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Abstract

We discuss the possibility of obtaining model-free bounds on volatility

derivatives, given present market data in the form of a calibrated local

volatility model. A counter-example to a wide-spread conjecture is given.
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1 Introduction

”... it has been conjectured that the minimum possible value of an option on
variance is the one generated from a local volatility model fitted to the volatility
surface.”; Gatheral [Gat06, page 155].

Leaving precise definitions to below, let us clarify that an option on vari-
ance refers to a derivative whose payoff is a convex function f of total realized
variance. Turning from convex to concave, this conjecture, if true, would also
imply that that the maximum possible value of a volatility swap (f(x) = x1/2)
is the one generated from a local volatility model fitted to the volatility surface.
Given the well-documented model-risk in pricing volatility swaps, such bounds
are of immediate practical interest.

The mathematics of local volatility theory (à la Dupire, Derman, Kani, ...)
is intimately related to the following

Theorem 1 ([Gyö86]). Assume dYt = µ (t, ω) dt + σ (t, ω) dBt is a multi-
dimensional Itô-diffusion where µ, σ are progressively measurable, bounded and
σσT ≥ ε2I for some ε > 0. Then

dỸt = µloc

(

t, Ỹt

)

dt + σloc

(

t, Ỹt

)

dBt

has a unique weak solution, where

µloc (t, y) = E [µ (t, ω) |Yt = y] ,

σ2
loc (t, y) = E

[

σ2 (t, ω) |Yt = y
]

,

and Ỹt
law
= Yt for all fixed t.
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A generic stochastic vol model (already written under the appropriate equiv-
alent martingale measure and with suitable choice of numéraire) is of the form
dS = SσdB where σ = σ (t, ω) is the (progressively measurable) instantenous
volatility process. (It will suffice for our application to assume σ to be bounded
from above and below by positive constants.) Arguing on log-price X = log S
rather than S,

dXt = σ (t, ω) dBt −
(

σ2 (t, ω) /2
)

dt, (1.1)

a classical application of theorem 1 yields the following Markovian projection
result1: the (weak) solution to

dX̃t = σloc

(

t, X̃
)

dBt −
(

σ2
loc

(

t, X̃t

)

/2
)

dt, (1.2)

(with σ2
loc (t, x) = E

[

σ2 (t, ω) |Xt = x
]

) (1.3)

has the one-dimensional marginals of the original process Xt. Equivalently2,
the process S̃ = exp X̃,

dS̃t = σloc(t, S̃t)S̃t dBt,

known as (Dupire’s) local volatility model, gives rise to identical prices of all
European options C (T, K). It easily follows that σ2

loc(t, S̃) is given by Dupire’s
formula

σ2
loc(T, S̃)|S̃=K = 2

∂T C

K2∂KKC
. (1.4)

Volatility derivatives are options on realized variance; that is, the payoff is
given by some function f of realized variance. The latter is given by

WT := 〈log S〉T = 〈X〉T =

∫ T

0

σ2(t, ω) dt;

in the model dS = σ (t, ω)S dB and by

W̃T := 〈log S̃〉T = 〈X̃〉T =

∫ T

0

σ2
loc(t, X̃t) dt

in the corresponding local volatility model.
Common choices of f are f (x) = x, the variance swap, f (x) = x1/2, the

volatility swap, or simply f (x) = (x − K)+, a call-option on realized variance.
See [FG05] for instance. As is well-known, see e.g. [Gat06], the pricing of
a variance swap, assuming continuous dynamics of S such as those specified
above, is model free in the sense that it can be priced in terms of a log-contract;
that is, a European option with payoff log ST . In particular, it follows that

E
[

W̃T

]

= E [WT ] .

Of course this can also be seen from (1.3), after exchanging E and integration
over [0, T ]. Passing from WT to f(WT ) for general f this is not true, and the
resulting differences are known in the industry as convexity adjustment. We
can now formalize the conjecture given in the first lines of the introduction3.

1Let us quickly remark that Markovian projection techniques have led recently to a number
of new applications (see [Pit06], for instance).

2The abuse of notation, by writting both σloc

“

t, X̃
”

and σloc

“

t, S̃
”

, will not cause con-

fusion.
3It is tacitly assumed that f (WT ) , f

“

W̃T

”

are integrable.
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Conjecture 1. For any convex f one has E
[

f
(

W̃T

)]

≤ E
[

f
(

WT

)]

.

Our contribution is twofold: first we discuss a simple (toy) example which
provides a counterexample to the above conjecture; secondly we refine our ex-
ample using a 2-dimensional Markovian projection (which may be interesting
in its own right) and thus construct a perfectly sensible Markovian stochastic
volatility model in which the conjectured result fails. All this narrows the class
of possible dynamics for S for which the conjecture can hold true and so should
be a useful step towards positive answers.

2 Idea and numerical evidence

Example 2. Consider a Black–Scholes “mixing” model dS = SσdB, S0 = 1
with time horizon T = 3 in which σ2 (t, ω) is given by σ2

+(t) or σ2
−(t),

σ2
+(t) :=











2 if t ∈ [0, 1],

3 if t ∈]1, 2],

1 if t ∈]2, 3],

σ2
−(t) :=











2 if t ∈ [0, 1],

1 if t ∈]1, 2],

3 if t ∈]2, 3],

depending on a fair coin flip ǫ = ±1 (independent of B). Obviously W = W3 =
∫ 3

0
σ2 dt ≡ 6 in this example, hence E

[

(W −6)+
]

= (W −6)+ = 0. On the other
hand, the local volatility is explicitly computable (cf. the following section) and
one can see from simple Monte Carlo simulations that for W̃ = W̃3

E
[

(W̃ − 6)+
]

≈ 0.026 > 0

thereby (numerically) contradicting conjecture 1, with f (x) = (x − 6)+.

Our analysis of this toy model is simple enough: in section 3 below we prove
that P [W̃ = 6] 6= 1. Since E[W̃ ] = E[W ] = 6 and (x − 6)+ is strictly convex at
x = 6, Jensen’s inequality then tells us that E[(W̃ − 6)+] > 0 = E [(W − 6)+].

3 Analysis of the toy example

We recall that it suffices to show that W̃ =
∫ 3

0
σ2

loc(t, X̃t) dt is not a.s. equal to
W ≡ 6. The distribution of Xt is simply the mixture of two normal distributions.
More explicitly, Xt = I{ǫ=+1}Xt,+ + I{ǫ=−1}Xt,−,

Xt,± =

∫ t

0

σ±(s) dBs + 1
2

∫ t

0

σ2
±(s) ds ∼ N

(

1
2Σ±(t), Σ±(t)

)

,

where Σ±(t) :=
∫ t

0 σ2
±(s) ds. Thus σ2

loc(t, x) = E[σ2(t, ω)|Xt = x] is given by4

σ2
loc(t, x) =

σ2
+(t)√
Σ+(t)

exp
[

− (x+Σ+(t)/2)2

2Σ+(t)

]

+
σ2
−

(t)√
Σ

−
(t)

exp
[

− (x+Σ
−

(t)/2)2

2Σ
−

(t)

]

1√
Σ+(t)

exp
[

− (x+Σ+(t)/2)2

2Σ+(t)

]

+ 1√
Σ

−
(t)

exp
[

− (x+Σ
−

(t)/2)2

2Σ
−

(t)

]

. (3.1)

4More general expression for local volatility are found in [BM06, Chapter 4] and [Lee01,
Lab09]. Note the necessity to keep σ2(., ω) constant on some interval [0, ε], for otherwise the
local vol surface is not Lipschitz in x, uniformly as t → 0.
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Since σloc = σloc(s, x) is bounded, measurable in t and Lipschitz in x (uniformly
w.r.t. t) and bounded away from zero it follows from [SV06, Theorem 5.1.1] that
the SDE

dX̃t = σloc

(

t, X̃
)

dBt − 1
2σ2

loc

(

t, X̃t

)

dt

has a unique strong solution (started from X̃0 = 0, say). Since σloc is uniformly
bounded away from 0 it follows that the process (X̃t) has full support, i.e. for
every continuous ϕ : [0, 3] → R, ϕ(0) = 0 and every ε > 0

P [‖X̃t − ϕ(t)‖∞;[0,T ] ≤ ε] > 0.

Indeed, there a various ways to see this: one can apply Stroock–Varadhan’s
support theorem, in the form of [Pin95, Theorem 6.3] (several simplifications
arise in the proof thanks to the one-dimensionality of the present problem);
alternatively, one can employ localized lower heat kernel bounds (à la Fabes–
Stroock [FS86]) or exploit that the Itô-map is continuous here (thanks to Doss–
Sussman, see for instance [RW00, page 180]) and deduce the support statement
from the full support of B.

Figure 1: Time evolution of local variance σloc
2(t, x) in dependence of log-

moneyness. The bright strip indicates a set of paths with realized variance
strictly larger than 6.

Figure 1 illustrates the dependence of σloc
2(t, x) on time t and log-moneyness

x. To gain our end of proving that W̃ (ω) =
∫ 3

0 σ2
loc(t, X̃t) dt is not constantly

equal 6, we can determine a set of paths (X̃t(ω)) for which W̃ is strictly larger
than 6. In view of Figure 1 it is natural to consider paths which are large, i.e.
X̃t(ω) ∈ [8, 10], for t ∈]1, 2 − 1

10 ] and small, i.e. |X̃t(ω)| ≤ 1, on the interval

]2, 3]. A short mathematica-calculation reveals that W̃ (ω) & 6.65 > 6 for each
such path and according to the full-support statement the set of all such paths
has positive probability, hence W̃ is indeed not deterministic.

Using elementary analysis it is not difficult to turn numerical evidence into
rigorous mathematics. Making (3.1) explicit yields that σ2

loc(t, x) ≡ 2 for t ∈
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[0, 1] and that

σ2
loc(t + 1, x) =

3√
2+3t

e
− (2x+2+3t)2

8(2+3t) + 1√
2+t

e
− (2x+2+t)2

8(2+t)

1√
2+3t

e
− (2x+2+3t)2

8(2+3t) + 1√
2+t

e
− (2x+2+t)2

8(2+t)

(3.2)

σ2
loc(t + 2, x) =

1√
5+t

e
− (2x+5+t)2

8(5+t) + 3√
3+3t

e
− (2x+3+3t)2

8(3+3t)

1√
5+t

e
− (2x+5+t)2

8(5+t) + 1√
3+3t

e
− (2x+3+3t)2

8(3+3t)

(3.3)

for t ∈]0, 1]. We fix ε ∈]0, 1] and observe that it is simple to see that limx→∞ σ2
loc(t+

1, x) = 3, uniformly w.r.t. t ∈ [ε, 1], and that limx→0 σ2
loc(t+1, x) ≥ 2, uniformly

w.r.t. t ∈]0, 1]. It follows that there exists some δ > 0 such that

σ2
loc(t + 1, x) ≥ 3 − ε for x > 1

δ , t ∈ [ε, 1] and

σ2
loc(t + 1, x) ≥ 2 − ε for |x| < δ, t ∈]0, 1].

Thus we obtain

W̃ (ω) =

∫ 3

0

σ2
loc(t, X̃t(ω)) dt ≥ 1 · 2 + (1 − 2ε) · (3 − ε) + 1 · (2 − ε) (3.4)

for every path X̃(ω) satisfying X̃t(ω) > 1
δ for t ∈ [1 + ε, 2 − ε] and |X̃t(ω)| < δ

for t ∈ [2, 3]. This set of paths X̃(ω) has positive probability and the quantity
on the right side of (3.4) is strictly larger than 6 provided that ε was chosen
sufficiently small. Hence we find that W̃ is not constantly equal to 6 as required.

For what it’s worth, the example can be modified such that volatility is
adapted to the filtration of the driving Brownian motion.

The trick is to choose a random sign ǫ̂, P (ǫ̂ = +1) = P (ǫ̂ = −1) = 1
2

depending solely on the behavior of (Bt)0≤t≤1 and in such a way that S1 is
independent of ǫ̂. For instance, if we let m(s) be the unique number satisfying
P (S1/2 > m(s)|S1 = s) = P (S1/2 ≤ m(s)|S1 = s) = 1

2 , it is sensible to define
ǫ̂ := +1 if S1/2 > m(S1) and ǫ̂ := −1 otherwise.

We then leave the stock price process unchanged on [0, 1], i.e. we define
σ̂2(t) = σ2(t) = 2 and Ŝt = St for t ∈ [0, 1]. On ]1, 2] resp. ]2, 3] we set
σ̂2(t) := 2 + ǫ̂ resp. σ̂2(t) := 2 − ǫ̂ and define Ŝt, t ∈]1, 3] as the solution of the
SDE

dŜt = σ̂(t)Ŝt dBt, Ŝ1 = S1. (3.5)

Here (3.5) depends only on S1 and the process (Bt − B1)1≤t≤3; since both are

independent of ǫ̂, we obtain that (Ŝt)1≤t≤3 and (St)1≤t≤3 are equivalent in law.

It follows that Ŵ =
∫ 3

0 σ̂2(t, ω) dt ≡ 6 and since Ŝt and St have the same law
for each t ∈ [0, 3], they induce the same local volatility model and in particular
the same (non deterministic) W̃ .
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4 Counterexample for a Markovian stochastic

volatility model

Recall that X denotes the log-price process of a general stochastic volatility
model;

dXt = σ (t, ω) dBt −
(

σ2 (t, ω) /2
)

dt,

where σ = σ (t, ω) is the (progressively measurable) instantenous volatility pro-
cess. Recall also our standing assumption that σ is bounded from above and
below by positive constants.) We would like to apply theorem 1 to the 2D-
diffusion (X, a) where da = σ2dt keeps track of the running realized variance5.
We can only do so after elltiptic regularization. That is, we consider

dXt = σ (t, ω) dBt −
(

σ2 (t, ω) /2
)

dt,

daε
t = σ2 (t, ω) dt + ε1/2dZt

where Z is a Brownian motion, independent of σ
(

B, σ2
)

. It follows that the
following “double-local” volatility model

dX̃ε
t = σdloc

(

t, X̃ε
t , ãε

t

)

dBt −
(

σ2
dloc

(

t, X̃ε
t , ãε

t

)

/2
)

dt,

dãε
t = σ2

dloc

(

t, X̃ε
t , ãε

t

)

dt + ε1/2dZt,

(with σ2
dloc (t, x, a) = E

[

σ2 (t, ω) |Xt = x, aε
t = a

]

)

has the one-dimensional marginals of the original process (Xt, a
ε
t ). That is, for

all fixed t and ε,

Xt
law
= X̃ε

t and ãε
t

law
= aε

t .

Let us also note that the law of aε
t is the law of at = a0

t convolved with a
standard Gaussian of mean 0 and variance ε. Let us also note that the log-price
processes X and X̃ε induces the same local volatility surface. To this end, just

observe that Xt
law
= X̃ε

t implies identical call option prices for all strikes and
maturities and hence (by Dupire’s formula) the same local volatility:

σ2
loc (t, x) = E

[

σ2 (t, ω) |Xt = x
]

= E
[

σ2
dloc

(

t, X̃ε
t , ãε

t

)

|X̃ε
t = x

]

.

Since the law of a time inhomogoneous Markov process is fully specified by its
generator, it follows that the law of the local volatility process associated to (X)

has the same law as the local volatility process associated to
(

X̃ε
)

.

We apply this to the toy model discussed ealier. Recall that in this example,
with T = 3

aT = WT =

∫ T

0

σ2 (t, ω) dt = 6

whereas realized variance under the corresponding local vol model,

W̃T =

∫ T

0

σ2
loc

(

t, X̃t

)

dt

5In other words,

WT =

Z

T

0

σ2 (t, ω) dt = aT ,

provided a0 = 0 which we shall assume from here on.
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was seen to be random (but with mean aT = WT , thanks to the matching
variance swap prices). As a particular consequence, using Jensen

E
(

∫ T

0

σ2
loc

(

t, X̃t

)

dt − 6
)+

>
(

E

∫ T

0

σ2
loc

(

t, X̃t

)

dt − 6
)+

=

=
(

E

∫ T

0

σ2 (t, ω) dt − 6
)+

= (aT − 6)+.

We claim that this persists when replacing the abstract stochastic volatility

model (X) by
(

X̃ε
)

, the first component of a 2D Markov diffusion, for any

ε > 0. Indeed, thanks to the identical laws of the respective local volatility
processes the left-hand side above does not change when replacing (X̃t) by the

local volatility process associated to
(

X̃ε
)

. On the other hand

E

∫ T

0

σ2
dloc

(

t, X̃ε
t , ãε

t

)

dt = E(ãε
T − ε1/2ZT )

= E (ãε
T ) = E (aε

T )

= E
(

aT + ε1/2ZT

)

= aT .

Thus, insisting again that the process X̃ is (in law) the local volatility model

associated to
(

X̃ε
)

we see that

E
(

∫ T

0

σ2
loc

(

t, X̃t

)

dt − 6
)+

>
(

E

∫ T

0

σ2
dloc

(

t, X̃ε
t , ãε

t

)

dt − 6
)+

= 0.

In other words, the double-local vol model constitues an example of a Markovian
stochastic volatility model, where stochastic volatility is a function of both state
variables, in which conjecture 1 fails.
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