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Abstract. The points homoclinic to 0 under a hyperbolic toral automorphism
form the intersection of the stable and unstable manifolds of 0. This is
a subgroup isomorphic to the fundamental group of the torus. Suppose
that two hyperbolic toral automorphisms commute so that they determine
a Z2-action, which we assume is irreducible. We show, by an algebraic
investigation of their eigenspaces, that they either have exactly the same
homoclinic points or have no homoclinic point in common except 0 itself.
We prove the corresponding result for a compact connected abelian
group, and compare the two proofs.

1. Introduction

Let n ≥ 2, and let A ∈ GL(n,Z) be a linear ergodic automorphism of
the n-torus X = Tn = Rn/Zn. A point x ∈ X is homoclinic for A if
lim|n|→∞ δ(Anx, 0) = 0, where δ is the usual Euclidean metric on X. If the
automorphism A is nonhyperbolic then A has no nonzero homoclinic points
(cf. e.g. [4]). If A is hyperbolic we can describe the set ∆A ⊂ X of homoclinic
points of A as follows: let A act linearly on Rn and denote by SA and UA
the stable (= contracting) and unstable (= expanding) subspaces of A, i.e.

SA = {w ∈ Rn : lim
n→∞

Anw = 0},

UA = {w ∈ Rn : lim
n→∞

A−nw = 0},

Rn = SA ⊕ UA.

If π : Rn 7−→ Tn is the quotient map, then

∆A = {π(SA ∩ (UA + m)) : m ∈ Zn},

and it is well-known and easy to see that ∆A is a dense subgroup of X.
Now suppose thatA,B are two commuting linear hyperbolic automorphisms

of X = Tn. We write

α : n = (n1, n2) 7→ αn = An1Bn2 (1.1)

for the Z2-action generated by A and B and conclude from Theorem 4.1 in
[4] that α has no nonzero homoclinic point, i.e. that x = 0 is the only point
in X with

lim
n→∞

αnx = 0.
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It may happen, however, that there exist nonzero points x ∈ X which are
homoclinic both for A and B. In fact, if the action α in (1.1) is irreducible
in the sense that X has no proper subtorus which is invariant both under
A and B, then we shall see that either ∆A ∩∆B = {0} or ∆A = ∆B; more
generally, if m,n ∈ Z2 are chosen so that αm and αn are hyperbolic, then
either ∆αm = ∆αn or ∆αm ∩ ∆αn = {0}, and both possibilities occur for
suitable choices of m and n. If the Z2-action α is not irreducible then we
can obviously not expect such a clear-cut dichotomy.

In order to make the above statements more precise we fix commuting
linear hyperbolic automorphisms A,B ∈ GL(n,Z) of Tn and assume that
the Z2-action α generated by A,B via (1.1) is irreducible. Then it is easy
to see that A and B are simultaneously diagonalisable over the algebraic
closure Q of the field Q of rational numbers; in particular there exists a
basis w1, . . . , wn of Qn consisting of common eigenvectors of A and B (cf.
Lemma 2.1). For every k = 1, . . . , n we define a homomorphism ηk from Z2

into the multiplicative group of positive real numbers by setting ηk(n) =
‖αn(wk)‖/‖wk‖ for every n ∈ Z2, where ‖ · ‖ denotes the Euclidean norm
on Cn (in other words, ηk(n) is the absolute value of the eigenvalue of αn

for the eigenvector wk). For k = 1, . . . , n we set

H ′k = {m ∈ Z2 : |ηk(m)| = 1}
and observe that H ′k is the intersection of Z2 with a hyperplane (cf. Remark
3.3) Hk ⊂ R2 and that

Eα = Z2 r
n⋃
k=1

H ′k = {m ∈ Z2 : αm is hyperbolic} (1.2)

is therefore nonempty. We shall prove the following result.

Theorem 1.1. Let A,B be commuting linear hyperbolic automorphisms of
a finite-dimensional torus X = Tn, and let α be the Z2-action generated by
A,B (cf. (1.1)). For every m = (m1,m2) ∈ Eα (cf. (1.2)) we denote by
∆αm the group of homoclinic points of αm. If m,n ∈ Eα, then

∆αm ∩∆αn =


∆αm if either m,n or m,−n are not separated

by any of the hyperplanes Hk, k = 1, . . . ,m,
{0} otherwise.

Theorem 1.1 is a special case of a more general result for whose statement
we need a few definitions. Let α : n 7→ αn be a Z2-action by continuous
automorphisms of an infinite compact, connected, abelian group X. The
action α is called ergodic if it is so with respect to the normalised Haar
measure λX of X, expansive if there exists an open neighbourhood N(0) of
the identity element 0 ∈ X with

⋂
n∈Z2 αn(N(0)) = {0}, and irreducible or

almost minimal if every closed, α-invariant subgroup Y ( X is finite. Every
expansive Z2-action by automorphisms of X is ergodic by Corollary 3.10 in
[6].

Theorem 1.2. Let α be an expansive, ergodic and irreducible Z2-action by
automorphisms of a compact, connected, abelian group X. Put

Eα = {m ∈ Z2 : αm is expansive}.
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Then the following is true.
(1) There exist finitely many hyperplanes H1, . . . ,Hm in R2 ⊃ Z2 such

that

Eα = Z2 r
m⋃
k=1

Hk = {m ∈ Z2 : αm is expansive}.

(2) For every m ∈ Z2, the group of homoclinic points ∆αm of αm is
dense in X if and only if m ∈ Eα, and ∆αm = {0} otherwise.

(3) If m,n ∈ Eα then

∆αm ∩∆αn =


∆αm if either m,n or m,−n are not separated

by any of the hyperplanes Hk, k = 1, . . . ,m,
{0} otherwise.

If we call two elements m,n ∈ Eα equivalent when they are not separated
by any of the hyperplanes Hk, then this relation partitions the set Eα into
finitely many cones, each one of which is called a Weyl chamber of α in
[2]–[3] (cf. also [1]). In this terminology Theorems 1.1–1.2 say that αm and
αn share their homoclinic points if and only if m,n or m,−n lie in the same
Weyl chamber of Eα; if not, then they have no nonzero common homoclinic
point.

Although Theorem 1.1 is a consequence of Theorem 1.2 we shall prove it
separately in Section 2 with a direct argument. The proof of Theorem 1.2
uses a little more algebraic machinery and will occupy Section 3.

2. The proof of Theorem 1.1

Let A,B ∈ GL(n,Z) be commuting linear hyperbolic automorphisms of
X = Tn such that the resulting Z2-action on X is irreducible. We denote
by K ⊂ C the smallest subfield containing all eigenvalues of A and B.

Lemma 2.1. The matrices A and B are simultaneously diagonalisable over
K, i.e. there exists a basis w1, . . . , wn of Kn consisting of common eigenvectors
of A and B (considered as acting linearly on Kn).

Proof. The assertion of the lemma is equivalent to the corresponding statement
for the transposes A> and B> of A and B. The matrix A> has an eigenvector
in Kn with eigenvalue a0, say, and the subspace W = {w ∈ Kn : Aw = a0w}
is invariant under B>. Since B> has an eigenvector in W there exists a
common eigenvector w ∈ Kn of A> and B> with eigenvalues a0, b0 ∈ K
under A> and B>, respectively.

We write Γ for the Galois group of the extension K : Q and let Γ act
diagonally on Km for every m ≥ 1. For every γ ∈ Γ, γ(w) is a common
eigenvector of A> and B> with eigenvalues (a, b) = (γ(a0), γ(b0)). Put, for
every (a, b) ∈ E = Γ(a0, b0) ⊂ K2,

V(a,b) = {w ∈ Kn : A>w = aw,B>w = bw} 6= {0} (2.1)

and set
V =

⊕
(a,b)∈E

V(a,b). (2.2)
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Then {0} 6= V ⊂ Kn, and the lemma is proved if we can show that

V = Kn. (2.3)

Suppose that V 6= Kn. We denote byR2 = Z[u1, u2] the ring of polynomials
with integral coefficients in the variables u1, u2, write p = {f ∈ R2 : f(a, b) =
0} for the ideal in R2 consisting of all polynomials vanishing at (a, b), and
set

p(A>, B>) = {f(A>, B>) : f ∈ p}.
Hilbert’s Nullstellensatz implies that

Vp = {(c1, c2) ∈ C2 : f(c1, c2) = 0 for every f ∈ p} = E

and hence that

{0} 6= V = {w ∈ Kn : Cw = 0 for every C ∈ p(A>, B>)} 6= Kn.

Hence

{0} 6= {w ∈ Qn : Cw = 0 for every C ∈ p(A>, B>)} 6= Qn,

and the annihilator of

M = {w ∈ Zn : Cw = 0 for every C ∈ p(A>, B>)}

in X = Ẑn is a proper subtorus of X which is invariant under A and B,
contrary to our assumption of irreducibility.

This contradiction proves both (2.3) and the lemma. �

Lemma 2.2. If an element 0 6= n ∈ Zn is expressed as

n =
∑

(a,b)∈E

w(a,b)

with w(a,b) ∈ V(a,b) for every (a, b) ∈ E (cf. (2.1)–(2.3)), then w(a,b) 6= 0 for
every (a, b) ∈ E.

Proof. Suppose that
∑

(a,b)∈E w(a,b) = n ∈ Zn with w(a′,b′) 6= 0 and w(a′′,b′′)

= 0 for two eigenvalue pairs (a′, b′), (a′′, b′′) ∈ E. We choose an element
γ ∈ Γ with γ(a′) = a′′, γ(b′) = b′′ and obtain that

0 =
∑

(a,b)∈E

w(a,b) − γ(w(a,b))

has a nonzero component in V(a′′,b′′), which is absurd. �

This argument is a special case of that in [5].

Lemma 2.3. For every homoclinic point x ∈ ∆A ⊂ Tn there exists a point
y ∈ (R ∩K)n with π(y) = x, where π : Rn 7−→ Tn is the quotient map.

Proof. Let a1, . . . , ar and ar+1, . . . , an be the expanding and contracting
eigenvalues of A, counted with multiplicity, and put As =

∏r
i=1(A − aiI),

Au =
∏n
i=r+1(A− aiI), where I is the n× n identity matrix. Then AsSA =

AuUA = {0}. Every x ∈ ∆A is of the form x = π(w) with {w} = SA∩ (UA+
m) for some m ∈ Zn. If we write a1, . . . an ∈ (R ∩ K)n and b1, . . . , bn ∈
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(R ∩ K)n for the row vectors of As and Au, respectively, then w is the
unique solution in Rn of the inhomogeneous system of linear equations

〈a1, w〉 = 0, . . . , 〈an, w〉 = 0,

〈b1, w −m〉 = 0, . . . , 〈bn, w −m〉 = 0,
(2.4)

where 〈·, ·〉 denotes the Euclidean inner product in Rn. As the coefficients
of the system (2.4) all lie in K, we conclude that the system (2.4) also has
a unique solution in Kn, i.e. that w ∈ (R ∩K)n. �

Proof of Theorem 1.1. We let A,B act linearly on Rn and write Rn = SA⊕
UA = SB ⊕ UB for the splittings of Rn into the stable (= contracting) and
unstable (= expanding) subspaces of A and B. If SA = SB and UA = UB
then it is clear that ∆A = ∆B. If SA = UB and UA = SB we can invert B
and again arrive at the conclusion that ∆A = ∆B.

In any other case (after replacing B by B−1 and interchanging A and B,
if necessary) we have

{0} 6= UA ∩ UB 6= UA, UA + UB 6= Rn. (2.5)

If a point x ∈ Tn is homoclinic for both A and B then there exist elements
p,q, r ∈ Zn and w ∈ Rn such that

{w} = SA ∩ (UA − p) = (SB − q) ∩ (UB − r). (2.6)

By Lemma 2.3, w ∈ (R∩K)n, so that we may replace the subspaces SA, SB,
UA, UB in (2.5)–(2.6) by the subspaces

S′A =
⊕

{(a,b)∈E:|a|<1}

V(a,b), U ′A =
⊕

{(a,b)∈E:|a|>1}

V(a,b),

S′B =
⊕

{(a,b)∈E:|b|<1}

V(a,b), U ′B =
⊕

{(a,b)∈E:|b|>1}

V(a,b).

Then (2.6) shows that q ∈ S′A+S′B and p−r ∈ U ′A+U ′B. However, according
to (2.5) there exist elements (a, b), (a′, b′), (a′′, b′′) ∈ E with V(a,b) ⊂ U ′A∩U ′B,
V(a′,b′) ∩ U ′A = V(a′,b′) ∩ U ′B = {0}, V(a′′,b′′) ∩ U ′B = {0}, V(a′′,b′′) ⊂ U ′A and
hence with V(a,b) ∩ (S′A + S′B) = {0} and V(a′,b′) ∩ (U ′A + U ′B) = {0}, so that
q = p−r = 0 by Lemma 2.2. Then w ∈ S′A∩S′B, w+p ∈ U ′A∩U ′B, and hence
p ∈ (S′A ∩S′B) + (U ′A ∩U ′B). Since V(a′′,b′′) ∩ ((S′A ∩S′B) + (U ′A ∩U ′B)) = {0},
this is an expression of p as a sum of common eigenvectors of A,B with zero
component in V(a′′,b′′). Lemma 2.2 yields that p = 0, so that w ∈ S′A∩U ′A =
{0}. �

3. The proof of Theorem 1.2

Let Q× = Qr{0}, c = (c1, c2) ∈ (Q×)2, and let K = Q(c) be the algebraic
number field generated by c1, c2. We write PK, PK

f and PK
∞ for the sets of

places (= equivalence classes of valuations), finite places and infinite places
of K, choose for each v ∈ PK a valuation | · |v in v, and denote by Kv the
completion of K with respect to the valuation | · |v.

Proceeding as in Section 7 in [7] we set

P (c) = PK
∞ ∪ {v ∈ PK

f : |ci|v 6= 1 for some i = 1, 2}



6 ANTHONY MANNING AND KLAUS SCHMIDT

and put
Rc = {a ∈ K : |a|v ≤ 1 for every v ∈ PK r P (c)},

Zc =
∏

v∈P (c)

Kv, Yc = Zc/iP (c)(Rc), (3.1)

where iP (c) : Rc 7−→ Zc is the diagonal embedding a 7→ (av, v ∈ P (c)) ∈ Zc
with av = a for every v ∈ P (c). Then iP (c)(Rc) is a discrete and co-compact
subgroup of the locally compact abelian group Zc and Yc is (isomorphic to)
the Pontryagin dual R̂c of Rc.

We define a Z2-action α̂ on Rc by setting

α̂n(a) = cna

for every a ∈ Rc and n = (n1, n2) ∈ Z2, where cn = cn1
1 cn2

2 . The Z2-action
αc on Yc ∼= R̂c dual to α̂ is given by

αn
c ((av, v ∈ P (c)) + iP (c)(Rc)) = (cnav, v ∈ P (c)) + iP (c)(Rc) (3.2)

for every n ∈ Z2 and (av, v ∈ P (c)) + iP (c)(Rc) ∈ Yc. As an application of
Theorem 29.2 and Corollary 7.4 in [7] we obtain the following lemma.

Lemma 3.1. Let β be an irreducible Z2-action by automorphisms of a
compact, connected, abelian group X. Then there exist a point c = (c1, c2) ∈
(Q×)2 and continuous, surjective, finite-to-one group homomorphisms φ : Yc
7−→ X, ψ : X 7−→ Yc such that φ · αn

c = βn · φ and ψ · βn = αn
c · φ for every

n ∈ Z2.

Proof. The only assertion which goes beyond the statements of Theorem 29.2
and Corollary 7.4 in [7] is the existence of the homomorphism ψ : X 7−→ Yc
with the required properties. The homomorphism φ : Yc 7−→ X allows us
to regard X̂ as a β̂-invariant subgroup of finite index in Rc. Choose an
integer L ≥ 1 with LRc ⊂ X̂ ⊂ Rc, denote by ψ : X 7−→ Yc the surjective
homomorphism dual to the inclusion Rc ∼= LRc ⊂ X̂, and note that ψ is
finite-to-one. �

Lemma 3.2. Let β be an irreducible Z2-action by automorphisms of a
compact, connected, abelian group X, and let αc be the Z2-action defined
in Lemma 3.1. The following conditions are equivalent.

(1) β is expansive;
(2) αc is expansive;
(3) The orbit of c under the diagonal action on K2 of the Galois group Γ

of K : Q does not contain any point c′ = (c′1, c
′
2) with |c′1| = |c′2| = 1.

Proof. This is Proposition 7.2 (5) in [7]. �

Proof of Theorem 1.2. Let β be an expansive and irreducible Z2-action on
a compact, connected abelian group X. Since the homomorphisms φ, ψ in
Lemma 3.1 are finite-to-one, they are injective on the groups ∆αn

c
and ∆βn

of homoclinic points for every n ∈ Z2 for which βn or, equivalently, αn
c , is

expansive. It follows that Theorem 1.2 holds for an expansive Z2-action β if
and only if it holds for a corresponding action αc. This observation allows us
to assume without loss of generality that the Z2-action α in the statement
of the theorem is of the form α = αc for some c = (c1, , c2) ∈ (Q×)2.
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Equation (3.2) shows that an automorphism αn = αn
c is expansive on

X = Yc if and only if |cn|v 6= 1 for every v ∈ P (c). We write η : Zc 7−→ Yc
for the quotient map and denote by

Sn = {(av, v ∈ P (c)) ∈ Zc : av = 0 for every v ∈ P (c) with |cn|v > 1},
Un = {(av, v ∈ P (c)) ∈ Zc : av = 0 for every v ∈ P (c) with |cn|v < 1}

the stable and unstable subspaces of αn in Zc. An element x ∈ X lies in
∆αn if and only if it is of the form x = η(w) for some w ∈ Sn ∩ (Un + a) for
some a ∈ iP (c)(Rc).

We complete the proof in the same way as that of Theorem 1.1. For
every v ∈ P (c), the map n 7→ |cn|v is a homomorphism from Z2 into
the multiplicative group of positive real numbers, and we set H ′v = {n ∈
Z2 : |cn|v = 1}. If αc is expansive, Lemma 3.2 shows that each of these
homomorphisms is nontrivial, so that H ′v is the intersection with Z2 of a
hyperplane Hv ⊂ R2. It follows that the set

E = Z2 r
⋃

v∈P (c)

H ′v = {n ∈ Z2 : αn
c is expansive}

is nonempty.
If m,n ∈ Z2 satisfy that either m and n or m and −n lie on the same

side of Hv for every v ∈ P (c), then the homoclinic points of αm and αn

coincide. If m and n do not satisfy this condition then we can interchange
m and n and replace n by −n, if necessary, and assume that Sm +Sn 6= Zc,
Sm + Un 6= Zc and Um + Un 6= Zc. If a point x ∈ Yc is homoclinic both for
αm and αn then there exist elements w ∈ Zc and a,b, c ∈ iP (c)(Rc) with
η(w) = x and

{w} = Sm ∩ (Um − a) = (Sn − b) ∩ (Un − c)

and, exactly as in the proof of Theorem 1.1, we obtain that a = b = c =
w = 0. �

Remark 3.3. The group Yc in (3.1) is a finite-dimensional solenoid; in fact,
Yc is a finite-dimensional torus if and only if each ci is an algebraic unit
(cf. [6] and [7]). In the latter case Theorem 1.2 reduces to Theorem 1.1,
and it may be useful to compare the two proofs in this case. Since each ci
is an algebraic unit, P (c) = PK

∞ and Rc is the ring of algebraic integers in
K = Q(c). Rewriting the covering space Rn in the proof of Theorem 1.1 as
Zc =

∏
v∈P (c) Kv amounts to a change of basis. In this new basis Lemma

2.3 is obvious, since every homoclinic point x ∈ Yc is the image under η of
a point w = (av, v ∈ P∞(c)) ∈ Zc with

av =

{
a if |cn|v < 1,
0 otherwise

for some a ∈ Rc. Lemma 2.2 is equally obvious, since every element of
iP (c)(Rc) has a nonzero component in each Kv, v ∈ P (c).

The proof of Theorem 1.2 in this section yields an explicit description
of the walls Hv, v ∈ P (c), of the Weyl chambers of the Z2-action α: they
are the kernels of the homomorphism (t1, t2) 7→ |c1|t1v |c2|t2v from R2 to the
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multiplicative group of positive real numbers, corresponding to the places
v ∈ P (c). We illustrate this with some examples.

Examples 3.4. (1) Let A,B be commuting expansive automorphisms of the
n-torus Tn for which the Z2-action α in (1.1) is irreducible. By comparing
the proofs of the Theorems 1.1 and 1.2 we see that α is a finite-to-one factor
of a Z2-action αc for some c = (c1, c2), where c1 and c2 are eigenvalues
of A and B, respectively. We set K = Q(c), write E for the orbit of c
under the diagonal action of the Galois group, and note that each (a, b) ∈ E
corresponds to a place v ∈ PK

∞ with |cm1
1 cm2

2 |v = |am1bm2 | for every m =
(m1,m2) ∈ Z2. The hyperplanes Hv, v ∈ P (c) = P∞(c) are the kernels of
the homomorphisms (t1, t2) 7→ |a|t1 |b|t2 from R2 to the multiplicative group
of positive real numbers, with (a, b) ∈ E. Since these hyperplanes are lines
with irrational slopes their intersection with Z2 is equal to {0}, so that αn is
expansive whenever 0 6= n ∈ Z2. The automorphisms αm, αn corresponding
to two elements m,n ∈ Z2 have the same homoclinic points if and only if
one of the line segments tm ± (1 − t)n, 0 ≤ t ≤ 1, does not intersect any
Hv, v ∈ P (c).

(2) Let c = (2, 3). Then K = Q, P (c) = {∞, 2, 3} (where we are
identifying the finite places of Q with the rational primes), Zc = R×Q2×Q3

(where Qp denotes the p-adic integers), Rc = Z[16 ], and Yc = Zc/iP (c)(Rc) is
the 6-adic solenoid. The hyperplanes Hv, v ∈ P (c), are given by

H∞ = {(t1, t2) ∈ R2 : 2t13t2 = 1},
H2 = {(t1, t2) ∈ R2 : t1 = 0},
H3 = {(t1, t2) ∈ R2 : t2 = 0},

and the set of expansive elements of the action αc is given by

E = {n = (n1, n2) ∈ Z2 : n1n2 6= 0}.

In particular, any two elements m,n in the strictly positive quadrant of Z2

lead to automorphisms αm, αn with the same homoclinic points, whereas
the only homoclinic point common to α(1,1) and α(1,−1) is 0.
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