ALGEBRAIC CODING OF EXPANSIVE GROUP
AUTOMORPHISMS AND TWO-SIDED BETA-SHIFTS

KLAUS SCHMIDT

ABSTRACT. Let a be an expansive automorphisms of compact connected
abelian group X whose dual group X is cyclicw.r.t. a (i.e. Xis generated
by {x-a"™ : n € Z} for some x € X) Then there exists a canonical
group homomorphism ¢ from the space £°°(Z,Z) of all bounded two-
sided sequences of integers onto X such that £ -0 = « - £, where o
is the shift on ¢*°(Z,Z). We prove that there exists a sofic subshift
V C (°(Z,Z) such that the restriction of £ to V is surjective and
almost one-to-one. In the special case where « is a hyperbolic toral
automorphism with a single eigenvalue 8 > 1 and all other eigenvalues
of absolute value < 1 we show that, under certain technical and possibly
unnecessary conditions, the restriction of £ to the two-sided beta-shift
Vs C €°(Z,Z) is surjective and almost one-to-one.

The proofs are based on the study of homoclinic points and an
associated algebraic construction of symbolic representations in [13] and
[7]. Earlier results in this direction were obtained by Vershik ([24]-[26]),
Kenyon and Vershik ([10]), and Sidorov and Vershik ([20]—[21]).

1. INTRODUCTION

The classical constructions of symbolic representations of hyperbolic toral
automorphisms are based on their geometrical properties and make no significant]j
use of algebra (cf. [1], [3], [6], [22]). In [24] a different approach was proposed,
based on arithmetical ideas, leading to a symbolic representation of the
automorphism a = (1) of the two-torus T? in terms of the two-sided
golden mean shift. The paper [10] describes a much more general, but also
less canonical, algebraic method for finding finite-to-one sofic and Markov
covers of arbitrary hyperbolic toral automorphisms by using an alphabet
consisting of a suitable finite set of integers in the number field generated
by the characteristic polynomial of the automorphism (for terminology we
refer to Section 4). As was pointed out in [10], these constructions also give
rise to certain self-similar tilings (cf. [9], [16] and [23]).

The symbolic representation of o = (1) on T? in [24] was defined in
terms of homoclinic points of the automorphism « (cf. also [25], [10], [20]-
[21]). In [7], a systematic approach to the algebraic construction of symbolic
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covers of expansive group automorphisms (and, more generally, of expansive
Z%actions by automorphisms of compact abelian groups) was developed,
based on the analysis of the ‘homoclinic group’ of Z?-actions in [13]. In
order to explain this approach in the special case of a single expansive
automorphism « of a compact connected abelian group X (the relevant
definitions can be found in Section 2) we follow [13] and introduce the notion
of a fundamental homoclinic point of o (Definition 3.1). Proposition 3.2
shows that a has a fundamental homoclinic point 2 € X if and only if the
dual group X of X is cyclic with respect to «, i.e. if there exists a character
a € X such that the group X is generated by {a"(a) : n € Z}, where &
is the automorphism of X dual to . For a hyperbolic toral automorphism
a € GL(n,Z) of T™ the latter condition is equivalent to the requirement that
« is conjugate within GL(n,Z) to the companion matrix of its characteristic
polynomial (Remark 2.4).

Due to its exponential decay properties the fundamental homoclinic point
z? defines a surjective group homomorphism ¢: £°°(Z,Z) — X from the
space (*°(Z,7Z) of all bounded two-sided sequences of integers to X given by

§) =D vpa"z® (1.1)

for every v = (v,) € £°(Z,Z). We refer to [13], [7] and Section 3 for
background and details.

The map £ in (1.1) is, of course, not injective, and the algebraic construction
of symbolic representations of the expansive automorphism « consists of
finding ‘nice’ weak*-closed, bounded, shift-invariant subsets W C (*°(Z, Z)
such that £&(W) = X and ¢ is finite-to-one or (preferably) almost one-to-one
on W. Here ‘nice’ means that W is sofic or of finite type, and ‘almost one-
to-one’ means that the restriction of € to W is injective on the set of doubly
transitive points in W — cf. Section 4.

In this paper we prove the following extension of the main result in [10].

Theorem 1.1. Let o be an expansive automorphism of a compact connected
abelian group X such that the dual group X is cyclic w.r.t. a. Then there
exists a mixing sofic shift V. C £>°(Z,Z) with the following properties.

(1) &(V) =X, where £: £°(Z,7) — X is given by (1.1);

(2) The restriction of € to V is almost one-to-one.

We remark in passing that the restriction to connected groups in Theorem
1.1 is made only for convenience: if the group X is totally disconnected, « is
topologically conjugate to a full shift by [11], and in the general situation of
a disconnected, but not zero-dimensional compact abelian group is a fairly
straightforward combination of the connected and zero-dimensional cases.

Theorem 1.1 is not constructive: it only asserts the existence of a sofic
shift V' C ¢*°(Z,Z) with the properties described there. The papers [24] and
[21] deal with specific choices of such subshifts V' C ¢>°(Z,Z) in some very
special cases. Although this is not stated explicitly in [24], the symbolic
representation of the automorphism a = ((1) %) by the ‘golden mean shift’
V c {0,1}%2 C (*(Z,Z) constructed there is based on the fundamental
homoclinic point of «. In [21], the authors write down the map (1.1)
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explicitly and prove the following more general result: Suppose that a €
GL(2,7Z) is (conjugate to) the companion matriz of its characteristic polynomial,j]
and let (B be the larger eigenvalue of o. Then the restriction of & to the two-
sided beta-shift Vg C £>°(Z,7) is surjective and almost one-to-one.

This result raises an interesting question. Let o € GL(n,Z) be an
automorphism of X = T" with the following properties:

(1) aisconjugate (in GL(n,Z)) to the companion matrix of its characteristic]]
polynomial,

(2) « has a single eigenvalue § > 1, and all other eigenvalues of « have
absolute value < 1.

If Vg C £>(Z,Z) is the two-sided beta-shift (cf. (6.10)), then we prove in
Proposition 6.1 that {(V3) = X and the restriction of £ to V3 is bounded-
to-one.

Question 1.2. Is the restriction of £ to V3 almost one-to-one?

If this is the case then the two-sided beta-shift Vg could be viewed as
a ‘natural’ sofic representation of the automorphism «. In Theorem 6.3
we provide further support for the conjecture that Question 1.2 always has
a positive answer: if § is ‘simple’ (i.e. if 1 has a strictly periodic beta-
expansion), and if the set of nonzero elements in £~1({0}) N Vj consists of a
single orbit under the shift, then the restriction of £ to Vj is almost one-to-
one (it should be noted that the first of these assumptions also implies that
Vs is a shift of finite type).

The exposition is organised as follows. Section 2 contains the characterisation]]
of automorphisms « of compact abelian groups whose duals are cyclic w.r.t.
a (Proposition 2.2). Section 3 discusses homoclinic and fundamental homoclinicl}
points (Definition 3.1), characterises those expansive and ergodic automorphismsjj
of compact abelian groups which possess a fundamental homoclinic point
(Proposition 3.2), and introduces the map £ in (1.1). In Section 4 we
investigate the construction of almost one-to-one sofic covers of expansive
and ergodic group automorphisms, following the approach in [14], [10] and
[7] (Proposition 4.2). Section 5 is devoted to proving Theorem 1.1 in an
equivalent form (Theorem 5.1), and Section 6 discusses and provides partial
answers to Question 1.2.

2. EXPANSIVE AUTOMORPHISMS OF COMPACT ABELIAN GROUPS

Definition 2.1. Let « be a continuous automorphism of a compact abelian
additive group X with identity element 0 = Ox. Then « is ezpansive if there
exists an open set O C X such that

[ a"(0) = {o}.

nez

The dual group X is cyclic with respect to « if there exists a character
a € X such that X is generated by the set {¢"(a) : n € Z}, where & is the
automorphism of X dual to a.

In order to describe all automorphisms « of compact connected abelian
groups whose dual is cyclic w.r.t. a we denote by R = Z(u*!) the ring of
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Laurent polynomials with integer coefficients in the variable v and write
every h € R as

h=Y " hpu", (2.1)

nez
with h,, € Z for every n € Z and h,, # 0 for only finitely many n € Z. An
element h € R is primitive if the highest common factor of the coefficients
{hn :m € Z} is equal to 1.
Every primitive h € R defines an automorphism «y, of a compact connectedf]

abelian group X}, as follows. Denote by o: T — T% the shift

(0)n = Tpt1 (2.2)

for every x = (x,,) € T%, and put

h(o)(x) = hpo"x (2.3)
nez
for every € T? and h € R. Then ker(h(c)) is a closed, connected, shift-
invariant subgroup of TZ. The following proposition is a special case of much
more general results (cf. [18] and [19)]).

Proposition 2.2. Let h € R be a Laurent polynomial, and let o be the
restriction to
X, = ker(h(o)) C TZ

of the shift-action o of Z on T%. The following conditions are equivalent.

(1) ay, is expansive;

(2) h has no roots of absolute value 1.
If ay, is expansive then it is ergodic with respect to the normalised Haar
measure \x, of Xp.

Finally, if a is an arbitrary automorphism of a compact connected abelian
group X, then the dual group X of X is cyclic w.r.t. a if and only if
there exists a primitive Laurent polynomial h € R and a continuous group
isomorphism ¢: X —— X, such that ap - ¢ = ¢ - a.

Motivated by Proposition 2.2 we adopt the following terminology.

Definition 2.3. A Laurent polynomial h € R is hyperbolic if it is primitive
and has no roots of absolute value 1 or, equivalently, if X} is connected and
the automorphism «y, is expansive.

Remarks 2.4. (1) Let a« € GL(n,Z) be an automorphism of X = T" with
characteristic polynomial h. Then « is (algebraically) conjugate to «y, if and
only if it is conjugate in GL(n,Z) to the companion matrix

0 1 . 0 0
0

N
—ho —h1 . —hp—2 —hnp_1
of h="hy+ hu+---+u™
For example, the matrices a = ($1) and o/ = (32) in GL(2,Z) have
the same characteristic polynomial h = —1 — 4u + u?, « is conjugate to

the companion matrix 8 = (9 }) of h, but there is no M € GL(2,Z) with
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o’M = Mp. For references concerning conjugacy of matrices in GL(2,7Z)
and related problems we refer to [2].

(2) Every f =Y, 7 [ou™ € R determines a character (f,-) of T by
(o) = [ exmifoer (2.4)

neL

for every x = (z,) € T%. Furthermore, if h € R, and if X;, Cc T? is
defined as in Proposition 2.2, then (2.4) allows us to identify TZ with R and
X, = TZ/X;- with the quotient ring R/(h), where (h) = hR = {hf : f €
R} C R is the principal ideal generated by h. Under this identification the
automorphism «j, of X}, is dual to multiplication by u on R/(h).

(3) If I C R is an arbitrary ideal, then

Xr=()Xn=R/I (2.5)
hel

is a closed, shift-invariant subgroup of T%, and the restriction a; of o to X
is dual to multiplication by uw on R/I (cf. Example (2) above). However, we
claim that «aj is nonergodic if I is not principal.

Indeed, let I C R be nonprincipal, and let h = ged(I) be the highest
common factor of all elements of I (this highest common factor is well defined
up to multiplication by +u", n € Z; in particular, the principal ideal (h) =
hR is uniquely defined). Then (h) D I, (h)/I is finite, and we denote
by C: R/I — R/(h) the quotient map. The dual group homomorphism
(: Xp — Xy is shift-commuting and injective, and X;/{(X}) is finite.
This shows that o; must be nonergodic, since X; has a closed, shift-invariant
subgroup of finite index. For details we refer to [19].

3. HOMOCLINIC POINTS

Definition 3.1. Let a be an automorphism of a compact abelian group X.
A point @ € X is homoclinic if lim),|_,o, @™z = 0. The set of homoclinic
points of « is a subgroup of X denoted by A, (X). A homoclinic point z € X
is fundamental if A,(X) is generated by {a™z : n € Z} or, equivalently, if
every y € A,(X) is of the form

y=h(a)(z) = Z hpa"x
for some h =" ., hyu" € R. ner

Proposition 3.2. Let a be an expansive automorphism of a compact connectedl
abelian group X. Then the group Ay(X) of homoclinic points of « is
countable and dense in X. The following conditions are equivalent.
(1) « has a fundamental homoclinic point;
(2) X is cyclic with respect to o (Definition 2.1);
(3) There exists a hyperbolic polynomial h € R and a continuous group
isomorphism ¢: X —— X}, such that ¢ - o = ay, - ¢.

Proof. The first assertion is clear from Lemma 3.2 and Theorem 4.2 in [13],
and the equivalence of (2) and (3) follows from Proposition 2.2. If a = a,
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and X = X}, for some hyperbolic h € R then the proof of Lemma 4.5 in [13]
shows that there exists a fundamental homoclinic point of o (cf. (3.16)).

In order to prove the last remaining implication (1) = (3) we view A, (X)
as a discrete group, denote by [ the restriction of o to Ay (X), write Y =
A, (X) for the dual group of A, (X), and consider the automorphism 3 of Y’
dual to . Since o"x # x whenever n # 0 and 0 # z € A,(X), (3 is ergodic
onY.

Let 2: Ay(X) — X be the inclusion map. As 1 is injective and A, (X)
is dense in X, the dual homomorphism i: X — Y is injective and 2(X) is
dense in Y. Furthermore, since

~

1-f=a-, (3.1)

we obtain that
i-a=p-1. (3.2)
We write Ag(Y’) for the homoclinic group of 3 and claim that i(X) c
Ag(Y). A
In order to prove this claim we fix y € X for the moment. Since
limy,| o a2 = 0 for every x € Ay (X),

lim x(a"-2(e)) = lm x(z- B"(x))

In|—o00
= lim i(x)(B"2) = lim B"-i(x)(x) =1
for every & € A, (X), which implies that i(x) € Ag(Y). As x € X was
arbitrary we conclude that i(X) C Ag(Y), as claimed.

This allows us to view 7 as a map 7': X +—— Ag(Y) with #(b) = i(b) for
every b € X. We write j: Ag(Y) — Y for the inclusion and observe that
the injective maps

X DAsv) Ly
dualise to A
Aa(X) = Ap(Y) = X,

where the homomorphism ¢ dual to 7’ is surjective. Furthermore, ¢/ is
injective, since 7’ - j = 1 is injective. Similarly one sees that j is a bijection.
This allows us to make the following identifications:

X =A4(Y)CY, Y = Al(X) C X, (33)

& = Bag(y)s B = an,x) ‘
where ap,(x) and ﬁAB(y) are the restrictions of a and 3 to A,(X) and
Ag(Y), respectively (cf. (3.1)-(3.2)).

If @ has a fundamental hgmoclinic point, then there exist an ideal 1 - R
and a group isomorphism (: A,(X) — R/I such that ¢ - ((z) = u((x)
for every © € Ay(X). We denote by (: R/I — Y = A,(X) the dual
isomorphism and obtain that (- ay = 3-(, where ay is defined as in Remark
2.4 (3). The ergodicity of § implies that I is principal (cf. Remark 2.4
(3)). We choose a Laurent polynomial h € R with I = (h) = hR and
apply Lemma 4.5 in [13] to obtain that Ag(Y) = X = R/(h). According to
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Remark 2.4 (2) there exists an isomorphism ¢: X —— X} with ¢-a = ay,- ¢,
as claimed. O

For the remainder of this section we fix a hyperbolic polynomial
f=fo++ fmu" €R

with m > 1, fo # 0, f,m > 0, and write o = a; for the corresponding
expansive automorphism of the compact connected abelian group X = X
(cf. Proposition 2.2 and Definition 2.3). Put

F=fou™ + fru™ 4t S (3.4)
We denote by || - |1 and || - [|sc the norms on the Banach spaces ¢'(Z, R)
and (*°(Z,R) and write £}(Z,Z) C £*(Z,R) and £>(Z,Z) C {*(Z,R) for the
subgroups of integer-valued functions. By viewing every h =}, h,u" €
R as the element (h,,) € ¢*(Z,Z) we can identify R with ¢}(Z,Z).
Consider the surjective map n: £>°(Z, R) — T? given by

n(v), =v, (mod1) (3.5)
for every v = (v,) € £>°(Z,R), and denote by & the shift
(6V)n = Unt1 (3.6)
on {>*(Z,R). As in (2.3) we set
h(E) =) hno"
nez

for every h € R and note that the expansiveness of « is equivalent to the
condition that
ker(f(o)) = {0} C £*°(Z,R) (3.7)
(cf. [18], Theorem 6.5 in [19], or Proposition 2.2 in [7]).
According to the proof of Lemma 4.5 in [13] there exists a unique point
w? € 1°(Z,R) with

f(@)(w?) = v®, (3.8)
where
1 ifn=
v = { itn =0, (3.9)
0 otherwise.

The point w2 also has the properties that there exist constants ¢; > 0, 0 <
co < 1 with

wd] < erdh (3.10)
for every n € Z. It follows that
[ = lwy] < oo, (3.11)
and that nez
§) =) vao"w? (3.12)
nez

is a well-defined element of ¢>°(Z,R) for every v € (*°(Z,Z). As in [7] we
denote by

£: 4®(Z,7) — (X(Z,R), E=n-E:0°(2,7)— X (3.13)
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the resulting group homomorphisms. The following proposition was proved
in [7].

Proposition 3.3. For every v € {*°(Z,7),
F(@)(EW)) = E(f(a)(v)) = v,
1E@)lloo < flw® 11 [[0]]oo, (3.14)
[vlloc < 1111 11E(0) [loo-

Furthermore, £: £°°(Z,Z) — X is a surjective group homomorphism and
£-a"=a"- & for every n € Z,
ker(§) = f(5)(¢*(Z, Z)), (3.15)
ker(¢) N2, 2Z) = f(5)(¢*(Z,2)) = fR.

If we denote by
2 = n(w?) = (=) (3.16)
the fundamental homoclinic point of & = a (cf. Lemma 4.5 in [13]), then
the map &: (°°(Z,Z) — X is given by (1.1). From (3.10)—(3.13) it is clear
that the restrictions of ¢ and & to every bounded subset of /*°(Z,Z) are
continuous in the weak*-topology.
It is not difficult to see that there exist closed, bounded, shift-invariant
subsets V' C (*°(Z,Z) with £(V') = X. A convenient set V with this property
is described in Corollary 2.1 in [7]:

Proposition 3.4. For every h =3}, hyu" € R we set

ht = Zmax (0, hp)u™, h™ =— Zmin (0, hp)u™,
nez ne”Z
1]y = max ([|h [l = 1,0),  [|A7][} = max (|||}, — 1,0),

1Bl = I+ + 1
Then the set
V={vel>®Z7Z):0<wv, <|f|] for every n € Z} (3.17)
satisfies that £(V) = X.

Examples 3.5. Fxamples of fundamental homoclinic points. Let f = fo +
-+ fmu™ € R be a hyperbolic polynomial with fof;, # 0, and define X/

and oy as in Proposition 2.2. We arrange the roots c1, ..., ¢y, of f such that
ler] < - <e| <1< |eqg1| <+ <|eml and set
1 .01
cl1 ... Cm
My =
cT_l Lemt
Then the fundamental homoclinic point 22 of ary is of the form 2 = n(w?)
with
blc’f+--~+blc§“ for k> 1,
wi =14+ + by for k=0, (3.18)

bl“cfﬂ + -+ bmcﬁ1 for k<m —1,
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where
b1 (1)
; :
My —b,l+1 = 8 . (3.19)
b 6

e
= (ﬁ? ), then 7 is a group isomorphism and 7 - ay = o -7 with a =
GL(2,Z). Then |e1| < 1 < |ea|, w™ is of the form

A {—%él if k> 1,

|
—0
=
~—

m

wk = ke .
—%02 L if k<o,

and 2 = n(w?) (cf. Example 4.7 in [13]). The fundamental homoclinic
point of a = (91) is thus given by

2

m(z?) = <_“13> (mod 1).

Vs

(2) Let f =2 —u. Then ¢; > 1 and 22 = n(w?) with
L [o if k> 1,
W =
bt = 1. if k<0,

Note that the automorphism oy is the canonical extension of the endomorphismij
of T given by multiplication by 2.

(3) Let f =3 — 2u. Then ¢; > 1 and 22 = n(w?) with

a_Jo if k> 1,
FT L Sl k<o,

The automorphism ay is the canonical extension of ‘multiplication by 3/2’
on T.

4. SOFIC COVERS

Let A be a finite set (the alphabet), and let V' C A% be a closed, shift-
invariant subset, where the shift o on A% is defined as in (2.2). A point
v € V is doubly transitive if the sets {o"v :n > k} and {o"v : n < —k} are
dense in V for every k > 0. If V' contains a doubly transitive point then V
is called transitive, and V' is (topologically) mizing if, for all nonempty open
sets 01,02 CV, O1 Na™(O2) # @ for all sufficiently large |n.

The set V' is a shift of finite type (SFT) if there exists an integer N > 0
and a subset P C AN = A{0--N-1} with

V={v=(vy) € A% : (vn,...,0nyn_1) € P for every n € Z}. (4.1)
Note that V' is a SFT if and only if there exists an integer N > 0 such that
V={veAl: 0, .N-1}(0"v) € mo, . n—13(V) for every n € Z},

where mo  N_1): AZ 5 A0 N=1} 45 the coordinate projection.

The set V is a sofic shift if there exists a finite set B, a SFT W C B%
and a continuous, surjective, shift-equivariant map x: W —— V (cf. [27]).
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We return to our study of expansive automorphisms of compact groups.
Let f € R be hyperbolic, and let o = oy and X = X be given as in Section
3. We define ¢: €°(Z,7) — £>°(Z,R) and &: (*°(Z,Z) — X by (3.13)
and Proposition 3.4.

Following [7] we introduce, for every closed, bounded, shift-invariant
subset W C ¢*°(Z,Z) with {(W) = X, the equivalence relations

Ry = {(v,0") e W x W : {(v) = £(v)},
Ay = {(v,v") € W x W : v, # v], for only finitely many n € Z},
Ay ={(v,0) e W x W :v =1 € f(5)({"(Z,Z)) = fR}
=RwNAw C Aw.

(4.2)

Consider the lexicographic order < on R = ¢!(Z,Z) defined by setting 0 < h
if and only if h,, > 0 for the smallest m € Z with h,,, # 0, and by saying that
h < B’ whenever h — h/ < 0. The order < on R induces the lexicographic
order (again denoted by <) on each equivalence class of Ay : if (v,v') € Ay
then v —v' € (1(Z,Z) = R, and v' < v" if and only if v/ — v" < 0.

We put R™ = {h € R:0 < h} and set

We= [\ W~ W+ fr)=w~ | J W+ fn)
heR+ heR+ (4.3)
={weW:w 2w for every w' € W with (w,w) € A}y }.

Proposition 4.1. Let L > 1, W € Z = {—L,...,L}* a SFT with ((W) =
X, and let W* C W be defined by (4.3). Then {§(W*) = X, W* intersects
each equivalence class Ay, (v), v € W, in at most one point, and h(a) =
h(aw=), where Gy~ is the restriction of & to W* and h(-) is topological
entropy. Furthermore, the restriction of £ to W* is bounded-to-one.

Proof. This is — in essence — a simplified version of the proofs of Theorem
3.1, Corollary 3.1 and Corollary 3.2 in [7]. O

Proposition 4.2. Let f € R be a hyperbolic Laurent polynomial (cf. Definition]
2.3), and let o« = ay be the expansive automorphism of the compact connected
abelian group X = Xy described in Proposition 2.2.

Suppose furthermore that L > 1, that W C Z = {—L,...,L}* is a
transitive SE'T with §(W) = X, and that there exists a fized point ¢ € W of
o with

1 ({E@N AW = (e}, (44)

Then the subshift W* C W defined by (4.3) is sofic and mizing, and the
restriction to W* of the group homomorphism &: ¢>°(Z,Z) — X in (3.13)
18 surjective and almost one-to-one.

We begin the proof of Proposition 4.2 with two lemmas.
Lemma 4.3. Let K > 1, W = {-K,...,K}* and
W'=wWn f(a)({>(Z,7)).
Then W' is a SFT.
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Proof. The expansiveness of a implies the existence of a neighbourhood U
of 0 =0x in X such that e, a"(U) = {0}. From (3.13) we conclude that
there exists an € > 0 such that every v € {((>°(Z,Z)) with
i -kl < 4.5
ﬁg%%hm | <e (4.5)
lies in £>°(Z,Z).
According to (3.15),
W ={weW:w)=0x}={weW:&w)ecl™(Z,72)}.

The inequality (3.11) allows us to choose an integer P(K) > 1 with the
following property: if w,w’ € W satisfy that

wy, = w, for —P(K)<n< P(K), (4.6)
and if )
n o if n >0,
wp =4 tn=0 (4.7)
then w” € W and wy i n <0,

|(€(w"))n = (£(w))n| < & for every n >0,

|(E(w"))n = (E(w'))n| < & for every n < 0.
If the points w,w’ in (4.6) lie in W', then (4.8) shows that the point w”
(4.7) satisfies (4.5), since (£(w)), € Z and (£(w')), € Z for every n € Z. We

conclude that £(w”) € £°°(Z,7), and hence that w” € W’. This proves that
W' is a SFT, since it satisfies (4.1) with 2P(K) + 1 replacing N. O

Lemma 4.4. Let Q* be a transitive SF'T and ¢: Q" — X a continuous,
surjective and bounded-to-one map with v -7 = « -, where T is the shift on
Q. If there exists an element x € X with [yp = ({x})| = 1 then v is injective
on the set of doubly transitive points of Q.

(4.8)

Proof. This is the usual ‘no diamonds’ argument. Let w* = (w}) € Q* be
the unique pre-image of x under 1. Since (2* is compact and % is continuous
there exists, for every k > 0, a neighbourhood Ni(z) with

7 (Ni(@)) C Nip(w*) = [y, o]
={weQ 1wj=w; for j =k, ... k}.
As Q* is a SFT we can choose the integer k such that, for all w,w’ €
Ni(w*), the point W’ = (w]/) with

" wp, ifn<0
W ifn>0

n
lies in Q*.

With this choice of k& we obtain that, for all [ > 1 and w,w’ € Ng(w*) N
77U Ny (w*)) with ¥(w) = P(W'), w; = wj for j = 0,...,1 (otherwise we
could easily find a point y € X with uncountably many pre-images under
). It follows that v is injective on

m(Uka ) Vel )>,

>0 “j>I1 j>l

and hence on the set of doubly transitive points in Q. U
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The following proof of Proposition 4.2 is based on the proof of Proposition
3.1 in [14] and Theorem 4.1 in [7] (cf. also Theorem 3 in [10]).

Proof of Proposition 4.2. By assumption, f = fo 4+ --- + fi,u™ with fo #0
and f,, > 0. According to (3.15), any two points w,w’ € W with {(w) =
&(w') differ by an element in f(3)(¢*>°(Z,Z)). Furthermore, if w — w' =
f(@)(h) for some h € (*°(Z,Z), then (3.14) implies that
Ihllse = IEC @) AN < lw? 11f (@) (w = w)lloo < 2LI[w? 1]l [l (4.9)
We write the fixed point ¢ € W in (4.4) as
c=(...,c0c0c...)

and conclude from (4.4) that there exists a neighbourhood U of the identity
element 0 = 0x € X with
wy, = ¢ (4.10)

foranyn = —N,..., N andw € £~} (U+£(c)). By increasing N, if necessary,
we may assume that W satisfies (4.1) and that N > P(K) for

K = (2L + 1)||w® |1 f]|x- (4.11)
Finally we fix an integer M > N with
€t wn]) CU+ E(w) (1.12)
for every w € W, where

[w_pr,...,wy] ={w € W:w, =w; for i=—-M,...,M}.

The SFT Z. For P = M, N we set
W(P) = 7T{*P,.A.,P} (W) C {_L) ceey L}2P+1

and call an element v = (v/_p,...,vh) € W) a follower of v = (v_p,...,
vp) € W) if

v =wvjyq for i=—-P,...,P—1. (4.13)
The set of followers of v € W) will be written as f, ¢ W), By
7: WM W) we denote the projection

ﬁ(U,M,. . .,’UM) = (U,N,... ,UN)

for every v = (v_py, ..., var) € WM,
Next we set H = {—K, ..., K}?+Tm+L (cf. (4.9) and (4.11)) and put, for
every h = (h_pf—m, ..., har) € H,

B =S hiifm i i=—M,... M,
' ]Z_; fm=s (4.14)
W= Wy W) € H = {=K| fll,. .. K[ fl M
Put
A={a=(pa),q(a),s(a)) e WM x W) x {0,1} : for some h € H,

pla) +h* € WM and ¢(a) = 7(p(a) + h*)}.
(4.15)
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Our choice of the integers M > N implies the following:

if ac A and p(a) =c™ =(c,...,c) e WM,
(4.16)
then g(a) = 7(c™)) =™ =(¢,...,c) e W),

We call an element o’ € A a follower of a € Aif p(a) € fyq), q(a’) € fy(a),
and if one of the following conditions is satisfied:

(1) ga(a) = 7(p(a)), q(a’) = 7(p(d)), s(a) = s(a’) =0,
(2) q(a) =w(p(a)), qla’)n > p(a’)n, s(a) =0, s(a’) =1, (4.17)
(3) s(a) =s(d') =1.
For every a € A we write f, C A for the set of followers of a and say
that an element a’ € A can be reached from a if there exists a sequence

a=agp,...,ay =a in A with a;41 € f,, for every i =0,...,1 — 1. Since W
is transitive and

(', 7(p"),0) € fp2(),0

for every p’ € f,, (¢,7(q),0) can be reached from (p,7(p),0), for every p,q €
P. Let

Ap ={a € A:a can be reached from some
(and hence any) (p,7(p),0) with p € P}, (4.18)
E={z=(2,) € AL : 2,1 €., forevery n € Z},
and note that = C A(Z) is a shift of finite type.
For every z = (z,,) € Z and n € Z we write p(z,) € WM ¢(z,) € W)
as
p(zn) = (P(2n)—p1, - - P(20) M), q(zn) = (@(zn) =N, -, q(zn)N),
with p(zn)i,q(zn)i € {—L,..., L} for every i. Consider the maps
01, 02: = VI/’
given by
(01(2)n = p(zn)o,  (02(2))n = q(zn)o, (4.19)
for every z = (2,) € E and n € Z. We claim that these maps have the

following properties:
01(E) =02(2) =W,

4.20
€01 &0, (4.20)
Indeed, let w = (w,,) € W and put
w™ = (Wpepgs o wngnr), W = (Wpeny W) (4.21)
for every n € Z. Then the sequence z = (z,) with p(z,) = wiM™, q(zn) =

wi®™ and s(zn) = 0 for every n € Z lies in = and 61(z) = 02(z) = w. This

proves the first equation in (4.20).

For the second equation in (4.20) we fix w € W and z € Z and note that
there exists, for every m € Z, an element z(m) € E with z, = z(m), for
n > m, and with



ALGEBRAIC CODING OF EXPANSIVE GROUP AUTOMORPHISMS 14

for all but finitely many n < m (cf. (4.21)). From (4.17), our choice of N >
P(K) and Lemma 4.3 it is clear that 02(z(m)) —61(z(m)) € f(a)({>*(Z,Z)).
The second equation in (3.15) guarantees that

- 01(z(m)) =& 02(2(m))
for every m € Z, and by letting m — —oo we obtain that £-6,(2) = £-02(2),
as claimed in (4.20).

The SFT’s Q and Q. For every p € WM) we set
Sp={(q,s) € W™ x {0,1} : (p,q,5) € Ao} (4.22)
Let
A ={a=(p(a),S(a)) : p(a) € WM, (7(p(a)),0) € S(a) C Spa)}-
We call &’ € A a follower of a € A if
p(@) € fpa),

s@)= | ) 0@).d.s) € fpaan) )
(¢,5)€S(a)
Again we denote by f, the set of followers of a.
From (4.23) and (4.16) the following properties are clear for every a € A:

(1) if p(a) = ™) then S(a) c {(c™,0), (™, 1)}.
(2) for every p’ € foa) there is a unique a' € f, with p(a’) =7p/,

(3) if be A with p(a) =p(b) and S(a) C S(b), and if (4.24)
a' €f,,b €fy, and p(a’) = p(b’), then S(a’) c S(b').
Finally we set
Q={w=(wn) € AL : w1 €1, forevery n € Z}
A" =f{ac A (7(p(a),1) ¢ S(a)}, (4.25)

QF=Qn(A%)Z

Again we note that Q* C Q C A% are SFT'’s.
The map 0: Q —— W. For every w = (wy,) € Q and n € Z we set w,, =
(p(n),S(n)) with p(n) = p(wy,) and S(n) = S(w,) and write

p(n) = (p(n)-n1,-- -, p(n)n)
with p(n); € {—L,...,L} for every i = —M,..., M. As in (4.19) we define
0: Q+— W by setting

(0(w))n = p(n)o

for every w € Q2 and n € Z and claim that

() =W, (") =w. (4.26)

In order to prove (4.26) we fix w € W for the moment and define w%M), wi™

by (4.21) for every n € Z. Consider, for every [ € Z, the sequence w(w,l) =
(w(w,1),) € A? defined recursively by

(. 1)y = W™, {00 if n<l,
o fw(w,Z)n,l if n> 1.
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The inclusion (4.24) (3) shows that
S(w(w,l)n) C S(w(w,l —1)y)

for every I,n € Z, and we set

sl = (w0, S0

1<0
for every n € Z. The resulting point w(w) € Q obviously satisfies that
f(w(w)) = w. Since w € W was arbitrary this shows that 6: Q — W is
surjective.

If w(w) ¢ QF there exist an integer n € Z with w(w),, ¢ A* and a largest
integer | < n with (vV), 1) € S(w(w,1),). From the definition of f, in (4.23)
it is clear that there exist finite sequences (q(1),...,q(k)) € (WHN))k=l+1

and (s(1),...,s(k)) € {0, 1}*~!*! with the following properties:
(1) (q(2),s(i)) € S(w(w,l);) €S o for i=1,...,n,
@) a=w", gl +1) # wfl), an) = wll?,
(4.27)
(3) s() =0, s(n) =1,
(M)
(4) (w;yy,q(i+1),s(i+1)) Ef( (M) i) 5(0) for i=1+1,.
From (2), (4) and (4.17) it follows in particular that ¢({ + 1)ny > wisn+1.

Define z € Z by
(w ,(C ),O) for k <1,
2 =4 (wi™) ,q( ),s(k)) for I <k<mn,
(w,(C ),w,(CN), 1) for k> n,
and set w’ = 0(2) (cf. (4.19)). According to (4.20),
£ 01(2) = E(w) = E(w') = € 02(2),
and the definition of z guarantees that
wk:w}c for k<I+ N and k> n,
wy < wy, for k=1+N + 1.

Since w < w’ and {(w) = {(w'), w ¢ W* by (4.3).
Conversely, if w ¢ W*, then (4.3) shows that there exists an element
w' € W with (w,w’) € A}, and w < w’. We set

20 = (WM '™ s(n))

for every n € Z, where

{0 if n <!+ N, where | =min{k € Z: wi ;éw },
s(n) =
1 otherwise.

Then z = (2,) € E and (w’glN),s(n)) € S(wy) for every w € 071 ({w}) and
n € Z. It follows that w ¢ 0(Q*), which completes the proof of (4.26).

Completion of the proof of Proposition 4.2. According to (4.24) (2), the shift-
covariant surjective map @ is right-resolving (cf. [12]), and hence [0~ (v)| <
|P(A x H)| for every v € W, where |S| denotes the cardinality of a set S.
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In particular, the restriction 6* of 6 to £2* is a continuous, bounded-to-one,
shift-covariant map of the SFT Q* onto W*, and W* is sofic.

Proposition 4.1 shows that the restriction of £ to W* is bounded-to-one.
Hence ¢ = £ - 0%¢: Q" — X is bounded-to-one.

We set Z = t(c) € X and claim that the pre-image ¥ ~!1({z}) € Q* of z
under ) consists of a single point.

Indeed, (4.16) shows that every a € A with p(a) = ¢™) is of the form
(M) (V) s) with s € {0,1}. In the notation (4.22) this implies that
S.an = {(c™),0),(c™), 1)}, and hence that a = ((c™), {(c™¥),0)}) is the
only element in A* with p(a) = ¢™). From (4.10) it follows that ¢~(Z)
consists of the single fixed point © = (...,a,a,a,...). If Q* is not transitive
it must contain a transitive component Q** with ¢ (Q2**) = X and hence
with @ € Q**. As Q" is transitive and contains a fixed point, it is mixing,
hence the sofic shift W* = 6(2**) is mixing, and Lemma 4.4 implies that the
maps ¢: Q@ — X and £: 0(Q**) = W* — X are almost one-to-one. [

5. SOFIC PARTITIONS

Theorem 1.1 is a consequence of Proposition 3.2 and the following result.

Theorem 5.1. Let f € R be a hyperbolic Laurent polynomial (Definition
2.3), and let o« = ay be the expansive automorphism of the compact connected
abelian group X = Xy described in Proposition 2.2. Then there exists a
mizing sofic shift V. C £>°(Z,7) with the following properties.

(1) &(V) = X, where &: (°(Z,Z) — X 1is the group homomorphism
(3.13);

(2) The restriction of £ to V is injective on the set of doubly transitive
points i V.

The remainder of this section will be devoted to the proof of Theorem
5.1. Since « is expansive on X, its fixed point group

Fix(o) = {z € X : ax = x}
is finite. It follows that the set
Fix(a) ={v € E(EOO(Z, Z)):ov=v} CL®(Z,R)

has the property that

{teR: (... t,t,t,...)eFix(a)} =

x|

Y/ (5.1)

for some integer k > 1.

Proposition 5.2. There exist an integer L > 1 and a transitive SFT
WcZ={-L,...,L}* ct>(Z,7)

satisfying the following conditions.

(1) E(W) C (=3/4k,1 —1/4K)" (cf. (5.1));
(2) EW) =X.
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Proof. Let I = [~1/2rk,1-1/25] CR, J = [-1,2] CR, V' =~ Y(X)NI% C
(*(Z,R) and W' = n~Y(X) N J? C £>(Z,R). Clearly, n(V') = n(W') = X
(cf. (3.13)), and

ENWY) = F@W) € Z={~L,.... LY c *Z,2)  (52)
for some L > 1. Choose an integer K > 0 with

LY |wp| <1/8k, (5.3)

put |k|>K

Wy =

,_ Jwp if [k <K,
0 otherwise,

and define a map &' : £>°(Z,Z) — {>(Z,R) by setting
"(w) = anﬁnw’
nez
for every w = (wy,) € £°°(Z,Z). From (5.3) it follows that |{(w), — &' (w),] <
1/8k for every n € Z and w = (w,,) € W, so that the set
W={weW:-5/8: <& (w), <1-3/8k for every n € Z} (5.4)

contains V = f(7)(V'). Hence £&(W) = X, and the definitions of w’ and &
guarantee that W is a SFT. If W is not transitive, then the ergodicity of
a guarantees that one of the finitely many transitive components of W will
also cover X, and we replace W by such an transitive component. U

Yy

Proof of Theorem 5.1. Let L >1and W C Z ={—L,...,L}* be chosen as
in Proposition 5.2. From the definition of W it is clear that [¢~!({z})NW| =
1 for every x € Fix(a): indeed, if v # w € W and £(w) = =, then there
exists a j € {0,...,k — 1} with 9,, = w, = j/k (mod 1) for every n € Z,
and condition (1) in Proposition 5.2 implies that v, = w,, for every n € Z.
A glance at Proposition 3.3 shows that v = w.

We define W* C W by (4.3) and obtain from Proposition 4.2 that W*
is a mixing sofic shift, and that the restriction of £ to W* is almost one-to-
one. (]

6. BETA-EXPANSIONS

An algebraic integer 8 > 1 is a Pisot number if its conjugates co, ..., cp
satisfy that |¢;| < 1 for i = 2,...,m. We call an irreducible element f =
fo+ 4 frmoru™ P+ u™ € R with fy # 0 a Pisot polynomial if one of its
roots is a Pisot number.

For the remainder of this section we fix a Pisot polynomial f € R and
write 3 for the unique root of f with 5 > 1. Following [15] we consider the
map

Tgx = Pz (mod 1) (6.1)

from the unit interval I = [0,1] to itself and define, for every x € I, the
beta-expansion wg(x) = (wg(x),) of x by setting
wg

(x)n = ﬂTgilaz - Tjx (6.2)
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for every n > 1. Note that wg(x), € {0,...,Int(3)} for every n > 1, where
Int(f) is the integral part of 3, and that

v=) ws@)B" (6.3)

for every x € I. nzl

Since 3 is a Pisot number, the orbit {771 : n > 0} is finite (cf. [4], [5],
[17]), and the sequence wg(1) is pre-periodic (i.e. (vy4k, n > 1) is periodic
for some k > 0). If T§1 = 0 for some (smallest) n > 1, then 3 is called simple
(cf. [15]), wp(1) is of the form (ws(1)1,...,ws(1)ys,0,...) with wg(1), > 0,
and we write

wi(1) = (wg(W)1, -+, wp(D)n — Lwg(D1, -+ swp(D)n — 1,...) (6.4)
for the periodic (B-expansion of 1. If Tl # 0 for every n > 1 we set
wj(1) = wg(1). In either case,

1= wh(1)us" (6.5)
n>1
We set N = {1,2,...}, denote by < the lexicographic order on E; =
{0,...,Int(B)}Y, write o, for the one-sided shift (2.2) on 2;, and recall
that
ohws(1) = wi(1) (6.6)
for every k > 1 (cf. [15]). The restriction of o to the closed, shift-invariant
set
VE’ ={v e ZE o'ty 2 wi(1) for every n > 0} (6.7)
is called the G-shift.
Define a map pg: Vﬁ+ — I by

pa(v) =Y 0" (6.8)

n>1

for every v = (v,) € V/j. Then pg is continuous, surjective, bounded-to-one,
and
wp(pp(v)) =v (6.9)
for all v in the complement of a countable subset of Vgr (cf. [15] and (6.3)).
Here we are interested in two-sided versions of the beta-expansion and
the beta-shift. Denote by o the shift (2.2) on X5 = {0, ..., Int(8)}%, write
vt = (vy,v9,...) € EE for every v = (v,,) € ¥, and put

Vi={veXz:(c"v)" € VI@Jr for every n € Z}. (6.10)

From (6.10) and the eventual periodicity of wj(1) it is not difficult to see
that V3 C X3 C (*°(Z,Z) is sofic. If 3 is simple then Vj is, in fact, a SFT.

Proposition 6.1. Let 3 > 1 be a Pisot number, f € R an irreducible
polynomial with f(8) = 0, and let « = ay be the expansive automorphism
of the compact abelian group X = Xj described in Proposition 2.2. We
write £: (°(Z,7) — X for the group homomorphism (3.13) and define
Vg CL>®(Z,Z) by (6.10). Then {(V3) = X, and the restriction of £ to Vg is
bounded-to-one.



ALGEBRAIC CODING OF EXPANSIVE GROUP AUTOMORPHISMS 19

Proof. The main argument in following proof is due to B. Solomyak. We
denote by ¢; = 3, ¢a, ..., cn the roots of f, set
cfl c;bl
A= Do ,
a™ e

and write
-1 -1
AT = oleg?ém A 2| /]|z]

for the norm of the inverse matrix A~! with respect to the maximum norm
| - || on C™. Let |f|; and V' C ¢£*°(Z,Z) be defined as in (3.17), choose

K > 1 with
IAE- > BF <1
k>K

and put

=AY (1 NIATERYSY |cjr’f),

J=2k>—K
L=L"+|fl,
W={-L,...L}~
For every N > 1 we denote by mny = 1 . n} the projection onto the
coordinates 1,..., N and consider the closed set
W ={weW:my(w) e nn(Vs)}
Suppose that we can prove the following:

For every N >1, ¢WW) = X, (6.11)
Then ¢ 1(z) N W) £ & for every £ € X and N > 1. As the sequence
(Y z)nWW) N > 1) is nonincreasing in W and W is compact, there
exists, for every z € X, a point w € [y, WW) = Wt with &(w) = .
By shift-invariance, £(o™(W™)) = X for every n > 0, and by repeating the

above argument for the nonincreasing sequence (¢”(W™), n > 0) we obtain
that

e(Nomovh) =emn = x.
n>0
In order to verify (6.11) we fix v € ¥3 and N > 1. Choose K > 1 with

N
Yy = B_K Zvnﬁ_n <1,
n=1
and let wg(y) = (wi,we,...) € Vgr be the beta-expansion (6.2) of y. An
elementary induction argument shows that there exist, for every s > 0,

integers 7§1), . ,7§m> with

Thy =B — Y w7 = A0 M (6.12)
j=1
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Since all terms of this equation lie in the number field Q(3) we obtain that,
for every s > 0,

N s
s) = cffK : Z Upc; " — ijcffj = ’ygl)c;l +o 4+ yém)c;m (6.13)

for every root ¢y = (3, ¢a,...,cp of f.
For s = K + N, (6.12)-(6.13) imply that 0 <T';(K + N) <1 and

DK+ N)| < (B+F1T) - > el

k>—-K

for i =2,...,m. A glance at the definition of L’ yields that

IO, AR = @Y TEE) AT <
Set
Un if n<—-K or n> N +m,
. — Un +wg(Y)ren if —K+1<n<0,
" wa(Y) K+n if 1<n<N,
vn+'y§§:]]\\;) if N<n<N+m.

Then w € W™, and h =w — v € R is of the form h =3, . hpu" with

wﬁ(y)K+n if —K+1<n<Q0,
wWg(Y)K4n —vn if 1 <n <N,
hn =19 m-N) .
VKAN if N<n<N+m,
0 otherwise.
By (6.12)—(6.13),
W) = Y wrenB T AN g
= K+1
N

-3 =0

n=1

so that h € fR (cf. (3.4)). Proposition 3.3 shows that ¢£(v) = &(w) and
completes the proof of (6.11).

Next we assert that Vg = Vj (cf. (4.3)).

Indeed, if two elements v,v" € Vg with {(v) = £(v') differ in only finitely
many coordinates then v — v = hf for some h = (h,) € R. Choose an
integer K with h,, = 0 and v,, = v}, for all n < K, and put

/ /
Wy = Up—K, Wy, = Up_f

for every n > 1. Then w,w’ € Vgr, w and w’ differ in only finitely many
coordinates, and

ps(w) — pa(w') = S (wn —w)B " = 3 (v — )BT =

n>1 nez
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Since this is impossible according to the definition of beta-expansion we
conclude that Vg = Vﬂ*, as claimed. From Proposition 4.1 we see that the

restriction of £ to Vj is bounded-to-one. U
Let
Zg(x) ={v € 1?3 E(v) =at, v e Xy =TT, (6.14)
Zg = Z3(0) =V fI(Z,Z) = {v € Vg : {(v) = 0}.
Lemma 6.2. Z3 # {0}.
Proof. Let w* = (w};) € V3 be the unique periodic point with
wy, = wz(n (6.15)

for all sufficiently large n > 1 (cf. (6.4)—(6.5)). If w € £>°(Z,Z) is the point
given by
Wi(1)n if n >0,
wp =< —1 if n=0,

0 otherwise,

then {(w) = 0. As &(c™w) = 0 for every n > 0 and o™ w — w* for an
appropriately chosen sequence nj — oo, £(w*) = 0. O

In [21] the authors prove that Question 1.2 has a positive answer if [ is a
quadratic Pisot number. Here we provide further support for the conjecture
that the restriction of £ to Vj is always almost one-to-one.

Theorem 6.3. Let 3 be a Pisot number of degree d > 2, f € R an irreducible
polynomial with f(3) =0, and let o = oy be the expansive automorphism of
Xy =T™ described in Proposition 2.2. We write {: £>°(Z,7Z) — T™ for the
group homomorphism (1.1) and define the two-sided beta-shift Vg C ¢>°(Z,Z)
by (6.10).

Suppose that 3 is simple (i.e. T31 =0 for somen > 1), and that

Zg ={0}U{c"w" :n € Z}, (6.16)

where w* € Vg is the periodic point (6.15). Then the map &: Vg — T™ is
injective on the set of doubly transitive points.

Remark 6.4. 1T am grateful to B. Solomyak for pointing out to me that
(6.16) is equivalent to the condition — investigated in [8] — that every
r € Z[B7Y N [0,1] has a finite beta-expansion: indeed, z must have an
eventually periodic beta-expansion by [17], and the same argument as in
Lemma 6.2 shows that the periodic extension of the tail of wg(z) lies in Zg.
Conversely, every element z € Zg is the periodic extension of the tail of
wg(z) for some z € Z[B~ N[0, 1]. Sufficient conditions for every element in
Z[371N]0,1] to have a finite beta-expansion were studied in [8] (cf. Example
6.5 (4) below).

The following examples illustrate the hypotheses of Theorem 6.3 and the
results in [8].
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Examples 6.5. (1) Let f(u) = u* — 4u3 + 3u? — 2u + 1. Then f has roots

0 =3.23402.. ., co = 0.672378.. .,
c3,cq = 0.0467994 ... £0.676527... 1,
and ( is Pisot. Furthermore,
wp(l) = wi(1) = (3,0,2,1,1,1,...),
so that (8 is not simple, and
w*=(...,1,1,1,...),

(2) Let f be a quadratic Pisot polynomial, i.e.
(a) f(u) =u®—nu+1 withn >3,
(b) f(u) = u? —nu—1 with n > 1.
In case (a),
ws(l) =wi(l)=(n—-1,n—-2,n—2,...),
B is not simple, and Zg = {0,w*} with w* = (..., n —2,n —2,n —2,...).
In case (b),
wj(l) = (n—1,0,n—1,0,...),
B is simple, and Zg = {0,w*, ow*} with w* = (...,0,n —1,0,n —1,0,...).

We can thus apply Theorem 6.3 in case (b), but not in case (a).

(3) Let f(u) = u* — 2u® —u — 1. Then f has roots

B =2277452390..., ¢y = —0.5573174032. ..,
c3,cq = 0.1399325064 ... £+ 0.8765142016. .. 1,
[ is Pisot and
wi(1) = (2,0,1,0,2,0,1,0,...).
However, as was shown in [8], 3372 has an infinite beta-expansion with
eventual period (1200), and the periodic point
(...,1,2,0,0,1,2,0,0,...)
lies in Z3. Hence the hypotheses of Theorem 6.3 are not satisfied.
(4) Let f(u) = u® — 3u? — 2u — 1 with roots
B =3.62737...
ca,c3 = —0.313683 ... £0.421053... i.
Then S is Pisot,
ws(1) =(3,2,0,3,2,0,...).
In this case
W =1(...,0,3,2,0,3,2,0,...),
where the zero coordinate is underlined, and
Zg = {0} U{w*, ow*, o?w*}.

More generally, if a Pisot number 3 is a root of an irreducible polynomial
flu) = w™ + frnau™ 4 -4 fru+ fo with 0 > fo > fi > -0 > fo,
then every element of Z[371] N[0, 1] has a finite beta-expansion by [8], and
Theorem 6.3 can be applied.
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Proof of Theorem 6.3. Suppose that x € X; = T™ is homoclinic. Then
every v € Zg(x) must be of the following form: there exist an integer N =
N(v) > 0 and points w?*+, w"*~ € Zg with

V,Ty—
Vp = WOt Vo =w

for all n > N. Furthermore, since Zg(x) is finite, the set of integers {N(v) :
v € Zg(x)} is bounded.

For z = z®, the fundamental homoclinic point of o = ayf, we have at
least two pre-images in Zg(z2):

(...,0,0,1,0,0,...) and (...,0,0,0,}(1)1,w5(1),...).

In other words, there exist points v, v’ € Z@(:UA) with W™~ = LSt = 0
and w5 = 0, WV = W*.
Suppose that there exists a v’ € ZB(xA) with w?*~ = g*w* for some

k € Z. Since w* is periodic we write it as
W= (.., wl, . wr W, Ww, )
for some L > 1, where the zero coordinate is underlined. The point
w=(..,w,...,w,wl,...,wr +1%,0,0,...)

in ¢*°(Z,Z) is the difference of two elements in Zg and thus satisfies that
€(z) = 0. Hence £(v™ — w) = 22, where v € Vj is given by (3.9).

We choose an | < 0 with v' |, = w_, for every n <0, set v =0
observe that

n ', and

v:v”—l—vA—w:(...,O,O,Q,UZH,UZH,...) e Vs

and
£w) = z2 + alz?.

The point w = v® + olv® € Vg also has the property that {(w) =
2+ alz®. As o7, 07w € Zg(ala® 4+ ol 12?) satisfy that (07 1v), =
(07 'w), = 0 for n < 0, they may be viewed as elements of Vg which differ by
an element of fR, and which therefore satisfy that pg(c—'v) = pg(o w).
However, the only pairs of distinct elements v,y € Vg with y < ' and
p3(y) = ps(y’) are those for which there exists a k > 1 with

yn =y, for n <k,
Yp = 0 for every [ > 1,
Yrr1 = wp(1); for every 1> 1.

1 1 1 1

Since o~ tv < o7tw, (07 w); =0, (67v); = 1, and (o7 1v);1; = 1 we

Ve = = 0 for every v/ € Zg(z®).
If S C Z is a sufficiently sparse bi-infinite set then the point x =, ¢ akzA
satisfies that |¢~1({z})NVj| = 1, and an application of Lemma 4.4 completes

the proof. O

obtain a contradiction which shows that w
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