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Abstract. An irreducible algebraic Zd-action α on a compact abelian
group X is a Zd-action by automorphisms of X such that every closed,
α-invariant subgroup Y ( X is finite. We prove the following result:
if d ≥ 2, then every measurable conjugacy between irreducible and
mixing algebraic Zd-actions on compact zero-dimensional abelian groups
is affine. For irreducible, expansive and mixing algebraic Zd-actions
on compact connected abelian groups the analogous statement follows
essentially from a result by Katok and Spatzier on invariant measures
of such actions (cf. [4] and [3]). By combining these two theorems one
obtains isomorphism rigidity of all irreducible, expansive and mixing
algebraic Zd-actions with d ≥ 2.

1. Introduction

Let d ≥ 1. An algebraic Zd-action α : n 7→ αn on a compact abelian group
X is a Zd-action by continuous automorphisms of X. An algebraic Zd-action
α on X is expansive if there exists an open set O ⊂ X with

⋂
n∈Zd α−n(O) =

{0X}, where 0X is the identity element of X, and irreducible if every closed,
α-invariant subgroup Y ( X is finite. The action α is ergodic or mixing if
the Haar measure λX of X is ergodic or mixing under α.

For every closed, α-invariant subgroup Y ⊂ X we denote by αY and αX/Y
the Zd-action induced by α on Y and X/Y , respectively.

Perhaps the most familiar examples of expansive algebraic Zd-actions arise
from commuting hyperbolic toral automorphisms. Another class of such
actions are the group shifts appearing in coding theory: let A be a finite
abelian group, and let Ω = AZd

be the compact abelian group consisting of
all maps ω : Zd −→ A, furnished with the product topology and coordinate-
wise addition. We write every ω ∈ Ω as ω = (ωn) with ωn ∈ A for every
n ∈ Zd and define the shift-action σ of Zd on Ω by

(σmω)n = ωm+n (1.1)

for every ω ∈ Ω and m,n ∈ Zd. Clearly, σ is an expansive algebraic Zd-
action on Ω. A group shift is the restriction of the shift-action σ in (1.1) to a
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closed, shift-invariant subgroup X ⊂ Ω. Every group shift is a d-dimensional
shift of finite type (cf. [6]–[8]).

In order to classify group shifts and, more generally, expansive algebraic
Zd-actions, we introduce certain notions of conjugacy of such actions. For
i = 1, 2, let αi be an algebraic Zd-action on compact abelian group Xi with
normalized Haar measure λXi . A surjective Borel map φ : X1 −→ X2 is a
measurable factor map of α1 and α2 if

λX1φ
−1 = λX2 , (1.2)

and if
φ ◦ αn

1 (x) = αn
2 ◦ φ(x) (1.3)

for every n ∈ Zd and λX1-a.e. x ∈ X1. A bijective measurable factor map
φ : X1 −→ X2 is a measurable conjugacy of α1 and α2.

A continuous surjective group homomorphism φ : X1 −→ X2 is an algebraic
factor map of α1 and α2 if it satisfies (1.3) for every n ∈ Zd and x ∈ X1. A
bijective algebraic factor map φ : X1 −→ X2 is an algebraic conjugacy of α1

and α2.
The action α2 is a measurable (resp. algebraic) factor of α1 if there exists

a measurable (resp. algebraic) factor map φ : X1 −→ X2 of α1 and α2. The
actions α1, α2 are measurably (resp. algebraically) conjugate if there exists
a measurable (resp. algebraic) conjugacy φ : X1 −→ X2 of α1 and α2, and
they are weakly measurably (resp. weakly algebraically) conjugate if each of
them is a measurable (resp. algebraic) factor of the other.

Finally we call a map φ : X1 −→ X2 affine if it is of the form

φ(x) = ψ(x) + x′ (1.4)

for every x ∈ X1, where ψ : X1 −→ X2 is a continuous surjective group
homomorphism and x′ ∈ X2.

For d = 1, any algebraic Z-action is determined by the powers of a single
group automorphism α. If α is ergodic, then it is Bernoulli (cf. e.g. [1], [2],
[5], [9], [11]), which implies that two such actions with equal entropy are
measurably conjugate even if they are algebraically nonconjugate.

If d > 1 and α1, α2 have completely positive entropy with respect to Haar
measure, then they are Bernoulli by [12], and can thus again be measurably
conjugate without being algebraically conjugate. However, if these actions
are irreducible, expansive and mixing, and if the groups X1 and X2 are
connected, then [4, Theorem 5.1’ and Corollary 5.2’], combined with an
observation by J.-P. Thouvenot, implies that every measurable conjugacy is
a.e. equal to an affine map (cf. [3]). The purpose of this note is to prove an
analogous result for irreducible and mixing algebraic Zd-actions on compact,
zero-dimensional abelian groups.

Theorem 1.1. Let d > 1, and let α1 and α2 be mixing algebraic Zd-actions
on compact zero-dimensional abelian groups X1 and X2, respectively. If α1

is irreducible, and if φ : X1 −→ X2 is a measurable conjugacy of α1 and α2,
then α2 is irreducible and φ is λX1-a.e. equal to an affine map.

Corollary 1.2. Let d > 1, and let α1 and α2 be irreducible, mixing and
expansive algebraic Zd-actions on compact abelian groups X1 and X2, respectively.
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Then every measurable conjugacy φ : X1 −→ X2 of α1 and α2 is λX1-a.e.
equal to an affine map.

Corollary 1.3. Let d > 1, and let α1 and α2 be measurably conjugate
irreducible, mixing and expansive algebraic Zd-actions on compact abelian
groups X1 and X2, respectively. Then α1 and α2 are algebraically conjugate.

Proof of Corollary 1.2. If α is an irreducible algebraic Zd-action on a compact
abelian group X, then the connected component of the identity X◦ ⊂ X is a
closed α-invariant subgroup. By irreducibility, either X = X◦ or X◦ = {0X}.
In the first case the result appears in [3], and in the second case it follows
from Theorem 1.1 above. �

Proof of Corollary 1.3. If α1 and α2 are measurably conjugate then Corollary
1.2 shows that there exists an affine conjugacy φ : X1 −→ X2 of α1 and α2

of the form (1.4). The group isomorphism ψ : X1 −→ X2 is an algebraic
conjugacy of α1 and α2. �

Actions with completely positive entropy and irreducible actions lie — in
a sense — at opposite ends of the spectrum of ergodic algebraic Zd-actions.
As mentioned above, the kind of isomorphism rigidity described in Theorem
1.1 and its corollaries is impossible for actions with completely positive
entropy. However, it may conceivably hold for all mixing algebraic Zd-actions
with zero entropy (i.e. without Bernoulli factors — cf. [10]). The currently
available techniques do not appear to shed any light on this question.

This paper is organized as follows: Section 2 provides background on
irreducible algebraic Zd-actions, Section 3 contains the proof of Theorem
1.1, and Section 4 illustrates Theorem 1.1 with examples. In one of these
examples (Example 4.4) we apply Theorem 1.1 to check measurable nonconjugacy
of certain algebraic Z2-actions with positive (but not completely positive)
entropy.

2. Irreducible Zd-actions

Following [7], [13] and [15] we denote by Rd = Z[u±1
1 , . . . , u±1

d ] the ring
of Laurent polynomials with integral coefficients in the commuting variables
u1, . . . , ud. Every f ∈ Rd is written as

f =
∑

m∈Zd

cf (m)um (2.1)

with um = um1
1 · · ·u

md
d and cf (m) ∈ Z for every m = (m1, . . . ,md) ∈ Zd,

where cf (m) = 0 for all but finitely many m.
Suppose that α is an algebraic Zd-action on a compact abelian group X.

We denote by X̂ the additively written dual group of X and write 〈a, x〉 the
value of a character a ∈ X̂ at a point x ∈ X. The dual action α̂ : n 7→ α̂n of
Zd on X̂ is defined by

〈α̂na, x〉 = 〈a, αnx〉
for every n ∈ Zd, x ∈ X and a ∈ X̂.

For every f =
∑

n∈Zd cf (n)un ∈ Rd, x ∈ X and a ∈ X̂, we set

f(α)(x) =
∑
n∈Zd

cf (n)αnx, f(α̂)(a) =
∑
n∈Zd

cf (n)α̂na, (2.2)
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and note that f(α) : X −→ X is a group homomorphism with dual homomorphism

f̂(α) = f(α̂) : X̂ −→ X̂. (2.3)

The group X̂ is a module over the ring Rd with operation

f · a = f(α̂)(a) (2.4)

for f ∈ Rd and a ∈ X̂. In particular,

um · a = α̂ma (2.5)

for m ∈ Zd and a ∈ M. The module M = X̂ is called the dual module M
of α, and is Noetherian (and hence countable) whenever α is expansive (cf.
[13, Proposition 5.4]).

Conversely, if M is an Rd-module, we define an algebraic Zd-action αM

on the compact abelian group

XM = M̂ (2.6)

by setting
α̂m

Ma = um · a (2.7)

for every m ∈ Zd and a ∈M.
A prime ideal p ⊂ Rd is associated with an Rd-module M if there exists

an a ∈ M with p = ann(a) = {f ∈ Rd : f · a = 0}. The set asc(M) of all
prime ideals associated with M has the property that⋃

p∈asc(M)

p = {f ∈ Rd : multiplication by f on M is not injective}. (2.8)

As was shown in [13], [10] and [15], many properties of an algebraic Zd-
action α can be expressed in terms of the prime ideals associated with the
dual module M = X̂ of α. As a starter we note that the group X is zero-
dimensional if and only if every prime ideal p associated with M contains a
nonzero constant ([15, Proposition 6.9]), and that α is ergodic (resp. mixing)
if and only if αRd/p is ergodic (resp. mixing) for every p ∈ asc(M) ([15,
Proposition 6.6]).

The following result is contained in [15, Proposition 6.6 and Theorem
29.2]. We give a brief proof for the reader’s convenience.

Proposition 2.1. Let α be an irreducible and ergodic algebraic Zd-action
on a compact zero-dimensional abelian group X. Then α is expansive and
there exists a unique prime ideal p ⊂ Rd with the following properties.

(1) p contains a rational prime p > 1;
(2) Rd/p is infinite;
(3) For every ideal I ) p in Rd, Rd/I is finite;
(4) There exist continuous, surjective, finite-to-one group homomorphisms

ψ : X −→ XRd/p and ψ′ : XRd/p −→ X with

ψ ◦ αn = αn
Rd/p

◦ ψ, ψ′ ◦ αn
Rd/p

= αn ◦ ψ′, (2.9)

for every n ∈ Zd.
(5) α is mixing if and only if um − 1 /∈ p for every nonzero m ∈ Zd;
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Conversely, if p ⊂ Rd is a prime ideal satisfying the conditions (1)–(3)
above, then the Zd-action α = αRd/p on the zero-dimensional group XRd/p

is irreducible, ergodic, and satisfies (5) (cf. (2.6)–(2.7)).

Proof. Since X is zero-dimensional, every prime ideal associated with the
dual module M = X̂ contains a nonzero constant. The ergodicity of α implies
that every nonzero submodule N ⊂M is infinite: otherwise Z = N̂ = X/N⊥

would be a finite quotient of X by an α-invariant subgroup, contrary to
ergodicity.

If p is a prime ideal associated with M then there exists, by definition,
an element a ∈ M with N = Rd · a ∼= Rd/p. The preceding paragraph
shows that N is infinite, and the irreducibility of α implies that the closed,
α-invariant subgroup Y = N⊥ ⊂ X is finite. Hence Ŷ = M/N is finite.

If I ) p is an ideal, then N′ = I · a ∼= I/p is a submodule of N and hence
— by irreducibility — of finite index in N. It follows that Rd/I is finite, as
claimed in (3).

If q 6= p is a second prime ideal associated with M then q = ann(b) for
some b ∈ M r N. Every nonzero b′ ∈ N′ = Rd · b has q as its annihilator.
However, since Rd/q ∼= N′ is infinite by ergodicity and N′/N = N′/(N)∩N′)
is finite by (3), there exists an h ∈ Rdrq with h·b ∈ N and hence ann(h·b) =
p. This contradiction implies that p is the only prime ideal associated with
M, and we denote by p > 1 the rational prime contained in p.

The surjective homomorphism ψ : X −→ XN = XRd/p dual to the inclusion
N ⊂M satisfies the first equation in (2.9). For the definition of the homomorphism
ψ′ : XN −→ X we conclude as above that there exists, for every b ∈M r N,
an element hb ∈ Rd r p with h · b ∈ N. The polynomial

h =
∏

b∈MrN

hb ∈ Rd r p

satisfies that h ·M ⊂ N. The map mh : M −→ N consisting of multiplication
by h is injective by (2.8), and the surjective homomorphism ψ′ : XN −→ X
dual to mh satisfies the second equation in (4).

Equation (2.14) shows that αN is expansive, and the expansiveness of
αM is clear from the fact that the group homomorphisms ψ,ψ′ in (4) are
finite-to-one by irreducibility and (3).

The statement (5) follows from [15, Proposition 6.6], and the final assertion
is a consequence of the properties of p and [15, Proposition 6.6]. �

Remarks 2.2. (1) Let α be an irreducible and ergodic algebraic Zd-action on
a compact zero-dimensional abelian group X, and let p ⊂ Rd be the prime
ideal satisfying the conditions (1)–(4) in Proposition 2.1. Condition (5) in
Proposition 2.1 shows that α is mixing if and only if αm 6= idX whenever
0 6= m ∈ Zd, where idX is the identity automorphism of X.

(2) Condition (3) in Proposition 2.1 is equivalent to p having Krull dimension
(or depth) 1.

(3) If q ⊂ Rd is a prime ideal satisfying the conditions (1)–(3) in Proposition
2.1, and if α = αRd/q, then the the prime ideal p ⊂ Rd satisfying the
conditions (1)–(4) in Proposition 2.1 is equal to q.
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Motivated by Proposition 2.1 we take a closer look at Zd-actions of the
form αRd/p, where p ⊂ Rd is a prime ideal satisfying the conditions (1)–

(3) described there. Denote by R
(p)
d = Fp[u±1

1 , . . . , u±1
d ] the ring of Laurent

polynomials in the variables u1, . . . , ud with coefficients in the prime field
Fp = Z/pZ, and define a ring homomorphism f 7→ f/p from Rd to R

(p)
d by

reducing each coefficient of f modulo p. Again we write every h ∈ R
(p)
d as

h =
∑

n∈Zd ch(n)un with ch(m) ∈ Fp for every m ∈ Zd. The set

S(h) = {n ∈ Zd : ch(n) 6= 0} (2.10)

is called the support of h ∈ R
(p)
d .

If
p = {f/p : f ∈ p}, (2.11)

then p ⊂ R
(p)
d is again a prime ideal, and the map f 7→ f/p induces an

Rd-module isomorphism
Rp/p ∼= R

(p)
d /p. (2.12)

Let Ω = FZd

p , furnished with the product topology and component-wise
addition. We write every ω ∈ Ω as ω = (ωn) with ωn ∈ Fp for every n ∈ Zd

and define the shift-action σ of Zd on Ω by (1.1). The additive group R
(p)
d

can be identified with the dual group Ω̂ of Ω by setting

〈h, ω〉 = e2πi(
P

n∈Zd ch(n)ωn)/p (2.13)

for every h ∈ R
(p)
d and ω ∈ Ω. With this identification the automorphism

σ̂n of R
(p)
d dual to the shift σn on Ω consists of multiplication by un.

If I ⊂ R
(p)
d is an ideal, then

I⊥ = R̂
(p)
d /I = X

R
(p)
d /I

= {ω ∈ Ω : 〈h, ω〉 = 1 for every h ∈ I} (2.14)

is a closed, shift-invariant subgroup of Ω, and α
R

(p)
d /I

is the restriction of σ
to X

R
(p)
d /I

. We conclude this section with a corollary of Proposition 2.1.

Corollary 2.3. Let α be an irreducible and ergodic algebraic Zd-action on
a compact zero-dimensional abelian group X. Then h(αn) < ∞ for every
n ∈ Zd, where h(·) denotes topological entropy.

Conversely, if α is an expansive, ergodic (and mixing) algebraic Zd-action
on a compact zero-dimensional abelian group X with h(αn) < ∞ for every
n ∈ Zd, and if p ⊂ Rd is a prime ideal associated with the module M = X̂,
then the Zd-action αRd/p on XRd/p is irreducible, ergodic (and mixing).

Proof. If α is irreducible we may assume without loss in generality that
α = αRd/p and X = XRd/p for some prime ideal p ⊂ Rd satisfying the

conditions (1)–(3) in Proposition 2.1. We denote by p ⊂ R
(p)
d the prime

ideal (2.11) and set M = Rd/p = R
(p)
d /p.

If d = 2 our assertion is obvious (cf. [6]). Assume therefore that d ≥ 3.
A nonzero element m = (m1, . . . ,md) ∈ Zd is primitive if gcd(m1, . . . ,md)

= 1. We claim that there exists, for every pair m,n of linearly independent
primitive elements in Zd, a nonzero element h ∈ R

(p)
2 with h(um, un) ∈ p.
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In order to prove this claim by contradiction we assume for notational
simplicity that m = e(1) = (1, 0, 0, . . . , 0) and n = e(2) = (0, 1, 0, . . . , 0)
(the proof in the general case is completely analogous). With Denote by β

the Z2-action (n1, n2) 7→ β ˆ(n1, n2) = α(n1,n2,0,...,0) on X. The dual module
N of β is nothing but M, considered as a module over R

(p)
2 ⊂ R

(p)
d . Our

hypothesis that p∩R
(p)
2 = {0} implies that {0} the only prime ideal in R

(p)
2

associated with N.
We represent X as the closed, shift-invariant subgroup (2.14) of Ω = FZd

p

(with I replaced by p) and denote by πE : X −→ FEp the projection of
every x ∈ X ⊂ FZd

p to its coordinates in a subset E ⊂ Zd. We write βk
for the Zk-action (n1, . . . , nk) 7→ β(n1,...,nk) = α(n1,...,nk,0,...,0) on X, where
k = 1, . . . , d.

We fix an integer M ≥ 0 such that

Q(M) = {n = (n1, . . . , nd) ∈ Zd : |ni| ≤M for i = 3, . . . , d} ⊃ S(gi)

for i = 1, . . . , L, where {g1, . . . , gL} is a set of generators of the ideal p. For
k = 2, . . . , d we set

E+
k = {n = (n1, . . . , nd) ∈ Zd : nk+1 ≥ 0, |ni| ≤M for i = k + 2, . . . , d},

E−k = {n = (n1, . . . , nd) ∈ Zd : nk+1 ≤ 0, |ni| ≤M for i = k + 2, . . . , d},

Ek = {n = (n1, . . . , nd) ∈ Zd : |ni| ≤M for i = k + 1, . . . , d},
Xk = πEk

(X), Y +
k = πEk

(kerπE+
k

), Y −k = πEk
(kerπE−k ).

The subgroups Y ±k ⊂ X are closed and βk-invariant, and βk induces an
expansive Zk-action βXk

on Xk. We denote by N±k the dual R
(p)
k−1-modules

defined by the Zk−1-actions (βk)Y ±k induced by βk on Y ±k 1. Although these
actions are not necessarily expansive and their dual modules need not be
Noetherian, it is easy to check that each of these modules has only finitely
many associated prime ideals in R

(p)
k . We view all these prime ideals as

prime ideals in R
(p)
d and choose an f ∈ R

(p)
2 which does not lie in any of

these prime ideals, and whose support S(f) contains at least two elements.
We claim that the group homomorphism f(α) = f(β2) : X −→ X defined
by (2.2) has the following properties:

(a) f(α) : X −→ X is surjective,
(b) ker f(α) is uncountable.

Since Yf = ker f(α) is a closed, α-invariant subgroup of X this will violate
irreducibility and prove that p ∩R

(p)
2 cannot be equal to {0}.

Since p ∩ R
(p)
2 = {0}, Condition (a) is satisfied for every nonzero f ∈

R
(p)
2 . Furthermore, since the restriction of β2 to Y2 is expansive and its

dual module is therefore Noetherian, it is easy to check that the kernel
ker(f(α)X2) of the surjective automorphism f(α)X2 : X2 −→ X2 is uncountable,
where f(α)Xk

is the homomorphism of Xk induced by f(α). By using an
induction argument involving duality and our choice of f one can check that
πXk

(ker(f(α)Xk+1
)) = ker(f(α)Xk

) for k = 2, . . . , d, which proves (b) and
completes the proof of our assertion that there exists, for every pair m,n of
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linearly independent primitive elements in Zd, a nonzero element h ∈ R
(p)
2

with h(um, un) ∈ p.
Next we assert that h(αm) < ∞ for every primitive m ∈ Zd. In order to

verify this we represent α as the shift-action on X = p⊥ (cf. (1.1) and (2.14))
and assume for simplicity that m = e(1) = (1, 0, . . . , 0). The last paragraph
shows that there exist nonzero elements hi ∈ R

(p)
2 with hi(u1, ui) ∈ p for

i = 2, . . . , d. After multiplying each hi by a power of ui we can write it as

h
(0)
i (u1) + h

(1)
i (u1)ui + · · ·+ h

(Li)
i (u1)uLi

i

with h
(j)
i ∈ R

(p)
1 and h

(0)
i h

(Li)
i 6= 0. Then we claim that

h(αe(1)
) ≤

( d∏
i=2

(Li + 1)
)
· log 2. (2.15)

In order to prove (2.15) we set, for every N = (N2, . . . , Nd) ∈ Nd−1,

Q(N) = {n = (n1, . . . , nd) ∈ Zd : 0 ≤ ni ≤ Ni for i = 2, . . . , d} (2.16)

and write πQ(N) : X −→ F
Q(N)
p for the projection which restricts each x ∈

X ⊂ FZd

p to its coordinates in Q(N). The map πQ(N) is a continuous group
homomorphism, and ker(πQ(N)) is an αe(1)

-invariant subgroup of X. If Ni ≥
Li for i = 2, . . . , d, then

| ker(πQ(N))/ ker(πQ(N2,...,Nj−1,Nj+1,Nj+1,...,Nd))| <∞
for j = 2, . . . , d, and hence

| ker(πQ(N))/ ker(πQ(N′))| <∞
whenever N ′i ≥ Ni ≥ Li for i = 2, . . . , d. It follows that group automorphism
σN = αe(1)

X/ ker(πQ(N))
induced by αe(1)

on X/ ker(πQ(N)) satisfies that

h(αe(1)
) = lim

N2→∞,...,Nd→∞
h(σN) = h(σL),

where L = (L2, . . . , Ld). This proves (2.15).
Since h(αm) < ∞ and h(αkm) = |k|h(αm) for every primitive m ∈ Zd

and every k ∈ Z, h(αn) <∞ for every n ∈ Zd.
Conversely, let p > 1 be a rational prime and p ⊂ Rd a prime ideal with

p ∈ p and h(αn
Rd/p

) <∞ for every n ∈ Zd. We set α = αRd/p,X = XRd/p and
define g(α) by (2.2) for every g ∈ Rd. Since g(α) is dual to multiplication by
g on X̂ = Rd/p, g(α) is surjective if and only if g ∈ Rdrp, and g(α)(x) = 0X
for every x ∈ X otherwise.

For every closed α-invariant subgroup Y ⊂ X we have that

h(αn) = h(αn
Y ) + h(αn

X/Y )

for every n ∈ Zd (cf. e.g. [10], [17]). Fix g ∈ Rd r p and set Y = ker(g(α)).
Then h(αn) = h(αn

X/Y ) and hence h(αn
Y ) = 0 for every n ∈ Zd.

Let n ∈ Zd be a primitive element. We view the Rd-module N = Ŷ =
̂ker(g(α)) as a module over the ring Z[u±n] ∼= R1. Since h(αn

Y ) = 0, the
entropy formula in [10] shows that every prime ideal q′ ⊂ Z[u±n] associated
with N is nonprincipal: as p ∈ q′ this means that q′ ) pZ[u±n], and hence
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that ukn− 1 ∈ q′ for some k ≥ 1. From the definition of an associated prime
we obtain that every prime ideal q ⊂ Rd associated with the Rd-module N
contains p and ukn − 1 for some k ≥ 1. Since this is true for every primitive
n ∈ Zd, Rd/q is finite for every prime ideal q ⊂ Rd associated with N.
As N is Noetherian, N — and hence Y = ker(g(α)) — is finite for every
g ∈ Rd r p.

Duality and the Noetherian property of M = X̂ allow us to write every
closed, α-invariant subgroup Y ( X as an intersection of finitely many
subgroups ker(g(α)) with g ∈ Rd r p. Hence every such subgroup is finite
and α = αRd/p is irreducible.

Finally, if α is an expansive and ergodic algebraic Zd-action on a zero-
dimensional compact abelian group X with h(αn) < ∞ for every n ∈ Zd,
then h(αn

Rd/p
) <∞ for every n ∈ Zd and every prime ideal p ⊂ Rd associated

with M = X̂, and the argument above implies that αRd/p is irreducible and
ergodic. If α is also mixing, then αRd/p is mixing by [15, Proposition 6.6]. �

3. The proof of Theorem 1.1

The proof of Theorem 1.1 relies on the notion of a mixing set introduced
in [6]–[8], and on the application of mixing sets to invariant measures in [14].

Let α be an algebraic Zd-action on a compact abelian group X, and let
µ be an α-invariant probability measure on the Borel field BX of X. A
nonempty finite set S ⊂ Zd is µ-mixing under α if

lim
k→∞

µ

(⋂
n∈S

α−kn(Bn)
)

=
∏
n∈S

µ(Bn)

for every collection (Bn, n ∈ S) in BX , and µ-nonmixing otherwise. A
nonempty set S ⊂ Zd is minimal µ-nonmixing if S is µ-nonmixing, but
every nonempty subset S′ ( S is µ-mixing. A λX -(non-)mixing set is called
a (non-)mixing set of α.

If the group X is connected and λX is mixing under α, then every
nonempty set S ⊂ Zd is mixing under α by [16]. If X is disconnected,
then a mixing algebraic Zd-action α on X has nonmixing sets if and only
if λX does not have completely positive entropy (cf. [8] and [15, Section
27]). In particular, if α is an irreducible and mixing algebraic Zd-action on
a compact zero-dimensional abelian group X, then α has nonmixing sets.

Lemma 3.1. Let d > 1, α an irreducible and ergodic algebraic Zd-action on
a compact zero-dimensional abelian group X, and let p ⊂ Rd be the prime
ideal described in Proposition 2.1.

(1) The Zd-actions α and αRd/p = α
R

(p)
d /p

have the same nonmixing sets

(cf. (2.11)–(2.12));
(2) For every nonzero element h ∈ p ⊂ R

(p)
d , the support S(h) of h is a

nonmixing set of αRd/p and hence of α (cf. (2.10)).

Proof. The first assertion is an immediate consequence of (2.9). For the
second statement we note that

hp
n

=
∑
n∈Zd

ch(n)up
nn ∈ p
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for every h ∈ p and n ≥ 1. By setting I = p in (2.14) and putting Bn =
{ω ∈ XRd/p : ω0 = 0} for every n ∈ S(h) we see that that S(h) is nonmixing
for αRd/p and hence for α. �

Lemma 3.2. Let α1 and α2 be algebraic Zd-actions on compact abelian
groups X1 and X2, respectively.

(1) If α1 and α2 are measurably conjugate then they have the same
nonmixing sets;

(2) If α2 is a measurable factor of α1, and if S ⊂ Zd is a nonempty finite
set which is minimal nonmixing for both α1 and α2, then there exist
nonzero elements ai(n) ∈ X̂i, n ∈ S, i = 1, 2, such that∑

n∈S
α̂kn1 (a1(n)) =

∑
n∈S

α̂kn2 (a2(n)) = 0 (3.1)

for every k in an infinite subset K ⊂ N.

Proof. It is clear that α1 and α2 have the same nonmixing sets if they are
measurably conjugate. If φ : X1 −→ X2 is a measurable factor map of α1

and α2, and if S is minimal nonmixing for α1 and α2, there exist an ε > 0
and Borel sets Bn, n ∈ S, in X2 such that

0 < λX2(Bn) < 1 for every n ∈ S,∣∣∣∣λX2

(⋂
n∈S

α−kn2 (Bn)
)
−
∏
n∈S

λX2(Bn)
∣∣∣∣ > ε

for every k in an infinite subset L ⊂ N. We write 1Bn for the indicator
function of Bn, set fn = 1Bn − λX2(Bn) ∈ L2(X2,BX2 , λX2), and obtain
that ‖fn‖∞ ≤ 1 and

∫
fn dλX2 = 0 for every n ∈ S, and that∣∣∣∣∫ (∏

n∈S
fn · αkn2

)
dλX2

∣∣∣∣ > ε′

for some ε′ > 0 and every k ∈ L.
Fix an enumeration S = {n1, . . . ,nM} and define inductively trigonometric

polynomials f ′ni
: X2 −→ C, i = 1, . . . ,M , with∫

f ′ni
dλX2 = 0 and

∥∥fni − f ′ni
‖2 < ε′

/
2M ·

(i−1∏
j=1

‖f ′nj
‖∞
)

for i = 1, . . . ,M . Then∣∣∣∣∫ (∏
n∈S

f ′n · αkn2

)
dλX2

∣∣∣∣ > ε′/2M

for every k ∈ L. Since each f ′n is a trigonometric polynomial with zero
constant term there exist nontrivial characters a2(n) ∈ X̂2, n ∈ S, and an
infinite sequence L′ ⊂ L ⊂ N such that

∑
n∈S α̂

kn
2 (a2(n)) = 0 for every

k ∈ L′.
Define gn : X1 −→ C by gn(x) = 〈a2(n), φ(x)〉 for every x ∈ X1 and

n ∈ S, and observe that ‖gn‖∞ = ‖gn‖2 = 1 and
∫
gn dλX1 = 0 for every
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n ∈ S, and that

1 =
∫ (∏

n∈S
gn · αkn1

)
dλX1 6=

∏
n∈S

(∫
gn dλX1

)
= 0

for every k ∈ L′. By approximating each gn by a trigonometric polynomial
as above we obtain nontrivial characters a1(n) ∈ X̂1, n ∈ S, and an infinite
subsequence K ⊂ L′ such that (3.1) holds for every k ∈ K. �

Lemma 3.3. Let α1, α2 be irreducible and mixing algebraic Zd-actions on
compact zero-dimensional abelian groups X1 and X2, respectively, and let
φ : X1 −→ X2 be a measurable factor map of α1 and α2 such that there
exists a nonempty finite set S ⊂ Zd which is minimal nonmixing for α1 and
α2. Then φ coincides λX1-a.e. with an affine map ψ : X1 −→ X2.

Proof. Let φ : X1 −→ X2 be a measurable factor map of α1 and α2, and let
S ⊂ Zd be minimal nonmixing for α1 and α2. Put X = X1 ×X2, denote by
α = α1 × α2 : n 7→ αn

1 × αn
2 the product-action of Zd on X, and let

Γ(φ) = {(x, φ(x)) : x ∈ X1} ⊂ X
be the graph of φ. We denote by µ the unique α-invariant probability
measure on Γ(φ) with µπ−1

i = λXi for i = 1, 2, where πi : X −→ Xi are
the coordinate projections. Since π1 is a measurable conjugacy of the Zd-
actions α on (X,BX , µ) and α1 on X1, S is minimal µ-nonmixing.

If we can show that µ is a translate of the Haar measure of a closed,
α-invariant subgroup Y ⊂ Z, then φ is affine (mod λX1), and the lemma is
proved.

In order to verify that µ is a translate of a Haar measure we use Lemma
3.2 to find nonzero elements ai(n) ∈ X̂i, n ∈ S, i = 1, 2, such that (3.1)
holds for every k in an infinite subset K ⊂ N. It follows that∑

n∈S
α̂kn1

(
f1(α̂1)(a1(n))

)
=
∑
n∈S

α̂kn2

(
f2(α̂2)(a2(n))

)
= 0 (3.2)

for every k ∈ K and f1, f2 ∈ Rd.
As X̂ = X̂1 × X̂2 and every proper subset of S is µ-mixing, the Fourier

transform µ̂ : X̂ −→ C satisfies that

µ̂
(
f1(α̂1)(a1(m)), f2(α̂2)(a2(m))

)
= µ̂

(
−α̂km1 (f1(α̂1)(a1(m))),−α̂km2 (f2(α̂2)(a2(m)))

)
= lim

k→∞
k∈K

µ̂

( ∑
n∈Sr{m}

(
α̂kn1 (f1(α̂1)(a1(n))), α̂kn2 (f2(α̂2)(a2(n)))

))
=

∏
n∈Sr{m}

µ̂
(
f1(α̂1)(a1(n)), f2(α̂2)(a2(n))

)
for every m ∈ S. By varying m ∈ S we see that∣∣µ̂(f1(α̂1)(a1(m)), f2(α̂2)(a2(m))

)∣∣ ∈ {0, 1}
for every m ∈ S and f1, f2 ∈ Rd.

We fix an element n ∈ S, consider the α̂-invariant subgroup

N =
{(
f1(α̂1)(a1(n)), f2(α̂2)(a2(n))

)
: f1, f2 ∈ Rd

}
⊂ X̂,
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and set
N′ = {(a, b) ∈ N : |µ̂(a, b)| = 1}.

Since |µ̂|2 : N −→ C is positive definite, N′ is a subgroup of N, and the α-
invariance of µ implies that N′ is α̂-invariant. We also note that N ∼= N1×N2,
where Ni ⊂ X̂i is an infinite α̂i-invariant subgroup, and the irreducibility of
αi implies that

X̂/N ∼= (M1/N1)× (M2/N2)
is finite. Let

Z = N̂ = X/N⊥,

denote by αZ the Zd-action induced by α on Z, and write Z ′ = N′⊥ ⊂ Z
for the annihilator of N′ in Z. If π : X −→ Z is the quotient map and
ν = µπ−1, then ν̂ : N −→ C is the restriction of µ̂ : X̂ −→ C to N, and the
further restriction of ν̂ to N′ is a positive definite function of absolute value
1. Hence ν̂ is a character on N′. We extend this character to an element
z ∈ Z = N̂ and write p−z for the point-mass concentrated in −z. Then the
convolution ν ′ = ν ∗ p−z satisfies that

ν̂ ′(a, b) =

{
1 if (a, b) ∈ N′,

0 if (a, b) ∈ N r N′.

In other words, ν ′ = λZ′ is the Haar measure of the αZ-invariant subgroup
Z ′ ⊂ Z, and ν is a translate of λZ′ .

Since the map π : X −→ Z is finite-to-one and µ is ergodic, an elementary
skew-product argument shows that µ is also a translate of the Haar measure
of a closed, α-invariant subgroup Y ⊂ X. As explained above, this completes
the proof of the lemma. �

Proof of Theorem 1.1. Let φ : X1 −→ X2 be a measurable conjugacy of α1

and α2. We fix a minimal nonmixing set S ⊂ Zd for α1 and α2 and apply
[8, Theorem 3.3] to find a prime ideal q ⊂ Rd associated with M2 = X̂2

such that S is minimally nonmixing for αRd/q. Choose an element a ∈ M2

with q = ann(a) and N = Rd · a ∼= Rd/q. The inclusion N ⊂M2 determines
a dual factor map ψ : X2 −→ X ′2 = N̂ of α2 and α′2 = αN. We set φ′ =
ψ ◦ φ : X1 −→ X ′2, X ′ = X1 × X ′2, write α′ = α1 × α′2 for the product
Zd-action on X ′, and denote by µ′ the α′-invariant probability measure on
Γ(φ′) = {(x, φ′(x)) : x ∈ X1} ⊂ X ′ which satisfies that µ′π−1

1 = λX1 and
µ′π′2

−1 = λX′2 , where π1 : X −→ X1 and π′2 : X −→ X ′2 are the coordinate
projections.

Since α1 is irreducible, h(αn
2 ) = h(αn

1 ) <∞ for every n ∈ Zd by Corollary
2.3. Hence α′2 is irreducible and mixing by Corollary 2.3, S is minimal
nonmixing for µ, α1 and α′2, and Lemma 3.3 implies that µ′ is a translate of
the Haar measure of a closed, α-invariant subgroup Y ⊂ X. It follows that
φ′ coincides λX1-a.e. with an affine map.

We denote by ψ′ : X1 −→ X ′2 the homomorphism part of φ′ (cf. (1.4)).
As α1 is irreducible, ψ′ is finite-to-one. Hence φ′ = ψ ◦ φ and ψ are both
finite-to-one, and α2 is again irreducible by Proposition 2.1. We repeat the
first part of the proof with α′2 and X ′2 replaced by α2 and X2 and obtain
that φ coincides λX1-a.e. with an affine map. �
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4. Examples

Let α be a mixing algebraic Zd-action on a compact abelian group X. We
denote by Aut(X) the group of continuous group automorphisms of X and
write Aff(X) for the group of bijective affine maps φ : X −→ X (cf. (1.4)).

Let
A(α) = {αn : n ∈ Zd} ⊂ Aut(X) (4.1)

and denote by
C(α) ⊃ A(α) ∼= Zd (4.2)

the measurable centralizer of α, i.e. the group of all λX -preserving Borel
automorphisms of X which commute with αn λX -a.e., for every n ∈ Zd.
If X is zero-dimensional and α is irreducible and mixing, then Corollary
1.2 implies that every β ∈ C(α) is λX -a.e. equal to an affine map, i.e. that
C(α) ⊂ Aff(X). If α has the single fixed point 0X then every φ ∈ Aff(X)
which commutes with α must send 0X to 0X , so that

C(α) ⊂ Aut(X). (4.3)

The measurable centralizer is obviously a measurable conjugacy invariant.
In the following examples we apply Theorem 1.1 to distinguish between, and
calculate the measurable centralizer of, irreducible and mixing algebraic Zd-
actions which look indistinguishable to other dynamical invariants.

For the first two examples we assume that d = 2. If 0 6= f ∈ R
(2)
2 , then

the principal ideal p = (f) = fR
(2)
2 is prime, and the Z2-action α = α

R
(2)
2 /p

is irreducible, if and only if f is irreducible.

Example 4.1. Let

f1 =1 + u1 + u2
1 + u1u2 + u2

2,

f2 =1 + u2
1 + u2 + u1u2 + u2

2,

f3 =1 + u1 + u2
1 + u2 + u2

2,

f4 =1 + u1 + u2
1 + u2 + u1u2 + u2

2,

f5 =1 + u1 + u2
1 + u2

2,

in R
(2)
2 . The prime ideals pi = (fi) = fiR

(2)
2 define irreducible and mixing

Z2-actions αi = α
R

(2)
2 /pi

on Xi = X
R

(2)
2 /pi

.

Since pi 6= pj for 1 ≤ i < j ≤ 5, the R2-modules Mi = R
(2)
2 /pi are

nonisomorphic. As every algebraic conjugacy φ : Xi −→ Xj of αi and αj
would induce a module isomorphism φ̂ : Mj −→ Mi, Corollary 1.3 implies
that αi and αj cannot be measurably conjugate for 1 ≤ i < j ≤ 5. However,
all directional entropies of these actions are the same, and the set S =
{(0, 0), (1, 0), (0, 1)} is minimal nonmixing for αi with i = 1, . . . , 4, but not
for α5 (cf. [6], [8]).

We shall calculate the centralizers C(αi) for i = 1, . . . , 5. Clearly, C(α1) ⊂
Aut(X1), since 0X is the only fixed point of α1. Every β ∈ Aut(X1) which
commutes with α1 induces a module automorphism β̂ : M1 −→ M1 of the
form

β̂(a) = gβ · a, a ∈M1, (4.4)
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for some gβ ∈ R
(2)
2 .

Although the polynomial f1 is irreducible in R
(2)
2 , it is not absolutely

irreducible: let F4 = {0, 1, ω, ω2} be the field with 4 elements, R
(4)
2 =

F4[u±1
1 , u±1

2 ] and f ′1 = 1 + ωu1 + u2, f
′′
1 = 1 + ω2u1 + u2 ∈ R

(4)
2 . Then

f1 = f ′1f
′′
1 .

The inclusion R
(2)
2 ⊂ R

(4)
2 induces an R2-module homomorphism R

(2)
2 −→

R
(4)
2 /f ′1R

(4)
2 with kernel p1 ⊂ R

(2)
2 , and hence an injective R2-module homomorphism

 : M1 −→ R
(4)
2 /q1, where q1 = f ′1R

(4)
2 .

Let h ∈ F4[u±1
2 ] ⊂ R

(4)
2 be the Laurent polynomial obtained by replacing

every occurrence of u1 in gβ by ω2(1 + u2). Then h− gβ ∈ q1.
Suppose that h vanishes at a point ω′ ∈ F 2 r {0, 1}, where F 2 is the

algebraic closure of F2. As f1(ω2(1 +ω′), ω′) = gβ(ω2(1 +ω′), ω′) = 0, every
element in the ideal J = (f1, gβ) ⊂ R

(2)
2 generated by f1 and gβ vanishes at

the point (ω2(1 + ω′), ω′), i.e. J 6= R
(2)
2 . Since

gβ ·M1 = J/p ( M1, (4.5)

this shows that β̂ : M1 −→ M1 is not surjective and β : X1 −→ X1 is not
injective. This contradiction implies that

h(u2) = ωm(1 + u2)n1un2
2

for some (n1, n2) ∈ Z2 and m ∈ Z. By remembering that h+ q1 = (gβ + p1)
we obtain that

gβ = un

for some n ∈ Z2.
We have proved that C(α1) = A(α1) (cf. (4.1)), and the same kind of

argument shows that C(αi) = A(αi) for i = 2, 3.
Since α4 and α5 have nonzero fixed points, C(αj) 6= A(αj) for j = 4, 5.
In order to calculate C(α4)∩Aut(X4) we proceed exactly as for α1, assume

that β ∈ C(α4) ∩ Aut(X4), and define gβ ∈ R
(2)
2 by (4.4). We set f ′4 =

1 + ωu1 + ω2u2, f
′′
4 = 1 + ω2u1 + ωu2 ∈ R

(4)
2 , note that f4 = f ′4f

′′
4 , and

obtain an injective R2-module homomorphism  : M4 −→ R
(4)
2 /q4, where

q4 = f ′4R
(4)
2 .

Let h ∈ F4[u±1
1 ] ⊂ R

(4)
2 be the Laurent polynomial obtained by replacing

every occurrence of u2 in gβ by ω+ ω2u1. As above we find that h can only
vanish at 0 and ω2, and hence that h(u1) = ωmun1

1 (1 + ωu1)n2 for some
m,n1, n2 ∈ Z. It follows that gβ is of the form

gβ = un

for some n ∈ Z2, and hence that

C(α4) ∩Aut(X4) = A(α4) ∼= Z2.

Finally we calculate C(α5)∩Aut(X5). Assume that β ∈ C(α5)∩Aut(X5),
define gβ ∈ R

(2)
2 by (4.4), and consider the Laurent polynomial h ∈ F2[u±1

1 ]
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obtained by replacing every occurrence of u2
2 in g2

β = gβ2 by 1 + u1 + u2
1. As

above we find that
h(u1) = un1

1 (1 + u1 + u2
1)n2 ,

and hence that
gβ2 = un1

1 u2n2
2

for some (n1, n2) ∈ Z2. This shows that β2 ∈ A(α5) for every β ∈ C(α5) ∩
Aut(X5).

Put β = 1 + α
(1,0)
5 + α

(0,1)
5 . Then gβ = 1 + u1 + u2, β2 = α(1,0), and

C(α5) ∩Aut(X5) ∼= Z2,

|(C(α5) ∩Aut(X5))/A(α5)| = 2.

Example 4.2. We use the notation of Example 4.1 and set f = 1 + ωu1 +
ω2u2 ∈ R

(4)
2 . The inclusion R

(2)
2 ⊂ R

(4)
2 induces an injective R2-module

homomorphism  : M4 = R
(2)
2 /p −→M = R

(4)
2 /q, where p = f4R

(2)
2 ⊂ R

(2)
2

(cf. Example 4.1), and q = fR
(4)
2 . Since (M4) has index 2 in M, there exists

a two-to-one surjective dual homomorphism ψ : XM = M̂ −→ X4 = M̂4 with
αn

4 · ψ = ψ · αn
M for every n ∈ Z2.

Since the R2-modules M and M4 are nonisomorphic, Corollary 1.3 shows
that the irreducible and mixing Z2-actions αM and α4 are not measurably
conjugate, although they are weakly algebraically conjugate.

Example 4.3. Let f = 1 + u1 + u2 ∈ R
(2)
2 , p = fR

(2)
2 ⊂ R

(2)
2 and M =

R
(2)
2 /p. As in Example 4.1 one can show that

C(αM) = A(αM).

A proof of this can also be found in [15, Corollary 31.3].

Example 4.4 (Conjugacy of Z2-actions with positive entropy). As in Example
4.1 we set

f1 =1 + u1 + u2
1 + u1u2 + u2

2,

f2 =1 + u2
1 + u2 + u1u2 + u2

2,

f3 =1 + u1 + u2
1 + u2 + u2

2,

f4 =1 + u1 + u2
1 + u2 + u1u2 + u2

2,

but this time we view these polynomials as elements of the form (2.1) in R2

and set

Xi =
{

(xn) ∈ (Z/4Z)Z2
:
∑

m∈Z2

cfi
(m)xm+n = 0 (mod 2) for every n ∈ Z2

}
.

Denote by αi the restriction to Xi of the shift-action (1.1) of Z2 on Ω =
(Z/4Z)Z2

. The dual module Mi = X̂i of αi is of the form

Mi = R2/Ii,

where Ii = (4, fi) = 4R2 + fiR2. The prime ideals associated with Mi are
q = (2) and pi = (2, fi). Since h(αR2/q) = log 2 and h(αR2/pi

) = 0, Theorem
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6.5 in [10] implies that the Pinsker algebra π(αi) of αi is the sigma-algebra
BXi/Yi

of Yi-invariant Borel sets in Xi, where Yi = N⊥i and

Ni = {a ∈Mi : pi · a = 0} = 2Mi
∼= R2/pi.

In other words, the Z2-action βi induced by αi on the Pinsker algebra π(αi)
is isomorphic to αR2/pi

.
Since any measurable conjugacy of αi and αj would map π(αi) to π(αj)

and induce a conjugacy of βi and βj , Example 4.1 implies that αi and αj
are measurably nonconjugate for 1 ≤ i < j ≤ 4.

Examples 4.5. We assume that d = 3.

(1) Let f1 = 1 + u1 + u2 + u3, f2 = 1 + u1 + u2
2 ∈ R

(2)
3 , p = (f1, f2) =

f1R
(2)
3 + f2R

(2)
3 , M = R

(2)
3 /p, α = αM and X = XM. We denote by

V (p) = {c ∈ (F 2 r {0})3 : f(c) = 0 for every f ∈ p}
= {(1 + a2, a, a+ a2) : a ∈ F 2 r {0}}

(4.6)

the variety of p. Since p is radical, i.e. since

p = {f ∈ R
(2)
3 : f(c) = 0 for every c ∈ V (p)},

the ideal p is easily seen to be prime. From Proposition 2.1 we conclude that
α is irreducible and ergodic. However, α is not mixing by Proposition 2.1,
since u1u

2
2u
−2
3 − 1 ∈ p.

Although α is not mixing, the Z2-action β : n = (n1, n2) 7→ βn = α(0,n1,n2)

on X is of the form β = α
R

(2)
2 /q

with q = (1+u1+u−1
1 u2)R(2)

2 . By Proposition
2.1, β is irreducible and mixing, and Theorem 1.1 allows us to prove as in
Example 4.3 that C(α) = C(β) = A(β) = A(α).

(2) Let Let f1 = 1 + u1 + u2, f2 = 1 + u1 + u3 + u2
3 ∈ R

(2)
3 , p = (f1, f2) =

f1R
(2)
3 + f2R

(2)
3 , M = R

(2)
3 /p, α = αM and X = XM. Then

V (p) = {(1 + a+ a2, a+ a2, a) : a ∈ F 2 r {0}},
p is prime, α is irreducible and mixing, and C(α) = A(α).
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