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ABSTRACT. Let T be a measure-preserving and mixing action of a count-
able abelian group G on a probability space (X,8,u) and A a locally
compact second countable abelian group. A cocycle ¢: G x X —— A
for T disperses if limg—.o ¢(g, ) — a(g) = oo in measure for every map
a: G — A. We prove that such a cocycle ¢ does not disperse if and only
if there exists a compact subgroup Ao C A such that the composition
foc: Gx X — AJ/Ap of ¢ with the quotient map 6: A — A/A is
trivial (i.e. cohomologous to a homomorphism 7n: G — A/Ap).

This result extends a number of earlier characterizations of cobound-
aries and trivial cocycles by tightness conditions on the distributions of
the maps {c(g, ) : g € G} and has implications for flows under functions:
let T' be a measure-preserving and ergodic automorphism of a probab-
ility space (X,8,p), f: X — R a positive Borel map with [ fdu =1,
and let TF be the flow under the function f with base T. Our main
result implies that, if 7" is mixing and 77 is weakly mixing, or if T is
ergodic and T4 is mixing, then the cocycle f: Z x X — R defined by
f disperses. The latter statement answers a question raised by Mariusz
Lemanczyk in [7].

1. DISPERSION OF COCYCLES

Definition 1.1. Let T': g — Ty be a measure-preserving action of a count-
able additive abelian group G on a standard probability space (X, 8, i), and
let A be a locally compact second countable additive abelian group with
identity element 0. A Borel map ¢: G x X — A is a cocycle for T if

c(g, Thz) + c(h,x) = c(g + h, x)

for every g,h € G and x € X. Two cocycles ¢, : G x X — A are cohomo-
logous if there exists a Borel map b: X — A such that

c(g,x) = (g,2) + b(Tyz) — b(x) (1.1)
for every ¢ € G and p-a.e. x € X. The map b in (1.1) is called a trans-
fer function. If ¢ is cohomologous to the zero cocycle ¢ = 0 then c is a
coboundary with transfer (or cobounding) function b.

Let ¢: G x X — A be a cocycle. The cocycle c¢ is a homomorphism if

the map ¢(g,-): X — A is constant for every g € G, and c is trivial if it is
cohomologous to a homomorphism.
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The cocycle ¢ is bounded (in measure) on a subset H C G if there exists,
for every € > 0, a compact subset C' C A with

p{x:c(g,x) €eCH) >1—¢ (1.2)

for every g € H.
The cocycle c is translation-bounded on a subset H C G if there exist, for
every ¢ > 0, amap a: H — A and a compact subset C C A with

p{z:c(g,z) —alg) €C}) > 1—¢ (1.3)
for every g € H.
If H= G in (1.2) or (1.3) then c is said to be bounded or translation-
bounded, respectively.
Finally, the cocycle ¢ disperses if limg_. c(g,-) — a(g) = oo in measure
for every map a: G — A or, equivalently, if

lim sup u({zx € X : ¢(g9,2) —a € C}) =0 (1.4)
g—oo acA

for every compact set C' C A.

It has long been known that a cocycle ¢: G x X — R is a coboundary
if and only if it is bounded in the sense of Definition 1.1 (cf. [9, Theorem
11.8]). More generally, if A is a locally compact second countable abelian
group and ¢: G x X — A a bounded cocycle, then ¢ is cohomologous to a
cocycle taking values in a compact subgroup Ay C A (for extensions of this
result with varying degrees of generality see [8, Theorem 5.2], [10, Theorem
4.7] and [1]). Furthermore, if A = R, then ¢ is trivial if and only if it is
translation-bounded (cf. [8, Theorem 6.2]).

More recently it was shown that, if 7" is mixing, then boundedness (or
translation-boundedness) of a cocycle ¢: G x X — R on an infinite subset
H C G also implies triviality. The first published result in this direction
is [1, Theorem 2], where it is proved that, for a mixing action of G = Z,
translation-boundedness of a cocycle ¢: Z x X — R on some infinite subset
H C G implies triviality of ¢, and boundedness of ¢ on H implies that ¢ is
a coboundary. These results can break down for Z-actions which are only
mildly mixing (cf. [1]).

In this note we prove the following extension of [1, Theorem 2].

Theorem 1.2. Let T be a measure-preserving and mizing action of a count-
able abelian group G on a standard probability space (X,8,u), A a locally
compact second countable abelian group and c: G x X —— A a cocycle for
T. The following conditions are equivalent.

(1) The cocycle ¢ does not disperse (cf. (1.4));

(2) There exists a compact subgroup Ag C A such that the composition
Ooc: Gx X — A/Ay of ¢ with the quotient map 0: A — AJAy is
a trivial cocycle.

For the proof of Theorem 1.2 we need a little bit of notation. Let T" be a
continuous action of a countable abelian group G on a compact metrizable

space X and p be a T-invariant Borel probability measure on X. We denote
by A = {(z,z) : x € X} the diagonal in X x X and define the ‘diagonal’
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probability measure ua on X x X by setting

pa({(@,x) € BY) = u(B)
for every Borel set B C X. For every g € G, the ‘off-diagonal’ probability
measure
vy = (T, x Tdx).(a) (15)
is the self-joining of 1 supported on the graph {(Tyz,z) : x € X} of Ty,
Theorem 1.2 is an easy consequence of the following proposition.

Proposition 1.3. Let T be a continuous action of a countable abelian group
G on a compact metrizable space X, p o T-invariant and weakly mizing Borel
probability measure on X, A a locally compact second countable abelian group
and ¢c: G x X — A a cocycle for T. Suppose that there exists a sequence
(hpn, n > 1) in G with the following properties.

(1) limy, oo v, = p X p in the topology of weak convergence;

(2) There exist an € > 0, a compact set C C A and elements o, €

A, n>1, with

w{x € X :e(hp,z) —a, € C}) > ¢ (1.6)
for everyn > 1.

Then there exists a compact subgroup Ay C A such that the composition
Ooc: Gx X — A/Ao of c with the quotient map 6: A — A/Aq is trivial.

For the proof of Proposition 1.3 we require an elementary lemma closely
related to [10, Lemma 4.4].

Lemma 1.4. Let T be a measure-preserving and ergodic action of a count-

able abelian group G on a standard probability space (X,8,u), A a locally

compact second countable abelian group and c: G x X — A a cocycle for

T. We define the skew-product action T9) of G on' Y = X x A by setting
TéC) (.7}, a) - (Tng C(g, .’IJ) + CL)

for every g € G and (z,a) €Y.

If there exists a T\ -invariant probability measure p on'Y with T (p) = 1
(where m:' Y — X is the first coordinate projection), then c is cohomologous
to a cocycle ¢ taking values in some compact subgroup Ag C A.

Conversely, if ¢ is cohomologous — with transfer function b — to a cocycle
d:Gx X — Ay, where Ay C A is a compact subgroup with normalized
Haar measure \a,, then the probability measure p on'Y, defined by

[ rao= [[ @.a b)) drsg(a) dute)
for every bounded Borel map f:Y — R, is T -invariant and «(p) = p.

Proof. Choose a Borel measurable family of probability measures {p, : x €

X} on A such that
[ rao= [[ 1.0 dp0) dote

for every bounded Borel map f: Y — A. Since p is T(9-invariant,

PT,z(B +c(g, ) = pz(B) for p-a.e.x € X,
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for every Borel set B C A and every g € G. We fix a nonnegative continuous
map ¢: A — R with compact support such that ¢(0) > 0. For every z € X,
the map a — [ ¢(a + s)dpz(s) = ¥(z,a) from A to R is continuous, not
everywhere equal to zero, and vanishes at infinity. Furthermore, the resulting
Borel map ¢¥: X x A — R is T()-invariant, and for some £ > 0 the Borel
set
K ={(z,0) € Y : Y(z,a) > e}
is nonempty and again T(©)-invariant. For every z € X, the set
K,={a€ A:(x,a) € K}

and the subgroup
Ar={a€A:a+ K, =K,}

are both compact, and the ergodicity of T" and the T(9-invariance of K
imply that there exists a compact subgroup A9 C A with A, = Ag for
p-a.e. x € X. By using one of the standard selection theorems (cf. e.g.
Kunugui’s theorem in [5]-[6]) we can choose a Borel map b: X — A with
b(z) € K, for p-a.e. z € X and obtain that c(g,z) + b(x) — b(Tyx) € Ag for
every g € G and p-a.e. x € X.

The final statement of the lemma is obvious. O

Proof of Proposition 1.3. Let T:g — Ty x T,y denote the diagonal action of
Gon X =X x X, and let ¢: G x X — A be the cocycle
(g, (x1,22)) = c(g, 1) — c(g, x2)

for T. The cocycle equation (2.1) yields that

(9, Th,x) — c(g,x) = c(hn, Tyx) — c(hn, z) (1.7)
for every ¢ € G and n > 1. For every n > 1 we define b,: X — A by
bn(x1,x2) = c(hp,x2) — oy, and conclude from (1.7) that

&(g, (x1,22)) = by 0 Ty(x1,22) — by (w1, 22)

for every g € G and (v1,72) € (Th, x Idx)(A), i.e. that ¢ is a coboundary
with cobounding function b,, with respect to the T-invariant measure v, =
vp, . We denote by p,, the probability measure on ¥ = X x A with

on({(Th 2,2, ba (Th, 2,2)) : 3 € BY) = pu(B)
for every Borel set B C X and observe as in Lemma 1.4 that p, is the

unique T(-invariant probability measure supported on the graph of b,, with
7w (pn) = Vn, where m: X x A — X is the projection map. If

A, ={x € X :b,(x) € C},
where C' C A is the compact set appearing in (1.6), then
pn(X x O) = yn(T}L’lAn X Ap) = p(Ap) > ¢ (1.8)

for every n > 1.

By going over to a subsequence of (h,), if necessary, we may take it
that the sequence of probability measures (p,) converges vaguely to a finite
measure p on Y, ie. that lim, .o [ fdp, = [ fdp for every continuous
function f:Y — A with compact support. According to (1.8),

p(X x C) > limsup p,(X x C) > ¢,

n—oo
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which implies that p is nonzero. We set v = m,(p) and claim that

v(B) < (px p)(B) (1.9)
for every Borel set B C X.

Indeed, let f: X — A be a continuous function, & C A an open neigh-
bourhood of the identity with compact closure, (D,,, m > 1) a sequence
of compact subsets of A with D,,41 D D,, + U for every m > 1 and
Ups1 Pm = A, and let, for every m > 1, ¢,,: A — A be a continuous
map with qu( )—1f0ra€D and ¢p,(a) =0 for a ¢ (D, +U). We set
fm(x1,22,0) = f(x1,22)Pm(a) and observe that

/fmdp— lim /fmdpné lim /fdz/n/fdp,xM

By letting m — oo we obtain that

/de:TSnl;Ii/fmdP</fdMXH

As f was arbitrary, this proves (1.9).
Since each of the probability measures p, is invariant under the skew-
product action

nga(w‘l:x% a) = (Tgxla Tgx27 E(gv (.’El, 1'2)) + a)

of G onY, the same' is true for p, and hence the measure v on X is invariant

under 7. From (1.9) and the ergodicity of u x p it is clear that v=1

(X )
is a T-invariant probability measure on X which is absolutely continuous
with respect to — and hence equal to — p x u, and that the probability
measure p = ﬁ p= ( P on Y is invariant under T(® and satisfies that
T(p') = p X p.

By Lemma 1.4 there exists a compact subgroup Ag C A such that 6o ¢ is
a coboundary, where §: A — A’ = A/A( is the quotient map.

In order to simplify notation a little we set & =foc: G x X — A’ and
d=0oc: Gx X — A'. In the notation of [8, (6.1) and Theorem 6.2 (4)]
we have proved that j.(¢/) = 0, i.e. that ¢ € T'3(A’) in the notation of [8,
(7.5)]. As p is weakly mixing, the triple diagonal action 7' x T' x T of G on
(X x X x X, px pxp)is ergodic, and [8, Corollary 7.2] shows that I'a(A") =
Tp(A’) in the notation of [8, (7.3)—(7.5)]. Hence ¢’ is a homomorphism in the
terminology of [8] or trivial in our terminology. O

Proof of Theorem 1.2. We assume without loss in generality that X is a
compact metric space and that the G-action T on X is continuous (cf. [11]).

If (1.4) is violated, then there exist an € > 0, a compact set C' C A, an
infinite subset H C G, and elements oy, € A, h € H, with

pu{zr e X :e(h,x) —ap e C}) > ¢

for every h € H. We can thus choose a sequence (hy,) in H with lim,, o by, =
oo which satisfies the conditions of Proposition 1.3. Hence there exists a

"n order to see this, consider the ring R of all Borel sets B C Y with the property that
Tg(a)(B) has compact closure and boundary measure p(a(Tf)B)) =0 for every g € G. By
assumption, p(B) = limy, 0 pn(B) = lim, .c0 pn (T B) = p(TS? B) for every g € G and
B € R. Since R generates the Borel field of Y this proves that p is 7 -invariant.
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compact subgroup Ay C A such that the composition foc: Gx X — A/Ap
of ¢ with the quotient map : A — A/A( is trivial. This proves that (1) =
(2), and the reverse implication (2) = (1) is obvious. O

2. MIXING FLOWS UNDER FUNCTIONS

In order to apply Theorem 1.2 (or, more precisely, Proposition 1.3) to
mixing properties of flows under functions we let 7" be a measure-preserving
automorphism of a standard probability space (X,8,u) and f: X — R a
Borel map with [ fdu =1 and f(z) > 0 for every € X. For every n € Z
and z € X we set

ST f(TF) if n>0,
f(n,z) =<0 if n =0, (2.1)
—f(—n,T"z) if n <O0.

The resulting map f: Z x X — R is a cocycle for T' (or for the Z-action
n — T™ on (X,8,1)). We define an equivalence relation Rf on X x R by
saying that
(SL’, t) ~ (Tnxa l— f(na $))

for every (z,t) € X x T and n € Z. The ‘vertical’ flow S;: (z,t') — (z,t +
t'), (z,t') € X x R, ¢t € R, preserves this equivalence relation and thus
induces a flow t — Stf on the space (X x R)ps of equivalence classes of the
relation RY. The set

X' ={(z,t):2€ X,0<t < f(x)},

intersects each equivalence class of R in exactly one point and may thus be
identified with (X x R)ps. We denote by 8/ the Borel field of X/ C X x R,
write A for the Lebesgue measure on R, uf for the restriction to X/ ¢ X xR
of the product measure px \, and T7 for the measure-preserving flow induced
by S/ on the probability space (X7, 8/, u/). This flow is usually called the
flow under the function f with base T

Several authors have studied conditions on f for a given ergodic base T
which determine whether the flow 7"/ is mixing (cf. e.g. [3], [4], [2], [7] and the
references listed there). In [7] the author proves the following result under
the additional hypothesis that 7" is an irrational rotation on X = R/Z, and
asks whether Corollary 2.1 (under hypothesis (2)) holds for more general
classes of ergodic automorphisms ([7, Remarque 2]).

Corollary 2.1. Let T be a measure-preserving automorphism of a standard
probability space (X,8,p), f: X — R a Borel map with [ fdu =1 and
f(z) >0 for every x € X, and let TS be the flow under f with base T on the
probability space (Xf, 8/, uf). Suppose that either of the following conditions
is satisfied.

(1) T is mizing and T' is weakly mizing;

(2) TS is mizing.
Then the cocycle £: Z x X — R in (2.1) disperses in the sense of (1.4).

Proof. If T is mixing, then Theorem 1.2 with G = Z and A = R shows that
the cocycle f either disperses or is trivial, in which case the flow 77 is not
weakly mixing.
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In order to prove dispersion of f under the hypothesis (2) we may replace
f by a cohomologous function f’ = f +boT — b such that b: X — R is
measurable and f’ is bounded above and below by positive constants; this
will affect neither the hypotheses nor the conclusions of the corollary. We
assume therefore without loss of generality that there exist positive constants
¢1 < cg such that ¢; < f(x) < ¢y for every x € X.
Define a map F: X/ — R by
1
F(x,s) = —
9= 7
for every x € X and s € [0, f(z)) and consider the cocycle ¢: R x X/ — R
given by
[TR(T!z)ds if t >0,
c(t,z) =<0 if t=0, (2.2)
—o(—t,T/z) if t <0.
For every positive t we denote by d(t, z) the number of intersections of the
set {(2,0): x € X} C X/ with the trajectory {T4z:0 < s < t}. Then

le(t, z) —d(t,z)| <2 and |t —£(d(¢, (z,s)),z)] < 2c (2.3)
for every t > 0 and z = (z,s) € X7, and

/ clt,z)dpl () =t (2.4)
for every t € R.
Suppose that (1.4) is not satisfied, i.e. that there exist an ¢ > 0, a constant
L > 0, an increasing sequence (m,,) of positive integers, and a sequence (i)
in R with
pu{x € X o |f(my,z) —t,| < L}) > e (2.5)
for every n > 1. According to (2.3) and (2.5),

! ({(z,s) € XI 2 [f(d(tn, (z,5)),2) — £(mn, )| < L+ 2c¢}) > cie,
and hence
uf({z e X |d(tn, 2) —my| < L%”}) > (1€,
and the first inequality in (2.3) implies that
,uf({zeXf He(tn, 2) —my| < L%‘EQ—FZ}) > cl€ (2.6)

for every n > 1. Since p is mixing and lim,, oo t, = 00 by (2.5), lim,, o0 14,
= u! x pf, where vy, is the off-diagonal measure (1.5) with x and g replaced
by uf and t,.

We choose a countable dense subgroup G C R which contains the sequence
(tn). Since G is dense in R and puf x pf is ergodic under the diagonal R-
action T7 x T on X7/ x X7, the measure pu/ x uf is also ergodic under the
restriction of T x T to G, which implies that puf is weakly mixing under
the restriction of T/ to G. According to (2.6) and Proposition 1.3 there exist
a homomorphism n: G — R and a Borel map b: Xf — R such that

c(t, z) = n(t) + b(T 2) — b(z) (2.7)
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for every t € G and pf-a.e. z € Xf. From (2.4) we know that n(t) = t
for every t € G, and the continuity of the map ¢ — ¢(¢,-) from R into
LY(X/,87, u/) in (2.2) guarantees that (2.7) holds for every ¢ € R.

We re-trace our steps and conclude from (2.7) and (2.3) that the cocycle
f': Z x X — R, defined by

f'(n,") =f(n,") —n, n €7,

is bounded in p-measure. By [9, Theorem 11.8], [8, Theorem 5.2] or [10,
Theorem 4.7] there exists a Borel map b: X — R with f(z) =14+ b(Tz) —
b(x) for p-a.e. x € X, which implies that 77 is not even weakly mixing. This
contradiction resulting from (2.5) proves the corollary. O
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