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Abstract. The purpose of this note is to point out some of the phenomena which
arise in the transition from classical shifts of finite type X ⊂ AZ to multi-dimensional

shifts of finite type X ⊂ AZd
, d ≥ 2, where A is a finite alphabet. We discuss rigidity

properties of certain multi-dimensional shifts, such as the appearance of an unexpected
intrinsic algebraic structure or the scarcity of isomorphisms and invariant measures. The
final section concentrates on group shifts with finite or uncountable alphabets, and with
the symbolic representation of such shifts in the latter case.
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1. Shifts of finite type.

Let d ≥ 1, A a finite set (the alphabet), and let AZd
be the set of all maps x : Zd −→

A. For every nonempty subset F ⊂ Zd, the map

πF : AZd
−→ AF

is the projection which restricts each x ∈ AZd
to F . For every n ∈ Zd we define a

homeomorphism σn of the compact space AZd
by

(1.1) (σnx)m = xn+m

for every x = (xm) ∈ AZd
. The map σ : n 7→ σn is the shift-action of Zd on AZd

, and a

subset X ⊂ AZd
is shift-invariant if σn(X) = X for all n ∈ Zd. A closed, shift-invariant

set X ⊂ AZd
is a shift of finite type (SFT ) if there exist a finite set F ⊂ Zd and a subset

P ⊂ AF such that

(1.2) X = X(F, P ) = {x ∈ AZd
: πF ◦ σn(x) ∈ P for every n ∈ Zd}.

A closed shift-invariant subset X ⊂ AZd
is a SFT if and only if there exists a finite

set F ⊂ Zd such that

(1.3) X = {x ∈ AZd
: πF ◦ σn(x) ∈ πF (X) for every n ∈ Zd}.

An immediate consequence of this characterization of SFT ’s is that the notion SFT is
an invariant of topological conjugacy. For background and details we refer to [21]–[25].

If X ⊂ AZd
is a SFT we may change the alphabet A and assume that

F = {0, 1}d or F = {0} ∪
d[
i=1

{e(i)},

where e(i) is the i-th basis vector in Zd.
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Let X ⊂ AZd
be a SFT. A point x ∈ X is periodic if its orbit under σ is finite. In

contrast to the case where d = 1, a higher-dimensional SFT X may not contain any
periodic points (we give an example below). This potential absence of periodic points is
associated with certain undecidability problems (cf. e.g. [1], [9], [19] and [32]):

(1) It is algorithmically undecidable if X(F, P ) 6= ∅ for given (F, P );
(2) It is algorithmically undecidable whether an allowed1 partial configuration can

be extended to a point x ∈ X(F, P ).
In dealing with concrete SFT ’s undecidability is not really a problem, but it indicates

the difficulty of making general statements about higher-dimensional SFT ’s. There
have been several attempts to define more restrictive classes of SFT ’s with the hope
of a systematic approach within such a class (cf. e.g. [16]–[17], the algebraic systems
considered in [9], or certain specification properties — such as in [13] — which guarantee
‘sufficient similarity’ to full shifts).

2. Some examples.

Example 1 (Chessboards). Let n ≥ 2 and A = {0, . . . , n− 1}. We interpret A as a

set of colours and consider the SFT X = X(n) ⊂ AZ2
consisting of all configurations

in which adjacent lattice points must have different colours.
For n = 2, X(2) consists of two points. For n ≥ 3, X(n) is uncountable.
There is a big difference between n = 3 and n ≥ 4: for n = 3 there exist frozen

configurations in X(3), which cannot be altered in only finitely many places. These
points are the periodic extensions of

0 1 2 0 1 2
2 0 1 2 0 1
1 2 0 1 2 0
0 1 2 0 1 2
2 0 1 2 0 1
1 2 0 1 2 0

0 2 1 0 2 1
1 0 2 1 0 2
2 1 0 2 1 0
0 2 1 0 2 1
1 0 2 1 0 2
2 1 0 2 1 0

Example 2 (Wang tilings). Let T be a finite nonempty set of distinct, closed 1× 1
squares (tiles) with coloured edges such that no horizontal edge has the same colour as a
vertical edge: such a set T is called a collection of Wang tiles. For each τ ∈ T we denote
by r(τ), t(τ), l(τ), b(τ) the colours of the right, top, left and bottom edges of τ , and we
write C(T ) = {r(τ), t(τ), l(τ), b(τ) : τ ∈ T} for the set of colours occurring on the tiles
in T . A Wang tiling w by T is a covering of R2 by translates of copies of elements of
T such that

(i) every corner of every tile in w lies in Z2 ⊂ R2,
(ii) two tiles of w are only allowed to touch along edges of the same colour, i.e.

r(τ) = l(τ ′) whenever τ, τ ′ are horizontally adjacent tiles with τ to the left of
τ ′, and t(τ) = b(τ ′) if τ, τ ′ are vertically adjacent with τ ′ above τ .

We identify each such tiling w with the point

w = (wn) ∈ TZ2
,

where wn is the unique element of T whose translate covers the square n + [0, 1]2 ⊂ R2,

n ∈ Z2. The set WT ⊂ TZ2
of all Wang tilings by T is obviously a SFT, and is called

the Wang shift of T .
Here is an explicit example of a two-dimensional Wang shift: let TD be the set of

Wang tiles

with the colours H, h,V, v on the solid horizontal, broken horizontal, solid vertical and
broken vertical edges. The following picture shows a partial Wang tiling of R2 by TD

1If X = X(F, P ) is a SFT and ∅ 6= E ⊂ Zd, then an element x ∈ AE is an allowed
partial configuration if π(F+n)∩E(x) coincides (in the obvious sense) with an element of
πF∩(E−n)(P ) whenever F ∩ (E − n) 6= ∅.
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and explains the name ‘domino tiling’ for such a tiling: two tiles meeting along an edge
coloured h or v form a single vertical or horizontal ‘domino’.

−→

The Wang shift WD ⊂ TZ2

D of TD is called the domino (or dimer) shift, and is one of
the few higher dimensional SFT’s for which the dynamics is understood to some extent
(cf. e.g. [2], [3], [7]). The shift-action σWD

of Z2 on WD is topologically mixing, and
its topological entropy h(σWD

) was computed by Kastelleyn in [7]:

h(σWD
) =

1

4

Z 1

0

Z 1

0
(4− 2 cos 2πs− 2 cos 2πt) ds dt.

The domino-tilings again have frozen configurations which look like ‘brick walls’.
Example 3 (A shift of finite type without periodic points). Consider the following

set T ′ of six polygonal tiles, introduced by Robinson in [19], each of which which should
be thought of as a 1× 1 square with various bumps and dents.

We denote by T the set of all tiles which are obtained by allowing horizontal and vertical
reflections as well as rotations of elements in T ′ by multiples of π

2
. Again we consider

the set WT ⊂ TZ2
consisting of all tilings of R2 by translates of elements of T aligned to

the integer lattice (as much as their bumps and dents allow). The set WT is obviously a
SFT, and WT is uncountable and has no periodic points. If we allow each (or even only
one) of these tiles to occur in two different colours with no restriction on adjacency of
colours then we obtain a SFT with positive entropy, but still without periodic points.

The paper [19] also contains an explicit set T of Wang tiles for which the extension
problem is undecidable.

3. Wang tiles and shifts of finite type.

Theorem 3.1. Every SFT can be represented (in many different ways) as a Wang
tiling.

Proof. Assume that F = {0, 1}2 ⊂ Z2. We set T = πF (X(F, P )) and consider each

τ =
x(0,1) x(1,1)
x(0,0) x(1,0) ∈ T

as a unit square with the ‘colours’ [ x(0,0) x(1,0) ] and [ x(0,1) x(1,1) ] along its bottom and

top horizontal edges, and
h
x(0,1)
x(0,0)

i
and

h
x(1,1)
x(1,0)

i
along its left and right vertical edges.

With this interpretation we obtain a one-to-one correspondence between the points x =

(xn) ∈ X and the Wang tilings w = (wn) = (πF ◦ σn(x)) ∈ TZ2
.

This correspondence allows us to regard each SFT as a Wang shift and vice versa.
However, the correspondence is a bijection only up to topological conjugacy: if we start

with a SFT X ⊂ AZ2
with F = {0, 1}2, view it as the Wang shift WT ⊂ TZ2

with
T = πF (X), and then interpret WT as a SFT as above, we do not end up with X, but
with the 2-block representation of X.

Definition 3.1. Let A be a finite set and X ⊂ AZ2
a SFT, T a set of Wang tiles

and WT the associated Wang shift. We say that WT represents X if WT is topologically
conjugate to X. Two Wang shifts WT and WT ′ are equivalent if they are topologically
conjugate as SFT’s.
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Since any given infinite SFT X has many different representations by Wang shifts
one may ask whether these different representations of X have anything in common.
The answer to this question turns out to be related to a measure of the ‘complexity’ of
the SFT X. For this we need to introduce the tiling group associated with a Wang shift.

Let T be a collection of Wang tiles and WT ⊂ TZ2
the Wang shift of T . Following

Conway, Lagarias and Thurston ([4], [29]) we write

Γ(T ) = 〈C(T )|t(τ)l(τ) = r(τ)b(τ), τ ∈ T 〉
for the free group generated by the colours occurring on the edges of elements in T ,
together with the relations t(τ)l(τ) = r(τ)b(τ), τ ∈ T . The countable, discrete group
Γ(T ) is called the tiling group of T (or of the Wang shift WT ). From the definition of
Γ(T ) it is clear that the map θ : Γ(T )→ Z2, given by

θ(b(τ)) = θ(t(τ)) = (1, 0),

θ(l(τ)) = θ(r(τ)) = (0, 1),

for every τ ∈ T , is a group homomorphism whose kernel is denoted by

Γ0(T ) = ker(θ).

Suppose that E ⊂ R2 is a bounded set, and that w ∈ TR2rE is a Wang-tiling of R2 rE.
When can we complete w to a Wang-tiling of R2 (possibly after enlarging E by a finite
amount)? After a finite enlargement we may assume that E is the empty rectangle in
the left picture of Figure 1 (the tiles covering the rest of R2 r E are not shown).

Figure 1
If we add a tile legally (as in the right picture), then the words in Γ(T ) obtained by
reading off the colours along the edges of the two holes coincide because of the tiling
relations:

(3.1)
r−1
1 r−1

2 r−1
3 b−1

1 b−1
2 b−1

3 b−1
4 l3l2l1t4t3t2t1

= r−1
1 r−1

2 r−1
3 b−1

1 b−1
2 b−1

3 b−1
4 l3l2tlt3t2t1

In particular, if the hole can be closed, then the word must be the identity.

If X ⊂ AZ2
is a SFT and WT a Wang representation of X then the tiling group

Γ(T ) gives an obstruction to the weak closing of bounded holes (i.e. the closing of holes

after finite enlargement) for points x ∈ AZ2 rE, where E ⊂ Z2 is a finite set. However,
different Wang-representations of X may give different answers.

Example 4. Let X be the 3-coloured chessboard, and let T be the set of Wang tiles

with the colours

h0 = , h1 = , h2 = ,

v0 = , v1 = , v2 =

on the horizontal and vertical edges. Then WT represents X. The tiling group Γ(T ) is
of the form

Γ(T ′C) = {hi, vi, i = 0, 1, 2|v1h0 = v2h0 = h1v0 = h2v0,
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v2h1 = v0h1 = h2v1 = h0v1, v0h2 = v1h2 = h0v2 = h1v2}.

Since h0 = h1 = h2, v0 = v1 = v2 and h0v0 = v0h0, Γ(T ) ∼= Z2, and every hole appears
closable.

With a different representation of X as a Wang shift we obtain more information.
Let T ′ be the set of Wang tiles

1 0
0 1

1 2
0 1

2 0
0 1

1 0
0 2

2 0
0 2

2 1
0 2

0 1
1 0

0 2
1 0

2 1
1 0

0 1
1 2

2 0
1 2

2 1
1 2

0 1
2 0

0 2
2 0

1 2
2 0

0 2
2 1

1 0
2 1

1 2
2 1

with the colours hij = [ i j ] on the horizontal and vji =
ˆ
j
i

˜
on the vertical edges, where

i, j ∈ {0, 1, 2} and i 6= j. Then WT ′ represents X.
There exists a group homomorphism φ : Γ(T ′) −→ Z with

φ(h01) = φ(h12) = φ(h20) = φ(v1
0) = φ(v2

1) = φ(v0
2) = 1,

φ(h10) = φ(h21) = φ(h02) = φ(v0
1) = φ(v1

2) = φ(v2
0) = −1.

This homomorphism detects that the hole with the edge

1 2 1
2 ? 0
0 1 2

cannot be closed, no matter how it is extended on the outside, and how much it is
enlarged initially.

This example raises the alarming possibility that more and more complicated Wang-
representations of a SFT X will give more and more combinatorial information about
X. Remarkably, this is not the case.

Theorem 3.2. For many topologically mixing Z2-SFT’s there exists a Wang-repre-
sentation WT of X which contains all the combinatorial information obtainable from
all possible Wang-representations of X.

For examples we refer to [25] and [5]. In order to make this statement comprehensible
one has to express it in terms of the continuous cohomology of X.

4. Wang tiles and cohomology.

Let X ⊂ AZ2
be a SFT and G a discrete group with identity element 1G. A map

c : Z2 × X −→ G is a cocycle for the shift-action σ of Z2 on X if c(n, ·) : X −→ G is
continuous for every n ∈ Z2 and

c(m + n, x) = c(m, σnx)c(n, x)

for all x ∈ X and m,n ∈ Z2. One can interpret this equation as path-independence.
A cocycle c : Z2×X −→ G is a homomorphism if c(n, ·) is constant for every n ∈ Z2,

and c is a coboundary if there exists a continuous map b : X −→ G such that

c(n, x) = b(σnx)−1b(x)

for all x ∈ X and n ∈ Z2. Two cocycles c, c′ : Z2 × X −→ G are cohomologous with
continuous transfer function b : X −→ G, if

c(n, x) = b(σnx)−1c′(n, x)b(x)

for all n ∈ Z2 and x ∈ X.
For every Wang representation WT of X we define a tiling cocycle cT : Z2×WT −→

Γ(T ) (and hence a cocycle c′T : Z2 ×X −→ Γ(T )) by setting

cT ((1, 0), w) = b(w0), cT ((0, 1), w) = l(w0)

for every Wang tiling w ∈WT ⊂ TZ2
, and by using the cocycle equation to extend cT to

a map Z2 ×WT −→ Γ(T ) (the relations t(τ)l(τ) = r(τ)b(τ), τ ∈ T , in the tiling group
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are precisely what is needed to allow such an extension). Conversely, if G is a discrete
group and c : Z2 ×X −→ G a cocycle, then Theorem 4.2 in [25] shows that there exists
a Wang representation wT of X and a group homomorphism η : Γ(T ) −→ G such that

(4.1) c = η ◦ cT .

In order to establish a link between cocycles and the ‘closing of holes’ discussed in
the last section we return for a moment to the Wang tiles in Figure 1 and assume that
the partial configuration wn, n ∈ Z2 r E, shown there extends to an element w ∈ WT

with l(w0) = r1 and b(w0) = t1 (i.e. the tile w0 occupies the bottom left hand corner
of the ‘hole’ E in Figure 1). Then

cT ((4, 3), w) = l3l2l1t4t3t2t3 = l3l2tlt3t2t1 = b4b3b2b1r3r2r1,

depending on the route chosen from 0 to (4, 3), which is equivalent to (3.1).
IfWT ′ is another Wang representation ofX, then there exists a topological conjugacy

φ : WT −→ WT ′ , and the coordinates wn, n ∈ Z2 r E, determine the coordinates
φ(w)m, m ∈ Z2 r E′, for some finite set E′ ⊂ Z2 which we may again assume to
be a rectangle. If the tiling cocycle cT ′ of WT ′ is a homomorphic image of wT in the
sense of (4.1), then wT ′ cannot lead to any new obstructions (other than those already
exhibited by cT ). A slightly more refined version of the same argument shows that wT ′

will not lead to any new obstructions even if it is only cohomologous to a homomorphic
image of cT . This observation is the motivation for the following definition.

Definition 4.1. A cocycle c∗ : Z2 × X −→ G∗ with values in a discrete group G∗

is fundamental if the following is true: for every discrete group G and every cocycle
c : Z2 × X −→ G there exists a group homomorphism θ : G∗ −→ G such that c is
cohomologous to the cocycle θ ◦ c∗ : Z2 ×X −→ G.

In this terminology we can state a more precise (but still rather vague) form of
Theorem 3.2 (cf. [25]).

Theorem 4.1. In certain examples of topologically mixing Z2-SFT’s there exists an
explicitly computable Wang representation WT of X whose tiling cocycle c′T : Z2×X −→
Γ(T ) is fundamental.

For a list of examples (which includes the chessboards in Example 4 and the domino-
tilings in Example 2) we refer to [5] and [24]–[25].

Although one can make analogous definitions for classical (one-dimensional) SFT ’s,
they never have fundamental cocycles. The existence of fundamental cocycles is a rigidity
phenomenon specific to multi-dimensional SFT ’s.

5. Group shifts and their symbolic representations.

In this section we leave the general setting of multi-dimensional shifts of finite
type with all its inherent problems and restrict our attention to SFT ’s with a group
structure. This class of SFT ’s is of interest in coding theory and allows much more
detailed statements about conjugacy and dynamical properties than arbitrary SFT ’s.

Let d ≥ 1, and let X be a compact abelian group with normalized Haar measure
λX . A Zd-action α : n 7→ αn by continuous automorphisms of X is called an algebraic
Zd-action on X. An algebraic Zd-action α on X is expansive if there exists an open
neighbourhood U of the identity 0X in X with

T
n∈Zd α−n(U) = {0X}.

Suppose that α is an algebraic Zd-action on a compact abelian group X. An α-
invariant probability measure µ on the Borel field BX of X is ergodic if

µ

„ [
n∈Zd

α−n(B)

«
∈ {0, 1}

for every B ∈ BX , and mixing if

lim
n→∞

µ(B ∩ α−n(B′)) = µ(B)µ(B′)

for all B,B′ ∈ BX . The action α is ergodic or mixing if λX is ergodic or mixing.
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Let α1, α2 be algebraic Zd-actions on compact abelian groupsX1 andX2, respectively.
A Borel bijection φ : X1 −→ X2 is a measurable conjugacy of α1 and α2 if

λX1φ
−1 = λX2

and

(5.1) φ ◦ αn
1 (x) = αn

2 ◦ φ(x)

for every n ∈ Zd and λX1 -a.e. x ∈ X1.
A continuous group isomorphism φ : X1 −→ X2 is an algebraic conjugacy of α1 and

α2 if it satisfies (5.1) for every n ∈ Zd and x ∈ X1.
The actions α1, α2 are measurably (resp. algebraically) conjugate if there exists a

measurable (resp. algebraic) conjugacy between them.
Finally we call a map φ : X1 −→ X2 affine if there exist a continuous group

isomorphism ψ : X1 −→ X2 and an element x′ ∈ X2 such that

φ(x) = ψ(x) + x′

for every x ∈ X1.
Here we are interested in algebraic Zd-actions of a particularly simple form. Let A be

a compact abelian group, and let Ω
(d)
A = AZd

be the compact abelian group consisting

of all maps ω : Zd −→ A, furnished with the product topology and coordinate-wise

addition. We write every ω ∈ Ω
(d)
A as ω = (ωn) with ωn ∈ A for every n ∈ Zd and define

the shift-action σ of Zd on Ω
(d)
A by (1.1). Clearly, σ is an algebraic Zd-action on Ω

(d)
A .

A group shift is the restriction of the shift-action σ to a closed, shift-invariant subgroup

X ⊂ Ω
(d)
A .

Throughout the following discussion we shall assume that the ‘alphabet’ A is either

finite or A = T. In the former case every group shift X ⊂ Ω
(d)
A is automatically a d-

dimensional shift of finite type (cf. [9]–[10] and [23]). In our earlier discussion of SFT ’s
we were interested in topological conjugacy invariants. Here we are interested in the
connection between measurable and algebraic conjugacy.

Example 5. The shift automorphisms

(σx)n = xn+1

on the compact abelian groups

X = (Z/4Z)Z,

Y = ((Z/2Z)× (Z/2Z))Z.

are measurably (even topologically) conjugate, but the groups X and Y are not algebraically
isomorphic.

Example 6. For every nonempty finite set E ⊂ Zd we denote by XE ⊂ X̄ =

(Z/2Z)Zd
the closed shift-invariant subgroup consisting of all x ∈ X̄ whose coordinates

sum to 0 in every translate of E in Zd. If E has at least two points then XE is
uncountable and the restriction σE of σ to XE is an expansive algebraic Zd-action.

For d = 2 and the subset

E = {(0, 0), (1, 0), (0, 1)} ⊂ Z2,

the Z2-action σE on XE is called Ledrappier’s example: σE is mixing and expansive,
but not mixing of order 3 (for every n ≥ 0, x(0,0) + x(2n,0) + x(0,2n) = 0).

In this example, 3-mixing breaks down in a particularly regular way: if we call a
finite subset S ⊂ Zd mixing for a group shift X if

(5.2) lim
k→∞

λX

„ \
m∈S

σ−kmBm

«
=
Y

m∈S
λX(Bm)

for all Borel sets Bm, m ∈ S, and nonmixing otherwise, then the last paragraph shows
that S = {(0, 0), (1, 0), (0, 1)} is nonmixing for Ledrappier’s example.



8 KLAUS SCHMIDT

We also consider the subsets

E1 ={(0, 0), (1, 0), (2, 0), (1, 1), (0, 2)},
E2 ={(0, 0), (2, 0), (0, 1), (1, 1), (0, 2)},
E3 ={(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2)}.

of Z2. The shift-actions σi = σEi
of Z2 on Xi = XEi

are again mixing, but the set
S = {(0, 0), (1, 0), (0, 1)} is nonmixing for each of these actions (cf. [11]).

For every n ∈ Z2, the automorphisms σn
i are measurably conjugate. However, as

was shown in [12], these three Z2-actions are not even measurably conjugate.

In general, if X ⊂ AZ2
is a group shift with finite alphabet A, then X has nonmixing

sets if and only if it does not have completely positive entropy or, equivalently, if and

only if it is not measurably conjugate to a full shift Y = BZ2
, where B is a finite set

(cf. [15], [11] and [20]). However, even if X has completely positive entropy, it need
not be topologically conjugate to a full shift.

For d = 1, algebraic conjugacy of group shifts X ⊂ AZd
to full shifts Y = BZd

,
where A and B are finite abelian groups, is a matter of considerable interest in coding
theory (cf. e.g. [18]), and results for d > 1 are just beginning to emerge.

Example 6 is based on a special case of another rigidity phenomenon specific to
Zd-actions with d > 1. We call an algebraic Zd-action α on a compact abelian group
irreducible if every closed, α-invariant subgroup Y ( X is finite. The following statement
is proved in [8] and [12].

Theorem 5.1. Let d > 1, and let α1 and α2 be mixing algebraic Zd-actions on
compact abelian groups X1 and X2, respectively. If α1 is irreducible, and if φ : X1 −→
X2 is a measurable conjugacy of α1 and α2, then α2 is irreducible and φ is λX1 -a.e.
equal to an affine map. Hence measurable conjugacy of α1 and α2 implies algebraic
conjugacy.

Irreducibility of algebraic Zd-actions with d > 1 implies that these actions have zero
entropy (as Zd-actions). For actions with positive entropy one cannot expect this kind of
isomorphism rigidity, since positive entropy implies the existence of nontrivial Bernoulli
factors (cf. [23]). However, it is sometimes still be possible to apply Theorem 5.1 to prove
measurable nonconjugacy of actions with positive entropy.

Example 7 (Conjugacy of Z2-actions with positive entropy). We modify Example

6 by setting Ȳ = (Z/4Z)Zd
and consider, for every nonempty finite set E ⊂ Zd the

closed shift-invariant subgroup YE ⊂ Ȳ consisting of all y ∈ Ȳ whose coordinates sum
to 0 (mod 2) in every translate of E in Zd. The group YE is always uncountable, and
the restriction τE of the shift-action σ to YE is an expansive algebraic Zd-action with
entropy log 2. As in Example 6 we set d = 2 and consider the the subsets E,E1, E2, E3 ⊂
Z2 defined there. Theorem 6.5 in [15] implies that the Pinsker algebra π(τEi

) of τEi
is

the sigma-algebra BYEi
/ZEi

of ZEi
-invariant Borel sets in YEi

, where

ZEi
= {x = (xn) ∈ YEi

: xn = 0 (mod 2) for every n ∈ Z2}.
Then the Z2-action τ ′Ei

induced by τEi
on YEi

/ZEi
is algebraically conjugate to the

shift-action σEi
on the group XEi

in Example 6.
Since any measurable conjugacy of τEi

and τEj
would map π(τEi

) to π(τEj
) and

induce a conjugacy of τ ′Ei
and τ ′Ej

and hence of σEi
and σEj

, Example 6 implies that

τi and τj are measurably nonconjugate for 1 ≤ i < j ≤ 3.

Example 8 (Group shifts with uncountable alphabet). We write Rd = Z[u±1
1 , . . .

, u±1
d ] for the ring of Laurent polynomials with integral coefficients in the commuting

variables u1, . . . , ud, and represent every f ∈ Rd as f =
P

m∈Zd fmum with um =

um1
1 · · ·umd

d and fm ∈ Z for every m = (m1, . . . ,md) ∈ Zd.

Let σ be the shift-action (1.1) of Zd on Ω(d) = TZd
. For every nonzero f ∈ Rd and

x ∈ X we set

(5.3) f(σ)(x) =
X
n∈Zd

fnσ
nx
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and note that f(σ) : Ω(d) −→ Ω(d) is a continuous surjective group homomorphism. For
every ideal I ⊂ Rd we set

(5.4) XI =
\
f∈I

ker(f(σ))

and denote by σI the restriction of σ to XI . If {g1, . . . , gL} is a set of generators of I
(such a finite set of generators always exists, since Rd is Noetherian), then

XI =
m\
j=1

ker(gj(σ)).

The dynamical properties of group shifts of the form XI are described in [22], [15] and
[23]. In the special case where the ideal I is principal, i.e. where I = (f) = fRd for
some f ∈ Rd, the entropy of σ(f) is given by

h(σ(f)) =

(R 1
0 · · ·

R 1
0 log |f(e2πit1 , . . . , e2πitd )| dt1 · · · dtd if f 6= 0,

∞ otherwise.

Furthermore, σ(f) is expansive if and only if

(5.5) f(z) 6= 0 for all z = (z1, . . . , zd) ∈ Cd with |z1| = · · · = |zd| = 1.

If σ(f) is expansive then it is automatically mixing and Bernoulli (in particular, it has
finite and positive entropy).

Although the group shifts σ(f), f ∈ Rd, in Example 8 are of finite type in the sense
that they are determined by restrictions in a finite ‘window’ of coordinates (consisting
of those n ∈ Zd with fn 6= 0), their uncountable alphabets put them outside the
customary framework of symbolic dynamics. In view of this (and for a variety of other
reasons) it seems desirable to find ‘symbolic’ representations of such systems, analogous
to the representation of hyperbolic toral automorphisms as SFT ’s by means of Markov
partitions.

Following [6] we consider the Banach space `∞(Zd,R) and write

`∞(Zd,Z) ⊂ `∞(Zd,R)

for the subgroup of bounded integer-valued functions. Consider the surjective map

η : `∞(Zd,R) −→ TZd
given by

η(v)n = vn (mod 1)

for every v = (vn) ∈ `∞(Zd,R) and n ∈ Zd. Let σ̄ be the shift-action of Zd on `∞(Zd,R),
defined as in (1.1), and set, for every h =

P
n∈Zd hnun ∈ Rd and v ∈ `∞(Zd,Z),

h(σ̄)(v) =
X
n∈Zd

hnσ̄
nv.

The expansiveness of σ(f) can be expressed in terms of the kernel of f(σ̄): σ(f) is

expansive if and only if ker(f(σ̄)) = {0} ⊂ `∞(Zd,R).
According to Lemma 4.5 in [14] there exists a unique element w∆ ∈ `∞(Zd,R) with

the property that

f(σ̄)(w∆)n =

(
1 if n = 0,

0 otherwise.

The point w∆ also has the property that there exist constants c1 > 0, 0 < c2 < 1 with˛̨
w∆

n

˛̨
≤ c1c‖n‖2
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for every n = (n1, . . . , nd) ∈ Zd, where ‖n‖ = maxi=1,...,d |ni|. From the properties of

w∆ it is clear that

ξ̄(v) =
X
n∈Zd

vnσ̄
−nw∆

is a well-defined element of `∞(Zd,R) for every v ∈ `∞(Zd,Z), and we set

ξ = η ◦ ξ̄ : `∞(Zd,Z) −→ X(f).

The map ξ : `∞(Zd,Z) −→ X(f) is a surjective group homomorphism, and

ξ ◦ σ̄n = σn
(f) ◦ ξ for every n ∈ Zd,

ker(ξ) = f(σ̄)(`∞(Zd,Z)).

The point x∆ = ξ(w∆) is homoclinic:

(5.6) lim
n→∞

σn
(f)(x

∆) = 0.

Furthermore, x∆ is a fundamental homoclinic point in the sense that every homoclinic
point of σ(f) (i.e. every x ∈ X(f) satisfying (5.6) with x replacing x∆) lies in the

countable subgroup of X(f) generated by {σn
(f)
x∆ : n ∈ Zd}. It can be shown that

an expansive algebraic Zd-action α on a compact abelian group X has a fundamental
homoclinic point if and only if it is of the form α = σ(f), X = X(f), for some f ∈ Rd

satisfying (5.5) (cf. [26]).
From the definition of ξ it is clear that its restriction to every bounded subset of

`∞(Zd,Z) is continuous in the weak∗-topology. One can easily find bounded (and thus
weak∗-compact) subset V ⊂ `∞(Zd,Z) with ξ(V) = X(f):

Proposition 5.1. For every h =
P

n∈Zd hnun ∈ Rd we set

h+ =
X
n∈Zd

max (0, hn)un, h− = −
X
n∈Zd

min (0, hn)un,

‖h+‖′1 = max (‖h+‖1 − 1, 0), ‖h−‖′1 = max (‖h−‖1 − 1, 0),

‖h‖∗1 = ‖h+‖′1 + ‖h−‖′1.

Then the set

V = {v ∈ `∞(Zd,Z) : 0 ≤ vn ≤ ‖f‖∗1 for every n ∈ Zd}

satisfies that ξ(V) = X(f).
The restriction of the homomorphism ξ to V is surjective, but generally not injective,

and the key problem in constructing symbolic representations of the Zd-action σ(f) is
to find closed, shift-invariant subsets W ⊂ V with the following properties:

(a) W is a SFT or at least sofic, i.e. a topological factor of a SFT,
(b) ξ(W) = X(f), and the restriction of ξ to a dense Gδ-set in W is injective.

Examples of such choices of W ⊂ `∞(Z,Z) for appropriate polynomials f ∈ R1 can
be found in [26], [27], [28], [30] and [31]. Examples in higher dimensions (with d ≥ 2)
are much more difficult to find, and there are many unresolved problems in this area.
We end this section with one of the few successful examples.

Example 9 ([6]). Let d = 2 and f = 3− u1 − u2 ∈ R2. Then ‖f‖∗1 = 3, but the set

(5.7) W = {v ∈ `∞(Z2,Z) : 0 ≤ vn ≤ 2} ( V

also satisfies that ξ(W) = X(f). Furthermore, the restriction of ξ to W is almost
injective in the sense of Condition (b).
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