If ψ : M −→ R is a C1-
function and µψ the Gibbs measure on X arising from ψ, then µψ is quasi-
invariant under R(∆) and φ is a strongly asymptotically central automorph-
ism of (R(∆), µψ). The easiest way to verify this is probably to choose a
Markov partition of X and to use Example (1) above.

Example 2.8. (A weakly, but not strongly, asymptotically central auto-
morphism which has nonabelian invariant cocycles). Let G be a finite nona-
belian group, A = GN, where N = {0, 1, 2, . . . }, and let σ be the shift on
the compact space X = AZ defined as in (2.11). We write every x ∈ X as
x = (xn,k) with xn,k ∈ G for every n ∈ Z and k ∈ N, and denote by µ the
normalized Haar measure on X.

For every g ∈ G we define a transformation Tg on X by

(Tgx)n,k =

{
gxn,k if |n| ≤ k,

xn,k otherwise.

The equivalence relation R generated by the transformations {σ−nTgσn :
g ∈ G, n ∈ Z} is discrete and µ-nonsingular (in fact, µ is invariant under R
— cf. [1] and [2]), and σ is a measure-preserving automorphism of (R,µ).

For every g ∈ G and every cylinder set C ⊂ X = GZ×N,

lim
|n|→∞

µ(C4σ−nTgσn(C)) = 0,

which implies that σ is weakly asymptotically central.
On the other hand, if g, g′ do not commute, then

Tgσ
−nTg′σnx 6= σ−nTg′σnTgx

for every n ∈ Z and x ∈ X, which shows that σ is not strongly asymptotically
central.

3. Ranges of invariant cocycles

Definition 3.1. Let G be a Polish (i.e. complete separable metric) group
with identity element 1 = 1G and Borel field BG, R a discrete nonsin-
gular equivalence relation on a standard probability space (X, S, µ) and
V ∈ Aut(X). A Borel map c : R −→ G is a cocycle on R if

c(x, x′)c(x′, x′′) = c(x, x′′) (3.1)

for every (x, x′), (x, x′′) ∈ R. A cocycle c : R −→ G is V -invariant if

c(V x, V y) = c(x, y) (3.2)
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for every (x, y) ∈ R.

Let R be a discrete nonsingular equivalence relation on a standard probab-
ility space (X, S, µ) and c : R −→ G a cocycle with values in a Polish group
G. In Example 3.3 (2) we shall see that there may exist cocycles c on R
which take values in a nonabelian group G and are invariant under a weakly
asymptotically central automorphism V of R. On the other hand, Theorem
3.2 below shows that invariance of c under a strongly asymptotically central
automorphism forces the range of c to be abelian.

Theorem 3.2. Let R be a discrete nonsingular equivalence relation on a
standard probability space (X, S, µ), V an ergodic automorphism of (R,µ)
which is both weakly and strongly asymptotically central (cf. Theorem 2.5),
and c : R −→ G a V -invariant cocycle with values in a Polish group G. Then
there there exist a µ-null set N ∈ S and a closed abelian subgroup G0 ⊂ G
such that c(x, y) ∈ G0 for every (x, y) ∈ RXrN .

Proof. By using a slight modification of the relevant argument in [2] we can
find, for every neighbourhood N(1) ⊂ G, a countable collection of elements
Γ′ ⊂ [R] with

R = {(γx, x) : γ ∈ Γ′, x ∈ X}, (3.3)
such that every γ ∈ Γ′ has the following property: there exist disjoint Borel
sets Aγ , Bγ ⊂ X and an element gγ ∈ G with

γ(Aγ) = Bγ , γ(Bγ) = Aγ

γx = x for x ∈ X r (Aγ ∪Bγ)
γ2x = x for every x ∈ X,

c(γx, x) ∈

{
gγN(1) if x ∈ Aγ ,
g−1
γ N(1) if x ∈ Bγ .

(3.4)

Let N(1) be a symmetric neighbourhood of the identity in G, and let
Γ′ ⊂ [R] be a set of nonsingular Borel automorphisms of (X, S, µ) with the
properties described in (3.3)–(3.4), and fix involutions γ, γ′ ∈ Γ′ for the
moment. We claim that there exist infinitely many m ≥ 0 with

µ(Am(γ, γ′)) > 1
4µ(Aγ)µ(Aγ′), (3.5)

where

Am(γ, γ′) = Aγ ∩ V −mγ′V mAγ ∩ V −mAγ′ ∩ γV −mAγ′ . (3.6)

Indeed, since V is ergodic,

lim
M→∞

1
M

M−1∑
m=0

µ(Aγ ∩ V −mAγ′) = µ(Aγ)µ(Aγ′),

and hence µ(Aγ ∩ V −mAγ′) > 3
4µ(Aγ)µ(Aγ′) for infinitely many m ≥ 0.

Furthermore, since V is weakly asymptotically central,

µ(Aγ4V −mγ′V mAγ) < 1
4µ(Aγ)µ(Aγ′)

and
µ(Aγ′4V mγV −mAγ′) < 1

4µ(Aγ)µ(Aγ′)
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for all sufficiently largem ≥ 0, and by combining these inequalities we obtain
(3.5)–(3.6).

The invariance of c and the cocycle equation (3.1) imply that, for every
m ≥ 0 and x ∈ Am(γ, γ′),

c(V −mγ′V mγx, x) = c(V −mγ′V mγx, γx)c(γx, x)

= c(γ′y, y)c(γx, x) ∈ gγ′N(1)gγN(1),

c(γV −mγ′V mx, x) = c(γV −mγ′V mx, V −mγ′V mx)c(V −mγ′V mx, x)

= c(γz, z)c(γ′z′, z′) = gγN(1)gγ′N(1),

where y = V mγx ∈ Aγ′ , z = V −mγ′V mx ∈ Aγ and z′ = V mx ∈ A′γ .
Finally we note that

lim
m→∞

µ({x ∈ X : γV −mγ′V mx = V −mγ′V mγx}) = 1

by (2.8), and hence that

gγN(1)gγ′N(1) ∩ gγ′N(1)gγN(1) 6= ∅.

Since the elements γ, γ′ ∈ Γ′ were arbitrary and R = {(γx, x) : γ ∈ Γ′, x ∈
X}, this proves the existence of a µ-null set N ∈ S with

c(x, y)N(1)2c(x′, y′)N(1)2 ∩ c(x′, y′)N(1)2c(x, y)N(1)2 6= ∅

for all (x, y), (x′, y′) ∈ RXrN . As the neighbourhood N(1) was arbitrary
we obtain that there exists a null set N ∈ S such that c(x, y) and c(x′, y′)
commute for all (x, y), (x′, y′) ∈ RXrN . This proves the theorem. �

We conclude this section by pointing out the necessity of strong asymp-
totic centrality in Theorem 3.2.

Examples 3.3. (1) (A cocycle with nonabelian range which is invariant
under an ergodic automorphism). Let G be a finite nonabelian group, X =
GZ, and let S be the Borel field and µ the normalized Haar measure on
X. We denote by ∆X the Gibbs relation (2.12) on X and define, for every
g ∈ G, a map Tg : X −→ X by (Tgx)n = gxn for every x = (xn) ∈ X. Each
Tg is an automorphism of ∆X , and

R = {(Tgx, x′) : g ∈ G, (x, x′) ∈ ∆X} ) ∆X

is the equivalence relation generated by {Tg : g ∈ G} and ∆X . The measure
µ is quasi-invariant (in fact, invariant — cf. [1] and [2]) and ergodic under
R, and the shift σ : X −→ X in (2.11) is a µ-preserving automorphism
of R which is not weakly (and hence, by Proposition 2.3, not strongly)
asymptotically central, since it commutes with Tg for every g ∈ G. The
cocycle c : R −→ G with

c(Tgx, x′) = g

for every g ∈ G and (x, x′) ∈ R is shift-invariant and has nonabelian range.

(2) (A cocycle with nonabelian range which is invariant under a weakly
asymptotically central automorphism). Let G be a finite nonabelian group,
A = GN, and let X = AZ be the space and R ⊂ X × X the equivalence
relation described in Example 2.8. As was shown there, the shift σ on X is
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weakly, but not strongly asymptotically central. For every x = (xn,k) ∈ X
and g ∈ G we set

c′(Tgx, x) = lim
k→∞

(Tgx)0,kx−1
0,k = g (3.7)

and extend c′ to a cocycle c : R −→ G by (3.1). Since

c′(Tgx, x) = lim
k→∞

(Tgx)m,kx−1
m,k

for every m ∈ Z it is clear that

c(x, y) = lim
k→∞

xm,ky
−1
m,k

for every x = (xn,k), y = (yn,k) and m ∈ Z. This shows that the cocycle c is
σ-invariant and has nonabelian range G.
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