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1. INTRODUCTION

In 1967 Furstenberg proved that every infinite closed subsBteR /Z simultaneously invariant
under multiplication by2 and by3 is equal toT (cf. [8]), which motivated the still unresolved
guestion whether this scarcity of invariant sets is paralleled by a corresponding scarcity of invariant
probability measureds Lebesgue measure the only nonatomic probability measurg waich
is invariant under multiplication by2 and by 3? Furstenberg’s question remained dormant until
1988, when Lyons [18] proved that any probability measurélomhich has completely positive
entropy under either of these maps is equal to Lebesgue measure. In 1990 Rudolph weakened Lyons
hypotheses and proved the same result for any probability measure which is invariant and ergodic
under theN?-action generated by multiplication and by3 and has positive entropy under either
of these maps.

In 1996 Katok and Spatzier [10] introduced a remarkable extension of the scope of Furstenberg’s
question to certairZ.9-actions by automorphisms of compact abelian groups with 1.1 They
proved that any probability measuuneon a finite-dimensional toru = T" which is invariant and
mixing under a topologically mixing, irreducible (Definition 4.2) and exparfsigebraicZ?-action
a, and which has positive entropy under some element of the action, is a translate of Lebesgue
measure on au-invariant subtorus oK (the hypotheses in [10] are actually much weaker, but
somewhat technical). The definitive version of this result is due to Einsiedler and Lindenstrauss [6]
and implies that, for any probability measyren a finite-dimensional torus or solenoxdwhich
is invariant and weakly mixing under a topologically mixing algebtafeactiona, there exists a
closeda-invariant subgrouly C X such thapi= pAy and the action induced by eaah, n € Z9, on
X /Y has zero entropy with respect to the meagureurt?* (cf. Theorem 5.3). Hera: X — X/Y
is the quotient map.

Instead of pursuing further the many fascinating extensions of thessure rigidityresults due
to Katok and others let me turn isomorphism rigidityof algebraicZd-actions. Suppose that
andp are topologically mixing algebraiZ?-actions on finite-dimensional tori or solenoidsand
Y, respectively. By following a suggestion of Thouvenot and applying the results in [10] or [6] to
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174 actions by continuous automorphisms of compact abelian groups will be referrealgebsaicZ?-actionsthrough-
out this article, and we shall always assume that1.
2An algebraicZd-actiona on a compact abelian groupis expansivef there exists a neighbourhodd of the identity
elemen® € X with N, ca o" (W) = {0}.
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appropriatex x B-invariant joinings of the Haar measur®s andAy one obtains that any measur-
able conjugacy ofr and is affine, i.e. thaisomorphism rigidityholds for topologically mixing
algebraicZd-actions on finite-dimensional tori or solenoids fbr> 1 (cf. [9]). Such actions obvi-
ously have zero entropy, but not all zero entropy mixing algel#&iaction on a compact connected
abelian group live offinite-dimensionatori or solenoids. This raises the natural question whether all
zero entropy mixing algebrai?-action on compact connected abelian groups exhibit isomorphism
rigidity — a question which remains open at this stage (cf. Conjecture 5.1 and Problefn 5.2).

For mixing algebraicZd-actions on zero-dimensional compact abelian groups the picture has
recently become much clearer, and the results leading to this clarification are the subject of this
article.

In 1978 Ledrappier [15] gave a simple example of a mixing alget#aiaction on a compact
zero-dimensional abelian group which is not three-mixing. In 1993 Kitchens and the author inves-
tigated further the class of algebrai€-actions on zero-dimensional compact abelian groups and
exhibited a number of invariants of measurable conjugacy of such actions related to the higher or-
der mixing behaviour (in the sense of [15]) and to certain partially invariant sigma-algebras of such
actions (cf. [12]). These invariants again suggested a close link between the measurable and the
algebraic structure of such actions.

The results in [12] imply that an algebraf-actiona on a zero-dimensional compact abelian
groupX is mixing of every order if and only if it has completely positive entropy (cf. Theorem 3.3),
and that every such action which is not mixing of every orderr@snixing setsvhich describe a
very regular breakdown of mixing of a particular order (cf. (3.4)). In spite of Theorem 3.4 by Masser,
which ties nonmixing sets to the algebraic structure of the actighe explicit determination of the
nonmixing sets of an algebrait-action is generally a nontrivial task.

From the definition of nonmixing sets it is clear that an algebZ&i@ctiona is notr-mixing if it
has a nonmixing set of size The converse had been an open problem for some time and was only
proved recently by Masser (Theorem 3.7).

The connection between the apparently unrelated notions of the order of mixing and isomorphism
rigidity for irreducible and mixing algebrai£9-actions on zero-dimensional compact abelian groups
was established in 2000 by Kitchens and the auther:ahdp are measurably conjugate irreducible
and mixing algebrai@?-actions on zero-dimensional compact abelian grog@sdY, then their
nonmixing sets coincide, and evemyx (-invariant joiningp of the Haar measuress andAy on
X xY which has the same nonmixing sets\gsandA\y is a translate of the Haar measure on some
o x B-invariant closed subgroup C X x Y. As in the connected case one can now use a joinings
argument to prove isomorphism rigidity for such actions.

Up to this stage of the story isomorphism rigidity of mixing algebt&feactions with zero en-
tropy had only been established under the additional hypothesis of irreducibility or, somewhat more
generally, ofentropy rankl.* The first step beyond this hypothesis in the zero-dimensional case is
due to Bhattacharya in [2], where he uses the bounded order of mixing for arbitrary (i.e. not necessar-
ily of entropy rankl) zero entropy algebrai£?-actions on zero-dimensional compact abelian groups
to prove that measurable conjugacies between such actions are automatically continuous. With this
information one can bring a variety of further tools into play, and by considering homoclinic points of
certain sub-actions one can prove isomorphism rigidity of mixing zero entropy algé&raictions

Spositive entropy algebraizd-actions have Bernoulli factors and can therefore not be expected to exhibit isomorphism
rigidity — cf. [17] and [25].

an mixing algebraiczd-actiona on a compact abelian grouphasentropy rankl if 0 < h (a") < oo for every nonzero
n e 79 (cf. [5]).
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a on zero-dimensional compact abelian groups for which there ex@teith 1 < d’ < d such that

the restriction ofx to a subgroupy c Z9 of rankd'’ is expansive and has completely positive entropy
(Theorem 6.11). The necessity of this condition is illustrated with a series of examples (Examples
6.15) which show thatsomorphism rigidity does not hold in general for zero entropy algebraic
79-actions on zero-dimensional compact abelian grolfmvever, the phenomenon underlying this
possible breakdown of isomorphism rigidity in the zero-dimensional case (hamely the existence of
polynomial maps of degree 1) is absent in the connected case (cf. Proposition 6.4 (3)), so that one
currently cannot draw any further conclusions or conjectures from it.

2. ALGEBRAIC Z9-ACTIONS

An algebraicZ%-actionis an actiona: n — a" of Z9, d > 1, by continuous automorphisms of
a compact abelian groug with Borel field Bx and normalized Haar measuxg. Let a andf3 be
algebraicZd-actions on compact abelian groupsndY, respectively. The actiof is ameasurable
factor of a if there exists a surjective Borel mgp X — Y with Ax@ ™ = Ay such that

¢-a"=p"-¢ (2.1)
Ax-a.efor everyn € Z9. If the mapgin (2.1) is continuous, thef is atopological factorof a, and
if @is a group homomorphisn,is analgebraic factorof a. If the factor mappin (2.1) is invertible
it is a (measurable, topological or algebradoinjugacyand the actionst and 3 are (measurably,
topologically or algebraically§onjugate

In [11] and [24], Pontryagin duality was shown to imply a one-to-one correspondence between

algebraicZd-actions (up to algebraic conjugacy) and modules over the ring of Laurent polynomials
Ry = Z[ufl, e u(fl] with integral coefficients in the commuting variabies. .., uq (up to module
isomorphism). In order to describe this correspondence we write a typical eléradRi as

f=3 fmul (2.2)

mezd

with u™ = u™ - uj® and f, € Z for everym = (my, ..., my) € Z9, wherefy, = 0 for all but finitely
manym. If o is an algebrai&d-action on a compact abelian groip then the additively-written
dual groupM = X is a module over the rinBy with operation

fa='y fmaMa (2.3)
mezd
for f € Ry anda € M, wherea™ is the automorphism d¥l = X dual toa™. In particular,
u™-a=aMa (2.4)

for m € Z9 anda € M. This moduleM = X is called thedual moduleof a. For everyf € Ry, the
group homomorphism
fla)="% faa™: X — X (2.5)
nezd
is dual to multiplication byf onM = X (or, equivalently,]‘/(a)a: f-ain (2.3)). In particularf (a)
is surjective if and only iff does not lie in any prime ideal associatedth M.

5A prime idealp C Ry is associated witlan Ry-moduleM if
p=anna)={fcRy:f-a=0u}
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Conversely, anyRg-moduleM determines an algebrai£®-action oy on the compact abelian
groupXy = M with aff dual to multiplication byu™ on M for everym € Z9 (cf. (2.4)). Note that
Xu is metrizable if and only if the dual modubé of ay, is countable.

Examples 2.1. (1) Let M = Ry. SinceRy is isomorphic to the direct surfi,« Z of copies ofZ,
indexed byzd, the dual groupX = Ry is isomorphic to the Cartesian prodtilli%d of copies of
T =R/Z. We write a typical element e T2 asx = (%) with x, € T for everyn € Z¢ and choose
the following identification ofXg, = Ry with T%: for everyx € TZ" andf € Ry,

(, ) = & Znczs I,
where f is given by (2.2). Under this identification tf%’—actionaRd onXg, = T%’ pecomes the
shift-action
(6™X)n = Xm-¢n- (2.6)
(2) Letl C Ry be an ideal andil = Ry/1. SinceM is a quotient of the additive grougy by an

OR,-invariant subgroup (i.e. by a submodule), the dual gr&up= M is the closedr,-invariant
subgroup

XRy 1 = {XEXg, =T% : (x, f) =1 forevery f €1}

— {xe T2 . > faXmin=0 (mod ]
nezd forevery f el andme Zd} @.7)
m
= kerf(ar,) = [ kerfi(ar,),
fel i=1
where f,..., fy is @ set of generators d¢fand f(aR,) is defined by (2.5) for every € |. The
Zd-actionapdﬂ is the restriction of the shift-actiom = ag, in (2.6) to the shift-invariant subgroup

Xyt C T%,
Conversely, leX C T2 = Ry be a closed subgroup, and let
Xt ={feRy:(x f)=1 forevery xe X}
be the annihilator oX in ﬁ; ThenX is shift-invariant if and only iiX ' is an ideal inRy.

(3) Let p > 1 be a rational prime, denote tRfjp) = Fplur?,...,u7!] the ring of Laurent poly-
nomials inug,...,uq with coefficients in the prime fieléf, = Z/pZ, and write everyf € Rgp) as
f =3 ez fal" with f, € Fy for everyn € Z9. For everyf = 5,4 fau" € Ry we denote by

fp=3 (fa(modp))u” € RP (2.8)
nezd
the Laurent polynomial obtained by reducing each coefficiert nfodulo p. For every ideal C
RP, = {f €Rq: fpel}is anideal inRy, andR” /I = Ry/I. Furthermore] C Ry is a prime
ideal if and only ifl C R&p) is a prime ideal.

for somea € M. The set of all prime ideals associated whthis denoted by agd) and satisfies that

U r»= U anna).

peasg¢M) 0#acM

If M is Noetherian, then aé¥!) is finite. For details see [14].
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The additive grou;Rép) can be identified with the dual group G£/ pZ)Zd by setting
<h,(0> — eZT'j (Znezd hnuh)/p

for everyh € Rfjm andwe (7,/pZ)%’. With this identification the shits™ : (2 pZ)2* — (Z,/ pZ)%*
defined as in (2.6) is dual to multiplication bff' on Rép), andh(o) is dual to multiplication byn on
RP for everyh e R (cf. (2.5)).

If g C R&m is an ideal with generatofh®, ... h®} we can rewrite (2.7) as

R&p)/q =X, ={we (Z/pZ)Zd : (h,w) =1 forevery he q}
R /e 2.9)

k
— (N ker(h(o)) = (kerth®(a)),
i=1

h
and <4

o (2.10)

=0
Rl(jp) /a XR((jp) /a

is the restriction of the shift-actiom to )ﬁ?ém/q c(z/ pZ)Zd.

The correspondence between algebZiactionsa = ay andRy-modulesM yields a correspon-
dence (or ‘dictionary’) between dynamical propertiesigf and algebraic properties of the module
M (cf. [25]). It turns out that many of the principal dynamical propertiesigfcan be expressed
entirely in terms of the prime ideals associated with the modilécf. Footnote 5 on the facing
page). Here we need only a few entries from this dictionary.

Theorem 2.2. Let a be an algebraicZd-action on a compact abelian groug with dual module
M=X.

(1) The groupX is connected if and only iho prime idealp € as¢M) contains a nonzero
constant, andX is zero-dimensional if and only éveryp € as¢M) contains a nonzero
constant;

(2) The actiona is mixing if and only no prime idegl € as¢M) contains a polynomial of the
formu™ — 1 with m € Z9 < {0};

(3) If X is zero-dimensional, then the actionhas completely positive entropy if and only if
every prime ideap € as¢M) is principal (and hence equal t@(p)Ry for some nonzero
prime constanp(p) > 1).

(4) If X is zero-dimensional, then the actiaris expansive if and only if the dual mode= X
is Noetherian.

Proof. If M contains a nonzero elemembf finite ordern > 2, say, thena, x) is ann-th root of unity
for everyx € X, and the continuous map map— (a,x) sendsX onto a finite set containing more
than one element. Henéeéis not connected.

Conversely, suppose that every nonzero elemeM éias infinite order, and tha¢ is not con-
nected. We fix a metridé on X and choose two complementary open &&ts9, in X. By compact-
ness there exists &> 0 such thak+ Bs(€) C O; for everyx € 0j, i = 1,2, whereBs(e) = {y € X :
o(y,0) < €}.

Choose an increasing sequence of finitely generated subgt@upsn M with (J,>1 Ay = M.
The annihilatord;, = A} form a decreasing sequence of closed subgrougswith M-, Y, = {0},
and hence witlv, C Bg(€) for all n > no, say. Our choice of implies thatx+ Yy, C O; for every
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x € 0j, i = 1,2, and hence that the quotient groXipYy, is not connected. Am = Ay, is finitely
generated and has no nonzero elements of finite oAdes: Z™ andA/n\0 = X/Yn, = T™ for some
m > 1, which contradicts the diconnectednesXgf,.

We have established the well known fact tiaits disconnected if and only X = M contains an
elementa # 0 of finite order. If the latter condition holds we 9dt= Ry - a and choose a nonzero
b € N whose annihilator arfb) = {f € Ry : f-b= 0} is maximal (this is possible since the riRg
is Noetherian). Thep = ann(b) is a prime ideal which is obviously associated wifhand contains
a nonzero constant by assumption.

Conversely, if somg € asqM) contains a nonzero constant, tHdrobviously contains elements
of finite order.

Essentially the same argument as above shows that the following conditions are equivalent:

(i) X is zero-dimensional,
(i) X contains no nontrivial connected subgroups,

(iii) Every elementa € M has finite order,

(iv) Every prime ideab € asqM) contains a nonzero constant.
This completes the proof of (1).

The second assertion is [25, Theorem 6.5 (2)] and (3) follows from [25, Theorem 20.8].

In order to prove (4) we note thak, /, is obviously expansive for every every prime idgat
Ry containing a rational prime constapt> 1, since it is the shift-action on some closed, shift-
invariant subgroup deZd (cf. Example 2.1 (3)). IX is zero-dimensional, then (1) implies that every
p € asg¢M) contains a prime constant, and our assertion is a consequence of [25, Corollary 4.7,
Proposition 5.4 and Theorem 6.5 (4)]. O

3. MULTIPLE MIXING OF ALGEBRAIC Z9-ACTIONS ON ZERG-DIMENSIONAL GROUPS

In this section we describe the connection between higher order mixing properties of algebraic
79-actions and certain diophantine results on additive relations in fields due to David Masser ([12],
[19]).

Recall that an algebrai?-actiona on a compact abelian grotis mixing of orderr > 2 if

lim Ax<ﬂ o B.) |‘|Ax (Bi) (3.1)

ny,....nrezd
[nj—nj||—e for 1<i<j<d

for all Borel setB; C X,i=1,...,r
Let p C Ry be a prime ideal, and l&t = ag,/, be the algebrai@d-action with dual module

M = Ry/p = X. If o is not mixing (i.e. not mixing of orde2 in the sense of (3.1)), then there exist
Borel setB;,B, C X and a sequendgy, k > 1) in 7.9 with limy_.., N = o and

Iliir!o)\x(Blmor’”sz) =cC
for somec £ Ax (B1)Ax(By). Fourier expansion implies that the latter condition is equivalent to the
existence of nonzero elememnts a, € M such that
a;+uk.ax=0
for infinitely manyk > 1. In particular,
(uU"—-1)-a,=0 (3.2)
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for some nonzeran € Z9. A very similar (but a little more careful) argument shows thas not
mixing of orderr > 2 if and only if there exist elements, ..., a in M, not all equal to zero, and a
sequencé(n” ... .n") k> 1) in (Z9)" with limy_.e [n{’ —n{|| = w foralli, jwith 1<i< j <r,
such that
n® 0
uk cag+---+uUuk a =0 (3.3)

for everyk > 1.

Below we shall see that higher order mixing of an algebZfeactiona on a compact abelian

groupX can break down in a particularly regular way (cf. Examples 3.2). We call a nonempty finite
subses c Z9 mixingfor o if

lim Ax (ﬂ ak”Bn> = rLAX(Bn) (3.4)
k—00
nes ne
for all Borel setsB, C X, n € S, andnonmixingotherwise. A seS c Z9 is minimal nonmixingf it
is nonmixing, but every nonempty sub&tC Sis mixing.
As in (3.3) one sees that a nonempty finite Set Z9 is nonmixing if and only if there exist
elements, € M, n € S not all equal to zero, such that

ESU"” .an =0 forinfinitely many k > 1. (3.5)
ne
Our next result shows that the higher order mixing behaviour of an algeBfaactiona with

dual moduleM is again completely determined by that of the actiang, with p € as¢M) ([12]
and [27]).

Theorem 3.1. Let a be an algebraicZ9-action on a compact abelian groug with dual module
M =X.
(1) For everyr > 2, the following conditions are equivalent:
(a) aisr-mixing(i.e. mixing of orderr),
(b) ag,/p is r-mixing for everyp € asgM).
(2) For every nonempty finite s8tc Z9, the following conditions are equivalent:
(a) Sisa-mixing,
(b) Sis ag,/,-mixing for every € as¢M).

The following examples show some of the mechanisms which can lead to nonmixing sets for
mixing algebraiczd-actions.

Examples 3.2. (1) (Ledrappier’s Example [15]) Lgt = (2,1+ u1 + Up) = 2Ro+ (14 ug + U2) Ry,
M = Ry/p, and leta = ay be the algebrai?2-action onX = Xy = M defined in Example 2.1 (2).
Thena is mixing by Theorem 2.2 (2), but the s&t= {(0,0), (1,0), (0,1)} C Z? is nonmixing.

Indeed,(14u; + uz)2n -a=0foreveryn>0andae M. Fora= 1+ (2,1+u; +uz) € M our
identification ofM with X in Example 2.1 (2) implies thago,0) + X(2n,0) + X(0,2n) = 0 (mod 1) for
everyx € X andn > 0. ForB = {x € X : xgg) = 0} it follows that

Bnoa @9(B)na(©2)(B)=Bna 2"9(B),
and hence that

A (BNna~ @9 B)na~©2)(B)) = Ax(Bna~ 29 (B)) = 1/4
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for everyn > 0. If the setS= {(0,0), (1,0),(0,1)} C Z? werea-mixing, we would have that
lim M (Bna~9(B)na~©?)(B)) = Ax(B)* = 1/8.
By comparing this with (3.4) we see thats indeed nonmixing (cf. [15]).

(2) In order to generalize Example (1) we fix a rational pri;e 1 and an ideal C R((jp), and
observe as in Example (1) that thepport

8(h)y={nez:h,#0} (3.6)

of every nonzerd € | is a nonmixing set fouRé,))/l.

The two following examples show that nonmixing sets can also arise in a much less obvious
manner.

3)([12]) Let f =1+up+ U+ U+ upp + U3 € R? andletp = (f) = fR? c R?. sincef is
irreducible,p is a prime ideal. We set = (XR(Z)/p andX = XR(QZ)/p (cf. (2.9)—(2.10)).
2

A direct calculation shows that
(U1 +Up) + (14 U2)us + (1+ug)up = 0,
(1+up)® = (1+u2)* = (ur+ ) (modp).

By raising the first of these equations to the fourth power and substituting terms according to the
second equation we obtain that

0= (up+u2)*+ (14 up)*uf + (1+up)*u
= (U + )+ (1+u) (U + w)3uf + (14up) (ur +u2)%ud  (modp).

(3.7)

It follows that
(U +U2) + (14 Up)uf + (14U € p,
and by repeating this argument we see that

(Ug + Uz) + (1 + ) U + (1 +up)ud e p (3.8)

for everyk > 0. A glance at (3.5) reveals that we have proved that th&se{(0,0), (1,0),(0,1)}
is o-nonmixing, although it is not the support of any elemeng.of
Theorem 3.4 below will explain what is going on here: if we choose a primitive third root of

unity in &, the algebraic closure of the prime field, and setry = F[w], then the polynomial

f € Fp[ut,u3] is no longer irreducible in the rinBs[ui™, u3]:

1+ U+ Up+ U2 + Uz + U3 = (14 oug + w?U2) (1 + wluy + wuy).

For everyh e R(22> we setlh) =h+p e R(ZZ)/p. If K= Q(R(zz)/p) is the field of fractions of the
integral domairR(zz) /p, then the second equation in (3.7) is equivalent to sayingobhat[tl;ﬁ]] is
a primitive third root of unity inK and hence thd O F4. Equation (3.8) translates as

1+ ™ U + ()% w]* = 1+ o[l + wPu]* =0

for everyk > 0.

(4) ([12]) Let f = 1+ Uy + Uz + U2 + UpUp + U3 + U3 + U2up + ug i3 + U € R g=1+wmtue
R(zz), p=(f)C R?, q=(9) C R? and leta = SN andX = XR(Zz)/(f) as in Example 2.1 (3). We

2
claim that the seS= {(0,0),(1,0),(0,1)} is nonmixing fora.
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In contrast to Example (3), the polynomitlis irreducible not only irR2 ), but also Ian[Ul ,
u3?), i.e. f is absolutely irreducibleHowever,

fd,u) =1+ + B+ +udud+ WS+ ud + udud + S+ ud = gh

for someh R( )

We denote bW = Q( /p) andL = Q( /q) the fields of fractions of the integral domains
2 /p andR2 /q, respectively, and s¢j =h+q € R2 /q C L for everyh e R(2 ). The ring homo-
morphismn: R<22) — L, defined by setting)(ui) = [u?] = [u]3 € R(zz)/q C Lfori=1,2, satisfies
thatkern = p = (f). Hencen induces an embedding: K — L of K as a subfiel&k’ =n’(K) c L.

By assumption1+ [u1] 2 + [ o]? 2_ 0in L for everyk > 0. As 2% =1 (mod 3 for everyk > 0,
+, k>0, satisfies that

1+ [uli " ) = 1+ (] ) + (U] [us] = O
for everyk > 0. This shows that the nonzero vecto (1, [u1], [uz]) is orthogonal to all the vectors
wi = (1, [u]'%, [ud]’), k > 0, in L3. Aswy € K’ for everyk > 0, there also exists a nonzero vector
v '=(ab,c) e € K’ which is orthogonal to every. After identifying K’ with K and multiplying out
denominators we obtain a nonzero ved@tb’,c’) € ( /p) such that

a+uk-b4uk.d =0

in R§2>/p for everyk > 0. According to (3.5) this shows that the st {(0,0),(1,0),(0,1)} is
indeed nonmixing foo.

In contrast to the connected case, where every mixing algefifaaction is mixing of every
order by [27], all zero entropy algebraid-actions on zero-dimensional compact abelian groups
have nonmixing sets.

Theorem 3.3. A mixing algebraicZ9-actiona on a totally disconnected compact abelian grotp
has nonmixing set@nd is thus not mixing of every orgef and only if it does not have completely
positive entropy.

Proof. Theorem 3.1 shows that has no nonmixing sets if and only if the same is true for each
ORy/ps P € as€M), whereM = X is the dual module od.

As X is zero-dimensional, eveye as¢M) contains a rational primp = p(p) > 0 by Theorem
2.2 (1). If somep € as¢M) is principal, then it is of the formp = p(p)Ry, ag,/, is the shift action
of 29 on the full shift space,/, = (Z/p(p)Z)*, h(ag,/,) = log p(p) > 0, andag,, is mixing of
every order.

If the idealp € as¢M) is nonprincipal, we set = { f /) : f € p} C Rd ) and observe that #
{0} andag, ), = (XRd g Example 3.2 (2) shows that the suppdth) of every nonzero Laurent

polynomialh € g is @ nonmixing set foog, /, = aRgp(p»/q and hence, by Theorem 3.1, for

If o has completely positive entropy, then Theorem 2.2 (3) implies eékatyp € as¢M) is
principal, and Theorem 3.1 and the discussion above showatisahixing of every order. Ifx does
not have completely positive entropy, at least preasdM) is nonprincipal, and: therefore has
nonmixing sets. O

The description of the nonmixing sets of an algeb#feactiona is facilitated by the following
theorem of David Masser ([12], [19]).
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Theorem 3.4. LetK be an algebraically closed field of characterisfic- 0,r > 2, and let(xy, ..., %)
€ (K*)". The following conditions are equivalent:

1) There exists a nonzero eleméat,...,c;) € K" such that
( ;

r

k
cx =0
2
for infinitely manyk > 0;
(2) There exists a rational numbsr> 0 such that the sef3, ..., X7} is linearly dependent over
the algebraic closur&, C K of the prime field~, = Z/ pZ.

Corollary 3.5. Letp C Ry be a prime ideal containing a rational primge > 1, and leta = ag,,
be the algebrai@9-action onX = Xry/p defined in Exampl.1 (2) We denote bit = Q(Ry/p) D
Ry/p the field of fractions of the integral domaRy/p, write K for its algebraic closure, and set

Xn=U"+peRy/pCKC K for everyn € Z9. If Sc Z9 is a nonempty finite set, then the following
conditions are equivalent:

(1) Sis nota-mixing; _
(2) There exists a rational numbsr> 0 such that the sefps; : n € S} C K is linearly dependent
overFp C K.

Proof of Corollary3.5, given Theorer8.4. If a nonempty finite subs& c Z9 is not mixing fora,
then (3.5) implies that there exist elemefits : n € S} in Ry/p, not all equal to zero, and infinitely

manyk > 1 such that
kn
2 u-a, =0.
ne

If we setxy = u"+p € Ry/p C K for everyn € S, we obtain Condition (1) in Theorem 3.4 and hence
Condition (2) in our corollary. _

Conversely, if{x; : n € S} is linearly dependent ovéi, for some rational numbes> 0, then we
obtain a nontrivial equation of the form

> @ =0

nes

with wy € F_p for everyn € S By Theorem 3.4 there exists a honzero elenfentn € S) € KS with

for infinitely manyk > 0. Hence there exists a nonzero elem@ht n € S) € KS with

2 =0

for infinitely manyk > O, and after clearing denominators we obtain a nonzero elefagnt € S) €
(Rq/p)> with
kn
u-an =0
2

for infinitely manyk > 0. This shows that the s&is a-nonmixing. O

In order to illustrate the dynamical implications of Corollary 3.5 we return to the Examples 3.2 on
page 7.
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Examples 3.6.(1) In Example 3.2 (2) we used the fact tHat 1+ ug + Uz + U2 4+ Uglp + U3 € R(ZZ)

is irreducible overm, but not overR. We definep = (f) C R(Z) as in that example, sét(z“) =
Faus?,usY] and putq = (1+ wuy + wup) C Ry, If 1: — RY is the inclusion map and

TU. R(2 ) s R2 >/q the quotient map, theker(tto1) = p, and the maprto | induces an embedding of

the field of fractionK = Q(Rgz)/p) in the field of fractiond. = Q(Rg” /p). As we saw in Example
3.2(2),
T+ + g =

in L for everyk > 0, i.e the vecto(1,w,w?) € L3 is orthogonal to(1, u2™ u2™) € K C L for every

k > 0. Hence there exists an nonzer@ K* which is orthogonal to everyl, u§2k,u§2k), andv =
(u1 +uz,14up, 14 up) corresponds to an explicit choice of such a vector.

The injectioniy: R(zz)/p — R(24>/p induced by the mapo1: R(ZZ) — R(24>/q above embeds the
R>-moduleM = R(Zz)/p as a submodule of indeXin the R,-moduleN = R(24)/q. The corresponding

dual factor map): Xy — Xm sendsu = ay to B = ay and is two-to-one. We shall return to these
two algebraicZ2-actions in Example 4.9 on page 16.

(2) In the notation of Example 3.2 (4) we set= (f) C R(22)’ q=1(g) C R2 a=a R? /p’

— —

2 2 .
X = XR(ZZ)/p = R(2 )/p, B= O(R(22>/q andY = XR(ZZ)/q = R(2 )/q. We putl” = 3Z° and writety: Y —

(z./27,)" for the projection onto the coordinateshinBy identifying ™ with Z? we viewTi(Y) as a
closed shift-invariant subgroup QZ/ZZ)ZZ, and a little calculation shows thag (Y) = X and that
T : Y — X is two-to-one.

The setS= {(0,0),(1,0), (0,1)} C Z? is obviouslyB-nonmixing. We writefr : n+ " for the
-action obtained fronfd by restriction and observe that the two-to-one factor mapY — X
sends3r to a. Furthermore, the s&is alsofr-nonmixing, and this property @survives under the
factor mapry: Y — X (this is the essence of the calculation in Example 3.2 (4)).

If an algebraicZ9-actiona is r-mixing, then every se  Z9 with cardinality|§ < r is obviously
mixing. The converse is far from obvious:dfis not mixing of order > 2, and ifr is the smallest
integer with this property, does there exist a nonmixingsetZ? of sizer? Remarkably, this turns
out to be the case, as a consequence of a second theorem by David Masser.

Theorem 3.7([20]). Leta be an algebraic®-action on a compact abelian groof, and letr > 2.
If every subse® c Z9 of cardinalityr is mixing, ther is r-mixing.

In order to explain the connection between Theorem 3.7 and an appropriate statement about
additive relations in fields in the spirit of Theorem 3.4 we need a definition.

Definition 3.8. Let G be a multiplicative abelian group amda positive integer. An infinite subset
= C G"is broadif it satisfies the following conditions.

(1) If ge Gand1 <i < n, then there are at most finitely mat&,...,&n) € = with & =g;
(2) fn>2,geGandl<i< j<n,then there are at most finitely maf,...,&n) € = with

/8=

Theorem 3.9([20]). LetK be a field of characteristip > 1 and G C K* a finitely generated
subgroup. Suppose that> 1, and that the equation

axi+---+anxn =1 (3.9)



12 KLAUS SCHMIDT

has a broad set of solutionsq,...,x,) € G" for some(ay,...,a,) € (K*)". Then there exist a
positive integerm < n and elementgba,...,bn) € (K*)™, (g1,...,9m) € G™, with the following
properties.

1) g #1lfori=1,....m;

(2) gi/gj #Lforl<i<j<m

(3) There exist infinitely manky> 1 with

blglgf_ 4.4 bmgﬁ1 =1. (3.10)

Proof of Theoren3.7, given Theoren3.9. The translation of Theorem 3.7 into Theorem 3.9 works
exactly as in Corollary 3.5. ki is an algebrai@?-action on a compact abelian grodpwhich is not
mixing of orderr > 2, and ifr is the smallest integer with this property, then Theorem 3.1 guarantees
the existence of a prime ideplassociated with the dual moduié = X of a such thatig, ,, is not
r-mixing.

If r =2, Theorem 2.2 (2) implies that" — 1 € p for some nonzera € Z9. Henceu"" — 1 € p
anda— u“"-a= 0 for everyk > 0 anda € Ry/p, and (3.5) shows that the st= {0,n} c Z9 is
nonmixing forag, ,, and hence, by Theorem 3.1, for

If r > 2we denote b the field of fractions of the integral domaRy /p, embedRy/p in K in the
obvious manner, and wri® C K* for the multiplicative group generated Ky, = u"+p :n € Z9}.
Sinceag, , is mixing, G = 79 by Theorem 2.2 (2). Equation (3.3) shows that there exist elements

ai,...,a& € Ry/p, not all equal to zero, and a sequer@(:al((l),...,nl((r))7 k> 1) in (29" such that
iMoo [N — || = oo for alli, j with 1 <i < j <r, and

n® a0

uk -ag+---+Uk -a=0
for everyk > 1. The minimality ofr implies that they; are all nonzero, and we may obviously assume
in addition thalnf(r) = 0 for everyk > 1.

_ 1) -1
We setfy = (EI((l), ... 7E|((r 1)) = (u“l(< +p,..., u”l(<r ) +p) € G foreveryk > 1. Then= = {&:

k> 1} is a broad set of solutions of the equation

a ar—1

X1 4+ —X%X_1=1
a 1 a Xr—1

Theorem 3.9 yields a positive integer< r — 1 and elementsgbs,...,by) € (K*)™, (g1,-..,0m)
€ GMwith the properties listed there, such that

bagk + -+ bnglyy = 1
for infinitely manyk > 1. Since eachy; = u'i +p for some unique nonzetp € Z9 we obtain after
clearing denominators that
uktl.b/l_|_...+uktm.b;n: ;“ﬂ+1
for some nonzero elemerise Ry/p and infinitely manyk > 1. An application of (3.5) shows that

the setS= {0,ty,...,tm} is nonmixing forag, ,, and hence, by Theorem 3.1, for The minimality
of r implies that/S = m+ 1 = r. This completes the proof of the theorem. O

In order to appreciate the difficulty in proving Theorem 3.7 one should once again consider
Ledrappier’s Example 3.2 (1). As we saw there, theSset{(0,0), (1,0), (0,1)} is nonmixing (and
obviously minimal) for theZ?-actiona = GR(Z)/(f) defined in that example. However, for every

2
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ko, k1, ko, ks > O with 2k0 > 2k 1 2k2 | 2ks 'say the set
S kukoks = {(29,0),(0,24), (20— 22,0), (20 — 22, 2¢),
(0,240 — 2ka) (ks Dko _ pkayy
is also minimal nonmixing: it is the support of the polynomial

2k0 ko

ko k k
Oko.ke ko .ks = (1+ ui + U2)2 + (1+U1+U2)2 ! + Uy (1+ ug + U2)2 2

k k
+ B (1 +up)?® e p.
By choosing appropriate increasing sequem{:@sn >11=0,...,3, we obtain minimal nonmixing
setsS, = %n) K 1) g n > 1, of varying shapes without any resemblance to linear multiples of a
Ky K3

single nonmixing se8 C Z2. Nevertheless one can extract sufficient information from any such
sequence to obtain a nonmixing set égrfor details we refer to [20].

Theorem 3.7 reduces the problem of determining the order of mixing to finding nonmixing sets of
smallest cardinality. However, even with Corollary 3.5 at hand, the latter problem remains nontrivial:
| am not aware of any good general algorithm for determining polynomials with minimal support in
a given ideal.

4. ISOMORPHISM RIGIDITY OF ALGEBRAICZ3-ACTIONS: THE IRREDUCIBLE CASE

In this section we turn to a problem of an apparently quite unrelated nature from that of the
last section. Every algebraitd-actiona with completely positive entropy is measurably conjugate
to a Bernoulli shift (cf. [23]). Since entropy is a complete invariant for measurable conjugacy of
Bernoulli shifts by [21],a is measurably conjugate to tEé-action

a?:ni— o™

for everyA € GL(d,Z), since the entropies of all these actions coincide. In general, hoveeaed
a” are not topologically conjugate.

Every algebrai@d-actiona with positive entropy has Bernoulli factors by [17] and [23], and two
such actions may again be measurably conjugate without being topologically conjugate. For zero
entropy actions, however, there is some evidence for a very strong form of isomorphism rigidity. In
order to formulate this property we introduce a definition.

Definition 4.1. Let a andp be algebraicZd-actions on compact abelian grou}sandY, respec-
tively. The actionsx andp (or (X,a) and(Y,)) arefinitely (algebraically) equivalentif each of
them is an algebraic factor of the other one with a finite-to-one factor map.

A map@: X — Y is affineif it is of the form@(x) = Y(x) +y for everyx € X, where: X —Y
is a continuous surjective group homomorphism grdy . If there exists an affine mag X — 'Y
satisfying (2.1), thef8 is obviously an algebraic factor of.

We say thatisomorphism rigidityholds for a class of algebrai#?-actions if any measurable
conjugacy between two actions in this class coincaleswith an affine map. Let us begin with the
class of irreduciblé&d-actions to illustrate a much more general phenomenon.

Definition 4.2. An algebraicZ9-actiona on a compact abelian grodpis irreducibleif every closed
a-invariant subgroupy C X is finite.

IrreducibleZd-actions were calledimost minimain [25].



14 KLAUS SCHMIDT

Proposition 4.3. Leta be an irreducible and ergodic algebrai£®-action on a compact abelian
group X, and letB be an algebrai?-action on a compact abelian groop+ {0} such that(Y, )
is an algebraic factor of X,a). Then the factor map is finite-to-one, afdds irreducible, ergodic
and finitely equivalent ta. Furthermore there exists a unique prime ideat Ry with the following
properties.

(1) ag,y, is ergodic(and henceRry /p is infinite);

(2) For everyideal 2 pin Ry, Ry/l is finite;

(3) a s finitely equivalent taig, /-

Conversely, iff C Ry is a prime ideal satisfying Conditigi2) above, then th&%-actiona = ARy /p
on the groupXg, /,, is irreducible.

Proof. Let @: X — Y be an algebraic factor map frofiX,a) to (Y,B). The kerneK = ker@is an
a-invariant closed subgroup . AsY # {0} by assumptionK is a properm-invariant subgroup
and thus finite by irreducibility.

Let Z be a proper closef-invariant subgroup of. The subgrougp1(Z) c X is finite by ir-
reducibility. This shows thaZ = @(¢~%(Z)) is finite. The (obviously ergodic) actidhis therefore
irreducible.

The ergodicity ofx also implies that every nonzero submodile M of the dual modulé/l = X
of a is infinite: otherwis& = N = X /N+ would be a finite quotient of by ana-invariant subgroup,
contrary to ergodicity. As the inclusidw C M is dual to a factor mag from (X, a) to (X, 0n), the
beginning of this proof shows thaiy is irreducible andM /N| = | kery| is finite. In particular, ifp is
a prime ideal associated wit¥, and ifa € M satisfies that arf@) = p and henc®N = Ry-a= Ry/p,
thenN is infinite, M /N is finite anday = aRy/p is ergodic and irreducible.

If I Dpisanideal, thetN'=1-a=1/pis a submodule dil and hence — again by irreducibility
— of finite index inN. It follows thatRy/I is finite, as claimed in (2).

If g # p is a second prime ideal associated wMhthengq = annb) for someb € M ~ N. Every
nonzera’ € N’ = Ry - b hasq as its annihilator. However, sinég /q = N’ is infinite by ergodicity
andN’/N = N’/(NNN’) is finite, there exists ah € Ry . q with h-b € N and hence ar(h-b) = p.
This contradiction implies thatis the only prime ideal associated with

In order to complete the proof thatandayn = ag,/, are finitely equivalent we have to find a
(necessarily finite-to-one) algebraic factor mgp (Xn,0n) — (X, ). As in the preceding para-
graph we note that there exists, for everg M < N, an elemenhy € Ry \ p with hy-b € N. The
polynomial

h= hy € Ry~ p
beM~ N
satisfies thah-M C N. The mapm,: M — N consisting of multiplication byh is injective by
Footnote 5 on page 4, and the surjective homomorphgsnxXy — X dual tomy, is an algebraic
factor map fromXy,an) to (X, a). This proves (3).

We return to the first assertion of this proposition. We have provedtistreducible and hence
finitely equivalent toag, ,, for some prime ideap C Ry satisfying the conditions (1) and (2). The
factor mapyp: (X,a) — (Y,B) is dual to an embedding: Y — M. Sincep is the only prime ideal
associated withM, p is also associated with, andp is finitely equivalent taxg, ,, and hence ta.

The final assertion has already been verified in the course of this proof. O

Irreducibility is an extremely strong hypothesisaifs mixing it implies tha" is Bernoulli with
finite entropy for every nonzem e Z9, and hence, ifl > 1, thata has zero entropy. B is a second
irreducible and mixing algebrai£®-action on a compact abelian groMpsuch thah(a™) = h(p")
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for everyn € Z9, thena" is measurably conjugate 3 for everyn € Z4. However, ifd > 1, then the
actionsa andf3 are generally not measurably conjugate, as the following theorem and the examples
below show.

Theorem 4.4 (Isomorphism rigidity for irreduciblé&d-actions) Letd > 1, and leta; and a; be
irreducible and mixing algebraiZd-actions on compact abelian groups and X,, respectively. If
@: X3 — Xz is a measurable conjugacy afi anday, then@is Ax, -a.e.equal to an affine map. In
particular, measurable conjugacy implies algebraic conjugacy.

Theorem 4.4 is a combination of two theorems in [9] and [13], respectively, and follows from a
result on invariant measures of algebréft-actions withd > 2 whose scope is still something of
a mystery. We state a very special case which will be sufficient for proving Theorem 4.4; possible
ramifications of Theorem 4.5 will be discussed in Section 5.

Theorem 4.5. Letd > 2, and leta; andas be irreducible and mixing algebrai£9-actions on com-
pact abelian group¥; and X, with normalized Haar measureés, andAyx,, respectively. We write
o = a1 x oy for the produthd-action onX = X3 x Xz and assume thatis ana-invariant probabil-
ity measure orxX with the following property: ifi : X — X; denotes thé-th coordinate projection,
thenurt * = Ay, andTg is a measurable conjugacy of tHé-actions(X, p, a) and (X, Ax;, 0.

Then there exists a closedinvariant subgroupY C X such thatu is a translate of the Haar
measure\y.

Proof. Since theZd-actionsa; are irreducible, Proposition 4.3 shows that the groipsave to be
either zero-dimensional or connected (depending on whether or not the primg @&alappearing
there contains a nonzero constant)X{fand X, are finite-dimensional tori, Theorem 4.5 follows
from Corollary 5.2 in [10, Corrections] (cf. [9, Theorem 5.1]), and this result can be extended
to irreducibleZd-actions on compact connected abelian groups without much difficulty, using the
structure theorems about irreducitfié-actions in [24] and [7]. IX; andX, are zero-dimensional,
Theorem 4.5 follows from the main result in [13].

The case where one of the groups is connected and the other is zero-dimensional is impossible:
if X1 is connected ani&, zero-dimensional, then the main result in [27] implies thathas no
nonmixing sets, whereas has nonmixing sets by Theorem 3.3, since it has entropy zero. Since the
hypotheses of Theorem 4.5 imply tlatanda; are measurably conjugate we obtain a contradiction.

O

Proof of Theoren.4, given Theorem.5. Suppose thap: X; — X; is a measurable conjugacy of
a1 anday. We setX = X; x Xo, consider the produdd-actiona = a1 x 02 on X = X1 x X, and
denote by the uniquen-invariant probability measure on the grapfp) = {(x,@(x)) : x€ X1} C X
which satisfies thqnml = Ay, fori =1,2, wherer;: X — X are the coordinate projections. Since
all the hypotheses of Theorem 4.4 are satisfied we concludg thattranslate of the Haar measure
of a closed subgroup of and hence thapis a.e.equal to an affine map. O

The papers [9] and [13] contain many examples of pairs of irreducible algeBftaiich look
very similar, but which can can be shown to be measurably nonconjugate by Theorem 4.4. Here we
restrict ourselves to some zero-dimensional examples. We start with two definitions.

Definition 4.6. Let o be an algebraizd-action on a compact abelian grodp Thealgebraic cen-
tralizer Co(a) is the group of all continuous group automorphismXafhich commute witto.

The affine centralizerCuq(a) is the group of all affine bijections of which commute witho,
and is of the fornCag(a) = Co(a) x Fix(a), where Fixa) is the group of fixed points af.
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The measurable centralizeg,, (a) is the group of all Haar measure preserving bijective Borel
mapse: X — X which commute witha Ax-a.e.

Definition 4.7. Leta be an algebraizd-action on a compact abelian groXp The dual groupA( of
X is cyclic under the dual actiod of a (or a hascyclic dua) if there exists a characterc X such
thatX — as a group — is generated by the §@fa:n e Z}.

Example 4.8(The trivial centralizer of Ledrappier's examplen Example 3.2 (1) we considered

theZ?-actiona = a o With =1+ -z € R?. We claim that
2

Co(a) = Ca(@) = €y, (a) = {a":n € Z?}.
Since0 is the only fixed point ofx, Co(a) = Cast(a) = €y, (a) by Theorem 4.4. Ast has cyclic

dual, every automorphisfiic Co(a) is completely determined by the element (f) =B(1+(f)) €

X = Réz)/( f), wheref is the automorphism o dual toB. As is a group automorphism, its kernel
is trivial, which translates into the statement that the varieties

V(f) ={(c1,c2) € (F2)" x (R2) " : f(c1,C2) = 0}
={(ci,1+c1):c1€ (R), 14+c1 e (FR)*},
V(g) = {(c1,¢2) € (F2)* x ()" 1 g(er,c2) = O}
of f andg do not intersect (this statement is meaningful in spite of the facttisadletermined only
up to addition of an element iff )). After modifyingg by an element of f) we may assume that

gupp)= 5 U (14u)™ =h(uy),
m=(mg,mp)€F
say, for some finite subsét C Z2. Our hypothesis on the intersection of varieties guarantees that
h(uy) # Ofor everyu; € (F2)*, and hence that(u;) = U (1+u;)¥2 andg = u¥ (mod ()) for some
k = (ki,kz) € Z2. This proves thag = o for somek < 7Z2.

Example 4.9. Consider th&Z?-actiona = oy anday with M = R(ZZ)/p andN = Rgl)/q in Example

3.6 (1), wherg = (1+ Uy + Uz + U + UgUp + U3) C R(ZZ) andq = (14 wuy + wPup) C R(24). There we

found a two-to-one algebraic factor map frd,a’) = (Xn,an) to (X,a) = (Xu,am). However,

the dual modul& = M is obviously cyclic in the sense of Definition 4.7, whereas the modteN

is not. Theorem 4.4 shows that the finitely equivalent acteoaada’ are not measurably conjugate.
By exploiting the fact that the polynomiafd = 1+ U2 + up + Uguz + U3 and f” = 1+ uy + u2 +

Uz + U3 are irreducible irR(ZZ), but not inRg‘), one can construct further examples of this kind.
Example 4.10(Nonconjugacy ofZ2-actions with positive entropy)Let

fir=14+ui+ U% +upuz + u§,

fo =14+ U2+ Up + UgUp + U3,

fa =1+U1+u§+U2+U%,

f4 =1+ Ug + U2 + Up + Uglp + U,

in Ry, putp; = (2, 1)) C R, J = (4,2f)) C Ry, Mi = Ry/Ji, Ni = Ry/pi, and define the algebraic
7Z2-actionsa; = Op; ON X = Xy, andBj = an, onY; = Xy, as in Example 2.1 (2). For every=
1,...,4, the prime ideals associated with the modMlgare (2) = 2R, and p;, and the inclusion
of 2M; 2 N; in M; is dual to an algebraic factor mag: Xi — Y; from (X, a;) to (¥;,Bi). Since



ALGEBRAIC Z%-ACTIONS 17

kerg = Rz//ﬁz = (Z/ZZ)ZZ and the action§; have zero entropy, the Pinsker algeixta;) of q; is
the sigma-algebr@y, /kerqy Of ker@-invariant Borel sets iX;. In other words, th&?2-action induced
by a; on the Pinsker algebma(a;) is measurably conjugate f.

Since any measurable conjugacyopfanda; would mapri(a;) to 1i(aj) and induce a conjugacy
of 3 andj, Theorem 4.4 implies that; anda; are measurably nonconjugate ok i < j < 4.

5. ISOMORPHISM RIGIDITY. THE GENERAL CASE

In Section 4 we investigated the isomorphism problem for irreducible algeBifaactions. Al-
though the discussion below shows that one can relax the hypothesis of irreducibility in Theorem 4.4
to some extent, the methods currently do not extend significantly beyond the class of expansive and
mixing algebraicZd-actionsa on compact abelian groupé with the property thah(a") < o for
everyn € Z4 (i.e. therank one casén the terminology of [5]). For example, jf, g C Rs are nonprin-
cipal prime ideals witt2 generators such that the zero-entr@yactionsa = aR,/p ANdP = OR,/q
are measurably conjugate (cf. Theorem 2.2 (3)), and if the gréupsXg,/, andY = Xg,/, are
connected, there are at present no general results about isomorphism rigidity of such actions. As far
as | know, the following ‘cautious conjecture’ from [26] may have a positive answer under the hy-
pothesis that the groupéandyY are connected (it is now known to be wrong without this hypothesis
by [1] and [2]).

Conjecture 5.1. Letd > 1, and leta and B be expansive and mixing algebrai#-actions on
compact connected abelian grougsandY, respectively. Ifo and 3 have zero entropy, then any
measurable conjugacy between thera.is.equal to an affine map.

Conjecture 5.1 would be implied by a positive answer to the following problem.

Problem 5.2. Letd > 2, and leto; anda be expansive and mixing algebr&ié-actions on compact
abelian groups; andX; with normalized Haar measurag, andAx,, respectively. We writet =
a1 x 0> for the productZd-action onX = X; x X, and assume thatis ana-invariant probability
measure orX with the following property: ifig: X — X denotes thé-th coordinate projection,
thenun;*1 = Ax,, andtg is a measurable conjugacy of tfé-actionsa on (X, W) anda; on (Xi,Ax%)?

Does there exists a closedinvariant subgroufY C X such thatu is a translate of the Haar
measure\y.

Theorem 4.5 is, of course, a special case of this problem, which is in turn part of a much more
general quest to determine all invariant and ergodic probability measures of a zero entropy mixing
algebraicZd-actiona with d > 2 (where the mixing hypothesis is imposed only to ensure that there
is no single group automorphisfnsuch tha" is a power of3 for all n in some subgroup of finite
index inZ9). The first instance of this problem is due to Furstenberg (cf. [8]gvery nonatomic
probability measurgqt on T which is simultaneously invariant under multiplication Byand by3
equal to Lebesgue measur&? spite of some remarkable progress due to Rudolph in [22], who
proved that any such measure with positive entropy under either of these multiplications has to be
equal toAr, Furstenberg’s original question is still open, and several ingenious proofs by Host and
others depend in a very crucial way on positive entropy. For extensions of Rudolph’s results to
commuting automorphisms of finite-dimensional tori or solenoids we refer to the paper by Katok
and Spatzier [10] and to recent work in progress by Einsiedler and Lindenstrauss [6], which contains
the currently most general statement about invariant probability measures for irreducible and mixing
algebraicZd-actions on compact connected abelian groups.
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Theorem 5.3. Letd > 2, and leta be an irreducible and mixing algebrai#®-action on a finite-
dimensional torus or solenol. If pis ana-invariant and ergodic probability measure ¢hwhich
has positive entropy under sora&, n € Z9, then there exists a finite index subgrotypc Z¢ with
the following properties.

(1) Letny,...,ng € Z9 be a complete set of representativeZ8f A, let a’ be the restriction of
ato A, and letp= %Zik:ﬂli be thea’*-ergodic decomposition qf. There exists an infinite closed
a’M-invariant subgroupy C X such that eacly; is invariant under translation by the subgroip=
ai(yY).

(2) For everyi = 1,...,k, the measurgy; and theA-action a” descend naturally to the factor
X/Y;, and everya", n € A, has zero entropy oK /Y; with respect tqy;.

Although much more is known about isomorphism rigidity of algebt&feactions on zero-
dimensional compact abelian groups than in the connected case (cf. Section 6), the problem of
describing the invariant probability measures of even the simplest examples is in no better state
than in the connected case. Here are two unresolved questions about Ledrappier’'s Example 3.2 (1).

Problem5.4. Leta = o) in Example
2

3.2 (1).

) be the shift-action on the group= XR(22>/(

/(I4ug+up 1+ug+up)

(1) If pis ana-invariant probability measure o% with full support (i.e. withy(O) > 0 for every
nonempty open subsétC X), isp= Ax?

(2) If pis a nonatomia-invariant probability measure ox which is ergodic under sonee’, is
H= )\x?

6. ISOMORPHISM RIGIDITY. THE DISCONNECTED CASE

This chapter is devoted to isomorphism rigidity results (and counterexamples) for expansive and
mixing algebraicZd-actions on zero-dimensional compact abelian groups. The exposition follows
[2] and [3].

6.1. Measurable polynomials.

Definition 6.1. Let X,Y be compact abelian groups, andU4iX,Y) be the group of al\x-equival-
ence classes of Borel maps X — Y, furnished with pointwise addition as composition and the
topology of convergence in Haar measure. For exeryX we denote byy: U(X,Y) — U(X,Y)

the continuous map defined by

A(f)(X) = f(x+X)—f(X)
for everyx' € X andf € U(X,Y), and we set
ax:axloa)(2o"'oaxk: U(X,Y) —>U(X,Y)

for everyk > 1 andx = (xg,...,%) € XK.

An elementf € U(X,Y) is ameasurable polynomidithere exists an integdr> 1 with 0 (f) =0
(mod Ax) for everyx € XX, If kis the smallest such integer, then thegreedeq f) of the measurable
polynomial f is equal tok — 1.

For everyac Y and f € U(X,Y) we denote bya, f) € U(X,S) the mapx — (a, f(x)), where
(a,X) is the value of the charactarc Y at the pointx € X.
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Lemma 6.2. An elementf € U(X,Y) is a measurable polynomial if and only(d&, f) € U(X,S) is
a measurable polynomial for evesyc Y, and f has degree< k if and only |fdeg(<a f)) <k for
everya e Y. Finally, f is continuous if and only ifa, f) is continuous for eversie Y.

Proof. We setQ = SY and write everwe Q asw= (wa,f\ € Y) with w, € S for everya e Y. Define
a continuous injective group homomorphigm Y — S by setting

D(y)a=(ay)

foreveryacY andy € Y. ThenZ = ®(Y) is a closed subgroup 6%, and the mag’ = ®o f: X — Z
is a measurable polynomial (of degreek) if and only if each coordinate — f/(x)4 = (a, f(x)) of
the mapf’ is anS-valued measurable polynomial (of degre&) for everya € Y. Sinced: X — Z
is a topological group isomorphism, the last statement is obvious. O

Lemma 6.3. Let f € U(X,Y) andk > 1. Then the map — dx( ) fromXXtoU (X,Y) is continuous.

Proof. The same argument as in Lemma 6.2 allows us to assume without loss in generality that
Y =S.

Consider the special case wheee= 2. For any f € U(X,S) andx € X we denote byf the
complex conjugate of and writefy € U (X,S) for the map given byfx(X') = f(x+X'). Define maps
S, X2 —U(X,S) by

S1(X1,%2) = fyixg: (X1, %) = fyy, S(X1,%2) = fx,, Sa(Xq, %) = f,

where the bar denotes complex conjugation. For exeryX?, dy(f) = Si(X) - S(X) - S3(x) - u(x).
Since the right regular representationobn L2(X,Ax ) is continuous, each is a continuous map
from X2 into L?(X,Ax ) and hence also a continuous map frigfinto U (X, S). As multiplication is
continuous irJ (X,S), this proves our assertion f@r= 2. In the general case we defifg,..., Sk
in an analogous way and apply the same argument as above.

Proposition 6.4 ([2]). LetX,Y be compact abelian groups, and letc U (X,Y) be a measurable
polynomial.

(1) There exists a unique continuous midp X — Y such thatf = f’ (mod Ax).
(2) The mapf’ is constant if and only ifleq f) = 0, and affine if and only ifleg f) < 1
(3) If X is connected, thefi has degree< 1.

Proof. Fork > 0we denote by C U (X,Y) the topological space consisting of all measurable poly-
nomialsp: X — Y of degree at mog, furnished with the subspace topologyflfs a measurable
polynomial of degre®, thenf is Ax-a.e.equal to a constante Y. If deg(f) = 1, then there exists,

for everyx € X, a unique constart(x) € Y with dx(f) = ¢(x) (modAx), and the map — c¢(x) is

a Borel measurable — and thus continuous — group homomorphism. Hence there exists, for every
X € X, a Borel seByx C X with Ax(Bx) = 1 such that

f(x+x) =c(x)+ f(X) (6.1)

for everyx € X andX € By. Fubini’'s Theorem implies that there exists a Borel Bet X with
Ax(B) = 1 such that (6.1) holds for every € B andAx-a.ex € X, which shows thaf is a.e.equal
to an affine map.

We have proved that every mapRis a.e.equal to a continuous map. Continuing by induction,
we assume thdt is a positive integer such that every measurable polynomial of degies a.e.
equal to a continuous map and consider a polynorhialP;1 C U(X,Y). According to Lemma
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6.3 it suffices to prove the continuity dfin the special case whele= S, and we assume therefore
without loss in generality thatt € U (X,S).

Since the characters form an orthonormal basilazcéi(,)\x) we deduce thalP; is homeomor-
phic to Py x X, whereX is equipped with the discrete topology, and we wéiteP, — X for the
projection map. The map

X+ (X) =0o00x(f)
from XX to X is continuous by Lemma 6.3. Sinééis discreteq(X¥) is finite, and there exists
an open subgrouff; C XK such thatg is constant on each coset kf in XX. We choose an open
subgroupK ¢ X with KK c K;. Thendy(f) lies in Py for all x € KX, so that the restriction of
to K is a measurable polynomial of degree at mstet K + z,...,K +2z be the distinct cosets
of K in X, and let, fori = 1,...,1, fi: X — S be the map defined b¥;(x) = f(z + x). Since
ox(fi)(X) = 0x(f)(z + x) for eachi, we conclude that restriction of eadhto K is a measurable
polynomial of degree at mo&t By the induction hypothesis, the restriction of ed¢lo K agrees
Ak-a.e. with a continuous map, i.e.agrees\x-a.e. with a continuous map.

If X is connected theqis trivial, i.e. the degree of is < k. By a slight modification of the above
induction argumentf agrees\x-a.e. with an affine map. O

6.2. Topological rigidity.

Theorem 6.5([2]). Leta and be mixing algebrai?-actions on compact abelian groupsand
Y, respectively. Suppose furthermore that there exists an intege? with the following property:
for every close@-invariant subgrouZ C Y, the restrictionz of  to Z is not(k+ 1)-mixing. Then
every equivariant Borel mag: (X,a) — (Y, ) is a measurable polynomial of degreek — 1 and
hencea.e.equal to a continuous map.

We begin the proof of Theorem 6.5 with a lemma.
Lemma 6.6. Leta be a mixing algebraid-action on a compact abelian group, k > 1, and let
fi: XX —R,,i=0,...,k, be continuous maps with the following properties.

(1) For everyi=1,...,k and (xg,...,X) € XK, fi(xq, ... ,Xk) = 0 wheneverx; = 0 for some
je{L.. k) |
(2) There exist sequencétsnf]'q), m>1),i=1,...,k, in Z9 with
0]

lim ny, = o
M—oo0

fori=1,...,k, and

=~

0]
fo < fioq™m (6.2)
i=
for everym> 1, wherea: n — a” x --- x a" is the diagonalZ9-action onXX induced by
a.

Thenfa=0.
Proof. If fg £ 0, then there exist nonempty open subgéts .., Uy in X and are > 0 such that
fo(xq,...,X) > € forevery (xg,..., %) € Uz X - -+ x Ug. (6.3)

Since eacH; is continuous, it is uniformly continuous oK, and there exists an open neighbourhood
U of 0in X such that

fi(X1,..., %) < €/k (6.4)
whenevei € {1,...,k} andx; € U for somej € {1,...,k}.
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As a is mixing, there exists an integbt > 1 with af”g“) (UW)NU; # @ for everyi=1,...,kand
m> M. Fix x; € or“ﬁh) WnNyfori=1,...,k Thena“(hln)xi € U and hence, by (6.3),

froa™ (x0,...,%) < £/K
fori=1,...,k, which violates (6.2)—(6.3). O

Proof of Theoren®.5. It suffices to show thaa, @) : X — Y is a measurable polynomial of degree
< k—1for every charactea € Y. We set

A={ac Y : (a,¢) is a measurable polynomial of degree k — 1}

and assume th#& C V. R
The groupA is obviously invariant undes, and its annihilator

Z=A"={yeY:(ay) =1 foreveryacA}.
is a closeB3-invariant subgroup of.
By assumptionz is not(k+ 1)-mixing. Hence there exist charactéxs. . ., by € Z with b # 0,
and sequence(&,@, m>1),i=1,...,k in Z9 with
lim nSTi]) =00
m—co
fori=1,...,k, such that
P ()
bo="S B" b
2

for everym > 1. We extend each; € Zto an elemenb; € Y and obtain elementay, € A m>1,
with

/ K oty
o = ZLB "B 4 am
i

for everym > 1. By composing this equation withwe obtain that
k . k
~.0)

10,0 = (am @[] ™50 = (an ) [ .00

I I
for everym> 1. Put
fi(Xa, .. %) = [1Ok(xa, .., %) ((BF, @) — LI
for every(xy,...,x) € XKandi =0,... k and note that

k (i
fo < Z\fi oo™ + |0k (X1, - -, %) ((@am, ®)) — 1|2 (6.5)
i=

for everym > 1, where we are using the same notation as in Lemma 6.&,As A, (am, @) is a
measurable polynomial of degreek, and henc@y(xy, ..., x)({(am,®)) = 1 Ay-a.e.The inequality
(6.5) thus reduces to

(0

K i
fo < Zi fi o q™m
i=
for everym > 1, and Lemma 6.6 guarantees tHgat= 0. This shows thabj € A and hencdy = 0,

and the resulting contradiction to our choicebgfimplies thatA = Y and thatp is a measurable
polynomial of degree< k— 1, as claimed. d
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Corollary 6.7. Letd > 1, and leta andp be algebraicZ?-actions on compact abelian groupsand
Y, respectively. Suppose thétis zero-dimensional and ththas zero entropy. Then there exists a
continuous factor mag': (X,a) — (Y,B) such thatp= ¢ Ax-a.e.

Proof. LetN = Y be the dual module d@. Then there exists an increasing sequeitek > 1) of
submodules oN such thalN = | J,~1 Nk and eachN is Noetherian. For everly > 1, the annihilator
Yi = N C Y is a closed-invariant subgroup, and we denotetgy. Y — Y /Y, the quotient map.

Let @: (X,a) — (Y,B) be a measurable factor map such that 1 o @ is a measurable poly-
nomial for everyk > 1. ThenTi o @ is Ax-a.e.equal to a continuous factor mag: (X,a) —

(Y /Y, By v, ) for everyk > 1, wherey y, is theZd-action onY /Yy induced byB. As Nk>1Yk = {0y },
compactness implies that there exists, for every neighbourbioofithe identity inY, an integer

K > 1 with Y C U for everyk > K. If @is not equal to a continuous mag-a.e, then the same is

true for somay,, which leads to a contradiction. This observation allows us to assume without loss
in generality thaN = Y is Noetherian.

ASs k=1 Nk = N we know that"~, Yk = {Oy}. By compactness there exists, for every neigh-
bourhoodll of the identity inY, an integeK > 1 with Y, C U for everyk > K. If @is not equal to a
continuous mapx -a.e, then the same is true for sompe= 1 o @, which contradicts the hypothesis
in preceding paragraph. This allows us to assume without loss in generalitythﬁtis Noetherian.

Let thereforeN be Noetherian, and let A8d) be the set of associated prime ideal\ofSince
Y is zero-dimensional, evefy € Asc(N) contains a rational prime constapfp) > 1 by Theorem
2.2 (1), and Theorem 2.2 (3) implies thaD (p(p)) = p(p)Ry, sincep has zero entropy. We choose
and fix, for every € Asc(N), a Laurent polynomiaf (p) € p~ (p(p)), observe that the polynomial

f(p)/pep) € R&p(p» in (2.8) is nonzero, and denote By= max,casqn) [S(f(p)/p(p))| the maximal
cardinality of the supports of these polynomials.

Suppose thaZ C Y is a closed3-invariant subgroup. We write = Z for the dual module of,
choose a prime idegl€ Asc(L) and an elemerd € L with ¢ = ann(a), and set.’ = Ry-a>~ Ry/q.
SinceL is a quotient oN, q contains some € Asc(N), and Example 3.2 (2) shows that = ag, /,
— and hencgdz = a — is not mixing of ordelS(f(q))| < K. By Theorem 6.5¢is a measurable
polynomial and thus coincide@sa.e.with a continuous factor map. O

6.3. Homoclinic points and isomorphism rigidity. Once we know that measurable conjugacies
and factor maps between two algebraftactions(X,a) and(Y,B) are automatically continuous it

is not too difficult to verify that they have to be polynomials (the approach using homoclinic points
described below is one such method). If the gro¥psndY are connected, these polynomials are
affine by Proposition 6.4, which proves isomorphism rigidity. However, if the groupadY are
zero-dimensional, polynomials may have degreels and one needs additional hypotheses (whose
necessity will be illustrated below in Example 6.15) to ensure that the measurable conjugacies and
factor maps are affine.

Definition 6.8. Leta be an algebraiZd-action on a compact abelian grodpand letr ¢ Z9 be a
subgroup. An elemente X is (a,I")-homoclinic(to the identity elemertlx of X), if

r!iano(”x: Ox.

nel
The a-invariant subgroug 4 ry(X) C X of all (a,I")-homoclinic points is afRy-module under the
operation

f-x=f(a)(x)
for everyf € Ry andx € A g r)(X) (cf. (2.5)), and is called the-homoclinic module oft (cf. [16]).
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Proposition 6.9. Leta be an expansive algebraitd-action on a compact abelian grouf, and let
I c Z9 be a subgroup. Thefyq ) # {Ox } if and only if the entropy(a’) of the algebraid -action
a’ onX is positive, and\q ) is dense irX if and only ifa” has completely positive entropyhere
entropy is always taken with respect to Haar meakure

Proof. Thisis [16, Theorems 4.1 and 4.2]. O

If an expansive and mixing algebraié-actiona on a compact abelian grodphas zero entropy,
then the homoclinic groupy (X) of this Z3-action is trivial by Proposition 6.9, bty ) will be
dense inX for appropriate subgrougs c Z9. We investigate this phenomenon in the special case
wherep > 1 is a rational primef € Rfjp) an irreducible Laurent polynomial such that the convex
hull C(f) c RY of the supportS(f) c Z% of f contains an interior point (cf. (3.6)), and where
c FZ" defined in

a= O(Rgp)/(f) is the shift-action oZ% on the compact abelian grodp= XRép)/(f>
(2.9)-(2.10).
We write[.,.] and|| - || for the Euclidean inner product and norm&f and

Sqg_1={veRd: |v|=1}

for the unit sphere ifRY and set, for every nonzero elemente Z9,

m* = _m_
il >

Fm={neZ: [m,n]=0}. (6.6)

Proposition 6.10. [3] Letd > 1, p > 1 arational prime,f Rép) an irreducible Laurent polynomial

i d . _ 74 .
such that the shift-actioo C(Rgm/(f) of Z% on the compact abelian grouy Xag")/(f) CFkyin

(2.9)(2.10)is mixing, and lem C Z9 be a nonzero element such that the restrictién of a to the
subgroup™ m in (6.6)is expansive. Then the homoclinic grag ., (X) is dense irX. Furthermore
there exists an open sub3tc Sq_1 such that every nonzero element Z% with n* € Sq_; has
the following properties.

(1) D) (X) is dense inX;
(@) Darm) (X)NA @) (X) = {O0x }-

The proof of Proposition 6.10 is given in [3]. By using this proposition and some algebraic struc-
ture theory one obtains the following rigidity result for measurable factor maps between algebraic
Z4-actions on zero-dimensional compact abelian groups.

Theorem 6.11. Letd > 1, and leta and B be mixing algebraicZ%-actions on zero-dimensional
compact abelian groupX andY, respectively. Suppose that there exists a subgfoupz? of of
infinite index such that the restrictiar] of a to I" is expansive and has completely positive entropy.
Then every measurable factor map(X,a) — (Y, B) is Ax-a.e.equal to an affine map.

Theorem 6.11 was proved independently in [3] and [4]; the latter proof depends on a characteriza-
tion of invariant measures analogous to the connection between the Theorems 4.5 and 4.4. Here we
follow the ‘homoclinic’ route in [3]; however, before turning to the proof of this result, we mention
a couple of corollaries which generalize the main result in [12] in different directions.

Corollary 6.12. Letd > 1, and leta and 8 be mixing algebraicZ-actions on zero-dimensional
compact abelian group¥ andY, respectively. Suppose that there exists a nonzero elemem’
such that the automorphisaf is expansive. Then every measurable factor pafX,a) — (Y, )

is Ax-a.e.equal to an affine map.
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Proof. Since every mixing (= ergodic) group automorphism has completely positive entropy, this is
Theorem 6.11 with of rank one. O

Corollary 6.13. Letd > 1, p a rational prime, andb,q C R&p) nonzero prime ideals such that the

7Z9-actionsa = o andB=a on the compact zero-dimensional groufs= and
RP ) ANAB =0 p groups= Xm ,

Y= XRép)/q in (2.9)42.10)are mixing. Them andf3 are measurably conjugate if and only if they are
algebraically conjugate, and hence if and onlyif= q. Furthermore, every measurable conjugacy
o: (X,a) — (Y,PB) is Ax-a.e.equal to an affine map.

Proof. The existence of a subgroiipc Z9 of infinite index with the properties required by Theorem
6.11 is proved in [5] (the rank df is the maximal number of algebraically independent elements in
the set{u"+p: nez9} Rfjp) /p). Leto: (X,a) — (Y, ) be a measurable conjugacy. By Theorem
6.11, there exisy € Y and a continuous homomorphistn X — Y such thatp(x) = y+ 8(x) for
Ax-a.ex € X. Itis easy to verify thab is an algebraic conjugacy ¢X,a) and(Y, ).

In order to see that algebraic conjugacy implies that g we note that, for every € Rém, the
mapsf(a) andf(B) in (2.5) are surjective if and only if ¢ p (resp.f ¢ q). O

We begin our sketch of the proof of Theorem 6.11 with a lemma.

Lemma 6.14. For i = 1,2, 3, let a; be a mixing algebrai&d-action on a compact abelian group
X, and let@: (X1 x Xp,01 x 02) — (X3,03) be a continuous factor map such thgi;, x2) = Ox,
whenevek; = Ox, or xp = Ox,. Suppose furthermore that there exist subgrdup$ > in 79 such that
the homoclinic groupA g, r;) (Xi) are dense irX fori = 1,2, and thatAq, r,)(Xs) NA(q, r,) (X3) =
{0)(3}. Thencp(Xl X Xz) = {0)(3}.

Proof. Since@is a continuous factor map,

Aim, ag'e(x,xe) = lim @(af'xq, 05'%e) = Ox,

melq melg
— n . n n
= lim a3¢(x1,%2) = lim @(ayxs, ozxz)
nel, nelp

for everyx € A ) (%), i =1,2. Hence

O(X1,%2) € D(azry)(X3) Ny, (X3) = {Oxs }-
As D) (%) C X is dense fof = 1,2 and@is continuous this implies our assertion. O

Leaving technicalities and a bit of algebra aside, the basic idea of the proof of Theorem 6.11 is
the fact that there exist two subgroupg ™, C Z¢ such that each actiomr, has a dense group of
homoclinic points and there are no nonzero common homoclinic points for the atjossnce we
know already that the factor mgp X — Y is continuous, we can form a new mgip X x X —Y
by setting

W(x1,X2) = P(Xa+X2) — W(x1) — Y(x1) +W(0).
Sincego (a" x a") =B oy for all n € Z9, and sinca} is continuous and hence uniformly continu-
ous,Y(x1,%2) € AgryyNAgr,) = {0} whenevew; € A ), | =1,2. Hencey vanishes on the dense
setA(qr,) X A,y € X x X and is thus equal to zero by continuity. This shows tpiataffine.

The crucial point in this argument is thato such subgroupB1, I, suffice under the hypotheses
of Theorem 6.11. In general one can find finitely many such subgrbups.,, c Z¢ such that
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each actiomr; has a dense group of homoclinic points and there are no nonzero common homoclinic
points for the actionfr,, i = 1,...,n, and obtains that the majp: X" — Y with

W(x,. .., Xp) = Fqlz ,n}(il)‘F‘ (p(iezxi>

vanishes orX". This implies thatpis a polynomial of degree— 1, but not necessarily of degrée
The following examples from [3] show that Theorem 6.11 and Corollary 6.13 need not hold if
any of the assumptions are dropped.

Examples 6.15.(1) A non-surjective and non-affine equivariant maetd = 3, p= 2, and consider
the polynomialsfy, f, € Rg2> defined byfy = 1+ uy + Up, f = 1+ Ug + Up -+ U3 + UgUp + U3 + Us. Let

p=(f1,f) C Réz) denote the ideal generated byand f,, and letq = (f;) C Réz) be the principal

ideal generated by,. It is easy to see that andq are prime ideals. We define the shift-actions
o1 = “Rg2>/p anda, = CIR(SZ)/q (?n X1 = XR(32>/p - |:2Zs and)-(z-: XR(;)/q C F223, respectively, by (2.9)-
(2.10). From Theorem 2.2 it is clear that anda, are mixing and have zero entropy.

We writex for the component-wise multiplicatidizxZ ), = z,Z, in FzZS and observe that
0" (zxZ) = (0"2) x (0"Z)
for everyz,Z € Fzzs andn ¢ Z3 (cf. (2.6)). We claim that
xxX € Xp for every x,x' € X3. (6.7)
In order to verify this we define subse§sc Z3,i =0,...,3, by
S =38(f2), S1=38(f1),
£ =1{(1,0,0),(1,1,0),(2,1,0)} = 8(usf1),
$=1{(0,1,0),(0,2,0),(1,1,0)} = 8(u2f1),

and consider the s@tof all ze FzSo with ¥ heg 20 =0fori=0,...,3. A calculation shows that, for
everyz,Z € Z, the component-wise produat= zxZ € FZSO satisfies thay ncg, Wn = 0. This implies
6.7).

( T?':\ke a non-zerm € Z2 such that"z= zfor some non-zera € X; and defingp: X; — X, by
@(x) = xxaP'x. Clearlygis azZ3-equivariant map fronfXy,a;) to (Xz,02). We choose € X; such

thatzx (a'y —y) # Ox,. Since@(0x,) = Ox, and@(z+y) — @(2) — @(y) = z* (aT'y —y) # Ox,, the
mapq@is not affine.

(2) A non-affine factor magy: (X,0) — (X’,a’) between expansive and mixing zero-entropy
algebraicZ3-actions, where’ has an expansiv&2-sub-action with completely positive entrojye
use the same notation as in Example (1). tetpg = (f1fy, f22) C Rgz) be the ideal generated by
f1f, and 2 and let denote the algebrai#3-action aR(32>/t onY = XR(32>/t c Fzzs. From Theorem

2.2 it follows that the actior{Y,) is mixing and has zero entropy. We define continuous group
homomorphism®:: Y — X3 and8,: Y — X, by

01(y) = f2(0)(y),  62(y) = fr(0)(y).

Itis easy to verify thatfor=1,2, 6;: (Y,B) — (X,a;) is an algebraic factor map. Lgt (Y,B) —
(X2,07) be theZ3-equivariant continuous map defined by

P(X) = B2(X) + @oB1(x),
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where@: X; — Xz is as in the previous example. Singgis a surjective homomorphism aqds
non-affine, it follows thatpo 81 is non-affine, i.e. thap is a non-affine map. It is easy to see that the
restriction off, to X, is a surjective map fronx; to itself. Since81(x) = 0for all x e X; C Y, this
shows thaty is a non-affine factor map froify, B) to (Xz, 02).

(3) Two measurably conjugate expansive and mixing zero-entropy algebtaictions on non-
isomorphic compact zero-dimensional abelian group. (X;,01) and(Xz,02) be as in Example
(1), and let(X,a) denote the product actiofXy,as) x (Xz,0a2). Following [1] we define a zero-
dimensional compact abelian grov@nd an algebraiz3-actionp onY by settingY = X; x X, with
composition

%y)© (X,y) = (x+X, 34X +y+Y)
for every(x,X), (y,y') €Y, and by letting

B"(x,y) = (aix azy)
for every(x,y) € Y andn € Z3. The ‘identity’ map@: X — Y, defined by

(p(X, y) = (X7 y)
for every (x,y) € X, is obviously a topological conjugacy ¢K,a) and (Y,B) with Ax@ 1 = Ay
(by Fubini's theorem). Howevegqis not a group isomorphism. In fact, the grodpsndY are not
isomorphic: since is a subgrougF,; ® FZ)Z?’, every element iiX has orde®, whereagx,0x,) € Y
and(x,0x,) ® (X,0x,) = (0x,,X) # Oy for every nonzerx € Xi.
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