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Abstract

Let A be a locally compact abelian group and let µ be a probability
measure on A. A probability measure λ on A is an affine k-th root of µ
if there exists a continuous automorphism ρ of A such that ρk = I (the
identity transformation) and λ ∗ ρ(λ) ∗ ρ2(λ) ∗ · · · ∗ ρk−1(λ) = µ, and µ is
affinely infinitely divisible if it has affine k-th roots for all orders. Clearly
every infinitely divisible probability measure is affinely infinitely divisible. In
this paper we prove the converse for connected abelian Lie groups: Every
affinely infinitely divisible probability measure on a connected abelian Lie
group A is infinitely divisible.

If G is a locally compact group, A a closed abelian subgroup of G and µ
a probability measure on G which is supported on A and infinitely divisible
on G, we give sufficient conditions which ensure that µ is infinitely divisible
on A.

1 Introduction

Let A be a locally compact abelian group and let µ be a probability measure on A.
A probability measure λ on A is said to be an affine k-th root of µ if there exists
a continuous automorphism ρ of A such that ρk = I (the identity transformation)
and

λ ∗ ρ(λ) ∗ ρ2(λ) ∗ · · · ∗ ρk−1(λ) = µ.

We recall that a probability measure is said to be infinitely divisible if it has
convolution roots of all orders (namely k-th roots for all natural numbers k). In
analogy with this we say that a probability measure µ on A is affinely infinitely
divisible (on A) if it has affine k-th roots for all natural numbers k. Clearly every
infinitely divisible probability measure is affinely infinitely divisible. Here we prove
that the converse is also true for connected abelian Lie groups:

Theorem 1.1. Every affinely infinitely divisible probability measure on a connected
abelian Lie group A is infinitely divisible on A.
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LetA be an abelian Lie group and Aff (A) denote the group of affine automorphisms
(namely composites of translations and continuous automorphisms) of A. We view
A as a subgroup of Aff (A) consisting of the corresponding translations. It can
be seen that the above theorem means that a probability measure on A which is
infinitely divisible as a measure on Aff (A) is already infinitely divisible on A itself
(see Lemma 2.2). We shall also prove the following analogous result in a more general
set up. Here and in the sequel for a probability measure µ on a locally compact
group G we denote by Z(µ) the centraliser of the support of µ, namely the subgroup
consisting of all elements of G commuting with every element of the support of µ.
By a characteristic subgroup of a topological group we mean a subgroup invariant
under all continuous automorphisms of the group.

Corollary 1.2. Let G be a locally compact group and A be a closed abelian subgroup
of G. Let µ be a probability measure on G which is supported on A and infinitely
divisible on G. Suppose also that one of the following conditions is satisfied:

i) A is a vector group, namely topologically isomorphic to IRn for some n, or
ii) there exists a characteristic closed abelian subgroup H of Z(µ) such that H is

topologically isomorphic to a connected Lie group and contains A, or
iii) G is a Lie group, A is connected, and there is no proper closed subgroup of

A containing the support of µ.

Then µ is infinitely divisible on A.

A probability measure µ on a locally compact group is said to be embeddable
if there exists a continuous one-parameter convolution semigroup {µt}t≥0 such that
µ1 = µ. The question of embeddability of infinitely divisible probability measures,
the so-called ‘embedding problem’, has been studied in literature to a considerable
extent (see [4] and [8] for some details and other references). In this respect we
note that since every infinitely divisible probability measure on any compactly
generated abelian Lie group is embeddable (see [7], § 3.5.11), Corollary 1.2 implies
the following.

Corollary 1.3. Let G, µ and A be as in Corollary 1.2. Then µ is embeddable on
A, and hence also on G.

The proof of Theorem 1.1 is achieved by first proving that if G be the semidirect
product of a locally compact compactly generated abelian group A with the circle
group T , and µ be a probability measure supported on A and infinitely divisible
on G then either µ is infinitely divisible on A or there exists a natural number n
such that there is no root of µ supported on a coset of the form At for any t ∈ T of
order n (see Corollary 4.2). Theorem 1.1 is deduced from this using some results on
embeddability of infinitely divisible measures, namely the embedding theorem from
[3] for the case when A is a vector space, and a recent result from [5] for the general
case (see § 5). Corollary 1.2 is deduced from Theorem 1.1 in § 5 using standard
facts about roots of probability measures and automorphism groups of abelian Lie
groups.
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It may be seen that the conclusion as in Corollary 1.2 does not hold in general
for subgroups A which are not connected; e.g. point measures on ZZ at nonzero
points are infinitely divisible on IR but not on ZZ. It would be interesting to know
of other conditions under which the analogous conclusion does hold.

2 Preliminaries

In this section we set up some notation and recall some facts needed in the sequel.
For any locally compact group G we shall denote by P (G) the space of all

probability measures onG equipped with the usual weak* topology and the convolution
product. For simplicity we shall denote the convolution product by simple juxtaposition
(dropping ∗). The unit point masses will be denoted by the corresponding element
in the support. If H is a closed subgroup of G we identify P (H) canonically with
the subset of P (G) consisting of measures whose support is contained in H.

For a locally compact group G we denote by Aut (G) the group of all bicontinuous
automorphisms of G, and by Aff (G) the group of all affine automorphisms (namely
composites of translations and bicontinuous automorphisms) of G. The group G will
be realised as a subgroup of Aff (G) consisting of the corresponding left translations.
When G is a Lie group Aut (G) and Aff (G) also carry Lie group structures, and we
shall consider them equipped with these.

As usual IN will denote the set of natural numbers and IR the topological group
of real numbers. By a vector group we mean a topological group topologically
isomorphic to IRn for some n ∈ IN , and by a vector subgroup of a locally compact
group we mean a closed subgroup which is a vector group. The vector groups will be
considered with the canonical vector space structure, and we note that with respect
to it all continuous automorphisms are linear.

Lemma 2.1. Let V be a vector group. Let K be a compact subgroup of Aut (V ) and
let {ai} be a sequence in K converging to an element a of K such that the a-action
on V has no nonzero fixed point. Let {λi} be a sequence in P (V ) such that for each
i, λi is ai-invariant. Suppose there exists a sequence {vi} in V such that {viλi} is
relatively compact. Then {λi} and {vi} are relatively compact.

Proof: We consider V equipped with a norm || · || on V invariant under the action of
K. As {viλi} is relatively compact there exists a closed ball B (with respect to that
norm) such that viλi(B) ≥ 2/3 for all i. Therefore λi(v

−1
i B) ≥ 2/3 for all i. As λi

is ai-invariant for each i and B is K-invariant we get also that λi(ai(v
−1
i )B) ≥ 2/3

for all i. Hence ai(v
−1
i )B ∩ v−1

i B is nonempty for all i. Therefore {ai(vi)v−1
i } is

contained in a compact set, namely BB−1. In the vector space (additive) notation
on V this means that {ai(vi) − vi} is bounded. Suppose {vi} is unbounded. Then
passing to a subsequence we may assume that ||vi|| → ∞ as i → ∞. For each i
let wi = vi/||vi||. Then {wi} is consists of elements of norm 1, and hence has a
nonzero limit point, say w. Since {ai(vi) − vi} is bounded and ||vi|| → ∞, we get
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that (ai(wi) − wi) → 0 as i → ∞. Since ai → a and w is a limit point of {wi}
it follows that a(w) = w, contradicting the condition in the hypothesis that the
a-action has no nonzero fixed point. Therefore {vi} is relatively compact. As {viλi}
is relatively compact this implies also that {λi} is relatively compact. This proves
the lemma. �

We next describe some simple properties of convolution roots of probability
measures.

Lemma 2.2. Let G be a locally compact group and H be a closed normal subgroup
of G. Let µ ∈ P (H). Then we have the following.

i) If ν ∈ P (G) is a k-th root of µ for some k, then ν can be expressed as λa,
with λ ∈ P (H) and a ∈ G such that ak ∈ H.

ii) If G is the semidirect product of H and a locally compact group R acting
continuously as a group of automorphisms of H, then for λ ∈ P (H) and a ∈ R
the measure λa is a k-th root of µ if and only if ak = e, the identity element, and
λa(λ) · · · ak−1(λ) = µ.

iii) If G, H and R are as in (ii) and, furthermore, H is abelian and a ∈ R is
such that λa is a k-root of µ for some λ ∈ P (H) and k ≥ 1, then µ is invariant
under the action of a on H.

Proof: If ν ∈ P (G) and νk = µ, and η : G → G/H is the canonical projection
homomorphism, then η(ν)k = η(µ) which is the point mass at the identity element
in G/H. Hence η(ν) is a point mass in G/H and therefore ν can be expressed as
λa, with λ ∈ P (G) and a ∈ G. Also, η(a)k = η(λa)k = η(µ) is the identity element,
and hence ak ∈ H. This proves (i).

Now let G be a semidirect product of H and R as in the hypothesis of (ii)
and (iii). Let λ ∈ P (H) and a ∈ R. A straightforward computation shows that
(λa)k = λσa(λ) · · ·σk−1

a (λ)ak, which readily implies assertion in (ii). Also, if H is
abelian and λ ∈ P (G) and a ∈ R are such that ak = e and µ = λa(λ) · · · ak−1(λ)
then we have

a(µ) = a(λ)a2(λ) · · · ak−1(λ)λ = λa(λ) · · · ak−1(λ) = µ,

which proves the last assertion. �

We note that given a connected abelian Lie group A, assertions (ii) and (iii)
above apply in particular to G = Aff (A), H = A and R = Aut (A).

3 Actions of compact Lie groups

In this section we describe a decomposition of locally compact abelian groups with
respect to actions of a compact connected Lie group (see Theorem 3.3 below). We
shall freely use results from the duality theory for locally compact abelian groups;
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the reader is referred to [6] for general reference in this respect. We begin the
following Lemma which is quite classical in flavour.

Lemma 3.1. Let B be a locally compact abelian group containing a compact subgroup
C such that B/C is a vector group. Let K be a compact connected group acting
continuously as a group of automorphisms of B. Let F be the subgroup of B
consisting of all elements fixed under the K-action. Then there exists a K-invariant
vector subgroup W of B such that B is the direct product of F and W .

Proof: Let X = B̂, the character group of B; for convenience we shall use additive
notation for the group X. The K-action on B induces a K-action on X. We
note that X0, the connected component of the identity in X, is a vector subgroup
invariant under the K-action, and X/X0 is the discrete character group of C. Let
Y be the subgroup of X consisting of all elements fixed under the K-action. In the
light of the Pontryagin duality theorem to prove the lemma it suffices to show that
there exists a K-invariant vector subgroup H of X such that X is the direct product
of H and Y . The factor K-action on X/X0 is trivial and hence for each x ∈ X and
k ∈ K, k(x) − x ∈ X0. For each x ∈ X let f(x) = x +

∫
X0 (k(x) − x)dk, the

integral being with respect to the normalised Haar measure on the compact group
K. Then f is a continuous homomorphism of X into itself. Let H be the kernel of
f . For any x ∈ X and k0 ∈ K we have k0(f(x)) = k0(x) +

∫
X0 k0(k(x) − x)dk =

x+
∫
X0 (k0(x)− x)dk+

∫
X0 k0(k(x)− x)dk = x+

∫
X0 (k0k(x)− x)dk = f(x). Thus

f(x) ∈ Y for all x ∈ X. Also clearly f(y) = y for all y ∈ Y , and in particular
f 2(x) = f(x) for all x ∈ X. Therefore H ∩ Y is trivial and x − f(x) ∈ H for all
x ∈ X. As each x ∈ X can be expressed as (x− f(x)) + f(x), this shows that X is
the direct product of H and Y . This proves the lemma. �

We note also the following.

Lemma 3.2. Let A be a locally compact abelian group and K be a compact group
acting continuously on A by automorphisms. Let B be a closed subgroup of A such
that k(b) = b for all b ∈ B and k ∈ K. If x ∈ A is such that k(x) ∈ xB for all
k ∈ K and ψx : K → B is the map defined by ψx(k) = x−1k(x) for all k ∈ K,
then ψx is a continuous homomorphism of K into B. If B is a vector group and the
factor action of K on A/B is trivial then the K-action on A is trivial.

Proof: Let x ∈ A be such that k(x) ∈ xB for all k ∈ K and ψ = ψx, in the notation
as above. Then ψ(k1k2) = x−1k1(k2(x)) = x−1k1(xψ(k2)) = x−1k1(x)k1(ψ(k2)) =
ψ(k1)ψ(k2), as ψ(k2) ∈ B and hence fixed by k1. This shows that ψ = ψx is a
homomorphism. Clearly it is continuous.

Now suppose that B is a vector group and that the factor action of K on A/B
is trivial. Let x ∈ A be arbitrary. Then k(x) ∈ xB. Let ψx : K → B be the map
as above. Since ψx is a continuous homomorphism, ψx(K) is a compact subgroup
of B, and as the latter is a vector group ψx(K) is trivial. Hence k(x) = x for all
k ∈ K. This proves the lemma. �
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Theorem 3.3. Let A be a locally compact abelian group and let K be a compact
connected Lie group acting continuously on A as a group of automorphisms. Let e
be the identity element of A. Then there exist closed K-invariant subgroups N and
W of A such that the following conditions are satisfied:

i) N ∩W = {e} and A = NW ;

ii) W is a vector group and the action of K on W has no nonzero fixed point;

iii) k(x) = x for all k ∈ [K,K] and x ∈ N ;

iv) If for k ∈ K, ϕk : A → A is the homomorphism of A defined by ϕk(x) =
x−1k(x) for all x ∈ A then ϕk1ϕk2(x) = e for all k1, k2 ∈ K and x ∈ N .

Proof: Let Ω0 be a compact neighbourhood of e in A invariant under the action
of K. Let B0 be the subgroup of A generated by Ω0. Then B0 is a compactly
generated abelian subgroup which is open in A. Let C be the (unique) maximal
compact subgroup of B0. Let B be the closed subgroup of B0 containing C and
such that B/C is the connected component of the identity in B0/C. Then C and B
are invariant under the action of K. Furthermore, as C is a compact abelian group
its character group is discrete, and since K is connected it follows that the K-action
on C is trivial. We note also that B/C is a vector group, as it is the connected
component of the identity in B0/C.

Now let F be the subgroup of B consisting of all elements fixed under the action
of K. Then by Lemma 3.1 there exists a K-invariant vector subgroup W of B such
that F ∩W = {e} and B = FW . For each k ∈ K let ϕk be the homomorphism
x 7→ x−1k(x) for all x ∈ A (as in the statement of the theorem). Let N be the
subgroup consisting of all x in A such that ϕk(x) ∈ F for all k ∈ K. Then N is a
closed subgroup containing F . Also, for any x ∈ N and h, k ∈ K we have ϕk(h(x)) =
ϕk(xϕh(x)) = ϕk(x)ϕk(ϕh(x)) = ϕk(x), as ϕh(x) ∈ F , and hence ϕk(h(x)) ∈ F .
This shows that N is K-invariant.

We shall show that the assertions as in the theorem hold for the choices N and
W as above. Note that statement (ii) is immediate from the choice of W . Also,
assertion (iv) follows directly from the condition that ϕk(x) ∈ F for all x ∈ N and
k ∈ K. Now let x ∈ N . Then x−1k(x) = ϕk(x) ∈ F for all k ∈ K. Since the
K-action on F is trivial, by Lemma 3.2 we get that k 7→ ϕk(x) is a homomorphism
of K into F . Since F is commutative, it follows that ϕk(x) = e for all k ∈ [K,K].
Therefore k(x) = x for all k ∈ [K,K]. This proves (iii). It remains to prove (i).

As B is open in A, A/B is discrete and hence the K-action on A/B is trivial.
Also the choice of W shows that the K-action on B/CW is trivial. Since B/CW is
a vector group, by Lemma 3.2 these observations imply that the K-action on A/CW
is trivial. Therefore ϕk(A) is contained in CW for all k ∈ K. Hence for all x in N
ϕk(x) ∈ F ∩ CW = C for all k ∈ K. This implies that the K-action on N/C is
trivial. On the other hand the K-action on WC/C is equivalent to that on W , and
hence has no nontrivial fixed point. Therefore the intersection of N/C and WC/C
in A/C is the trivial subgroup. Since C is contained in N and intersects W trivially,
this shows that N ∩W is trivial. This proves the first part of (i).
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Now let x ∈ A be given. We shall show that x ∈ NW . Let H be the smallest
closed subgroup containing CW and x. Since, as seen above, the K-action on A/CW
is trivial, it follows that H is K-invariant. Clearly H is compactly generated. Let
D be the maximal compact subgroup of H (which may be larger than C). Then
D is K-invariant, and furthermore the K-action on D is trivial. Therefore D is
contained in N . We note that H/CW has a dense cyclic subgroup and hence it
is either compact or infinite cyclic. If it is compact then H is a direct product of
D and W , and hence we get that x ∈ DW ⊂ NW . Now suppose that H/CW is
infinite cyclic. Then H/C is a direct product of CW/C and the infinite discrete
cyclic subgroup generated by xC. Therefore H/C can be realised as a subgroup
of a vector space, say V , such that CW/C corresponds to a hyperplane in V and
xC to a point outside the hyperplane. The K-action on H/C extends to a linear
K-action on V . Since the hyperplane CW/C is K-invariant, and K is compact, V
contains a line (one-dimensional subspace), say L, complementary to CW/C which
is pointwise fixed under the K-action. This shows that the K-action on H/C has a
fixed point contained in xCW/C. Thus there exists y ∈ xCW such that k(y) ∈ yC,
for all k ∈ K. Thus ϕk(y) ∈ C for all k ∈ K and hence y ∈ N . Since y ∈ xCW , we
now get x ∈ yCW ⊂ NW . This shows that A = NW ; this completes the proof of
assertion (i) and hence of the theorem. �

It may be worthwhile to note the following consequence of Theorem 3.3.

Corollary 3.4. Let A be a locally compact abelian group and let K be a compact
connected semisimple Lie group acting continuously on A as a group of automorphisms.
Then A is the direct product of a closed K-invariant subgroup N pointwise fixed
under the K-action, and a vector group W .

Proof: This is immediate from the theorem and the fact that for a semisimple Lie
group K, [K,K] = K. �

Remark 3.5. In general the action on the N -component as in Theorem 3.3 can be
nontrivial, as can be seen from the following example. Let T be the circle group
A = T ×ZZ, the direct product of T with the group of integers. There is a T -action
on A defined by a((t, n)) = (ant, n) for all a, t ∈ T and n ∈ ZZ. For this action the
subgroup N as in Theorem 3.3 is the whole of A, and the T -action on it nontrivial.

4 Infinite divisibility

Let A be a locally compact compactly generated abelian group. In this section we
consider infinite divisibility of measures on A in a semidirect product of A with the
circle group (the multiplicative group of complex numbers of modulus 1), and also
with certain other Lie groups.

Let T denote the circle group and suppose that a continuous action of T on A,
as a group of automorphisms of A, is given. Let Q be the semidirect product of A
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and T with respect to the action. Let η : Q→ T be the projection homomorphism.
For a measure ν such that η(ν) is a point mass we shall also denote by η(ν) the
corresponding point of support. We now prove the following theorem which provides
a way of obtaining roots for a probability measure on A, from a sequence of roots
on Q.

Theorem 4.1. Let the notation be as above. Let µ ∈ P (A) and let k ∈ IN . For
any p ∈ IN let d(p) be the smallest divisor of p such that p/d(p) is coprime to k.
Suppose that there exists a family {νp}p∈Φ of probability measures on Q indexed by
a subset Φ of IN , such that νkpp = µ for all p and {η(νp)

d(p) | p ∈ Φ} is an infinite
subset of T . Then µ has a k-th root on A and, furthermore, it can be chosen to be
invariant under the T -action on A.

Proof: For convenience the proof is divided into three steps.

1. A selection of k-th roots

For families indexed by the set Φ as in the hypothesis we shall suppress Φ from
the notation and write as {νp} for {νp}p∈Φ etc. By Lemma 2.2 each νp, p ∈ Φ, can
be expressed as νp = λptp where λp ∈ P (A) and tp = η(νp) ∈ T . For each p ∈ Φ we
now define σp ∈ P (A) as follows: Let d = d(p) and q = p/d. Let

λ′p = λptp(λp) · · · td−1
p (λp) and σp = λ′pt

dk
p (λ′p) · · · t(q−1)dk

p (λ′p).

Then (σpt
p
p)
k = σpt

p
p(σp) · · · t

(k−1)p
p (σp), and the latter is the product of all the

measures tαp+βdk+γ
p (λp), with 0 ≤ α ≤ k − 1, 0 ≤ β ≤ q − 1 and 0 ≤ γ ≤ d − 1;

the order does not matter in the product, as the group is commutative. From
the fact that p/d and k are coprime it follows that no two integers from the set
{αp + βdk + γ | 0 ≤ α ≤ k − 1, 0 ≤ β ≤ q − 1, 0 ≤ γ ≤ d − 1} are congruent to
each other modulo kp. Since tkpp = 1 it follows that the product of tαp+βdk+γ

p (λp)’s as

above is the same as λptp(λp) · · · t(kp−1)
p (λp), and since νp is a kp-th root it is precisely

µ. Thus σpt
p
p is a k-th root of µ. We note also that each σp is t

d(p)k
p -invariant.

For each p ∈ Φ, tpp is a k-th root of 1 in T . The set of these roots is finite, and

hence there exists a k-th root of 1 in T , say s, such that {η(νp)
d(p) | p ∈ Φ, tpp = s} is

infinite. Therefore replacing Φ by {p ∈ Φ | tpp = s} we may without loss of generality
assume that tpp = s for all p ∈ Φ. Thus for each p ∈ Φ, σps is a k-th root of µ, which

is t
d(p)k
p -invariant.

2. Relative compactness
Since each root is a two sided factor, by the shift compactness theorem (see [9],

Ch. III, Theorem 2.2) it follows that there exist {xp} in Q such that {xpσps} is
relatively compact. Since Q/A is compact {xp} can be chosen to be contained in
A. Let A = NW be the decomposition of A as in Theorem 3.3 with respect to the
action of T as above (in the place of K in the theorem). Since W is T -invariant it is
a normal subgroup of Q. Let π : Q → Q/W be the quotient homomorphism. The
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group Q/W can be identified canonically with the subgroup NT . For t ∈ T let ϕt
be the map as before, defined by ϕt(x) = x−1t(x) = x−1txt−1 for all x ∈ A. Recall
that by condition (iv) of Theorem 3.3 ϕt1ϕt(x) = e for all t and t1 in T , and x ∈ N .
This means that, for any t ∈ T , ϕt(N) is centralised by T and hence contained in the
center of NT . It follows that [NT,NT ] is contained in the center of NT . Therefore
NT is a nilpotent group. Thus Q/W is a nilpotent group. Since {xpσps} is relatively
compact, {π(xp)π(σps)} is relatively compact. On the other hand {π(σps)} are all
roots of π(µ), and since Q/W is a compactly generated nilpotent group this implies
that {π(σps)} is relatively compact (see [7], Theorems 3.1.17 and 3.1.13). Hence
{π(xp)} is relatively compact.

Now let ψ : Q → Q/N be the quotient homomorphism onto Q/N . The latter
can be realised canonically as the semidirect product of W and T under the action
of T on W . Since {xpσps} is relatively compact, {ψ(xp)ψ(σp)} is relatively compact.

Recall that σp is t
d(p)k
p -invariant. Hence the measure ψ(σp) on W is invariant under

the action of t
d(p)k
p . For each p let Fp be the subgroup generated by t

d(p)k
p . Then

ψ(σp) is in fact Fp-invariant for each p. As tp = η(νp) by hypothesis {td(p)
p } is an

infinite subset of T , and hence so is {td(p)k
p }. Therefore given any a ∈ T we can find

ap ∈ Fp, for all p ∈ Φ, such that {ap} converges to a; we choose a to be an element
generating a dense subgroup of T and {ap} to be a family satisfying this condition.
Now we have the measures ψ(σp) invariant under ap for each p, with ap → a, and
ψ(xp) ∈ W such that {ψ(xp)ψ(σp)} is relatively compact. As the T -action on W
has no nontrivial fixed point on W , and the subgroup generated by a is dense in T ,
the a-action on W also has no nontrivial fixed point on W . Therefore by Lemma 2.1
it follows that {ψ(xp)} is relatively compact.

Since A = NW , a direct product, and {π(xp)} and {ψ(xp)} are relatively
compact, it follows that {xp} is relatively compact. Since by choice {xpσps} is
relatively compact we now get that {σps} is relatively compact.

3. Completion of the proof.
Let σ be a limit point of {σp}, which by Step 2 is relatively compact. Let {ap}

be as in Step 2. Since ap → a and σp is ap-invariant we get that σ is a-invariant.
Since a generates a dense subgroup of T it follows that σ is invariant under the
action of T , and in particular under the action of s. Now since σs is a limit of σps
which are k-th roots of µ it follows that (σs)k = µ. As σ is s-invariant this implies
that σk = µ. Thus µ has a k-th root on A which is invariant under the action of T .
This proves the theorem. �

Corollary 4.2. Let A be a locally compact compactly generated abelian group and
let Q be the semidirect product of A with the circle group T , with respect to a
continuous action of T on A by automorphisms. Let η : Q → T be the projection
homomorphism. Let µ ∈ P (A) and suppose that for every n ∈ IN there exists a root
ν of µ (of some order) on Q such that η(ν) is an element of order n in T . Then µ
is infinitely divisible on A.
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Proof: Suppose that µ is not infinitely divisible on A, and let k ∈ IN be such that
µ has no k-th root on A. As before, for any p ∈ IN let d(p) denote the smallest
divisor of p such that p/d(p) is coprime to k. Consider the set R = {η(ν)d(p) | ν ∈
P (Q), p ∈ IN, νkp = µ}. Since, by choice the choice of k, µ has no k-th root on A,
Theorem 4.1 implies that R is finite. As the elements of R are roots of 1 in T it
follows that the subgroup of T generated by R is also finite. Let m be the order
of the subgroup generated by R. Now let n be a natural number coprime to km.
By the condition in the hypothesis there exists a root ν of µ on Q such that η(ν)
is of order kn in T ; thus νknp = µ for some p ∈ IN . Then η(ν)d(np) ∈ R, and hence
η(ν)d(np)m = 1. Therefore kn, which is the order of η(ν), divides d(np)m. The prime
factors of the latter are the same as those of km, and since by choice n is coprime
to km, this is a contradiction. Therefore µ is infinitely divisible on A. This proves
the corollary. �

The corollary can be readily generalised to a slightly more general class of
semidirect products. We shall say that a Lie group S is of type C if S has a circle
subgroup T such that every element of finite order in S is conjugate to an element
of T . We note that any compact connected Lie group of rank 1 is of type C, since
in this case any maximal torus is a circle group and all maximal tori are conjugate.
The special linear group SL(2, IR) is also of type C, so are its quotient PSL(2, IR)
and all the covering groups with finite fibers. The semidirect product of T , the circle
group, with a vector group V under an action of T on V can also be seen to be a
group of type C; unlike in the earlier two classes of examples in this case there exist
elements of infinite order which do not have conjugates in a circle group, but the
requisite condition holds for all elements of finite order.

Corollary 4.3. Let A be a locally compact compactly generated abelian group and
µ ∈ P (A). Let S be a Lie group of type C acting continuously as a group of
automorphisms preserving µ. Let Q be the semidirect product of A with S, with
respect to the action and η : Q→ T be the projection homomorphism. Let µ ∈ P (A)
and suppose that for every n ∈ IN there exists a root ν of µ on Q such that η(ν) is
an element of order n. Then µ is infinitely divisible on A.

Proof: Let T be a circle subgroup of S, such that every element of finite order in
S is conjugate to an element of T . Let k ∈ IN and let ν be a k-th root of µ on Q.
Then by Lemma 2.2 there exist λ ∈ P (A) and g ∈ S such that ν = λg and gk is the
identity element. Since g is of finite order there exist h ∈ T and x ∈ S such that
h = xgx−1. Let ν ′ = xνx−1 ∈ P (A). Then (ν ′h)k = x(νg)kx−1 = xµx−1 = µ, where
the last step follows from the condition that µ is invariant under the action of S on
A. Thus µ has a k-th root on AT , for k ∈ IN , whenever it has a k-th root on Q.
The corollary now follows from Corollary 4.2. �

5 Proofs of Theorems 1.1 and Corollary 1.2
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In this section we prove the results stated in the introduction. We first recall the
following.

Lemma 5.1. Let m ∈ IN and Γm be the group of all continuous automorphisms
of the m-dimensional torus. Then there exists r ∈ IN such that for any γ ∈ Γm of
finite order, the order divides r.

Proof: The group Γm as above is isomorphic to the group GL(m,ZZ) of all integral
matrices with determinant ±1. For the latter group the property as above is well
known (see [10], LG Appendix, for instance). �

Lemma 5.2. Let G be a locally compact group and H be a closed normal subgroup
of G. Suppose that there exists r ∈ IN such that the order of any element of finite
order in G/H divides r. Let µ ∈ P (H) and suppose that it is infinitely divisible on
G. Then µ is infinitely divisible on H.

Proof: Consider any j ≥ 2 and ν be a jr-th root of µ on G. Let η : G→ G/H be the
canonical quotient homomorphism. Then η(ν) is a point mass at a point a ∈ G/H
of finite order. By the condition in the hypothesis the order of a divides r and hence
ar is the identity. Therefore νr is supported on H. Since ν is a jr-th root of µ it
follows that νr is a j-th root of µ, on H. Hence µ is infinitely divisible on H. �

Proof of Theorem 1.1:

First consider the case when A is a vector group; we shall denote it as V . Let
µ ∈ P (V ) be affinely infinitely divisible. Then µ is infinitely divisible on Aff (V ).
By the embedding theorem of [3] µ is embeddable in Aff (V ). Thus there exists a
continuous one-parameter convolution semigroup {µt}t≥0 in P (Aff (V )) such that
µ1 = µ. Let η : Aff (V ) → GL(V ) be the canonical projection. Then η({µt}t≥0) is
a convolution semigroup of probability measures such that η(µ1) is the point mass
at the identity. It follows that each η(µt), t ≥ 0, is a point measure, say at the
point at ∈ GL(V ). As a1 = I, the identity automorphism, for negative t we can set
at = at+m for some (any) integer m > −t. Then {at}t∈IR is a periodic one-parameter
subgroup of GL(V ). Let T = {at | t ∈ IR}. If T is the trivial subgroup then {µt} is
contained in P (V ) and hence µ is infinitely divisible on V . Suppose T is nontrivial;
then it is the circle group. Then for any n ∈ IN , µ has a root ν such that η(ν) is an
element of order n in T . Hence by Corollary 4.2 µ is infinitely divisible on V . This
proves the theorem for the case at hand.

Now let A be any connected abelian Lie group, namely A = TTm × IRn for some
m,n ∈ IN , TTm being the m-dimensional torus. Let µ ∈ P (A) be affinely infinitely
divisible, so µ is infinitely divisible on Aff (A). Let S be the maximal torus in A.
Then A/S is a vector group. Let B be the closed subgroup of A containing S, such
that B/S is the vector subspace of A/S spanned by (suppµ)S/S, where suppµ
denotes the support of µ. We shall show that µ, which can be realised as a measure
on B and hence on Aff (B), is infinitely divisible on Aff (B). Let k ≥ 1 be given and
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let ν be a k-th root of µ on Aff (A). Then ν = λa, for some λ ∈ P (A) and a ∈ Aut (A)
such that ak = I, the identity element, and λa(λ) · · · ak−1(λ) = µ. By Lemma 2.2 µ
is a-invariant, and hence it follows that B is a-invariant. Since a is of finite order,
considering the action of a on the Lie algebra of A it can be seen that there exists
an a-invariant vector subgroup D of A such that B ∩D is trivial and A = BD. Let
π : A→ D be the projection homomorphism onto D. Then π(µ) is the point mass
at e, the identity element, and since λa(λ) · · · ak−1(λ) = µ it follows that π(λ) is a
point mass at a point d in D such that da(d) · · · ak−1(d) = e. Then λd−1 ∈ P (B) and
(λd−1)a(λd−1) · · · ak−1(λd−1) = λa(λ) · · · ak−1(λ)d−1a(d−1) · · · ak−1(d−1) = µ. This
shows that µ is infinitely divisible on Aff (B).

Now let Γ be the subgroup of Aut (B) consisting of all automorphisms whose
restriction to S is trivial. Then Aut (B)/Γ can be realised as a group of continuous
automorphisms of S and hence by Lemma 5.1 there exists r ∈ IN such that for any
element of finite order in Aut (B)/Γ the order divides r. Therefore by Lemma 5.2 µ
is infinitely divisible on BΓ.

Let V be a vector subgroup of B such that B = SV , direct product. Let Θ be
the group of automorphisms θ of B of the form θ(sv) ∈ Sv for all v ∈ V . Let ∆
be the subgroup of Aut (B) which leaves V invariant. By writing the matrix forms
of the derivatives of automorphisms it can be verified that Γ = Θ∆. It may be
noted that ∆ is canonically isomorphic to GL(V ), Θ is normalised by ∆, and Γ is a
semidirect product of Θ and ∆.

Let ψ : B → V be the projection homomorphism onto V . Let K ′ be the subgroup
of GL(V ) consisting of all elements leaving ψ(µ) invariant. Since the support of ψ(µ)
spans V it follows that K ′ is compact (this is classical; see [1] for a general result
in this respect). Let K ′ also denote the subgroup of ∆ corresponding to K ′ under
the natural correspondence of ∆ and GL(V ). Let K be the connected component
of the identity in K ′. If ν = λγ is a root of µ on BΓ, where λ ∈ P (B) and γ ∈ Γ,
and γ = θδ with θ ∈ Θ and δ ∈ ∆, then by Lemma 2.2 µ is Γ-invariant and hence
ψ(µ) is δ-invariant, so δ ∈ K ′. This shows that µ is infinitely divisible on BΘK ′.
Since K is of finite index in K ′, by Lemma 5.2 it follows that µ is infinitely divisible
on BΘK.

Now let N = BΘ. Then [N,N ] = S is a compact subgroup contained in the
center of N ; in particular N is a nilpotent Lie group. Also NK is a semidirect
product of N and K. By the embedding theorem in [5] any µ on N which is
infinitely divisible on NK is embeddable on NK. By an argument as in the special
case when A is a vector group, this together with Theorem 4.1 shows that µ is
infinitely divisible on N . Recall that N = BΘ, semidirect product. We note also
that B is a normal subgroup of N and that Θ, being a vector subgroup, has no
nontrivial elements of finite order. As µ ∈ P (B) and infinitely divisible on N , this
implies that µ is infinitely divisible on B. This proves the theorem. �

Proof of Corollary 1.2:
Let G, µ, and A be as in the hypothesis. Let B be the smallest closed subgroup
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of G containing the support of µ. We recall that any root ν of µ on G is supported
on the normaliser of B in G (see [2], Proposition 1.1). Therefore replacing G by the
normaliser of B we may without loss of generality assume that B is normal in G.

We shall introduce a further reduction in the case when condition (ii) in the
hypothesis is satisfied. Let H be the subgroup of Z(µ) as in the hypothesis. Note
that Z(µ) is the centraliser of the subgroup B as above. Since by assumption B
is normal in G, it follows that Z(µ) is normal in G. Since H is a characteristic
subgroup of Z(µ) it follows that H is also normal in G. Recall that by hypothesis
H is abelian and topologically isomorphic to a connected Lie group. Let C be the
(unique) maximal torus in H. Then C is normal in G. Consider the homomorphism
φ : G → Aut (C) defined by φ(g)(x) = gxg−1 for all x ∈ C. By Lemma 5.1 there
exists a natural number r such that for every element of Aut (C) of finite order the
order divides r. Hence by Lemma 5.2 µ is infinitely divisible on the kernel of φ.
Therefore without loss of generality we may assume the conjugation action of G on
C to be trivial, i.e. that C is contained in the center of G.

For each k ≥ 1 let νk be a k-th root of µ on G. Then there exist λk ∈ P (B) and
gk ∈ G such that ν = λg and gkk ∈ B. Let ρk be the automorphism of B induced by
inner conjugation by gk.

Now consider the first case. Let k ≥ 1 be arbitrary. Let V be the vector
subspace of A spanned by B. Let vk be the unique k-th root of gkk in V and let
λ′k = λkvk ∈ P (V ). As V is a vector group and B spans V the automorphism
ρk of B extends to a unique automorphism of V , say ρ̃k. Since ρkk is the identity
automorphism of B it follows that ρ̃kk is the identity automorphism of V . Also
vkk = gkk is fixed by ρk and hence by ρ̃k, and so by linearity of ρ̃ we get ρ̃k(vk) =
vk. Now we have (λ′kρ̃k)

k = λ′kρ̃k(λ
′
k) · · · ρ̃k−1

k (λ′k) = λkvkρ̃k(λkvk) · · · ρ̃k−1
k (λkvk) =

λkρk(λk) · · · ρk−1
k (λk)v

k
k = λkρk(λk) · · · ρk−1

k (λk)g
k
k = (λkgk)

k = νkk = µ. This shows
that µ is infinitely divisible on Aff (V ). Therefore by Theorem 1.1 µ is infinitely
divisible on V , and hence also on A.

Next consider the second case. In this case we first show that µ is infinitely
divisible on Aff (H). Let k ≥ 1 be arbitrary. SinceH is a connected abelian Lie group
for each gk as above there exists hk ∈ H such that hkk = gkk . Let λ′h = λkhk ∈ P (H).
Let ρ̃k be the automorphism of H induced by inner conjugation by gk. As C is
contained in the center of G it is pointwise fixed by ρ̃k, and also hkk = gkk is fixed by
ρ̃k. Since H/C is a vector group this implies that ρ̃k(hk) = hk. Now a computation
analogous to the one in the first case shows that (λ′kρ̃k)

k = µ. Hence µ has a k-th
root on Aff (H) for all k ≥ 1. Therefore by Theorem 1.1 µ is infinitely divisible on
H. Since µ ∈ P (A) and H is an abelian Lie group this implies that µ is infinitely
divisible on A.

The last case follows as a special case of case (ii), where we choose H to be the
center of Z(µ). The condition on A as in the hypothesis ensures that A is contained
in the center of Z(µ). This completes the proof of the corollary. �

Remark 5.3. It is not clear whether restrictions such as conditions (i) or (ii)
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in Corollary 1.2 are indeed necessary for the validity of the conclusion as in the
corollary. Pursuing this question has turned out to be too cumbersome for it to be
worthwhile for the present.

Remark 5.4. It may be mentioned here that an assertion as in Theorem 1.1 holds
for finite-dimensional vector spaces over p-adic fields, for any prime p, in the place of
connected Lie groups. This readily follows from the fact that in the automorphism
groups of these groups the orders of elements of finite order are bounded (see [10],
LG, Appendix). An analogue of Corollary 1.2 (case (i)) can be deduced from for
these groups by a simple argument.
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