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Abstract. We prove the following result: Let G be a countable dis-
crete group with finite conjugacy classes, and let (Xn, n ∈ Z) be a two-
sided, strictly stationary sequence of G-valued random variables. Then
T∞ = T∗∞, where T∞ is the two-sided tail-sigma-field

T
M≥1 σ(Xm :

|m| ≥ M) of (Xn) and T ∗∞ the tail-sigma-field
T

M≥0 σ(Ym,n : m, n ≥
M) of the random variables (Ym,n, m, n ≥ 0) defined as the products
Ym,n = Xn · · ·X−m. This statement generalises a number of results in
the literature concerning tail triviality of two-sided random walks on
certain discrete groups.

1. Introduction

Let G be a countable discrete group, (Xn, n ∈ Z) a strictly stationary
two-sided sequence of G-valued random variables, and let

T∞ =
⋂

M≥0

σ(Xm : |m| ≥ M) (1.1)

be the two-sided tail-sigma-field of (Xn). For every m, n ∈ N we consider
the product

Ym,n = Xn · · ·X0 · · ·X−m.

The tail-sigma-field

T∗∞ =
⋂

M≥0

σ(Ym,n : m,n ≥ M) ⊃ T∞ (1.2)

of the G-valued random variables (Ym,n, m, n ∈ N) has received some at-
tention in the literature. For example, if G = Z and the process (Xn) is
independent, then (Ym,n, m, n ∈ Z) is essentially the two-sided random walk
on G associated with (Xn), and the Hewitt-Savage zero-one law states that
T∞ = T∗∞ is trivial ([7]). The analogous result for finite state Markov chains
was proved by Blackwell and Freedman ([3]) for Markov measures, and by
Georgii for Gibbs states ([5], [6]). Berbee and den Hollander showed that, for
an arbitrary integer valued strictly stationary process (Xn), the triviality of
T∞ implies that of T∗∞ whenever the random variable X0 has finite entropy
(cf. [1]; their proof actually shows that T∞ = T∗∞ even if T∞ is nontrivial).
In [11] the results by Blackwell, Freedman and Georgii were extended to
processes taking values in arbitrary discrete groups G with finite conjugacy
classes: Let X be a topologically mixing two-sided shift of finite type, µ the
shift-invariant Gibbs measure arising from a function φ : X 7−→ R with sum-
mable variation, T the shift on X, and f : X 7−→ G a continuous map with
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values in a discrete group G with finite conjugacy classes. If Xn = f · Tn

for every n ∈ Z, then the stationary process (Xn) satisfies that T∞ = T∗∞ is
trivial.

The main result of this paper (Theorem 3.1) has the following probabilistic
formulation.

Theorem 1.1. Let G be a countable discrete group with finite conjugacy
classes, and let (Xn, n ∈ Z) be a two-sided, strictly stationary sequence of
G-valued random variables. Then T∞ = T∗∞.

If G = Z and X0 has finite entropy, Theorem 1.1 essentially reduces to
Theorem 1.3 in [1]. If G is an arbitrary discrete group with finite conjugacy
classes, X a topologically mixing two-sided shift of finite type, T the shift
transformation on X, µ the shift-invariant Gibbs state arising from a func-
tion φ : X 7−→ R with summable variation, f : X 7−→ G a continuous map,
and Xn = f · Tn for every n ∈ Z, then Theorem 1.1 becomes the statement
that T∞ = T∗∞ is trivial (Theorem 3.3 in [11]). If we assume in addition
that G = Z we are in the setting of [6], and in the special case where X
is a full shift and µ a Bernoulli product measure we are back to [7]. For
abelian groups G, Theorem 1.1 is contained in a much more general result
(Theorem 2.3 in [13]) which does not, however, appear to carry over to the
nonabelian case.

Throughout this paper we consider only two-sided processes. For one-
sided processes (Xn, n ≥ 1) we denote by

T+∞ =
⋂

M≥1

σ(Xm : m ≥ M),

T∗+∞ =
⋂

M≥1

σ(Xm · · ·X1 : m ≥ M),
(1.3)

the one-sided versions of the tail-sigma-fields (1.1) and (1.2). If the process
(Xn) is not independent, the triviality of T∗+∞ cannot be expected to imply
that of T+∞ without additional assumptions: in [3], [5]–[6] and [11] there
are combinatorial obstructions to the triviality of T∗+∞ even when T+∞ is
trivial, and in [1] a zero-two-law governs the triviality of T∗+∞ in the case
where G = Z, X0 has finite entropy, and T+∞ is trivial.

If one drops the assumption that the group G in which the two-sided pro-
cess (Xn) takes its values has finite conjugacy classes, then the coincidence of
T∞ and T∗∞ is again no longer automatic, and depends on certain recurrence
properties of the random variables Xn−1 · · ·X0gX−1

0 · · ·X−1
n−1, g ∈ G, n ≥ 0,

which are not easy to check.
The techniques used for proving Theorem 1.1 come from ergodic theory

and are closely connected with those employed in [11] and [13]. The paper
is organised as follows. In Section 2 we discuss briefly a few classical facts
about ergodic equivalence relations. In Section 3 we state Theorem 1.1 in
the language of ergodic equivalence relations (Theorem 3.1), prove it in that
setting, and finally deduce Theorem 1.1 from Theorem 3.1. Section 4 con-
tains three applications of the equivalent Theorems 1.1 and 3.1. The first of
these (Example 4.1) shows that every countable generator of a measure pre-
serving, ergodic automorphism of a probability space with trivial two-sided
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tail-sigma-field is super-K in the sense of [11] (Example 4.1). For an exact
endomorphism one-sided generators are no longer automatically super-K,
but every measure-preserving, exact endomorphism on a probability space
with a finite generator also has a finite super-K-generator (cf. [12]). In Ex-
ample 4.2 we consider what amounts to a finite collection (X(i)

n ), i = 1, . . . , k,
of jointly stationary stochastic processes with values in countable discrete
groups G(i) with finite conjugacy classes, set Y

(i)
m,n = X

(i)
n · · ·X(i)

−m for each
m,n ≥ 0 and i = 1, . . . , k, and observe that the sigma-algebras

T∞ =
⋂

M≥0

σ(X(i)
m : |m| ≥ M, i = 1, . . . , k),

T
∗
∞ =

⋂
M≥0

σ(Y (i)
m,n : m,n ≥ M, i = 1, . . . , k),

satisfy that
T∞ = T

∗
∞. (1.4)

In Example 4.3 we apply Theorem 3.1 to random deformations of certain
infinite polygonal chains.

I am grateful to Frank den Hollander for bringing to my attention the pa-
per [1], and to Sylvia Richardson for pointing out to me a curious application
of Theorem 3.1 to molecules like DNA (cf. Example 4.3).

2. Equivalence relations defined by a function

Let (X, S) be a standard Borel space. A subset R ⊂ X × X is a Borel
equivalence relation on X if R is a Borel set and an equivalence relation. If
R is a Borel equivalence relation on X we write

R(x) = {y ∈ X : (x, y) ∈ R} (2.1)

for the equivalence class of a point x ∈ X and denote by

R(B) =
⋃
x∈B

R(x) (2.2)

the saturation of a set B ⊂ X. For every C ∈ S we denote by

R(C) = R ∩ (C × C) (2.3)

the restriction of R to C. Following [4] we say that a Borel equivalence
relation R on X is discrete if R(x) is countable for every x ∈ X. The
following lemma is taken from [4].

Lemma 2.1. Let R be a Borel equivalence relation on X. Then the satur-
ation R(B) of every B ∈ S is an analytic set, and hence µ-measurable for
every probability measure µ on S. If R is discrete then R(B) ∈ S for every
B ∈ S.

Proof. We assume without loss of generality that X is a Polish space and
S = BX is the Borel field of X. Denote by πi : X ×X 7−→ X, i = 1, 2, the
two coordinate projections and observe that

R(B) = π2((B ×X) ∩R)

is the image of a Borel set in X×X under the continuous map π2 : X×X 7−→
X, and hence an analytic subset of X. In particular, R(B) is measurable
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with respect to every probability measure on X (cf. [8]). If R is discrete
then R(B) ∈ S by Kunugui’s theorem (cf. [4], [9]–[10]). �

Lemma 2.1 justifies the following definitions.

Definition 2.2. Let (X, S) be a standard Borel space and µ a probability
measure on S (the resulting triple (X, S, µ) is called a standard probability
space). Suppose that R is a Borel equivalence relation on X.

(1) The equivalence relation R is ergodic (with respect to µ) if µ(R(B)) ∈
{0, 1} for every B ∈ S;

(2) The measure µ is quasi-invariant under R if µ(R(B)) = 0 for every
B ∈ S with µ(B) = 0.

Lemma 2.3. Suppose that R is a discrete Borel equivalence relation on
a standard probability space (X, S, µ). Then there exists a countable group
Γ = ΓR of nonsingular Borel automorphisms of (X, S, µ) with the following
properties.

(1) There exists a set B ∈ S with µ(B) = 1 such that

RΓ = {(x, γx) : x ∈ X, γ ∈ Γ} = R(B) ∪ {(x, x) : x ∈ X} ⊂ R;

(2) If

SR = {R(B) : B ∈ S} ⊂ S,

SRΓ = {RΓ(B) : B ∈ S} = {B ∈ S : γB = B for every γ ∈ Γ},
then

SR = SRΓ (mod µ).
If T is a measure preserving Borel automorphism of (X, S, µ) which pre-

serves R in the sense that

(T × T )(R) = R, (2.4)

then the set B ∈ S in (1) may be chosen to be T -invariant, and the group Γ
to satisfy that TΓT−1 = Γ.

Proof. Since R is discrete we can apply Theorem 1 in [4] to find a countable
group ∆ of Borel automorphisms of X with

R = R∆ = {(x, Sx) : x ∈ X, S ∈ ∆}.
Choose an enumeration (S1, S2, . . . ) of ∆ and define a finite measure ν on
S by

ν =
∑
n≥1

2−nµSn.

Then ν is quasi-invariant under ∆ (or, equivalently, under R) and µ is
absolutely continuous with respect to ν. We write ν as a sum of two finite
measures ν = ν1 + ν2 with ν1 ∼ µ and ν2 ⊥ µ, choose a set B ∈ S with
ν2(B) = ν1(X r B) = 0, and set

R′ = R(B) ∪ {(x, x) : x ∈ X}.
The quasi-invariance of ν under R implies that the restriction ν1 of ν to B
is quasi-invariant under R(B). As ν1 is equivalent to µ, µ is quasi-invariant
under R(B) and hence under R′, and SR′

= SR (mod µ). The proof is
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completed by applying Theorem 1 in [4] once again to choose a countable
group Γ of nonsingular Borel automorphisms of (X, S, µ) with R′ = RΓ (cf.
(1)).

If R is T -invariant in the sense of (2.4) we replace B by

B′ =
⋂
n∈Z

T−nB ∈ ST = {C ∈ S : T−1C = C},

define R′ as above with B′ replacing B, and observe that R′ is T -invariant.
Finally we define Γ as above, denote by Γ′ the group generated by {TnγT−n :
γ ∈ Γ, n ∈ Z}, and obtain that TΓ′T−1 = Γ′ and RΓ′ = R′. �

Let T be a measure preserving, ergodic automorphism of our standard
probability space (X, S, µ), G a countable discrete group with identity ele-
ment 1G, and f : X 7−→ G a Borel map. The map f determines two equi-
valence relations R∗

f ⊂ Rf on X. The first of these is given by

Rf = {(x, y) ∈ X ×X : f(Tnx) 6= f(Tny)

for only finitely many n ∈ Z}.
(2.5)

For the second relation we set, for every (x, y) ∈ Rf and L ≥ 1,

a+
f (x, y)(L) = f(x)−1 · · · f(TL−1x)−1 · f(TL−1y) · · · f(y),

a−f (x, y)(L) = f(T−1x) · · · f(T−Lx) · f(T−Ly)−1 · · · f(T−1y)−1,

a+
f (x, y) = lim

L→∞
a+

f (x, y)(L),

a−f (x, y) = lim
L→∞

a−f (x, y)(L),

(2.6)

and observe that a±f : Rf 7−→ G are well defined Borel maps, and that

a+
f (x, y)a+

f (y, z) = a+
f (x, z), a−f (x, y)a−f (y, z) = a−f (x, z) (2.7)

for all (x, y), (x, z) ∈ Rf . In particular,

R∗
f = {(x, y) ∈ Rf : a+

f (x, y) = a−f (x, y)} (2.8)

is an equivalence relation on X which is contained in (and hence a subrelation
of) Rf . We note in passing that the equation (2.7) is usually expressed by
saying that a+

f and a−f are (1-)cocycles on the equivalence relation Rf with
values in G (cf. [4]).

For the following elementary observations we fix a Borel map f : X 7−→ G
and say that f separates the points of X (or generates S) under T if, for
every pair of points x, y ∈ X, x = y if and only if f(Tnx) = f(Tny) for
every n ∈ Z.

Proposition 2.4. The equivalence relations Rf and R∗
f are Borel and T -

invariant in the sense of (2.4). If f generates S under T the relations Rf

and R∗
f are discrete.

Proof. For every N ≥ 0 the set

R(N)
f = {(x, y) ∈ X ×X : f(T kx) = f(T ky) whenever k ∈ Z, |k| ≥ N}
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is a Borel equivalence relation, and Rf =
⋃

N≥0 R(N)
f is Borel. Since

a±f : Rf 7−→ G are Borel maps on Rf , (2.8) shows that R∗
f ⊂ X × X is

also a Borel set.
The T -invariance of Rf is obvious. In order to prove the T -invariance of

R∗
f we note that, for every (x, y) ∈ Rf ,

a+
f (Tx, Ty) = f(Tx)−1 · · · f(Tm−1x)−1 · f(Tm−1y) · · · f(Ty)

= f(x)a+
f (x, y)f(y)−1,

a−f (Tx, Ty) = f(x) · · · f(T−m+1x)) · f(T−m+1y)−1 · · · f(y)−1

= f(x)a−f (x, y)f(y)−1,

(2.9)

for every (x, y) ∈ Rf and every sufficiently large m ≥ 0. Hence (x, y) ∈ R∗
f

if and only if (Tx, Ty) ∈ R∗
f , which proves the T -invariance of R∗

f .
If f generates S under T , the equivalence class

R(N)
f (x) = {y ∈ X : (x, y) ∈ R(N)

f }

is countable for every x ∈ X and N ≥ 0, so that Rf (x) =
⋃

N≥0 R(N)
f (x) is

countable for every x ∈ X. �

3. The main theorem and its proof

A countable group G has finite conjugacy classes if the conjugacy class
[g] = {hgh−1 : h ∈ G} of every g ∈ G is finite.

Theorem 3.1. Let T be a measure preserving and ergodic automorphism
of a standard probability space (X, S, µ), G a countable group with finite
conjugacy classes, and f : X 7−→ G a Borel map. Then the equivalence
relations Rf and R∗

f in (2.5) and (2.8) satisfy that SRf = S
R∗

f (mod µ).

The remainder of this section is devoted to the proof of Theorem 3.1. Until
further notice we assume that T is an ergodic automorphism of a standard
probability space (X, S, µ), G a countable discrete group and f : X 7−→ G a
Borel map. Put, for every n ∈ Z,

f(n, x) =


f(Tn−1x) · · · f(x) if n ≥ 1,

1G if n = 0,

f(T−nx)−1 · · · f(T−1x)−1 if n < 0.

(3.1)

The resulting map f : Z×X 7−→ G satisfies that

f(m,Tnx) · f(n, x) = f(m + n, x) (3.2)

for every n ∈ Z and x ∈ X, and is called a (1-)cocycle of T with values in
G.

Lemma 3.2. Suppose that G is finite with cardinality |G|. If R∗
T is the

nonsingular Borel equivalence relation on (X, S, µ) defined by

R∗
T = {(x, Tnx) : x ∈ X and f(n, x) = 1G}

then there exists a partition Q ⊂ S into at most |G| sets with A(Q) = SR∗
T

(mod µ), where A(Q) is the algebra generated by Q.
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Proof. Put Y = X × G, write T for the product Borel field of Y , and set
ν = µ× λ, where λ is the normalised Haar (= counting) measure on G. We
denote by Tf : X ×G 7−→ X ×G the skew-product transformation

Tf (x, g) = (Tx, f(x)g),

observe that Tf preserves ν, and set

TTf = {C ∈ T : TfC = C}.

For every B ∈ SR∗
T , C ∈ TTf and h ∈ G we put

B̄(h) =
⋃
n∈Z

Tn
f (B × {h}) ∈ TTf

Ch = {x ∈ X : (x, h) ∈ C} ∈ SR∗
T ,

(3.3)

and note that
SR∗

T = {Ch : C ∈ TTf } (3.4)

for every h ∈ G: indeed, if C ∈ TTf and h ∈ G, then Ch ∈ SR∗
T ; conversely,

if B ∈ SR∗
T and h ∈ G, then

B = B̄(h)h. (3.5)

As T is ergodic and Tf commutes with the measure preserving action
R : h 7→ Rh of G on Y defined by

Rh(x, g) = (x, gh)

for x ∈ X and g, h ∈ G, the joint action of Tf and R is ergodic (i.e. ν(B) ∈
{0, 1} for every B ∈ T which is invariant both under Tf and R). Hence

µ

( ⋃
g∈G

B̄(h)g

)
= µ

( ⋃
n∈Z

TnB

)
= 1 (3.6)

for every h ∈ G and B ∈ S with µ(B) > 0.
Suppose that there exists a partition Q = {Q(1), . . . , Q(|G|+ 1)} ⊂ SR∗

T

of X into sets of positive µ-measure. We set g1 = 1G and note that

Q(1)(g1)g1 = Q(1),

by (3.5). According to (3.6) there exists an element g2 ∈ G r {g1} with
µ(Q(1)(g1)g2 ∩Q(2)) > 0. We replace Q(2) by the possibly smaller set

Q′(2) = Q(1)(g1)g2 ∩Q(2) ∈ SR∗
T ,

choose g3 ∈ G r {g1, g2} with µ(Q′(2)(g2)g3 ∩Q(3)) > 0, and set

Q′(3) = Q(2)(g2)g3 ∩Q(3) ∈ SR∗
T .

Proceeding by induction, we obtain sets Q′(1) = Q(1), Q′(2) ⊂ Q(2), . . . ,
Q′(|G|) ⊂ Q(|G|)) of positive µ-measure in SR∗

T and an enumeration g1 =
1G, g2, . . . , g|G| of G with the following properties:

(i) Q′(j + 1)(gj+1) ⊂ Q′(j)(gj) for j = 1, . . . , |G| − 1,
(ii) Q′(j)(gj)gj = Q′(j) ⊂ Q(j) for j = 1, . . . , |G|.
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By setting j = |G| we obtain that µ(Q′(|G|)) > 0 and Q′(|G|)(g|G|)gj ⊂ Q(j)
for j = 1, . . . , |G|. As Q(j)∩Q(|G|+1) = ∅ for j = 1, . . . , |G| this contradicts
(3.6).

This shows that SR∗
T is purely atomic with at most |G| atoms and proves

the lemma. �

Lemma 3.3. Suppose that G is finite and that Q ⊂ S is the finite partition
described in Lemma 3.2. For every A ∈ Q and B,C ∈ S with B ∪ C ⊂ A,

lim
N→∞

1
N

N−1∑
n=0

µ(B ∩ T−nC ∩ {x ∈ X : f(n, x) = 1G}) =
µ(B)µ(C)

|G|
.

Proof. We use the notation of the proof of Lemma 3.2 and assume that
µ(A) > 0. The set Ā(1G) is Tf -invariant, ν(Ā(1G)) > 0, and hence

ν(
⋃
h∈G

RhĀ(1G)) = 1

and
ν(Ā(1G)) ≥ 1/|G|.

Furthermore, since A is an atom of SR∗
T , the restriction of ν to Ā(1G) is

ergodic under Tf , and the ergodic theorem guarantees that

lim
N→∞

1
N

N−1∑
n=0

ν(B′ ∩ T−n
f C ′) = ν(B′)ν(C ′),

where B′ = B×{1G} and C ′ = C×{1G}. This is precisely our assertion. �

For the definition of the equivalence relations R∗
f ⊂ Rf ⊂ X × X and

the maps a±f : Rf 7−→ G, f : Z×X 7−→ G we refer to (2.5), (2.8), (2.6) and
(3.1). The following Definition 3.4 (3) is taken from [13].

Definition 3.4. Let R be a discrete nonsingular Borel equivalence relation
on a standard probability space (X, S, µ).

(1) The full group [R] of R is the set of all nonsingular Borel automorph-
isms V of (X, S, µ) with (x, V x) ∈ R for every x ∈ X.

(2) A nonsingular automorphism V of (X, S, µ) is an automorphism of R
if there exists a µ-null set N ∈ S with R(N) = N and (V x, V y) ∈ R for
every (x, y) ∈ R(XrN).

(3) A measure preserving automorphism V of R is asymptotically central
if

lim
n→∞

µ(V −nB4WV −nB) = 0 (3.7)

for every W ∈ [R] and B ∈ S.

Remarks 3.5. (1) A nonsingular automorphism V of (X, S, µ) is an auto-
morphism of R if and only if there exists, for every W ∈ [R], an element
W ′ ∈ [R] with V −1WV = W ′ (mod µ). The last condition is usually ex-
pressed by saying that V normalises [R] (modulo null sets).

(2) If V is an asymptotically central automorphism of a discrete, nonsin-
gular equivalence relation R on (X, S, µ) and R′ ⊂ R a V -invariant subre-
lation, then V is an asymptotically central automorphism of R′.
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(3) If V is an asymptotically central automorphism of a discrete, nonsin-
gular, ergodic equivalence relation R on (X, S, µ) then V is mixing (cf. [13]).

Lemma 3.6. Suppose that f generates S under T and that R = Rf is
the equivalence relation (2.5). We choose a countable group Γ = TΓT−1

according to Lemma 2.3 and set RΓ = {(x, γx) : x ∈ X, γ ∈ Γ} ⊂ R. Then
T and T−1 are asymptotically central automorphisms of RΓ.

Proof. By assumption, the partition P = {f−1({g}) : g ∈ G} is a generator
for T , i.e. S =

∨
n∈Z T−n(P).

Fix W ∈ [RΓ] and set, for every n ≥ 1,

Cn = {x ∈ X : f(T kWx) = f(T kx) for every k ∈ Z, |k| ≥ n}.
Since the set

{n ∈ Z : f(TnWx) 6= f(Tnx)}
is finite for µ-a.e. x ∈ X, limn→∞ µ(Cn) = 1. Furthermore, if

D ∈
∨
|k|≤m

T−k(P)

for some m ≥ 0, then

µ(T−m−nD4WT−m−nD)

≤ µ(T−m−n(Cn ∩D)4WT−m−n(Cn ∩D))

+ µ(X r Cn) + µ(X r WCn)

≤ 2µ(X r Cn) + µ(X r WCn) + µ(X r W−1Cn) → 0

(3.8)

as n →∞. In the second inequality in (3.8) we are using the fact that any
point x ∈ Cn ∩ T−m−n(Cn ∩D) satisfies that Wx ∈ D.

Similarly we obtain that µ(Tm+nD4WTm+nD) → 0 as n →∞.
For every B ∈ S with µ(B) > 0 we can find a sequence (Bm, m ≥ 1) in

S with limm→∞ µ(B4Bm) = 0 and Bm ∈
∨
|k|≤m T k(P) for every m ≥ 1.

Then

lim sup
|n|→∞

(
µ(TnB4WTnB)

≤ lim sup
|n|→∞

µ(TnBm4WTnBm) + µ(B4Bm) + µ(WTn(B4Bm))
)

= µ(B4Bm) + lim sup
|n|→∞

µ(WTn(B4Bm)),

and by letting m → ∞ we obtain that lim|n|→∞ µ(TnB4WTnB) = 0. As
B and W were arbitrary this proves that T and T−1 are asymptotically
central. �

Since RΓ ⊂ Rf we can restrict the cocycles a±f : Rf 7−→ G in (2.6) to RΓ,
and we set

cf (x, y) = a−f (x, y)a+
f (y, x) (3.9)

for every (x, y) ∈ RΓ. According to (2.9),

cf (Tnx, Tny) = f(n, x)cf (x, y)f(n, x)−1 (3.10)

for every (x, y) ∈ RΓ and n ∈ Z.
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Lemma 3.7. Suppose that f generates S under T , that R = Rf is the
equivalence relation (2.5), and that Γ = TΓT−1 is the group of nonsingular
automorphisms of (X, S, µ) constructed in Lemma 2.3. Assume furthermore
that g ∈ G is an element with finite conjugacy class [g] = {hgh−1 : h ∈ G},
and that

µ

( ⋃
γ∈Γ

{x ∈ X : cf (x, γx) ∈ [g]}
)

> 0, (3.11)

where cf : RΓ 7−→ G is defined in (3.9). We write C(g) = {h ∈ G : hgh−1 =
g} for the centraliser of g and put

H =
⋂
h∈G

hC(g)h−1. (3.12)

Then H ⊂ G is a normal subgroup of finite index, and we set

f ′(x) = f(x)H ∈ G′ = G/H

for every x ∈ X. The map f ′ : X 7−→ G′ is Borel and has values in the
finite group G′, and we denote by Q ⊂ S the finite partition arising from f ′

in Lemma 3.2. Then the following conditions are satisfied for every A ∈ Q
with µ(A) > 0.

(1) There exists an element g′ ∈ [g] with

µ

( ⋃
γ∈Γ

B ∩ γ−1B ∩ {x ∈ X : cf (x, γx) = a+
f (γx, x) = g′}

)
> 0 (3.13)

for every B ∈ S with B ⊂ A and µ(B) > 0;
(2) The set

G(A) = {g′ ∈ G : g′ satisfies (3.13) for every measurable set

B ⊂ A with µ(B) > 0}
is a subgroup of G;

(3) If

µ

( ⋃
γ∈Γ

{x ∈ A ∩ γ−1A : cf (x, γx) = g}
)

> 0, (3.14)

then g ∈ G(A).

Proof. For the proof of (2) we note that, if g′, g′′ ∈ G(A), then we can find,
for every B ⊂ A with positive measure, elements γ′, γ′′ ∈ Γ and Borel sets
B′, B′′ with B′ ∪ γ′B′ ⊂ B, B′′ ∪ γ′′B′′ ⊂ γ′B′, µ(B′′) > 0, cf (x, γ′x) =
a+

f (γ′x, x) = g′ and cf (y, γ′′y) = a+
f (γ′′y, y) = g′′ for every x ∈ B′ and

y ∈ B′′. Then

cf (x, γ′′γ′x) = a−f (x, γ′x)cf (γ′x, γ′′γ′x)a+
f (γ′x, x)

= a+
f (γ′′γ′x, γ′x)a+

f (γ′x, x) = g′′g′

for every x ∈ γ′−1B′′ ⊂ B′. Since G(A) is obviously closed under taking
inverses this shows that G(A) is a group.

In order to prove (1) we suppose that g ∈ G satisfies (3.11), and that
A ∈ Q has positive measure. Choose a set C ∈ S and a γ ∈ Γ with µ(C) > 0
and cf (x, γx) = g′ ∈ [g] for every x ∈ C. By decreasing C, if necessary, we
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may also assume that there exists an integer L ≥ 0 with f(T lγx) = f(T lx)
for every x ∈ C and |l| ≥ L.

Since T is ergodic and an asymptotically central automorphism of RΓ by
Lemma 3.6,

lim
|n|→∞

µ(A4Tnγ−1T−nA) = 0, (3.15)

and hence

lim
N→∞

1
N

N−1∑
n=0

µ(A ∩ Tnγ−1T−nA ∩ T−nC) = lim
N→∞

1
N

N−1∑
n=0

µ(A ∩ T−nC)

= µ(A)µ(C).

From (3.10) we also know that

cf (x, T−nγTnx) = f(n, x)−1cf (Tnx, γTnx)f(n, x) ∈ [g]

for every x ∈ A ∩ Tnγ−1T−nA ∩ T−nC.
Since |G/C(g)| = |[g]| < ∞ and every subgroup of finite index contains a

normal subgroup of finite index, the normal subgroup H in (3.12) has finite
index in G.

Suppose that B ∈ S, B ⊂ A and µ(B) > 0. According to Lemma 3.3,

lim
N→∞

1
N

N−1∑
n=0

µ(B ∩ T−nC ∩ {x ∈ X : f(n, x) ∈ H}) =
µ(B)µ(C)
|G/H|

,

and by combining this with (3.15) (with A replaced by B) we see that

lim
N→∞

1
N

N−1∑
n=0

µ(B ∩ T−nγ−1TnB ∩ T−nC ∩ {x ∈ X : f(n, x) ∈ H})

=
µ(B)µ(C)
|G/H|

.

It follows that

µ(B ∩ T−nγ−1TnB ∩ T−nC ∩ {x ∈ X : f(n, x) ∈ H}) >
µ(B)µ(C)
2|G/H|

for infinitely many n ≥ N , and (3.10) yields that

g′ = cf (Tnx, γTnx) = f(n, x)cf (x, T−nγTnx)f(n, x)−1

= cf (x, T−nγTnx) = a+
f (T−nγTnx, x)

for every n > N and

x ∈ B ∩ T−nγ−1TnB ∩ T−nC ∩ {x ∈ X : f(n, x) ∈ H},
which proves (1). If g = g′ satisfies (3.14) then this proof also shows that
g ∈ G(A), which proves (3). �

Proof of Theorem 3.1. Suppose that G has finite conjugacy classes, that
f : X 7−→ G is a Borel map, and that R∗

f ⊂ Rf are the equivalence rela-
tions defined in (2.5). We use Lemma 2.3 with R = Rf to find a countable
group Γ = TΓT−1 of nonsingular Borel automorphisms of (X, S, µ) with
SRf = SRΓ (mod µ).

Let g ∈ G satisfy (3.11), and let C(g) be the centraliser of g. As in Lemma
3.7 we consider the normal subgroup H ⊂ G in (3.12), set G′ = G/H and
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f ′ = fH : X 7−→ G′, and denote by Q ⊂ S the finite partition arising from
f ′ in Lemma 3.2. If A ∈ Q has positive measure, then Lemma 3.7 implies
that the set

G(A) = {g′ ∈ G : g′ satisfies (3.13) for every measurable set

B ⊂ A with µ(B) > 0}

is a subgroup of G. We put

R∗
Γ = {(x, γx) : x ∈ X, γ ∈ Γ, cf (x, γx) = 1G} = R∗

f ∩RΓ

and denote by S∗ = (R∗
Γ)(A) and S = R(A)

Γ the restrictions of R∗
Γ and RΓ

to A. If SA = {B ∩ A : B ∈ S} and µA(B) = µ(B)/µ(A) for every B ∈ SA

then we claim that
SS∗

A = SS
A (mod µA). (3.16)

Indeed, if B,C ∈ SA have positive measure, and if there exists a γ ∈ Γ
with µ(γB ∩ C) > 0, then we can find a g ∈ G and a subset B′ ⊂ B with
µ(B′) > 0, γB′ ⊂ C and cf (x, γx) = g for every x ∈ B′. According to
Lemma 3.7 (3) there exists a subset B′′ ⊂ B′ and an element γ′ ∈ Γ with
γ′B′′ ⊂ B′ and cf (x, γ′x) = a+

f (γx, x) = g−1, and we conclude that

cf (x, γγ′x) = a−f (x, γ′x)cf (γ′x, γ′γx)a+
f (γ′x, x)

= cf (γ′x, γγ′x)a+
f (γ′x, x) = 1G.

Since B′′ ⊂ B, γγ′B′′ ⊂ C and cf (x, γγ′x) = 1G it follows that S∗(B) =
S(B) (mod µ) for every B ∈ S with B ⊂ A, which implies (3.16). By
varying A ∈ Q in (3.16) we see that

SR∗
Γ ⊂ SRΓ ∨Q (mod µ). (3.17)

Standard decomposition theory allows us to find a SRΓ-measurable map
x 7→ νx from X into the set of probability measures on S with

µ(B ∩ C) =
∫

C
νx(B) dµ(x)

for every B ∈ S and C ∈ SRΓ , and the T -invariance of SRΓ and µ enables
us to assume in addition that

νTx = νxT−1 (3.18)

for every x ∈ X.
For every finite partition R ⊂ SR∗

Γ denote by A(R) the algebra of sets
generated by R.

Let D(Q) be the collection of all partitions P ⊂ A(Q). According to
(3.17) we can find, for µ-a.e. x ∈ X, a partition P ∈ D(Q) with

A(P) = SR∗
Γ (mod νx). (3.19)

For every fixed P ∈ D(Q), the set E(P) = {x ∈ X : x satisfies (3.19)}
lies in SRΓ . We select a subset D′ ⊂ D(Q) with µ

(⋃
P∈D′ E(P)

)
= 1 and

E(P) ∩ E(P ′) = ∅ whenever P,P ′ ∈ D′ and P 6= P ′, put

Q′ = {E(P) ∩B : B ∈ P ∈ D′} ⊂ SR∗
Γ ,
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and observe that µ(
⋃

A∈Q′ A) = 1. After modifying the elements of Q′ by
null sets, if necessary, we may assume that Q′ ⊂ SR∗

Γ is a partition of X,
that µ(A) > 0 for every A ∈ Q′, and that

SRΓ ∨Q′ = SR∗
Γ (mod µ),

A(Q′) = SR∗
Γ (mod νx) for µ-a.e. x ∈ X.

(3.20)

The T -invariance of SR∗
Γ , SRΓ and (3.18) together imply that T−n(Q′) also

satisfies (3.20) for every n ∈ Z; in particular there exists, for every n ∈ Z
and µ-a.e. x ∈ X, a bijection ξn,x : Q′ 7−→ Q′ with

νx(A4T−nξn,x(A)) = 0

for every A ∈ Q′ (we are not assuming the maps x 7→ ξn,x to be measurable,
although this can be achieved as well).

Since T is an asymptotically central automorphism of RΓ,

0 = lim
n→∞

∑
A∈Q′

µ(T−nA4γT−nA) = lim
n→∞

∑
A∈Q′

∫
νx(T−nA4γT−nA) dµ(x)

= lim
n→∞

∫ ∑
A∈Q′

νx(T−nA4γT−nA) dµ(x)

= lim
n→∞

∫ ∑
A∈Q′

νx(T−nξn,x(A)4γT−nξn,x(A)) dµ(x)

=
∫ ∑

A∈Q′
νx(A4γA) dµ(x) =

∑
A∈Q′

∫
νx(A4γA) dµ(x) =

∑
A∈Q′

µ(A4γA)

for every γ ∈ Γ, and (3.20) implies that SR∗
Γ ⊂ SRΓ (mod µ). It follows that

SRf = S
R∗

f (mod µ), which completes the proof of the theorem under the
hypothesis that f generates S under T .

If f does not generate S under T we define a map η : X 7−→ GZ = Y by
setting η(x)n = f(Tnx) for every x ∈ X and n ∈ Z, where a typical point
in Y = GZ is of the form y = (yn) with yn ∈ G for every n ∈ Z. If T ′ is the
shift

(T ′y)n = yn+1 (3.21)
for every y = (yn) ∈ Y and n ∈ Z, then η · T = T ′ · η and f = π0 · η,
where π0(y) = y0 for every y = (y)n ∈ Y . We set ν = µη−1 and obtain a
measure preserving, ergodic automorphism T ′ of the standard probability
space (Y, T, ν) and a Borel map π0 : Y 7−→ G for which (η×η)−1(Rπ0) = Rf

and (η × η)−1(R∗
π0

) = R∗
f . The first part of this proof guarantees that

TR∗
π0 = TRπ0 , which implies that S

R∗
f = SRf . �

Proof of Theorem 1.1. In order to realise the process (Xn) we set X = GZ,
write S = BX for the product Borel field and T for the shift (3.21) on X,
choose an appropriate shift-invariant probability measure µ on X, and put
Xn = f · Tn for every n ∈ Z, where f = π0 : X 7−→ G is the zero coordinate
projection. The resulting probability space (X, S, µ) is standard and T is
a measure preserving Borel automorphism of (X, S, µ). If T is nonergodic
we choose an ergodic decomposition µ =

∫
X µ′x dµ(x) of µ, where each µ′x

is a T -invariant and ergodic probability measure on S, and where x → µ′x
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is a T -invariant Borel map from X into the space of T -invariant probability
measures on S with their usual Borel structure.

For every x ∈ X, Theorem 3.1 implies that SRf = S
R∗

f (mod µ′x), and by
re-integrating we see that T∞ = SRf = S

R∗
f = T∗∞ (mod µ), as claimed. �

4. Examples

Example 4.1. (Super-K generators.) Let T be a measure-preserving,
ergodic automorphism of a standard probability space (X, S, µ), and let
P ⊂ S be a countable partition which generates S under T , and for which
the two-sided tail

T∞(P) =
⋂

M→∞

∨
|m|≥M

T−m(P) (4.1)

is trivial. We write GP for the free abelian group generated by P and define
a Borel map fP : X 7−→ GP by

fP(x) = P (x) ∈ P ⊂ GP (4.2)

for every x ∈ X, where P (x) ∈ P is the unique element containing x ∈ X.
Then the equivalence relation R∗

fP
in (2.8), which is ergodic by Theorem

3.1, consists precisely of those elements (x, y) ∈ X ×X for which P (Tnx) =
P (Tny) for all but finitely many times n ∈ Z, and for which the sequences
(P (Tnx), n ∈ Z) and (P (Tny), n ∈ Z), are finite permutations of each other.
In the terminology of [11] this means that a countable generator P ⊂ S is
super-K whenever T∞(P) is trivial.

In the one-sided case things are different. If T is a measure-preserving,
ergodic endomorphism of (X, S, µ) and P ⊂ S a countable partition we define
fP : X 7−→ GP by (4.2) and put, for every x ∈ X,

fP(n, x) =

{
fP(Tn−1x) · · · fP(x) if n ≥ 1,

0G (the identity element of G) if n = 0.

Denote by

T+∞(P) =
⋂

M≥0

∨
m≥M

T−m(P) =
⋂

M≥0

σ(fP · Tm : m ≥ M),

T∗+∞(P) =
⋂

M≥0

σ(fP(m, ·) : m ≥ M)
(4.3)

the one-sided analogues (1.3) of the tail sigma-fields (1.1)–(1.2). As men-
tioned in the introduction, the sigma-algebras T+∞(P) and T∗+∞(P) need
not coincide even when T+∞(P) is trivial. However, in [12] it is shown that
the existence of a finite partition P ⊂ S with T+∞(P) = {∅, X} (mod µ)
implies the existence of some other finite partition P ′ ⊂ S with

T+∞(P ′) = T∗+∞(P ′) = {∅, X} (mod µ).

In the terminology of [12] this means that any measure preserving endo-
morphism T of (X, S, µ) which is exact and has a finite (one-sided) generator
also has has a super-K-generator, but that generators of T are not automat-
ically super-K (exact means that

⋂
n≥0 T−n(S) = {∅, X} (mod µ)).
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Example 4.2. (Equivalence relations generated by several func-
tions.) Let T be a measure-preserving, ergodic automorphism of the prob-
ability space (X, S, µ), and let P ⊂ S be a countable partition for which
T∞(P) is trivial. If n ≥ 1, G a discrete group with finite conjugacy classes,
τ : Pn 7−→ G an arbitrary map, and if f : X 7−→ G is defined by f(x) =
τ(P (x), . . . , P (Tn−1x)) for every x ∈ X, then Theorem 3.1 guarantees that
R∗

f = Rf is trivial. One class of examples of such maps is obtained by set-

ting, for every n ≥ 1, G
(n)
P equal to the free abelian group generated by Pn

and τ(P0, . . . , Pn−1) = (P0, . . . , Pn−1) ∈ G
(n)
P . The ergodicity of R∗

f corres-
ponds to the by now unsurprising statement that the equivalence relation on
X obtained by finite permutations of n-names with respect to P is ergodic.

If P is finite we may put n = 2, write G = S(P) for the symmetric
(i.e. permutation) group of the alphabet P, set τ(P0, P1) equal to the trans-
position (P0, P1) ∈ S(P), and put f(x) = τ(P (x), P (Tx)). According to
Theorem 3.1, the resulting relation R∗

f ⊂ Rf is again ergodic, and S
R∗

f is
therefore trivial.

As the class of discrete groups with finite conjugacy classes is closed under
finite direct sums we obtain that, for any finite collection fi : X 7−→ G(i), i =
1, . . . , k, of Borel maps from X into groups G(i) with finite conjugacy classes,

S
Tk

i=1 Rfi = S
Tk

i=1 R∗
fi (mod µ).

By translating this into the probabilistic setting of Theorem 1.1 we obtain
(1.4). In particular, if the maps fi are of the form described at the beginning
of this example, then

S
Tn

i=1 R∗
fi = {∅, X} (mod µ).

Example 4.3. (Local variations in long molecules.) Let F be a
finite set, X ⊂ F Z a closed, shift-invariant subset, T the shift (3.21) on X,
and put, for every i ∈ F , [i]0 = {x = (xn) ∈ X : x0 = i}. We denote by
P0 = {[i]0 : i ∈ F} the state partition of X and assume that µ is a shift-
invariant probability measure on X for which the two-sided tail-sigma-field
T∞(P) in (4.1) is trivial (if X is a shift of finite type, then every Markov
measure and, more generally, every Gibbs measure on X arising from a
function φ : X 7−→ R with summable variation has this property—cf. [2] or
[11]).

As in Example 4.1 we fix n ≥ 1, denote by G(n) the free abelian group
generated by Fn, and define a continuous map f : X 7−→ G by f(x) =
(x0, . . . , xn−1) ∈ Fn ⊂ G(n) for every x ∈ X. Then the equivalence relation
R∗

f in (2.8) consists of all pairs (x, y) ∈ X ×X which differ in only finitely
many coordinates, and for which the n-blocks ((xk, . . . xk+n−1), k ∈ Z) and
((yk, . . . yk+n−1), k ∈ Z) occurring in x and y differ only by a finite permuta-
tion, and is ergodic by Example 4.1. This fact can be expressed by saying
that, for a typical point x ∈ X, a R∗

f -equivalent point y could lie anywhere
in the space X.

If one were to interpret F as a finite set of molecules and X as a collection
of two-sided infinite concatenations of these molecules, then the ergodicity
of R∗

f would imply the unreliability of any chemical analysis of the structure
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of such a concatenation based on an investigation of substrings of a given
length.

We remain with this example a little longer. Let d ≥ 2, and consider
the d-dimensional Euclidean group E(d) = Rd × SO(d), furnished with the
group operation

(v,A) · (v′, A′) = (vA′ + v′, AA′)

for all v, v′ ∈ Rd and A,A′ ∈ SO(d) (the elements of Rd are written as row
vectors). Fix a discrete subgroup G ⊂ E(d) (or, more generally, a countable
subgroup G ⊂ E(d) with finite conjugacy classes, regarded as a discrete
group) and a continuous map f : X 7−→ G. Then the compactness of X
guarantees that f takes only finitely many values on disjoint closed and
open subsets of X, so that Rf is still ergodic. The ergodicity of the relation
R∗

f , which is a consequence of Theorem 3.1, has the following geometrical
interpretation.

For every x ∈ X and n ∈ Z we define f(n, x) ∈ G by (3.1) and write
f(n, x) as f(n, x) = (vn(x), An(x)) with vn(x) ∈ Rd and An(x) ∈ SO(d). If
v(x) = v1(x) and A(x) = A1(x) then

vn(x) =



v(x) + v(Tx)A(x) + . . .

+ v(Tn−1x)A(Tn−1x) · · ·A(x)
if n > 0,

0 if n = 0,

−v(T−nx)A(T−nx)−1 · · ·A(x)−1 − . . .

− v(T−1x)A(x)−1
if n < 0.

By connecting successive points in the sequence (vn(x), n ∈ Z) by straight
line segments we obtain an infinite polygonal curve in Rd which may, of
course, have self-intersections. If we call two such polygonal curves associ-
ated with x, y ∈ X equivalent if they differ in only finitely many segments
(i.e. if vn(x) 6= vn(y) for only finitely many n ∈ Z) then Theorem 3.1 implies
that equivalent curves may be unrecognisably different, even if we insist in
addition that the points x and y they arise from differ only by a permuta-
tion of finitely many coordinates. Note that a finite change, or even a finite
permutation, of the coordinates of a point x ∈ X will generally lead to a
point y ∈ X whose polygonal curve is inequivalent to that of x.

If we were to continue with our interpretation of points x ∈ X as (highly
idealised) chains of molecules then the map f and the resulting sequence
of coordinates (vn(x), n ∈ Z) would correspond to a spatial arrangement
of the chain x determined by its molecular structure, and Theorem 3.1 to
a statement about quite dissimilar chains having spatial arrangements with
only local differences.

Other examples can be found in [11] and [13].
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