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Elon Lindenstrauss was awarded the 2010 Fields Medal for his results on measure rigidity in ergodic

theory, and their applications to number theory.

The web page of the ICM 20101 contains the following brief description of Elon Lindenstrauss’ achieve-

ments: Lindenstrauss has made far-reaching advances in ergodic theory, the study of measure preserving

transformations. His work on a conjecture of Furstenberg and Margulis concerning the measure rigidity of

higher rank diagonal actions in homogeneous spaces has led to striking applications. Specifically, jointly

with Einsiedler and Katok, he established the conjecture under a further hypothesis of positive entropy.

It has impressive applications to the classical Littlewood Conjecture in the theory of diophantine approx-

imation. Developing these as well other powerful ergodic theoretic and arithmetical ideas, Lindenstrauss

resolved the arithmetic quantum unique ergodicity conjecture of Rudnick and Sarnak in the theory of

modular forms. He and his collaborators have found many other unexpected applications of these ergodic

theoretic techniques in problems in classical number theory. His work is exceptionally deep and its impact

goes far beyond ergodic theory.

In this note I will concentrate on the work by Lindenstrauss and his collaborators on measure rigidity

and the partial settlement of Littlewood’s conjecture. Although the method of Lindenstrauss proof of

arithmetic quantum unique ergodicity also uses ideas from measure rigidity, the concepts involved in

explaining the latter problem and its solution would seriously overburden this exposition. I refer the

interested reader to the original paper [19] for details. The paper [11] by Einsiedler and Lindenstrauss gives

an excellent overview of the range of ideas spanning measure rigidity and quantum unique ergodicity.2 A

reasonably elementary proof of the arithmetical quantum unique ergodicity theorem for SL(2,Z) can be

found in [12].

The connection between ergodic theory and number theory alluded to in the above desription of

Lindenstrauss’ achievements has a long history, with early landmarks like Hermann Weyl’s work on

uniform distribution [34] or Khinchine’s study of continued fractions [18]. In recent decades the interplay

between dynamics and arithmetical problems has stimulated a very interesting development in ergodic

theory: the study of multiparametric (or higher rank) actions, i.e., of actions of Zd or Rd with d > 1. Let

me illustrate this transition from classical to multiparameter dynamics with a simple example, that of

normal numbers.

Normal numbers. If p > 1 is a rational integer, then a real number x ∈ I = [0, 1) is normal in base

p (or p-normal) if every possible block b1 · · · bL of digits bi ∈ {0, . . . , p − 1} occurs with frequency p−L

in the expansion of x in base p. An elementary argument shows that x is p-normal if and only if the

sequence
(
pnx (mod 1)

)
n≥1

is uniformly distributed in the unit interval I = [0, 1).3

We identify the interval I with T = R/Z and write Tm for multiplication by an integer m on T,

corresponding to the map x 7→ mx (mod 1) on I. As remarked above, an element x ∈ T is p-normal if

and only if limN→∞
1
N

∑N−1
k=0 f(T kp x) =

∫
f dλ for every continuous function f : T −→ R, where λ is the

Lebesgue measure on T. The individual ergodic theorem implies that λ-a.e. x ∈ T is p-normal, and by

varying p we see that λ-a.e. x ∈ T is p-normal for every integer p > 1.4

1http://www.icm2010.org.in/prize-winners-2010/fields-medal-elon-lindenstrauss
2See also http://www.ma.huji.ac.il/∼elon/Publications/TopErgThySp07.pdf
3The notion of normality was introduced in 1909 by É. Borel [3] and studied further by Sierpiński [32] and many others.
4The explicit construction of such an x ∈ T is nontrivial — cf., e.g., [32], [7].
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Cassels and Wolfgang Schmidt asked whether one can find numbers x ∈ T which behave differently

in different bases (cf. [5] and [31]).

Theorem 1 ([31, Theorem 1]). Let p, q > 1 be integers.

(1) If p, q are multiplicatively dependent (i.e., if there exist integers a, b, not both equal to zero, such

that pa = qb), then every p-normal number x ∈ T is also q-normal.

(2) If p, q are multiplicatively independent, then there are uncountably many x ∈ T which are p-normal,

but not q-normal.

In order to discuss this result further we have to go a little deeper into ergodic theory. Recall that a

set B ⊂ T is Tp-invariant if B ⊂ T−1
p B. A probability measure µ on T is Tp-invariant if µ(T−1

p B) = µ(B)

for every Borel set B ⊂ T. A Tp-invariant probability measure µ on T is ergodic if µ(B) ∈ {0, 1} for every

Tp-invariant Borel set B ⊂ T.

Clearly, Tp is not invertible on T. However, if µ is a Tp-invariant probability measure on T it may

happen that there exists a Borel set A ⊂ T with µ(A) = 1 such that A contains, for every x ∈ A, a unique

element y with Tpy = x. If this is the case we say that µ has zero entropy. In other words, µ has zero

entropy if Tp is invertible when restricted to a suitable Borel set A ⊂ T of full µ-measure. If µ does not

have zero entropy we say that it has positive entropy under Tp, denoted by hµ(Tp) > 0.5

It is not difficult to show that there exist Tp-invariant and ergodic probability measures µ 6= λ on T
with positive entropy.6

Theorem 2 ([14, Théorème 1]). Let p, q > 1 be two relatively prime integers, and let µ 6= λ be a nonatomic

probability measure on T which is invariant and ergodic under Tp. If hµ(Tp) > 0 then µ-a.e. x ∈ T is

q-normal, but not p-normal.

Theorem 2 is closely related to (and, in fact, implies) a celebrated result by Rudolph about probability

measures µ on T which are invariant and ergodic under the joint action of Tp and Tq with (p, q) = 1.7

Theorem 3 ([29, Theorem 4.9]). Let p, q > 1 be two relatively prime integers, and let µ be a nonatomic

probability measure on T which is invariant and ergodic under the joint action of Tp and Tq. If hµ(Tp) > 0

then µ = λ.

Leaving subtleties aside concerning the difference between the ergodicity assumptions in the Theorems

2 and 3 (which can be dealt with by using appropriate ergodic decompositions), Theorem 2 implies that

limN→∞
1
N

∑N−1
k=0 µ ◦ T−kq = λ. If µ 6= λ then µ cannot be Tq-invariant.

What about Tp-invariant and ergodic probability measures with zero entropy in Theorem 2, or about

zero entropy (Tp, Tq)-invariant measures in Theorem 3? This problem originates from a paper by Fursten-

berg [13] in which he proves that every infinite closed subset C ⊂ T which is invariant under both Tp and

Tq must coincide with T. An equivalent formulation is that the orbit {T kp T lqx : k, l ≥ 0} of every irrational

x ∈ T is dense in T (if x is rational, this orbit is obviously finite).8 If closed jointly invariant subsets of T
are scarce, what can one say about jointly invariant probability measures on T? Is λ the only nonatomic

measure of this kind? This question, often referred to as Furstenberg’s ×2, ×3 conjecture, has been open

since 1967, and has been seminal for the development of ‘algebraic’ multiparameter ergodic theory for

the past decades.

5For much of this note it will not be necessary to know the precise meaning of the number hµ(Tp). Readers interested in the
actual definition of measure-theoretic (or, as it is often called, metric) entropy of a finite measure preserving transformation
T should consult one of the standard text books on ergodic theory, such as [26] or [33]. The notion of entropy for finite
measure preserving actions of more general groups is explained in [24] or [25], for example.

6Consider the one-sided shift space Σ+
p = {0, . . . , p− 1}N with the shift σ given by (σx)n = xn+1, x = (xn) ∈ Σ+

p . The

map φ : Σ+
p −→ T defined by φ(x) =

∑
n≥1 xnp

−n (mod 1) is almost one-to-one and sends any shift-invariant probability

measure µ on Σ+
p to a Tp-invariant probability measure φ∗µ on T such that hµ(σ) = hφ∗µ(Tp). By letting µ vary over

the set of Markov measures on Σ+
p , for example, one obtains uncountably many different ergodic Tp-invariant probability

measures on T of any entropy between 0 and log p.
7‘Joint’ ergodicity of µ means that µ(B) ∈ {0, 1} for every Borel set B which is invariant under both Tp and Tq .
8In contrast, there are many nontrivial infinite closed subsets C ⊂ T which are invariant under one of the maps Tp, Tq ,

and there are uncountably many irrationals whose orbits under one of these maps are not dense.
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Results like Furstenberg’s theorem in [13] or Rudolph’s Theorem 3 above are referred to as rigidity

theorems. Speaking loosely, ‘rigidity’ is the appearance of an algebraic structure where one does not expect

it. Consider our present setting: Tp and Tq each have a wide variety of infinite closed invariant sets and

nonatomic invariant probability measures. However, if we ask for simultaneous invariance of these objects

under Tp and Tq, they have to be (or are at least conjectured to be) invariant under translation by every

element of T, an a priori totally unexpected algebraic invariance property.

Although the theorems by Furstenberg and Rudolph are similar in spirit, their classical proofs have

nothing in common. In the recent paper [4], Bourgain, Lindenstrauss, Michel and Venkatesh correct this

situation by giving an ‘effective’ proof of Rudolph’s theorem (or, more precisely, of a generalization of

Rudolph’s theorem due to Aimee Johnson in [15] in which p and q are not required to be relatively prime,

but only multiplicatively independent), which they then use to prove an effective version of Furstenberg’s

result.

The various proofs of Rudolph’s theorem and its generalizations all depend crucially — but sometimes

subtly — on the hypothesis of positive entropy under at least one (and hence both) of the maps Tp or

Tq. In the absence of positive entropy the rigidity problem for nonatomic (Tp, Tq)-invariant probability

measures on T remains as mysterious as ever.

Commuting automorphisms of tori and solenoids. For p, q ≥ 2, the maps Tp, Tq on T generate

an abelian semigroup of surjective homomorphisms of T. By using a standard construction one can find a

compact abelian group X and a continuous surjective homomorphism φ : X −→ T such that φ◦T̄p = Tp◦φ
and T̄q ◦ φ = φ ◦ Tq, where T̄p and T̄q denote multiplication by p and q on X (the group X is, in fact,

a pq-adic solenoid). Questions about invariant sets and measures of Tp, Tq and of T̄p, T̄q are essentially

equivalent. This suggests a broader setting for the problems discussed so far: if X is a compact abelian

group and α : n 7→ αn and action of Zd, d > 1, by continuous automorphisms ofX, what are the dynamical

properties of α, and what, if any, rigidity properties may one expect such an action to have? This is the

general setting developed and studied in the monograph [30]. It turns out that such algebraic Zd-actions

exhibit a wide range of dynamical properties which can be studied quite effectively by combining tools

from commutative algebra, arithmetic and dynamics. The connections between dynamics, arithmetical

problems and rigidity phenomena central to Elon Lindenstrauss’ work manifest themselves most clearly in

the special case where X is a finite-dimensional torus or solenoid, and where the action α is not virtually

cyclic (which means that {αn : n ∈ Zd} is not contained in the set of powers of a single automorphism

β of X).

The study of measure rigidity of higher rank algebraic Zd-actions by commuting toral automorphisms

was initiated by Anatole Katok and Ralph Spatzier in [17] and brought into a definitive form by Manfred

Einsiedler and Elon Lindenstrauss in the research announcement [10]. In order to keep statements simple

I’ll restrict myself to the totally irreducible case,9 where the result is completely analogous to Theorem

3.

Theorem 4 ([10, Theorem 1.1]). Let α be a totally irreducible, not virtually cyclic action of Zd by

automorphisms of a (finite dimensional) solenoid X. Then every α-invariant probability measure µ on

X is either equal to the normalized Haar measure λX of X, or it has zero entropy under αn for every

n ∈ Zd.

As was pointed out in [16, Theorem 5.2], the measure rigidity exhibited in Theorem 4 implies an-

other remarkable rigidity property: the rigidity of isomorphisms and factor maps. I restrict myself to a

particularly simple, but still instructive, special case of [10, Theorem 1.4] (cf. also [16, Theorem 5.2]).

Theorem 5. Let d ≥ 2, and let α and β be irreducible and mixing actions of Zd by automorphisms of

solenoids X and Y , respectively. We write λX and λY for the normalized Haar measures on these groups.

If φ : X −→ Y is a measurable map satisfying λXφ
−1 = λY and βn ◦ φ = φ ◦ αn λX-a.e., for every

n ∈ Zd, then φ coincides λX-a.e. with an affine map A : X −→ Y .

9The Zd-action α is totally irreducible if there exists no finite index subgroup Λ ⊂ Zd and no infinite closed subgroup
Y ⊂ X which is invariant under the automorphisms αn, n ∈ Λ.
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One should compare Theorem 5 with the case of a single hyperbolic automorphism A ∈ GL(3,Z)

of T3 with eigenvalues γ1, γ2, γ3, say. Since A preserves the Lebesgue measure (i.e., volume) λT3 on T3,

det(A) = γ1γ2γ3 = 1, but |γi| 6= 1 for i = 1, 2, 3, by hyperbolicity. Hence either one or two of the

eigenvalues of A will have absolute value > 1, which is easily seen to imply that A and A−1 cannot be

conjugate in GL(3,Q). General results about ergodic toral automorphisms imply, however, that A and

A−1 are measurably conjugate, i.e., that there exists a measurable bijection φ : T3 −→ T3 which preserves

λT3 and satisfies that A−1 ◦ φ = φ ◦ A λT3-a.e. The following example exhibits a subtle consequence of

Theorem 5.

Example 6 ([16, Example 2a]). Consider the commuting matrices

A =
(

0 1 0
0 0 1
−1 6 −3

)
, B =

(
2 −4 −1
1 −4 −1
1 −5 −1

)
.

in GL(3,Z). The Z2-action α : n = (n1, n2) 7→ αn = An1Bn2 ,n = (n1, n2) ∈ Z2 on T3 preserves Lebesgue

measure and is ergodic.

If V =
(

2 −2 −1
0 −3 0
1 −4 −2

)
, then the matrices

A′ = V AV −1 =
(

1 2 −1
−1 −2 2

2 5 −2

)
, B′ = V BV −1 =

(
1 −1 −1
−1 −2 −1
−1 −4 −2

)
,

generate a Z2-action β : n = (n1, n2) 7→ βn = A′
n1B′

n2 on T3. This action has the property that βn is

measurably conjugate to αn for every n ∈ Z2, but the action α and β are not measurably conjugate,

since they are not algebraically conjugate in the sense of Theorem 5 (α and β are obviously conjuagte in

GL(3,Q), but not in GL(3,Z)).

Results about isomorphism rigidity of Zd-actions by automorphisms of more general compact abelian

groups can be found in [1] and [2].

Homogeneous dynamics. Apart from commuting group automorphisms, there is a second source of

examples of ‘algebraic’ multiparametric actions with a rich theory and deep arithmetical connections:

actions of higher rank diagonalizable subgroups of semisimple Lie groups on homogeneous spaces. More

specifically, let G be a linear algebraic group over the field k = R, and let Γ ⊂ G be a lattice, i.e., a

discrete subgroup with finite covolume (such as SL(n,Z) ⊂ SL(n,R)). Every subgroup H ⊂ G acts by

right multiplication on the homogeneous space X = Γ\G, and one can attempt to classify the H-invariant

probability measures on X. Our assumptions on Γ guarantee that there exists a (unique) G-invariant

probability measure λX on X.

A celebrated result by Marina Ratner [27] describes the probability measures which are invariant

under unipotent subgroups of G.

Theorem 7. Let Γ ⊂ G be as above, and let H ⊂ G be a unipotent subgroup. Then every H-invariant and

ergodic probability measure on X = Γ\G is homogeneous in the sense that there exists a closed subgroup

L ⊂ G containing H such that µ is the L-invariant probability measure supported on a single orbit of L.

If the group H is generated by (partially) hyperbolic elements the problem of classifying the H-

invariant probability measures is open, even under much stronger hypotheses. The following conjecture

is attributed to Furstenberg, Katok-Spatzier and Margulis.

Conjecture 8 ([23]). Let A be the group of diagonal matrices in SL(n,R), n ≥ 3. Then every A-invariant

and ergodic probability measure on Xn = SL(n,Z)\SL(n,R) is homogeneous in the sense of Theorem 7.

The following remarkable analogue of Rudolph’s thoerem by Manfred Einsiedler, Anatole Katok and

Elon Lindenstrauss represents at least partial progress towards this conjecture.

Theorem 9 ([9, Theorem 1.3]). Let A be the group of diagonal matrices in SL(n,R), n ≥ 3. Every

A-invariant and ergodic probability measure µ on Xn = SL(n,Z)\SL(n,R) satisfies one of the following

conditions:

(1) The measure µ is a homogeneous and not supported on a compact A-orbit;
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(2) For every one-parameter subgroup (at)t∈R ⊂ A, hµ(at) = 0 for every t ∈ R.

One can classify the potential homogeneous measures arising in Conjecture 8 (cf. [21]). For example, if

n is prime, then any A-invariant homogeneous probability measure on Xn is either the obvious invariant

measure on a compact A-orbit, or equal to the G-invariant probability measure λXn on Xn.

In general, [21, Theorem 1.3] guarantees that no µ satisfying Condition (1) in Theorem 9 can be

compactly supported.

The proof of Theorem 9 is a tour de force, based on a detailed analysis of the conditional measures

induced by µ on the leaves of certain A-invariant foliations of Xn. The definition of these ‘leaf measures’

is in itself a little subtle, since the leaves of these foliations are typically noncompact and dense in Xn.10

The details of the proof of Theorem 9 fall under the definition of a P2C2E in the terminology of [28]:

a process too complicated to explain here. The proof is based on a combination of two methods, referred

to as the high and low entropy methods, respectively. I will try to give a very superficial impression of

these two methods.

The high entropy method. In [8], M. Einsiedler and A. Katok prove that — under appropriate hy-

potheses — any A-invariant probability measure of sufficiently high entropy under some element of the

A-action must be equal to λXn .

Theorem 10 ([8, Theorem 4.1], [11, Theorem 9.20]). Let n ≥ 3, Γ ⊂ SL(n,R) a lattice, X = Γ\G,

A ⊂ G the diagonal subgroup and µ an A-invariant and ergodic probability measure on X. Then there

exists, for every a ∈ A, an h0 < hλ(a) such that hµ(a) > h0 implies that µ = λ. Furthermore, if hµ(a) > 0

for every a ∈ A, a 6= 1G, then µ = λ.

For n = 3 the existence of an a ∈ A with hµ(a) > 1
2hλ(a) implies that µ = λX .

For the proof of Theorem 10 I will follow the exposition in [11] and consider the eigenvalues (or

weights) of the adjoint action A on the Lie algebra g of G: each of these eigenvalues is a homomorphism

η : A to R× for which there exists an x ∈ g with Ada(x) = η(a)x for every a ∈ A. For a given weight η,

the corresponding eigenspace consisting of all such x ∈ g is denoted by gη. If Φ is the set of these weights,

then g =
⊕

η∈Φ gη. Note that [gη, gη
′
] ⊂ gηη

′
for η, η′ ∈ Φ.

For each a ∈ A, the stable subspace g−a =
⊕
{η∈Φ:|η(a)|<1} g

η of a is a nilpotent subalgebra which the

exponential map sends bijectively to the stable horospherical subgroup G−a ⊂ G of a.

Two weights η, η′ ∈ Φ are equivalent (η ∼ η′) if ηm = η′
n

for some positive integers m,n. For

every η ∈ Φ the equivalence class [η] of η is called a coarse Lyapunov weight, and g[η] =
⊕

η′∼η g
η′

is a Lie subalgebra of g, called the coarse Lyapunov subalgebra of η. The exponential map defines a

homeomorphism between g[η] and a unipotent subgroup G[η] of G, called the coarse unipotent subgroup

corresponding to η.

One chooses an order [η1] < · · · < [ηl] of these coarse Lyapunov weights in such a way that there

exists, for every i = 1, . . . , l, a b ∈ A with ηi(b) = 1 and |ηj(b)| < 1 for i < j ≤ l (such an order is called

allowed). Then the following is true.

Theorem 11 ([11, Theorem 9.8], [8]). Let n ≥ 3, Γ ⊂ SL(n,R) a lattice, X = Γ\G, A ⊂ G the diagonal

subgroup, and µ an A-invariant and ergodic probability measure on X. Fix some a ∈ A and choose an

allowed order [η′1] < · · · < [η′s] of the coarse Lyapunov algebras contained in g−a as described above.

Then the leaf measures11 µ
G−a
x and µG

[η′i]

x , i = 1, . . . , s, satisfy that µ
G−a
x is proportional to the image of

the product measure
∏s
i=1 µ

G[η′i]

x for µ-a.e. x ∈ X under the product map (g1, . . . , gs) 7→ g1 · · · gs from∏s
i=1G

[η′i] to G−a .

10In order to appreciate this difficulty the reader might consider the foliation of the space X = T2 given by the cosets of
a noncompact dense subgroup Y ∼= R of X (e.g., Y = {(s,

√
2s) (mod 1) : s ∈ R}). Any probability measure µ on X can be

decomposed into Borel measures {νx, x ∈ X}, such that νx is concentrated on the coset Y + x for µ-a.e. x ∈ X. However,
these measures νx are typically not finite, and they are determined only up to scalar multiples. In general, they will not
satisfy the condition that νx is equal to (or even equivalent to) νy if x and y lie on the same leaf of the foliation: in this
case, νx can only be expected to be a multiple of νy , translated by x− y.

In the case where µ = λT2 these leaf measures are multiples of one-dimensional Lebesgue measures located on the ‘lines’
Y + x. Conversely, if µ is a probability measure whose leaf measures are a.e. multiples of Lebesgue measure, then µ = λT2 .

11The leaves in question are the orbits of the respective groups G−
a and G[η′i] in X.
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By varying the allowed order of the coarse Lyapunov weights and exploring the commutators of

the leaves corresponding to orbits of G[η′i] and G[η′j ] one obtains the following result from this product

structure of µ
G−a
x .

Theorem 12 (High entropy theorem – cf. [11, Theorem 9.14], [8]). Let µ an A-invariant and ergodic prob-

ability measure on X. Let [η] and [η′] be coarse Lyapunov weights such that [η] 6= [η′] and [η−1] 6= [η′]. Then

for µ-a.e.x ∈ X, µ is invariant under the group generated by the commutator [supp(µG
[η′]

x ), supp(µG
[η′]

x )]

of the supports of µG
[η]

x and µG
[η′]

x .

We return to the proof of Theorem 10: the product formula in Theorem 11 shows that the conditional

entropy of a with respect to the foliation by G−a -orbits (whose integral is equal to hµ(a)) is the sum of

the integrals of the conditional entropies of a with respect to the foliations by G[η′i]-orbits. If one of the

measures µG
[η′i]

x is trivial, then its contribution to the entropy h
µ
G
−
a

x

(a) is zero, which makes hµ(a) smaller

than hλ(a) by a specified amount. Hence, if hµ(a) is sufficiently close to hλ(a), then µG
[η′i]

x is nontrivial

for every i = 1, . . . , s and µ-a.e. x ∈ X. By playing around with commutators one obtains from Theorem

12 the invariance of µ under the various coarse unipotent subgroups G[η] ⊂ G−a , which is enough to prove

that µ = λ.

The low entropy method was first introduced by Lindenstrauss in [19]. It studies the behaviour of the

measure µ under the unipotent subgroups of G normalized by A, even though these subgroups do not

necessarily preserve the measure. Instead of invariance, this approach is based on recurrence properties

of the measure µ under these subgroups.12

The following result is a special case of [19, Theorem 1.1] and gives a flavour of this approach.

Theorem 13 ([19, Theorem 1.6]). Let X = Γ\G, where Γ is an irreducible lattice in G = G1 ×G2 with

Gi = SL(2,R) for i = 1, 2. Let A =
{(
∗ 0
0 ∗
)
× 1G2

}
be the embedding of the (one-parameter) diagonal

subgroup of G1 in G. Suppose that µ is an A-invariant probability measure on X which is recurrent under

1G1
×G2, and such that a.e. ergodic component of µ (under A) has positive entropy. Then µ = λX .

The basic philosophy for concluding invariance from recurrence is the following: let G and H be locally

compact groups acting on a space X, and let µ be a G-invariant and ergodic probability measure on X.

Suppose that F is a foliation of X which is preserved by G, and that each leaf of F is fixed by H. If

µ is recurrent under H, then µ should be H-invariant — given appropriate conditions concerning the

‘normalization’ of the H-action by the action of G.

This approach appears to go back to [14], where Host used it for an alternative proof of Rudolph’s

Theorem 3. Another application can be found in [20], where it is used to show that any probability

measure µ on Tn which is invariant under an irreducible ergodic nonhyperbolic toral automorphism A

and recurrent under the central foliation of that automorphism (i.e., under translation by the dense

subgroup of Tn on which A acts isometrically), is equal to Lebesgue measure.

I regret that the geometric considerations necessary even in the special case of Theorem 13 would

overburden this brief account. The reader is referred to [11, §10] and, of course, to [9] for details.

Finally we come to the problem of combining the high and low entropy methods for a proof of Theorem

9. The assumption of positive entropy of µ under some appropriately chosen a ∈ A in the statement of

Theorem 9 implies that the measures induced by µ on the contracting leaves of a (i.e., on the orbits

of G−a ) are nontrivial for a.e. orbit of G−a . By using a product structure result in [8] and a geometrical

argument one obtains a unipotent subgroup U of G−a such that the leaf measure induced by µ on a.e.

U -orbit is nontrivial (which implies recurrence of µ under U). Leaving further subtleties aside one then

deduces that µ is either U -invariant (in which case one can apply Ratner’s classification theorem for

invariant measures of unipotent groups), or one obtains a second unipotent subgroup V of A such that

a.e. leaf measure induced by µ on the V -orbits is nontrivial. The latter condition leads to invariance

under the commutator [U, V ] of U and V . An argument similar to that used in the proof of Theorem 10

finally shows that µ = λ.

12If T : g 7→ Tg is an action of a locally compact group G on a standard Borel space (X, S), then a probability measure
ν on X is recurrent under G if there exist, for every compact set K ⊂ G and every Borel set B ⊂ X with µ(B) > 0, a
g ∈ G rK and an x ∈ B with Tgx ∈ B.
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Towards Littlewood’s Conjecture. Around 1930, Littlewood conjectured the following diophantine re-

sult.

Conjecture 14 (Littlewood). For every u, v ∈ R,

lim inf
n→∞

n‖nu‖‖nv‖ = 0, (1)

where ‖w‖ = minn∈Z |w − n| is the distance of w ∈ R to the nearest integer.

We set G = SL(3,R), Γ = SL(3,Z), X = SL(3,Z)\SL(3,R) and write A for the group of diagonal

matrices in G. As usual, the G-invariant probability measure on X will be denoted by λ.

Proposition 15 ([9, Proposition 11.1], [11, Proposition 12.5]). For every s, t ∈ R we set

a(s, t) =

(
es+t 0 0

0 e−s 0
0 0 e−t

)
∈ A.

A point (u, v) ∈ R2 satisfies (1) if and only if the closure of the orbit xA+ of the point

xu,v = Γ ·
(

1 u v
0 1 0
0 0 1

)
∈ X

under the semigroup A+ = {a(s, t) : s, t ≥ 0} is noncompact.

Furthermore, if δ > 0, then there exists a compact set Cδ ⊂ X which contains every xu,v with

lim infn→∞ n‖nu‖‖nv‖ ≥ δ.

The proof of Proposition 15 uses Mahler’s compactness criterion: a set E ⊂ Xn = SL(n,Z)\SL(n,R)

is bounded if and only if there is an ε > 0 such that E contains no lattices Γg with min{‖w‖ : w ∈
(Zd r 0) · g} < ε (where v · g ∈ Rn is the product of a row vector v ∈ Zd with the matrix g ∈ GL(n,R)).

The next step in deriving a partial solution of Littlewood’s conjecture depends crucially on Theorem

9, combined with the variational principle13 and semicontinuity properties of measure-theoretic entropy

on Xn. We set aσ,τ (t) = a(σt, τt) with a(s, t) as in Proposition 15.

Proposition 16 ([11, Proposition 12.12]). Suppose that (u, v) ∈ R2 does not satisfy (1). Then for any

σ, τ ≥ 0, the topological entropy of aσ,τ on the compact set {xu,vaσ,τ (t) : t ≥ 0} ⊂ X vanishes.

With very little further work one arrives at the remarkable partial solution of Littlewood’s conjecture

by Einsiedler, Katok and Lindenstrauss.

Theorem 17 ([9, Theorem 1.5], [11, Theorem 12.10]). For any δ > 0, the set Ξδ = {(u, v) ∈ [0, 1)2 :

lim infn→∞ n‖nu‖‖nv‖ ≥ δ} has zero upper box dimension.14

It is worth noting that Littlewood’s conjecture would follow from Conjecture 8. For a discussion of

this connection, which goes back in essence to Cassels and Swinnerton-Dyer, see [6], [22] and [23].
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[3] É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo

27 (1909), 247–271.

13The version of the variational principle relevant here is that the topological entropy of a continuous flow on a compact
metric space is bounded by the measure-theoretic entropies of its invariant probability measures.

14This means that, for every ε > 0 and 0 < r < 1, one can cover Ξδ by Oδ,ε(r
−ε) boxes of size r × r. Note that zero

upper box dimension for every Ξδ, δ > 0, trivially implies zero Lebesgue measure for the set of exceptions to Littlewood’s
conjecture.

7



[4] J. Bourgain, E. Lindenstrauss, P. Michel and A. Venkatesh, Some effective results for ×a ×b, Ergod.

Th. & Dynam. Sys. 29 (2009), 1705–1722.

[5] J.W.S. Cassels, On a problem of Steinhaus about normal numbers, Colloq. Math. 7 (1959), 95–101.

[6] J.W.S. Cassels and H.P.F. Swinnerton-Dyer, On the product of three homogeneous linear forms and

indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London Ser. A 248 (1955), 73–96.

[7] D.G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc.

8 (1933), 254–260.

[8] M. Einsiedler and A. Katok, Invariant measures on G/Γ for split simple Lie groups G, Comm. Pure

Appl. Math. 56 (2003), 1184–1221.

[9] M. Einsiedler, A. Katok and E. Lindenstrauss, Invariant measures and the set of exceptions to

Littlewood’s conjecture, Ann. of Math. 164 (2006), 513–560.

[10] M. Einsiedler and E. Lindenstrauss, Rigidity properties of Zd-actions on tori and solenoids, Electron.

Res. Announc. Amer. Math. Soc. 9 (2003), 99–110.

[11] M. Einsiedler and E. Lindenstrauss, Diagonalizable flows on locally homogeneous spaces, in: Homo-

geneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, American Mathematical

Society, Providence, R.I., 2010, 155–241.

[12] M. Einsiedler and T. Ward, Arithmetic quantum unique ergodicity for Γ\H.

http://swc.math.arizona.edu/aws/10/2010EinsiedlerNotes.pdf

[13] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approx-

imation, Math. Systems Theory 1 (1967), 1–49.

[14] B. Host, Nombres normaux, entropie, translations, Israel J. Math. 91 (1995), 419–428.

[15] A.S.A. Johnson, Measures on the circle invariant under multiplication by a nonlacunary subsemi-

group of the integers, Israel J. Math. 77 (1992), 211–240.

[16] A. Katok, S. Katok and K. Schmidt, Rigidity of measurable structure for algebraic actions of higher-

rank abelian groups, Comment. Math. Helv. 77 (2002), 718–745.

[17] A. Katok and R.J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergod.

Th. & Dynam. Sys. 16 (1996), 751–778; Corrections, 18 (1998), 507–507.

[18] A. Khinchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361–382.

[19] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. 163

(2006), 165–219.

[20] E. Lindenstrauss and K. Schmidt, Invariant measures of nonexpansive group automorphisms, Israel

J. Math. 144 (2004), 29–60.

[21] E. Lindenstrauss and B. Weiss, On sets invariant under the action of the diagonal group, Ergod. Th.

& Dynam. Sys. 21 (2001), 1481–1500.

[22] G.A. Margulis, Oppenheim conjecture, in: Fields Medallists’ Lectures, World Sci. Ser. 20th Century

Math., vol. 5, World Scientific Publishers, River Edge, New Jersey, 1997, 272–327.

[23] G. Margulis, Problems and conjectures in rigidity theory, in: Mathematics: Frontiers and Perspectives,

American Mathematical Society, Providence, R.I., 2000, 161–174.

[24] J. Moulin-Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Mathematics, vol.

1115, Springer Verlag, Berlin-Heidelberg-New York, 1985.

8



[25] D.S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J.

Analyse Math. 48 (1987), 1–141.

[26] K. Petersen, Ergodic theory, Cambridge University Press, Cambridge, 1983.

[27] M. Ratner, On Raghunathan’s measure conjecture, Ann. of Math. 134 (1991), 545–607.

[28] S. Rushdie, Haroun and the Sea of Stories, Puffin Books, Penguin Books Ltd., London, 1993.

[29] D.J. Rudolph, ×2 and ×3 invariant measures and entropy, Ergod. Th. & Dynam. Sys. 10 (1990),

395–406.

[30] K. Schmidt, Dynamical systems of algebraic origin, Birkhäuser Verlag, Basel-Berlin-Boston, 1995.
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