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Abstract. Let α be an action of Zd by continuous automorphisms of
a compact abelian group X. A point x in X is called homoclinic for α if
αnx→ 0X as ‖n‖ → ∞. We study the set ∆α(X) of homoclinic points
for α, which is a subgroup of X.

If α is expansive then ∆α(X) is at most countable. Our main results
are that if α is expansive, then (1) ∆α(x) is nontrivial if and only if
α has positive entropy and (2) ∆α(X) is nontrivial and dense in X
if and only if α has completely positive entropy. In many important
cases ∆α(X) is generated by a fundamental homoclinic point which can
be computed explicitly using Fourier analysis. Homoclinic points for
expansive actions must decay to zero exponentially fast, and we use
this to establish strong specification properties for such actions. This
provides an extensive class of examples of Zd-actions to which Ruelle’s
thermodynamic formalism applies.

The paper concludes with a series of examples which highlight the
crucial role of expansiveness in our main results.

1. Introduction

An algebraic Zd-action is an action of Zd by (continuous) automorphisms
of a compact abelian group. The dynamics of a single group automorphism
have been investigated in great detail over the past several decades. More
recently, the study of algebraic Zd-actions for d ≥ 2 has revealed a striking
interplay between these actions and commutative algebra. In §2 we summarize
those parts of this interaction needed here.

The purpose of this paper is to study the homoclinic points of algebraic
Zd-actions. Let α be an algebraic Zd-action on the compact abelian group X
and let 0X denote the additive identity of X. A point x ∈ X is homoclinic
for α if αnx→ 0X as ‖n‖ → ∞. The set ∆α(X) of all homoclinic points for
α is clearly a subgroup of X which we call the homoclinic group of α. In §3
we discuss some elementary properties of the homoclinic group, including
countability of ∆α(X) whenever α is expansive.

Our two main results are contained in §4. These are that if α is an
expansive algebraic Zd-action, then (1) ∆α(X) is nontrivial if and only if α
has (strictly) positive entropy, and (2) ∆α(X) is nontrivial and dense in X if
and only if α has completely positive entropy. The second result is proved by
first establishing in Lemma 4.5 the density of ∆α(X) for certain “principal”
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expansive actions by use of Fourier analysis. For these actions ∆α(X) is
generated by a single fundamental homoclinic point which can be computed
explicitly. This lemma is then combined with some commutative algebra to
prove (2). Recent work of Kaminker and Putnam [3], [11] has suggested a
general duality in the K-theory of C∗-algebras. For a principal expansive
action α on X we show that ∆α(X) is isomorphic to the dual group of X,
providing a class of examples to which their duality theory applies.

Ruelle has investigated expansive topological Zd-actions which satisfy
an orbit tracing property called specification (see [12] and [13]), showing
that there is a thermodynamic formalism for such actions. In §5 we show
that expansive algebraic Zd-actions with completely positive entropy always
satisfy very strong specification properties, thereby providing a extensive
class of examples to which the thermodynamic formalism applies.

General algebraic Zd-actions can be built from simpler ones using a twisted
skew product construction. In §6 we use the specification properties from §5
to show that a twisted skew product is measurably isomorphic to a direct
product. For d = 1 this fact proved useful in substantially simplifying the
proof that ergodic automorphisms of compact abelian groups are measurably
isomorphic to Bernoulli shifts.

Finally, we describe in §7 examples of nonexpansive algebraic Zd-actions
which show that in general there is no relationship between entropy and the
size of the homoclinic group. One of these examples has completely positive
entropy and trivial homoclinic group, while another has zero entropy and
uncountable homoclinic group. The latter example makes crucial use of a
result from Fourier analysis about the decay of the Fourier transform of a
smooth measure on a hypersurface with sufficient curvature.

2. Algebraic Zd-actions

In this section we review the connections between algebraic Zd-actions
and commutative algebra.

Let Rd = Z[u±1
1 , . . . , u±1

d ] be the ring of Laurent polynomials with integral
coefficients in the commuting variables u1, . . . , ud. We write f ∈ Rd as
f =

∑
m∈Zd cf (m)um with um = um1

1 · · · · · umdd and cf (m) ∈ Z for every
m = (m1, . . . ,md) ∈ Zd, where cf (m) = 0 for all but finitely many m.

Let α be an algebraic Zd-action on a compact abelian group X. The
additively-written dual group M = X̂ is a module over the ring Rd with
operation

f · a =
∑

m∈Zd
cf (m)α̂m(a) (2.1)

for f ∈ Rd and a ∈ M , where α̂m is the automorphism of M = X̂ dual
to αm. In particular,

um · a = α̂m(a) (2.2)

for m ∈ Zd and a ∈M . The module M is Noetherian (and hence countable)
whenever α is expansive (see (4.10) and Proposition 5.4 in [14]). Conversely,
if M is an Rd-module, define an algebraic Zd-action αM on the compact
abelian group XM = M̂ by declaring αm

M to be dual to multiplication by um

on M . Note that XM is metrizable if and only if M is countable.
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A prime ideal p ⊂ Rd is said to be associated with an Rd-module M if
p = {f ∈ Rd : f · a = 0M} for some a ∈M , and the module M is associated
with a prime ideal p ⊂ Rd if p is the only prime ideal associated with M .
The set of (distinct) prime ideals associated with a Noetherian Rd-module
M is finite.

If α is an algebraic Zd-action on X, then its topological entropy h(α)
coincides with the metric entropy hλX (α), where λX is the normalized Haar
measure on X. We recall the following results from [14], [8], and [17, Lemma
4.5] (cf. also [15], [4], and [16]), which show that the dynamical properties
of αM are largely controlled by the prime ideals associated to M .

Lemma 2.1. Let M be a Noetherian Rd-module with associated prime ideals
{p1, . . . , pm}.

(1) The following conditions are equivalent.
(i) αM is expansive;
(ii) αRd/pj is expansive for every j = 1, . . . ,m;
(iii) VC(pj) ∩ Sd = ∅ for every j = 1, . . . ,m, where

VC(pj) = { z ∈ (C×)d : f(z) = 0 for every f ∈ pj },

C× = C r {0} and S = {z ∈ C : |z| = 1}.
(2) The following conditions are equivalent.

(i) αM is mixing (with respect to Haar measure);
(ii) αRd/pj is mixing for every j = 1, . . . ,m;
(iii) pj ∩ {um − 1 : 0 6= m ∈ Z} = ∅ for every j = 1, . . . ,m.

(3) The following conditions are equivalent.
(i) αM has positive entropy (with respect to Haar measure);
(ii) αRd/pj has positive entropy for some j = 1, . . . ,m;
(iii) pj is principal and αRd/pj is mixing for some j = 1, . . . ,m.

(4) The following conditions are equivalent.
(i) αM has completely positive entropy (with respect to Haar measure);
(ii) αRd/pj has positive entropy for every j = 1, . . . ,m;
(iii) pj is principal and αRd/pj is mixing for every j = 1, . . . ,m.

(5) There exists a Noetherian Rd-module N ⊃ M with the following
properties.
(i) h(αN ) = h(αM );
(ii) N = N (1) ⊕ · · · ⊕ N (m), where each of the modules N (j) has a

finite sequence of submodules N (j) = N
(j)
sj ⊃ · · · ⊃ N

(j)
0 = {0}

with N
(j)
k /N

(j)
k−1
∼= Rd/pj for k = 1, . . . , sj. In particular, αN

is expansive (or mixing) if and only if αM is expansive (or
mixing).

In view of this lemma it is useful to have an explicit realization of Zd-
actions of the form αRd/p, where p ⊂ Rd is a prime ideal. Let σ be the
shift-action of Zd on TZd defined by

(σmx)n = xm+n , (2.3)
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and for f =
∑

m∈Zd cf (m)um ∈ Rd put

f(σ) =
∑

m∈Zd
cf (m)σm : TZd −→ TZd . (2.4)

Identify Rd with the dual group of TZd by setting

〈f, x〉 = exp
[
2πi(f(σ)x)0

]
(2.5)

for f ∈ Rd and x ∈ TZd . A closed subgroup X ⊂ TZd is shift-invariant if
and only if its annihilator X⊥ = a ⊂ Rd is an ideal, in which case

X = XRd/a = {x ∈ TZd : f(σ)x = 0TZd for every f ∈ a } (2.6)

and αRd/a is the restriction of σ to XRd/a ⊂ TZd .
More generally, if α is an expansive algebraic Zd-action on X, then X is

metrizable, M = X̂ is a Noetherian Rd-module, and there exist elements
a1, . . . , an in M such that M = Rd · a1 + · · · + Rd · an. The surjective
homomorphism (f1, . . . , fn) 7→ f1 ·a1 + · · ·+fn ·an from (Rd)n to M dualizes
to a continuous, injective group homomorphism ψ : X −→ (̂Rd)n = (Tn)Zd

and allows us to regard X as a closed, shift-invariant subgroup of (Tn)Zd

and α as the restriction to X of the shift-action σ on (Tn)Zd . We write a
typical point x ∈ X ⊂ (Tn)Zd as x = (xn) with xn = (x(1)

n , . . . , x
(n)
n ) ∈ Tn

for every n ∈ Zd, or alternatively as x = (x(1), . . . , x(n)) where x(i) ∈ TZd .
Every character in

X⊥ ⊂ (̂Tn)Zd =
⊕

Zd
Zn ∼= (Rd)n

is of the form

〈h, x〉 =
n∏
i=1

〈h(i), x(i)〉 (2.7)

for x = (x(1), . . . , x(n)) ∈ X ⊂ (Tn)Zd , where h = (h(1), . . . , h(n)) ∈ (Rd)n

and 〈h(i), x(i)〉 is defined by (2.5). The shift-invariance of X guarantees that

X⊥ = {h ∈ (Rd)n : 〈h, x〉 = 1 for every x ∈ X }
is a submodule of (Rd)n, and hence Noetherian. In particular there exist
finitely many elements hj = (h(1)

j , . . . , h
(n)
j ) ∈ (Rd)n, j = 1, . . . s, which

generate X⊥ as an Rd-module, and which therefore satisfy that

X = {x ∈ (Tn)Zd : 〈umhj , x〉 = 1 for all m ∈ Zd and j = 1, . . . , s }. (2.8)

For t ∈ T and t = (t(1), . . . , t(n)) ∈ Tn set

|t| = min{|t+ k| : k ∈ Z}, |t| = max
1≤i≤n

|t(i)|. (2.9)

For m = (m1, . . . ,md) ∈ Zd put

‖m‖ = max
1≤i≤d

|mi| (2.10)

and set
B(r) = {m ∈ Zd : ‖m‖ ≤ r }. (2.11)



HOMOCLINIC POINTS 5

The following proposition was proved in [17], and is a simple consequence
of expansiveness.

Proposition 2.2. Let n ≥ 1, and let X ⊂ (Tn)Zd be a closed, shift-invariant
subgroup such that the restriction α of the shift-action σ on (Tn)Zd to X is
expansive. In the notation of (2.9) and (2.11) there exist constants ε, η ∈
(0, 1) and C > 0 with the following property: if x ∈ X ⊂ (Tn)Zd satisfies
that

max
n∈k+B(L)

|xn| < ε

for some k ∈ Zd and L ≥ 0, then

|xk| < CηL.

3. The homoclinic group

Our main object of study is the homoclinic group of an algebraic Zd-
action.

Definition 3.1. Let α be an algebraic Zd-action on X. An element x ∈ X
is α-homoclinic (to the identity element 0X of X), or simply homoclinic, if

lim
‖n‖→∞

αnx = 0X .

The subgroup ∆α(X) ⊂ X of all α-homoclinic points is called the homoclinic
group of α.

For y ∈ X note that αn(y + x) − αn(y) → 0X as ‖n‖ → ∞ if and only
if x ∈ ∆α(X), so that the set of points in X asymptotic to y is exactly
y + ∆α(X). Hence the homoclinic group of α determines the asymptotic
behavior of α at all group elements.

See [1] for the role homoclinic points play in the general theory of dynamical
systems.

If the homoclinic group of a Zd-action is finite, then clearly it must be
trivial. Hence the homoclinic group is either trivial, countably infinite, or
uncountable. The last case can occur (consider the full Zd-shift αRd on TZd ,
or see Examples 7.3 and 7.5). However, for expansive actions the homoclinic
group is always countable.

Lemma 3.2. The homoclinic group of an expansive algebraic Zd-action is
at most countable.

Proof. Let α be an expansive algebraic Zd-action on X and ρ be a metric
on X compatible with the topology of X. Fix an expansive constant δ > 0
for α. This means that if ρ(αnx, αny) < δ for all n ∈ Zd, then x = y. For
j ≥ 1 and y ∈ X define

Ej = {x ∈ X : ρ(αnx, 0X) < δ/2 for all n with ‖n‖ > j }
and

Bj(y) = {x ∈ X : ρ(αnx, αny) < δ/2 for all n with ‖n‖ ≤ j }.
We claim that that |Ej ∩ Bj(y)| ≤ 1 for all y ∈ X. For if x and x′ are in
Ej ∩Bj(y), then for ‖n‖ > j we have that

ρ(αnx, αnx′) ≤ ρ(αnx, 0X) + ρ(0X , αnx′) < δ,
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while for ‖n‖ ≤ j we have that

ρ(αnx, αnx′) ≤ ρ(αnx, αny) + ρ(αny, αnx′) < δ.

Hence x = x′ by expansiveness. For fixed j the open cover {Bj(y) : y ∈ X}
of X has a finite subcover, so that Ej is finite for every j ≥ 1. Hence
∆α(X) ⊂

⋃∞
j=1Ej is at most countable. �

As noted above, some condition is needed to ensure countability of the
homoclinic group. In Example 7.5 we describe a nonexpansive Z3-action
with zero entropy and uncountable homoclinic group.

For a hyperbolic toral automorphism there is a direct geometric description
of its homoclinic group.

Example 3.3. (The homoclinic group of a hyperbolic toral automorphism.)
This example shows that for the Z-action generated by a single hyperbolic
automorphism φ on Tk, the homoclinic group ∆φ(Tk) is the intersection of
the stable and the unstable subgroups of φ, that it is dense in Tk, and that
the restriction of φ to ∆φ(Tk) is isomorphic to the transpose of the dual
automorphism φ̂ on the dual group T̂k ∼= Zk.

Let π : Rk −→ Tk be the usual quotient map and A ∈ GL(k,Z) be the
linear hyperbolic map such that π ◦ A = φ ◦ π. Then Rk = C⊕ E, where A
contracts on the subspace C and expands on the subspace E. Observe that
C ∩ Zk = {0} since there are no contracting automorphisms of nontrivial
discrete groups. Similarly, E ∩ Zk = {0}. Hence π is injective on C,
and we claim that its image C = π(C) is dense in Tk. To verify this
assertion, note that C is connected, so that C is connected and compact
in Tk, hence a subtorus that is obviously invariant under φ. If C 6= Tk, then
the quotient automorphism of φ on Tk/C would be a toral automorphism all
of whose eigenvalues are greater than one in modulus, which would violate
preservation of Haar measure. Hence C = Tk, as claimed.

We next show that ∆φ = ∆φ(Tk) = C∩E. For suppose that x ∈ ∆φ, and
let x ∈ Rk be a lift of x, so that πx = x. Since π is a local homeomorphism,
it follows from φj(x) → 0 as j → +∞ that Ajx is asymptotic to a lattice
point m ∈ Zk in the sense that Aj(x−m)→ 0 as j → +∞. Thus x ∈ C+m.
Similarly, φj(x)→ 0 as j → −∞ shows there is a n ∈ Zk such that x ∈ E+n.
Observe that (C+m)∩(E+n) is the singleton {x} and that x = πx ∈ C∩E.
Conversely, for every m,n ∈ Zk, the point in (C+m)∩(E+n) clearly projects
under π to an element of ∆φ. Hence ∆φ = C ∩ E.

Define θ : Zk −→ ∆φ by θ(n) = π[C∩ (E + n)]. In the previous discussion
the lift x could be adjusted by a lattice point so that m = 0, showing that
θ is surjective. It is injective since E ∩ Zk = {0} and π is injective on C.
Clearly θ ◦ A = φ ◦ θ, so that the action of φ on ∆φ is isomorphic to the
action of A on Zk. The matrix of the dual automorphism φ̂ on T̂k ∼= Zk
with respect to the standard basis on Zk is the transpose A> of A, verifying
the last claim of the first paragraph.

Finally, we prove that ∆φ is dense in Tk. From the above we know that
∆φ = π[C ∩ (E + Zk)], and we claim that Γ = C ∩ (E + Zk) is dense in C.
First note that Γ ⊂ C is A-invariant, and thus connected since otherwise A
would induce a contracting automorphism of the discrete group Γ modulo
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its connected component of the identity. Hence Γ is a subspace of C, and
Zk ⊂ Γ ⊕ E, thus Γ ⊕ E = Rk, and so Γ = C. Then density of C = π(C) in
Tk proves that ∆φ = π(Γ ) is also dense.

We conclude this example with some remarks whose relevance will become
clearer in Example 4.7. If A is the companion matrix of a monic polynomial
with constant term ±1, then it is easy to construct an explicit conjugacy in
GL(k,Z) between A and A>. Hence in this case Tk contains the countable
group ∆φ such that the action of φ on ∆φ is isomorphic to the action of the
dual automorphism φ̂ on T̂k. However, this fails for general A ∈ GL(k,Z).
For example, the matrix A = [ 19 5

4 1 ] is not conjugate to A> in GL(2,Z) (see
[10, p. 81]), and so here (∆φ, φ) is not isomorphic to (T̂k, φ̂).

Example 3.4. (An ergodic nonhyperbolic toral automorphism having trivial
homoclinic group.) Let A ∈ GL(k,Z) have characteristic polynomial χA(t)
that is irreducible over Q and which has some but not all of its eigenvalues
on the unit circle. There is an A-invariant splitting Rk = C⊕N ⊕ E, where
A contracts on C, expands on E, and is an isometry on N. Let φ be the
automorphism of Tk induced by A and π : Rk −→ Tk the quotient map.
As in the previous example, we obtain that ∆φ(Tk) = π(C) ∩ π(E). Now
(C⊕ E) ∩ Zd = {0}, since otherwise χA(t) would have a proper factor with
integer coefficients, contradicting its irreducibility. Hence ∆φ(Tk) = {0}.
This is an example of a (nonexpansive) Z-action with completely positive
entropy having trivial homoclinic group.

In Example 3.3 the homoclinic group is dense. We show in the next section
that for an expansive action on a nontrivial group this occurs exactly when
the action has completely positive entropy. For now, let us point out one
direct consequence of density.

Proposition 3.5. Let α be an algebraic Zd-action on X, and suppose that
∆α(X) is dense in X. Then αn is ergodic with respect to Haar measure for
every n 6= 0.

Proof. Denote αn by φ, and observe that since n 6= 0 we have ∆α(X) ⊂
∆φ(X), so ∆φ(X) is dense in X as well. Let λ denote Haar measure on
X. If φ were not ergodic, there would exist a nonconstant f ∈ L2(X,λ)
with f ◦ φ = f (λ-a.e.). Since ∆φ(X) is dense, there is a t ∈ ∆φ(X) and
an ε > 0 such that E = {x ∈ X : |f(x) − ft(x)| > ε} has λ(E) > 0, where
ft(x) = f(x+ t). On the other hand,

(f − ft) ◦ φn = f ◦ φn − (f ◦ φn)φ−nt = f − fφ−nt,
and fφ−nt → f in measure since φ−nt → 0X . Since φ preserves Haar
measure, we would then obtain that

0 < λ(E) = λ(φ−nE) = λ({|(f − ft) ◦ φn| > ε})
= λ({|f − fφ−nt| > ε})→ 0

as n→∞. This contradiction shows that φ is ergodic. �

The density of the homoclinic group in this proof plays a role remarkably
similar to that of minimality of the horocycle flow in the proof of ergodicity
of the geodesic flow. In particular, if Tt denotes the translation operator
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Ttf = ft and Uφf = f ◦ φ, then the commutation relation UφTt = Tφ−1tUφ
is crucial to the proof. This relation is analogous to the Weyl commutation
relation between the horocycle and geodesic flows (see [9] for details).

We conclude this section by briefly discussing the functorial properties
of ∆. Consider the category whose objects are pairs (X,α), where α is an
algebraic Zd-action on the compact abelian group X, and whose morphisms
θ : (X,α) −→ (Y, β) are group homomorphisms θ : X −→ Y so that θ ◦αn =
βn ◦ θ for all n ∈ Z. For the rest of this section we write ∆(X,α) instead of
∆α(X) to emphasize the functorial nature of ∆. If θ : (X,α) −→ (Y, β) is
a morphism, then the restriction ∆(θ) of θ to ∆(X,α) has range contained
in ∆(Y, β). Hence ∆ is a covariant functor from the category of algebraic
Zd-actions to the category of abelian groups.

Suppose that

0 −−−→ (X,α) θ−−−−→ (Y, β)
φ−−−−−→ (Z, γ) −−−→ 0

is a short exact sequence. It is easy to see that

0 −−→ ∆(X,α)
∆(θ)−−−→ ∆(Y, β)

∆(φ)−−−→ ∆(Z, γ)

is also exact. However, the following example shows that exactness can fail
at (Z, γ).

Example 3.6. (A surjective morphism of algebraic Z-actions that is not
surjective on the corresponding homoclinic groups.) Let A = [ 0 1

1 1 ] and α
be the Z-action on X = T2 generated by the automorphism of X induced
by A. Consider the morphism θ : (X,α) −→ (X,α) defined by θ(x1, x2) =
(2x1, 2x2), which is clearly surjective. According to Example 3.3, ∆(X,α)
is a free subgroup of X that is isomorphic to Z2. Hence ∆(θ)

(
∆(X,α)

)
has

index 4 in ∆(X,α), so that ∆(θ) : ∆(X,α) −→ ∆(X,α) is not surjective.
To see the underlying reason making this example work, let K = ker θ

and y be a point in ∆(X,α) that is not in the image of ∆(θ). Then the
coset y+K is “homoclinic” in the sense that αn(y+K) converges to 0 +K
in the Hausdorff metric as |n| → ∞. Since K is finite, there are k1, k2 ∈ K
such that αn(y + k1)→ 0X as n→ −∞ and αn(y + k2)→ 0X as n→ +∞.
However k1 6= k2, and so no element of y +K is itself α-homoclinic.

The category of algebraic Zd-actions is closed under the operations of
taking arbitrary direct products and inverse limits. It is routine to show
that ∆ commutes with both of these operations. We use this observation to
show that right exactness of ∆ can fail more dramatically than indicated by
Example 3.6.

Example 3.7. (A surjective morphism from an algebraic Z-action with tri-
vial homoclinic group onto one with dense homoclinic group.) We use the
inverse limit of a collection of Z-actions (Xj , αj) indexed by j ∈ Z. For each
j ∈ Z let Xj = T2, let αj be the automorphism of Xj described in Example
3.6, and let θj : Xj −→ Xj−1 be defined by θj(x) = 2x as in that example.
Put

(X,α) = lim←−
(
{(Xj , αj)}, {θj}

)
.
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Since ∆ commutes with inverse limits, we see that

∆(X,α) = lim←−
(
{∆(Xj , αj)}, {∆(θj)}

)
.

Now each ∆(Xj , αj) is isomorphic to Z2, and ∆(θj) is multiplication by 2.
Since no element of Z2 except 0 is infinitely divisible by 2, it follows that
∆(X,α) is trivial.

Define ψ : X −→ X0 by ψ
(
(xj)

)
= x0. Then ψ is a surjective morphism

from (X,α) to (X0, α0), and ∆(X0, α0) is dense in X0 by Example 3.3.

4. Homoclinic groups of expansive algebraic Zd-actions

In this section we determine which expansive algebraic Zd-actions (where
d ≥ 1 as usual) have nontrivial homoclinic group and which have dense
homoclinic group.

Theorem 4.1. Let α be an expansive Zd-action by automorphisms of a
compact abelian group X. Then ∆α(X) 6= {0X} if and only if α has positive
entropy.

Theorem 4.2. Let α be an expansive Zd-action by automorphisms of a
nontrivial compact abelian group X. Then ∆α(X) is dense in X if and only
if α has completely positive entropy.

Note that Example 3.4 shows that both of these results are false if the
expansiveness assumption is dropped.

For the proof of Theorem 4.1, by §2 we may assume that X is a closed,
shift-invariant subgroup of (Tn)Zd for some n ≥ 1, and that α is the shift-
action of Zd on X. For every x = (x(1), . . . , x(n)) ∈ X ⊂ (Tn)Zd and n ∈ Zd

we set xn = (x(1)
n , . . . , x

(n)
n ) ∈ Tn and define |xn| and ‖n‖ by (2.9) and (2.10).

The following lemma is an immediate consequence of Proposition 2.2.

Lemma 4.3. Let α be an expansive algebraic Zd-action on X and assume
that X ⊂ (Tn)Zd as above. There is a positive constant η < 1 such that for
every x ∈ ∆α(X) there is a C > 0 such that |xn| < C η‖n‖ for all n ∈ Zd.

Thus homoclinic points for expansive algebraic Zd-actions must decay
exponentially fast, and this is crucial to what follows. Note that the expansive
hypothesis is necessary, since, for example, the shift-action on TZd has
homoclinic points which decay arbitrarily slowly.

Lemma 4.4. Let α be an expansive algebraic Zd-action on X. If ∆α(X) 6=
{0X} then h(α) > 0.

Proof. We use the notations above and assume that X ⊂ (Tn)Zd . Since α
is expansive there exists a δ > 0 such that if x = (xn) ∈ X ⊂ (Tn)Zd and
supn∈Zd |xn| < δ, then x = 0X . If ε, r > 0 we say that a set E ⊂ X is
(r, ε)-separated if there exists, for every pair x, x′ of distinct points in E, a
coordinate n ∈ B(r) with |xn−x′n| ≥ ε. We denote by s(r, ε) the maximum
of the cardinalities of all (r, ε)-separated sets in X and observe that

h(α) = lim sup
r→∞

1
(2r + 1)d

log s(r, ε)
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for every ε ∈ (0, δ) (see [8, Appendix A] or [15]).
If there exists a nonzero α-homoclinic point x ∈ X we can choose an

ε ∈ (0, δ) with 2ε < |xn| for some n ∈ Zd. Adjusting by an iterate of α if
necessary, we may assume that n = 0. Apply Lemma 4.3 to find an r ≥ 0
with |xn| < ε for every n ∈ Zd r B(r). Lemma 4.3 also allows us to find an
integer k ≥ 2r for which ∑

0 6=n∈Zd
|xkn| < ε.

Let L ≥ 1 and put, for every ω = (ωn) ∈ {0, 1}B(L),

y(ω) =
∑

n∈B(L)

ωnσ
kn(x).

Our choices of ε, r and k imply that the set

E(L) = {y(ω) : ω ∈ {0, 1}B(L)} ⊂ X

is (kL, ε)-separated. Since E(L) has cardinality |E(L)| = 2(2L+1)d we obtain
that

h(α) = lim sup
r→∞

1
(2r + 1)d

log s(r, ε)

≥ lim
L→∞

log 2
(2L+ 1)d

(2kL+ 1)d
=

log 2
kd

> 0. �

Lemma 4.5. Let f ∈ Rd be a (possibly reducible) Laurent polynomial such
that the Zd-action α = αRd/fRd on X = XRd/fRd is expansive and mixing,
(and so has positive entropy by Lemma 2.1). Then the homoclinic group
∆α(X) is countable and dense in X.

Furthermore there exists a group isomorphism τ : Rd/fRd −→ ∆α(X)
with αn · τ(h) = τ(unh) for every h ∈ Rd/fRd and n ∈ Zd. Therefore the
Zd-action obtained by restricting α to ∆α(X) is isomorphic to the Zd-action
on X̂ dual to α.

Proof. As in §2 we represent X as a closed, shift-invariant subgroup of TZd

and α as the shift-action of Zd to X. Let `2(Zd,R) denote the Hilbert space
of square-summable real-valued functions on Zd, and define the convolution
of v, w ∈ `2(Zd,R) by (v ∗ w)n =

∑
k∈Zd vkwn−k. For each h ∈ Rd let

h̃ ∈ `2(Zd,R) be defined by h̃n = ch(−n). If we use σ for the shift action of
Zd on `2(Zd,R), then the sign reversal in defining h̃ means that h(σ)v = h̃∗v
for all v ∈ `2(Zd,R).

The Fourier transform sends each v = (vn) ∈ `2(Zd,R) to the function
v̂ : Td −→ C defined by

v̂(t) =
∑
n∈Zd

vne
2πi(t·n),

where t = (t1, . . . , td) and t ·n = t1n1 + · · ·+ tdnd. By Plancherel’s formula

v̂ ∈ L2(Td, λTd), and we have (h̃ ∗ v)̂= ̂̃
h v̂ for h ∈ Rd and v ∈ `2(Zd,R).

Let F denote the Fourier transform of f̃ . By Lemma 2.1(1), expansiveness
of α implies that F (t) 6= 0 for every t ∈ Td, so that 1/F ∈ C∞(Td). Since

(1/F )(−t) = 1/F (t),
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the Fourier coefficients of 1/F are real. By applying the inverse Fourier
transform to 1/F we obtain an element wM ∈ `2(Zd,R) with ŵM = 1/F and∑

n∈Zd
‖n‖k |wM

n | <∞

for all k ≥ 1. (Indeed, 1/F is real-analytic, so that wM
n decays exponentially

fast, but we do not need this stronger statement.) In particular, for each
h ∈ Rd the point h̃ ∗ wM = h(σ)wM ∈ `2(Zd,R). Also note that f̃ ∗ wM, as
an element of `2(Zd,R), is the indicator function of {0}.

Define η : `2(Zd,R) −→ TZd by reducing each coordinate (mod 1), and
put xM = η(wM). We call xM the fundamental homoclinic point of α. The
restriction of η to

∆ = { h̃ ∗ wM : h ∈ Rd }
is a group homomorphism of ∆ into the homoclinic group ∆α(X) with the
property that

η(h̃ ∗ wM) = h(σ)(xM)

for all h ∈ Rd. We claim that

η(∆) = ∆α(X) (4.1)

and
{h ∈ Rd : η(h̃ ∗ wM) = 0X } = fRd. (4.2)

In order to prove (4.1), let x ∈ ∆α(X). Denote the set of all elements
in `2(Zd,R) with integral values by `2(Zd,Z). By Lemma 4.3 we can find
y ∈ `2(Zd,R) with η(y) = x. Now 0 = f(σ)x = η(f̃ ∗ y), so f̃ ∗ y ∈ `2(Zd,Z).
Since yn → 0 as ‖n‖ → ∞ and f̃ has finite support, it follows that (f̃ ∗y)n →
0 as ‖n‖ → ∞. Since each (f̃ ∗ y)n ∈ Z, we see there is an h ∈ Rd with

h̃ = f̃ ∗ y. Thus ŷ = ̂̃
h/F , so y = h̃ ∗ wM and x = η(h̃ ∗ wM). This proves

that η(∆) = ∆α(X), establishing (4.1).
For (4.2), observe that every h ∈ Rd with η(h̃ ∗ wM) = h(σ)xM = 0

satisfies that h̃ ∗ wM = g̃ for some g ∈ Rd, and by applying the inverse
Fourier transform we see that h = fg ∈ fRd. This completes the proof that
the map τ(h) = η(h̃ ∗ wM) is an isomorphism from Rd/fRd to ∆α(X).

To prove density of ∆α, let g ∈ ∆⊥α . Then for every h ∈ Rd we have that

1 = 〈g, η(h̃ ∗ wM)〉 = exp
[
2πi(g̃ ∗ h̃ ∗ wM)0

]
= exp

[
2πi
(
g̃ ∗ wM) ∗ h̃

)
0

]
,

so that g̃ ∗ wM ∈ `2(Zd,Z). Hence g̃ ∗ wM = k̃ for some k ∈ Rd, and
g̃ = g̃ ∗wM ∗ f̃ = k̃ ∗ f̃ implies that g = kf ∈ fRd. It follows that ∆⊥α = X⊥,
so that ∆α is dense in X. �

Example 4.6. (Calculation of the fundamental homoclinic point for an
expansive action.) Let f(u1, u2) = 3− u1 − u2. Clearly VC(f) ∩ S2 = ∅, so
that αR2/fR2

is expansive by Lemma 2.1(1). We compute the fundamental
homoclinic point xM as follows.

The Fourier transform F of f̃ is F (s, t) = 3 − e−2πis − e−2πit. We can
compute the inverse Fourier transform of 1/F explicitly using a geometric
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series:

1
F (s, t)

=
1
3

[
1

1− 1
3(e−2πis + e−2πit)

]
=

1
3

∞∑
k=0

3−k(e−2πis + e−2πit)k

=
∞∑
m=0

∞∑
n=0

3−(m+n+1)

(
m+ n

n

)
e−2πi(ms+nt).

Hence wM is given by

wM
(−m,−n) =

3−(m+n+1)

(
m+ n

n

)
if m ≥ 0 and n ≥ 0,

0 otherwise.

Every homoclinic point for αR2/fR2
is therefore an integral combination of

translates of xM = η(wM), the reduction of wM (mod 1).
A similar analysis applies to every polynomial in Rd having one coefficient

whose absolute value strictly exceeds the sum of the absolute values of its
other coefficients.

Example 4.7. (Calculation of the fundamental homoclinic point for a hyperbolic
toral automorphism.) Let A = [ 0 1

1 1 ] and let φ be the automorphism of T2

induced by A. The Z-action generated by φ is an instance of our general
algebraic framework as follows. Let f(u1) = u2

1 − u1 − 1 and α = αR1/fR1

be the corresponding Z-action on X = XR1/fR1
⊂ TZ. Then ψ : X −→ T2

defined by ψ(x) = (x0, x1) is easily checked to be an isomorphism of α
with φ. In Example 3.3 we described ∆φ(T2) geometrically. Here we use
the notations and proof of the previous lemma to compute the fundamental
homoclinic point xM of α analytically.

The Fourier transform of f̃ is F (t) = e−4πit−e−2πit−1. Let λ = (1+
√

5)/2
and µ = (1−

√
5)/2 be the roots of f . Then

1
F (t)

=
1

(e−2πit − λ)(e−2πit − µ)
=

1/
√

5
e−2πit − λ

− 1/
√

5
e−2πit − µ

.

Now

1/
√

5
e−2πit − λ

= − 1
λ
√

5
1

1− λ−1e−2πit
=
∑
n≥0

(
− 1√

5
λ−n−1

)
e−2πint

=
∑
n≤0

(
− 1√

5
λn−1

)
e2πint,

and

− 1/
√

5
e−2πit − µ

= − 1√
5 e−2πit

1
1− µe2πit

=
∑
n≥1

(
− 1√

5
µn−1

)
e2πint.

Hence

wM
n =


− 1√

5
µn−1 if n ≥ 1,

− 1√
5
λn−1 if n ≤ 0.
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Using this one can verify directly the crucial property that

(f̃ ∗ wM)n = wM
n+2 − wM

n+1 − wM
n =

{
1 if n = 0,
0 otherwise.

Thus xM = η(wM) is the fundamental homoclinic point of α.
To compare this result to the geometric construction in Example 3.3,

recall the notation used there. It is then easy to compute that

(C + (−1, 0)) ∩ E = {(wM
0 , w

M
1 )} = {x},

and so πx = ψ(xM) ∈ ∆φ(T2).
This brings up a subtle point related to the remarks at the end of Example 3.3.

Let f(u1) ∈ R1 be monic with constant term ±1 and have degree k. Denote
byA the transpose of the companion matrix of f . The matrix of multiplication
by u1 on R1/fR1

∼= Zk with respect to the standard basis {1, u1, . . . , u
k−1
1 }

is A>, while in our formalism the matrix representing φ on Tk is A. Yet
Lemma 4.5 implies that these matrices are conjugate in GL(k,Z). The
explanation for this discrepancy is as follows. There is an isomorphism
θ : Zk −→ ∆φ as in Example 3.3, and the matrix of φ on ∆φ with respect
to the image of the standard basis for Zk under θ is indeed A. But Lemma
4.5 shows that if tM ∈ ∆φ is the fundamental homoclinic point for φ, then
{tM, φ(tM), . . . , φk−1(tM)} is also a basis for ∆φ, and with respect to this basis
φ has matrix A>. It is this basis, not the standard one, that is used in the
proof of Lemma 4.5. We are grateful to Manfred Einsiedler for pointing this
out to us.

Proof of Theorem 4.1. Let α be an expansive algebraic Zd-action on X. If
∆α(X) 6= {0X}, then h(α) > 0 by Lemma 4.4.

Conversely, suppose that h(α) > 0. Then parts (1) and (3) of Lemma 2.1
guarantee that at least one prime ideal p associated to the Noetherian Rd-
module M = X̂ is principal and satisfies that αRd/p is mixing and expansive.
By Lemma 2.1(5) we can find a Noetherian Rd-module N ⊃ M with the
properties described there, and we set β = αN and Y = XN . According
to the description of N there exists a submodule N ′ ⊂ N with N/N ′ ∼=
Rd/p, and by dualizing we obtain a β-invariant subgroup Y ′ ⊂ Y with
Y ′ = N̂/N ′ ∼= R̂d/p. If β′ ∼= αRd/p is the restriction of β to Y ′ then
Lemma 4.5 shows that ∆β′(Y ′) is dense in Y ′. Lemma 2.1(3) shows that
h(β′) = h(αRd/p) > 0, and Lemma 4.5 yields that {0Y } 6= ∆β′(Y ′) ⊂ ∆β(Y ).

Let Z ⊂ Y be the kernel of the surjective group homomorphism τ : Y −→
X dual to the inclusion M ⊂ N . Then Z is a closed, β-invariant subgroup of
Y whose dual is N/M . Lemma 2.1(5) shows that β = αN is expansive and
so has finite entropy. The addition formula for entropy in [8, Appendix A]
implies that the restriction βZ of β to Z has entropy h(βZ) = h(αN ) −
h(αM ) = 0. Since β is expansive, so is βZ , so that Lemma 4.4 shows that
∆βZ (Z) = ∆β(Y )∩Z = {0Y }. Hence the restriction of τ : Y −→ X to ∆β(Y )
is injective. As ∆β(Y ) 6= {0Y } and τ(∆β(Y )) ⊂ ∆α(X), we conclude that
∆α(X) 6= {0X}. �

We begin the proof of Theorem 4.2 with a definition.
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Definition 4.8. Let f ∈ Rd be an irreducible polynomial such that αRd/fRd
is expansive and mixing, let k ≥ 1, and let

R = Rd/f
kRd. (4.3)

Suppose that n ≥ 1 and define

[a, b] =
n∑
i=1

aibi ∈ R (4.4)

for every a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. If N ⊂ Rn is an R-
submodule we set

N ′ = {b ∈ Rn : [a, b] = 0R for every a ∈ N},
N ′′ = (N ′)′ = {a ∈ Rn : [a, b] = 0R for every b ∈ N ′} ⊃ N.

(4.5)

Lemma 4.9. Let R be as in Definition 4.8, let n ≥ 1, let N ⊂ Rn be an
R-module, and define the R-modules N ′, N ′′ ⊂ Rn as in (4.5). We regard
the R-modules N ⊂ N ′′ ⊂ Rn as Rd-modules and consider the closed, shift-
invariant subgroups

X = XRn = R̂n ⊂ (̂Rd)n = (Tn)Zd ,

Z = (N ′′)⊥ ⊂ Y = N⊥ ⊂ X ⊂ (Tn)Zd .

Then the restrictions to X, Y and Z of the shift-action σ of Zd on (Tn)Zd are
expansive, and the closure ∆σ(Y ) of the homoclinic subgroup ∆σ(Y ) ⊂ Y is
equal to Z. Furthermore there exists a group isomorphism τ : N ′ −→ ∆σ(Y )
with σn · τ(a) = τ(una) for every a ∈ N ′ and n ∈ Zd.

Proof. For h ∈ Rd and x ∈ XR = R̂ = (Rd/fkRd)̂⊂ TZd we define h(σ)x ∈
XR by (2.4) and observe that h(σ)x = 0TZd whenever x ∈ XR and h ∈ fkRd.
Hence we may abuse notation and set

a(σ)x = h(σ)x

for every x ∈ XR and a = h+fkRd ∈ R. With this convention we can write,
for any submodule L ⊂ Rn, the group L⊥ ⊂ XRn = (XR)n in the form

L⊥ =
{
x = (x(1), . . . , x(n)) ∈ (XR)n :

n∑
i=1

ai(σ)x(i) = 0XR for every (a1, . . . , an) ∈ L
}
.

(4.6)

According to Lemma 4.5, the homoclinic group ∆σ(X) of the shift-action σ
of Zd on X ⊂ (Tn)Zd is given by

∆σ(X) = { (h1(σ)xM, . . . , hn(σ)xM) : h = (h1, . . . , hn) ∈ Rn }.
By (4.6), a homoclinic point (h1(σ)xM, . . . , hn(σ)xM) ∈ ∆σ(X) lies in N⊥ =
Y if and only if

n∑
i=1

ai(σ) · hi(σ)xM = [a, h](σ)xM = 0XR

for every a = (a1, . . . , an) ∈ N . From the proof of Lemma 4.5 we know
that g = 0R is the only element in R having g(σ)xM = 0XR . Hence
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(h1(σ)xM, . . . , hn(σ)xM) ∈ N⊥ = Y if and only if [h, a] = 0R for every
a ∈ N or, equivalently, if and only if h ∈ N ′.

This shows that

∆σ(Y ) = { (h1(σ)xM, . . . , hn(σ)xM) : h = (h1, . . . , hn) ∈ N ′ }
and establishes the promised isomorphism τ : N ′ −→ ∆σ(Y ). Furthermore
we see that an element b = (b1, . . . , bn) ∈ Rn annihilates every σ-homoclinic
point in Y if and only if b ∈ N ′′, and hence that ∆σ(Y ) = Z. �

The proof of the following lemma is based on ideas of P. Smith and
R. Wiegand, which we use with their kind permission. Roughly speaking,
this result would be easy if R were a field using a dimension argument, so
we localize R at f to approximate a field and replace vector space dimension
with module length.

Lemma 4.10. Let R be as in Definition 4.8, let n ≥ 1, and let N ⊂ Rn be
an R-module. Then there exists an element g ∈ Rr fR with gN ′′ ⊂ N .

Proof. Let S = R r fR be the semigroup of regular elements in R. Then
S 6= ∅ since f is irreducible and hence not a unit by definition. Let Q =
S−1R be the ring of fractions of R, which is the localization of R at f . Then
every ideal of Q is of the form aj = 〈f j〉 = f jQ for some j ∈ {1, . . . , k}, and

{0Q} = ak ⊂ ak−1 ⊂ · · · ⊂ a1 ⊂ Q.
Furthermore, if a ⊂ Q is an ideal, and if γ : a −→ Q is a Q-module
homomorphism, then a = 〈f j〉 for some j ∈ {1, . . . , k}, and

0Q = γ(0Q) = γ(fk−jf j) = fk−jγ(f j),

so that γ(f j) = gf j for some g ∈ Q. By setting γ̄(h) = gh for every h ∈ Q
we have extended γ : a −→ Q to a Q-module homomorphism γ̄ : Q −→ Q.

We claim that, ifM1 ⊂M2 areQ-modules, then everyQ-module homomorphism
θ : M1 −→ Q can be extended to a Q-module homomorphism θ̄ : M2 −→ Q
(i.e. that Q is injective). Indeed, let M1 ⊂ M2 be a maximal Q-module
for which there exists such an extension θ̄ : M1 −→ Q of θ. If M1 6= M2,
then we choose a ∈ M2 r M1, set a = {h ∈ Q : h · a ∈ M1}, define a Q-
module homomorphism γ : a −→ Q by γ(h) = θ̄(h · a), and apply the above
observation to find an extension γ̄ : Q −→ Q of γ. Then the Q-module
homomorphism θ̄′ : M1 +Q · a −→ Q, defined by θ̄′(b+ h · a) = θ̄(b) + γ̄(h)
for every h ∈ Q and b ∈ M̄1, is a proper extension of θ̄. This contradiction
implies that θ can indeed be extended to all of M2.

For every Q-module M we denote by M∗ = HomQ(M,Q) the set of all Q-
module homomorphism b : M −→ Q. Then M∗ is a Q-module with respect
to the operation (h, b) 7→ h ·b, defined by (h ·b)(a) = b(h ·a) for every h ∈ Q,
b ∈M∗ and a ∈M . The module M∗ is called the dual module of M . In this
terminology we can rephrase the above extension property by saying that,
for every short exact sequence

0 −→M1
ι−−→M2 −→M3 −→ 0

of Q-modules, where ι is the inclusion map, the sequence

0 −→M∗3 −→M∗2
ι∗−−→M∗1 −→ 0 (4.7)
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is exact, where ι∗ is the restriction map.
For every Q-module K and nonzero a ∈ K the ideal a = ann(a) = {h ∈

Q : h ·a = 0Q} is of the form a = 〈f j〉 for some j ∈ {1, . . . , k}, and by setting
b = f j−1 · a we obtain a nonzero element in K whose annihilator satisfies
that ann(b) = 〈f〉. It follows that there exists, for every nonzero Noetherian
Q-module K, a filtration

{0K} = K0 ⊂ K1 ⊂ · · · ⊂ Kl = K

such that Kj/Kj−1
∼= Q/〈f〉 for every j = 1, . . . , l. The integer l = l(K) ≥ 1

is independent of the specific filtration chosen and is called the length of K.
From the independence of l(K) of the specific filtration we conclude that if

0 −→ K1 −→ K2 −→ K3 −→ 0

is a short exact sequence of Noetherian Q-modules, then

l(K2) = l(K1) + l(K3). (4.8)

If l(K) = 1 then K ∼= Q/〈f〉 ∼= K∗, and l(K∗) = l(K) = 1. Repeated
application of (4.7) and (4.8) shows that l(K) = l(K∗) for every Noetherian
Q-module K.

Consider the Q-module M = Q ⊗R N ⊂ Q ⊗R Rn = Qn, define the Q-
modules M ′,M ′′ ⊂ Qn as in (4.5), and observe that M ′ = Q ⊗R N ′ and
M ′′ = Q⊗R N ′′. By applying the above discussion to M ⊂M ′′ and M ′ we
see that the sequences

0 −→M −→ Qn −→ L −→ 0,

0 −→ L∗ −→ (Qn)∗ −→M∗ −→ 0
(4.9)

are exact, where L = Qn/M , (Qn)∗ ∼= Qn and L∗ = M ′. By replacing M
with M ′ in the second exact sequence in (4.9) we obtain that the sequence

0 −→M ′′ −→ Qn −→ (M ′)∗ −→ 0 (4.10)

is again exact, and that

kn = l(Qn) = l(M)+ l(L) = l(L∗)+ l(M∗) = l(M ′)+ l(M) = l(M ′′)+ l(M ′).

Hence l(M) = l(M ′′), and therefore M = M ′′, since M ⊂ M ′′, l(M ′′) =
l(M) + l(M ′′/M), and l(M ′′/M) = 0.

We have proved that

{0} = M ′′/M = (Q⊗R N ′′)/(Q⊗R N) = Q⊗R (N ′′/N),

i.e. that there exists, for every a ∈ N ′′, an element g ∈ RrfR with g ·a ∈ N .
As N ′′ is Noetherian we can find a single element g ∈ RrfR with g·N ′′ ⊂ N ,
as claimed. �

Lemma 4.11. Assume the hypotheses of Lemma 4.9 and also that Y 6=
{0X}. Then the following conditions are equivalent.

(1) The restriction of the shift-action σ of Zd on R̂n ⊂ (Tn)Zd to Y =
N⊥ has completely positive entropy;

(2) ∆σ(Y ) is dense in Y ;
(3) N ′′ = N .
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Proof. (1) ⇒ (2) ⇒ (3): Regard N,N ′′ ⊂ Rn as Rd-modules. Then Ŷ/Z =
(Rn/N)/(Rn/N ′′) ∼= N ′′/N , so that the Zd-action σY/Z induced by the
shift-action σ on X is isomorphic to αN ′′/N . Lemma 4.10 implies that there
is a nonunit g such that gN ′′ ⊂ N , so that each prime ideal associated
with the Rd-module N ′′/N is nonprincipal since it contains both f and an
irreducible factor of g. Then Lemma 2.1(3) shows that h(αN ′′/N ) = 0. Since
σY has completely positive entropy, the factor σY/Z must be trivial. Hence
Z = ∆σ(Y ) = Y and N ′′ = N .

(2) ⇒ (1): Since Y 6= {0X} and ∆σ(Y ) is dense in Y , then the entropy
h(σY ) of the shift-action σY of Zd on Y is positive by Lemma 4.4. If σY
does not have completely positive entropy, then Theorem 6.4 of [8] implies
there would exist a closed, shift-invariant proper subgroup K ⊂ Y with
h(σY/K) = 0. Since σY/K would be expansive (see [14, Cor. 3.11]), Lemma
4.4 would then imply that ∆σ(Y ) ⊂ K, contradicting (2). Hence (2) ⇒ (1).

(3) ⇒ (2): This follows from Lemma 4.9. �

Proof of Theorem 4.2. Let α be an expansive and mixing algebraic Zd-action
on X. If ∆α(X) is nontrivial and dense in X then we see exactly as in the
proof of the implication (2) ⇒ (1) in Lemma 4.11 that α has completely
positive entropy.

Conversely, if α has completely positive entropy we denote by M = X̂
the Noetherian Rd-module defined by (2.1)–(2.2), write {p1, . . . , pm} for the
set of associated prime ideals of M , and note that, by Lemma 2.1, pj is
principal and αRd/pj expansive and mixing for every j = 1, . . . ,m. We choose
irreducible Laurent polynomials f1, . . . , fm ∈ Rd with pj = 〈fj〉 = fjRd for
j = 1, . . . ,m and write N = N (1) ⊕ · · · ⊕ N (m) ⊃ M for the Noetherian
Rd-module appearing in Lemma 2.1(5). If we can prove that ∆α

N(j)
(XN(j))

is dense in XN(j) for every j = 1, . . . , n, then

∆αN (XN ) =
m∏
j=1

∆α
N(j)

(XN(j))

is dense in XN , and the surjective group homomorphism τ : XN −→ X =
XM dual to the inclusion M ⊂ N satisfies that τ · αn

N = αn · τ for every
n ∈ Zd, and that τ(∆αN (XN )) ⊂ ∆α(X). In particular, ∆α(X) is dense
in X.

We fix j ∈ {1, . . . ,m} and recall from Lemma 2.1(5) that N (j) has a
filtration

N (j) = N (j)
sj ⊃ · · · ⊃ N

(j)
0 = {0} (4.11)

with N
(j)
l /N

(j)
l−1
∼= Rd/fjRd for every l = 1, . . . , sj . Since pj = 〈fj〉 is the

only prime ideal associated with N (j), it follows that αN(j) is mixing and has
completely positive entropy by parts (2) and (4) of Lemma 2.1. The filtration
(4.11) allows us to regard N (j) as a module over the ring R = Rd/f

sj
j Rd,

since fsjj · a = 0N(j) for every a ∈ N (j).
Choose elements a1, . . . , an in N (j) with N (j) = R · a1 + · · ·+ R · an and

consider the surjective R-module homomorphism κ : Rn −→ N (j) defined
by κ(h1, . . . , hn) = h1 · a1 + · · · + hn · an for every (h1, . . . , hn) ∈ Rn. If
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K is the kernel of κ, then K ⊂ Rn is an R-submodule (and hence also an
Rd-submodule) of Rn, and

XN(j) = K⊥ ⊂ R̂n ⊂ (̂Rd)n = (Tn)Zd .

As αN(j) has completely positive entropy, it follows from Lemma 4.11 that
∆α

N(j)
(XN(j)) is dense in XN(j) = K⊥, as claimed. This completes the proof

of Theorem 4.2. �

Remark 4.12. Let α be an expansive algebraic Zd-action on X. The
previous proof shows that Z = ∆α(X) is the maximal closed α-invariant
subgroup of X on which α has completely positive entropy. This gives an
intrinsic description of the Pinsker algebra of α as the inverse image of the
Borel σ-algebra of X/Z under the quotient map X −→ X/Z (cf. [8, §6]).
Hence despite the uncomplicated dynamics of individual homoclinic points
in X, their closure is precisely the largest closed invariant subgroup of X on
which the action is Bernoulli (see [15, Thm. 23.1]).

5. Specification

Specification is an orbit tracing property that has proved useful in the
study of expansive homeomorphisms. Ruelle [12] investigated the extension
of this notion to Zd-actions, motivated by statistical mechanics. Our purpose
in this section is to show that expansive algebraic Zd-actions provide a large
class of Zd-actions having specification.

First recall the definition of the norm ‖ · ‖ on Zd from (2.10) and of the
cube B(r) ⊂ Zd from (2.11).

Definition 5.1. (1) Let T be a continuous Zd-action on a compact metric
space (X, ρ). The action T has weak specification if there exists, for every
ε > 0, an integer p(ε) ≥ 1 with the following property: for every finite
collection Q1, . . . ,Qt of rectangles Qj =

∏d
i=1{ai, . . . , bi} ⊂ Zd with

dist(Qj ,Qk) = min
m∈Qj ,n∈Qk

‖m− n‖ ≥ p(ε) for 1 ≤ j < k ≤ t, (5.1)

and for every collection of points x(1), . . . , x(t) in X, there exists a point
y ∈ X with

ρ(Tny, Tnx(j)) < ε for all n ∈ Qj , 1 ≤ j ≤ t. (5.2)

(2) The Zd-action T has strong specification if there exists, for every
ε > 0, an integer p(ε) ≥ 1 with the following property: for every collection
of rectangles Q1, . . . ,Qt in Zd satisfying (5.1) and every subgroup Γ ⊂ Zd
with

dist(Qj + q,Qk) = min
m∈Qj+q,n∈Qk

‖m− n‖ ≥ p(ε) (5.3)

whenever 1 ≤ j, k ≤ t and q ∈ Γ r {0}, and for every collection of points
x(1), . . . , x(t) in X, there exists a point y ∈ X satisfying (5.2) and with

Tmy = y

for every m ∈ Γ .
(3) Let α be an algebraic Zd-action on X with homoclinic group ∆α(X),

and let ρ be a metric on X consistent with its topology. The action α has
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homoclinic specification if there exists, for every ε > 0, an integer p(ε) ≥ 1
with the following property: for every rectangle Q ⊂ Zd and every x ∈ X
there exists an α-homoclinic point y ∈ ∆α(X) with

ρ(αnx, αny) < ε for all n ∈ Q,

ρ(0X , αny) < ε for all n ∈ Zd r (Q+ B(p(ε))).

Note that each of these three properties is preserved under taking quotients.
This section is devoted to the proof of the following theorem.

Theorem 5.2. Let α be an expansive algebraic Zd-action on a nontrivial
compact abelian group X. Then the following are equivalent.

(1) α has completely positive entropy;
(2) α has weak specification;
(3) α has strong specification;
(4) α has homoclinic specification.

The proof of this requires three lemmas. For the first of these we assume
that f ∈ Rd is a (possibly reducible) polynomial such that the Zd-action
α = αRd/fRd on X = XRd/fRd is expansive. As in §2 we view X as the
closed, shift-invariant subgroup

X = {x ∈ TZd : f(σ)x = 0TZd}

and identify α with the restriction σX of the shift-action σ on TZd to X.
If σ also denotes the Zd-shift on `∞(Zd,R), then for every h ∈ Rd and
w ∈ `∞(Zd,R) the point h(σ)w =

∑
n∈Zd ch(n)σnw ∈ `∞(Zd,R). If we

define h̃ as in the proof of Lemma 4.5, then h(σ)w = h̃∗w. Let `∞(Zd,Z) ⊂
`∞(Zd,R) be the subgroup of bounded, integer-valued maps from Zd to
Z and let η : `∞(Zd,R) −→ TZd be the map that reduces each coordinate
(mod 1). Then

η−1(X) =
{
v ∈ `∞(Zd,R) : f(σ)v ∈ `∞(Zd,Z)

}
.

Let ‖ ·‖∞ denote the supremum norm on `∞(Zd,R), | · | : T −→ R be defined
by (2.9), and write w ∈ `∞(Zd,R) as w = (wn : n ∈ Zd).
Lemma 5.3. For every ε > 0 and L > 0 there is an r > 0 such that if
u, v ∈ η−1(X), ‖u‖∞ ≤ L, ‖v‖∞ ≤ L, and (f(σ)u)n = (f(σ)v)n for all
n ∈ B(r), then |η(u)0 − η(v)0| < ε. Consequently, if u, v ∈ η−1(X) and
f(σ)u = f(σ)v, then u = v.

Proof. Suppose that for some ε > 0 and L > 0 we can find, for every
r > 0, elements u(r), v(r) ∈ η−1(X) with ‖u(r)‖∞ ≤ L, ‖v(r)‖∞ ≤ L,
(f(σ)u(r))n = (f(σ)v(r))n for all n ∈ B(r), and |η(u(r))0 − η(v(r))0| ≥ ε.
Then the sequence {u(r)−v(r) : r = 1, 2, . . . } has a limit point w ∈ `∞(Zd,R)
in the weak*-topology (i.e. the topology of pointwise convergence) such that
|w0| ≥ ε and f(σ)w = 0. Hence η(tw) ∈ X for all t ∈ R, and by choosing t
sufficiently small we have that η(tw) 6= 0X and supn∈Zd |η(tw)n| is arbitrarily
small, contradicting expansiveness of α = σX .

The second assertion follows easily from the first by taking limits. �

Lemma 5.4. If αRd/fRd is expansive then it has both homoclinic and strong
specification.
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Proof. As in the proof of Lemma 4.5 we regard X as a closed, shift-invariant
subgroup of TZd and α as the restriction σX to X of the shift-action σ of
Zd on TZd . The proof of Lemma 4.5 shows that ∆α(X) = ∆σX (X) is dense
in X, and that every element y ∈ ∆α(X) is of the form y = h(σ)xM for
some h ∈ R = Rd/fRd. Here xM = η(wM), where wM ∈ `∞(Zd,R) is the
unique point in η−1(X) with (f(σ)wM)0 = 1 and (f(σ)wM)n = 0 for all
n ∈ Zd r {0}, i.e., f̃ ∗ wM is the convolutional identity for `∞(Zd,R).

By Lemma 4.3 we have that

‖wM‖1 =
∑
n∈Zd

|wM
n | <∞.

Write f =
∑

n∈Zd cf (n) and put

‖f‖ =
∑
n∈Zd

|cf (n)|.

Let L = max{1, ‖wM‖1 · ‖f‖}.
Fix ε > 0. Apply Lemma 5.3 with this choice of ε and L to find an

integer r > 0 such that every pair of points u, v ∈ η−1(X) ⊂ `∞(Zd,R) with
‖u‖∞ ≤ L, ‖v‖∞ ≤ L, and (f(σ)u)n = (f(σ)v)n for every n ∈ B(r) satisfies
that |η(u)0 − η(v)0| < ε. It follows that if Q ⊂ Zd is a rectangle, and if
u, v ∈ η−1(X) satisfy that ‖u‖∞ ≤ L, ‖v‖∞ ≤ L, and (f(σ)u)n = (f(σ)v)n
for every n ∈ Q+B(r), then |η(u)n−η(v)n| < ε for all n ∈ Q. By increasing
r if necessary, Lemma 4.3 allows us to assume in addition that∑

n∈ZdrB(r)

|wM
n | < ε/‖f‖.

Take an arbitrary element x ∈ X, choose u ∈ `∞(Zd,R) with ‖u‖∞ ≤ 1
and η(u) = x, and consider the point z = f(σ)u ∈ `∞(Zd,Z). If Q ⊂ Zd is
a fixed rectangle, define h =

∑
m∈Zd ch(m)um ∈ Rd by

ch(m) =

{
zm if m ∈ Q+ B(r),
0 otherwise.

Let v = h(σ)wM and put y = h(σ)xM = η(h̃ ∗ wM) ∈ ∆α(X). Since
f̃ ∗ wM is the convolutional identity in `∞(Zd,R), it follows that f(σ)v =
f(σ)h(σ)wM = h̃ ∗ f̃ ∗ wM = h̃. Hence(

f(σ)v
)
n

=
(
f(σ)h(σ)wM)

n
= ch(n) =

(
f(σ)u

)
n

for every n ∈ Q+ B(r) and(
f(σ)v

)
n

=
(
f(σ)h(σ)wM)

n
= 0

for every n ∈ Zd r (Q+ B(r)). Our choice of r implies that

|xn − yn| < ε for every n ∈ Q,

|yn| < ε for every n ∈ Zd r (Q+ B(2r)).

This is easily seen to imply the homoclinic specification of α.
To check strong specification for α we assume that ε, L, and r are chosen

as above, and set p(ε) = 2r. Consider finitely many points x(1), . . . , x(t)

in X, rectangles Q1, . . . ,Qt in Zd, and a subgroup Γ ⊂ Zd satisfying (5.1)
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and (5.3). For each of these rectangles Qj we find a homoclinic point y(j)

with

|x(j)
n − y(j)

n | < ε for every n ∈ Qj ,∑
i=1,...,t
i 6=j

|y(i)
n |+

t∑
i=1

∑
0 6=m∈Γ

|y(i)
n+m| < ε for every n ∈ Zd r (Q(j) + B(2r)).

The point

y =
t∑

j=1

∑
m∈Γ

αm(y(j))

satisfies (5.2) with ε replaced by 2ε, and αmy = y for every m ∈ Γ . �

Lemma 5.5. Let f ∈ Rd be an irreducible polynomial such that αRd/fRd
is expansive, k, n ≥ 1, R = Rd/f

kRd, and X ⊂ R̂n ⊂ (Tn)Zd be a closed,
shift-invariant subgroup. If the restriction to X of the shift-action σ of Zd
on (Tn)Zd has completely positive entropy, then it has both homoclinic and
strong specification.

Proof. We write N for the Rd-module X⊥, considered as an R-module, and
apply the Lemmas 4.9 and 4.11 to conclude that N ′′ = N , that ∆σ(X) is
dense in X, and that every homoclinic point y ∈ ∆σ(X) ⊂ R̂n ⊂ (TZd)n ∼=
(Tn)Zd is of the form

y = (h1(σ)xM, . . . , hn(σ)xM)

for some (h1, . . . , hn) ∈ N ′ ⊂ Rn (the notation is explained in the proof of
Lemma 4.9).

For each h = (h1, . . . , hn) ∈ N ′ and y ∈ XR the element ζh(y) =
(h1(σ)y, . . . , hn(σ)y) is in X since it is annihilated by every element in
N = X⊥. Choose a finite set {h(i) : 1 ≤ i ≤ s} of generators for N ′ and
consider the map ζ : Xs

R −→ X defined by ζ(y1, . . . , ys) =
∑s

i=1 ζh(i)(yi). Let
Y = ζ(Xs

R). Then clearly Y ⊥ ⊃ N ′′ = N . Conversely, if b = (b1, . . . , bn) ∈
Y ⊥, then b annihilates each ζh(i)(xM), so b ∈ X⊥ = N since ∆σ(X) is dense
in X. Hence Y = X and ζ is surjective.

Lemma 5.4 shows that αR satisfies both homoclinic and strong specification.
Since each property is preserved under finite direct products and quotients,
we conclude that σX also satisfies homoclinic and strong specification. �

Proof of Theorem 5.2. (1) ⇒ (2), (3), and (4): Let α be an expansive
algebraic Zd-action on X with completely positive entropy, and let M = X̂
be the Noetherian Rd-module defined in (2.1)–(2.2). We choose an Rd-
module N = N (1) ⊕ · · · ⊕ N (m) ⊃ M according to Lemma 2.1(5) and put
Y = XN and β = αN . Fix j ∈ {1, . . . ,m}, denote by fj a generator
of the principal prime ideal pj associated with M , and view the module
N (j) as a module over the ring R = Rd/f

sj
j Rd (cf. the proof of Theorem

4.2). We continue as in the proof of Theorem 4.2, write N (j) = Rsj/K

for some R-submodule K ⊂ Rsj , and embed XN(j) in XRsj ⊂ (Tsj )Zd

as a closed, shift-invariant subgroup. As αN(j) has completely positive
entropy, it has homoclinic and strong specification by Lemma 5.5, and by
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varying j ∈ {1, . . . ,m} we obtain that β = αN has homoclinic and strong
specification.

If τ : Y −→ X is the surjective group homomorphism dual to the inclusion
M ⊂ N , then τ · βn = αn · τ , and hence α has both homoclinic and strong
specification since each property is preserved under quotients.

(3)⇒ (2)⇒ (1): Trivially (3)⇒ (2). Suppose that α is expansive and has
weak specification. Let Z = ∆α(X). Then by Remark 4.12, the restriction
αX/Z of α to X/Z has zero entropy. Now weak specification implies positive
entropy and is preserved under quotients. Hence if X/Z is nontrivial then
we would have h(αX/Z) > 0, a contradiction. Thus Z = X, and so α has
completely positive entropy by Theorem 4.2.

(4) ⇒ (1): By Proposition 2.2, if α has homoclinic specification then
∆α(X) is dense inX, hence α has completely positive entropy by Theorem 4.2.

�

Remark 5.6. Definition 5.1 uses rectanglesQj in Zd in defining specification.
However, our proofs made no essential use of the particular form of these
sets, only their separation described in (5.1). This leads to a very strong
form of specification. Namely, every expansive algebraic Zd-action with
completely positive entropy satisfies parts (1), (2), and (3) of Definition 5.1
where the sets Qj can be arbitrary subsets of Zd, finite or infinite.

One simple consequence is the following. Let α be an expansive algebraic
Zd-action on (X, ρ) and ε > 0. Then there is a p(ε) > 0 such that for every
r > 0 and x, y ∈ X, there is a z ∈ X such that ρ(αnz, αnx) < ε if ‖n‖ < r
and ρ(αnz, αny) < ε if ‖n‖ > r+ p(ε). This property does not appear to be
a direct consequence of Theorem 5.2.

Remark 5.7. Theorem 5.2 can fail if the expansiveness hypothesis is omitted.
For example, let φ be an ergodic automorphism of Tk induced by A ∈
GL(k,Z). Then φ has completely positive entropy. On the other hand, the
argument of Example 3.4 shows that ∆φ(Tk) = {0}, so that φ does not have
homoclinic specification. Furthermore, φ has strong specification if and only
if A has no eigenvalues on the unit circle, and φ has weak specification if
and only if all eigenvalues of A on the unit circle are semisimple (see [7]).

In Examples 3.3, 4.6, and 4.7 the fundamental homoclinic point has
coordinates which are algebraic numbers (mod 1). It is not difficult to see
that expansive algebraic Z-actions which are realized as subshifts of (Tn)Z

as in §2 always have coordinates whose components are algebraic. However,
the following example shows that this may fail when d ≥ 2.

Example 5.8. (An expansive Z2-action having transcendental homoclinic
points.) Let f(u1, u2) = 4 − u1 − u2 − u

−1
1 u−1

2 . Then αR2/fR2
is expansive

on XR2/fR2
. The Fourier transform F of f̃ is F (s, t) = 4 − e2πis − e2πit −

e−2πi(s+t). Expansion by geometric series shows that

wM
0 =

(
1
F

)
(̂0) =

1
4

∞∑
n=0

(3n)!
(n!)3

4−3n

=
1
4

∞∑
n=0

(
1
3

)
n

(
2
3

)
n

(1)n n!

(
3
4

)n
=

1
4
H

(
1
3
,
2
3
, 1;

3
4

)
,
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where (a)n = a(a+ 1) . . . (a+ n− 1) and H(a, b, c; z) is the hypergeometric
function. This value of the hypergeometric function is known to be transcendental
[19]. Thus the 0th coordinate of the fundamental homoclinic point for
αR2/fR2

is transcendental.

6. Splitting skew products

Let α be an algebraic Zd-action on X and suppose that Y ⊂ X is an
α-invariant closed subgroup. By taking a Borel cross-section to the quotient
map X → X/Y we can represent α as a twisted skew product with base
action αX/Y , and this approach is useful in deriving dynamical properties
of α from those of αX/Y and αY . More generally, let (Ω, µ) be a probability
measure space and β be a measure-preserving Zd-action on Ω. A measurable
function ψ : Ω× Zd −→ X is a twisted cocycle (for α) provided that

ψ(ω,m + n) = αmψ(ω,n) + ψ(βnω,m) (6.1)

for all ω ∈ Ω and m,n ∈ Zd. The twisted skew product Zd-action β ×ψ α
on Ω×X is given by

(β ×ψ α)n(ω, x) = (βnω, αnx+ ψ(ω,n)),

where (6.1) shows this defines a Zd-action. The direct product action β×α
corresponds to ψ ≡ 0X . Clearly β ×ψ α preserves the product measure
µ× λX .

For a single automorphism obeying weak specification it was shown in
[6] that every twisted skew product is measurably isomorphic to the direct
product of the base transformation and the automorphism via a map that
translates fibers. One use of this result is a simpler proof of the Bernoullicity
of ergodic toral automorphisms that avoids the delicate Diophantine arguments
of earlier proofs [6, Thm. 6.3]. Here we extend this splitting result to
algebraic Zd-actions obeying weak specification.

Let θ : Ω→ X be measurable and define Θ: Ω×X −→ Ω×X by Θ(ω, x) =
(ω, x+θ(ω)). For n ∈ Zd the conjugacy relation Θ · (β×ψ α)n = (β×α)n ·Θ
is equivalent to

ψ(ω,n) = αnθ(ω)− θ(βnω). (6.2)

Hence given α, β, and ψ, we want to solve (6.2) for θ. For technical simplicity
we assume β is aperiodic, i.e., βnω 6= ω for all ω ∈ Ω and n 6= 0.

Theorem 6.1. Let α be an algebraic Zd-action on X satisfying weak specification
and β be an aperiodic measure-preserving Zd-action on (Ω, µ). For every
twisted cocycle ψ : Ω × Z −→ X there is a measurable function θ : Ω −→ X
satisfying (6.2) for all ω ∈ Ω and n ∈ Zd. Hence β ×ψ α is measurably
isomorphic to β × α via the map (ω, x) 7→ (ω, x+ θ(x)).

Proof. For S ⊂ Zd and F ⊂ Ω it is convenient to let SF denote
⋃

n∈S β
nF .

Fix a decreasing sequence (εk) of positive numbers with
∑∞

k=1 εk <∞. Let
p(ε) denote the separation function coming from weak specification for α.

By using Rohlin’s lemma for aperiodic Zd-actions [5], we can find for each
k ≥ 1 a measurable set Fk and a cube Sk = {0, 1, . . . , qk}d ⊂ Zd satisfying
the following properties.
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(a) The sets βnFk are disjoint for n ∈ Sk and their union Ek = SkFk
has µ(Ek) > 1− εk.

(b) E1 ⊂ E2 ⊂ E3 ⊂ · · · .
(c) Almost every ω ∈ Ω has the property that for every n ≥ 1 there is a

k ≥ 1 such that {−n, . . . , n}d ω ⊂ Ek.
(d) By (c), if ω ∈ Fk+1 then (Sk+1ω) ∩ Ek =

⋃r
j=1(Sk + nj)ω, and we

require that the cubes Sk + n1, . . . , Sk + nr be separated by at least
p(εk).

We inductively construct measurable θk : Ek −→ X such that θk+1 is εk-
uniformly close to θk on Ek and such that θk satisfies ψ(ω,n) = αnθk(ω)−
θ(βnω) for all ω ∈ Fk and n ∈ Sk. It follows from property (a) that θ =
limk→∞ θk is defined almost everywhere and is measurable, and from (c)
that θ satisfies (6.2) for a set of full measure in Ω and all n ∈ Zd.

Start by defining θ1 measurably but otherwise arbitrarily on F1, and
extend θ1 to E1 by θ1(βnω) = αnθ1(ω) − ψ(ω,n) for ω ∈ F1 and n ∈ S1.
Assume inductively that θk is defined on Ek such that θk(βnω) = αnθk(ω)−
ψ(ω,n) for ω ∈ Fk and n ∈ Sk. Let θ̃k+1 be an arbitrary measurable function
on Fk+1, and extend it to Ek+1 as before. Fix ω0 ∈ Fk+1. Then

(Sk+1ω0) ∩ Ek =
r⋃
j=1

(Sk + nj)ω0.

If ωj denotes βnjω0, then for all m ∈ Sk we have that

θ̃k+1(βmωj)− θk(βmωj)

= αmθ̃k+1(ωj)− ψ(ωj ,m)− [αmθk(ωj)− ψ(ωj ,m)]

= αm[θ̃k+1(ωj)− θk(ωj)].

Let xj = θ̃k+1(ωj) − θk(ωj). Since the cubes Sk + n1, . . . , Sk + nr are
separated by at least p(εk), weak specification for α shows that there is an
x ∈ X such that ρ(αm+njx, αmxj) < εk for m ∈ Sk and 1 ≤ j ≤ r. By
defining θk+1(ω0) = θ̃k+1(ω0) − x and extending to Sk+1ω0 as before, we
obtain that θk+1 is εk-uniformly close to θk on (Sk+1ω0) ∩ Ek.

A word is needed about measurability of θk+1 in this construction. For
each ω0 ∈ Fk+1 we adjust θ̃k+1(ω0) by an amount x determined from weak
specification. By using ≤ inequalities in the specification definition, we
obtain for each ω0 ∈ Fk+1 a nonempty compact set K(ω0) of allowable
adjustments, whereK(ω0) varies measurably with ω0 by its definition. Standard
selection theorems then show that there is a measurable κ : Fk+1 −→ X such
that κ(ω0) ∈ K(ω0). Then θk+1 = θ̃k+1 − κ is measurable. �

Example 6.2. (Two expansive algebraic Zd-actions that are measurably but
not algebraically or topologically isomorphic.) Let f be a nonunit polynomial
in R = Rd such that VC(f)∩Sd 6= ∅. The natural quotient map R/f2R −→
R/fR dualizes to show that Y = XR/fR is an αR/f2R-invariant subgroup of
X = XR/f2R. As pointed out at the start of this section, we can therefore
regard αR/f2R as a twisted skew product β ×ψ α, where the base action
is β = αfR/f2R

∼= αR/fR and the fiber action is α = αR/fR. Since α is
expansive and has completely positive entropy, it satisfies weak specification



HOMOCLINIC POINTS 25

by Theorem 5.2. Hence by Theorem 6.1 we see that αR/f2R is measurably
isomorphic to αR/fR × αR/fR. The existence of an isomorphism between
these actions (although not of the precise form given by Theorem 6.1) also
follows from the deeper facts that they are both Bernoulli Zd-actions [15]
with the same entropy [8].

However, there is no group isomorphism φ : XR/f2R −→ XR/fR ×XR/fR

intertwining αR/f2R with αR/fR × αR/fR. For φ̂ would give an R-module
isomorphism of R/f2R with (R/fR)× (R/fR), which is clearly impossible
since f annihilates the second R-module but not the first. Since XR/fR

is connected, Theorem 5.9 of [15] shows that these actions are not even
topologically conjugate.

7. Homoclinic groups of nonexpansive algebraic Zd-actions

The purpose of this section is to show by a series of nonexpansive examples
that most of our results for expansive actions do not extend to arbitrary
actions.

We first describe a basic reason why nonexpansive actions can have more
complicated homoclinic groups. Let f ∈ Rd and consider the Zd-action α =
αRd/fRd . As in §2 we identify X = XRd/fRd as a shift-invariant subgroup
of TZd . Let η : `∞(Zd,R) −→ TZd be defined as before by reducing each
coordinate (mod 1). Recall the definition of f̃ ∈ c0(Zd,R) from the proof
of Lemma 4.5. Say that w ∈ c0(Zd,R) is a linear homoclinic point for α
if f̃ ∗ w = 0. If w 6= 0 is such a point, then for every t ∈ R we see that
η(tw) ∈ ∆α(X), and hence ∆α(X) is uncountable. But Lemma 3.2 shows
that if α is expansive this cannot happen. We have repeatedly used this
basic property that expansive actions never have nonzero linear homoclinic
points in previous sections.

In contrast, for nonexpansive examples the set VC(f)∩Sd may be sufficiently
large to support measures whose Fourier transform decays to 0 at infinity,
and this provides a rich supply of linear homoclinic points. Examples 7.3
and 7.5 employ this idea.

Example 7.1. (Completely positive entropy and trivial homoclinic group.)
Let g(u) ∈ Z[u] be irreducible and monic, have constant term ±1, and have
some but not all of its roots on S. Set VC(g) ∩ S = {ξ1, . . . , ξr}. If we
define f ∈ R2 by f(u1, u2) = g(u1), then VC(f) =

⋃ r
j=1{ξj} × S. The Z2-

action α = αR2/fR2
on X = XR2/fR2

has completely positive entropy by
Lemma 2.1(4).

To prove that ∆α(X) = {0X}, we first realize α and X in the following
way. Let k = deg g, let A be the companion matrix of g, and let φ be the
automorphism of Tk induced by A. Then X ∼= (Tk)Z, and α(1,0) acts on X

by applying φ to each coordinate, while α(0,1) acts on X as the shift. Then
every x = (xn) ∈ ∆α(X) must have each xn ∈ ∆φ(Tk). But Example 3.4
shows that ∆φ(Tk) = {0Tk}. Hence ∆α(X) = {0X}.

Example 7.2. (Completely positive entropy and countably infinite homoclinic
group.) Let f(u1, u2) = 2−u1−u2 ∈ R2. Then VC(f)∩S2 = {(1, 1)}, and so
α = αR2/fR2

is not expansive on X = XRd/fR2
. The Fourier transform F of
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f̃ is given by F (s, t) = 2− e2πis − e2πit, and although 1/F is unbounded on
T2 one can easily verify that 1/F ∈ L1(T2, λT2). The Fourier series of 1/F is
computed exactly as in Example 4.6, resulting in the point wM ∈ `∞(Z2,R)
defined by

wM
(−m,−n) =


1

2m+n+1

(
m+ n

n

)
if m ≥ 0 and n ≥ 0,

0 otherwise.

The Riemann-Lebesgue Lemma shows that wM ∈ c0(Z2,R), which can
also be deduced from the explicit formula above since the nonzero terms
are binomial probabilities. Hence xM = η(wM) ∈ ∆α(X), and the same
arguments as in the proof of Lemma 4.5 show that the map R2/fR2 −→
∆α(X) given by g + fR2 7→ g(σ)xM is an isomorphism.

Are there other points in ∆α(X)? Suppose that x ∈ ∆α(X) and choose
v ∈ `∞(Z2,R) with ‖v‖∞ ≤ 1/2 and η(v) = x. Then f̃ ∗ v ∈ `∞(Z2,Z) ∩
c0(Z2,R), so that there exists g ∈ R2 with f̃ ∗ v = g̃. Since g̃ = g̃ ∗ f̃ ∗ wM,
we see that w = v − g̃ ∗ wM ∈ c0(Z2,R) and f̃ ∗ w = 0. If α were expansive,
this would be enough to conclude that w = 0 as above, and hence that x =
η(v) = g(σ)xM, which would prove that there are no additional homoclinic
points. This line of reasoning is correct, but requires a different argument
to show that if w ∈ c0(Z2,R) and f̃ ∗ w = 0, then w = 0.

Start by adjusting w by a translation so that |w(0,0)| = supn∈Z2 |wn|.
Since w ∈ c0(Z2,R), there is an m > 0 such that |w(k,m−k)| ≤ 1

2 |w(0,0)| for
all 0 ≤ k ≤ m. Since f̃ ∗ w we see that

w(0,0) =
1
2
w(1,0) +

1
2
w(0,1) =

1
4
w(2,0) +

1
2
w(1,1) +

1
4
w(0,2) = . . .

=
m∑
k=0

1
2m

(
m

k

)
w(k,m−k).

Hence

|w(0,0)| ≤
m∑
k=0

1
2m

(
m

k

)
|w(k,m−k)| ≤

1
2
|w(0,0)|.

This proves that w(0,0) = 0, and so w = 0. We have therefore shown that all
homoclinic points have the form g(σ)xM, so that ∆α(X) is countable. The
proof of Lemma 4.5 applies to establish that ∆α(X) is dense in X.

There is a simple idea behind the proof in the previous paragraph. The
condition f̃ ∗w = 0 means that w is “harmonic” in the sense that w(m,n) =
1
2 [w(m+1,n) + w(m,n+1)]. Now harmonic points must satisfy an analogue of
the Maximum Principle, namely that they attain their maximum value over
a “region” on its “boundary.” But no point in c0(Z2,R) can satisfy this
principle unless it is zero. The arguments in this example therefore apply to
all f ∈ Rd having exactly one positive coefficient such that

∑
n∈Zd cf (n) = 0.

Observe that here the diagonal coordinates of w are

w(−n,−n) =
1

22n+1

(
2n
n

)
∼ 1

2
√
πn
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(see [2, p. 75]), which decay slowly as n → ∞. Thus the homoclinic
point xM does not exhibit the exponential decay that by Lemma 4.3 must
occur for homoclinic points of expansive actions. In particular, homoclinic
points with slow decay seem useless in determining whether an action obeys
specification. For example, we do not know whether the action of this
example satisfies any of the specifications defined in §5.

Example 7.3. (Completely positive entropy and uncountable homoclinic
group.) For this example let f(u1, u2) = 3− u1 − u

−1
1 − u2 − u

−1
2 . Then the

Fourier transform F of f̃ is given by F (s, t) = 3− 2 cos 2πs− 2 cos 2πt. Let
K = {(s, t) ∈ T2 : F (s, t) = 0}. This is a smooth real-analytic curve in T2,
viz.

t = ± 1
2π

cos−1

(
3
2
− cos 2πs

)
, −1

6
≤ s ≤ 1

6
.

Then VC(f) ∩ S2 = {(e2πis, e2πit) : (s, t) ∈ K}, so that α = αR2/fR2
is not

expansive on X = XR2/fR2
. In contrast to the previous example, here 1/F /∈

L1(T2, λT2) so that the Fourier methods of Lemma 4.5 fail. The existence
of linear homoclinic points accounts for the uncountability of ∆α(X).

By identifying T2 with the subset [−1/2, 1/2)2 ⊂ R2, we may consider K
as a smooth curve in R2. Let νK denote the measure on K induced by arc
length, and ψ ∈ C∞(K) be any smooth non-zero function on K. Define a
measure µ on K by dµ = ψ dνK . Since µ is supported on K and F vanishes
there, we see that

(f̃ ∗ µ̂)̂= (f̃)̂· µ = F · µ = 0.

Thus µ̂ ∈ `∞(Z2,C) satisfies f̃ ∗ µ̂ = 0. Now K has curvature bounded
away from zero, so it follows from [18, Thm. 1 of §VIII.3.1] that there is a
constant C > 0 such that

|µ̂(n)| ≤ C‖n‖−1/2 for all n ∈ Z2. (7.1)

Hence v = Re µ̂, w = Im µ̂ ∈ `∞(Z2,R) are linear homoclinic points that are
not both zero, say v 6= 0. Then η(tv) ∈ ∆α(X) for all t ∈ R, so that ∆α(X)
is uncountable. Indeed, distinct ψ ∈ C∞(K) yield distinct µ̂, so that ∆α(X)
encompasses the complexity of C∞(K).

What is essential for the decay estimate (7.1) is that the curve K not
have infinite-order contact with any line, which is guaranteed here by the
curvature of K being bounded away from zero. This curvature is missing
in Example 7.1, and explains why that example has no linear homoclinic
points.

This example was suggested to us by Hart Smith as a finite-difference
analogue of the partial differential operator ∂2/∂x2 + ∂2/∂y2 − 1. This
operator has nonzero solutions that do not obey the Maximum Principle
and which decay to 0 at infinity, precisely the behavior needed to find linear
homoclinic points in the finite-difference setting.

Example 7.4. (Zero entropy and trivial homoclinic group.) Choose g(u),
h(u) ∈ Z[u] to be monic and irreducible, have constant term ±1, and have
some but not all of their roots on S. Set VC(g) ∩ S = {ξ1, . . . , ξr} and
VC(h) = {η1, . . . , ηs}. We may assume that ξmi η

n
j 6= 1 for 1 ≤ i ≤ r,

1 ≤ j ≤ s, and (m,n) 6= (0, 0). Let k = deg g, ` = deg h, and A, B be the
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companion matrices of g, h, respectively. Denote the ` × ` identity matrix
by I`. Define φ to be the automorphism of Tk` induced by A⊗ I` and ψ to
be that induced by Ik ⊗B.

If a is the ideal in R2 generated by g(u1) and h(u2), then X = XR2/a
∼= Tk`

and the Z2-action α = αR2/a is generated by φ and ψ. Our assumptions
on the ξi and ηj show that α mixing. Now h(α) = 0 since smooth Z2-
actions have topological entropy zero. Note that φ is isomorphic to the
direct product of ` copies of an ergodic nonhyperbolic toral automorphism,
and so ∆φ(X) = {0X} by Example 3.4. Hence ∆α(X) ⊂ ∆φ(X) is also
trivial.

Example 7.5. (Zero entropy and uncountable homoclinic group.) Define
f, g ∈ R3 by

f(u1, u2, u3) = 5− u1 − u−1
1 − u2 − u−1

2 − u3 − u−1
3 ,

g(u1, u2, u3) = 3− u1 − u−1
1 − u1u3 − u−1

1 u−1
3 ,

and put a = 〈f, g〉. Since f and g have no common factor in R3, it
follows that every prime ideal associated to R3/a is nonprincipal, and hence
h(αR3/a) = 0 by Lemma 2.1(3).

In order to describe VC(a), let τ : T3 −→ S3 be the isomorphism given by

τ(s, t, u) = (e2πis, e2πit, e2πiu).

Then

V1 = τ−1
[
VC(f) ∩ S3

]
= { (s, t, u) ∈ T3 : 5− 2 cos 2πs− 2 cos 2πt− 2 cos 2πu = 0 }

and

V2 = τ−1
[
VC(g) ∩ S3

]
= { (s, t, u) ∈ T3 : 3− 2 cos 2πs− 2 cos 2π(s+ u) = 0 }.

Here V1 is a 2-dimensional spheroid in T3 while V2 is a skewed cylinder
piercing through V1. Their intersection V = V1 ∩ V2 is the disjoint union of
two real-analytic curves K1 and K2. We give a parametric representation of
these curves in terms of s as follows.

First observe that (s, t, u) ∈ V2 if and only if

u =
1

2π
cos−1

(
3
2
− cos 2πs

)
− s, (7.2)

which determines u in terms of s on V . Since f − g = 0 on V , we obtain
that

2− 2 cos 2πt− 2 cos 2πu+ 2 cos 2π(s+ u) = 0.
Cancelling the factor 2 and noting that cos 2π(s + u) = 3

2 − cos 2πs on V2,
we see that on V

cos 2πt =
5
2
− cos 2πu− cos 2πs.

Hence by (7.2)

t =
1

2π
cos−1

[
5
2
− cos 2πs− cos

{
cos−1

(
3
2
− cos 2πs

)
− 2πs

}]
. (7.3)
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Taking into account the appropriate branches of cos−1, the equations (7.2)
and (7.3) describe the two curves K1 and K2 in T3.

Identify T3 with [−1/2, 1/2)3 ⊂ R3, and so consider V = K1 ∪ K2 as a
subset of R3. It can be verified from our parametric representation that the
curves Ki are real-analytic and neither is contained in a hyperplane. More
specifically, each Ki has contact of order at most 2 with each 2-dimensional
hyperplane, so that, in the terminology of [18], V = K1 ∪ K2 has type 2.
Let νV be the measure on V induced by arc length, ψ ∈ C∞(V ), and µ be
the measure defined by dµ = ψ dνV . By [18, Thm. 2 of §VIII.3.2], it follows
that there is a constant C > 0 such that

|µ̂(n)| ≤ C‖n‖−1/2 for all n ∈ Z3.

As in Example 7.3, this provides a linear homoclinic point in c0(Z3,R), and
so by scaling gives an uncountable number of homoclinic points for α.
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