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Abstract. A number of researchers have introduced topological structures
on the set of laws of stochastic processes. A unifying goal of these authors
is to strengthen the usual weak topology in order to adequately capture the
temporal structure of stochastic processes.

Aldous defines an extended weak topology based on the weak convergence
of prediction processes. In the economic literature, Hellwig introduced the
information topology to study the stability of equilibrium problems. Bion-
Nadal and Talay introduce a version of the Wasserstein distance between the
laws of diffusion processes. Pflug and Pichler consider the nested distance
(and the weak nested topology) to obtain continuity of stochastic multistage
programming problems. These distances can be seen as a symmetrization of
Lassalle’s causal transport problem, but there are also further natural ways to
derive a topology from causal transport.

Our main result is that all of these seemingly independent approaches de-
fine the same topology in finite discrete time. Moreover we show that this
‘weak adapted topology’ is characterized as the coarsest topology that guar-
antees continuity of optimal stopping problems for continuous bounded reward
functions.

Keywords: Aldous’ extended weak topology, Hellwig’s information topology,
nested distance, causal optimal transport, stability of optimal stopping, Vershik’s
iterated Kantorovich distance

1. Introduction

1.1. Outline. If some type of natural phenomenon is modelled through a stochastic
process, one might expect that the model does not describe reality in an entirely
accurate way. To be able to study the impact of such inaccuracies on the problems
one is trying to solve, it makes sense to equip the set of laws of stochastic processes
with a suitable notion of distance or topology.

Denoting by Ω := XN the path space (where X is some Polish space and N ∈ N),
the set of laws of stochastic processes is P(Ω), i.e. the set of probability measures
on Ω.

Clearly, P(Ω) carries the usual weak topology. However, this topology does not
respect the time evolution of stochastic processes which has a number of poten-
tially inconvenient consequences: e.g., problems of optimal stopping / utility max-
imization / stochastic programming are not continuous, arbitrary processes can be
approximated by processes which are deterministic after the first period, etc. In
the following we describe a number of approaches which have been developed by
different authors to deal with these (and related) problems. Our main result (The-
orem 1.1) is that all of these approaches actually define the same topology in the
present discrete time setup. Moreover, this topology is the weakest topology which
allows for continuity of optimal stopping problems.

1.2. Adapted Wasserstein distances, nested distance. A number of authors
have independently introduced variants of the Wasserstein distance which take the
temporal structure of processes into account: the definition of ‘iterated Kantorovich
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distance’ by Vershik [58, 59] might be seen as a first construction in this direc-
tion. The topic is also considered by Rüschendorf [56]. Independently, Pflug and
Pflug–Pichler [50, 54, 51, 52, 53, 28] introduce the nested distance and describe the
concept’s rich potential for the approximation of stochastic multi-period optimiza-
tion problems. Lassalle [44] considers the ‘causal transport problem’ that leads to a
corresponding notion of distance. Once again independently of these developments,
Bion-Nadal and Talay [15] define an adapted version of the Wasserstein distance
between laws of solutions to SDEs.

To set the stage for describing these ‘adapted’ variants let us fix p ≥ 1 and recall
the definition of the usual p-Wassterstein distance.

(X , ρX ) is now a Polish metric space. On Ω = XN we use the Polish metric
ρΩ((xt)t, (yt)t) := (

∑
t ρX (xt, yt)p)1/p. Typically, when clear from the context we

will omit the subscript for the metric. We use (Xt)t to denote the canonical process
on Ω, i.e. Xt is the projection onto the t-th factor of Ω = XN . On Ω × Ω call
X = (Xt)t the projection on the first factor and call Y = (Yt)t the projection on
the second factor. For µ, ν ∈ P(Ω) we denote by Cpl (µ, ν) the set of probability
measures π on Ω × Ω for which X ∼ µ and Y ∼ ν under π, i.e. for which the
distribution of X under π is µ and that of Y under π is ν. In applications, a
particular role is played by Monge couplings. A Monge coupling from µ to ν is a
coupling π for which Y = T (X) π-a.s. for some Borel mapping T : Ω → Ω that
transports µ to ν, i.e. satisfies T#(µ) = ν.

For µ, ν ∈ Pp(Ω), i.e. for probability measures on Ω with finite p-th moment
their p-Wasserstein distance is

Wp(µ, ν) := inf
{
Eπ (ρ(X,Y )p)1/p : π ∈ Cpl(µ, ν)

}
. (1)

Following, [55] the infimum in (1) remains unchanged if one minimizes only over
Monge couplings in many situations.

To motivate the formal definition of the adapted cousins in (5) and (6) below,
we start with an informal discussion in terms of Monge mappings: In probabilistic
terms, the preservation of mass assumption T#(µ) = ν asserts(

T1(X1, . . . , XN ), . . . , TN (X1, . . . , XN )
)
∼ ν, (2)

which ignores the evolution of µ and ν (resp.) in time. Rather it would appear
more natural to restrict to mappings (Tk)Nk=1 which are adapted in the sense that
Tk depends only on X1, . . . , Xk. Adapted Wasserstein distances can be defined
following precisely this intuition, relying on a suitable version of adaptedness on
the level of couplings:

The set Cplc(µ, ν) of causal couplings1 consists of all π ∈ Cpl(µ, ν) such that

π
(
(Y1, . . . , Yt) ∈ A|X

)
= π

(
(Y1, . . . , Yt) ∈ A|X1, . . . Xt

)
. (3)

for all t ≤ N and A ⊆ X t measurable, cf. [44]. The set of all bi-causal couplings
Cplbc(µ, ν) consists of all π ∈ Cplc(µ, ν) such that the distribution of (Y,X) under
π is also in Cplc(ν, µ), i.e. that (3) also holds with the roles of X and Y reversed.

The term causal was introduced by Lassalle [44], who considers a causal transport
problem in which the usual set of couplings is replaced by the set of causal couplings.
The resulting concept is not actually a metric as it lacks symmetry, but as suggested
by Soumik Pal, this is easily mended and we formally define the causal - and
symmetrized-causal p-Wasserstein distance, resp. as follows:

1Intuitively, at time t, given the past (X1, . . . , Xt) of X, the distribution of Yt does not depend
on the future (Xt+1, . . . , XN ) of X. For absolutely continuous measures µ, the weak closure of
the set of adapted Monge couplings, i.e. of those π ∈ Cpl (µ, ν) for which Y = T (X) π-a.s. for T
adapted, is precisely the set of all causal couplings, see [42].
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For µ, ν ∈ Pp(Ω) set

CWp(µ, ν) := inf
{
Eπ (ρ(X,Y )p)1/p : π ∈ Cplc(µ, ν)

}
(4)

SCWp(µ, ν) := max
(
CWp(µ, ν), CWp(ν, µ)

)
. (5)

We use the term adapted Wasserstein distance for

AWp(µ, ν) := inf
{
Eπ (ρ(X,Y )p)1/p : π ∈ Cplbc(µ, ν)

}
. (6)

Rüschendorf [56] refers to AWp as ‘modified Wasserstein distance’. Pflug-Pichler
[50, Definition 1] use the names multi-stage distance of order p and nested distance.
It can also be considered as a discrete time version of the ‘Wasserstein-type distance’
of Bion-Nadal and Talay [15]. In [4] we use a slightly modified definition of AWp

which scales better with the number of time-periods N but leads to an equivalent
metric (for fixed p and N). We shall discuss further properties of AWp (and in
particular the connection with Vershik’s iterated Kantorovich distance) in Section
1.8 below.

1.3. Hellwig’s information topology. The information topology introduced by
Hellwig in [29] (as well as Aldous’ extended weak topology which we discuss next)
is based on the idea that an essential part of the structure of a process is the
information that we may deduce about the future behaviour of the process given
its behaviour up to current time t. For a process whose law is µ, this information
is captured by the conditional law Lµ(Xt+1, . . . , XN |X1 = x1, . . . , Xt = xt) of
Xt+1, . . . , XN given X1 = x1, . . . , Xt = xt under µ.
Lµ(Xt+1, . . . , XN |X1 = x1, . . . , Xt = xt) is also the disintegration µx1,...,xt of

µ ∈ P(Ω) w.r.t. the first t coordinates.
Hellwig’s information topology is the initial topology w.r.t. a family of maps

(It)N−1
t=1 which are defined based on these disintegrations:

It : P(Ω)→ P
(
X t × P

(
XN−t

))
It(µ) := kt#(µ)

kt(x1, . . . , xN ) := (x1, . . . , xt, µx1,...,xt)
Equivalently, It(µ) is the joint law of

X1, . . . , Xt,L
µ(Xt+1, . . . , XN |X1, . . . , Xt)

under µ, and Hellwig’s information topology is therefore the coarsest topology which
makes continuous for all t the maps which send a probability µ to the joint law
describing the evolution of the coordinate process up to time t and the prediction
about the future behaviour of the coordinate process after t.

The work of Hellwig [29] was motivated by questions of stability in dynamic
economic models/games; see the related articles [38, 57, 30, 10].

1.4. Aldous’ extended weak topology. Aldous [3] introduces a type of conver-
gence for pairs of filtrations and continuous time stochastic processes on them that
he calls extended weak convergence [3, Definition 15.2]. Restricted to our current
setting, his definition can be paraphrased in a similar manner as that of the in-
formation topology. Aldous’ idea is to represent a stochastic process with law µ
through the associated prediction process2, that is, the process given by

Zµ0 := L(X) = µ,Zµ1 := Lµ(X|X1), . . . , ZµN := Lµ(X|X1, . . . , XN ).

That is, (Zµt )Nt=0 is a measure-valued martingale that makes increasingly accurate
predictions about the full trajectory of the process X.

2The definition of the prediction process goes back at least to Knight [39].
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Rather then comparing the laws of processes directly, the extended weak topology
is derived from the weak topology on the corresponding prediction processes (plus
the original processes). I.e. formally, the extended weak topology on P(Ω) is the
initial topology w.r.t. the map

E : P(Ω)→ P
(

Ω× P(Ω)N+1
)

which sends µ to the joint distribution of

(X,Zµ) = (X1, . . . , XN , µ,L
µ(X|X1),Lµ(X|X1, X2), . . . ,Lµ(X|X1, . . . , XN ))

under µ.
Note that, to stay faithful to Aldous’ original definition, we defined E to map

µ not just to the law of the prediction process but to the joint law of the original
process and its prediction process. One easily checks that the original process may
be omitted in our setting without changing the resulting topology.

1.5. The optimal stopping topology. The usual weak topology on P(Ω) is the
coarsest topology which makes continuous all the functions

µ 7→
∫
f dµ

for f : Ω→ R continuous and bounded.
One may follow a similar pattern and look at the coarsest topology which makes

continuous the outcomes of all sequential decision procedures. Perhaps the easiest
way to formalize this is to look at optimal stopping problems. In detail, write
AC(Ω) for the set of all processes (Lt)Nt=1 which are adapted, bounded and satisfy
that x 7→ Lt(x) is continuous for each t ≤ N . Write vL(µ) for the corresponding
value function, given that the process X follows the law µ, i.e.

vL(µ) := inf{Eµ (Lτ ) : τ ≤ N is a stopping time}.

The optimal stopping topology on P(Ω) is the coarsest topology which makes the
functions

µ 7→ vL(µ)

continuous for all (Lt)Nt=1 ∈ AC(Ω).

1.6. Main result. We can now state our main result:

Theorem 1.1. Let (X , ρX ) be a Polish metric space, where ρX is a bounded metric
and set Ω := XN . Then the following topologies on P(Ω) are equal

(1) the topology induced by AWp

(2) the topology induced by SCWp

(3) Hellwig’s information topology
(4) Aldous’ extended weak topology
(5) the optimal stopping topology.

The assumption that ρX is bounded serves only to simplify the statement of the
theorem, because in this case the topology induced by Wp coincides with the weak
topology. For every Polish space there is a bounded complete metric which induces
the topology (given any complete metric ρX , replace it by e.g. min(1, ρX )).
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1.6.1. p-Wasserstein and unbounded metrics. There is an analogous statement,
Theorem 1.2 below, which drops the assumption that ρX is bounded. To be able to
state it, we introduce slight variations of Hellwig’s information topology, of Aldous’
extended weak topology and of the optimal stopping topology:

In [29] Hellwig equips the target spaces of It with the weak topology – or more
precisely he equips P

(
XN−t

)
with the weak topology, X t × P

(
XN−t

)
with the

product topology and finally P
(
X t × P

(
XN−t

))
with the weak topology based on

this topology. One may easily define a p-Wasserstein version of Hellwigs information
topology by using the recipe ‘replace the weak topology by the p-Wasserstein metric
everywhere’. Concretely, if we restrict It to Pp(Ω), we may view it as a map into
Pp
(
X t × Pp

(
XN−t

))
, where the last space carries the metric

ρPp(X t×Pp(XN−t))(µ, ν) := inf
γ∈Cpl(µ,ν)

(∫
ρ((xi)i≤t, (yi)i≤t)p

+Wp(µ̂, ν̂)p dγ((xi)i≤t, µ̂, (yi)i≤t, ν̂)
)1/p

.

We will call the resulting variant of Hellwigs information topology on Pp(Ω) the
Wp-information topology.

Similarly, one may systematically replace every occurrence of the weak topology
in the definition of the extended weak topology by the p-Wasserstein metric. We
call the resulting topology on Pp(Ω) the extended Wp-topology.

Just like the weak topology is the coarsest topology which makes integration
of continuous bounded functions continuous, the p-Wasserstein topology is the
coarsest topology which makes integration of continuous functions bounded by
c · (1 + ρ(x0, x)p) continuous. Following this analogy, we define ACp(Ω) as the
set of all processes (Lt)Nt=1 which are adapted, bounded by x 7→ c · (1 + ρ(x0, x)p)
for some c ∈ R+ and satisfy that x 7→ Lt(x) is continuous for each t ≤ N .

TheWp-optimal stopping topology on Pp(Ω) is the coarsest topology which makes
the functions

µ 7→ vL(µ)

continuous for all (Lt)Nt=1 ∈ ACp(Ω).
With these we may state the following generalization of Theorem 1.1:

Theorem 1.2. Let (X , ρX ) be a Polish metric space and set Ω := XN . Then the
following topologies on Pp(Ω) are equal

(1) the topology induced by AWp

(2) the topology induced by SCWp

(3) the Wp-information topology
(4) the extended Wp-topology
(5) the Wp-optimal stopping topology.

Clearly, one recovers Theorem 1.1 from Theorem 1.2 by choosing a bounded
metric on X , because the Wp-information topology for bounded ρX is just the in-
formation topology, the extendedWp-topology for bounded ρX is just the extended
weak topology and the Wp-optimal stopping topology for bounded ρX is just the
optimal stopping topology.

The relationship between the topologies listed in Theorem 1.1 and those listed
in Theorem 1.2 is similar to the non-adapted case where we know that usual p-
Wasserstein convergence is equivalent to usual weak convergence plus convergence
of the p-th moments.

Lemma 1.3. Convergence in any of the topologies of Theorem 1.2 is equivalent to
convergence in any of the topologies of Theorem 1.1 (where for building SCWp and
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AWp, ρX is replaced by a bounded compatible complete metric e.g. min(1, ρX )) plus
convergence of p-th moments on Ω w.r.t. (the original) ρΩ.

We prove Lemma 1.3 in Section 6, making use of (parts of) Theorem 1.1 and
Theorem 1.2.

1.7. Further remarks on related work.

1.7.1. Some further articles of successors of Aldous. One of the original applications
of Aldous’ weak extended topology concerned the stability of optimal stopping [3].
This corresponds to one half of (4)=(5) in Theorem 1.1, but in a much more general
setting. This line of work has been continued by Lamberton and Pagès [43], Coquet
and Toldo [19], among others.

Aldous’ extended weak topology was also inspiring and instrumental for the de-
velopment of the theory of convergence of filtrations, and the associated questions
of stability of the martingale representation property and Doob-Meyer decompo-
sitions. In this regard, see the works by Hoover et al [35, 33] and by Mémin et
al [18, 46]. The related question of stability of stochastic differential equations (as
well as their backwards version) with respect to the driving noise has particularly
seen a burst of activity in the last two decades. For brevity’s sake we only refer to
the recent article by Papapantoleon, Posamaï, and Saplaouras [48] for an overview
of the many available works in this direction.

1.7.2. Previous applications of adapted Wasserstein distances. Pflug, Pichler and
co-authors [50, 54, 51, 52, 53, 28] have extensively developed and applied the no-
tion of nested distaces for the purpose of scenario generation, stability, sensitivity
bounds, and distributionally robust stochastic optimization, in the context of op-
erations research.

Acciaio, Zalashko, and one of the present authors consider in [2] the adapted
Wasserstein distance in continuous time in connection with utility maximization,
enlargement of filtrations and optimal stopping.

Causal couplings have appeared in the work by Yamada and Watanabe [60], Ja-
cod and Mémin [36] as well as Kurtz [40, 41], concerning weak solutions of stochastic
differential equations, and by Rüschendof [56] concerning approximation theorems
in probability theory. The term ‘causal’ is first used by Lassalle [44], who uses
it in an additional constraint for the transport problem and gives an alternative
derivation of the Talagrand inequality for the Wiener measure. Causal couplings
are also present in the numerical scheme suggested in [1] for (extended mean-field)
stochastic control.

The article [6] connects adapted Wasserstein distance (in continuous time) to
martingale optimal transport (cf. [32, 12, 26, 22, 16, 31, 17, 11, 13] among many
others). Several familiar objects appear as solutions to variational problems in this
context. E.g. geometric Brownian motion is the martingale which is closest in AW2
to usual Brownian motion subject having a log normal distribution at the terminal
time-point, the local vol model is closest to Brownian motion subject to matching
1-d marginals.

Bion-Nadal and Talay [15] introduce an adapted Wasserstein-type distance on
the set of diffusion SDEs and show that this distance corresponds to the computa-
tion of a tractable stochastic control problem. They also apply their results to the
problem of fitting diffusion models to given marginals.

In [4] the present authors consider adapted Wasserstein distances in relation
to stability in finance: Lipschitz continuity of utility maximization/hedging are
established w.r.t. to the underlying models in discrete and continuous time.
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1.8. Another formulation of the adapted Wasserstein distance and of
Hellwigs information topology. Here we give an alternative formulation of the
adapted Wasserstein distance / nested distance due to Pflug and Pichler.

Again, X is a Polish space and ρ = ρX is a compatible metric on X . Starting
with V pN := 0 we define

V pt (x1, . . . , xt, y1, . . . , yt) := (7)

inf
γt+1∈Cpl(µx1,...,xt ,νy1,...,yt )

∫∫ (
V pt+1(x1, . . . , xt+1, y1, . . . , yt+1)

+ ρ(xt+1, yt+1)p
)

dγt+1(xt+1, yt+1).

The nested distance is finally obtained in a backwards recursive way by

NDp(µ, ν)p = inf
γ1∈Cpl(proj1#(µ),proj1#(ν))

∫∫
(V p1 (x1, y1) + ρ(x1, y1)p) dγ1(x1, y1).

(8)
Then AWp = NDp. We refer to [7] for the (straightforward) justification.

For N > 1 the adapted Wasserstein distance is not complete. As was established
in [5], a natural complete space into which (Pp(Ω) ,AWp) embeds is given by the
space of nested distributions:

Consider the sequence of metric spaces

XN :N := (X , ρN :N ), ρN :N := ρ = (ρp)1/p,

XN−1:N :=
(
X × Pp(XN :N ) , ρN−1:N

)
, ρN−1:N :=

(
ρp +Wp

ρN:N ,p

)1/p
,

...
...

X1:N :=
(
X × Pp(X2:N ) , ρ1:N

)
, ρ1:N :=

(
ρp +Wp

ρ2:N ,p

)1/p
,

where at each stage t, the space Pp(Xt:N ) is endowed with the p-Wasserstein distance
with respect to the metric ρt:N on Xt:N , which we denote by Wρt:N ,p. The space of
nested distributions (of depth N) is defined as Pp(X1:N ). We endow Pp(X1:N ) with
the complete metric Wρ1:N ,p.

The space of nested distributions was defined by Pflug [49]. Notably the idea
to iterate the formation of Wasserstein spaces and metrics goes back to Vershik
[58, 59] who uses the name ‘iterated Kantorovich distance’. The main interest of
Vershik (and his successors) lies in the classification of filtrations (in the language
of ergodic theory). We refer to the work of Emery and Schachermayer [24] for a
survey from a probabilistic perspective and to Janvresse, Laurent and de la Rue
[37] for a contemporary article (again from a probabilistic viewpoint).
Pp(Ω) is naturally embedded in the set of nested distributions of depthN through

the map N given by

N (µ) := L
(
X1,L

(
X2, · · ·L

(
XN−1,L

(
XN

∣∣X̄N−1
1

)∣∣X̄N−2
1

)
· · ·
∣∣X1

))
(9)

where (X1, . . . , XN ) is a vector with law µ, L again denotes (conditional) law and
we use X̄t

1 as a shorthand for the vector X1, . . . , Xt.
Following [5], we have:

Theorem 1.4. The map N defined in (9) embeds the metric space (Pp(Ω) ,AWp)
isometrically into the complete separable metric space (Pp(X1:N ) ,Wρ1:N ,p).

Remark 1.5. When X has no isolated points, Pp(X1:N ) is actually the completion
of Pp(Ω), i.e. Pp(Ω) considered as a subset of Pp(X1:N ) is dense.

1.8.1. Hellwig’s information topology in terms of adapted Wasserstein distances.
We note that Hellwig’s definition of the information topology can also be rephrased
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using the concept of adapted Wasserstein distance: Assume that ρX is a bounded
metric and for t ≤ N , set

Ω = XN = X t︸︷︷︸
=:X(t)

1

×XN−t︸ ︷︷ ︸
=:X(t)

2

= X
(t)
1 ×X

(t)
2 .

I.e. for each t, we consider Ω as the product of two Polish spaces (which one might
consider as ‘history’ and ‘future’). Extending the defintion of AWp in the ob-
vious way to products of not necessarily equal Polish spaces, we can then equip
Pp

(
X

(t)
1 ×X

(t)
2

)
with a one period adapted Wasserstein distance AW(t)

p , p ≥ 1.
Setting for µ, ν ∈ P(Ω)

IWp(µ, ν) :=
N∑
t=1
AW(t)

p (µ, ν), p ≥ 1, (10)

we obtain a compatible metric for the information topology. This is relatively
straightforward (whereas the full version of Theorem 1.1 is not straightforward as
far as we are concerned).

1.9. Preservation of Compactness. We close this section with a result about
the preservation of relative compactness which we shall use in Sections 4 and 6,
but which also might be of independent interest. Specifically, in [8, 9] the two-step
version of Lemma 1.6 is used as a crucial tool in the investigation of the weak
transport problem.

A more detailed investigation of compactness in P(Ω) with the weak adapted
topology is the topic of the companion paper to this one, [23].

Assume for simplicity that ρX is a bounded metric. Then we have

Lemma 1.6 (Compactness lemma). A ⊆ P(Ω) is relatively compact w.r.t. the
usual weak topology iff N [A] ⊆ P(X1:N ) is relatively compact.

We note that Lemma 1.6 is essentially a consequence of the characterization
of compact subsets in P(P(X)); in a somewhat different framework it was first
proved in [34]. The version stated here follows by repeated application of [23,
Lemma 3.3]/[8, Lemma 2.6].

The implication that N [A] relatively compact implies A relatively compact is
rather easy to see, but the other direction that A relatively compact implies N [A]
relatively compact is nontrivial since the mapping N : P(Ω) → P(X1:N ) is not
continuous when P(Ω) is endowed with the usual weak topology (except for trivial
cases). Lemma 1.6 would not be true if we were to replace relative compactness by
compactness.

The assumption that ρX is bounded is inessential. A version of Lemma 1.6 holds
if we replace P(Ω) by Pp(Ω) and the weak topology by the one induced by the
p-Wasserstein metric.

A similar result based on Hellwig’s information toplogy, relating relative com-
pactness in P(Ω) to relative compactness in

∏N−1
t=1 P

(
X t × P

(
XN−t

))
, is also true.

2. Preparations

The rest of the paper will essentially be devoted to proving Theorem 1.1, or
really its generalization Theorem 1.2.

In Section 3 we prove that Hellwig’s information topology equals the topology
induced by AWp, i.e. (3) = (1) in Theorem 1.2. In a sense, of all the topologies
listed in Theorem 1.2, Hellwig’s information toplogy ‘looks’ the coarsest – or at
least like one of the coarser ones, while the topology induced by AWp ‘looks’ the
finest.
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In Section 4 we sandwich the topology induced by SCWp between Hellwig’s
information topology and the toplogy induced by AWp, i.e. we show (3) ≤ (2) ≤ (1)
in Theorem 1.2.

In Section 5 we show that Aldous’ extended weak topology is equal to Hellwig’s
information topology, i.e. (4) = (3) in Theorem 1.2.

In Section 6 we prove Lemma 1.3.
In Section 7 we prove that the optimal stopping topology is coarser than the

topology induced by AWp and finer than Hellwig’s (Wp-)information topology, i.e.
(3) ≤ (5) ≤ (1) in Theorem 1.2.

2.1. Notation. The nested structure of spaces like for example Pp(X1:N ) intro-
duced in Section 1.8 is (at least for the authors) not so easy to gain an intuition for.
It seems rather challenging to picture probability measures on probability measures
on probability measures. . . etc.

Therefore, much of the proofs in the following two sections will be about book-
keeping and not getting lost in these nested structures. In most other contexts
we would regard such bookkeeping as abstract nonsense better swept under the
rug, but in the context of the present paper we believe that it really constitutes an
important and nontrivial ingredient in successfully carrying out the proofs.

To aid in this endeavour we make some notational preparations and introduce a
few conventions.

2.1.1. Operations on Spaces. In the introduction we described the topologies listed
in Theorems 1.1 and 1.2 as initial topologies w.r.t. maps into more complex spaces.
These spaces are built up from just a few basic operations, and in most cases the
maps can also be constructed using a few relatively simple ingredients.

For spaces, the operations in question are
• product formation, i.e. for spaces X and Y we may form their product space
X × Y,
• and passing from a space X to the space P(X ) of probability measures on
X .

Here we run into some tension between the various existing definitions in the
literature. While Hellwig and Aldous originally defined their topologies based
on equipping the space P(X ) of probability measures on some space X with the
weak topology, without any mention of metrics, AWp is a metric built on the p-
Wasserstein metric, and Theorem 1.4 exhibits this metric as the ‘initial metric’
w.r.t. an embedding of Pp(Ω) (not P(Ω)) into (Pp(X1:N ) ,Wρ1:N ,p).

Luckily, when the base metric ρX on X is bounded and we decide that we only
care about topologies and not the metrics that induce them, all of these distinctions
vanish, and one may hope for these fine distinctions to not be so important in the
end.

To give as uniform and as streamlined a treatment as possible of all the various
ways in which these metric and topological spaces can be related to each other we
employ the following strategy: A lot of our arguments are agnostic to the distinction
between P and Pp, and to whether we are talking about metric or topological
spaces etc. They only rely on properties of the operations of product formation
and formation of spaces of probability measures and on properties of maps between
various spaces built using these operations which hold in either case. For the rest
of the paper we will therefore drop the p in Pp and other explicit mentions of these
distinctions. The reader may decide to read the paper using either of the following
two sets of conventions, which are to be applied recursively:
Convention 1 (weak topologies)

• X , Y, Z, A, B, C, etc. are Polish spaces.
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• X × Y is a topological space with the product topology (again Polish).
• P(X ) is a topological space with the weak topology (also Polish).
• ‘space’ will mean Polish space.

Convention 2 (Wp)
• p ≥ 1 is fixed throughout the paper
• X , Y, Z, A, B, C, etc. are Polish (i.e. complete separable) metric spaces
with metrics ρX , ρY , ρZ , ρA, ρB, ρC , etc. respectively.
• X × Y is a Polish metric space with the metric

ρX×Y((x1, y1), (x2, y2)) := (ρX (x1, x2)p + ρY(y1, y2)p)1/p .

• P(X ) is a Polish metric space with the p-Wasserstein metric

ρP(X )(µ, ν) := inf
γ∈Cpl(µ,ν)

(∫
ρ(x1, x2)p dγ(x1, x2)

)1/p .

• The subscript on the metric ρ may be dropped when clear from the context.
• ‘space’ will mean Polish metric space.

Unless specified otherwise everything said from here on will be true for either
way of reading. Convention 1 will lead to a direct proof of Theorem 1.1, while Con-
vention 2 will give a proof of the more general version, Theorem 1.2. Occasionally
an argument will require us to talk directly about metrics to establish continuity
of some map. When one only cares about Theorem 1.1 and not Theorem 1.2 these
sections can be read while assuming that p = 1 and that all metrics mentioned are
bounded.

Another space we will need is

Definition 2.1. F (A B) ⊆ P(A × B) is the space of probability measures on
A× B which are concentrated on the graph of a measuruable function, i.e.:

F (A B) :=
{
µ ∈ P(A×B)

∣∣∣ ∃f : A → B measurable s.t. µ(graph(f)) = 1
}
.

The space F (A B) carries the subspace topology / the restriction of the metric
on P(A× B).

2.1.2. Maps between spaces. Assuming Convention 1, when f : X → Y is a con-
tinuous map, the pushforward under f , i.e. the map which sends µ ∈ P(X ) to the
measure ν ∈ P(Y) with ν(A) = µ(f−1[A]) is also continuous.

Similarly, assuming Convention 2, when f : X → Y is a Lipschitz-continuous
map between metric spaces the pushforward under f is also Lipschitz-continous
from P(X ) to P(Y).

We will use P(f) : P(X ) → P(Y) to denote the pushforward under f , to em-
phasize the fact that P is a functor, i.e. that it sends a diagram with a ‘nice’ (read
continuous/Lipschitz) map

X f−→ Y

to a similar diagram

P(X ) P(f)−→ P(Y)

where the map is also ‘nice’, and that P(f ◦ g) = P(f) ◦ P(g) and P(1X ) = 1P(X )
(where 1X is the identity function on X ).

For a product of spaces X × Y, the projection onto X will alternatively be
denoted by either projX or by the same letter that is used for the space, but in a
non-calligrapic font, i.e. X : X × Y → X .
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If µ is defined on some product
∏
i Xi of spaces, we also introduce a shorthand

notation for marginals of µ, i.e. for the pushforward of µ under projection onto the
product of some subset of the original factors:

µ�(Xij )j = P
(
(Xij )j

)
(µ) .

If f : A → B and g : A → C are functions we write (f , g) for the function

(f , g) : A → B × C
(f , g)(a) := (f(a), g(a)) .

If we want to specify a map from, say A×B×C to X but we only really care about
one of the variables we will use an underscore ‘_’ instead of naming the unused
variables, as in (a,_,_) 7→ f(a). Similarly, when integrating we may also use _ to
denote unused variables, i.e. for µ ∈ P(X × Y) we might write

∫
f(y) dµ(_, y).

Two important maps will be the disintegration map disBA and its left inverse intBA.
The disintegration map

disBA : P(A× B)→ F (A P(B))

sends a probability µ on A× B to the measure

P
(
(a,_) 7→ (a, µa)

)
(µ)

where a 7→ µa is a classical disintegration of µ, i.e. if µ̄ = disBA(µ) then∫
f(a, b) dν(b) dµ̄(a, ν) =

∫
f(a, b) dµa(b) dµ(a,_) =

∫
f(a, b) dµ(a, b) .

The disintegration map is measurable (see for example [14, Proposition 7.27]) and
injective. It is not continuous w.r.t. the weak topologies or the Wasserstein metrics.

When writing disBA we will not insist that A has to be the first factor in the
domain of disBA – A and B may even be products themselves, whose factors are
intermingled in the product that makes up the domain of disBA. Also, we may
sometimes omit B, only specifying the variable(s) w.r.t. which we are disintegrating,
not the ones which are left over, as in disA.

The map

intBA : P(A× P(B))→ P(A× B)

intBA(µ) := f 7→
∫
f(a, b) dν(b) dµ(a, ν)

is (Lipschitz-)continuous.
The pair disBA, intBA enjoy the following properties:
(1) intBA is the left inverse of the disintegration map, i.e.

intBA ◦ disBA = 1P(A×B) .

This is a direct consequence of the definition of the disintegration.
(2) intBA�F (A P(B)) is injective. Therefore,
(3) disBA ◦ intBA�F (A P(B)) = 1F (A P(B)), i.e. disBA and intBA are inverse bijec-

tions between P(A× B) and F (A P(B)).
The last two properties are just a reformulation of the known fact that the disinte-
gration of a measure is almost-surely uniquely defined.
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2.1.3. Processes which take values in different spaces at different times. Already in
the introduction, in Section 1.8.1, we found it convenient to extend the definition
of AWp to products of not necessarily equal Polish spaces ‘in the obvious way’. To
accommodate for reapplication of concepts in a similar style as seen there we make
the minor generalization of letting all the processes we talk about take values in
different spaces at different times – typically at time t they will take values in a
space Xt.

Denote by X kj :=
∏k
i=j Xi and define X := XN1 , X k := X k1 , Xj := XNj .

3. Hellwig’s Wp-information topology is equal to the topology
induced by AWp

In this section we show (3) = (1) in Theorem 1.2. We will do so by identi-
fying both topologies as initial topologies w.r.t. a single map each, i.e. finding a
space which is homeomorphic to P

(
X
)
with Hellwig’s (Wp-)information topology

and one which is homeomorphic to P
(
X
)
with the topology induced by AWp and

then showing that these spaces are homeomorphic in the right way. As an aux-
illiary tool we will introduce another topology on P

(
X
)
which wasn’t mentioned

in the introduction, but which is very similar to Hellwig’s. The proof strategy
can be summarized by saying that we want to show that the following diagram is
commutative.

P
(
X
)

F1I
[
P
(
X
)]

I ′
[
P
(
X
)]

NII ′

H

KM
(11)

Here N is the map which induces the same topology as AWp, I induces Hellwig’s
topology and I ′ induces what we will call the reduced information topology. We
shortly restate their definitions below. The maps K,M, H are still to be found.

As introduced in Section 1.3 Hellwig’s (Wp-)information topology is induced by
a family of maps It, given by:

It : P
(
X
)
→ F

(
X t  P

(
Xt+1

))
It := disXt+1

X t
.

Equivalently, the information topology is the initial topology w.r.t. the map

I : P
(
X
)
→

N−1∏
t=1
F
(
X t  P

(
Xt+1

))
I(µ) := (It(µ))t .

We saw in Section 1.8 that AWp is induced by an embeddingN : P
(
X
)
→ P(X1:N ).

Rephrasing the definition there, N is obtained by defining recursively from t = N−1
to t = 1:

NN := 1
P(X)

N t := disXt+1:N

X t
◦N t+1
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and setting
N := N 1 .

In fact, because dis maps into the space of measures concentrated on the graph of
a function, N also maps into a smaller space, which we call F1, and which is again
defined by recursion down from N − 1 to 1:

FN := P(XN )
Ft := F (Xt  Ft+1) .

I.e. F1 is P(X1:N ) with all occurences of P(· × ·) replaced by F (· ·). Remember
that we had

XN :N := XN
Xt:N := Xt × P(Xt+1:N ) .

For convenience, let us also define
Pt := P(Xt:N ) .

The fact that
N t : P

(
X
)
→ F

(
X t  Ft+1

)
and that therefore N maps into F1 is a consequence of Lemma 3.1 below.

Finally, I ′ is defined as follows

I ′ : P
(
X
)
→

N−1∏
t=1
F
(
X t  P(Xt+1)

)
I ′(µ) := (I ′t(µ))t
I ′t : P

(
X
)
→ F

(
X t  P(Xt+1)

)
I ′t := disXt+1

X t
◦P
(
projX t+1

)
.

I.e. the reduced information topology, like the information topology, makes contin-
uous predictions about the behaviour of the process after time t given information
about its behaviour up to time t, only now we are just predicting what the process
will do in the next step, not for the rest of time.
I, I ′ and N are injective and therefore bijections onto their codomains. This

means that the values of the maps K,M, H in diagram (11) as functions between
sets are really already prescribed. The task consists in finding a representation for
them which makes it clear that they are continuous.

Lemma 3.1. disB×YA restricted to F (A× B  Y) maps onto F
(
A F (B  Y)

)
.

Proof. We first show that it maps into F
(
A  F (B  Y)

)
. Let ν ∈ F

(
A ×

B  Y
)
and let g : A × B → Y be a function witnessing this fact, i.e. ν(f) =∫

f(a, b, g(a, b)) dν(a, b,_).
Let α := disB×YA (ν). Then∫ ∫

1g(a,b)6=y dβ(b, y) dα(a, β) =
∫

1g(a,b) 6=y dν(a, b, y) = 0 .

This means that for α-a.a. (a, β) we have
∫

1g(a,b) 6=y dβ(b, y) = 0, i.e. β is concen-
trated on the graph of the function b 7→ g(a, b).

To see that any α ∈ F
(
A  F (B  Y)

)
can be obtained as the image of

some ν ∈ F (A× B  Y) under disB×YA , note that for such α, by the existence of
measurably dependent (classical) disintegrations (see for example [14, Proposition
7.27]), ν := intB×YA (α) ∈ F (A× B  Y), and disB×YA (ν) = α. �
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3.1. Homeomorphisms. We give a plain language description of what follows in
this section:

The continuity ofM will be quite trivial, because we are just discarding infor-
mation.

The components Kk : F1 → F
(
X k  P

(
Xk+1

))
of the map K are obtained by

‘folding’ both the ‘head’ and the ‘tail’ of F1 using iterated application of the map
int.

head︷ ︸︸ ︷
F

(
X1  F

(
· · · F

(
Xk  

tail︷ ︸︸ ︷
F
(
Xk+1  F (· · · P(XN ) . . . )

) )
. . .

))
By continuity of int, it’s easy to see that Kk is continuous. To show that the map
K with the components Kk is the map we are looking for, we basically show that

I−1 ◦ Kk = N−1 . (12)

N−1 is again another way of ‘folding’ all of F1 using int to arrive at P
(
X
)
. As I−1 is

also int, showing (12) amounts to showing that these two different ways of ‘folding’
– first the head and tail and then in a last step the junction between k and k+1 on
the one hand, and from front to back on the other hand – do the same thing. This
may be intuitively clear to the reader. The proof works by repeated application
of Lemma 3.5, which represents one step of ‘folding order doesn’t matter’. Using
Lemma 3.5 the proof is completely analogous to the proof that for an operation ?
satisfying (a ? b) ? c = a ? (b ? c), i.e. for an associative operation, one has(

(. . . ((x1 ? x2) ? x3) ? . . .) ? xk
)
?
(

(. . . ((xk+1 ? xk+2) ? xk+3) ? . . .) ? xN
)

=
(

(. . . ((x1 ? x2) ? x3) ? . . .) ? xN
)
.

As we know, for such an operation any way of parenthesizing the multiplication of
N elements gives the same result. An analogous statement holds for int, though
we do not formally state or prove this.

Finally, in Lemma 3.9, using Lemma 3.8 as the main ingredient we prove the
‘hard direction’, i.e. thatH is continuous. If the continuity ofM andK as informally
described here seem obvious to the reader they may wish to skip ahead to Lemma
3.8 and Lemma 3.9.

Remark 3.2. The reader interested in working out the details and analogies be-
tween ‘folding’ using int and associative binary operations might be interested in
reading about monads in the context of Category Theory first. (See for example
Chapter VI in [45].) In fact, (P,η,µ) forms a monad, where

ηX : X → P(X )

sends an element x of X to the dirac measure at x and

µX : P(P(X ))→ P(X )

µX (ν) := f 7→
∫∫

f(x) dν′(x) dν(ν′) .

This monad is studied in a little more detail in [27]. int can be obtained from µ
and a tensorial strength tA,B : A × P(B) → P(A× B) in the sense described for
example in [47].

To show thatM is continuous we will need the following lemma.
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Lemma 3.3. disBA is natural in B, i.e. for f : B → B′ the following diagram
commutes.

P(A× B)P(A× B′)

F (A P(B))F (A P(B′))

disBAdisB
′

A

P(1A × f)

P(1A × P(f))

Proof. This is just straigtforward calculation using the definitions. �

Applying Lemma 3.3 with A = X k, B = Xk+1, B′ = Xk+1 and f = projXk+1
:

Xk+1 → Xk+1 we get that

I ′k = disXk+1

Xk
◦P
(

1Xk × projXk+1

)
= P

(
1Xk × P

(
projXk+1

))
◦ disXk+1

Xk

Setting Mk := P
(

1Xk × P
(

projXk+1

))
we get I ′k = Mk ◦ Ik and then setting

M((µk)k) := (Mk(µk))k gives I ′ =M◦ I.
There is an analogue of Lemma 3.3 which we list here for completeness.

Lemma 3.4. intBA : P(A× P(B))→ P(A× B) is natural in B, i.e. for f : B → B′
the following diagram commutes:

P(A× P(B))P(A× P(B′))

P(A× B)P(A× B′)

P(1A × P(f))

P(1A × f)

intBAintB′A

In particular, if B ⊆ B′ then

intB
′

A �P(A×P(B)) = intBA
if we regard P(A× P(B)) as a subset of P(A× P(B′)) by recursively using the
recipe: ‘if B is a subset of B′, then we can view P(B) as the subset of those µ ∈ P(B′)
which are concentrated on B’.

Proof. Again this is just calculation. �

We already implicity used the ‘in particular’-part of Lemma 3.4 when we said
that N can be regarded both as a map into P(X1:N ) and into F1 but the use there
seemed too trivial to warrant much mention. There will be more such tacit uses.

Now we show that K is continuous. We claim that it can be written as

K(µ) = (Kk(µ))k
where

Kk = P
(

1Xk ×
(

intXN:N
XN−1
k+1
◦ · · · ◦ intXk+3:N

Xk+2
k+1

◦ intXk+2:N
Xk+1

))
◦

intXk:N
Xk−1 ◦ · · · ◦ intX3:N

X 2 ◦ intX2:N
X 1 ,
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or without the dots, letting ◦
∏

denote concatenation of functions, e.g. ◦
∏1
i=3fi =

f3 ◦ f2 ◦ f1:

Kk = P
(

1Xk ×
(
◦
∏k+1
i=N−1 intXi+1:N

X i
k+1

))
◦ ◦
∏1
i=k−1 intXi+1:N

X i
.

To prove this we will repeatedly apply the following lemma.

Lemma 3.5 (int is ‘associative’). int satisfies the following relation:

intCA×B ◦ intB×P(C)A = intB×CA ◦P
(
1A × intCB

)
These maps can be seen in the following commutative diagram.

P(A× P(B × P(C)))P(A× B × P(C))

P(A× P(B × C))P(A× B × C)

intB×P(C)A

intCA×B P
(
1A × intCB

)

intB×CA

Proof. This is just expanding the definition. Both maps send a measure α ∈
P(A× P(B × P(C))) to the measure µ with∫

f dµ =
∫
f(a, b, c) dγ(c) dβ(b, γ) dα(a, β) .

�

Lemma 3.6. The following relation holds.

intXk+1

Xk
◦Kk = ◦

∏1
i=N−1 intXi+1:N

X i
(13)

Proof. Again, this is just repeated application of Lemma 3.5. Below we define Tl
for N ≥ l ≥ k and show that

intXk+1

Xk
◦ ◦
∏k+1
i=N−1P

(
1Xk × intXi+1:N

X i
k+1

)
= Tl (14)

for all N ≥ l ≥ k by showing Tl = Tl−1 for all N ≥ l > k. The left hand side of (14)
is the left hand side of (13) with the common tail ◦

∏1
i=k−1 intXi+1:N

X i
of the left and

right side in (13) dropped. Tk will be the right hand side of (13) with the common
part dropped.

Tl := ◦
∏l
i=N−1 intXi+1:N

X i
◦ intX

l
k+1×Pl+1

Xk
◦ ◦
∏k+1
i=l−1P

(
1Xk × intXi+1:N

X i
k+1

)
Here we regard ◦

∏s
r . . . with r < s (an empty product in our context) as the identity

function. For l = N the first factor is an empty product and therefore clearly (14)
is true for l = N . To get from Tl to Tl−1 we leave the first factor alone and apply
Lemma 3.5 with A = X k, B = X l−1

k+1 and C = Xl:N . This transforms

intX
l
k+1×Pl+1

Xk
◦P
(

1Xk × intXl:N
X l−1
k+1

)
into

intXl:N
X l−1 ◦ int

X l−1
k+1×Pl
Xk

and therefore Tl into Tl−1. �

Lemma 3.7. The right hand triangle in (11) commutes, i.e.
Kk ◦ N = Ik .
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Proof. Prepending N to (13) gives

intXk+1

Xk �F (Xk P(Xk+1)) ◦ Kk ◦ N = 1
P(X)

and appending Ik gives
Kk ◦ N = Ik .

�

Now we will show thatH is continuous. We will postpone the proof of Lemma 3.8
below, which is the crucial non-bookkeeping ingredient in the proof of Lemma 3.9
below, until the end of this section. The methods used in the proof of Lemma 3.8
differ significantly from the rest in this section and make use of the concept of the
modulus of continuity for measures, and results relating to it, introduced in the
companion paper [23] to this one.

Lemma 3.8. Let
dom

(
J YA,B

)
⊆ F

(
A P(B)

)
× F

(
A× B  Y

)
be the set of all (µ′, µ) s.t.

intBA(µ′) = µ�A×B . (15)
The function

J YA,B : dom
(
J YA,B

)
→ F

(
A F (B  Y)

)
J YA,B(µ′, µ) := disB×YA (µ)

is continuous.

Clearly, as a function between sets, J YA,B(µ′, µ) only depends on µ. But, as we
know, disB×YA is not continuous. Only when we refine the topology on the source
space, which we encode by regarding J YA,B as a map from the above subset of a
product space, does it become continuous.

Lemma 3.9. H is continuous.

Proof. We will inductively define
Hk : I ′

[
P
(
X
)]
→ P

(
X k × Pk+1

)
(again down from N − 1 to 1) so that they will be continuous by construction (and
by virtue of Lemma 3.8). Also by construction, we will have Hk ◦ I ′ = N k. H will
be H1 so that H ◦ I ′ = N .

Set HN−1 := projN−1, the projection from
∏N−1
k=1 F

(
X k  P(Xk+1)

)
onto the

last factor. HN−1 ◦ I ′ = I ′N−1 = disXN
XN−1 = NN−1 by definition. Given Hk+1

define
Hk(µ) := J Fk+2

Xk,Xk+1

(
projk(µ),Hk+1(µ)

)
,

where projk is the projection from
∏N−1
k=1 F

(
X k  P(Xk+1)

)
onto the k-th factor.

For this to be well-defined we need to check that for µ ∈ I ′
[
P
(
X
)]

we have

intXk+1

Xk
(projk(µ)) = P

(
projXk+1

) (
Hk+1(µ)

)
.

I.e. for ν ∈ P
(
X
)
we want

intXk+1

Xk
(projk(I ′(ν))) = P

(
projXk+1

) (
Hk+1(I ′(ν))

)
The composite of the maps on the left-hand side is equal to

intXk+1

Xk
◦I ′k = intXk+1

Xk
◦ disXk+1

Xk
◦P
(
projXk+1

)
= P

(
projXk+1

)
.
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On the right-hand side we get by induction hypothesis
P
(
projXk+1

)
◦ N k+1 . (16)

Using that P(projA) ◦ disBA = P(projA) we see for l ≥ k + 1

P
(
projXk+1

)
◦ P
(
projX l

)
◦ N l =

P
(
projXk+1

)
◦ P
(
projX l

)
◦ disXl+1:N

X l
◦N l+1 =

P
(
projXk+1

)
◦ P
(
projX l

)
◦ N l+1 =

P
(
projXk+1

)
◦ P
(
projX l+1

)
◦ N l+1 ,

i.e. by induction (16) is also equal to P
(
projXk+1

)
.

As a composite of continuous maps Hk is clearly continuous. (This is where we
use Lemma 3.8.) As a map between sets Hk is just

disXk+1:N

Xk
◦Hk+1 = disXk+1:N

Xk
◦N k+1 = N k

by induction hypothesis and definition of N k. �

3.2. Proof of Lemma 3.8. In this part we prove Lemma 3.8. Here we use several
of the ideas developed in the companion paper [23]. In particular we will need [23,
Lemma 4.2] which we reproduce below.

Lemma 3.10 ([23, Lemma 4.2]). Let µ ∈ F (X  Y). For any ε > 0 there is a
δ > 0 s.t. if

ν ∈ P(X × Y) with Wp (µ, ν) < δ and
γ ∈ Cpl (µ, ν) with

∫
ρ(x1, x2)p dγ(x1, y1, x2, y2) < δp

then ∫
ρ(y1, y2)p dγ(x1, y1, x2, y2) < εp .

For easy reference we also restate Lemma 3.8.

Lemma 3.8. Let
dom

(
J YA,B

)
⊆ F

(
A P(B)

)
× F

(
A× B  Y

)
be the set of all (µ′, µ) s.t.

intBA(µ′) = µ�A×B . (15)
The function

J YA,B : dom
(
J YA,B

)
→ F

(
A F (B  Y)

)
J YA,B(µ′, µ) := disB×YA (µ)

is continuous.

Proof of Lemma 3.8. Let (µ′, µ) ∈ dom(J YA,B). Let ε > 0.
Choose δ > 0 according to Lemma 3.10 with X = A × B, i.e. s.t. for any

ν ∈ P(A× B × Y) with Wp (µ, ν) < δ and any γ ∈ Cpl (µ, ν) with
∫
ρ(a1, a2)p +

ρ(b1, b2)p dγ(a1, b1,_, a2, b2,_) < δp we have
∫
ρ(y1, y2)p dγ(_, y1,_, y2) < εp.

Let (ν′, ν) ∈ dom(J YA,B) with max(ρ(µ, ν), ρ(µ′, ν′)) < min(δ, ε).
This means we can find γ′ ∈ Cpl (µ′, ν′) with∫

ρ(a1, a2)p +Wp(b̂1, b̂2)p dγ′(a1, b̂1, a2, b̂2) < min(δp, εp) . (17)
Let (a, b) 7→ fa(b) and (a, b) 7→ ga(b) : A × B → Y be measurable functions

on whose graph µ and ν, respectively, are concentrated. Let µ̄ := J YA,B(µ′, µ),
ν̄ := J YA,B(ν′, ν).
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As noted in the proof of Lemma 3.1 we know that for µ̄-a.a. (a, µ̇) the measure µ̇
is concentrated on the graph of the function fa (and similarly for ν̄). This together
with P(1A × P(projB)) (µ̄) = µ′ (which is a consequence of (15)) implies that∫

hdµ̄ =
∫
h
(
a,P(1B, fa) (b̂)

)
dµ′(a, b̂)

(again similarly for ν̄).
From this we see that the measure γ̄ ∈ P(A× F (B  Y)×A× F (B  Y))

defined as∫
hdγ̄ :=

∫
h
(
a1,P(1B, fa1) (b̂1), a2,P(1B, ga2) (b̂2)

)
dγ′(a1, b̂1, a2, b̂2)

is in Cpl (µ̄, ν̄).
We may measurably select almost-witnesses γ̂b̂1,b̂2

∈ Cpl(b̂1, b̂2) for the distances
Wp(b̂1, b̂2) s.t. building on (17) we get∫

ρ(a1, a2)p +
∫
ρ(b1, b2)p dγ̂b̂1,b̂2

(b1, b2) dγ′(a1, b̂1, a2, b̂2) < min(δp, εp) . (18)
Now
ρ(µ̄, ν̄)p ≤

∫
ρp
P(A×P(B×Y)) dγ̄

=
∫
ρ(a1, a2)p +Wp

(
P(1B, fa1) (b̂1),P(1B, ga2) (b̂2)

)p
dγ′(a1, b̂1, a1, b̂2)

≤
∫
ρ(a1, a2)p +

∫
ρ(b1, b2)p + ρ (fa1(b1), ga2(b2))p dγ̂b̂1,b̂2

(b1, b2) dγ′(a1, b̂1, a2, b̂2)
=
∫
ρ(a1, a2)p + ρ(b1, b2)p + ρ(y1, y2)p dγ(a1, b1, y1, a2, b2, y2) (19)

where γ ∈ Cpl (µ, ν) is defined as∫
hdγ =

∫∫
h (a1, b1, fa1(b1), a2, b2, ga2(b2)) dγ̂b̂1,b̂2

(b1, b2) dγ′(a1, b̂1, a2, b̂2) .

The integral over the first two summands in (19) is less than min(δp, εp) by (18).
By our choice of δ in the beginning this implies that the integral over the last
summand is also less than εp, so that overall

ρ(µ̄, ν̄)p < 2εp .
Es ε was arbitrary this concludes the proof. �

4. The symmetrized causal Wasserstein distance SCWp

In this section we prove that the topology induced by SCWp is sandwiched
between Hellwig’s Wp-information topology and the topology induced by AWp,
and therefore by what we have already seen in the previous section equal to both
of them. Our arguments in this section make explicit use of metrics. The reader
who is only interested in the simpler version of our main theorem, Theorem 1.1
may assume that p = 1 and that all metrics are bounded.

Remember that for µ, ν ∈ P
(
X
)
we have

CWp(µ, ν)p = inf
γ∈Cpl(µ,ν)
γ causal

∫ N∑
t=1

ρ(xt, yt)p dγ((xt)t, (yt)t) (20)

SCWp(µ, ν) = max (CWp(µ, ν), CWp(ν, µ)) (21)

AWp(µ, ν)p = inf
γ∈Cpl(µ,ν)
γ bicausal

∫ N∑
t=1

ρ(xt, yt)p dγ((xt)t, (yt)t) . (22)

In proving this we will take a slightly roundabout route. First we will focus on
the case where X = X1 × X2 is the product of just two spaces, i.e. where we have
only two time points. Moreover, for expositional purposes, let us for the moment
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assume that X1 and X2 are both compact. Generalizing from this setting will not
be very hard.

In the compact, two-time-point case we will show equality of the two topologies
in question by extending both to a larger (compact) space and showing equality of
the topologies on that larger space.

In more detail:
When there are only two timepoints Hellwig’s Wp-information topology and

the topology induced by AWp trivially coincide. Both are induced by emedding
P(X1 ×X2) into P(X1 × P(X2)) via disX2

X1
. The latter space carries its standard

metric ρP(X1×P(X2)), which – as was already established in Theorem 1.4 in Section
1.8 of the introduction – is an extension of AWp. To highlight this connection, in
this section we will also refer to that metric as AWp. As a reminder,

AWp (µ, ν)p = inf
γ∈Cpl(µ,ν)

∫
ρ(x1, y1)p +Wp (ξ2, η2)p dγ(x1, ξ2, y1, η2)

where Wp is the normal Wasserstein distance (on P(X2) in this case). We will find
an extension CWp of CWp to P(X1 × P(X2)), which still satisfies all properties of a
metric except for symmetry and which is dominated by AWp. Symmetrizing this
extension gives a metric (which we will call SCWp). The identity function from
P(X1 × P(X2)) topologized with AWp to P(X1 × P(X2)) topologized with SCWp

will then be a continuous bijection from a compact space (this is where we use
compactness of X1, X2) to a Hausdorff space, i.e. a homeomorphism.

The next subsection will be devoted to finding an expression for the extension
of CWp to P(X1 × P(X2)) and proving that it satisfies all the properties mentioned
above.

Remark 4.1. When X1 contains no isolated points, because P(X1 × P(X2)) is
the metric completion of P(X1 ×X2) w.r.t. AWp and because the above properties
imply that CWp is (uniformly) continuous w.r.t. AWp, we have already uniquely
identified CWp. Still, we want to find an expression that allows us to work with
CWp and in particular that allows us to prove that SCWp is a metric and not just
a pseudometric, i.e. that the induced topology is in fact Hausdorff. This is exactly
what we gain from assuming compact base spaces and passing to the completion:
instead of having to find a lower bound for SCWp (µ, ν) in terms of AWp (µ, ν) (and
possibly µ) we now just have to prove that if µ 6= ν then SCWp (µ, ν) > 0.

4.1. Extending the causal ‘distance’. So now we are working with two Polish
metric spaces X1, X2. Remember that we denote the ‘canonical process’ on X :=
X1 ×X2 by (Xi)i=1,2, i.e. Xi : X → Xi is the projection onto the i-th coordinate.

To differentiate between the different roles that X may play - i.e. is it the space for
the left measure µ or the right measure ν when measuring the ‘distance’ CWp (µ, ν)
- we will also refer to X , Xi by the aliases Y, Yi respectively. (And later Z, Zi as
well.) Analogously, we have Yi : Y → Yi. (And Zi : Z → Zi.)

In this section we will repeatedly make use of the following construction:

Definition 4.2. Let A, B, C be Polish metric spaces. Let µ ∈ P(A× B) and
ν ∈ P(B × C) with µ�B = ν�B. We define

µ ⊗B ν ∈ P(A× B × C)
as the measure given by∫

hd(µ ⊗B ν) :=
∫
h(a, b, c) dνb(c) dµ(a, b)

=
∫
h(a, b, c) dµb(a) dν(b, c)

(23)

where b 7→ νb is a disintegration of ν w.r.t. B and similarly for µ.
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We further define

µ o
9B ν :=

(
µ ⊗B ν

)
�A×C ∈ P(A× C) .

Remark 4.3. If µ is a probability on A×B and ν is a probability on B×C, another
way of saying what µ⊗B ν is, is to state that it is a probability on A×B×C s.t. the
law of (A,B) is equal to µ, the law of (B,C) is equal to ν (where per our convention
A is the projectio onto A, etc.), and A is conditionally independent from C given B.
(For the notion of conditional independence see for example [21, Definition II.43].)

Another helpful intuition comes from looking at the case where µ ∈ F (A B)
is concentrated on the graph of some measurable function f : A → B and ν ∈
F (B  C) is concentrated on the graph of a measurable function g : B → C. µ o

9B ν
is then concentrated on the graph of g ◦ f : A → C. In some contexts g ◦ f is also
written as f o

9 g, which is where we borrowed the symbol from.

Remark 4.4. We will often encounter the situation that one of the factors A, B or
C in Definition 4.2 is itself a product of spaces and the individual factors may not al-
ways be so nicely sorted. We will rely on naming in the subscript the space(s) along
which to join the measures µ and ν. For example if µ ∈ P(A1 × B1 ×A1 × B2) and
ν ∈ P(B2 × C1 × B1 × C2) we might write

µ ⊗
B1,B2

ν ∈ P(A1 × B1 ×A2 × B2 × C1 × C2)

to refer to the measure that we get when in (23) we use (b1, b2) ∈ B1 × B2 as the
middle variable b. We will not be systematic about the order of the factors in the
resulting product space on which e.g. µ ⊗

B1,B2
ν is a measure, again relying on naming

our spaces for disambiguation.

For future reference we paraphrase the definition of a causal transport plan given
in (3) in the introduction.

Lemma 4.5. Let µ be a measure on X = X1 × X2 and ν be a measure on Y =
Y1 × Y2. γ ∈ Cpl (µ, ν) is a causal transference plan from µ to ν iff under γ

X2 and Y1 are conditionally independent given X1.

Proof. One way of formulating conditional independence is as in (3), see for example
[21, Definition II.43, Theorem II.45]. �

In other words, γ ∈ Cpl (µ, ν) is a causal transference plan iff γ�X1,X2,Y1 =
µ ⊗X1

γ�X1,Y1 .
We start by reexpressing CWp in different ways until we find one which also

makes sense in P(X1 × P(X2)).
Let µ ∈ P

(
X
)
and ν ∈ P

(
Y
)
. Then

CWp (µ, ν)p = inf
γ∈Cpl(µ,ν)
γ causal

∫
ρ(x1, y1)p + ρ(x2, y2)p dγ(x1, x2, y1, y2)

= inf
γ∈C1

∫
ρ(x1, y1)p + ρ(x2, y2)p dγ(x1, x2, y1, y2)

where

C1 =
{
γ ∈ Cpl (µ, ν)

∣∣∣ γ =
(
µ ⊗X1

γ�X1,Y1

)
⊗
X2,Y1

γ�X2,Y1,Y2

}
.

This is true because, on the one hand clearly a γ ∈ C1 is causal by Lemma 4.5
and the alternative characterization of ⊗X1

. On the other hand, given any causal
γ ∈ Cpl (µ, ν), again by Lemma 4.5, γ�X1,X2,Y1 = µ ⊗X1

γ�X1,Y1 , and we may define
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γ′ :=
(
µ ⊗X1

γ�X1,Y1

)
⊗
X2,Y1

γ�X2,Y1,Y2 ∈ Cpl (µ, ν). Now γ�X1,X2,Y1 = γ′�X1,X2,Y1
and

γ�X2,Y1,Y2 = γ′�X2,Y1,Y2
, so in particular∫

ρ(x1, y1)p + ρ(x2, y2)p dγ(x1, x2, y1, y2) =∫
ρ(x1, y1)p + ρ(x2, y2)p dγ′(x1, x2, y1, y2) .

We may name the different building blocks of γ ∈ C1 to get

CWp (µ, ν)p = inf
(γ,β)∈C2

∫
ρ(x1, y1)p dγ(x1, y1) +

∫
ρ(x2, y2)p dβ(y1, x2, y2)

with

C2 =
{

(γ, β) ∈ Cpl (µ�X1 , ν�Y1)× P(Y1 ×X2 × Y2)
∣∣∣

β�X2,Y1 = µ o
9X1 γ and β�Y1,Y2 = ν

}
,

i.e. there is a bijection between C1 and C2 given by sending γ′ ∈ C1 to (γ, β) ∈ C2
where γ := γ′�X1,Y1

, β := γ′�X2,Y1,Y2
, and, in the other direction, by sending (γ, β) ∈

C2 to γ′ :=
(
µ ⊗X1

γ
)
⊗
X2,Y1

β.
We can apply the bijection disY1 : P(Y1 ×X2 × Y2) → F (Y1  P(X2 × Y2))

to β. Translating the conditions on (γ, β) ∈ C2 to conditions on (γ,disY1(β)) we
arrive at

CWp (µ, ν)p = inf
(γ,β)∈C3

∫
ρ(x1, y1)p dγ +

∫ ∫
ρ(x2, y2)p dβ′(x2, y2) dβ(y1, β

′)

where

C3 =
{

(γ, β) ∈ Cpl (µ�X1 , ν�Y1)× F (Y1  P(X2 × Y2))
∣∣∣

P(1Y1 × P(Y2)) (β) = disY1(ν) and

P(1Y1 × P(X2)) (β) = disY1

(
γ o

9X1 µ
)}

.

Let (γ, β) ∈ C3 and let (y1, β
′) 7→ β̃′y1,β′

be a measurable mapping with β̃′y1,β′
∈

Cpl
(
β′�X2

, β′�Y2

)
for β-a.a. (y1, β

′). Then we have that also (γ, β̃) ∈ C3, where
β̃ ∈ F (Y1  P(X2 × Y2)) is defined by

β̃ := f 7→
∫
f(y1, β̃

′
y1,β′) dβ(y1, β

′) .

By employing a β-a.e. measurable selector this implies that
CWp (µ, ν)p = inf

(γ,β)∈C3

∫
ρ(x1, y1)p dγ +

∫
inf
β̃′∈

Cpl(β′�X2 ,β
′
�Y2)

∫
ρ(x2, y2)p dβ̃′(x2, y2) dβ(y1, β

′)

= inf
(γ,β)∈C3

∫
ρ(x1, y1)p dγ +

∫
Wp

(
β′�X2

, β′�Y2

)p dβ(y1, β
′) .

We need

Lemma 4.6. If κ ∈ P(A× B) and λ ∈ F (B  C) then the only measure η ∈
P(A× B × C) with η�A×B = κ and η�B×C = λ is κ ⊗B λ.

Proof. If η satisfies the properties above and b 7→ κb, b 7→ λb are (classical) disinte-
grations of κ, λ w.r.t. B, then a (classical) disintegration b 7→ ηb of η w.r.t. B has
to satisfy ηb�A = κb and ηb�C = λb a.s. As λb is a Dirac measure a.s. this forces ηb
to be κb ⊗ λb almost surely. �
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This implies that for (γ, β) ∈ C3 the distribution of
(y1, β

′) 7→ (y1, β
′
�X2

, β′�Y2
) (24)

under β is already determined by γ, i.e. because the distribution of (y1, β
′) 7→

(y1, β
′
�X2

) is disY1

(
γ o

9X1 µ
)
and the distribution of (y1, β

′) 7→ (y1, β
′
�Y2

) is disY1(ν),
the distribution of (24) under β must be equal to

disY1

(
γ o

9X1 µ
)
⊗
Y1

disY1(ν) .

This means that we may get rid of β:

CWp (µ, ν)p = inf
γ∈Cpl(µ�X1 ,ν�Y1)

∫
ρ(x1, y1)p dγ

+
∫
Wp (µ′, ν′)p d

(
disY1

(
γ o

9X1 µ
)
⊗
Y1

disY1(ν)
)

(y1, µ
′, ν′)

For the final step we need another lemma:

Lemma 4.7. Let λ ∈ P(A× B) and β ∈ P(B × C). Let Ĉ denote the projection
onto P(C). Then

disA (λ o
9B β)

is equal to the distribution of
(A,Eη (Ĉ|A)) under η := λ ⊗B disB(β) .

Proof. Let a 7→ λa be a version of the (classical) disintegration of λ w.r.t. A and
let b 7→ βb be a disintegration of β w.r.t. B.

As one easily checks, a version of the (classical) disintegration of λ o
9B β w.r.t. A

is given by a 7→
∫
βb dλa(b), so that disA (λ o

9B β) is equal to

P

(
a 7→ (a,

∫
βb dλa(b))

)
(λ�A) .

By the same argument a version of the disintegration of λ o
9B disB(β) w.r.t. A

is given by h := a 7→
∫

disB(β)b dλa(b), where b 7→ disB(β)b is a disintegration of
disB(β) w.r.t. B. But such a disintegration is given by b 7→ δβb , (where δβb is the
dirac measure at βb). So h = a 7→

∫
δβb dλa(b). This means (a version of) Eη (Ĉ|A)

is given by
Eη (Ĉ|A) (a,_,_) =

∫
ĉd(
∫
δβb dλa(b))(ĉ) =

∫∫
ĉdδβb(ĉ) dλa(b) =

∫
βb dλa(b) ,

so that the distribution of (A,Eη (Ĉ|A)) under η is also given by

P

(
a 7→ (a,

∫
βb dλa(b))

)
(λ�A) .

�

Using this lemma with A = Y1, B = X1, C = X2, λ = γ, β = µ and writing X̂2,
Ŷ2 for the projections onto P(X2), P(Y2) respectively, we find:

CWp (µ, ν)p = inf
γ∈Cpl(µ�X1 ,ν�Y1)

Eγ (ρ(X1, Y1)p) + Eη(γ)
(
Wp

(
Eη(γ) (X̂2|Y1) , Ŷ2

)p)
where η(γ) := disX1(µ) ⊗X1

γ ⊗Y1
disY1(ν).

By Lemma 4.6 the function η : Cpl (µ�X1 , ν�Y1) → Cpl (disX1(µ),disY1(ν)) is a
bijection, so we may as well write

CWp (µ, ν)p = inf
γ∈Cpl(disX1 (µ),disY1 (ν))

Eγ (ρ(X1, Y1)p) + Eγ (Wp (Eγ (X̂2|Y1) , Ŷ2)p) .

Finally, under any γ ∈ Cpl (disX1(µ),disY1(ν)) we know that Ŷ2 is almost surely
equal to a function of Y1, so that the completions of the sigma-algebras generated
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by Y1 and ~Y := (Y1, Ŷ2) respectively are equal. This means that Eγ (X̂2|Y1) =
Eγ (X̂2|~Y ) a.s. and we arrive at our final expression for CWp (µ, ν):

CWp (µ, ν) = inf
γ∈Cpl(disX1 (µ),disY1 (ν))

(
Eγ
(
ρ(X1, Y1)p +Wp (Eγ (X̂2|~Y ) , Ŷ2)p

))1/p
.

Now this expression is trivial to generalize to µ ∈ P(X1 × P(X2)) and ν ∈
P(Y1 × P(Y2)), i.e. for such µ, ν we set

CWp (µ, ν) := inf
γ∈Cpl(µ,ν)

(
Eγ
(
ρ(X1, Y1)p +Wp

(
Eγ (X̂2|~Y ) , Ŷ2

)p))1/p
. (25)

To summarize our discussion up to this point:

Lemma 4.8. The function

CWp : P(X1 × P(X2))2 → R+

as defined in (25) is really an extension of

CWp : P(X1 ×X2)2 → R+

as defined in (20) (when P(X1 ×X2) is embedded into P(X1 × P(X2)) via disX1).

Next we promised to show

Lemma 4.9. CWp is bounded by AWp, i.e.

CWp (µ, ν) ≤ inf
γ∈Cpl(µ,ν)

(
Eγ
(
ρ(X1, Y1)p +Wp(X̂2, Ŷ2)p

))1/p
= AWp (µ, ν) .

Proof. By the conditional version of Jensen’s inequality applied to the convex func-
tion (x̂, ŷ) 7→ Wp (x̂, ŷ)p we have

Wp (Eγ (X̂2|~Y ) , Ŷ2)p =Wp (Eγ ((X̂2, Ŷ2)|~Y ))p ≤ Eγ (Wp (X̂2, Ŷ2)p|~Y ) .
�

Remark 4.10. For the reader who may be sceptical of whether Jensen’s inequality
holds in this rather unusual setting, where we have a convex function

Wp : P(X2)× P(Y2)→ R+

and conditional expectations on spaces of measures we remark that for the Wasser-
stein distance in particular this is very easy to check. The proof is just integrating
transport plans between X̂2 and Ŷ2 w.r.t. the distribution of these conditioned on
~Y (in this case) to get transport plans between Eγ (X̂2|~Y ) and Eγ (Ŷ2|~Y ).

Lemma 4.11. Let µ, ν, λ ∈ P(X1 × P(X2)). Then

CWp (µ, λ) ≤ CWp (µ, ν) + CWp (ν, λ) .

Proof. Using our naming convention we have
µ ∈ P(X1 × P(X2)) , ν ∈ P(Y1 × P(Y2)) , λ ∈ P(Z1 × P(Z2)) .

We denote the projections onto P(X2), P(Y2), P(Z2) by X̂2, Ŷ2, Ẑ2 respectively.
~Y = (Y1, Ŷ2), ~Z := (Z1, Ẑ2).

Let γ ∈ Cpl (µ, ν) and η ∈ Cpl (ν, λ). In the following let E refer to (conditional)
expectation w.r.t. κ := γ ⊗

Y1,P(Y2) η, and let ‖·‖Lp refer to the Lp-norm w.r.t. κ.
Combining the triangle inequalities for ρ, Wp and the ‖·‖Lp we get

‖ρ(X1, Z1)‖Lp ≤ ‖ρ(X1, Y1)‖Lp + ‖ρ(Y1, Z1)‖Lp (26)
‖Wp (E (X̂2|~Z) , Ẑ2)‖Lp ≤ ‖Wp (E ((X̂2, Ŷ2)|~Z))‖Lp + ‖Wp (E (Ŷ2|~Z) , Ẑ2)‖Lp (27)
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By the conditional Jensen inequality

Wp (E ((X̂2, Ŷ2)|~Z))p =Wp

(
E
(
E
(
(X̂2, Ŷ2)

∣∣~Y , ~Z)∣∣∣~Z))p
≤ E

(
Wp

(
E
(
(X̂2, Ŷ2)

∣∣~Y , ~Z))p∣∣∣∣~Z)
and therefore

‖Wp (E ((X̂2, Ŷ2)|~Z))‖pLp ≤ ‖Wp (E ((X̂2, Ŷ2)|~Y , ~Z))p‖Lp .

By construction, (X̂2, Ŷ2) is conditionally independent from ~Z given ~Y , so that
E ((X̂2, Ŷ2)|~Y , ~Z) = E ((X̂2, Ŷ2)|~Y ) (this basic fact about conditional independence
can be found for example as Theorem 45 in [21]). Combining this with (27) gives
‖Wp (E (X̂2|~Z) , Ẑ2)‖Lp ≤ ‖Wp (E (X̂2|~Y ) , Ŷ2)‖Lp + ‖Wp (E (Ŷ2|~Z) , Ẑ2)‖Lp .

(28)

Putting together (26) and (28) with the triangle inequality for `p we get

CWp (µ, λ) =
(
‖ρ(X1, Z1)‖pLp + ‖Wp (E (X̂2|~Z) , Ẑ2)‖pLp

)1/p

≤
(
‖ρ(X1, Y1)‖pLp + ‖Wp (E (X̂2|~Y ) , Ŷ2)‖pLp

)1/p

+
(
‖ρ(Y1, Z1)‖pLp + ‖Wp (E (Ŷ2|~Z) , Ẑ2)‖pLp

)1/p

= CWp (µ, ν) + CWp (ν, λ) .
�

Lemma 4.12. CWp is uniformly continuous w.r.t. AWp on P(X1 × P(X2))2.

Proof. Let µ, ν, µ′, ν′ ∈ P(X1 × P(X2)). We repeatedly use Lemma 4.11:

CWp (µ, ν) ≤ CWp (µ, ν′) + CWp (ν′, ν) ≤ CWp (µ, µ′) + CWp (µ′, ν′) + CWp (ν′, ν)
therefore

CWp (µ, ν)− CWp (µ′, ν′) ≤ CWp (µ, µ′) + CWp (ν′, ν) .

Switching the roles of (µ, ν) and (µ′, ν′) implies

|CWp (µ, ν)− CWp (µ′, ν′)|
≤ max

(
CWp (µ, µ′) , CWp (µ′, µ)

)
+ max

(
CWp (ν, ν′) , CWp (ν′, ν)

)
≤ AWp (µ, µ′) +AWp (ν, ν′) .

�

Lemma 4.13. The infimum in (25) is attained.

Proof. This is an application of [8, Theorem 1.2].
For self-containedness and because it’s a nice application of the nested distance,

we also sketch the argument here. We know that Cpl (µ, ν) is compact. The problem
is that γ 7→ Eγ (Wp (Eγ (X̂2|~Y ) , ~Y )p) is not (lower semi-) continuous. But we may
switch to a topology which is better adapted to the problem at hand. Namely
the two-timepoint AWp-topology. In this case the space for the first timepoint is
Y1×P(Y2) and that for the second is X1×P(X2). In effect that means that instead
of γ ∈ Cpl (µ, ν) we are now looking at γ′ ∈ F (Y1 × P(Y2) P(X1 × P(X2))).
The function that we are optimizing over can be written as

Ĉ := γ′ 7→ Eγ
′
(C(Y1, Ŷ2, ~̂X))
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where

C(y1, ŷ2, ξ) =
∫
ρ(x1, y1) dξ(x1,_) +Wp

(
bary(ξ�P(X2)), ŷ2

)
bary(λ) =

∫
xdλ(x)

C is a continuous function and so is Ĉ. Now disY1×P(Y2) (Cpl (µ, ν)) is not compact,
but{

γ′ ∈ P(Y1 × P(Y2)× P(X1 × P(X2)))
∣∣∣

γ′�Y1×P(Y2) = ν , intY1×P(Y2)(γ′)�P(X1×P(X2)) = µ
}

is. So we can find a minimizer γ′ of Ĉ in this set. To return to Cpl (µ, ν), or
more precisely disY1×P(Y2) (Cpl (µ, ν)), we can send γ′ to the distribution γ′′ of
(Y1, Ŷ2,Eγ

′ ( ~̂X|~Y )). Because C is continuous and convex in its last argument and
by (the conditional version of) Jensens inequality (which could again be proved
‘by hand’ here) Ĉ(γ′′) ≤ Ĉ(γ′). intY1×P(Y2)(γ′′) is the sought after minimizer of
(25). �

Lemma 4.14. Let µ, ν ∈ P(X1 × P(X2)). Then CWp (µ, ν) = CWp (ν, µ) = 0
implies µ = ν.

Proof. Call
~X := X1 × P(X2) ~Y := Y1 × P(Y2) ~Z := Z1 × P(Z2) .

To have labels for our spaces, see µ, ν as
µ ∈ P( ~X ) , ν ∈ P(~Y) , µ ∈ P( ~Z) .

Let γ ∈ Cpl (µ, ν) ⊆ P( ~X × ~Y) s.t. Eγ (ρ(X1, Y1)p)+Eγ (Wp (Eγ (X̂2|~Y ) , Ŷ2)p) =
0.

Let η ∈ Cpl (ν, µ) ⊆ P(~Y × ~Z) s.t. Eη (ρ(Y1, Z1)p) + Eη (Wp (Eη (Ŷ2|~Z) , Ẑ2)p) =
0.

All the following considerations happen under γ ⊗
~Y
η. Clearly, Z1 = Y1 = X1 a.s.

Moreover, because E (X̂2|~Y , ~Z) = E (X̂2|~Y ), the random variables Ẑ2, Ŷ2, X̂2
form a martingale w.r.t. the filtration generated by ~Z, ~Y , ~X. The distribution of
Ẑ2 is equal to the distribution of X̂2. Both of these statements are also true if
we integrate some bounded measurable function w.r.t. our random variables, i.e.
for any bounded measurable f : X2 → R we have that

∫
f dẐ2,

∫
f dŶ2,

∫
f dX̂2

is a martingale and that the distribution of
∫
f dẐ2 is equal to the distribution

of
∫
f dX̂2. But this means that we must have

∫
f dẐ2 =

∫
f dŶ2 =

∫
f dX̂2 a.s.

(Lemma 4.15 below). As this is true for all f from a countable generator of the
sigma-algebra on X2, we have Ẑ2 = Ŷ2 = X̂2 a.s. �

Lemma 4.15. Let X1, X2, X3 be a bounded martingale over R. If the distribution
of X1 is equal to the distribution of X3 then X1 = X2 = X3 a.s.

Proof. This is a consequence of the strict version of Jensen’s inequality applied to
any everywhere strictly convex function. (Take for example x 7→ x2.) �

Remark 4.16. The reason we took the detour of turning our probability-measure-
valued martingale into a family of martingales on R and arguing on these is because
this way we avoid having to exhibit a continuous, everywhere strictly convex func-
tion on P(X2).

As a reminder:
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Definition 4.17. For µ, ν ∈ P(X1 × P(X2)),

SCWp (µ, ν) := max(CWp (µ, ν) , CWp (ν, µ)) .

Theorem 4.18. SCWp is a metric on P(X1 × P(X2)) satisfying

SCWp (µ, ν) ≤ AWp (µ, ν) .

Proof. This follows from Lemma 4.11, Lemma 4.14 and Lemma 4.9. �

Remark 4.19. As outlined at the beginning of this section we now know enough
to conclude that the topology induced by SCWp is equal to the topology induced
by AWp in the case where X1 and X2 are both compact. The non-compact case is
not much harder. We need the following lemma.

Lemma 4.20. The map

intX1 : P(X1 × P(X2))→ P(X1 ×X2)

is a contraction when we equip the source space with SCWp and the target space
with Wp. More specifically for µ, ν ∈ P(X1 × P(X2))

Wp (intX1(µ), intX1(ν)) ≤ CWp (µ, ν) . (29)

Proof. We prove the second statement. Let µ ∈ P( ~X ), ν ∈ P(~Y). Given γ ∈
Cpl (µ, ν) and ε > 0 the task is to find γ′ ∈ Cpl (intX1 µ, intY1 ν) s.t.

Eγ
′
(ρ(X1, Y1)p + ρ(X2, Y2)p) ≤ Eγ (ρ(X1, Y1)p) + Eγ (Wp (Eγ (X̂2|~Y ) , Ŷ2)p) + ε .

(30)

We take inspiration from the discussion at the beginning of this section. Let
Ξ : ~X × ~Y → P(X2 × Y2) be a measurable selector satisfying

Ξ ∈ Cpl (Eγ (X̂2|~Y ) , Ŷ2) γ-a.s. and
EΞ (ρ(X2, Y2)p) ≤ Wp (Eγ (X̂2|~Y ) , Ŷ2)p + ε γ-a.s.

The obvious choice for γ′, namely f 7→ Eγ
(
EΞ (f(X1, X2, Y1, Y2))

)
will not work

because in general it gets the relationship between X1 and X2 wrong, i.e. its first
marginal may not be intX1(µ). Instead we again define γL ∈ P(X1 ×X2 × Y1) and
γR ∈ P(X2 × Y1 × Y2) and set γ′ := γL ⊗

X2,Y1
γR.

γL := f 7→ Eγ
(
EX̂2 (f(X1, X2, Y1))

)
γR := f 7→ Eγ

(
EΞ (f(X2, Y1, Y2))

)
Clearly, if we can actually define γ′ as announced, then (30) will hold, because then

Eγ
′
(ρ(X1, Y1)) = Eγ

(
EX̂2 (ρ(X1, Y1))

)
= Eγ (ρ(X1, Y1))

Eγ
′
(ρ(X2, Y2)) = Eγ

(
EΞ (ρ(X2, Y2))

)
≤ Eγ (Wp (Eγ (X̂2|~Y ) , Ŷ2)p) + ε .

It remains to check that γL and γR can actually be composed, i.e. that (X2, Y1)
has the same distribution under γL and γR.

EγR (h(X2, Y1)) = Eγ
(
EΞ (h(X2, Y1))

)
= Eγ

(
EEγ(X̂2|~Y ) (h(X2, Y1))

)
=

Eγ
(
Eγ
(
EX̂2 (h(X2, Y1))

∣∣∣~Y )) = Eγ (EX̂2 (h(X2, Y1))) = EγL (h(X2, Y1))

The step in the middle has its own Lemma 4.21 below. �
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Lemma 4.21. Let P be a probability on P(X ) × Y, for Polish spaces X ,Y. Let
h : X × Y → R be a measurable function. Then

EE(X̂|Y ) (h(X,Y )) = E
(
EX̂ (h(X,Y ))

∣∣∣Y ) P-a.s.,

where E without superscript is the (conditional) expectiation w.r.t. P and X̂ is the
projection onto P(X ).

Note that X is on both sides introduced by the expectation operator which
carries a superscript, while Y may on both sides be interpreted as coming from
the outermost context. On the right hand side Y may also be seen as having been
introduced by the outermost conditional expectation operator. (As this operator
conditions on Y this is the same thing.)

Proof. Both sides are clearly Y -measurable. We prove that for h(x, y) = f(x)g1(y),
multiplying by g2(Y ) and taking expectation gives the same result. By definition
of the conditional expectation

E (E (X̂|Y ) g(Y )) = E
(
X̂g(Y )

)
.

Applying the continuous linear function γ 7→ Eγ (f(X)) this gives

E
(
EE(X̂|Y ) (f(X)) g(Y )

)
= E (EX̂ (f(X)) g(Y )) .

Again by the definition of the conditional expectation:

E
(
E
(
EX̂ (f(X)g1(Y ))

∣∣∣Y ) g2(Y )
)

= E
(
EX̂ (f(X)g1(Y )) g2(Y )

)
=

E
(
EX̂ (f(X)) g1(Y )g2(Y )

)
= E

(
EE(X̂|Y ) (f(X)) g1(Y )g2(Y )

)
=

E
(
EE(X̂|Y ) (f(X)g1(Y )) g2(Y )

)
where for the third equality we plugged in the previous equation. �

Alternative proof of Lemma 4.20 when X1 has no isolated points. When the space
X1 has no isolated points one can show that the space F (X1  P(X2)) is dense in
P(X1 × P(X2)). This allows for a shorter proof of Lemma 4.20:

By the original definition (20) of CWp on the space P(X1 ×X2) the inequal-
ity (29) holds on F (X1  P(X2)) × F (X1  P(X2)). Both CWp and (µ, ν) 7→
Wp (intX1(µ), intX1(ν)) are uniformly continuous on P( ~X )×P( ~X ) w.r.t. some prod-
uct metric of AWp with itself. F (X1  P(X2)) is dense in P( ~X ), and therefore
F (X1  P(X2)) × F (X1  P(X2)) is dense in P( ~X ) × P( ~X ). This implies that
(29) holds on all of P( ~X )× P( ~X ). �

Theorem 4.22. The topology induced by SCWp on P(X1 × P(X2)) is equal to the
toplogy induced by AWp on that space.

Proof. As both topologies are metric and therefore first-countable we may argue
on sequences. Let (µn)n be a sequence in P(X1 × P(X2)). As SCWp (µn, µ) ≤
AWp (µn, µ), if (µn)n converges to µ w.r.t. AWp it also converges to µ w.r.t. SCWp.

Now assume that a sequence (µn)n in P(X1 × P(X2)) converges to µ w.r.t.
SCWp. We will show that every subsequence of (µn)n has a subsequence which
converges to µ w.r.t. AWp. Our assumption implies that the set K := {µn |n ∈ N}
is relatively compact. As intX1 is continuous as a map from P(X1 × P(X2)) with
the topology induced by SCWp to P(X1 ×X2) with the toplogy induced by Wp

(Lemma 4.20), we have that intX1 [K] = {intX1(µn) |n ∈ N} is also relatively com-
pact. By Lemma 1.6/[23, Lemma 3.3] this implies that K is relatively compact
in P(X1 × P(X2)) with the topology induced by AWp. Now let (µnk)k be some
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subsequence of (µn)n. As K is relatively compact we can find a subsequence
(µnkj )j of (µnk)k, which converges w.r.t. AWp to some µ′ ∈ P(X1 × P(X2)). As

SCWp

(
µnkj , µ

′
)
≤ AWp

(
µnkj , µ

′
)
this sequence also converges to µ′ w.r.t. SCWp.

But (µnkj )j also converges to µ w.r.t. SCWp. Because the topology induced by
SCWp is Hausdorff (Lemma 4.14), we must have µ′ = µ, i.e. (µnkj )j converges to
µ w.r.t. AWp. �

Now we return to the general case of N time-points.

Theorem 4.23. The topology induced by SCWp on P
(
X
)
is equal to Hellwig’s

Wp-information topology and to the topology induced by AWp.

Proof. As every bicausal transport plan between µ and ν can be interpreted as
a causal transport plan from µ to ν and also as a causal transport plan from ν
to µ we have that SCWp (µ, ν) ≤ AWp(µ, ν). This means that the identity from
P
(
X
)
with the topology induced by AWp to P

(
X
)
with the topology induced by

SCWp is continuous. For the other direction we show that the identity from P
(
X
)

with the topology induced by SCWp to P
(
X
)
with the Wp-information topology is

continuous, i.e. we show that each of the maps

disXt+1

X t
= It : P

(
X
)
→ F

(
X t  P

(
Xt+1

))
is continuous when P

(
X
)
gets the topology induced by SCWp.

If µ, ν ∈ P
(
X
)
and γ ∈ Cpl (µ, ν) is causal, then, in particular, γ is ‘causal

at the timestep from t to t + 1’, i.e. γ is causal when regarded as a coupling
between µ, ν ∈ P

(
X t ×Xt+1

)
. This means that if we define SCW ′p like SCWp,

but only require causality based on the decomposition of X as X t × Xt+1, then
SCW ′p(µ, ν) ≤ SCWp (µ, ν), i.e. the identity from P

(
X
)
with the topology induced

by SCWp to P
(
X
)
with the topology induced by SCW ′p is continuous. By Theorem

4.22 the map

disXt+1

X t
: P
(
X t ×Xt+1

)
→ F

(
X t  P

(
Xt+1

))
is continuous when we equip P

(
X t ×Xt+1

)
with the topology induced by SCW ′p.

Now It is continuous as a composite of continuous maps. �

5. Aldous’ extended weak convergence

In this section we show that Aldous extended Wp-/weak topology is equal to
Hellwig’s (Wp-)information topology.

We recall and paraphrase here the definition, already given in the introduction,
of Aldous’ topology.

Definition 5.1. Given µ ∈ P
(
X
)
let µ(xi)ji=1

be the value of a (classical) disinte-
gration of µ w.r.t. the first j coordinates at (xi)ji=1. (By convention µ(xi)0

i=1
= µ).

Define

E : P
(
X
)
→ P

X × N∏
j=0
P
(
X
)

E(µ) := P
(

(xi)Ni=1 7→
(

(xi)Ni=1,
(
δ(xi)ji=1

⊗ µ(xi)ji=1

)N
j=0

))
(µ) .

The extended Wp−/weak topology on P
(
X
)
is the initial topology w.r.t. E .
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Remark 5.2. Reasonable people may disagree about whether the most faithful
/ useful transcription of Aldous’ definition should include the factors j = 0 and
j = N in the above product of spaces. When including j = N , as we did, one has
to interpret δ(xi)Ni=1

⊗ µ(xi)Ni=1
simply as δ(xi)Ni=1

. We leave it as an exercise to the
reader to check that either or both may be dropped in the definition of E without
affecting the resulting topology on P(X).

Theorem 5.3. The (Wp-)extended weak topology is equal to the (Wp-)information
topology.

Proof. We construct continuous maps

A′k : P

X × N∏
j=0
P
(
X
)→ P(X k × P(Xk+1

))

A :
N−1∏
k=1
F
(
X k  P

(
Xk+1

))
→ P

X × N∏
j=0
P
(
X
)

such that
A′k ◦ E = Ik
A ◦ I = E .

The first equality above implies that the identity on P
(
X
)
is continuous from the

extended weak topology to the information topology, the second implies that it is
continuous in the other direction.
A′k is very simple. We just need to select the right factors and then discard the

unnecessary δ(xi)ki=1
part of the measure component. Formally

A′k := P
((

(xi)Ni=1, (νj)Nj=0
)
7→
(
(xi)ki=1, νk�Xk+1

))
,

which is cleary continuous.
We construct A recursively, by constructing as a composite of continuous maps

Am :
N−1∏
k=1
F
(
X k  P

(
Xk+1

))
→ P

Xm × m∏
j=0
P
(
X
)

satisfying

Am(I(µ)) = P
(

(xi)Ni=1 7→
(
(xi)mi=1, (δ(xi)ki=1

⊗ µ(xi)ki=1
)mk=0

))
(µ) . (31)

A0 ((νk)N−1
k=1

)
:= δintX1 (ν1). We need the helper functions

hm : F
(
Xm  P

(
Xm+1

))
→ F

(
Xm  P

(
X
))

hm := P
(

((xi)mi=1, ρ) 7→ ((xi)mi=1, δ(xi)mi=1
⊗ ρ)

)
.

Given Am satisfying the induction hypothesis we set

Am+1 ((νk)N−1
k=1

)
:= P(sm+1)

(
Am

(
(νk)N−1

k=1
)
⊗
Xm

hm+1(νm+1)
)

where sm+1 is the obvious permutation of the coordinates to get the factors into
the right order. Am+1 is continuous because by [23, Theorem 4.1] ⊗

Xm
is continuous

when one of the arguments is an element of some F (B  C). That (31) still holds
for m+ 1 is a straightforward calculation. This way we get to AN−1. Finally, set

A
(
(νk)N−1

k=1
)

:= P(sN )
(
AN−1 ((νk)N−1

k=1
)
⊗
XN−1 disX1(ν1)

)
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where

sN
((

(xi)N−1
i=1 , (ρj)N−1

j=1 , xN
))

:=
(

(xi)Ni=1, (ρj)N−1
j=1 , δ((xi)Ni=1)

)
.

�

6. Bounded vs unbounded metrics

Because we will need it in the next section we interject here a proof of Lemma
1.3, which we restate below.

Lemma 1.3. Convergence in any of the topologies of Theorem 1.2 is equivalent to
convergence in any of the topologies of Theorem 1.1 (where for building SCWp and
AWp, ρX is replaced by a bounded compatible complete metric e.g. min(1, ρX )) plus
convergence of p-th moments on X w.r.t. (the original) ρX .

Proof of Lemma 1.3. We provide the proof only for Hellwig’s topology, i.e. (3) of
Theorem 1.2 and Theorem 1.1, respectively. As we have already seen in the previous
sections, the topologies (2)–(4) are equivalent topologies, and the result therefore
carries over to them. The (Wp-)optimal stopping topology, (5), is treated below.
It is clear that convergence w.r.t. Wp-information topology implies convergence in
Hellwig’g information topology plus convergence of p-th moments. For the reverse
implication, let 1 ≤ t ≤ N −1, and denote by A := X t the first t and by B := X t+1
the last N−t coordinates. Now assume that (µn)n converges to µ in Hellwig’s infor-
mation topology and that the p-th moments converge. The classical (not adapted)
version of the very lemma we prove here implies that µn → µ in Wp; in particu-
lar K := {µn : n} ⊂ Pp(A× B) is relatively compact. Lemma 1.6 (or really [23,
Lemma 3.3]/[8, Lemma 2.6]) therefore guarantees that disBA[K] ⊂ Pp(A× Pp(B))
is relatively compact.

Every subsequence of (disBA(µn))n therefore has a subsequence (disBA(µnk))k
which converges w.r.t. the topology on Pp(A× Pp(B)) (i.e. the one coming from
nested Wasserstein metrics) to some µ′ ∈ Pp(A× Pp(B)). Because convergence
in Pp(A× Pp(B)) is stronger than convergence in P(A× P(B)) (i.e. in the nested
weak sense) we must also have disBA(µnk) k→ µ′ in P(A× P(B)). But also, by
assumption, disBA(µnk) k→ disBA(µ) in P(A× P(B)) and therefore µ′ = disBA(µ). �

7. Optimal Stopping

In this section we investigate the relation between the (Wp-)optimal stopping
topology and the adapted Wasserstein topology. Lemma 7.1 states that the topol-
ogy induced by AWp ((1) of Theorem 1.2) is finer than the Wp-optimal stopping
topology. Lemma 7.5 states that the Wp-optimal stopping topology is finer than
the Wp-information topology ((3) of Theorem 1.2). This will finish the proof of
Theorem 1.2.

Recall that

vL(µ) := inf {Eµ (Lτ (X))) : 0 ≤ τ ≤ N is a stopping time}

for L = (Lt)Nt=0 ∈ ACp(Ω).

Lemma 7.1. Let L ∈ ACp(Ω). Then µ 7→ vL(µ) is continuous w.r.t. AWp. In
fact, one has

|vL(µ)− vL(ν)| ≤ inf
{
Eπ
(

max
0≤t≤N

|Lt(X)− Lt(Y )|
)

: π ∈ Cplbc(µ, ν)
}
. (32)

for every µ, ν ∈ Pp(Ω).
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Proof. Let µ, ν ∈ Pp(Ω) and assume that vL(µ) ≤ vL(ν). Moreover, let π ∈
Cplbc(µ, ν) and ε > 0 be arbitrary, and fix a stopping time τ satisfying Eν (Lτ (Y )) ≤
vL(ν) + ε. For u ∈ [0, 1] define

σ(X,u) := inf{t ∈ {0, · · · , T} : π(τ(Y ) ≤ t|X) ≥ u}
= inf{t ∈ {0, · · · , T} : π(τ(Y ) ≤ t|X1, . . . , Xt) ≥ u},

where the equality holds by the properties of stopping times and since π is causal.
We then have that∫

[0,1]
Eπ
(
Lσ(X,u)(X)

)
du =

T∑
t=0

∫
[0,1]

Eπ
(
Lt(X)1π(τ(Y )≤t|X)≥u>π(τ(Y )≤t−1|X)

)
du

=
T∑
t=0

Eπ
(
Lt(X)1τ(Y )=t

)
= Eπ

(
Lτ(Y )(X)

)
.

As further σ(·, u) is a stopping time for every fixed u ∈ [0, 1] one has vL(µ) ≤∫
[0,1] E

π
(
Lσ(X,u)(X)

)
du and therefore

vL(µ)− vL(ν) ≤ Eπ
(
Lτ(Y )(X)− Lτ(Y )(Y )

)
+ ε

≤ Eπ
(

max
0≤t≤N

|Lt(X)− Lt(Y )|
)

+ ε.

Changing the role of µ and ν and using that ε > 0 and π ∈ Cplbc(µ, ν) was arbitrary
yields (32).

Now assume that AWp(µn, µ) → 0 and that πn ∈ Cpl (µn, µ) is less than 1/n
away from attaining the infimum AWp(µn, µ). Then Wp(πn, π) → 0, where π ∈
Cpl (µ, µ) is the identity coupling P(1Ω, 1Ω) (µ) of µ. (A coupling between πn and π
is given by P((x, y) 7→ (x, y, y, y)) (πn).) Because (x, y) 7→ max0≤t≤N |Lt(x)−Lt(y)|
is a continuous function of growth of at most order p, we get that

Eπn
(

max
0≤t≤N

|Lt(X)− Lt(Y )|
)
→ Eπ

(
max

0≤t≤N
|Lt(X)− Lt(Y )|

)
= 0 .

Together with (32) this implies that vL is continuous w.r.t. AWp. �

Remark 7.2. The above proof reveals that if Lt is Lipschitz with constant c > 0
for every t, then |vL(µ)− vL(ν)| ≤ cSCW1(µ, ν).

In order to show that the optimal stopping topology is finer than the Wp-
information topology, we need to make a few preparations.

Lemma 7.3. Let A be a Polish space. Then the family{
P(A) 3 µ 7→ G

(∫
A
h1 dµ, . . . ,

∫
A
hL dµ

)
: L ∈ N, G ∈ Cb(RL)

(hi)i≤L ⊂ Cb(A)

}
(33)

is convergence determining for the weak topology on P(P(A)), that is, a sequence
of probability measures (µn)n in P(P(A)) converges weakly to a probability measure
µ ∈ P(P(A)) if and only if

∫
F dµn →

∫
F dµ for all F in (33).

This follows from the Stone-Weierstrass theorem in case of compactA and readily
extends to general Polish spaces e.g. via Stone-Čech compactification.

Lemma 7.4. Let A be a Polish space. The family of functions{
µ 7→ G

(∫
A
hdµ

)
: h ∈ Cb(A), G ∈ Cb(R)

}
(34)

is convergence determining for the weak topology on P(P(A)).
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Proof. Let L, G, and (hi)i≤L as in (33). Moreover, let m ∈ R such that |hi| ≤ m
for all 1 ≤ i ≤ L and define I := [−m,m]L. Then I ⊂ RL is compact and satisfies(∫

h1dµ, . . . ,

∫
hL dµ

)
∈ I for all µ ∈ P(A) .

Let σ : R → R be some fixed bounded continuous sigmoid function such as
σ(r) = (1 + e−r)−1 or σ(r) = max(0,min(r, 1)).

By the universal approximation result of Cybenko [20, Theorem 2], the set{
x 7→

m∑
i=1

uiσ(vi · x+ wi) : m ∈ N, (ui)i≤m ⊂ R,
(vi)i≤m ⊂ RL, (wi)i≤m ⊂ R

}
is dense in C(I,R) w.r.t. the supremum norm. As a result, it is enough to replace
G in (33) by functions of the form x 7→

∑m
i=1 uiσ(vi ·x+wi). Evaluating the latter

function on the vector x = (
∫
h1 dµ, . . . ,

∫
hL dµ) yields

m∑
i=1

uiσ

(
L∑
k=1

vki

∫
hk dµ+ wi

)
=

m∑
i=1

uiσ

(∫ (L+1∑
k=1

vki hk

)
dµ
)

=
m∑
i=1

uiσ

(∫
h̄i dµ

)
,

upon defining vL+1
i := bi, wL+1 := 1, and finally h̄i :=

∑L+1
k=1 v

k
i hk for every i. The

result follows from Lemma 7.3. �

Lemma 7.5. The Wp-optimal stopping topology is finer than the Wp-information
topology.
Proof. The choice LT := −ρ(x, x0)p − 1 and Lt := 0 for t 6= T shows that con-
vergence in the Wp-optimal stopping topology implies convergence of the p-th
moments. Thus, we are left to show that convergence in the optimal stopping
topology implies convergence in Hellwig’s information topology. Then, by the part
of Lemma 1.3 which has already been established, we obtain convergence in the
Wp-information topology.

Fix 1 ≤ t ≤ N − 1 and denote by A := X t the first t and by B := X t+1 the
last N − t coordinates. As Cb(A) is convergence determining for P(A), and {ν 7→
G(
∫
B hdν) : h ∈ Cb(B), G ∈ Cb(R)} is, by Lemma 7.4, convergence determining for

P(P(B)), it follows e.g. from [25, Proposition 4.6 (p.115)] that{
(a, ν) 7→ f(a)g

(∫
B
h(b) dν(b)

)
: f ∈ Cb(A), g ∈ Cb(R), h ∈ Cb(B)

}
, (35)

is convergence determining for the weak topology on P(A× P(B)). Since h in (35)
is bounded, one can actually take g in (35) to be compactly supported. But a
continuous compactly supported function can be approximated uniformly by piece-
wise linear functions. The latter are linear combinations of functions of the form
z 7→ min(c, dz) where c, d ∈ R. It therefore follows that{

(a, ν) 7→ min
(
f(a) ,

∫
B
f(a)h(b) dν(b)

)
: f ∈ Cb(A), h ∈ Cb(B)

}
, (36)

is also convergence determining for the weak topology on P(A× P(B)). Let F be
a function in (36), defined via f ∈ Cb(A) and h ∈ Cb(B), and let m ∈ R be a bound
for |f | and |h|. Define L ∈ ACp(Ω) via

Lt := f ◦Xt
LT := (f ◦Xt) · (h ◦Xt+1) and Ls := m+ 1 for s 6= t, T.

(Where Xt is the projection onto the first t coordinates and Xt+1 is the projection
onto the remaining N − t coordinates.)
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By dynamic programming (the Snell-envelope theorem) one has

vL(µ) = Eµ
(

min
(
f(Xt),Eµ

(
f(Xt)h(Xt+1)|Xt

)))
=
∫
A×P(B)

F d(disBA(µ))

for every µ ∈ P(A× B). This implies that the optimal stopping topology is finer
than the initial topology of µ 7→

∫
F d(disBA(µ)) over F in (36). As (36) is conver-

gence determining for the weak topology on P(A× P(B)), the optimal stopping
topology is indeed finer than the information topology, and as observed at the be-
ginning of this proof therefore the Wp-optimal stopping topology is finer than the
Wp-information topology. �
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