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1. INTRODUCTION

In 1967 Furstenberg proved that every infinite closed subset ofT=R/Z simultaneously invariant
under multiplication by2 and by3 is equal toT (cf. [8]), which motivated the still unresolved
question whether this scarcity of invariant sets is paralleled by a corresponding scarcity of invariant
probability measures:is Lebesgue measure the only nonatomic probability measure onT which
is invariant under multiplication by2 and by3? Furstenberg’s question remained dormant until
1988, when Lyons [18] proved that any probability measure onT which has completely positive
entropy under either of these maps is equal to Lebesgue measure. In 1990 Rudolph weakened Lyons’
hypotheses and proved the same result for any probability measure which is invariant and ergodic
under theN2-action generated by multiplication by2 and by3 and has positive entropy under either
of these maps.

In 1996 Katok and Spatzier [10] introduced a remarkable extension of the scope of Furstenberg’s
question to certainZd-actions by automorphisms of compact abelian groups withd > 1.1 They
proved that any probability measureµ on a finite-dimensional torusX = Tn which is invariant and
mixing under a topologically mixing, irreducible (Definition 4.2) and expansive2 algebraicZd-action
α, and which has positive entropy under some element of the action, is a translate of Lebesgue
measure on anα-invariant subtorus ofX (the hypotheses in [10] are actually much weaker, but
somewhat technical). The definitive version of this result is due to Einsiedler and Lindenstrauss [6]
and implies that, for any probability measureµ on a finite-dimensional torus or solenoidX which
is invariant and weakly mixing under a topologically mixing algebraicZd-actionα, there exists a
closedα-invariant subgroupY⊂X such thatµ= µ∗λY and the action induced by eachαn, n∈Zd, on
X/Y has zero entropy with respect to the measureµ̄= µπ−1 (cf. Theorem 5.3). Hereπ : X −→ X/Y
is the quotient map.

Instead of pursuing further the many fascinating extensions of thesemeasure rigidityresults due
to Katok and others let me turn toisomorphism rigidityof algebraicZd-actions. Suppose thatα
andβ are topologically mixing algebraicZd-actions on finite-dimensional tori or solenoidsX and
Y, respectively. By following a suggestion of Thouvenot and applying the results in [10] or [6] to

I would like to thank the Mathematics Department, University of Washington, Seattle, for hospitality while writing up
these notes, and to the FWF Project P16004-MAT and the NSF grant DMS 0222452 for partial support.

Much of this article forms part of the electronically published lecture notes of a series of Pacific Institute for the Mathemat-
ical Sciences Distinguished Chair Lectures given at the Mathematics Department, University of Victoria, BC, in November
2002 (http://www.pims.math.ca/publications/distchair/schmidtnotes.pdf ).

1Zd-actions by continuous automorphisms of compact abelian groups will be referred to asalgebraicZd-actionsthrough-
out this article, and we shall always assume thatd > 1.

2An algebraicZd-actionα on a compact abelian groupX is expansiveif there exists a neighbourhoodU of the identity
element0∈ X with

T
n∈Zd αn(U) = {0}.
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appropriateα×β-invariant joinings of the Haar measuresλX andλY one obtains that any measur-
able conjugacy ofα andβ is affine, i.e. thatisomorphism rigidityholds for topologically mixing
algebraicZd-actions on finite-dimensional tori or solenoids ford > 1 (cf. [9]). Such actions obvi-
ously have zero entropy, but not all zero entropy mixing algebraicZd-action on a compact connected
abelian group live onfinite-dimensionaltori or solenoids. This raises the natural question whether all
zero entropy mixing algebraicZd-action on compact connected abelian groups exhibit isomorphism
rigidity — a question which remains open at this stage (cf. Conjecture 5.1 and Problem 5.2).3

For mixing algebraicZd-actions on zero-dimensional compact abelian groups the picture has
recently become much clearer, and the results leading to this clarification are the subject of this
article.

In 1978 Ledrappier [15] gave a simple example of a mixing algebraicZ2-action on a compact
zero-dimensional abelian group which is not three-mixing. In 1993 Kitchens and the author inves-
tigated further the class of algebraicZd-actions on zero-dimensional compact abelian groups and
exhibited a number of invariants of measurable conjugacy of such actions related to the higher or-
der mixing behaviour (in the sense of [15]) and to certain partially invariant sigma-algebras of such
actions (cf. [12]). These invariants again suggested a close link between the measurable and the
algebraic structure of such actions.

The results in [12] imply that an algebraicZd-actionα on a zero-dimensional compact abelian
groupX is mixing of every order if and only if it has completely positive entropy (cf. Theorem 3.3),
and that every such action which is not mixing of every order hasnonmixing setswhich describe a
very regular breakdown of mixing of a particular order (cf. (3.4)). In spite of Theorem 3.4 by Masser,
which ties nonmixing sets to the algebraic structure of the actionα, the explicit determination of the
nonmixing sets of an algebraicZd-action is generally a nontrivial task.

From the definition of nonmixing sets it is clear that an algebraicZd-actionα is notr-mixing if it
has a nonmixing set of sizer. The converse had been an open problem for some time and was only
proved recently by Masser (Theorem 3.7).

The connection between the apparently unrelated notions of the order of mixing and isomorphism
rigidity for irreducible and mixing algebraicZd-actions on zero-dimensional compact abelian groups
was established in 2000 by Kitchens and the author: ifα andβ are measurably conjugate irreducible
and mixing algebraicZd-actions on zero-dimensional compact abelian groupsX andY, then their
nonmixing sets coincide, and everyα× β-invariant joiningµ of the Haar measuresλX andλY on
X×Y which has the same nonmixing sets asλX andλY is a translate of the Haar measure on some
α×β-invariant closed subgroupZ ⊂ X×Y. As in the connected case one can now use a joinings
argument to prove isomorphism rigidity for such actions.

Up to this stage of the story isomorphism rigidity of mixing algebraicZd-actions with zero en-
tropy had only been established under the additional hypothesis of irreducibility or, somewhat more
generally, ofentropy rank1.4 The first step beyond this hypothesis in the zero-dimensional case is
due to Bhattacharya in [2], where he uses the bounded order of mixing for arbitrary (i.e. not necessar-
ily of entropy rank1) zero entropy algebraicZd-actions on zero-dimensional compact abelian groups
to prove that measurable conjugacies between such actions are automatically continuous. With this
information one can bring a variety of further tools into play, and by considering homoclinic points of
certain sub-actions one can prove isomorphism rigidity of mixing zero entropy algebraicZd-actions

3Positive entropy algebraicZd-actions have Bernoulli factors and can therefore not be expected to exhibit isomorphism
rigidity — cf. [17] and [25].

4A mixing algebraicZd-actionα on a compact abelian groupX hasentropy rank1 if 0 < hλX
(αn) < ∞ for every nonzero

n ∈ Zd (cf. [5]).
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α on zero-dimensional compact abelian groups for which there exists ad′ with 1≤ d′ < d such that
the restriction ofα to a subgroupΓ⊂Zd of rankd′ is expansive and has completely positive entropy
(Theorem 6.11). The necessity of this condition is illustrated with a series of examples (Examples
6.15) which show thatisomorphism rigidity does not hold in general for zero entropy algebraic
Zd-actions on zero-dimensional compact abelian groups. However, the phenomenon underlying this
possible breakdown of isomorphism rigidity in the zero-dimensional case (namely the existence of
polynomial maps of degree> 1) is absent in the connected case (cf. Proposition 6.4 (3)), so that one
currently cannot draw any further conclusions or conjectures from it.

2. ALGEBRAIC Zd-ACTIONS

An algebraicZd-action is an actionα : n 7→ αn of Zd, d ≥ 1, by continuous automorphisms of
a compact abelian groupX with Borel fieldBX and normalized Haar measureλX. Let α andβ be
algebraicZd-actions on compact abelian groupsX andY, respectively. The actionβ is ameasurable
factor of α if there exists a surjective Borel mapφ : X −→Y with λXφ−1 = λY such that

φ ·αn = βn ·φ (2.1)

λX-a.e.for everyn ∈ Zd. If the mapφ in (2.1) is continuous, thenβ is atopological factorof α, and
if φ is a group homomorphism,β is analgebraic factorof α. If the factor mapφ in (2.1) is invertible
it is a (measurable, topological or algebraic)conjugacyand the actionsα andβ are (measurably,
topologically or algebraically)conjugate.

In [11] and [24], Pontryagin duality was shown to imply a one-to-one correspondence between
algebraicZd-actions (up to algebraic conjugacy) and modules over the ring of Laurent polynomials
Rd = Z[u±1

1 , . . . ,u±1
d ] with integral coefficients in the commuting variablesu1, . . . ,ud (up to module

isomorphism). In order to describe this correspondence we write a typical elementf ∈ Rd as

f = ∑
m∈Zd

fmum (2.2)

with um = um1
1 · · ·umd

d and fm ∈ Z for everym = (m1, . . . ,md) ∈ Zd, wherefm = 0 for all but finitely
manym. If α is an algebraicZd-action on a compact abelian groupX, then the additively-written
dual groupM = X̂ is a module over the ringRd with operation

f ·a = ∑
m∈Zd

fmα̂ma (2.3)

for f ∈ Rd anda∈M, whereα̂m is the automorphism ofM = X̂ dual toαm. In particular,

um ·a = α̂ma (2.4)

for m ∈ Zd anda∈ M. This moduleM = X̂ is called thedual moduleof α. For every f ∈ Rd, the
group homomorphism

f (α) = ∑
n∈Zd

fnαn : X −→ X (2.5)

is dual to multiplication byf onM = X̂ (or, equivalently,f̂ (α)a = f ·a in (2.3)). In particular,f (α)
is surjective if and only iff does not lie in any prime ideal associated5 with M.

5A prime idealp⊂ Rd is associated withanRd-moduleM if

p = ann(a) = { f ∈ Rd : f ·a = 0M}
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Conversely, anyRd-moduleM determines an algebraicZd-action αM on the compact abelian
groupXM = M̂ with αm

M dual to multiplication byum on M for everym ∈ Zd (cf. (2.4)). Note that
XM is metrizable if and only if the dual moduleM of αM is countable.

Examples 2.1. (1) Let M = Rd. SinceRd is isomorphic to the direct sum∑Zd Z of copies ofZ,

indexed byZd, the dual groupX = R̂d is isomorphic to the Cartesian productTZd
of copies of

T= R/Z. We write a typical elementx∈ TZd
asx = (xn) with xn ∈ T for everyn ∈ Zd and choose

the following identification ofXRd = R̂d with TZd
: for everyx∈ TZd

and f ∈ Rd,

〈x, f 〉= e2πi ∑n∈Zd fnxn ,

where f is given by (2.2). Under this identification theZd-actionαRd on XRd = TZd
becomes the

shift-action
(σmx)n = xm+n. (2.6)

(2) Let I ⊂ Rd be an ideal andM = Rd/I . SinceM is a quotient of the additive groupRd by an
α̂Rd-invariant subgroup (i.e. by a submodule), the dual groupXM = M̂ is the closedαRd-invariant
subgroup

XRd/I = {x∈ XRd = TZ
d

: 〈x, f 〉= 1 for every f ∈ I}

=
{

x∈ TZd
: ∑

n∈Zd

fnxm+n = 0 (mod 1)
for every f ∈ I and m ∈ Zd

}

=
\
f∈I

ker f (αRd) =
m\

i=1

ker fi(αRd),

(2.7)

where f1, . . . , fm is a set of generators ofI and f (αRd) is defined by (2.5) for everyf ∈ I . The
Zd-actionαRd/I is the restriction of the shift-actionσ = αRd in (2.6) to the shift-invariant subgroup

XRd/I ⊂ TZd
.

Conversely, letX ⊂ TZd
= R̂d be a closed subgroup, and let

X⊥ = { f ∈ Rd : 〈x, f 〉= 1 for every x∈ X}
be the annihilator ofX in R̂d. ThenX is shift-invariant if and only ifX⊥ is an ideal inRd.

(3) Let p > 1 be a rational prime, denote byR(p)
d = Fp[u±1

1 , . . . ,u±1
d ] the ring of Laurent poly-

nomials inu1, . . . ,ud with coefficients in the prime fieldFp = Z/pZ, and write everyf ∈ R(p)
d as

f = ∑n∈Zd fnun with fn ∈ Fp for everyn ∈ Zd. For everyf = ∑n∈Zd fnun ∈ Rd we denote by

f/p = ∑
n∈Zd

( fn (modp))un ∈ R(p)
d (2.8)

the Laurent polynomial obtained by reducing each coefficient off modulo p. For every idealI ⊂
R(p)

d , Ī = { f ∈ Rd : f/p ∈ I} is an ideal inRd, andR(p)
d /I ∼= Rd/Ī . Furthermore,̄I ⊂ Rd is a prime

ideal if and only ifI ⊂ R(p)
d is a prime ideal.

for somea∈M. The set of all prime ideals associated withM is denoted by asc(M) and satisfies that[
p∈asc(M)

p =
[

06=a∈M

ann(a).

If M is Noetherian, then asc(M) is finite. For details see [14].
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The additive groupR(p)
d can be identified with the dual group of(Z/pZ)Z

d
by setting

〈h,ω〉= e
2πi (∑n∈Zd hnωn)

/
p

for everyh∈R(p)
d andω∈ (Z/pZ)Z

d
. With this identification the shiftσm : (Z/pZ)Z

d −→ (Z/pZ)Z
d

defined as in (2.6) is dual to multiplication byum onR(p)
d , andh(σ) is dual to multiplication byh on

R(p)
d for everyh∈ R(p)

d (cf. (2.5)).

If q⊂ R(p)
d is an ideal with generators{h(1), . . . ,h(k)} we can rewrite (2.7) as

R̂(p)
d /q = X

R
(p)
d /q

= {ω ∈ (Z/pZ)Z
d
: 〈h,ω〉= 1 for every h∈ q}

=
\
h∈q

ker(h(σ)) =
k\

i=1

ker(h(i)(σ)),

(2.9)

and
α

R
(p)
d /q

= σX
R
(p)
d /q

(2.10)

is the restriction of the shift-actionσ to X
R

(p)
d /q

⊂ (Z/pZ)Z
d
.

The correspondence between algebraicZd-actionsα = αM andRd-modulesM yields a correspon-
dence (or ‘dictionary’) between dynamical properties ofαM and algebraic properties of the module
M (cf. [25]). It turns out that many of the principal dynamical properties ofαM can be expressed
entirely in terms of the prime ideals associated with the moduleM (cf. Footnote 5 on the facing
page). Here we need only a few entries from this dictionary.

Theorem 2.2. Let α be an algebraicZd-action on a compact abelian groupX with dual module
M = X̂.

(1) The groupX is connected if and only ifno prime idealp ∈ asc(M) contains a nonzero
constant, andX is zero-dimensional if and only ifeveryp ∈ asc(M) contains a nonzero
constant;

(2) The actionα is mixing if and only no prime idealp ∈ asc(M) contains a polynomial of the
form um−1 with m ∈ Zdr{0};

(3) If X is zero-dimensional, then the actionα has completely positive entropy if and only if
every prime idealp ∈ asc(M) is principal (and hence equal top(p)Rd for some nonzero
prime constantp(p) > 1).

(4) If X is zero-dimensional, then the actionα is expansive if and only if the dual moduleM = X̂
is Noetherian.

Proof. If M contains a nonzero elementa of finite ordern≥ 2, say, then〈a,x〉 is ann-th root of unity
for everyx∈ X, and the continuous map mapx 7→ 〈a,x〉 sendsX onto a finite set containing more
than one element. HenceX is not connected.

Conversely, suppose that every nonzero element ofM has infinite order, and thatX is not con-
nected. We fix a metricδ on X and choose two complementary open setsO1,O2 in X. By compact-
ness there exists anε > 0 such thatx+Bδ(ε)⊂ Oi for everyx∈ Oi , i = 1,2, whereBδ(ε) = {y∈ X :
δ(y,0) < ε}.

Choose an increasing sequence of finitely generated subgroups(An) in M with
S

n≥1An = M.
The annihilatorsYn = A⊥n form a decreasing sequence of closed subgroups ofX with

T
n≥1Yn = {0},

and hence withYn ⊂ Bδ(ε) for all n≥ n0, say. Our choice ofε implies thatx+Yn0 ⊂ Oi for every
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x∈Oi , i = 1,2, and hence that the quotient groupX/Yn0 is not connected. AŝX/Yn0 = An0 is finitely
generated and has no nonzero elements of finite order,An0

∼= Zm andÂn0 = X/Yn0
∼= Tm for some

m≥ 1, which contradicts the diconnectedness ofX/Yn0.
We have established the well known fact thatX is disconnected if and only if̂X = M contains an

elementa 6= 0 of finite order. If the latter condition holds we setN = Rd ·a and choose a nonzero
b∈ N whose annihilator ann(b) = { f ∈ Rd : f ·b = 0} is maximal (this is possible since the ringRd

is Noetherian). Thenp = ann(b) is a prime ideal which is obviously associated withM and contains
a nonzero constant by assumption.

Conversely, if somep ∈ asc(M) contains a nonzero constant, thenM obviously contains elements
of finite order.

Essentially the same argument as above shows that the following conditions are equivalent:

(i) X is zero-dimensional,
(ii) X contains no nontrivial connected subgroups,

(iii) Every elementa∈M has finite order,
(iv) Every prime idealp ∈ asc(M) contains a nonzero constant.

This completes the proof of (1).
The second assertion is [25, Theorem 6.5 (2)] and (3) follows from [25, Theorem 20.8].
In order to prove (4) we note thatαRd/p is obviously expansive for every every prime idealp ⊂

Rd containing a rational prime constantp > 1, since it is the shift-action on some closed, shift-
invariant subgroup ofFZ

d

p (cf. Example 2.1 (3)). IfX is zero-dimensional, then (1) implies that every
p ∈ asc(M) contains a prime constant, and our assertion is a consequence of [25, Corollary 4.7,
Proposition 5.4 and Theorem 6.5 (4)]. ¤

3. MULTIPLE MIXING OF ALGEBRAIC Zd-ACTIONS ON ZERO-DIMENSIONAL GROUPS

In this section we describe the connection between higher order mixing properties of algebraic
Zd-actions and certain diophantine results on additive relations in fields due to David Masser ([12],
[19]).

Recall that an algebraicZd-actionα on a compact abelian groupX is mixing of orderr ≥ 2 if

lim
n1,...,nr∈Zd

‖ni−n j‖→∞ for 1≤i< j≤d

λX

( r\
i=1

α−ni Bi

)
=

r

∏
i=1

λX(Bi) (3.1)

for all Borel setsBi ⊂ X, i = 1, . . . , r.
Let p ⊂ Rd be a prime ideal, and letα = αRd/p be the algebraicZd-action with dual module

M = Rd/p = X̂. If α is not mixing (i.e. not mixing of order2 in the sense of (3.1)), then there exist
Borel setsB1,B2 ⊂ X and a sequence(nk, k≥ 1) in Zd with limk→∞ nk = ∞ and

lim
k→∞

λX(B1∩α−nkB2) = c

for somec 6= λX(B1)λX(B2). Fourier expansion implies that the latter condition is equivalent to the
existence of nonzero elementsa1,a2 ∈M such that

a1 +unk ·a2 = 0

for infinitely manyk≥ 1. In particular,

(um−1) ·a2 = 0 (3.2)
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for some nonzerom ∈ Zd. A very similar (but a little more careful) argument shows thatα is not
mixing of orderr ≥ 2 if and only if there exist elementsa1, . . . ,ar in M, not all equal to zero, and a

sequence((n(1)
k , . . . ,n(r)

k ), k≥ 1) in (Zd)r with limk→∞ ‖n(i)
k −n( j)

k ‖= ∞ for all i, j with 1≤ i < j ≤ r,
such that

un(1)
k ·a1 + · · ·+un(r)

k ·ar = 0 (3.3)

for everyk≥ 1.
Below we shall see that higher order mixing of an algebraicZd-actionα on a compact abelian

groupX can break down in a particularly regular way (cf. Examples 3.2). We call a nonempty finite
subsetS⊂ Zd mixingfor α if

lim
k→∞

λX

(\
n∈S

α−knBn

)
= ∏

n∈S

λX(Bn) (3.4)

for all Borel setsBn ⊂ X, n ∈ S, andnonmixingotherwise. A setS⊂ Zd is minimal nonmixingif it
is nonmixing, but every nonempty subsetS′ ( S is mixing.

As in (3.3) one sees that a nonempty finite setS⊂ Zd is nonmixing if and only if there exist
elementsan ∈M, n ∈ S, not all equal to zero, such that

∑
n∈S

ukn ·an = 0 for infinitely many k≥ 1. (3.5)

Our next result shows that the higher order mixing behaviour of an algebraicZd-actionα with
dual moduleM is again completely determined by that of the actionsαRd/p with p ∈ asc(M) ([12]
and [27]).

Theorem 3.1. Let α be an algebraicZd-action on a compact abelian groupX with dual module
M = X̂.

(1) For everyr ≥ 2, the following conditions are equivalent:
(a) α is r-mixing(i.e. mixing of orderr),
(b) αRd/p is r-mixing for everyp ∈ asc(M).

(2) For every nonempty finite setS⊂ Zd, the following conditions are equivalent:
(a) Sis α-mixing,
(b) Sis αRd/p-mixing for everyp ∈ asc(M).

The following examples show some of the mechanisms which can lead to nonmixing sets for
mixing algebraicZd-actions.

Examples 3.2. (1) (Ledrappier’s Example [15]) Letp = (2,1+ u1 + u2) = 2R2 +(1+ u1 + u2)R2,
M = R2/p, and letα = αM be the algebraicZ2-action onX = XM = M̂ defined in Example 2.1 (2).
Thenα is mixing by Theorem 2.2 (2), but the setS= {(0,0),(1,0),(0,1)} ⊂ Z2 is nonmixing.

Indeed,(1+ u1 + u2)2n ·a = 0 for everyn≥ 0 anda∈ M. For a = 1+(2,1+ u1 + u2) ∈ M our
identification ofM with X̂ in Example 2.1 (2) implies thatx(0,0) + x(2n,0) + x(0,2n) = 0 (mod 1) for
everyx∈ X andn≥ 0. ForB = {x∈ X : x(0,0) = 0} it follows that

B∩α−(2n,0)(B)∩α−(0,2n)(B) = B∩α−(2n,0)(B),

and hence that

λX(B∩α−(2n,0)(B)∩α−(0,2n)(B)) = λX(B∩α−(2n,0)(B)) = 1/4
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for everyn≥ 0. If the setS= {(0,0),(1,0),(0,1)} ⊂ Z2 wereα-mixing, we would have that

lim
n→∞

λX(B∩α−(2n,0)(B)∩α−(0,2n)(B)) = λX(B)3 = 1/8.

By comparing this with (3.4) we see thatS is indeed nonmixing (cf. [15]).

(2) In order to generalize Example (1) we fix a rational primep > 1 and an idealI ⊂ R(p)
d , and

observe as in Example (1) that thesupport

S(h) = {n ∈ Zd : hn 6= 0} (3.6)

of every nonzeroh∈ I is a nonmixing set forα
R

(p)
d /I

.

The two following examples show that nonmixing sets can also arise in a much less obvious
manner.

(3) ([12]) Let f = 1+u1 +u2 +u2
1 +u1u2 +u2

2 ∈ R(2)
2 , and letp = ( f ) = f R(2)

2 ⊂ R(2)
2 . Since f is

irreducible,p is a prime ideal. We setα = α
R

(2)
2 /p

andX = X
R

(2)
2 /p

(cf. (2.9)–(2.10)).

A direct calculation shows that
(u1 +u2)+(1+u2)u1 +(1+u1)u2 = 0,

(1+u1)3 = (1+u2)3 = (u1 +u2)3 (modp).
(3.7)

By raising the first of these equations to the fourth power and substituting terms according to the
second equation we obtain that

0 = (u1 +u2)4 +(1+u2)4u4
1 +(1+u1)4u4

2

= (u1 +u2)4 +(1+u2)(u1 +u2)3u4
1 +(1+u1)(u1 +u2)3u4

2 (mod p).

It follows that
(u1 +u2)+(1+u2)u4

1 +(1+u1)u4
2 ∈ p,

and by repeating this argument we see that

(u1 +u2)+(1+u2)u4k

1 +(1+u1)u4k

2 ∈ p (3.8)

for everyk≥ 0. A glance at (3.5) reveals that we have proved that the setS= {(0,0),(1,0),(0,1)}
is α-nonmixing, although it is not the support of any element ofp.

Theorem 3.4 below will explain what is going on here: if we choose a primitive third root of
unity in F̄2, the algebraic closure of the prime fieldF2, and setF4 = F2[ω], then the polynomial
f ∈ F2[u±1

1 ,u±1
2 ] is no longer irreducible in the ringF4[u±1

1 ,u±1
2 ]:

1+u1 +u2 +u2
1 +u1u2 +u2

2 = (1+ωu1 +ω2u2)(1+ω2u1 +ωu2).

For everyh ∈ R(2)
2 we set[h] = h+ p ∈ R(2)

2 /p. If K = Q(R(2)
2 /p) is the field of fractions of the

integral domainR(2)
2 /p, then the second equation in (3.7) is equivalent to saying thatω = [1+u2]

[u1+u2] is
a primitive third root of unity inK and hence thatK ⊃ F4. Equation (3.8) translates as

1+ω4k
[u1]4

k
+(ω2)4k

[u2]4
k
= 1+ω[u1]4

k
+ω2[u2]4

k
= 0

for everyk≥ 0.

(4) ([12]) Let f = 1+u1 +u2 +u2
1 +u1u2 +u2

2 +u3
1 +u2

1u2 +u1u2
2 +u3

2 ∈ R(2)
2 , g = 1+u1 +u2 ∈

R(2)
2 , p = ( f )⊂R(2)

2 , q = (g)⊂R(2)
2 , and letα = α

R
(2)
2 /p

andX = X
R

(2)
2 /( f )

as in Example 2.1 (3). We

claim that the setS= {(0,0),(1,0),(0,1)} is nonmixing forα.
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In contrast to Example (3), the polynomialf is irreducible not only inR(2)
2 , but also inF̄2[u±1

1 ,

u±1
2 ], i.e. f is absolutely irreducible. However,

f (u3
1,u

3
2) = 1+u3

1 +u3
2 +u6

1 +u3
1u3

2 +u6
2 +u9

1 +u6
1u3

2 +u3
1u6

2 +u9
2 = gh

for someh∈ R(2)
2 .

We denote byK = Q(R(2)
2 /p) andL = Q(R(2)

2 /q) the fields of fractions of the integral domains

R(2)
2 /p andR(2)

2 /q, respectively, and set[h] = h+q ∈ R(2)
2 /q⊂ L for everyh∈ R(2)

2 . The ring homo-

morphismη : R(2)
2 −→ L, defined by settingη(ui) = [u3

i ] = [ui ]3 ∈ R(2)
2 /q ⊂ L for i = 1,2, satisfies

thatkerη = p = ( f ). Henceη induces an embeddingη′ : K −→ L of K as a subfieldK′ = η′(K)⊂ L.
By assumption,1+[u1]2

k
+[u2]2

k
= 0 in L for everyk≥ 0. As 22k = 1 (mod 3) for everyk≥ 0,

the sequence of integerslk = 22k−1
3 , k≥ 0, satisfies that

1+[u1]2
2k

+[u2]2
2k

= 1+[u3
1]

lk[u1]+ [u3
2]

lk[u2] = 0

for everyk≥ 0. This shows that the nonzero vectorv = (1, [u1], [u2]) is orthogonal to all the vectors
wk = (1, [u3

1]
lk, [u3

2]
lk), k≥ 0, in L3. As wk ∈ K′3 for everyk≥ 0, there also exists a nonzero vector

v′ = (a,b,c) ∈ K′3 which is orthogonal to everywk. After identifyingK′ with K and multiplying out

denominators we obtain a nonzero vector(a′,b′,c′) ∈ (R(2)
2 /p)3 such that

a′+ulk
1 ·b′+ulk

2 ·c′ = 0

in R(2)
2 /p for everyk ≥ 0. According to (3.5) this shows that the setS= {(0,0),(1,0),(0,1)} is

indeed nonmixing forα.

In contrast to the connected case, where every mixing algebraicZd-action is mixing of every
order by [27], all zero entropy algebraicZd-actions on zero-dimensional compact abelian groups
have nonmixing sets.

Theorem 3.3. A mixing algebraicZd-actionα on a totally disconnected compact abelian groupX
has nonmixing sets(and is thus not mixing of every order) if and only if it does not have completely
positive entropy.

Proof. Theorem 3.1 shows thatα has no nonmixing sets if and only if the same is true for each
αRd/p, p ∈ asc(M), whereM = X̂ is the dual module ofα.

As X is zero-dimensional, everyp ∈ asc(M) contains a rational primep = p(p) > 0 by Theorem
2.2 (1). If somep ∈ asc(M) is principal, then it is of the formp = p(p)Rd, αRd/p is the shift action
of Zd on the full shift spaceXRd/p = (Z/p(p)Z)Z , h(αRd/p) = log p(p) > 0, andαRd/p is mixing of
every order.

If the idealp ∈ asc(M) is nonprincipal, we setq = { f/p(p) : f ∈ p} ⊂R(p(p))
d and observe thatq 6=

{0} andαRd/p = α
R

(p(p))
d /q

. Example 3.2 (2) shows that the supportS(h) of every nonzero Laurent

polynomialh∈ q is a nonmixing set forαRd/p = α
R

(p(p))
d /q

and hence, by Theorem 3.1, forα.

If α has completely positive entropy, then Theorem 2.2 (3) implies thateveryp ∈ asc(M) is
principal, and Theorem 3.1 and the discussion above show thatα is mixing of every order. Ifα does
not have completely positive entropy, at least onep ∈ asc(M) is nonprincipal, andα therefore has
nonmixing sets. ¤

The description of the nonmixing sets of an algebraicZd-actionα is facilitated by the following
theorem of David Masser ([12], [19]).
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Theorem 3.4.LetK be an algebraically closed field of characteristicp> 0, r ≥2, and let(x1, . . . ,xr)
∈ (K×)r . The following conditions are equivalent:

(1) There exists a nonzero element(c1, . . . ,cr) ∈ Kr such that

r

∑
i=1

cix
k
i = 0

for infinitely manyk≥ 0;
(2) There exists a rational numbers> 0 such that the set{xs

1, . . . ,x
s
r} is linearly dependent over

the algebraic closurēFp ⊂ K of the prime fieldFp = Z/pZ.

Corollary 3.5. Let p ⊂ Rd be a prime ideal containing a rational primep > 1, and letα = αRd/p

be the algebraicZd-action onX = XRd/p defined in Example2.1 (2). We denote byK = Q(R2/p)⊃
Rd/p the field of fractions of the integral domainRd/p, write K̄ for its algebraic closure, and set
xn = un +p ∈ Rd/p⊂ K ⊂ K̄ for everyn ∈ Zd. If S⊂ Zd is a nonempty finite set, then the following
conditions are equivalent:

(1) Sis notα-mixing;
(2) There exists a rational numbers> 0 such that the set{xs

n : n∈S} ⊂ K̄ is linearly dependent
overF̄p ⊂ K̄.

Proof of Corollary3.5, given Theorem3.4. If a nonempty finite subsetS⊂ Zd is not mixing forα,
then (3.5) implies that there exist elements{an : n ∈ S} in Rd/p, not all equal to zero, and infinitely
manyk≥ 1 such that

∑
n∈S

ukn ·an = 0.

If we setxn = un +p∈Rd/p⊂K for everyn∈S, we obtain Condition (1) in Theorem 3.4 and hence
Condition (2) in our corollary.

Conversely, if{xs
n : n ∈ S} is linearly dependent over̄Fp for some rational numbers> 0, then we

obtain a nontrivial equation of the form

∑
n∈S

ωnxs
n = 0

with ωn ∈ F̄p for everyn ∈ S. By Theorem 3.4 there exists a nonzero element(cn, n ∈ S) ∈ K̄S with

∑
n∈S

cnxk
n = 0

for infinitely manyk≥ 0. Hence there exists a nonzero element(c′n, n ∈ S) ∈ KS with

∑
n∈S

c′nxk
n = 0

for infinitely manyk≥ 0, and after clearing denominators we obtain a nonzero element(an, n∈S)∈
(Rd/p)S with

∑
n∈S

ukn ·an = 0

for infinitely manyk≥ 0. This shows that the setS is α-nonmixing. ¤

In order to illustrate the dynamical implications of Corollary 3.5 we return to the Examples 3.2 on
page 7.
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Examples 3.6. (1) In Example 3.2 (2) we used the fact thatf = 1+u1 +u2 +u2
1 +u1u2 +u2

2 ∈ R(2)
2

is irreducible overF2, but not overF̄2. We definep = ( f ) ⊂ R(2)
2 as in that example, setR(4)

2 =
F4[u±1

1 ,u±1
2 ] and putq = (1+ ωu1 + ω2u2) ⊂ R(4)

2 . If ι : R(2)
2 −→ R(4)

2 is the inclusion map and

π : R(4)
2 7→ R(4)

2 /q the quotient map, thenker(π◦ ι) = p, and the mapπ◦ ι induces an embedding of

the field of fractionsK = Q(R(2)
2 /p) in the field of fractionsL = Q(R(4)

2 /p). As we saw in Example
3.2 (2),

1+ωu22k

1 +ω2u22k

2 = 0

in L for everyk≥ 0, i.e the vector(1,ω,ω2) ∈ L3 is orthogonal to(1,u22k

1 ,u22k

2 ) ∈ K ⊂ L for every

k≥ 0. Hence there exists an nonzerov ∈ K3 which is orthogonal to every(1,u22k

1 ,u22k

2 ), andv =
(u1 +u2,1+u2,1+u1) corresponds to an explicit choice of such a vector.

The injectionη̂ : R(2)
2 /p−→ R(4)

2 /p induced by the mapπ◦ ι : R(2)
2 −→ R(4)

2 /q above embeds the

R2-moduleM = R(2)
2 /p as a submodule of index2 in theR2-moduleN = R(4)

2 /q. The corresponding
dual factor mapη : XN −→ XM sendsα = αM to β = αN and is two-to-one. We shall return to these
two algebraicZ2-actions in Example 4.9 on page 16.

(2) In the notation of Example 3.2 (4) we setp = ( f ) ⊂ R(2)
2 , q = (g) ⊂ R(2)

2 , α = α
R

(2)
2 /p

,

X = X
R

(2)
2 /p

= R̂(2)
2 /p, β = α

R
(2)
2 /q

andY = X
R

(2)
2 /q

= R̂(2)
2 /q. We putΓ = 3Z3 and writeπΓ : Y −→

(Z/2Z)Γ for the projection onto the coordinates inΓ. By identifyingΓ with Z2 we viewπΓ(Y) as a
closed shift-invariant subgroup of(Z/2Z)Z

2
, and a little calculation shows thatπΓ(Y) = X and that

πΓ : Y −→ X is two-to-one.
The setS= {(0,0),(1,0),(0,1)} ⊂ Z2 is obviouslyβ-nonmixing. We writeβΓ : n 7→ β3n for the

Γ-action obtained fromβ by restriction and observe that the two-to-one factor mapπΓ : Y −→ X
sendsβΓ to α. Furthermore, the setS is alsoβΓ-nonmixing, and this property ofSsurvives under the
factor mapπΓ : Y −→ X (this is the essence of the calculation in Example 3.2 (4)).

If an algebraicZd-actionα is r-mixing, then every setS⊂Zd with cardinality|S| ≤ r is obviously
mixing. The converse is far from obvious: ifα is not mixing of orderr ≥ 2, and if r is the smallest
integer with this property, does there exist a nonmixing setS⊂ Zd of sizer? Remarkably, this turns
out to be the case, as a consequence of a second theorem by David Masser.

Theorem 3.7([20]). Let α be an algebraicZd-action on a compact abelian groupX, and letr ≥ 2.
If every subsetS⊂ Zd of cardinalityr is mixing, thenα is r-mixing.

In order to explain the connection between Theorem 3.7 and an appropriate statement about
additive relations in fields in the spirit of Theorem 3.4 we need a definition.

Definition 3.8. Let G be a multiplicative abelian group andn a positive integer. An infinite subset
Ξ⊂Gn is broad if it satisfies the following conditions.

(1) If g∈G and1≤ i ≤ n, then there are at most finitely many(ξ1, . . . ,ξn) ∈ Ξ with ξi = g;
(2) If n≥ 2, g∈G and1≤ i < j ≤ n, then there are at most finitely many(ξ1, . . . ,ξn) ∈ Ξ with

ξi/ξ j = g.

Theorem 3.9 ([20]). Let K be a field of characteristicp > 1 and G ⊂ K× a finitely generated
subgroup. Suppose thatn≥ 1, and that the equation

a1x1 + · · ·+anxn = 1 (3.9)
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has a broad set of solutions(x1, . . . ,xn) ∈ Gn for some(a1, . . . ,an) ∈ (K×)n. Then there exist a
positive integerm≤ n and elements(b1, . . . ,bm) ∈ (K×)m, (g1, . . . ,gm) ∈ Gm, with the following
properties.

(1) gi 6= 1 for i = 1, . . . ,m;
(2) gi/g j 6= 1 for 1≤ i < j ≤m;
(3) There exist infinitely manyk≥ 1 with

b1gk
1 + · · ·+bmgk

m = 1. (3.10)

Proof of Theorem3.7, given Theorem3.9. The translation of Theorem 3.7 into Theorem 3.9 works
exactly as in Corollary 3.5. Ifα is an algebraicZd-action on a compact abelian groupX which is not
mixing of orderr ≥ 2, and ifr is the smallest integer with this property, then Theorem 3.1 guarantees
the existence of a prime idealp associated with the dual moduleM = X̂ of α such thatαRd/p is not
r-mixing.

If r = 2, Theorem 2.2 (2) implies thatun−1 ∈ p for some nonzeron ∈ Zd. Henceukn−1∈ p
anda−ukn ·a = 0 for everyk≥ 0 anda ∈ Rd/p, and (3.5) shows that the setS= {0,n} ⊂ Zd is
nonmixing forαRd/p and hence, by Theorem 3.1, forα.

If r > 2 we denote byK the field of fractions of the integral domainRd/p, embedRd/p in K in the
obvious manner, and writeG⊂K× for the multiplicative group generated by{xn = un +p : n∈Zd}.
SinceαRd/p is mixing, G∼= Zd by Theorem 2.2 (2). Equation (3.3) shows that there exist elements

a1, . . . ,ar ∈ Rd/p, not all equal to zero, and a sequence((n(1)
k , . . . ,n(r)

k ), k≥ 1) in (Zd)r such that

limk→∞ ‖n(i)
k −n( j)

k ‖= ∞ for all i, j with 1≤ i < j ≤ r, and

un(1)
k ·a1 + · · ·+un(r)

k ·ar = 0

for everyk≥ 1. The minimality ofr implies that theai are all nonzero, and we may obviously assume

in addition thatn(r)
k = 0 for everyk≥ 1.

We setξk = (ξ(1)
k , . . . ,ξ(r−1)

k ) = (un(1)
k +p, . . . ,un(r−1)

k +p) ∈Gr−1 for everyk≥ 1. ThenΞ = {ξk :
k≥ 1} is a broad set of solutions of the equation

a1

ar
x1 + · · ·+ ar−1

ar
xr−1 = 1.

Theorem 3.9 yields a positive integerm≤ r − 1 and elements(b1, . . . ,bm) ∈ (K×)m, (g1, . . . ,gm)
∈Gm with the properties listed there, such that

b1gk
1 + · · ·+bmgk

m = 1

for infinitely manyk≥ 1. Since eachgi = ut i + p for some unique nonzerot i ∈ Zd we obtain after
clearing denominators that

ukt1 ·b′1 + · · ·+uktm ·b′m = b′m+1

for some nonzero elementsb′i ∈ Rd/p and infinitely manyk≥ 1. An application of (3.5) shows that
the setS= {0, t1, . . . , tm} is nonmixing forαRd/p and hence, by Theorem 3.1, forα. The minimality
of r implies that|S|= m+1 = r. This completes the proof of the theorem. ¤

In order to appreciate the difficulty in proving Theorem 3.7 one should once again consider
Ledrappier’s Example 3.2 (1). As we saw there, the setS= {(0,0),(1,0),(0,1)} is nonmixing (and
obviously minimal) for theZ2-action α = α

R
(2)
2 /( f )

defined in that example. However, for every
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k0,k1,k2,k3 ≥ 0 with 2k0 > 2k1 +2k2 +2k3, say, the set

Sk0,k1,k2,k3 = {(2k1,0),(0,2k1),(2k0−2k2,0),(2k0−2k2,2k2),

(0,2k0−2k3),(2k3,2k0−2k3)}
is also minimal nonmixing: it is the support of the polynomial

gk0,k1,k2,k3 = (1+u1 +u2)2k0 +(1+u1 +u2)2k1 +u2k0−2k2
1 (1+u1 +u2)2k2

+u2k0−2k3
2 (1+u1 +u2)2k3 ∈ p.

By choosing appropriate increasing sequencesk(n)
i , n≥ 1, i = 0, . . . ,3, we obtain minimal nonmixing

setsSn = S
k
(n)
0 ,k

(n)
1 ,k

(n)
2 ,k

(n)
3

, n≥ 1, of varying shapes without any resemblance to linear multiples of a

single nonmixing setS′ ⊂ Z2. Nevertheless one can extract sufficient information from any such
sequence to obtain a nonmixing set forα; for details we refer to [20].

Theorem 3.7 reduces the problem of determining the order of mixing to finding nonmixing sets of
smallest cardinality. However, even with Corollary 3.5 at hand, the latter problem remains nontrivial:
I am not aware of any good general algorithm for determining polynomials with minimal support in
a given ideal.

4. ISOMORPHISM RIGIDITY OF ALGEBRAICZd-ACTIONS: THE IRREDUCIBLE CASE

In this section we turn to a problem of an apparently quite unrelated nature from that of the
last section. Every algebraicZd-actionα with completely positive entropy is measurably conjugate
to a Bernoulli shift (cf. [23]). Since entropy is a complete invariant for measurable conjugacy of
Bernoulli shifts by [21],α is measurably conjugate to theZd-action

αA : n 7→ αAn

for everyA∈GL(d,Z), since the entropies of all these actions coincide. In general, however,α and
αA are not topologically conjugate.

Every algebraicZd-actionα with positive entropy has Bernoulli factors by [17] and [23], and two
such actions may again be measurably conjugate without being topologically conjugate. For zero
entropy actions, however, there is some evidence for a very strong form of isomorphism rigidity. In
order to formulate this property we introduce a definition.

Definition 4.1. Let α andβ be algebraicZd-actions on compact abelian groupsX andY, respec-
tively. The actionsα andβ (or (X,α) and(Y,β)) arefinitely (algebraically) equivalentif each of
them is an algebraic factor of the other one with a finite-to-one factor map.

A mapφ : X −→Y is affineif it is of the formφ(x) = ψ(x)+y for everyx∈X, whereψ : X −→Y
is a continuous surjective group homomorphism andy∈Y. If there exists an affine mapφ : X −→Y
satisfying (2.1), thenβ is obviously an algebraic factor ofα.

We say thatisomorphism rigidityholds for a class of algebraicZd-actions if any measurable
conjugacy between two actions in this class coincidesa.e.with an affine map. Let us begin with the
class of irreducibleZd-actions to illustrate a much more general phenomenon.

Definition 4.2. An algebraicZd-actionα on a compact abelian groupX is irreducibleif every closed
α-invariant subgroupY ( X is finite.

IrreducibleZd-actions were calledalmost minimalin [25].
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Proposition 4.3. Let α be an irreducible and ergodic algebraicZd-action on a compact abelian
groupX, and letβ be an algebraicZd-action on a compact abelian groupY 6= {0} such that(Y,β)
is an algebraic factor of(X,α). Then the factor map is finite-to-one, andβ is irreducible, ergodic
and finitely equivalent toα. Furthermore there exists a unique prime idealp⊂Rd with the following
properties.

(1) αRd/p is ergodic(and henceRd/p is infinite);
(2) For every idealI ) p in Rd, Rd/I is finite;
(3) α is finitely equivalent toαRd/p.

Conversely, ifp⊂Rd is a prime ideal satisfying Condition(2)above, then theZd-actionα = αRd/p

on the groupXRd/p is irreducible.

Proof. Let φ : X −→Y be an algebraic factor map from(X,α) to (Y,β). The kernelK = kerφ is an
α-invariant closed subgroup ofX. As Y 6= {0} by assumption,K is a properα-invariant subgroup
and thus finite by irreducibility.

Let Z be a proper closedβ-invariant subgroup ofY. The subgroupφ−1(Z) ⊂ X is finite by ir-
reducibility. This shows thatZ = φ(φ−1(Z)) is finite. The (obviously ergodic) actionβ is therefore
irreducible.

The ergodicity ofα also implies that every nonzero submoduleN⊂M of the dual moduleM = X̂
of α is infinite: otherwiseZ = N̂ = X/N⊥ would be a finite quotient ofX by anα-invariant subgroup,
contrary to ergodicity. As the inclusionN⊂M is dual to a factor mapψ from (X,α) to (XN,αN), the
beginning of this proof shows thatαN is irreducible and|M/N|= |kerψ| is finite. In particular, ifp is
a prime ideal associated withM, and ifa∈M satisfies that ann(a) = p and henceN = Rd ·a∼= Rd/p,
thenN is infinite,M/N is finite andαN = αRd/p is ergodic and irreducible.

If I ) p is an ideal, thenN′ = I ·a∼= I/p is a submodule ofN and hence — again by irreducibility
— of finite index inN. It follows thatRd/I is finite, as claimed in (2).

If q 6= p is a second prime ideal associated withM thenq = ann(b) for someb∈MrN. Every
nonzerob′ ∈ N′ = Rd ·b hasq as its annihilator. However, sinceRd/q ∼= N′ is infinite by ergodicity
andN′/N = N′/(N∩N′) is finite, there exists anh∈ Rdrq with h·b∈ N and hence ann(h·b) = p.
This contradiction implies thatp is the only prime ideal associated withM.

In order to complete the proof thatα andαN = αRd/p are finitely equivalent we have to find a
(necessarily finite-to-one) algebraic factor mapφ′ : (XN,αN) −→ (X,α). As in the preceding para-
graph we note that there exists, for everyb∈ MrN, an elementhb ∈ Rdr p with hb ·b∈ N. The
polynomial

h = ∏
b∈MrN

hb ∈ Rdrp

satisfies thath ·M ⊂ N. The mapmh : M −→ N consisting of multiplication byh is injective by
Footnote 5 on page 4, and the surjective homomorphismφ′ : XN −→ X dual tomh is an algebraic
factor map from(XN,αN) to (X,α). This proves (3).

We return to the first assertion of this proposition. We have proved thatβ is irreducible and hence
finitely equivalent toαRd/p for some prime idealp ⊂ Rd satisfying the conditions (1) and (2). The

factor mapφ : (X,α)−→ (Y,β) is dual to an embeddinĝφ : Ŷ−→M. Sincep is the only prime ideal
associated withM, p is also associated witĥY, andβ is finitely equivalent toαRd/p and hence toα.

The final assertion has already been verified in the course of this proof. ¤
Irreducibility is an extremely strong hypothesis: ifα is mixing it implies thatαn is Bernoulli with

finite entropy for every nonzeron ∈ Zd, and hence, ifd > 1, thatα has zero entropy. Ifβ is a second
irreducible and mixing algebraicZd-action on a compact abelian groupY such thath(αn) = h(βn)
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for everyn∈Zd, thenαn is measurably conjugate toβn for everyn∈Zd. However, ifd > 1, then the
actionsα andβ are generally not measurably conjugate, as the following theorem and the examples
below show.

Theorem 4.4(Isomorphism rigidity for irreducibleZd-actions). Let d > 1, and letα1 and α2 be
irreducible and mixing algebraicZd-actions on compact abelian groupsX1 andX2, respectively. If
φ : X1 −→ X2 is a measurable conjugacy ofα1 andα2, thenφ is λX1-a.e.equal to an affine map. In
particular, measurable conjugacy implies algebraic conjugacy.

Theorem 4.4 is a combination of two theorems in [9] and [13], respectively, and follows from a
result on invariant measures of algebraicZd-actions withd ≥ 2 whose scope is still something of
a mystery. We state a very special case which will be sufficient for proving Theorem 4.4; possible
ramifications of Theorem 4.5 will be discussed in Section 5.

Theorem 4.5. Letd≥ 2, and letα1 andα2 be irreducible and mixing algebraicZd-actions on com-
pact abelian groupsX1 andX2 with normalized Haar measuresλX1 andλX2, respectively. We write
α = α1×α2 for the product-Zd-action onX = X1×X2 and assume thatµ is anα-invariant probabil-
ity measure onX with the following property: ifπi : X −→ Xi denotes thei-th coordinate projection,
thenµπ−1

i = λXi , andπi is a measurable conjugacy of theZd-actions(X,µ,α) and(Xi ,λXi ,αi).
Then there exists a closedα-invariant subgroupY ⊂ X such thatµ is a translate of the Haar

measureλY.

Proof. Since theZd-actionsαi are irreducible, Proposition 4.3 shows that the groupsXi have to be
either zero-dimensional or connected (depending on whether or not the prime idealp⊂Rd appearing
there contains a nonzero constant). IfX1 andX2 are finite-dimensional tori, Theorem 4.5 follows
from Corollary 5.2′ in [10, Corrections] (cf. [9, Theorem 5.1]), and this result can be extended
to irreducibleZd-actions on compact connected abelian groups without much difficulty, using the
structure theorems about irreducibleZd-actions in [24] and [7]. IfX1 andX2 are zero-dimensional,
Theorem 4.5 follows from the main result in [13].

The case where one of the groups is connected and the other is zero-dimensional is impossible:
if X1 is connected andX2 zero-dimensional, then the main result in [27] implies thatα1 has no
nonmixing sets, whereasα2 has nonmixing sets by Theorem 3.3, since it has entropy zero. Since the
hypotheses of Theorem 4.5 imply thatα1 andα2 are measurably conjugate we obtain a contradiction.

¤

Proof of Theorem4.4, given Theorem4.5. Suppose thatφ : X1 −→ X2 is a measurable conjugacy of
α1 andα2. We setX = X1×X2, consider the productZd-actionα = α1×α2 on X = X1×X2, and
denote byµ the uniqueα-invariant probability measure on the graphΓ(φ) = {(x,φ(x)) : x∈ X1} ⊂ X
which satisfies thatµπ−1

i = λXi for i = 1,2, whereπi : X −→ Xi are the coordinate projections. Since
all the hypotheses of Theorem 4.4 are satisfied we conclude thatµ is a translate of the Haar measure
of a closed subgroup ofX and hence thatφ is a.e.equal to an affine map. ¤

The papers [9] and [13] contain many examples of pairs of irreducible algebraicZd which look
very similar, but which can can be shown to be measurably nonconjugate by Theorem 4.4. Here we
restrict ourselves to some zero-dimensional examples. We start with two definitions.

Definition 4.6. Let α be an algebraicZd-action on a compact abelian groupX. Thealgebraic cen-
tralizer C0(α) is the group of all continuous group automorphisms ofX which commute withα.

The affine centralizerCaff(α) is the group of all affine bijections ofX which commute withα,
and is of the formCaff(α) = C0(α)×Fix(α), where Fix(α) is the group of fixed points ofα.
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Themeasurable centralizerCλX
(α) is the group of all Haar measure preserving bijective Borel

mapsφ : X −→ X which commute withα λX-a.e.

Definition 4.7. Let α be an algebraicZd-action on a compact abelian groupX. The dual group̂X of
X is cyclic under the dual action̂α of α (or α hascyclic dual) if there exists a charactera∈ X̂ such
thatX̂ — as a group — is generated by the set{α̂na : n ∈ Z}.
Example 4.8(The trivial centralizer of Ledrappier’s example). In Example 3.2 (1) we considered

theZ2-actionα = α
R

(2)
2 /( f )

with f = 1+u1 +u2 ∈ R(2)
2 . We claim that

C0(α) = Caff(α) = CλX
(α) = {αn : n ∈ Z2}.

Since0 is the only fixed point ofα, C0(α) = Caff(α) = CλX
(α) by Theorem 4.4. Asα has cyclic

dual, every automorphismβ∈C0(α) is completely determined by the elementg+( f ) = β̂(1+( f ))∈
X̂ = R(2)

2 /( f ), whereβ is the automorphism of̂X dual toβ. As β is a group automorphism, its kernel
is trivial, which translates into the statement that the varieties

V( f ) = {(c1,c2) ∈ (F̄2)×× (F̄2)× : f (c1,c2) = 0}
= {(c1,1+c1) : c1 ∈ (F̄2)×, 1+c1 ∈ (F̄2)×},

V(g) = {(c1,c2) ∈ (F̄2)×× (F̄2)× : g(c1,c2) = 0}
of f andg do not intersect (this statement is meaningful in spite of the fact thatg is determined only
up to addition of an element in( f )). After modifyingg by an element of( f ) we may assume that

g(u1,u2) = ∑
m=(m1,m2)∈F

um1
1 (1+u1)m2 = h(u1),

say, for some finite subsetF ⊂ Z2. Our hypothesis on the intersection of varieties guarantees that
h(u1) 6= 0 for everyu1∈ (F̄2)×, and hence thath(u1) = uk1

1 (1+u1)k2 andg= uk (mod ( f )) for some
k = (k1,k2) ∈ Z2. This proves thatβ = αk for somek ∈ Z2.

Example 4.9. Consider theZ2-actionα = αM andαN with M = R(2)
2 /p andN = R(4)

2 /q in Example

3.6 (1), wherep = (1+u1 +u2+u2
1 +u1u2 +u2

2)⊂R(2)
2 andq = (1+ωu1 +ω2u2)⊂R(4)

2 . There we
found a two-to-one algebraic factor map from(X′,α′) = (XN,αN) to (X,α) = (XM,αM). However,
the dual modulêX = M is obviously cyclic in the sense of Definition 4.7, whereas the moduleX̂′ = N
is not. Theorem 4.4 shows that the finitely equivalent actionsα andα′ are not measurably conjugate.

By exploiting the fact that the polynomialsf ′ = 1+u2
1 +u2 +u1u2 +u2

2 and f ′′ = 1+u1 +u2
1 +

u2 +u2
2 are irreducible inR(2)

2 , but not inR(4)
2 , one can construct further examples of this kind.

Example 4.10(Nonconjugacy ofZ2-actions with positive entropy). Let

f1 =1+u1 +u2
1 +u1u2 +u2

2,

f2 =1+u2
1 +u2 +u1u2 +u2

2,

f3 =1+u1 +u2
1 +u2 +u2

2,

f4 =1+u1 +u2
1 +u2 +u1u2 +u2

2,

in R2, put pi = (2, fi) ⊂ R2, Ji = (4,2 fi) ⊂ R2, Mi = R2/Ji , Ni = R2/pi , and define the algebraic
Z2-actionsαi = αMi on Xi = XMi andβi = αNi on Yi = XNi as in Example 2.1 (2). For everyi =
1, . . . ,4, the prime ideals associated with the moduleMi are (2) = 2R2 andpi , and the inclusion
of 2Mi

∼= Ni in Mi is dual to an algebraic factor mapφi : Xi −→ Yi from (Xi ,αi) to (Yi ,βi). Since
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kerφi
∼= R̂2/2R2 = (Z/2Z)Z

2
and the actionsβi have zero entropy, the Pinsker algebraπ(αi) of αi is

the sigma-algebraBXi/kerφi
of kerφi-invariant Borel sets inXi . In other words, theZ2-action induced

by αi on the Pinsker algebraπ(αi) is measurably conjugate toβi .
Since any measurable conjugacy ofαi andα j would mapπ(αi) to π(α j) and induce a conjugacy

of βi andβ j , Theorem 4.4 implies thatαi andα j are measurably nonconjugate for1≤ i < j ≤ 4.

5. ISOMORPHISM RIGIDITY: THE GENERAL CASE

In Section 4 we investigated the isomorphism problem for irreducible algebraicZd-actions. Al-
though the discussion below shows that one can relax the hypothesis of irreducibility in Theorem 4.4
to some extent, the methods currently do not extend significantly beyond the class of expansive and
mixing algebraicZd-actionsα on compact abelian groupsX with the property thath(αn) < ∞ for
everyn∈Zd (i.e. therank one casein the terminology of [5]). For example, ifp,q⊂R3 are nonprin-
cipal prime ideals with2 generators such that the zero-entropyZ3-actionsα = αR3/p andβ = αR3/q

are measurably conjugate (cf. Theorem 2.2 (3)), and if the groupsX = XRd/p andY = XRd/q are
connected, there are at present no general results about isomorphism rigidity of such actions. As far
as I know, the following ‘cautious conjecture’ from [26] may have a positive answer under the hy-
pothesis that the groupsX andY are connected (it is now known to be wrong without this hypothesis
by [1] and [2]).

Conjecture 5.1. Let d > 1, and let α and β be expansive and mixing algebraicZd-actions on
compact connected abelian groupsX andY, respectively. Ifα and β have zero entropy, then any
measurable conjugacy between them isa.e.equal to an affine map.

Conjecture 5.1 would be implied by a positive answer to the following problem.

Problem 5.2. Let d≥ 2, and letα1 andα2 be expansive and mixing algebraicZd-actions on compact
abelian groupsX1 andX2 with normalized Haar measuresλX1 andλX2, respectively. We writeα =
α1×α2 for the product-Zd-action onX = X1×X2 and assume thatµ is anα-invariant probability
measure onX with the following property: ifπi : X −→ Xi denotes thei-th coordinate projection,
thenµπ−1

i = λXi , andπi is a measurable conjugacy of theZd-actionsα on (X,µ) andαi on (Xi ,λXi )?
Does there exists a closedα-invariant subgroupY ⊂ X such thatµ is a translate of the Haar

measureλY.

Theorem 4.5 is, of course, a special case of this problem, which is in turn part of a much more
general quest to determine all invariant and ergodic probability measures of a zero entropy mixing
algebraicZd-actionα with d≥ 2 (where the mixing hypothesis is imposed only to ensure that there
is no single group automorphismβ such thatαn is a power ofβ for all n in some subgroup of finite
index inZd). The first instance of this problem is due to Furstenberg (cf. [8]):Is every nonatomic
probability measureµ on T which is simultaneously invariant under multiplication by2 and by3
equal to Lebesgue measure?In spite of some remarkable progress due to Rudolph in [22], who
proved that any such measure with positive entropy under either of these multiplications has to be
equal toλT, Furstenberg’s original question is still open, and several ingenious proofs by Host and
others depend in a very crucial way on positive entropy. For extensions of Rudolph’s results to
commuting automorphisms of finite-dimensional tori or solenoids we refer to the paper by Katok
and Spatzier [10] and to recent work in progress by Einsiedler and Lindenstrauss [6], which contains
the currently most general statement about invariant probability measures for irreducible and mixing
algebraicZd-actions on compact connected abelian groups.
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Theorem 5.3. Let d ≥ 2, and letα be an irreducible and mixing algebraicZd-action on a finite-
dimensional torus or solenoidX. If µ is anα-invariant and ergodic probability measure onX which
has positive entropy under someαn, n ∈ Zd, then there exists a finite index subgroupΛ ⊂ Zd with
the following properties.

(1) Let n1, . . . ,nk ∈ Zd be a complete set of representatives ofZd/Λ, let αΛ be the restriction of
α to Λ, and letµ = 1

k ∑k
i=1µi be theαΛ-ergodic decomposition ofµ. There exists an infinite closed

αΛ-invariant subgroupY ⊂ X such that eachµi is invariant under translation by the subgroupYi =
αni (Y).

(2) For everyi = 1, . . . ,k, the measureµi and theΛ-action αΛ descend naturally to the factor
X/Yi , and everyαn, n ∈ Λ, has zero entropy onX/Yi with respect toµi .

Although much more is known about isomorphism rigidity of algebraicZd-actions on zero-
dimensional compact abelian groups than in the connected case (cf. Section 6), the problem of
describing the invariant probability measures of even the simplest examples is in no better state
than in the connected case. Here are two unresolved questions about Ledrappier’s Example 3.2 (1).

Problem 5.4. Let α = α
R

(2)
2 /(1+u1+u2)

be the shift-action on the groupX = X
R

(2)
2 /(1+u1+u2)

in Example

3.2 (1).

(1) If µ is anα-invariant probability measure onX with full support (i.e. withµ(O) > 0 for every
nonempty open subsetO⊂ X), is µ= λX?

(2) If µ is a nonatomicα-invariant probability measure onX which is ergodic under someαn, is
µ= λX?

6. ISOMORPHISM RIGIDITY: THE DISCONNECTED CASE

This chapter is devoted to isomorphism rigidity results (and counterexamples) for expansive and
mixing algebraicZd-actions on zero-dimensional compact abelian groups. The exposition follows
[2] and [3].

6.1. Measurable polynomials.

Definition 6.1. Let X,Y be compact abelian groups, and letU(X,Y) be the group of allλX-equival-
ence classes of Borel mapsf : X −→Y, furnished with pointwise addition as composition and the
topology of convergence in Haar measure. For everyx∈ X we denote by∂x : U(X,Y) −→U(X,Y)
the continuous map defined by

∂x( f )(x′) = f (x+x′)− f (x′)

for everyx′ ∈ X and f ∈U(X,Y), and we set

∂x = ∂x1 ◦∂x2 ◦ · · · ◦∂xk : U(X,Y)−→U(X,Y)

for everyk≥ 1 andx = (x1, . . . ,xk) ∈ Xk.
An elementf ∈U(X,Y) is ameasurable polynomialif there exists an integerk≥ 1 with ∂x( f ) = 0

(mod λX) for everyx∈Xk. If k is the smallest such integer, then thedegreedeg( f ) of the measurable
polynomial f is equal tok−1.

For everya ∈ Ŷ and f ∈U(X,Y) we denote by〈a, f 〉 ∈U(X,S) the mapx 7→ 〈a, f (x)〉, where
〈a,x〉 is the value of the charactera∈ Ŷ at the pointx∈ X.
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Lemma 6.2. An elementf ∈U(X,Y) is a measurable polynomial if and only if〈a, f 〉 ∈U(X,S) is
a measurable polynomial for everya ∈ Ŷ, and f has degree≤ k if and only if deg(〈a, f 〉) ≤ k for
everya∈ Ŷ. Finally, f is continuous if and only if〈a, f 〉 is continuous for everya∈ Ŷ.

Proof. We setΩ = SŶ and write everyω∈Ω asω = (ωa, a∈ Ŷ) with ωa ∈ S for everya∈ Ŷ. Define

a continuous injective group homomorphismΦ : Y −→ SŶ by setting

Φ(y)a = 〈a,y〉
for everya∈ Ŷ andy∈Y. ThenZ = Φ(Y) is a closed subgroup ofΩ, and the mapf ′ = Φ◦ f : X−→Z
is a measurable polynomial (of degree≤ k) if and only if each coordinatex 7→ f ′(x)a = 〈a, f (x)〉 of
the mapf ′ is anS-valued measurable polynomial (of degree≤ k) for everya∈ Ŷ. SinceΦ : X −→ Z
is a topological group isomorphism, the last statement is obvious. ¤

Lemma 6.3. Let f ∈U(X,Y) andk≥ 1. Then the mapx 7→ ∂x( f ) fromXk toU(X,Y) is continuous.

Proof. The same argument as in Lemma 6.2 allows us to assume without loss in generality that
Y = S.

Consider the special case wherek = 2. For any f ∈ U(X,S) and x ∈ X we denote byf̄ the
complex conjugate off and write fx ∈U(X,S) for the map given byfx(x′) = f (x+x′). Define maps
S1, . . . ,S4 : X2 −→U(X,S) by

S1(x1,x2) = fx1+x2, S2(x1,x2) = fx1, S3(x1,x2) = fx2, S4(x1,x2) = f ,

where the bar denotes complex conjugation. For everyx ∈ X2, ∂x( f ) = S1(x) ·S2(x) ·S3(x) ·S4(x).
Since the right regular representation ofX on L2(X,λX) is continuous, eachSi is a continuous map
from X2 into L2(X,λX) and hence also a continuous map fromX2 intoU(X,S). As multiplication is
continuous inU(X,S), this proves our assertion fork = 2. In the general case we defineS1, . . . ,S2k

in an analogous way and apply the same argument as above. ¤

Proposition 6.4 ([2]). Let X,Y be compact abelian groups, and letf ∈U(X,Y) be a measurable
polynomial.

(1) There exists a unique continuous mapf ′ : X −→Y such thatf = f ′ (mod λX).
(2) The mapf ′ is constant if and only ifdeg( f ) = 0, and affine if and only ifdeg( f )≤ 1.
(3) If X is connected, thenf has degree≤ 1.

Proof. Fork≥ 0 we denote byPk⊂U(X,Y) the topological space consisting of all measurable poly-
nomialsp: X −→Y of degree at mostk, furnished with the subspace topology. Iff is a measurable
polynomial of degree0, then f is λX-a.e.equal to a constanty∈Y. If deg( f ) = 1, then there exists,
for everyx∈ X, a unique constantc(x) ∈Y with ∂x( f ) = c(x) (mod λX), and the mapx 7→ c(x) is
a Borel measurable — and thus continuous — group homomorphism. Hence there exists, for every
x∈ X, a Borel setBx ⊂ X with λX(Bx) = 1 such that

f (x+x′) = c(x)+ f (x′) (6.1)

for every x ∈ X and x′ ∈ Bx. Fubini’s Theorem implies that there exists a Borel setB ⊂ X with
λX(B) = 1 such that (6.1) holds for everyx′ ∈ B andλX-a.e.x∈ X, which shows thatf is a.e.equal
to an affine map.

We have proved that every map inP1 is a.e.equal to a continuous map. Continuing by induction,
we assume thatk is a positive integer such that every measurable polynomial of degree≤ k is a.e.
equal to a continuous map and consider a polynomialf ∈ Pk+1 ⊂ U(X,Y). According to Lemma
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6.3 it suffices to prove the continuity off in the special case whereY = S, and we assume therefore
without loss in generality thatf ∈U(X,S).

Since the characters form an orthonormal basis ofL2(X,λX) we deduce thatP1 is homeomor-
phic to P0× X̂, whereX̂ is equipped with the discrete topology, and we writeθ : P1 −→ X̂ for the
projection map. The map

x 7→ q(x) = θ◦∂x( f )
from Xk to X̂ is continuous by Lemma 6.3. SincêX is discrete,q(Xk) is finite, and there exists
an open subgroupK1 ⊂ Xk such thatq is constant on each coset ofK1 in Xk. We choose an open
subgroupK ⊂ X with Kk ⊂ K1. Then∂x( f ) lies in P0 for all x ∈ Kk, so that the restriction off
to K is a measurable polynomial of degree at mostk. Let K + z1, . . . ,K + zl be the distinct cosets
of K in X, and let, fori = 1, . . . , l , fi : X −→ S be the map defined byfi(x) = f (zi + x). Since
∂x( fi)(x) = ∂x( f )(zi + x) for eachi, we conclude that restriction of eachfi to K is a measurable
polynomial of degree at mostk. By the induction hypothesis, the restriction of eachfi to K agrees
λK-a.e. with a continuous map, i.e.f agreesλX-a.e. with a continuous map.

If X is connected thenq is trivial, i.e. the degree off is≤ k. By a slight modification of the above
induction argument,f agreesλX-a.e. with an affine map. ¤
6.2. Topological rigidity.

Theorem 6.5([2]). Let α andβ be mixing algebraicZd-actions on compact abelian groupsX and
Y, respectively. Suppose furthermore that there exists an integerk≥ 2 with the following property:
for every closedβ-invariant subgroupZ⊂Y, the restrictionβZ of β to Z is not(k+1)-mixing. Then
every equivariant Borel mapφ : (X,α)−→ (Y,β) is a measurable polynomial of degree≤ k−1 and
hencea.e.equal to a continuous map.

We begin the proof of Theorem 6.5 with a lemma.

Lemma 6.6. Let α be a mixing algebraicZd-action on a compact abelian groupX, k≥ 1, and let
fi : Xk −→ R+, i = 0, . . . ,k, be continuous maps with the following properties.

(1) For everyi = 1, . . . ,k and (x1, . . . ,xk) ∈ Xk, fi(x1, . . . ,xk) = 0 wheneverx j = 0 for some
j ∈ {1, . . . ,k};

(2) There exist sequences(n(i)
m , m≥ 1), i = 1, . . . ,k, in Zd with

lim
m→∞

n(i)
m = ∞

for i = 1, . . . ,k, and

f0 ≤
k

∑
i=1

fi ◦ ᾱn(i)
m (6.2)

for everym≥ 1, whereᾱ : n−→ αn×·· ·×αn is the diagonalZd-action onXk induced by
α.

Thenf0 ≡ 0.

Proof. If f0 6≡ 0, then there exist nonempty open subsetsU1, . . . ,Uk in X and anε > 0 such that

f0(x1, . . . ,xk) > ε for every (x1, . . . ,xk) ∈ U1×·· ·×Uk. (6.3)

Since eachfi is continuous, it is uniformly continuous onXk, and there exists an open neighbourhood
U of 0 in X such that

fi(x1, . . . ,xk) < ε/k (6.4)

wheneveri ∈ {1, . . . ,k} andx j ∈ U for somej ∈ {1, . . . ,k}.
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As α is mixing, there exists an integerM ≥ 1 with α−n(i)
m (U)∩Ui 6=∅ for everyi = 1, . . . ,k and

m≥M. Fix xi ∈ α−n(i)
M (U)∩Ui for i = 1, . . . ,k. Thenαn(i)

M xi ∈ U and hence, by (6.3),

fi ◦ ᾱn(i)
M (x1, . . . ,xk) < ε/k

for i = 1, . . . ,k, which violates (6.2)–(6.3). ¤

Proof of Theorem6.5. It suffices to show that〈a,φ〉 : X −→Y is a measurable polynomial of degree
≤ k−1 for every charactera∈ Ŷ. We set

A = {a∈ Ŷ : 〈a,φ〉 is a measurable polynomial of degree≤ k−1}
and assume thatA( Ŷ.

The groupA is obviously invariant under̂β, and its annihilator

Z = A⊥ = {y∈Y : 〈a,y〉= 1 for every a∈ A}.
is a closedβ-invariant subgroup ofY.

By assumption,βZ is not(k+1)-mixing. Hence there exist charactersb0, . . . ,bk ∈ Ẑ with b0 6= 0,

and sequences(n(i)
m , m≥ 1), i = 1, . . . ,k, in Zd with

lim
m→∞

n(i)
m = ∞

for i = 1, . . . ,k, such that

b0 =
k

∑
i=1

β̂n(i)
m

Z bi

for everym≥ 1. We extend eachbi ∈ Ẑ to an elementb′i ∈ Ŷ and obtain elementsam ∈ A, m≥ 1,
with

b′0 =
k

∑
i=1

β̂n(i)
m b′i +am

for everym≥ 1. By composing this equation withφ we obtain that

〈b′0,φ〉= 〈am,φ〉 ·
k

∏
i=1
〈β̂n(i)

m b′i ,φ〉= 〈am,φ〉 ·
k

∏
i=1
〈b′i ,φ◦αn(i)

m 〉

for everym≥ 1. Put
fi(x1, . . . ,xk) = ‖∂k(x1, . . . ,xk)(〈b′i ,φ〉)−1‖2

for every(x1, . . . ,xk) ∈ Xk andi = 0, . . . ,k, and note that

f0 ≤
k

∑
i=1

fi ◦ ᾱn(i)
m +‖∂k(x1, . . . ,xk)(〈am,φ〉)−1‖2 (6.5)

for everym≥ 1, where we are using the same notation as in Lemma 6.6. Asam ∈ A, 〈am,φ〉 is a
measurable polynomial of degree≤ k, and hence∂k(x1, . . . ,xk)(〈am,φ〉) = 1 λY-a.e.The inequality
(6.5) thus reduces to

f0 ≤
k

∑
i=1

fi ◦ ᾱn(i)
m

for everym≥ 1, and Lemma 6.6 guarantees thatf0 ≡ 0. This shows thatb′0 ∈ A and henceb0 = 0,
and the resulting contradiction to our choice ofb0 implies thatA = Ŷ and thatφ is a measurable
polynomial of degree≤ k−1, as claimed. ¤
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Corollary 6.7. Letd > 1, and letα andβ be algebraicZd-actions on compact abelian groupsX and
Y, respectively. Suppose thatY is zero-dimensional and thatβ has zero entropy. Then there exists a
continuous factor mapφ′ : (X,α)−→ (Y,β) such thatφ = φ′ λX-a.e.

Proof. Let N = Ŷ be the dual module ofβ. Then there exists an increasing sequence(Nk, k≥ 1) of
submodules ofN such thatN =

S
k≥1Nk and eachNk is Noetherian. For everyk≥ 1, the annihilator

Yk = N⊥
k ⊂Y is a closedβ-invariant subgroup, and we denote byπk : Y −→Y/Yk the quotient map.

Let φ : (X,α) −→ (Y,β) be a measurable factor map such thatφk = πk ◦φ is a measurable poly-
nomial for everyk ≥ 1. Thenπk ◦ φ is λX-a.e.equal to a continuous factor mapφk : (X,α) −→
(Y/Yk,βY/Yk

) for everyk≥ 1, whereβY/Yk
is theZd-action onY/Yk induced byβ. As

T
k≥1Yk = {0Y},

compactness implies that there exists, for every neighbourhoodU of the identity inY, an integer
K ≥ 1 with Yk ⊂ U for everyk≥ K. If φ is not equal to a continuous mapλX-a.e., then the same is
true for someφk, which leads to a contradiction. This observation allows us to assume without loss
in generality thatN = Ŷ is Noetherian.

As
S

k≥1Nk = N we know that
T

k≥1Yk = {0Y}. By compactness there exists, for every neigh-
bourhoodU of the identity inY, an integerK ≥ 1 with Yk ⊂ U for everyk≥ K. If φ is not equal to a
continuous mapλX-a.e., then the same is true for someφk = πk◦φ, which contradicts the hypothesis
in preceding paragraph. This allows us to assume without loss in generality thatN = Ŷ is Noetherian.

Let thereforeN be Noetherian, and let Asc(N) be the set of associated prime ideals ofN. Since
Y is zero-dimensional, everyp ∈ Asc(N) contains a rational prime constantp(p) > 1 by Theorem
2.2 (1), and Theorem 2.2 (3) implies thatp) (p(p)) = p(p)Rd, sinceβ has zero entropy. We choose
and fix, for everyp ∈ Asc(N), a Laurent polynomialf (p) ∈ pr (p(p)), observe that the polynomial

f (p)/p(p) ∈ R(p(p))
d in (2.8) is nonzero, and denote byK = maxp∈Asc(N) |S( f (p)/p(p))| the maximal

cardinality of the supports of these polynomials.
Suppose thatZ ⊂Y is a closedβ-invariant subgroup. We writeL = Ẑ for the dual module ofZ,

choose a prime idealq ∈ Asc(L) and an elementa∈ L with q = ann(a), and setL′ = Rd ·a∼= Rd/q.
SinceL is a quotient ofN, q contains somep ∈ Asc(N), and Example 3.2 (2) shows thatαL′ ∼= αRd/q

— and henceβZ = αL — is not mixing of order|S( f (q))| ≤ K. By Theorem 6.5,φ is a measurable
polynomial and thus coincidesλ-a.e.with a continuous factor map. ¤

6.3. Homoclinic points and isomorphism rigidity. Once we know that measurable conjugacies
and factor maps between two algebraicZd-actions(X,α) and(Y,β) are automatically continuous it
is not too difficult to verify that they have to be polynomials (the approach using homoclinic points
described below is one such method). If the groupsX andY are connected, these polynomials are
affine by Proposition 6.4, which proves isomorphism rigidity. However, if the groupsX andY are
zero-dimensional, polynomials may have degrees> 1, and one needs additional hypotheses (whose
necessity will be illustrated below in Example 6.15) to ensure that the measurable conjugacies and
factor maps are affine.

Definition 6.8. Let α be an algebraicZd-action on a compact abelian groupX, and letΓ⊂ Zd be a
subgroup. An elementx∈ X is (α,Γ)-homoclinic(to the identity element0X of X), if

lim
n→∞
n∈Γ

αnx = 0X.

Theα-invariant subgroup∆(α,Γ)(X) ⊂ X of all (α,Γ)-homoclinic points is anRd-module under the
operation

f ·x = f (α)(x)
for every f ∈ Rd andx∈ ∆(α,Γ)(X) (cf. (2.5)), and is called theΓ-homoclinic module ofα (cf. [16]).
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Proposition 6.9. Let α be an expansive algebraicZd-action on a compact abelian groupX, and let
Γ⊂ Zd be a subgroup. Then∆(α,Γ) 6= {0X} if and only if the entropyh(αΓ) of the algebraicΓ-action
αΓ onX is positive, and∆(α,Γ) is dense inX if and only ifαΓ has completely positive entropy(where
entropy is always taken with respect to Haar measure).

Proof. This is [16, Theorems 4.1 and 4.2]. ¤
If an expansive and mixing algebraicZd-actionα on a compact abelian groupX has zero entropy,

then the homoclinic group∆α(X) of this Zd-action is trivial by Proposition 6.9, but∆(α,Γ) will be
dense inX for appropriate subgroupsΓ ⊂ Zd. We investigate this phenomenon in the special case

wherep > 1 is a rational prime,f ∈ R(p)
d an irreducible Laurent polynomial such that the convex

hull C( f ) ⊂ Rd of the supportS( f ) ⊂ Zd of f contains an interior point (cf. (3.6)), and where
α = α

R
(p)
d /( f )

is the shift-action ofZd on the compact abelian groupX = X
R

(p)
d /( f )

⊂ FZ
d

p defined in

(2.9)–(2.10).
We write[ . , . ] and‖ · ‖ for the Euclidean inner product and norm onRd and

Sd−1 = {v ∈ Rd : ‖v‖= 1}
for the unit sphere inRd and set, for every nonzero elementm ∈ Zd,

m∗ = m
‖m‖ ,

Γm = {n ∈ Zd : [m,n] = 0}.
(6.6)

Proposition 6.10. [3] Letd > 1, p> 1 a rational prime,f ∈R(p)
d an irreducible Laurent polynomial

such that the shift-actionα = α
R

(p)
d /( f )

of Zd on the compact abelian groupX = X
R

(p)
d /( f )

⊂ FZ
d

p in

(2.9)–(2.10)is mixing, and letm⊂ Zd be a nonzero element such that the restrictionαΓm of α to the
subgroupΓm in (6.6) is expansive. Then the homoclinic group∆(α,Γm)(X) is dense inX. Furthermore
there exists an open subsetW ⊂ Sd−1 such that every nonzero elementn ∈ Zd with n∗ ∈ Sd−1 has
the following properties.

(1) ∆(α,Γn)(X) is dense inX;
(2) ∆(α,Γm)(X)∩∆(α,Γn)(X) = {0X}.

The proof of Proposition 6.10 is given in [3]. By using this proposition and some algebraic struc-
ture theory one obtains the following rigidity result for measurable factor maps between algebraic
Zd-actions on zero-dimensional compact abelian groups.

Theorem 6.11. Let d > 1, and letα and β be mixing algebraicZd-actions on zero-dimensional
compact abelian groupsX andY, respectively. Suppose that there exists a subgroupΓ ⊂ Zd of of
infinite index such that the restrictionαΓ of α to Γ is expansive and has completely positive entropy.
Then every measurable factor mapφ : (X,α)−→ (Y,β) is λX-a.e.equal to an affine map.

Theorem 6.11 was proved independently in [3] and [4]; the latter proof depends on a characteriza-
tion of invariant measures analogous to the connection between the Theorems 4.5 and 4.4. Here we
follow the ‘homoclinic’ route in [3]; however, before turning to the proof of this result, we mention
a couple of corollaries which generalize the main result in [12] in different directions.

Corollary 6.12. Let d > 1, and letα and β be mixing algebraicZd-actions on zero-dimensional
compact abelian groupsX andY, respectively. Suppose that there exists a nonzero elementn ∈ Zd

such that the automorphismαn is expansive. Then every measurable factor mapφ : (X,α)−→ (Y,β)
is λX-a.e.equal to an affine map.
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Proof. Since every mixing (= ergodic) group automorphism has completely positive entropy, this is
Theorem 6.11 withΓ of rank one. ¤

Corollary 6.13. Let d > 1, p a rational prime, andp,q ⊂ R(p)
d nonzero prime ideals such that the

Zd-actionsα = α
R

(p)
d /p

and β = α
R

(p)
d /q

on the compact zero-dimensional groupsX = X
R

(p)
d /p

and

Y = X
R

(p)
d /q

in (2.9)–(2.10)are mixing. Thenα andβ are measurably conjugate if and only if they are

algebraically conjugate, and hence if and only ifp = q. Furthermore, every measurable conjugacy
φ : (X,α)−→ (Y,β) is λX-a.e.equal to an affine map.

Proof. The existence of a subgroupΓ⊂Zd of infinite index with the properties required by Theorem
6.11 is proved in [5] (the rank ofΓ is the maximal number of algebraically independent elements in

the set{un +p : n∈Zd}⊂R(p)
d /p). Letφ : (X,α)−→ (Y,β) be a measurable conjugacy. By Theorem

6.11, there existy∈Y and a continuous homomorphismθ : X −→Y such thatφ(x) = y+ θ(x) for
λX-a.e.x∈ X. It is easy to verify thatθ is an algebraic conjugacy of(X,α) and(Y,β).

In order to see that algebraic conjugacy implies thatp = q we note that, for everyf ∈ R(p)
d , the

mapsf (α) and f (β) in (2.5) are surjective if and only iff /∈ p (resp. f /∈ q). ¤

We begin our sketch of the proof of Theorem 6.11 with a lemma.

Lemma 6.14. For i = 1,2,3, let αi be a mixing algebraicZd-action on a compact abelian group
Xi , and letφ : (X1×X2,α1×α2)−→ (X3,α3) be a continuous factor map such thatφ(x1,x2) = 0X3

wheneverx1 = 0X1 or x2 = 0X2. Suppose furthermore that there exist subgroupsΓ1,Γ2 in Zd such that
the homoclinic groups∆(αi ,Γi)(Xi) are dense inXi for i = 1,2, and that∆(α3,Γ1)(X3)∩∆(α3,Γ2)(X3) =
{0X3}. Thenφ(X1×X2) = {0X3}.
Proof. Sinceφ is a continuous factor map,

lim
m→∞
m∈Γ1

αm
3 φ(x1,x2) = lim

m→∞
m∈Γ1

φ(αm
1 x1,αm

2 x2) = 0X3

= lim
n→∞
n∈Γ2

αn
3φ(x1,x2) = lim

n→∞
n∈Γ2

φ(αn
1x1,αn

2x2)

for everyxi ∈ ∆(αi ,Γi)(Xi), i = 1,2. Hence

φ(x1,x2) ∈ ∆(α3,Γ1)(X3)∩∆(α3,Γ2)(X3) = {0X3}.
As ∆(αi ,Γi)(Xi)⊂ Xi is dense fori = 1,2 andφ is continuous this implies our assertion. ¤

Leaving technicalities and a bit of algebra aside, the basic idea of the proof of Theorem 6.11 is
the fact that there exist two subgroupsΓ1,Γ2 ⊂ Zd such that each actionαΓi has a dense group of
homoclinic points and there are no nonzero common homoclinic points for the actionsβΓi . Since we
know already that the factor mapφ : X−→Y is continuous, we can form a new mapψ : X×X−→Y
by setting

ψ(x1,x2) = ψ(x1 +x2)−ψ(x1)−ψ(x1)+ψ(0).

Sinceψ◦ (αn×αn) = βn ◦ψ for all n ∈ Zd, and sinceψ is continuous and hence uniformly continu-
ous,ψ(x1,x2)∈ ∆(β,Γ1)∩∆(β,Γ2) = {0}wheneverxi ∈ ∆(α,Γi), i = 1,2. Henceψ vanishes on the dense
set∆(α,Γ1)×∆(α,Γ1) ⊂ X×X and is thus equal to zero by continuity. This shows thatφ is affine.

The crucial point in this argument is thattwo such subgroupsΓ1,Γ2 suffice under the hypotheses
of Theorem 6.11. In general one can find finitely many such subgroupsΓ1, . . . ,Γn ⊂ Zd such that
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each actionαΓi has a dense group of homoclinic points and there are no nonzero common homoclinic
points for the actionsβΓi , i = 1, . . . ,n, and obtains that the mapψ : Xn −→Y with

ψ(x1, . . . ,xn) = ∑
F⊂{1,...,n}

(−1)|F | φ
(

∑
i∈F

xi

)

vanishes onXn. This implies thatφ is a polynomial of degreen−1, but not necessarily of degree1.
The following examples from [3] show that Theorem 6.11 and Corollary 6.13 need not hold if

any of the assumptions are dropped.

Examples 6.15.(1) A non-surjective and non-affine equivariant map.Let d = 3, p= 2, and consider

the polynomialsf1, f2 ∈R(2)
3 defined byf1 = 1+u1+u2, f2 = 1+u1+u2+u2

1+u1u2+u2
2+u3. Let

p = ( f1, f2)⊂ R(2)
3 denote the ideal generated byf1 and f2, and letq = ( f2)⊂ R(2)

3 be the principal
ideal generated byf2. It is easy to see thatp andq are prime ideals. We define the shift-actions
α1 = α

R
(2)
3 /p

andα2 = α
R

(2)
3 /q

onX1 = X
R

(2)
3 /p

⊂ FZ
3

2 andX2 = X
R

(2)
3 /q

⊂ FZ
3

2 , respectively, by (2.9)–

(2.10). From Theorem 2.2 it is clear thatα1 andα2 are mixing and have zero entropy.
We write? for the component-wise multiplication(z?z′)n = znz′n in FZ

3

2 and observe that

σn(z?z′) = (σnz)? (σnz′)

for everyz,z′ ∈ FZ
3

2 andn ∈ Z3 (cf. (2.6)). We claim that

x?x′ ∈ X2 for every x,x′ ∈ X1. (6.7)

In order to verify this we define subsetsSi ⊂ Z3, i = 0, . . . ,3, by

S0 = S( f2), S1 = S( f1),

S2 = {(1,0,0),(1,1,0),(2,1,0)}= S(u1 f1),

S3 = {(0,1,0),(0,2,0),(1,1,0)}= S(u2 f1),

and consider the setZ of all z∈ FS0
2 with ∑n∈Si

zn = 0 for i = 0, . . . ,3. A calculation shows that, for

everyz,z′ ∈ Z, the component-wise productw= z?z′ ∈ FS0
2 satisfies that∑n∈S0

wn = 0. This implies
(6.7).

Take a non-zerom ∈ Z3 such thatαm
1 z= z for some non-zeroz∈ X1 and defineφ : X1 −→ X2 by

φ(x) = x?αm
1 x. Clearlyφ is aZ3-equivariant map from(X1,α1) to (X2,α2). We choosey∈ X1 such

thatz? (αm
1 y− y) 6= 0X2. Sinceφ(0X1) = 0X2 andφ(z+ y)− φ(z)− φ(y) = z? (αm

1 y− y) 6= 0X2, the
mapφ is not affine.

(2) A non-affine factor mapψ : (X,α) −→ (X′,α′) between expansive and mixing zero-entropy
algebraicZ3-actions, whereα′ has an expansiveZ2-sub-action with completely positive entropy.We

use the same notation as in Example (1). Letr = pq = ( f1 f2, f 2
2 ) ⊂ R(2)

3 be the ideal generated by

f1 f2 and f 2
2 and letβ denote the algebraicZ3-actionα

R
(2)
3 /r

onY = X
R

(2)
3 /r

⊂ FZ
3

2 . From Theorem

2.2 it follows that the action(Y,β) is mixing and has zero entropy. We define continuous group
homomorphismsθ1 : Y −→ X1 andθ2 : Y −→ X2 by

θ1(y) = f2(σ)(y), θ2(y) = f1(σ)(y).

It is easy to verify that fori = 1,2, θi : (Y,β)−→ (Xi ,αi) is an algebraic factor map. Letψ : (Y,β)−→
(X2,α2) be theZ3-equivariant continuous map defined by

ψ(x) = θ2(x)+φ◦θ1(x),
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whereφ : X1 −→ X2 is as in the previous example. Sinceθ1 is a surjective homomorphism andφ is
non-affine, it follows thatφ◦θ1 is non-affine, i.e. thatψ is a non-affine map. It is easy to see that the
restriction ofθ2 to X2 is a surjective map fromX2 to itself. Sinceθ1(x) = 0 for all x∈ X2 ⊂Y, this
shows thatψ is a non-affine factor map from(Y,β) to (X2,α2).

(3) Two measurably conjugate expansive and mixing zero-entropy algebraicZ3-actions on non-
isomorphic compact zero-dimensional abelian groups.Let (X1,α1) and(X2,α2) be as in Example
(1), and let(X,α) denote the product action(X1,α1)× (X2,α2). Following [1] we define a zero-
dimensional compact abelian groupY and an algebraicZ3-actionβ onY by settingY = X1×X2 with
composition

(x,y)¯ (x′,y′) = (x+x′,x?x′+y+y′)
for every(x,x′),(y,y′) ∈Y, and by letting

βn(x,y) = (αn
1x,αn

2y)

for every(x,y) ∈Y andn ∈ Z3. The ‘identity’ mapφ : X −→Y, defined by

φ(x,y) = (x,y)

for every (x,y) ∈ X, is obviously a topological conjugacy of(X,α) and (Y,β) with λXφ−1 = λY

(by Fubini’s theorem). However,φ is not a group isomorphism. In fact, the groupsX andY are not
isomorphic: sinceX is a subgroup(F2⊕F2)Z

3
, every element inX has order2, whereas(x,0X2) ∈Y

and(x,0X2)¯ (x,0X2) = (0X2,x) 6= 0Y for every nonzerox∈ X1.
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