
WEAK MONOTONE REARRANGEMENT ON THE LINE

J. BACKHOFF-VERAGUAS, M. BEIGLBÖCK, AND G. PAMMER

Abstract. Weak optimal transport has been recently introduced by Gozlan et al. The
original motivation stems from the theory of geometric inequalities; further applications
concern numerics of martingale optimal transport and stability in mathematical finance.

In this note we provide a complete geometric characterization of the weak version of
the classical monotone rearrangement between measures on the real line, complementing
earlier results of Alfonsi, Corbetta, and Jourdain.

1. Introduction

Recently, there has been a growing interest in weak transport problems as introduced
by Gozlan et al [15]. While the original motivation mainly stems from applications to
geometric inequalities (cf. the works of Marton [17, 16] and Talagrand [21, 22]), weak
transport problems appear also in a number of further topics, including martingale optimal
transport [2, 4, 10, 6], the causal transport problem [7, 1], and stability in math. finance [5].

1.1. Framework and main results. Write Π(µ, ν) for the set of couplings between µ, ν ∈
P(Rd). Starting with the seminal article of Gangbo-McCann [12] problems of the form

Wθ(µ, ν) := infπ∈Π(µ,ν)
∫
R×R

θ(x − y)π(dx, dy), (1.1)

where θ : Rd → R denotes a convex function have received particular attention in optimal
transport. The pendant in weak optimal transport consists in

Vθ(µ, ν) := infµ∗≤cν Wθ(µ, µ∗). (1.2)

Here ≤c denotes the convex order, i.e. µ ≤c ν iff
∫
ϕ dµ ≤

∫
ϕ dν for all convex ϕ : Rd → R.

The problem (1.2), and in particular its one dimensional version, is investigated in [2,
15, 14, 19, 18, 20, 11, 13, 8, 5]. The main purpose of this note is to give a complete
geometric characterization of the optimizer µ∗ in one dimension.

Definition 1.1. Fix µ, ν ∈ P1(R). We call a function S : R→ R admissible if it satisfies
(i) S is increasing,

(ii) S is 1-Lipschitz,
(iii) S (µ) ≤c ν.

Theorem 1.2. Let µ, ν ∈ P1(R). There exists an admissible T (µ-a.s. unique) which is
maximal in the sense that S (µ) ≤c T (µ) for every other admissible S .

If θ : R → R is convex then µ∗ := T (µ) is an optimizer of (1.2). If θ : R → R is strictly
convex and Vθ(µ, ν) is finite, T (µ) is the unique optimizer of (1.2).

We call the (µ-a.s. unique) map T in Theorem 1.2 the weak monotone rearrangement.
A particular consequence of Theorem 1.2 is that the optimizer of (1.2) does not depend

on the choice of the convex function θ. We find this fact non-trivial as well as remarkable
and highlight that it is not new: different independent proofs were given by Gozlan et al
[15], Alfonsi, Corbetta, Jourdain [2] and Shu [20]. Alfonsi, Corbetta and Jourdain [3,
Example 2.4] notice that this does not pertain in higher dimensions.

The map T can be explicitly characterized in geometric terms using the notion of irre-
ducibility introduced in [9]: Measures η, ν ∈ P1(R) are in convex order iff

uη(y) :=
∫
R
|x − y|η(dx) ≤

∫
R
|x − y|ν(dx) =: uν(y), (1.3)

and, by continuity, the set U where this inequality is strict is open. Hence U =
⋃

n In,
where (In) is an at most countable family of disjoint open intervals; these intervals In are
called irreducible with respect to (η, ν).
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Theorem 1.3. The weak monotone rearrangement T of µ, ν ∈ P1(R) is the unique admis-
sible map which has slope 1 on each interval T−1(I), where I is irreducible wrt (T (µ), ν).

Theorem 1.3 represents a necessary and sufficient condition for the optimality of the
measure T (µ∗) in (1.2). We note that the ‘necessary’ part was first obtained (using some-
what different phrasing) by Alfonsi, Corbetta, and Jourdain [2, Proposition 3.12]. We also
refer the reader to the semi-explicit representation of T and T (µ∗) given in [2].

.

'
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Figure 1. The solutions to (1.2)/(1.4) and (1.7), respectively. Blue lines
depict contractive parts of the map, purple lines depict areas with (non
trivial) martingale transport.

1.2. Connection with martingale transport plans. Intuitively, the irreducible intervals
of (η, ν) are the components where we need to ‘expand’ η in order to transform it into ν.
In this sense Theorem 1.3 asserts that the mass of µ can either concentrate between µ and
T (µ), or it can expanded between T (µ) and ν (see Figure 1).

To make this precise, we recall from [15] that (1.2) can be reformulated as

Vθ(µ, ν) = infπ∈Π(µ,ν)
∫
Rd θ

(
x −

∫
Rd yπx(dy)

)
µ(dx), (1.4)

where (πx)x∈Rd denotes a regular disintegration of the coupling π wrt its first marginal µ.
The set of optimizers of (1.4) is also straightforward to express in terms of T : Write

ΠM(η, ν) for the set of martingale couplings (or martingale transport plans), i.e. π ∈ Π(η, ν)
which satisfy barycenter(πx) = x, η-a.s. By Strassen’s theorem ΠM(η, ν) is nonempty iff
η ≤c ν. Using this notation, π ∈ Π(µ, ν) is optimal iff there exists a martingale coupling
πM ∈ ΠM(T (µ), ν) such that π is the concatenation of the transports described by T and πM:

π(A × B) =
∫

A µ(dx)πM
T (x)(B). (1.5)

Any πM ∈ ΠM(η, ν) can be decomposed based on the family of irreducible intervals (In)n:
denoting F := (∪nIn)c by [9, Appendix A] we have

πM =
∑

n π
M
|In×Īn

+ (Id, Id)(µ|F). (1.6)

Plainly, (1.6) asserts that any martingale transport plan can move mass only within the
individual irreducible intervals, whereas particles x ∈ F have to stay put.

1.3. A reverse problem. Alfonsi, Corbetta, and Jourdain [2] proved that the same value
is obtained when reversing the order of transport and convex order relaxation in (1.2), i.e.

Vθ(µ, ν) = infµ≤cν∗ Wθ(ν∗, ν); (1.7)

moreover they find ([2, Proposition 3.12]) a monotone mapping which is optimal between
the optimizer of (1.7) and ν as well as between µ and the optimizer of (1.2).

As a counterpart to Theorems 1.2 and 1.3 we establish the following result, strengthen-
ing the connection between (1.2) and (1.7).

Theorem 1.4. Let µ, ν ∈ P1(R). Then there exists a unique ≤c-smallest measure ν∗, µ ≤c

ν∗, which can be pushed onto ν by an increasing 1-Lipschitz mapping. Moreover we have
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(1) If θ : R → R is convex then ν∗ is an optimizer of (1.7). If θ : R → R is strictly
convex and Vθ(µ, ν) is finite, ν∗ is the unique optimizer of (1.7).

(2) There exists a (ν∗-unique) increasing 1-Lipschitz mapping T̃ which pushes ν∗ onto
ν; T̃ has slope 1 on each interval I, where I is irreducible wrt (µ, ν∗).

(3) T̃ is the weak monotone rearrangement between µ and ν.

As in the previous section, (1.7) could be interpreted as a concatenation of a martingale
transport with the weak monotone rearrangement.

1.4. An auxiliary result. We close this introductory section which an auxiliary result that
will be important in the proofs of our results. Since it might be of independent interest we
provide the d-dimensional version. We denote the topology induced by the ρ-Wasserstein
distance on the space of probability measures on Rd byWρ.

Theorem 1.5 (Stability). Let 1 ≤ ρ < ∞, (µk)k∈N ∈ Pρ(Rd)N, (νk)k∈N ∈ P1(Rd)N and
θ : Rd → R convex and such that for some constant c > 0 it holds

θ(x) ≤ c(1 + |x|ρ) ∀x ∈ Rd. (1.8)

If µk → µ inWρ and νk → ν inW1, then limk Vθ(µk, νk) = Vθ(µ, ν). If additionally θ is
strictly convex, we have that

(1) arg minη≤cνk Wθ(µk, νk)→ arg minη≤cν Wθ(µ, ν) inW1,
(2) the sequence of maps T k, where T k(µ) ≤c ν and Vθ(µ, νk) = Wθ(µ,T k(µ)), con-

verges in µ-probability to T , where T (µ) ≤c ν and Vθ(µ, ν) = Wθ(µ, ν).

2. C-Monotonicity implies geometric characterization

In this part we prove the following

Theorem 2.1. Let µ, ν ∈ P1(R) and θ : R → R strictly convex. If Vθ(µ, ν) yields a finite
value, for any optimizer π ∈ Π(µ, ν) of (1.4), the map

T (x) :=
∫
R

yπx(dy),

is µ-almost surely uniquely defined and is independent of the specific coupling π, it is
admissible in the sense of Definition 1.1, and it has slope 1 on T−1(I) if I is an irreducible
interval for (T (µ), ν).

To prove Theorem 2.1, we need some further properties connected to irreducibility:

Lemma 2.2. Suppose {uµ < uν} =: (a, b). Then for any π ∈ ΠM(µ, ν), any regular disin-
tegration (πx)x∈R wrt µ and any c ∈ (a, b) such that µ((a, c)) > 0, µ((c, b)) > 0, there are
x ∈ (a, c], y ∈ [c, b), x , y, such that the supports of πx and πy overlap, i.e.

int(co(supp(πx))) ∩ co(supp(πy)) ∪ int(co(supp(πy))) ∩ co(supp(πx)) , ∅. (2.1)

Proof. To show this assertion, we assume the opposite. So there exist c ∈ {uµ < uν},
π ∈ ΠM(µ, ν) with fixed disintegration (πx)x∈R wrt µ and

µ((a, c)) > 0, µ((c, b)) > 0,

so that for all x, y with a < x ≤ c ≤ y < b, x , y, we have

int(co(supp(πx))) ∩ co(supp(πy)) ∪ int(co(supp(πy))) ∩ co(supp(πx)) = ∅. (2.2)

Since π is a martingale coupling, and by (2.2), there exists d ∈ (a, b) with
supp(πx) ⊆ (−∞, d] for µ-a.e. x < c,

supp(πy) ⊆ [d,∞) for µ-a.e. y > c.
(2.3)

Write d+ for the largest and d− for the smallest d such that (2.3) holds. Note then that
d−, d+ ∈ (a, b). We have either supp(πc) ⊆ [d−, d+] or µ({c}) = 0, which in any case implies
µ([c ∧ d−, c ∨ d+] \ {c}) = 0. Thus, we infer

1 = π((−∞, c) × (−∞, d−) ∪ {c} × [d−, d+] ∪ (c,∞) × (d+,∞))
= π((−∞, d−) × (−∞, d−] ∪ {c} × [d−, d+] ∪ (d+,∞) × [d+,∞)),
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and we conclude by contradicting uµ(d−) < uν(d−) since∫
R
|x − d−|µ(dx) =

∫
(a,d−) |x − d−|µ(dx) +

∫
[d−,b) |x − d−|µ(dx)

=
∫

(a,d−) |y − d−|πx(dy)µ(dx) +
∫

[d−,b) |y − d−|πx(dy)µ(dx)

=
∫
R
|x − d−|ν(dx). �

Lemma 2.3. Let p, q ∈ P1(R) have overlapping supports (cf. (2.1)). Then there exists a
continuous map [0, 1] 3 α 7→ (pα, qα) ∈ P(R) × P(R) such that

pα + qα = p + q ∀α ∈ [0, 1], (2.4)

and such that for some β ∈ (0, 1) the functions

[β, 1] 3 α 7→
∫
R

zpα(dz), [β, 1] 3 α 7→
∫
R

zqα(dz) (2.5)

are strictly decreasing and increasing, respectively.

Proof. Let α ∈ [0, 1] and define the inverse distribution functions by

sα := inf{x ∈ R : Fp(x) ≥ α}, tα := inf{x ∈ R : Fq(x) ≥ α},

where Fp and Fq denote the cumulative distribution functions of p and q, respectively.
Define two auxiliary measures

p̃α := p|(−∞,sα) + (α − Fp(sα−))δ{sα}, q̃α := q|(−∞,tα) + (α − Fq(tα−))δ{tα}.

Defining probability measures pα and qα by pα := p̃α + q̃1−α and qα := p + q − pα, yields
(2.4) and continuity of α 7→ (pα, qα). Since p and q satisfy (2.1), we find constants
c1, c2 ∈ supp(p) ∩ supp(q) with c1 > c2 such that

α1 := p([c1,+∞)) > 0 and α2 := q((−∞, c2]) > 0.

Let α3 < α1 ∧ α2, then for any 1 − α3 ≤ α < α
′ ≤ 1 we have∫

R
zpα′ (dz) −

∫
R

zpα(dz) =
∫
R

z ( p̃α′ − p̃α)(dz) +
∫
R

z (q̃1−α′ − q̃1−α)(dz)

≥ (α′ − α)(c1 − c2) > 0,

and conclude that for β := 1 − α3 the maps defined in (2.5) are strictly monotone. �

An important tool in the proof of Theorem 2.1 is C-monotonicity, a concept which was
introduced for the weak optimal transport problem in [6, 13, 8].

Definition 2.4 (C-monotonicity). A coupling π ∈ Π(µ, ν) is C-monotone if there exists a
measurable set Γ ⊆ X with µ(Γ) = 1, such that for any finite number of points x1, . . . , xN in
Γ and measures m1, . . . ,mN with

∑N
i=1 mi =

∑N
i=1 πxi∑N

i=1 θ
(
xi −

∫
y πxi (dy)

)
≤

∑N
i=1 C

(
xi −

∫
y mi(dy)

)
.

Proof of Theorem 2.1. Let π∗ be optimal for the weak optimal transport problem (1.4).
By the monotonicity principle [8, Theorem 5.2] π∗ is C-monotone, therefore, there exists
a set Γ ⊆ R with µ(Γ) = 1 and such that for all x, y ∈ Γ, p1, p2 ∈ P1(R) satisfying
π∗x + π∗y = p1 + p2, we have

θ
(
x −

∫
R

zπ∗x(dy)
)

+ θ
(
y −

∫
R

zπ∗y(dz)
)
≤ θ

(
x −

∫
R

zp1(dz)
)

+ θ
(
y −

∫
R

zp2(dz)
)
. (2.6)

As an immediate consequence, we find that the map T (x) =
∫
R

yπ∗x(dy) is µ-almost surely
increasing. Letting x, y ∈ Γ, for any α ∈ [0, 1] we define

pα1 = (1 − α)π∗x + απ∗y, pα2 = απ∗x + (1 − α)π∗y.

Plugging pα1 and pα2 into (2.6) and computing the righthand-side derivative yields(
∂+θ(x − T (x)) − ∂+θ(y − T (y))

)
(T (x) − T (y)) ≥ 0,

which is by strict convexity of θ equivalent to(
x − T (x) − y + T (y)

)
(T (x) − T (y)) ≥ 0.
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x

y

T (x)

T (y)

wα

vα

πy

πx

qα

pα

Figure 2. Sketch of usage of Lemma 2.2 and Lemma 2.3 to find contra-
diction to C-monotonicity of an C-optimal coupling π.

Hence, |x − y| ≥ |T (x) − T (y)| and T is µ-a.e. 1-Lipschitz.
Further, we have that T (µ) ≤c ν and π̄ := (T, id)(π∗) ∈ ΠM(T (µ), ν). Without loss

of generality, we can assume π̄T (x) = π∗x, µ-a.e. Let (Ik)k∈N be the intervals given by the
decomposition of (T (µ), ν) into irreducible intervals. Assume that there is an interval Ik

so that on T−1(Ik) the map T does not have µ-a.s. slope 1. Then Lemma 2.2 provides two
points x̃, ỹ in T (Γ ∩ Ik) and two corresponding points x, y ∈ Γ ∩ Ik such that

x < y, T (x) = x̃ < ỹ = T (y), x − T (x) > y − T (y),

and the overlapping condition (2.1) holds for π̄T (x) = π∗x, π̄T (y) = π∗y. Lemma 2.3 allows us
to define measures pα and qα on R such that

π∗x + π∗y = π̄T (x) + π̄T (y) = pα + qα.

For a graphical depiction compare with Figure 2. Hence,

T (x) > vα :=
∫
R

zpα(dz), T (y) < wα :=
∫
R

zqα(dz),

are strictly monotone, continuous maps on [β, 1]. Therefore, we find α ∈ (β, 1) with

x − v1 = x − T (x) < x − vα ≤ y − wα < y − T (y) = y − w1.

By strict convexity of θ we find

θ(y − wα) − θ(x − T (x))
y − wα − x + T (x)

<
θ(y − T (y)) − θ(x − να)

y − T (y) − x + να
,

which then yields a contradiction to C-monotonicity:

θ
(
x −

∫
R

zπ∗x(dz)
)

+ θ
(
y −

∫
R

zπ∗y(dz)
)

= θ(x − T (x)) + θ(y − T (y))

> θ(x − vα) + θ(y − wα)

= θ
(
x −

∫
R

zpα(dz)
)

+ θ
(
y −

∫
R

zqα(dz)
)
. �

3. Sufficiency of the geometric characterization

Naturally the question arises whether any map T satisfying the properties in Theo-
rem 2.1 must be optimal. The aim of this section is to establish this:

Theorem 3.1. Let µ, ν ∈ P1(R). Then any coupling π ∈ Π(µ, ν) for which T (x) :=∫
R

yπx(dy) is admissible (in the sense of Definition 1.1) with slope 1 on each interval
T−1(I), where I is irreducible wrt (T (µ), ν), is optimal for (1.4), i.e.,

Vθ(µ, ν) =
∫
R
θ(x − T (x))µ(dx).
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The proof is based on dual optimizers and their explicit representation. As long as T is
strictly increasing, [19, Theorem 2.1] provides dual optimizers to Vθ(µ,T (µ)). Investigating
dual optimizers further, we are able to show here Vθ(µ,T (µ)) = Vθ(µ, ν). First, Lemma 3.2
helps us to carefully approximate the increasing map T with strictly increasing maps Tε.

Lemma 3.2. Let T : R → R be an increasing map, with T − id decreasing. Then, for any
ε > 0 there is a strictly increasing map Tε : R→ R, with Tε − id decreasing, such that

|T − Tε|∞ ≤ ε,

and T is affine with slope 1 on an interval I if and only if Tε is affine with slope 1 on I.

Proof. Since T is increasing we know that the pre-image of any point under T corresponds
to an interval. Therefore, we can find at most countable many, disjoint intervals (Ik)k∈N of
finite length, where T (Ik) is a singleton and T is strictly increasing on the complement, i.e.,
on

⋂
k Ic

k . For any ε > 0, we define gε : R→ R

gε(x) :=

 ε
λ(Ik)2k ∃k ∈ N : x ∈ Ik,

0 else.
(3.1)

Then the map Tε(x) := T (x) +
∫ x
−∞

[gε(y) ∧ 1] dy satisfies the desired properties. �

Let T : R→ R be an increasing 1-Lipschitz function. Then T induces a unique decom-
position of R into at most countably many maximal, closed, disjoint intervals (Ik)k and a
(Gδ-set) G such that for all k ∈ N the map T |Ik is affine with slope 1 and T |G is properly
contractive, i.e., for any two points x, y ∈ G we have |T (x) − T (y)| < |x − y|. Below we call
the intervals (Ik)k irreducible wrt T .

Proof of Theorem 3.1. The convex function θ can be approximated by a pointwise-increasing
sequence of Lipschitz convex functions (θn)n∈N, e.g.

θn(x) := θ(x) 1[−n,n](x) + [(x − n)∂+θ(n)] 1(n,+∞) + [θ(−n) + (x + n)∂−θ(−n)] 1(−∞,−n).

By monotone convergence we find1 supn Vθn (µ, ν) = Vθ(µ, ν). Indeed, if πn optimizes
Vθn (µ, ν) and assuming wlog that πn → π, then

limn
∫
θn

(
x −

∫
yπn

x(dy)
)
µ(dx) ≥ limn

∫
θm

(
x −

∫
yπn

x(dy)
)
µ(dx)

≥
∫
θm

(
x −

∫
yπx(dy)

)
µ(dx),

by [8, Proposition 2.8]. Thus the claim follows by taking the supremum in m.
From this, it suffices to consider the case when θ is Lipschitz continuous. By Lemma 3.2

we find for any ε > 0 a strictly increasing map Tε, such that Tε − id is decreasing, the
decompositions of T and Tε match, and |Tε − T |∞ ≤ ε. Then [19, Theorem 2.1] provides a
convex, Lipschitz continuous function fε : R→ R such that for all x ∈ R

R fε(x) := infy∈R fε(y) + θ(x − y) = fε(Tε(x)) + θ(x − Tε(x)),

which is even affine on the parts where Tε is affine. Write S ε(x) =
∫ x
−∞

[gε(z)∧ 1]dz, where
gε is defined as in (3.1) so Tε = T + S ε. In the following we will show that fε is a dual
optimizer of the coupling πε defined as the push-forward measure of π by the function

(x, y) 7→ (x, y + S ε(x)).

First, we compute the barycenters of πεx:∫
R

yπεx(dy) =
∫
R

y + S ε(x)πx(dy) = Tε(x),

and Tε(µ) ≤c proj2(πε) =: νε. Given the sets (Ik)k∈N and F from the decomposition of
(T (µ), ν) into irreducible intervals, we find the sets (Iεk )k∈N and Fε from the decomposition
of (Tε(µ), νε) into irreducible intervals by setting

Iεk := Ik + S ε(x) for any y ∈ Ik and x ∈ T−1(y), Fε :=
⋂

k(Iεk )c.

1Recall that by [14] the optimizer of the weak transport problem does not depend on the convex cost.
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In view of the structure of martingale couplings, see [9, Theorem A.4], we find that for
µ-a.e. x ∈ T−1

ε (Iεk ) we have supp(πεx) ⊆ Iεk and πεx = δT (x)+S ε(x) µ-a.e. on Fε. Since the
decompositions of T and (T (µ), ν) are complementary, we infer the same for the decompo-
sitions of the map Tε and the pair (Tε(µ), νε). The next computation establishes duality of
the pair (πε, fε), where we use affinity of fε on the irreducible components of (Tε(µ), νε):∫

R
θ
(
x −

∫
R

yπε(dy)
)
µ(dx) =

∫
R
θ (x − Tε(x)) µ(dx) =

∫
R

R fε(x) − fε(Tε(x))µ(dx)

=
∫
R

R fε(x)µ(dx) −
∫
R

fε
(∫
R

yπεx(dy)
)
µ(dx)

=
∫
R

R fε(x)µ(dx) −
∫
R

fε(y)νε(dy).

This easily proves that πε is optimal for the optimal weak transport problem Vθ(µ, νε).
Drawing the limit for ε↘ 0, we observe

Vθ(µ, νε) =
∫
R
θ(x − Tε(x))µ(dx)→

∫
R
θ(x − T (x))µ(dx).

As θ is Lipschitz, we can apply stability Theorem 1.5 and obtain optimality of π. �

4. Geometry of the weak monotone rearrangement

We can summarize Theorems 2.1 and 3.1 as follows: There exists an admissible map
T with slope 1 on T−1(I) whenever I is an irreducible interval wrt (T (µ), ν), such that π
is optimal for (1.4) iff T (x) =

∫
yπx(dy) (µ-a.s.). We now show that this map is the weak

monotone rearrangement and is therefore the maximum in convex order of the set2

M(µ, ν) :=
{
S : R→ R : S is increasing and 1-Lipschitz, S (µ) ≤c ν

}
.

Heuristically speaking, if the maximum in convex order of the set M(µ, ν) is again given by
an increasing, 1-Lipschitz map, then this map is as close as possible to a shifted identity.
In turn, this is favourable when trying to find the minimum in convex order of

{(id − S )(µ) : S ∈ M(µ, ν)} ,

which gives reason to why there should exist a single optimizer to (1.4) for all convex θ.
As preparation to establishing Theorem 1.3, we prove Lemma 4.1 and Lemma 4.2.

Lemma 4.1. Let µ ∈ P1(R), T, S : R→ R be increasing maps with∫
R

T (x)µ(dx) =
∫
R

S (x)µ(dx),

then the maximum (wrt the convex order) of T (µ) and S (µ), which is uniquely determined
by its potential functions, is again given by an increasing map. If in addition, the maps are
L-Lipschitz with L > 0, then the maximum is also given by an L-Lipschitz map.

Proof. The maximum of T (µ) and S (µ) wrt. the convex order is uniquely determined by
the maximum of its potential functions, i.e. uS (µ) ∨ uT (µ) = uS (µ)∨T (µ). The right-hand
side derivative of the potential function can be expressed by the cumulative distribution
function, namely ∂+uµ(x) = 2Fµ(x) − 1. By continuity of the potential functions, we find
a partition of R into at most countably many disjoint intervals (Ik)k∈N, where uT (µ) = uS (µ)
on ∂Ik, and restricted onto Ik one of the following holds true:

(a) uS (µ)|Ik ≥ uT (µ)|Ik ,
(b) uS (µ)|Ik ≤ uT (µ)|Ik .

Suppose wlog (a) holds, then

FS (µ)∨T (µ)(x) = FT (µ)(x) x ∈ (lk, rk). (4.1)

By monotonicity, we can define T ∗ on Ĩk := (T−1(lk) ∨ S −1(lk),T−1(rk) ∨ S −1(rk)]3 by

T ∗(x) =

T (x) x ∈ T−1(Ik) ∩ Ĩk,

rk else.
(4.2)

2We abuse terminology here, meaning maximum of {S (µ) : S ∈ M(µ, ν)}.
3We use the convention that the maximum of the empty set equals −∞.
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Hence, T ∗ is an increasing map, FT ∗(µ) = FS (µ)∨T (µ) and S (µ)∨T (µ) is given by the map T ∗.
If T and S are in addition L-Lipschitz, it follows by construction that T ∗ is L-Lipschitz. �

Lemma 4.2. Let η1 ≤c η2 and T2(η2) ≤c T1(η1), where T1,T2 are increasing and 1-
Lipschitz. Then (id − T1)(η1) ≤c (id − T2)(η2).

In particular, if T and S are increasing 1-Lipschitz maps s.t.
∫
R

T (x)µ(dx) =
∫
R

S (x)µ(dx),
and we denote by R the increasing 1-Lipschitz map with R(µ) = S (µ) ∨ T (µ), which exists
by Lemma 4.1, then (id − R)(µ) ≤c (id − S )(µ) ∧ (id − T )(µ).

Proof. By approximation, it suffices to settle the case when η1, η2 are uniform measures
on n ∈ N atoms. Let xi

1 ≤ xi
2 ≤ · · · ≤ xi

n denote the atoms of ηi. Then the vector
zi := (Ti(xi

1), . . . ,Ti(xi
n)) is ordered in an increasing way. What is more, the vector yi :=

(xi
1 − zi

1, . . . , x
i
n − zi

n) is likewise ordered increasingly, since id − Ti is an increasing map.
By e.g. [14, Proposition 2.6] we know that

∀k ≤ n :
∑
`≤k x2

` ≤
∑
`≤k x1

` ,
∑
`≤k z1

` ≤
∑
`≤k z2

` .

But then also
∑
`≤k x2

` − z2
` ≤

∑
`≤k x1

` − z1
` , so again by [14, Proposition 2.6] we conclude

(id − T1)(η1) ≤c (id − T2)(η2). The second statement easily follows from the first one. �

Proof of Theorem 1.3. Existence of an admissible map T which has slope 1 on each in-
terval T−1(I), where I is irreducible wrt (T (µ), ν), was already shown in Theorem 2.1.
Therefore, it remains to show that the map is maximal. Denote by T the map given by
Theorem 2.1 associated with an optimizer to (1.4) and some strictly convex θ : R→ R. Let
S be an arbitrary map in M(µ, ν). Then Lemma 4.2 states that

(id − R)(µ) ≤c (id − T )(µ),

where R is defined as the increasing, 1-Lipschitz map such that R(µ) = S (µ) ∨ T (µ).
Additionally to existence, strict convexity of θ ensures µ-almost sure uniqueness of T
in the sense that for any optimal coupling π we have

∫
R

yπx(dy) = T (x) µ-a.s. Thus,
R(µ) = T (µ) and T = R µ-almost surely. �

Proof of Theorem 1.2. This is a direct consequence of Theorem 2.1, which provides exis-
tence of a map with the desired geometric properties, and Theorem 1.3, which provides the
equivalence between the geometric properties and maximality. �

5. On the reverse problem of Alfonsi, Corbetta, and Jourdain

We aim to prove Theorem 1.4 pertaining the reverse problem (1.7).

Lemma 5.1. Let η1, η2 ∈ P1(R), T1,T2 : R→ R be increasing maps with

T1(η1) = T2(η2) =: ν.

Denote the minimum in convex order of η1 and η2 by η. Then there exists an increasing
map T ∗ such that T ∗(η) = ν. If in addition, the maps are L-Lipschitz with L > 0, then the
same holds true for T ∗.

Proof. Suppose there exist increasing maps Ti and measures ηi, i = 1, 2, such that T1(η1) =

ν = T (η2). Then the potential function of the minimum η of η1 and η2 wrt the convex order
is given by the convex hull of uη1 and uη2 . The potential function uη completely specifies
the cumulative distribution function through ∂+uη = 2Fη − 1. Thus, we can find a partition
of R into countably many, disjoint intervals Ik = [ak, bk) ∩ R. For each k ∈ N, we have
i , j ∈ {1, 2} with uη(ak) = uηi (ak), uη(bk) = uη j (bk) such that one of the following holds

(a) uη(x) = uηi (x) on Ik,
(b) Fη(ak) = Fη(bk−) = Fη j (bk−) and uη(x) < uη1 (x) ∧ uη2 (x) on (ak, bk).

According to this decomposition, we can define an increasing map T ∗ via

T ∗(x) =

Ti(x) x ∈ Ik, (a) holds,
Ti(ak) x ∈ Ik, (b) holds.
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Note that T ∗ is L-Lipschitz if Ti, i = 1, 2, are L-Lipschitz. Let y ∈ R, due to the continuity
of the maps T1 and T2, we can find points x1, x2 ∈ R with p = Fν(y), x1 = F−1

η1
(p) x2 =

F−1
η2

(p). Assume that i = 1, j = 2 with x1 ∈ Ik. If (a) holds, then we have Fη(x1) = Fη1 (x1).
Now presume that (b) holds, then Fη2 (bk−) = Fη(ak) ≤ Fη1 (x1). Then

Fη2 (bk) = p =⇒ x2 = bk and Fη(bk) = p,

Fη2 (bk) < p =⇒ ∃l ∈ N : x2 ∈ Il s.t. i = 2 and (a) holds.

Hence, by monotonicity of the map T ∗ we conclude FT ∗(η) = Fν. �

Proof of Theorem 1.4. Define ν∗ via the weak monotone rearrangement T between µ and
ν, as µ on the contraction parts of T and accordingly shifted ν on the affine (irreducible)
intervals such that T̃ (ν∗) = ν. Let η ≥c µ. Then for any strictly convex θ : R → R and
coupling π2 ∈ Π(η, ν) we have

∫
R×R

θ(y − z)π2(dy, dz) ≥
∫
R
θ(y −

∫
R

zπ2
y(dz))η(dy), with

equality iff π2 is actually given by a map. Hence, if the optimizer π2 of Wθ(η, ν) is not
given by a map and π1 ∈ ΠM(µ, η), we have

Wθ(η, ν) >
∫
R
θ(x −

∫
R

∫
R

zπ2
y(dz)π1

x(dy))µ(dx) ≥ Vθ(µ, ν).

Thus, by the structure of the weak monotone rearrangement, we deduce optimality of ν∗

for Problem (1.7). To show uniqueness of (1.7), assume that η attains the minimum of
(1.7) and the optimizer of Wθ(η, ν) is given by the map R. For any martingale coupling
π1 ∈ ΠM(µ, η) we define a map by

L(x) :=
∫
R

R(y)π1
x(dy).

Then by optimality L(µ) = T (µ) and, in particular,∫
R
θ(y − R(y))η(dy) =

∫
R
θ(x − L(x))µ(dx) =

∫
R
θ(x − T (x))µ(dx),

which shows L = T µ-almost surely. By strict convexity, we have

y − R(y) = x − L(x) = x − T (x) π1-a.s.

Since π1 was arbitrary in ΠM(µ, η) we get that R is affine with slope 1 on I, whenever I is an
irreducible interval wrt (µ, η). Therefore η and ν∗ restricted to I coincide. Hence, η = ν∗.

We finally show that ν∗ is minimal in the convex order as stated. By Lemma 5.1, we can
assume µ ≤c η ≤c ν

∗ and that η can be pushed forward onto ν via an increasing 1-Lipschitz
map S . It follows by Lemma 4.2 that (id − S )(η) ≤c (id − T̃ )(ν∗), so

Vθ(µ, ν) ≤
∫
θ(x − S (x))η(dx) ≤

∫
θ(x − T̃ (x))ν∗(dx) = Vθ(µ, ν),

and by the uniqueness obtained above we deduce η = ν∗. �

6. Stability of barycentric weak transport problems in multiple dimensions

The final part of the article is concerned with stability of the weak optimal transport
problem under barycentric costs, see (1.4). Unlike in the rest of the article we work here
on Rd. The final aim is to prove Theorem 1.5.

One surprising aspect of this result is that we only require νk → ν in W1 and not
necessarily inWρ. This relates to the conditional expectation in (1.4) being ‘inside of θ.’
We first prove an illuminating intermediate result:

Proposition 6.1. Let 1 ≤ ρ < ∞, (µk)k∈N ∈ Pρ(Rd)N, (νk)k∈N ∈ Pρ(Rd)N and θ : Rd → R

convex and satisfying the growth condition (1.8). Suppose that µk → µ and νk → ν inWρ,
and that η ≤c ν. Then there exist ηk ≤c ν

k such that
(i) ηk → η inWρ,

(ii) limk Wθ(µk, ηk) = Wθ(µ, η).

Proof. It is well-known that (i) together with the stated convergence of the µk’s implies (ii),
so we proceed to prove the former. Let πk be an optimal coupling attaining Wρ(ν, νk). Let
M be any martingale coupling with first marginal η and second marginal ν, the existence
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of which is guaranteed by the assumption η ≤c ν together with Strassen’s theorem. We
convene on the notation M(dx, dy) and π(dy, dz), and define the measure

P(dx, dy, dz) = My(dx)πk
y(dz)ν(dy).

This measure has η, ν and νk as first, second and third marginals. We next define Rk(x) as
the conditional expectation under P of the third variable given the first one, namely

Rk(x) =
∫ ∫

z πk
y(dz)Mx(dy).

Next we introduce ηk := Rk(η) so by definition ηk ≤c ν
k. Finally

Wρ(η, ηk)ρ ≤
∫
|x − Rk(x)|ρη(dx) =

∫ ∣∣∣∣∫ y Mx(dy) −
∫ (∫

z πk
y(dz)

)
Mx(dy)

∣∣∣∣ρ η(dx)

≤
∫ ∣∣∣y − ∫

z πk
y(dz)

∣∣∣ρ ν(dy) ≤
∫ ∫
|y − z|ρπk(dy, dz) = Wρ(ν, νk),

(6.1)

by the martingale property and two applications of Jensen’s inequality. The desired con-
clusion follows. �

Remark 6.2. In the context of the previous proposition, if η is supported in finitely many
atoms, then the condition that νk → ν inWρ can be relaxed to convergence inW1. To wit,
if η =

∑`
i=1 αiδxi , one can take ρ = 1 in (6.1) and prove

∀i ≤ ` : |xi − Rk(xi)| ≤ (min{α j})−1W1(ν, νk),

so taking ρ-power and integrating w.r.t. η we get Wρ(η, ηk)ρ ≤ K W1(ν, νk)ρ → 0.

The previous remark shows that we need to reduce to the finite-support setting. We
carry to this in the next two lemmas:

Lemma 6.3. Let η ∈ P1(Rd). Then for any ε > 0 there is a compactly supported, positive
measures η̃ with

η̃ ≤ η, η̃(Rd) ≥ 1 − ε,
∫
Rd zη(dz) = 1

η̃(Rd)

∫
Rd zη̃(dz). (6.2)

Proof. We first partition Rd into countable, disjoint d-dimensional cubes (Qδ
k)k∈N of length

δ > 0. Define an approximation ηδ of η by

ηδ :=
∑

k∈N δzδk
η(Qδ

k), zδk :=

 1
η(Qδ

k)

∫
Qδ

k
zη(dz) η(Qδ

k) > 0,

0 else.

Note that ηδ ≤c η and ηδ → η inW1 when δ↘ 0. If there exists an approximation ηδ such
that the assertion holds, then it is straightforward to construct the corresponding measure
for η, which in turn satisfies the assertion with respect to η. Wlog, we may assume that{∑2d

i=1 αivi : (αi)2d
i=1 ∈ R

2d
+ , v1, . . . , v2d ∈

{
x − z̄ ∈ Rd : x ∈ supp(η)

}}
= Rd,

where z̄ denotes the barycenter of η. Then we can find δ > 0 such that{∑2d
i=1 αivi : (αi)2d

i=1 ∈ R
2d
+ , v1, . . . , v2d ∈

{
x − z̄ ∈ Rd : x ∈ supp(ηδ)

}}
= Rd.

Let zδn1
, . . . , zδn2d

span Rd in the sense above and

ηδ(zδn j
) = η(Qδ

n j
) > 0 j = 1, . . . , 2d.

For any ε > 0 there is a ε̃ ∈ (0, ε) such that{∑2d
i=1 αizni : (αi)2d

i=1 ∈ R
2d
+ ,

∑2d
i=1 αi < ε

}
⊇ Bε̃(0).

Besides, there exists a compact set K ⊆ Rd such that

ηδ(Kc) < ε̃,
∣∣∣z̄ − ∫

K zηδ(dz)
∣∣∣ < ε̃

and zδn1
, . . . , zδn2d

∈ K. Therefore, we find (α̃i)2d
i=1 ∈ R

2d
+ with

z̄ −
∫

K zηδ(dz) =
∑2d

i=1 α̃izni ,
∑2d

i=1 α̃i < ε.

If ε is chosen smaller than ηδ(zδni
) for all i = 1, . . . , 2d, we can define the η̃δ via

η̃δ := ηδ�K −
∑2d

i=1 α̃iδzni
. �
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Lemma 6.4. Let µ, η ∈ Pρ(Rd) and θ : Rd → R convex satisfying the growth condition
(1.8). Then there exists a sequence (ηk)k∈N of finitely supported measures with ηk ≤c η,
ηk → η inWρ and Wθ(µ, ηk)→ Wθ(µ, η).

Proof. For any ε > 0 we find a compact set Kε ⊆ supp(η) such that
∫

Kc
ε
|y|ρη(dy) < ε. For

any δ > 0, the set Kε can be covered by finitely many, disjoint sets (Aε,δ
i )Nε,δ

i=1 with diameter
smaller than δ and Kε =

⋃
i Aε,δ

i . Define the measure ηε,δ by

ηε,δ = δzεη(Kc
ε) +

∑Nδ

i=1 δzε,δi
η(Aε,δ

i ),

where the points zε and (zε,δi )Nε,δ

i=1 are given by

zε := 1
η(Kc

ε )

∫
Kc
ε

yη(dy), zε,δi := 1
η(Aε,δi )

∫
Aε,δi

yη(dy).

By construction, there exists a martingale coupling between ηε,δ and η, thus, ηε,δ ≤c η.
Note that θ restricted to Kε is Lipschitz continuous. Then drawing the limit δ→ 0 yields∑Nε,δ

i=1 δzε,δi
η(Aε,δ

i )→ η|Kε
inWρ,

and by convexity, |zε|ρη(Kc
ε) ≤

∫
Kc
ε
|y|ρη(dy). Choosing δ(ε) sufficiently small, we have

Wρ(η, ηε,δ(ε)) ≤ 2ε and ηε,δ(ε) → η inWρ.

By the growth condition (1.8) and stability, we obtain Wθ(µ, ηε,δ(ε))→ Wθ(µ, η). �

We can now prove a version of Proposition 6.1 under weaker assumptions:

Lemma 6.5. Let (νk)k∈N be a sequence in P1(Rd) and let (µk)k∈N be a sequence Pρ(Rd)
with νk → ν inW1, µk → µ inWρ, where ρ ≥ 1, and let θ : Rd → R be a convex functions
satisfying the growth constraint (1.8). Then for any η ≤c ν we find a sequence of ηk ≤c ν

k

such that Wθ(µk, ηk)→ Wθ(µ, η) and ηk → η inW1.

Proof. Wlog assume that θ is positive. By Lemma 6.3, we can find for any ε > 0 a
compactly supported η̂ = η̃ + (1 − η̃(Rd))δz̄ ∈ Pρ(Rd) with η̂ ≤c η,W1(η̂, η) < ε and

Wθ(µ, η̂) ≤ Wθ(µ, η) + c
∫
Rd 1 + |x − z̄|ρµ(dx) < ∞,

where z̄ :=
∫
Rd yη(dy). Using stability of classical optimal transport, see [23, Theorem

5.20], we may assume that |Wθ(µ, η̂) −Wθ(µ, η)| < ε. By Lemma 6.4 we may reduce to the
case of finitely supported η̂. We conclude the proof with Remark 6.2. �

Finally we can give the pending proof of Theorem 1.5:

Proof of Theorem 1.5. Lower-semicontinuity of the map (µ, ν) 7→ Vθ(µ, ν) follows from
[8, Theorem 1.3]. By [8, Lemma 6.1] we have

Vθ(µ, ν) = infη≤cν Wθ(µ, η), (6.3)

where the infimum is even attained for a measure η ≤c ν. By Lemma 6.5 we find a sequence
ηk ≤c ν

k, so that again using [8, Lemma 6.1] we find

Vθ(µ, ν) = Wθ(µ, η) = limk Wθ(µk, ηk) ≥ lim supk Vθ(µk, νk).

If θ is strictly convex, the infimum in (6.3) is attained by a unique probability measure
ηk ≤c νk,4 which in turn is the push-forward of µk under a µk-uniquely defined map
T k. Moreover, the Wθ-optimal transport plan πk ∈ Π(µk, νk) is uniquely determined by
µk(dx)δT k(x)(dy): Suppose the contrary and let T ′(x) :=

∫
Rd yπk

x(dy), then T ′(µk) ≤c ν and
we find the contradiction

Vθ(µk, νk) ≤
∫
Rd θ(x − T ′(x))µ(dx) <

∫
Rd×Rd θ(x − y)πk(dx, dy) = Vθ(µk, νk).

Hence, by convergence of the values of Vθ and tightness of (ηk)k∈N, we deduce the con-
vergence of the ηk to the optimal η ≤c ν inW1. Suppose that µk = µ for all k ∈ N, then

4The uniqueness of ηk , T k and πk was already shown in [2, Theorem 2.1] for | · |ρ, ρ > 1
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due to the uniqueness of the optimal transport maps T between T and T (µ), we can apply
Theorem [23, Corollary 5.23] and obtain convergence of the transport maps T k to T . �
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[9] M. Beiglböck and N. Juillet. On a problem of optimal transport under marginal martingale constraints. Ann.
Probab., 44(1):42–106, 2016.
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