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1. Introduction

Let X be a compact abelian group with identity element 0X , Borel field BX and
normalized Haar measure λX . An algebraic Zd-action onX is a group homomorphism
α : n 7→ αn from Zd, d ≥ 1, into the group Aut(X) of continuous automorphisms of
X. An algebraic Zd-action α on X is expansive if there exists an open set O ⊂ X
with

⋂
n∈Zd α−n(O) = {0X}, where 0X is the identity element of X, and irreducible

if every closed, α-invariant subgroup Y ( X is finite. The action α is ergodic or
mixing if the Haar measure λX of X is ergodic or mixing under α.

If α is an algebraic Zd-action on X and Y ⊂ X a closed, α-invariant subgroup,
then we denote by αY and αX/Y the Zd-action induced by α on Y and X/Y ,
respectively.

Algebraic Zd-actions can be classified algebraically, topologically or measurably.
In order to introduce the appropriate notions of conjugacy we assume that αi is an
algebraic Zd-action on a compact abelian group Xi with Haar measure λXi

, where
i = 1, 2. A surjective Borel map φ : X1 −→ X2 is a measurable factor map of α1

and α2 if
λX1φ

−1 = λX2 , (1.1)
and if

φ ◦ αn
1 (x) = αn

2 ◦ φ(x) (1.2)
for every n ∈ Zd and λX1-a.e. x ∈ X1. A bijective measurable factor map φ : X1 −→
X2 is a measurable conjugacy of α1 and α2.

A continuous surjective group homomorphism φ : X1 −→ X2 is an algebraic
factor map of α1 and α2 if it satisfies (1.2) for every n ∈ Zd and x ∈ X1. A
bijective algebraic factor map φ : X1 −→ X2 is an algebraic conjugacy of α1 and
α2. Topological factor maps and topological conjugacy are defined similarly.

The action α2 is a measurable, algebraic or topological factor of α1 if there exists
a measurable, algebraic or topological factor map φ : X1 −→ X2 of α1 and α2. The
actions α1, α2 are measurably, algebraically or topologically conjugate if there exists
a measurable, algebraic or topological conjugacy φ : X1 −→ X2 of α1 and α2, and
they are weakly measurably (resp. weakly algebraically) conjugate if each of them is
a measurable (resp. algebraic) factor of the other.

Finally we call a map φ : X1 −→ X2 affine if it is of the form

φ(x) = ψ(x) + x′ (1.3)
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for every x ∈ X1, where ψ : X1 −→ X2 is a continuous surjective group homomorphism
and x′ ∈ X2.

For expansive algebraic Zd-actions on compact connected abelian groups the
topological and algebraic classifications coincide (i.e. topological conjugacy implies
algebraic conjugacy), by [20, (4.10) and Theorem 5.9]. For algebraic Zd-actions on
disconnected groups this is no longer true: let A be a finite abelian group, and
let Ω = AZd

be the compact abelian group consisting of all maps ω : Zd −→ A,
furnished with the product topology and coordinate-wise addition. We write every
ω ∈ Ω as ω = (ωn) with ωn ∈ A for every n ∈ Zd and define the shift-action σ of
Zd on Ω by

(σmω)n = ωm+n (1.4)

for every ω ∈ Ω and m,n ∈ Zd. Clearly, σ is an expansive algebraic Zd-action on Ω.
If A′ is a second abelian group with the same cardinality as A, then the resulting
shift-actions σ and σ′ of Zd on Ω = AZd

and Ω′ = A′
Zd

are obviously topologically,
but not necessarily algebraically, conjugate.

For d = 1, any algebraic Z-action is determined by the powers of a single group
automorphism α. If α is ergodic, then it is Bernoulli (cf. e.g. [1], [2], [7], [12], [14]),
which implies that two such actions with equal entropy are measurably conjugate
even if they are algebraically non-conjugate. If d > 1 and α1, α2 are algebraic
Zd-actions on compact abelian groups X1, X2 with completely positive entropy
(with respect to Haar measure), then they are Bernoulli by [17], and can thus
again be measurably conjugate without being algebraically conjugate. However, if
these actions have zero entropy, measurable conjugacy may have much stronger
implications.

Theorem 1.1 ([6], [11]). Let d > 1, and let α1 and α2 be mixing and expansive
algebraic Zd-actions on compact abelian groups X1 and X2, respectively. If α1 is
irreducible, and if φ : X1 −→ X2 is a measurable conjugacy of α1 and α2, then α2

is irreducible and φ is λX1 -a.e. equal to an affine map.

Corollary 1.2. Let d > 1, and let α1 and α2 be measurably conjugate irreducible,
mixing and expansive algebraic Zd-actions on compact abelian groups X1 and X2,
respectively. Then α1 and α2 are algebraically conjugate.

Actions with completely positive entropy and irreducible actions lie at opposite
ends of the spectrum of ergodic algebraic Zd-actions. As mentioned above, the
kind of isomorphism rigidity described in Theorem 1.1 is impossible for actions
with completely positive entropy. However, it could conceivably hold for all mixing
algebraic Zd-actions with zero entropy (i.e. without Bernoulli factors — cf. [13]).
In this context it is worth pointing out the similarity between Theorem 1.1 and
M. Ratner’s rigidity theorem for horocycle flows (or their time-1-maps) in [15]:
in both situations any measurable conjugacy carries with it the ambient algebraic
structure. However, the underlying dynamical properties of the systems differ considerably:
horocycle flows have zero entropy and are uniquely ergodic, whereas the algebraic
Zd-actions under consideration here have a dense set of periodic orbits and their
individual automorphisms are Bernoulli.

Theorem 1.1 implies that every Haar-measure-preserving invertible transformation
T on a compact abelian group X which commutes with an irreducible, expansive
and mixing Zd-action α on X is affine. This makes it possible — at least in principle
— to determine the measurable centralizer of α. In order to provide the necessary
notation we assume that α is an algebraic Zd-action on a compact abelian group
X and write Aff(X) for the group of all continuous surjective affine bijections
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ψ : X −→ X. Put

Z̄(α) = {ψ ∈ Aff(X) : φ ◦ αn = αn ◦ ψ for every n ∈ Zd},

Z(α) = {φ ∈ Aut(X) : φ ◦ αn = αn ◦ φ for every n ∈ Zd}.
(1.5)

Corollary 1.3. Let α be an irreducible, expansive and mixing algebraic Zd-
action on a compact abelian group X, and let ZλX

(α) be the measurable centralizer
of α, i.e. the group of all λX-preserving invertible transformations T : X −→ X
with T ◦αn = αn ◦T λX -a.e., for every n ∈ Zd. Then the following properties hold.

(1) Every T ∈ ZλX
(α) coincides λX -a.e. with an element ψ ∈ Z̄(α);

(2) Z̄(α) is countable and has an abelian subgroup of finite index.

Proof. The first assertion is clear from Theorem 1.1. For the second assertion
we have to appeal to terminology and results from later sections. Proposition 2.2
shows that α is weakly algebraically equivalent to a Zd-action of the form αRd/p

for some prime ideal p ⊂ Rd. Since α is irreducible, the algebraic factor maps
χ : X −→ XRd/p and χ′ : XRd/p −→ X between α and αRd/p are finite-to-one.
Hence there exists a subgroup of finite index Z ′ ⊂ Z̄(α) such that every φ ∈ Z ′

acts trivially on ker(χ) and thus induces an element φ′ ∈ Z̄(αRd/p). As Z̄(αRd/p)
is abelian this implies the second assertion of this corollary (cf. [6] and [11]). Note
that the abelian subgroup of finite index A ⊂ Z̄(α) obtained in this manner is
isomorphic to a subgroup of finite index in Z̄(αRd/p). �

This brief survey is organized as follows. In Section 2 we give a description
of irreducible algebraic Zd-actions. Section 3 deduces Theorem 1.1 from a result
about invariant measures of algebraic Zd-actions (Theorem 3.3). The Sections 4
and 5 contain brief sketches of the proofs of Theorem 3.3 in the two relevant cases
of connected and zero-dimensional groups, respectively. The last section illustrates
Theorem 1.1 with examples.

2. Irreducible Zd-actions

Following [8], [18] and [20] we denote by Rd = Z[u±1
1 , . . . , u±1

d ] the ring of
Laurent polynomials with integral coefficients in the commuting variables u1, . . . , ud,
and write every f ∈ Rd as f =

∑
m∈Zd cf (m)um with um = um1

1 · · ·u
md

d and
cf (m) ∈ Z for every m = (m1, . . . ,md) ∈ Zd.

Let α be an algebraic Zd-action on a compact abelian group X. We denote
by X̂ the additively written dual group of X, write 〈a, x〉 the value of a character
a ∈ X̂ at a point x ∈ X, and define the dual action α̂ : n 7→ α̂n of Zd on X̂ by

〈α̂na, x〉 = 〈a, αnx〉

for every n ∈ Zd, x ∈ X and a ∈ X̂. For f ∈ Rd, x ∈ X and a ∈ X̂, we set

f(α)(x) =
∑
n∈Zd

cf (n)αnx, f(α̂)(a) =
∑
n∈Zd

cf (n)α̂na, (2.1)

and note that f(α) : X −→ X is a group homomorphism with dual homomorphism
f̂(α) = f(α̂) : X̂ −→ X̂,

The group X̂ is a module over the ring Rd with operation

f · a = f(α̂)(a) (2.2)

for f ∈ Rd and a ∈ X̂. In particular,

um · a = α̂ma (2.3)

for m ∈ Zd and a ∈ M. This dual module M = X̂ of α is Noetherian (and hence
countable) whenever α is expansive (cf. [18, Proposition 5.4]).
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Conversely, if M is an Rd-module, we define an algebraic Zd-action αM on the
compact abelian group

XM = M̂ (2.4)
by setting

α̂m
Ma = um · a (2.5)

for every m ∈ Zd and a ∈M.
A prime ideal p ⊂ Rd is associated with an Rd-module M if there exists an

a ∈M with p = ann(a) = {f ∈ Rd : f · a = 0}. The set asc(M) of all prime ideals
associated with M has the property that⋃

p∈asc(M)

p = {f ∈ Rd : multiplication by f on M is not injective}. (2.6)

According to [18], [13] and [20], many properties of an algebraic Zd-action
α can be expressed in terms of the prime ideals associated with the dual module
M = X̂ of α.

Proposition 2.1. Let M a countable Rd-module.
(1) For any n ∈ Zd, the following conditions are equivalent.

(a) αn
M is ergodic;

(b) αn
Rd/p

is ergodic for every prime ideal p associated with M;
(c) No prime ideal p associated with M contains a polynomial of the form

uln − 1 with l ≥ 1.
(2) The following conditions are equivalent.

(a) αM is ergodic;
(b) αRd/p is ergodic for every prime ideal p associated with M;
(c) No prime ideal p associated with M contains a set of the form {uln−

1 : n ∈ Zd} with l ≥ 1.
(3) The following conditions are equivalent.

(a) αM is mixing;
(b) αn

M is ergodic for every non-zero n ∈ Zd;
(c) αn

M is mixing for every non-zero n ∈ Zd;
(d) αRd/p is mixing for every prime ideal p associated with M;
(e) None of the prime ideals associated with M contains a polynomial of

the form un − 1 with 0 6= n ∈ Rd.
(4) The following conditions are equivalent.

(a) α is expansive;
(b) M is Noetherian and αRd/p is expansive for every prime ideal p

associated with M;
(c) For every prime ideal p associated with M, VC(p) ∩ Sd = ∅, where

VC(p) = {c ∈ (C r {0})d : f(c) = 0 for every f ∈ p}.
(5) The following conditions are equivalent.

(a) αM is has positive entropy;
(b) αRd/p has positive entropy for some prime ideal p associated with M;
(c) At least one prime ideal p associated with M has the property that p

is principal and αRd/p is mixing.

For a proof we refer to [20, Propositions 6.6 and 19.4, and Theorem 6.5]. The
next result is contained in [20, Proposition 6.6 and Theorem 29.2], or in [6] and
[11].

Proposition 2.2. Let α be an irreducible and ergodic algebraic Zd-action on a
compact zero-dimensional abelian group X. Then there exists a unique prime ideal
p ⊂ Rd with the following properties.
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(1) αRd/p is ergodic;
(2) For every ideal I ) p in Rd, Rd/I is finite;
(3) α is weakly algebraically conjugate to αRd/p;
(4) The group X is zero-dimensional if and only if p contains a rational prime

p > 1, and connected otherwise.
Conversely, if p ⊂ Rd is a prime ideal satisfying the conditions (1)–(2) above,

then the Zd-action α = αRd/p on XRd/p is irreducible and ergodic.

Proposition 2.3. Let α be an irreducible and ergodic algebraic Zd-action on
a compact abelian group X. Then h(αn) <∞ for every n ∈ Zd, where h(·) denotes
topological entropy.

Conversely, if α is an expansive, ergodic (and mixing) algebraic Zd-action on
a compact abelian group X with h(αn) < ∞ for every n ∈ Zd, and if p ⊂ Rd is a
prime ideal associated with the module M = X̂, then the Zd-action αRd/p on XRd/p

is irreducible, ergodic (and mixing).

The proof of Proposition 2.3 is similar to that of Corollary 2.3 in [11].

Remarks 2.4. (1) Let α be an irreducible and ergodic algebraic Zd-action
on a compact abelian group X, and let p ⊂ Rd be the prime ideal satisfying the
conditions (1)–(3) in Proposition 2.2. Proposition 2.1 shows that α is mixing if and
only if αm 6= idX whenever 0 6= m ∈ Zd, where idX is the identity automorphism
of X.

(2) If q ⊂ Rd is a prime ideal satisfying the conditions (1)–(2) in Proposition
2.2, and if α = αRd/q, then the the prime ideal p ⊂ Rd satisfying the conditions
(1)–(3) in Proposition 2.2 is equal to q.

Motivated by Proposition 2.2 we take a closer look at Zd-actions of the form
αRd/p, where p ⊂ Rd is a prime ideal. Let T = R/Z, and let Ω = TZd

, furnished
with the product topology and component-wise addition. We write every ω ∈ Ω as
ω = (ωn) with ωn ∈ T for every n ∈ Zd and define the shift-action σ of Zd on Ω by
(1.4). The pairing

〈h, ω〉 = e2πi
P

n∈Zd ch(n)ωn , h ∈ Rd, ω ∈ Ω, (2.7)

identifies the additive group Rd with the dual group Ω̂ of Ω. With this identification
the automorphism σ̂n of Rd dual to the shift σn on Ω consists of multiplication by
un. If I ⊂ Rd is an ideal, then

I⊥ = R̂d/I = XRd/I = {ω ∈ Ω : 〈h, ω〉 = 1 for every h ∈ I} (2.8)

is a closed, shift-invariant subgroup of Ω, and αRd/I is the restriction of σ to XRd/I .
Now consider the special case where I = p ⊂ Rd is a prime ideal containing a

rational prime p > 1. For any k ≥ 1 we denote by Fpk the field with pk elements
and write

R
(pk)
d = Fpk [u±1

1 , . . . , u±1
d ] (2.9)

for the ring of Laurent polynomials in the variables u1, . . . , ud with coefficients in
Fpk . Again we write every h ∈ R

(pk)
d as h =

∑
n∈Zd ch(n)un with ch(m) ∈ Fpk for

every m ∈ Zd.
We define a ring homomorphism f 7→ f/p from Rd to R

(p)
d by reducing each

coefficient of f modulo p. If
p = {f/p : f ∈ p}, (2.10)

then p ⊂ R
(p)
d is again a prime ideal, and the map f 7→ f/p induces an Rd-module

isomorphism
Rp/p ∼= R

(p)
d /p. (2.11)
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We set Ωp = FZd

p , write every ω ∈ Ωp as ω = (ωn) with ωn ∈ Fp for every
n ∈ Zd, and use the pairing

〈h, ω〉 = e2πi (
P

n∈Zd ch(n)ωn)/p, h ∈ R
(p)
d , ω ∈ Ωp,

to identify R
(p)
d with the dual group Ω̂p of Ωp. Then

R̂d/p = R̂
(p)
d /p = X

R
(p)
d /p

= {ω ∈ Ωp : 〈h, ω〉 = 1 for every h ∈ p}, (2.12)

and α
R

(p)
d /p

is the restriction to X
R

(p)
d /p

of the shift-action σ of Zd on Ωp.

3. Mixing sets and invariant measures

Let α be an algebraic Zd-action on a compact abelian group X, and let µ be
an α-invariant probability measure on the Borel field BX of X. Following [9]–[10]
we call a nonempty finite set S ⊂ Zd µ-mixing under α if

lim
k→∞

µ

(⋂
n∈S

α−kn(Bn)
)

=
∏
n∈S

µ(Bn)

for every collection (Bn, n ∈ S) in BX , and µ-nonmixing otherwise. A nonempty
finite set S ⊂ Zd is minimal µ-nonmixing if it is µ-nonmixing, but every nonempty
subset S′ ( S is µ-mixing. A λX -(non-)mixing set is called a (non-)mixing set of
α.

Measurably conjugate algebraic Zd-actions obviously have the same nonmixing
sets. Furthermore, the nonmixing sets of an algebraic Zd-actions on a compact
abelian group X are determined by the prime ideals p ⊂ Rd associated with the
dual module M = X̂ of α.

Proposition 3.1 ([20], [10]). Let α be an algebraic Zd-actions on a compact
abelian group X with dual module M = X̂. For every nonempty finite set S ⊂ Zd
the following conditions are equivalent.

(1) S is a mixing set of α;
(2) S is mixing for every αR/p with p ∈ asc(M).

If the group X is connected and λX is mixing under α, then α is mixing of every
order, and hence every nonempty finite set S ⊂ Zd is mixing under α, by [21]. If
X is disconnected, then a mixing algebraic Zd-action α on X has nonmixing sets if
and only if λX does not have completely positive entropy (cf. [11], [20, Section 27]
and Proposition 3.2 below). In particular, if α is an irreducible and mixing algebraic
Zd-action on a compact zero-dimensional abelian group X, then α has nonmixing
sets.

Proposition 3.2 ([11]). Let d > 1, α an irreducible and ergodic algebraic Zd-
action on a compact zero-dimensional abelian group X, and let p ⊂ Rd be the prime
ideal and 1 < p ∈ p the rational prime described in Proposition 2.2. We define the
prime ideal p ⊂ R

(p)
d by (2.10).

(1) The Zd-actions α and αRd/p = α
R

(p)
d /p

have the same nonmixing sets;

(2) For every nonzero element h ∈ p ⊂ R
(p)
d , the support

S(h) = {n ∈ Zd : ch(n) 6= 0}

of h is a nonmixing set of αRd/p and hence of α.

In this terminology we can express Theorem 1.1 as a consequence of the following
result.
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Theorem 3.3. Let d > 1, α1 and α2 irreducible, mixing and expansive algebraic
Zd-actions on compact abelian groups X1 and X2, respectively, and let φ : X1 −→
X2 be a measurable factor map of α1 and α2. We set X = X1 × X2, denote by
α = α1 × α2 the product-action of Zd on X, and assume that one of the following
two conditions is satisfied.

(1) α1 is mixing of every order;
(2) α1 and α2 share a minimal nonmixing set S ⊂ Zd.

Then every joining ν of λX1 and λX2 such that the Zd-action α on (X, ν) is
measurably conjugate to α1 on (X1, λX1), is a translate of the Haar measure of
a closed α-invariant subgroup Y ⊂ X.

Proof of Theorem 1.1, using Theorem 3.3. Let φ : X1 −→ X2 be a mea-
surable conjugacy of α1 and α2. We choose a prime ideal q ⊂ Rd which is associated
with M2 = X̂2 and an element a ∈M2 with q = ann(a). The inclusion N = Rd ·a ⊂
M2 determines a dual factor map ψ : X2 −→ X ′2 = N̂ of α2 and α′2 = αN. We set
φ′ = ψ ◦ φ : X1 −→ X ′2, X ′ = X1 × X ′2, α′ = α1 × α′2, and denote by ν′ the α′-
invariant probability measure on Γ(φ′) = {(x, φ′(x)) : x ∈ X1} ⊂ X ′ which satisfies
that ν′π−1

1 = λX1 and ν′π′2
−1 = λX′2 , where π1 : X −→ X1 and π′2 : X −→ X ′2 are

the coordinate projections.
Since α1 is irreducible, h(αn

2 ) = h(αn
1 ) <∞ for every n ∈ Zd by Corollary 1.2.

Hence α′2 is irreducible, mixing and expansive by the Propositions 2.1 and 2.2.
If X1 is connected, then α1 is mixing of every order by [21], and Theorem 3.3

implies that ν′ is a translate of the Haar measure of a closed, α′2-invariant subgroup
of X ′. It follows that φ′ coincides λX1-a.e. with an affine map.

We denote by ψ′ : X1 −→ X ′2 the homomorphism part of φ′ (cf. (1.3)). As α1

is irreducible, ψ′ is finite-to-one. Hence φ′ = ψ ◦φ and ψ are both finite-to-one, and
α2 is irreducible by Proposition 2.2. We repeat the first part of the proof with α′2
and X ′2 replaced by α2 and X2 and obtain that φ coincides λX1-a.e. with an affine
map.

If X1 is not connected, it is zero-dimensional by irreducibility, and α1 has
nonmixing sets by Proposition 3.2. We fix a minimal nonmixing set S ⊂ Zd for
α1 and α2. Proposition 3.1 allows us to choose the associated prime ideal q ⊂ Rd

considered above such that S is minimal nonmixing for αRd/q. Theorem 3.3 implies
that ν′ is a translate of the Haar measure of a closed, α′2-invariant subgroup of X ′.
It follows that φ′ coincides λX1-a.e. with an affine map, and the proof is completed
as in the connected case. �

4. The proof of Theorem 3.3 in the absence of nonmixing sets

If α1 has no nonmixing sets, then it is mixing of every order, and the same is
true for α2, and X1 and X2 are connected (cf. the Propositions 2.1–2.3 and 3.1–
3.2). In this case Theorem 3.3 is in essence a consequence of a result by Katok and
Spatzier ([5]) on invariant measures for commuting toral automorphisms.

Definition 4.1. An algebraic Zd-action α on a compact abelian group X is
semi-irreducible if there exist an integer n ≥ 1, irreducible algebraic Zd-actions αi
on compact abelian groups Xi, i = 1, . . . , n, and a continuous, surjective, finite-to-
one group homomorphism φ : X 7−→ X̄ = X1 × · · · ×Xn such that φ · αn = ᾱn · φ
for every n ∈ Zd, where ᾱ = α1 × · · · × αn is the product-action of Zd on X̄.

The class of semi-irreducible actions is easily seen to be closed under taking
direct products and algebraic factors. The following version of the result by Katok
and Spatzier is suited for proving Theorem 3.3.
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Theorem 4.2. Let d > 1, and let α be an semi-irreducible expansive and
mixing algebraic Zd-action on a compact connected abelian group X and µ an
α-invariant and mixing probability measure on X. Then there exists a closed α-
invariant subgroup Y ⊂ X with the following properties:

(1) µ is invariant under translation by Y ,
(2) The projection of µ onto X/Y has zero entropy under αn

X/Y for every
n ∈ Zd, where αX/Y is the action induced by α on X/Y .

Theorem 4.2 clearly implies Theorem 3.3 for connected groups, since µ has
completely positive entropy under each αn. By using an induction argument we
may reduce the proof of Theorem 4.2 to the case where µ is not invariant under
translation by any infinite subgroup of X.

In order to explain the proof of Theorem 4.2 in this special case we assume
initially that X = Tn for some n ≥ 3 (no smaller n is possible, since d > 1 and
α is mixing), and that the matrices αm ∈ GL(n,Z), m ∈ Zd, can be diagonalized
simultaneously over C. Then there exists a decomposition of Rn into eigenspaces
V1, . . . , Vk of the linear action ᾱ of α on Rn with eigenvalues

ηi : Zd −→ R× if Vi ∼= R, ηi : Zd −→ C× if Vi ∼= C,

where ᾱnv = ηi(n)v for every i = 1, . . . , k, v ∈ Vi and n ∈ Zd.
Fix m ∈ Zd such that αm is hyperbolic, set P−(n) = {i : |ηi(n)| < 1}, and

assume without loss in generality that P−(n) = {1, . . . , l}, l < k.
We intersect the leaves of the foliation F of X = Tn = Rn/Zn by the cosets

of V1 ⊂ X with a finite partition P of X into ‘nice’ convex sets: the resulting
measurable partition generates a countably generated Borel sigma-algebra A ⊂ BX .
The following illustration shows part of a typical leaf L of F (on the left), and some
of the atoms of A into which L is decomposed by P (on the right).

Let {µA
x : x ∈ X} be the decomposition of µ with respect to A, and let JA

µ : Zd×
X −→ R be the information cocycle of A, given by

JA
µ (n, x) = log

dµA
x

dµ
α−n(A)
x

(x) = log
µ
α−n(A)
x ([x]A∨α−n(A))
µA
x ([x]A∨α−n(A))

for every n ∈ Zd and x ∈ X. The cocycle equation

JA
µ (n, αn′x) + JA

µ (n′, x) = JA
µ (n + n′, x)

is just the chain-rule of Radon-Nikodym derivatives. If

n ∈ S = {k ∈ Zd : |η1(k)− 1| < 1/2},
then each atom of A intersects only a bounded number of atoms of α−n(A) and
vice versa. This implies that

∫
|JA
µ (n, ·)| dµ is bounded on the infinite set S. As µ is

mixing under α this can be used to show that there exists an A-measurable Borel
map b : X −→ R with

b(αnx) + JA
µ (n, x)− b(x) = θ(n)
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µ-a.e. for every n ∈ Zd, where θ : Zd −→ R is a group homomorphism.
We ‘correct’ the measures µA

x by setting

νx = e−b(x)µA
x

for every x ∈ X. Then

log
dνx

dναnxα−n
(x) = θ(n)

for every n, x.
Fix x ∈ X for the moment and combine the measures νy, y ∈ x + V1 ⊂ X, to

a sigma-finite measure ρ̄x on x + V1. The bijection x + v 7→ v from x + V1 to V1

sends ρ̄x to a sigma-finite measure ρx on V1. This map x 7→ ρx has the following
properties:

(1) ρx = eθ(n)ραnxMη1(n)

(2) ρx+v = ρvT−v,
where Mt is multiplication by t and Tv translation by v on V1.

Ergodicity implies that there are only two possibilities: either each ρx is concentrated
in a single atom, or the map x 7→ ρx is constant and each ρx is translation-invariant
(some caution is needed in this part of the argument).

The latter possibility is excluded, since it would imply the invariance of µ under
V1 and hence under the closure of V1 in X. In the former case the measure µ is
concentrated on a set which intersects each leaf of F in at most one point.

We repeat the argument with V2 replacing V1. After l steps we obtain that µ is
supported on a set which intersects each coset of V1 + · · ·+Vl in at most one point,
which implies that αn has zero entropy.

In order to deal with the general case, where X is not necessarily a finite-
dimensional torus, we have to give an alternative description of irreducible Zd-
actions on compact connected abelian groups, taken from [18]–[20]; the algebraic
background can be found in [3] and [22].

Let d ≥ 1, c = (c1, . . . , cd) ∈ (Q×)d, and let K = Q(c) be the algebraic number
field generated by {c1, . . . , cd}. We write PK , PKf , and PK∞ , for the sets of places (=
equivalence classes of valuations), finite places and infinite places of K. For every
v ∈ PK we write Kv for the completion of K at the place v, and choose a Haar
measure λv on the locally compact additive group Kv. Since Kv is a topological
ring, we can define a distinguished valuation | · |v : Kv 7−→ R in v by setting

λv(aB) = |a|vλv(B)

for every a ∈ Kv and every compact set B ⊂ Kv. The set

Rv = {r ∈ Kv : |r|v ≤ 1}
is a compact subset of Kv. If v ∈ PKf , then Rv is, in addition, open, and is the
unique maximal compact subring of Kv. Furthermore,

oK =
⋂

v∈PK
f

Rv (4.1)

is the ring of integral elements in K. Let

F = PK∞ ∪ {v ∈ PKf : |ci|v 6= 1 for some i ∈ {1, . . . , d}}, (4.2)

Then F is finite by Theorem III.3 in [22], and we denote by

ι : K 7−→ V =
∏
v∈F

Kv (4.3)

the diagonal embedding r 7→ (r, . . . , r), r ∈ K, and put

R = {a ∈ K : |a|v ≤ 1 for every v ∈ PKf r F} ⊃ oK . (4.4)
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Then ι(R) is a discrete, co-compact, additive subgroup of V , and we consider the
compact quotient group

Yc = R̂ = V
/
ι(R) ∼=

( ∏
v∈PK

∞

Kv ×
∏

v∈F∩PK
f

Rv

) /
ι(oK), (4.5)

where R̂ is the Pontryagin dual of R, and write

π : V 7−→ Yc (4.6)

for the quotient map. In the special case where F = PK∞ (i.e. where each ci, i =
1, . . . , d, is a unit in oK),

R = oK , V ∼= Rr(K), Yc = ôK ∼= Tr(K), (4.7)

with
r(K) = |{v ∈ PK∞ : Kv = R}|+ 2|{v ∈ PK∞ : Kv = C}|. (4.8)

For every a ∈ R and b = (bv, v ∈ F ) ∈ V we set a · b = (abv, v ∈ F ).
Since a · ι(R) ⊂ ι(R), multiplication by a defines a surjective group homomorphism
θa : Yc 7−→ Yc by

θa(b+ ι(R)) = a · b+ ι(R), (4.9)
for every b ∈ VF . Then θaa′ = θa · θa′ for all a, a′ ∈ RF . In particular, if R×F ⊂ RF
is the group of units (i.e. invertible elements) in RF , then θa is a continuous group
automorphism of YF for every a ∈ R×F . This allows us to define a Zd-action βc by
automorphisms of Yc by setting

βn
c y = θcn(y) (4.10)

for every n = (n1, . . . , nd) ∈ Zd, where

cn = cn1
1 · · · c

nd

d .

Proposition 4.3 (Proposition 7.2 in [20]). Suppose that d ≥ 1, and that α is
a mixing and expansive algebraic Zd-action on a compact connected abelian group
X. Then α is irreducible if and only if there exist a point c = (c1, . . . , cd) ∈ (Q×)d

with the following properties.
(i) |cm| 6= 1 for every nonzero m = (m1, . . . ,md) ∈ Zd,
(ii) α is weakly algebraically conjugate to the Zd-action βc on Yc.

Furthermore,
h(αn) = h(βn

c ) =
∑
v∈F

log max {1, |cn|v} (4.11)

for every n ∈ Zd, where F appears in (4.2).

We return to the proof of Theorem 4.2 in the general case. Equation (4.5)
allows us to assume the following (perhaps after modifying α and X by a finite-to-
one algebraic factor map):

(1) X =
∏n
i=1Ki

/
D, where each Ki is a locally compact abelian field with

characteristic zero and D ⊂
∏n
i=1Ki is a discrete co-compact subgroup;

(2) There exist homomorphisms γi : Zd −→ K×i , i = 1, . . . , d, where K×i is
the multiplicative group Ki r {0}, with the following property: if

θm(a, . . . , an) = (γ1(m)a1, . . . , γn(m)an)

for every m ∈ Zd and (a1, . . . , an) ∈
∏n
i=1Ki, then θm(D) = D and αm

is the automorphism of X induced by θm.
This description of α and X is sufficiently similar to the toral case described earlier
to allow essentially the same proof as before.
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5. The proof of Theorem 3.3 in the presence of nonmixing sets

If α1 and α2 share a nonmixing set S ⊂ Zd then the following lemma allows us
to synchronize the ‘nonmixing times’ of α1 and α2.

Lemma 5.1 ([11]). Let α1 and α2 be algebraic Zd-actions on compact abelian
groups X1 and X2, respectively. If α2 is a measurable factor of α1, and if S ⊂ Zd
is a nonempty finite set which is minimal nonmixing for both α1 and α2, then there
exist nonzero elements ai(n) ∈ X̂i, n ∈ S, i = 1, 2, such that∑

n∈S
α̂kn1 (a1(n)) =

∑
n∈S

α̂kn2 (a2(n)) = 0 (5.1)

for every k in an infinite subset K ⊂ N.

For the proof of Theorem 3.3 in the zero-dimensional case (i.e. in the presence
of nonmixing sets) we use Lemma 5.1 to find nonzero elements ai(n) ∈ X̂i, n ∈
S, i = 1, 2, such that (5.1) holds for every k in an infinite subset K ⊂ N. It follows
that ∑

n∈S
α̂kn1

(
f1(α̂1)(a1(n))

)
=
∑
n∈S

α̂kn2

(
f2(α̂2)(a2(n))

)
= 0 (5.2)

for every k ∈ K and f1, f2 ∈ Rd.
Put X = X1 × X2 and denote by α = α1 × α2 the product-Zd-action on X.

We fix a nonempty finite set S which is minimal nonmixing simultaneously for
λX1 , λX2 and ν. As every proper subset of S is ν-mixing, the Fourier transform
ν̂ : X̂ = X̂1 × X̂2 −→ C satisfies that

ν̂
(
f1(α̂1)(a1(m)), f2(α̂2)(a2(m))

)
= ν̂

(
−α̂km1 (f1(α̂1)(a1(m))),−α̂km2 (f2(α̂2)(a2(m)))

)
= lim
k→∞
k∈K

ν̂

( ∑
n∈Sr{m}

(
α̂kn1 (f1(α̂1)(a1(n))), α̂kn2 (f2(α̂2)(a2(n)))

))
=

∏
n∈Sr{m}

ν̂
(
f1(α̂1)(a1(n)), f2(α̂2)(a2(n))

)
for every m ∈ S. By varying m ∈ S we see that∣∣ν̂(f1(α̂1)(a1(m)), f2(α̂2)(a2(m))

)∣∣ ∈ {0, 1}
for every m ∈ S and f1, f2 ∈ Rd.

We fix an element n ∈ S, consider the α̂-invariant subgroup

N =
{(
f1(α̂1)(a1(n)), f2(α̂2)(a2(n))

)
: f1, f2 ∈ Rd

}
⊂ X̂.

Since |ν̂(a)| ∈ {0, 1} for every a ∈ N, the projection of ν onto the quotient group
Z = X/N⊥ = N̂ is a translate of the Haar measure of a closed, αZ-invariant
subgroup, where αZ is the Zd-action induced by α on Z. Since the map π : X −→
Z is finite-to-one by irreducibility and ν is ergodic, an elementary skew-product
argument shows that ν is also a translate of the Haar measure of a closed, α-
invariant subgroup Y ⊂ X. This proves Theorem 3.3 in the zero-dimensional case.

Remark 5.2. There is a significant difference between the connected and zero-
dimensional cases in Theorem 3.3. Assume for simplicity that d > 1, and that α
is an irreducible, expansive and mixing algebraic Zd-action on a compact abelian
group X. If X is connected, then it is not known whether there exists a nonatomic
probability measure µ 6= λX on X which is invariant and ergodic under α; in some
special cases it has even been conjectured that no such measures exist (cf. e.g. [4],
[16]). Even the existence of nonatomic mixing measures µ 6= λX has not been ruled
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out. However, if µ is an α-invariant mixing measure with hµ(αn) > 0 for some
expansive αn, then µ = λX by [5].

If X is zero-dimensional, then there always exist nonatomic α-invariant and
ergodic probability measures µ 6= λX with hµ(αn) > 0 for some nonzero n ∈ Zd.
One can also construct nonatomic α-invariant and ergodic probability measures µ
with hµ(αn) = 0 for every n ∈ Zd. We refer to [9] and [19] for examples.

6. Examples

Example 6.1. The matrix

A =

0 1 0
0 0 1
1 3 0

 ∈ GL(3,Z)

has the irreducible characteristic polynomial

f = x3 − 3x− 1

with roots
a1 = −1.532 . . . , a2 = −0.3473 . . . , a3 = 1.879 . . .

Hence A has a two-dimensional expanding subspace, but the expanding subspace
of A−1 has dimension 1. It follows that A and A−1 are not algebraically conjugate,
although they are measurably conjugate. Since the characteristic polynomial of A
is irreducible, A does not have an invariant subtorus and the Z-action n 7→ An is
irreducible.

Example 6.2. Let

A =
(

3 4
1 1

)
, B =

(
0 1
1 4

)
, C =

(
3 2
2 1

)
.

If

M =
(

1 3
0 1

)
, M ′ =

(
1 3
0 2

)
,

then AM = MB and M ∈ SL(2,Z), i.e. A and B are algebraically conjugate.
Also, CM ′ = M ′B, but M ′ /∈ GL(2,Z). Since there is no M ′′ ∈ GL(2,Z) with

CM ′′ = M ′′B, B and C are not algebraically conjugate, but they are measurably
conjugate: they are Bernoulli with equal entropy. The Z-actions n 7→ An, n 7→ Bn,
n 7→ Cn are all irreducible.

Theorem 1.1 shows that for irreducible, expansive and mixing algebraic Zd-
actions with d > 1 topological and algebraic conjugacy are equivalent. The following
elementary observations, taken from [6], are sometimes useful for checking that two
given Zd-actions are algebraically nonconjugate.

Let α be an algebraic Zd-action on a compact abelian group X. We say that α̂
is cyclic if the dual module M = X̂ is singly generated, i.e. if M = Rd · a for some
a ∈M. In this case M ∼= Rd/I for some ideal I ⊂ Rd.

Proposition 6.3. Let α be an irreducible and mixing algebraic Zd-action on a
compact connected abelian group X. Then α̂ is cyclic if and only if α is algebraically
conjugate to αRd/p for some prime ideal p ⊂ Rd (cf. Proposition 2.2).

If α̂ is cyclic, and if β is an algebraic Zd-action on a compact abelian group Y
which is weakly algebraically conjugate to α, then β is algebraically conjugate to α

if and only if β̂ is cyclic.

Corollary 6.4. Let α be an irreducible algebraic Zd-action on a compact
abelian group X with the property that α̂n is cyclic for some n ∈ Zd. If β is an
algebraic Zd-action on a compact abelian group Y which is weakly algebraically
conjugate to α, but for which β̂n is not cyclic, then β̂ is not cyclic.
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Corollary 6.5. Suppose that α and β are algebraic Zd-actions on compact
abelian groups such that α̂ is cyclic, but not β̂. Then α is not algebraically conjugate
to any re-parametrization of β (i.e. to any Zd-action of the form n 7→ βAn with
A ∈ GL(d,Z)).

We illustrate Proposition 6.3 and its corollaries with some examples.

Example 6.6. Let α be the Z2-action on T3 given by αn = An1Bn2 for every
n = (n1, n2) ∈ Z2, where

A =

 1 −1 −1
−1 −2 −1
−1 −4 −2

 , B =

 1 2 −1
−1 −2 2

2 5 −2

 .

The matrices A and B have the same irreducible characteristic polynomial

g = x3 + 3x2 − 6x+ 1,

A is irreducible and hyperbolic, and α is irreducible, expansive and mixing.
Let

V =

2 −2 −1
0 −3 0
1 −4 −2

 ,

A′ = V −1AV =

2 −4 −1
1 −4 −1
1 −5 −1

 ,

B′ = V −1BV =

 0 1 0
0 0 1
−1 6 −3

 ,

and denote by α′ the irreducible Z2-action n 7→ A′
n1B′

n2 . It is clear that αn and
α′

n are measurably conjugate for every n ∈ Zd, but α and α′ are not algebraically
conjugate, since B̂′ is cyclic, but B̂ is not. Hence they are measurably non-conjugate
by Theorem 1.1.

Example 6.7. Denote by σ the shift-action (1.4) of Zd on X̄ = (Z/2Z)Zd

. For
every nonempty finite set E ⊂ Zd we denote by XE ⊂ X̄ the closed shift-invariant
subgroup consisting of all x ∈ X̄ whose coordinates sum to 0 in every translate of
E in Zd. If E has at least two points then XE is uncountable and the restriction
σE of σ to XE is an expansive algebraic Zd-action.

For d = 2 and the subset

E = {(0, 0), (1, 0), (0, 1)} ⊂ Z2,

the Z2-action σE on XE is called Ledrappier’s example: σE is mixing and expansive,
but not mixing of order 3 (for every n ≥ 0, x(0,0) + x(2n,0) + x(0,2n) = 0).

We also consider the subsets

E1 ={(0, 0), (1, 0), (2, 0), (1, 1), (0, 2)},
E2 ={(0, 0), (2, 0), (0, 1), (1, 1), (0, 2)},
E3 ={(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2)}.

of Z2. The shift-actions σi = σEi
of Z2 on Xi = XEi

are mixing, irreducible and
expansive.

For every n ∈ Z2, the automorphisms σn
i are measurably conjugate, but for

i 6= j the Z2-actions σi and σj are measurably nonconjugate by Theorem 1.1.
The shift-action σ4 of Z2 on XE4 with

E4 = {(0, 0), (2, 0), (0, 2)}
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is also mixing and expansive, but reducible: the map φ : XE4 → XE , given by

φ(x)(m,n) = xm,n + x(m+1,n) + x(m,n+1),

is a shift-commuting surjective group homomorphism with kernel XE .

Example 6.8 (Conjugacy of Z2-actions with positive entropy). We define the
sets E1, E2, E3 ⊂ Z2 as in Example 6.7, set

Yi =
{
x = (xn) ∈ (Z/4Z)2 :

∑
m∈Ei

xm+n = 0 (mod 2) for every n ∈ Z2

}
,

and denote by τi the restriction to Yi of the shift-action (1.4) of Z2 on Ω =
(Z/4Z)Z2

. The entropy formula in [13, Theorem 4.2 and Lemma 4.2] (or a fairly
straightforward direct calculation) shows that h(τi) = log 2 for i = 1, 2, 3. Theorem
6.5 in [13] implies that the Pinsker algebra π(τi) of τi is the sigma-algebra BYi/Zi

of Zi-invariant Borel sets in Yi, where

Zi = {x = (xn) ∈ Yi : xn = 0 (mod 2) for every n ∈ Z2}.

Then the Z2-action τ ′i induced by τi on Yi/Zi is algebraically conjugate to the
shift-action σi on the group Xi = XEi in Example 6.7.

Since any measurable conjugacy of τi and τj would map π(τi) to π(τj) and
induce a conjugacy of τ ′i and τ ′j and hence of σi and σj , Example 6.7 implies that
τi and τj are measurably nonconjugate for 1 ≤ i < j ≤ 3.

Example 6.9. Let f = 1 + ωu1 + ω2u2 ∈ R
(4)
2 , where ω ∈ F4 and 1 + ω +

ω2 = 0 (cf. (2.9)). The inclusion R
(2)
2 ⊂ R

(4)
2 induces an injective R2-module

homomorphism  : M = R
(2)
2 /p −→M′ = R

(4)
2 /q, where

p = (1 + u1 + u2 + u2
1 + u1u2 + u2

2)R(2)
2 ⊂ R

(2)
2

and
q = fR

(4)
2 .

Since (M) has index 2 in M′, there exists a two-to-one surjective dual homomorphism
ψ : XM′ = M̂ −→ X ′ = M̂′ with αn

M · ψ = ψ · αn
M′ for every n ∈ Z2.

Since α̂M is cyclic, but α̂M′ is not, Proposition 6.3 implies that the irreducible
and mixing Z2-actions αM and αM′ are not measurably conjugate, although they
are weakly algebraically conjugate.

Further examples can be found in [6] and [11], where we also compute explicitly
the measurable centralizers of such actions.
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