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Abstract. Let d ≥ 2, and let α be an expansive and mixing Zd-
action by automorphisms of a compact, abelian group X. We prove
the following: if the entropy h(αn) is finite for every n ∈ Zd, then there
exist nontrivial Hölder 1-cocycles for α with values in certain compact
Lie groups, even though α need not have any nontrivial Hölder cocycles
with values in abelian groups. On the other hand, if α has completely
positive entropy, then there exists an expansive and mixing ‘cover’ ᾱ of
α with completely positive entropy such that h(ᾱ) = h(α) and ᾱ has no
nontrivial Hölder 1-cocycles with values in any complete metric group
which is compact or abelian. For a specific class of such actions ᾱ = α,
so that α itself is cohomologically trivial in this sense.

1. Introduction

Let α be a mixing Zd-action by automorphisms of a compact, abelian
groupX, and let (G, γ) be a complete metric group with a bi-invariant metric
γ in which G has diameter 1 (γ is bi-invariant if γ(gg1, gg2) = γ(g1, g2) =
γ(g1g, g2g) for all g, g1, g2 ∈ G; a metrizable group G has such a metric if it is
discrete, abelian or compact, for example). A continuous map c : Zd×X 7−→
G is a continuous 1-cocycle (or simply a cocycle) for α if

c(m, αn(x))c(n, x) = c(m + n, x) (1.1)

for every m,n ∈ Zd and x ∈ X. Two cocycles c, c′ : Zd × X 7−→ G for α
are measurably cohomologous if there exists a Borel map b : X 7−→ G such
that, for every n ∈ Zd,

c′(n, x) = b(αn(x))−1c(n, x)b(x) (1.2)

λX -a.e., where λX is the normalised Haar measure of X. The map b is
the transfer function of (c, c′); if b is continuous then c and c′ are said
to be continuously cohomologous or simply cohomologous. If a cocycle c
is (measurably) cohomologous to the constant cocycle c′(n, x) = 1G, n ∈
Zd, x ∈ X, where 1G is the identity element in G, then c is a (measurable)
coboundary and the map b in (1.2) is the cobounding function of c. A
cocycle c : Zd ×X 7−→ G is a homomorphism if c(n, ·) is constant for every
n ∈ Zd, and trivial if it is cohomologous to a homomorphism.

Under our assumptions on α it is well known that there exist nontrivial
cocycles for α with values in R or in the multiplicative circle group S = {z ∈
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C : |z| = 1}: in both cases the set of nontrivial cocycles is residual in the set
of all continuous cocycles. If we impose stronger continuity conditions on the
cocycles, such as Hölder continuity, interesting differences begin to emerge
between the cases d = 1 and d > 1. In order to describe the appropriate
notion of Hölder continuity we assume from now on that α is expansive and
proceed as in [4] and [13]: fix a metric δ on X, write ‖ · ‖ and 〈·, ·〉 for the
Euclidean norm and inner product on Zd ⊂ Rd, and put B(r) = {m ∈ Zd :
‖m‖ ≤ r} for every r ≥ 0. For every continuous function h : X 7−→ G and
every ε, r ≥ 0, we set

ωδ,γr (h, α, ε) = sup
{(x,x′)∈X×X:maxm∈B(r) δ(αm(x),αm(x′))<ε}

γ(h(x), h(x′)). (1.3)

The function h has α-summable variation if there exists an ε > 0 such that

ωδ,γ(h, α, ε) =
∞∑
r=1

ωδ,γr (h, α, ε) <∞, (1.4)

and h is α-Hölder if there are constants ε, ω′ > 0 and ω ∈ (0, 1) with

ωδ,γr (h, α, ε) < ω′ωr (1.5)

for every r > 0. These notions obviously depend on γ, but are independent
of the metric δ on X, and every α-Hölder function has α-summable variation.
If the group G is discrete, and if γ(g, g′) = 1 for g 6= g′ and 0 otherwise,
then a function h : X 7−→ G is α-Hölder if and only if it is continuous.

If there is no danger of confusion we suppress the prefix α- and simply
speak of Hölder functions and functions with summable variation.

Note that the Hölder structure defined by α is a purely topological notion:
if one adopts the analogous definition of Hölder functions for any continuous,
expansive Zd-action T on a compact space Y (cf. [4], [12]), and if T ′ is
a second continuous, expansive Zd-action on a compact space Y ′ which
is topologically conjugate to T , then any homeomorphism ψ : Y 7−→ Y ′

implementing this topological conjugacy carries the set of T -Hölder functions
on Y to the set of T ′-Hölder functions on Y ′. Furthermore, if Y is a compact
manifold, then the Hölder structure defined by an expansive Zd-action T on
Y coincides with the familiar one.

We return to our expansive and mixing Zd-action α by automorphisms of
X. A cocycle c : Zd×X 7−→ G for α has summable variation or is Hölder if
c(n, ·) has summable variation or is Hölder for every n ∈ Zd. It is not difficult
to verify that, if two cocycles c, c′ : Zd ×X 7−→ G with summable variation
are measurably cohomologous, then they are continuously cohomologous;
moreover, if c and c′ are Hölder, then the (continuous) transfer function is
again Hölder (cf. [4], [12]). We write Z1

H(α,G) ⊂ Z1
sv(α,G) ⊂ Z1

c (α,G) for
the sets of Hölder cocycles, cocycles with summable variation, and continuous
cocycles with values in G, denote by B1

c (α,G) ⊂ Z1
c (α,G) the subset of

coboundaries, and write

H1
c (α,G) = {[c] : c ∈ Z1

c (α,G)}

for the space of cohomology classes

[c] = {c′ ∈ Z1
c (α,G) : c′ is cohomologous to c}.
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Similarly we set B1
sv(α,G) = B1

c (α,G) ∩ Z1
sv(α,G), B1

H(α,G) = B1
c (α,G) ∩

Z1
H(α,G), and denote by

H1
sv(α,G) = {[c]sv = [c] ∩ Z1

sv(α,G) : c ∈ Z1
sv(α,G)},

H1
H(α,G) = {[c]H = [c] ∩ Z1

H(α,G) : c ∈ Z1
H(α,G)}

the cohomology with summable variation and the Hölder cohomology of α
with values in G. If G is abelian, the sets Z1

c (α,G), Z1
sv(α,G) and Z1

H(α,G)
are groups under pointwise addition, the coboundaries B1

c (α,G) ⊂ Z1
c (α,G),

B1
sv(α,G) ⊂ Z1

sv(α,G) and B1
H(α,G) ⊂ Z1

H(α,G) form subgroups, and the
first cohomologies

H1
c (α,G) = Z1

c (α,G)/B1
c (α,G),

H1
sv(α,G) = Z1

sv(α,G)/B1
sv(α,G),

H1
H(α,G) = Z1

H(α,G)/B1
H(α,G)

are groups.
Livshitz’ theorem ([8]) shows that the Z-action defined by a single expansive

and ergodic (hence mixing) automorphism of a compact, abelian group X
has an abundance of nontrivial Hölder cocycles: for every connected, abelian
group G the set of trivial Hölder cocycles is a proper, closed subgroup of
Z1
H(α,G). If d ≥ 2, the situation becomes much more complex. In [4]

it was shown that, if d ≥ 2, and if α is an expansive and mixing Zd-
action by automorphisms of a compact, abelian group X, then every cocycle
c : Zd×X 7−→ R with summable variation is trivial. If we replace R by S, the
cohomology is nontrivial in some, but not in all cases, and can be calculated
explicitly ([13]). For the shift-action of Zd on (Z/2Z)Zd even more is true:
for every complete metric group (G, γ) such that γ is bi-invariant, every
cocycle c : Zd × (Z/2Z)Zd 7−→ G with summable variation is trivial (cf. [2],
[3], [12]; in [12] the group G was assumed to be locally compact, but this
assumption was not used in the proof).

In [12] it became apparent that any understanding of the first cohomology
of a higher dimensional shift of finite type has to take into account the
cohomologies with values in nonabelian groups, and that there are some very
curious connections between these cohomologies and the intrinsic complexity
of the shift space. The results in [4], [12], [13] and this paper are beginning to
reveal a similar picture for Zd-actions by automorphisms of compact, abelian
groups. Let α be an expansive and mixing Zd-action by automorphisms of
a compact, abelian group X. The main result in [13] states that every
cocycle c ∈ Z1

sv(α,S) is cohomologous to a cocycle a : Zd × X 7−→ S with
the property that, for every n ∈ Zd, the map a(n, ·) : X 7−→ S is a constant
multiple of an element in the dual group X̂ of X, and Theorem 11.1 in
[13]) yields examples of Zd-actions α with H1

sv(α,S) = {0}. The absence of
nontrivial cocycles with values in abelian groups need not imply that every
Hölder cocycle with values in, say, a compact Lie group is trivial. In fact
we shall prove that, if the action α is sufficiently ‘small’, one can always
find nontrivial Hölder cocycles with values in certain compact Lie groups
(Theorem 3.1). There do exist, however, expansive and mixing Zd-actions
by automorphisms of compact, connected, abelian groups for which every
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cocycle c ∈ Z1
sv(α,G) is trivial whenever G is any compact group G with

a fixed bi-invariant metric (Theorem 4.2). Example 4.8 shows that Zd-
actions quite closely related to those featuring in Theorem 4.2 can still have
nontrivial Hölder cohomology with values in compact Lie groups. Theorem
4.1 states that every expansive and mixing Zd-action α by automorphisms of
a compact, abelian group X has an expansive, mixing, and cohomologically
trivial ‘cover’ ᾱ with completely positive entropy h(α) = h(ᾱ). The proofs
of the Theorems 4.2 and 4.1 also show that these actions have no nontrivial
Hölder cocycles with values in abelian groups (cf. Remark 4.9).

If one recalls that Zimmer’s cocycle rigidity theorem (cf. [15]) is a statement
about the triviality of certain measurable cocycles for finite measure preserving,
ergodic actions of certain semisimple Lie groups, then one can view the
results in this paper (as well as some of those in [5], [6], [4] and [12]) as
analogues of Zimmer’s theorem in the following sense: although it is well
known that one cannot expect any rigidity statements about measurable
cocycles for actions of abelian groups, analogous rigidity results do exist
for certain actions of Zd, d > 1, but this time in the category of Hölder
continuous functions. In this language one can express Theorem 3.1 as
a statement about Zimmer-type rigidity of all Hölder cocycles for certain
Zd-actions with values in compact Lie groups, whereas Theorem 4.2 states
that the Zd-actions discussed there do have nonrigid (=nontrivial) cocycles
(albeit of a very special form) with values in compact Lie groups.

2. Algebraic background

We begin with the algebraic description of Zd-actions by automorphisms
of compact, abelian groups in [11] which will be needed in Section 4, and
which allows the construction of examples of such actions with specified
properties (like ergodicity, mixing, expansiveness, positive or zero entropy,
etc.).

Let Rd = Z[u±1
1 , . . . , u±1

d ] be the ring of Laurent polynomials with integral
coefficients in the commuting variables u1, . . . , ud. We write every f ∈ Rd

as f =
∑

m∈Zd cf (m)um with um = um1
1 · · · · · umdd and cf (m) ∈ Z for every

m = (m1, . . . ,md) ∈ Zd, where
∑

m∈Zd |cf (m)| <∞.
Let α be a Zd-action by automorphisms of a compact, metrizable, abelian

group X. The additively written dual group M = X̂ is a countable module
over the ring Rd with operation

f · a =
∑

m∈Zd
cf (m)α̂m(a) (2.1)

for every f ∈ Rd and a ∈M; here α̂m is the automorphism of M = X̂ dual
to αm. In particular,

α̂m(a) = um · a (2.2)

for every m ∈ Zd and a ∈ M. The module M is Noetherian whenever
α is expansive ((4.10) and Proposition 5.4 in [11]). Conversely, if M is a
countable Rd-module, and if

α̂M
m(a) = um · a (2.3)
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for every m ∈ Zd and a ∈M, then we obtain a Zd-action

αM : m 7→ αM
m (2.4)

on the compact, abelian group

XM = M̂ (2.5)

dual to the Zd-action α̂M : m 7→ α̂M
m on M. If M = Rd/a for some ideal

a ⊂ Rd, then the action α = αRd/a is mixing (with respect to Haar measure)
if and only if multiplication by um−1 on Rd/a is injective for every non-zero
m ∈ Zd, and expansive if and only if VC(a) ∩ Sd = ∅, where VC(a) = {c ∈
Cd : f(c) = 0 for all f ∈ a}. If the ideal a is prime, then α = αRd/a is
mixing if and only if a ∩ {um − 1 : m ∈ Zd} = {0}.

If M is an arbitrary Rd-module, then a prime ideal p ⊂ Rd is associated
with M if p = {f ∈ Rd : f · a = 0} for some a ∈ M, and M is associated
with a prime ideal p ⊂ Rd if p is the only prime ideal associated with M.
The set of (distinct) prime ideals associated with a Noetherian Rd-module
M is finite.

For an arbitrary Noetherian Rd-module M with associated primes {p1,
. . . , pm} the following conditions are equivalent.

(i) αM is expansive and mixing (with respect to the normalised Haar
measure on XM = M̂);

(ii) αRd/pj is expansive and mixing for every j = 1, . . . ,m.
Another property of αM determined by the behaviour of the actions αRd/pj ,
where {p1, . . . , pm} are the associated primes of M, is completely positive
entropy. If p ⊂ Rd is a prime ideal then the topological entropy h(αRd/p) of
αRd/p (which is equal to the metric entropy with respect to Haar measure
by [7] or Theorem 13.3 in [11]) is positive if and only if p is principal and
αRd/p is mixing (cf. [7], or Corollary 18.5, Theorem 19.5 and Corollary
6.12 in [11]). In general, if M is a Noetherian Rd-module with associated
primes {p1, . . . , pm}, then αM has completely positive entropy if and only if
h(αRd/pj ) > 0 for every j = 1, . . . ,m.

One can realise explicitly the Zd-actions of the form αRd/p, where p ⊂ Rd

is a prime ideal (cf. (2.3)–(2.5)). Write

(σmx)n = xm+n (2.6)

for the shift-action of Zd on TZd , put

f(σ) =
∑

m∈Zd
cf (m)σm : TZd 7−→ TZd (2.7)

for every f =
∑

m∈Zd cf (m)um ∈ Rd, and identify Rd with the dual group

T̂Zd of TZd by setting
〈f, x〉 = e2πi(f(σ)(x))0 (2.8)

for every f ∈ Rd and x ∈ TZd . A closed subgroup X ⊂ TZd is shift-invariant
if and only if its annihilator X⊥ = a ⊂ Rd is an ideal, in which case

X = XRd/a = {x ∈ TZd : f(σ)(x) = 0TZd for every f ∈ a} (2.9)

and αRd/a is the restriction of σ to XRd/a ⊂ TZd .
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More generally, if α is an expansive Zd-action by automorphisms of a
compact, abelian group X, then ([11], (4.10), Proposition 5.4 and Example
5.2 (4)) allow us to regard X as a closed, shift-invariant subgroup of (Tm)Zd

for some m ≥ 1, and α as the restriction to X of the shift-action σ on
(Tm)Zd (cf. (2.6)). We write a typical point x ∈ X ⊂ (Tm)Zd as x = (xn)
with xn = (x(1)

n , . . . , x
(m)
n ) ∈ Tm for every n ∈ Zd. Every character in

X⊥ ⊂ ̂(Tm)Zd =
∑
Zd

Zm ∼= (Rd)m

is of the form

〈h, x〉 =
m∏
i=1

〈h(i), x(i)〉 (2.10)

for every x = (x(1), . . . , x(m)) ∈ X ⊂ (Tm)Zd , where h = (h(1), . . . , h(m)) ∈
(Rd)m, and where 〈h(i), x(i)〉 is defined by (2.8) for i = 1, . . . ,m. The shift-
invariance of X guarantees that

X⊥ = {h ∈ (Rd)m : 〈h, x〉 = 1 for every x ∈ X}

is a submodule of (Rd)m, and hence Noetherian. In particular there exist
finitely many elements hj = (h(1)

j , . . . , h
(m)
j ), j = 1, . . . s, which generate X⊥

as an Rd-module, and which therefore satisfy that

X = {x ∈ (Tm)Zd : 〈umhj , x〉 = 1 for every m ∈ Zd}.

For every t ∈ T and t = (t(1), . . . , t(m)) ∈ Tm we set

|t| = min{|t+ k| : k ∈ Z}, |t| = max
i=1,...,m

|t(i)|. (2.11)

Put

ε =
(

10
s∑
j=1

m∑
i=1

∑
n∈Zd

|c
h

(i)
j

(n)|
)−1

(2.12)

and

N = max
j=1,...,s

max
i=1,...,m

max{‖n‖ : n ∈ Zd and c
h

(i)
j

(n) 6= 0}, (2.13)

where
h

(i)
j =

∑
n∈Zd

c
h

(i)
j

(n)un

for every i, j. The expansiveness of α guarantees the existence of an integer
M ≥ 0 with the following property: if x ∈ X and |xn| < ε for every
n ∈ B(M+N), and if y(i)

n ∈ R satisfies that |y(i)
n | < ε and y(i)

n (mod 1) = x
(i)
n

for every n ∈ B(M +N), then
m∑
i=1

∑
m∈Zd

c
h

(i)
j

(m)y(i)
m+n = 0 (2.14)

for every i = 1, . . . ,m, j = 1, . . . , s and n ∈ B(M), and

max
i=1,...,m

|y(i)
0 | < ε/2. (2.15)
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A recursive application of (2.14)–(2.15) implies that

max
i=1,...,m

|y(i)
k | < 2−lε (2.16)

whenever |x(i)
n | < ε for every n ∈ k + B(l(N + M)). We have proved the

following proposition.

Proposition 2.1. Let m ≥ 1, and let X ⊂ (Tm)Zd be a closed, shift-
invariant subgroup such that the restriction α = σX of the shift-action σ

on (Tm)Zd to X is expansive. In the notation of (2.11) there exist constants
ε, η ∈ (0, 1) and C > 0 with the following property for every k ∈ Zd and
L ≥ 0: if x ∈ X ⊂ (Tm)Zd satisfies that

max
n∈k+B(L)

|xn| < ε,

then
|xk| < CηL.

The final assertion in the following corollary was used without proof in
[13].

Corollary 2.2. Let α be an expansive and mixing Zd-action by automorphisms
of a compact, abelian group X, k ≥ 1, and let η : X 7−→ Tk be a continuous
group homomorphism. If (G, γ) is a complete metric group, where γ is bi-
invariant, and if h : Tk 7−→ G is a map which is Hölder or has summable
variation, then the composition h · η : X 7−→ G is Hölder or has summable
variation. In particular, every character χ of X is Hölder with respect to
the usual (Euclidean) metric on S.

Proof. As explained above we may assume that X is a closed, shift-invariant
subgroup of (Tm)Zd for some m ≥ 1, and that α is the restriction to X of
the shift-action σ of Zd on (Tm)Zd . There exist a finite subset F ⊂ Zd and
a continuous group homomorphism η′ : (Tm)F 7−→ Tk with

η = η′ · πF ,
where πF is the coordinate projection which sends each x = (xn) ∈ X ⊂
(Tm)Zd to its coordinates in F . Proposition 2.1 yields constants ε, η ∈
(0, 1) and C > 0 such that maxn∈F |xn| < CηL whenever x = (xn) ∈ X
and |xm| < ε for every m ∈ B(L) and implies the appropriate continuity
property of h · η. The last assertion follows by taking G = S and η = χ. �

3. Cohomological nontriviality

If α is a Zd-action by automorphisms of a compact, abelian group X we
denote by h(α) and h(αn) the topological entropies of α and αn, n ∈ Zd. In
this section we prove the following result.

Theorem 3.1. Let d ≥ 2, and let α be an expansive and mixing Zd-action
on a compact, abelian group X with the property that each αn, n ∈ Zd, has
finite entropy. Then there exists a compact Lie group G for which Z1

H(α,G)
contains nontrivial elements.

The proof of Theorem 3.1 requires three preliminary results.
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Lemma 3.2. Let α be an expansive and mixing Zd-action by automorphisms
of a compact, abelian group X, Y ⊂ X a closed, α-invariant subgroup such
that the restriction αY of α to Y is nonergodic, and let αZ be the Zd-action
induced by α on the quotient group Z = X/Y . Then αZ is expansive, and
there exist a compact Lie group G and a nontrivial Hölder cocycle c : Zd ×
Z 7−→ G.

Proof. The expansiveness of αZ follows from Corollary 6.15 in [11]. Since
αY is nonergodic, there exists a nontrivial element χ ∈ Ŷ which has finite
orbit {χ = χ1, . . . , χm}, say, under the dual action α̂Y (cf. [1] or Lemma 1.2
in [11]). We extend each χi to a character χ̄i ∈ X̂ and set

D(x) =


χ̄1(x) 0 . . . 0 0

0 χ̄2(x) . . . 0 0
...

...
. . .

...
...

0 0 . . . χ̄m−1(x) 0
0 0 . . . 0 χ̄m(x)

 ∈ U(m)

for every x ∈ X. For every n ∈ Zd, the characters (χ1 · αYn , . . . , χm · αYn )
are a permutation of (χ1, . . . , χm). Hence there exist a unique permutation
matrix P (n) and characters ψ(n)

1 , . . . , ψ
(n)
m in Y ⊥ ⊂ X̂ such that

D(αn(x)) = Q(n, x)P (n)D(x)P (n)−1 (3.1)

for every n ∈ Zd and x ∈ X, where

Q(n, x) =


ψ

(n)
1 (x) 0 . . . 0 0

0 ψ
(n)
2 (x) . . . 0 0

...
...

. . .
...

...
0 0 . . . ψ

(n)
m−1(x) 0

0 0 . . . 0 ψ
(n)
m (x)

 .

If
c(n, x+ Y ) = Q(n, x)P (n) ∈ U(m)

for every n ∈ Zd and x ∈ X, then c(m+n, z) = c(m, αZn (z))c(n, z) for every
z ∈ Z and m,n ∈ Zd, so that c ∈ Z1

c (αZ ,U(m)). The Hölder continuity
of c follows from the fact that every character of Z is Hölder continuous by
Corollary 2.2.

If c ∈ Z1
H(αZ ,U(m)) were trivial, then we could find a continuous map

b : Z 7−→ U(m) and a homomorphism a : Zd 7−→ U(m) with

c(n, z) = b(αZn (z))−1a(n)b(z) (3.2)

for every n ∈ Zd and z ∈ Z. Put

Ξ = {n ∈ Zd : P (n) = 1U(m)} = ker (P (·)),

V = X × Zd/Ξ,

set m = m+ Ξ ∈ Zd/Ξ for every m ∈ Zd, and define a continuous Zd-action
T on V by

Tm(x,n) = (αm(x),m + n)
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for every x ∈ X and m,n ∈ Zd. The map b′ : V 7−→ U(m), defined by

b′(x,n) = D(x)P (n),

satisfies that
b′(Tm(x,n)) · b′(x,n)−1 = c(m, θ(x)) (3.3)

for every x ∈ X and m,n ∈ Zd, where θ : X 7−→ Z is the quotient map (this
is also a verification that c is a cocycle). A comparison of (3.2) and (3.3)
reveals that

b · θ(αm(x))−1a(m)b · θ(x) = b′(Tm(x,n))b′(x,n)−1 (3.4)

for every m,n and x, so that the map

(x,n) 7→ b′′(x,n) = b(θ(x))b′(x,n)

from V to U(m) cobounds the homomorphism a with respect to the Zd-
action T on V . In order to prove that a(n) = 1U(m) for every n ∈ Ξ
we define a Zd-action n 7→ Vn on the Hilbert space H = L2(X,λX ,Cm)
of square-integrable functions ψ : X 7−→ Cm by setting, for every ψ ∈ H,
n ∈ Zd and x ∈ X,

(Vnψ)(x) = a(n)ψ(αn(x)).
For every ζ ∈ Cm, the map ψζ(x) = b′′(x,0)ζ satisfies that Vnψζ = ψζ for
every n ∈ Ξ. Choose an orthonormal basis ζ(1), . . . , ζ(m) of Cm in which
every a(n) is diagonal, denote by P (i) : H 7−→ H the projections onto the
subspaces {ψζ(i) : ψ ∈ L2(X,λX)} ⊂ H, and observe that P (i)Vn = VnP

(i)

and
Vnψ

(i)
ζ = χ(i)(n)(ψ(i)

ζ · αn) = ψ
(i)
ζ λX -a.e.,

for every ζ ∈ Cm, i = 1, . . . ,m and n ∈ Ξ, where ψ
(i)
ζ = P (i)ψζ and

a(n)ζ(i) = χ(i)(n)ζ(i). By varying ζ we obtain nonzero eigenfunctions for the
Ξ-action α with eigenvalues χ(i) ∈ Ξ̂ ⊂ Ẑd, i = 1, . . . ,m. As the restriction
of α to Ξ is mixing, χ(i)(n) = 1 for every i and n ∈ Ξ, so that a(n) = 1U(m)

for every n ∈ Ξ, as claimed.
The triviality of a on Ξ in (3.4) implies that the map x 7→ b(θ(x))b′(x,n)

is invariant under each αn, n ∈ Ξ, and hence constant, for every n ∈ Zd. In
particular, b′(·,0) must be invariant under translation by Y , which implies
that each of the characters χi is constant on Y . This contradiction to our
choice of χ = χ1 shows that c cannot be trivial. �

Proposition 3.3. Let α be an expansive and mixing Zd-action by automorphisms
of a compact, abelian group X, and let

Fix(αn) = {x ∈ X : αn(x) = x}

for every n ∈ Zd. If the restriction αFix(αn) of α to the closed, α-invariant
subgroup Fix(αn) is nonergodic for some n ∈ Zd, then there exist a compact
Lie group G with a nontrivial cocycle c ∈ Z1

H(α,G).

Proof. Let n ∈ Zd be an element such that Y = Fix(αn) is nonergodic.
We set Z = X/Y and use Lemma 3.2 to construct a nontrivial cocycle
c ∈ Z1

H(αZ ,U(m)) for some m ≥ 1, where αZ is the Zd-action on Z induced
by α. As α is mixing, αn is ergodic, and the map x 7→ αn(x) − x = η(x)
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from X to X is surjective and induces a continuous group isomorphism
φ : Z = X/ker(η) 7−→ X. The cocycle c′ : Zd ×X 7−→ U(m), defined by

c′(m, x) = c(m, φ(x))

for every m ∈ Zd and x ∈ X, has the desired properties. �

Lemma 3.4. Let α be an expansive and mixing Zd-action by automorphisms
of a compact, abelian group X such that h(αn) < ∞ for every n ∈ Zd. If
Fix(αn) 6= {0} for some nonzero n ∈ Zd, then the restriction of α to Fix(αn)
is nonergodic.

Proof. Suppose that, for some nonzero n ∈ Zd, Y = Fix(αn) 6= {0} and α
is ergodic on Y . By Theorem 6.5 in [11] there exists an element m ∈ Zd
such that the restriction αYm of αm to Y is ergodic and h(αYm) > 0 (cf. e.g.
Theorem 19.2 in [11]).

We define η : X 7−→ X by η(x) = αn(x)− x and note that η is surjective,
since αn is ergodic, and that Y is equal to the kernel ker(η). Yuzvinskii’s
addition formula ([14]) guarantees that, for every k ≥ 1, the restriction of
αm to ker(ηk) has entropy kh(αYm), so that h(αm) > kh(αYm) for every k ≥ 1.
Since h(αm) <∞ by assumption we obtain a contradiction. �

Proof of Theorem 3.1. Let n ∈ Zd be a nonzero element. Theorem 12.1 in
[11] guarantees that

Per(αn) =
⋃
k≥1

Fix(αkn) (3.5)

is dense in X, and Lemma 3.4 shows that αFix(αkn) is nonergodic for some
k ≥ 1. Now apply Proposition 3.3. �

Remarks 3.5. (1) The cocycle c in Lemma 3.2 and Theorem 3.1 takes values
in an abelian group G if and only if χ is invariant under α. Such invariant
characters exist whenever

Fix(α) = {x ∈ X : αm(x) = x for every m ∈ Zd} = Fix(αn) 6= {0}
for some n ∈ Zd.

(2) The last part of the proof of Lemma 3.2 also shows that the cocycle c
constructed there is not cohomologous to a cocycle taking values in U(m′)
for some m′ < m.

A more careful version of Lemma 3.4 reveals that the groups Fix(αn) are,
in fact, finite for every nonzero n ∈ Zd. If we fix a nonzero n ∈ Zd, then the
denseness of the group Per(αn) in X (cf. (3.5)) shows that the cardinalities
|Fix(αk!n)| → ∞ as k → ∞. In particular we can find, for sufficiently
large k ≥ 1, an element χ ∈ ̂Fix(αk!n) with arbitrarily large orbit under
αFix(αk!n). Hence there exist arbitrarily large integers m ≥ 1 for which we
can find nontrivial cocycles c ∈ Z1

H(α,U(m)) which are not cohomologous
to cocycles taking values in U(m′) for m′ < m.

(3) Every cocycle c ∈ Z1
H(αZ ,U(m)) constructed in Lemma 3.2 (and in

particular the cocycles c ∈ Z1
H(α,U(m)) obtained in Theorem 3.1) has the

property that there exists an integer k ≥ 1 such that c(km, x) is a diagonal
element of U(m) for every m ∈ Zd: it suffices to choose k such that αYkm fixes
χ for every m ∈ Zd. Furthermore, the skew product extension of α defined
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by any of the cocycles appearing in Theorem 3.1 has the property that the
restriction to any one of its ergodic components is essentially isomorphic
the original action α (apart from a possible translation term arising from a
homomorphism). Does every Hölder cocycle c : Zd × Z 7−→ U(m) of α have
this property?

(4) The condition in Lemma 3.4 that αFix(αn) be nonergodic for some
n ∈ Zd can be replaced by the condition that α acts nonergodically on the
kernel of the surjective group homomorphism

h(α) =
∑
n∈Zd

ch(n)αn : X 7−→ X

for some h ∈ Rd, but I don’t know whether this condition is really weaker
than the one in Lemma 3.4. Can one construct nontrivial cocycles with
values in compact Lie groups even if α is ergodic on the kernel of each such
homomorphism?

(5) The nontrivial cocycles for Ledrappier’s example described in [12] or
[9] are special cases of the construction in Theorem 3.1.

4. Cohomological triviality

In this section we prove the following results.

Theorem 4.1. Let α be an expansive and mixing Zd-action by automorphisms
of a compact, abelian group X with completely positive entropy. Then there
exists an expansive and mixing Zd-action ᾱ on a compact, abelian group X̄
and a continuous, surjective group homomorphism ψ : X̄ 7−→ X with the
following properties:

(1) ψ · ᾱn = αn · ψ for every n ∈ Zd;
(2) h(α) = h(ᾱ);
(3) If G is a compact group with a bi-invariant metric γ, then every

cocycle c : Zd × X̄ 7−→ G for ᾱ with summable variation is trivial.

For certain expansive and mixing Zd-actions α this ‘cover’ ᾱ coincides
with α. If M is an Rd-module we recall the definition of the Zd-action αM

on XM = M̂ in (2.3)–(2.9).

Theorem 4.2. Let d ≥ 2, and let f ∈ Rd be a Laurent polynomial such that
the Zd-action α = αRd/fRd on X = XRd/fRd is expansive and mixing. If
G is a compact group with a given bi-invariant metric γ, then every cocycle
c ∈ Z1

sv(α,G) is trivial.

For the constant polynomial f = 2, Theorem 4.2 yields the cohomological
triviality of the higher-dimensional two-shift first observed by J. Kammeyer
in [2].

Although this paper is mainly concerned with cocycles taking values in
compact groups we remark in passing that an insignificant variation (in fact,
simplification) of the proofs of the Theorems 4.1–4.2 yields the identical
result for cocycles with values in any complete metric, abelian group (G, γ)
(Remark 4.9).

For the proof of Theorem 4.2 we have to introduce a group of homoclinic
points of α discussed in [4] and [12].
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Definition 4.3. Let α be a mixing Zd-action by automorphisms of a compact,
abelian group X, and let δ be a metric on X. For every nonzero element
n ∈ Zd and every ξ with 0 < ξ < 1, consider the cones

C+(n, ξ) = {m ∈ Zd : 〈m,n〉 ≥ ξ‖m‖‖n‖},

C−(n, ξ) = {m ∈ Zd : 〈m,n〉 ≤ −ξ‖m‖‖n‖},

and denote by

∆α(n, ξ) =

x ∈ X : lim
k→∞

k∈C+(n,ξ′)∪C−(n,ξ′)

αk(x) = 0X for some ξ′ ∈ (0, ξ)


the group of (n, ξ)-homoclinic points. Note that

αm(∆α(n, ξ)) = ∆α(n, ξ)

for every m,n ∈ Zd, n 6= 0, and ξ ∈ (0, 1).
Let 0 6= n ∈ Zd and ξ ∈ (0, 1). The Zd-action α has weak (n, ξ)-

specification if ∆α(n, ξ) is dense in X, and if there exist, for every ε > 0,
constants s′ ≥ 1, t′ ≥ 0, with the following property: for every r ≥ 0, and
for every x ∈ ∆α(n, ξ) with δ(αm(x), 0X) < ε for every m ∈ B(s′r+ t′), one
can find a y ∈ ∆α(n, ξ) with

δ(αk(y), αk(x)) < ε for all k ∈ C+(n, ξ) + B(r),

δ(αk(y), 0X) < ε for all k ∈ C−(n, ξ) + B(r).

The action α has weak n-specification if it has weak (n, ξ)-specification for
some ξ ∈ (0, 1).

An element n = (n1, . . . , nd) ∈ Zd is primitive if gcd{n1, . . . , nd} = 1;
more generally, a subgroup Γ ⊂ Zd is primitive if the group Zd/Γ is torsion-
free. If α is an expansive and mixing Zd-action of the form α = αRd/fRd for
some f ∈ Rd we denote by S(f) = {m ∈ Zd : cfi(m) 6= 0} the support of f .
For every primitive subgroup Γ ∼= Zd−1 of Zd we choose a primitive element
n(Γ) ∈ Zd with 〈n(Γ),m〉 = 0 for every m ∈ Γ and write

ΦΓ(f)+ =
{
n ∈ S(f) : 〈n, n(Γ)〉 = max

k∈S(f)
〈k, n(Γ)〉

}
,

ΦΓ(f)− =
{
n ∈ S(f) : 〈n, n(Γ)〉 = min

k∈S(f)
〈k, n(Γ)〉

}
for the ‘faces’ of S(f) parallel to Γ. Put

Ψ(f) = {Γ : Γ ∼= Zd−1 is a primitive subgroup of Zd

and |ΦΓ(f)+| = |ΦΓ(f)−| = 1},
(4.1)

where |S| is, as usual, the cardinality of a set S. Note that Ψ(f) consists of
all primitive (d− 1)-dimensional subgroups of Zd which do not contain any
elements parallel to an edge of the convex hull of S(f).

More generally, if M is a Noetherian Rd-module such that the Zd-action
αM has completely positive entropy, and if {p1, . . . , pm} are the associated
primes of M, then each pi is principal, and we choose nonzero Laurent
polynomials fi ∈ Rd with pi = fiRd for every i = 1, . . . ,m (cf. Theorem



COHOMOLOGY WITH VALUES IN COMPACT LIE GROUPS 13

20.8 and Corollary 18.5 in [11]). Define S(fi) and Ψ(fi) as above, and note
that the set

Ψ(M) =
m⋂
i=1

Ψ(fi) (4.2)

is infinite.
The following lemma is an elaboration of Remark 3.8 (2) in [4]. Recall

that, if (X, δ) is a metric space, then a set Y ⊂ X is ε-dense if infy∈Y δ(x, y) <
ε for every x ∈ X.

Lemma 4.4. Let f ∈ Rd be an irreducible Laurent polynomial such that α =
αRd/fRd is expansive and mixing. The following is true for every nonzero
n ∈

⋃
Γ∈Ψ(f) Γ:

(1) α has weak n-specification;
(2) For every k ≥ 1, the restriction of α to the closed, invariant subgroup

Fix(αkn) = {x ∈ X = XRd/fRd : αkn(x) = x}

is ergodic;
(3) If δ is an invariant metric on X then there exists, for every ε > 0, an

integer K ≥ 1 such that Fix(αkn) is ε-dense in X for every k ≥ K.

Proof. If the support S(f) consists of a single point then we can multiply f
by a monomial to achieve that f = p for some rational prime p ≥ 2. In this
case X ∼= (Z/pZ)Zd , α is the d-dimensional p-shift, and all assertions of the
lemma are obvious.

Assume therefore that |S(f)| > 1. Let Γ ∈ Ψ(f) be a primitive subgroup,
and let k ∈ Zd be an element with {lk + n : k ∈ Z, n ∈ Γ} = Z. According
to the definition of Ψ(f) we may multiply f by a monomial and assume
that there exists an integer L ≥ 0 and Laurent polynomials φ(j)

f such that

S(φ(j)
f ) ⊂ Γ for j = 0, . . . , L, φ(0)

f = mum, φ
(L)
f = m′um′ with m,m′ ∈ Z,

mm′ 6= 0, m,m′ ∈ Γ, and

f =
L∑
j=0

ujkφ
(j)
f .

If
Γ̄ = {lk + n : 0 ≤ l ≤ L− 1, n ∈ Γ},

then the definition of X = XRd/fRd in (2.9) shows that the projection
πΓ̄ : X 7−→ TΓ̄, which restricts every x = (xm) ∈ X ⊂ TZd to its coordinates
in Γ̄, is a surjective group homomorphism with zero-dimensional kernel. In
fact, if Γ′ = Γ− k, Γ′′ = Γ + Lk, then

πΓ′(π−1
Γ̄

(y)) ∼= (Z/mZ)Zd−1
, πΓ′′(π−1

Γ̄
(y)) ∼= (Z/m′Z)Zd−1

. (4.3)

We write β for the Γ-action

(βn(y))m = ym+n, n ∈ Γ, m ∈ Γ̄,

on Y = TΓ̄. Fix a primitive element n ∈ Γ, and let k ≥ 1. Then

πΓ̄(Fix(αkn)) = Fix(βkn),
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and Fix(αkn) is easily seen to be connected. The expansiveness of the
restriction αFix(αkn) of α to Fix(αkn) implies that αFix(αkn) is ergodic and
proves (2) (cf. Corollary 6.14 in [11]). The assertions (1) and (3) are obvious
from (4.3) and the surjectivity of πΓ̄. �

Lemma 4.5. Let M be a Noetherian Rd-module such that α = αM is
expansive, mixing, and has completely positive entropy. We write {p1, . . . , pm}
for the set of associated primes of M, note that each pi is principal (Theorem
20.8 and Corollary 18.5 in [11]), and choose fi ∈ Rd with pi = fiRd for
i = 1, . . . ,m. There exist a Noetherian Rd-module N and an injective
module-homomorphism φ̂ : M 7−→ N with the following properties:

(1) N = N(1)⊕ · · · ⊕N(m), where each N(j) has a prime filtration {0} =
N

(j)
0 ⊂ · · · ⊂ N

(j)
rj = N(j) with N

(j)
k /N

(j)
k−1
∼= Rd/pj for k = 1, . . . , rj;

(2) N has the same set of associated primes as M;
(3) h(αN) = h(α);
(4) αN is expansive and mixing.

Furthermore, if

Ψ(M) =
m⋂
i=1

Ψ(fi)

and 0 6= n ∈
⋃

Γ∈Ψ(M) Γ, then the following is true:

(5) αN has weak n-specification,
(6) For every k ≥ 1, the restriction of αN to the closed, invariant

subgroup

Fix(αN
kn) = {x ∈ XN : αN

kn(x) = x}

is ergodic;
(7) If δ is a metric on XN then there exists, or every ε > 0, an integer

K ≥ 1 such that Fix(αN
kn) is ε-dense in XN for every k ≥ K.

Proof. Lemma 3.3 in [4] implies the existence of a Noetherian module N

and a module homomorphism φ̂ : M 7−→ N satisfying (1)–(2). Condition (3)
follows from Corollary 18.5 and Proposition 18.6 in [11] and the definition
of N in [4], and (4) is a consequence of (2).

The Corollaries 3.5 and 3.7 in [4] imply (5), (6) is proved by applying
Lemma 4.4 repeatedly, and (7) is obvious from the structure of N (or from
Theorem 12.1 in [11]). �

For the following discussion we assume the hypotheses of Lemma 4.5,
choose n ∈ Γ ∈

⋃
Γ∈Ψ(M) Γ and ξ ∈ (0, 1) such that ᾱ = αN has weak (n, ξ)-

specification, and put X̄ = XN = N̂. If M = Rd/fRd for some f ∈ Rd then
Lemma 4.4 allows us to set N = M = Rd/fRd, ᾱ = α and X̄ = X.

Suppose that (G, γ) is a complete metric group with identity element 1G
and a bi-invariant metric γ in which G has diameter 1. If h : X̄ 7−→ G is a
function with summable variation we define cocycles a±h : ∆ᾱ(n, ξ)×X̄ 7−→ G
for the action of ∆ᾱ(n, ξ) on X̄ by translation as follows: for every y ∈
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∆ᾱ(n, ξ) and x ∈ X̄,

a+
h (y, x) =

( ∞∏
k=0

h(ᾱkn(y + x))−1

)
·

( ∞∏
k=0

h(ᾱkn(x))−1

)−1

,

a−h (y, x) =

( ∞∏
k=1

h(ᾱ−kn(y + x))

)
·

( ∞∏
k=1

h(ᾱ−kn(x))

)−1

.

(4.4)

In order to explain the equations (4.4) we fix y ∈ ∆ᾱ(n, ξ) for the moment.
Since h has summable variation there exists, for every ε > 0, an integer
N ≥ 0 with ∑

|k|≥N

γ(h(ᾱkn(y + x)), h(ᾱkn(x))) < ε

for every x ∈ X̄. For every K ≥ 1 we set

a+
h (y, x)(K) =

(
K−1∏
k=0

h(ᾱkn(y + x))−1

)
·

(
K−1∏
k=0

h(ᾱkn(x))−1

)−1

= h(y + x)−1 · · ·h(ᾱ(K−1)n(y + x))−1

· h(ᾱ(K−1)n(x)) · · ·h(x),

a−h (y, x)(K) =

(
K∏
k=1

h(ᾱ−kn(y + x))

)
·

(
K∏
k=1

h(ᾱ−kn(x))

)−1

= h(ᾱ−n(y + x)) · · ·h(ᾱ−Kn(y + x))

· h(ᾱ−Kn(x))−1 · · ·h(ᾱ−n(x))−1.

(4.5)

The bi-invariance of the metric γ guarantees that

γ(a+
h (y, x)(K), a+

h (y, x)(K′)) + γ(a−h (y, x)(K), a−h (y, x)(K′)) < ε

whenever K,K ′ > N and x ∈ X̄, so that the infinite products in (4.4)
converge uniformly to continuous maps a±h (y, ·) : X̄ 7−→ G. From the (4.4) it
is also clear that the maps a±h : ∆ᾱ(n, ξ) 7−→ G satisfy the cocycle equations

a+
h (y1, y2 + x)a+

h (y2, x) = a+
h (y1 + y2, x),

a−h (y1, y2 + x)a−h (y2, x) = a−h (y1 + y2, x)
(4.6)

for all y1, y2 ∈ ∆ᾱ(n, ξ) and x ∈ X̄. The following result is a minor
modification of Proposition 3.1 in [12]; we include its proof for completeness.

Lemma 4.6. Let ᾱ be an expansive and mixing Zd-action by automorphisms
of a compact, abelian group X̄ which has weak (n, ξ)-specification for some
nonzero n ∈ Zd and some ξ ∈ (0, 1), and let h : X̄ 7−→ G be a function with
summable variation. If the cocycles a±h : ∆ᾱ(n, ξ)× X̄ 7−→ G in (4.4)–(4.6)
are equal, then there exists a continuous function b : X̄ 7−→ G such that the
map

x 7→ b(αn(x))−1 · h(x) · b(x)

is constant on X̄. If h is Hölder, then b is also Hölder.
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Proof. We fix an ε > 0 satisfying (1.4) and put, for every r > 0,

∆+(r) = {y ∈ ∆ᾱ(n, ξ) : δ(ᾱk(y), 0X) < ε for every k ∈ C−(n, ξ) + B(r)},
∆−(r) = {y ∈ ∆ᾱ(n, ξ) : δ(ᾱk(y), 0X) < ε for every k ∈ C+(n, ξ) + B(r)},

and note that γ(a±h (y, x), 1G) ≤ 4ξ−1 ·
∑

k≥r ω
δ,γ
k (h) < ∞ for all y ∈ ∆∓(r)

and x ∈ X̄.
The weak (n, ξ)-specification of ᾱ allows us to choose constants s′ ≥

1, t′ ≥ 0 such that we can find, for every r ≥ 0 and every y ∈ ∆ᾱ(n, ξ) with
δ(ᾱm(x), 0X̄) < ε for every m ∈ B(s′r + t′), an element y′ ∈ ∆+(r) with
δ(ᾱm(y), ᾱm(y′)) < ε for every m ∈ C+(n, ξ) + B(r). Since the metric γ is
bi-invariant and a+

h = a−h we obtain that

γ(a+
h (y′, x), a+

h (y, x)) ≤ 4ξ−1
∑
k≥r

ωδ,γk (h) = C ′(r), say,

γ(a+
h (y′, x), 1G) = γ(a−h (y′, x), 1G) ≤ C ′(r),

γ(a+
h (y, x), 1G) ≤ 2C ′(r),

(4.7)

for all y ∈ ∆ᾱ(n, ξ) with δ(ᾱm(y), 0X̄) < ε for every m ∈ B(s′r + t′). By
varying r we see that

lim
y→0X̄

y∈∆ᾱ(n,ξ)

γ(a+
h (y, x), 1G) = 0

uniformly in x ∈ X̄. The cocycle equation (4.6) shows that the function
a+
h : ∆ᾱ(n, ξ) × X̄ 7−→ G has a unique, continuous extension ā+

h : X̄ ×
X̄ 7−→ G with ā+

h (y, x) = a+
h (y, x) for all y ∈ ∆ᾱ(n, ξ) and x ∈ X̄, and

that ā+
h satisfies the cocycle equation (4.6) for every y1, y2, x ∈ X̄. We

define b : X̄ 7−→ G by b(x) = ā+
h (x, 0X̄) for every x ∈ X̄, and obtain that

ā+
h (x, x′) = b(x+ x′) · b(x′)−1 for all x, x′ ∈ X̄.

If h is Hölder we choose 0 < ω < 1, ω′ > 0, such that (1.5) is satisfied.
From (4.7) we see that there exists a positive constant ω̄′ such that γ(a+

h (y, x), 1G) ≤
ω̄′ωr for all y ∈ ∆ᾱ(n, ξ) with δ(ᾱm(y), 0X̄) < ε for every m ∈ B(s′r + t′),
and we conclude that γ(ā+

h (x, x′), 1G) ≤ ω̄′ωr for all (x, x′) ∈ X̄ × X̄ with
δ(ᾱm(x), 0X̄) < ε for every m ∈ B(s′r + t′). Hence γ(b(x), b(x′)) ≤ 2ω̄′ωr

whenever δ(ᾱm(x), ᾱm(x′)) < ε for every m ∈ B(s′r + t′), which implies
that b is Hölder.

Let ∆̄ = Z×X̄ with the group operation (n, y)·(n′, y′) = (n+n′, ᾱn′n(y)+
y′), and let ∆̄′ ⊂ ∆̄ be the subgroup consisting of all (n, y) with n ∈ Z and
y ∈ ∆ᾱ(n, ξ). We write T for the action of ∆̄ on X̄ given by T(n,y)(x) =
ᾱnn(x + y) and define a continuous map ψ : ∆̄ × X̄ 7−→ R by setting, for
every (n, y) ∈ ∆̄ and x ∈ X̄,

ψ((n, y), x) =


h(ᾱ(n−1)n(x+ y)) · · ·h((x+ y))ā+

h (y, x) if n > 0,
ā+
h (y, x) if n = 0,
h(ᾱ−nn(x+ y))−1 · · ·h(ᾱ−n(x+ y))−1ā+

h (y, x) if n < 0.

A straightforward calculation shows that ψ is a cocycle for the action T of
∆̄ on X̄ in the sense of (1.1). In particular,

b(y + x)b(x)−1 = ā+
h (y, x) = ψ((0, y), x)
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= ψ((−1, 0), ᾱn(x+ y))ψ((0, αn(y)), αn(x))ψ((1, 0), x)

= h(x+ y)−1ā+
h (ᾱn(y), ᾱn(x))h(x)

= h(x+ y)−1b(ᾱn(x+ y))b(ᾱn(x))−1h(x)

for all x, y ∈ X̄, so that (b ·αn)−1hb is translation invariant on X̄ and hence
constant. �

We return to the setting of Lemma 4.5, assume that c : Zd × X̄ 7−→ G
is an element of Z1

sv(ᾱ, G), where G is a compact group with a bi-invariant
metric γ, and set

h = c(n, ·) : X̄ 7−→ G. (4.8)

According to (1.1),

h(ᾱm(x))c(m, x) = c(n, ᾱm(x))c(m, x) = c(m + n, x)

= c(m, ᾱn(x))c(n, x) = c(m, ᾱn(x))h(x)
(4.9)

for every m ∈ Zd and x ∈ X̄.

Lemma 4.7. For every x ∈ X̄ and y ∈ ∆ᾱ(n, ξ), a+
h (y, x) = a−h (y, x).

Proof. For every k ≥ 1 and every x ∈ Fix(αkn) we denote by

w
(k)
h (x) = h(ᾱ(k−1)n(x))h(ᾱ(k−2)n(x)) · · ·h(ᾱn(x))h(x)

the h-weight of x. The equation (4.9) implies that

w
(k)
h (ᾱm(x)) = c(m, x)w(k)

h (x)c(m, x)−1

for every x ∈ Fix(ᾱkn) and m ∈ Zd. Denote by [g] the conjugacy class of
an element g ∈ G, write [G] = {[g] : g ∈ G} for the space of conjugacy
classes in G with the quotient topology, and note that the ergodicity of
ᾱFix(ᾱkn) implies that the continuous map x 7→ [w(k)

h (x)] from Fix(ᾱkn) to
[G] is constant. In particular, w(k)

h (x) is conjugate to w(k)
h (0X) = h(0X)k for

every x ∈ Fix(αkn).
As G is compact, we can find an increasing sequence (kj , j ≥ 1) of positive

integers with
lim
j→∞

h(0X)kj = 1G,

and there exists, for every ε > 0, an integer J ≥ 1 with

γ(w(kj)
h (x), 1G) < ε/3 (4.10)

for every j ≥ J and x ∈ Fix(ᾱkjn).
The discussion preceding Proposition 2.1 allows us to embed X̄ as a closed,

shift-invariant subgroup of (Ts)Zd for some s ≥ 1. In order to prove that
a+
h (y, x) = a−h (y, x) for every given x ∈ X̄ and y ∈ ∆ᾱ(n, ξ) we fix r > 0

for the moment and apply Lemma 4.5 (7) to find, for every sufficiently large
k ≥ 1, an element x(k) ∈ Fix(ᾱ2kn) with |xm − x(k)m| < ε/3 for every
m ∈ B(r) (cf. (2.11)). Proposition 2.1 guarantees that, for every k ∈ Zd,
|yk+ln| → 0 with exponential speed as |l| → ∞ (cf. (2.11) for notation). In
particular, the series

∑
l∈Z ᾱ2lkn(y) converges to a point y(k) ∈ Fix(ᾱ2kn),
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and by choosing r and k > r sufficiently large and ε sufficiently small the
following expressions become arbitrarily small (cf. (1.3)–(1.5) and (4.5)):∑

m∈ZdrB(r)

|ym|,

∑
|j|≤k

γ(h(ᾱjn(y)), h(ᾱjn(y(k)))),

γ(a+
h (y, x), a+

h (y, x(k))) + γ(a−h (y, x), a−h (y, x(k))),

γ(a+
h (y, x(k)), a+

h (y, x(k))(k)) + γ(a−h (y, x(k)), a−h (y, x(k))(k)),

γ(a+
h (y, x(k))(k), a+

h (y(k), x(k))(k))

+γ(a−h (y, x(k))(k), a−h (y(k), x(k))(k)).

(4.11)

The expressions a±h (y(k), x(k))(k) in (4.11) are defined as in (4.5) by

a+
h (y(k), x(k))(k) = h(y(k) + x(k))−1 · · ·h(ᾱ(k−1)n(y(k) + x(k)))−1

· h(ᾱ(k−1)n(x(k))) · · ·h(x(k)),

a−h (y(k), x(k))(k) = h(ᾱ−n(y(k) + x(k))) · · ·h(ᾱ−kn(y(k) + x(k)))

· h(ᾱ−kn(x(k)))−1 · · ·h(ᾱ−n(x(k)))−1.

(4.12)

From (4.10) we know that

lim
j→∞

γ(w(2kj)
h (α−kjn(x(kj))), 1G) + γ(w(2kj)

h (α−kjn(y(kj) + x(k))), 1G) = 0.

Hence the distance between the products

h(ᾱ(kj−1)n(y(kj) + x(kj))) · · ·h(α−kjn(y(kj) + x(kj))),

h(ᾱ(kj−1)n(x(kj))) · · ·h(ᾱ−kjn(x(kj)))
(4.13)

tends to 0 as j →∞. After re-ordering the products in (4.13) we see that

lim
j→∞

γ(a+
h (y(kj), x(kj))(kj), a−h (y(kj), x(kj))(kj)) = 0, (4.14)

and by combining (4.11)–(4.13) we obtain that a+
h (y, x) = a−(y, x) for every

x ∈ X̄ and y ∈ ∆ᾱ(n, ξ). �

Proof of Theorem 4.1. Let M = X̂ be the Noetherian Rd-module arising in
(2.1)–(2.2), define N, ᾱ = αN and X̄ = XN as in Lemma 4.5, and choose a
nonzero n ∈ Zd and ξ ∈ (0, 1) such that ᾱ has weak (n, ξ)-specification. Let
G be a compact group with bi-invariant metric γ, c : Zd×X 7−→ G a cocycle
for ᾱ with summable variation, and define h : X̄ 7−→ G and a±h : ∆ᾱ(n, ξ)×
X̄ 7−→ G by (4.8) and (4.4)–(4.6). Lemma 4.7 shows that a+

h = a−h , and
Lemma 4.6 yields the existence of a continuous function b : X̄ 7−→ G for
which the map

x 7→ b(ᾱn(x))−1 · c(n, x) · b(x)

is everywhere equal to some element g ∈ G. Furthermore, if c is Hölder,
then b is Hölder.
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We define a cocycle c′ : Zd × X̄ 7−→ G for ᾱ by setting c′(m, x) =
b(ᾱm(x))−1c(m, x)b(x) for every m ∈ Zd and x ∈ X̄. Then c′ is cohomologous
to c, and the cocycle equation (1.1) shows that

c′(m, x) = g−k · c′(m, αkn(x)) · gk (4.15)

for every m ∈ Zd, k ∈ Z, and x ∈ X. We fix m ∈ Zd and set ψ = c′(m, ·).
If ψ is not constant we can find ε > 0, g1, g2 ∈ G, and nonempty, open sets
O1 and O2, such that supx∈Oi γ(ψ(x), gi) < ε for i = 1, 2, and γ(g1, g2) >
3ε. From (4.15) and the invariance of γ we see that γ(ψ(x1), ψ(x2)) < ε
whenever k ≥ 0 and x1, x2 ∈ α−kn(O1). However, since αn is topologically
mixing, we know that α−kn(O1)∩Oi 6= ∅ for i = 1, 2, and for all sufficiently
large k. If k > 0 is large enough we can thus find elements y1, y2 ∈ α−kn(O1)
such that γ(ψ(yi), gi) < ε for i = 1, 2, which is absurd. This contradiction
implies that c′(m, ·) must be constant. As m ∈ Zd was arbitrary, c′ is a
homomorphism. �

Proof of Theorem 4.2. If X̂ = M = Rd/fRd for some f ∈ Rd, Lemma 4.4
allows us to set N = M in the Lemmas 4.5 and 4.7. Hence ᾱ = α and
X̄ = X in Theorem 4.1, which proves our claim. �

The following example shows that even a minor modification of the actions
in Theorem 4.2 may introduce nontrivial cohomology with values in compact
Lie groups, and that the Zd-action ᾱ in Theorem 4.1 cannot, in general, be
equal to α.

Example 4.8. As in Theorem 4.2 we assume that α = αRd/fRd and X =
XRd/fRd = R̂d/fRd for some f ∈ Rd such that α is expansive and mixing.
For every subgroup Γ ⊂ Zd with finite index, the set

Fixα(Γ) = {x ∈ X : αn(x) = x for every n ∈ Γ}

is finite (by expansiveness), and

lim
〈Γ〉→∞

|Zd/Γ|−1 log |Fixα(Γ)| = h(α) > 0,

where
〈Γ〉 = min{‖m‖ : 0 6= m ∈ Γ}

(cf. Theorems 21.1 (3) and 19.5 in [11]). In particular there exist subgroups
Γ ⊂ Zd for which Y = Fixα(Γ) is arbitrarily large, and obviously finite
and α-invariant. Lemma 3.2 allows us to construct a nontrivial Hölder
cocycle c : Zd ×X/Y 7−→ G for some compact Lie group G, and for the Zd-
action αX/Y induced by α on X/Y . The actions α and αX/Y are Bernoulli
with equal entropy (cf. [10]), but Theorem 4.2 implies that αX/Y is not
topologically conjugate to α (this can also be proved much more directly—
cf. Theorem 5.9 in [11]).

Remarks 4.9. (1) For d = 2, the dichotomy expressed by the Theorems 3.1
and 4.1 is optimal, since the cohomological triviality assertion of Theorem
4.1 can be shown to be equivalent to α having completely positive entropy.
However, if d ≥ 3, there exist Zd-actions α by automorphisms of compact,
abelian groups which have zero entropy, and for which every element c ∈
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Z1
sv(α,G) is trivial, where (G, γ) is any complete metric group with a bi-

invariant metric γ (cf. Example 5.4 in [12]).
(2) As was stated at the beginning of this section, the Theorems 4.1–4.2

remain correct if we assume that the group G is abelian and not necessarily
compact (or, more generally, if G = G1 × G2, where G1 is compact and
(G2, γ2) is a complete metric, abelian group). The only change in the proof
occurs in Lemma 4.7, where we obtain directly that the h-weight w(k)

h (x)
is constant (and hence equal to w(k)

h (0X)) for every x ∈ Fix(ᾱkn). Do the
Theorems 4.1–4.2 hold for an arbitrary complete metric group (G, γ), where
γ is bi-invariant (e.g. for a discrete group)?
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1995.
[12] , The cohomology of higher-dimensional shifts of finite type, Pacific J. Math.

170 (1995), 237–270.
[13] , Cohomological rigidity of algebraic Zd-actions, Ergod. Th. & Dynam. Sys.

15 (1995), 759–805.
[14] S.A. Yuzvinskii, Metric properties of endomorphisms of compact groups, Amer. Math.

Soc. Transl., vol. 66, American Mathematical Society, Providence, R.I., 1986, pp. 63–
98.

[15] R.J. Zimmer, Ergodic theory and semisimple Lie groups, Birkhäuser Verlag, Basel-
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