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INVARIANT COCYCLES, RANDOM TILINGS AND THE
SUPER-K AND STRONG MARKOV PROPERTIES

KLAUS SCHMIDT

Abstract. We consider 1-cocycles with values in locally compact, second
countable abelian groups on discrete, nonsingular, ergodic equivalence rela-

tions. If such a cocycle is invariant under certain automorphisms of these

relations we show that the skew product extension defined by the cocycle is
ergodic. As an application we obtain an extension of many of the results in

[9] to higher-dimensional shifts of finite type, and prove a transitivity result

concerning rearrangements of certain random tilings.

1. Introduction

Let R be a discrete, nonsingular, ergodic equivalence relation of a standard
probability space (X,BX , µ), and let V be a measure preserving automorphism
of (X,BX , µ) which normalises R, i.e. which sends R-equivalence classes to R-
equivalence classes. We consider 1-cocycles c : R 7−→ G on R taking values in a
locally compact, second countable, abelian groupG which are invariant under V , i.e.
which satisfy that c(V x, V x′) = c(x, x′) µ-a.e. on R (for the definitions we refer to
Section 2). If the automorphism V is asymptotically central (Definition 2.2), then
every V -invariant cocycle has the following property: there exists a null setN ∈ BX

such the closure H in G of the set {c(x, x′) : (x, x′) ∈ R ∩ ((X rN)× (X rN))}
is a subgroup of G, and that c defines an ergodic skew product extension of R by
H (Theorem 2.3). This theorem is applied in Section 3 to the Gibbs equivalence
relation ∆X of a d-dimensional shift of finite type (SFT) X, where d ≥ 1, and to
a shift-invariant probability measure µ which is quasi-invariant and ergodic under
the Gibbs relation of X (such as Gibbs measures of a sufficiently rapidly decaying
continuous function φ : X 7−→ R). For such a measure µ the shifts σm, 0 6= m ∈
Zd, are asymptotically central automorphisms of the Gibbs relation ∆X , and the
resulting application of Theorem 2.3 yields some surprising properties of the SFT
X which go well beyond the super-K property discussed in [9]. In [9] it was shown
that, if X is a one-dimensional SFT, then any Gibbs measure µ of a function with
summable variation on X is ergodic under a large family of subrelations of the
Gibbs relation, and in particular under the relation in which two points x, x′ ∈ X
are equivalent if their coordinates are finite permutations of each other. Here we
extend this result to dimensions d ≥ 1, and to any subrelation of the Gibbs relation
arising as the kernel of a shift-invariant cocycle c : ∆X 7−→ G with values in a locally
compact, second countable group G (Theorem 3.1 and Corollary 3.3).

As an illustration we consider the two-dimensional 2-shift X = {0, 1}2 with
uniform (i.e. equidistributed) Bernoulli measure µ and regard every x ∈ X as a
colouring of the lattice Z2 with the colours white and black, corresponding to the
possible values 0 and 1 of each coordinate of x. The connected monochromatic
subsets of Z2 of such a colouring are known to be finite for µ-a.e. x ∈ X, and
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constitute a random tiling of Z2 by irregularly shaped black and white tiles of
finite size. As a consequence of Corollary 3.3 one obtains that, for a typical point
x ∈ X, the tiles occurring in this tiling can be rearranged by a finite permutation
so that they still fit together exactly, that no tile touches another tile of the same
colour, and that the resulting point lies in any given subset B ⊂ X of positive
measure (Example 3.4). This represents a considerable strengthening of the super-
K property, since every rearrangement of these tiles corresponds, in particular, to
a finite permutation of the coordinates of x.

Another illustration, related to the strong Markov property of shifts of finite
type, appears in Example 3.5: let X be a one-dimensional SFT, furnished with
the Gibbs measure µ of a function with summable variation, and let B ⊂ X be a
Borel set of positive measure. Then µ-a.e. x ∈ X visits B infinitely often both in
the past and the future, and we write S(B, x) = (nk, k ∈ Z) ⊂ Z for the sequence
of successive times at which x = (xm) visits B. For each visit at time nk, k ∈ Z,
we consider the string C(x, k) = (xnk , . . . , xnk+1−1) consisting of the coordinates
of x until the next visit to B. If we call two points x, x′ ∈ X equivalent if their
sequences of strings (C(x, k), k ∈ Z) and (C(x′, k), k ∈ Z) differ only by a finite
permutation, then this equivalence relation turns out to be ergodic whenever B can
be approximated sufficiently quickly by closed and open sets. Again we conclude
that, for typical points x, x′ ∈ X, the sequence of strings arising from x can be
finitely permuted to resemble locally the sequence of strings coming from x′.

This work arose out of discussions with R. Burton and J. Steif during their visit
to the Erwin Schrödinger Institute in September 1995. I am particularly grateful
to them for introducing me to the setting of Example 3.4, and to J. Steif for the
reference [5]. This paper is a direct continuation of [9]; as it turns out, the results
presented here require little more than stripping down some of the methods in [9]
to their bare essentials.

2. Invariant cocycles

We begin by recalling a few definitions and results from [4]. Let X be a standard
Borel space with Borel sigma-algebra BX . A discrete Borel equivalence relation
R ⊂ X × X is an equivalence relation which is a Borel set, and for which each
equivalence class R(x) = {x′ ∈ X : (x, x′) ∈ R}, x ∈ X, is countable. Since we
only deal with discrete Borel equivalence relations we shall use the term equivalence
relation to denote a discrete Borel equivalence relation.

The full group [R] of an equivalence relation R ⊂ X × X is the group of all
Borel automorphisms W of X with Wx ∈ R(x) for every x ∈ X. Under our
assumption that R is discrete there exists a countable subgroup Γ ⊂ [R] with
Γx = {γx : γ ∈ Γ} = R(x) for every x ∈ X. It follows that the saturation
R(B) =

⋃
x∈B R(x) of every B ∈ BX lies in BX . A sigma-finite measure µ on BX

is quasi-invariant under R if µ(R(B)) = 0 for every B ∈ BX with µ(B) = 0, and
ergodic if it is quasi-invariant and either µ(R(B)) = 0 or µ(X r R(B)) = 0 for
every B ∈ BX . Every µ which is quasi-invariant under R is also quasi-invariant
under every W ∈ [R], and by piecing together the Radon-Nikodym derivatives
dµγ/dµ, γ ∈ Γ, we can define a Borel map ρµ : R 7−→ R such that

(1) ρµ(Wx, x) = (dµW/dµ)(x) µ-a.e., for every W ∈ [R],
(2) ρµ(x, x′)ρµ(x′, x′′) = ρµ(x, x′′) for every (x, x′), (x, x′′) ∈ R.

The map ρµ is the Radon-Nikodym derivative of µ under R, and µ is (R-)invariant
if there exists a µ-null set N ∈ BX with ρµ(x, x′) = 1 for every (x, x′) ∈ R ∩
((X r N) × (X r N)). In order to simplify terminology we say that a property
holds (mod µ), or µ-a.e. on R, or for µ-a.e. (x, x′) ∈ R, if there exists a µ-null set
N ∈ BX such that the property holds everywhere on R ∩ ((X r N) × (X r N)).
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Furthermore, if R ⊂ X×X is an equivalence relation and µ a sigma-finite measure
on BX which is quasi-invariant (resp. ergodic) under R, then R is said to be
a nonsingular (resp. ergodic) equivalence relation on (X,BX , µ). A nonsingular
equivalence relation R on (X,BX , µ) is hyperfinite if there exists a (nonsingular)
automorphism V of (X,BX , µ) such that R = {(V kx, x) : k ∈ Z} (mod µ).

Fix an equivalence relation R ⊂ X × X on a standard Borel space X and a
nonatomic, sigma-finite measure µ on BX which is quasi-invariant and ergodic
under R. A Borel automorphism V of X is a (µ-nonsingular) automorphism of
(R, µ) if µ is quasi-invariant under V and V (R(x)) = R(V (x)) for µ-a.e. x ∈ X.
Write Aut(R, µ) for the group of all nonsingular automorphisms of R and observe
that [R] ⊂ Aut(R). Let G be a locally compact, second countable, abelian group.
A Borel map c : R 7−→ G is a (1-)cocycle of R if

c(x, x′) + c(x′, x′′) = c(x, x′′)

for every (x, x′), (x, x′′) ∈ R. A cocycle c : R 7−→ G is a (1-)coboundary if there
exists a Borel map b : X 7−→ G with

c(x, x′) = b(x)− b(x′)

for µ-a.e. (x, x′) ∈ R, and two cocycles c, c′ : R 7−→ G are cohomologous if they
differ by a coboundary. If V ∈ Aut(R, µ), then a cocycle c : R 7−→ G is invariant
under V if

c(x, x′) = c(V x, V x′)
for µ-a.e. (x, x′) ∈ R. Under pointwise addition, the set of G-valued cocycles on
R forms a group Z1(R, G), the sets B1(R, G) ⊂ Z1(R, G) of coboundaries and
Z1(R, G)V ⊂ Z1(R, G) of V -invariant cocycles are subgroups, and the quotient
group H1(R, G) = Z1(R, G)/B1(R, G) is called the (first) cohomology group of R
with coefficients in G.

An element g ∈ G is an essential value of a cocycle c ∈ Z1(R, G) if

{(x, x′) ∈ R ∩ (B ×B) : c(x, x′) ∈ N(g)} 6= ∅
for every neighbourhood N(g) of g in G and every B ∈ BX with µ(B) > 0 (cf. [10]).
The set E(c) of essential values of c is a closed subgroup of G. If G is noncompact
we say that ∞ is an essential value of c if

{(x, x′) ∈ R ∩ (B ×B) : c(x, x′) /∈ K} 6= ∅
for every compact set K ⊂ G and every B ∈ BX with µ(B) > 0, and set

Ē(c) =

{
E(c) ∪ {∞} if ∞ is an essential value of c,
E(c) otherwise.

An important feature of Ē(c) is that Ē(c1) = Ē(c2) whenever c1, c2 ∈ Z1(R, G) are
cohomologous, and that c ∈ B1(R, G) if and only if Ē(c) = {0}. For later use we
also define the range R(c) of a cocycle c ∈ Z1(R, µ): an element g ∈ G lies in R(c)
if and only if there exists, for every neighbourhood N(g) of g in G and every µ-null
set N ∈ BX , an element (x, x′) ∈ R ∩ ((X rN)× (X rN)) with c(x, x′) ∈ N(g).

Proposition 2.1. Assume that R ⊂ X×X is a nonsingular and ergodic equivalence
relation on a standard probability space (X,BX , µ), and that V ∈ Aut(R, µ) is
weakly mixing, i.e. that V has no nonconstant eigenfunction in L∞(X,BX , µ).
Then B1(R, G) ∩ Z1(R, G)V = {0}.

Proof. If 0 6= c ∈ B1(R, G)∩Z1(R, G)V , then there exists a Borel map b : X 7−→ G
with c(x, x′) = b(x) − b(x′) = b(V x) − b(V x′) for µ-a.e. (x, x′) ∈ R, and the
ergodicity of µ under R implies that the map b · V − b is µ-a.e. equal to a constant
g ∈ G. For every character χ ∈ Ĝ the map χ · b : X 7−→ S = {z ∈ C : |z| = 1} is an
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eigenfunction of V with eigenvalue χ(g). As V is mixing, g = 0, b is constant, and
c = 0. �

For the remainder of this section we assume that R ⊂ X ×X is an equivalence
relation, and that µ is a probability measure on BX which is quasi-invariant and
ergodic under R.

Definition 2.2. A measure preserving automorphism V ∈ Aut(R, µ) is asymptot-
ically central if

(2.1) lim
n→∞

µ(B4V nWV −nB) = lim
n→∞

µ(V −nB4WV −nB) = 0

for every W ∈ [R] and B ∈ BX .

Theorem 2.3. Let R ⊂ X ×X be a nonsingular and ergodic equivalence relation
on a standard probability space (X,BX , µ), and let V ∈ Aut(R, µ) be an asymp-
totically central automorphism. Then V is strongly mixing. Furthermore, if G is a
locally compact, second countable, abelian group, then every cocycle c ∈ Z1(R, G)V

satisfies that E(c) = R(c). Finally, if λE(c) is the Haar measure of the closed sub-
group E(c) = R(c) ⊂ G, then µ× λE(c) is nonsingular and ergodic under the skew
product equivalence relation

(2.2)
R(c) = {((x, g + c(x, x′)), (x′, g)) : (x, x′) ∈ R, g ∈ G}

⊂ ((X × E(c))× (X × E(c))).

Proof. In the terminology of [11] and [6], Definition 2.2 can be expressed as saying
that a measure preserving automorphism V of (R, µ) is asymptotically central if
and only if, for every B ∈ BX , the sequence (V −nB, n ≥ 0) is asymptotically
invariant under R. Every weak limit of the sequence (1V −nB , n ≥ 0) of indicator
functions must therefore be invariant under everyW ∈ [R] and hence, by ergodicity,
constant. Since V preserves µ, this constant is equal to µ(B). Hence limn→∞ µ(B1∩
V −nB2) = µ(B1)µ(B2) for all B1, B2 ∈ BX , so that every asymptotically central
automorphism of (R, µ) is mixing.

If c ∈ Z1(R, G) then it is obvious from the definitions that E(c) ⊂ R(c). Con-
versely, if g ∈ R(c), then there exists, for every neighbourhood N(g) of g in G, a
set C ∈ BX with µ(C) > 0 and an element W ∈ [R] such that c(Wx, x) ∈ N(g)
for every x ∈ C. Let B ∈ BX with µ(B) > 0. Since V is mixing,

lim
n→∞

µ(B ∩ V −nC) = µ(B)µ(C),

and (2.1) guarantees that limn→∞ µ(B4V nW−1V −nB) = 0. It follows that

lim
n→∞

µ(B ∩ V nW−1V −nB ∩ V −nC) = µ(B)µ(C) > 0,

and every x ∈ B ∩ V nW−1V −nB ∩ V −nC satisfies that x ∈ B, V nWV −nx ∈ B,
V nx ∈ C, and c(V nWV −nx, x) = c(WV −nx, V −nx) ∈ N(g). This proves that
g ∈ E(c).

Since E(c) = R(c) we may assume (after modifying c on R∩((XrN)×(XrN))
for some null set N ∈ BX , if necessary) that c(x, x′) ∈ E(c) for every (x, x′) ∈ R,
so that the skew product relation R(c) in (2.2) is well defined. The ergodicity of
µ×λE(c) under R(c) is a well known and easy consequence of the definition of E(c)
(cf. e.g. [10]). �

Corollary 2.4. Let R ⊂ X ×X be a nonsingular and ergodic equivalence relation
on a standard probability space (X,BX , µ). If there exists an asymptotically central
automorphism of (R, µ), then µ is either R-invariant, or (R, µ) is of type IIIλ for
some λ ∈ (0, 1] (i.e. E(log ρµ) 6= {0} whenever µ is not invariant under R).
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Proof. By assumption, the cocycle c = log ρµ : R 7−→ R lies in Z1(R,R)V , and
Theorem 2.3 guarantees that either Ē(c) = {0} (in which case µ is R-invariant),
or that E(c) = R(c) is a closed, nonzero subgroup of R. It follows that, if µ is not
invariant, then (R, µ) can neither be of type II∞ nor of type III0. �

Corollary 2.5. Let R ⊂ X ×X be a nonsingular and ergodic equivalence relation
on a standard probability space (X,BX , µ), V ∈ Aut(R, µ) an asymptotically central
automorphism, (G, δ) a locally compact, metric, abelian group with identity element
0G, and c ∈ Z1(R, G)V .

Then there exists a µ-null set N ∈ BX with the following property: for every
x ∈ X r N , every ε > 0, and every B ∈ BX with µ(B) > 0 there exists an
x′ ∈ R(x) ∩B with δ(c(x, x′), 0G) < ε. In particular, if E(c) is a discrete subgroup
of G then µ is ergodic under the equivalence relation

(2.3) R(c,0) = {(x, x′) ∈ R : c(x, x′) = 0} ⊂ R.

Proof. The assertion of this corollary is equivalent to the ergodicity of µ under
R(c). �

The equivalence relation R(c,0) in (2.3) is called the kernel of the cocycle c : R 7−→
G. If the automorphism V of (R, µ) is not asymptotically central the conclusion
of Theorem 2.3 and its corollaries cannot be expected to hold, as the following
example shows.

Example 2.6. Let (X,BX , µ) be a standard probability space, and let S, T be
commuting ergodic, measure preserving automorphisms of (X,BX , µ) such that
the Z2-action (n1, n2) 7→ Sn1Tn2 is free in the sense that µ({x ∈ X : Sn1Tn2x =
x}) = 0 whenever (0, 0) 6= (n1, n2) ∈ Z2. If R = {(x, Snx) : x ∈ X, n ∈ Z},
then T ∈ Aut(R, µ) has infinite outer period (i.e. {Tnx : n ∈ Z} ∩R(x) = ∅ for
µ-a.e. x ∈ X—cf. [2]), but T−nSTn = S for every n ≥ 0. In particular, (2.1)
cannot hold for any B ∈ BX with 0 < µ(B) < 1.

The cocycle c ∈ Z1(R,Z)T given by

c(Snx, x) = n

for every x ∈ X and n ∈ Z satisfies that Ē(c) = {0,∞}. In fact, if G is a
locally compact, second countable group, then every cocycle c′ ∈ Z1(R, G)T looks
essentially like this: the function x 7→ c′(Sx, x) is T -invariant, since

c′(Sx, x) = c′(TSx, Tx) = c′(STx, x),

and therefore µ-a.e. equal to a constant g0 ∈ G. This shows that c′(Snx, x) = ng0
for every n ∈ Z and x ∈ X. If G is compact and S is weakly mixing, the cocycle
c′ does have the property that E(c′) = R(c′), but if R(c′) = {ng0 : n ∈ Z} ⊂ G in
noncompact, then E(c′) 6= R(c′).

We end this section with another example which shows that the inverse of an
asymptotically central automorphism of an ergodic equivalence relation need not
be asymptotically central.

Example 2.7. Unstable and homoclinic relations of ergodic toral automorphisms.
Let n ≥ 2, and let A ∈ GL(n,Z) be an ergodic automorphism of X = Tn = Rn/Zn.
We regard A as a linear map on Rn, write ‖ · ‖ for the Euclidean norm on Rn, and
denote by

F− = {v ∈ Rn : lim
k→∞

‖Akv‖ = 0}, F+ = {v ∈ Rn : lim
k→∞

‖A−kv‖ = 0}

the contracting and expanding subspaces of A. Under the factor map Rn 7−→ Tn
the spaces F− and F+ are sent to the unstable group E− and stable group E+

of A, which are A-invariant, dense subgroups of X. In order to remain within the
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framework of discrete equivalence relations we fix a countable, dense, A-invariant
subgroup Γ ⊂ E− and denote by R = RΓ = {(x + γ, x) : x ∈ X, γ ∈ Γ} the
equivalence relation on X generated by the orbits of Γ.

Let µ be an A-invariant probability measure on BX which is quasi-invariant and
ergodic under translation by Γ. Then we claim that A is an asymptotically central
automorphism of (R, µ).

Indeed, denote by Tγx = x+ γ the translation by an element γ ∈ Γ, and let B ∈
BX with µ(B) > 0. As µ isA-invariant, the sequence of Radon-Nikodym derivatives
(dµTAkγ/dµ, k ≥ 0) is uniformly integrable. If d is a translation invariant metric
on X we set, for every δ > 0,

Bd(B, δ) = {x ∈ X : inf
y∈B

d(x, y) < δ},

and conclude that there exists, for every ε > 0, a δ > 0 with

µ(TAkγ(Bd(B, δ) rB)) < ε

for every k ≥ 0. As limk→∞Akγ = 0 there exists an integer K ≥ 0 with
T±Akγ(B) = B ±Akγ ⊂ Bd(B, δ) for every k ≥ K. It follows that, for k ≥ K,

µ(TAkγB rB) ≤ µ(Bd(B, δ) rB) < ε,

µ(B r TAkγB) ≤ µ(TAkγ(Bd(B, δ)) r TAkγB) < ε,

so that

µ(B4TAkB) = µ(B4AkTγA−kB) < 2ε.

This proves that A is asymptotically central on (R, µ).
Now assume that µ = λX is the normalised Lebesgue measure on X. If A−1 is

an asymptotically central automorphism of (R, µ), then Definition 2.2 implies that

lim
n→∞

µ(B4(B +A−nγ)) = 0

for every B ∈ BX and γ ∈ Γ. As the set B is arbitrary, we conclude that, for every
γ ∈ Γ, 0 is the only limit point of the sequence (A−nγ, n ≥ 0), so that every γ ∈ Γ
is homoclinic to 0 (i.e. γ ∈ F− ∩ F+). However, if A ∈ GL(n,Z) is irreducible and
ergodic, but not expansive (= hyperbolic), then A has no nonzero points which are
homoclinic to 0, so that A−1 cannot be an asymptotically central automorphism of
(R, µ).

Finally assume that the toral automorphism A ∈ GL(n,R) is irreducible and
expansive. In this case the group ∆ = E−∩E+ ⊂ X of points which are homoclinic
to 0 is dense in X, and we choose a countable, dense, A-invariant subgroup Γ ⊂ ∆
and define R = RΓ as before. The above proof shows that both A and A−1 are
asymptotically central automorphisms of (R, µ) for every probability measure µ on
BX which is quasi-invariant and ergodic under translation by Γ.

In this case it is easy to construct A-invariant cocycles c : R 7−→ R: take a Hölder
continuous map φ : X 7−→ R, and put, for every x ∈ X, γ ∈ Γ,

(2.4) c(x+ γ, x) =
∑
k∈Z

φ(Ak(γ + x))− φ(Akx).

Since lim|k|→∞ d(Akγ, 0) = 0 exponentially fast as |k| → ∞ we see that the cocycle
c in (2.4) is well defined, and obviously A-invariant. From [8] we know that c = 0
if and only if there exists a constant a ∈ R and a Hölder continuous function
b : X 7−→ R with φ = a+b ·A−b (cf. also [12]). Via Markov partitions this example
is closely related to the examples discussed in the next section.
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3. Shifts of finite type, random tilings and the super–K and strong
Markov properties

This section is devoted to a particular class of examples of asymptotically cent-
ral automorphisms obtained by considering the shift-action of Zd on the Gibbs
equivalence relation of a d-dimensional shift of finite type X.

Let A be a nonempty finite set, d ≥ 1, and let AZd be the space of all maps
x : Zd 7−→ A. For every set F ⊂ Zd we denote by πF : AZd 7−→ AF the projection
map which restricts every x ∈ AZd to the set F . The space AZd is compact in the
product topology. We write a typical point x ∈ AZd as x = (xm) = (xm, m ∈
Zd), where xm denotes the value of x at m, and define, for every n ∈ Zd, a
homeomorphism σn of AZd by

(3.1) (σn(x))m = xm+n

for every x = (xm) ∈ AZd . The map σ : n 7−→ σn is the shift-action of Zd on AZd ,
and a subset X ⊂ AZd is shift-invariant if σn(X) = X for every n ∈ Zd. A closed,
shift-invariant subset X ⊂ AZd is a subshift, and X is a shift of finite type (SFT)
if there exists a non-empty, finite set F ⊂ Zd with

(3.2) X = {x ∈ AZd : πF · σn(x) ∈ πF (X) for every n ∈ Zd}.
The restriction of the shift-action σ to X will again be denoted by σ.

If X ⊂ AZd is a SFT then there exists an integer k ≥ 1 such that the set F in
(3.2) is contained in E = {−k, . . . , k}d ⊂ Zd. Put E′ = {−k, . . . , k − 1}Zd , A′ =
πE′(X) ⊂ AE

′
, define a continuous, injective, shift-commuting map η : X 7−→ A′

Zd

by setting
(η(x))n = πE′(σn(x))

for every x ∈ X and n ∈ Zd, and observe that

Y = η(X) = {y ∈ A′Z
d

: π{0,1}d(σn(y)) ∈ π{0,1}d(X) for every n ∈ Zd}.
This shows that we may change the ‘alphabet’ A, if necessary, and assume without
loss in generality that

(3.3) F = {0, 1}d ⊂ Zd

in (3.2).
For the remainder of this section we fix a finite alphabet A and a SFT X ⊂ AZd of

the form (3.2)–(3.3). The Gibbs (or homoclinic) equivalence relation ∆X ⊂ X×X
is defined by

(3.4) ∆X = {(x, x′) ∈ X ×X : xm 6= x′m for only finitely many m ∈ Zd}.
We shall be interested in shift-invariant probability measures on BX which are

quasi-invariant and ergodic under ∆X . The standard examples of such measures
are the Gibbs measures of suitable functions φ : X 7−→ R. In order to describe
these measures and some related ideas we assume that G is a locally compact,
second countable group with a distinguished translation invariant metric δ. For
every continuous map φ : X 7−→ G and every k ≥ 0 we set

ωk(φ) = max
{(x,x′)∈X×X:πB(k)(x)=πB(k)(x′)}

δ(φ(x), φ(x′)),

where
B(k) = {n = (n1, . . . , nd) : |ni| ≤ k for i = 1, . . . , d}.

The map φ has l-summable variation, l ≥ 0, if

ω(φ) =
∑
n≥0

nlωn(φ) <∞.
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Maps with 0-summable variation are simply said to have summable variation. If
G = R, δ(a, a′) = |a − a′|, and if φ : X 7−→ R is a map with (d − 1)-summable
variation we call a probability measure µ on BX a Gibbs measure of φ if µ is
quasi-invariant under ∆X with Radon-Nikodym derivative

(3.5) log ρµ(x, x′) =
∑

m∈Zd
φ(σm(x))− φ(σm(x′))

for µ-a.e. (x, x′) ∈ ∆X . The assumption that φ has (d − 1)-summable variation is
sufficient—but not necessary—to guarantee that the sum on the right hand side of
(3.5) converges for every (x, x′) ∈ ∆X ; in many interesting cases this sum converges
under much weaker assumptions on φ, in which case one can still speak of Gibbs
measures in the sense of (3.5) for such functions. We write Mφ

1 (X) for the set of
Gibbs measures of φ, observe exactly as in the case where d = 1 that Mφ

1 (X) is
nonempty (cf. e.g. [9]), and conclude that the set Mφ

1 (X)σ of shift-invariant Gibbs
measures of φ is nonempty. We are interested in the case where Mφ

1 (X)σ contains
nonatomic measures which are ergodic under ∆X . For such measures to exist, ∆X

obviously has to be reasonably large; however, even if ∆X is topologically transitive
or minimal (i.e. if ∆X(x) is dense in X for some or every x ∈ X), the existence and
possible uniqueness of such measures is a difficult and intriguing problem (cf. e.g.
[1])

The following theorem is an immediate consequence of Definition 2.2 and The-
orem 2.3.

Theorem 3.1. Let d ≥ 1, A a finite set, X ⊂ AZd a SFT, and let µ be a shift-
invariant probability measure on BX which is nonsingular and ergodic under ∆X .
Then the following is true for every nonzero m ∈ Zd.

(1) σm is an asymptotically central automorphism of (∆X , µ);
(2) σm is a K-automorphism of (X,µ).

Proof. The only statement going beyond Theorem 2.3 is that σm is aK-automorph-
ism (and not just mixing). However, if P0 = {π−1

{0}({a}) : a ∈ A} is the state
partition of X, then the ergodicity of µ under ∆X guarantees that, for every k ≥ 0,
every set in the two-sided tail-sigma-algebra

⋂
n≥0

∨
|l|≥n

∨
m∈B(k) σ−m−ln(P0) is

saturated under ∆X and hence of measure zero or one. �

Corollary 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied, and
that G is a locally compact, second countable, abelian group and c : ∆X 7−→ G a
cocycle of ∆X which is shift-invariant, i.e. invariant under every σm, m ∈ Zd.
Then the skew product relation ∆(c)

X defined in (2.2) is ergodic. In particular, if G
is discrete, then µ is ergodic under the subrelation ∆(c,0)

X defined in (2.3).

Proof. Apply Theorem 2.3 and Corollary 2.5. �

As a special case of Corollary 3.2 we obtain the following statement.

Corollary 3.3. Suppose that the assumptions of Theorem 3.1 are satisfied, and
that G is a discrete, abelian group, ψ : X 7−→ G a continuous map (which therefore
has finite range), and cψ : ∆X 7−→ G the cocycle defined by

(3.6) cψ(x, x′) =
∑

m∈Zd
ψ(σm(x))− ψ(σm(x′))

for every (x, x′) ∈ ∆X . Then µ is ergodic under the subrelation ∆(cψ,0)
X ⊂ ∆X .

In [9], Corollary 3.3 was proved for d = 1. The distinguishing feature of the
subrelations covered by Corollary 3.3 is that they are defined by means of continuous
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functions ψ taking values in discrete, abelian groups. The next example uses a
similar construction of subrelations, but with the help of a discontinuous function
ψ.

Example 3.4. The relation associated with finite permutations of monochromatic

sets. Let d ≥ 1, A a finite set, X ⊂ AZd a SFT, ∆X ⊂ X×X the Gibbs equivalence
relation of X, and let µ be a shift-invariant probability measure on BX which is
quasi-invariant and ergodic under ∆X .

For every m = (m1, . . .md) ∈ Zd we set |m| =
∑d
i=1 |mi|, and we call two points

m,n ∈ Zd adjacent if |m − n| = 1. A subset F ⊂ Zd is connected if there exists,
for all m,n ∈ F , a finite sequence m0 = m,m1, . . . ,mk = n in F such that mj

and mj+1 are adjacent for j = 0, . . . , k − 1. The connected component CF (m) of
a point m ∈ F is the largest connected subset of F containing m. If d = 1, then
CF (m) is the longest interval in F containing m.

If we interpret the elements of A as colours, then every point x ∈ X represents
a colouring of Zd, and we write

F (x) = {m ∈ Zd : xm = x0}
for the set of coordinates with the same colour as the origin 0 = (0, . . . , 0) and
denote by C(x) the connected component of 0 in F (x). Let F be the collection of
all finite, connected subsets of Zd containing 0, denote by G ∼= Z∞ the free abelian
group whose set of generators is {e(a, F ) : a ∈ A,F ∈ F}, and define a Borel map
f : X 7−→ G by setting

f(x) =

{
e(x0, C(x)) if C(x) is finite
0 otherwise.

We define a shift-invariant cocycle c : ∆X 7−→ G by setting

(3.7) c(x, x′) =
∑

m∈Zd
f(σm(x))− f(σm(x′))

for every (x, x′) ∈ ∆X (note that the sum on the right hand side of (3.7) contains
only finitely many nonzero differences). According to Corollary 3.2, µ is ergodic
under the equivalence relation ∆(c,0)

X defined as in (2.3).
For an intuitive interpretation of this ergodicity property we again consider a

typical point x ∈ X as a colouring and assume that x′ ∈ X is a second colouring
which differs from x only in a finite region of space (i.e. x′ ∈ ∆X(x)). Suppose
that we know that x′ has (up to permutation) exactly the same finite, connected,
monochromatic sets as x. Can one draw any conclusions as to what colour any
particular coordinate (or set of coordinates) of x′ is? (We know by assumption
the colour of each coordinate of x.) According to Corollary 3.2, our knowledge
of x reveals no information whatsoever about x′. If d = 1 this may not be too
surprising, since one can fit together the alternating monochromatic intervals of
a point x ∈ X in many different ways (note that under our assumptions each
monochromatic interval has finite length for µ-a.e. x ∈ X). If d > 1, the sets C(x)
will—in general—no longer be finite. However, in some interesting examples, like
the full two-dimensional two-shift X = {0, 1}Z2

with uniform Bernoulli measure,
the monochromatic component C(x) is finite for µ-a.e. x ∈ X (cf. [5]), but generally
has an irregular shape. Nevertheless these monochromatic ‘tiles’ of x can be fitted
together in many different ways; in particular one can rearrange, for typical points
x, x′ ∈ X, the tiles defined by x in a finite region of space so that the tiles in this
rearrangement still alternate (i.e. no tile of a given colour ‘touches’ any other tile
of the same colour), and that this new arrangement looks locally like the tiling
arising from x′. Figure 1 shows a typical partial configuration in X = {0, 1}Z2

, in
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which the zeros and ones are represented by white and black squares, and gives an
impression of the random tiling arising from the connected, monochromatic subsets
of Z2 defined by a point x ∈ {0, 1}Z2

.
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Figure 1

Any pair of points (x, x′) ∈ ∆(c,0)
X also has the property that, for every a ∈ A

and every sufficiently large k ≥ 0,

N(x, a, k) = |{m ∈ Zd : |m| ≤ k and xm = a}|

= |{m ∈ Zd : |m| ≤ k and x′m = a}| = N(x′, a, k).

In particular, the coordinates of x and x′ differ by a finite permutation. The
ergodicity of the subrelation of ∆X consisting of all pairs (x, x′) ∈ X × X which
differ by such finite permutations (which was called the super-K property in [9])
is a consequence of the ergodicity of the relation ∆(c,0)

X defined above. For further
discussion of the super-K property and related topics we refer to [9].

Example 3.5. Marker relations and the strong Markov property. Let A be a
finite set, X ⊂ AZ a SFT, and let µ be the unique Gibbs measure of a function
φ : X 7−→ R with summable variation (cf. [3]). We fix a Borel set B ⊂ X with
µ(B) > 0 and set, for every x ∈ X,

m−(x) =

{
min {n ≥ 0 : σ−n(x) ∈ B} if x ∈ ∪n≥0σ

n(B),
∞ otherwise,

,

m+(x) =

{
min {n ≥ 1 : σn(x) ∈ B} if x ∈ ∪n≥0σ

−n(B),
∞ otherwise.

Denote by Ω(A) =
⋃
k≥1A

k the disjoint union of the sets Ak, k ≥ 1, write G

for the free abelian group with generators {e(ω) : ω ∈ Ω(A)}, and define a map
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ψ : X 7−→ G by setting

ψ(x) =


e(x−m−(x), . . . , xm+(x)−1) ∈ Am

−(x)+m+(x) ⊂ Ω(A)
if m−(x) +m+(x) <∞,

0 otherwise.

Again we would like to define a cocycle cB : ∆X 7−→ G by setting

(3.8) cB(x, x′) =
∑
k∈Z

ψ(σk(x))− ψ(σk(x′))

for every (x, x′) ∈ ∆X . However, if B is an arbitrary Borel set, there is no guarantee
that the right hand side of (3.8) is well defined µ-a.e. on ∆X . In order to ensure
that (3.8) makes sense µ-a.e. we write D(m) ⊂ BX , m ≥ 0, for the finite algebra
of sets generated by all cylinder sets of the form [i−m, . . . , im]−m = {x = (xn) ∈
X : xj = ij for j = −m, . . . ,m} with (i−m, . . . , im) ∈ A2m+1, and call B well
approximable if

(3.9)
∑
m≥0

min
E∈D(m)

µ(B4E) <∞.

In particular, if (En, n ≥ 0) is a sequence of sets such that Em ∈ D(m) for every
m ≥ 0 and

∑
m≥0 µ(Em) <∞, then the sets

⋃
m≥0Em or limn≥0E04 . . .4En are

well approximable. Such sets occur, for example, in the study of isomorphisms of
SFT’s with finite expected code lengths (cf. [7]).

Suppose that B ∈ BX is well approximable. Let Γ be the countable group of
homeomorphisms γ of X for which there exists an N(γ) ≥ 0 with xn = (γx)n
for every x = (xn) ∈ X and every n ≥ N(γ), and observe that Γx = ∆X(x) for
every x ∈ X (the elements of Γ are sometimes called uniformly finite dimensional
homeomorphisms of X). For every γ ∈ Γ and every m ∈ Z with |m| ≥ N(γ) we
obtain that

µ(σm(B)4γσm(B)) ≤ (1 + e(2N(γ)+1) max |φ|) min
E∈D(|m|−N(γ))

µ(B4E)

(cf. (3.5)), so that ∑
m∈Z

µ(σm(B)4γσm(B)) <∞.

A straightforward calculation shows that the map x 7→ cB(γx, x) in (3.8) is well
defined µ-a.e. for every γ ∈ Γ, since the right hand side of (3.8) contains only
finitely many nonzero differences. By setting cB = 0 on ∆X ∩ ((XrN)× (XrN))
for a suitable null set N ∈ BX we obtain from (3.8) a well defined, shift-invariant
cocycle cB : ∆X 7−→ G. By Corollary 2.5, µ is ergodic under the equivalence
relation ∆(c,0)

X appearing in (2.3). If B = [i0, . . . , il−1] = {x = (xm) ∈ X : xj =
ij for j = 0, . . . , l − 1} is a cylinder set, and if µ is an l-step Markov measure,
then the ergodicity of ∆(c,0)

X is an immediate consequence of the strong Markov
property, i.e. of the fact that the strings between successive visits to B form an
infinite state Bernoulli process. The ergodicity of the relation ∆(c,0)

X implies a
weaker form of the strong Markov property for every Gibbs measure and every well
approximable ‘marker’ set B ∈ BX : the equivalence relation defined by all possible
(allowed) rearrangements of the times between successive visits to B is ergodic (but
in general not measure preserving).
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