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Abstract. Let T be a measure-preserving and mixing action of a count-
able abelian group G on a probability space (X, S, µ) and A a locally
compact second countable abelian group. A cocycle c : G × X 7−→ A
for T disperses if limg→∞ c(g, ·) − α(g) = ∞ in measure for every map
α : G −→ A. We prove that such a cocycle c does not disperse if and only
if there exists a compact subgroup A0 ⊂ A such that the composition
θ ◦ c : G × X −→ A/A0 of c with the quotient map θ : A −→ A/A0 is
trivial (i.e. cohomologous to a homomorphism η : G −→ A/A0).

This result extends a number of earlier characterizations of cobound-
aries and trivial cocycles by tightness conditions on the distributions of
the maps {c(g, ·) : g ∈ G} and has implications for flows under functions:
let T be a measure-preserving and ergodic automorphism of a probab-
ility space (X, S, µ), f : X −→ R a positive Borel map with

R
f dµ = 1,

and let T f be the flow under the function f with base T . Our main
result implies that, if T is mixing and T f is weakly mixing, or if T is
ergodic and T f is mixing, then the cocycle f : Z ×X −→ R defined by
f disperses. The latter statement answers a question raised by Mariusz
Lemańczyk in [7].

1. Dispersion of cocycles

Definition 1.1. Let T : g 7→ Tg be a measure-preserving action of a count-
able additive abelian group G on a standard probability space (X, S, µ), and
let A be a locally compact second countable additive abelian group with
identity element 0. A Borel map c : G×X −→ A is a cocycle for T if

c(g, Thx) + c(h, x) = c(g + h, x)

for every g, h ∈ G and x ∈ X. Two cocycles c, c′ : G×X −→ A are cohomo-
logous if there exists a Borel map b : X −→ A such that

c(g, x) = c′(g, x) + b(Tgx)− b(x) (1.1)

for every g ∈ G and µ-a.e. x ∈ X. The map b in (1.1) is called a trans-
fer function. If c is cohomologous to the zero cocycle c′ ≡ 0 then c is a
coboundary with transfer (or cobounding) function b.

Let c : G × X −→ A be a cocycle. The cocycle c is a homomorphism if
the map c(g, ·) : X −→ A is constant for every g ∈ G, and c is trivial if it is
cohomologous to a homomorphism.
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The cocycle c is bounded (in measure) on a subset H ⊂ G if there exists,
for every ε > 0, a compact subset C ⊂ A with

µ({x : c(g, x) ∈ C}) > 1− ε (1.2)

for every g ∈ H.
The cocycle c is translation-bounded on a subset H ⊂ G if there exist, for

every ε > 0, a map α : H −→ A and a compact subset C ⊂ A with

µ({x : c(g, x)− α(g) ∈ C}) > 1− ε (1.3)

for every g ∈ H.
If H = G in (1.2) or (1.3) then c is said to be bounded or translation-

bounded, respectively.
Finally, the cocycle c disperses if limg→∞ c(g, ·) − α(g) = ∞ in measure

for every map α : G −→ A or, equivalently, if

lim
g→∞

sup
a∈A

µ({x ∈ X : c(g, x)− a ∈ C}) = 0 (1.4)

for every compact set C ⊂ A.

It has long been known that a cocycle c : G ×X −→ R is a coboundary
if and only if it is bounded in the sense of Definition 1.1 (cf. [9, Theorem
11.8]). More generally, if A is a locally compact second countable abelian
group and c : G×X −→ A a bounded cocycle, then c is cohomologous to a
cocycle taking values in a compact subgroup A0 ⊂ A (for extensions of this
result with varying degrees of generality see [8, Theorem 5.2], [10, Theorem
4.7] and [1]). Furthermore, if A = R, then c is trivial if and only if it is
translation-bounded (cf. [8, Theorem 6.2]).

More recently it was shown that, if T is mixing, then boundedness (or
translation-boundedness) of a cocycle c : G×X −→ R on an infinite subset
H ⊂ G also implies triviality. The first published result in this direction
is [1, Theorem 2], where it is proved that, for a mixing action of G = Z,
translation-boundedness of a cocycle c : Z×X −→ R on some infinite subset
H ⊂ G implies triviality of c, and boundedness of c on H implies that c is
a coboundary. These results can break down for Z-actions which are only
mildly mixing (cf. [1]).

In this note we prove the following extension of [1, Theorem 2].

Theorem 1.2. Let T be a measure-preserving and mixing action of a count-
able abelian group G on a standard probability space (X, S, µ), A a locally
compact second countable abelian group and c : G × X 7−→ A a cocycle for
T . The following conditions are equivalent.

(1) The cocycle c does not disperse (cf. (1.4));
(2) There exists a compact subgroup A0 ⊂ A such that the composition

θ ◦ c : G×X −→ A/A0 of c with the quotient map θ : A −→ A/A0 is
a trivial cocycle.

For the proof of Theorem 1.2 we need a little bit of notation. Let T be a
continuous action of a countable abelian group G on a compact metrizable
space X and µ be a T -invariant Borel probability measure on X. We denote
by ∆ = {(x, x) : x ∈ X} the diagonal in X × X and define the ‘diagonal’



DISPERSING COCYCLES AND MIXING FLOWS UNDER FUNCTIONS 3

probability measure µ∆ on X ×X by setting

µ∆({(x, x) : x ∈ B}) = µ(B)

for every Borel set B ⊂ X. For every g ∈ G, the ‘off-diagonal’ probability
measure

νg = (Tg × IdX)∗(µ∆) (1.5)
is the self-joining of µ supported on the graph {(Tgx, x) : x ∈ X} of Tg.

Theorem 1.2 is an easy consequence of the following proposition.

Proposition 1.3. Let T be a continuous action of a countable abelian group
G on a compact metrizable space X, µ a T -invariant and weakly mixing Borel
probability measure on X, A a locally compact second countable abelian group
and c : G × X −→ A a cocycle for T . Suppose that there exists a sequence
(hn, n ≥ 1) in G with the following properties.

(1) limn→∞ νhn = µ× µ in the topology of weak convergence;
(2) There exist an ε > 0, a compact set C ⊂ A and elements αn ∈

A, n ≥ 1, with

µ({x ∈ X : c(hn, x)− αn ∈ C}) ≥ ε (1.6)

for every n ≥ 1.
Then there exists a compact subgroup A0 ⊂ A such that the composition
θ ◦ c : G×X −→ A/A0 of c with the quotient map θ : A −→ A/A0 is trivial.

For the proof of Proposition 1.3 we require an elementary lemma closely
related to [10, Lemma 4.4].

Lemma 1.4. Let T be a measure-preserving and ergodic action of a count-
able abelian group G on a standard probability space (X, S, µ), A a locally
compact second countable abelian group and c : G × X −→ A a cocycle for
T . We define the skew-product action T (c) of G on Y = X ×A by setting

T (c)
g (x, a) = (Tgx, c(g, x) + a)

for every g ∈ G and (x, a) ∈ Y .
If there exists a T (c)-invariant probability measure ρ on Y with π∗(ρ) = µ

(where π : Y −→ X is the first coordinate projection), then c is cohomologous
to a cocycle c′ taking values in some compact subgroup A0 ⊂ A.

Conversely, if c is cohomologous — with transfer function b — to a cocycle
c′ : G × X −→ A0, where A0 ⊂ A is a compact subgroup with normalized
Haar measure λA0, then the probability measure ρ on Y , defined by∫

f dρ =
∫∫

f(x, a+ b(x)) dλA0(a) dµ(x)

for every bounded Borel map f : Y −→ R, is T (c)-invariant and π∗(ρ) = µ.

Proof. Choose a Borel measurable family of probability measures {ρx : x ∈
X} on A such that ∫

f dρ =
∫∫

f(x, t) dρx(t) dρ(x)

for every bounded Borel map f : Y −→ A. Since ρ is T (c)-invariant,

ρTgx(B + c(g, x)) = ρx(B) for µ-a.e. x ∈ X,
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for every Borel set B ⊂ A and every g ∈ G. We fix a nonnegative continuous
map φ : A −→ R with compact support such that φ(0) > 0. For every x ∈ X,
the map a 7→

∫
φ(a + s) dρx(s) = ψ(x, a) from A to R is continuous, not

everywhere equal to zero, and vanishes at infinity. Furthermore, the resulting
Borel map ψ : X × A −→ R is T (c)-invariant, and for some ε > 0 the Borel
set

K = {(x, a) ∈ Y : ψ(x, a) ≥ ε}
is nonempty and again T (c)-invariant. For every x ∈ X, the set

Kx = {a ∈ A : (x, a) ∈ K}
and the subgroup

Ax = {a ∈ A : a+Kx = Kx}
are both compact, and the ergodicity of T and the T (c)-invariance of K
imply that there exists a compact subgroup A0 ⊂ A with Ax = A0 for
µ-a.e. x ∈ X. By using one of the standard selection theorems (cf. e.g.
Kunugui’s theorem in [5]–[6]) we can choose a Borel map b : X −→ A with
b(x) ∈ Kx for µ-a.e. x ∈ X and obtain that c(g, x) + b(x)− b(Tgx) ∈ A0 for
every g ∈ G and µ-a.e. x ∈ X.

The final statement of the lemma is obvious. �

Proof of Proposition 1.3. Let T̄ : g 7→ Tg × Tg denote the diagonal action of
G on X̄ = X ×X, and let c̄ : G× X̄ −→ A be the cocycle

c̄(g, (x1, x2)) = c(g, x1)− c(g, x2)

for T̄ . The cocycle equation (2.1) yields that

c(g, Thnx)− c(g, x) = c(hn, Tgx)− c(hn, x) (1.7)

for every g ∈ G and n ≥ 1. For every n ≥ 1 we define bn : X̄ −→ A by
bn(x1, x2) = c(hn, x2)− αn and conclude from (1.7) that

c̄(g, (x1, x2)) = bn ◦ T̄g(x1, x2)− bn(x1, x2)

for every g ∈ G and (x1, x2) ∈ (Thn × IdX)(∆), i.e. that c̄ is a coboundary
with cobounding function bn with respect to the T̄ -invariant measure νn =
νhn . We denote by ρn the probability measure on Y = X̄ ×A with

ρn({(Thnx, x, bn(Thnx, x)) : x ∈ B}) = µ(B)

for every Borel set B ⊂ X and observe as in Lemma 1.4 that ρn is the
unique T (c)-invariant probability measure supported on the graph of bn with
π∗(ρn) = νn, where π : X̄ ×A −→ X̄ is the projection map. If

An = {x ∈ X : bn(x) ∈ C},
where C ⊂ A is the compact set appearing in (1.6), then

ρn(X̄ × C) = νn(T−1
h An ×An) = µ(An) ≥ ε (1.8)

for every n ≥ 1.
By going over to a subsequence of (hn), if necessary, we may take it

that the sequence of probability measures (ρn) converges vaguely to a finite
measure ρ on Y , i.e. that limn→∞

∫
f dρn =

∫
f dρ for every continuous

function f : Y −→ A with compact support. According to (1.8),

ρ(X̄ × C) ≥ lim sup
n→∞

ρn(X̄ × C) ≥ ε,
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which implies that ρ is nonzero. We set ν = π∗(ρ) and claim that

ν(B) ≤ (µ× µ)(B) (1.9)

for every Borel set B ⊂ X̄.
Indeed, let f : X̄ −→ A be a continuous function, U ⊂ A an open neigh-

bourhood of the identity with compact closure, (Dm, m ≥ 1) a sequence
of compact subsets of A with Dm+1 ⊃ Dm + U for every m ≥ 1 and⋃

m≥1Dm = A, and let, for every m ≥ 1, φm : A −→ A be a continuous
map with φm(a) = 1 for a ∈ Dm and φm(a) = 0 for a /∈ (Dm + U). We set
fm(x1, x2, a) = f(x1, x2)φm(a) and observe that∫

fm dρ = lim
n→∞

∫
fm dρn ≤ lim

n→∞

∫
f dνn =

∫
f d(µ× µ).

By letting m→∞ we obtain that∫
f dν = sup

m≥1

∫
fm dρ ≤

∫
f d(µ× µ).

As f was arbitrary, this proves (1.9).
Since each of the probability measures ρn is invariant under the skew-

product action

T̄ (c̄)
g (x1, x2, a) = (Tgx1, Tgx2, c̄(g, (x1, x2)) + a)

of G on Y , the same1 is true for ρ, and hence the measure ν on X̄ is invariant
under T̄ . From (1.9) and the ergodicity of µ× µ it is clear that 1

ν(X̄)
ν = ν ′

is a T̄ -invariant probability measure on X̄ which is absolutely continuous
with respect to — and hence equal to — µ × µ, and that the probability
measure ρ′ = 1

ρ(Y )ρ = 1
ν(X̄)

ρ on Y is invariant under T̄ (c̄) and satisfies that
π∗(ρ′) = µ× µ.

By Lemma 1.4 there exists a compact subgroup A0 ⊂ A such that θ ◦ c̄ is
a coboundary, where θ : A −→ A′ = A/A0 is the quotient map.

In order to simplify notation a little we set c̄′ = θ ◦ c̄ : G× X̄ −→ A′ and
c′ = θ ◦ c : G ×X −→ A′. In the notation of [8, (6.1) and Theorem 6.2 (4)]
we have proved that j∗(c′) = 0, i.e. that c′ ∈ Γ2(A′) in the notation of [8,
(7.5)]. As µ is weakly mixing, the triple diagonal action T × T × T of G on
(X×X×X,µ×µ×µ) is ergodic, and [8, Corollary 7.2] shows that Γ2(A′) =
Γ0(A′) in the notation of [8, (7.3)–(7.5)]. Hence c′ is a homomorphism in the
terminology of [8] or trivial in our terminology. �

Proof of Theorem 1.2. We assume without loss in generality that X is a
compact metric space and that the G-action T on X is continuous (cf. [11]).

If (1.4) is violated, then there exist an ε > 0, a compact set C ⊂ A, an
infinite subset H ⊂ G, and elements αh ∈ A, h ∈ H, with

µ({x ∈ X : c(h, x)− αh ∈ C}) ≥ ε

for every h ∈ H. We can thus choose a sequence (hn) inH with limn→∞ hn =
∞ which satisfies the conditions of Proposition 1.3. Hence there exists a

1In order to see this, consider the ring R of all Borel sets B ⊂ Y with the property that

T̄
(c̄)
g (B) has compact closure and boundary measure ρ(∂(T̄

(c̄)
g B)) = 0 for every g ∈ G. By

assumption, ρ(B) = limn→∞ ρn(B) = limn→∞ ρn(T̄
(c̄)
g B) = ρ(T̄

(c̄)
g B) for every g ∈ G and

B ∈ R. Since R generates the Borel field of Y this proves that ρ is T̄ (c̄)-invariant.
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compact subgroup A0 ⊂ A such that the composition θ◦c : G×X −→ A/A0

of c with the quotient map θ : A −→ A/A0 is trivial. This proves that (1) ⇒
(2), and the reverse implication (2) ⇒ (1) is obvious. �

2. Mixing flows under functions

In order to apply Theorem 1.2 (or, more precisely, Proposition 1.3) to
mixing properties of flows under functions we let T be a measure-preserving
automorphism of a standard probability space (X, S, µ) and f : X −→ R a
Borel map with

∫
f dµ = 1 and f(x) > 0 for every x ∈ X. For every n ∈ Z

and x ∈ X we set

f(n, x) =


∑n−1

k=0 f(T kx) if n > 0,
0 if n = 0,
−f(−n, Tnx) if n < 0.

(2.1)

The resulting map f : Z × X −→ R is a cocycle for T (or for the Z-action
n 7→ Tn on (X, S, µ)). We define an equivalence relation Rf on X × R by
saying that

(x, t) ∼ (Tnx, t− f(n, x))
for every (x, t) ∈ X × T and n ∈ Z. The ‘vertical’ flow St : (x, t′) 7→ (x, t +
t′), (x, t′) ∈ X × R, t ∈ R, preserves this equivalence relation and thus
induces a flow t 7→ Sf

t on the space (X × R)Rf of equivalence classes of the
relation Rf . The set

Xf = {(x, t) : x ∈ X, 0 ≤ t < f(x)},
intersects each equivalence class of Rf in exactly one point and may thus be
identified with (X ×R)Rf . We denote by Sf the Borel field of Xf ⊂ X ×R,
write λ for the Lebesgue measure on R, µf for the restriction to Xf ⊂ X×R
of the product measure µ×λ, and T f for the measure-preserving flow induced
by Sf on the probability space (Xf , Sf , µf ). This flow is usually called the
flow under the function f with base T .

Several authors have studied conditions on f for a given ergodic base T
which determine whether the flow T f is mixing (cf. e.g. [3], [4], [2], [7] and the
references listed there). In [7] the author proves the following result under
the additional hypothesis that T is an irrational rotation on X = R/Z, and
asks whether Corollary 2.1 (under hypothesis (2)) holds for more general
classes of ergodic automorphisms ([7, Remarque 2]).

Corollary 2.1. Let T be a measure-preserving automorphism of a standard
probability space (X, S, µ), f : X −→ R a Borel map with

∫
f dµ = 1 and

f(x) > 0 for every x ∈ X, and let T f be the flow under f with base T on the
probability space (Xf , Sf , µf ). Suppose that either of the following conditions
is satisfied.

(1) T is mixing and T f is weakly mixing;
(2) T f is mixing.

Then the cocycle f : Z×X −→ R in (2.1) disperses in the sense of (1.4).

Proof. If T is mixing, then Theorem 1.2 with G = Z and A = R shows that
the cocycle f either disperses or is trivial, in which case the flow T f is not
weakly mixing.
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In order to prove dispersion of f under the hypothesis (2) we may replace
f by a cohomologous function f ′ = f + b ◦ T − b such that b : X −→ R is
measurable and f ′ is bounded above and below by positive constants; this
will affect neither the hypotheses nor the conclusions of the corollary. We
assume therefore without loss of generality that there exist positive constants
c1 < c2 such that c1 ≤ f(x) ≤ c2 for every x ∈ X.

Define a map F : Xf −→ R by

F (x, s) =
1

f(x)

for every x ∈ X and s ∈ [0, f(x)) and consider the cocycle c : R×Xf −→ R
given by

c(t, z) =


∫ t
0 F (T f

s z) ds if t > 0,
0 if t = 0,
−c(−t, T f

t z) if t < 0.
(2.2)

For every positive t we denote by d(t, z) the number of intersections of the
set {(x, 0) : x ∈ X} ⊂ Xf with the trajectory {T f

s z : 0 ≤ s < t}. Then

|c(t, z)− d(t, z)| ≤ 2 and |t− f(d(t, (x, s)), x)| ≤ 2c2 (2.3)

for every t ≥ 0 and z = (x, s) ∈ Xf , and∫
c(t, z) dµf (z) = t (2.4)

for every t ∈ R.
Suppose that (1.4) is not satisfied, i.e. that there exist an ε > 0, a constant

L > 0, an increasing sequence (mn) of positive integers, and a sequence (tn)
in R with

µ({x ∈ X : |f(mn, x)− tn| ≤ L}) ≥ ε (2.5)

for every n ≥ 1. According to (2.3) and (2.5),

µf ({(x, s) ∈ Xf : |f(d(tn, (x, s)), x)− f(mn, x)| ≤ L+ 2c2}) ≥ c1ε,

and hence

µf
({
z ∈ Xf : |d(tn, z)−mn| ≤ L+2c2

c1

})
≥ c1ε,

and the first inequality in (2.3) implies that

µf
({
z ∈ Xf : |c(tn, z)−mn| ≤ L+2c2

c1
+ 2

})
≥ c1ε (2.6)

for every n ≥ 1. Since µf is mixing and limn→∞ tn = ∞ by (2.5), limn→∞ νtn

= µf ×µf , where νtn is the off-diagonal measure (1.5) with µ and g replaced
by µf and tn.

We choose a countable dense subgroupG ⊂ R which contains the sequence
(tn). Since G is dense in R and µf × µf is ergodic under the diagonal R-
action T f × T f on Xf ×Xf , the measure µf × µf is also ergodic under the
restriction of T f × T f to G, which implies that µf is weakly mixing under
the restriction of T f to G. According to (2.6) and Proposition 1.3 there exist
a homomorphism η : G −→ R and a Borel map b : Xf −→ R such that

c(t, z) = η(t) + b(T f
t z)− b(z) (2.7)
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for every t ∈ G and µf -a.e. z ∈ Xf . From (2.4) we know that η(t) = t
for every t ∈ G, and the continuity of the map t 7→ c(t, ·) from R into
L1(Xf , Sf , µf ) in (2.2) guarantees that (2.7) holds for every t ∈ R.

We re-trace our steps and conclude from (2.7) and (2.3) that the cocycle
f ′ : Z×X −→ R, defined by

f ′(n, ·) = f(n, ·)− n, n ∈ Z,
is bounded in µ-measure. By [9, Theorem 11.8], [8, Theorem 5.2] or [10,
Theorem 4.7] there exists a Borel map b : X −→ R with f(x) = 1 + b(Tx)−
b(x) for µ-a.e. x ∈ X, which implies that T f is not even weakly mixing. This
contradiction resulting from (2.5) proves the corollary. �
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