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AN OPTIMALITY PRINCIPLE WITH APPLICATIONS IN

OPTIMAL TRANSPORT AND ITS OFFSPRING

MATHIAS BEIGLBÖCK AND CLAUS GRIESSLER

Abstract. A fundamental concept in optimal transport is c-cyclical
monotonicity: it allows to link the optimality of transport plans to the
geometry of their support sets. Recently, related concepts have been
successfully applied in the multi-marginal version of the transport prob-
lem as well as in the martingale transport problem which arises from
model-independent finance.

We establish a unifying concept of c-monotonicity / finitistic opti-
mality which describes the geometric structure of optimizers to infinite-
dimensional linear programming problems. This allows us to strengthen
known results in martingale optimal transport and the infinitely mar-
ginal case of the optimal transport problem.

If the optimization problem can be formulated as a multi-marginal
transport problem our contribution is parallel to a recent result of Zaev.

1. Introduction

1.1. Motivation from optimal transport. Consider the Monge-Kanto-
rovich transport problem for probabilities µ, ν on Polish spaces X,Y , cf.
[Vil03, Vil09]. The set Π(µ, ν) of transport plans consists of all measures on
X × Y with X-marginal µ and Y -marginal ν. Associated to a cost function
c : X×Y → R+ and γ ∈ Π(µ, ν) are the transport costs

∫

c dγ. The Monge-
Kantorovich problem is then to determine the value

(OT) inf
{

∫

c dγ : γ ∈ Π(µ, ν)
}

and to identify an optimal transport plan γ∗ ∈ Π(µ, ν), minimizing of (OT).
A fundamental concept in the theory of optimal transport is c-cyclical

monotonicity which leads to a geometric characterization of optimal cou-
plings. Its relevance was fully recognized by Gangbo and McCann [GM96].

We postpone precise definitions and just mention that heuristically, a
transport plan is c-cyclically monotone if it cannot be improved by means
of cyclical rerouting, i.e. by replacing the transfers

x1 → y1, x2 → y2, . . . , xn → yn with x1 → y2, x2 → y3, . . . , xn → y1.

Technically, the relation between optimality and c-cyclical monotonicity
is rather intricate; it took a series of contributions ([AP03, Pra08, ST09,
BGMS09] among others) to reach the following clear cut characterization:

Theorem 1.1. Let c : X × Y → [0,∞) be Borel measurable and assume
that γ ∈ Π(µ, ν) is a transport plan with finite costs

∫

c dγ ∈ R+. Then γ is
optimal if and only if γ is c-cyclically monotone.
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To understand if a transport behaves optimally on a finite number of
points is an elementary and often feasible task. However, it is difficult to
relate this to the transport between diffuse distributions since single points
do not carry positive mass. Theorem 1.1 provides the required remedy to this
obstacle: it connects the optimization problem for measures with optimality
on a “pointwise” level.

1.2. Aims of this article. Several modifications and generalizations of the
classical optimal transport problem have received interest in the literature,
we list some which will also be considered in more detail below. A natural
extension is the multi-marginal version of the transport problem where not
just two but finitely many marginals are prescribed, see e.g. [Kel84, Car03,
Pas11, Pas12, KP13]. Pass [Pas13a, Pas13b] considered the extensions of the
transport problem to the case where a continuum of marginals is prescribed.
Recently also martingale versions of the transport problem have received
considerable attention (see [BHLP13, GHLT14, BJ13, HT13, DS13a, DS13b]
among others) motivated by applications in model-independent finance.

Given the importance of c-cyclical monotonicity it is natural to search for
a related concept applicable in the just mentioned versions of the transport
problem. Kim and Pass [KP13] introduced a notion of c-monotonicity, nec-
essary for optimality in the context of the multi-marginal transport problem
([KP13, Proposition 2.3]). This is used to develop a general condition on
the cost function which is sufficient to imply existence of a Monge solution
and uniqueness results in the multi-marginal optimal transport problem.
In [BJ13], the authors introduced a concept of “finitistic optimality” which
mimics c-cyclical monotonicity in the case of the 2-period martingale trans-
port problem. A variational principle [BJ13, Lemma 2.1] then links finitistic
optimality with optimality overall. This allows to determine optimal mar-
tingale transport plans in a number of instances.

The main goal of this article is to unify these notions and to make them
applicable to the above mentioned variations of the transport problem. In
(A) below we formulate an infinite-dimensional linear optimization prob-
lem which captures the just mentioned versions of the transport problem
as special cases. We then introduce a version of finitistic optimality /
c-monotonicity for this optimization problem and establish a “variational
principle” (Theorem 2.4) which asserts that finitistic optimality is necessary
for optimality overall.

In particular we obtain improved versions of the results from [BJ13] and
[KP13, Proposition 2.3] as well as one half of the classical result stated
in Theorem 1.1. To exemplify the applicability of Theorem 2.4 beyond
optimization of finite products of spaces we prove a strengthened version of
Pass’ Monge-type result for a continuum of marginals [Pas13a].

In independent work, Zaev [Zae14] obtains (among a number of further
results) a theorem which is closely related to Theorem 2.4; [Zae14] works
in the setup of a multi-marginal transport problem allowing for additional
linear constraints. We will discuss the precise relation in Section 2.7 below.

2. Formulation of the problem and the optimality criterion

2.1. The basic optimization problem. Throughout this article we as-
sume that E is a Polish space and c : E → R a Borel measurable cost
function. Typical examples could be E = M2, where M is a Riemannian
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manifold, E = (Rd)n, or E = C[0, T ], the space of continuous functions
[0, T ] → R with the topology of uniform convergence.

By F we denote a set of Borel-measurable functions on E. We consider
the probability measures γ on E for which

∫

f dγ = 0 for all f ∈ F .1 We
denote the set of these measures by ΠF . The optimization problem is then
to minimize the total cost choosing from ΠF , i.e.

min
γ∈ΠF

∫

c dγ.(A)

We give a list of some more specific problems that can be posed this way.
Given a product of spaces

∏

i∈I Xi we will write pXi
or in short pi for the

projection onto Xi.

2.2. Classical optimal transport and its multi-marginal version. To
fit the classical Monge-Kantorovich problem (OT) into this setup, take E =
X × Y . To test whether a measure γ is a transport plan in Π(µ, ν) it is
sufficient to verify that

∫

ϕ(x) dπ(x, y) =

∫

ϕ(x) dµ(x),

∫

ψ(y) dπ(x, y) =

∫

ψ(y) dν(y)

for all continuous bounded functions ϕ : X → R, ψ : Y → R. Hence, with

F1 = {ϕ ◦ pX −
∫

ϕdµ,ψ ◦ pY −
∫

ψ dν : ϕ ∈ Cb(X), ψ ∈ Cb(Y )}

problem (A) is equivalent to the usual optimal transport problem (OT).
Of course, the same applies to the multi-marginal optimal transport prob-

lem where one considers

(1) inf{
∫

c dγ : γ ∈ Π(µ1, . . . , µn)}

for probabilities µ1, . . . , µn on Polish spaces X1, . . . ,Xn and Π(µ1, . . . , µn)
consists of all probability measures γ on E = X1 × . . . × Xn satisfying
pi(γ) = µi, i = 1, . . . , n. Here we take

F2 = {ϕ ◦ pi −
∫

ϕdµi : ϕ ∈ Cb(Xi), 1 ≤ i ≤ n}.(2)

2.3. Optimal transport in the continuum marginal case. Recently
Pass introduced an extension of the transport problem to the case of infin-
itely many marginals [Pas13a, Pas13b]. Specifically, in [Pas13a] the follow-
ing problem was posed: for I = [0, T ], given a family (µt)t∈I of probability
measures on R and a strictly concave function h : R → R, determine

inf
γ∈ΠC(µt)

∫

h
(

∫ T

0
f(t) dt

)

dγ(f),(B)

where ΠC(µt) denotes the set of probability measures on C[0, T ] with marginals
(µt)t∈I . Notably (µt)t∈I can be assumed to be weakly continuous; otherwise
there cannot be a measure on C(I) with these marginals.

Under certain conditions Pass is able to show that this problem has a
unique minimizer which he determines explicitly. He then lists several ap-
plications from parabolic equations to mathematical finance and quantum
physics.

To view this in the framework of (A), simply set E = C[0, T ] and let

F3 = {ϕ ◦ pt −
∫

ϕdµt : ϕ ∈ Cb(R), t ∈ [0, T ]}.(3)

1 By asserting that
∫

f dγ = 0 we implicitly understand that this integral exists.
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We use Theorem 2.4 to establish a strengthened version2 of Pass’ main
result: following [Pas13a] we first describe a candidate optimizer: consider
the quantile functions3 qt(x) of the probabilities µt, t ∈ [0, T ]. By weak
continuity of (µt), t 7→ qt(x) is continuous for each x ∈ (0, 1). Hence q : x 7→
(qt(x))t∈[0,T ] defines a mapping from (0, 1) to C[0, T ] and π∗ := q(λ|(0,1)) ∈
ΠC(µt). We then obtain

Theorem 2.1. Let h : R → R be concave and (µt)t∈I a family of probability
measures on R, weakly continuous in t and such that

∫ T

0

∫

|x| dµt(x) dt <∞, and

∫

|h| dµt <∞ for all t ∈ [0, T ].

Then π∗ is a minimizer of (B). If the infimum in (B) is finite and h is
strictly concave, then π∗ is the unique minimizer.

2.4. Model-independent finance – Martingale Transport. For a gen-
eral overview we refer to the survey of Hobson [Hob11]. Recent contributions
on the general theory in discrete time include [ABPS13, HT13, BN13]. Here
E = Rn

+ or Rn, the n-tuple (x1, . . . , xn) is interpreted as possible evolution
of the stock price at future dates t1 < t2 < . . . < tn. A possible price of
a “path-dependent option” with payoff c : E → R is then calculated as an
integral

∫

c dγ.(4)

The basic problem in model-independent finance is to determine the mini-
mal (or maximal) possible prices subject to appropriate constraints, i.e. to
minimize (4) over a suitable class of probabilities γ.

According to the martingale pricing paradigm in mathematical finance
possible measures of interest are martingale measures, i.e. probabilities γ
such that the coordinate process on Rn is a martingale (in its own filtration)
with respect to γ. Thus γ is a martingale measure iff for each l < n, and
each continuous bounded function ϕ : Rl → R one has

∫

xl+1 ϕ(x1, . . . , xl) dγ =
∫

xl ϕ(x1, . . . , xl) dγ;

this leads us to consider the family of functions

F (m) =
{

(pl+1 − pl)
(

ϕ ◦ p{1,...,l}
)

: ϕ ∈ Cb

(

Rl
)

, l = 1, . . . , n− 1
}

.(5)

The martingale condition corresponds to asserting that
∫

f dγ = 0 for all f ∈

F (m). In model-independent finance one typically assumes that additional
information is given from market-data which again corresponds to asserting
that

∫

f dγ = 0 for functions f in some family of functions H.
The principle problem in model independent finance is then precisely the

optimization problem (A) for F4 = F (m) ∪H.
We list some particular choices for H which have received particular in-

terest: the instance H = ∅ is not relevant for mathematical finance but more
so in probability through its connection to martingale inequalities: we refer
to [ABP+13, BS13, BN13, BN14] for recent developments in this direction.

2Among other conditions, Pass assumes that the quantile functions satisfy a property of
uniform Riemann-integrability which may be difficult to verify.
3I.e. qt is the generalized inverse of the cumulative distribution function of µt: qt(x) =
inf{y : µt

(

(−∞, y]
)

≥ x}
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A notable result of Bouchard and Nutz [BN13] is that every martingale in-
equality in finite discrete time can be derived from a “dual”, elementary and
deterministic inequality.

Provided that European call options on the underlying stock are liquidly
traded, it is a reasonable mathematical idealization to assume that the mar-
ginal distribution of the stock price at a particular time instance is known
from market data. In the mathematical finance literature the case where
the marginal distribution at the terminal time tn is given has received par-
ticular attention.4 In the present context this corresponds to asserting that
pn(γ) = µ for some probability µ, i.e. specifying

H = {ϕ ◦ pn −
∫

ϕdµ : ϕ ∈ Cb(R)}.(6)

More recently also the case where all intermediate marginals are assumed to
be given has been considered under the name of martingale optimal trans-
port; this corresponds to H = F2 (where X1 = . . . = Xn = R).

2.5. A variational principle for martingale optimal transport. Hav-
ing generalized the optimization problem, we need to adapt the optimality
criterion. Our motivation stems from a result of [BJ13] which we discuss
subsequently. We first recall the definition of c-cyclical monotonicity : a set
Γ ⊆ X × Y is called c-cyclical monotone if for (x1, y1), . . . , (xl, yl) ∈ Γ, one
always has, setting yl+1 = y1,

l
∑

i=1

c(xi, yi) ≤
l

∑

i=1

c(xi, yi+1).

A transport plan is called c-cyclically monotone if it is concentrated on a
c-cyclically monotone set. Note that an equivalent way (cf. [Vil03, Exercise
2.21]) of stating cyclical monotonicity of Γ is: for each finite measure α
concentrated on finitely many elements of Γ one has

∫

c dα ≤

∫

c dα′

whenever α′ has the same marginals as α.
In [BJ13] this notion was adapted for the martingale transport problem5

by adding a martingale component: for a measure α on R2, a measure α′ is
called a competitor if

(1) α and α′ have the same marginals, and
(2)

∫

x2 dαx1(x2) =
∫

x2 dα
′
x1
(x2) holds p1(α)-almost surely

(i.e., the difference α− α′ has the martingale property).

Using this, a set Γ ⊆ R2 is called finitely optimal if for each finite measure
α concentrated on finitely many elements of Γ, one has

∫

c dα ≤
∫

c dα′, for
each competitor α′ of α.

The condition (2) in the definition of a competitor can be replaced by
the following equivalent condition: for each bounded Borel-measurable f ,

4This case is naturally connected to the Skorokhod embedding problem, we refer to survey
of Ob lój [Ob l04].
5The article [BJ13] is concerned with the case E = R2 where the minimization is taken
over all transport plans which are martingale measures, i.e. the setup described in last
part of Section 2.4, resp. F = F(m) ∪ F2 in the optimization problem (A).
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we have
∫

(x2 − x1) f(x1) dα(x1, x2) =

∫

(x2 − x1) f(x1) dα
′(x1, x2).

However, this condition, together with the condition of equal marginals, can
be written in short as

∫

f dα =

∫

f dα′

for all f ∈ F (m) ∪ F2, as above.
In [BJ13] it is shown that optimality implies finitistic opimality provided

that c satisfies certain moment conditions and that the converse holds pro-
vided that c is continuous and bounded.

2.6. A general concept of finitistic optimality and main result. The
above discussion leads us to the following definition:

Definition 2.2. For a measure α on the Polish space E and a set F of
measurable functions E → R, a competitor of α is a measure α′ on E such
that α(E) = α′(E), and for all f ∈ F one has

∫

f dα =
∫

f dα′.(7)

If in addition
∫

c dα′ <
∫

c dα,(8)

then α′ is called a c-better competitor of α.
A set Γ ⊆ E is called finitely minimal / c-monotone if no finite measure

α concentrated on finitely many points in Γ has a c-better competitor. A
measure γ on E is called finitely minimal / c-monotone if it is concentrated
on a finitely minimal set.

Our goal is to establish that optimizers of the problem (A) are finitely
minimal. To this end we require the following assumption on the family F :

Assumption 2.3. (1) There exists a function g : E → [0,∞) such that
each element of F is bounded by some multiple of g. I.e. for each
f ∈ F there is a constant af ∈ R+ such that |f | ≤ afg.

(2) Either all functions in F are continuous or F is at most countable.

Notably these properties are satisfied in all examples listed above.

Theorem 2.4. Let E be a Polish space and c : E → R a Borel measurable
function. Let F be a family of Borel-measurable functions on E satisfying
Assumption 2.3 and assume that γ∗ is a minimizer of the problem

min
γ∈ΠF

∫

c dγ

and that
∫

c dγ∗ ∈ R. Then γ∗ is finitely minimal / c-monotone.

In applications it is natural to consider continuous or lower semi-continuous
cost functions in which case the existence of an optimizer γ∗ can often be
established by compactness arguments. However this assumption does not
simplify our arguments nor does it lead to a more specific result. We have
therefore chosen to go with the general formulation above.

In the case of classical optimal transport one obtains a nicer result for
the (most relevant) case where c is continuous: if γ is an optimal transport
plan then suppγ is c-cyclically monotone. It is natural to ask whether this
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stronger assertion is also true in our setup. This is not the case: Juillet
[Jui14] has found an example of a two-period martingale transport problem
where the measures µ, ν are compactly supported and the cost function
c(x, y) = (y − x)3 is continuous but the support of the unique minimizer is
not finitely optimal.

2.7. Connection with [Zae14]. The recent article [Zae14] is concerned
with the multi-marginal transport problem described in Section 2.2 but al-
lows for additional linear constraints. In our notation this corresponds to
problem (A) on a set E which is a product X1 × . . . ×Xn of Polish proba-
bility spaces and where F is a superset of the set F2 defined in (6); several
important extensions of the transport problem can be phrased in this form.
Under continuity and (weak) integrability assumptions Zaev establishes the
existence of an optimizer, a version of the classical Monge-Kantorovich du-
ality as well as a necessary geometric condition for optimizers. The latter
statement is equivalent to the assertion of Theorem 2.4 (applied to the setup
of [Zae14]). Notably the proof given in [Zae14] is based on the duality result
and different from the approach pursued in this article.

3. Proof of Theorem 2.4

In the proof of Theorem 2.4 we will make use of the following result from
[BGMS09], which is a consequence of a duality result by Kellerer [Kel84]:

Lemma 3.1 ([BGMS09, Proposition 2.1]). Let (E,m) be a Polish probability
space, and M an analytic6 subset of El, then one of the following holds true:

(i) there existm-null setsM1, . . . ,Ml ⊆ E such thatM ⊆
⋃l

i=1 p
−1
i (Mi),

or
(ii) there is a measure η on El such that η(M) > 0 and pi(η) ≤ m for

i = 1, . . . , l.

Proof of Theorem 2.4. Without loss of generality we assume that |c| ≤ g.
We want to find a finitely minimal set Γ with γ∗(Γ) = 1. To obtain this,
it is sufficient to show that for each l ∈ N there is a set Γl with γ

∗(Γl) = 1
such that there is no c-better competitor α′ with α′(E) ≤ 1,

∫

g dα′ ≤ l for
any finite measure α concentrated on at most l points in Γl and satisfying
α′(E) ≤ 1,

∫

g dα ≤ l. For then Γ :=
⋂

l∈N Γl is finitely minimal.

Hence, fix l and define a subset of El,

M := {(z1, . . . , zl) ∈ El :

∃ a measure α on E,α(E) ≤ 1,
∫

g dα ≤ l, supp α ⊆ {z1, . . . , zl},

s.t. there is a c-better competitor α′, α′(E) ≤ 1
∫

g dα′ ≤ l, | suppα| ≤ l}.

Note that M is the projection of the set

M̂ =
{

(z1, . . . , zl, α1, . . . , αl, z
′
1, . . . , z

′
l, α

′
1, . . . , α

′
l, ) ∈ El × Rl

+ × El × Rl
+ :

∑

αi ≤ 1,
∑

αig(zi) ≤ l,
∑

α′
i ≤ 1,

∑

α′
ig(z

′
i) ≤ l,

∑

αi =
∑

α′
i,

∑

αif(zi) =
∑

α′
if(z

′
i) for all f ∈ F ,

∑

αic(zi) >
∑

α′
ic(z

′
i)
}

.

onto the first l coordinates. By our Assumption 2.3, the set M̂ is Borel,
hence M is analytic.

6[BGMS09, Proposition 2.1] is stated only for Borel sets, however the same proof applies
in the case where M is analytic.
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We apply Lemma 3.1 to the space (E, γ∗): if (i) holds, then define

N :=
⋃l

i=1Mi. Then Γl := E \ N has full measure, γ∗(Γl) = 1. From
the definitions of M and N it can be directly seen that Γl is as needed.

If (i) does not hold, (ii) has to. Hence, let us derive a contradiction from
it.

Write pi for the projection of an element of El onto its i-th component.
We may assume that the measure η in (ii) is concentrated on M , and also
fulfills pi(η) ≤

1
l
γ∗ for i = 1, . . . , l.

We now apply the Jankow – von Neumann selection theorem to the set
M̂ to define a Borel measurable mapping

z 7→ (α1(z), . . . , αl(z), z
′
1(z), . . . , z

′
l(z), α

′
1(z), . . . , α

′
l(z))

such that

(z, α1(z), . . . , αl(z), z
′
1(z), . . . , z

′
l(z), α

′
1(z), . . . , α

′
l(z)) ∈ M̂

for z ∈M . Setting

αz :=
∑

i

αi(z)δzi , α
′
z :=

∑

i

α′
i(z)δz′i(z)

we thus obtain kernels z 7→ αz, z 7→ α′
z. We use these to define measures

ω, ω′ through

ω(B) =

∫

αz(B) dη(z), ω′(B) =

∫

α′
z(B) dη(z).

By construction ω ≤ γ∗. Moreover ω′ is a c-better competitor of ω: for each
f ∈ F we have

∫

f dω′ =

∫∫

f dα′
zdη(z) =

∫∫

f dαzdη(z) =

∫

f dω.

Note that the first and last equality are justified since
∫

g dαz,
∫

g dα′
z ≤ l

for all z. Similarly, since |c| ≤ g, we obtain
∫

c dω′ =

∫∫

c dα′
zdη(z) <

∫∫

c dαzdη(z) =

∫

c dω.

Summing up, we obtain a probability measure γ′ := γ∗ − ω+ω′ that fulfills
∫

c dγ′ <
∫

c dγ∗ and γ′ ∈ ΠF . �

4. The continuum marginal transport problem revisited

This section is devoted to establishing Theorem 2.1. In order to simplify
notations w.l.o.g. we work with I = [0, T ] = [0, 1] from now on.

Pass’ result from [Pas13a] had a predecessor in an earlier paper by Carlier
[Car03], who dealt with the following Monge-type problem: given a cost
function g on Rn+1 which is continuous and strictly monotone of order 2,
minimize

s 7→

∫

g
(

t, s(t)
)

dµ0,(C)

where s runs through the Borel-functions R → Rn with si(µ0) = µi for i =
1, . . . , n, and µ0, . . . , µn given. Under regularity assumptions and assuming
that µ0 does not charge points, Carlier used duality methods to demonstrate
that there is a maximizer s which is unique µ0-almost surely, and which has
nondecreasing components si. The finite-dimensional version of problem (B)
does fall into the setting of (C), as for a strictly concave function h : R → R,
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the function x 7→ h(x1 + x2 + · · ·+ xn) is continuous and strictly monotone
of order 2. It is not hard to see how to obtain the analogous solution to the
finite dimensional variant of (B) from Carlier’s result; for a precise statement
see Theorem 4.1 below. We introduce the notation π∗n for the n-dimensional
analogue of the measure π∗n, that is given n probability measures µ1, . . . , µn
on R, π∗n is the measure uniformly distributed on the quantile functions qi
of µi. Then we can state:

Theorem 4.1. Let h : R → R be strictly concave and µ1, . . . , µn be proba-
bility measures on R such that

∫

|x| dµi <∞,

∫

|h| dµi <∞, for 1 ≤ i ≤ n.

Then π∗n is the unique minimizer of

(9) inf
γ∈Πn(µ1,...,µn)

∫

h(x1 + · · · + xn) dγ(x).

It is clear why the variational principle should come in useful for results as
in Theorems 2.1 and 4.1. For in these situations, finite optimality of a set A
(in Rn or C[0, 1], respectively) implies that ≤ must be an order on A, i.e. if
f and g are both in A, then either f ≤ g or g ≤ f . Else, set f ′ = max{f, g}
and g′ = min{f, g}, and let α be the measure 1

2δf +
1
2δg and α′ the measure

1
2δf ′ + 1

2δg′ . It is clear that α′ is a measure with the same marginals as α′

(on Rn, or C[0, 1], respectively). But due to the strict concavity of h, it
is easy to see in both cases (C) and (B) that α′ is a better competitor to
α, contradicting the definition of local optimality. We call a set on which
≤ is a total order a monotone set. The argument of optimality of π∗n (π∗,
respectively) is then completed by the following intuitive lemma. A proof
of the first part can be found e.g. in [RR98, p 108] or [AGS08, 134]. The
second part is a simple consequence since the distribution of a continuous
process is determined by its finite dimensional marginal distributions.

Lemma 4.2. Let γ be a probability measure on Rn with marginals µ1, . . . , µn.
If there is a monotone Borel set M with µ(M) = 1, then γ = π∗n.
Let γ be a probability measure on C[0, 1] with marginals

(

µt
)

t∈I
. If there is

a monotone Borel set M with γ(M) = 1, then γ = π∗.

Proof of Theorem 4.1. The set Π(µt1 . . . , µtn) is weakly compact. Due to the
assumptions on first moments and h-moments of the marginal measures µi,
the operator to be minimized is lower semi-continuous and bounded. Hence
there is a finite minimizer. Strict concavity of h and an application of the
variational principle yield that each finite minimizer must be concentrated
on a finitely minimal, hence monotone set. By the preceding lemma, each
minimizer must be equal to π∗n. �

Now we turn to proving Theorem 2.1: unfortunately, the nice and neat
argument for Theorem 4.1 breaks down as ΠC

(

µt
)

need not be compact, as
easy counterexamples show. Hence we have to find a way first to establish
the existence of an optimizer at all. Here is how we want to proceed: we will
solve a problem for a countable index set as an intermediate step, and use
the result in the proof of Theorem 2.1 at the end of this section. Writing
Q = [0, 1] ∩ Q, we define ΠQ(µq) as the set of probability measures on RQ

with marginals (µq)q∈Q. Furthermore, we fix a sequence of finite partitions
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(Pn) of [0, 1] with Pn ⊆ Pn+1 ⊆ Q and
⋃

n Pn = Q. We then replace the
original problem (B) by

inf
γ∈ΠQ(µq)

∫

h
(

lim inf
n→∞

∑

ti∈Pn

fti(ti − ti−1)
)

dγ(f).(B’)

Writing π∗Q for the Q-analogue of π∗ and assuming monotonicity and
boundedness of h for the time being, we claim:

Proposition 4.3. Let h : R → R be concave, decreasing, and non-positive.
Provided that

∫

|x| dµq(x) < ∞,
∫

|h| dµq < ∞ for all q ∈ Q, the measure
π∗Q is a minimizer of Problem (B’).

The proof is preceded by Lemmas 4.4, 4.5, and 4.6. The assumptions here
on h and the marginals are always as in Theorem 4.3.

Lemma 4.4. ΠQ

(

µq
)

is weakly compact.

Proof. By Prochorov’s theorem: let ε > 0 be arbitrary. Then, with Q =
{q1, q2, . . . }, for each qk there exists a compact set Kk ⊆ R with µqk(Kk) >
1 − ε

2k
. The set K = Π∞

k=1Kk is a compact subset of RQ. For a measure

γ ∈ ΠQ

(

µq
)

we have

γ(K) = lim
n→∞

γ
(

p−1
q1,q2,...,qn

(K1 ×K2 × · · · ×Kn)
)

.

As for each n

γ
(

p−1
q1,q2,...,qn

(K1 ×K2 × · · · ×Kn)
)

> 1−
n
∑

k=1

ε

2k
≥ 1− ε

we have γ(K) ≥ 1− ε, and Prochorov’s theorem can be applied. �

We introduce some notation:

sn : RQ → R, f 7→
∑

ti∈Pn

fti(ti − ti−1)

s(h)n : RQ → R, f 7→
∑

ti∈Pn

h(fti)(ti − ti−1),

ϕn : RQ → R ∪ {−∞}, f 7→ inf
k≥n

sk(f),

ϕ : RQ → R ∪ {−∞,∞}, f 7→ sup
n
ϕn(f) = lim inf

n
sn(f).

We continue with

Lemma 4.5. For each n, the operators defined on ΠQ(µq),

Sn : γ 7→

∫

h ◦ sn dγ

and

Φn : γ 7→

∫

h ◦ ϕn dγ

are lower-semi-continuous (w.r.t. weak convergence) and have minimizers.
The values of the minima are finite.

Proof. The existence of minimizers will follow from lower-semi-continuity of
the operators and compactness of ΠQ(µq). Hence, let (γl)l∈N be a sequence
in ΠQ(µq) converging weakly to some γ0.
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We have
ϕn ≤ sn

and hence, by monotonicity and concavity of h that

h ◦ ϕn ≥ h ◦ sn ≥ s(h)n .

For each γ ∈ ΠQ

(

µq
)

we have
∫

s(h)n dγ =
∑

ti∈Pn

(ti − ti−1)

∫

h(fti) dγ(f) =
∑

ti∈Pn

(ti − ti−1)

∫

hdµti .

Hence in particular

lim
l→∞

∫

s(h)n dγl =

∫

s(h)n dγ0.

As s
(h)
n is continuous, the prerequisites of Lemma 4.3. in [Vil09] are met for

both Sn and Φn, and applying that result we get

lim inf
l→∞

Sn(γl) ≥ Sn(γ0)

and
lim inf
l→∞

Φn(γl) ≥ Φn(γ0).

Finally, the finiteness of the minimal values follows from h being bounded
from above, the assumption on finite h-moments of the marginals, and

h ◦ ϕn ≥ h ◦ sn ≥ s
(h)
n . �

Lemma 4.6. For each n ∈ N, the measure π∗Q minimizes Φn on ΠQ

(

µq
)

.

Proof. We first show that in the case when h is strictly concave, the following
stronger assertion is true: π∗Q is the unique measure in ΠQ

(

µq
)

doing the
following:
(0) it minimizes Φn,
(1) among the minimizers of Φn it minimizes S1,
(2) among the measures fulfilling (0) and (1), it minimizes S2,
...
(k) among the measures fulfilling (0), (1), . . . , (k − 1), it minimizes Sk
...
We show existence of a measure fulfilling all the conditions (0), (1), . . . : write
K0 for the set of minimizers of Φn. By the previous lemma, K0 6= ∅. Also,
K0 is compact: for it is a closed subset of the compact set ΠQ(µq), where
closedness is due to the semi-continuity of Φn. Hence, among the minimizers
of Φ, there is a minimizer of the lower-semi-continuous operator S1. Writing
K1 for the set of these minimizers, by the same argument as above, K1

is nonempty and compact. Hence, the set K2 of minimizers of S2 on K1 is
nonempty and again compact. By induction we obtain a decreasing sequence
of compact nonempty sets Kk. Hence the set K =

⋂

kKk is nonempty and
each of its elements fulfills properties (0), (1), . . . Pick such an element and
denote it by π0. We now apply the variational principle to show that π0
must indeed be equal to π∗Q: π0 is concentrated on a set Γ that is locally

optimal for each of the problems (k). Observe first that local optimality
of Γ for problem (0) alone does not need to imply that Γ is monotone.7

However, local optimality of Γ for problem (1) - i.e. the optimization of

7What local optimality does imply is the following: if f, g are in Γ, and ϕn(f) > ϕn(g),
then one must have ϕn

(

(f − g)+
)

= 0. This is a weaker condition than ≤ being an order
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S1 on the set K0 - does imply that Γ must be monotone on P1, that is,
if f, g ∈ Γ, then either f |P1 ≤ g|P1 or f |P1 ≥ g|P1 . For if there were
f, g not ordered on P1, then write f ′ = 1P1 max(f, g) + 1Pc

1
f and g′ =

1P1 min(f, g) + 1Pc
1
g. Set α = 1

2δf + 1
2δg and α′ = 1

2δf ′ + 1
2δg′ , where δf

denotes the Dirac-measure on f , etc. Then α′ is apparently S1-better than
α, but it is also a competitor of it: it clearly has the same marginals, and
we have ϕn(f

′) = ϕn(f) and ϕn(g
′) = ϕn(g), as manipulating a function

f ∈ RQ on finitely many points does not change the value of ϕn. Hence,
also Φn(α

′) =
∫

h ◦ ϕn dα
′ =

∫

h ◦ ϕn dα = Φn(α). The existence of an S1-
better competitor is a contradiction to local optimality, so Γ must indeed be
monotone on P1. Now for problem (2), we also find that Γ must be monotone
on P2: let f, g ∈ Γ, and assume, due to monotonicity of Γ on P1, that
f |P1 ≥ g|P1 . If f and g were not ordered on P2, then the same construction
of f ′, g′, α and α′ as above (with P2 in place of P1) will give a contradiction
to local optimality: note that s1(f

′) = s1(f) and s1(g
′) = s1(g), as f

′ = f

and g′ = g on P1. Hence, Φn(α
′) =

∫

h ◦ ϕn dα
′ =

∫

h ◦ ϕn dα = Φn(α),
S1(α

′) =
∫

h ◦ s1 dα
′ =

∫

h ◦ s1 dα = S1(α), and α
′ is really a competitor of

α.
Iterating this argument one finds that Γ must indeed be monotone on each
Pk, and henceforth monotone. But then π0 must be π∗Q, because π∗Q is

the only measure in ΠQ(µq) concentrated on a monotone set. This last
statement follows easily from Lemma 4.2.

Finally, we discuss the case where h is concave, but not necessarily strictly
concave. Then, due to the finiteness of

∫

|h| dµq for all q ∈ Q, there is, for
each k ∈ N, a strictly concave function hk such that

∫

|hk| dµq < ∞ for all
q ∈ Pk. Then by adapting the above argument, it is easy to see that π∗Q is

the only measure in ΠQ

(

µq
)

that
(0) minimizes Φn

(1’) among the minimizers of Φn, it minimizes
∫

h1(s1) dγ,
. . .

(k’) among the measures fulfilling (0), (1’), . . . , (k-1’), it minimizes
∫

hk(sk) dγ,
. . . �

Proof of Proposition 4.3. Let γ be a measure in ΠQ(µq). Then for each n,
according to the previous lemma

∫

h ◦ ϕn dγ ≥

∫

h ◦ ϕn dπ
∗
Q.

As h is decreasing and non-positive, and ϕn increases to ϕ = lim infn sn,
an application of monotone convergence finishes the proof. �

Finally we can proof Theorem 2.1:

Proof of Theorem 2.1. First, note that due to the regularity assumption of
∫ 1
0

∫

|x|dµt dt < ∞, it is w.l.o.g to assume that h is non-positive. If we
further assume for the time being that h is decreasing, we can apply Propo-
sition 4.3 to see the optimality of π∗ as follows: let pQ be the projection

RI → RQ, and write p for its restriction on C[0, 1]. It is easy to see that

p is a Borel isomorphism from C[0, 1] onto R
Q
c , the set of all elements of

on Γ, and explains why one works with the sequence of problems (k) rather than just with
problem (0).
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RQ that are restrictions of continuous functions on [0, 1]. For an arbitrary
γ ∈ ΠC(µt), the measure p(γ) is in ΠQ(µq) and clearly

∫

h
(

∫ 1

0
f dt

)

dγ =

∫

h
(

lim inf
n→∞

∑

ti∈Pn

fti(ti − ti−1)
)

d p(γ).

But for the right-hand-side one also has, due to Theorem 4.3,
∫

h
(

lim inf
n

∑

ti∈Pn

fti(ti−ti−1)
)

d p(γ) ≥

∫

h
(

lim inf
n

∑

ti∈Pn

fti(ti−ti−1)
)

dπ∗Q.

As the right-hand-side of this equals
∫

h
(

∫ 1
0 f dt

)

dπ∗ we have

∫

h
(

∫ 1

0
f dt

)

dγ ≥

∫

h
(

∫ 1

0
f dt

)

dπ∗.

If h is not decreasing, then assume first it is increasing. If in problem (B’)
we replace lim inf by lim sup one can show, with the proof of Theorem 4.3
and the above argument suitably adapted, that π∗ must be again optimal.
Finally, if h is neither increasing nor decreasing, then it can still be written
as a sum h1 + h2, where h1 is concave, increasing and non-positive, and h2
is concave, decreasing and non-positive, and again π∗ is an optimizer. (h1
and h2 will satisfy the regularity assumptions as long as h does.)

If the minimum is finite and h is strictly concave, each other minimizer
must be concentrated on a finitely minimal, hence monotone set and thus
be equal to π∗. �
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