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Dedicated to the memory of our colleague and friend William Parry

Abstract. In this paper we consider a special class of polymorphisms with invariant
measure, the algebraic polymorphisms of compact groups. A general polymorphism is —
by definition — a many-valued map with invariant measure, and the conjugate operator
of a polymorphism is a Markov operator (i.e., a positive operator on L2 of norm 1 which
preserves the constants). In the algebraic case a polymorphism is a correspondence in
the sense of algebraic geometry, but here we investigate it from a dynamical point of
view. The most important examples are the algebraic polymorphisms of torus, where we
introduce a parametrization of the semigroup of toral polymorphisms in terms of rational
matrices and describe the spectra of the corresponding Markov operators.

A toral polymorphism is an automorphism of Tm if and only if the associated rational
matrix lies in GL(m,Z). We characterize toral polymorphisms which are factors of toral
automorphisms.

1. Algebraic polymorphisms

Definition 1.1. Let G be a compact group with Borel field BG, normalized Haar measure

λG and identity element 1 = 1G. A closed subgroup P ⊂ G × G is an (algebraic) corre-

spondence of G if π1(P) = π2(P) = G, where πi : G×G −→ G, i = 1, 2, are the coordinate

projections (which are obviously group homomorphisms).

Every correspondence P ⊂ G×G defines a map ΠP from G to the set of all nonempty

closed subsets of G by

ΠP(x) = {y : (x, y) ∈ P} (1.1)

for every x ∈ G. Clearly, πi sends the Haar measure on P to Haar measure on G; in the

terminology of [1], the correspondence P defines an (algebraic) polymorphism of G (more

exactly, P determines a polymorphism of the measure space (G,BG, λG) to itself ).1

The correspondence P ⊂ G × G and the polymorphism ΠP obviously determine each

other.

Algebraic polymorphisms from one compact group to another are defined similarly.

A correspondence P′ ⊂ G′ × G′ is a factor of a correspondence P ⊂ G × G (and the

polymorphism ΠP′ is a factor of ΠP) if there exists a surjective group homomorphism

φ : G −→ G′ with (φ× φ)(P) = P′. If φ can be chosen to be a group isomorphism then P

and P′ (resp. ΠP and ΠP′) are isomorphic.

This notion of factors is consistent with the terminology in [1]: if Π is a measure-

preserving polymorphism of a probability space (X, S, µ) determined by a self-coupling ν
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1In general, a measure-preserving polymorphism Π of a probability space (X, S, µ) is determined by a
probability measure ν on X ×X with πi∗ν = µ for i = 1, 2, i.e., by a coupling of µ with itself.
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ALGEBRAIC POLYMORPHISMS 2

of µ, and if T ⊂ S is a sub-sigma-algebra, then the factor polymorphism ΠT of (X,T) is

determined by the restriction of ν to the sigma-algebra T ⊗ T ⊂ S⊗ S.

Let P ⊂ G×G be a correspondence (since we only consider algebraic correspondences

and polymorphisms we drop the term algebraic from now on). The subgroup

P∗ = {(y, x) : (x, y) ∈ P} (1.2)

corresponds to the conjugate (or inverse) polymorphism of ΠP. If P1,P2 are two corre-

spondences of G, their product P1 ? P2 is the correspondence

P1 ? P2 = {(x, z) ∈ G×G : (x, y) ∈ P2 and (y, z) ∈ P1

for at least one y ∈ G}.
(1.3)

Clearly,

ΠP1?P2(x) = ΠP1 ◦ΠP2(x) =
⋃

y∈ΠP2
(x)

ΠP1(y)

for every x ∈ G. With respect to the composition (1.3) the set of all correspondences (or,

equivalently, the set of all polymorphisms) of G is a semigroup, denoted by P(G), with

involution P 7→ P∗, identity element P1 = {(g, g), g ∈ G} and zero element P0 = G×G.

For later use we introduce also the higher powers Pn of P, n ≥ 2, defined recursively by

Pn = Pn−1 ? P. (1.4)

If P ⊂ G×G is a correspondence such that the group homomorphisms πi : P −→ G, i =

1, 2, are injections, then P is (the graph of) an automorphism of G, and the conjugate

correspondence yields the inverse automorphism. If π2 is an injection then P is (the graph

of) an endomorphism (i.e., of a surjective group homomorphism), and if π1 is an injection

then P is (the graph of) an exomorphism (i.e., P∗ is the graph of an endomorphism).

The group of automorphisms as well as semigroups of endo- and exomorphisms are sub-

semigroups of the semigroup of P(G) of correspondences of G.

We note in passing that the product of the algebraic polymorphisms is a special case of

the general notion of the product of measure-preserving polymorphisms in [1].

Definition 1.2. For the following definitions we fix a correspondence P of a compact

group G. We write BP and λP for the Borel field and the Haar measure of P.

(1) Algebraic factor polymorphisms. Let H ⊂ G be a closed subgroup, and let PH =

P/(H × H) ⊂ (G/H × G/H) be the associated factor correspondence. The subgroup

H ⊂ G is invariant, co-invariant or doubly invariant under the polymorphism ΠP if PH is

an endomorphism, exomorphism or an automorphism. Examples will be given in Section

3.

(2) The Markov operator. Put B
(i)
P = π−1

i (BG) ⊂ BP, i = 1, 2, and let Fi ⊂ L2(G,BG, λG)

be the subspace of functions measurable with respect to B
(i)
P , i = 1, 2. Let Pri be the or-

thogonal projection in L2(G,BG, λG) onto Fi, i = 1, 2. We define the Markov operator

VP : L2(G,BG, λG) −→ L2(G,BG, λG)

as follows: if f ∈ L2(G,BG, λG), we define h ∈ L2(P,BP, λP) by

h(x, y) = f(x)

for every (x, y) ∈ P and set

VPf = EλP(h|B(2)
P ), (1.5)
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where EλP(·|·) stands for conditional expectation with respect to λP. Then

VP = Pr2 · Pr1, V
∗
P = Pr1 · Pr2, (1.6)

and

VP∗ = V ∗P (1.7)

(cf. (1.2)). Note that VP preserves positivity and has norm 1.

(3) The Markov process XP. The closed, shift-invariant subgroup

XP = {(xn) ∈ GZ : (xn, xn+1) ∈ P for every n ∈ Z} (1.8)

is the Markov process of P, and the corresponding Markov shift σP : XP −→ XP is defined

by (σPx)n = xn+1 for every x = (xn) ∈ XP. Note that σP is an automorphism of the

compact group XP which preserves the normalized Haar measure λXP
of XP, and that the

Markov shift σP∗ : XP∗ −→ XP∗ corresponding to P∗ is the time reversal of σP.

Motivated by considering the various tail sigma-algebras (past, future and two-sided)

of the Markov process XP we call the polymorphism ΠP right (left, or totally) nonde-

terministic if there there is no closed invariant (co-invariant, or doubly invariant) proper

subgroup H ⊂ G (cf. Theorem 2.4).

(4) Ergodicity. The polymorphism ΠP is ergodic if the constants are the only VP-invariant

functions.

Proposition 1.3. Let G be a compact group and P ⊂ G×G a correspondence. Then there

exist closed normal subgroups K
(i)
P ⊂ G, i = 1, 2, and a continuous group isomorphism

ηP : G/K
(1)
P −→ G/K

(2)
P such that

P = {(g1, g2) ∈ G×G : ηP(g1K
(1)
P ) = g2K

(2)
P }. (1.9)

Proof. We set K
(1)
P = {g ∈ G : (g, 1) ∈ P}, K(2)

P = {g ∈ G : (1, g) ∈ P} and observe

that K
(1)
P and K

(2)
P are normal subgroups of G, since π1(P) = π2(P) = G. Since P =

{(g1p1, g2p2) : (g1, g2) ∈ P, p1 ∈ K
(1)
P , p2 ∈ K

(2)
P }, we may view P as a subset P̄ ⊂

G/K
(1)
P × G/K(2)

P , and the definition of the groups K
(i)
P implies that P̄ is the graph of a

continuous group isomorphism ηP : G/K
(1)
P −→ G/K

(2)
P . �

Remark 1.4. The triples (K
(1)
P ,K

(2)
P , ηP), where K

(i)
P , i = 1, 2, are subgroups of G and

ηP : G/K
(1)
P −→ G/K

(2)
P is a group isomorphism, form a parametrization of the algebraic

polymorphisms of G.

Definition 1.5. A correspondence P ⊂ G×G is finite-to-one (and defines a polymorphism

of discrete type) if the groups K
(i)
P in (1.9) are both finite.

The finite-to-one correspondences of G form a subsemigroup Pf (G) ⊂ P(G) of the

semigroup of all correspondences of G.

For the notation in the following characterization of (co-)invariance we again refer to

(1.9).

Theorem 1.6. Let P ⊂ G×G be a correspondence and H ⊂ G a closed normal subgroup.

(1) H is invariant under the polymorphism ΠP if and only if ηP(HK
(1)
P ) ⊂ H;

(2) H is co-invariant under ΠP if and only if η−1
P (HK

(2)
P ) ⊂ H;

(3) H is bi-invariant under ΠP if and only if K
(1)
P ⊂ H and ηP(H) = H (in which

case we also have that K
(2)
P ⊂ H).
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Proof. Clearly, K
(2)
P ⊂ ηP(HK

(1)
P ). If ηP(HK

(1)
P ) ⊂ H then invariance follows from Def-

inition 1.2 (1). Conversely, if K
(2)
P ⊂ ηP(HK

(1)
P ) ⊂ H, then PH is the graph of a group

endomorphism.

The other assertions are proved similarly. �

Corollary 1.7. Let P ⊂ G × G be a correspondence and H ⊂ G be a closed normal

subgroup. We denote by K
(i)
Pn , i = 1, 2, the closed normal subgroups of G associated with

the correspondence Pn, n ≥ 2, in (1.4) by (1.9). The sequences of subgroups (K
(i)
Pn , n ≥ 1)

are nondecreasing and have the following property.

(1) H is invariant under ΠP if and only if it contains
⋃
n≥1K

(2)
Pn ;

(2) H is co-invariant under ΠP if and only if it contains
⋃
n≥1K

(1)
Pn .

Proof. If a closed normal subgroup H ⊂ G is invariant under ΠP then Theorem 1.6

(1) shows that K
(2)
P2 = ηP(K

(1)
P K

(2)
P ) ⊂ ηP(K

(1)
P H) ⊂ H, hence ηP(K

(2)
P2 ) ⊂ H and, by

induction, ηP(K
(2)
Pn ) ⊂ H for every n ≥ 1.

Conversely, if H ⊃
⋃
n≥1K

(2)
Pn , then it is obviously invariant.

The proof of the second assertion is analogous. �

If the group G is abelian, the characterization of ergodicity of a polymorphism of G is

completely analogous to that of ergodicity of an automorphism of G.

Theorem 1.8. Let P ⊂ G × G be a correspondence of a compact abelian group G with

Markov operator VP (cf. (1.5)). Then ΠP is nonergodic if and only if there exist a nontrivial

character χ of G and an integer n ≥ 1 with V n
P χ = χ.

Proof. If χ is a nontrivial character of G then the restriction to P of h = χ ◦ π1 is a

nontrivial character on P, and VPχ = EλP(h|B(2)
P ) is either equal to zero or a nontrivial

character of G (depending on whether h is constant on {1G} × K
(2)
P or not). Fourier

expansion completes the proof of the theorem. �

2. Toral polymorphisms

Compact groups do not have dynamically interesting polymorphisms unless they have

large abelian quotients. For this reason we focus our attention in this section on compact

abelian groups, and in particular on finite-dimensional tori.

Let m ≥ 1, and let Pf (Tm) be the semigroup of all finite-to-one correspondences of Tm.

We denote by L the set of all finite index subgroups of Zm. For every n = (n1, . . . , nm) ∈
Zm and x = (x1, . . . , xm) ∈ Tm we write

χn(x) = e2πi
∑m

j=1 njxj (2.1)

for the value of the corresponding character χn of Tm at x. The annihilator of a subgroup

F ⊂ Tm (or F ′ ⊂ T2m) is denoted by F⊥ (resp. F ′⊥).

For Q ∈ GL(m,Q) we put

ΛQ = Zm ∩QZm ∈ L. (2.2)

Finally we introduce the semigroup

M = {(Q,Λ) : Q ∈ GL(m,Q), Λ ∈ L, Λ ⊂ ΛQ} (2.3)

with composition

(Q,Λ) · (Q′,Λ′) = (QQ′,Λ ∩QΛ′). (2.4)
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Proposition 2.1. The semigroup Pf (Tm) is isomorphic to the semigroup M in (2.3),

where the isomorphism θ : M−→ Pf (Tm) is given by

θ(Q,Λ)⊥ = {(Q−1n,n) : n ∈ Λ} (2.5)

for every (Q,Λ) ∈M.

A correspondence P ∈ Pf (Tm) is connected if and only if

P = PQ = θ(Q,ΛQ) (2.6)

for some Q ∈ GL(m,Q) (cf. (2.2)). Finally, if P = θ(Q,Λ) ∈ Pf (Tm), then P∗ =

θ(Q−1, Q−1Λ).

Proof. For every Q ∈ GL(m,Q) and Λ ⊂ ΛQ, θ(Q,Λ) ⊂ Tm ×Tm is obviously an element

of Pf (Tm), and (1.9) guarantees that every P ∈ Pf (Tm) is obtained in this manner.

If Λ ( ΛQ ⊂ Zm, then P = θ(Q,Λ) contains PQ = θ(Q,ΛQ) as a finite index subgroup

and is therefore not connected. In order to prove the converse we set

WQ = {(Q−1n,n) : n ∈ ΛQ}.

The dual group of PQ is of the form (Zm × Zm)/WQ. If PQ is not connected, then there

exist an element (m,n) ∈ (Zm × Zm) rWQ and an l > 1 with (lm, ln) ∈ WQ. Hence

(m,n) = (Q−1k,k) for some k ∈ Zm ∩QZm = ΛQ, and (m,n) ∈ WQ. This contradiction

proves that PQ is connected.

The last assertion is obvious. �

Remark 2.2. Proposition 2.1 shows that connected finite-to-one correspondences are in

one-to-one correspondence with the elements of GL(m,Q).

For every n ≥ 1 we define Pn and K
(i)
Pn as in Corollary 1.7.

Theorem 2.3. Let Q ∈ GL(m,R) and P = θ(Q,Λ) ∈ Pf (Tm), where Λ ⊂ ΛQ = Zm∩QZm
is a finite index subgroup (cf. (2.2) and (2.5)).

(1) The following conditions are equivalent.

(a) ΠP is right nondeterministic,

(b) Ξ+
P = {n ∈ Λ : Qkn ∈ Zm for every k ≤ 0} = {0},

(c)
⋃
n≥1K

(2)
Pn is dense in Tm.

(2) The following conditions are equivalent.

(a) ΠP is left nondeterministic,

(b) Ξ−P = {n ∈ Λ : Qkn ∈ Zm for every k ≥ 0} = {0}.
(c)

⋃
n≥1K

(1)
Pn is dense in Tm.

(3) The following conditions are equivalent.

(a) ΠP is totally nondeterministic,

(b) Ξ+
P ∩ Ξ−P = {n ∈ Λ : Qkn ∈ Zm for every k ∈ Z} = {0}.

(c) Both
⋃
n≥1K

(1)
Pn and

⋃
n≥1K

(2)
Pn are dense in Tm.

Proof. In order to prove (1) we note that Ξ+
P is a group and that Q−1Ξ+

P ⊂ Ξ+
P . We set

H = (Ξ+
P )⊥ ⊂ Tm. Then the correspondence PH = P/(H×H) is the graph of a continuous

surjective homomorphism of the group Y = Tm/H⊥ to itself. The converse is proved by

reversing this argument.

If the group H =
⋃
n≥1K

(2)
Pn is trivial, then P is the graph of an endomorphism. If H

is not dense in Tm, then its closure H̄ is nontrivial and is the smallest proper invariant

subgroup of ΠP (cf. Corollary 1.7).

The assertions (2) and (3) are proved in exactly the same manner. �
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The property of being left, right or totally nondeterministic can also be expressed in

terms of the Markov group XP in (1.8).

Theorem 2.4. Under the hypotheses of Theorem 2.3 the polymorphism ΠP is right non-

deterministic if and only if the remote past of the process XP is trivial.2

Similarly, ΠP is left nondeterministic if and only if the remote future of XP is trivial.

Proof. We denote by λXP
the Haar measure of the compact abelian group XP. For every

n ≥ 1 we define the subgroups K
(1)
Pn and K

(2)
Pn as in Corollary 1.7.

For the proof of the theorem it is enough to notice that the conditional measure

λXP
( . |xn = t) for fixed t ∈ Tm and n < 0 is the uniform measure on a coset of the

group K
(2)
Pn . According to Theorem 1.6 (1), the polymorphism ΠP is right nondetermin-

istic if and only if
⋃
n≥1K

(2)
Pn is dense in Tm, in which case the conditional measures

λXP
( . |x−n = t) converge to λTm as m→∞. �

Theorem 2.5. Let Q ∈ GL(m,R) and P = θ(Q,Λ) ∈ Pf (Tm), where Λ ⊂ ΛQ = Zm∩QZm
is a finite index subgroup (cf. (2.5)). Then ΠP is nonergodic if and only if Q has a nontrivial

root of unity as an eigenvalue.

Furthermore, if ΠP is left, right or totally nondeterministic, then it is ergodic.

Proof. By definition, P⊥ = {(Q−1n,n) : n ∈ Λ}. A direct calculation shows that, for every

n ∈ Zm,

VP(χn) =

{
χQ−1n if n ∈ Λ,

0 otherwise,
V ∗P (χn) =

{
χQn if n ∈ Q−1Λ,

0 otherwise,
(2.7)

(cf. (2.1)). The existence of an n ∈ Λ with V k
P χn = χn for some k ≥ 1 is obviously

equivalent to Q having a root of unity as an eigenvalue.

The last assertion is obvious. �

We turn to the spectral properties of the Markov operator VP associated with a corre-

spondence P ∈ Pf (Tm).

Theorem 2.6. Let m ≥ 1, P ∈ Pf (Tm), and let Sp(VP) ⊂ D = {z ∈ C : |z| ≤ 1} be

the spectrum of the linear operator VP : L2
0(Tm,Bm

T , λTm) −→ L2
0(Tm,Bm

T , λTm) in (1.5),

where L2
0(Tm,Bm

T , λTm) = {f ∈ L2(Tm,Bm
T , λTm) :

∫
f dλTm = 0} is the orthocomplement

of the constants.

(1) Sp(VP) = Sp(V ∗P ) = {0} if and only if P is totally nondeterministic;

(2) Sp(VP) = Sp(V ∗P ) = S = {z ∈ C : |z| = 1} if and only if Ξ+
P = Ξ−P = Λ;

(3) Sp(VP) = Sp(V ∗P ) ⊂ S ∪ {0} if and only if Ξ+
P = Ξ−P ( Λ;

(4) If Ξ−P r Ξ+
P 6= ∅ then Sp(VP) = D;

(5) If Ξ+
P r Ξ−P 6= ∅ then Sp(V ∗P ) = D.

Proof. We choose (Q,Λ) ∈M with θ(Q,Λ) = P (cf. (2.5)). By definition ofM, Λ ⊂ Λ∩QΛ.

If P is totally nondeterministic then there exist, for every nonzero n ∈ Λ, a smallest

positive integer k+(n) and a largest negative integer k−(n) such that Qk
±(n)n /∈ Λ. If we

set

OQ(n) = {Qk−(n)+1n, . . . , Qk
+(n)−1n},

2The remote past of the process XP ⊂ (Tm)Z is the intersection A−∞ =
⋂

n∈Z A
−
n , where A−n is the

sigma-algebra generated by the coordinates of the process XP with index less than or equal to n. The remote
future of XP ⊂ (Tm)Z is the sigma-algebra A∞ =

⋂
n∈Z A

+
n , where A+

n is generated by the coordinates with

index greater than or equal to n of XP.
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then the restriction of V ∗P to the linear span 〈OQ(n)〉 of OQ(n) in L2(Tm,BTm , λTm) is

unitarily equivalent to a matrix of the form 0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
...

. . .
...

0 0 0 0 ... 0 1
0 0 0 0 ... 0 0

 ,

which has spectrum {0}. By taking the direct sum of the subspaces 〈OQ(n)〉, n ∈ Zn, in

L2(Tm,BTm , λTm) we see that Sp(V ∗P ) = {0}, and that the same is true for Sp(VP). This

proves (1).

The assertion (2) is obvious, since the condition given there is equivalent to Q being an

element of GL(m,Z).

In order to prove (3) we set Ξ = Ξ+
P = Ξ−p , S = Ξ⊥, Y = Ξ̂ = Tm/S, and we observe

that the restriction of Q to Ξ is a group automorphism. Hence the restrictions of VP and

V ∗P to the closed linear span of {χn : n ∈ Ξ} in L2(Tm,BTm , λTm) are unitary.

For n /∈ Ξ there exist a smallest nonnegative integer k+(n) and a largest nonpositive

integer k−(n) such that Qk
±(n)n /∈ Zn, and by combining the preceding paragraph with

the argument in the proof of (1) we obtain (3).

If Ξ−P r Ξ+
P 6= ∅ there exists an n ∈ Λ with Qkn ∈ Λ for every k ≥ 0, but Q−1n /∈ Λ.

The restriction W of VP to the closed linear span H of {χQkn : k ≥ 0} has a nonzero

kernel, since VPχn = 0. Furthermore, if γ ∈ C, |γ| < 1, and if vγ =
∑

k≤0 γ
kχQkn ∈ H,

then VPvγ = γvγ , i.e., vγ is an eigenvector of VP with eigenvalue γ. This proves that

Sp(VP) ⊃ Sp(W ) = D.

The same argument shows that Sp(V ∗P ) ⊃ Sp(W ) = D if Ξ+
P r Ξ−P 6= ∅, and the

remaining implications are immediate consequences of what has already been shown. �

3. Factors of toral automorphisms and other examples

If A,B are endomorphisms of Tm, then

P(A,B) = {(x, y) ∈ Tm × Tm : Ax = By} (3.1)

is a finite-to-one correspondence, and every P ∈ Pf (Tm) is of this form. Note that

P(A,B) = P(CA,CB) for every C ∈ GL(m,Z), and that P(AC ′, BC ′) and P(A,B) are

isomorphic if C ′ ∈ GL(m,Z).

The subgroups K
(1)
P(A,B) and K

(2)
P(A,B) and the isomorphism ηP(A,B) : Tm/K(1)

P(A,B) −→

Tm/K(2)
P(A,B) associated with P(A,B) by (1.9) are given by K

(1)
P(A,B) = (A>Zm)⊥, K

(2)
P(A,B) =

(B>Zm)⊥ and ηP(A,B) = −B−1A, respectively, where > denotes transpose.

Ergodicity of P(A,B) is thus equivalent to the assumption that B−1A ∈ GL(m,Q) has

no eigenvalues which are roots of unity (cf. Theorem 1.8).

In order to characterize connectedness of P(A,B) we set Q = η̂−1
P = B>(A>)−1. Ac-

cording to Proposition 2.1, P(A,B) is connected if and only if

B>Zm = Zm ∩B>(A>)−1Zm = ΛQ,

i.e., if and only if

Zm = (A>)−1Zm ∩ (B>)−1Zm. (3.2)

Example 3.1. Let m = 1, k, l ∈ N and P = {(u, v) : u, v ∈ T, ku = lv}. We denote by

s the highest common factor of k, l and set k = k′s, l = l′s. Then P = θ(Q,Λ), where

Λ = lZ and Q is multiplication by −k′

l′ (cf. (2.5)).

If k, l are coprime (i.e., if s = 1) then P = PQ is connected by (3.2).
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If s > 1 then φ is the quotient map from Z to F = Z/sZ, P is disconnected, and

K
(1)
P ∩K

(2)
P = {x ∈ T : sx = 0 (mod 1)}).

Finally, if |k/l| 6= 1 then ΠP is ergodic. If k, l are coprime and |k| > 1, |l| > 1, then ΠP

is totally nondeterministic.

Examples 3.2 (Factors of polymorphisms). (1) Consider the correspondence P = {(u, v) :

u, v ∈ T, 3u = 2v} (cf. Example 3.1 (1)), and let H = {0, 1/5, 2/5, 3/5, 4/5} ⊂ T. Then P

is the annihilator of {(3k,−2k) : k ∈ Z} ⊂ Z2 and PH is the annihilator of {(15k,−10k) :

k ∈ Z}. Note that P and PH are isomorphic.

(2) Let Q = ( 1 1
1 0 ), and let P = PQ = θ(Q,Z2). Put H =

{
0,
(

1/2
0

)}
⊂ T2 and

set P′ = PH . We identify T2/H with T2 by the map φ ( st ) = ( 2s
t ) and view P′ as a

correspondence of T2. Then P′ is isomorphic to the polymorphism of P(A,B) of T2 with

A =

(
1 0
0 2

)
, B =

(
1 2
1 0

)
.

Since A,B /∈ GL(2,Z), P′ is not the graph of an automorphism.

Example 3.2 (2) shows that a toral automorphism P may have a proper polymorphism

as a factor (proper means that the groups K
(1)
P ,K

(2)
P in (1.9) are not both trivial). However,

the following theorem shows that factors of automorphisms always have a nontrivial doubly

invariant subgroup.

Theorem 3.3. Let P(A) ∈ Pf (Tm) be the graph of a toral automorphism A ∈ GL(m,Z).

For every finite subgroup H ⊂ Tm there exists a finite doubly invariant subgroup H ′ ⊂ Tm
containing H. In particular, PH′ is the graph of an automorphism of Tm/H ′.

In other words, if a polymorphism is a factor of a toral automorphism then it has a

further factor which is again an automorphism.

Proof. Since H is finite, there exists a q ≥ 1 such that H ⊂ H ′ = {t ∈ Tm : qt = 0}.
As one checks easily,

⋃
n≥1K

(i)
Pn ⊂ H ′ for i = 1, 2. Theorem 2.3 shows that H ′ is invariant

under PH , which proves our claim. �

Theorem 3.3 allows us to say a little more about the structure of factors of toral auto-

morphisms.

Corollary 3.4. Let P(A) ∈ Pf (Tm) be the graph of a toral automorphism A ∈ GL(m,Z),

H ⊂ Tm a finite subgroup and H ′ ⊂ Tm a finite doubly invariant subgroup containing H.

If we identify both Tm/H and Tm/H ′ with Tm, then the correspondence P′′ = PH′ is the

graph of a toral automorphism A′′ (i.e., P′′ = P(A′′)), and the correspondence P′ = PH has

the graph of the automorphism A′′ ∈ GL(m,Z) as a factor with kernel (H/H ′)× (H/H ′).

Proof. The identifications of Tm/H and Tm/H ′ with Tm yield finite-to-one equivariant

homomorphisms

Tm −→ Tm/H −→ Tm/H ′

where the automorphisms A and A′′ act on the first and third torus and the polymorphism

ΠP′ on the second. �

Remarks 3.5. (1) The automorphism A′′ ∈ GL(m,Z) in Corollary 3.4 is obviously conju-

gate to A in GL(m,Q), but not necessarily in GL(m,Z).
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Conversely, if P = P(A) is the graph if some A ∈ GL(m,Z), and if A′′ ∈ GL(m,Z) is

conjugate to A in GL(m,Q), then the graph P(A′′) is isomorphic to P(A)H′ for some finite

subgroup H ′ ⊂ Tm.

(2) There is a minimal choice of the subgroup H ′ ⊂ Tm in Theorem 3.3: the subgroup

generated by
⋃
n∈ZA

kH (which we know to be finite from the proof of Theorem 3.3).

(3) Corollary 3.4 shows that a polymorphism ΠP′ is a factor of an automorphism A ∈
GL(m,Z) of Tm if and only if there exist an A′′ ∈ GL(m,Z) which is conjugate to A in

GL(m,Q) and finite groups H ⊂ H ′ ⊂ Tm such that P′ is a skew product over the (the

graph of) automorphism A′′ with fibre (H/H ′). Note, however, that P′ is connected and

is therefore a nontrivial H/H ′-bundle over the base Tm on which A′′ acts.

(4) In [1] it is shown that every polymorphism is a factor of an automorphism with

respect to some invariant partition (i.e., invariant sub-sigma-algebra), but Theorem 3.3

shows that this is not true in the algebraic category.
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