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Abstract. This note gives an account of the algebraic construction of
symbolic covers and representations of ergodic automorphisms of com-
pact abelian groups. For expansive toral automorphisms this subject was
initiated by A.M. Vershik.

1. Introduction

In [17], A.M. Vershik showed that the two-sided golden mean shift is a
symbolic representation of the hyperbolic automorphism α =

(
0 1
1 1

)
of the

two-torus T2. The construction underlying this result was subsequently ex-
tended to arbitrary hyperbolic automorphisms of T2 in [16], and the paper
[4] describes an algebraic construction of finite-to-one sofic covers of arbi-
trary hyperbolic toral automorphisms by using an alphabet consisting of a
suitable finite set of integers in an algebraic number field associated with
the automorphism.

A closely related algebraic construction of symbolic covers of expansive
group automorphisms (and, more generally, of expansive Zd-actions by au-
tomorphisms of compact abelian groups) in [2], based on the analysis of the
‘homoclinic group’ of such automorphisms, was developed further in [14],
where it was shown that the two-sided beta-shift of any Pisot number β
provides a finite-to-one symbolic cover of the toral automorphism defined
by the companion matrix of the minimal polynomial of β (cf. also [15]).

The analogous problem of finding a connection between the two-sided
beta-shift of a Salem number β and the corresponding toral automorphism
was one of the principal motivations for the paper [9], which investigated to
what extent irreducible nonhyperbolic toral automorphisms can have sym-
bolic representations. Since such automorphisms have no nontrivial homo-
clinic points, any straightforward translation of the ideas in [17], [4] or [14]
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is doomed to failure. However, as was shown in [9], there exists a much
weaker form of symbolic representation of such automorphisms. The key to
understanding these symbolic ‘representations’ in the nonexpansive case lies
in the study of certain quotients of the space `∞(Z,Z) of all bounded two-
sided integer sequences which are determined by an irreducible polynomial
h with integer coefficients.

In order to explain this in a special case we assume that the polyno-
mial h is of the form h(u) = ud + hd−1u

d−1 + . . . h1u ± 1 and write αh for
the automorphism of the d-dimensional torus Td defined by the companion
matrix of h. Let σ be the shift on `∞(Z,Z) and consider the homomor-
phism h(σ) = σd + hd−1σ

d−1 + · · · + h1σ ± Id : `∞(Z,Z) −→ `∞(Z,Z). If
the polynomial h is hyperbolic (i.e. has no roots of absolute value 1), then
the quotient group Q(h) = `∞(Z,Z)/h(σ)(`∞(Z,Z)) is naturally isomorphic
to Td, and this isomorphism carries the automorphism of Q(h) induced by
the shift σ to αh (cf. [14] and Theorem 3.1). If h is nonhyperbolic, but
also noncyclotomic, then the appropriate quotient space turns out to be
Q(h) = `∞(Z,Z)/(`∞(Z,Z) ∩ h(σ)(`∗(Z,Z)), where `∗(Z,Z) is the space of
two-sided integer sequences with at most linear growth; here Q(h) can be
identified naturally with the quotient of Td by the dense ‘central’ subgroup
of Td on which αh acts isometrically as a rotation (cf. Theorem 4.1).

In this language the search for symbolic models of αh translates into the
search for appropriate ‘symbolic covers’ of the spaceQ(h) by closed, bounded,
shift-invariant subsets of `∞(Z,Z) (cf. Definition 2.2).

The existence and, if they exist, the combinatorial structure of such covers
is an open problem (Problem 6.1). However, the more modest task of finding
good ‘partial’ symbolic covers of Q(h), i.e. closed, bounded, shift-invariant
subsets of `∞(Z,Z) which have small nonempty intersections with ‘most’
classes of ∆(h), seems more manageable. In Theorem 6.4 we construct sym-
bolic partial covers V (h)

L ⊂ `∞(Z,Z) of Q(h) with the following properties:
the topological entropy h(σ

V
(h)
L

) of the restriction of σ to V
(h)
L is equal to

h(αh), and for every weakly d-bounded shift-invariant probability measure
ν on V

(h)
L (Definition 6.2) there exists a ν-a.e. countable-to-one equivariant

map ψ : `∞(Z,Z) −→ Td which sends ν to an αh-invariant probability mea-
sure µ of equal entropy on Td (the construction of αh-invariant probability
measures on Td other than Lebesgue measure is of interest due to their
somewhat exotic properties — cf. [9]). The existence of weakly d-bounded
shift-invariant probability measures on V

(h)
L with entropies arbitrarily close

to h(αh) has so far been verified only in some special cases in [9] (cf. Problem
6.8).

Most of the material in this note is based on [14] and [9], with an extension
of some of the results in [9] about companion matrices of Salem numbers to
arbitrary irreducible, nonhyperbolic and ergodic automorphisms of compact
connected abelian groups.
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2. Equivalence relations on `∞(Z,Z) defined by polynomials

Let R = Z(u±1) be the ring of Laurent polynomials with integer coeffi-
cients in the variable u. We write every f ∈ R as

f =
∑
n∈Z

fnu
n (2.1)

with fn ∈ Z for every n ∈ Z, set

‖f‖1 =
∑
n∈Z
|fn| <∞

and write
S(f) = {n ∈ Z : fn 6= 0} (2.2)

for the support of f . An element f ∈ R is irreducible if it cannot be written
as a product f = f1f2 with ‖fi‖1 > 1 for i = 1, 2, and f is hyperbolic if it
has no roots of absolute value 1.

Let

`∗(Z,Z) =
{
w = (wn) ∈ ZZ : sup

n∈Z

|wn|
|n|+ 1

<∞
}

⊃ `∞(Z,Z) =
{
w = (wn) ∈ ZZ : ‖w‖∞ = sup

n∈Z
|wn| <∞

}
.

Both `∗(Z,Z) and `∞(Z,Z) will be furnished with the topology of coordinate-
wise convergence. We write σ : `∗(Z,Z) −→ `∗(Z,Z) for the shift, defined by

(σw)n = wn+1 (2.3)

for every w = (wn) ∈ `∗(Z,Z).
For the remainder of this discussion we consider an irreducible polynomial

h =
d∑

n=0

hnu
n ∈ R with h0 > 0, d > 0 and hd 6= 0, (2.4)

and define a group homomorphism h(σ) : `∗(Z,Z) −→ `∗(Z,Z) by

h(σ) =
∑
n∈Z

hnσ
n. (2.5)

The Mahler measure of h is given by

M(h) = exp
(∫ 1

0
log |h(e2πit)| dt

)
= |hd| ·

∏
{γ∈C :h(γ)=0}

max {|γ|, 1} (2.6)

(cf. [6, (3-2)]). According to Kronecker’s theorem [5], M(h) = 1 if and only
if h is cyclotomic (i.e. if and only if h divides the polynomial un−1 for some
n ≥ 1).

Consider the shift-invariant subgroup

`∞h (Z,Z) = `∞(Z,Z) ∩ h(σ)(`∗(Z,Z)) (2.7)

of `∞(Z,Z), where h(σ) is defined in (2.5). We write

Q(h) = `∞(Z,Z)/`∞h (Z,Z) (2.8)

for the corresponding quotient group and

q(h) : `∞(Z,Z) −→ Q(h) (2.9)
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for the quotient map. It will be convenient to write

∆(h) =
{

(w,w′) ∈ `∞(Z,Z)× `∞(Z,Z) : w − w′ ∈ `∞h (Z,Z))
}

(2.10)

for the equivalence relation arising from the partition of `∞(Z,Z) into cosets
of `∞h (Z,Z), and to denote by

∆(h)(w) = w + `∞h (Z,Z) (2.11)

the ∆(h)-equivalence class of w ∈ `∞(Z,Z). In this notation Q(h) is simply
the space of equivalence classes of ∆(h).

Remarks 2.1. (1) It will be clear from (4.3)–(4.4) that, if w is a two-sided
integer sequence with polynomial growth such that h(σ)w is bounded, then
w has at most linear growth and therefore lies in `∗(Z,Z). We could thus
have defined ∆(h) equivalently as the set of all pairs (w,w′) ∈ `∞(Z,Z) ×
`∞(Z,Z) whose difference is of the form h(σ)w for some integer sequence w
of polynomial (or, indeed, sub-exponential) growth.

(2) If the polynomial h is hyperbolic, Theorem 3.1 will show that `∞h (Z,Z)
= h(σ)(`∞(Z,Z)), so that

Q(h) = `∞(Z,Z)/h(σ)(`∞(Z,Z)). (2.12)

Definition 2.2. A closed, bounded, shift-invariant set V ⊂ `∞(Z,Z) is a
symbolic partial cover of Q(h). A symbolic partial cover V ⊂ `∞(Z,Z) is a
symbolic cover of Q(h) if

q(h)(V ) = Q(h). (2.13)

V is a (partial) finite-to-one (or countable-to-one) symbolic cover of Q(h)

if V ∩∆(h)(w) is finite (or countable) for every w ∈ `∞(Z,Z),

The main reason for trying to understand the quotient group Q(h) and to
find covers of it is that these objects are intimately connected with symbolic
covers — in the sense of [4], [9], [14] and [17] — of the irreducible ergodic
automorphism αh of the compact connected abelian group Xh in (3.2)–(3.3)
determined by the polynomial h, and that any symbolic cover of Q(h) defines
a kind of symbolic cover of αh (cf. the Theorems 3.1 and 4.1). Even symbolic
partial covers can be useful for constructing invariant probability measures
of, for example, nonhyperbolic ergodic toral automorphisms (cf. [9]).

3. Expansive group automorphisms and quotients of `∞

Let h ∈ R be an irreducible, noncyclotomic, and not necessarily hyper-
bolic, polynomial of the form (2.4). The following discussion describes the
connection between the quotient space Q(h) in (2.8) and a certain irreducible
automorphism αh of a compact connected abelian group Xh (where irre-
ducible means that every closed αh-invariant subgroup Y ( Xh is finite).
Background and details of can be found in [2], [9], [12], [13], and [14].

We write τ : TZ −→ TZ for the shift

(τx)n = xn+1, x = (xn) ∈ TZ, (3.1)



QUOTIENTS OF `∞ AND SYMBOLIC COVERS OF TORAL AUTOMORPHISMS 5

and define a closed, shift-invariant subgroup Xh ⊂ TZ by

Xh =
{
x = (xn) ∈ TZ :

d∑
i=0

hixn+i = 0 (mod 1)

for every n ∈ Z
}
.

(3.2)

The restriction
αh = τXh (3.3)

of τ to Xh is a continuous, irreducible and ergodic automorphism of the
compact abelian group Xh with entropy log M(h). Furthermore, αh is ex-
pansive if and only if h is hyperbolic (cf. [13, Theorem 7.1 and Propositions
7.2–7.3]).

In the case where h0 = |hd| = 1 in (2.4) and Xh is therefore isomorphic to
Td, the automorphism αh in (3.3) is algebraically conjugate to the companion
matrix

Mh =


0 1 0 ... 0 0
0 0 1 ... 0 0
...

...
. . .

... 0
0 0 0 ... 0 1
−h0 −h1 −h2 ... −hd−2 −hd−1

, (3.4)

of h, acting on Td from the left, where the isomorphism between Xh and Td
is the coordinate projection

x 7→

[ x0
x1

...
xd−1

]
.

More generally, every irreducible ergodic automorphism α of a compact con-
nected abelian group X is finitely equivalent to such an automorphism αh
for an appropriate polynomial h ∈ R (cf. [12], [13] or [8]–[9]).

We return to our polynomial h in (2.4), extend the shift σ on `∗(Z,Z) ⊂ ZZ

linearly to an automorphism σ̄ of

`∗(Z,R) =
{
w = (wn) ∈ RZ : sup

n∈Z

|wn|
|n|+ 1

<∞
}

and define
h(σ̄) =

d∑
n=0

hnσ̄
n : `∗(Z,R) −→ `∗(Z,R) (3.5)

as in (2.5). Denote by Ωh the set of roots of h and set

Ω−h = {ω ∈ Ωh : |ω| < 1}, Ω(0)
h = {ω ∈ Ωh : |ω| = 1},

Ω+
h = {ω ∈ Ωh : |ω| > 1}.

(3.6)

According to [9, (2.15)], the kernel

W
(0)
h = kerh(σ̄) (3.7)

is the linear span of the vectors {w(1)(ω), w(2)(ω) : ω ∈ Ω(0)
h } with

w(1)(ω)n = Re(ωn), w(2)(ω)n = Im(ωn) (3.8)

for every n ∈ Z and ω ∈ Ω(0)
h , where Re and Im denote the real and imaginary

parts.
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Let ρ : `∗(Z,R) −→ TZ be the map

ρ(w)n = wn (mod 1), w = (wn) ∈ `∗(Z,R). (3.9)

Then
ρ ◦ σ̄ = τ ◦ ρ,

and the set

Wh = h(σ̄)−1(`∞(Z,Z)) ⊂ ρ−1(Xh) ⊂ `∗(Z,R) (3.10)

is a closed and shift-invariant subgroup which contains both `∞(Z,Z) and
W

(0)
h (cf. (3.16) and (4.5)).
Following [9] we write

1
h(u)

=
1
hd

∑
ω∈Ωh

bω
u− ω

for the partial fraction decomposition of 1/h with bω ∈ C for every ω ∈ Ωh

and define elements w∆± and w∆0 in `∞(Z,R) by

w∆+
n =

{
1
hd
·
∑

ω∈Ω−h
bωω

n−1 if n ≥ 1,
1
hd
·
∑

ω∈Ω
(0)
h ∪Ω+

h

−bωωn−1 if n ≤ 0,

w∆−
n =

{
1
hd
·
∑

ω∈Ω−h ∪Ω
(0)
h

bωω
n−1
i if n ≥ 1,

1
hd
·
∑

ω∈Ω+
h

−bωωn−1 if n ≤ 0,

w∆0
n = 1

hd
·
∑

ω∈Ω
(0)
h

bωω
n−1 for every n ∈ Z.

(3.11)

Then

w∆0 ∈W (0)
h , w∆+ + w∆0 = w∆− ∈Wh,

h(σ̄)(w∆+)n = h(σ̄)(w∆−)n = v∆
n =:

{
1 if n = 0,
0 if 0 6= n ∈ Z,

(3.12)

and

x∆± = ρ(w∆±) ∈ Xh, x
∆0 = ρ(w∆0) ∈ X(0)

h , x∆+ + x∆0 = x∆− ,

lim
n→∞

w∆+
n = lim

n→∞
w

∆−
−n = 0 exponentially fast.

(3.13)

Now suppose that h is hyperbolic. Then w∆0 = 0 and we set

w∆ = w∆+ = w∆− , x∆ = ρ(w∆), (3.14)

and define group homomorphisms

ξ̄ : `∞(Z,Z) −→Wh, ξ = ρ ◦ ξ̄ : `∞(Z,Z) −→ Xh (3.15)

by
ξ̄(v) =

∑
n∈Z

vnσ̄
−nw∆, ξ(v) =

∑
n∈Z

vnα
−n
h x∆

for every v ∈ `∞(Z,Z). Then

h(σ̄) ◦ ξ̄(w) = w
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for every w ∈ `∞(Z,Z), and since kerh(σ̄) = {0} we conclude that

Wh = h(σ̄)−1(`∞(Z,Z)) = ξ̄(`∞(Z,Z)) ⊂ `∞(Z,R),

h(σ̄)(Wh) = `∞(Z,Z),

ξ(`∞(Z,Z)) = Xh,

ker ξ = {w ∈ `∞(Z,Z) : ξ(w) = 0} = h(σ)(`∞(Z,Z)).

(3.16)

Furthermore, ξ is equivariant in the sense that

ξ ◦ σ = αh ◦ ξ, (3.17)

and induces an isomorphism

ξ′ : `∞(Z,Z)/h(σ)(`∞(Z,Z)) −→ Xh, (3.18)

which is again equivariant in the obvious sense. We obtain the following
result.

Theorem 3.1 ([14]). Let h ∈ R be a nonconstant irreducible hyperbolic
polynomial, and let αh be the irreducible expansive automorphism of the
compact abelian group Xh in (3.2)–(3.3). If h(σ) : `∗(Z,Z) −→ `∗(Z,Z) is
the homomorphism (2.5) and Q(h) is the quotient group (2.8), then

Q(h) = `∞(Z,Z)/h(σ)(`∞(Z,Z)),

and the equivariant map ξ : `∞(Z,Z) −→ Xh in (3.15) has kernel

ker ξ = h(σ)(`∞(Z,Z))

and thus induces an equivariant bijection

ξ′ : Q(h) −→ Xh.

Finally, if V ⊂ `∞(Z,Z) is a symbolic cover of Q(h) in the sense of Defi-
nition 2.2, then ξ(V ) = Xh.

Proof. The first inclusion in (3.16) shows that every v ∈ `∞(Z,Z) with
h(σ)v ∈ `∞(Z,Z) must itself lie in `∞(Z,Z), and all other statements follow
from (3.16)–(3.18). �

4. Nonexpansive group automorphisms and quotients of `∞

In this section we assume that h is nonhyperbolic (but still noncyclo-
tomic), and that Ω(0)

h is therefore nonempty and W
(0)
h = kerh(σ̄) 6= {0}

(cf. (3.6)–(3.7)). Galois theory implies that the restriction of ρ to W
(0)
h is

injective, and the central subgroup

X
(0)
h = ρ(W (0)

h ), (4.1)

on which αh acts isometrically, is dense in Xh by irreducibility.
We define group homomorphisms ξ̄∗ : `∞(Z,Z) −→ Wh and ξ∗ : `∞(Z,Z)

−→ Xh by setting

ξ̄∗(v) =
∑
n≥0

vnσ̄
−n(w∆−) +

∑
n<0

vnσ̄
−n(w∆+),

ξ∗(v) = ρ ◦ ξ̄∗(v),
(4.2)
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for every v = (vn) ∈ `∞(Z,Z). Since the coordinates w∆+
n and w

∆−
−n decay

exponentially as n → ∞ and Wh ⊂ `∗(Z,R) is closed, ξ̄∗ is well defined by
(3.12). The second equation in (3.12) shows that

h(σ̄) ◦ ξ̄∗(v) = v (4.3)

for every v ∈ `∞(Z,Z), and hence that

ξ̄∗ ◦ h(σ̄)w − w ∈W (0)
h = kerh(σ̄) (4.4)

for every w ∈Wh. From (3.10) and (4.4) we see that

Wh = h(σ̄)−1(`∞(Z,Z)) = ξ̄∗ ◦ h(σ̄)(Wh) +W
(0)
h (4.5)

(cf. (3.10)), and that

ξ̄∗ ◦ h(σ̄)(Wh ∩ `∞(Z,R)) ⊂Wh ∩ `∞(Z,R). (4.6)

The map ξ̄∗ : `∞(Z,Z) −→Wh is obviously not shift-equivariant. Indeed,

d(n, v) = σ̄n ◦ ξ̄∗(v)− ξ̄∗ ◦ σn(v)

=


∑n−1

j=0 vj σ̄
n−jw∆0 if n > 0,

0 if n = 0,
−
∑n

j=1 v−j σ̄
j−nw∆0 if n < 0.

(4.7)

for every n ∈ Z and v ∈ `∞(Z,Z), and the resulting map

d : Z× `∞(Z,Z) −→W
(0)
h (4.8)

satisfies the cocycle equation

d(m,σnv) + σ̄md(n, v) = d(m+ n, v) (4.9)

for every m,n ∈ Z and v ∈ `∞(Z,Z). We put

Ỹ = `∞(Z,Z)×W (0)
h (4.10)

and consider the continuous surjective maps σ̃ : Ỹ −→ Ỹ , ϑ̄ : Ỹ −→Wh and
ϑ : Ỹ −→ Xh defined by

σ̃(v, w) = (σv, σ̄w + d(1, v)),

ϑ̄(v, w) = ξ̄∗(v) + w,

ϑ(v, w) = ρ ◦ ϑ̄(v, w)

(4.11)

for every (v, w) ∈ Ỹ = `∞(Z,Z) ×W (0)
h . The map σ̃ is obviously a homeo-

morphism, and

ϑ̄ ◦ σ̃ = σ̄ ◦ ϑ̄, ϑ ◦ σ̃ = αh ◦ ϑ. (4.12)

Since the restriction of ρ to W (0)
h is injective and W

(0)
h ∩ `∗(Z,Z) = {0},

ϑ(v, w) +X
(0)
h = ϑ(v′, w′) +X

(0)
h if and only if v − v′ ∈ `∞h (Z,Z) (4.13)

for all (v, w), (v′, w′) ∈ Ỹ . We obtain the following result.
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Theorem 4.1 ([9]). Let h ∈ R be an irreducible nonhyperbolic polynomial
which is not cyclotomic, and let αh be the irreducible, ergodic and nonex-
pansive automorphism of the compact abelian group Xh in (3.2)–(3.3). Let
h(σ) : `∗(Z,Z) −→ `∗(Z,Z) be the homomorphism (2.5), and let `∞h (Z,Z) ⊂
`∞(Z,Z) be the subgroup defined in (2.7).

(1) If ξ∗ : `∞(Z,Z) −→ Xh is the nonequivariant group homomorphism
(4.2), then

ξ∗−1(X(0)
h ) = `∞h (Z,Z),

and ξ∗ induces an (equivariant) bijection

ξ∗′ : Q(h) −→ Xh/X
(0)
h .

(2) If V ⊂ `∞(Z,Z) is a symbolic cover of Q(h) in the sense of Definition
2.2, then ξ∗(V ) +X

(0)
h = Xh.

(3) If ϑ : Ỹ = `∞(Z,Z)×W (0)
h −→ Xh is the equivariant map defined in

(4.11)–(4.12), then two points (v, w), (v′, w′) ∈ Ỹ are mapped by ϑ

to the same coset of X(0)
h ⊂ Xh if and only if v − v′ ∈ `∞h (Z,Z).

Remark 4.2. It is easy to find symbolic covers ofQ(h) (irrespective of whether
h is hyperbolic or not): if Yh = Wh ∩ [0, 1)Z, then ρ(Yh) = Xh, and Zh =
h(σ̄)(Yh) ⊂ `∞(Z,Z) is a closed, bounded, shift-invariant subset with ξ̄∗(Zh)
+ W

(0)
h ⊃ Yh by (4.4). Hence ξ∗(Zh) + X

(0)
h = Xh, and Theorem 4.1 shows

that Zh must intersect every coset of `∞h (Z,Z) in `∞(Z,Z).

The following corollary of Theorem 4.1 suggests that the search for ‘small’
symbolic covers of Q(h) for nonhyperbolic h may be considerably more dif-
ficult than in the hyperbolic case (cf. Corollary 5.4 and Theorem 5.5).

Corollary 4.3. Let h ∈ R be an irreducible nonhyperbolic polynomial which
is not cyclotomic. Then Q(h) has no finite-to-one symbolic cover (cf. Defi-
nition 2.2).

Proof. We are claiming that there is no closed, bounded, shift-invariant set
V ⊂ `∞(Z,Z) which intersects every coset of `∞h (Z,Z) in a nonempty finite
set.

Suppose that such a set V exists. Since `∗(Z,Z) is sigma-compact in the
topology of pointwise convergence, h(σ)(`∗(Z,Z)) ⊂ `∗(Z,Z) is again sigma-
compact. It follows that the equivalence relation

∆(h)
V = ∆(h) ∩ (V × V )

is a Borel subset of V × V such that π−1
1 (w) ∩∆(h)

V is finite and nonempty
for every w ∈ V (here π1 : V × V −→ V is the first coordinate projection).
In particular, π1(B) ⊂ V is Borel for every Borel set B ⊂ ∆(h)

V .
Since V must be uncountable and any two uncountable Borel sets are

Borel isomorphic, there exists a Borel isomorphism φ : V −→ [0, 1], and we
use φ to pull the order on [0, 1] back to an order ≺ on V .
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Let E ⊂ ∆(h)
V be the uniquely determined Borel set with the following

properties:

(i) The restriction of π1 to E is a bijection of E and V ,
(ii) for every w ∈ V , the unique element (w,w′) ∈ E satisfies that w′ �

w′′ for every w′′ ∈ ∆(h)(w) ∩ V .

The set E is the graph of a Borel map ψ : V −→ V with the property that
ψ−1({w}) is finite for every w ∈ V . Hence B = ψ(E) is a Borel set, and our
construction guarantees that |B ∩∆(h)(w)| = 1 for every w ∈ `∞(Z,Z).

The continuous map ξ∗ : `∞(Z,Z) −→ Xh in (4.2) is injective on B, and
hence ξ∗(B) ⊂ Xh is a Borel set which intersects each coset of the dense
subgroup X

(0)
h in a single point (cf. Theorem 4.1). Since this is impossible

we have proved the corollary by contradiction. �

5. Construction of symbolic partial covers of Q(h)

We write `1(Z,Z) ⊂ `∞(Z,Z) ⊂ `∗(Z,Z) for the set of all sequences with
only finitely many nonzero terms. By viewing every f =

∑
n∈Z fnu

n ∈ R as
the element (fn) ∈ `1(Z,Z) we identify R with `1(Z,Z).

Let h ∈ R be an irreducible, nonconstant and noncyclotomic polynomial
of the form (2.4). We define an equivalence relation ∆(h)

1 on `∞(Z,Z) by

∆(h)
1 =

{
(w,w′) ∈ `∞(Z,Z)× `∞(Z,Z) : w − w′ ∈ h(σ)(`1(Z,Z))

}
(5.1)

(cf. (2.5)), and write

∆(h)
1 (w) = {w′ ∈ `∞(Z,Z) : (w,w′) ∈ ∆(h)

1 } (5.2)

for the equivalence class of w ∈ `∞(Z,Z).
We introduce a lexicographic order ≺ on the ring R by setting 0 ≺ f if

and only if fm > 0 for the smallest m ∈ Z with fm 6= 0 (cf. (2.1)), and
by saying that f ≺ f ′ whenever 0 ≺ f ′ − f . The order ≺ on R induces a
lexicographic order (again denoted by ≺) on each equivalence class of ∆(h)

1 :
if (v, v′) ∈ ∆(h)

1 then v − v′ ∈ h(σ)(`1(Z,Z)), and v ≺ v′ if and only if
v − v′ = h(σ)f for some f ≺ 0.

Let V ⊂ `∞(Z,Z) be a closed, bounded, shift-invariant subset. We put
P = {f ∈ R : 0 ≺ f} and set

V (h) =
⋂
f∈P

(V r (V − h(σ)f)) = V r
⋃
f∈P

(V − h(σ)f)

= {w ∈ V : w′ � w for every w′ ∈ V ∩∆(h)(w)}.
(5.3)

Theorem 5.1. Let h ∈ R be an irreducible, nonconstant and noncyclotomic
polynomial of the form (2.4), L a positive integer,

VL = {0, . . . , L− 1}Z, (5.4)

and let V (h)
L ⊂ VL be the subset defined by (5.3). Then V

(h)
L is closed, shift-

invariant and has the following properties.

(1)
∣∣V (h)
L ∩∆(h)

1 (w)
∣∣ ≤ 1 for every w ∈ `∞(Z,Z);
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(2) If h is hyperbolic then V
(h)
L is a partial finite-to-one symbolic cover

of Q(h).
(3) If σ

V
(h)
L

is the restriction to V (h)
L of the shift σ on `∞(Z,Z) in (2.3),

then its topological entropy satisfies that h(σ
V

(h)
L

) ≤ log M(h) (cf.

(2.6)).

We start the proof of Theorem 5.1 with a lemma.

Lemma 5.2. The polynomial h in (2.4) is hyperbolic if and only if there
exists a constant b > 0 with

‖h(σ)w‖∞ ≥ b · ‖w‖∞ for every w ∈ `∞(Z,Z), (5.5)

where h(σ) is defined in (2.5).

Proof. Since h is noncyclotomic, Galois theory implies that kerh(σ) = {0}
(cf. [9, (2.15)]).

Suppose that h is hyperbolic. We define w∆ by (3.14) and conclude from
(3.13) there exist constants γ ∈ (0, 1) and C > 0 such that |w∆

n | ≤ C · γ|n|
for every n ∈ Z.

The shift-equivariant map ξ̄ : `∞(Z,Z) −→ `∞(Z,R) in (3.15) satisfies
that ‖ξ̄(v)‖∞ ≤ 2C · ‖v‖∞ ·

∑
n≥0 γ

n and h(σ) ◦ ξ̄(w) = ξ̄ ◦ h(σ)(w) = w for
every w ∈ `∞(Z,Z). Hence

‖w‖∞ = ‖ξ̄(h(σ)w)‖∞ ≤ 2C · ‖h(σ)w‖∞ ·
∑
n≥0

γn

for every w ∈ `∞(Z,Z), which proves the existence of a lower bound b > 0
in (5.5).

If h is noncyclotomic and nonhyperbolic we choose θ ∈ Ω(0)
h (cf. (3.6)) and

define, for every integer j ≥ 0, a point ω(j) = (ω(j)
n ) ∈ `∞(Z,R) by setting

ω(j)
n =

{
θn + θ−n if n ≥ j,
0 otherwise.

Then
(h(σ̄)ω(j))n = 0

for n < j − d and n ≥ j, and ‖h(σ̄)ω(j)‖∞ ≤ 2 · ‖h‖1.
For every t ∈ R we denote by dte the smallest integer ≥ t, and we set, for

every M ≥ 1 and n ∈ Z,

ω̃(M) =
M∑
j=0

ω(3jd), w(M)
n = dω̃(M)

n e.

The resulting sequence (w(M), M ≥ 1) in `∞(Z,Z) satisfies that ‖w(M)‖∞ =
M · ‖w(1)‖∞ and ‖h(σ)w(M)‖∞ ≤ 3 ·

∑d
i=0 |hi| for every M ≥ 1. This proves

that there is no b > 0 satisfying (5.5). �

For the proof of Theorem 5.1 as well as that of Theorem 5.3 below we recall
some facts from [12] (cf. also [1] or [18]). We fix γ ∈ Ωh (cf. (3.6)), denote by
K = Q(γ) the algebraic number field generated by γ, and write P (K), P (K)

f
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and P
(K)
∞ for the sets of places (or equivalence classes of valuations), finite

places and infinite places of K. For every place v of K we denote by Kv the
v-adic completion of K and consider the valuation | · |v ∈ v defined by

|a|v · λv(C) = λv(a · C) (5.6)

for every a ∈ K, where λv is a Haar measure on the additive group of
the locally compact, metrizable field Kv, and where C ⊂ Kv is a compact
neighbourhood of 0. We write

ιv : K −→ Kv

for the embedding of K in Kv and set

Rv = {a ∈ K : |a|v ≤ 1}, R̄v = {a ∈ Kv : |a|v ≤ 1}. (5.7)

Let
S = P (K)

∞ ∪ {v ∈ P (K)
f : |γ|v 6= 1}. (5.8)

The set
KS =

∏
v∈S

Kv (5.9)

is a locally compact abelian group with respect to coordinate-wise addition,
and we write

ι : K −→ KS (5.10)

for the diagonal embedding a 7→ ι(a) = (ιv(a), v ∈ S), a ∈ K. If

RS =
⋂

v∈P (K)rS

Rv (5.11)

is the ring of S-integers in K, then ι(RS) is a discrete co-compact subgroup
of KS .

For every subset F ⊂ Z we write

πF : `∞(Z,Z) −→ ZF (5.12)

for the projection onto the coordinates in F .

Proof of Theorem 5.1. For every f ∈ P we set

V (f) = VL r (VL − h(σ)f). (5.13)

Since h(σ)f has only finitely many nonzero coordinates, V (f) ⊂ VL is closed
and open, and hence V

(h)
L is a closed — and obviously shift-invariant —

subset of VL.
If V (h)

L meets some equivalence class of ∆(h) in more than one point, then
there exist w ∈ V (h)

L and f ∈ P such that w′ = w + h(σ)f ∈ V (h)
L . Hence

w′ ∈ VL ∩ (VL − h(σ)f), which contradicts the definition of V (h)
L .

In order to prove (2) we set, for N1 < N2

B(N1, N2,K) = {w ∈ `∗(Z,Z) : |w|n ≤ K
for N1 ≤ n ≤ N1 + d and N2 ≤ n ≤ N2 + d},

(5.14)
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where d appears in (2.4), and claim that∣∣π{N1,...,N2}
((
w + h(σ)(B(N1, N2,K))

)
∩ V (h)

L

)∣∣ ≤ (2K + 1)2d+2 (5.15)

for every w ∈ V (h)
L , K ≥ 0 and N1 < N2 (cf. (5.12)).

Indeed, if (5.15) does not hold for some w ∈ V (h)
L , K ≥ 0 and N1 < N2,

then we can find elements y, y′ ∈ B(N1, N2,K) with the following properties:
(i) yr = y′r for r = N1, . . . , N1 + d and r = N2, . . . , N2 + d,
(ii) (yN1+d+1, . . . , yN2−1) 6= (y′N1+d+1, . . . , y

′
N2−1),

(iii) v = w + h(σ)y ∈ V (h)
L , v′ = w + h(σ)y′ ∈ V (h)

L .
We define a Laurent polynomial f ∈ R by

fr =

{
yr − y′r for r = N1 + d+ 1, . . . , N2 − 1,
0 otherwise

(cf. (2.1)), and observe that the points v− h(σ)f and v′ + h(σ)f both lie in
V

(h)
L . By comparing this with (5.3) we obtain a contradiction in one of the

two cases. This proves (5.15).
If h is hyperbolic then Lemma 5.2 implies that there exists a K ≥ 0 such

that
{v ∈ `∞(Z,Z) : h(σ)v ∈ (V (h)

L − V (h)
L )} ⊂ {−K, . . . ,K}Z.

Hence
V

(h)
L ∩

(
w + h(σ)(B(N1, N2,K))

)
= V

(h)
L ∩∆(h)(w)

for every w ∈ V (h)
L and N1 < N2, and (3) follows from (5.15).

For every w ∈ `∞(Z,Z) and r, s ∈ Z with r ≤ s we set

wsr(γ) =
s∑
i=r

wiγ
i. (5.16)

Let
h̃ = ud ·

∑
n∈Z

hnu
−n ∈ R (5.17)

be the reversal of h, and letN ≥ 1. If w,w′ ∈ V (h)
L and wN−1

0 (γ) = w′N−1
0 (γ),

then the Laurent polynomials f(u) =
∑N−1

k=0 wku
k and f ′(u) =

∑N−1
k=0 w′ku

k

differ by a multiple h(σ)f of h̃ which we may assume to lie in Ph̃ (by inter-
changing w and w′, if necessary). This implies that the point w′+h(σ)f lies in
VL, and hence that w′ ∈ VL ∩ (VL − h(σ)f). As in the preceding paragraph
we obtain a contradiction to our hypothesis that w′ ∈ V

(h)
L . This shows

that wN−1
0 (γ) 6= w′N−1

0 (γ) whenever w,w′ ∈ V
(h)
L and π{0,...,N−1}(w) 6=

π{0,...,N−1}(w′) (cf. (5.16)).

For every N ≥ 1, the set ι({wN−1
0 (γ) : w ∈ V (h)

L }) ⊂ KS is contained in
the set

F (N) =
∏

v∈P (K)
∞

{
a ∈ Kv : |a|v ≤ LN ·max (1, |γ|Nv )

}
·

∏
v∈SrP (K)

∞

(R̄v ∪ γN R̄v).
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We fix a Haar measure λ on KS with λ
(∏

v∈S R̄v
)

= 1 (cf. (5.7)). As N
varies, the same calculation as in [7] shows that

λ(F (N)) ≤
∏

{v∈P (K)
∞ :Kv=R}

LN ·max (1, |γ|Nv )

·
∏

{v∈P (K)
∞ :Kv=C}

L2N2 ·max (1, |γ|Nv ) ·
∏

v∈SrP (K)
∞

max (1, |γ|Nv )

≤ M(h̃)N · (LN)r+2s = M(h)N · (LN)r+2s,

where r and s denote the numbers of real and complex places of K (i.e. the
number of v ∈ P (K)

∞ with Kv = R and Kv = C, respectively). As ι(RS) is
discrete and co-compact in KS , there exists a constant C > 0 such that, for
every N ≥ 1,∣∣{wN−1

0 (γ) : w ∈ V (h)
L }

∣∣ =
∣∣π{0,...,N−1}(V

(h)
L )

∣∣ ≤ C ·M(h)N · (LN)r+2s,

where | · | denotes cardinality. This implies that

h(σ
V

(h)
L

) = lim
N→∞

1
N

log
∣∣π{0,...,N−1}(V

(h)
L )

∣∣ ≤ log M(h). �

Theorem 5.3. Let h ∈ R be an irreducible, nonconstant and noncyclotomic
polynomial of the form (2.4), L ≥ 1, and let V (h)

L ⊂ VL be the closed, shift-
invariant subset defined in (5.3). If L is sufficiently large, then h(σ

V
(h)
L

) =

log M(h).

Corollary 5.4. Suppose that the polynomial h is hyperbolic. If L is suffi-
ciently large, then V

(h)
L is a finite-to-one symbolic cover of Q(h).

Proof of Corollary 5.4, given Theorem 5.3. If L is sufficiently large, then
h(σ

V
(h)
L

) = log M(h) by Theorem 5.3. By Theorem 5.1 (2), V (h)
L is a par-

tial finite-to-one symbolic cover of Q(h), which implies that the restriction
to V

(h)
L of the equivariant group homomorphism ξ : `∞(Z,Z) −→ Xh in

(3.15) is finite-to-one (cf. Theorem 3.1). In particular, Y = ξ(V (h)
L ) is a

closed, αh-invariant subset of Xh such that the restriction of αh to Y has
topological entropy log M(h) = h(αh), and the uniqueness of the measure of
maximal entropy of αh implies that λXh(Y ) = 1. Hence Y = Xh and V

(h)
L

is a symbolic cover of Q(h). �

Under the hypotheses of Corollary 5.4 we can even find almost one-to-one
symbolic covers of Q(h):

Theorem 5.5. Under the hypotheses of Theorem 3.1 there exists a closed,
bounded, shift-invariant subset V ∗ ⊂ `∞(Z,Z) with the following properties.

(1) V ∗ is a sofic shift;
(2) V ∗ is a finite-to-one symbolic cover of Q(h) (cf. Definition 2.2);
(3) λXh

(
{x ∈ Xh : |ξ−1({x})∩ V ∗| = 1}

)
= 1, where λXh is the normal-

ized Haar measure of Xh.

Proof. This is [14, Theorem 5.1]. �
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For the proof of Theorem 5.3 we put, in the notation of (5.8),

S− = {v ∈ S : |γ|v < 1}, KS− =
∏
v∈S−

Kv, (5.18)

and denote by ι− : K −→ KS− the diagonal embedding of K in KS− (cf.
(5.10)).

We set N = {0, 1, 2, . . . } and write `∞(N,Z) for the space of one-sided
bounded integer sequences, furnished with the topology of coordinate-wise
convergence, the maximum norm ‖ · ‖∞ and the one-sided shift σ+ defined
as in (2.3).

Lemma 5.6. Let φ : `∞(N,Z) −→ KS− be defined by

φ(w) =
∑
k≥0

wk · ι−(γk)

for every w = (wk) ∈ `∞(N,Z). Then there exists an integer L ≥ 1 such
that φ(B+

L ) has nonempty interior in KS−, where

B+
L = {−L, . . . , L}N.

Proof. The basic idea for the proof of this lemma is due to Boris Solomyak
(personal communication). We set R(γ) = Z[γ±1] = {f(γ) : f ∈ R} ⊂ RS ,
where γ ∈ Ωh was chosen for the proof of Theorem 5.1. As discussed in [3]
or [12], RS/R(γ) is finite, and R(γ)− = ι−(R(γ)) is therefore dense in KS− .

We denote by Mγ : KS− −→ KS− diagonal multiplication by γ on KS− .
The set Q =

∏
v∈S− R̄v is a compact neighbourhood of 0 ∈ KS− . As R(γ)− is

dense in KS− and MγQ ⊂ Q has nonempty interior,
⋃
c∈R(γ)−(c+MγQ) ⊃

Q, and the compactness of Q implies that there exists a finite set F =
{f (1), . . . , f (l)} ⊂ R with

Q ⊂
l⋃

i=1

(
ι−(f (i)(γ)) +MγQ

)
. (5.19)

We fix a ∈ Q. By (5.19) there exists a t0(a) ∈ {1, . . . , l} with a ∈
ι−(f (t0(a))(γ)) + MγQ, and by repeating this argument we find a sequence
(t0(a), t1(a), t2(a), . . . ) ∈ {1, . . . , l}N with

a ∈
s∑
i=0

M i
γ [ι−(f (ti(a))(γ))] +M s+1

γ Q (5.20)

for every s ≥ 0. As Mγ is a strict contraction on KS− , this implies that

a =
∞∑
i=0

M i
γ [ι−(f (ti(a))(γ))]. (5.21)

There exist integers J, J ′ ≥ 0 with S(f (i)) ⊂ {−J, . . . , J} and ‖f (i)‖∞ ≤ J ′

for every i = 1, . . . , l (cf. (2.2)). We set L = (2J+1)J ′ and obtain from (5.21)
that there exists a sequence w = (wk) ∈ B+

L with a =
∑

i≥0wk · ι−(γi−J).
As a ∈ Q was arbitrary this implies that

φ(B+
L ) ⊃MJ

γ Q,
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which proves our claim. �

Lemma 5.7. Let L ≥ 1 and B+
L be chosen as in Lemma 5.6. Then there

exists a c > 0 such that∣∣∣∣{s−1∑
i=0

wi · ι−(γi) : w = (wi) ∈ B+
L

}∣∣∣∣ ≥ c ·M(h)s (5.22)

for every s ≥ 1, where | · | denotes cardinality.

Proof. According to Lemma 5.6, φ(B+
L ) ⊂ KS− has nonempty interior and

hence positive Haar measure λKS− (φ(B+
L )). The inclusion (5.20) implies that

Q ⊂
⋃

(j0,...,js−1)∈{1,...,l}s

s−1∑
i=0

M i
γ(ι−(f (ji)(γ))) +M s

γQ

⊂
⋃

w∈B+
L

s−1+2J∑
i=0

wi · ι−(γi−J) +M s
γQ

for every s ≥ 1. Since we need at least λKS− (Q)/λKS− (M s
γQ) = M(h)s

distinct translates of M s
γQ to cover Q this implies that∣∣∣∣{s−1+2J∑

i=0

wi · ι−(γi−J) : w ∈ B+
L

}∣∣∣∣ ≥ M(h)s

for every s ≥ 1, which proves (5.22). �

Lemma 5.8. There exist an integer L ≥ 1 and a c > 0 such that∣∣∣∣{s−1∑
i=0

wi · ι−(γi) : w = (wi) ∈ V +
L

}∣∣∣∣ ≥ c ·M(h)s (5.23)

for every s ≥ 1, where

V +
L = {0, . . . , L− 1}N.

Proof. Let L ≥ 1 be the integer appearing in Lemma 5.7. We set L′ = 2L+1,
w̄ = (L,L,L, . . . ) and ā = φ(w̄). Then V +

L′ = B+
L + w̄ and φ(V +

L′ ) = φ(B+
L )+

ā. Equation (5.23) follows from (5.22) with L′ replacing L. �

Proof of Theorem 5.3. For every quadruple of integers s1 ≤ r1 < r2 ≤ s2 we
set

V (s1,s2) =
⋂

{f∈P : S(h(σ)f)⊂{s1,...,s2}}

(VL r (VL + h(σ)f)), (5.24)

V
(s1,s2)

(r1,r2) = π{r1,...,r2}(V
(s1,s2)) ⊂ {0, . . . , L− 1}{r1,...,r2},

N
(s1,s2)
(r1,r2) =

∣∣V (s1,s2)
(r1,r2)

∣∣,
where S(h(σ)f) is the support of h(σ)f (cf. (5.3)). Clearly,

{ws2s1 (γ) : w ∈ V (s1,s2)} = {ws2s1 (γ) : w ∈ VL},
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and

N
(s1,s2)
(s1,s2) = |{ws2s1 (γ) : w ∈ V (s1,s2)}| = |{ws2s1 (γ) : w ∈ VL}|

=
∣∣∣∣{ s2∑

i=s1

wi · ι−(γi−s1)) : w ∈ V
}∣∣∣∣ ≥ c ·M(h)s2−s1+1

by (5.23). For s′1 ≤ s1 ≤ r1 < r2 ≤ s2 ≤ s′2,

V
(s1,s2)

(r1,r2) ⊃ V
(s′1,s

′
2)

(r1,r2) and hence N
(s1,s2)
(r1,r2) ≥ N

(s′1,s
′
2)

(r1,r2) . (5.25)

We fix M ≥ 1. From (5.25) it is clear that

N
(−lM,(l+1)M−1)
(kM,(k+1)M−1) ≥ N

(−(l+j)M,(l+j+1)M−1)
((k+i)M,(k+i+1)M−1)

for every j ≥ 1, i = −j, . . . , j, l ≥ 1 and k = −l, . . . , l. For fixed l ≥ 1,

c ·M(h)(2l+2j+1)M = c ·M(h̃)(2l+2j+1)M ≤ N (−(l+j)M,(l+j+1)M−1)
(−(l+j)M,(l+j+1)M−1)

≤
l+j∏

k=−l−j
N

(−(l+j)M,(l+j+1)M−1)
(kM,(k+1)M−1)

≤
−j−1∏
k=−l−j

N
(−(l+j)M,(l+j+1)M−1)
(kM,(k+1)M−1) ·

j∏
k=−j

N
(−(l+j)M,(l+j+1)M−1)
(kM,(k+1)M−1)

·
l+j∏

k=j+1

N
(−(l+j)M,(l+j+1)M−1)
(kM,(k+1)M−1)

≤
( −1∏
k=−l

N
(−lM,(l+1)M−1)
(kM,(k+1)M−1)

)
·
[
N

(−lM,(l+1)M−1)
(0,M−1)

]2j+1

·
( l∏
k=1

N
(−lM,(l+1)M−1)
(kM,(k+1)M−1)

)
=
( l∏
k=−l

N
(−lM,(l+1)M−1)
(kM,(k+1)M−1)

)
·
[
N

(−lM,(l+1)M−1)
(0,M−1)

]2j
for every j ≥ 1, and by letting j →∞ we conclude that

N
(−lM,(l+1)M−1)
(0,M−1) ≥ M(h)M .

As l→∞, V (−lM,(l+1)M−1)
(0,M−1) decreases to π{0,...,M−1}(V

(h)
L ), and hence

lim
l→∞

N
(−lM,(l+1)M−1)
(0,M−1) =

∣∣π{0,...,M−1}(V
(h)
L )

∣∣ ≥ M(h)M

for every M ≥ 1. By varying M we see that h(σ
V

(h)
L

) ≥ log M(h), and the
reverse inequality follows from Theorem 5.1. �

Remark 5.9. If the polynomial h is hyperbolic, the shift space V (h)
L in (5.3)

is sofic for every L ≥ 1 (cf. [2] and [14]). If h is irreducible and nonexpansive,
the combinatorial structure of V (h)

L is not well understood.



QUOTIENTS OF `∞ AND SYMBOLIC COVERS OF TORAL AUTOMORPHISMS 18

6. Invariant measures on Xh/X
(0)
h

Remark 4.2 shows that we can always find symbolic covers of Q(h), and for
hyperbolic h these covers can even be chosen to be finite-to-one. However,
if h is nonhyperbolic, Corollary 4.3 raises a number of questions.

Problems 6.1. (1) Let h ∈ R be irreducible and noncyclotomic. Is

inf
V
h(σV ) = h(αh) = log M(h),

where the infimum is taken over all symbolic covers V of Q(h), and where
h(σV ) is the topological entropy of the restriction of σ to V ? For hyperbolic
h the answer to this question is ‘yes’ (cf. Theorem 5.5).

(2) Does there always exist a symbolic cover V of Q(h) with h(σV ) =
h(αh) = log M(h)?

(3) Does there always exist a countable-to-one symbolic cover V of Q(h)

(i.e. for which ∆(h)(w)∩V is countable for every w ∈ V )? A positive answer
to this question would also solve (2).

(4) If there exist countable-to-one (or other nice) symbolic covers of Q(h),
can one also find such covers with a relatively simple combinatorial struc-
ture? In the light of Section 7 the best one could probably hope for is covers
which are factors of countable-state shifts of finite type with well-behaved
factor maps (such as, for example, beta-shifts).

In the possible absence of good symbolic covers one can try to construct
partial covers V of Q(h) which are ‘large’ in the sense that h(σV ) = h(αh) =
log M(h), and which are ‘small’ in the sense that, for certain natural mea-
sures on V , the factor map q(h) : `∞(Z,Z) −→ Q(h) is countable-to-one a.e.

As was shown in [9], these ideas can be used to construct invariant proba-
bility measures for irreducible nonexpansive group automorphisms.

Let d : Z× `∞(Z,Z) −→ W
(0)
h be the cocycle describing the nonequivari-

ance of ξ̄∗ in (4.7)–(4.9).

Definition 6.2. A shift-invariant probability measure ν on `∞(Z,Z) is
weakly d-bounded if there exists, for every ε > 0, a compact subset Cε ⊂W (0)

h

such that

ν({v ∈ `∞(Z,Z) : d(k, v) ∈ Cε}) > 1− ε for every k ∈ Z. (6.1)

Theorem 6.3. Let h ∈ R1 be an irreducible nonhyperbolic polynomial which
is not cyclotomic, αh the ergodic and nonexpansive automorphism of the
compact connected abelian group Xh defined in (3.2)–(3.3), and let σ̃ : Ỹ −→
Ỹ be defined by (4.10)–(4.11). For every σ-invariant probability measure ν
on `∞(Z,Z) the following conditions are equivalent.

(1) ν is weakly d-bounded;
(2) There exists a σ̃-invariant probability measure ν̃ on Ỹ with π̃∗ν̃ = ν,

where π̃ : Ỹ −→ `∞(Z,Z) is the first coordinate projection;
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(3) There exists a Borel map b : `∞(Z,Z) −→W
(0)
h with

d(1, v) = b(σv)− σ̄b(v) for ν-a.e. v ∈ `∞(Z,Z). (6.2)

If ν satisfies these equivalent conditions, then the Borel maps ξ̄∗b : `∞(Z,Z)
−→ `∗(Z,R) and ξ∗b : `∞(Z,Z) −→ Xh, defined by

ξ̄∗b(v) = ξ̄∗(v) + b(v) and ξ∗b(v) = ξ∗(v) + ρ ◦ b(v) (6.3)

for every v ∈ `∞(Z,Z), have the property that

ξ∗b(v)− ξ∗(v) ∈ X(0)
h for every v ∈ `∞(Z,Z),

ξ̄∗b ◦ σ = σ̄ ◦ ξ̄∗b and ξ∗b ◦ σ = αh ◦ ξ∗b ν-a.e.,
(6.4)

and the probability measure

µ = (ξ∗b)∗ν (6.5)

on Xh is αh-invariant.

Proof. This is [9, Theorem 4.13]. �

Theorem 6.4. Let L ≥ 1, and let V (h)
L ⊂ VL = {0, . . . , L− 1}Z ⊂ `∞(Z,Z)

be defined by (5.3). If ν a weakly d-bounded shift-invariant probability mea-
sure on V (h)

L , and if ξ∗b : `∞(Z,Z) −→ Xh is the ν-a.e. equivariant map (6.3),
then the αh-invariant probability measure µ = (ξ∗b)∗ν on Xh is singular with
respect to Haar measure and satisfies that hν(σ) = hµ(αh).

For the proof of Theorem 6.4 we need several lemmas. Let R = ∆(h) ∩
(V (h)
L × V (h)

L ) be the equivalence relation induced by ∆(h) on V
(h)
L . Exactly

as in the proof of Corollary 4.3 we see that R is a σ̄ × σ̄-invariant Borel set
in V

(h)
L × V (h)

L .

Lemma 6.5. Let Y ⊂ V
(h)
L be a shift-invariant Borel set with ν(Y ) = 1

such that (6.2) holds for every v ∈ Y , and let

Y (M) = {y ∈ Y : ‖b(y)‖∞ ≤M},
L(M) = {y ∈ `∗(Z,Z) : ‖y − ξ̄∗ ◦ h(σ)(y)‖∞ ≤M}

R(M,w) =
(
w + h(σ)(L(M))

)
∩ V (h)

L ⊂ R(w)

for every M ≥ 1 and w ∈ V
(h)
L (cf. (4.3)). Then there exists a constant

M1 > 0 such that∣∣π{0,...,n}(R(K,w) ∩ Y (M) ∩ σ−n(Y (M))
)∣∣

≤ (2M1β + 4M + 2K + 1)2d+2,∣∣π{−n,...,0}(R(K,w) ∩ Y (M) ∩ σn(Y (M))
)∣∣

≤ (2M1β + 4M + 2K + 1)2d+2,

(6.6)

for every K,M ≥ 1, w ∈ V (h)
L and n ≥ 1.
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Proof. By (4.2) there exists a constant M1 > 0 such that

max
j=0,...,d

|ξ̄∗(w)j | ≤M1 · ‖w‖∞

for every w ∈ `∞(Z,Z). As (σ̄∗)n ◦ ξ̄∗(w) = ξ̄∗ ◦ σn(w) + b(σnw) − σ̄nb(w)
for every n ∈ Z,

max
j=0,...,d

|ξ̄∗(w)n+j | ≤M1β + 2M

for every M ≥ 1, n ∈ Z and w ∈ Y (M) ∩ σ−n(Y (M)). We fix w ∈ V (h)
L and

obtain that, for every v ∈ R(K,w) ∩ Y (M) ∩ σ−n(Y (M))

max
j=0,...,d

|ξ̄∗(v)j | ≤M1β, max
j=0,...,d

|ξ̄∗(v)n+j | ≤M1β + 2M,

and that there exists a unique y ∈ `∗(Z,Z) with v = w + h(σ)(y) and
‖y − ξ̄∗ ◦ h(σ)(y)‖∞ ≤ K.

If v′ is a second element in R(K,w) ∩ Y (M) ∩ σ−n(Y (M)) with v′ =
w + h(σ)(y′) for some y′ ∈ `∗(Z,Z), then ‖y′ − ξ̄∗ ◦ h(σ)(y′)‖∞ ≤ K, and
hence

max
j=0,...,d

|yj−y′j | ≤ 2M1β+2K and max
j=0,...,d

|yn+j−y′n+j | ≤ 2M1β+4M+2K.

The first inequality in (6.6) now follows from (5.15), and the proof of the
second one is analogous. �

Lemma 6.6. For ν-a.e. w ∈ Y , ∆(h)(w) ∩ Y is countable, and the map
ξ∗b : V (h)

L −→ Xh is countable-to-one ν-a.e.

Proof. In the notation of Lemma 6.5 we set Y ′(1) = Y (1) and Y ′(M) =
Y (M) r Y (M − 1) for every M ≥ 2, and we define a map q : Y −→ R by
setting q(w) = 2−M if w ∈ Y ′(M), M ≥ 1. We fix an everywhere positive,
Borel measurable and σ-invariant version p = Eν(q|SσY ) of the conditional
expectation of q, given the sigma-algebra SσY of σ-invariant Borel subsets
of Y . After decreasing Y by a σ-invariant ν-null set, if necessary, we also
assume that

lim
n→∞

1
n
·
n∑
j=1

q(σnw) = lim
n→∞

1
n
·
n∑
j=1

q(σ−nw) = p(w)

for every w ∈ Y .
We claim that∑

v∈R(K,w)∩Y

q(v)p(v)2 = sup
F⊂R(K,w)∩Y
F is finite

∑
v∈F

q(v)p(v)2 <∞ (6.7)

for every w ∈ Y and K ≥ 1.
Indeed, if F ⊂ R(K,w) ∩ Y is finite, then∑

v∈F
q(v)p(v)2 = lim

n→∞

∑
v∈F

q(v) · 1
n2
·
( n∑
j=1

q(σ−jv)
)
·
( n∑
j′=1

q(σj
′
v)
)

= lim
n→∞

1
n2
·
n∑
j=1

n∑
j′=1

∑
M≥1

∑
M ′≥1

∑
M ′′≥1

2−M−M
′−M ′′
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·
∣∣π{−j,...,j′}(F ∩ σj(Y ′(M)) ∩ Y ′(M ′′) ∩ σ−j′(Y ′(M ′))

)∣∣
≤ lim

n→∞

1
n2
·
n∑
j=1

n∑
j′=1

∑
M≥1

∑
M ′≥1

∑
M ′′≥1

2−M−M
′−M ′′

·
∣∣π{−j,...,0}(R(K,w) ∩ σj(Y ′(M)) ∩ Y ′(M ′′)

)∣∣
·
∣∣π{0,...,j′}(R(K,w) ∩ σ−j′(Y ′(M ′)) ∩ Y ′(M ′′)

)∣∣
≤
∑
M≥1

∑
M ′≥1

∑
M ′′≥1

2−M−M
′−M ′′

·
[
(2M1β + 2K + 4 max {M,M ′′}+ 1)2d+2

]
·
[
(2M1β + 2K + 4 max {M ′,M ′′}+ 1)2d+2

]
<∞

by (5.15), which proves (6.7).
Since the maps p, q : Y −→ R are everywhere positive, (6.7) implies that

the sets R(K,w)∩ Y and R(w)∩ Y =
⋃
K≥1 R(K,w)∩ Y are countable for

every w ∈ Y , and that the equivariant Borel map ξ∗b : Y −→ X in (6.3) is
therefore countable-to-one. �

Proof of Theorem 6.4. By Lemma 6.6 there exists a shift-invariant Borel
set Y ⊂ V

(h)
L with ν(Y ) = 1 such that the Borel map ξ∗b : Y −→ Xh in

(6.3) is countable-to-one. Since countable-to-one factor maps do not decrease
entropy, hν(σ) = hµ(αh). Furthermore, the Borel set Z = ξ∗b(Y ) ⊂ Xh is αh-
invariant with µ(Z) = 1 and intersects each coset of X(0)

h in a countable set.
Hence λXh(Z) = 0, which proves that λXh and µ are mutually singular. �

Corollary 6.7. Let L ≥ 1, and let V (h)
L ⊂ VL = {0, . . . , L− 1}Z ⊂ `∞(Z,Z)

be defined by (5.3). If ν is a weakly d-bounded shift-invariant probability
measure on V

(h)
L , then the map ξ# : `∞(Z,Z) −→ Xh/X

(0)
h induced by the

group homomorphism ξ∗ : `∞(Z,Z) −→ Xh has the following properties.

(1) The probability space (Xh/X
(0)
h ,B

Xh/X
(0)
h

, ξ#
∗ ν) is standard, where

B
Xh/X

(0)
h

is the Borel field of Xh/X
(0)
h ;

(2) If α#

h is the group automorphism of Xh/X
(0)
h induced by αh, then

ξ#
∗ ν is α#-invariant and h

ξ#∗ ν
(α#) = hν(σ).

Proof. By [8, Proposition 4.17] there exists a solution b′ of (6.2) and an αh-
invariant Borel set Z ⊂ Xh which intersects each coset of X(0)

h in at most
one point, such that (ξ∗b′)∗ν(Z) = 1. This implies all our assertions. �

Problem 6.8. The Theorems 5.3 and 6.4 raise the following question: is

sup
ν
hν(V (h)

L ) = h(σ
V

(h)
L

), (6.8)

where the supremum in (6.8) is taken over all weakly bounded shift-invariant
probability measures on V

(h)
L ?
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A shift-invariant probability measure ν on V (h)
L is bounded if there exists

a compact subset C ⊂ W
(0)
h such that d(n,w) ∈ C for every n ∈ Z and

ν-a.e. w ∈ V (h)
L . The following conditions can be shown to be equivalent.

(1) supν bounded hν(V (h)
L ) = h(σ

V
(h)
L

);

(2) supN≥1 h(σ
V

(h)
L ∩h(σ)(BN )

) = h(σ
V

(h)
L

), where BN = {−N, . . . , N}Z

for every N ≥ 0.

If β is a Salem number with minimal polynomial h ∈ R, then h = h̃ (cf.
(5.17)), and the positive answer to these equivalent questions follows from
Proposition 7.2 below and [9, Theorem 7.1]. In the general case this question
is still open.

7. Some examples

Example 7.1 (Beta-shifts). Suppose that h has a single root γ < 1, that
all other roots of h have absolute values ≥ 1, and that h0 = 1 (i.e. that
the inverse β = γ−1 of γ is either an integer, a Pisot number or a Salem
number). The S− in (5.18) consists of a single real place.

Following [11] we consider the map

Tβx = βx (mod 1) (7.1)

from the unit interval I = [0, 1] to itself and define, for every x ∈ I, the
beta-expansion ωβ(x) = (ωβ(x)n) of x by setting

ωβ(x)n = βTnβ x− Tn+1
β x (7.2)

for every n ≥ 0. Note that ωβ(x)n ∈ {0, . . . , dβ − 1e} for every n ≥ 1, where
dβ − 1e is the smallest integer ≥ β − 1, and that

x =
∑
n≥0

ωβ(x)nβ−n−1 (7.3)

for every x ∈ I. We set

ω∗β(1) = sup
x∈[0,1)

ωβ(x), (7.4)

where the supremum ist taken with respect to the lexicographic order ≺ on
`∞(N,Z), and observe that

1 =
∑
n≥0

ω∗β(1)nβ−n−1. (7.5)

Recall that σk+ω
∗
β(1) 6= (0, 0, 0, . . . ) and

σk+ω
∗
β(1) � ω∗β(1) (7.6)

for every k ≥ 1 (cf. [11]). The restriction of σ+ to the closed, shift-invariant
set

V +
β = {v ∈ `∞(N,N) : σn+v � ω∗β(1) for every n ≥ 0} ⊂ {0, . . . , dβ − 1e}N
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is called the β-shift. If we set

ηβ(v) =
∑
n≥0

vnβ
−n−1 (7.7)

for every v ∈ V +
β , then ηβ : V +

β −→ [0, 1] is surjective and at most two-to-
one. Furthermore, if v, v′ ∈ V +

β satisfy that ηβ(v) = ηβ(v′), and if v ≺ v′,
then there exists an integer k ≥ 0 such that vn = v′n for n < k, v′k = vk + 1,
and v′n = 0, vn = ω∗β(1)n−k−1 for n > k. Finally, if v, v′ ∈ V +

β , then v � v′ if
and only if ηβ(v) ≤ ηβ(v′) (cf. [11]).

In order to define the two-sided beta-shift space Vβ ⊂ {0, . . . , dβ − 1e}Z
we set v+ = (v0, v1, v2, . . . ) ∈ `∞(N,Z) for every v = (vn) ∈ `∞(Z,Z) and
put

Vβ = {v ∈ `∞(Z,Z) : (σnv)+ ∈ V +
β for every n ∈ Z}. (7.8)

From the description of the potential non-injectiveness of the map ηβ in
(7.7) it is clear that Vβ intersects every equivalence class of ∆(h)

1 in at most
one point (cf. (5.1)).

Proposition 7.2. Suppose that the polynomial h in (2.4) satisfies that h0 =
1, and that h has a root γ < 1 and all other roots of h have absolute values
≥ 1. Put β = γ−1 and denote by Vβ ⊂ {0, . . . , dβ − 1e}Z the two-sided beta-
shift (7.8). If L > β then V

(h)
L ⊃ Vβ and h(σ

V
(h)
L

) = h(σVβ ) = log β (cf.

(5.3)).

Proof. In order to verify that V (h)
L ⊃ Vβ we argue by contradiction and

assume that there exists a v ∈ Vβ r V
(h)
L . Then (5.3) and (5.13) show that

there exists an f ∈ P with v ∈ VL∩(VL−h(σ)f), i.e. that v′ = v+h(σ)f ∈ VL
for some f ∈ P . We set n = min S(f) (cf. (2.2)) and assume without loss
in generality that n = 0 (by shifting v and f , if necessary). According to
(7.7)–(7.8), ηβ(v+) = ηβ(v′+). As v′0 ≥ v0 +1, we conclude that 1 ≤ v′0−v0 +∑

n≥0 v
′
nβ
−n =

∑
n≥1 vnβ

−n. Since v ∈ Vβ it follows that v′0 = v0 + 1, and
that vn = ω∗β(1)n−1 and v′n = 0 for every n ≥ 1. This is clearly impossible,
since v and v′ differ in only finitely many coordinates.

The last identity follows from Theorem 5.3, since h(σVβ ) = log β. �

Take, for example, the polynomial h(u) = 1−u−u2 with roots γ = 2
1+
√

5
<

1 and γ′ = −1/γ. If V2 = {0, 1}Z (cf. (5.4)), then Proposition 7.2 shows that
V

(h)
2 ⊃ Vβ, where β = 1/γ = 1+

√
5

2 , and h(σ
V

(h)
2

) = h(σVβ ) = log β. One can

check that every point w ∈ V (h)
2 r Vβ is either of the form

wk = 1 for every k ∈ Z,

or that there exists an l ∈ Z with

wk = 1 for every k < l, wl = 0 and (wl+1, wl+2, wl+3, . . . ) ∈ V +
β .
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We also have that V (h)
3 ⊃ Vβ and h(σ

V
(h)
3

) = log β, but neither of the

spaces V (h)
2 and V

(h)
3 contains the other: (. . . , 1, 1, 1, . . . ) ∈ V

(h)
2 r V

(h)
3 ,

whereas (. . . , 2, 2, 2, . . . ) ∈ V (h)
3 r V

(h)
2 .

In this example, Vβ is a shift of finite type and the spaces V (h)
L , L ≥ 2,

are sofic by Remark 5.9.

Example 7.3 (The polynomial h(u) = 5− 6u+ 5u2). The roots of h are of
the form γ = 3

5 +i· 45 , γ̄ = 3
5−i·

4
5 with absolute values equal to 1, and the set

S in (5.8) consists of a single infinite complex place v∞ (corresponding to γ
and γ̄) and two copies of the finite place 5 with K5 = Q5, the 5-adic rationals
(note that h has two roots γ1, γ2 ∈ Q5 with |γ1|5 = 1/5 and |γ2|5 = 5, where
| · |5 is the 5-adic valuation). We write v5 for the place of Q(γ) corresponding
to γ1 and obtain that S− = {v5} and KS− = Q5 (cf. (5.18)).

Since every t ∈ Z5 = R̄v5 can be expressed uniquely as

t =
∑
n≥0

anγ
n
1

with an ∈ {0, 1, 2, 3, 4} for every n ≥ 0, we have that V (h)
5 = V5, and the

proofs of Lemma 5.7 and Theorem 5.3 show that h(σ
V

(h)
5

) = log M(h) =

log 5 (cf. (2.6)). More generally, if L ≥ 5, and if VL = {0, . . . , L − 1}Z,
then the same argument as in Proposition 7.2 shows that V (h)

L ⊃ V
(h)

5 , and
Theorem 5.1 guarantees that h(σ

V
(h)
L

) = h(σ
V

(h)
5

) = log 5.

Example 7.4 (Reversing polynomials). Let h ∈ R be of the form (2.4), and
let g = sgn(hd)h̃, where sgn stands for sign (cf. (5.17)). Then M(h) = M(g)
by (2.6), but the spaces V (h)

L and V
(g)
L may not be reversals of each other

(due to the possible sign-change involved in the definition of g).
For example, if h(u) = 1− u− u2 is the polynomial appearing at the end

of Example 7.1, then g(u) = 1 + u− u2, and V
(g)

2 is the set of all sequences
in V

(h)
2 , reversed and with zeros and ones interchanged.

Similarly, if h(u) = 1 − u2 − u3, then h has a single small root γ =
0.75487 · · · < 1 and two complex conjugate roots with absolute values > 1.
If β = γ−1 = 1.32472 · · · , then Vβ ⊂ V2

The Examples 7.1 and 7.3–7.4 had the property that |S−| = 1. Here is an
example with |S−| ≥ 2 and |S r S−| ≥ 2.

Example 7.5 (The polynomial h(u) = 1− u2 − u4). The two roots of h of
absolute value < 1 are given by γ = ±

√
2

1+
√

5
, and S− consists of the two

places corresponding to these roots.
Let β = 1+

√
5

2 , and let Vβ be the corresponding two-sided beta-shift space
consisting of all sequences (vn) ∈ {0, 1}Z with vnvn+1 = 0 for every n ∈ Z.
One can check as in Example 7.1 that Y ⊂ V

(h)
2 , where Y is the shift of

finite type determined by the condition that ynyn+2 = 0 for every n ∈ Z.
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Note that Y consists of two interspersed copies of Vβ, and that h(σY ) =
h(σVβ ) = log β = M(h) = h(σ

V
(h)
2

).

References

[1] J.W.S. Cassels, Local Fields, Cambridge University Press, Cambridge, 1986.
[2] M. Einsiedler and K. Schmidt, Markov partitions and homoclinic points of algebraic

Zd-actions, Proc. Steklov Inst. Math. 216 (1997), 259–279.
[3] M. Einsiedler and K. Schmidt, Irreducibility, homoclinic points and adjoint actions of

algebraic Zd-actions of rank one, in: Nonlinear Phenomena and Complex Systems, ed.
A. Maass, S. Martinez and J. San Martin, Kluwer Academic Publishers, Dordrecht,
2002, 95–124.

[4] R. Kenyon and A. Vershik, Arithmetic construction of sofic partitions of hyperbolic
toral automorphisms, Ergod. Th. & Dynam. Sys. 18 (1998), 357–372.

[5] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine
Angew. Math. 53 (1857), 173–175.

[6] D. Lind, K. Schmidt and T. Ward, Mahler measure and entropy for commuting au-
tomorphisms of compact groups, Invent. Math. 101 (1990), 593–629.

[7] D. Lind and T. Ward, Automorphisms of solenoids and p-adic entropy, Ergod. Th.
& Dynam. Sys. 8 (1988), 411–419.

[8] E. Lindenstrauss and K. Schmidt, Invariant measures of nonexpansive group auto-
morphisms, Israel J. Math. 144 (2004), 29–60.

[9] E. Lindenstrauss and K. Schmidt, Symbolic representations of nonexpansive group
automorphisms, Israel J. Math. (2005), 227–266.

[10] B. Marcus, K. Petersen and S. Williams, Transmission rates and factors of Markov
chains, Contemp. Math. 26 (1984), 279–293.

[11] W. Parry, On the β-expansions of real numbers, Acta Math. 11 (1960), 401–416.
[12] K. Schmidt, Automorphisms of compact abelian groups and affine varieties, Proc.

London Math. Soc. 61 (1990), 480–496.
[13] K. Schmidt, Dynamical systems of algebraic origin, Birkhäuser Verlag, Basel-Berlin-
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