TAIL-FIELDS OF PRODUCTS OF RANDOM VARIABLES
AND ERGODIC EQUIVALENCE RELATIONS

KLAUS SCHMIDT

ABSTRACT. We prove the following result: Let G be a countable dis-
crete group with finite conjugacy classes, and let (X5, n € Z) be a two-
sided, strictly stationary sequence of G-valued random variables. Then
Too = T%, where Too is the two-sided tail-sigma-field (;,~, 0(Xm :
|m| > M) of (X,) and T% the tail-sigma-field ()50 (Yim,n : m,n >
M) of the random variables (Yo, n, m,n > 0) defined as the products
Ymn = Xn -+ X_pm. This statement generalises a number of results in
the literature concerning tail triviality of two-sided random walks on
certain discrete groups.

1. INTRODUCTION

Let G be a countable discrete group, (X,, n € Z) a strictly stationary
two-sided sequence of G-valued random variables, and let

Too = [ o(Xm : |m| > M) (1.1)
M>0

be the two-sided tail-sigma-field of (X,,). For every m,n € N we consider
the product

Yo =X Xo- X_p.
The tail-sigma-field

T = () o(Wmm :myn > M) D T (1.2)
M>0

of the G-valued random variables (Y, m,n € N) has received some at-
tention in the literature. For example, if G = Z and the process (X,,) is
independent, then (Y, ,,, m,n € Z) is essentially the two-sided random walk
on G associated with (X,,), and the Hewitt-Savage zero-one law states that
Too = T7 is trivial ([7]). The analogous result for finite state Markov chains
was proved by Blackwell and Freedman ([3]) for Markov measures, and by
Georgii for Gibbs states ([5], [6]). Berbee and den Hollander showed that, for
an arbitrary integer valued strictly stationary process (X,,), the triviality of
T~ implies that of T}, whenever the random variable X has finite entropy
(cf. [1]; their proof actually shows that To, = T even if T4, is nontrivial).
In [11] the results by Blackwell, Freedman and Georgii were extended to
processes taking values in arbitrary discrete groups G with finite conjugacy
classes: Let X be a topologically mixing two-sided shift of finite type, u the
shift-invariant Gibbs measure arising from a function ¢: X —— R with sum-
mable variation, T' the shift on X, and f: X —— G a continuous map with
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values in a discrete group G with finite conjugacy classes. If X, = f-T"
for every n € 7, then the stationary process (X,,) satisfies that To, = T2 is
trivial.

The main result of this paper (Theorem 3.1) has the following probabilistic
formulation.

Theorem 1.1. Let G be a countable discrete group with finite conjugacy
classes, and let (X, n € Z) be a two-sided, strictly stationary sequence of
G-valued random variables. Then Too = T.

If G = Z and Xj has finite entropy, Theorem 1.1 essentially reduces to
Theorem 1.3 in [1]. If G is an arbitrary discrete group with finite conjugacy
classes, X a topologically mixing two-sided shift of finite type, T the shift
transformation on X, p the shift-invariant Gibbs state arising from a func-
tion ¢: X —— R with summable variation, f: X —— G a continuous map,
and X,, = f - T"™ for every n € Z, then Theorem 1.1 becomes the statement
that Too = T% is trivial (Theorem 3.3 in [11]). If we assume in addition
that G = Z we are in the setting of [6], and in the special case where X
is a full shift and g a Bernoulli product measure we are back to [7]. For
abelian groups GG, Theorem 1.1 is contained in a much more general result
(Theorem 2.3 in [13]) which does not, however, appear to carry over to the
nonabelian case.

Throughout this paper we consider only two-sided processes. For one-
sided processes (X, n > 1) we denote by

M>1

Thoo = ﬂ o(Xpm--X1:m>M),
M>1

(1.3)

the one-sided versions of the tail-sigma-fields (1.1) and (1.2). If the process
(X,) is not independent, the triviality of T% cannot be expected to imply
that of Ty without additional assumptions: in [3], [5]-[6] and [11] there
are combinatorial obstructions to the triviality of T7  even when T, is
trivial, and in [1] a zero-two-law governs the triviality of 7% in the case
where G = Z, X¢ has finite entropy, and T, is trivial.

If one drops the assumption that the group G in which the two-sided pro-
cess (X,,) takes its values has finite conjugacy classes, then the coincidence of
T and T} is again no longer automatic, and depends on certain recurrence
properties of the random variables X,,_1 - - ngXO_1 e X;El, ge G, n>0,
which are not easy to check.

The techniques used for proving Theorem 1.1 come from ergodic theory
and are closely connected with those employed in [11] and [13]. The paper
is organised as follows. In Section 2 we discuss briefly a few classical facts
about ergodic equivalence relations. In Section 3 we state Theorem 1.1 in
the language of ergodic equivalence relations (Theorem 3.1), prove it in that
setting, and finally deduce Theorem 1.1 from Theorem 3.1. Section 4 con-
tains three applications of the equivalent Theorems 1.1 and 3.1. The first of
these (Example 4.1) shows that every countable generator of a measure pre-
serving, ergodic automorphism of a probability space with trivial two-sided
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tail-sigma-field is super-K in the sense of [11] (Example 4.1). For an exact
endomorphism one-sided generators are no longer automatically super-K,
but every measure-preserving, exact endomorphism on a probability space
with a finite generator also has a finite super-K-generator (cf. [12]). In Ex-

ample 4.2 we consider what amounts to a finite collection (Xr(f) ),i=1,...,k,
of jointly stationary stochastic processes with values in countable discrete

groups G with finite conjugacy classes, set Y,gf)n = Xff) e X(_Zzn for each

m,n >0and i=1,...,k, and observe that the sigma-algebras
Too= [ o(XP :jm| > M, i=1,... k),
M>0
T = m O’(Yﬁ%im,HZM,Z’:L...,k),
M>0

satisfy that
Too =T (1.4)
In Example 4.3 we apply Theorem 3.1 to random deformations of certain
infinite polygonal chains.
I am grateful to Frank den Hollander for bringing to my attention the pa-

per [1], and to Sylvia Richardson for pointing out to me a curious application
of Theorem 3.1 to molecules like DNA (cf. Example 4.3).

2. EQUIVALENCE RELATIONS DEFINED BY A FUNCTION

Let (X,8) be a standard Borel space. A subset R C X x X is a Borel
equivalence relation on X if R is a Borel set and an equivalence relation. If
R is a Borel equivalence relation on X we write

R(z) ={y € X : (z,y) e R} (2.1)
for the equivalence class of a point x € X and denote by
R(B) = | J R(x) (2.2)
reB
the saturation of a set B C X. For every C' € § we denote by

RO =RN(CxC0C) (2.3)

the restriction of R to C. Following [4] we say that a Borel equivalence
relation R on X is discrete if R(z) is countable for every x € X. The
following lemma is taken from [4].

Lemma 2.1. Let R be a Borel equivalence relation on X. Then the satur-
ation R(B) of every B € § is an analytic set, and hence p-measurable for
every probability measure p on 8. If R is discrete then R(B) € § for every
Bes.

Proof. We assume without loss of generality that X is a Polish space and
S8 = By is the Borel field of X. Denote by m;: X x X —— X, i = 1,2, the
two coordinate projections and observe that

R(B) =m((Bx X)NR)

is the image of a Borel set in X x X under the continuous map mo: X x X +——
X, and hence an analytic subset of X. In particular, R(B) is measurable
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with respect to every probability measure on X (cf. [8]). If R is discrete
then R(B) € § by Kunugui’s theorem (cf. [4], [9]-[10]). O

Lemma 2.1 justifies the following definitions.

Definition 2.2. Let (X, 8) be a standard Borel space and p a probability
measure on 8 (the resulting triple (X, 8, 1) is called a standard probability
space). Suppose that R is a Borel equivalence relation on X.

(1) The equivalence relation R is ergodic (with respect to u) if u(R(B)) €
{0,1} for every B € S§;

(2) The measure pu is quasi-invariant under R if p(R(B)) = 0 for every
B € 8§ with u(B) = 0.

Lemma 2.3. Suppose that R is a discrete Borel equivalence relation on
a standard probability space (X, 8, ). Then there exists a countable group
I' =T'r of nonsingular Borel automorphisms of (X, 8, u) with the following
properties.

(1) There ezists a set B € 8 with u(B) =1 such that
Rr = {(z,7yz):ze€ X,ye T} =RP) U {(z,z) : 2 € X} CR;
(2) If
SR—{R(B): BeS§}CS§,
SRt — Ry (B): B€ 8} ={Bc8:yB=B for every vy T'},
then
SR = 8Br  (mod p).
If T is a measure preserving Borel automorphism of (X, 8, 1) which pre-
serves R in the sense that
(T'xT)(R)=R, (2.4)

then the set B € § in (1) may be chosen to be T-invariant, and the group T
to satisfy that TTT—! =T.

Proof. Since R is discrete we can apply Theorem 1 in [4] to find a countable
group A of Borel automorphisms of X with

R=Ra={(z,57) :z € X, S €A}

Choose an enumeration (51, S2,...) of A and define a finite measure v on

S by
v = Z 27" uS,y,.
n>1
Then v is quasi-invariant under A (or, equivalently, under R) and p is
absolutely continuous with respect to v. We write v as a sum of two finite
measures v = v1 + o with 1 ~ p and s L pu, choose a set B € § with
vo(B) = v1(X ~ B) =0, and set

R =RP U{(z,2):2 € X}.

The quasi-invariance of v under R implies that the restriction 14 of v to B
is quasi-invariant under R(®). As vy is equivalent to j, p is quasi-invariant
under R®) and hence under R/, and 8® = SR (mod ). The proof is
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completed by applying Theorem 1 in [4] once again to choose a countable
group I' of nonsingular Borel automorphisms of (X, 8, 1) with R" = Ry (cf.
(1)).

If R is T-invariant in the sense of (2.4) we replace B by
B = (T "Bes' ={Ces:T'C=cC},
neL
define R/ as above with B’ replacing B, and observe that R’ is T-invariant.

Finally we define I" as above, denote by I'" the group generated by {T"~T ™ :
v €T, n € Z}, and obtain that TI'T~! =TI’ and R = R/. O

Let T be a measure preserving, ergodic automorphism of our standard
probability space (X, 8, ), G a countable discrete group with identity ele-
ment 1lg, and f: X — G a Borel map. The map f determines two equi-
valence relations R} C Ry on X. The first of these is given by

for only finitely many n € Z}. (25)
For the second relation we set, for every (z,y) € Ry and L > 1,
af (@, y)® = f(2) 7t J(TE ) F(TE ) f (),
ay (2,9) = f(T7 ) - (T ) - (TR~ f(T7hy)
(L) (2.6)

+ 1 +
ay(z,y) = lim ay(z,y)",
ay(z,y) = Jim_ay ()",

and observe that a?: R +—— G are well defined Borel maps, and that

af(z,y)af(y,z) =af(x,2),  a;(@,y)a;(y,2) = aj(z,2) (2.7)
for all (x,y), (x,2) € Ry. In particular,

R} = {(v,y) € Ry: af(,y) = af (z,y)} (2.8)

is an equivalence relation on X which is contained in (and hence a subrelation
of) Ry. We note in passing that the equation (2.7) is usually expressed by
saying that a}r and ay are (1-)cocycles on the equivalence relation Ry with
values in G (cf. [4]).

For the following elementary observations we fix a Borel map f: X — G
and say that f separates the points of X (or generates 8) under T if, for
every pair of points z,y € X, x = y if and only if f(T"x) = f(T™y) for
every n € Z.

Proposition 2.4. The equivalence relations Ry and R} are Borel and T'-
invariant in the sense of (2.4). If f generates 8 under T the relations Ry
and R;‘c are discrete.

Proof. For every N > 0 the set

R;N) = {(z,y) € X x X : f(T*z) = f(T*y) whenever k € Z, |k| > N}
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is a Borel equivalence relation, and Ry = Uy REIN) is Borel. Since

a}jf: Ry — G are Borel maps on Ry, (2.8) shows that R} C X x X is
also a Borel set.
The T-invariance of Ry is obvious. In order to prove the T-invariance of
’J‘c we note that, for every (z,y) € Ry,

af (Tx, Ty) = f(Tx)™ - f(T" )™ f(T™y) - f(Ty)
= f@)at @) )
a; (Tw,Ty) = f(a)-- f(T"x))- f(THy) =t fy) ™
= f(@)ay (z,9)f(y) ",
for every (z,y) € Ry and every sufficiently large m > 0. Hence (z,y) € R;Z
if and only if (Tx,Ty) € R, which proves the T-invariance of R}.

If f generates § under T, the equivalence class

RM(2) = {y € X : (z,y) e R}

(2.9)

is countable for every z € X and N > 0, so that Ry(z) = Uy RSCN) (x) is

countable for every x € X. O

3. THE MAIN THEOREM AND ITS PROOF

A countable group G has finite conjugacy classes if the conjugacy class
[g] = {hgh™' : h € G} of every g € G is finite.

Theorem 3.1. Let T be a measure preserving and ergodic automorphism
of a standard probability space (X,8,u), G a countable group with finite
conjugacy classes, and f: X —— G a Borel map. Then the equivalence
relations Ry and R} in (2.5) and (2.8) satisfy that SR = 8R7 (mod p).

The remainder of this section is devoted to the proof of Theorem 3.1. Until
further notice we assume that 7" is an ergodic automorphism of a standard
probability space (X, 8, 1), G a countable discrete group and f: X — G a
Borel map. Put, for every n € Z,

f(r=1z). - f(x) if n>1,
fn,z) =4 1a if n =0, (3.1)
f(r—"z)=t... f(Ttz)=t if n<O0.
The resulting map f: Z x X —— G satisfies that
fm,T"z) - f(n,x) = f(m+n,x) (3.2)
for every n € Z and = € X, and is called a (1-)cocycle of T with values in

G.
Lemma 3.2. Suppose that G is finite with cardinality |G|. If RY. is the

nonsingular Borel equivalence relation on (X, 8, 1) defined by

R ={(z,T"z): x € X and f(n,z) =1g}
then there exists a partition Q C 8 into at most |G| sets with A(Q) = SR
(mod p), where A(Q) is the algebra generated by Q.
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Proof. Put Y = X x G, write T for the product Borel field of Y, and set
v = pu x A, where A is the normalised Haar (= counting) measure on G. We
denote by Tr: X x G —— X x G the skew-product transformation

Ty(x,9) = (Tz, f(x)g),

observe that T preserves v, and set
T ={CeT:T;C=C}.
For every B € 887, C € 77/ and h € G we put
B(h)= | T}(B x {n}) € 77
nez (33)
Ch={xeX:(xh)eC}esr,

and note that

SRt — (0}, : C e TT1} (3.4)

for every h € G: indeed, if C € T7f and h € G, then Cj, € $8BT; conversely,
if B € 887 and h € G, then

B = B(h)p,. (3.5)

As T is ergodic and Ty commutes with the measure preserving action
R: h— Ry of GonY defined by

Rh($,g) - (IL’,gh)

for x € X and g, h € G, the joint action of Ty and R is ergodic (i.e. v(B) €
{0,1} for every B € T which is invariant both under Ty and R). Hence

pl Bty ) =u(|JT"B) =1 (3.6)
geq nez

for every h € G and B € § with u(B) > 0.
Suppose that there exists a partition @ = {Q(1),...,Q(|G| + 1)} c §Br
of X into sets of positive y-measure. We set g; = 1¢ and note that

Q1)(91)g = Q1)
by (3.5). According to (3.6) there exists an element go € G ~ {g1} with

1(Q(1)(g1)g, N Q(2)) > 0. We replace Q(2) by the possibly smaller set
Q'(2) = Q(1)(g1)g N Q(2) € 877,
choose g3 € G~ {g1, g2} with p(Q'(2)(g2)g; N Q(3)) > 0, and set

Q'(3) = Q(2)(g2)g5 N Q(3) € SBT.

Proceeding by induction, we obtain sets Q'(1) = Q(1),Q'(2) C Q(2),...,
Q'(|G]) € Q(|G])) of positive p-measure in 887 and an enumeration g; =
1,92, - -, 9)q| of G with the following properties:

(i) Q' +1)(gj+1) € Q'(5)(gs) for j =1,..., |G| = 1,
(i) Q()(g5)g; = Q'(4) C Q) for j=1,...,|G.
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By setting j = |G| we obtain that u(Q'(|G|)) > 0 and Q'(|G|)(g)c|)g; C Q(4)
forj=1,...,|G|. AsQ()NQ(|G|+1) =@ for j =1,...,|G]| this contradicts

(3.6).
This shows that SRT is purely atomic with at most |G| atoms and proves
the lemma. O

Lemma 3.3. Suppose that G is finite and that ©Q C § is the finite partition
described in Lemma 3.2. For every A€ Q and B,C € 8§ with BUC C A,

1 n (B)u(C)
NI@OON;;L(BHT Cﬂ{xeX:f(n,x):lg}):%.

Proof. We use the notation of the proof of Lemma 3.2 and assume that
p(A) > 0. The set A(1g) is Ty-invariant, v(A(1g)) > 0, and hence

v(|J RrA(16)) =1

heG
and

v(A(le)) = 1/|GI.
Furthermore, since A is an atom of S®T, the restriction of v to A(lg) is
ergodic under T, and the ergodic theorem guarantees that
1 V-l
lim > w(B'NnT;"C) = v(B)w(C"),
n=0
where B’ = Bx{1g} and C! = C'x{1¢}. This is precisely our assertion. [J

For the definition of the equivalence relations R} C Ry C X xX and
the maps a?: R;+— G, f: Z x X — G we refer to (2.5), (2.8), (2.6) and
(3.1). The following Definition 3.4 (3) is taken from [13].

Definition 3.4. Let R be a discrete nonsingular Borel equivalence relation
on a standard probability space (X, 8, u).

(1) The full group [R] of R is the set of all nonsingular Borel automorph-
isms V of (X,8,p) with (z,Vx) € R for every z € X.

(2) A nonsingular automorphism V of (X, 8, i) is an automorphism of R
if there exists a p-null set N € § with R(N) = N and (Vz,Vy) € R for

every (z,y) € RN,

(3) A measure preserving automorphism V of R is asymptotically central
if
lim u(V""BAWV™"B) =0 (3.7)

n—oo

for every W € [R] and B € 8.

Remarks 3.5. (1) A nonsingular automorphism V' of (X, 8, u) is an auto-
morphism of R if and only if there exists, for every W € [R], an element
W' € [R] with V-IWV = W’ (mod p). The last condition is usually ex-
pressed by saying that V' normalises [R] (modulo null sets).

(2) If V is an asymptotically central automorphism of a discrete, nonsin-
gular equivalence relation R on (X, 8, 1) and R’ € R a V-invariant subre-
lation, then V' is an asymptotically central automorphism of R’.
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(3) If V is an asymptotically central automorphism of a discrete, nonsin-
gular, ergodic equivalence relation R on (X, 8, 1) then V' is mixing (cf. [13]).

Lemma 3.6. Suppose that f generates 8 under T' and that R = Ry is
the equivalence relation (2.5). We choose a countable group T = TTT~!
according to Lemma 2.3 and set Rr = {(z,vx) : x € X,v €'} CR. Then
T and T~ are asymptotically central automorphisms of Rr.

Proof. By assumption, the partition P = {f~1({g}) : ¢ € G} is a generator
for T, ie. 8§ =\, e, T7"(P).
Fix W € [Rr| and set, for every n > 1,

Cn={zeX: f(T"Wz) = f(T*z) for every k € Z, |k| > n}.
Since the set
(neZ: [(T"Wa) £ (T")}
is finite for p-a.e. z € X, lim, o u(Cy) = 1. Furthermore, if
De \/ T*P)
|k|<m
for some m > 0, then
W(T~™""DAWT™"D)
< u(T~™™C, N D)YAWT ™ ™(C, N D))
+ (X N Cp) + (X NWCy)
<2u(X N Cp) + (X NWEC) +u(X ~W™C,) — 0

(3.8)

as n — oo. In the second inequality in (3.8) we are using the fact that any
point z € C,, NT~™"""(C,, N D) satisfies that Wz € D.
Similarly we obtain that u(T™ " DAWT™"D) — 0 as n — oo.
For every B € 8§ with u(B) > 0 we can find a sequence (B,,, m > 1) in
8 with limy, 0o p(BABp) = 0 and Bp, € V <y, TF(P) for every m > 1.
Then
limsup (u(I"BAWT"B)
n]—o0
< limsup u(T" B AWT" By,) + w(BABy) + pf(WT™(BABR,)))
[n|—o0
= w(BABy,) + limsup p(WT"(BABy,)),
[n|]—o0
and by letting m — oo we obtain that lim,|_., u(T"BAWT"B) = 0. As
B and W were arbitrary this proves that 7" and T~! are asymptotically
central. U

Since Rr C Ry we can restrict the cocycles a}%: R;+— G in (2.6) to Rr,
and we set

erlw,y) = a7 (@ y)at (v, 2) (3.9)
for every (x,y) € Rr. According to (2.9),
cf(T"z, T"y) = f(n,2)ep(z,y) f(n, )~ (3.10)

for every (z,y) € Rr and n € Z.
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Lemma 3.7. Suppose that f generates 8 under T, that R = Ry is the
equivalence relation (2.5), and that T = TUT 1 is the group of nonsingular
automorphisms of (X, 8, p) constructed in Lemma 2.3. Assume furthermore
that g € G is an element with finite conjugacy class [g] = {hgh™! : h € G},
and that

u(U{x € X :cp(x,yzx) € [g]}) >0, (3.11)
yel’
where cg: Ry — G is defined in (3.9). We write C(g) ={h € G : hgh™! =
g} for the centraliser of g and put

H=()hC(gh". (3.12)
heG
Then H C G is a normal subgroup of finite index, and we set

f'(z)=f(x)H e G =G/H

for every x € X. The map f': X —— G’ is Borel and has values in the
finite group G', and we denote by Q C 8 the finite partition arising from f'
in Lemma 3.2. Then the following conditions are satisfied for every A € Q
with p(A) > 0.

(1) There exists an element ¢’ € [g] with

M<U BNy 'Bn{ze X :cp(z,yr) = a?(’yx,x) = g’}) >0 (3.13)
yerl
for every B € § with B C A and u(B) > 0;

(2) The set

G(A) ={g € G : g satisfies (3.13) for every measurable set
B C A with u(B) > 0}

s a subgroup of G;
(3) If

,u(U {reAn~yT1A: cr(x,vx) = g}) >0, (3.14)
el

then g € G(A).

Proof. For the proof of (2) we note that, if ¢’,¢” € G(A), then we can find,
for every B C A with positive measure, elements +',7” € T' and Borel sets
B',B" with B'U~'B" ¢ B, B"U+"B" C v'B’, w(B") > 0, cf(x,y'z) =
a;f(’y’a;,a:) = ¢ and cf(y,7"y) = a;f(’y”y,y) = ¢" for every x € B’ and
y € B”. Then

n_! n_!

cp(z,y"y'x) = ay (z,7'x)ep (Y, "y z)a}t (', x)

=a; (Y'Y'z,y'z)a} (y'z,x) = ¢"g'

for every x € 4/ 'B” c B'. Since G(A) is obviously closed under taking
inverses this shows that G(A) is a group.

In order to prove (1) we suppose that g € G satisfies (3.11), and that
A € Q has positive measure. Choose aset C' € § and ay € I with u(C) > 0
and cf(z,vzx) = ¢’ € [g] for every x € C. By decreasing C, if necessary, we
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may also assume that there exists an integer L > 0 with f(T'yz) = f(T'x)
for every z € C' and |I| > L.

Since T is ergodic and an asymptotically central automorphism of Rp by
Lemma 3.6,

|n1‘iinoo p(AAT" T~ A) = 0, (3.15)
and hence
R o » R »
A}gnooNnZ:;)u(AﬂT’y T"ANT C):A}EnOOan::Ou(AﬁT )
— u(A)u(C).

From (3.10) we also know that
cf(aw, T T"x) = f(n,2)" e (T, 4T"w) f(n, ) € [g]

for every x € ANT" ' T "ANT"C.

Since |G/C(g)| = |[g]| < oo and every subgroup of finite index contains a
normal subgroup of finite index, the normal subgroup H in (3.12) has finite
index in G.

Suppose that B € §, B C A and u(B) > 0. According to Lemma 3.3,

N-1
lim % Y uBNT"CN{zeX: f(nx)cH}) = %,

N—oo
and by combining this with (3.15) (with A replaced by B) we see that

n=0

N-1

. 1 —n_—1pn -n .
A}gnooN;,u(BﬁT YyT"BNT "CNn{z e X : f(n,z) € H})

_ u(B)uC)

G/ H]

It follows that
WBNT "y M"BNT"Cn{zecX: f(nz)ec H}) > ‘W
for infinitely many n > N, and (3.10) yields that
g =cp(T"z,/T"z) = f(n,x)cs(x, T "yT"z) f(n, )"
=cf(x, T "yT"z) = a;[(T_"’yT”x, x)
for every n > N and
€ BNT "y MT"BNT"CNn{zecX: f(nx)c H},
which proves (1). If g = ¢’ satisfies (3.14) then this proof also shows that
g € G(A), which proves (3). O

Proof of Theorem 3.1. Suppose that G has finite conjugacy classes, that
f: X — G is a Borel map, and that R;'Z C Ry are the equivalence rela-
tions defined in (2.5). We use Lemma 2.3 with R = Ry to find a countable
group I' = TT'T~! of nonsingular Borel automorphisms of (X8, ) with
SRy = SRr (mod p).

Let g € G satisty (3.11), and let C(g) be the centraliser of g. As in Lemma
3.7 we consider the normal subgroup H C G in (3.12), set G’ = G/H and
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f'=fH: X — @', and denote by Q C 8 the finite partition arising from
f' in Lemma 3.2. If A € Q has positive measure, then Lemma 3.7 implies
that the set

G(A) ={g € G : ¢ satisfies (3.13) for every measurable set
B C A with u(B) > 0}

is a subgroup of G. We put
Ri = {(z,72) :z € X, v €T, ¢s(z,72) = 1g} = R} NRr

and denote by $* = (R%)@ and S = R\ the restrictions of R} and Ry
to A. If 84 ={BNA:B¢€8}and pa(B) = u(B)/u(A) for every B € 84
then we claim that
85 =85 (mod pa). (3.16)
Indeed, if B,C € §4 have positive measure, and if there exists a v € T’
with u(yB N C) > 0, then we can find a ¢ € G and a subset B’ C B with
u(B') > 0, yB' C C and cf(xz,yx) = g for every x € B’. According to
Lemma 3.7 (3) there exists a subset B” C B’ and an element 7/ € T' with
v'B" C B and c¢(z,7'x) = a;[(fya:,a:) = g~ !, and we conclude that

cp(x,y7x) = ay (x,'z)es (&, v yx)a} (a, )

= Cf(le,vv'x)a;[(’y'x, x) = 1g.
Since B” C B, vy'B" C C and c¢(z,7y'z) = 1g it follows that S*(B) =
S(B) (mod u) for every B € 8 with B C A, which implies (3.16). By
varying A € Q in (3.16) we see that
SRt c $Brv 9 (mod p). (3.17)

Standard decomposition theory allows us to find a 8Br-measurable map
T +— v, from X into the set of probability measures on 8§ with

W(BNC) = [ vi(B) dulz)
C
for every B € 8 and C € 8B and the T-invariance of 88T and y enables
us to assume in addition that

vre = v T71 (3.18)

for every z € X.

For every finite partition R C S® denote by A(R) the algebra of sets
generated by R.

Let D(Q) be the collection of all partitions P C A(Q). According to
(3.17) we can find, for p-a.e. z € X, a partition P € D(Q) with

A(P) =8BT  (mod v,). (3.19)

For every fixed P € D(Q), the set E(P) = {x € X : z satisfies (3.19)}
lies in 8B, We select a subset D' C D(Q) with u(Upep E(P)) = 1 and
E(P)NE(P') = @ whenever P, P’ € D' and P # P’, put

Q' ={E(P)NB:BecPeD}cskr,
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and observe that (| ecor 4) = 1. After modifying the elements of Q' by

null sets, if necessary, we may assume that @' C SBT is a partition of X,
that u(A) > 0 for every A € Q’', and that

SBrv Q' = 8Bt (mod p),
A(Q) =8Bt (mod v,) for p-ae ze X.

The T-invariance of 881, R and (3.18) together imply that T-"(Q') also
satisfies (3.20) for every n € Z; in particular there exists, for every n € Z
and p-a.e. x € X, a bijection &, ,: Q' — Q' with

for every A € Q' (we are not assuming the maps = — &, , to be measurable,
although this can be achieved as well).
Since T is an asymptotically central automorphism of Rr,

0= lim T "AANYT "A) = lim Ve (T "ANYT " A) d
w(x

n—oo

(3.20)

AEQ/ AeQ’
= lim / Z V(TP ANYT ™ A) dp(x)
e AeQ’

= Jin [ 3 (T (AT 6 () du(o)

e AeQ’
- / > va(ALyA) dp(z) = ) / ve(ADYA) du(x) = ) p(ALYA)

AeQ’ AeQ’ AeQ’

for every v € ', and (3.20) implies that 881 C B (mod p). It follows that
SRy = gR; (mod ), which completes the proof of the theorem under the
hypothesis that f generates § under 7.

If f does not generate 8 under T we define a map n: X — GZ =Y by
setting n(x), = f(T"x) for every € X and n € Z, where a typical point
in Y = G? is of the form y = (y,) with y, € G for every n € Z. If T" is the
shift

(T/y)n = Yn+1 (3.21)
for every y = (yn) € Y and n € Z, then n-T =T -n and f = 7 - 0,
where my(y) = yo for every y = (y), € Y. We set v = un~! and obtain a
measure preserving, ergodic automorphism 7’ of the standard probability
space (Y, T,v) and a Borel map mp: Y —— G for which (nxn) ' (Rs,) = Ry
and (n x n)"YR%) = R}. The first part of this proof guarantees that

TR = JR= | which implies that $%7 = $R7, U

Proof of Theorem 1.1. In order to realise the process (X,) we set X = GZ,
write 8 = Bx for the product Borel field and T for the shift (3.21) on X,
choose an appropriate shift-invariant probability measure p on X, and put
X, = f-T" for every n € Z, where f = my: X —— G is the zero coordinate
projection. The resulting probability space (X, 8, u) is standard and T is
a measure preserving Borel automorphism of (X, 8, ). If T' is nonergodic
we choose an ergodic decomposition y = [ M dp(x) of p, where each pu,
is a T-invariant and ergodic probability measure on 8, and where z —
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is a T-invariant Borel map from X into the space of T-invariant probability
measures on 8 with their usual Borel structure. i
For every z € X, Theorem 3.1 implies that $®f = 8%/ (mod uh.), and by

re-integrating we see that Too = SR = $%7 = T*_ (mod p), as claimed. O

4. EXAMPLES

Example 4.1. (SUPER-K GENERATORS.) Let T be a measure-preserving,
ergodic automorphism of a standard probability space (X,8, ), and let
P C 8 be a countable partition which generates 8§ under T', and for which
the two-sided tail

T.P)= () V T7"(P) (4.1)

M—o0 |m|>M

is trivial. We write Gp for the free abelian group generated by P and define
a Borel map fp: X — Gp by

fr(x) =P(x) e P C Gp (4.2)

for every z € X, where P(z) € P is the unique element containing z € X.
Then the equivalence relation R}P in (2.8), which is ergodic by Theorem
3.1, consists precisely of those elements (x,y) € X x X for which P(T"z) =
P(T™y) for all but finitely many times n € Z, and for which the sequences
(P(T™z), n € Z) and (P(T™y), n € Z), are finite permutations of each other.
In the terminology of [11] this means that a countable generator P C 8 is
super-K whenever T (P) is trivial.

In the one-sided case things are different. If T is a measure-preserving,
ergodic endomorphism of (X, 8, ) and P C § a countable partition we define
frp: X — Gp by (4.2) and put, for every z € X,

f’p(Tnfll') - fp(x) if n>1,
O¢ (the identity element of G) if n = 0.

fp(n,.l‘) = {

Denote by
TiP)= (] V T7"P)= () o(fp-T™:m > M),
M>0m>M M>0
(4.3)
Tioo(P) = ) olfp(m,) :m > M)
M>0

the one-sided analogues (1.3) of the tail sigma-fields (1.1)-(1.2). As men-
tioned in the introduction, the sigma-algebras T, (P) and T%  (P) need
not coincide even when T, (P) is trivial. However, in [12] it is shown that
the existence of a finite partition P C 8§ with T (P) = {@, X} (mod p)
implies the existence of some other finite partition P’ C § with

“T+OO(,P,) = 7100(73/) ={2,X} (mod p).

In the terminology of [12] this means that any measure preserving endo-
morphism 7 of (X, 8, u) which is exact and has a finite (one-sided) generator
also has has a super-K-generator, but that generators of T" are not automat-
ically super-K (exact means that (),~, 7 "(8) = {@, X} (mod p)).
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Example 4.2. (EQUIVALENCE RELATIONS GENERATED BY SEVERAL FUNC-
TIONS.) Let T be a measure-preserving, ergodic automorphism of the prob-
ability space (X,8,u), and let P C 8 be a countable partition for which
Too(P) is trivial. If n > 1, G a discrete group with finite conjugacy classes,
7: P" — G an arbitrary map, and if f: X —— G is defined by f(x) =
7(P(x),...,P(IT™ 1)) for every z € X, then Theorem 3.1 guarantees that

;= R is trivial. One class of examples of such maps is obtained by set-

ting, for every n > 1, Ggf ) equal to the free abelian group generated by P"

and 7(Py,...,Ph_1) = (Py,..., Ph_1) € GgL). The ergodicity of R} corres-
ponds to the by now unsurprising statement that the equivalence relation on
X obtained by finite permutations of n-names with respect to P is ergodic.

If P is finite we may put n = 2, write G = S(P) for the symmetric
(i.e. permutation) group of the alphabet P, set 7(Fy, P1) equal to the trans-
position (Pp, P1) € S(P), and put f(x) = 7(P(x), P(Tz)). According to
Theorem 3.1, the resulting relation R} C Ry is again ergodic, and SR is
therefore trivial.

As the class of discrete groups with finite conjugacy classes is closed under
finite direct sums we obtain that, for any finite collection f;: X —— GO, § =
1,...,k, of Borel maps from X into groups G with finite conjugacy classes,

k *
$Nimi Ry — 8N Ry (104 ).

By translating this into the probabilistic setting of Theorem 1.1 we obtain
(1.4). In particular, if the maps f; are of the form described at the beginning
of this example, then

sN= Ry = (2, X} (mod p).

Example 4.3. (LOCAL VARIATIONS IN LONG MOLECULES.) Let F be a
finite set, X C FZ a closed, shift-invariant subset, T the shift (3.21) on X,
and put, for every i € F, [i]o = {zv = (zn) € X : zp = i}. We denote by
Po = {[i]o : i € F'} the state partition of X and assume that p is a shift-
invariant probability measure on X for which the two-sided tail-sigma-field
Too(P) in (4.1) is trivial (if X is a shift of finite type, then every Markov
measure and, more generally, every Gibbs measure on X arising from a
function ¢: X —— R with summable variation has this property—cf. [2] or
[11)).

As in Example 4.1 we fix n > 1, denote by G the free abelian group
generated by F", and define a continuous map f: X —— G by f(z) =
(xoy... ,xp_1) € F™ C G™ for every x € X. Then the equivalence relation
R} in (2.8) consists of all pairs (z,y) € X x X which differ in only finitely
many coordinates, and for which the n-blocks ((zg,...xg1n-1), k € Z) and
((Yky - - - Yk+n-1), k € Z) occurring in x and y differ only by a finite permuta-
tion, and is ergodic by Example 4.1. This fact can be expressed by saying
that, for a typical point z € X, a R}—equivalent point y could lie anywhere
in the space X.

If one were to interpret F' as a finite set of molecules and X as a collection
of two-sided infinite concatenations of these molecules, then the ergodicity
of R}Z would imply the unreliability of any chemical analysis of the structure
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of such a concatenation based on an investigation of substrings of a given
length.

We remain with this example a little longer. Let d > 2, and consider
the d-dimensional Euclidean group E(d) = R% x SO(d), furnished with the
group operation

(v, A)- (v, A) = (vA +', AA)

for all v,v' € R and A, A’ € SO(d) (the elements of R? are written as row
vectors). Fix a discrete subgroup G C E(d) (or, more generally, a countable
subgroup G C E(d) with finite conjugacy classes, regarded as a discrete
group) and a continuous map f: X —— G. Then the compactness of X
guarantees that f takes only finitely many values on disjoint closed and
open subsets of X, so that R is still ergodic. The ergodicity of the relation
R}, which is a consequence of Theorem 3.1, has the following geometrical
interpretation.

For every z € X and n € Z we define f(n,z) € G by (3.1) and write
f(n,x) as f(n,r) = (v,(x), Ay (x)) with v,(2) € R? and A, (z) € SO(d). If
v(x) = v1(z) and A(z) = Ai(x) then

v(z) +v(Tz)Ax) + ...
+ (T 12) AT ) - A(z)
vp(x) =40 if n=0,
—o(T"z)A(T"z)~ - A(x) ™t — ...
— (T ) A(z) ™1

if n>0,

if n<O0.

By connecting successive points in the sequence (v, (z), n € Z) by straight
line segments we obtain an infinite polygonal curve in R? which may, of
course, have self-intersections. If we call two such polygonal curves associ-
ated with z,y € X equivalent if they differ in only finitely many segments
(i.e. if v, (z) # vy (y) for only finitely many n € Z) then Theorem 3.1 implies
that equivalent curves may be unrecognisably different, even if we insist in
addition that the points z and y they arise from differ only by a permuta-
tion of finitely many coordinates. Note that a finite change, or even a finite
permutation, of the coordinates of a point z € X will generally lead to a
point y € X whose polygonal curve is inequivalent to that of x.

If we were to continue with our interpretation of points x € X as (highly
idealised) chains of molecules then the map f and the resulting sequence
of coordinates (v,(x), n € Z) would correspond to a spatial arrangement
of the chain x determined by its molecular structure, and Theorem 3.1 to
a statement about quite dissimilar chains having spatial arrangements with
only local differences.

Other examples can be found in [11] and [13].
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